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Abstract
In the last several years we have witnessed the creation of data at an unprece-

dented rate and the size of datasets available in various applications has exploded.
This data comes from everywhere: sensors used to gather climate information, sky
survey telescopes used to collect astronomy data, customers who generate purchase
records, and gene expression data from microarrays to name a few. Modern ma-
chine learning and statistics has focussed extensively on solving various inference
problems involving these datasets. In this thesis we develop robust estimation proce-
dures with theoretical guarantees for a variety of learning problems using noisy and
high-dimensional data.

Learning from noisy and high-dimensional data can be impossible if we do not
exploit structure available in the data or learning task and in this thesis we focus
on understanding the statistical and computational aspects of finding and leveraging
structure in these datasets and learning problems.

The challenges we address in this thesis broadly fall into three categories: high-
dimensional sparse learning, clustering from noisy high-dimensional data and topo-
logical data analysis. In each case our main focus is on developing principled, ef-
ficient algorithms that leverage hidden structure and providing rigorous theoretical
analysis of their performance. In several cases we also provide (statistical) lower
bounds to establish the fundamental statistical limits for the problems we consider.
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Chapter 1

Introduction

In the past few years we have committed massive resources to the collection and curation of
various kinds of data. Sky survey telescopes, users on the internet and genome wide association
studies are only a few of the better known sources, that are generating torrential streams of data
available in a variety of applications and datasets. These large datasets are often associated with
two phenomena that make learning challenging:

1. The curse of dimensionality, which refers to the statistical and algorithmic intractability of
systematically learning from high-dimensional data.

2. Large amounts of noise and missing information due to various measurement errors and
data corruptions.

To tackle these challenges it is of utmost importance to develop principled statistical procedures
that fully exploit structure in the learning problem.

The past decade has witnessed much research on sparse statistical models. Sparsity is an attrac-
tive structural assumption that can provide a route to bypass the computational and statistical
curses of dimensionality typically associated with large and high-dimensional datasets. How-
ever, sparsity is not always the most appropriate notion of structure, and fortunately is not the
only means to avoid the curse of dimensionality. This thesis studies sparsity and other notions of
structure in an attempt to develop a better understanding and characterization of structured high-
dimensional learning problems. We demonstrate that in a variety of problems exploiting structure
can turn a computationally/statistically intractable learning problem into a tractable one.

Thesis statement: Finding, understanding and leveraging structure enables the principled devel-
opment of flexible statistical methods for complex, noisy and high-dimensional learning prob-
lems.

In the remainder of this chapter we briefly introduce the main results that appear this the-
sis. Broadly, these results are from our investigations in three areas: sparse high-dimensional
learning, minimax clustering from noisy and high-dimensional data and topological data analy-
sis.
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1.1 Sparse high-dimensional learning

High-dimensional statistical inference deals with problems in which the number of model param-
eters p is comparable to or larger than the number of samples available n. Traditional procedures
are typically not consistent in this regime and recent work has dealt with this unfavorable situa-
tion by studying sparse high-dimensional models, where many of the parameters are assumed to
be 0. The assumption of sparsity has several theoretical and practical benefits: it leads to more
interpretable models, reduces computational cost, and allows for model identifiability even in the
high-dimensional regime.

1.1.1 Learning generative models for protein fold families

In Chapter 2 we perform an empirical study of recently proposed algorithms of Lee et al. [124],
Ravikumar et al. [158] for learning sparse high-dimensional discrete graphical models. In partic-
ular we consider learning graphical models from protein multiple sequence alignments (MSAs).
The resulting sparse graphical model encodes both position-specific conservation statistics and
correlated mutation statistics between sequential and distant pairs of residues. These graphical
models are useful from at least two distinct perspectives:

1. The graphical models we learn are generative and allow for the design of new protein
sequences that have the same statistical properties as those in the multiple sequence align-
ment. Sequences designed this way respect covariance constraints and typically have a
much higher success rate, i.e. likelihood of folding.

2. The structure of the graphical model gives insight into both sequential and long-range
covariation in the multiple sequence alignment. Long-range interactions are particularly
interesting because they can suggest allosteric communication [183]. Allosteric communi-
cation is the process by which signals originating at one site in a protein propagate reliably
to affect distant functional sites, and one of the fundamental goals of cellular signaling is
to understand this mechanism better. The structures we learn can aid in this process by
suggesting candidate allosterically-coupled amino acids in a protein.

In addition to formulating the problem of learning interactions from MSAs in the framework of
structure learning for graphical models we perform a detailed empirical analysis of covariation
statistics on the extensively studied WW and PDZ domains (MSAs). We further apply the method
to 71 additional families from the PFAM database [74], and show for instance that the learned
models can significantly outperform hidden Markov models in a variety of tasks.

1.1.2 Sparse additive functional and kernel CCA

In Chapter 3 we study sparse non-parametric models for Canonical Correlations Analysis (CCA).
Canonical Correlations Analysis (CCA) [97] is a classical tool for finding correlations among the
components of two random vectors. In recent years, CCA has been widely applied to the analysis
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of genomic data, where it is common for researchers to perform multiple assays on a single set
of patient samples. Recent work of Witten et al. [205], Witten and Tibshirani [206] has proposed
sparse variants of CCA to address the high dimensionality of such data. However, classical
and sparse CCA are based on linear models, and are thus limited in their ability to find general
correlations. In this thesis, we present two approaches to high-dimensional nonparametric CCA,
building on recent developments in high-dimensional nonparametric regression.

In recent years great progress has been made in understanding sparsity for high-dimensional
linear models but many problems have clear nonlinear structure. While fully non-parametric
learning seems hopeless in high-dimensions, variants of additive models have been shown to be
a useful compromise in many problems [20, 77, 130, 157].

In this thesis we present two approaches to sparse additive non-parametric CCA. We present
estimation procedures for both approaches and analyze their theoretical properties in the high-
dimensional setting. We further demonstrate the effectiveness of these procedures in discovering
nonlinear correlations via extensive simulations, as well as through experiments with genomic
data.

1.2 Clustering with noisy and high-dimensional data

Clustering is one of the central pre-occupations of machine learning. Broadly, the goal of clus-
tering is to partition given data objects into groups that share some commonality.

Clustering, partly due to its unsupervised nature, is often considered a difficult topic with em-
pirical results hard to evaluate and theoretical results hard to come by. The ability to discover
meaningful clusters in high-dimensional data that is plagued with high noise, outliers and miss-
ing observations, can have a significant impact on a wide range of applications. In this thesis
we consider three clustering problems in a minimax framework. In each case, we first define the
clustering problem we are interested in and then establish upper and information- theoretic lower
bounds on the appropriate notion of signal to noise ratio (SNR). In the minimax framework we
are able to precisely characterize the fundamental limits and the performance of various popular
algorithms and heuristics.

1.2.1 Noise thresholds for spectral clustering

In Chapter 4 we focus our attention on spectral clustering. Spectral clustering algorithms are
a family of algorithms that partition data according to the eigenvectors of a similarity matrix
formed from the data. Despite considerable empirical success, the theoretical understanding of
spectral clustering is somewhat limited. In this thesis we study hierarchical and k-way spectral
clustering algorithms on a general class of noisy structured similarity matrices. For hierarchical
clustering, we show that recursive application of a simple spectral clustering algorithm can toler-
ate noise that grows with the number of data points while still recovering the hierarchical clusters
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with high probability. For k-way clustering, we derive conditions on the similarity matrix under
which spectral clustering perfectly partitions the data, relating the noise variance to the minimum
within-cluster similarity, number of clusters, and number of data points. We complement these
results with a minimax analysis, identifying the information theoretic limits for the clustering
problem with tight upper and lower bounds. We verify our results with experiments on simulated
and real data.

1.2.2 Minimax localization of bi-clusters in large noisy matrices

In Chapter 5 we consider the problem of identifying a sparse set of relevant columns and rows in
a large data matrix with highly corrupted entries. This problem of identifying groups from a col-
lection of bipartite variables such as proteins and drugs, biological species and gene sequences,
malware and signatures, etc is commonly referred to as biclustering or co-clustering. Despite
its great practical relevance, and although several ad-hoc methods are available for bi-clustering,
theoretical analysis of the problem is largely non-existent. We study bi-clustering in a theoretical
model that is closely related to that of structured normal means problems [2, 11, 12], an area of
statistics that has recently witnessed much activity.

In this chapter we prove lower bounds on the minimum signal strength needed for successful
recovery of a bi-cluster as a function of the noise variance, size of the matrix and bi-cluster of
interest. We show that a combinatorial procedure based on the scan statistic achieves this optimal
limit. We characterize the SNR required by several computationally tractable procedures for bi-
clustering including element-wise thresholding, column/row average thresholding and a convex
relaxation approach to sparse singular vector decomposition.

1.2.3 Recovering block structured activation using compressive measure-
ments

In Chapter 6, we consider the problems of detection and localization of a contiguous block of
weak activation in a large matrix, from a small number of noisy, possibly adaptive, compressive
(linear) measurements. This is closely related to the problem of compressed sensing, where
the task is to estimate a sparse vector using a small number of linear measurements. Contrary
to results in compressed sensing, where it has been shown that neither adaptivity nor contiguous
structure help much, we show that for reliable localization the magnitude of the weakest signals is
strongly influenced by both structure and the ability to choose measurements adaptively while for
detection neither adaptivity nor structure reduce the requirement on the magnitude of the signal.
We characterize the precise tradeoffs between the various problem parameters, the signal strength
and the number of measurements required to reliably detect and localize the block of activation.
The sufficient conditions are complemented with information theoretic lower bounds.
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1.3 Statistical problems in topological data analysis

Recently, there has been considerable interest in developing and understanding the mathemati-
cal formalism of topological data analysis (TDA). TDA is a field at the intersection of statistics,
computational geometry and topology and aims to incorporate geometric and topological tech-
niques into the study of point clouds, i.e. finite sets of points not necessarily in Euclidean space
(although we will not consider the more abstract case in this thesis) equipped with a distance
function.

These point clouds are intended to be thought of as finite samples taken from a geometric object,
perhaps with noise. For example a basic problem is to compute approximations to the homol-
ogy, or local coordinate charts of the manifold given finite samples. Understanding the sample
complexity of these tasks is a central problem in this area.

The manifold hypothesis, that high-dimensional data often lie on or near a low-dimensional
smooth manifold, has been central to much of machine learning, for example to understanding
Laplacian based regularization and fast rates of convergence for kernel regression. In tasks of
a more exploratory nature however it is of interest to understand the geometry of the manifold
itself. Often this geometry is not easy to understand or visualize and one option is to resort to
summaries of the manifold or the distribution on the manifold. Broadly speaking, TDA is the
study of these summaries.

In this thesis we consider two problems in this vein. The first problem is that of finding the
homology of a manifold from random samples on or close to the manifold, and the second
problem is to understand the cluster tree of a distribution supported on or near the manifold.

1.3.1 Minimax rates for homology inference

Often, high dimensional data lie close to a low-dimensional sub-manifold and it is of interest to
understand the geometry of these sub-manifolds. The homology groups of a manifold are im-
portant topological invariants that provide an algebraic summary of the manifold. These groups
contain rich topological information, for instance, about the connected components, holes, tun-
nels and sometimes the dimension of the manifold. In this thesis, we consider the statistical
problem of estimating the homology of a manifold from noisy samples under several different
noise models. We derive upper and lower bounds on the minimax risk for this problem. Our
upper bounds are based on estimators which are constructed from a union of balls of appropriate
radius around carefully selected points. In each case we establish complementary lower bounds
using Le Cam’s lemma. Finally, we show tight asymptotic minimax lower bounds by a direct
analysis of the likelihood ratio test. Under a variety of noise models our results show that it
is possible to infer the homology at ambient dimension independent rates, indicating that often
these flexible invariants can be estimated from very few random samples.
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1.3.2 Cluster trees on manifolds

In Chapter 8 we investigate the problem of estimating the cluster tree for a density f supported
on or near a smooth d-dimensional manifold M isometrically embedded in RD. We analyze a
modified version of a k-nearest neighbor based algorithm recently proposed by Chaudhuri and
Dasgupta [44].

Our main results show that under mild assumptions on f and M , we obtain rates of convergence
that depend on d only but not on the ambient dimension D. We also show that similar (albeit
non-algorithmic) results can be obtained for kernel density estimators. We sketch a construction
of a sample complexity lower bound instance for a natural class of manifold oblivious clustering
algorithms. We further briefly consider the known manifold case and show that in this case a
spatially adaptive algorithm achieves better rates.

1.4 Organization of the thesis

1. Chapters 2 and 3 consider two sparse high-dimensional learning problems. In Chapter
2 we consider the problem of structure learning in discrete MRFs from protein MSAs.
In Chapter 3 we develop flexible sparse non-parametric estimators for high-dimensional
canonical correlations analysis and study some theoretical properties of these estimators.
The results of these chapters appear in the papers [17, 20].

2. Chapters 4, 5 and 6 consider three clustering problems from noisy high-dimensional mea-
surements. In Chapter 4 we provide a novel analysis of spectral clustering applied to noisy
structured similarity matrices, and provide minimax rates for the problem. In Chapter
5 we consider the problem of recovering a sub-matrix of activation from a noisy high-
dimensional matrix. We provide minimax rates, study computationally efficient procedures
and characterize some of the statistical-computational tradeoffs for this problem. In Chap-
ter 6 we study the problem of recovering block-structured activations using compressive
measurements. We characterize the minimax limits for both active and passive measure-
ment schemes in this problem. These chapters are based on the papers [18, 22, 111].

3. Chapters 7 and 8 study problems related to topological data analysis. In Chapter 7 we
consider the problem of estimating the homology of a manifold from noisy samples, and
in Chapter 8 we consider the problem of learning the cluster tree of a density supported on
or near a manifold. In each case we provide simple estimators and analyze their rates of
convergence. In the case of homology estimation we also derive minimax lower bounds.
The results of these chapters appear in the papers [19, 21].

4. Finally Chapter 9 presents some conclusions and some avenues for future investigation
into the topics of the thesis.
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Chapter 2

Learning Generative Models for Protein
Fold Families

In this chapter we introduce a new approach to learning statistical models from multiple sequence
alignments (MSA) of proteins. The method we introduce, called GREMLIN (Generative REgular-
ized ModeLs of proteINs), learns an undirected probabilistic graphical model of the amino acid
composition within the MSA. The resulting model encodes both the position-specific conserva-
tion statistics and the correlated mutation statistics between sequential and long-range pairs of
residues. Existing techniques for learning graphical models from multiple sequence alignments
either make strong, and often inappropriate assumptions about the conditional independencies
within the MSA (e.g., Hidden Markov Models), or else use sub-optimal algorithms to learn the
parameters of the model. In contrast, GREMLIN makes no a priori assumptions about the condi-
tional independencies within the MSA. We formulate and solve a convex optimization problem,
thus guaranteeing that we find a globally optimal model at convergence. The resulting model is
also generative, allowing for the design of new protein sequences that have the same statistical
properties as those in the MSA. We perform a detailed analysis of covariation statistics on the
extensively studied WW and PDZ domains and show that our method out-performs an existing
algorithm for learning undirected probabilistic graphical models from MSA. We then apply our
approach to 71 additional families from the PFAM database and demonstrate that the resulting
models significantly out-perform Hidden Markov Models in terms of predictive accuracy.

2.1 Introduction

A protein family1 is a set of evolutionarily related proteins descended from a common ancestor,
generally having similar sequences, three dimensional structures, and functions. By examining
the statistical patterns of sequence conservation and diversity within a protein family, we can gain
insights into the constraints that determine structure and function. These statistical patterns are

1In this thesis, the expression protein family is synonymous with domain family.
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often learned from multiple sequence alignments (MSA) and then encoded using probabilistic
graphical models (e.g., [74, 108, 109, 119, 132]). The well-known database PFAM [74], for
example, contains more than 11,000 profile Hidden Markov Models (HMM) [67] learned from
MSAs. The popularity of generative graphical models is due in part to the fact that they can be
used to perform important tasks such as structure and function classification (e.g., [109, 132])
and to design new protein sequences (e.g., [188]). Unfortunately, existing methods for learning
graphical models from MSAs either make unnecessarily strong assumptions about the nature of
the underlying distribution over protein sequences, or else use greedy algorithms that are often
sub-optimal. A goal of this chapter of the thesis is to introduce a new algorithm that addresses
these two issues simultaneously and to demonstrate the superior performance of the resulting
models.

A graphical model encodes a probability distribution over protein sequences in terms of a graph
and a set of functions. The nodes of the graph correspond to the columns of the MSA and the
edges specify the conditional independencies between the columns. Each node is associated
with a local function that encodes the column-specific conservation statistics. Similarly, each
edge is associated with a function that encodes the correlated mutation statistics between pairs
of residues.

The task of learning a graphical model from an MSA can be divided into two sub-problems: (i)
learning the topology of the graph (i.e., the set of edges), and (ii) estimating the parameters of the
functions. The first problem is especially challenging because the number of unique topologies
on a graph consisting of n nodes is O(2n

2
). For that reason, it is common to simply impose a

topology on the graph, and then focus on parameter estimation. An HMM, for example, has a
simple topology where each column is connected to its immediate neighbors. That is, the model
assumes each column is conditionally independent of the rest of the MSA, given its sequential
neighbors. This assumption dramatically reduces the complexity of learning the model but is not
well justified biologically. In particular, it has been shown by Ranganathan and colleagues that it
is necessary to model correlated mutations between non-adjacent residues [133, 165, 174].

Thomas et al. [185] demonstrated that correlated mutations between non-adjacent residues can
be efficiently modeled using a different kind of graphical model known as a Markov Random
Field (MRF). However, when using MRFs one must first identify the conditional independencies
within the MSA. That is, one must learn the topology of the model. Thomas and colleagues
address that problem using a greedy algorithm, called GMRC, that adds edges between nodes
with high mutual information [185, 186, 187, 189]. Unfortunately, their algorithm provides no
guarantees as to the optimality of the resulting model.

The algorithm presented in this chapter, called GREMLIN (Generative REgularized ModeLs of
proteINs), solves the same problem as the paper of Thomas et al. [185] but does so using a method
with strong theoretical guarantees. In particular, our algorithm is consistent, i.e. it is guaranteed
to yield the true model as the data increases, and it has low sample-complexity, i.e. it requires
less data to identify the true model than any other known approach. GREMLIN also employs
regularization to penalize complex models and thus reduce the tendency to over-fit the data.
Finally, our algorithm is also computationally efficient and easily parallelizable. We demonstrate
GREMLIN by performing a detailed analysis on the well-studied WW and PDZ domains and
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demonstrate that it produces models with higher predictive accuracy than those produced using
the GMRC algorithm. We then apply GREMLIN to 71 other families from the PFAM database
and show that our algorithm produces models with consistently higher predictive accuracy than
profile HMMs.

2.2 Graphical models for protein sequence alignments

In what follows, we briefly describe our approach to modeling protein multiple sequence align-
ments using Markov Random Field our approach to learning the statistical patterns within a given
multiple sequence alignment. The resulting model is a probability distribution over amino acid
sequences for a particular domain family.

2.2.1 Modeling Domain Families with Markov Random Fields

Let Xi be a finite discrete random variable representing the amino-acid composition at position
i of the MSA of the domain family taking values in {1...k} where the number of states, k, is 21
(20 amino acids with one additional state corresponding to a gap). Let X = {X1, X2, ..Xp} be
the multi-variate random variable describing the amino acid composition of an MSA of length p.
Our goal is to model P (X), the amino-acid composition of the domain family.

Unfortunately, P (X) is a distribution over a space of size kp, rendering the explicit modeling of
the joint distribution computationally intractable for naturally occurring domains. However, by
exploiting the properties of the distribution, one can significantly decrease the number of param-
eters required to represent this distribution. To see the kinds of properties that we can exploit,
let us consider a toy domain family represented by an MSA as shown in Fig. 2.1-(A). A close
examination of the MSA reveals the following statistical properties of its composition: (i) the
Tyrosine (‘Y’) at position 2 is conserved across the family; (ii) positions 1 and 4 are co-evolving
– sequences with a (S) at position 1 have a Histidine (H) at position 4, while sequences with a
Phenylalanine (F) at position 1 have a Tryptophan (W) at position 4; (iii) the remaining posi-
tions appear to evolve independently of each other. In probabilistic terms we say that X1, X3 are
co-varying, and that the remaining Xi’s are statistically independent. We can therefore encode
the joint distribution over all positions in the MSA by storing one joint distribution P (X1, X4),
and the univariate distributions P (Xi), for the remaining positions (since they are all statistically
independent of every other variable).

The ability to factor the full joint distribution, P (X), in this fashion has an important conse-
quence in terms of space complexity. Namely, we can reduce the space requirements from 217 to
212 + 7 ∗ 21 parameters. This drastic reduction in space complexity translates to a corresponding
reduction in time complexity for computations over the distribution. While this simple example
utilizes independencies in the distribution; this kind of reduction is possible in the more general
case of conditional independencies. A Probabilistic Graphical Model (PGM) exploits these (con-
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(A) (B)

Figure 2.1: (A) A multiple sequence alignment (MSA) for a hypothetical domain family. (B)
The Markov Random Field encoding the conservation in and the coupling in the
MSA. The edge between random variables X1 and X4 reflects the coupling between
positions 1 and 4 in the MSA.

ditional) independence properties to store the joint probability distribution using a small number
of parameters.

Intuitively, a PGM stores the joint distribution of a multivariate random variable in a graph; while
any distribution can be modeled by a PGM with a complete graph, exploiting the conditional
independencies in the distribution leads to a PGM with a (structurally) sparse graph. We use
a specific type of probabilistic graphical model called a Markov Random Field (MRF). In its
commonly defined form with pair-wise log-linear potentials, a Markov Random Field (MRF)
can be formally defined as a tupleM = (X, E ,Φ,Ψ) where (X, E) is an undirected graph over
the random variables. X represents the set of vertices and E is the set of edges of the graph. The
graph succinctly represents conditional independencies through its Markov properties, which
state for instance that each node is independent of all other nodes given its neighbors. Thus,
graph separation in (X, E) implies conditional independence. Φ,Ψ are a set of node and edge
potentials, respectively, usually chosen to be log-linear functions of the form:

φs = [ev
s
1 ev

s
2 ... ev

s
k ]; ψst =


ew

st
11 ew

st
12 ... ew

st
1k

ew
st
21 ew

st
22 ... ew

st
2k

...

ew
st
k1 ew

st
k2 ... ew

st
kk

 , (2.1)

where s is a position in the MSA, and (s, t) is an edge between the positions s and t in the MSA.
φs is a (k × 1) vector and ψst is a (k × k) matrix. For future notational simplicity we further
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define

vs = [vs1 vs2 ... vsk] and wst =


wst11 wst12 ... wst1k
wst21 wst22 ... wst2k

...
wstk1 wstk2 ... wstkk

 , (2.2)

where vs is a (k × 1) vector and wst is a (k × k) matrix. v = {vs|s = 1 . . . p} and w =
{wst|(s, t) ∈ E} are node and edge “weights”. v is a collection of p, (k × 1) vectors and w is a
collection of p, (k × k) matrices.

The probability of a particular sequence x = {x1, x2, . . . , xp} according toM is defined as:

PM(x) =
1

Z

∏
s∈V

φs(xs)
∏

(s,t)∈E

ψst(xs, xt), (2.3)

where Z, the so-called partition function, is a normalizing constant defined as a sum over all
possible assignments to X. Abusing notation slightly we have,

Z =
∑
X∈X

∏
s∈V

φs(Xs)
∏

(s,t)∈E

ψst(Xs, Xt). (2.4)

The structure of the MRF for the MSA shown in Fig. 2.1(A) is shown in Fig. 2.1(B). The edge
between variables X1 and X4 reflects the statistical coupling between those positions in the
MSA.

2.2.2 Structure learning with L1 Regularization

In the previous section we outlined how an MRF can parsimoniously model the probability distri-
bution P (X). In this section we consider the problem of learning the MRF from an MSA.

Eq. 2.3 describes the probability of a sequence X for a specific model M. Given a set of
independent sequences X = {X1,X2,X3, ....,Xn}, the log-likelihood of the model parameters
Θ = (E ,v,w) is then:

ll(Θ) =
1

n

∑
Xi∈X

∑
s∈V

log φs(X i
s) +

∑
(s,t)∈E

log ψst(X i
s, X

i
t)

− log Z, (2.5)

where the term in the braces is the unnormalized likelihood of each sequence, and Z is the global
partition function. The problem of learning the structure and parameters of the MRF is now
simply that of maximizing ll(Θ),

MLE(θ) = max
Θ

ll(Θ). (2.6)

This Maximum Likelihood Estimate (MLE) is guaranteed to recover the true parameters as the
amount of data increases. However, this formulation suffers from two significant shortcomings:
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(i) the likelihood involves the computation of the global partition function which is computation-
ally intractable and requires O(kp) time to compute, and (ii) in the absence of infinite data, the
MLE can significantly over-fit the training data due to the potentially large number of parameters
in the model.

An overview of our approach to surmount these shortcomings is as follows: first, we approxi-
mate the likelihood of the data with an objective function that is easier to compute, yet retains
the optimality property of MLE mentioned above. To avoid over-fitting and learning densely
connected structures, we then add a regularization term that penalizes complex models to the
likelihood objective. The specific regularization we use is particularly attractive because it has
high statistical efficiency.

The general regularized learning problem is then formulated as:

max
Θ

pll(Θ)− R(Θ) (2.7)

where the pseudo log-likelihood pll(Θ) is an approximation to the exact log-likelihood and R(Θ)
is a regularization term that penalizes complex models.

While this method can be used to jointly estimate both the structure E and the parameters v,w,
it will be convenient to divide the learning problem into two parts: (i) structure learning —
which learns the edges of the graph, and (ii) and parameter estimation — learning v,w given
the structure of the graph. We will use a regularization penalty in the structure learning phase
that focuses on identifying the correct set of edges. In the parameter estimation phase, we use
these edges and learn v and w using a different regularization penalty that focuses on estimating
v and w accurately. We note that once the set of edges has been fixed, the parameter estimation
problem can be solved efficiently. Thus, we will focus on the problem of learning the edges or,
equivalently, the set of conditional independencies within the model.

Pseudo Likelihood

The log-likelihood as defined in Eq. 2.5 is smooth, differentiable, and concave. However, maxi-
mizing the log-likelihood requires computing the global partition function Z and its derivatives,
which in general can take up toO(kp) time. While approximations to the partition function based
on Loopy Belief Propagation [125] have been proposed as an alternative, such approximations
can lead to inconsistent estimates.

Instead of approximating the true-likelihood using approximate inference techniques, we use
a different approximation based on a pseudo-likelihood proposed by Besag [28], and used in
the papers of Schmidt et al. [167], Wainwright et al. [199]. The pseudo-likelihood is defined
as:
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pll(Θ) =
1

n

∑
Xi∈X

p∑
j=1

log(P (X i
j|X i

−j))

=
1

n

∑
Xi∈X

p∑
j=1

log φj(X i
j) +

∑
k∈V ′j

log ψjk(X i
j, X

i
k)− log Zj


where X i

j is the residue at the jth position in the ith sequence of our MSA, X i
−j denotes the

“Markov blanket” of X i
j , and Zj is a local normalization constant for each node in the MRF. The

set V ′j is the set of all vertices which connect to vertex j in the PGM. The only difference between
the likelihood and pseudo-likelihood is the replacement of a global partition function with local
partition functions (which are sums over possible assignments to single nodes rather than a sum
over all assignments to all nodes of the sequence). This difference makes the pseudo-likelihood
significantly easier to compute in general graphical models.

The pseudo-likelihood retains the concavity of the original problem, and this approximation
makes the problem tractable. Moreover, this approximation is known to yield a consistent esti-
mate of the parameters under fairly general conditions if the generating distribution is in fact a
pairwise MRF defined by a graph over X [82]. That is, under these conditions, as the number
of samples increases, parameter estimates using pseudo-likelihood converge to the true parame-
ters.

L1 Regularization

The study of convex approximations to the complexity and goodness of fit metrics has received
considerable attention recently [96, 125, 167, 199]. Of these, those based onL1 regularization are
the most interesting because of their strong theoretical guarantees. In particular methods based
on L1 regularization exhibit consistency in both parameters and structure (i.e., as the number of
samples increases we are guaranteed to find the true model), and high statistical efficiency (i.e.,
the number of samples needed to achieve this guarantee is small). See the paper of Tropp [191]
for a recent review of L1-regularization. Our algorithm uses L1-regularization for both structure
learning and parameter estimation.

For the specific case of block-L1 regularization, R(Θ) usually takes the form:

R(Θ) = λnode

p∑
s=1

||vs||22 + λedge

p∑
s=1

p∑
t=s+1

||wst||2, (2.8)

where λnode and λedge are regularization parameters that determine how strongly we penalize
higher (absolute) weights. The value of λnode and λedge control the trade-off between the log-
likelihood term and the regularization term in our objective function.
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The regularization described above groups all the parameters that describe an edge together in
a block. The second term in Eq. 2.8 is the sum of the L2 norms of each block. Since the L2

norm is always positive, our regularization is exactly equivalent to penalizing the L1 norm of the
vector of norms of each block with the penalty increasing with higher values of λedge. It is im-
portant to distinguish the block-L1 regularization on the edge weights from the more traditional
L2 regularization on the node weights where we sum the squares of the L2 norms.

The L1 norm is known to encourage sparsity (by setting parameters to be exactly zero), and the
block L1 norm we have described above encourages group sparsity (where groups of parameters
are set to zero). Since, each group corresponds to all the parameters of a single edge, using the
block L1 norm leads to what we refer to as structural sparsity (i.e. sparsity in the edges). In
contrast, the L2 regularization also penalizes high absolute weights, but does not usually set any
weights to zero, and thus does not encourage sparsity.

Optimizing Regularized Pseudo-Likelihood

In the previous two sections we described an objective function, and then a tractable and con-
sistent approximation to it, given a set of weights (equivalently, potentials). However, to solve
this problem we still need to be able to find the set of weights that maximizes the likelihood
under the block-regularization form of Eq. 2.7. We note that the objective function associated
with block-L1 regularization is no longer smooth. In particular, its derivative with respect to
any parameter is discontinuous at the point where the group containing the parameter is 0. We
therefore consider an equivalent formulation where the non-differentiable part of the objective is
converted into a constraint making the new objective function differentiable,

maxΘ,α pll(Θ)− λnode
∑p

s=1 ||vs||22 − λedge
∑p

s=1

∑p
t=s+1 αst

subject to: ∀(1 ≤ s < t ≤ p) : αst ≥ ||wst||2,

where the constraints hold with equality at the optimal (Θ,α). Intuitively, αst behaves as a differ-
entiable proxy for the non-differentiable ||wst||2, making it possible to solve the problem using
techniques from smooth convex optimization. Since the constraints hold with equality at the opti-
mal solution (ie αst = ||wst||2), the solutions and therefore, the formulations are identical.

We solve this reformulation through the use of projected gradients. We first ignore the con-
straints, compute the gradient of the objective, and take a step in this direction. If the step results
in any of the constraints being violated we solve an alternative (and simpler) Euclidean projection
problem:

minΘ′α′ ||
[

Θ′

α′

]
−
[

Θ
α

]
||22

subject to: ∀(1 ≤ s < t ≤ p) : αst ≥ ||wst||2
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which finds the closest parameter vector to the vector obtained by taking the gradient step (in
Euclidean distance), which satisfies the original constraints. In this case the projection problem
can be solved extremely efficiently (in linear time) using an algorithm described in Schmidt et al.
[167]. Methods based on projected gradients are guaranteed to converge to a stationary point
(see Boyd and Vandenberghe [33]), and convexity ensures that this stationary point is globally
optimal.

In order to scale the method to significantly larger domains, we can sub-divide the structure
learning problem into two steps. In the first step, each node is considered separately to iden-
tify its neighbors. This may lead to an asymmetric adjacency matrix, and so in the second step
the adjacency matrix is made symmetric. This two-step approach to structure learning has been
extensively compared to the single step approach by Hoefling and Tibshirani [96] and has been
found to have almost identical performance. The two-step approach however has several com-
putational advantages. The problem of learning the neighbors of a node is exactly equivalent
to solving a logistic regression problem with block-L1 regularization, and this problem can be
solved quickly and with low memory requirements. Additionally, the problem of estimating the
graph can now be trivially parallelized across nodes of the graph since these logistic regression
problems are completely decoupled. Parameter learning of the graph with just L2 regularization
can then be solved extremely efficiently using quasi-Newton methods [129].

2.3 Results

The probabilistic framework defined in Sec. 2.2.1 and the optimization objectives and algorithms
defined in Sec. 2.2.2 constitute a method for learning a graphical model from a given MSA. The
optimization framework has two major penalty parameters that can be varied (λv, λe). To under-
stand the effects of these parameters, we first evaluated GREMLIN on artificial protein families
whose sequence records were generated from known, randomly generated models. This lets us
evaluate the success of the various components of GREMLIN in a controlled setting where the
ground truth was known.

Our experiments involve comparing the performance of ranking edges and learning a graph struc-
ture using a variety of techniques, including: (i) our algorithm, GREMLIN; (ii) the greedy algo-
rithm of Thomas et al. [185, 186], denoted ’GMRC method’; and (iii) a simpler greedy algo-
rithm that uses the metric suggested in the paper of Lockless and Ranganathan [133], denoted
∆∆Gstat. We also compare our performance with the Profile Hidden Markov Models [67] used
by Finn et al. [74].

We note that the GMRC method only considers edges that meet certain coupling criteria (see the
papers of Thomas et al. [185, 186] for details). In particular, we found that it returns sparse graphs
(fewer than 100 edges), regardless of choice of run-time parameters. GREMLIN, in contrast,
returns a full spectrum from disconnected to completely connected graphs depending on the
choice of the regularization parameter. In our experiments, we use our parameter estimation
code on their graphs, and compare ourselves to the best graph they return.
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In the remainder of this section, we demonstrate that GREMLIN significantly out-performs other
algorithms. In particular, we show that GREMLIN achieves higher goodness of fit to the test
set, and has lower prediction error than the GMRC method - even when we learn models of
similar sparsity. Finally, we show that GREMLIN also significantly out performs profile HMM-
based models for 71 real protein families, in terms of goodness of fit. These results demon-
strate that the use of block-regularized structure learning algorithms can result in higher-quality
MRFs than those learnt by the GMRC method, and that MRFs produce higher quality models
than HMMs.

2.3.1 Simulations

We generated 32-node graphs. Each node had a cardinality of 21 states, and each edge was
included with probability ρ. Ten different values of ρ varying from 0.01 and 0.45 were used;
for each value of ρ, twenty different graphs were generated resulting in a total of 200 graphs.
For each edge that was included in a graph, edge and node weights were drawn from a Normal
distribution (weights ∼ N (0,1)). Since each edge involves sampling 441 weights from this
distribution, the edges tend to have many small weights and a few large ones. This reflects the
observation that in positions with known correlated mutations, a few favorable pairs of amino
acids are usually much more frequent than most other pairs. When we sample from our simulated
graphs using these parameters, we therefore tend to generate such sequences.

For each of these 200 graphical models, we then sampled 1000 sequences using a Gibbs sam-
pler with a burn-in of 10,000 samples and discarding 1,000 samples between each accepted
sequence. These 1000 sequences were then partitioned into two sets: a training set containing
500 sequences and a held-out set of 500 sequences used to test the model. The training set was
then used to train a model using the block regularization norm.

We first test our accuracy on structure learning. We measure accuracy by the F-score which is
defined as

F-score =
2 ∗ precision ∗ recall

precision + recall
.

Precision and recall are in turn defined in terms of the number of true positives (tp), false positives
(fp) and false negatives (fn) as precision = tp

tp+fp
and recall = tp

tp+fn
.

Since the structure of the model directly depends only on the regularization weight on the edges,
the structures were learnt for each norm and each training set with different values of λe (between
1 and 500), keeping λv fixed at 1.

Figure 2.2-A compares our structure learning method with the algorithm in the paper of Thomas
et al. [186]. We evaluate their method over a wide range of parameter settings and select the best
model. Figure 2.2-A shows that our method significantly out-performs their method for all values
of ρ. We see that over all settings our best model has an average F-score of at least 0.63. We
conclude that we are able to infer accurate structures given the proper choice of settings.

Figure 2.2-B, shows the error in our parameter estimates given the true graph as a function of
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Figure 2.2: (A) Edge occurrence probability ρ versus F-score for the structure learning methods
we propose, and the method proposed in the paper [186]. (B) L2 norm of the error
in the estimated parameters as a function of the weight of the regularization in stage
two. The inset shows the case when no regularization is used in stage two. The much
higher parameter estimation error in this case highlights the need for regularization
in both stages.

ρ. We also find that parameter estimation is reasonably robust to the choice of the regularization
weights, as long as the regularization weights are non-zero.

Fig. 2.3-A shows a qualitative analysis of edges missed by each method (we consider all simu-
lated graphs and the best learnt graph of each method). We divide the missed edges into three
groups (weak, intermediate and strong) based on their true L2 norm. We see again that the
three norms perform comparably, significantly out-performing the GMRC method in all three
groups.

Finally, Fig. 2.3-B shows the sensitivity of our structure learning algorithms to the size of training
set. In particular, we see that for the simulated graphs around 400 sequences results in us learn-
ing very accurate structures. However, as few as 50 sequences are enough to infer reasonable
structures.

2.3.2 Evaluating Structure and Parameters Jointly

In a simulated setting, structure and parameter estimates can be compared against known ground
truth. However, for real domain families we need other evaluation methods. We evaluate the
structure and parameters for real domain families by measuring the imputation error of the learnt
models. Informally, the imputation error measures the probability of not being able to “generate”
a complete sequence, given an incomplete one. The imputation error of a column is measured
by erasing it in the test MSA, and then computing the probability that the true (known) residues
would be predicted by the learnt model. This probability is calculated by performing inference
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Figure 2.3: (A) Qualitative grouping of edges missed by GREMLIN and the GMRC method (B)
Sensitivity of structure learning to size of training set.

on the erased columns, conditioned on the rest of the MSA. The imputation error of a model is
the average of its imputation error over columns.

Using imputation error directly for model selection generally gives us models that are too dense.
Intuitively, once we have identified the true model, adding extra edges decreases the imputation
error by a very small amount, probably a reflection of the finite-sample bias. We evaluated
the modified AIC (Akaike Information Criteria) and BIC (Bayesian Information Criteria) for
model selection due to their theoretically appealing properties. In the finite sample case we
find that BIC performs well when the true graph is sparse, while AIC performs well when the
true graph is dense. We discuss the information criteria in detail in the supplemental material,
and provide some general suggestions for their use. Unfortunately, neither method performs
well over the entire range of graphs. For this reason, we considered an approach to model
selection based on finite sample error control. We chose to control the false discovery rate (FDR)
in the following way. Consider permuting the each column of the MSA independently (and
randomly). Intuitively, the true graph is now a graph with no edges. Thus, one approach to
selecting the regularization parameter is to find the value that yields no edges on the permuted
MSA. A more robust method, which we use, is to use the average regularization parameter
obtained from multiple random permutations as in the work of Listgarten and Heckerman [128].
In the results that follow we use 20 random permutations.

Given the success of GREMLIN on simulated data, and equipped with a method for model se-
lection described above, we proceed to apply GREMLIN to real protein MSAs. We consider the
WW and PDZ families in some detail since the extensive literature on these families allows us to
draw meaningful conclusions about the learnt models.
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2.3.3 A generative model for the WW domain

The WW domain family (Pfam id: PF00397 [74]) is a small protein interaction module with two
highly conserved tryptophans that adopts a curved three-stranded β-sheet structure with a binding
site for proline-containing peptides. In the papers [174] and [165], the authors determine, using
Statistical Coupling Analysis (SCA), that the residues can be divided into two clusters: the first
cluster contains a set of 8 strongly coupled residues and the second cluster contains everything
else. Based on this finding, the authors then designed 44 sequences that satisfy co-evolution
constraints of the first cluster, of which 12 actually fold in vitro. An alternative set of control
sequences, which did not satisfy the constraints, failed to fold.

We first constructed an MSA by starting with the PFAM alignment and removing sequences to
construct a non-redundant alignment (no pair of sequences was greater than 80% similar). This
resulted in an MSA with 700 sequences of which two thirds were used as a training set and the
rest were used as a test set. Each sequence in the alignment had 30 positions. The training set was
used to learn the model, for multiple values of λe. Given the structure of the graph, parameters
were learned using λv = 1, λe = 1. The learnt model is presented in Figure 2.4.

Figure 2.5 compares the imputation errors of our approach (in red and yellow) with the GMRC

method of Thomas et al. [186] and Profile HMMs of Eddy [67]. The model in red was learnt
using λe selected by performing a permutation study. Since this model had more edges than
the model learnt by GMRC, we used a higher λe to learn a model that had fewer edges than the
GMRC model. The x-intercept was based on a loose lower bound on the error and was estimated
by computing the imputation error on the test-data of a completely connected model learnt on
the test data. Due to over-fitting, this is likely to be a very loose estimate of the lower bound. We
find that our imputation errors are lower than the methods we compare to (even at comparable
levels of sparsity).

To see which residues are affected by these edges, we construct a “coupling profile” (Fig. 2.4-
C). We construct a shuffled MSA by taking the natural MSA and randomly permuting the amino
acids within the same position (column of MSA) for each position. The new MSA now contains
no co-evolving residues but has the same conservation profile as the original MSA. To build a
coupling profile, we calculate the difference in the imputation error of sequences in a held-out
test set and the shuffled MSA. Intuitively, having a high imputation error difference means that
the position was indeed co-evolving with some other positions in the MSA. The other positions
would also have a high imputation error difference in the coupling profile.

We also performed a retrospective analysis of the artificial sequences designed by Russ et al.
[165]. We attempt to distinguish sequences that folded from those that didn’t. Although this is
a discriminative test (folded or not) of a generative model, we nevertheless achieve a high AUC
of 0.87 (the ROC curve is shown and described in the supplemental material). We therefore
postulate that the additional constraints we identify are indeed critical to the stability of the WW
fold. In comparing our AUC to the published results of Thomas et al. [186] (AUC of 0.82) and
the Profile HMM (AUC of 0.83) we see that we are able to better distinguish artificial sequences
that fold from those that don’t.
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(A) (B)

(C)

Figure 2.4: WW domain model. Edges returned by GREMLIN overlayed on a circle (a) and on
the structure (b) of the WW domain of Transcription Elongation Factor 1 (PDB id:
2DK7) [27]. (c) Coupling profile (see text).
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Figure 2.5: Comparison of Imputation errors on WW and PDZ families. We consider two vari-
ants of GREMLIN - with the regularization parameter selected either to produce a
model with a smaller number of edges than GMRC (third bar in each group, shown
in yellow) or to have zero edges on 20 permuted MSAs (last bar, shown in red).
The x-intercept was chosed by estimating a lower bound on the imputation error as
described in the text.

2.3.4 Allosteric regulation in the PDZ domain

The PDZ domain is a family of small, evolutionarily well represented protein binding motifs.
The domain is most commonly found in signaling proteins and helps to anchor trans-membrane
proteins to the cytoskeleton and hold together signaling complexes. The PDZ domain is also in-
teresting because it is considered an allosteric protein. The domain, and its members have been
studied extensively, in multiple studies, using a wide range of techniques ranging from computa-
tional approaches based on statistical coupling [133] and Molecular Dynamics simulations [63],
to NMR based experimental studies [79].

We use the MSA from Lockless and Ranganathan [133]. The MSA is an alignment of 240 non-
redundant sequences, with 92 positions. We chose a random sub-sample with two-thirds of the
sequences as the training set and use the rest as a test set. Using this training set, we learnt
generative models for each of the block regularizers, and choosing the smallest value of λe that
gave zero edges for 20 permuted MSAs as explained previously. The resulting model had 112
edges (Fig. 2.6). Figure 2.5 summarizes the imputation errors on the PDZ domain. We again
observe that the model we learn is denser than that learnt by GMRC and has lower imputa-
tion error. However, even at comparable sparsity GREMLIN out-performs the Profile HMM and
GMRC.

The SCA based approach of Lockless and Ranganathan [133] identified a set of residues that
were coupled to a residue near the active site (HIS-70) including a residue at a distal site on
the other end of the protein (GLY-49 in this case). Since the SCA approach can only deter-
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(C)

Figure 2.6: PDZ domain model. Edges returned by GREMLIN overlayed on a circle (a) and on
the structure (b) of PDZ domain of PSD-95 (PDB id:1BE9). (c) Coupling profile
(see text).

28



mine the presence of a dependence but cannot distinguish between direct and indirect couplings,
only a cluster of residues was identified. Our model also identifies this interaction, but more
importantly, it determines that this interaction is mediated by ALA-74 with position 74 directly
interacting with both these positions. By providing such a list of sparse interactions our model
can provide a small list of hypotheses to an experimentalist looking for possible mechanisms of
such allosteric behavior.

In addition to the pathway between HIS-70 and GLY-49, we also identify residues not on the
pathway that are connected to other parts of the protein including, for example ASN-61 of the
protein. This position is connected to ALA-88 and VAL-60 in our model, and does not appear in
the network suggested by Lockless and Ranganathan [133], but has been implicated by the NMR
experiments of Fuentes et al. [79] as being dynamically linked to the active site.

From our studies on the PDZ and WW families we find that GREMLIN produces higher quality
models than GMRC and profile HMMs, and identifies richer sets of interactions. In the following
section we consider the application of GREMLIN to a larger subset of the PFAM database. Since
the greedy algorithm of GMRC does not scale to large families, our experiments are restricted
to comparing the performance of GREMLIN with that of profile HMMs.

2.3.5 Large-scale analysis of families from Pfam

We selected all protein families from PFAM [74] that had at least 300 sequences in their seed
alignment. We restricted ourselves to such families because the seed alignments are manually
curated before depositing and are therefore expected to have higher quality than the whole align-
ments. We pre-processed these alignments to remove redundant sequences (sequence similarity
> 80%) in order to generate non-redundant alignments. From each alignment, we then removed
columns that had gaps in more than half the sequences, and then removed sequences in the align-
ment that had more than insertions at more than 10% of these columns. Finally, we removed
sequences that had more than 20% gaps in their alignment. If this post-processing resulted in an
alignment with less than 300 sequences, it was dropped from our analysis. 71 families remained
at the end of this process. These families varied greatly in their length with the shortest family
having 15 positions and the longest having more than 450 positions and the median length being
78 positions. Figure 2.7 shows the distribution of lengths.

For each of these families, we created a random partition of the alignment into training (with 2/3
of the sequences) and test (with 1/3 of the sequences) alignments and trained an MRF using our
algorithm. As mentioned earlier, we chose λe by performing 20 random permutations of each
column and choosing the smallest λe that gave zero edges on all 20 permutations. As a baseline
comparison, we also trained a profile-HMM using the Bioinformatics toolkit in Matlab on the
training alignments. We then used the learnt models to impute the composition of each position
of the test MSA and computed the overall and per-position imputation errors for both models.
Due to space constraints, we provide the models and detailed analyses for each family on a
supporting website (http://www.cs.cmu.edu/˜cjl/gremlin/) and focus on overall
trends in the rest of this section.
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Figure 2.7: Histogram of MSA lengths of the 73 PFAM families in our study.

(A) (B)

Figure 2.8: (A) Histogram of the distance in crystal structure. (B) Degree distribution across all
proteins.

30



Figure 2.8 shows the histograms of the distance between residues connected by an edge and the
degree of the nodes. Approximately 30% of the edges are between residues that are more than
10 Å of each other. That is, GREMLIN learns edges that are different than those that would be
obtained from a contact map. Despite the presence of long-range edges, GREMLIN does learn a
sparse graph; most nodes have degree less than 5, and the majority have 1 or fewer edges.

Fig. 2.9-(A) shows a boxplot demonstrating the effect of incorporating co-evolution information
according to our model. The y-axis shows the decrease in the per-position imputation error when
moving from a profile-HMM model to the corresponding MRF, while the x-axis bins this im-
provement according to the number of edges in the MRF at that position. In each box, the central
red line is the median, the edges of the box are the 25th and 75th percentiles, the whiskers ex-
tend to the most extreme data points not considered outliers, and outliers are plotted individually
with red ‘+’ marks. As the figure shows, moving from a profile-HMM model to an MRF never
hurts: for positions with 0 edges, there is no difference in imputation; for positions with at least
one edge, the MRF model always results in lower error. While this is not completely surpris-
ing given that the MRF has more parameters and is therefore more expressive, it is not obvious
that these parameters can be learnt from such little data. Our results demonstrate that this is
indeed possible. While there are individual variations within each box, the median improvement
in imputation error shows a clear linear relationship to the number of neighbors of the position
in the model. This linear effect falls off towards the right in the high-degree vertices where the
relationship is sub-linear. Fig. 2.9-(B) shows the effect of this behavior on the improvement in
overall imputation error across all positions for a family.

2.3.6 Computational efficiency

In this subsection we briefly discuss the computational efficiency of GREMLIN . The efficiency
of GREMLIN was measured based on the running time (i.e. CPU seconds until a solution to the
convex optimization problem is found). GREMLIN was run on a 64 node cluster. Each node had
16GB DRAM and 2xquad-cores (each with 2.8-3 GHZ), allowing us to run 512 jobs in parallel
with an average of 2GB RAM per job.

Fig. 2.10 shows a plot of the running time for a given λe on all the PFAM MSAs. Fig. 2.10-(A)
plots the running time for learning the neighbors of a position, against the number of columns
(positions) in the MSA (A) while 2.10-(B) plots it against number of rows (sequences) in the
training MSA. In both, the average running time per column is shown in red circles. While
learning the neighbors at a position, since GREMLIN is run in parallel for each column of the
MSA, the actual time to completion for each protein depends on the maximum running time
across these columns. This number is shown in blue squares. Fig. 2.10-(C) plots the running time
for parameter learning against the maximum running time to learn the neighbors at a position.
Recall that this task is performed serially. As the figure demonstrates, GREMLIN takes roughly
similar amounts of time in its parallel stage (neighborhood learning) as it does in its serial stage
(parameter learning).

The plots show that the running time has an increasing trend as the size of the MSA increases
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(A)

(B)

Figure 2.9: (A) Boxplot displaying the effect of coupling on improvement in imputation error at
a position when compared to a profile-HMM. The median imputation error shows a
near-linear decrease as the number of neighbors learnt by the model increases. (B)
Improvement in overall imputation error across all positions for each family.

32



(A)

(B)

(C)

Figure 2.10: (A) Number of Positions in the MSA versus runtime of Neighborhood learning
(in seconds) (B) Number of sequences in the MSA versus runtime of Neighbor-
hood learning (C) Runtime of Neighborhood learning versus runtime of Parameter
learning
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(number of positions and number of sequences). Also, the dependence of the running time on
the number of columns is stronger than its dependence on the number of rows. This is consis-
tent with the analysis in the paper of Wainwright et al. [199] which shows that a similar algo-
rithm for structure learning with a pure L1 penalty has a computational complexity that scales as
O(max(n, p)p3), where n corresponds to the number of rows and p to the number of columns in
the MSA.

2.4 Discussion

2.4.1 Related Work

The study of co-evolving residues in proteins has been a problem of much interest due to its
wide utility. Much of the early work focused on detecting such pairs in order to predict con-
tacts in a protein in the absence of a solved structure (see the papers [5, 84]) and to perform
fold recognition. The pioneering work of Lockless and Ranganathan [133] used an approach
to determine probabilistic dependencies that they called SCA and observed that analyzing such
patterns could provide insights into the allosteric behavior of the proteins and be used to design
new sequences [174]. Others, [72, 76, 78], have since developed similar methods. By focusing
on co-variation or probabilistic dependencies between residues, such methods conflate direct and
indirect influences and can lead to incorrect estimates. In contrast, Thomas et al. [186] developed
an algorithm for learning a Markov Random Field over sequences. Their constraint-based algo-
rithm proceeds by identifying conditional independencies and adding edges in a greedy fashion.
However, the algorithm can provide no guarantees on the correctness of the networks it learns.
They then extended this approach to incorporate interaction data to learn models over pairs of
interacting proteins [187] and also develop a sampling algorithm for protein design using such
models [189]. More recently, Weigt et al. [202] use a similar approach to determine residue con-
tacts at a protein-protein interface. Their method uses a gradient descent approach using Loopy
Belief Propagation to approximate likelihoods. Additionally, their algorithm does not regularize
the model and may therefore be prone to over-fitting. In contrast, we use a Pseudo-Likelihood as
our objective function thereby avoiding problems of convergence that Loopy BP based methods
can face and regularize the model using block regularization to prevent over-fitting.

Block regularization is most similar in spirit to the group LASSO [210] and the multi-task
LASSO [7]. LASSO [190] is the problem of finding a linear predictor, by minimizing the squared
loss of the predictor with an L1 penalty. It is well known that the shrinkage properties of the L1

penalty lead to sparse predictors. The group LASSO extends this idea by grouping the weights
of some features of the predictor using an L2 norm, Yuan and Lin [210] show that this leads to
sparse selection of groups. The multi-task LASSO solves the problem of multiple separate (but
similar) regression problems by grouping the weight of a single feature across the multiple tasks.
Intuitively, we solve a problem similar to a group LASSO, replacing the squared loss with an
approximation to the negative log-likelihood, where we group all the feature weights of an edge
in an undirected graphical model. Thus, sparse selection of groups gives our graphs the property
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of structural sparsity.

Lee et al. [124] introduced structure learning in MRFs with a pure L1 penalty, but do not go
further to explore block regularization. They also use a different approximation to the likelihood
term, using Loopy Belief Propagation. Schmidt et al. [167] apply block-regularized structure
learning to the problem of detecting abnormalities in heart motion. They also developed an
efficient algorithm for tractably solving the convex structure learning problem based on projected
gradients.

2.4.2 Mutual Information performs poorly in the structure learning task

One of the key advantages of a graphical model based approach to modeling protein families is
that the graph reveals which interactions are direct and which are indirect. One might assume that
alternative quantities, like Mutual Information, might yield similar results. We now demonstrate
with an example that a simple Mutual Information based metric cannot distinguish well between
direct and indirect interactions. Fig. 2.11-(A) shows the adjacency matrix of a Probabilistic
Graphical Model. The elements of the matrix are color-coded by the strength of their interaction:
blue represents the weakest interaction (of strength 0, i.e. a non-interaction) and red the strongest
interaction in this distribution. Fig. 2.11-(B) shows the mutual information induced between
the variables by this distribution as measured from 500 sequences sampled from the graphical
model (the diagonal elements of the mutual information matrix have been omitted to highlight
the information between different positions). While it may appear visually that (B) shares a
lot of structure with (A), it isn’t actually the case. In particular, the edges with the highest
mutual information indeed tend to be direct interactions; however a large fraction of the direct
interactions might not have high MI. This is demonstrated in Fig. 2.11-(C) where MI is used as a
metric to classify edges into direct and indirect interactions. The blue line shows the ROC curve
using MI as a metric and has only moderate discriminatory power for this task (AUC: 0.71). In
contrast, our approach, shown in red, is much more successful at discriminating between direct
and indirect interactions: the AUC of our approach is a near-perfect 0.98.

2.4.3 Influence of Phylogeny

One limitation associated with a sequence-only approach to learning a statistical model for a
domain family is that the correlations observed in the MSA can be inflated due to phylogeny
[73, 154]. A pair of co-incident mutations at the root of the tree can appear as a significant
dependency even though they correspond to just once co-incident mutation event. To test if this
was the case with the WW domain, we constructed a phylogenetic tree from the MSA using
Junes-Cantor measure of sequence dissimilarity. In the case of WW, this resulted in a tree with
two clear sub-trees, corresponding to two distinct (nearly equal-sized) clusters in sequence space.
Since each sub-tree had a number of sequences, we re-learnt MRFs for each sub-tree separately.
The resulting models for each sub-tree did not vary significantly from our original models –
a case that would have occurred if there were co-incident mutations at the root that lead to
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(A)

(B)

(C)

Figure 2.11: (A) Adjacency matrix of a Boltzmann distribution colored by edge strength. (B)
Mutual Information between positions induced by this Boltzman distribution.
While the mutual information of the strongest edges is highest; a large fraction
of the edges have MI comparable to many non-interactions. (C) Shows the weak
ability of MI to distinguish between edges and indirect interactions in contrast to
GREMLIN . AUC using MI: 0.71; AUC using GREMLIN : 0.98.
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spurious dependencies. Indeed the only difference between the models was in the C-terminal
end was an edge between positions 1 and 2 that was present in sequences from the first sub-
tree but was absent in the second sub-tree. This occurred because in the second sub-tree, these
positions were completely conserved due to which our model was not able to determine the
dependency between them. While this does not eliminate the possibility of confounding due to
phylogeny, we have reason to believe that our dependencies are robust to significant phylogenetic
confounding in this family. A similar analysis for the PDZ domain, found 3 sub-trees, and again
we found that the strongest dependencies were consistent across models learnt on each sub-tree
separately. Nevertheless, we believe that incorporating phylogenetic information into our method
is an important direction for future research.

2.5 Conclusions

In this chapter we have proposed a new algorithm for discovering and modeling the statistical
patterns contained in a given MSA. Overall, we find that by employing sound probabilistic mod-
eling and convex structure (and parameter) learning, we are able to find a good balance between
structural sparsity (simplicity) and goodness of fit. One of the key advantages of a graphical
model approach is that the graph reveals the direct and indirect constraints that can further our
understanding of protein function and regulation.

MRFs are generative models, and can therefore be used design new protein sequences via sam-
pling and inference. However, we expect that the utility of our model in the context of protein
design could be greatly enhanced by incorporating structure based information which explicitly
models the physical constraints of the protein.

Finally, we note that there are a number of other ways to incorporate phylogenetic information
directly into our model. For example, given a phylogenetic clustering of sequences, we can
incorporate a single additional node in the graphical model reflecting the cluster to which the
sequence belongs. This would allow us to distinguish functional coupling from coupling caused
due to phylogenetic variations.

2.6 Additional experiments

2.6.1 Comparison of structures learnt at different regularization levels

Fig. 2.12 shows our performance in predicting the true structure by using L1-L2 (Fig. 2.12) The
accuracy is measured using the F-score (the harmonic mean of precision and recall) of the edge
set. We observe that for all settings of ρ GREMLIN learns fairly accurate graphs at some value of
λe.
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Figure 2.12: F-scores of structures learnt by using L1-L2 norm The figure shows the average
and standard deviation of the F-score across 20 different graphs as a function of ρ,
the probability of edge-occurrence.
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Model selection using information criteria

We consider modifications to two widely used model selection strategies. The Bayesian Infor-
mation Criterion (BIC) [168], is used to select parsimonious models and is known to be asymp-
totically consistent in selecting the true model. The Akaike Information Criterion (AIC) [4],
typically selects denser models than the BIC, but is known to be asymptotically consistent in
selecting the model with lowest predictive error (risk). In general, they do not however select the
same model [207].

We use the following definitions:

pseudo-BIC(λ) = −2pll(λ) + log(n)df(λ)

pseudo-AIC(λ) = −2pll(λ) + 2df(λ)

Where we use the pseudo log-likelihood approximation to the log-likelihood. While it may be
expected that using the pseudo log-likelihood instead of the true log-likelihood may in fact lead
to inconsistent selection a somewhat surprising result of Csiszar and Talata [51] shows that in the
case of BIC using pseudo log-likelihood is in fact also consistent for model selection. Although
we aren’t aware of the result, we expect a similar result to hold for the risk consistency of the
pseudo-AIC.

We evaluate the likelihood on the training sample to score the different models. n is the number
of training sequences.

Estimating the degrees of freedom of a general estimator is quite hard in practice. This has lead
to use of various heuristics in practice. For the LASSO estimator which uses a pure-L1 penalty, it
is known that the number of non-zeros in the regression vector is a good estimate of the degrees
of freedom. A natural extension when using a block-L1 penalty is the number of non-zero blocks
(i.e. edges). Since this does not differentiate between weak and strong edges, we used the block-
L1 norm as an estimate of the degress of freedom. In our simulations, we find that choice often
results in good model selection.

Figure 2.13 shows the performance of the two model selection strategies at different sparsity
levels. We evaluate the performance by learning several graphs (at different levels of regular-
ization) and comparing the Spearman rank-correlation between the F-score of the graphs and
their rank. We can clearly see that when the true graph is sparse the modified BIC has a high
rank-correlation, whereas when the true graph is dense the modified AIC does well, with neither
method providing reliable model selection for all graphs.

2.6.2 Receiver operating characteristic curve

We consider the task of distinguishing artificial sequences that were found to take the WW fold
from those that did not. All sequences and their labels (folded in vivo or not) are from the paper
of Russ et al. [165]. The ROC curve (Figure 2.14) is obtained by varying a threshold on scores
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Figure 2.13: Graph density versus the rank correlation for ranking and selection using (A) BIC
(B) AIC.

(we use the unnormalized likelihood as the score). Sequences above the threshold are predicted
to fold. For each threshold we calculate the sensitivity and specificity and show the resulting
curve.
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Figure 2.14: Receiver operating characteristic (ROC) curve of GREMLIN for the task of distin-
guishing artificial WW sequences that fold from those that don’t.
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Chapter 3

Sparse Additive Kernel and Functional
CCA

Canonical Correlations Analysis (CCA) is a classical tool for finding correlations among the
components of two random vectors. In recent years, CCA has been widely applied to the analysis
of genomic data, where it is common for researchers to perform multiple assays on a single set
of patient samples.

Recent work of Witten et al. [205], Witten and Tibshirani [206] has proposed sparse variants of
CCA to address the high dimensionality of such data. However, classical and sparse CCA are
based on linear models, and are thus limited in their ability to find general correlations. In this
chapter, we present two approaches to high-dimensional nonparametric CCA, building on recent
developments in high-dimensional nonparametric regression. We present estimation procedures
for both approaches, and analyze their theoretical properties in the high-dimensional setting.
We demonstrate the effectiveness of these procedures in discovering nonlinear correlations via
extensive simulations, as well as through experiments with genomic data.

3.1 Introduction

Canonical correlation analysis [97], is a classical method for finding correlations between the
components of two random vectors X ∈ Rp1 and Y ∈ Rp2 . Given a set of n paired observations
(X1, Y1), . . . , (Xn, Yn), we form the design matrices X ∈ Rn×p1 and Y ∈ Rn×p2 and find vectors
u ∈ Rp1 and v ∈ Rp2 that are solutions to the optimization

arg max
u,v

1

n
uTXTYv (3.1)

s.t.
1

n
uTXTXu ≤ 1

1

n
vTYTYv ≤ 1,
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where the columns of X and Y have been standardized to have mean zero and standard deviation
one. This is the sample version of the problem of maximizing the correlation between the linear
combinations uTX and vTY , assuming the random variables have mean zero.

CCA can serve as a valuable dimension reduction tool, allowing one to quickly zoom in on in-
teresting phenomena shared by multiple data sets. This tool is increasingly attractive in genomic
data analysis, where researchers perform multiple assays per item. For instance, data including
DNA copy number (or comparative genomic hybridization, CGH), gene expression, and sin-
gle nucleotide polymorphism (SNP) information can be collected on a common set of patients.
Witten et al. [205] present examples of recent studies involving such data.

When the data are high dimensional, as is often the case for genomic data, the classical formula-
tion of CCA is not meaningful, since the sample covariance matrices XTX and YTY are singular.
This has motivated different approaches to sparse CCA, which regularizes Eq. 3.1 by suitable
sparsity-inducing `1 penalties [49, 149, 205, 206]. Sparsity can lead to more interpretable mod-
els, reduced computational cost, and favorable statistical properties for high dimensional data.
Existing methods for CCA are, however, restricted in that they attempt to find linear combina-
tions of the variables—interesting correlations need not be linear. The need for this flexibility
motivates the nonparametric approaches we consider in this chapter.

The general nonparametric analogue of Eq. 3.1 is

arg max
f,g

1

n

n∑
i=1

f(Xi)g(Yi) (3.2)

s.t.
1

n

n∑
i=1

f 2(Xi) ≤ 1
1

n

n∑
i=1

g2(Yi) ≤ 1,

where f and g are restricted to belong to an appropriate class of smooth functions. Bach and Jor-
dan [14] introduce a version of this called kernel CCA by applying the “kernel trick” to the CCA
problem. Kernel CCA allows flexible nonparametric modeling of correlations, solving Eq. 3.2
with additional regularization to enforce smoothness of the functions f and g in appropriate re-
producing kernel Hilbert spaces. However, this general nonparametric model suffers from the
curse of dimensionality, as the number of samples required for consistency grows exponentially
with the dimension. It is thus necessary to further restrict the complexity of possible functions.
We consider the class of additive models where f and g can be written as

f(x1, x2, . . . , xp1) =

p1∑
j=1

fj(xj) (3.3)

g(y1, y2, . . . , yp2) =

p2∑
k=1

gk(yk), (3.4)

in terms of univariate component functions [91]. In the regression setting, such models no longer
require the sample size to be exponential in the dimension; however, they only have strong sta-
tistical properties in low dimensions. Recently, several authors have shown how sparse additive
models for regression can be efficiently estimated even when p > n [115, 139, 156, 157].
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In this chapter we propose two additive nonparametric formulations of CCA, one over a family of
RKHSs and another over Sobolev spaces without a reproducing kernel. In the low-dimensional
setting where we do not enforce sparsity, the formulation over Sobolev spaces is closely related
to the Alternating Conditional Expectations (ACE) formulation of nonparametric regression due
to Breiman and Friedman [34]. In addition to formulating algorithms for the optimizations, we
provide risk consistency guarantees for the global risk minimizer in the high dimensional regime
where min(p1, p2) > n.

An important consideration is that sparse nonparametric CCA is biconvex, but not jointly convex
in f and g. This is true even for the linear CCA model, which is a special case of the model we
propose. In the absence of the sparsity constraints the linear problem reduces to a generalized
eigenvalue problem which can be efficiently solved. This remains true in the nonparametric case
as well. Over an RKHS, the problem without sparsity is a generalized eigenvalue problem where
Gram matrices replace the data covariance matrices. In the population setting over the Sobolev
spaces we consider, Breiman and Friedman [34] show that the problem reduces to an eigenvalue
problem with respect to conditional expectation operators.

Returning to the nonconvex sparse CCA problem, Witten et al. [205] and Parkhomenko et al.
[149] suggest using the solution to the nonsparse version of the problem to initialize sparse
CCA; Chen and Liu [49] use several random initializations. As we show in simulations, both
approaches can lead to poor results, even in the linear case. To address this issue, we propose
and study a simple marginal thresholding step to reduce the dimensionality, in the spirit of the
diagonal thresholding of Johnstone and Lu [104] and the SURE screening of Fan and Song [71].
This results in a three step procedure where after preprocessing we use the nonsparse version of
our problem to determine a good initialization for the sparse formulation.

In Sections 3.2 and 3.3 we briefly describe the additive Sobolev and RKHS function spaces
over which we work, introduce our two nonparametric CCA formulations, and discuss their
optimization. In Section 3.4 we address the non-convexity of the formulations and initialization
strategies. In Section 3.5 we summarize the theoretical guarantees of these procedures when
p1, p2 > n and in Section 3.6 we describe some simulations and real data experiments.

3.2 Sparse additive kernel CCA

Recall the linear CCA problem Eq. 3.1. We will now derive its additive generalization over
RKHSs. Let Fj ⊂ L2(µ(xj)) be a reproducing kernel Hilbert space of univariate functions on
the domain of Xj , and let Gk ⊂ L2(µ(yk)) be a reproducing kernel Hilbert space of univari-
ate functions on the domain Yk, for each j = 1, . . . , p1 and k = 1, . . . , p2. We assume that
E[fj(Xj)] = 0 and E[gk(Yk)] = 0 for all fj ∈ Fj , and gk ∈ Gk for each j and k. This is
necessary to enforce model identifiability. In practice, we will always work with centered Gram
matrices to enforce this (see [14]).
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Denote by

F = {f =

p1∑
j=1

fj(xj)|fj ∈ Fj},

and

G = {g =

p2∑
k=1

gk(yk)|gk ∈ Gk},

the sets of additive functions of x and y, respectively.

We are given n independent tuples of the form (Xi, Yi)
n
i=1 where Xi = {Xi1, . . . , Xip1} and

Yi = {Yi1, . . . , Yip2}, and positive definite kernel functions on each covariate of X and Y . We
denote the Gram matrix for the jth X covariate by Kxj and for the kth Y covariate by Kyk.

We will need to regularize the CCA problem to enforce smoothness and sparsity of the functions.
The two norms

‖fj‖Fj =
√
〈fj, fj〉Fj and ‖fj‖2 =

√
1
n

∑n
i=1 f

2
j (Xij)

play an important role in our approach. We can now formulate the sparse additive kernel CCA
(SA-KCCA) problem as

max
f∈F ,g∈G

1

n

n∑
i=1

f(Xi)g(Yi) subject to

(3.5)

1

n

n∑
i=1

f 2(Xi) + γf

p1∑
j=1

‖fj‖2
Fj ≤ 1

p1∑
j=1

‖fj‖2 ≤ Cf

1

n

n∑
i=1

g2(Yi) + γg

p2∑
k=1

‖gk‖2
Gk ≤ 1

p2∑
k=1

‖gk‖2 ≤ Cg.

for given regularization parameters γf , γg, Cf and Cg. As with the group LASSO, constraining∑
j ‖fj‖2 encourages sparsity amongst the functions fj [157]. As stated, this is an infinite dimen-

sional optimization problem over Hilbert spaces. However, a straightforward application of the
representer theorem shows that it is equivalent to the following finite dimensional optimization
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problem:

max
α,β

1

n

(
p1∑
j=1

Kxjαj

)(
p2∑
k=1

Kykβk

)
subject to

(3.6)

1

n

(
p1∑
j=1

Kxjαj

)T ( p1∑
j=1

Kxjαj

)
+ γf

p1∑
j=1

αTj Kxjαj ≤ 1

1

n

(
p2∑
k=1

Kykβk

)T ( p2∑
k=1

Kykβk

)
+ γg

p2∑
k=1

βTkKykβk ≤ 1

p1∑
j=1

√
1

n
αTj K

T
xjKxjαj ≤ Cf ,

p2∑
k=1

√
1

n
βTkK

T
ykKykβk ≤ Cg.

Here α is an (n × p1) matrix, αj is its jth column, β is an (n × p2) matrix and βk is its kth

column.

The problem Eq. 3.6 is not convex. However, if we fix the function g (or equivalently the coeffi-
cients β) the problem is convex in f (equivalently α), and vice-versa. This biconvexity leads to a
natural optimization strategy for Eq. 3.6 which we describe below. However, this procedure only
guarantees convergence to a local optimum and in practice we still need to be able to find a good
initialization.

In the absence of the sparsity penalty the problem becomes an additive form of kernel CCA
[14]. One could also consider alternative formulations that, for instance, separate the smoothness
and variance constraints. One attractive feature of our formulation is that without the sparsity
constraint the problem can be reduced to a generalized eigenvalue computation which can be
solved optimally. This leads us to a strategy of biconvex optimization that mirrors the linear
algorithm of Witten et al. [205]; specifically, initialize by solving the problem without the sparsity
constraints, fix α and optimize for β and vice-versa until convergence. As our experiments will
show this is indeed a good strategy when p1, p2 < n. However, new ideas, to be described in
Section 3.4, are necessary to scale this to the high dimensional setting where p1, p2 > n.

3.3 Sparse additive functional CCA

We now formulate an optimization problem for sparse additive functional CCA (SA-FCCA),
and derive a scalable backfitting procedure for this problem. Here we work directly over the
Hilbert spaces L2(µ(x)) and L2(µ(y)). We will denote by Sj the subspace of µ(xj) measurable
functions with mean 0, with the usual inner product 〈fj, f ′j〉 = E

(
fj(Xj)f

′
j(Xj)

)
, and similarly

Tk for the functions of y.

To enforce smoothness we consider functions lying in a ball in a second order Sobolev space.
We further assume the functions are uniformly bounded, and the measures µ are supported on a
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compact subset of a Euclidean space with Lebesgue measure λ. For a fixed uniformly bounded,
orthonormal basis ψjk with respect to λ we have

Fj =
{
fj ∈ Sj : fj =

∞∑
k=0

βjkψjk,
∞∑
k=0

β2
jkk

4 ≤ C2
}

and similarly for Gk. We will call these the smooth functions, and denote by F and G the set of
smooth additive functions over the respective Hilbert spaces.

Our formulation of sparse additive functional CCA is the optimization

max
f∈F , g∈G

1

n

n∑
i=1

f(Xi)g(Yi) (3.7)

s.t.
1

n

p1∑
j=1

n∑
i=1

f 2
j (Xij) ≤ 1,

p1∑
j=1

‖fj‖2 ≤ Cf

1

n

p2∑
k=1

n∑
i=1

g2
k(Yik) ≤ 1,

p2∑
k=1

‖gk‖2 ≤ Cg,

where the ‖.‖2 norm is defined as in additive kernel CCA. This problem is superficially similar
to Eq. 3.2; however, there are three important differences. First, we don’t regularize for smooth-
ness but instead work directly over a Sobolev space of smooth functions. Secondly, we do not
constrain the variance of the function f . Instead, in the spirit of “diagonal penalized CCA” of
Witten et al. [205] we constrain the sum of the variances of the individual fjs. This choice is
made primarily because it leads to backfitting updates that have a particularly simple and intu-
itive form. Perhaps most importantly, we can no longer appeal to the representer theorem since
we are not working over RKHSs.

We study the population version of this problem to derive a biconvex backfitting procedure to
directly optimize this criterion. The sample version of the algorithm is described in Algorithm 1,
and a complete derivation is part of the supplementary material. To gain some intuition for this
procedure we describe one special case of the population algorithm, where g is fixed and both
constraints on f are tight. Consider the Lagrangian problem

max
f

min
λ≥0,γ≥0

E[f(X)g(Y )]− λ(‖f‖2
2 − 1)− γ(‖f‖1 − Cf ).

The norms are defined as ‖f‖1 =
∑p1

j=1

√
E(f 2

j (xj)) and ‖f‖2
2 =

∑p1
j=1 E(f 2

j (xj)). For simplic-
ity, consider the case when λ, γ > 0, and denote a ≡ g(Y ).

We now can derive a coordinate ascent style procedure where we optimize over fj holding the
other functions fixed. The Fréchet derivative w.r.t. fj in the direction η gives one of the KKT
conditions E[(a− 2λfj − γνj)η] = 0 for all η in the Hilbert spaceHj , where the subdifferential

is νj =
fj√
E(f2j )

if
√

E(f 2
j ) is not 0, and is the set {uj ∈ Hj |E(u2

j) ≤ 1} if
√

E(f 2
j ) = 0.
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Using iterated expectations the KKT condition can be written as E[(E(a |Xj)−2λfj−γνj)η] =
0. Denote E(a |Xj) ≡ Pj . In particular, if we consider η = E[(E(a |Xj) − 2λfj − γνj],
we can see that E[(E(a |Xj) − 2λfj − γνj)] = 0, i.e., E(a |Xj) − 2λfj − γνj = 0 almost
everywhere.

Then if
√

E(P 2
j ) ≤ γ, we have fj = 0, and we arrive at the following soft thresholding up-

date:

fj =
1

2λ

1− γ√
E(P 2

j )


+

Pj.

Now, going back to the constrained version, we need to select γ and λ so that the two constraints
are tight. To get the sample version of this update we replace the conditional expectation Pj by
an estimate Sja, where Sj is a locally linear smoother.

Algorithm 1 Biconvex backfitting for SA-FCCA

input {(Xi, Yi)}, parameters Cf , Cg, initial g(Yi)
1. Compute smoothing matrices Sj and Tk.

2. Fix g. For each j, set fj ← Sjg

λ
where λ =

√∑p1
j=1(gTSTj Sjg)

3. if
∑p1

j=1 ‖fj‖2 ≤ Cf , break
else let Fm denote the functions with maximum ‖.‖2 norm. Set all other functions to 0.
For each f ∈ Fm, set f ← Cff

|Fm|‖f‖2 . If
∑p1

j=1 ‖fj‖2
2 ≤ 1, break

else set fj ←
(

1− γ√
‖Sjg‖2

)
+

Sjg

λ
where λ =

√∑p1
j=1

∥∥∥(1− γ√
‖Sjg‖2

)
+

Sjg
∥∥∥2

2
and γ

is chosen so that
∑p1

j=1

√
gTSTj Sjg = Cf

4. Center by setting each fj ← fj −mean(fj).
5. Fix f and repeat above to update g. Iterate both updates till convergence.

output Final functions f , g

3.4 Marginal Thresholding

The formulations of SA-KCCA and SA-FCCA above are not jointly convex, but are biconvex.
Hence, iterative optimization algorithms may not be guaranteed to reach the globally optimal
solution. To address this issue, we first run the algorithms without any sparsity constraint. The
resulting nonsparse collections of functions are then used as initializations for the algorithm that
incorporates the sparsity penalties. While such initialization works well for low dimensional
problems, as p increases, the performance of the estimator goes down (Figure 3.1). To extend
the algorithms to the high dimensional scenario, we propose marginal thresholding as a screen-
ing method to reject irrelevant variables and run the SA-FCCA and SA-KCCA models on the
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Init p=10 p=25 p=50
Random 0.05 0.009 -0.02

Non-sparse 0.97 0.62 0.26

Table 3.1: Test correlation from functions estimated by SA-FCCA for n = 75 samples, where
Y1 = X2

1 , all other dimensions are Gaussian noise. Random initializations don’t work
well for all data sizes. Initializing with the non-sparse formulation works well when
n > p, but fails as p ≥ n.

reduced dimensionality problem. For each pair of variables Xi and Yj , we fit marginal functions
to that pair by optimizing the criteria in either Equation Eq. 3.6 or Equation Eq. 3.7 without the
sparsity constraints since we only consider one X and one Y covariate at a time. We then com-
pute the correlation on held out data. This constructs a matrix M of size p1× p2 with (i, j) entry
of the matrix representing an estimate of the marginal correlation between fi(Xi) and gj(Yj).
We then threshold the entries of M to obtain a subset of variables on which to run SA-FCCA
and SA-KCCA. Theorem 3.5.3 discusses the theoretical properties of marginal thresholding
as a screening procedure, and Section 3.6.2 presents results on marginal thresholding for high
dimensional problems.

3.5 Main theoretical results

In this section we will characterize both the functional and kernel marginal thresholding proce-
dures and study the theoretical properties of the estimators Eq. 3.6 and Eq. 3.7. We will state the
main theorems and defer all proofs to the supplementary material.

The theoretical characterization of these procedures relies on uniform large deviation inequalities
for the covariance between functions. For simplicity in this section we will assume all the uni-
variate spaces are identical. In the RKHS case we restrict our attention to functions in a ball of
a constant radius in the Hilbert space associated with a reproducing kernel K. In the functional
case the univariate space is a second order Sobolev space where the integral of the square of the
second derivative is bounded by a constant. With some abuse of notation we will denote these
spaces C. We are interested in controlling the quantity

Θn = sup
fj ,gk

∣∣∣∣∣ 1n
n∑
i=1

fj(Xij)gk(Yik)− E(fj(Xj)gk(Yk))

∣∣∣∣∣
where fj, gk ∈ C, j ∈ {1, . . . , p1}, k ∈ {1, . . . , p2}.

All results extend to the case when each covariate is endowed with a possibly distinct function
space.
Lemma 3.5.1 (Uniform bound over RKHS). Assume supx |K(x, x)| ≤M <∞, for functions
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fj(x) =
∑n

i=1 αijKx(x,Xij), gk(y) =
∑n

i=1 βikKy(y, Yik)

P

Θn ≥ ζ + C

√
log ((p1p2)/δ)

n︸ ︷︷ ︸
ε

 ≤ δ

where C is a constant depending only on M , and

ζ = max
j,k

2

n
EX∼xj ,Y∼yk

√√√√ n∑
i=1

K(Xij, Xij)K(Yik, Yik)

Note that ζ is independent of the dimensions p1 and p2 and that under the assumption that K is
bounded, ζ = O(1/

√
n). In some cases however this term can be much smaller. The second

term depends only logarithmically on p1 and p2 and this weak dependence is the main reason our
proposed procedures are consistent even when p1, p2 > n.
Lemma 3.5.2 (Uniform bound for Sobolev spaces). Assume ‖f‖∞ ≤M ≤ ∞, then

P

Θn ≥
C1√
n

+ C2

√
log ((p1p2)/δ)

n︸ ︷︷ ︸
ε

 ≤ δ

where C1 and C2 depend only on M .

Lemma 3.5.1 is proved via a Rademacher symmetrization argument of Bartlett and Mendelson
[24] (see also [87]) while Lemma 3.5.2 is based on a bound on the bracketing integral of the
Sobolev space (see [157]). The Rademacher bound gives a distribution dependent bound which
can in some cases lead to faster rates.

We are now ready to characterize the marginal thresholding procedure described in Section 3.4.
To study marginal thresholding we need to define relevant and irrelevant covariates. For each
covariate Xj , denote

αj = sup
fj ,gk∈C,k∈{1,...,p2}

E(fj(Xj)gk(Yk))

with E(f 2
j ) ≤ 1,E(g2

k) ≤ 1. A covariate Xj is considered irrelevant if αj = 0 and relevant if
αj > 0. Similarly, for each Yk we associate βk defined analogously.

Now, assume that for every pair of covariates, we find the maximizer of the SA-FCCA or
SA-KCCA objective over the given sample, over the appropriate class C and with E(f 2

j ) ≤
1,E(g2

k) ≤ 1. Recall that for marginal thresholding we do not enforce sparsity. The global
maximization of the SA-KCCA objective can be efficiently carried out since it is equivalent to
a generalized eigenvalue problem. For SA-FCCA however, the backfitting procedure is only
guaranteed to find the global maximizer in the population setting.
Theorem 3.5.3. Given P (Θn ≥ ε) ≤ δ.
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1. With probability at least 1− δ, marginal thresholding at ε has no false inclusions.
2. Further, if we have that αj or βk ≥ 2ε then under the same 1−δ probability event marginal

thresholding at ε correctly includes the relevant covariate Xj or Yk.

The importance of Lemmas 3.5.1 and 3.5.2 is that they provide values at which to threshold
the marginal covariances. In particular, notice that the minimum sample covariance that can be
reliably detected, with no false inclusions, falls rapidly with n and approaches zero even when
p1, p2 > n.

In the spirit of early results on the LASSO of Greenshtein and Ritov [85], Juditsky and Ne-
mirovski [105] we will establish the risk consistency or persistence of the empirical maximizers
of the two objectives. Although we cannot guarantee that we find these empirical maximizers
due to the non-convexity this result shows that with good initialization the formulations Eq. 3.6
and Eq. 3.7 can lead to solutions which have good statistical properties in high dimensions.

For SA-KCCA we will assume that our algorithm maximizes

1

n

n∑
i=1

[
p1∑
j=1

µjfj(Xij)

][
p2∑
k=1

γkgk(Yik)

]
over the classes

F =

{
f :f(x) =

p1∑
j=1

µjfj(xj),Efj = 0,Ef 2
j = 1,

‖µ‖1 ≤ Cf , ‖µ‖2
2 + γf

p1∑
j=1

‖fj‖2
H ≤ 1

}

G =

{
g :g(x) =

p2∑
k=1

γkgk(yk),Egk = 0,Eg2
k = 1,

‖γ‖1 ≤ Cg, ‖γ‖2
2 + γg

p2∑
k=1

‖fk‖2
H ≤ 1

}
and for SA-FCCA we will assume that our algorithm maximizes the same objective over the
same class without the RKHS constraint but which are instead in a Sobolev ball of constant
radius. Denote these solutions (f̂ , ĝ).

We will compare to an oracle which maximizes the population covariance

cov(f, g) ≡ E

[
p1∑
j=1

µjfj(xj)

][
p2∑
k=1

γkgk(yk)

]

Denote this maximizer by (f ∗, g∗). Our main result will show that these procedures are persis-
tent, i.e., cov(f ∗, g∗)− cov(f̂ , ĝ)→ 0 even if p1, p2 > n.
Theorem 3.5.4 (Persistence). If p1p2 ≤ en

ξ
for some ξ < 1 and CfCg = o(n(1−ξ)/2), then

SA-FCCA and SA-KCCA are persistent over their respective function classes.
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Test correlation Precision/Recall
Model SA-FCCA SA-KCCA SCCA KCCA SA-FCCA SA-KCCA SCCA
Y = X2 0.96 0.99 0.05 0.44 1/1 1/1 0.28/0.14

Y = abs(X) 0.98 0.99 0.06 0.35 1/1 1/1 0/0
Y = cos(X) 0.94 0.99 0.071 0.04 1/1 1/1 0.1/0.1

log(Y ) = sin(X) 0.91 0.93 0.22 0.09 1/1 1/1 0.71/0.66
Y = X 0.99 0.99 0.99 0.98 1/1 1/1 1/1

Figure 3.1: Test correlations, and precision and recall for identifying relevant variables for the
four different methods. SA-FCCA and SA-KCCA find strong correlations in the
data, in both linear and non-linear settings. In all five data sets, SA-FCCA and
SA-KCCA are always able to find the relevant variables.

3.6 Experiments

3.6.1 Non-linear correlations

We compare SA-FCCA and SA-KCCA with two models, sparse additive linear CCA (SCCA)
[205] and kernel CCA (KCCA) [14]. Figure 3.1 shows the performance of each model, when run
on data with n = 150 samples in p1 = 15, p2 = 15 dimensions, where only one relevant variable
is present in X and Y (the remaining dimensions are Gaussian random noise). We report two
metrics to measure whether the correct correlations are being captured by the different methods
- (a) test correlation on 200 samples, using the estimated functions, and (b) precision and recall
in identifying the correct variables involved in the correlation estimation. Each result is averaged
over 10 repeats of the experiment. Since KCCA uses all data dimensions in finding correlations,
its precision and recall are not reported.

When the relationship between the relevant variables is linear, all methods identify the correct
variables and have high test correlation. While KCCA should be able to identify non-linear
correlations, since it is strongly affected by the curse of dimensionality, it has poor test correlation
even in p = 15 dimensions.

Both SA-FCCA and SA-KCCA correctly identify the relevant variables in all cases, and have
high test correlation.
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Figure 3.2: DLBCL data : The top row shows two of the functions fi(Xi) with non-zero norms
for X in red, and the bottom row shows two functions gj(Yj) with non-zero norms
for Y in blue.
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3.6.2 Marginal thresholding

We now test the efficiency of marginal thresholding by running an experiment for n = 150,
p1 = 150, p2 = 150. We generate multiple relevant variables as:

fi(Xi) = cos
(π

2
Xi

)
, i ∈ {1, 3}, fi(Xi) = X2

i , i ∈ {2, 4}

Yj =
4∑

i=1;i 6=j

fi(Xi) +N (0, 0.12) j ∈ {1, 2, 3, 4}.

Thus, there are four relevant variables in each data set. X and Y are sampled from a uniform
distribution, and standardized before computing fi(Xi). Each fi(Xi) is also standardized before
computing Yj . We repeat the experiment by generating data 10 times, and report results in Table
3.2. Bandwidth in the different methods was selected using a plug-in estimator of the median
distance between points in a single dimension. The sparsity and smoothness parameters for all
methods were tuned using permutation tests, as described in Witten et al. [205], assuming that
Cf = Cg = C, and γf = γg = γ.

We ran marginal thresholding by splitting the data into equal sized train and held out data, fitting
marginal functions on the train data, computing functional correlation on the held out data, and
picking a threshold so that n/5 elements of the thresholded correlation matrix are non-zero. We
found that in all experiments, marginal thresholding always selected the relevant variables for
the subsampled data. Table 3.2 shows the precision, recall and test correlations for the different
methods. As can be expected, SA-FCCA and SA-KCCA are able to correctly identify the
relevant variables, and the estimated functions have high correlation on test data.

We visualize the effect of the parameter tuning by plotting regularization paths, as the sparsity
parameter is varied (n=100, p1=p2=12). For SA-FCCA and SA-KCCA, the norm of each
function is plotted, and for sparse linear CCA, the absolute values of the entries of u and v are
shown. Figure 3.3 shows how, unlike SCCA, SA-FCCA and SA-KCCA are able to separate
the relevant and non-relevant variables over the entire range of the sparsity parameter.

Method Test correlation Precision Recall
SA-FCCA 0.94 1 0.785
SA-KCCA 0.98 0.95 0.8

SCCA 0.02 0.02 0.36
KCCA 0.07 N/A N/A

Table 3.2: Test correlations, precision and recall for identifying the correct relevant variables for
the four different methods (n = 150, p1 = 150, p2 = 150). Marginal thresholding
was used for selecting relevant variables before running SA-FCCA and SA-KCCA
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Figure 3.3: Regularization paths for non-linear correlations in the data, for SA-FCCA, SA-
KCCA and SCCA resp. The paths for the relevant variables (in X and Y ) are
shown in red, the irrelevant variables are shown in blue.

3.6.3 Application to DLBCL data

We apply our non-linear CCA models to a data set of comparative genomic hybridization (CGH)
and gene expression measurements from 203 diffuse large B-cell lymphoma (DLBCL) biopsy
samples [127]. We obtained 1500 CGH measurements from chromosome 1 of the data, and
1500 gene expression measurements from genes on chromosome 1 and 2 of the data. The data
was standardized,and Winsorized so that the data lies within two times the mean absolute devia-
tion.

We used marginal thresholding to reduce the dimensionality of the problem, and then ran SA-
FCCA. Permutation tests were used to pick an appropriate bandwidth and sparsity parameter,
as described in Witten et al. [205]. We found that the model picked interesting non-linear rela-
tionships between CGH and gene expression data. Figure 3.2 shows the functions extracted by
the SA-FCCA model from this data. Even though this data has been previously analyzed us-
ing linear models, we do not necessarily expect gene expression measurements from Affymetrix
chips to be linearly correlated with array CGH measurements, even if the specific CGH mutation
is truly affecting the gene expression. Further, the extracted functions in Figure 3.2 suggest that
the changes in gene expression are dependent on the CGH measurements via a saturation func-
tion - as the copy number increases, the gene expression increases, until it saturates to a fixed
level, beyond which increasing the copy numbers does not lead to an increase in expression.
From a systems biology view point, such a prediction seems reasonable since single CGH mu-
tations will not affect other pathways that are required to be activated for large changes in gene
expression.

3.7 Discussion

In this chapter we introduced two proposals for nonparametric CCA and demonstrated their ef-
fectiveness both in theory and practice. Several interesting questions and extensions remain.
CCA is often run on more than two data sets, and one is often interested in more than just the
principal canonical direction. Chen and Liu [49] have proposed group sparse linear CCA for
situations when a grouping of the covariates is known. These extensions all have natural non-
parametric analogues which would be interesting to explore. As in the case of regression [115],
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the KCCA formulation considered in this chapter can also be generalized to involve multiple
kernels and kernels over groups of variables in a straightforward way.

While thresholding marginal correlations one can imagine exploiting the structure in the correla-
tions. In particular, in the (p1×p2) marginal correlations matrix we are looking for a bicluster of
high entries in the matrix. Leveraging this structure could potentially allow us to detect weaker
marginal correlations. Finally, an important application of kernel CCA is as a contrast function
in independence testing. The additive formulations we have proposed allow for independence
testing over more restricted alternatives but can be used to construct interpretable tests of inde-
pendence. We discuss this further in chapter 9.

3.8 Technical Proofs

3.8.1 A derivation of the backfitting algorithm for FCCA

In this section we derive the biconvex backfitting algorithm for FCCA. In particular, consider the
case when g is fixed and let a denote the vector of (g(Y1), . . . , g(Yn))T in the sample setting, and
let it denote the function g in the population setting.

It is instructive to first consider the population setting. The optimization problem becomes

max
f∈F

E[f(X)a]

subject to ‖f‖2
2 ≤ 1

‖f‖1 ≤ Cf .

The norms are defined as ‖f‖1 =
∑p1

j=1

√
E(f 2

j (xj)) and ‖f‖2
2 =

∑p1
j=1 E(f 2

j (xj)).

Consider the Lagrange problem,

max
f

min
λ≥0,γ≥0

E[f(X)a]− λ(‖f‖2
2 − 1)− γ(‖f‖1 − Cf ).

The Frètchet derivative w.r.t. fj along the direction η gives one of the KKT conditions E[(a −
2λfj − γνj)η] = 0 for all η in the Hilbert space Hj , where νj =

fj√
E(f2j )

if
√

E(f 2
j ) is not 0, and

is the set {uj ∈ Hj|E(u2
j) ≤ 1} if

√
E(f 2

j ) = 0.

Using iterated expectations the KKT condition can be written as E[(E(a|Xj)−2λfj−γνj)η] = 0.
Now, if we denote E(a|Xj) = Pj . In particular, if we consider η = E[(E(a|Xj)− 2λfj − γνj],
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we can see that

E[(E(a|Xj)− 2λfj − γνj)] = 0.

This implies that

E(a|Xj)− 2λfj− γνj = 0 almost everywhere
i.e. Pj − 2λfj = γνj.

If
√

E(P 2
j ) ≤ γ, we have fj = 0, and we arrive at the following

fj

2λ+
γ√
E(f 2

j )

 = Pj if
√
E(P 2

j ) > γ

fj = 0 otherwise

and this gives the following soft threshold update:

fj =
1

2λ

1− γ√
E(P 2

j )


+

Pj.

We analyze the Lagrangian in the 3 cases (i.e. all constraints are tight, only the 2-norm constraints
are tight, and only the 1-norm constraints are tight).

1. When only the 2-norm constraint is tight, γ = 0 and λ is selected to make the 2-norm be
1.

2. When only the 1-norm constraint is tight, we use the equation above with λ = 0 and see
that only the fjs with the largest

√
E(P 2

j ) are non-zero.

3. When both constraints are tight, we use the soft-threshold update with λ and γ selected to
make both constraints tight.

Now, we can define the algorithm in the finite sample case, as an analog of the algorithm for the
basic problem in the linear case. For a fixed g, FCCA problem can be solved using the following
algorithm.

1. Test for case 1 by setting fj(Xj) =
Sja

λ
for each j, where λ2 = 1

n

∑p
j=1 ‖Sja‖2

2. If the
solution satisfies ‖f‖1 ≤ c1 this is the required f .

57



2. Test for case 2, in this case we find ‖Sja‖2 for each j, and find all k such that ‖Ska‖2 ≥
‖Sja‖2 for all j. Denote the cardinality of this set φ. Set

fk(Xk) =
CfSka

φ‖Ska‖

for all k such that ‖Ska‖2 ≥ ‖Sja‖2 for all j, and all other fj = 0. If ‖f‖2 ≤ 1 this is the
required f .

3. If neither of the above cases are satisfied then in this case fj(Xj) =
Sγ(Sja)

λ
where λ2 =

1
n

∑p
j=1 ‖Sγ(Sja)‖2

2 for each j. where γ is chosen so that ‖f‖1 = Cf .

Here Sj is a linear smoother and is used to estimate the conditional expectation of a given Xj ,
i.e. if Pj = E(a|Xj) then P̂j = Sja.

3.8.2 Uniform bounds

We will first prove Lemma 3.5.1 and then give a proof sketch for Lemma 3.5.2.

Proof. We will limit our attention to functions

fj ∈ BH(1)

since the general case for a constant radius follows by a simple rescaling argument. We have the
condition

sup
x
|K(x, x)| ≤ c <∞.

This also implies the uniform boundedness of the univariate functions by a simple argument.

sup
x
|fj(x)| = sup

x
|〈fj, K(·, x)〉| ≤ sup

x
‖fj‖H

√
K(x, x)

Thus, we have
sup
x
|fj(x)| ≤ C

for some absolute constant C.

Recall that we wish to uniformly control

Ωn = sup
fj ,gk∈C,j∈{1,...,p1},k∈{1,...,p2}

∣∣∣∣∣ 1n
n∑
i=1

fj(Xij)gk(Yik)− E(fj(Xj)gk(Yk))

∣∣∣∣∣ .
Let us first analyze

Θn = sup
fj ,gk∈C

∣∣∣∣∣ 1n
n∑
i=1

fj(Xij)gk(Yik)− E(fj(Xj)gk(Yk))

∣∣∣∣∣
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which is just Ωn for a fixed pair j, k. The bound on Ωn will then follow from a union bound.

Deviation from its expectation is a simple consequence of the boundedness of functions and
McDiarmid’s inequality, i.e. for some absolute constant C, we have

P(Θn − EΘn > t) ≤ exp

(
−nt2

C

)
.

Now, we need to understand the expectation. A symmetrization argument gives us

EΘn ≤ 2R(C)

where

R(C) = EX,Y,σ

(
sup

fj ,gk∈C

1

n

n∑
i=1

σifj(Xj)gk(Yk)

)
.

A bound onR(C) is given by Lemma 16 in the paper of Gretton et al. [87]. They show,

EX,Y,σ

(
sup

fj ,gk∈C

1

n

n∑
i=1

σifj(Xj)gk(Yk)

)
≤ 1

n
EX,Y

√√√√ n∑
i=1

K(Xij, Xij)K(Yik, Yik).

This gives us a bound on Θn, and to get a bound on Ωn we just union bound over the p1p2 possible
choices for j, k.

Defining,

ζ = max
j,k

2

n
EX∼xj ,Y∼yk

√√√√ n∑
i=1

K(Xij, Xij)K(Yik, Yik),

we have for some absolute constant C

P

(
Θn ≥ ζ + C

√
log ((p1p2)/δ)

n

)
≤ δ.

For SA-FCCAwe have a different class of functions. Ravikumar et al. [157] show the following
result for uniformly bounded (by a constant) f and g in a second order Sobolev space, for an
absolute constant C,

ω ≡ E

(
sup

fj ,gk∈C

∣∣∣∣∣ 1n
n∑
i=1

fj(Xij)gk(Yik)− E(fj(Xj)gk(Yk))

∣∣∣∣∣
)
≤ C√

n
.

Since, the functions are uniformly bounded we can now use McDiarmid’s inequality to get for
some C ′

P

(
sup

fj ,gk∈C

∣∣∣∣∣ 1n
n∑
i=1

fj(Xij)gk(Yik)− E(fj(Xj)gk(Yk))

∣∣∣∣∣− ω ≥ t

)
≤ exp

(
−t2n
C ′

)
.
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Now, applying the union bound over j and k we get the desired lemma. Again, defining

Ωn = sup
fj ,gk∈C,j∈{1,...,p1},k∈{1,...,p2}

∣∣∣∣∣ 1n
n∑
i=1

fj(Xij)gk(Yik)− E(fj(Xj)gk(Yk))

∣∣∣∣∣ ,
we get

P

(
Ωn ≥

C1√
n

+ C2

√
log ((p1p2)/δ)

n

)
≤ δ

3.8.3 Marginal thresholding

In this section we prove the following result:
Theorem 3.8.1. Given

P

(
sup

fj ,gk∈C,j∈{1,...,p1},k∈{1,...,p2}

∣∣∣∣∣ 1n
n∑
i=1

fj(Xij)gk(Yik)− E(fj(Xj)gk(Yk))

∣∣∣∣∣ ≥ ε

)
≤ δ

with probability at least 1− δ, marginal thresholding at ε has no false inclusions. Further, if we
have that αj or βk ≥ 2ε then under the same 1− δ probability event marginal thresholding at ε
correctly includes the relevant covariate Xj or Yk.

Proof. The first part is straightforward. In particular, we know for any irrelevant Xj for any Yk
and fj, gk ∈ C, Efj(Xj)gk(Yk) = 0, and in the at least 1− δ probability event we have

max
fj ,gk∈C

1

n

n∑
i=1

fj(Xij)gk(Yik) < ε.

For the second part, consider a particular relevant covariate Xj , denote

θ∗ = max
fj ,gk∈C

1

n

n∑
i=1

fj(Xij)gk(Yik).

It suffices to show that if αj ≥ 2ε =⇒ θ∗ ≥ ε.

Denote, (f ∗j , g
∗
k) = arg supfk,gk∈C E(fj(Xj)gk(Yk)). Then in the at least 1 − δ probability event

we have,

θ∗ ≥ 1

n

n∑
i=1

f ∗j (Xij)g
∗
k(Yik) ≥ E(f ∗j (Xj)g

∗
k(Yk))− ε ≥ ε.
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3.8.4 Persistence

We will show the high dimensional persistence of the global optimizers of the SA-FCCAand
SA-KCCAobjectives.

We will prove the result for SA-FCCAand give a proof sketch for SA-KCCA.

Let us assume that the SA-FCCAestimator is chosen to maximize the objective

1

n

n∑
i=1

[
p1∑
j=1

µjfj(Xij)

][
p2∑
k=1

γkgk(Yik)

]

over the classes

F =

{
f :f(x) =

p1∑
j=1

µjfj(xj),Efj = 0, Ef 2
j = 1, ‖µ‖1 ≤ Cf , ‖µ‖2

2 ≤ 1

}

G =

{
g :g(x) =

p2∑
k=1

γkgk(yk),Egk = 0, Eg2
k = 1, ‖γ‖1 ≤ Cg, ‖γ‖2

2 ≤ 1

}
.

An analogous role to risk in classification/regression problems is played by the (negative) covari-
ance,

cov(f, g) = E

[
p1∑
j=1

µjfj(Xj)

][
p2∑
k=1

γjgk(Yk)

]
.

Theorem 3.8.2. If p1p2 ≤ en
ξ

for some ξ < 1. Then,

cov(f ∗n, g
∗
n)− cov(f̂n, ĝn) = OP

(
CfCg
n(1−ξ)/2

)
. (3.8)

IfCfCg = o(n(1−ξ)/2) the FCCA procedure described is persistent, i.e. cov(f ∗n, g
∗
n)−cov(f̂n, ĝn)→

0 as n→∞.

Proof. We can write

cov(f, g) =

p1∑
j=1

p2∑
k=1

µjγkE[fj(Xj)gk(Yk)] (3.9)

and

Ĉ(f, g) =
1

n

n∑
i=1

p1∑
j=1

p2∑
k=1

µjγkfj(Xij)gk(Yik). (3.10)

Now, we have (using Holder’s inequality)

|Ĉ(f, g)− cov(f, g)| ≤ ‖µ‖1‖γ‖1 max
jk

[
1

n

n∑
i=1

fj(Xij)gk(Yik)

]
− E(fj(Xj)gk(Yk)). (3.11)
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Now, we are almost done. Using Lemma 3.5.2 we know that we can uniformly bound[
1

n

n∑
i=1

fj(Xij)gk(Yik)

]
− E(fj(Xj)gk(Yk))

over all fj, gk in our function class and over all j ∈ {1, . . . , p1}, k ∈ {1, . . . , p2}. In particular,

this quantity is OP

(√
log(p1p2)

n

)
.

Now, this gives us that

|Ĉ(f, g)− cov(f, g)| = OP

(
CfCg

√
log (p1p2)

n

)
= OP

(
CfCg
n(1−ξ)/2

)
. (3.12)

Using this we have,

cov(f̂n, ĝn) ≥ Ĉ(f̂n, ĝn)−OP

(
CfCg
n(1−ξ)/2

)
≥ Ĉ(f ∗n, g

∗
n)−OP

(
CfCg
n(1−ξ)/2

)
≥ cov(f ∗n, g

∗
n)−OP

(
CfCg
n(1−ξ)/2

)
(3.13)

and the result follows.

The proof for the persistence of SA-KCCA follows an almost identical argument. We make two
minor modifications. As described in the main text we bound the Rademacher term as O(1/

√
n)

by only using the boundedness of the kernel. We can then follow the proof of this theorem
exactly, replacing the use of Lemma 3.5.2 with Lemma 3.5.1.

3.9 Additional discussion

3.9.1 Discussion of SA-FCCA v/s SA-KCCA

SA-FCCA and SA-KCCA offer different advantages and disadvantages and neither is com-
pletely dominated by the other. The methods are two instances of the same approach, which is
to use a nonparametric additive model.

From an optimization perspective, SA-KCCA works over RKHS, leading to an optimization
problem over a finite parameter space for which strong convergence guarantees can be made.
For SA-FCCA however, we use backfitting, which is typically known to converge only in the
population setting. From a statistical perspective, stronger results are known for the kernel ver-
sion in the regression setting. From a practitioner’s perspective, these algorithms perform com-
parably statistically. Computationally, the SA-FCCA algorithm is considerably more simple -
after some pre-computations, the coordinate descent back-fitting algorithm only requires matrix-
vector multiplications in each iteration, and typically converges in a small number of iterations.
SA-KCCA requires us to optimize a second order cone-program which, although convex, is not
amenable to fast coordinate descent algorithms.
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p 5 10 25 50 75 100 150
Test correlation 0.9999 1.0000 1.0000 0.6846 0.9079 0.4967 0.2918

Precision 1.0000 1.0000 1.0000 0.7000 0.9000 0.5000 0.3000
Recall 1.0000 1.0000 1.0000 0.7000 0.9000 0.5000 0.3000

Table 3.3: Results for SCCAon linear data Y1 = X1 + N (0, 1) with n = 100 samples. As p
increases, the performance of the model decreases.

p 5 10 25 50 75 100 150
Test correlation 0.9672 0.9717 0.6178 0.2564 0.2040 0.0294 0.0959

Precision 1.0000 1.0000 0.6000 0.4000 0.2000 0 0.2000
Recall 1.0000 1.0000 0.6000 0.4000 0.2000 0 0.2000

Table 3.4: Results for SA-FCCA(without marginal thresholding) on quadratic data Y1 = X2
1 +

N (0, 1) with n = 100 samples. As p increases, the performance of the model de-
creases.

There is a clear dichotomy here from a statistical/optimization theory perspective, we would
recommend the SA-KCCA formulation but from a practical perspective we would recommend
the SA-FCCA formulation.

Computational costs: The computational cost of each inner loop optimization of SA-FCCA
when it is done to an accuracy of ε is O(n2 max(p1, p2)/ε) using the algorithm we propose. SA-
KCCA using a standard interior point solver has complexity O(n3 max(p1, p2)3 log(1/ε)). SA-
FCCA also requires a pre-computation of smoother matrices which takes O(n3 max(p1, p2)).
These methods typically require a small number of outer-loop iterations to converge.

It is also worth noting that these non-parametric methods are more computationally intensive
than both sparse linear CCA which requires O(n2/ε) for each inner loop iteration, and kernel
CCA which requires O(n2 log n) in total after computing the Gram matrices.

Notice also that in linear CCA we are learning p1 +p2 parameters, in kernel CCA we are learning
2n parameters, while in SA-KCCA we are learning the much larger n(p1 + p2) parameters. A
direct comparison of the number of parameters in SA-FCCA is subtle, since at least from a
degrees of freedom perspective this depends on the smoothness of the target function.

3.9.2 Marginal thresholding is needed to get high accuracy in high dimen-
sions

We show that for both linear SCCA(Table 3.3) and non-linear SA-FCCA(Table 3.4) models to
measure correlation, the models do not have good performance when p ∼ n. Hence, using a
screening procedure to extract variables of interest before running CCA is essential.
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3.9.3 Simulation Details

This section describes how the simulated data was generated for the experiments in Section
3.6.1. The algorithm requires a function f(x) that defines the relationship between X and Y .
Four different functions were used, as defined in the results (Figure 3.1).

Algorithm 2 Generate simulated data

input n, p1, p2, function f(x).
1. Pick relevant feature rx and ry of X and Y randomly from {1, · · · , p1} and {1, · · · , p2}

resp.
2. For j = 1 . . . p1

For i = 1 . . . n
X(i, j) = N (0, 1);

3. For j = 1 . . . p2

For i = 1 . . . n
if(j == ry)

Y (i, ry) = f(X(i, rx)) +N (0, 0.12);
else

Y (i, j) = N (0, 1);
output X , Y

3.9.4 Comparison of regularization paths

As the sparsity parameter is varied, different number of features are selected. We plot the reg-
ularization paths obtained by varying the sparsity parameter for linear data (Figure 3.4). The
linear data was selected in a similar manner to Section 3.6.2 with n = 100, p1 = p2 = 12, so that
X and Y have 4 relevant variables each.

For SA-FCCA and SA-KCCA, the norm of each function is plotted, and for sparse linear CCA,
the absolute values of u and v are shown, as a function of the sparsity parameter. Figure 3.4
shows that when the true relationship between the variables is linear, all three models separate the
relevant and irrelevant variables. Note that the bandwidth of SA-FCCA and SA-KCCA were
not tuned in this problem, so both models are capable of extracting the correct linear relationships
without adjusting the bandwidth heavily.

3.9.5 Comparison of SA-FCCA and SA-KCCA on DLBCL data

We ran SA-KCCA on the DLBCL data, on which SA-FCCA results were reported in Section
3.6.3. We observed that the same co-variates were picked as relevant by both SA-FCCA and
SA-KCCA. The functions extracted by SA-KCCA are shown in Figure 3.5. Note that the
functions appear to be mirror-images of the ones extracted by SA-FCCA in Figure 3.2. Since
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Figure 3.4: Regularization paths for linear correlations in the data, for SA-FCCA, SA-KCCA
and SCCA resp. The paths for the relevant variables (in X and Y ) are shown in red,
the irrelevant variables are shown in blue.
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Figure 3.5: KCCA output on DLBCL data : The top row shows two of the functions fi(Xi)
v/s Xi with non-zero norms for X in red, and the bottom row shows two functions
gj(Yj) v/s Yjwith non-zero norms for Y in blue.

a mirror image of the function still preserves the non-linear correlations, we conclude that SA-
FCCA and SA-KCCA work comparably in such predictions.
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Chapter 4

Noise Thresholds for Spectral
Clustering

Spectral clustering algorithms are a family of algorithms that partition data according to the
eigenvectors of a similarity matrix formed from the data. Despite considerable empirical suc-
cess, the theoretical understanding of spectral clustering is somewhat limited. In this chapter we
study k-way and hierarchical spectral clustering algorithms on a general class of noisy structured
similarity matrices. For hierarchical clustering, we show that recursive application of a simple
spectral clustering algorithm can tolerate noise that grows with the number of data points while
still recovering the hierarchical clusters with high probability. For k-way clustering, we derive
conditions on the similarity matrix under which spectral clustering perfectly partitions the data,
relating the noise variance to the minimum within-cluster similarity, number of clusters, and
number of data points. We complement these results with a minimax analysis, identifying the
information theoretic limits for the clustering problem with tight upper and lower bounds. We
verify our results with experiments on simulated and real world data.

4.1 Introduction

Clustering, a fundamental and ubiquitous problem in machine learning, is the task of organizing
data points into homogenous groups using a given measure of similarity. Two popular forms
of clustering are k-way, where an algorithm directly partitions the data into k disjoint sets, and
hierarchical, where the algorithm organizes the data into a hierarchy of groups. Popular algo-
rithms for the k-way problem include k-means, spectral clustering, and density-based clustering,
while agglomerative methods that merge clusters from the bottom up are popular for the latter
problem.

Spectral algorithms are a family of clustering algorithms which embed the data points by pro-
jection onto a few eigenvectors of a similarity matrix or data graph, constructed from the data
points, and uses this spectral embedding to find a good clustering.
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In this chapter, we study the statistical performance of spectral clustering, focusing on the robust-
ness to noise. To obtain quantitative results, we introduce a class of structured similarity matrices
seeded with the true clustering but corrupted with noise, and characterize when spectral cluster-
ing correctly recovers the true clustering in terms of the model parameters. In particular, we
are interested in quantifying the relationship between the number of data points, the number of
clusters, and a signal-to-noise ratio, which parameterizes our family of similarity matrices.

The main contributions of this chapter are:

1. We leverage results from perturbation theory in a novel analysis of a spectral algorithm
for hierarchical clustering to understand its behavior in the presence of noise. We provide
strong guarantees on its correctness; in particular, we show that the amount of noise spec-
tral clustering tolerates can grow rapidly with the size of the smallest cluster we want to
resolve.

2. We sharpen existing results on k-way spectral clustering. In contrast with earlier work,
we provide precise error bounds through a careful characterization of a k-means style
algorithm run on the spectral embedding of the data.

3. We also address the issue of optimal noise thresholds via the use of minimax theory. In
particular, we establish tight information-theoretic upper and lower bounds for cluster
resolvability for both the k-way and hierarchical settings that we consider.

4.2 Related Work

There are several high-level justifications for the success of spectral clustering. The algorithm
has deep connections to various graph-cut problems, random walks on graphs, electric network
theory, and via the graph Laplacian to the Laplace-Beltrami operator. See the survey paper of
von Luxburg [195] for an overview.

Several authors (see the work of von Luxburg et al. [196] and references therein) have shown
various forms of asymptotic convergence for the Laplacian of a graph constructed from random
samples drawn from a distribution on or near a manifold. These results however often do not
easily translate into precise guarantees for successful recovery of clusters, which is the emphasis
of our work.

There has also been some theoretical work on spectral algorithms for cluster recovery in random
graph models. McSherry [138] studies the “cluster-structured” random graph model in which
the probability of adding an edge can vary depending on the clusters the edge connects. He
considers a specialization of this model, the planted partition model, which specifies only two
probabilities, one for inter-cluster edges and another for intra-cluster edges. In this case, we can
view the observed adjacency matrix as a random perturbation of a low rank “expected” adjacency
matrix which encodes the cluster membership. McSherry shows that one can recover the clusters
from a low rank approximation of the observed (noisy) adjacency matrix. These results show
that low-rank matrices have spectra that are robust to noise. Our results however, show that we
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can obtain similar insensitivity (to noise) guarantees for a class of interesting structured full-rank
matrices, indicating that this robustness extends to a much broader class of matrices.

More recently, Rohe et al. [163] analyze spectral clustering in the stochastic block model (SBM),
which is an example of a structured random graph. They consider the high-dimensional scenario
where the number of clusters k grows with the number of data points n and show that under
certain assumptions the average number of mistakes made by spectral clustering → 0 with in-
creasing n. Our work on hierarchical clustering also has the same high-dimensional flavor since
the number of clusters we resolve grows with n. However, in the hierarchical clustering setting,
errors made at the bottom level propogate up the tree and we need to make precise arguments to
ensure that the total number of errors→ 0 with increasing n (see Theorem 4.3.1).

Since Rohe et al. [163] and McSherry [138] consider random graph models, the “noise” on each
entry has bounded variance. We consider more general noise models and study the relation
between errors in clustering and noise variance. Another related line of work is on the problem
of spectrally separating mixtures of Gaussians ([1, 35, 107]).

In a seminal paper, Ng et al. [145] studied k-way clustering and showed that the eigenvectors
of the graph Laplacian are stable in 2-norm under small perturbations. This justifies the use of
k-means in the perturbed subspace since ideally without noise, the spectral embedding by the top
k eigenvectors of the graph Laplacian reflects the true cluster memberships. However, closeness
in 2-norm does not translate into a strong bound on the total number of errors made by spectral
clustering.

More recently, Huang et al. [98] have studed the misclustering rate of spectral clustering under
the somewhat unnatural assumption that every coordinate of the Laplacian’s eigenvectors are
perturbed by identically distributed noise. In contrast, we specify our noise model as an additive
perturbation to the similarity matrix, making no direct assumptions on how this affects the spec-
trum of the Laplacian. We show that the eigenvectors are stable in∞-norm and use this result to
precisely bound the misclustering rate of our algorithm.

In this chapter of the thesis we analyze spectral clustering using the unnormalized Laplacian
which, as we demonstrate, is well suited to the homogenous degree models we consider. Since
the publication of our paper [22] there has been an increased interest in spectral clustering in de-
gree inhomogenous models like the degree corrected stochastic block model (also known as the
extended planted partition model) considered by Chaudhuri et al. [45], Chen et al. [48], Jin [101].
Chaudhuri et al. [45] in particular shows that in this situation using a modified normalized graph
Laplacian is more appropriate. Although beyond the scope of this thesis we expect that many of
our techniques will be useful in these problems, particularly in obtaining∞-norm perturbation
bounds for the normalized Laplacian.

4.3 Hierarchical Clustering

Our first set of results focus on binary hierarchical clustering, which is formally defined as:
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[αs·LL, βs·LL] [αs·L, βs·L]
[αs·L, βs·L] [αs·LR, βs·LR]

[αs, βs]

[αs, βs]
[αs·RL, βs·RL] [αs·R, βs·R]
[αs·R, βs·R] [αs·RR, βs·RR]

...

· · ·


Figure 4.1: An ideal matrix for the hierarchical problem.

Definition 1. A hierarchical clustering T on data points {Xi}ni=1 is a collection of clusters
(subsets of the points) such that C0 = {Xi}ni=1 ∈ T and for any Ci, Cj ∈ T , either Ci ⊂
Cj, Cj ⊂ Ci or Ci ∩ Cj = ∅.

A binary hierarchical clustering T is a hierarchical clustering such that for each non-atomic
Ck ∈ T , there exists two proper subsets Ci, Cj ∈ T with Ci ∩ Cj = ∅ and Ci ∪ Cj = Ck.

We label each cluster by a sequence of Ls and Rs so that Cs·L and Cs·R partitions Cs, Cs·LL and
Cs·LR partitions Cs·L and so on.

A large class of clustering algorithms operate exclusively on similarities (or distances) between
the data points and are agnostic to the representation of the points themselves. In practice, one
typically specifies an appropriate similarity (distance) function between the data points. Ideally,
at all levels of the hierarchy, points within a cluster are more similar to each other than to points
outside of that cluster. In this chapter we work directly with a family of structured similarity
matrices, so that we can circumvent the problem of selecting a good similarity metric, a task
which usually requires the application of some domain knowledge.

We work with the noisy hierarchical block matrix, which captures the intuition of our ideal
similarity matrix, where between-cluster similarity is higher than within-cluster similarity, but
allows for deviations from the ideal situation. These matrices can be decomposed into an ideal
matrix and a noise term:
Definition 2. A similarity matrix W is a noisy hierarchical block matrix (noisy HBM) if W ,
A+R where A is ideal and R is a perturbation matrix, defined as follows:

• An ideal similarity matrix is characterized by an interval [αs, βs] ⊂ R+ for each clusterCs
(see Figure 4.1) such that the between-subcluster similarities, i.e. Ax,y for x ∈ Cs·L, y ∈
Cs·R must lie between [αs, βs]. Additionally, the within-subcluster similarities of each of
the two subclusters must be larger than βs: minαs·R, αs·L > βs.

• A symmetric (n× n) matrix R is a perturbation matrix with parameter σ if

1. E(Rij) = 0,

2. the upper triangular and diagonal entries of R are independent and sub-Gaussian,
that is E(exp(tRij)) ≤ exp(σ

2t2

2
).

Finally, we define the combinatorial Laplacian matrix, which will be the focus of our spectral
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INPUT: (noisy) n× n similarity matrix W
1. Compute Laplacian L = D −W
2. v2 ← smallest non-constant eigenvector of L
3. C1 ← {i : v2(i) ≥ 0}, C2 ← {j : v2(j) < 0}
4. C ← {C1, C2}∪ HS (WC1)∪ HS (WC2)

OUTPUT: C
Figure 4.2: Hierachical Spectral Clustering (HS)

algorithm and the subsequent analysis.
Definition 3. The combinatorial Laplacian L of a matrix W is defined as L , D−W where D
is a diagonal matrix with Dii ,

∑n
j=1 Wij .

We note that other analyses of spectral clustering have studied other Laplacian matrices, particu-
larly, the normalized Laplacians defined as Ln , D−1L and Ln , D−

1
2LD−

1
2 . However, as we

show in Section 4.6, the normalized Laplacian can mis-cluster points even for an ideal noiseless
similarity matrix making it unsuitable for our problem.

We first state the following general assumptions, which we place on the ideal similarity matrix
A:
Assumption 1. For all i, j, 0 < Aij ≤ β∗ for some constant β∗.
Assumption 2. (Balanced clusters) There is a constant η ≥ 1 such that at every split of the
hierarchy

|Cmax|
|Cmin|

≤ η,

where |Cmax|, |Cmin| are the sizes of the biggest and smallest clusters respectively.
Assumption 3. (Range Restriction) For every cluster s,

min{αs·L, αs·R} − βs > η(βs − αs).

It is important to note that these assumptions are placed only on the ideal matrices. The noisy
HBMs can, and with high probability will, violate these assumptions.

We assume that the entries of A are strictly greater than 0 for technical reasons; we believe, as
confirmed empirically, that this restriction is not necessary for our results to hold. Assumption 2
says that at every level the largest cluster is only a constant fraction larger than the smallest. This
can be relaxed albeit at the cost of a worse rate. Our proofs explicitly maintain the dependence
on η. For the ideal matrix, the Assumption 3 ensures that at every level of the hierarchy, the gap
between the within-cluster similarities and between-cluster similarities is larger than the range of
between-cluster similarities. Earlier papers of McSherry [138], Rohe et al. [163] assume that the
ideal similarities are constant within a block in which case the assumption is trivially satisfied
by the definition of the ideal matrix. However, more generally this assumption is necessary to
show that the entries of the eigenvector are safely bounded away from zero. If this assumption is
violated by the ideal matrix, then the eigenvector entries can decay as fast asO(1/n) (see Section
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4.6 for more details), and our analysis shows that such matrices will no longer be as robust to
noise.

Other analyses of spectral clustering often directly make less interpretable assumptions about
the spectrum. For instance, Ng et al. [145] assume conditions on the eigengap of the normalized
Laplacian and this assumption implicitly creates constraints on the entries of the ideal matrix A
that can be hard to make explicit.

To state our theorems concisely we will define an additional quantity γ∗S . Intuitively, γ∗S quantifies
how close the ideal matrix comes to violating Assumption 3 over a set of clusters S.
Definition 4. For a set of clusters S, define

γ∗S , min
s∈S

min{αs·L, αs·R} − βs − η(βs − αs).

We, as well as previous works of Ng et al. [145], Rohe et al. [163], rely on results from perturba-
tion theory to bound the error in the observed eigenvectors in 2-norm. Using this approach, the
straightforward way to analyze the number of errors is pessimistic since it assumes the difference
between the two eigenvectors is concentrated on a few entries. However since the perturbation
is in fact generated by a random process it is unlikely to be adversarially concentrated. We
formalize this intuition to uniformly bound the perturbations on every entry and get a stronger
guarantee.

Our main result for hierarchical spectral clustering gives conditions on the noise scale factor σ
under which Algorithm HS will recover all clusters s ∈ Sm, where Sm is the set of all clusters
of size at least m.
Theorem 4.3.1. Suppose thatW = A+R is an (n×n) noisy HBM whereA satisfies Assumptions
1, 2, and 3. Suppose that the scale factor of R increases at

σ = o

(
min

(
κ?5
√

m

log n
, κ?4 4

√
m

log n

))
where κ? = min

(
α0,

γ?Sm
1+η

)
, m > 0 1. Then for all n large enough, with probability at least

1− 6/n, Algorithm HS, on input M , will exactly recover all clusters of size at least m.

A few remarks are in order:

1. It is impossible to resolve the entire hierarchy, since small clusters can be irrecoverably
buried in noise. The amount of noise that algorithm HS can tolerate is directly dependent
on the size of the smallest cluster we want to resolve.

2. It is easy to see that in resolving only the first level of the hierarchy, the amount of noise
Algorithm HS can tolerate is (pessimistically) o(κ?5 4

√
n/ log n) which grows rapidly with

the number of objects to be clustered n.

3. Under this scaling between n and σ, it can be shown that popular agglomerative algorithms
such as single linkage will fail with high probability. We verify this negative result through
experiments (see Section 4.6).

1Recall an = o(bn) if limn→∞
an
bn

= 0
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INPUT: (noisy) n× n similarity matrix W , number of clusters k
1. Compute Laplacian L = D −W
2. V ← (n× k) matrix with columns v1, ..., vk, where vi , ith smallest eigenvector of
L

3. c1 ← V1 (the first row of V ).
4. For i = 2 . . . k let ci ← argmaxj∈{1...n}minl∈{1,...,i−1} ||Vj − Vcl ||2.
5. For i = 1 . . . n set c(i) = argminj∈{1...k}||Vi − Vcj ||2

OUTPUT: C , {{j ∈ {1 . . . n} : c(j) = i}}ki=1

Figure 4.3: k-way Spectral Clustering (K-WAY SPECTRAL)

4. In the noiseless case, when the similarities are constant in each block, the higher eigen-
vectors correspond to the Haar wavelets and reveal the structure of the hierarchy. Similar
results hold for the ideal HBM matrices we use. Rather than using all the eigenvectors
of the original matrix we recursively use the second eigenvector the submatrices of W .
Intuitively, an algorithm that uses all of the eigenvectors of W , rather than the eigenvec-
tors of the submatrices performs poorly because eigenvectors of W are affected by noise
on the entire matrix, rather than the noise on just the particular submatrix of W under
consideration.

5. Since we assume that β∗ does not grow with n, both the range (βs − αs) and the gap
(min{αs·L, αs·R} − βs) must decrease with n and hence that γ∗Sm must decrease as well.
For example, if we have uniform ranges and gaps across all levels, then γ∗Sm = Θ(1/ log n).
For constant α0, for n large enough κ? =

γ?Sm
1+η

. We see that in our analysis γ?Sm is a crucial
determinant of the noise tolerance of spectral clustering.

4.4 K-way Clustering

In the k-way case, we consider the following similarity matrix which is studied by Ng et al.
[145].
Definition 5. W is a noisy k-Block Diagonal matrix if W , A + R where R is a perturbation
matrix and A is an ideal matrix for the k-way problem. An ideal matrix for the k-way problem
has within-cluster similarities larger than β0 > 0 and between cluster similarities 0.

We extend the intuition behind Theorem 4.3.1 to the k-way setting. Some arguments are consid-
erably more subtle since spectral clustering uses the subspace spanned by the k smallest eigen-
vectors of the Laplacian. Our results improve those of Ng et al. [145] to provide a coordinate-
wise bound on the perturbation of the subspace, and use this to make precise guarantees for
Algorithm K-WAY SPECTRAL, which includes an iteration of k-means style algorithm for clus-
ter assignment.
Theorem 4.4.1. Suppose that W = A+ R is an (n× n) noisy k-Block Diagonal matrix where
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A satisfies Assumptions 1 and 2. Suppose that the scale factor of R increases at rate

σ = o

(
β0

k

(
n

k log n

)1/4
)

then with probability 1 − 8/n, for all n large enough, K-WAY SPECTRAL will exactly recover
the k clusters.

Notice that we assume that in the ideal case between cluster similarities are exactly 0. In current
work we are investigating extending these results to the case when the ideal between cluster
similarities are strictly smaller than the within cluster similarities (but not necessarily 0). The
extension is however substantially more involved.

4.5 Minimax Rates

Theorems 4.3.1 and 4.4.1 show that the spectral clustering can tolerate a high amount of noise
while still recovering the clusters. This guarantee leaves open the question of optimality:

Are the spectral algorithms optimal in their dependence on the various parameters of the prob-
lem?

In this section we present tight minimax upper and lower bounds for the hierarchical and k-
way problems under the assumptions of known cluster sizes and block-constant activations. The
modification to non block-constant activations is straightforward. Indeed, in a precise sense the
constant similarities considered in this section can be seen as the “worst case”, and the perfor-
mance of the combinatorial procedures we consider only improves in the non block-constant
case. Adapting to unknown cluster sizes is more involved and beyond the scope of this chap-
ter.

For the hierarchical problem, we establish the minimax rate in a simplification of the noisy HBM
where εs , αs = βs for all s:

γ , min
s∈S

min{εs·L, εs·R} − εs

quantifies the gap between inter and intra-cluster similarities across all of the clusters. We will
also assume that the matrix is perfectly balanced (η = 1). Our first minimax result is a lower
bound which establishes a condition on (n, σ, γ) under which any method will make an error in
identifying the correct clusters.
Theorem 4.5.1. There exists a constant α ∈ (0, 1/8) such that if

σ ≥ γ

√
2m

α log nm

the probability that any estimator fails to recover all clusters of size≥ m remains bounded away
from 0 as n→∞.
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Under the conditions of this theorem, γ and κ? from Theorem 4.3.1 coincide, provided the inter-
cluster similarities remain bounded away from 0 by at least a constant. Theorem 4.3.1 then
implies that spectral clustering requires

σ ≤ min

(
γ5

√
n

C log n
, γ4 4

√
n

C log n

)
for a large enough constant C. The noise threshold for spectral clustering does not match the
lower bound. To establish that Theorem 4.5.1 is indeed the minimax rate, we need to demonstrate
a procedure (that is not necessarily computationally efficient) that matches it. For this, we analyze
a combinatorial procedure that solves the NP-hard problem of finding the minimum cut of size
exactly n/2 by searching over all subsets. A recursive application of this algorithm can be used
for hierarchical clustering.

More formally, for any subcluster Cs, denote the submatrix corresponding to Cs by W s. For a
given index set Is define:

S(W s, Is) =
∑

i∈I,j∈I

W s
ij +

∑
i∈Ic,j∈Ic

W s
ij −

∑
i∈I,j∈IC

W s
ij −

∑
i∈Ic,j∈I

W s
ij.

At each subclusterCs, our algorithm exactly minimizes S(W s, Is) subject to |Is| = |Cs|/2.

This algorithm is strongly related to spectral clustering with the combinatorial Laplacian, which
solves a relaxation of the balanced minimum cut problem.
Theorem 4.5.2. There exists a constant C such that if

σ < γ

√
m

C log n

the combinatorial procedure described above succeeds with probability at least 1− 1
n

which goes
to 1 as n→∞.

This theorem and the lower bound together establish the minimax rate. It however, remains an
open problem to tighten the analysis of spectral clustering in this chapter to match this rate.

In the k-way setting, the lower bound follows a similar proof to the hierarchical case. For the
upper bound we use a combinatorial procedure that finds and removes one cluster at a time. The
algorithm will find a set of m , n/k objects that maximizes the difference between within-
cluster and between cluster similarity:

Î = argmaxI⊂[n],|I|=mS(W, I)

where
S(W, I) ,

∑
i,j∈I

Wij +
∑
i,j /∈I

Wij −
∑

i∈I,j /∈I

Wij −
∑

i/∈I,j∈I

Wij.

The search is repeated k − 1 times (each time removing the indices in Î) to find the k clus-
ters.
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INPUT: Noisy similarity matrix W , number of clusters k.
1. Randomly divide the columns of W into two parts W1 and W2 of size n/2 and define
PW1 = QW1Q

T
W1
, PW2 = QW2Q

T
W2

, where QW1 are the top k left singular vectors of
W1 and QW2 are the top k left singular vectors of W2.

2. Compute Ŵ = [PW2W1|PW1W2].
3. Run the version of k-means above directly on the columns of Ŵ to recover the k

clusters.
OUTPUT: C

Figure 4.4: A variant of the algorithm from the paper of McSherry [138]

Theorem 4.5.3. The minimax rate for k-way clustering is

σ � γ

√
n

k log(n/k)
.

Under the added restriction of block constant ideal similarities, the analysis of McSherry [138]
yields an efficient algorithm (in Figure 4.4) that achieves the minimax dependence between n, γ
and σ for the k-way problem. Note that the algorithm is not minimax optimal in terms of k, which
we assume here is a constant. The algorithm and its analysis rely crucially on the fact that the
noiseless matrix is rank k; consequently our result does not directly extend to the non-constant
block similarities analyzed in Theorem 4.3.1. In this sense our analysis of spectral clustering and
the combinatorial procedures are much more general.

The analysis of this algorithm closely follows that of McSherry [138]. As in that proof, we
will analyze the algorithm under the assumption that each of the k clusters is exactly bisected in
W1 and W2. It is straightforward to show that each cluster is approximately bisected with high
probability for k constant and large n. Although it is possible to modify the analysis for the more
realistic approximate bisection case (see McSherry [138] for a discussion), the assumption that
the clusters are exactly bisected eases the analysis considerably.
Theorem 4.5.4. If:

γ ≥ C1σk

√
k

n
+ c2σk

√
log(n/δ)

n

then with probability at least 1− δ the algorithm succeeds in recovering the k clusters.

This rate is optimal except in its dependence on k. For constant k, the second term dominates
and we recover the minimax rate, i.e.

γ ≥ Cσ

√
log(n/δ)

n

suffices to recover the clusters.

To summarize, in this section we have given information theoretic lower bounds for the hier-
archical and k-way problems and analyzed combinatorial procedures that achieve these lower
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Figure 4.5: Threshold curves for the recovery of one split using HS

bounds. For the special case of constant block similarities in the k-way case we have analyzed a
computationally efficient algorithm that achieves the lower bound.

4.6 Experimental Results

We evaluate our algorithms and theoretical guarantees on simulated matrices, synthetic phylo-
genies, and finally on two real biological datasets. Our experiments focus on the effect of noise
on spectral clustering in comparison with agglomerative methods such as single, average, and
complete linkage.
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4.6.1 Noise Thresholds and Asymptotic Behavior

One of our primary interests is to empirically validate the relation between the scale factor σ
and the sample size n derived in our theorems. For a range of scale factors and noisy HBMs
of varying size, we empirically compute the probability with which spectral clustering recovers
the first split of the hierarchy. From the probability of success curves (Figure 4.5(a)), we can
conclude that spectral clustering can tolerate noise that grows with the size of the clusters.

We further verify the dependence between σ and n for recovering the first split. We observe
that when we rescale the x-axis of the curves in Figure 4.5(a) by

√
log(n)/n the curves line up

for different n (Figure 4.5(b). This shows that empirically, at least for the first split, spectral
clustering appears to achieve the minimax rate for the problem. It is an important open question
to show that, at least for this special case, spectral clustering with the combinatorial Laplacian
achieves the minimax rate.

4.6.2 Examples of Worst Case Behavior

Here we demonstrate the undesirable spectral properties of both the combinatorial and normal-
ized laplacians, in addition to the adjacency matrix. We use concrete examples of similarity
matrices whose second eigenvector does not immediately produce the correct clustering. Addi-
tionally, we motivate our Range Restriction, by showing that if this condition is not satisfied, the

entries of the eigenvector decay at O
(

1
n

)
instead of of O

(√
1
n

)
.

First, we turn to the drawbacks of using the spectrum of the adjacency matrix. McSherry [138]
shows that in the planted partition model, the eigenvectors of the adjacency matrix are enough
to identify the clusters. However, in the more general HBM, this is not the case. Consider a
matrix with small off-diagonal entries, larger entries on the diagonal blocks, and 2 very high
entries in this block (See Figure 4.6(a)). This is an ideal matrix and the second eigenvector
of the combinatorial Laplacian exactly identifies the true clustering, yet the eigenvector of the
adjacency matrix fails to convey any meaningful information (See Figure 4.6(e)).

The normalized Laplacian can also fail to identify the clusters of an ideal hierarchical matrix.
For example, on a similarity matrix like the one in Figure 4.6(b), the second eigenvector of the
normalized laplacian identifies the clustering at the second level of the hierarchy rather than
the first, as shown in Figure 4.6(f). We conjecture that different conditions will guarantee that
correctness of a spectral method using the normalized laplacian, but we instead focus on the
combinatorial Laplacian and our definition of ideal matrices.

The combinatorial Laplacian also has its shortcomings, most notably that it is highly influenced
by outliers in the data. If even one data point disrupts the structure of the matrix, as in Fig-
ure 4.6(c), the second eigenvector of the combinatorial Laplacian becomes highly spiked and it
can no longer tolerate even small perturbations (see Figure 4.6(g)).

A related example demonstrates the necessity of the Assumption 3. Consider the matrix shown
in Figure 4.6(d), which is an ideal matrix that violates the range restriction. In this case, the
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eigenvector again becomes highly spiked (Figure 4.6(h)), and moreover, the entries decay at a
rate of O(1/n) (not shown), which is too sharp for our results to hold.

4.6.3 Real World Experiments

We apply hierarchical clustering methods to a yeast gene expression data set and one phyloge-
netic data set from the PFAM database [74]. To evaluate our methods, following Eriksson et al.
[69], we use a ∆-entropy metric defined as follows: Given a permutation π and a similarity
matrix W , we compute the rate of decay off of the diagonal as

ŝd ,
1

n− d

n−d∑
i=1

Wπ(i),π(i+d)

for d ∈ {1, ..., n− 1}. Next, we compute the entropy

Ê(π) , −
n−1∑
i=1

p̂π(i) log p̂π(i)

where

p̂π(i) , (
n∑
d=1

ŝd)
−1ŝi.

Finally, we compute ∆-entropy as

Ê∆(π) = Ê(πrandom)− Ê(π).

A good clustering will have a large amount of the probability mass concentrated at a few of the
p̂π(i)s, thus yielding a high Ê∆(π). On the other hand, poor clusterings will specify a more
uniform distribution and will have lower ∆-entropy.

We first compare HS to single linkage on yeast gene expression data from DeRisi et al [62].
This dataset consists of 7 expression profiles, which we use to generate Pearson correlations
that we use as similarities. We sampled gene subsets of size n = 512, 1024, and 2048 and ran
both algorithms on the reduced similarity matrix. We report ∆-entropy scores in Table 4.7(b).
These scores quantitatively demonstrate that HS outperfoms single linkage and additionally, we
believe the clustering produced by HS (Figure 4.7(a)) is qualitatively better than that of single
linkage.

Finally, we run HS on real phylogeny data, specifically, a subset of the PDZ domain (PFAM Id:
PF00595). We consider this family because it is a highly-studied domain of evolutionarily well-
represented protein binding motifs. Using alignments of varying length, we generated similarity
matrices and computed ∆-entropy of clusterings produced by both HS and Single Linkage. The
results for three sequence lengths (Table 4.7(b)) show that HS and Single Linkage are compara-
ble.
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Figure 4.6: Example similarity matrices, red entries are high and blue are low, that result in
undesirable behavior for Normalized Laplacians and Adjacency Matrices and Com-
binatorial Laplacians.
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(a)

Dataset HS Agglomerative
Gene (n = 2048) 0.0775 0.0203
Gene (n = 1024) 0.1006 0.0312
Gene (n = 512) 0.0785 0.0280

Phylogeny (l = 100) 0.0067 0.0063
Phylogeny (l = 200) 0.0066 0.0069
Phylogeny (l = 300) 0.0066 0.0060

(b)

Figure 4.7: Experiments with real world data. (a): Heatmaps of single linkage (left) and
HS (right) on gene expression data with n = 2048. (b) ∆-entropy scores on real
world data sets.

4.7 Proofs

In this section we outline proof sketches for Theorem 4.3.1 as well as Theorems 4.5.1 and 4.5.2.
Detailed proofs of these and the other theorems appear in Section 4.9.

4.7.1 Proof of Theorem 4.3.1

The analysis of the hierarchical spectral algorithm can be compartmentalized into several sec-
tions that we outline here:

1. Noiseless Spectral Clustering: We show that Algorithm HS will perfectly cluster a noise-
less Hierarchical Block Matrix (HBM).

2. Derive spectral properties of noiseless matrices: We study the spectral properties of a
related matrix, the Constant Block Matrix (CBM), and use it to understand the spectral
properties of the HBM. This analysis is entirely deterministic.

3. Bound spectral norm of noise matrices: We analyze the noise matrices and show that, with
high probability, they have small spectral norm uniformly across all levels of the hierarchy.
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4. Davis-Kahan for Laplacians: We next use a variant of the well-known Davis-Kahan sin θ
theorem to bound the `2-norm deviation between the eigenvectors of the HBM and the
noisy HBM in terms of the spectral norm of the noise matrices.

5. `∞-norm deviation bounds: We observe that due to the independence and randomness
of the noise, it is unlikely that the perturbation of the eigenvector of the noisy HBM is
concentrated in just a few coordinates. We formalize this notion by deriving `∞-norm
deviation bounds between the eigenvectors of the HBM and the noisy HBM.

6. Final steps: we conclude that for sufficiently large n, every entry of the second eigenvectors
(across all calls to Algorithm HS ) correctly clusters the data.

Before diving into the proof, let us build some intuition with some simplified heuristic calcula-
tions, focusing on recovering just the first split. Let W = A + R be the n× n noisy HBM. One
can readily verify that the Laplacian of W , LW , can be decomposed as LA + LR. Let v(2), u(2)

be the second eigenvectors of LA, LW respectively.

We first show that the unperturbed eigenvector, v(2), clearly distinguishes the two outermost clus-
ters. Specifically we show that |v(2)

i | = Θ
(

1√
n

)
for all coordinates i and that its sign corresponds

to the cluster identity of point i. We also establish that the eigengaps λ2 − λ1 and λ3 − λ2 are
both Θ(n).

In step three of the proof, we show that ||LR|| ≤ O(σ
√
n log n) with high probability. Equipped

with the previous results, in step four of the proof, we apply the well-known Davis-Kahan per-
turbation theorem to show that:

||v(2) − u(2)||2 = O

(
σ

√
n log n

min(λ2 − λ1, λ3 − λ2)

)
= O

(
σ

√
log n

n

)
.

At this point, we can already make a guarantee on the performance of spectral clustering. Since

we argued that |v(2)
i | = Θ

(√
1
n

)
, if ||v(2) − u(2)||∞ = o

(√
1
n

)
then we know that for n large

enough, the spectral algorithm will correctly partition the data. Since the `∞ norm is bounded by
the `2 norm we now know that if σ = o

(√
1

logn

)
then our algorithm will succeed.

The above argument is pessimistic in that it assumes the perturbation will be concentrated on a
few entries of the eigenvector (this is when the `∞ norm is close to the `2 norm and the bound
is tight). Consequently it leads to a poor performance guarantee. Instead, and in step five of our
proof, we perform a much more careful analysis to show that all coordinates uniformly have low
perturbation, obtaining a much tighter bound on ||v(2) − u(2)||∞.

In what follows, we make the arguments across all levels of the hierarchy simultaneously. In
step six, we put all of the pieces together and arrive at Theorem 4.3.1. We defer the proofs of all
technical lemmas to Section 4.9.
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Algorithm HS in the noiseless setting

We now show that in the absence of noise, Algorithm HS will perfectly cluster the dataW .
Lemma 4.7.1. Given an ideal noiseless Hierarchical Block Matrix W (i.e. R = 0) satisfying
Assumption 1, HS will recover the true hierarchical clustering.

The result shows that at all levels of the hierarchy, the sign pattern of the second eigenvectors cor-
respond to the cluster memberships. The proof of this lemma can be found in Section 4.9.1.

Note that this lemma would not hold if Algorithm HS used either the normalized Laplacian or
the similarity matrix directly. In fact, in Section 4.6, we show several examples that demonstrate
the shortcomings of these approaches. In addition, note that we do not require Assumptions 2
and 3 for Lemma 4.7.1.

The fact that the second eigenvectors have the correct sign pattern does not ensure robustness to
noise. To ensure robustness, we would like to verify that the coordinates of the second eigen-
vector are bounded away from 0. To apply results from perturbation theory, it is also essential to
establish bounds on the first, second and third eigenvalues of the Laplacian.

Spectrum of HBMs

Step 2 of our proof outline requires us to characterize the spectrum of (noiseless) hierarchical
block matrices. We do so in the following lemma.
Lemma 4.7.2. (Spectrum of HBMs) Consider an (n× n) ideal Hierarchical Block Matrix

A =

(
AL AS
AT
S A′L

)
such that all values in off-diagonal blocksAS are in [α0, β0] and all values in the diagonal blocks
AL, A

′
L are in [α1, β

∗] (here we take α1 = min{αL, αR}).

Suppose A satisfies Assumptions 1 and 2 with balance factor η. Suppose also that A satisfies
Assumption 3. Then:

1. Let λ1, λ2, λ3 be the first, second and third smallest eigenvalue of LA respectively, then the
eigengap

δ , min (|λ2 − λ1|, |λ3 − λ2|) ≥ min

(
nα0,

n

η + 1
(α1 + ηα0 − (1 + η) β0)

)
= Θ(n).

2. Let v(2) be the second eigenvector of LA, then every entry of v(2) satisfies√
1

Kηn
≤ |v(2)(i)| ≤

√
Kη

n

where

Kη =

(
(β∗ − α0)

(α1 − β0)

β0 − α0 + η(β∗ − α0)

α1 − β0 − η(β0 − α0)

)2

.
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The proof of the lemma can be found in Section 4.9.2. In the proof, we first derive analogous
spectral properties for a simplified family of matrices, that have αs = βs for all clusters. Then
we use results from spectral graph theory to sandwich the eigenvalues of the HBM between the
eigenvalues of two of these simpler matrices. Leveraging the eigenvector definitions we are able
to similarly sandwich the entries of the eigenvectors.

Note that once we prove this Lemma, we can recursively apply it on sub-matrices that represent
the similarity matrix of sub-clusters to characterize the eigenvectors and eigenvalues at every
split of the hierarchical clustering. One complication with recursively applying Lemma 4.7.2 is
that at different level i, we would get a different Kη. To succinctly present the final rates, we
define K∗η as the maximum over all Kη for all levels i:

K∗η = max
s∈Sm

(
(β∗ − αs)

(min{αs·L, αs·R} − βs)
βs − αs + η(β∗ − αs)

min{αs·L, αs·R} − βs − η(βs − αs)

)2

where β∗ is the largest entry in the entire ideal HBM A. We must characterize the dependence
of K?

η on κ∗. Note in the expression for K?
η that

min{αs·L, αs·R} − βs ≥ γ∗

and that the terms in the numerator are all bounded by a constant depending on η and β∗ which
is the bound on the entries of the similarity matrix. Thus, we get

K?
η ≤

Cη,β∗

γ?4
≤ Cη,β∗

κ?4
.

Bounds on the noise

We now analyze the noise matrices. The main lemma that we will leverage repeatedly in our anal-
ysis bounds the spectral norm of the noise component of each Laplacian in the hierarchy.
Lemma 4.7.3. (Hierarchical Laplacian Operator Norm Bound) Let R be the noise matrix asso-
ciated with an n× n noisy Hierarchical Block Matrix satisfying Assumptions 1 and 2.

Then with probability 1−4/n, for all sub-clusters Cli, the corresponding noise Laplacian matrix
LCliR will have operator norm bounded by∣∣∣∣∣∣LCliR

∣∣∣∣∣∣
2
≤ C(η)σ

√
mli log n

for a constant C depending on η.

We stress that at this point, we have dealt with all of the randomness involved in recovering the
clusters, across all levels. Specifically, we now know that with probability at least 1− 4/n, every
noise Laplacian of size mli will have spectral norm bounded by O(σ

√
mli log n).
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Davis-Kahan for Laplacians and `2 Deviation Bounds

We now derive some results related to perturbation theory that will be useful in our final proof.
The first is a variant of the Davis-Kahan theorem that bounds the eigenvector deviation in `2-
norm.
Lemma 4.7.4. (Davis-Kahan) With probability at least 1− δ,∣∣∣∣u(i) − v(i)

∣∣∣∣
2
≤
√

2 ||LR||
ξi

where ξi denotes the eigengap for the ith eigenvalue of LA, i.e. ξi = mini 6=j |λi − λj|.

Before we proceed, we remark here that Lemma 4.7.4, combined with Lemma 4.7.3, immedi-
ately gives us an `2 deviation between the eigenvectors of the noisy HBM and the ideal HBM.
Specifically, if we additionally use Lemma 4.7.2 to lower bound ξi, we see that for the cluster
Cli: ∣∣∣∣u(2) − v(2)

∣∣∣∣
2

= O

(
σ

√
log n

mli

)
.

Using the uniform spectral bounds in Lemma 4.7.3, we arrive at this `2-norm deviation bound
for all clusters of size at least mli with probability 1− 4/n.

Uniform bounds on u(2) − v(2)

Note that the above result is not sufficient to guarantee that spectral clustering will make no
mistakes as u(2) could be spiked (and have flipped signs) even if it is close to v(2) in `2. To make
this guarantee, we perform a more careful analysis and show that u(2) is uniformly close to v(2)

in every coordinate.

In this analysis, let us focus on a cluster Cs of size ms. For ease of notation, we will denote
the adjacency matrix of Cs by A and the perturbation of Cs by R. We will further use DAi and
DRi to denote the sum of the ith row of A and R respectively. Repeated application for all of
the clusters, using the fact that all of the noise laplacians can be bounded, will guarantee the
correctness of our algorithm across all clusters. Let k = u(2)− v(2). The following lemma shows
that with high probability, k(i), the element-wise perturbation is uniformly low.
Lemma 4.7.5. With the above definitions, we have:

k(i) =
1

ci

(
v(2)(i)(λ2 − µ2)− Aik + LRiv

(2) −Rik
)

where ci = µ2 −DAi −DRi. Moreover, if σ = o

(
γ
√

ms
logn

)
, then with probability ≥ 1− 6/n:

||k||∞ ≤
2σ
√

log n

msκ?

[
s
√

6K?
η +

4
√

3β∗

κ?
+ 4
√

3K?
η +

4Cσ
√

3

κ?

]
.
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The expression for k(i) comes from algebraic manipulation of the eigenvector equations. The
bound on ||k||∞ involves analyzing each term in the expression for k(i), using the properties we
have previously derived.

Putting Everything Together To arrive at our final rate notice that if

σ = o

(
min

(
κ?5
√

ms

log n
, κ?4 4

√
ms

log n

))
then for large enough n we have ||k||∞ ≤

√
1

Kηms
and our algorithm makes no mistakes in

resolving all clusters of size at least ms.

4.7.2 Proof of Theorem 4.5.1

The proof of our lower bound is an application of the following form of Fano’s Inequality from
the book of Tsybakov [192]:
Lemma 4.7.6 (Theorem 2.5 of [192]). Assume thatM ≥ 2 and suppose that Θ contains elements
θ0, θ1, . . . , θM such that:

1. d(θj, θk) ≥ 2s > 0, ∀ 0 ≤ j < j ≤M .

2. Pj � P0, ∀j = 1, . . . ,M , and

1

M

M∑
j=1

K(Pj, P0) ≤ α logM

with 0 < α < 1/8 and Pj = Pθj , j = 0, 1, . . . ,M . Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥
√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
> 0.

K denotes the KL-divergence and d is an arbitrary semi-metric.

We use this lemma with d being the Hamming distance. We choose the parameter family Θ as
follows. First suppose that n = 2α and m = 2β for integers α > β. Let θ0 be some hierarchical
partitioning of [n] into clusters of sizem. Define θsjk for s ∈ [n/(2m)] that swaps that jth element
from the left child of cluster s with the kth element from the right child of cluster s, where s can
be any of the second level clusters in the hierarchy.

In total there are n/(2m) ×m2 models as there are n/(2m) different second level clusters, and
for each there are m choices for the element in the left cluster and m choices for the element in
the right cluster. Notice that each of these models are at a Hamming distance of at least one from
the true partitioning θ0.

Since we are interested in the worst case we can make two further simplifications. The ideal
(noiseless) matrix can be taken to be block-constant with gap γ, since the worst case is when the
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diagonal blocks are at their lower bound and the off-diagonal blocks are at their upper bound.
Further, we can consider matricesW = A+R, which are (n×n) matrices, withRij ∼ N (0, σ2).
We also need to calculate the KL-divergence between the probability distributions induced by
each of the parameters.

Each distribution is Gaussian and in comparison with θ0 the mean of each distribution differs in at
most 4m coordinates (inter- and intra- cluster similarities for the two objects that were swapped).
In this coordinates, it differs by γ. Thus

K(Pθsjk , Pθ0) =
2mγ2

σ2
.

To arrive at Theorem 4.5.1 we simply apply these calculations in Lemma 4.7.6.

Notice that for the k-way problem we can use a similar construction. If there are k clusters, each
of size n/k, then we define the family of models as follows. Starting with a base clustering θ0

group the clusters into pairs, then define θsjk as swapping the jth element and the kth element
between the pair s of clusters. A similar computation shows that there are k/2(n/k)2 such
models. Moreover

K(Pθsjk , Pθ0) =
2nγ2

kσ2
.

Applying Lemma 4.7.6 yields the lower bound in Theorem 4.5.3.

4.7.3 Proof of Theorem 4.5.2

For the hierarchical upper bound, our algorithm recursively solves the balanced minimum cut
problem. To analyze the algorithm described in Section 4.5

To analyze the procedure, it’s useful to consider the random variable ζs defined as:

ζs
Î

= S(W s, Is)− S(W s, Îs).

Further, given a set Îs, define the number of indices in which Îs and Is agree to be as.

It’s not too hard to see that for a given as,

ζs
Îs
∼ N

(
8as

(
|Cs|

2
− as

)
γ, 16as

(
|Cs|

2
− as

)
σ2

)
.

At any clusterCs, the combinatorial procedure succeeds if ζs
Îs
> 0 for all Îs 6= Is. A fairly simple

application of the union bound shows that the probability of error of the entire combinatorial
procedure is bounded by the probability of error across each of the clusters Cs. This probability
(by application of the union bound) can be bounded as follows:

Perror ≤
l∑

i=1

2i
n/2i−1∑
a=1

(
n/2i

a

)(
n/2i

n/2i − a

)
P(ζan/2i ≤ 0)

≤
l∑

i=1

2i
n/2i−1∑
a=1

(
n/2i

a

)2

exp

{
−C1a(n/2i − a)γ2

σ2

}
.

86



Working with just the inner summation, we break into two segments and get:

n/2i+1∑
a=1

exp

{
C2a log

n

2i
−
C1a( n

2i
− a)γ2

σ2

}
+

n/2i−1∑
a=n/2i+1

exp

{
C3(

n

2i
− a) log n/2i −

C1a( n
2i
− a)γ2

σ2

}

≤ max
1≤a≤n/2i+1

exp

{
C ′2a

(
log((n/2i)2)− C ′1n/2

iγ2

σ2

)}
+ max

n/2i+1≤a≤n/2i
exp

{
C ′3(n/2i − a)

(
log((n/2i)2)− C ′1n/2

iγ2

σ2

)}
.

Pushing the 2i term into the exponent, we see that if:

γ2

σ2
≥ log(n2/2i)

C ′1n/2
i

+
log(log2 n)/δ

C ′1n/2
i

then each term is smaller than C δ
log2 n

. Since there are at most log2 n terms in the hierarchy, and
consequently at most that many terms in the sum, we see that the probability of failure is upper
bounded by δ. Of course to recover clusters of size m, we just need to work for all i such that
n/2i ≥ m. Substituting this into the bound shows that it is sufficient for:

γ

σ
≥
√
C1 log(nm)

m
+
C2 log log2 n/δ

m
.

Rearranging this establishes the theorem.

4.8 Discussion and open problems

In this chapter we have presented a new analysis of spectral clustering in the presence of noise
and established tight minimax upper and lower bounds. As our analysis of spectral clustering
does not show that it is minimax-optimal it remains an open problem to further tighten, or es-
tablish the tightness of, our analysis, and to find a computationally efficient minimax procedure
in the general case when similarities are not block constant. Our results apply only for binary
hierarchical clusterings, yet k-way hierarchies are common in practice. In current work we are
attempting to extend our results to k-way hierarchies.

Identifying conditions under which one can guarantee correctness for other forms of spectral
clustering is another interesting direction for future work. For instance the recent work of Chaud-
huri et al. [45], has shown that modifications of the normalized Laplacian is well suited for
clustering non-homogenous degree graphs. Kumar and Kannan [120] have also recently shown
that a particular spectral algorithm that uses the eigenvectors of the adjacency matrix followed by
k-means succeeds at recovering clusters that satisfy a fairly general “proximity condition”.

Finally, spectral clustering has close connections to density based clustering [88, 90]. A study
of these connections was initiated in the work of Narayanan et al. [143] but these connections
are still not well understood and are an interesting avenue for future work on spectral cluster-
ing.
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4.9 Detailed proofs

4.9.1 Proof of Lemma 4.7.1

Our proof strategy is to first show that HS will correctly output the first split the hierarchical
clustering in Lemma 4.9.1. Repeated application of this lemma concludes the proof. Recall that
the ideal matrix has within cluster similarity greater than all between cluster similarities; this
motivates the statement of Lemma 4.9.1.
Lemma 4.9.1. Let W be a (p+ q)× (p+ q) matrix with the Large-Small block structure of(

WL WS

WT
S W ′

L

)
such that WL is a p× p block, W ′

L is a q × q block and

min
1≤i,j≤p

(WL)ij > max
1≤i≤p<j≤p+q

(WS)ij > 0

min
p+1≤i,j≤p+q

(W ′
L)ij > max

1≤i≤p<j≤p+q
(WS)ij > 0.

Let D be the diagonal matrix such that Dii =
∑

jWij . Let v be the smallest non-constant

eigenvector of the graph-Laplacian L = D −W , then v has either the sign pattern of
(
v+

v−

)
where v+, the first p elements of v, are strictly positive and v−, the other q elements of v, are
strictly negative or the reverse sign pattern.

Proof. Step 1: First, we will show that if a (p + q) × (p + q) symmetric matrix B has the
Positive-Negative block structure of (

B+ B−
BT
− B′+

)
where every non-diagonal element in the p × p block B+ and the q × q block B′+ is strictly
positive and every element in the p× q block B− is strictly negative, then the first eigenvector of

B, call it v, either has the sign pattern of
(
v+

v−

)
where v+, the first p elements of v, are strictly

positive and v−, other q elements of v, are strictly negative or has the reverse sign pattern.

Let v =

(
v+

v−

)
be the largest eigenvector of B where v+ are the first p elements and v− are

the other q elements. Let I+, I− be index sets of positive and negative elements in v+, and I the
index of all elements in v+. Let J+, J− be index sets of positive and negative elements in v−, and
J the index of all elements in v−. Then

vTBv = vT+B+v+︸ ︷︷ ︸
term 1

+ vT+B−v−︸ ︷︷ ︸
term 2

+ vT−B
T
−v+︸ ︷︷ ︸

term 3

+ vT−B
′
+v−︸ ︷︷ ︸

term 4

.
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Let us form a new vector w by changing the signs of all elements in I− and all elements in J+.
We now proceed to compare wTBw with vTBv term by term, noting that ||w||2 = ||v||2 = 1.

Term 1 is vT+B+v+ =
∑

i,j∈I viBijvj . Since Bij > 0, wiBijwj ≥ viBijvj for all i, j, we no-
tice that we have strictly increased term 1, provided that I−, I+ are non-empty. An analogous
argument reveals that we do not decrease term 4 by changing v to w. Furthermore, we strictly
increased term 4 if J−, J+ are non-empty.

Term 2 is vT+B−v
T
− =

∑
i∈I,j∈J viBijvj . Since Bij < 0, we see that wiBijwj = −|vi|Bij|vj| ≥

viBijvj for all i, j with strict inequality whenever i ∈ I−, j ∈ J− or i ∈ I+, j ∈ J+. Thus we
have strictly increased term 2 (and 3 by analogous argument) provided that the index sets are
non-empty.

We see then that unless I−, J+ are empty or I+, J− are empty, wTBw > vTBv. However, v is
assumed to be largest eigenvector and hence maximize vTBv among all unit-norm vectors. We
reached a contradiction and thus, all of v+ must have same sign and be opposite of v−.

Now suppose vi = 0, then BT
i v = 0 where Bi is the i − th row of B. However, since v cannot

be all zero, we see then that BT
i v > 0. Thus, vi cannot be zero for all i and v+ is all positive and

v− is all negative.

Step 2: Now we prove the claim of the lemma. Let 1 be a vector of all ones. Since the W
satisfy the Large-Small block structure there exist c ∈ R such that the matrix B , c11T − L =
c11T −D +W has the Positive-Negative block structure of(

B+ B−
BT
− B′+

)
except on the diagonals.

Let {v(i)} be the eigenvectors of L with corresponding eigenvalue {λi}. Since we know that
1 is an un-normalized eigenvector of L with eigenvalue 0, let v(1) = 1 and λ1 = 0. All other
eigenvectors of L must be orthogonal to 1 and hence, {v(i)} are also eigenvectors of B. Further-
more, for B, {v(i)} have the corresponding eigenvalues of {−λi} except for {v(1)}, which has
the eigenvalue of {c}.

We know thus that the v, the largest eigenvector of B, is also the smallest non-constant eigen-
vector of L. By step 1, we know that v has the sign pattern of v = (v+v−)T.

4.9.2 Proof of Lemma 4.7.2

We use several results from spectral graph theory to obtain these bounds in this subsection. To
derive these bounds, we first must study a more structured matrix, which we call the Constant
Block Matrix (CBM). The CBM has the same cluster structure as the HBM only it has constant
off-block-diagonal similarities rather than ranges as with the HBM.
Definition 1. A similarity matrix A is a Constant Block Matrix if A is an ideal matrix with
εs , αs = βs for all clusters s.
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Lemma 4.9.2. (Spectrum of CBM) Consider an (n×n) Constant-Block Matrix A characterized
by an εs for each level s, with min{εs·L, εs·R} > εs and with balance factor η. Then the laplacian
LA has the following eigenvalues (λ1 ≤ λ2,≤ . . . ≤ λn) and eigenvectors (v1, . . . vn):

1. v(1) = 1√
n
1 with λ1 = 0.

2.
√

1
nη
≤ |v(2)(i)| ≤

√
η
n

with λ2 = nε0.

3. n
1+η

(ηε0 + min{εL, εR}) ≤ λ3 ≤ n
1+η

(ε0 + ηmax{εL, εR}).

Proof. (of Lemma 4.9.2) The first claim is true simply because LA is a Laplacian Matrix.

We prove the remaining claims by induction on number of levels l in the A. As a base case, if
A is a n × n constant matrix with Aij = ε0 for all i, j, then it’s easy to see that every vector
orthogonal to 1 is an eigenvector of LA with eigenvalue nε0.

Suppose now that A is an n × n CBM with entries εs as in the lemma. Let CL, CR be the

two first-level clusters. It’s easy to check that the vector v with v(i) =
√
|CR|
n|CL|

, i ∈ CR and

v(i) =
√
|CL|
n|CR|

, i ∈ CR is an eigenvector of LA with eigenvalue nε0. We want to show that nε0
is the second smallest eigenvalue.

Since the diagonal blocks ALL and ARR are CMBs, the upper left block of the Laplacian is
(LA)LL = L(ALL) + |CR|ε0I and the lower right block of the Laplacian is (LA)RR = L(ARR) +
|CL|ε0I . By induction, the second smallest eigenvalue of L(ALL) is |CL|εL. We can extend the
corresponding eigenvector to an one for LA by padding with zeros. This vector is associated with
eigenvalue |CL|εL + |CR|ε0 > nε0.

Thus at least |CL| − 1 eigenvalues of LA are larger than nε0. Applying the same argument to
L(ARR) reveals that n − 2 eigenvalues are larger than nε0. Since 0 is an eigenvalue of LA, we
conclude that nε0 is the second smallest eigenvalue of LA.

Since 1
η
≤ |CR|
|CL|
≤ η, we have proved claim 2. Note that in proving claim 2, we have also shown

that the third smallest eigenvalue of LA is min(|CL|εL + |CR|ε0, |CR|εR + |CL|ε0). Apply the
definition of η and we see that the third claim holds true as well.

Our proof of Lemma 4.7.2 will construct two ideal Constant-Block Matrices, show that eigenval-
ues and eigenvectors of the HBM A are constrained by the two CBMs, and then leverage Lemma
4.9.2 to get the final result. Before we proceed to the proof, we state two well-known results in
Spectral Graph Theory that we will use:
Lemma 4.9.3. [176] IfLG andLH are two graph Laplacians such thatLG � cLH , then λk(G) ≥
cλk(H). (where we say PSD matrices A � B if A−B � 0)
Lemma 4.9.4. [176] Let G = (V,E,w) and H = (V,E, z) be two graphs that differ only in
edge weights. Then LG � mine∈E

w(e)
z(e)

LH .

Proof. (of Lemma 4.7.2): Let Hα be a two level ideal Constant-Block matrix with the same
block structure as A. Let all entries of the diagonal blocks of Hα have value α1 , min{αL, αR}
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and let all entries of the off-diagonal blocks of Hα have value α0. Define another constant-block
matrix Hβ similarly, the diagonal blocks are β∗ while the off-diagonal blocks are β0.

Lemma 4.9.2 characterizes the spectrum of Hα and Hβ . Using this characterization, along with
Lemmas 4.9.3 and 4.9.4, we have that nα0 ≤ λ2(LA) ≤ nβ0 and that n

1+η
(ηα0+α1) ≤ λ3(LA) ≤

n
1+η

(β0 + ηβ∗).

Combined with the fact that λ1 = 0 for any Laplacian, we get that δ ≥ min(nα0,
n
η+1

(α1 +ηα0−
(1 + η)β0)). Under Range Restriction Assumption 3, we see that (α1 + ηα0 − (1 + η)β0) > 0
and hence δ = Θ(n).

To establish bounds on entries of v(2), we consider a single coordinate of v(2); using the definition
of eigenvector we get that

v(2)(i) =
Aiv

(2)

di − λ2

where Ai is the i-th row of A. From Lemma 4.7.1, we can assume without loss of generality that
v(2)(i) is all strictly positive for one cluster and strictly negative for other. From the fact that 1 is
an eigenvector of LA, we get that

∑
i:v(2)(i)>0

|v(2)(i)| =
∑

i:v(2)(i)<0

|v(2)(i)|. Hence:

J(α1 − β0) ≤ Aiv
(2) ≤ J(β∗ − α0),

where J = 1
2

∑
i |v(2)(i)|. We can similarly derive an upper and lower bound for di − λ2 :

n
1

1 + η
α1+n

η

1 + η
α0 − nβ0

≤ di − λ2 ≤ n
1

1 + η
β0 + n

η

1 + η
β∗ − nα0.

Note that with the Range Restriction, the lower bound of di − λi is positive and is Θ(n). Com-
bining these two results, we get

Jc1

n
≤ |v(2)(i)| ≤ Jc2

n
,

c1 =
(α1 − β0)(η + 1)

β0 + ηβ∗ − (1 + η)α0

,

c2 =
(β∗ − α0)(η + 1)

α1 + ηα0 − (1 + η)β0

.

Since v(2) must be a unit vector, we can bound J and get that

c1

c2

1√
n
≤ |v(2)(i)| ≤ c2

c1

1√
n
.

Set Kη = ( c2
c1

)2 and we get the desired result.
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4.9.3 Proof of Lemma 4.7.3

We begin with some preliminary lemmas concerning the behavior of sub-Gaussian random vari-
ables.
Lemma 4.9.5. (Max of sub-Gaussians) Let X1, ...Xn be identically distributed sub-Gaussian
random variables with scale σ. With probability 1− δ

max
i=1,...n

|Xi| ≤ σ

√
2 log n+ 2 log

2

δ
.

Lemma 4.9.6. (Sums of sub-Gaussians) Suppose X1, . . . , Xn are independent sub-Gaussian

random variables, each with E(etXi) ≤ e
σ2i t

2

2 . For any scalars a1, . . . , an independent ofX1, . . . , Xn

we have,
∑n

i=1 aiXi is a sub-Gaussian random variable with E(et
∑n
i=1 aiXi) ≤ e

t2
∑n
i=1 a

2
i σ

2
i

2 .

Operator norm bounds on matrices of sub-Gaussians.
Lemma 4.9.7 (Proposition 2.4 of [164]). Consider a matrix R with independent sub-Gaussian
entries with scale factor σ. The operator norm of R is O(

√
n) and satisfies

P (||R||2 ≥ Aσ
√
n) ≤ 2 exp(−cA2n)

for absolute constants c, C and for all A ≥ C.

To obtain operator norm bounds on symmetric sub-Gaussian matrices, we just note that it suf-
fices to consider the upper triangular entries and strictly lower triangular entries separately, and
appeal to the above Lemma with the triangle inequality. By suitably adjusting constants we
obtain the following:
Lemma 4.9.8. Consider a symmetric matrix R as described in Definition 2, with scale factor σ.
The operator norm of R is O(

√
n) and satisfies

P (||R||2 ≥ Aσ
√
n) ≤ 2 exp(−cA2n)

for absolute constants c, C and for all A ≥ C.

The matrix whose operator norm we will ultimately have to bound is LR, we derive this bound
next:
Lemma 4.9.9. (Noise-Laplacian) Let R be a perturbation matrix, let LR = DR − R. For all
n ≥ n0, we have that with probability at least 1− 4/n,

||LR||2 ≤ 4σ
√
n log n

where n0 is an absolute constant.

Proof.

||LR||2 = ||DR −R||2 ≤ ||DR||2 + ||R||2.

DR is diagonal and ||DR||2 is the largest (in absolute value) diagonal element. Since every
diagonal element of DR is subgaussian with scale factor≤

√
nσ, we can apply Lemma 4.9.5 and
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get that ||DR||2 ≤ σ
√
n
√

2 log n+ 2 log 4
δ

with probability at least 1− δ/2. Setting δ = 4/n we

have ||DR||2 ≤ 2σ
√
n log n.

Using Lemma 4.9.8, we know that with probability 1 − 8/n, for n large enough (depending on
the absolute constants c and C), ||R||2 = Cσ

√
n. Hence, for n large enough, ||DR||2 ≥ ||R||2

and ||LR||2 ≤ 2||DR||2 and we get the desired result.

In order to guarantee recovery of all clusters of size at least m, it is not sufficient to bound ||LR||
at just the top-most level of the hierarchy. We must ensure that the noise matrices for all of
the subclusters we hope to recover have uniformly bounded spectral norm (where the specific
bound could be different for different submatrices). The following lemmas establish the desired
uniform bound.

Before we present the lemmas, we specify our notation. For each level l ∈ {0, . . . , n} in the
hierarchy, denote the set of clusters at level l by {Cli : i ∈ {1 . . . , 2l}} and let mli = |Cli|. For
any subcluster Cli we write the corresponding noise degree matrix as DCli

R and the corresponding
noise matrix as RCli .
Lemma 4.9.10. (Hierarchical Noise Degree Bound) Let R be the noise matrix associated with
a n× n noisy Hierarchical Block Matrix satisfying Assumptions 1 and 2. Then with probability
1−2/n, for all sub-clusters Cli in the true hierarchical clustering, the corresonding noise degree
matrix DCli

R will have operator norm bounded by

||DCli
R ||2 ≤ σ

√
6mli log n

Proof. We first bound the number of levels in the tree. l is bounded by log n in the balanced
binary case, but bounded by n in the worst case irrespective of η.

Now, at each level we bound at most n random draws from various sub-Gaussians. For instance,
consider the first level. We need to bound the operator norm of a diagonal degree matrix, and
each diagonal entry is a draw from a sub-Gaussian with scale factor at most

√
nσ, and there are

at most n diagonal entries. On the second level we will have two matrices but still n degree
random variables we will need to bound. Over l levels there are at most nl random variables to
bound.

For a cluster Cli at level l of size mli each diagonal entry of DCli
R is a subgaussian with scale

factor σ
√
mli. To standardize we will look at ||DCli

R ||2/(σ
√
mli) so that all of the terms have

scale factor 1. Now by the application of a union bound:

P[∃Cli|||DCli
R ||2/(σ

√
2mli) ≥ ε] ≤

n∑
l=1

2l∑
i=1

P[||DCli
R ||2/(σ

√
2mli) ≥ ε]

≤
n∑
l=1

2l∑
i=1

∑
j∈Cli

P[(DCli
R )jj/(σ

√
2mli) ≥ ε] ≤

n∑
l=1

2l∑
i=1

∑
j∈cli

2 exp{−ε2}

≤ 2n2 exp{−ε2}.
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Figure 4.8: All sub-matrices corresponding to sub-clusters at level 3

Setting ε =
√

3 log n bounds this probability by 2/n. Wrapping up, we see that:

||DCli
R ||2

σ
√

2mli

≤
√

3 log n

for every cluster Cli with probability ≥ 1− 2/n. The lemma follows by algebraic manipulation.

Proof of Lemma 4.7.3. Let us now bound the number of levels in the tree. We will need to be
more careful than in Lemma 4.9.10 where bounding l by n did not affect the rate. When the
clusters are imbalanced with a balance factor η we have

l ≤ 1

log(1+η
η

)
log n = Cη log n,

with Cη = 1
log(1+1/η)

. To see this note that at each split the larger cluster is of size at most η
1+η

n.
After l levels the cluster size is at most 1, i.e.(

η

1 + η

)l
n = 1.

We can solve this to obtain that l ≤ Cη log n.

Returning to the proof, we note that we need to bound the norm of at most 2l+1 − 2 ≤ e2l,
sub-Gaussian matrices of varying sizes.

From Lemma 4.9.8 we know also that for each Cli, ||RCli||2 ≤ Bliσ
√
mli holds with probability

at least exp(−cB2
limli), where Bli ≥ C for some absolute constant C.

By letting

Bli = max

√2Cη log n+ log 2
δ

cmli

, C

 ,
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we can take union bound over all 2l+1 − 2 noise sub-matrices and get that with probability at
least 1− δ, for all sub-clusters Cli,

||RCli ||2 ≤ max

σ
√

2Cη log n+ log 1
δ

c
, Cσ
√
mli

 .

Taking δ = 2/n we have

||RCli ||2 ≤ max

(
σ

√
3Cη log n

c
, Cσ
√
mli

)
≤ C(η)σ

√
mli log n

for a constant C(η) depending on C, c and Cη. From Lemma 4.9.10, we know that with proba-
bility 1− 2/n, for every Cli, ||DCli

R ||2 ≤ σ
√

6mli log n.

Hence, with probability at least 1− 4/n, for every sub-cluster Cli, ||LCliR ||2 ≤ C(η)σ
√
mli log n.

4.9.4 Davis Kahan

Proof. (of Lemma 4.7.4) Note that LR + LA = LW .

From Davis-Kahan theorem, we know that

| sin θi| ≤
||LR||

minj 6=i |λi − λj|

where λi and λj are respectively the i-th and j-th smallest eigenvalue of LA and θi is the angle
between v(i) and u(i), i.e. cos θi = v(i)Tu(i)

Without loss of generality, we can orient vectors as desired and assume that |θi| ≤ π
2
. Since v(i)

and u(i) are unit vectors, we get that

||u(i) − v(i)||2 ≤
√
||v(i)||2 + ||u(i)||2 − 2v(i)Tu(i)

= |2 sin
θi
2
| ≤ |2

√
2 sin

θi
2

cos
θi
2
| = |
√

2 sin θi|.

The second inequality follow because
√

2 cos θi
2
≥ 1 under assumption that |θi| ≤ π

2
. Combining

this with Davis-Kahan gives us the desired result.

For ease of reference, we also state here a well-known result in perturbation theory that we
use.
Lemma 4.9.11. (Weyl’s Inequality) Let LW , LA be n × n positive definite matrices and let
LR = LW − LA. Let λ1 ≤ ... ≤ λn and µ1 ≤ ... ≤ µn be the eigenvalues of LA and LW
respectively. Then, for all i, |λi − µi| ≤ ||LR||2.
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4.9.5 Proof of `∞ Deviations

Proof of Lemma 4.7.5. We start by manipulating the eigenvector equations for u(2) and v(2),
which will give us an expression for k(i):

k(i) =
(LAi + LRi)u

(2)

µ2

− v(2)(i) =
LAi(v

(2) + k)

µ2

+
LRiu

(2)

µ2

− v(2)(i)

=
λ2v

(2)(i)

µ2

+
LAik

µ2

+
LRiu

(2)

µ2

− v(2)(i) = v(2)(i)
λ2 − µ2

µ2

+
LAik

µ2

+
LRiu

(2)

µ2

=
1

µ2

(
v(2)(i)(λ2 − µ2) +DAik(i)− Aik + LRiv

(2) +DRik(i)−Rik
)
,

where LAi is the i-th row of LA. Rearranging, we get

k(i) =
1

ci

(
v(2)(i)(λ2 − µ2)− Aik + LRiv

(2) −Rik
)

where ci = µ2 − DAi − DRi. We are interested in the absolute difference and by the triangle
inequality, we have:

|k(i)| ≤

T1︷ ︸︸ ︷
|v(2)(i)(λ2 − µ2)|+

T2︷ ︸︸ ︷
|Aik|+

T3︷ ︸︸ ︷
|LRiv(2)|+

T4︷ ︸︸ ︷
|Rik|

|ci|︸︷︷︸
T5

.

Call the numerator terms T1, T2, T3 and T4 and the denominator T5. We will bound each seper-
ately.

Bound on T1: Using Lemma 4.7.2, Weyl’s inequality (Lemma 4.9.11), and our spectral norm
bound (Lemma 4.7.3), we see that with probability at least 1− 4/n:

T1 = |v(2)(i)(λ2 − µ2)| = |v(2)(i)||λ2 − µ2| ≤

√
K?
η

ms

||LR||2 ≤ 2σ
√

6K?
η log n.

Bound on T2: Remember that, κ? = min(α0,
γ?S

1+η
).

T2 = |Aik| ≤ ||Ai||2||k||2 ≤
√
msβ

∗
√

2||LR||2
ξ2

≤ 4σβ∗

κ?

√
3 log n,

where ξ2 is the eigengap corresponding to the second eigenvector. The first inequality is Cauchy-
Schwarz while the second follows from Lemma 4.7.4. The third inequality uses Lemma 4.7.2 to
bound the eigengap ξ2 which is at leastmsκ

?, and Lemma 4.7.3 to bound ||LR||2. This inequality
holds under the same 1− 4/n probability event used in the T1 bound.
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Bound on T3: The terms T3 and T4 are the main “noise” terms.

T3 = |LRiv(2)| = |DRiv
(2)(i)−Riv

(2)|.

Since each entry Rij is subgaussian with scale factor σ, Rij and Rij′ are independent for all
j 6= j′, and ||v(2)||2 = 1, we conclude that Riv

(2) is distributed as a subgaussian with scale factor
σ. Moreover, DRiv

(2)(i) is a subgaussian random variable with scale factor ≤
√
K?
ησ since

v(2)(i) ≤
√

K?
η

ms
and each entry DRi is subgaussian with scale factor

√
msσ. Since σ2 ≤ K?

ησ
2,

T3 is a draw from a subgaussian with scale factor ≤
√

2K?
ησ.

To ensure that T3 is uniformly low for all i, we take a union bound and use Lemma 4.9.5. Note
that this union bound is across all levels of the hierarchy, so there are nl ≤ n2 subgaussians that
we must bound. We get that with probability at least 1− 2/n,

T3 ≤ 4σ
√
K?
η3 log n.

Bound on T4:
T4 = |Rik| ≤ ||Ri||2||k||2 ≤ ||R||2||k||2.

From the proof of Lemma 4.7.3, we see that for ms = ω(log n), and for n large enough, under
the 1− 4/n probability event described in T1,

||R||2 ≤ Cσ
√
ms

for some absolute constant C. So we have,

T4 ≤ Cσ
√
ms

√
2||LR||2
ξ2

≤ 4Cσ2
√

3 log n

κ?
.

Bound on T5: The term T5 appears in the denominator and here, we establish a lower bound on
it.

T5 = |µ2 −DAi −DRi| = |DAi +DRi − µ2| .

Note that DAi ≥ ms
1+η

(ηαs + αs+) where αs+ , min{αs◦L, αs◦R} and that µ2 ≤ λ2 + ||LR||2 ≤
msβs + ||LR||2. Hence:

T5 ≥
∣∣∣∣ ms

1 + η
(ηαs + αs+) +DRi −msβs − ||LR||2

∣∣∣∣
≥ ms

1 + η

∣∣∣∣αs+ + ηαs − (1 + η)βs −
1 + η

ms

(2||DR||2 + ||R||2)

∣∣∣∣ .
The inequalities only hold provided that the term inside the absolute value is ≥ 0. Note that
αs+ + ηαs− (1 + η)βs is just γ. We will show that for large enough n, this is indeed true. Under
the 1− 4/n probability event described in the T1 bound, we have:

2||DR||2 + ||R||2 ≤ 3σ
√

6ms log n.
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Now, provided that σ = o(γ
√

ms
logn

), and using the definition of γ, we have that then 1+η
ms

(2||DR||2+

||R||2) = o(γ), and for large enough n, we can conclude that γ − 1+η
ms

(2||DR||2 + ||R||2) ≥
γ
2
≥ γ?S

2
. From the statement of the theorem we have σ = o(min(κ?5

√
ms

logn
, κ?4 4

√
ms

logn
)) =

o(γ
√

ms
logn

). Therefore:

T5 ≥
ms

1 + η

γ?S
2
≥ msκ

?

2
.

Combining all of the bounds yields the statement of the Lemma.

4.10 Proof of Theorem 4.4.1

The proof will be very similar to that of Theorem 4.3.1.

The difficulty here is that the spectral embedding of each point is not just a single number,
but rather a k-dimensional vector. To make matters worse, because LA has a k-dimensional
eigenspace associated with eigenvalue 0 (in other words, eigenvalue 0 has geometric multiplicity
k), there are many different possible spectral embeddings of each point–one for each set of basis
of the eigenspace.

Let u(1), ..., u(k) be perturbed eigenvectors of LW . The set of u(j)’s cannot be close to all sets of
lowest k eigenvectors of LA because there are infinite number of sets of lowest k eigenvectors of
LA due to geometric multiplicity. Thus, the best we can say is that there exist at least one set of
lowest k eigenvectors of LA that is close to u(1), ..., u(k). Lemma 4.10.1, 4.10.2 formalize these
concepts.

The following Lemmas extend Davis-Kahan theorem to describe perturbation of subspaces:
Lemma 4.10.1. Let W be a matrix with eigenvalues µ1 ≤ µ2, ... ≤ µn (possibly with multi-
plicity) and corresponding eigenvectors u1, u2, ...un. Let A be a matrix with eigenvalues λ1 ≤
λ2, ... ≤ λn (possibly with multiplicity) and corresponding eigenvectors v1, v2, ...vn. Let R ≡
W − A.

Let U = span{ui}i∈I where I is some index set. Let V = span{vi}i∈I . Then we have, for all
unit-normed u ∈ U :

||PV ⊥u||2 ≤
2||R||2
δ

√
k.

where k ≡ dimU = dimV , PV ⊥ is the orthogonal projection onto V ⊥, δ ≡ mini∈I δi and
δi ≡ minj /∈I |λi − λj|.

Intuitively, U , an eigen-subspace of W must be close to V , the corresponding eigen-subspace of
A. We simply quantified “close” as the projection of U onto V ⊥.
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Proof. Let U, V be eigen-subspaces of W,A as defined in theorem. Fix i ∈ I and let µi be an
eigen-value that correspond to ui ∈ U . Define Ā = A− λiI and W̄ = W − λiI .

Recall that ui is the eigenvector of W that correspond to µi; we can expand ui in the eigenbasis
of A and get ui =

∑
j cjvj .

||Āui||22 = ||Ā
∑
j

cjvj||22

=
∑
j

c2
j(λj − λi)2

≥
∑
j /∈I

c2
j(λj − λi)2

≥ δ2
i

∑
j /∈I

c2
j

= δ2
i ||PV ⊥ui||22.

By using Weyl’s Inequality, we can upper bound ||Āui|| as such:

||Āui||2 ≤ ||W̄ui||2 + ||R||2 ≤ |µi − λi|+ ||R||2 ≤ 2||R||2.
Combine the two results, we get:

||PV ⊥ui||2 ≤
2||R||2
δi

.

Let u ∈ U and let ||u||2 = 1, then u =
∑

j∈I cjuj . We will now upper bound ||PV ⊥u||2.

||PV ⊥u||22 = ||
∑
j∈I

cjPV ⊥uj||22

=
∑
j∈I

c2
j ||PV ⊥uj||22 +

∑
j 6=i,∈I

cjci〈PV ⊥uj, PV ⊥ui〉.

We already have that ||PV ⊥ui||22 ≤
4||R||22
δ2i

. Define δ = mini δi, then we have ||PV ⊥ui||22 ≤
4||R||22
δ2

.

By Cauchy-Schwartz, we get 〈PV ⊥uj, PV ⊥ui〉 ≤ ||PV ⊥uj||2||PV ⊥ui||2 ≤
4||R||22
δ2

.

Combine the two above bounds, we can now continue upper bounding ||PV ⊥u||:

||PV ⊥u||22 ≤
4||R||22
δ2

(
∑
j∈I

c2
j +

∑
j 6=i,∈I

|ci||cj|)

≤ 4||R||22
δ2

(
∑
j∈I

|cj|)2

≤ 4||R||22
δ2

k
∑
j∈I

|cj|2

≤ 4||R||22
δ2

k.
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Thus, we get ||PV ⊥u||2 ≤ 2||R||2
δ

√
k as desired.

Lemma 4.10.2. (Eigenspace-Perturbation) Let U = span{ui}i∈I and V = span{vi}i∈I be
eigen-subspaces of matrices W,A respectively.

Assume 2||R||2
δ

√
k ≤ 1/2, then there exist a V -invariant isometry (orthonormal matrix) Θ such

that for all i

||Θvi − ui||2 ≤
6||R||2
δ

√
k.

We say that Θ is V -invariant if for all v ∈ V , Θv ∈ V .

The difficulty of proving Lemma 4.10.2 comes from the fact that PV ui and PV uj need not be
orthogonal even if ui and uj are orthogonal. We use the next PSD Deviation Lemma to address
this difficulty.
Lemma 4.10.3. (PSD Deviation) Let K be a positive definite matrix with some eigenvectors that
span V . Let 0 ≤ θ < 1 and let all eigenvalues of K be between 1 + θ and 1− θ.

Then ||Kv − v||2 ≤ θ||v||2 for all v ∈ V .

Proof. (of Lemma 4.10.3) Let w1, ...wk be the eigenvectors ofK that span V with corresponding
eigenvalues λ1, ...λk.

Then u =
∑

k ckwk and we get:

||Kv − v||2 = ||
∑
k

ckKwk −
∑
k

ckwk||2

= ||
∑
k

ckλkwk −
∑
k

ckwk||2

= ||
∑
k

ck(λk − 1)wk||2

≤ (max
i
|λi − 1|)||

∑
k

ckwk||2

= θ||v||2.

Now we can prove the Eigenspace Perturbation lemma:

Proof. (of Lemma 4.10.2)

Define v′i = PV ui for i ∈ I . The collection of vectors {v′i}i∈I need not be orthogonal, but
we claim they are independent. To see this, suppose that there exist coefficients ci such that∑

i∈I civ
′
i = 0. Then ∑

i∈I

civ
′
i =

∑
i∈I

ciPV (ui) = PV (
∑
i∈I

ciui) = 0.
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The vector
∑

i∈I ciui is in U and non-zero. Hence, by Lemma 4.10.1 and the assumption that
2||R||2
δ

√
k ≤ 1/2, ||PV (

∑
i∈I ciui)||2 ≥

1
2
||
∑

i∈I ciui||2 > 0. This is a contradiction.

Because v′i’s are independent, there exist a basis-transform linear operator K such that Kv′i = vi
for all i and Kw = w for all w /∈ V . Note that K is V -invariant since {v′i}i∈I spans V .

Let K = ΨK∗ be the V -invariant polar decomposition of K, that is, Ψ is an isometry, K∗ is
positive semidefinite, and K∗ and Ψ are both V -invariant. Since Ψ is an isometry and hence
preserves inner product, we get that the collection of vectors {K∗v′i}i∈I must be orthogonal.

Also, since Ψ is an isometry and hence preserves norm, we get that ||K∗v′i||2 = 1 for all i ∈ I
andK∗ ◦PV is an isometry when restricted to subspace U . Since the eigenvalues of PV restricted
to U are bounded between 1 and 1 − 2||R||2

δ

√
k, we get that the eigenvalues of K∗ restricted to

range(PV ) = V must be bounded between 1 and 1/

(
1− 2||R||2

δ

√
k

)
.

By assumption from theorem, we can bound, by using the fact that 1
1−a ≤ 1+2a for 0 ≤ a ≤ 1/2,

the eigenvalues of K∗ between 1 and 1 + 4 ||R||2
δ

√
k. Hence, by Lemma 4.10.3, we get that for all

v ∈ V , ||K∗v − v||2 ≤ 4 ||R||2
δ

√
k||v||2. Thus, we get:

||ui −K∗PV ui||2 ≤ ||ui − PV ui||2 + ||K∗PV ui − PV ui||2

≤ 2
||R||2
δ

+ 4
||R||
δ

√
k||PV ui||2

≤ 6
||R||2
δ

√
k.

We used the fact that ||ui − PV ui||2 = ||PV ⊥ui||2, and Lemma 4.10.1 for the second inequality
and the trivial upper bound that ||PV ui||2 ≤ 1 for the third inequality.

Since vi = KPV ui = ΨK∗PV ui, Ψ−1vi = K∗PV ui. Hence, we have proven the theorem with
Ψ−1 as the isometry.

The next lemma describes the spectrum of the Laplacian of a k-Block Diagonal similarity matrix
in a manner similar to Lemma 4.9.2 and Lemma 4.7.2.
Lemma 4.10.4. LetA be a k-Block Diagonal Matrix with blocksA(1), ...A(k) such that all entries
in A(1), ...A(k) are between β1 and β0 where 0 < β0 ≤ β∗ and all remaining entries of A are 0,
i.e.

W =


A(1) ... 0

A(2)

... ...
0 A(k)

 .
Let 0 < ν < 1 be such that νn is the size of the largest cluster. Then:
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1. λ1, ..., λk, the lowest k eigenvalues of LA, are 0 with corresponding eigenvectors

v(1) =
1√
|C1|

(1C1
, 0C2

, ..., 0Ck)

v(2) =
1√
|C2|

(0C1
, 1C2

, ...0Ck)

...

v(k) =
1√
|Ck|

(0C1
, 0C2

, ...1Ck)

where 0C1
is an all-zero vector of length |C1|.

2. λk+1 ≥ νn
η
β0 (note that νn

η
lower bounds size of the smallest cluster).

Proof. The first claim follows becauseLA is also block-diagonal and the diagonal blocks (LA)(i) =
LA(i) .

To prove the second claim, we construct a block-diagonal matrix S with the same block structure
as A and furthermore, the diagonals S(1), ..., S(k) all have constant value of β0. The claim then
follows by Lemma 4.9.3 and Lemma 4.9.4.

Now we proceed to the proof of Theorem 4.4.1:

Proof. (of Theorem 4.4.1)

Let j ∈ {1, ..., k}, define v′(j) = Θv(j). Since Θ is V -invariant, we know that LAv′(j) = 0.

Let let h(j) = u(j) − v′(j).

h(j)(i) = u(j)(i)− v′(j)(i)

=
(LAi + LRi)u

(j)

µj
− v′(j)(i)

=
LAi(v

(j) + h(j))

µj
+
LRiu

(j)

µj
− v′(j)(i)

=
LAih

(j)

µj
+
LRiu

(j)

µj
− v′(j)(i)

=
DAih

(j)(i)− Aih(j)

µj
+(

LRiv
′(j)

µj
+
DRih

(j)(i)

µj
− Rih

(j)

µj

)
− v′(j)(i).
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We will collect the terms containing h(i) and get

µjh
(j)(i)−DAih

(j)(i)−DRih
(j)(i)

= −Aih(j) + LRiv
′(j) −Rih

(j) − v′(j)(i)µj

and hence

h(j)(i) =
1

|µj −DAi −DRi|︸ ︷︷ ︸
T5

|v′(j)(i)|︸ ︷︷ ︸
T1

+ |Aih(j)|︸ ︷︷ ︸
T2

+ |LRiv′(j)|︸ ︷︷ ︸
T3

+ |Rih
(j)|︸ ︷︷ ︸

T4

 .

Call the numerator terms T1, T2, T3, T4 and call the denominator term T5. We will bound each of
these terms uniformly across all clusters j = 1, ..., k and across all elements h(j)(i), i = 1, ...n.

Bound for T1: Since Θ is V -invariant, we know that v′(j) =
∑k

t=1 αtv
(t) and hence, v′(j) has

vector-structure of ( 1√
|C1|

α1,
1√
|C2|

α2,
1√
|C3|

α3, ...) where α1 is sub-vector of length |C1| etc.

Because αt ≤ 1 for all j, we know that |v′(j)(i)| ≤
√

η
νn

.

We can bound |µj| ≤ ||LR||2 + |λj| = ||LR||2 by Weyl’s Inequality. By Lemma 4.9.9, ||LR||2 ≤
4σ
√
n log n with probability at least 1− 4

n
. Hence, T1 is upper bounded by 4σ

√
η
ν

√
log n.

Bound for T2: |Aih(j)| ≤ ||Ai||2||h(j)||2 ≤
√
νnβ∗ 6

√
k||LR||2
ξ

where the bound on ||h(j)||2 comes
from Lemma 4.10.2.

Also, by Lemma 4.10.4, ξ ≡ λk+1 − λk = λk+1 ≥ νn
η
β0. Thus, |Aih(j)| ≤ 6β

∗

β0
η
√

k
νn
||LR||2.

In the 1− 4
n

probability event described in Lemma 4.9.9, we get that

|Aih(j)| ≤ 6
β∗

β0

η

√
k

ν
4σ
√

log n.

Note that in order to invoke Lemma 4.10.2, we need to satisfy the condition that 6
√
k||LR||2
ξ

≤ 1
2
.

Since

6
√
k||LR||2
ξ

≤ 6ση
√
k4
√

log n

νβ0

√
n

≤ 6ση

νβ0

4

√
k log n

n

and since σ = o
(
β0
k

( n
k logn

)1/4
)

under assumption of the theorem, for large enough n, the con-
dition of Lemma 4.10.2 will be satisfied.
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Bound for T3:
|LRiv′(j)| ≤ |DRiv

′(j)(i)|+ |Riv
′(j)|

We see that |DRiv
′(j)(i)| ≤ |DRi ||v′(j)(i)|. We know that in the same 1 − 4

n
probability event

described in T1 bound, |DRi | ≤ 4σ
√
n log n. Hence,

|DRi ||v′(j)(i)| ≤ 4σ

√
η

nu
log n.

The second term |Riv
′(j)| is trickier to bound. We first expand v′(j) in terms of v(1), ..., v(k).

|Riv
′(j)| ≤ |

k∑
t=1

αtRiv
(t)|

≤ (
k∑
t=1

|αt|) max
t=1,...,k

|Riv
(t)|

≤
√
k max
t=1,...,k

|Riv
(t)|.

We know

Riv
(t) =

1√
|Ct|

|Ct|∑
l=1

Ril.

By Lemma 4.9.6, we get that Riv
(t) is subgaussian with scale factor σ. Hence, with probability

at least 1− 2
n

, uniform across i = 1, ..., n, maxt=1,...,k|Riv
(t)| ≤ σ

√
6 log n.

Hence, T3 can be bounded as

|DRiv
(j)|+ |Rivt| ≤ 4σ

√
η

ν
log n+ σ

√
6k log n.

Bound for T4:

|Rih
(j)| ≤ ||Ri||2||h(j)||2

≤ Cσ
√
n

6
√
k||LR||2
ξ

≤ (Cσ
√
n)

12
√
knη
√

4 log n

νnβ0

≤ 12Cσ2

√
k

β0

η

ν

√
4 log n
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where we will assume the 1− 4
n

probability event described in T1 bound.

Bound for T5: Recall that since T5 appears in the denominator, we need a lower bound for it as
opposed to an upper bound.

|µj −DAi −DRi | = |DAi +DRi − µj|

≥ |νn
η
β0 +DRi − ||LR||2|

≥ |νn
η
β0 − 3||LR||2|

≥ νn

η
|β0 − σ

η

νn
4
√
n log n︸ ︷︷ ︸

decaying term

|,

where the third inequality occurs under the same 1− 4
n

probability event described in T1 bound.

Recall that we assume σ = o
(
β0
k

( n
k logn

)1/4
)

in the statement of the theorem and under this

condition, for large enough n, the decaying term will be less than β0
2

.

|µj −DAi −DRi | ≥
νn

η

β0

2
.

Suppose that both the event described in T1 and the event described in T3 hold, which happens
with probability 1 − 8

n
by union bound, the following bounds hold simultaneously for all j =

1, ..., k.

T1 ≤ 4σ

√
η

ν

√
log n,

T2 ≤ 4σ
β1

β0

η

√
k

ν

√
log n,

T3 ≤ 4σ

√
η

ν
log n+ σ

√
6k log n,

T4 ≤ 12Cσ2

√
k

β0

η

ν

√
4 log n,

T5 ≥
νn

η

β0

2
.

Combining everything together, we conclude that, uniformly across all j = 1, ..., k:

||h(j)||∞ ≤ 12σ
√

4 log n
2η

νnβ0

[√
η

ν
+
β1η

β0

√
k

ν
+
√
k + Cσ

√
k

β0

η

ν

]
.

105



Since we hold β1 and η to be a constant and ν ≤ 1, we see that the last term of the sum dominates
the entire sum. We also note that ν ≥ 1

k
and thus 1

ν
≤ k.

It is then straightforward to check that under the assumption that σ2 = o

(√
n

logn

β2
0

k5/2

)
, then for

large enough n, ||h(j)||∞ ≤
√

1
8νnk

.

Embedding of each point onto basis {v(1), ...v(k)} is k-dimensional vector with exactly one non-
zero coordinate. By the above definition, we can see that if points p1, p2 ∈ Rk are in the different

clusters, then ||p1 − p2|| ≥
√

2
νn

.

Let v′(j) = Θv(j) be the transformed orthonormal basis, we will show that the embeddings of
points onto the transformed basis maintain the same pair-wise distance. We know that v′(j) =∑

j αjtv
(t) and hence, v′(j) has vector-structure of ( 1√

|C1|
αj1,

1√
|C2|

αj2,
1√
|C3|

αj3, ...) where αj1

is sub-vector of length |C1| whose every entry is αj1.

Let p1, p2 ∈ Rk be two points in the transformed-basis-embedding. Let p1 be in cluster a and p2

be in cluster b, then ||p1 − p2||2 = || 1√
|Ca|

(α1a, ...αka) − 1√
|Cb|

(α1b, ...αkb)||. Thus, if p1, p2 are

in the same cluster, ||p1 − p2|| = 0.

Let αa , (α1a, ...αka) and αb , (α1b, ...αkb). Then

|| 1√
|Ca|

αa − 1√
|Cb|

αb||2

=
1

|Ca|
||αa||2 − 1√

|Ca||Cb|
2〈αa, αb〉+

1

|Cb|
||αb||2.

Define k × k matrix M such that Mjt = αjt. Hence, row j of M contains the linear coefficients
of v′(j) in term of basis {v(1), ...v(k)}. Since v′(j)’s are orthonormal, it must be that rows of M
are orthonormal and therefore, M must be an isometry and its columns are also orthonormal.

Thus, we get that ||αa|| = ||αb|| = 1 and 〈αa, αb〉 = 0 and that ||p1 − p2||2 = 1
|Ca| + 1

|Cb|
≥ 2

νn

and that if p1, p2 are in different clusters, then ||p1 − p2|| ≥
√

2
νn

.

Let q1, q2 be perturbed version of p1, p2, that is, the same points embedded in (u(1), ..., u(k))-basis.

Since each coordinate of the perturbed vector u(j) can change by at most
√

1
8νnk

from v′(j), we

get that ||p1 − q1||2 ≤
√

1
8νn

and likewise for ||p2 − q2||2.

If q1, q2 are in the same cluster, ||q1 − q2||2 ≤
√

1
2νn

and if q1, q2 are in different clusters, ||q1 −

q2||2 ≥
√

2
νn
−
√

1
2νn
≥
√

1
2νn

.
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Since the maximum distance between two points in the same cluster is less than minimum dis-
tance between two points in different clusters, in our modified k-means procedure, the k chosen
cluster centers will be in different clusters and the remaining points will be assigned to the correct
clusters.

4.11 Proofs of Information Theoretic Limits

4.11.1 Lower Bounds

The proof of our lower bound is an application of Fano’s Inequality from the book of Tsybakov
[192]:
Theorem 4.11.1. Assume that M ≥ 2 and suppose that Θ contains elements θ0, θ1, . . . , θM such
that:

1. d(θj, θk) ≥ 2s > 0, ∀ 0 ≤ j < j ≤M .

2. Pj � P0, ∀j = 1, . . . ,M , and

1

M

M∑
j=1

K(Pj, P0) ≤ α logM

with 0 < α < 1/8 and Pj = Pθj , j = 0, 1, . . . ,M . Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥
√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
> 0.

We choose the family of parameters Θ as follows. First suppose that n = 2α and m = 2β for
integers α > β. Let θ0 be some hierarchical partitioning of [n] into clusters of size m. Define
θsjk for s ∈ [n/(2m)] that swaps that jth element from the left child of cluster s with the kth
element from the right child of cluster s, where s can be any of the second level clusters in the
hierarchy.

In total there are n/(2m) ×m2 models as there are n/(2m) different second level clusters, and
for each there are m choices for the element in the left cluster and m choices for the element in
the right cluster. We also need to calculate the Hamming distance between the estimate θ̂ and
the true parameter θ0. It is clear that d(θsjk, θ

s′

j′k′) ≥ 1, as long as one of s 6= s′, j 6= j′ or k 6= k′

holds.

Finally we need the KL-divergence between the probability distributions induced by the param-
eters. Each distribution is Gaussian and in comparison with θ0 the mean of each distribution
differs in at most 4m coordinates (inter- and intra- cluster similarities for the two objects that
were swapped). In this coordinates, it differs by γ. Thus K(Pθsjk , Pθ0) = 2mγ2

σ2 . With these
calculations, we apply Theorem 4.11.1 and arrive at the bound.
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For the k-way problem we apply a similar analysis. If there are k clusters, each of size n/k, then
we define the family of models as follows. Starting with a base clustering θ0 group the clusters
into pairs, then define θsjk as swapping the jth element and the kth element between the pair s
of clusters. A similar computation shows that there are k/2(n/k)2 such models. Moreover the
K(Pθsjk , Pθ0) = 2nγ2

kσ2 . Applying Theorem 4.11.1 yields the lower bound in Theorem 4.5.3.

4.11.2 Upper Bounds

For the hierarchical upper bound, our algorithm recursively solves the balanced minimum cut
problem. When run on n data points, it outputs a set of n/2 coordinates (denoted by Î) so as to
maximize the contrast between the two diagonal blocks (the Î Î and ÎC ÎC blocks) and the two
off-diagonal blocks (the Î ÎC and ÎC Î blocks). For any subcluster (equivalently set of items) Cs,
denote the true clusters by Is and ICs and the submatrix formed by these items as W s.

Define:

S(W s, Is) =
∑

i∈I,j∈I

W s
ij +

∑
i∈Ic,j∈Ic

W s
ij −

∑
i∈I,j∈IC

W s
ij −

∑
i∈Ic,j∈I

W s
ij.

At each subcluster Cs, our algorithm exactly minimizes S(W s, Is) subject to |Is| = |Cs|/2. To
analyze the procedure, it’s useful to consider the random variable ζs defined as:

ζs
Î

= S(W s, Is)− S(W s, Îs).

Further, given a set Îs, define the number of indices in which Îs and Is agree to be as.

It’s not too hard to see that for a given as,

ζsas ∼ N
(

8as

(
|Cs|

2
− as

)
γ, 16as

(
|Cs|

2
− as

)
σ2

)

At any clusterCs, the combinatorial procedure succeeds if ζs
Îs
≥ 0 for all Îs 6= Is. A fairly simple

application of the union bound shows that the probability of error of the entire combinatorial
procedure is bounded by the probability of error across each of the clusters Cs. This probability
(by application of the union bound) can be bounded as follows:

Perror ≤
l∑

i=1

2i
n/2i−1∑
a=1

(
n/2i

a

)(
n/2i

n/2i − a

)
P(ζan/2i ≤ 0)

≤
l∑

i=1

2i
n/2i−1∑
a=1

(
n/2i

a

)2

exp

{
−C1a(n/2i − a)γ2

σ2

}
.
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Working with just the inner summation, we break into two segments and get:

n/2i+1∑
a=1

exp

{
C2a log n/2i − C1a(n/2i − a)γ2

σ2

}

+

n/2i−1∑
a=n/2i+1

exp

{
C3(n/2i − a) log n/2i − C1a(n/2i − a)γ2

σ2

}

≤ max
1≤a≤n/2i+1

exp

{
C ′2a

(
log((n/2i)2)− C ′1n/2

iγ2

σ2

)}
+ max

n/2i+1≤a≤n/2i
exp

{
C ′3(n/2i − a)

(
log((n/2i)2)− C ′1n/2

iγ2

σ2

)}
.

Pushing the 2i term into the exponent, we see that if:

γ2

σ2
≥ log(n2/2i)

C ′1n/2
i

+
log(log2 n)/δ

C ′1n/2
i

.

Each term is smaller than C δ
log2 n

. Since there are at most log2 n terms in the hierarchy, and
consequently at most that many terms in the sum, we see that the probability of failure is upper
bounded by δ. Of course to recover clusters of size m, we just need to work for all i such that
n/2i ≥ m. Substituting this into the bound shows that it is sufficient for:

γ

σ
≥
√
C1 log(nm)

m
+
C2 log log2 n/δ

m
.

The k-way combinatorial algorithm and analysis are similar in spirit to the hierarchical ones.
The algorithm will find a set of m , n/k objects that maximizes the difference between within-
cluster and between cluster similarity:

Î = argmaxI⊂[n],|I|=mS(W, I) = argmaxI⊂[n],|I|=m

∑
i,j∈I

Wij +
∑
i,j /∈I

Wij−
∑

i∈I,j /∈I

Wij−
∑

i/∈I,j∈I

Wij

and we would like to show that Î = C for some cluster C ∈ C? the true clustering. As before it is
convenient to analyze the difference between a candidate solution Î and the true solution:

ζÎ = min
C∈C?

S(W,C)− S(W, Î).

If ζÎ > 0 for all Î /∈ C? then we know that the algorithm will certainly pick out one of the true
clusters. If we remove those points and repeatedly apply of the algorithm, we will be able to
identify all of the clusters.

We need to compute the mean and variance of ζÎ . If Î has si elements from each cluster and i? is
the index of the “closest” cluster to Î , then E[ζÎ ] = csγ and Var(ζÎ) = csσ

2 where:

cs =

(
k∑
i=1

4(m− si)si +
∑
i 6=i?

∑
j 6=i,i?

2sisj

)
.
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s2x(m-m2)

Figure 4.9: Understanding the combinatorial k-way algorithm union bound

See Figure 4.9 for a heuristic explanation of this bound.

We can now proceed to union bound:

Perror ≤
k∑

i?=1

m−1∑
si?=1

∑
s¬i? |

∑
i 6=i? si=m−s?i

(
k∏
i=1

(
m

si

))
P[ζs ≤ 0].

We upper bound the number of ζs terms in the following way: First identify a cluster i? with
which to compare (this is the cluster with maximal similarity to Î , but we will ignore this con-
straint). Then select the overlap between Ci? and Î , which is certainly no less than 1 but also
cannot be more than m − 1. Then select the remaining elements of Î , ensuring that |Î| = m.
We do this by first assigning the si for i 6= i? and then counting the number of ways to select the
elements. We now apply Gaussian tail bounds, and approximate binomial coefficients:

≤
k∑

i?=1

m−1∑
si?=1

(
m

si?

)(
m− si? + k − 2

m− si?

)
max

s¬i? |
∑
i 6=i? si=m−s?i

exp

{
−csγ2

σ2
+ (
∑
i 6=i?

si) logm

}

≤
k∑

i?=1

m−1∑
si?=1

(
m

si?

)
max

s¬i? |
∑
i6=i? si=m−s?i

exp

{
−csγ2

σ2
+ (
∑
i 6=i?

si)(logm+ log(m− si? + k − 2))

}
.

Now we break the second sum into two parts, where si? ≤ m/2 and si? > m/2. In the first case
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the whole expression is bounded by:

≤ km

2
max

s1,...,sk|
∑
i si=m

exp

{
−csγ2

σ2
+ 2(

k∑
i=1

si)(log(n+ k))

}

≤ km

2
exp

{
k∑
i=1

si

(
−2mγ2

σ2
+ 2 log(n+ k)

)}

≤ km

2
exp

{
m

(
−2mγ2

σ2
+ 2 log(n+ k)

)}
.

Here to arrive at the second line, we substituted in for cs and noticed that (m− si) ≥ m/2 for all
i here. This expression is smaller than δ/2 when:

γ

σ
≥
√

log(n+ k)

m
+

log(km/4δ)

m2
.

For the second case, the whole expression is bounded by:

≤ k
m−1∑

si?=m/2

max
s¬i? |

∑
i 6=i? si=m−si

exp

{
−csγ2

σ2
+ (m− si?) logm+

∑
i 6=i?

si (2 log(n+ k))

}

≤ k
m−1∑

si?=m/2

exp

{
(m− si?)

(
−2mγ2

σ2
+ logm

)
+
∑
i 6=i?

si

(
−2mγ2

σ2
+ 2 log(n+ k)

)}

≤ k
m−1∑

si?=m/2

exp

{
2(m− si?)

(
−2mγ2

σ2
+ 2 log(n+ k)

)}
.

In the second line we introduced cs noting that si? ≥ m/2 and (m− si) ≥ m/2 for i 6= i?. Now
if the term in the exponential is negative, it is maximized when si? = m − 1 in this case we
have:

≤ km

2
exp

{
2

(
−2mγ2

σ2
+ 2 log(n+ k)

)}
.

To make this smaller than δ/2 we require:

γ

σ
≥
√

log(n+ k)

m
+

log(km/4δ)

2m
.

With both of these bounds, the total probability is smaller than δ. When m = n/k the bound on
γ/σ is met when:

σ = o

(
γ

√
n

k log(n/δ)

)
.
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4.11.3 McSherry’s Algorithm

We obtain Theorem 4.5.4 via a slightly modified version of Theorem 12 of McSherry [138].
Theorem 4.11.2. With probability at least 1− δ, we have for all u:

||Au − Ŵu||2 ≤ γ1 + γ2

where
γ1 ≤ C1σ

√
nk/s, γ2 ≤ C2σ

√
k log(n/δ)

where s is a lower bound on the cluster size.

First we consider the implications of the theorem and then present its proof. When we have gap
γ, for any two points u, v in different clusters we have:

||Au − Av||2 ≥
√

2sγ.

In particular, if: √
2sγ ≥ 4C1σ

√
nk/s+ 4C2σ

√
k log(n/δ)

then the algorithm succeeds in recovering the clusters, since it is straightforward to see that
every column in Ŵ is closer to every other column in its own cluster than any column in any
other cluster. Taking s = Θ(n/k) we get that if:

γ ≥ C1
σk
√
nk

n
+ C2σk

√
log(n/δ)

n

for slightly modified constants, we succeed in recovering the clusters. This establishes Theo-
rem 4.5.4

Proof of Lemma 4.11.2. The proof will show for any u,

||PW1W2u − A2u||2 ≤ γ1 and ||PW1(A2u −W2u)||2 ≤ γ2

where the subscript u denotes the uth column of the matrix. Combining, these two with the
identical proof for the other partition, and using triangle inequality we will arrive at the final
theorem. Consider,

||(I−PW1)A2||2 = ||(I−PW1)A1||2 = ||(I−PW1)W1−(I−PW1)(W1−A1)||2 ≤ 2||W1−A1||2.

The first equality follows because by our exact bisection assumption A1 and A2 can be taken to
be identical. The inequality follows from two observations.

||(I − PW1)W1||2 = ||W1 − PW1W1||2 ≤ ||W1 − A1||2,

which holds since the left side of the inequality is the k+1th eigenvalue ofW1 andA1 is a rank-k
matrix. The second observation is that

||(I − PW1)(W1 − A1)||2 ≤ ||I − PW1 ||2||W1 − A1||2 ≤ ||W1 − A1||2
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since PW1 is a projection matrix all of its eigenvalues are positive and bounded by 1.

Now, note that (I − PW1)A2 is of rank at most 2k and for any column u there are at least s/2
identical columns in (I − PW1)A2. From this we get that for any u,

||A2u − PW1A2u|| ≤
||(I − PW1)A2||F√

s/2
≤ 4

√
k

s
||W1 − A1||2 ≤ C1σ

√
nk

s
≡ γ1

with probability at least δ/2 using the operator norm bound on W1 − A1. Now,

||PW1(A2u −W2u)||2 =

√√√√ k∑
j=1

((A2u −W2u)TPW1j)
2.

Noting that PW1j is a unit vector independent of (A2u − W2u), each term in this sum is sub-
Gaussian with scale factor at most σ. To make a guarantee for any u we will also combine this
with a union bound.

From this, a calculation shows that with probability at least 1− δ we have,

||PW1(A2u −W2u)||2 ≤
√
kt

where t = C2σ
√

log(n/δ). This is just γ2.
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Chapter 5

Minimax Localization of Bi-Clusters in
Large Noisy Matrices

In this chapter we consider the problem of identifying a sparse set of relevant columns and
rows in a large data matrix with highly corrupted entries. This problem of identifying groups
from a collection of bipartite variables such as proteins and drugs, biological species and gene
sequences, malware and signatures, etc is commonly referred to as biclustering or co-clustering.
Despite its great practical relevance, and although several ad-hoc methods are available for bi-
clustering, theoretical analysis of the problem is largely non-existent.

We consider bi-clustering in a framework that is also closely related to structured multiple hy-
pothesis testing [2, 11, 12], an area of statistics that has recently witnessed a flurry of activ-
ity.

In this chapter we make the following contributions

1. We prove lower bounds on the minimum signal strength needed for successful recovery of
a bi-cluster as a function of the noise variance, size of the matrix and bi-cluster of interest.

2. We show that a combinatorial procedure based on the scan statistic achieves this optimal
limit.

3. We characterize the SNR required by several computationally tractable procedures for bi-
clustering including element-wise thresholding, column/row average thresholding and a
convex relaxation approach to sparse singular vector decomposition.

5.1 Introduction

Bi-clustering is the problem of identifying a (typically) sparse set of relevant columns and rows
in a large, noisy data matrix. This problem along with the first algorithm to solve it were pro-
posed by Hartigan [89] as a way to directly cluster data matrices to produce clusters with greater
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interpretability. Bi-clustering routinely arises in several applications such as discovering groups
of proteins and drugs that interact with each other [131], learning phylogenetic relationships
between different species based on alignments of snippets of their gene sequences [201], iden-
tifying malware that have similar signatures [25] and identifying groups of users with similar
tastes for commercial products [194]. In these applications, the data matrix is often indexed by
(object, feature) pairs and the goal is to identify clusters in this set of bipartite variables.

In standard clustering problems, the goal is only to identify meaningful groups of objects and
the methods typically use the entire feature vector to define a notion of similarity between the
objects. Bi-clustering can be thought of as high-dimensional clustering where only a subset of
the features are relevant for identifying similar objects, and the goal is to identify not only groups
of objects that are similar, but also which features are relevant to the clustering task. Consider, for
instance gene expression data where the objects correspond to genes, and the features correspond
to their expression levels under a variety of experimental conditions. Our present understanding
of biological systems leads us to expect that subsets of genes will be co-expressed only under a
small number of experimental conditions. Although, pairs of genes are not expected to be similar
under all experimental conditions it is critical to be able to discover local expression patterns,
which can for instance correspond to joint participation in a particular biological pathway or
process. Thus, while clustering aims to identify global structure in the data, bi-clustering take a
more local approach by jointly clustering both objects and features.

Prevalent techniques for finding biclusters are typically heuristic procedures with little or no
theoretical underpinning. In order to study, understand and compare bi-clustering algorithms
we consider a simple theoretical model of bi-clustering [122, 123, 182]. This model is akin
to the spiked covariance model of Johnstone [102] widely used in the study of PCA in high-
dimensions.

We will focus on the following simple observation model for the matrix A ∈ Rn1×n2:

A = βuv′ + ∆ (5.1)

where ∆ = {∆ij}i∈[n1],j∈[n2] is a random matrix whose entries are i.i.d. N (0, σ2) with σ2 > 0
known, u = {ui : i ∈ [n1]} and v = {vi : i ∈ [n2]} are unknown deterministic unit vectors in
Rn1 and Rn2 , respectively, and β > 0 is a constant. To simplify the presentation, we assume
that u ∝ {0, 1}n1 and v ∝ {0, 1}n2 . Let K1 = {i : ui 6= 0} and K2 = {i : vi 6= 0} be the
sets indexing the non-zero components of the vectors u and v, respectively. We assume that u
and v are sparse, that is, k1 := |K1| � n1 and k2 := |K2| � n2. While the sets (K1, K2) are
unknown, we assume that their cardinalities are known. Notice that the magnitude of the signal
for all the coordinates in the bicluster K1 ×K2 is β√

k1k2
. The parameter β measures the strength

of the signal, and is the key quantity we will be studying.

We focus on the case of a single bicluster that appears as an elevated sub-matrix of size k1 × k2

with signal strength β embedded in a large n1×n2 data matrix with entries corrupted by additive
Gaussian noise with variance σ2. Under this model, the bi-clustering problem is formulated as
the problem of estimating the sets K1 and K2, based on a single noisy observation A of the
unknown signal matrix βuv′. Bi-clustering is most subtle when the matrix is large with several
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irrelevant variables, the entries are highly noisy, and the bicluster is small as defined by a sparse
set of rows/columns. We provide a sharp characterization of tuples of (β, n1, n2, k1, k2, σ

2) under
which it is possible to recover the bicluster and study several common methods and establish the
regimes under which they succeed.

We establish minimax lower and upper bounds for the following class of models. Let

Θ(β0, k1, k2) := {(β,K1, K2) : β ≥ β0, |K1| = k1, K1 ⊂ [n1], |K2| = k2, K2 ⊂ [n2]} (5.2)

be a set of parameters. For a parameter θ ∈ Θ, let Pθ denote the joint distribution of the entries
of A = {aij}i∈[n1],j∈[n2], whose density with respect to the Lebesgue measure is∏

ij

N (aij; β(k1k2)−1/2 1I{i ∈ K1, j ∈ K2}, σ2), (5.3)

where the notation N (z;µ, σ2) denotes the distribution p(z) ∼ N (µ, σ2) of a Gaussian random
variable with mean µ and variance σ2, and 1I denotes the indicator function.

We derive a lower bound that identifies tuples of (β, n1, n2, k1, k2, σ
2) under which we can re-

cover the true bi-clustering from a noisy high dimensional matrix. We show that a combinatorial
procedure based on the scan statistic achieves the minimax optimal limits, however it is im-
practical as it requires enumerating all possible sub-matrices of a given size in a large matrix.
We analyze the scalings (i.e. the relation between β and (n1, n2, k1, k2, σ

2)) under which some
computationally tractable procedures for bi-clustering including element-wise thresholding, col-
umn/row average thresholding and sparse singular vector decomposition (SSVD) succeed with
high probability.

We consider the detection of both small and large biclusters of weak activation, and show that at
the minimax scaling the problem is surprisingly subtle (e.g., even detecting big clusters is quite
hard).

In Table 5.1, we describe our main findings and compare the scalings under which the various
algorithms succeed.

Algorithm Combinatorial Thresholding Row/Column Averaging Sparse SVD
SNR scaling Minimax Weak Intermediate Weak
Bicluster size Any Any (n

1/2+α
1 × n1/2+α

2 ), α ∈ (0, 1/2) Any
Theorem 5.3.1 Theorem 5.4.1 Theorem 5.4.2 Theorem 5.4.3

Table 5.1: Bi-clustering

Where the scalings are,

1. Minimax: β ∼ σmax
(√

k1 log(n1 − k1),
√
k2 log(n2 − k2)

)
.

2. Weak: β ∼ σmax
(√

k1k2 log(n1 − k1),
√
k1k2 log(n2 − k2)

)
.
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3. Intermediate (for large clusters): β ∼ σmax

(√
k1k2 log(n1−k1)

nα2
,

√
k1k2 log(n2−k2)

nα1

)
.

Element-wise thresholding does not take advantage of any structure in the data matrix and hence
does not achieve the minimax scaling for any bicluster size. If the clusters are big enough
row/column averaging performs better than element-wise thresholding since it can take advan-
tage of structure. We also study a convex relaxation for sparse SVD, based on the DSPCA
algorithm proposed by d’Aspremont et al. [55] that encourages the singular vectors of the matrix
to be supported over a sparse set of variables. However, despite the increasing popularity of this
method, we show that it is only guaranteed to yield a sparse set of singular vectors when the
SNR is quite high, equivalent to element-wise thresholding, and fails for stronger scalings of the
SNR.

5.1.1 Related work

Due to its practical importance and difficulty bi-clustering has attracted considerable attention
(for some recent surveys see the papers [36, 134, 150, 184]). Broadly algorithms for bi-clustering
can be categorized as either score-based searches, or spectral algorithms. Many of the proposed
algorithms for identifying relevant clusters are based on heuristic searches whose goal is to iden-
tify large average sub-matrices or sub-matrices that are well fit by a two-way ANOVA model.Sun
and Nobel [182] provide some statistical backing for these exhaustive search procedures. In par-
ticular, they show how to construct a test via exhaustive search to distinguish when there is a
small sub-matrix of weak activation from the “null” case when there is no bicluster.

The premise behind the spectral algorithms is that if there was a sub-matrix embedded in a large
matrix, then this sub-matrix could be identified from the left and right singular vectors of A.
In the case when exactly one of u and v is random, the model Eq. 5.1 can be related to the
spiked covariance model of Johnstone [102]. In the case when v is random, the matrix A has
independent columns and dependent rows. Therefore, A′A is a spiked covariance matrix and it
is possible to use the existing theoretical results on the first eigenvalue to characterize the left
singular vector of A. A lot of recent work has dealt with estimation of sparse eigenvectors of
A′A, see for example the papers [6, 103, 169, 204, 212]. For bi-clustering applications, the
assumption that exactly one u or v is random, is not justifiable, therefore, theoretical results for
the spiked covariance model do not translate directly. Singular vectors of the model Eq. 5.1 have
been analyzed by Onatski [148], improving on earlier results of Bai [15]. These results however
are asymptotic and do not consider the case when u and v are sparse.

Our setup for the bi-clustering problem also falls in the framework of structured normal means
multiple hypothesis testing problems, where for each entry in the matrix the hypotheses are that
the entry has mean 0 versus an elevated mean. The presence of a bicluster (sub-matrix) however
imposes structure on which elements are elevated concurrently. Recently, several papers have in-
vestigated the structured normal means setting for ordered domains. For example, Arias-Castro
et al. [13] consider the detection of elevated intervals and other parametric structures along an
ordered line or grid, Arias-Castro et al. [12] consider detection of elevated connected paths in
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tree and lattice topologies, Arias-Castro et al. [11] consider nonparametric cluster structures in a
regular grid. In addition, Addario-Berry et al. [2] consider testing of different elevated structures
in a general but known graph topology. Our setup for the bi-clustering problem requires identifi-
cation of an elevated submatrix in an unordered matrix. At a high level, all these results suggest
that it is possible to leverage the structure to improve the SNR threshold at which the hypothesis
testing problem is feasible. However, computationally efficient procedures that achieve the min-
imax SNR thresholds are only known for a few of these problems. Our results for bi-clustering
have a similar flavor, in that the minimax threshold requires a combinatorial procedure whereas
the computationally efficient procedures we investigate are often sub-optimal.

The rest of this chapter is organized as follows. In Section 5.2, we provide a lower bound on the
minimum signal strength needed for successfully identifying the bicluster. Section 5.3 presents
a combinatorial procedure which achieves the lower bound and hence is minimax optimal. We
investigate some computationally efficient procedures in Section 5.4. Simulation results are pre-
sented in Section 5.5 and we conclude in Section 5.6. All proofs are deferred to Section 5.7.

5.2 Lower bound

In this section, we derive a lower bound for the problem of identifying the correct bicluster, in-
dexed byK1 andK2, in model Eq. 5.1. In particular, we derive conditions on (β, n1, n2, k1, k2, σ

2)
under which any method is going to make an error when estimating the correct cluster. Intuitively,
if either the signal-to-noise ratio β/σ or the cluster size is small, the minimum signal strength
needed will be high since it is harder to distinguish the bicluster from the noise.
Theorem 5.2.1. Let α ∈ (0, 1

8
) and

βmin = βmin(n1, n2, k1, k2, σ)

= σ
√
αmax

√k1 log(n1 − k1),
√
k2 log(n2 − k2),

√
k1k2 log(n1 − k1)(n2 − k1)

k1 + k2 − 1

 .

(5.4)
Then for all β0 ≤ βmin,

inf
Φ

sup
θ∈Θ(β0,k1,k2)

Pθ[Φ(A) 6= (K1(θ), K2(θ))] ≥
√
M

1 +
√
M

(
1− 2α− 2α

logM

)
n1,n2→∞−−−−−→ 1− 2α,

(5.5)
where M = min(n1 − k1, n2 − k2), Θ(β0, k1, k2) is given in Eq. 5.2 and the infimum is over all
measurable maps Φ : Rn1×n2 7→ 2[n1] × 2[n2].

The result can be interpreted in the following way: for any biclustering procedure Φ, if β0 ≤
βmin, then there exists some element in the model class Θ(β0, k1, k2) such that the probability of
incorrectly identifying the sets K1 and K2 is bounded away from zero.

The proof is based on a standard technique described in Chapter 2.6 of the book [192]. We
start by identifying a subset of parameter tuples that are hard to distinguish. Once a suitable
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finite set is identified, tools for establishing lower bounds on the error in multiple-hypothesis
testing can be directly applied. These tools only require computing the Kullback-Leibler (KL)
divergence between two distributions Pθ1 and Pθ2 , which in the case of model Eq. 5.1 are two
multivariate normal distributions. These constructions and calculations are described in detail in
the Section 5.7.

5.3 Minimax optimal combinatorial procedure

We now investigate a combinatorial procedure achieving the lower bound of Theorem 5.2.1,
in the sense that, for any θ ∈ Θ(βmin, k1, k2), the probability of recovering the true bicluster
(K1, K2) tends to one as n1 and n2 grow unbounded. This scan procedure consists in enumerat-
ing all possible pairs of subsets of the row and column indexes of size k1 and k2, respectively, and
choosing the one whose corresponding submatrix has the largest overall sum. In detail, for an
observed matrix A and two candidate subsets K̃1 ⊂ [n1] and K̃2 ⊂ [n2], we define the associated
score S(K̃1, K̃2) :=

∑
i∈K̃1

∑
j∈K̃2

aij . The estimated bicluster is the pair of subsets of sizes k1

and k2 achieving the highest score:

Ψ(A) := argmax
(K̃1,K̃2)

S(K̃1, K̃2) subject to |K̃1| = k1, |K̃2| = k2. (5.6)

The following theorem determines the signal strength β needed for the decoder Ψ to find the true
bicluster.
Theorem 5.3.1. Let A ∼ Pθ with θ ∈ Θ(β, k1, k2) and assume that k1 ≤ n1/2 and k2 ≤ n2/2.
If

β ≥ 4σmax

√k1 log(n1 − k1),
√
k2 log(n2 − k2),

√
2k1k2 log(n1 − k1)(n2 − k2)

k1 + k2

 (5.7)

then P[Ψ(A) 6= (K1, K2)] ≤ 2[(n1 − k1)−1 + (n2 − k2)−1] where Ψ is the decoder defined in
Eq. 5.6.

Comparing to the lower bound in Theorem 5.2.1, we observe that the combinatorial procedure
using the decoder Ψ that looks for all possible clusters and chooses the one with largest score
achieves the lower bound up to constants. Unfortunately, this procedure is not practical for data
sets commonly encountered in practice, as it requires enumerating all

(
n1

k1

)(
n2

k2

)
possible sub-

matrices of size k1 × k2. The combinatorial procedure requires the signal to be positive, but not
necessarily constant throughout the bicluster. In fact it is easy to see that provided the average
signal in the bicluster is larger than that stipulated by the theorem this procedure succeeds with
high probability irrespective of how the signal is distributed across the bicluster. Finally, we
remark that the estimation of the cluster is done under the assumption that k1 and k2 are known.
Establishing minimax lower bounds and a procedure that adapts to unknown k1 and k2 is an open
problem.
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5.4 Computationally efficient biclustering procedures

In this section we investigate the performance of various procedures for biclustering, that, unlike
the optimal scan statistic procedure studied in the previous section, are computationally tractable.
For each of these procedures however, computational ease comes at the cost of suboptimal per-
formance: recovery of the true bicluster is only possible if the β is much larger than the minimax
signal strength of Theorem 5.2.1.

5.4.1 Element-wise thresholding

The simplest procedure that we analyze is based on element-wise thresholding. The bicluster is
estimated as

Ψthr(A, τ) := {(i, j) ∈ [n1]× [n2] : |aij| ≥ τ} (5.8)

where τ > 0 is a parameter. The following theorem characterizes the signal strength β required
for the element-wise thresholding to succeed in recovering the bicluster.
Theorem 5.4.1. Let A ∼ Pθ with θ ∈ Θ(β, k1, k2) and fix δ > 0. Set the threshold τ as

τ = σ

√
2 log

(n1 − k1)(n2 − k2) + k1(n2 − k2) + k2(n1 − k1)

δ
.

If

β ≥
√
k1k2σ

(√
2 log

k1k2

δ
+

√
2 log

(n1 − k1)(n2 − k2) + k1(n2 − k2) + k2(n1 − k1)

δ

)

then P[Ψthr(A, τ) 6= K1 ×K2] = o(δ/(k1k2)).

Comparing Theorem 5.4.1 with the lower bound in Theorem 5.2.1, we observe that the signal
strength β needs to be O(max(

√
k1,
√
k2)) larger than the lower bound. This is not surprising,

since the element-wise thresholding is not exploiting the structure of the problem, but is assuming
that the large elements of the matrix A are positioned randomly. From the proof it is not hard to
see that this upper bound is tight up to constants, i.e. if

β ≤ c
√
k1k2σ

(√
2 log

k1k2

δ
+

√
2 log

(n1 − k1)(n2 − k2) + k1(n2 − k2) + k2(n1 − k1)

δ

)

for a small enough constant c then thresholding will no longer recover the bi-cluster with prob-
ability at least 1 − δ. It is also worth noting that thresholding neither requires the signal in the
bi-cluster to be constant nor positive provided it is larger in magnitude, at every entry, than the
threshold specified in the theorem.
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5.4.2 Row/Column averaging

Next, we analyze another a procedure based on column and row averaging. When the bicluster
is large this procedure exploits the structure of the problem and outperforms the simple element-
wise thresholding and the sparse SVD, which is discussed in the following section. The averaging
procedure works only well if the bicluster is “large”, as specified below, since otherwise the row
or column average is dominated by the noise.

More precisely, the averaging procedure computes the average of each row and column of A
and outputs the k1 rows and k2 columns with the largest average. Let {rr,i}i∈[n1] and {rc,j}j∈[n2]

denote the positions of rows and columns when they are ordered according to row and column
averages in descending order. The bicluster is estimated then as

Ψavg(A) := {i ∈ [n1] : rr,i ≤ k1} × {j ∈ [n2] : rc,j ≤ k2}. (5.9)

The following theorem characterizes the signal strength β required for the averaging procedure
to succeed in recovering the bicluster.
Theorem 5.4.2. Let A ∼ Pθ with θ ∈ Θ(β, k1, k2). If k1 = Ω(n

1/2+α
1 ) and k2 = Ω(n

1/2+α
2 ),

where α ∈ (0, 1/2) is a constant and,

β ≥ 4σmax

(√
k1k2 log(n1 − k1)

nα2
,

√
k1k2 log(n2 − k2)

nα1

)

then P[Ψ(A) 6= (K1, K2)] ≤ [n−1
1 + n−1

2 ].

Comparing to Theorem 5.4.1, we observe that the averaging requires lower signal strength
than the element-wise thresholding when the bicluster is large, that is, k1 = Ω(

√
n1) and

k2 = Ω(
√
n2). Unless both k1 = O(n1) and k2 = O(n2), the procedure does not achieve

the lower bound of Theorem 5.2.1, however, the procedure is simple and computationally effi-
cient. It is also not hard to show that this theorem is sharp in its characterization of the averaging
procedure. Further, unlike thresholding, averaging requires the signal to be positive in the biclus-
ter.

It is interesting to note that a large bicluster can also be identified without assuming the normality
of the noise matrix ∆. This non-parametric extension is based on a simple sign-test, and the
details are provided in Section 5.7.

5.4.3 Sparse singular value decomposition (SSVD)

An alternate way to estimate K1 and K2 would be based on the singular value decomposition
(SVD), i.e. finding ũ and ṽ that maximize 〈ũ,Aṽ〉, and then threshold the elements of ũ and
ṽ. Unfortunately, such a method would perform poorly when the signal β is weak and the
dimensionality is high, since, due to the accumulation of noise, ũ and ṽ are poor estimates of u
and v and and do not exploit the fact that u and v are sparse.
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In fact, it is now well understood (see for example the paper of Benaych-Georges and Rao
Nadakuditi [26]) that SVD is strongly inconsistent when the signal strength is weak, i.e. ∠(ũ,u)→
π/2 (and similarly for v) almost surely. See the paper of Sun and Nobel [182] for a clear expo-
sition and discussion of this inconsistency in the SVD setting.

To properly exploit the sparsity in the singular vectors, it seems natural to impose a cardinality
constraint to obtain a sparse singular vector decomposition (SSVD):

max
u∈Sn1−1,v∈Sn2−1

〈u,Av〉 subject to ||u||0 ≤ k1, ||v||0 ≤ k2,

which can be further rewritten as

max
Z∈Rn2×n1

tr AZ subject to Z = vu′, ||u||2 = 1, ||v||2 = 1, ||u||0 ≤ k1, ||v||0 ≤ k2. (5.10)

The above problem is non-convex and computationally intractable.

Inspired by the convex relaxation methods for sparse principal component analysis proposed by
d’Aspremont et al. [55], we consider the following relaxation the SSVD:

max
X∈R(n1+n2)×(n1+n2)

tr AX21 − λ1′|X21|1 subject to X � 0, tr X11 = 1, tr X22 = 1, (5.11)

where X is the block matrix [
X11 X12

X21 X22

]
with the block X21 corresponding to Z in Eq. 5.10. If the optimal solution X̂ is of rank 1, then,
necessarily, X̂ =

(
û
v̂

)
(û′ v̂′). Based on the sparse singular vectors û and v̂, we estimate the

bicluster as

K̂1 = {j ∈ [n1] : ûj 6= 0} and K̂2 = {j ∈ [n2] : v̂j 6= 0}. (5.12)

The user defined parameter λ controls the sparsity of the solution X̂21, and, therefore, provided
the solution is of rank one, it also controls the sparsity of the vectors û and v̂ and of the estimated
bicluster.

The following theorem provides sufficient conditions for the solution X̂ to be rank one and to
recover the bicluster.
Theorem 5.4.3. Consider the model in Eq. 5.1. Assume k1 � k2 and k1 ≤ n1/2 and k2 ≤ n2/2.
If

β ≥ 2σ
√
k1k2 log(n1 − k1)(n2 − k2) (5.13)

then the solution X̂ of the optimization problem in Eq. 5.11 with λ = β
2
√
k1k2

is of rank 1 with

probability 1 − O(k−1
1 ). Furthermore, we have that (K̂1, K̂2) = (K1, K2) with probability

1−O(k−1
1 ).

It is worth noting that SSVD correctly recovers signed vectors û and v̂ under this signal strength.
In particular, the procedure works even if the u and v in Equation 5.1 are signed.

The following theorem establishes necessary conditions for the SSVD to have a rank 1 solution
that correctly identifies the bicluster.
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Theorem 5.4.4. Consider the model in Eq. 5.1. Fix c ∈ (0, 1/2). Assume that k1 � k2 and
k1 = o(n1/2−c) and k2 = o(n

1/2−c
2 ). If

β ≤ 2σ
√
ck1k2 log max(n1 − k1, n2 − k2), (5.14)

with λ = β
2
√
k1k2

then the optimization problem Eq. 5.11 does not have a rank 1 solution that
correctly recovers the sparsity pattern with probability at least 1−O(exp(−(

√
k1 +

√
k2)2) for

sufficiently large n1 and n2.

From Theorem 5.4.4 observe that the sufficient conditions of Theorem 5.4.3 are sharp. In par-
ticular, the two theorems establish that the SSVD does not establish the lower bound given in
Theorem 5.2.1. The signal strength needs to be of the same order as for the element-wise thresh-
olding, which is somewhat surprising since from the formulation of the SSVD optimization
problem it seems that the procedure uses the structure of the problem. From numerical simula-
tions in Section 5.5 we observe that although SSVD requires the same scaling as thresholding, it
consistently performs slightly better at a fixed signal strength.

5.5 Simulation results

We test the performance of the three computationally efficient procedures on synthetic data:
thresholding, averaging and sparse SVD. For sparse SVD we use an implementation posted
online by d’Aspremont et al. [55]. We generate data from Eq. 5.1 with n = n1 = n2, k =
k1 = k2, σ2 = 1 and u = v ∝ (1′k,0

′
n−k)

′. For each algorithm we plot the Hamming fraction
(i.e. the Hamming distance between sû and su rescaled to be between 0 and 1) against the
rescaled sample size. In each case we average the results over 50 runs.

For thresholding and sparse SVD the rescaled scaling (x-axis) is β

k
√

log(n−k)
and for averaging

the rescaled scaling (x-axis) is βnα

k
√

log(n−k)
. We observe that there is a sharp threshold between

success and failure of the algorithms, and the curves show good agreement with our theory.

The vertical line shows the point after which successful recovery happens for all values of n.
We can make a direct comparison between thresholding and sparse SVD (since the curves are
identically rescaled) to see that at least empirically sparse SVD succeeds at a smaller scaling
constant than thresholding even though their asymptotic rates are identical.
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Figure 5.1: Thresholding: Hamming fraction versus rescaled signal strength.
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Figure 5.2: Averaging: Hamming fraction versus rescaled signal strength.
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Figure 5.3: Sparse SVD: Hamming fraction versus rescaled signal strength.

5.6 Discussion

In this chapter, we analyze bi-clustering using a simple statistical model Eq. 5.1, where a sparse
rank one matrix is perturbed with noise. Using this model, we have characterized the minimal
signal strength below which no procedure can succeed in recovering the bi-cluster. This lower
bound can be matched using an exhaustive search technique. However, it is still an open problem
to find a computationally efficient procedure that is minimax optimal.

Amini and Wainwright [6] analyze the convex relaxation procedure proposed in d’Aspremont
et al. [55] for high-dimensional sparse PCA. Under the minimax scaling for this problem they
show that provided a rank-1 solution exists it has the desired sparsity pattern (they were however
not able to show that a rank-1 solution exists with high probability). Somewhat surprisingly, we
show that in the SVD case a rank-1 solution with the desired sparsity pattern does not exist with
high probability. The two settings however are not identical since the noise in the spiked covari-
ance model is Wishart rather than Gaussian, and has correlated entries. It would be interesting to
analyze whether our negative result has similar implications for the sparse PCA setting.

The focus of this chapter has been on a model with one cluster, which although simple, provides
several interesting theoretical insights. In practice, data often contains multiple clusters which
need to be estimated. Many existing algorithms (see e.g. the papers [122] and [123]) try to
estimate multiple clusters and it would be useful to analyze these theoretically.
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5.7 Technical proofs

This section collects proofs of the main results stated in Sections 5.2, 5.3 and 5.4, as well as
some additional results.

5.7.1 Proof of Theorem 5.2.1

We use a standard technique based on multiple hypothesis testing to obtain a lower bound on
the minimal signal strength (see Section 2.6. in the book [192]). Without loss of generality, we
assume σ = 1. Set K1 = [k1] and K2 = [k2], and let τ0 = β(k1k2)−1/2, so that the joint density
of A is ∏

ij

N (aij; τ0 1I{i ∈ K1, j ∈ K2}, 1).

To lower bound the probability of error, we use the following relationship

inf
Ψ

sup
θ∈Θ

Pθ(Ψ(A) 6= (K1(θ), K2(θ))) ≥ inf
Ψ

max
θ∈{θ0,...,θM}

Pθ(Ψ(A) 6= (K1(θ), K2(θ)))

where {θ0, θ1, . . . , θM} is a carefully chosen subset of Θ. Specifically, we select θ0 = (β,K1, K2)
and we choose the remaining points {θ1, . . . , θM}, with M = n2 − k2, so that

θj−k2 = (β,K1, K
(j)
2 ), j = k2 + 1, . . . , n2,

where K(j)
2 := [k2− 1]∪ {j}. For a θ ∈ Θ, below we denote with (K1(θ), K2(θ)) the associated

bi-cluster.

Let φ(u) denote the density function ofN (0, 1) with respect to the Lebesgue measure. With this,
we can compute the Kullback-Leibler divergence between Pθ0 and Pθj :

D(Pθ0|Pθj) =

∫
log

dPθ0
dPθj

dPθ0

=
∑
i∈K1

∫
log

φ(uik2 − τ0)

φ(uik2)
φ(uik2 − τ0)duik2

+
∑
i∈K1

∫
log

φ(uij)

φ(uij − τ0)
φ(uij)duij

=
∑
i∈K1

∫
(uik2τ0 −

τ 2
0

2
)φ(uik2 − τ0)duik2

+
∑
i∈K1

∫
(
τ 2

0

2
− uijτ0)φ(uij)duij

=
∑
i∈K1

∫
uik2τ0φ(uik2 − τ0)duik2

= k1τ
2
0 .

(5.15)
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Now it follows from Theorem 2.5 in the book [192] that, if

τ0 ≤

√
α log(n2 − k2)

k1

,

then

inf
Ψ

max
θ∈{θ0,...,θM}

Pθ(Ψ(A) 6= (K1(θ), K2(θ))) ≥
√
M

1 +
√
M

(
1− 2α− 2α

logM

)
n1,n2→∞−−−−−→ 1− 2α.

We chose the subset {θ1, . . . , θM} by fixing the set K1 and alternating the last element of the set
K2. Alternatively, we can fix K2 and change the last element of the set K1 or alternate both K1

and K2. Repeating the argument above for these cases, we have that the probability of making
an error is bounded away from zero if

τ0 ≤ max

√α log(n2 − k2)

k1

,

√
α log(n1 − k1)

k2

,

√
α log(n1 − k1)(n2 − k1)

k1 + k2 − 1

 , (5.16)

which completes the proof.

5.7.2 Proof of Theorem 5.3.1

Without loss of generality, we assume that the noise variance σ = 1 and the true unknown sets
K1 = [k1] and K2 = [k2]. Define

F (K̃1, K̃2) :=
∑
i∈K1

∑
j∈K2

Aij −
∑
i∈K̃1

∑
j∈K̃2

Aij (5.17)

and note that an error is made if F (K̃1, K̃2) < 0, so that

P[Ψ(A) 6= (K1, K2)] = P[∪K̃1,K̃2
{F (K̃1, K̃2) < 0}].

Observe that F (K̃1, K̃2) depends only on the amount of overlap between K1×K2 and K̃1× K̃2.
In particular, we have that

F (K̃1, K̃2) = F (d)
d
= N (dβ(k1k2)−1/2, 2dσ2) (5.18)

where d = k1k2 − |K1 ∩ K̃1||K2 ∩ K̃2|. Therefore, using the union bound, we have that

P[Ψ(A) 6= (K1, K2)] ≤
k1∑
i=0

Ci
k1
Ck1−i
n1−k1

k2∑
j=0

Cj
k2
Ck2−j
n2−k2P[F (k1k2 − ij) < 0],

where, for readability, we have adopted the notation Ci
n =

(
n
i

)
.
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Let τ0 = β(k1k2)−1/2. Using Eq. 5.18,

P(Ψ(A) 6= (K1, K2)) ≤
k1∑
i=0

Ci
k1
Ck1−i
n1−k1

k2∑
j=0

Cj
k2
Ck2−j
n2−k2P(F (k1k2 − ij) < 0)

=

k1∑
i=0

k2∑
j=0

pij − pk1k2

with
pij = Ci

k1
Ck1−i
n1−k1C

j
k2
Ck2−j
n2−k2Φ̄(τ0

√
(k1k2 − ij)/2)

and Φ̄(·) is the survival function of N (0, 1). Therefore, P(Ψ(A) 6= (K1, K2)) can be bounded
by

(k1 − 1)(k2 − 1) max
i=0,...,k1−1
j=0,...,k2−1

pij︸ ︷︷ ︸
T1

+ (k1 − 1) max
i=0,...,k1−1

pik2︸ ︷︷ ︸
T2

+ (k2 − 1) max
j=0,...,k2−1

pk1j︸ ︷︷ ︸
T3

.

We’ll show how to handle T1, while T2 and T3 can be handled in an similar way.

T1 = (k1 − 1)(k2 − 1) max
i=0,...,k1−1
j=0,...,k2−1

Ci
k1
Ck1−i
n1−k1C

j
k2
Ck2−j
n2−k2Φ̄(τ0

√
(k1k2 − ij)/2)

≤ (k1 − 1)(k2 − 1) max
i=0,...,k1−1
j=0,...,k2−1

(n1 − k1)2(k1−i)(n2 − k2)2(k2−j)Φ̄(τ0

√
(k1k2 − ij)/2)

≤ max
i=0,...,k1−1
j=0,...,k2−1

(n1 − k1)3(k1−i)(n2 − k2)3(k2−j)Φ̄(τ0

√
(k1k2 − ij)/2)

≤ max
i=0,...,k1−1
j=0,...,k2−1

(n1 − k1)3(k1−i)(n2 − k2)3(k2−j) exp

{
−τ

2
0

4

(
k1k2 −

ik2

2
− jk1

2

)}
.

It is easy to see that the maximum is achieved at i = k1 − 1 and j = k2 − 1, which gives

T1 ≤ (n1 − k1)3(n2 − k2)3 exp

(
−τ

2
0 (k1 + k2)

8

)
.

Using the same reasoning

T2 ≤ (n1 − k1)3 exp

(
−τ

2
0 k2

4

)
and T3 ≤ (n2 − k2)3 exp

(
−τ

2
0 k1

4

)
.

Probability of making an error can be bounded as P(Ψ(A) 6= (K1, K2)) ≤ T1 + T2 + T3, which
concludes the proof.

5.7.3 Proof of Theorem 5.4.1

The proof follows from an applications of the union bound and the tail bound for the standard
normal random variable given in Eq. 5.25. We have that

min
(i,j)∈K1×K2

|aij| ≥ (k1k2)−1/2β − max
(i,j)∈K1×K2

|∆ij| ≥ (k1k2)−1/2β − σ
√

2 log
k1k2

δ
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with probability 1− 2δ1/(
√

4π log(1/δ1)) where δ1 = δ/(k1k2). Similarly,

max
(i,j)6∈K1×K2

|aij| = max
(i,j) 6∈K1×K2

|∆ij| ≤ σ

√
2 log

(n1 − k1)(n2 − k2) + k1(n2 − k2) + k2(n1 − k1)

δ

with probability 1 − 2δ2/
√

4π log(1/δ2) where δ2 = δ/|{(i, j) 6∈ K1 × K2}|. Combining the
last two displays, the theorem follows.

5.7.4 Proof of Theorem 5.4.2

First consider identifying the rows. The sum of the elements of each row without activation is a
draw from N (0, n2σ

2) and there are (n1 − k1) of these, while the sum of the elements of each

row with activation is a draw from N (4σmax
(√

n2 log(n1),
√
n2 log(n2)

(
n2

n1

)α)
, n2σ

2), and
there are k1 of these.

Consider the probability that all the rows without activation have sum strictly less than 2σ
√
n2 log(n1),

and those with activation have sum strictly greater than the same quantity. If this condition is
satisfied then selecting the k1 rows with highest sum produces no errors. It is also easy to see that
to upper bound the probability of error it suffices to show that the probability of error is small if
the activation rows were drawn from N (4σ

√
n2 log(n1), n2σ

2).

The result follows from applying a standard Gaussian tail bound, followed by a union bound,
i.e.

P(X − µ > t) ≤ exp

(
− t2

2σ2

)
therefore, noting the symmetry we can bound

P(error) ≤ n1 exp

(
−4σ2n2 log(n1)

2n2σ2

)
= n1(n1)−2 = δ1.

A similar argument shows that we can bound δ2, the probability of making an error in identifying
the columns. The result follows.

5.7.5 Proof of Theorem 5.4.3

We prove the theorem using a constructive procedure. Our arguments are adapted from the
arguments used in the proof of Theorem 2 in Amini and Wainwright [6]. We construct a rank
one solution X̂ that is a global solution of the problem in Eq. 5.11. Using Theorem 5.7.13, which
states the first order conditions for a global optimum, we have that

−
(

0 A
A′ 0

)
+ λ

(
0 Ŝ

Ŝ′ 0

)
+ (π̂1 − π̂2)In1+n2 = K̂, (5.19)
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where Ŝ ∈ ∂||X̂||1 is an element of the subgradient of the element-wise `1 norm evaluated at
X̂, π̂1 and π̂2 are Lagrange multipliers associated with the constraint tr X̂ = 2, and K̂ is an
element of the normal cone to Sn+ evaluated at X̂. For Ŝ, we have that maxij |Ŝij| ≤ 1 and
tr Ŝ′X12 = 1′|X|1. From Eq. 5.30, we have that K̂ = −Ẑ⊥BẐ⊥ where columns of Ẑ⊥ form
orthonormal basis for the null space of X̂ and B ∈ Sn+. See §5.7.10 for more details.

Suppose that the matrix X̂ is rank one and that the sparsity pattern of X̂12 correctly recovers
K1 and K2. Then we have that ŜK1K2 = sûs′v̂ where sû = sign(ûK1) and sv̂ = sign(v̂K2).
Furthermore, X̂12

K1K2
= ûK1v̂

′
K2

where ûK1 is a left singular vector and v̂K2 is a right singular
vector of AK1K2 − λŜK1K2 associated with the largest singular vector. In fact, the following
Lemma will show that ûK1 and v̂K2 are left and right singular vectors of AK1K2 − λsus′v where
su = sign(uK1) and sv = sign(vK2). That is, sû and sv̂ recover signs of su and sv. Note that
singular vectors are uniquely defined only up to a rotation, therefore, we use a convention that
the first non-zero coordinate of a left singular vector is positive.

Let M = AK1K2 − λ sign(uK1) sign(vK2)
′ and let α = β/2. Since λ = β

2
√
k1k2

, we have that
M = αuK1v

′
K2

+ ∆K1K2 . Let α̂ = σ1(M) be the largest singular value of M.
Lemma 5.7.1. Under the conditions of Theorem 5.4.3, we have that

||ûK1 − uK1||∞ = O

(√
log k1

k1k2 log(n1 − k2)(n2 − k2)

)
and

||v̂K2 − vK2||∞ = O

(√
log k2

k1k2 log(n1 − k2)(n2 − k2)

)
with probability 1−O(k−1

1 ).

Under the assumptions of Theorem 5.4.3 ||ûK1 − uK1||∞ = o(1/
√
k1) and ||v̂K2 − vK2||∞ =

o(1/
√
k2) as n1, n2 →∞, which shows that sû and sv̂ recover signs of su and sv.

Next, we set elements of ŜKC
1 K2

and ŜK1KC
2

such that (û′K1
,0′)′ and (v̂′K2

,0′)′ are singular vec-
tors of A − λŜ. Note that for these two singular vectors the choice of ŜKC

1 K
C
2

is irrelevant. Let
ŜKC

1 K2
= λ−1∆KC

1 K2
and ŜK1KC

2
= λ−1∆K1KC

2
. Using a normal tail bound Eq. 5.25 and the

union bound

||ŜKC
1 K2
||∞ ≤

4σ
√
k1k2 log[(n1 − k1)k2]

β
and ||ŜK1KC

2
||∞ ≤

4σ
√
k1k2 log[(n2 − k2)k1]

β

with probability 1 − O[(n1 − k1)−1k−1
2 ]. Under the assumptions of the theorem we have that

||ŜK1KC
2
||∞ < 1 and ||ŜK1KC

2
||∞ < 1.

Let x̂ = (û′K1
,0′, v̂′K2

,0′)′, so that X̂ = x̂x̂′. We have established so far that x̂ is an eigenvector
of

−
(

0 A
A′ 0

)
+ λ

(
0 Ŝ

Ŝ′ 0

)
.
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Therefore, multiplying Eq. 5.19 by x̂ from right and taking a dot product with x̂ we have that
α̂ = π̂1−π̂2. Finally, we need to set ŜKC

1 K
C
2

such that Eq. 5.19 holds. Set K̂ to the left hand side of
Eq. 5.19, then we need to show that K̂ � 0. By construction of X̂, we have that K̂(K1K2)(K1K2) �
0. Therefore, we only need to show that K̂(KC

1 K
C
2 )(KC

1 K
C
2 ) � K̂(KC

1 K
C
2 )(K1K2)(K̂(K1K2)(K1K2))

†K̂(K1K2)(KC
1 K

C
2 ).

With the current choice of ŜKC
1 K2

and ŜK1KC
2

, we can choose ŜKC
1 K

C
2

= λ−1∆KC
1 K

C
2

to satisfy
Eq. 5.19. From Eq. 5.25 and the union bound

||ŜKC
1 K

C
2
||∞ ≤

4σ
√
k1k2 log[(n1 − k1)(n2 − k2)]

β

with probability 1−O((n1− k1)−1(n1− k1)−1). Under the assumptions of the theorem we have
that ||ŜKC

1 K
C
2
||∞ < 1. This concludes the proof of the theorem.

5.7.6 Proof of Theorem 5.4.4

Without loss of generality assume σ = 1. From the proof of Theorem 5.4.3, it is sufficient to
show that ŜKC

1 K
C
2

cannot be chosen so that K̂(KC
1 K

C
2 )(KC

1 K
C
2 ) � 0. This is equivalent to showing

that

min
||S

KC1 K
C
2
||∞≤1

max
||x||2=1

x′

[(
0 AKC

1 K
C
2

A′
KC

1 K
C
2

0

)
+ λ

(
0 SKC

1 K
C
2

S′
KC

1 K
C
2

0

)]
x > α̂ (5.20)

with probability tending to 1. The left hand side of Eq. 5.20 is lower bounded by

2||∆KC
1 K

C
2

+ λSKC
1 K

C
2
||F

min(
√
n1 − k1,

√
n2 − k2)

.

Entries of AKC
1 K

C
2

are soft-thresholded towards zero by SKC
1 K

C
2

to minimize the Frobenious
norm. Using Eq. 5.25,

P[|N (0, 1)| > 2λ] ≥ 4λ√
2π(4λ2+1)

exp(−2λ2) =: cλ.

Using the assumption that λ =
√
c log max(n1 − k1, n2 − k2), we get that cλ = (max(n1 −

k1, n2 − k2))−2cLn, where Ln = O(polylog(max(n1 − k1, n2 − k2))).

Let Z ∼ Bin(N, cλ) with N = (n2 − k2)(n1 − k1). From Lemma 5.7.11, Z > Ncλ/2 with
probability 1− 2 exp(−Ncλ/8). Conditioning on the event {Z > Ncλ/2}, the left hand side of
5.20 is lower bounded by

2λ
√

2Ncλ

min(
√
n2 − k2,

√
n1 − k1)

= 2λ
√

2cλ max(
√
n1 − k1,

√
n2 − k2).

Plugging in the expression for cλ found above, we see that the left hand side of 5.20 is lower
bounded by (max(n1 − k1, n2 − k2))1/2−cLn.
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Lemma 5.7.9 provides an upper bound for the right hand side of 5.20 of the form λ
√
k1k2 +

2(
√
k1 +

√
k2) with probability 1− 2 exp(−(

√
k1 +

√
k2)2/2). We can conclude that 5.20 holds

with probability tending to one, since

(max(n1 − k1, n2 − k2))1/2−cLn ≥
√
ck1k2 log max(n1 − k1, n2 − k2) + 2(

√
k1 +

√
k2)

for sufficiently large n1 and n2 as k1 = o(n1/2−c) and k2 = o(n1/2−c) under assumptions.

The theorem follows since β = 2λ
√
k1k2. The constant c can be chosen so that c < 1/2.

5.7.7 Proof of Lemma 5.7.1

It follows directly from Weyl’s theorem (see for example the book [179]) that

|α− α̂| ≤ σ1(∆K1K2). (5.21)

Denote ûK1 and v̂K2 the singular vectors of M associated with α̂, that is,

Mv̂K2 = α̂ûK1 , and
M′ûK1 = α̂v̂K2 .

(5.22)

Let u⊥K1
∈ {a ∈ Rk1 : a ⊥ uK1 , , ‖a‖ = 1} and v⊥K2

∈ {a ∈ Rk2 : a ⊥ vK2 , ‖a‖ = 1}. With
this we write v̂K2 = cv1vK2 + cv0v

⊥
K2

and ûK1 = cu1uK1 + cu0u⊥K1
where (cv1)2 + (cv0)2 = 1 and

(cu1)2 + (cu0)2 = 1. Lemma 5.7.2 gives a lower bound on cu1 and cv1 and is proven below.

From Eq. 5.22 we have
αcv1uK1 + ∆K1K2v̂K2 = α̂ûK1

which further decomposes into

αcv1uK1 + ∆K1K2(c
v
1vK2 + cv0v

⊥
K2

) = α̂(ûK1 − uK1) + α̂uK1 .

Using Taylor series expansion α̂−1 . α−1 + σ1(∆K1K2)α
−2. Now

||ûK1 − uK1||∞
≤ |α̂−1αcv1 − 1|||uK1||∞ + α̂−1|cv1|||∆K1K2vK2 ||∞ + α̂−1|cv0|||∆K1K2v

⊥
K2
||∞ + o(1)

≤ 2α−1σ1(∆K1K2)||uK1||∞ + α−1|||∆K1K2vK2 ||∞ + 2α−2σ1(∆K1K2)|||∆K1K2|||∞,2 + o(1)

using Eq. 5.21 and Lemma 5.7.2. The three terms in the display above can be bounded using
Lemma 5.7.9, Lemma 5.7.6 and Lemma 5.7.7. Then

||ûK1 − uK1||∞ = α−1O
(√

k1||uK1||∞ +
√

log k1 + α−1k2

)
= α−1O(

√
log k1)

with probability 1 − O(k−1
1 ). A similar calculation gives a bound on ||v̂K2 − vK2 ||∞. This

completes the proof of Lemma 5.7.1.

The following Lemma establishes a lower bound on û′K1
uK1 and v̂′K2

vK2 under our sign convec-
tion.
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Lemma 5.7.2. We have that cu1 ≥ 1− 2α−1σ1(∆K1K2) and cv1 ≥ 1− 2α−1σ1(∆K1K2).

Proof of Lemma 5.7.2. From Eq. 5.22 we have

αû′K1
uK1v

′
K2

v̂K2 + û′K1
∆K1K2v̂K2 = α̂.

Using the triangle inequality

|α− αû′K1
uK1v

′
K2

v̂K2| ≤ |α− α̂|+ |α̂− αû′K1
uK1v

′
K2

v̂K2|
≤ 2σ1(∆K1K2),

since |û′K1
∆K1K2v̂K2 | ≤ σ1(∆K1K2). Under our sign convention, this implies that

1− û′K1
uK1v

′
K2

v̂K2 ≤ 2α−1σ1(∆K1K2).

We conclude that
û′K1

uK1 ≥ 1− 2α−1σ1(∆K1K2), and
v̂′K1

vK1 ≥ 1− 2α−1σ1(∆K1K2).

5.7.8 Identifying Large Biclusters Without Normality Assumption

We now consider a computationally feasible nonparametric procedure for biclustering that makes
minimal assumptions on the distribution of the noise and on the form of the signal. When the
clusters are large in a sense specified by the theorem below, the procedure recovers the true
bicluster with large probabiliy.

Let F be any distribution with median zero and positive, continuous density. As before, we let
∆ be a n1 × n2 error matrix filled with iid draws from F . We now assume that

A = B + ∆

where B = {Bij}i∈[n1],j∈[n2] is such that Bij = 0 for (i, j) ∈ K1 ×K2 and

β ≡ min
i∈K1,j∈K2

Bij > 0.

Let Cj denote the number of positive entries in the jth column of A and let Ri denote the number
of positive entries in the tth row of A. Define Ψ(A) to consist of all rows such that Ri > r ≡
(n2/2) +

√
n2 log n2 and all columns such that Cj > c ≡ (n1/2) +

√
n1 log n1.

Let Z ∼ F and define π = P(Z + β > 0) = 1− F (β). Finally, we measure the signal strength
by the quantities

ψ1 = k1

[
1

2
− F (−β)

]
, ψ2 = k2

[
1

2
− F (−β)

]
.
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Theorem 5.7.3. Suppose that the following conditions hold:

ψ1 >
√

4 log(k2n1) (5.23)

ψ2 >
√

4 log(k1n2)

ψ1 ≥
√
n1 log n1 (5.24)

ψ2 ≥
√
n2 log n2.

Then

P(Ψ(A) 6= (K1, K2) ≤ 4

(
1

n1

+
1

n2

)
.

Proof. Consider a null column that does not intersect the cluster. Then Cj ∼ Binomial(n1, 1/2).
By Hoeffding’s inequality, P(Cj > c) ≤ 1/n2

1. Similarly for a null row, P(Rj > r) ≤ 1/n2
2. By

the union bound, the probability of including any null row or column is at most n1/n
2
1 +n2/n

2
2 =

(1/n1) + (1/n2).

Now consider a non-null column. For simplicity assume that all nonzero βij are equal to the
minimum value β. The extension to the general case is straightforward. Then Cj = U+V where
U ∼ Binomial(n1−k1, 1/2) and V ∼ Binomial(k1, π) where π = P(Z+β > 0) = 1−F (−β).
Here, Z ∼ F . The probability of excluding column j is P(U + V < c). Now U + V is the sum
of independent but not identically distributed Bernoulli random variables. Applying Hoeffding’s
inequality for non identically distributed variables we have P(U + V < c) ≤ e−2(µ−c)2/n1 where

µ = E(U + V ) =
n1 − k1

2
+ k1π.

Substituting for µ and c and using the fact that π − 1/2 = 1/2− F (−β),

P(U + V < c) ≤ e−2(µ−c)2/n1

= exp

(
k1√
n1

(π − 1/2)− 1

2

√
log n1

)2

≤ exp

(
−k

2
1(π − 1/2)2

4n1

)
where we used (5.24). By (5.23), the last quantity is less than 1/(k2n1). Taking the union bound
over all the k2 columns in the cluster, the probability of missing a relevant column is at most
1/n1. A similar bound applies to the rows.

5.7.9 Concentration inequalities

We now collect useful results on tail bounds of various random quantities used throughout the
chapter. We start by stating a lower and upper bound on the survival function of the standard
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normal random variable. Let Z ∼ N (0, 1) be a standard normal random variable. Then for
t > 0

1√
2π

t

t2 + 1
exp(−t2/2) ≤ P(Z > t) ≤ 1√

2π

1

t
exp(−t2/2). (5.25)

We will use the above inequality to bound some quantities involving norms of random matrices
with independent standard normal entries. We provide a few more definitions.
Definition 6. Let ε be a positive number. A set X is an ε-net of a set Y if for any y ∈ Y , there
exists x ∈ X such that ||y − x|| ≤ ε.

The following result is the standard ε-net argument.
Lemma 5.7.4. Let N ⊂ Sn2−1 be an ε-net N of Sn2−1 and let A ∈ Rn1×n2 be a linear map.
Then there is a vector y ∈ N such that

||Ay|| ≥ (1− ε) max
x∈Sn2−1

||Ax||.

The minimum size of the ε-net is well-known.
Lemma 5.7.5. There is an ε-net of a unit sphere in d dimensions of size at most (3

ε
)d.

Lemma 5.7.6. Let A ∈ Rn1×n2 be a random matrix whose elements are independent standard
normal random variables. Then for any fixed x ∈ Sn2−1,

P[||Ax||∞ ≥ t] ≤ 2n1√
2πt

exp(−t2/2).

Proof of Lemma 5.7.6. Observe that Ax ∼ N(0, In1). The result follows from an application of
a standard Gaussian tail bound and the union bound.

The following two results bound operator norms |||A|||∞,2 and |||A|||∞,∞.
Lemma 5.7.7. Let A ∈ Rn1×n2 be a random matrix whose elements are independent standard
normal random variables. Fix δ > 0. Then

|||A|||∞,2 ≤

√
8

(
log n1 + n2 log 6 + log

2√
2πδ

)
=: Kδ,n1,n2 (5.26)

with probability 1− δ/Kδ,n1,n2 .

Proof of Lemma 5.7.7. By definition, we have that

|||A|||∞,2 = max
||x||2≤1

||Ax||∞.

Let N ⊂ Sn2 be an ε-net of Sn2−1. Using Lemma 5.7.4 we have that

P[|||A|||∞,2 ≥ t] ≤ P[(1− ε)−1 max
y∈N
||Ay||∞ ≥ t].

Setting ε = 1
2
, applying Lemma 5.7.5, Lemma 5.7.6 and using the union bound, we have that

P[|||A|||∞,2 ≥ t] ≤ 2n1√
2πt

6n2 exp(−t2/8).

We can conclude the proof by setting t = Kδ,n1,n2 .
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Lemma 5.7.8. Let A ∈ Rn1×n2 be a random matrix whose elements are independent standard
normal random variables. Fix δ > 0. Then there exists a sufficiently large constant C such that

|||A|||∞,∞ ≤

√
8

(
n2 log n1 + n2

2 log 6 + n2 log
2√
2πδ

)
=:
√
n2Kδ,n1,n2 (5.27)

with probability 1− δ/Kδ,n1,n2 where Kδ,n1,n2 is defined in Eq. 5.26.

Proof of Lemma 5.7.8. For any x ∈ Rn2 , ||x||2 ≤
√
k||x||∞. Now

|||A|||∞,∞ = max
||x||∞≤1

||Ax||∞ ≤ max
||x||2≤

√
n2

||Ax||∞ =
√
n2|||A|||∞,2.

The result follows from Lemma 5.7.7.

Lemma 5.7.9 ([57]). Let A ∈ Rn1×n2 be a random matrix whose elements are independent
standard normal random variables. We have that

P[σ1(A) ≥
√
n1 +

√
n2 + t] ≤ 2 exp(−t2/2). (5.28)

Lemma 5.7.10. If zk ∼ Bin(k, πk), then for all k ≥ 1 and all πk ∈ (0, 1) it holds that

P[zk = 0] ≤ exp(−kπk).

Proof. P[zk = 0] = (1 − πk)k = exp(−k log( 1
1−πk

)) = exp(−k(πk + O(π2
k))) ≤ exp(−kπk).

Lemma 5.7.11. If zk ∼ Bin(k, πk), then

P[zk ≤ kπk − t] ≤ exp(−t2/(2kπk))

and
P[zk ≥ kπk + t] ≤ exp(−t2/(2(kπk + t/3))).

5.7.10 Convex analysis

The following results are standard. We use them to derive the KKT condition for the optimization
problem in Eq. 5.11.
Definition 7. Let C be a convex set. The function δ(x|C) defined as

δ(x|C) =

{
0 if x ∈ C

+∞ if x 6∈ C

is called the indicator function of the convex set C.
Definition 8. Let ∂δ(x|C) denote the normal cone to C at x defined as

∂δ(a|C) = {y : 〈x− a, y〉 ≤ 0, ∀x ∈ C}.
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The normal cone be equivalently defined as

∂δ(a|C) = {y : sup
x∈C
〈x, y〉 = 〈a, y〉}.

If a is interior to C then ∂δ(a|C) = {0}, and if a is exterior to C then ∂δ(a|C) = ∅

Let Sn+ be the cone of positive semi-definite symmetric matrices in Rn×n.
Theorem 5.7.12 ([75]). The normal cone to Sn+ is defined as

∂δ(A|Sn+) =

{
∅ if A 6∈ Sn+

{B : −B ∈ Sn+, tr AB = 0} if A ∈ Sn+.
(5.29)

Alternatively for A ∈ Sn+, equation Eq. 5.29 becomes

∂δ(A|Sn+) = {B = −ZΛZ′ : Λ ∈ Sn+} (5.30)

where columns of Z form orthonormal basis for the null space of A.
Theorem 5.7.13 ([162], Chapter 5). If Â solves the problem

min f(A)
subject to A ∈ Sn+, g(A) ≤ 0,

then Â is feasible and there exist matrices Ĝ ∈ ∂f(Â), B̂ ∈ ∂δ(Â|Sn+), C ∈ ∂g(Â) and a
multiplier π̂ ≥ 0, π̂g(Â) = 0 such that

Ĝ + B̂ + π̂Ĉ = 0.

5.7.11 Nuclear norm and `1 norm penalty

Under the model Eq. 5.1, the problem of biclustering can be thought of recovering a matrix that
is both low rank and sparse. As pointed out by a reviewer, from this point of view a natural com-
bination of the nuclear norm and the `1 norm leads to the following optimization problem

min
X∈R(n1+n2)×(n1+n2)

1

2
||A−X||2F + λ1||X||∗ + λ21

′|X|1. (5.31)

The norm ||X||∗ is the nuclear norm defined as the sum of the singular values of X, that is, if X =
UDV′ is the singular value decomposition of X, then ||X|| =

∑
iDii. The tuning parameter

λ1 control the rank of the solution and λ2 controls the sparsity of the solution. Compared to
the optimization procedure in Eq. 5.11, there is an additional tuning parameter that needs to be
selected in practice. Combination of the nuclear norm and the `1 norm was shown useful in
robust PCA [43]. For the problem of biclustering, the formulation in Eq. 5.31 does not lead to
improvement over Eq. 5.11 as we show below.

We analyze the problem Eq. 5.31 in a similar way to the proof of Theorem 5.4.3. That is, we
construct a rank one solution X̂ that is a global solution of the objective Eq. 5.31. The following
Lemma gives a subgradient of the nuclear norm used in stating the first order conditions for a
global optimum.
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Lemma 5.7.14. If X = UDV′ is the singular value decomposition of X then the subdifferential
of || · ||∗ is equal to

∂||X||∗ = {UV′ + Z : σ1(Z) ≤ 1, U′Z = 0 and ZV = 0}. (5.32)

Now, the first order condition for a global optimum of Eq. 5.31 is

X̂−A + λ1K̂ + λ2Ŝ = 0 (5.33)

where Ŝ ∈ ∂||X̂||1 and K̂ ∈ ∂||X̂||∗.

Suppose that the matrix X̂ is rank one and that the sparsity pattern of X̂ correctly recovers K1

and K2. Denote X̂ = α̂ûv̂′. Then we have that ŜK1K2 = sûs′v̂ where sû = sign(ûK1) and
sv̂ = sign(v̂K2). Furthermore, from Lemma 5.7.14, we know that K̂ = ûv̂′+ Ẑ with σ1(Z) ≤ 1,
û′Z = 0 and Zv̂ = 0.

Observe that the problem Eq. 5.31 can be rewritten as

max
X∈R(n1+n2)×(n1+n2)

tr A′X− 1

2
tr X′X− λ1||X||∗ − λ21

′|X|1.

Under the assumption that X̂ = α̂ûv̂′ with û = (û′K1
,0′)′ and v̂ = (v̂′K2

,0′)′, the above equation
becomes

max
α̂,ûK1

,v̂K2

α̂û′K1
AK1K2v̂

′
K2
−α̂2−1

2
λ1α̂−λ2α̂û′K1

sûs′v̂v̂K2 subject to ||ûK1||2 = 1, ||v̂K2||2 = 1.

(5.34)
The objective Eq. 5.31 is strongly convex, which implies that α̂, ûK1 and v̂K2 are unique if the
global solution is of rank one. This in turn implies that ûK1 and v̂K2 are left and right singular
vectors of AK1K2 − λ2sûs′v̂. Setting λ2 = β

2
√
k1k2

and α = β/2, we observe that the results of
Lemma 5.7.1 hold here. That is, under the conditions of Theorem 5.4.3, it holds that

||ûK1 − uK1 ||∞ = O

(√
log k1

k1k2 log(n1 − k2)(n2 − k2)

)
and

||v̂K2 − vK2||∞ = O

(√
log k2

k1k2 log(n1 − k2)(n2 − k2)

)
with probability 1−O(k−1

1 ). With û and v̂ fixed, the problem Eq. 5.34 can be explicitly solved
for α̂,

α̂ = σ1(αuK1v
′
K2

+ ∆K1K2)− λ1, (5.35)

which gives us a constraint on the signal strength α and the tuning parameter λ1.

So far, we have constructed X̂K1K2 and ŜK1K2 . We need to verify that there is a matrix Ẑ that
satisfies Eq. 5.32 by plugging back X̂K1K2 and ŜK1K2 into Eq. 5.33. We will construct

Ẑ =

(
ẐK1K2 0

0 ẐKC
1 K

C
2

)
. (5.36)
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From Eq. 5.33, we observe that

(α̂ + λ1)ûK1v̂
′
K2
− αuK1v

′
K2
−∆K1K2 = λ1ẐK1K2 .

It follows that we need λ1 = Ω(
√
k1 +

√
k2) to ensure that σ1(ẐK1K2) ≤ 1.

We have already seen in the proof of Theorem 5.4.3 that ŜKC
1 K2

= λ−1
2 ∆KC

1 K2
, ŜK1KC

2
=

λ−1
2 ∆K1KC

2
and ŜKC

1 K
C
2

= λ−1
2 ∆KC

1 K
C
2

are valid blocks of a subdifferential of the `1 norm.
Plugging back into Eq. 5.33, it follows that ẐKC

1 K
C
2

= 0.

We can conclude that under the conditions of Theorem 5.4.3 on the size of the bicluster and the
signal strength β with λ1 = O(

√
k1 +

√
k2) and λ2 = β

2
√
k1k2

, the solution X̂ of Eq. 5.31 is of
rank one and correctly recovers (K1, K2).

We can also show a similar result to Theorem 5.4.4, which establishes that the signal strength β
cannot be much smaller than the one given in Theorem 5.4.3. From Eq. 5.33 follows that

σ1(∆KC
1 K

C
2
− λ2ŜKC

1 K
C
2

) ≤ λ1

is necessary for X̂ to be of rank one and to correctly recover (K1, K2). From Eq. 5.35, we have
that λ < σ1(αuK1v

′
K2

+ ∆K1K2) for a solution to be of rank 1. Since σ1(αuK1v
′
K2

+ ∆K1K2) <
α+ 2(

√
k1 +

√
k2) with high probability, we have that λ < α+ 2(

√
k1 +

√
k2). However, it was

shown in the proof of Theorem 5.4.4 that

min
||S

KC1 K
C
2
||∞≤1

max
||x||2=1

x′

[(
0 AKC

1 K
C
2

A′
KC

1 K
C
2

0

)
+ λ

(
0 SKC

1 K
C
2

S′
KC

1 K
C
2

0

)]
x

> α + 2(
√
k1 +

√
k2)

(5.37)

with probability tending to 1.
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Chapter 6

Recovering Block-structured Activations
Using Compressive Measurements

In this chapter of the thesis we consider the problems of detection and localization of a contiguous
block of weak activation in a large matrix, from a small number of noisy, possibly adaptive,
compressive (linear) measurements. This is closely related to the problem of compressed sensing,
where the task is to estimate a sparse vector using a small number of linear measurements.
Contrary to results in compressed sensing, where it has been shown that neither adaptivity nor
contiguous structure help much, we show that for reliable localization the magnitude of the
weakest signals is strongly influenced by both structure and the ability to choose measurements
adaptively while for detection neither adaptivity nor structure reduce the requirement on the
magnitude of the signal. We characterize the precise tradeoffs between the various problem
parameters, the signal strength and the number of measurements required to reliably detect and
localize the block of activation. In each case the sufficient conditions are complemented with
information theoretic lower bounds.

6.1 Introduction

Compressive measurements provide a very efficient means of recovering signals that are sparse
in some basis or frame. Specifically, several papers, including those of Candès and Tao [40,
41], Donoho [64], and Candès and Wakin [42] have shown that it is possible to recover, in an
`2 sense, a k-sparse vector in n dimensions using only O(k log n) incoherent compressive mea-
surements, instead of measuring all of the n coordinates. This is a novel and important paradigm
with applications in a wide range of scientific areas. Along with `2 recovery, researchers have
also considered the problems of detection and localization of a sparse signal corrupted by ad-
ditive noise, the former task logically preceding the latter. The problem of detection is to test
whether all components of the vector are zero. Arias-Castro et al. [10], Duarte et al. [66], Haupt
and Nowak [94], Ingster et al. [99] and Arias-Castro [8] studied detection of sparse vectors
from compressive measurements. The problem of localization is to identify coordinates of the
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non-zero elements of a signal. Wainwright [197, 198] studied information theoretic limits and
localization properties of the LASSO procedure. More recently, researchers have contributed
two important refinements: 1) by considering a sparse structured signal (such as a signal con-
sisting of adjacent coordinates or a block) [9, 23, 175] and 2) by allowing for the possibility
of taking adaptive measurements, i.e., where subsequent measurements are designed based on
past observations [see, e.g., 9, 39, 56, 93, 136]. However, almost all of this work has been fo-
cused on recovery or detection of (structured or unstructured) sparse data vectors from (passive
or adaptive) compressed measurements.

In this chapter we focus on the unexplored problems of detection and localization for data ma-
trices from compressive measurements. We are concerned with signals that are both sparse and
highly structured, taking the form of a sub-matrix of a larger matrix with contiguous row and col-
umn indices. Data matrices have been considered in the context of low-rank matrix completion
[see, e.g., 112, 144], where recovery in Frobenius norm is studied. The problems of detection
and localization for data matrices that are observed directly were studied previously. See, for
example, [29, 37, 38, 111, 182]. However, compressive measurement schemes were not inves-
tigated. If the activation is unstructured, the treatment of data matrices is exactly equivalent to
the treatment of data vectors. However, in the structured case the problem is rather different, as
we will show. Data matrices with signals that are both sparse and highly structured form a nat-
ural model for several real-world activations such as when we have a group of genes (belonging
to a common pathway for instance) co-expressed under the influence of a set of similar drugs
[208], or when we have groups of patients exhibiting similar symptoms [140], or when we have
sets of malware with similar signatures [100], etc. However, in many of these applications, it is
difficult to measure, compute or store all the entries of the data matrix. For example, measuring
expression levels of all genes under all possible drugs is expensive, or recording the signatures of
each individual malware is computationally demanding as it might require stepping through the
entire malware code. However, if we have access to linear combinations of matrix entries (i.e.
compressive measurements) such as combined expression of multiple genes under the influence
of multiple drugs then we might need to only make and store few such measurements, while still
being able to infer the existence or location of the activated block of the data matrix. Thus, the
goal is to detect or recover the activated block (set of co-expressed genes and drugs or malware
with similar signatures) using only few compressive measurements of the data matrix, instead of
observing the entire data matrix directly. We consider both the passive (non-adaptive) and active
(adaptive) measurements. The non-adaptive measurements are random or pre-specified linear
combinations of matrix entries. In other cases, such as mixing drugs, we might be able to adapt
the measurement process by using feedback to sequentially design linear combinations that are
more informative.

Extensions to a setup where there is a non-contiguous sub-matrix or block of activation are
also interesting, but beyond the scope of this thesis. Bhamidi et al. [29], Butucea and Ingster
[37], Butucea et al. [38], Kolar et al. [111], Sun and Nobel [182] study a problem where a large
noisy matrix is observed directly, i.e., not through compressed measurements, and the block of
activation is non-contiguous. In such a setting, tight upper and lower bounds are derived for the
localization problem. However, passive and adaptive compressive measurement schemes have to
the best of our knowledge not yet been investigated.
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Table 6.1: Summary of known results for the sparse vector case, where the length of the vector
is n and the number of active elements is k. The number of measurements is m and
µ/σ represents SNR per element of the activated elements.

Detection Localization

Passive µ
σ
�
√

n
mk2

µ
σ
�
√

n logn
m

, Wainwright [197]

m � k log n

Active Arias-Castro [8] µ
σ
�
√

n
m

Arias-Castro et al. [9]
Davenport and Arias-Castro [56]
Malloy and Nowak [136]

Summary of results in this chapter. Using information theoretic tools, we establish lower
bounds on the minimum number of compressive measurements and the weakest signal-to-noise
ratio (SNR) needed to detect the presence of an activated block of positive activation, as well
as to localize the activated block, using both non-adaptive and adaptive measurements. We also
demonstrate minimax optimal upper bounds through detectors and estimators that can guarantee
consistent detection and localization of weak block-structured activations using few non-adaptive
and adaptive compressive measurements.

Our results indicate that adaptivity and structure play a key role and provide significant improve-
ments over non-adaptive and unstructured cases for localization of the activated block in the data
matrix setting. This is unlike the vector case where contiguous structure and adaptivity have been
shown to provide minor, if any, improvement. We describe the results for the sparse vector case
in related work section below. A summary of the SNR needed for detection and localization of
an unstructured sparse vector using passive and adaptive compressive measurements is given in
Table 6.1.

In our setting we take compressive measurements of a data matrix of size n = (n1 × n2), the
activated block is of size k = (k1 × k2), with minimum SNR per entry of µ/σ, and we have a
budget of m compressive measurements with each measurement matrix constrained to have unit
Frobenius norm. Table 6.2 describes our main findings (for the case when n1 = n2 and k1 = k2

and paraphrasing for clarity) and compare the scalings under which passive and active, detection
and localization are possible.

For detection, akin to the vector setting, structure and adaptivity play no role. The structured data
matrix setting requires an SNR scaling of

√
n1n2/(mk2

1k
2
2) for both non-adaptive and adaptive

cases, which is same as the SNR needed to detect a k1k2-sparse non-negative vector of length
n1n2 as demonstrated in the paper [8]. Thus, the structure of the activation pattern as well as the
power of adaptivity offer no advantage in the detection problem.

For localization of the activated block, the structured data matrix setting requires an SNR scaling
as
√
n1n2/(mmin(k1, k2)) using non-adaptive compressive measurements. In contrast, the un-

structured setting requires a higher SNR of
√
n1n2 log(n1n2)/m where m ≥ k1k2 log(n1n2)

as demonstrated in the paper [197]. Structure, without adaptivity already yields a factor of
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Table 6.2: Summary of main findings for the case when n = n1 × n2 (n1 = n2) and k =
k1 × k2 (k1 = k2), where the size of the matrix is n1 × n2 and the size of the
activation block is k1 × k2. The number of measurements is m and µ/σ represents
SNR per element of the activated block.

Detection Localization

Passive µ
σ
�
√

n1n2

mk21k
2
2

µ
σ
�
√

n1n2

mmin(k1,k2) Theorems 6.4.1 and 6.4.2

Active Theorems 6.3.1 and 6.3.2 µ
σ
� 1√

m
max

(√
n1n2

k21k
2
2
, 1√

min(k1,k2)

)
Theorems 6.5.1 and 6.5.2

√
min (k1, k2) reduction in the smallest SNR that still allows for reliable localization. Moreover,

adaptivity in the compressive measurement design yields further improvements: with adaptive
measurements, identifying the activated block requires a much weaker SNR of

max(
√
n1n2/(mk2

1k
2
2),
√

1/(mmin(k1, k2)))

for the weakest entry in the data matrix. In contrast, for the sparse vector case, Arias-Castro et al.
[9] showed that adaptive compressive measurements cannot localize the non-zero components if
the SNR is smaller than

√
n1n2/m. A matching upper bound was provided using compressive

binary search in the papers [56] and [136] for localization of a single non-zero entry in the vector.
Thus, exploiting structure of the activations and designing adaptive linear measurements can both
yield significant gains if the activation corresponds to a contiguous block in a data matrix.

Related Work. This chapter of the thesis builds on a number of fairly recent contributions on
detection, localization and recovery of a sparse and weak unstructured signal by adaptive com-
pressive measurements. In the paper [9], the authors show that the adaptive compressive scheme
offers improvements over the passive scheme which, in terms of the mean-squared error (MSE)
and localization, are limited to a log(n) factor. The authors also provide a general proof strategy
for minimax analysis under adaptive measurements. Arias-Castro [8] further applies this strategy
to the problem of detection of an unstructured and structured sparse and weak vector signal under
compressive adaptive measurements. Malloy and Nowak [136] shows that a compressive version
of standard binary search achieves minimax performance for localization in a one-sparse vector.
The work of Wainwright [197] which is based on analyzing the performance of an exhaustive
search procedure under passive measurements, is relevant to our analysis of passive localization.
Our analysis provides a generalization of these results to the case of a structured signal embedded
as a small contiguous block in a large matrix.

While in this chapter we focus on detection and localization, some other papers have considered
estimation of sparse vectors in the MSE sense using adaptive compressive measurements. For
example, Arias-Castro et al. [9] establishes fundamental lower bounds on the MSE in a linear
regression framework, while Haupt et al. [93] demonstrates upper bounds using compressive
distilled sensing. Baraniuk et al. [23] and Soni and Haupt [175] have analyzed different forms
of structured sparsity in the vector setting, e.g. if the non-zero locations in a data vector form
non-overlapping or partially-overlapping groups or are tree-structured. Finally, Negahban and
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Wainwright [144] and Koltchinskii et al. [112] have considered a measurement model identical
to ours in the setting of low-rank matrix completion, but in that setting the matrix under consid-
eration is not assumed to be a structured sparse matrix and the theoretical guarantees are with
respect to the Frobenius norm. Furthermore, Kolar et al. [111] illustrate that penalization using
the sum of nuclear and `1 norm cannot be used for localization in a related model.

When data matrix is observed directly, Butucea and Ingster [37] study the problem of detection,
while Kolar et al. [111] and Butucea et al. [38] study the problem of localization. Sun and Nobel
[182] and Bhamidi et al. [29] characterize largest average submatrices of the data matrix under
the null hypothesis that the signal is not present. Results in those papers do not carry over to a
setting where a data matrix is accessed through compressive measurements, as already seen in
the vector case [8].

The rest of this chapter is organized as follows. We describe the problem set up and notation in
Section 6.2. We study the detection problem in Section 6.3, for both adaptive and non-adaptive
schemes. Section 6.4 is devoted to the non-adaptive localization, while Section 6.5 is focused
on adaptive localization. Finally, in Section 6.6 we present and discuss some simulations that
support our findings. Detailed proofs are given in Section 6.7.

6.2 Preliminaries

In this chapter we denote [n] to be the set {1, . . . , n}. For a vector a ∈ Rn, we denote supp(a) =
{j : aj 6= 0} the support set, ||a||q, q ∈ [1,∞), the `q-norm defined as ||a||q = (

∑
i∈[n] |ai|q)1/q

with the usual extensions for q ∈ {0,∞}, that is, ||a||0 = |supp(a)| and ||a||∞ = maxi∈[n] |ai|.
For a matrix A ∈ Rn1×n2 , we denote ||A||F the Frobenius norm defined as

||A||F =

 ∑
i∈[n1],j∈[n2]

a2
ij

1/2

.

For two sequences {an} and {bn}, we use an = O(bn) to denote that an < Cbn for some finite
positive constant C. We also denote an = O(bn) to be bn & an. If an = O(bn) and bn = O(an),
we denote it to be an � bn. The notation an = o(bn) is used to denote that anb−1

n → 0.

LetA ∈ Rn1×n2 be a signal matrix with unknown entries. We are interested in a highly structured
setting where a contiguous block of the matrix A of size (k1 × k2) has entries all equal to µ > 0,
while all the other elements ofA are equal to zero. We denote the coordinate set of all contiguous
blocks, of size k1 × k2 with

B =

{
Ir × Ic :

Ir and Ic are contiguous subsets of [n1] and [n2],
|Ir| = k1, |Ic| = k2

}
. (6.1)

Then A = (aij) with aij = µ 1I{(i, j) ∈ B∗} for some (unknown) B∗ ∈ B, where 1I is the
indicator function. Some of our results extend to the case when the activation is positive, but not
constant on B∗, as we discuss below. Note that we assume the size (k1 × k2) is known.
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We consider the following observation model under which m noisy linear measurements of A
are available

yi = tr(AXi) + εi, i = 1, . . . ,m, (6.2)

where ε1, . . . , εm
iid∼ N (0, σ2), with σ > 0 known, and the sensing matrices (Xi)i∈[m] are normal-

ized to satisfy either ‖Xi‖F ≤ 1 or E‖Xi‖2
F = 1, i.e., every measurement has the same amount

of energy. These are similar assumptions as made in the papers [56] and [39].

Under the observation model in Eq. 6.2, we study two tasks: (1) detecting whether a contiguous
block of positive signal exists in A and (2) identifying the block B∗, that is, the localization of
B∗. We develop efficient algorithms for these two tasks that provably require the smallest number
of measurements, as explained below. The algorithms are designed for one of two measurement
schemes: (1) the measurement scheme can be implemented in an adaptive or sequential fashion,
that is, actively, by letting each Xi to be a (possibly randomized) function of (yj, Xj)j∈[i−1],
and (2) the measurement matrices are chosen all at once or ignoring the outcomes in previous
measurements, that is, passively.

Detection. The detection problem concerns checking whether a positive contiguous block exists
in A. As we will show later, we can detect the presence of a contiguous block with a much
smaller number of measurements than is required for localizing its position. Formally, detection
is a hypothesis testing problem with a composite alternative of the form

H0 : A = 0n1×n2

H1 : A = (aij) with aij = µ 1I{(i,j)∈B∗}, B∗ ∈ B.
(6.3)

A test T is a measurable function of the observations (yi)i∈[m] and the measurements matrices
(Xi)i∈[m], which takes values in {0, 1}, with T = 1 if the null hypothesis is rejected and T = 0
otherwise. For any test T , we define its risk as

Rdet(T ) ≡ P0

[
T
(
(yi, Xi)i∈[m]

)
= 1
]

+ max
B∗∈B

PB∗
[
T
(
(yi, Xi)i∈[m]

)
= 0
]
,

where P0 and PB denote the joint probability distributions of
(
(yi, Xi)i∈[m]

)
under the null hy-

pothesis and when the activation pattern is B, respectively. The risk R(T ) measures the maximal
sum of type I and type II errors over the set of alternatives. The overall difficulty of the detection
problem is quantified by the minimax risk

Rdet ≡ inf
T
Rdet(T ),

where the infimum is taken over all tests. For a sufficiently small SNR, the minimax risk is
bounded away from zero by a large constant, which implies that no test can distinguish H0 from
H1. In Section 6.3 we will precisely characterize the boundary for SNR µ

σ
below which no test

can distinguish H0 and H1.

Localization. The localization problem concerns the recovery of the true activation pattern B∗.
Let Ψ be an estimator of B∗, i.e., a measurable function of (yi, Xi)i∈[m] taking values in B. We
define the risk of any such estimator as

Rloc(Ψ) = max
B∗∈B

PB∗
[
Ψ
(
(yi, Xi)i∈[m]

)
6= B∗

]
,
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while the minimax risk

Rloc ≡ inf
Ψ
Rloc(Ψ)

of the localization problem is the minimal risk over all such estimators Ψ. Like in the detection
task, the minimax risk specifies the minimal risk of any localization procedure. By standard
arguments, the evaluation of the minimax localization risk also proceeds by first reducing the
localization problem to a hypothesis testing problem (see for example the book by Tsybakov
[192]).

Below we will provide a sharp characterization, through information theoretic lower bounds
and tractable estimators, of the minimax detection and localizations risks as functions of tuples
of (n1, n2, k1, k2,m, µ, σ) and for both the active and passive sampling schemes. Our results
identify precisely both the minimal SNR given a budget of m possibly adaptive measurements,
and the minimal number of measurements m for a given SNR in order to achieve successful
detection and localization.

Along with a careful and detailed minimax analysis, we also describe procedures for detection
and localization in both the active and passive case whose risks match the minimax rates.

6.3 Detection of contiguous blocks

In this section, we derive minimax rates for detection.

6.3.1 Lower bound

The following theorem gives a lower bound on the SNR needed to distinguish H0 and H1.
Theorem 6.3.1. Fix any 0 < α < 1. Based on m (possibly adaptive) measurements, if

µ ≤ σ(1− α)

√
16(n1 − k1)(n2 − k2)

mk2
1k

2
2

,

then Rdet ≥ α.

The lower bound on possibly adaptive procedures is established by analyzing the risk of the
(optimal) likelihood ratio test under a uniform prior over the alternatives. Careful modifications
of standard arguments are necessary to account for adaptivity. We closely follow the approach
of Arias-Castro [8] who established the analogue of Theorem 6.3.1 in the vector setting.
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6.3.2 Upper bound

We now demonstrate the sharpness of the result established in the previous section. We choose
the sensing matrices passively as Xi = (n1n2)−1/21n11

′
n2

and consider the following test

T
(
(yi)i∈[m]

)
= 1I

{∑
i

yi > σ
√

2m log(α−1)
}
. (6.4)

Theorem 6.3.2. Assume that k1 ≤ cn1 and k2 ≤ cn2 for some c ∈ (0, 1). If

µ ≥ σ
√

8n1n2 log(α−1)

mk21k
2
2

,

then Rdet(T ) ≤ α, where T is the test defined in Eq. 6.4.

The results of Theorem 6.3.1 and Theorem 6.3.2 establish that the minimax rate for detection
under the model in Eq. 6.2 is µ � σ(k1k2)−1

√
m−1n1n2, under the (mild) assumption that k1 ≤

cn1 and k2 ≤ cn2 for any constant 0 < c < 1. It is worth pointing out that the structure of
the activation pattern does not play any role in the minimax detection problem, since the rate
matches the known bounds for detection in the unstructured vector case [8]. We will contrast
this to the localization problem below. Furthermore, the procedure that achieves the adaptive
lower bound (upto constants) is non-adaptive, indicating that adaptivity can not help much in the
detection problem.

We also note that results established in this section continue to hold when the activation is posi-
tive, but not constant on B∗, with min(i,j)∈B∗ aij replacing µ.

6.4 Localization from passive measurements

In this section, we address the problem of estimating a contiguous block of activation B∗ from
noisy linear measurements as in equation 6.2, when the measurement matrices (Xi)i∈[m] are
independent with i.i.d. entries having aN (0, (n1n2)−1) distribution. The variance of the elements
is set so that E||Xi||2F = 1.

6.4.1 Lower bound

The following theorem gives a lower bound on the SNR needed for any procedure to localize
B∗.
Theorem 6.4.1. There exist positive constants C, α > 0 independent of the problem parameters
(k1, k2, n1, n2), such that if

µ ≤ Cσ

√
n1n2

m
max

(
1

min(k1, k2)
,
log max(n1 − k1, n2 − k2)

k1k2

)
,

then Rloc ≥ α > 0.
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The proof is based on a standard technique described in Chapter 2.6 of the book by Tsybakov
[192]. We start by identifying a subset of matrices that are hard to distinguish. Once a suitable
finite set is identified, tools for establishing lower bounds on the error in multiple-hypothesis
testing can be directly applied. These tools only require computing the Kullback-Leibler (KL)
divergence between the induced distributions, which in our case are two multivariate normal
distributions.

The two terms in the lower bound feature two aspects of our construction, the first term arises
from considering two matrices that overlap considerably, while the second term arises from con-
sidering matrices that do not overlap at all of which there are possibly a very large number. These
constructions and calculations are described in detail in Section 6.7.

6.4.2 Upper bound

We will investigate a procedure that searches over all contiguous blocks of size (k1 × k2) as
defined in Eq. 6.1 and outputs the one minimizing the squared error. Specifically, let the loss
function f : B 7→ R be

f(B) := min
µ

∑
i∈[m]

(
µ
∑

(a,b)∈B

Xi,ab − yi
)2

, (6.5)

where Xi,ab denotes element in row a and column b of the ith sensing matrix. Then the estimated
block B̂ is defined as

B̂ := argmin
B∈B

f(B). (6.6)

Note that the minimization problem above requires solving O(n1n2) univariate regression prob-
lems and can be implemented efficiently for reasonably large matrices.

The following result characterizes the SNR needed for B̂ to correctly identify B∗.
Theorem 6.4.2. There exist positive constants C1, C2 > 0 independent of the problem parame-
ters (k1, k2, n1, n2), such that if m ≥ C1 log max(n1 − k1, n2 − k2) and

µ ≥ C2σ

√
n1n2

m
log(2/α) max

(
log max(k1, k2)

min(k1, k2)
,
log max(n1 − k1, n2 − k2)

k1k2

)
,

for 0 < α ≤ 1, then Rloc(B̂) ≤ α, where B̂ is defined in Eq. 6.6.

Comparing to the lower bound in Theorem 6.4.1, we observe that the procedure outlined in
this section achieves the lower bound up to constants and a log (max (k1, k2)) factor. Under
the scaling max(k1, k2) ≥ log max(n1 − k1, n2 − k2), we obtain that the passive minimax rate
for localization of the active blocks B∗ is µ � Õ

(
σ
√

(mmin(k1, k2))−1n1n2

)
. In this and

subsequent uses, the Õ notation hides a
√

log max(k1, k2) factor.
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This establishes that the SNR needed for passive localization is considerably larger than the
bound we saw earlier for passive detection. This should be contrasted to the unstructured nor-
mal means problem, where the bounds for localization and detection differ only in constants
[65].

The block structure of the activation allows us, even in the passive setting, to localize much
weaker signals. A straightforward adaptation of results on the LASSO [198] suggest that if the
non-zero entries are spread out (say at random) then we would require µ � Õ

(
σ
√

n1n2

m

)
for

localization.

One could extend the analysis in this section to data matrices with non-constant activation as
in the paper [197]. Furthermore, one can adapt to the unknown size of the activation block.
In particular, one can perform exhaustive search procedure for all possible sizes of activation
blocks. Let Bk1,k2 denote the coordinate set of all contiguous blocks of size k1 × k2. Then the
estimated block

B̂ = argmin
B∈∪k1,k2Bk1,k2

f(B)

adapts to the unknown size of the activation if the signal strength satisfies the condition in Theo-
rem 6.4.2. This can be verified by small modifications to the proof of Theorem 6.4.2.

The non-contiguous case

Suppose that the block of activation B∗ belongs to the collection B̃, where

B̃ = {Ir × Ic : Ir ⊂ [n1], Ic ⊂ [n2], |Ir| = k1, |Ic| = k2},

so that the activation block is not necessarily a contiguous block. This collection contains less
structure than the collection B, but we can still localize much weaker signals compared to com-
pletely unstructured case. Slight modification of proofs1 of Theorem 6.4.1 and Theorem 6.4.2
yields the following.
Theorem 6.4.3. Let B̃ := argminB∈B̃ f(B). There exists a constant C1 such that if the signal
strength satisfies

µ ≥ C1σ

√
n1n2

m
log(2/α)

log(n1 − k1)(n2 − k2)

k1 + k2

, (6.7)

then Rloc(B̃) ≤ α, for any 0 < α ≤ 1.

Conversely, there exists constants C2, α > 0 such that if

µ ≤ C2σ

√√√√n1n2

m
max

(
log(n1 − k1)

k2

,
log(n2 − k2)

k1

,
log
(
n1−k1
k1

)(
n2−k2
k2

)
k1k2

)
, (6.8)

then Rloc ≥ α > 0.
1A sketch of the derivation is given in Section 6.7.7
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Therefore, we conclude that even without contiguous blocks, the additional structure helps for
the problem of localization.

6.5 Localization from active measurements

In this section, we study localization of B∗ using adaptive procedures, that is, the measurement
matrix Xi may be a function of (yj, Xj)j∈[i−1].

6.5.1 Lower bound

A lower bound on the SNR needed for any active procedure to localize B∗ is given as fol-
lows.
Theorem 6.5.1. Fix any 0 < α < 1. Given m adaptively chosen measurements, if

µ < σ(1−α) max

(√
2 max((n1 − k1)(n2/2− k2), (n1/2− k1)(n2 − k2))

mk2
1k

2
2

,

√
8

mmin(k1, k2)

)

then Rloc ≥ α.

The proof is based on information theoretic arguments applied to specific pairs of hypotheses
that are hard to distinguish. The two terms in the lower bound reflect the two important sources
of hardness of the problem of localization. The first term reflects the difficulty of approximately
localizing the block of activation. This term grows at the same rate as the detection lower bound,
and its proof is similar. Given a coarse localization of the block we still need to exactly localize
the block. The hardness of this problem gives rise to the second term in the lower bound. The
term is independent of n1 and n2 but has a considerably worse dependence on k1 and k2.

6.5.2 Upper bound

The upper bound is established by analyzing the procedures described in Algorithms 1 and 2 for
approximate and exact localization. Algorithm 1 is used to approximately locate the activation
block, that is, it locates a 8k1×8k2 block that contains the activation block with high probability.
The algorithm essentially performs compressive binary search ([56]) on a collection of non-
overlapping blocks that partition the matrix. It is run on four collections, D1,D2,D3 and D4
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Algorithm 3 Approximate localization
input Measurement budget m ≥ log p, ordered collection of sizea p of blocks D of size (u1 × u2)

Initial support: J (1)
0 ≡ {1, . . . , p}, s0 ≡ log p

For each s in 1, . . . , log2 p
1. Allocate: ms ≡ b(m− s0)s2−s−1c+ 1.
2. Split: J (s)

1 and J (s)
2 , left and right half collections of blocks of J (s)

0 .

3. Sensing matrix: Xs =
√

2−(s0−s+1)

u1u2
on J (s)

1 , Xs = −
√

2−(s0−s+1)

u1u2
on J (s)

2 and 0 otherwise.

4. Measure: y(s)i = tr(AXs) + z
(s)
i for i ∈ [1, . . . ,ms].

5. Update support: J (s+1)
0 = J

(s)
1 if

∑ms

i=1 y
(s)
i > 0 and J (s+1)

0 = J
(s)
2 otherwise.

output The single block in J (s0+1)
0 .

aWe assume p is dyadic to simplify our presentation of the algorithm.

Algorithm 4 Exact localization (of columns)
input Measurement budget m, a sub-matrix B ∈ R4k1×4k2 , success probability δ

1. Measure: yci = (4k1)−1/2
∑4k1
l=1Blc + zci for i = {1, . . . ,m/5} and c ∈ {1, k2 + 1, 2k2 + 1, 3k2 + 1}.

2. Let l = argmaxc
∑m/5
i=1 y

c
i , r = l + k2, mb = b m

6 log2 k2
c.

3. While r − l ≥ 1
(a) Let c = b r+l2 c.
(b) Measure yci = (4k1)−1/2

∑4k1
l=1Blc + zci for i = {1, . . . ,mb}.

(c) Ifa ∑mb

i=1 y
c
i ≥ O

(√
log
(

log k2
δ

)
mbσ2

log k2

)
then l = c, otherwise r = c.

output Set of columns {l − k2 + 1, . . . , l}.

aThe exact constants appear in the proof of Theorem 6.5.2.
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defined as2

D1 ≡ {B1,1 := [1, . . . , 2k1]× [1, . . . , 2k2], B1,2 := [2k1 + 1, . . . , 4k1] × [1, . . . , 2k2]

. . . , B1,n1n2/4k1k2 := [n1 − 2k1, . . . , n1]× [n2 − 2k2, . . . , n2]
}

D2 ≡ {B2,1 := [k1, . . . , 3k1]× [k2, . . . , 3k2], B2,2 := [3k1 + 1, . . . , 5k1]× [k2, . . . , 3k2]

. . . , B2,n1n2/4k1k2 := [n1 − k1, ..., n1, 1, . . . , k1]× [n2 − k2, ..., n2, 1, . . . , k2]
}

D3 ≡ {B3,1 := [k1, . . . , 3k1]× [1, . . . , 2k2], B3,2 := [3k1 + 1, . . . , 5k1]× [1, . . . , 2k2]

. . . , B3,n1n2/4k1k2 := [n1 − k1, ..., n1, 1, . . . , k1]× [n2 − 2k2, . . . , n2]
}

and

D4 ≡ {B4,1 := [1, . . . , 2k1]× [k2, . . . , 3k2], B4,2 := [2k1 + 1, . . . , 4k1]× [k2, . . . , 3k2]

. . . , B4,n1n2/4k1k2 := [n1 − 2k1, . . . , n1]× [n2 − k2, ..., n2, 1, . . . , k2]
}
.

D1 is a partition of the matrix into disjoint blocks of size (2k1 × 2k2), D3 is a similar partition
shifted down by k1 rows, D4 is shifted to the right by k2 columns and D2 is both shifted down by
k1 rows and to the right by k2 columns. Figure 6.1 illustrates this.

Notice, that one of these collections must include a block that contains the full block of activation.
Algorithm 1 applied four times returns four blocks, one of which as we show contains the full
activation block with high probability.

Algorithm 2 is used next to precisely locate the activation block within one of the four coarser
blocks identified by Algorithm 1. Algorithm 2 itself works in several stages: in the first stage the
procedure measures a small number of columns, exactly one of which is active, repeatedly, to
identify the active column with high probability. The next stage finds the first non-active column
to the left and right by testing columns using a binary search (halving) procedure. In this way,
all the active columns are located. Finally, Algorithm 2 is repeated on the rows to identify the
active rows.

The following theorem states that Algorithm 1 and Algorithm 2 succeed in localization of the
active block with high probability if the SNR is large enough.
Theorem 6.5.2. If

µ ≥ σ
√

log(1/α) Õ

(
max

(√
n1n2

mk2
1k

2
2

,

√
1

min(k1, k2)m

))
,

and m ≥ 3 log(n1n2) then R(B̂) ≤ α, where B̂ is the block output by the algorithms.

As before, the Õ hides a
√

log max(k1, k2) factor, and our upper bound matches the lower bound
up to this factor. It is worth noting that for small activation blocks (when the first term dominates)
our active localization procedure achieves the detection limits. This is the best result we could
hope for. For larger activation blocks, the lower bound indicates that no procedure can achieve
the detection rate. The active procedure still remains significantly more efficient than the passive

2For simplicity, we assume n1 is a multiple of 2k1 and n2 of 2k2
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Figure 6.1: The collection of blocks D1 is shown in solid lines and the collection D2 is shown
in dashed lines. The collections D3 and D4 overlap with these and are not shown.
The (k1 × k2) block of activation is shown in red.

one, and even in this case is able to localize signals that are weaker by a (large)
√
n1n2 factor.

This is not the case for compressed sensing of vectors as shown in the paper of Arias-Castro et al.
[9]. The great potential for gains from adaptive measurements is clearly seen in our model which
captures the fundamental interplay between structure and adaptivity.

6.6 Experiments

In this section, we perform a set of simulation studies to illustrate finite sample performance of
the proposed procedures. We let n1 = n2 = n and k1 = k2 = k. Theorem 6.4.2 and Theo-
rem 6.5.2 characterize the SNR needed for the passive and active identification of a contiguous
block, respectively. We demonstrate that the scalings predicted by these theorems are sharp by
plotting the probability of successful recovery against appropriately rescaled SNR and showing
that the curves for different values of n and k line up.

Experiment 1. Figure 6.2 shows the probability of successful localization of B∗ using B̂ de-
fined in Eq. 6.6 plotted against n−1

√
km ∗ SNR, where the number of measurements m = 100.

Each plot in Figure 6.2 represents different relationship between k and n; in the first plot,
k = Θ(log n), in the second k = Θ(

√
n), while in the third plot k = Θ(n). The dashed

vertical line denotes the threshold position for the scaled SNR at which the probability of suc-
cess is larger than 0.95. We observe that irrespective of the problem size and the relationship
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between n and k, Theorem 6.4.2 tightly characterizes the minimum SNR needed for successful
identification.
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Figure 6.2: Probability of success with passive measurements (averaged over 100 simulation
runs).

Experiment 2. Figure 6.3 shows the probability of successful localization of B∗ using the pro-
cedure outlined in Section 5.2., with m = 500 adaptively chosen measurements, plotted against
the scaled SNR. The SNR is scaled by n−1

√
mk2 in the first two plots where k = Θ(log n) and

k = Θ(
√
n) respectively, while in the third plot the SNR is scaled by

√
mk/ log k as k = Θ(n).

The dashed vertical line denotes the threshold position for the scaled SNR at which the prob-
ability of success is larger than 0.95. We observe that Theorem 6.5.2 sharply characterizes the
minimum SNR needed for successful identification.
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Figure 6.3: Probability of success with adaptively chosen measurements (averaged over 100
simulation runs).

6.7 Technical proofs

We now give detailed proofs of the results of this chapter. Throughout the proofs, we will denote
c1, c2, . . . positive constants that may change their value from line to line.
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6.7.1 Proof of Theorem 6.3.1

We lower bound the Bayes risk of any test T . Recall, the null and alternate hypothesis, defined
in Eq. 6.3,

H0 : A = 0n1×n2

H1 : A = (aij) with aij = µ 1I{(i,j)∈B}, B ∈ B.

We will consider a uniform prior over the alternatives π, and bound the average risk

Rπ(T ) = P0[T = 1] + EA∼πPA[T = 0],

which provides a lower bound on the worst case risk of T .

Under the prior π, the hypothesis testing problem becomes to distinguish

H0 : A = 0n1×n2

H1 : A = (aij) with aij = EB∼πµ 1I{(i,j)∈B} .

Both H0 and H1 are simple and the likelihood ratio test is optimal by the Neyman-Pearson
lemma. The likelihood ratio is

L ≡
EπPA[(yi, Xi)i∈[m]]

P0[(yi, Xi)i∈[m]]
=

Eπ
∏m

i=1 PA[yi|Xi]∏m
i=1 P0[yi|Xi]

,

where the second equality follows by decomposing the probabilities by the chain rule and ob-
serving that P0[Xi|(yj, Xj)j∈[i−1]] = PA[Xi|(yj, Xj)j∈[i−1]], since the sampling strategy (whether
active or passive) is the same irrespective of the true hypothesis.

The likelihood ratio can be further simplified as

L = Eπ exp

(
m∑
i=1

2yitr(AXi)− tr(AXi)
2

2σ2

)
.

The average risk of the likelihood ratio test

Rπ(T ) = 1− 1

2
||EπPA − P0||TV

is determined by the total variation distance between the mixture of alternatives from the null.

By Pinkser’s inequality [192],

||EπPA − P0||TV ≤
√
KL(P0,EπPA)/2
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and

KL(P0,EπPA) = −E0 logL

≤ −Eπ
m∑
i=1

E0
2yitr(AXi)− tr(AXi)

2

2σ2

= Eπ
m∑
i=1

E0
tr(AXi)

2

2σ2

≤ m

2σ2
sup
||X||F≤1

Eπtr(AXi) :=
m

2σ2
||C||op,

where the first inequality follows by applying the Jensen’s inequality followed by Fubini’s theo-
rem, and the second inequality follows using the fact that ||Xi||2F = 1, whereC ∈ Rn1n2×n1n2 .

To describe the entries of C, consider the invertible map τ from a linear index in {1, . . . , n1n2}
to an entry ofA. Now, Cii = µ2EπPA[Aτ(i) = 1] andCij = µ2EπPA[Aτ(i) = 1, Aτ(j) = 1].

To bound the operator norm of C we make two observations. Firstly, because of the contiguous
structure of the activation pattern, in any row of C there are at most k1k2 non-zero entries.
Secondly, each non-zero entry in C is of magnitude at most µ2k1k2/(n1 − k1)(n2 − k2).

Now, note that
||C||op ≤ max

j

∑
k

|Cjk| ≤ µ2k2
1k

2
2/(n1 − k1)(n2 − k2)

from which we obtain a bound on the KL divergence.

Now, this gives us that

Rπ(T ) ≥ 1− k1k2µ

√
m

16(n1 − k1)(n2 − k2)
,

proving the lower bound on the minimax risk.

6.7.2 Proof of Theorem 6.3.2

Define t = 1√
m

∑m
i=1 yi. It is easy to see that under H0, t ∼ N (0, σ2) while under H1, t ∼

N (
√

m
n1n2

k1k2µ, σ
2). The theorem now follows from an application of standard Gaussian tail

bounds in Eq. 5.25.

6.7.3 Proof of Theorem 6.5.1

The proof will proceed via two separate constructions. At a high level these constructions
are intended to capture the difficulty of exactly and approximately localizing the activation
block.
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Construction 1 - approximate localization: Let us define three distributions: P0 corresponding
to no bicluster, P1 which is a uniform mixture over the distributions induced by having the top-
left corner of the bicluster in the left half of the matrix and P2 which is a uniform mixture over
the distributions induced by having the top-left corner of the bicluster in the right half of the
matrix.

We first upper bound the total variation between P1 and P2. This results directly in a lower bound
for the problem of distinguishing whether the top-left corner of the bicluster is in the left or right
half of the matrix, which in turn is a lower bound for the localization of the bicluster.

Now notice that,

||P1 − P2||2TV ≤ 2||P0 − P1||2TV + 2||P0 − P2||2TV
≤ KL(P0,P1) +KL(P0,P2).

Notice that KL(P0,P1) is exactly the quantity we have to upper bound to produce a lower bound
on the signal strength for detecting whether a block of activation is in the left half of the matrix
or not. At least from a lower bound perspective this reduces the problem of localization to that
of detection. We can now apply a slight modification of the proof of Theorem 6.3.1 to obtain
that

KL(P0,P1) = KL(P0,P2) ≤ mµ2k2
1k

2
2

(n1 − k1)(n2/2− k2)
.

Noting that the minimax risk R for distinguishing P1 from P2

R = 1− 1

2
||P1 − P2||TV ≥ 1−

√
mµ2k2

1k
2
2

2(n1 − k1)(n2/2− k2)
.

Construction 2 - exact localization: Without loss of generality we assume k1 ≤ k2. Consider,
two distributions P1 and P2, where P1 is induced by matrix A1 when the activation block B =
B1 = [1, . . . , k1][1, . . . , k2] and P2 is induced by matrix A2 when the activation block B = B2 =
[1, . . . , k1][2, . . . , k2 + 1].

Now, following the same argument as in the proof of Theorem 6.3.1, we have

KL(P1,P2) = EP1

m∑
i=1

(
− 1

2σ2

[
(yi − tr(A1Xi))

2 − (yi − tr(A2Xi))
2
])

=
1

2σ2
EP1

m∑
i=1

[
tr(A2Xi)

2 − tr(A1Xi)
2 + 2yitr(A1Xi)− 2yitr(A2Xi)

]
=

1

2σ2
EP1

m∑
i=1

tr(A2Xi)− tr(A1Xi)︸ ︷︷ ︸
ti

2

=
1

2σ2
EP1

m∑
i=1

t2i .
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Now, with some abuse of notation,

ti = µ

 ∑
j∈B1\B2

Xij −
∑

j∈B2\B1

Xij


≤ µ

( ∑
j∈B1∆B2

|Xij|

)
.

By using Cauchy-Schwarz we get

t2i ≤ 2µ2k1

∑
j∈B1∆B2

X2
ij ≤ 2µ2k1

since ||Xi||2F = 1.

This gives us that,

KL(P1,P2) ≤ mk1µ
2

σ2
.

Together with a similar construction for the case when k2 ≤ k1 we get

KL(P1,P2) ≤ mmin(k1, k2)µ2

σ2
.

Once again noting (by Pinsker’s theorem),

R ≥ 1−
√
KL(P1,P2)/8 ≥ 1−

√
mmin(k1, k2)µ2

8σ2
.

Combining the approximate and exact localization bounds we get,

R ≥ max

(
1−

√
mmin(k1, k2)µ2

8σ2
, 1−

√
mµ2k2

1k
2
2

2(n1 − k1)(n2/2− k2)

)
.

Thus, we get for any 0 < α < 1, R ≥ α if

min

(√
mmin(k1, k2)µ2

8σ2
,

√
mµ2k2

1k
2
2

2(n1 − k1)(n2/2− k2)

)
≤ 1− α.
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6.7.4 Proof of Theorem 6.4.1

Without loss of generality we assume k1 ≤ k2. Consider, two distributions P1 and P2, where P1

is induced by matrix A1 when the activation block B = B1 = [1, . . . , k1]× [1, . . . , k2] and P2 is
induced by matrix A2 when the activation block B = B2 = [1, . . . , k1]× [2, . . . , k2 + 1].

Following the proof of Theorem 6.5.1.

KL(P1,P2) = EP1 log
P1

P2

=
1

2σ2
EP1

m∑
i=1

(tr(A2Xi)− tr(A1Xi))
2

=
µ2

σ2

mk1

n1n2

,

(6.9)

using the fact thatXi is a random Gaussian matrix with independent entries of variance 1
n1n2

.

Now, note that the minimax risk

R ≥ 1−
√

KL(P1,P2)/8.

For the second part of the theorem, we consider P2, . . . ,Pt+1, where t = (n1 − k1)(n2 − k2),
each of which is induced by a B which does not overlap with B1.

The same calculation now gives

KL(P1,Pj) ≤
µ2

σ2

mk1k2

n1n2

. (6.10)

Now, applying the multiple hypothesis version of Fano’s inequality (see Theorem 2.5 in the book
[192]) we conclude the proof.

6.7.5 Proof of Theorem 6.4.2

Let zi,B =
∑

(a,b)∈BXi,ab and zB = (z1,B, . . . , zm,B)′. With this, we can write the loss function
defined in Eq. 6.5 as

f(B) := min
µ̂B
||µ̂BzB − y||22. (6.11)

Let ∆(B) = f(B) − f(B∗) and observe that an error is made if ∆(B) < 0 for B 6= B∗.
Therefore,

P[error] = P[∪B∈B\B∗{∆(B) < 0}].
Under the conditions of the theorem, we will show that ∆(B) > 0 for all B ∈ B\B∗ with large
probability.

The following lemma shows that for any fixed B, the event {∆(B) < 0} occurs with exponen-
tially small probability.
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Lemma 6.7.1. Fix any B ∈ B\B∗. Then

P[∆(B) < 0] ≤ exp

(
−c1

µ2m|B∗\B|
σ2n1n2

)
+ c2 exp(−c3m). (6.12)

From the second term in Eq. 6.12, we obtain a lower bound on the sample size m. Using the
union bound, it is sufficient that m satisfies

c1(n1 − k1)(n2 − k2) exp(−c2m) ≤ δ/2,

which gives us the lower bound as m ≥ C log max(n1 − k1, n2 − k2).

Define N(l) = |{B ∈ B : |B∆B∗| = l}| to be the number of elements in B whose symmetric
difference with B∗ is equal to l. Note that N(l) = O(1) for any l. Using the union bound

P[∪B∈B{∆(B) < 0}]

≤
∑

B∈B,|B∆B∗|=2k1k2

exp

(
−c1

µ2k1k2m

σ2n1n2

)
+
∑

l<2k1k2

N(l) exp

(
−c1

µ2lm

σ2n1n2

)

≤ c2(n1 − k1)(n2 − k2) exp

(
−c1

µ2k1k2m

σ2n1n2

)
+ c3k1k2 exp

(
−c1

µ2 min(k1, k2)m

σ2n1n2

)
.

(6.13)

Choosing

µ = c1σ

√
n1n2

m
log(2/δ) max

(
log max(k1, k2)

min(k1, k2)
,
log max(n1 − k1, n2 − k2)

k1k2

)
each term in Eq. 6.13 will be smaller than δ/2, with an appropriately chosen constant c1.

We finish the proof of the theorem, by proving Lemma 6.7.1.

Proof of Lemma 6.7.1. For any B ∈ B, let

µ̂B = argmin
µ̂B

||µ̂BzB − y||22

= ||zB||−2
2 z′By.

Note that µ̂B∗ = µ+ ||zB∗||−2
2 z′B∗ε.

Let
HB = ||zB||−2

2 zBz′B

H⊥B = I− ||zB||−2
2 zBz′B

be the projection matrices and write

f(B∗) = ||H⊥B∗ε||22
f(B) = ||H⊥B(zB∗µ+ ε)||22 = ||H⊥Bε||22 + µ2||H⊥BzB∗||22 + 2ε′H⊥BzB∗µ.
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Now,
∆(B) = ||H⊥Bε||22 − ||H⊥B∗ε||22︸ ︷︷ ︸

T1

+µ2||H⊥BzB∗ ||22 + 2ε′H⊥BzB∗µ︸ ︷︷ ︸
T2

.

Conditional on X, ||H⊥Bε||22 | X ∼ σ2χ2
m−1 and ||H⊥B∗ε||22 | X ∼ σ2χ2

m−1 [see Theorem 3.4.4 in
137] . Since the conditional distributions do not depend on X, they are the same as the marginal
distributions. Therefore, T1 ∼ σ2(V1 − V2) where V1, V2 ∼ χ2

m−1.

P
[
|T1| ≥

σ2(m− 1)η

2

]
≤ 2P

[
|χ2
m−1 −m+ 1| ≥ (m− 1)η

4

]
≤ 2 exp

(
−3(m− 1)η2

256

)
(6.14)

using Eq. 6.18, as long as η ∈ [0, 2).

To analyze the term T2, we condition on X, so that

T2|X ∼ N (µ̃, 4σ2µ̃)

where µ̃ = µ2||H⊥BzB∗||22. This gives

P[T2 ≤ µ̃/2|X] = P[N (0, 1) ≥
√
µ̃/(4σ)|X].

Next, we show how to control ||H⊥BzB∗||22. Writing zB∗ = zB − zB\B∗ + zB∗\B, simple algebra
gives

||H⊥BzB∗||22
= ||H⊥BzB∗\B||22 + ||H⊥BzB\B∗||22 − 2z′B∗\BH⊥BzB\B∗

= ||H⊥BzB∗\B||22 + ||zB\B∗ − zB∗\B||22 − ||zB∗\B||22 −
((zB\B∗ − zB∗\B)′zB)2 − (z′B∗\BzB)2

||zB||22

≥ ||H⊥BzB∗\B||22 + ||zB\B∗ − zB∗\B||22 − ||zB∗\B||22 −
((zB\B∗ − zB∗\B)′zB)2

||zB||22
.

Define the event

E(η) =

{
||H⊥BzB∗\B||22 ≥

(1− η)(m− 1)|B∗\B|
n1n2

}⋂{
||zB\B∗ − zB∗\B||22 ≥

(1− η)2m|B∗\B|
n1n2

}
⋂{

||zB∗\B||22 ≤
(1 + η)m|B∗\B|

n1n2

}⋂{
||zB||22 ≥

(1− η)m|B|
n1n2

}
⋂{

|(zB\B∗ − zB∗\B)′zB| ≤
(1 + η)m|B∗\B|

n1n2

}
,

such that, using standard concentration results from Section 6.7.8,

P[E(η)C ] ≤ c1 exp(−c2mη
2).
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On the event E(η) we have that

||H⊥BzB∗||22 ≥
m|B∗\B|
n1n2

[
3(1− η)− (1 + η)− (1 + η)2

1− η
|B∗\B|
|B|

]
− (1− η)|B∗\B|

n1n2

≥ c1
m|B∗\B|
n1n2

.

Therefore,

P[T2 ≤ µ̃/2|X] ≤ P

N (0, 1) ≥ c1
µ

σ

√
m|B∗\B|
n1n2

+ P[EC ]

≤ exp

(
−c1

µ2m|B∗\B|
σ2n1n2

)
+ c2 exp(−c3mη

2).

(6.15)

Combining Eq. 6.14 and Eq. 6.15 completes the proof.

6.7.6 Proof of Theorem 6.5.2

As with the lower bound the localization algorithm and analysis is naturally divided into two
phases. An approximate localization phase and an exact localization one. We will analyze each of
these in turn. To ease presentation we will assume n1 is a dyadic multiple of 2k1 and n2 a dyadic
multiple of 2k2. Straightforward modifications are possible when this is not the case.

Approximate localization: The approximate localization phase proceeds by a modification of
the compressive binary search (CBS) procedure of Malloy and Nowak [136] (see also Davenport
and Arias-Castro [56]) on the matrix A.

We will run this modified CBS procedure four times on sets of blocks of the matrix A. The four
sets are

D1 ≡ {B1,1 := [1, . . . , 2k1]× [1, . . . , 2k2], B1,2 := [2k1 + 1, . . . , 4k1] × [1, . . . , 2k2]

. . . , B1,n1n2/4k1k2 := [n1 − 2k1, . . . , n1]× [n2 − 2k2, . . . , n2]
}

D2 ≡ {B2,1 := [k1, . . . , 3k1]× [k2, . . . , 3k2], B2,2 := [3k1 + 1, . . . , 5k1]× [k2, . . . , 3k2]

. . . , B2,n1n2/4k1k2 := [n1 − k1, ..., n1, 1, . . . , k1]× [n2 − k2, ..., n2, 1, . . . , k2]
}

D3 ≡ {B3,1 := [k1, . . . , 3k1]× [1, . . . , 2k2], B3,2 := [3k1 + 1, . . . , 5k1]× [1, . . . , 2k2]

. . . , B3,n1n2/4k1k2 := [n1 − k1, ..., n1, 1, . . . , k1]× [n2 − 2k2, . . . , n2]
}

and

D4 ≡ {B4,1 := [1, . . . , 2k1]× [k2, . . . , 3k2], B4,2 := [2k1 + 1, . . . , 4k1]× [k2, . . . , 3k2]

. . . , B4,n1n2/4k1k2 := [n1 − 2k1, . . . , n1]× [n2 − k2, ..., n2, 1, . . . , k2]
}
.

Notice that the entire block of activation is always fully contained in one of these blocks. The
output of the CBS procedure when run on these four collections is four blocks - one from each
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collection. We define an approximate localization error to be the event in which none of the
blocks returned fully contains the block of activation.

Without loss of generality let us assume that the activation block is fully contained in some block
from the first collection. Once we have fixed the collection of blocks the CBS procedure is
invariant to reordering of the blocks, so without loss of generality we can consider the case when
the activation block is contained in B11.

The analysis proceeds exactly as in the paper [136]. We only outline the differences arising from
having a block of activation as opposed to a single activation in a vector, and refer the reader to
Malloy and Nowak [136] for the details.

The binary search procedure on the first collection of blocks proceeds for

s0 ≡ log

(
n1n2

4k1k2

)
rounds. Now, we can bound the probability of error of the procedure by a union bound as

Pe ≤
s0∑
s=1

P [ws < 0]

where

ws ∼ N
(
ms2

(s−1)/2k1k2µ√
n1n2

,msσ
2

)
.

Recall, the allocation scheme: for m ≥ 2s0, ms ≡ b(m − s0)s2−s−1c + 1 and observe that∑s0
s=1 ms ≤ m.

Now, using the Gaussian tail bound

P [N(0, 1) > t] ≤ 1

2
exp(−t2/2)

we see that

Pe ≤
1

2

s0∑
s=1

exp

(
−ms2

sk2
1k

2
2µ

2

4n1n2σ2

)
.

Now, observe that ms ≥ (m− s0)s2−s−1 and m ≥ 2s0, so ms ≥ ms2−s−2.

It is now straightforward to verify that if

µ ≥

√
16σ2n1n2

mk2
1k

2
2

log

(
1

2δ
+ 1

)
we have Pe ≤ δ. We apply this procedure 4 times (once on each collection).

Let us revisit what we have shown so far: if µ is large enough then one of the four runs of the CBS
procedure will return a block of size (2k1 × 2k2) which fully contains the block of activation,
with probability at least 1− 4δ.
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Exact localization: We collect all the rows and columns returned by the 4 runs of the CBS
procedure. In the 1−4δ probability event described above, we have a block of at most (8k1×8k2)
which contains the full block of activation (for simplicity we disregard the fact that we know that
the block is actually in one of two (4k1 × 4k2) blocks, i.e. we assume the worst case that
none of the returned blocks overlap in their rows or columns and we explore the off-diagonal
blocks).

Let us first identify the active columns. First, notice that exactly one of the following columns:
{1, k2 + 1, 2k2 + 1, . . . , 7k2 + 1} must be active.

Let us devote 8m measurements to identifying the active column amongst these. The procedure
is straightforward: measure each column m times, and pick the one that has the largest total
signal.

It is easy to show that the active column results in a draw from N (
√

k1
8
µm,mσ2) and the non-

active columns result in draws from N (0,mσ2).

Using the same Gaussian tail bound as before it is easy to show that if

µ ≥

√
64σ2

k1m
log(4/δ)

we successfully find the active column with probability at least 1− δ.

So far, we have identified an active column and localized the columns of the activation block to
one of 2k2 columns. We will use m more measurements to find the remaining active columns.
Rather, than test each of the 2k2 columns we will do a binary search. This will require us to test
at most t ≡ 2dlog k2e ≤ 3 log k2 columns, and we will devote m/(3 log k2) measurements to
each column. We will need to threshold these measurements at√

log

(
3 log k2

δ

)
2mσ2

3 log k2

and declare a row as active if its average is larger than this.

It is easy to show that this binary search procedure successfully finds all active columns with
probability at least 1− δ if

µ ≥

√
32σ2 log k2

mk1

log

(
3 log k2

δ

)
.

We repeat this procedure to identify the active rows.

Putting everything together: Total number of measurements used:

1. Four rounds of CBS: 4m

2. Identifying first active column and first active row: 16m
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3. Identifying remaining active rows and columns: 2m

This is a total of 22m measurements. Each of these steps fails with a probability at most δ, for a
total of 8δ.

Now, re-adjusting constants we obtain, if

µ ≥ max

(√
352σ2n1n2

mk2
1k

2
2

log

(
4

δ
+ 1

)
,

√
1408σ2 log max(k1, k2)

mmin(k1, k2)
log

(
24 log max(k1, k2)

δ

))
then we successfully localize the matrix with probability at least 1− δ.

Stated more succinctly we require

µ ≥ Õ

(
max

(√
σ2n1n2

mk2
1k

2
2

,

√
σ2

min(k1, k2)m

))
.

This matches the lower bound up to log k factors.

6.7.7 Proof of Eq. 6.7 and Eq. 6.8

Proof of Eq. 6.7 follows the same line as the proof of Theorem 6.4.2. We have

P[error] = P[∪B∈B\B∗{∆(B) < 0}]

≤
k1∑
i=0

(
k1

i

)(
n1 − k1

k1 − i

) k2∑
j=0

(
k2

j

)(
n2 − k2

k2 − j

)
exp

(
−c1

(µ∗)2m(k1k2 − ij)
σ2n1n2

)

+

k1∑
i=0

(
k1

i

)(
n1 − k1

k1 − i

) k2∑
j=0

(
k2

j

)(
n2 − k2

k2 − j

)
c2 exp(−c3m).

The argument given in the proof of Theorem 2 in the paper [111] gives us Eq. 6.7 if m ≥
C log max

((
n1

k1

)
,
(
n2

k2

))
. Proof of Eq. 6.8 follows the proof of Theorem 1 in the paper [111] with

the appropriate KL divergences derived in Eq. 6.9 and Eq. 6.10.

6.7.8 Some concentration bounds

We now state some useful results on tail bounds of various random quantities used throughout
this chapter.

Tail bounds for Chi-squared variables

Throughout the chapter we use one of the following tail bounds for central χ2 random variables.
These are well known and proofs can be found in the original papers.
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Lemma 6.7.2 ([121]). Let X ∼ χ2
d. For all x ≥ 0,

P[X − d ≥ 2
√
dx+ 2x] ≤ exp(−x) (6.16)

P[X − d ≤ −2
√
dx] ≤ exp(−x). (6.17)

Lemma 6.7.3 ([103]). Let X ∼ χ2
d, then

P[|d−1X − 1| ≥ x] ≤ exp(− 3

16
dx2), x ∈ [0,

1

2
). (6.18)

The following result provide a tail bound for non-central χ2 random variable with non-centrality
parameter ν.
Lemma 6.7.4 ([31]). Let X ∼ χ2

d(ν), then for all x > 0

P[X ≥ (d+ ν) + 2
√

(d+ 2ν)x+ 2x] ≤ exp(−x) (6.19)

P[X ≤ (d+ ν)− 2
√

(d+ 2ν)x] ≤ exp(−x). (6.20)

Using the above results, we have a tail bound for sum of product-normal random variables.
Lemma 6.7.5. Let Z = (Za, Zb) ∼ N2(0, 0, σaa, σbb, σab) be a bivariate Normal random vari-
able and let (zia, zib)

iid∼ Z, i = 1, . . . , n. Then for all t ∈ [0, νab/2)

P

[∣∣∣∣∣n−1
∑
i

ziazib − σab

∣∣∣∣∣ ≥ t

]
≤ 4 exp

(
− 3nt2

16ν2
ab

)
, (6.21)

where νab = max{(1− ρab)
√
σaaσbb, (1 + ρab)

√
σaaσbb}.

Proof. Let z′ia = zia/
√
σaa. Then using Eq. 6.18

P[| 1
n

n∑
i=1

ziazib − σab| ≥ t]

= P[| 1
n

n∑
i=1

z′iaz
′
ib − ρab| ≥

t
√
σaaσbb

]

= P[|
n∑
i=1

((z′ia + z′ib)
2 − 2(1 + ρab))− ((z′ia − z′ib)2 − 2(1− ρab))| ≥

4nt
√
σaaσbb

]

≤ P[|
n∑
i=1

((z′ia + z′ib)
2 − 2(1 + ρab))| ≥

2nt
√
σaaσbb

]

+ P[|
n∑
i=1

((z′ia − z′ib)2 − 2(1− ρab))| ≥
2nt
√
σaaσbb

]

≤ 2P[|χ2
n − n| ≥

nt

νab
] ≤ 4 exp(− 3nt2

16ν2
ab

),

where νab = max{(1− ρab)
√

ΣaaΣbb, (1 + ρab)
√

ΣaaΣbb} and t ∈ [0, νa/2).
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Corollary 6.7.6. Let Z1 and Z2 be two independent standard Normal random variables and let
Xi

iid∼ Z1Z2, i = 1 . . . n. Then for t ∈ [0, 1/2)

P[|n−1
∑
i∈[n]

Xi| > t] ≤ 4 exp

(
−3nt2

16

)
. (6.22)
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Chapter 7

Minimax Rates for Homology Inference

In this chapter we begin our foray into statistical topics in topological data analysis. This chap-
ter considers minimax bounds for estimating the homology of a sub-manifold while the next
chapter considers the problem of learning the cluster tree of a density supported on or near a
sub-manifold.

Often, high dimensional data lie close to a low-dimensional sub-manifold and it is of interest to
understand the geometry of these sub-manifolds. The homology groups of a manifold are im-
portant topological invariants that provide an algebraic summary of the manifold. These groups
contain rich topological information, for instance, about the connected components, holes, tun-
nels and sometimes the dimension of the manifold. In this chapter, we consider the statistical
problem of estimating the homology of a manifold from noisy samples under several different
noise models. We derive upper and lower bounds on the minimax risk for this problem. Our
upper bounds are based on estimators which are constructed from a union of balls of appropriate
radius around carefully selected points. In each case we establish complementary lower bounds
using Le Cam’s lemma. Finally, we establish tight asymptotic lower bounds by a direct analysis
of the likelihood ratio test on a pair of suitably chosen hypotheses.

7.1 Introduction

Let M be a d-dimensional manifold embedded in RD where d ≤ D. The homology groups
H(M) of M [92] are an algebraic summary of the properties of M . The homology groups of
a manifold describe its topological features such as its connected components, holes, tunnels,
etc.

In machine learning, there is much focus on clustering. However, the clusters are only the zeroth
order homology and hence only scratch the surface of the topological information in a dataset.
Extracting information beyond clustering is known as topological data analysis. It is worth em-
phasizing that the homology groups are topological invariants of a manifold that can be efficiently
computed [58, 59]. Examples of applications of homology inference have been growing rapidly
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in the last few years. Homology inference has found application in medical imaging and neu-
roscience [50, 173], sensor networks [60, 171], landmark-based shape data analyses [80], pro-
teomics [166], microarray analysis [61] and cellular biology [110]. The books by [68, 151, 211]
contain various case studies in applications in fields ranging from computational biology to geo-
physics.

In this chapter we study the problem of estimating the homology of a manifold M from a noisy
sample Y1, . . . , Yn. Specifically, we bound the minimax risk

Rn ≡ inf
Ĥ

sup
Q∈Q

Qn
(
Ĥ 6= H(M)

)
(7.1)

where the infimum is over all estimators Ĥ of the homology of M and the supremum is over
appropriately defined classes of distributions Q for Y . Note that 0 ≤ Rn ≤ 1 with Rn = 1
meaning that the problem is hopeless. Bounding the minimax risk is equivalent to bounding the
sample complexity of the best possible estimator, defined by

n(ε) = min
{
n : Rn ≤ ε

}
where 0 < ε < 1.

7.1.1 Related Work

Other work on statistical homology includes that of Chazal et al. [47] who show under certain
conditions the homology estimate of a manifold from a sample is stable under noise perturbation
that is small in a Wasserstein sense. Kahle [106] studies the homology of random geometric
graphs and proves many threshold and central limit theorems for their homology. Adler et al. [3]
study the homology induced by the level sets of certain Gaussian random fields. There is also
a large literature on manifold denoising that focuses on aspects of the manifold not related to
homology; see for instance the paper [95] and references therein.

Our upper bounds mainly generalize those in the work of Niyogi, Smale and Weinberger (hence-
forth NSW) [146, 147]. They establish a general result showing that when all the samples are
dense in a thin region surrounding the manifold, a union of appropriately sized balls around
the samples can be used to construct an accurate estimate of the homology with high proba-
bility. Under a variety of different noise models we will show that even when all the samples
are not close to the manifold it is possible to “clean” the samples (essentially removing those
in regions of low-density) and be left with samples which are dense in a thin region around the
manifold.

In the case of additive noise with general noise distributions however, we cannot expect too many
samples to fall close to the manifold. We will show that when the noise distribution is known one
can use a statistical deconvolution procedure to obtain a “deconvolved measure” concentrated
around the manifold from which we can in turn draw a small number of samples and apply the
cleaning procedure described above to them. Deconvolution has been extensively studied in the
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Noise Model
Noiseless Clutter Tubular Additive Gaussian General additive (τ fixed)

Upper Bound NSW This chapter NSW This chapter This chapter
Lower Bound This chapter This chapter This chapter This chapter This chapter

Table 7.1: Summary of our contributions

statistical literature (see the paper [70] and references therein). Most related to our application
is the work of Koltchinskii [113] who uses deconvolution to estimate the dimension and cluster
tree of a distribution supported on a submanifold. We defer a detailed comparison to Section
7.5.4 after the necessary preliminaries have been introduced.

To the best of our knowledge these are the first lower and upper minimax bounds for the problem
of inferring the homology of a manifold. There are a few existing results on upper bounds. A
summary of previous results and the results in this chapter are in Table 1.

Outline. In Section 7.2 we describe the statistical model. In Section 7.3 we give a brief de-
scription of homology. In Section 7.4 we give an overview of our techniques. We derive the
minimax rates for the four noise settings in Section 7.5. Technical proofs are contained in Sec-
tion 7.7.

7.2 Statistical Model

We assume that the sample {Y1, . . . , Yn} ⊂ RD constitutes a set of “noisy” observations of an
unknown d-dimensional manifold M , with d < D, whose homology we seek to estimate. The
distribution of the sample depends on the properties of the manifold M as well as on the type of
sampling noise, which we describe below by formulating various statistical models for sampling
data from manifolds.

Notation. We let Bk
r (x) denote a k-dimensional ball of radius r centered at x. When k =

D, we write Br(x) instead of BD
r (x). For any set M and any σ > 0 define tubeσ(M) =⋃

x∈M Bσ(x). Let vk denote the volume of the k-dimensional unit ball. Finally, for clarity we let
c1, c2, . . . , C1, C2, . . . denote various positive constants whose value can be different in different
expressions. The constants will be specified in the corresponding proofs.

Manifold Assumptions. We assume that the unknown manifold M is a d-dimensional smooth
compact Riemannian manifold without boundary embedded in the compact set X = [0, 1]D. We
further assume that the volume of the manifold is bounded from above by a constant which can
depend on the dimensions d,D, i.e. we assume vol(M) ≤ CD,d. We will also make the further
assumption that D > d. The main regularity condition we impose on M is that its condition
number be not too small. The condition number κ(M) (see the paper of Niyogi et al. [146]) is
the largest number τ such that the open normal bundle about M of radius r is imbedded in RD
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for every r < τ . For τ > 0 let

M≡M(τ) =
{
M : κ(M) ≥ τ

}
denote the set of all such manifolds with condition number no smaller than τ . A manifold with
large condition number does not come too close to being self-intersecting. We consider the
collection

P ≡ P(M) ≡ P(M, a)

of all probability distributions supported over manifoldsM inM having densities f with respect
to the volume form on M uniformly bounded from below by a constant a > 0, i.e. 0 < a ≤
f(x) < ∞ for all x ∈ M . For expositional clarity we treat a as a fixed constant although our
upper and lower bounds match in their dependence on a.

The Noise Models. We consider four noise models and, for each of them, we specify a class Q
of probability distributions for the sample.

1. Noiseless. We observe data Y1, . . . , Yn ∼ P where P ∈ P . In this case,

Q = Q(τ) = P .

2. Clutter Noise. We observe data Y1, . . . , Yn from the mixture

Q = (1− π)U + πP

where, P ∈ P , 0 ≤ π ≤ 1 and U is a uniform distribution on X . The points drawn from
U are called background clutter. Then

Q = Q(π, τ) =
{
Q = (1− π)U + πP : P ∈ P

}
.

Notice that π = 1 reduces to the noiseless case.

3. Tubular Noise. We observe Y1, . . . , Yn ∼ QM,σ where QM,σ is uniform on a tube of size σ
around M . In this case

Q = Q(σ, τ) =
{
QM,σ : M ∈M

}
.

4. Additive Noise. The data are of the form Yi = Xi + εi, where X1, . . . , Xn ∼ P , for some
P ∈ P , and ε1, . . . , εn are a sample from a noise distribution Φ. Note that Q = P ?Φ, that
is, Q is the convolution of P and Φ. We consider two cases:

(a) Φ is a D-dimensional Gaussian with mean (0, . . . , 0) and covariance σ2I , with σ �
τ . Define

Q = Q(σ, τ) =
{
Q = P ? Φ : P ∈ P

}
.
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(b) Φ is any known noise distribution whose Fourier transform is bounded away from 0
but with the added restriction that we only consider manifolds with τ being a fixed
constant. Then

Q = Q(Φ) =
{
Q = P ? Φ : P ∈ Pτ

}
.

where Pτ is the subset of P comprised of distributions supported on manifolds M
with condition number at least as large as the fixed value τ .

The noise model used in the paper [147] is to take the noise at any point to be only along the
normal fibres; this seems unnatural and we will not consider that model here.

In almost all of the distribution classes considered we allow for τ to vanish as n gets bigger,
which is equivalent to letting the difficulty of the statistical problem increase with the sample
size. To this end, we will also analyze the quantity

τn ≡ τn(ε) = inf{τ : Rn ≤ ε}

which corresponds to the smallest condition number that permits accurate estimation. We call
this the resolution.

7.3 Homology

Often in this chapter we will use phrases like “the homology of the union of balls around sam-
ples”. In this section we explain this usage and discuss briefly simplicial homology (see Hatcher
(2001) for a detailed treatment) and its computation.

The homology H of a space M is a collection of groups that correspond to topological features
of M . We will consider the case when M is a compact Riemannian manifold. In what follows,
it might help the reader’s intuition to imagine that we are starting with a dense sample of points
U on the manifold and building a collection of simplices from these points. The union of balls⋃
y∈U Bε(y) gives a geometric approximation to the underlying manifold. This is however a con-

tinuous (infinite) collection of points. To make computation tractable we need to be able to reduce
the computation of homology from a continuous space to its discretization. The Čech complex
(a particular simplicial complex, see Figure 7.3) which is described below gives a discrete rep-
resentation of the union of balls. A classic result in topology called the Nerve Theorem [92]
states that the homology of

⋃
y∈U Bε(y) is identical to the homology of the corresponding Čech

complex.

We now describe a simplicial complex and its homology. A simplicial complex is a hereditary set
system K over a vertex set V , i.e. σ ⊂ σ′ ∈ K implies that σ ∈ K. The dimension of a simplex σ
is |σ| − 1; singletons are 0-simplices or vertices, pairs in K are 1-simplices or edges, triples are
2-simplices or triangles, etc. A p-chain is a formal sum of p-simplices. The coefficients are taken
in Z/2Z, the integers mod 2.1 Thus, chains may be viewed as subsets of simplices and addition

1In general, homology may be defined over any ring, but we stick with Z2 for ease of exposition and computation.
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(mod 2) as symmetric difference of sets. Addition of chains forms an abelian group called the
chain group Cp with 0 denoting the empty chain.

A p-simplex σ = {v0, . . . , vp} has p + 1 simplices of dimension p− 1 on its boundary, denoted
σi = σ \ {vi}. The boundary of a simplex is

∂pσ =

p∑
i=0

σi.

The boundary operator ∂p : Cp → Cp−1 is the natural extension of the boundary of a simplex to
the boundary of a chain: ∂pc =

∑
σ∈c ∂pσ.

The kernel and image of the boundary operator are two important subgroups of the chain group:
the cycle group:

Zp = ker ∂p = {z ∈ Cp : ∂pz = 0},

and the boundary group:
Bp = im ∂p = {∂p+1c : c ∈ Cp+1}.

The cycles Zp are those chains that have boundary 0. The boundary cycles Bp are those p-
chains that are the boundary of some p + 1-chain. It is easy to check that ∂p−1∂pc = 0 and thus
Bp ⊂ Zp ⊂ Cp. See Figure 7.1.

∂p+1 ∂p ∂p−1

0 0 0

Cp+1 Cp Cp−1

Zp−1ZpZp+1

Bp+1 Bp−1Bp

∂p+2

Figure 7.1: Relationship between chainsCp, cyclesZp = ker ∂p and boundariesBp = im ∂p+1.
The chains Cp are just collections of simplices. The chains in Zp are the cycles. The
cycles in Bp are the cycles that happen to be boundaries of chains in Cp+1.

Two cycles z1, z2 ∈ Zp are homologous if z1 − z2 ∈ Bp, i.e. their difference is the boundary
of a p + 1-chain. The pth homology group Hp is defined as the quotient group Zp/Bp. That is,
the homology group is a collection of equivalence classes of cycles. The first homology group
H0 corresponds to connected components (clusters). The next homology group H1 corresponds
to non-bounding cycles (or loops). Higher order homology groups correspond to equivalence
classes of higher dimensional cycles.2 The homology ofK is the collectionH of all its homology
groups.

The Čech complex is a specific simplicial complex defined as follows. Fix some ε > 0 and a
set of points S ⊂ RD. The Čech complex consists of all simplices σ such that

⋂
x∈σ Bε(x) 6= ∅

where Bε(x) is a ball of radius ε centered at x. See Figure 7.3.

2 Intuitively, boundary cycles are “filled in” cycles and two cycles are homologous if one cycle can be deformed
into the other cycle.
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+ =

Figure 7.2: The sum of two 1-cycles is another 1-cycle. Here the cycles are homologous because
their sum (in Z2)is the boundary of a 2-chain of triangles.

Figure 7.3: A union of balls and its corresponding Čech complex.

Since the coefficient ring is a field, the computations may be completely described by linear
algebra. The groups Cp, Zp, Bp, and Hp are vector spaces and the boundary operators are linear
maps. It is possible to efficiently compute the homology groups of a simplicial complex in time
polynomial in the size of the complex. The algorithm only involves row reduction on the matrix
representations of ∂p.

7.4 Preliminaries

In this section we briefly describe some of the main techniques we use to obtain upper and lower
bounds.

7.4.1 Techniques for lower bounds

The total variation distance between two measures P andQ is defined by TV(P,Q) = supA |P (A)−
Q(A)| where the supremum is over all measurable sets. It can be shown that TV(P,Q) =
P (G) − Q(G) = 1−

∫
min(P,Q) where G = {y : p(y) ≥ q(y)} and p and q are the densities

of P and Q with respect to any measure µ that dominates both P and Q.

We shall make repeated use of Le Cam’s lemma which we now state (see, e.g., Lemma 1 in the
paper [209]).
Lemma 7.4.1 (Le Cam). Let Q be a set of distributions. Let θ(Q) take values in a metric space
with metric ρ. Let Q1, Q2 ∈ Q be any pair of distributions in Q. Let Y1, . . . , Yn be drawn iid
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from some Q ∈ Q and denote the corresponding product measure by Qn. Then

inf
θ̂

sup
Q∈Q

EQn
[
ρ(θ̂, θ(Q))

]
≥

1

8
ρ(θ(Q1), θ(Q2)) (1− TV(Q1, Q2))2n

where the infimum is over all estimators.

Le Cam’s lemma makes precise the intuition that if there are distinct members of the classQ for
which the data generating distributions are close then the statistical problem is hard given a small
sample.

When we apply Le Cam’s lemma in this chapter, Q1 and Q2 will be associated with two dif-
ferent manifolds M1 and M2. We will take θ(Q) to be the homology of the manifold and
ρ(θ(Q1), θ(Q2)) = 1 if the homologies are the different and ρ(θ(Q1), θ(Q2)) = 0 if the ho-
mologies are the same. The subtlety of establishing tight lower bounds boils down to the task of
finding a set of distributions in the class Q for which the homology of the underlying submani-
folds are distinct but whose empirical distributions are hard to distinguish from a small number
of samples.

We will use two representative manifolds M1 and M2 in the application of LeCam’s lemma
which we describe here. See Figure 7.4. The manifold M1 is a pair of 1 − τ d-balls (shown
in blue) embedded 2τ apart in RD joined smoothly at their ends (shown in red). The manifold
M2 is a pair of d-annuli (shown in blue) embedded 2τ apart with outer radius 1 − τ and inner
radius 4τ , smoothly joined at both the inner and outer ends (shown in red). It is clear from the
construction that both these manifolds are d-dimensional compact, have no boundary and have
condition number τ . It is also the case thatH(M1) 6= H(M2).

ττ

11

2τ

Figure 7.4: The two manifolds M1 and M2, with d = 1, D = 2

If there exist two manifolds M1 and M2 with corresponding distributions Q1 and Q2 in Q such
that (i) H(M1) 6= H(M2) and (ii) Q1 = Q2 then we say that the model Q is non-identifiable. In
this case, recovering the homology is impossible and we write Rn = 1 and n(ε) =∞.

When directly analyzing the likelihood ratio test we will lower bound the minimax risk by con-
sidering a related testing problem.

Before describing the hypotheses we describe the null and alternate manifolds. The null manifold
M0 is a collection of m, d-spheres of radius τ , denoted S1, . . . , Sm, with centers on one face of
the unit hypercube in d+ 1 dimensions (M0 is embedded in a space of dimension D which is of
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dimension at least d+1), with spacing between adjacent centers = 4τ . It is easy to see that

m = O

(
1

(4τ)d

)
because the manifold must be completely in [0, 1]D, and that the manifold has condition number
at least 1/τ . We will use

m = Θ

(
1

(4τ)d

)
for the lower bound we construct in this chapter. Let P0 denote the uniform distribution on
M0.

The alternate manifolds are a collection {M1i : i ∈ {1, . . . ,m}}, where M1i is M0 with Si
removed. Let π denote the uniform distribution on {1, . . . ,m}, and P1i denote the uniform
distribution on M1i.

We need to ensure that the density f is lower bounded by a constant. Note that the total d-
dimensional volume of M0 is vdτ dm, and so

f(x) ≥ 1

vdτ dm

where vd is the volume of the d-dimensional unit ball. This is Ω(1) as desired. A similar argument
works for M1i.

Consider the following testing problem:

H0 : X ∼ P0

H1 : X ∼ P1i with i ∼ π.

A test T , is a measurable function of X, in particular T : X → {0, 1}, and its risk is defined
as

RT
n

..= PH0(T (X) = 1) + PH1(T (X) = 0).

The relationship between testing and estimation is standard [126]. In our case it is easy to see
that the estimation minimax risk we are interested in satisfies,

RT
n ≤ 2Rn

and so it suffices to lower bound RT
n to obtain a lower bound on Rn. This relation is a straight-

forward consequence of the fact that H(M0) 6= H(M1i) for every i (since they have different
number of connected components), and so any estimator can be used in the testing problem
described.

The optimal test for the hypothesis testing problem described is the likelihood ratio test,

T (X) = 0 if and only if L(X) ≤ 1
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where

L(X) =
L1(X)

L0(X)

where L1(X) and L0(X) are likelihoods of the data under the alternate and null respectively. To
prove a strong lower bound all we need to do is to show that this test has a large risk. We do this
in Section 7.6.

7.4.2 Techniques for upper bounds

To establish an upper bound we need to construct an estimator that achieves the upper bound. In
the noiseless and tubular noise cases the samples are in a thin region around the manifold and our
estimator is constructed from a union of balls (of a carefully chosen radius) around the sample
points.

In the case of clutter noise and additive Gaussian noise samples are concentrated around the
manifold but a few samples may be quite far away from the manifold. In these cases our upper
bounds are obtained by analyzing the performance of the Algorithm 5 (CLEAN) with a carefully
specified threshold and radius, which is used to remove points in regions of low density far
away from the manifold. Our estimator is then constructed from a union of balls around the
remaining points. In the case of additive noise with general known distribution the samples are

Algorithm 5 CLEAN
• IN: (Xi)

n
i=1, threshold t, radius r

1. Construct a graph Gr with nodes {Xi}ni=1. Include edge (Xi, Xj), if ||Xi −Xj|| ≤ r.
2. Mark all vertices with degree di ≤ (n− 1)t.
• OUT: All unmarked vertices

not expected to be concentrated around the manifold. We will first use deconvolution to estimate
a deconvolved measure P̂n which we will show is densely concentrated in a thin region around
the manifold. We will then draw samples from this measure, clean them and construct a union
of balls of appropriate radius around the remaining samples, and show that this set has the right
homology with high probability.

We now briefly review statistical deconvolution. We refer the interested reader to the work of
Fan [70] for more details and to the paper [113] for an application related to ours. The procedure
is similar to kernel density estimation with a kernel modified to account for the additive noise.
For symmetric noise distributions Φ, we consider two kernels K and Ψ such that K ? Φ = Ψ,
where ? denotes convolution. The deconvolution estimator is

P̂n(A) = 1/n
n∑
i=1

K(Yi − A).

It is easy to verify that EP̂n = P ? Ψ similar to regular kernel density estimation with the
kernel Ψ. In the noiseless case we can even take K = Ψ = δ0 (a Dirac at 0) and get back the
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empirical distribution of the sample. More generally, we will be interested in Ψ that satisfies
Ψ{x : |x| ≥ ε} ≤ γ for ε and γ that we will later specify.

In each of the above cases our final estimator is constructed from a union of balls around ap-
propriate points, and our theorems will show that these have the correct homology with high
probability. To compute the homology one would construct the corresponding Čech complex
and compute its “boundary matrices” (as described in Section 7.3). Recovering the homology
from these matrices consists of linear algebraic manipulation. There are several fast algorithms
to compute the homology (either exactly [58] or approximately [59]) of the Čech complexes
from large point sets in high dimensions.

7.5 Minimax Rates

We now derive the minimax rates for homology estimation under the four noise models described
in section 7.2. We will first give minimax rates for all noise models with lower bounds obtained
using Le Cam’s lemma. The sample complexity lower bounds differ from the corresponding
upper bounds by a logarithmic factor. In Section 7.6 we will show a tighter analysis and derive
an asymptotic lower bound for the noiseless case that eliminates this discrepancy. We will not
consider the extension to the other noise models in this thesis but they are straightforward.

There are three quantities of interest: the minimax risk Rn, the resolution τn and the sample
complexity n(ε). We write Rn � an (similarly for τn � an) if there are positive constants c and
C such that c ≤ Rn/an ≤ C for all large n. Similarly, we write n(ε) � a(ε) if there are positive
constants c and C such that c ≤ n(ε)/a(ε) ≤ C for all small ε. Our analysis will show that the
rates (as a function of n) are typically polynomial for the resolution and exponential for the risk.
We will often match upper and lower bounds on sample complexity and resolution only up to
logarithmic factors, and correspondingly those on the risk upto polynomial factors. In this case
we will use the notation Rn �∗ an, τn �∗ an, and n(ε) �∗ a(ε).

It is worth emphasizing at this point that despite the fact that we use two specific manifolds in the
application of Le Cam’s lemma, the resulting lower bound holds for all manifolds inM and all
distributions inQ. Le Cam’s lemma allows one to get a lower bound that holds for any estimator
by using two carefully chosen distributions in Q. The upper bounds are from specific estimators
and they establish an upper bound on the number of samples to estimate the homology of any
manifold in our class.

7.5.1 Noiseless Case

Theorem 7.5.1. For all τ ≤ τ0(a, d), in the noiseless case the minimax rate,

Rn �∗ e−nτ
d

,
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where τ0(a, d) is a constant which depends on a and d. Also,

n(ε) �∗ τ−d log(1/ε)

and

τn �∗
(

1

n
log(1/ε)

)1/d

.

We provide proof sketches for the lower and upper bounds on Rn separately.

Lower Bound: Proof Sketch

To obtain a lower bound on the minimax risk over the class Q(τ) we will consider the two
carefully chosen manifolds M1 and M2 described earlier.

We further need to specify the density on each of the manifolds, and we choose two densities
from P so that the data distributions are as similar as possible while respecting the constraint
f(x) ≥ a. The construction is described in more detail in the Section 7.7.1, but for now it suffices
to notice that the two densities can be constructed to differ only on the sets W1 = M1 \M2 and
W2 = M2 \M1 and can be made as low as a on one of these sets. A straightforward calculation
shows that

TV(p1, p2) ≤ amax(vol(W1), vol(W2)) ≤ Cdaτ
d

where the constant Cd depends on d. Now, we apply Le Cam’s lemma to obtain that

Rn ≥
1

8

(
1− Cdaτ d

)n ≥ 1

8
e−2Cdnaτ

d

for all τ ≤ τ0(a, d). τ0(a, d) is a constant depending on a and d. The lower bound of Theorem
7.5.1 follows.

Upper Bound: Proof Sketch

In the noiseless case the samples are densely concentrated around the manifold and our estimator
is constructed from a union of balls of radius τ/2 around the sample points. The upper bound
on the minimax risk follows from a straightforward modification of the results of Niyogi et al.
[146]. For completeness, we reproduce an adaptation of their main homology inference theorem
(Theorem 3.1) here.
Lemma 7.5.2. [NSW] Let 0 < ε < τ and let U =

⋃n
i=1Bε(Xi). Let Ĥ = H(U). Let

ζ1 =
vol(M)

a cosd θ1vol(Bd
ε/4)

,

ζ2 =
vol(M)

a cosd θ2vol(Bd
ε/8)

,
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θ1 = sin−1 ε

8τ
and θ2 = sin−1 ε

16τ
.

Then for all

n > ζ1

(
log(ζ2) + log

(
1

δ

))
,

P(Ĥ 6= H(M)) < δ.

By assumption vol(M) ≤ CD,d for some constant CD,d depending on d and D. To obtain a
sample complexity bound we simply choose ε = τ/2 and this gives us

n(ε) ≤ C1/(aτ
d)(C2 log(1/(aτ d)) + log(1/ε))

which matches the lower bound upto the factor of log(1/τ). Further calculation (see Section
7.7.1) then shows that as desired

Rn ≤
C1

τ d
exp

(
−C2naτ

d
)

for appropriate constants C1, C2, and

τn ≤ C

(
log n log(1/ε)

an

)1/d

.

This establishes Theorem 7.5.1.

7.5.2 Clutter Noise

Theorem 7.5.3. For all τ ≤ τ0(a, d), in the clutter noise case,

Rn �∗ e−nπτ
d

,

where τ0(a, d) is a constant which depends on a and d. Also,

n(ε) �∗
(

1

πτ d
log(1/ε)

)
and

τn �∗
(

1

nπ
log(1/ε)

)1/d

.

Lower Bound: Proof Sketch

The lower bound for the classQ(π, τ) follows via the same construction as in the noiseless case.
In the calculation of the total variation distance (see Section 7.7.1) we have instead

TV(q1, q2) ≤ πamax(vol(W1), vol(W2)) ≤ Cdπaτ
d

where Cd depends on d. As before the lower bound follows from the application of Le Cam’s
lemma.
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Upper Bound: Proof Sketch

As a preliminary step we clean the data samples to eliminate points that are far away from, while
retaining those close to, the manifold. Our analysis shows that Algorithm 5 will achieve this, with
high probability for a carefully chosen threshold and radius. We then show that taking a union
of balls of the appropriate radius around the remaining points will give us the correct homology,
with high probability. We give an outline here and defer details to Section 7.7.1.

1. We define two regions

A = tuber(M) and B = RD \ tube2r(M)

where

r <
(
√

9−
√

8)τ

2
.

2. We then invoke Algorithm CLEAN on the data with threshold

t =

(
vDs

D(1− π)

vol(Box)
+
πavdr

d cosd θ

2

)
and radius 2r. Let I be the set of vertices returned.

3. Through careful analysis we show that with high probability I contains all the vertices
from the region A and none of the points in region B.

4. We further show that the retained points form a thin dense cover of the manifold M , i.e.{
M ⊂

⋃
i∈I B2r(Xi)

}
.

5. Using a straightforward corollary of Lemma 7.5.2 we show that this thin dense cover can
be used to recover the homology of M with high probability.

Formally, in Section 7.7.1 we prove the following lemma,
Lemma 7.5.4. If n > max(N1, N2), and r < (

√
9−
√

8) τ
2

where N1 = 4κ log(κ)

with κ = max

(
1 +

200

3ζ
log

(
2

δ

)
, 4

)
and N2 =

1

ζ

(
log

(
vol(M)

cosd(θ)vdrd

)
+ log

(
2

δ

))
where ζ = πavdr

d cosd(θ) and θ = sin−1(r/2τ), then after cleaning the points {Xi : i ∈ I}
are all in tube2r(M) and are 2r dense in M . Let U =

⋃
i∈I Bw(Xi) with w = r + τ

2
and let

Ĥ = H(U). We have that Ĥ = H(M) with probability at least 1− δ.

Taking r = (
√

9−
√

8)τ/4, we obtain the sample complexity bound,

n(ε) ≤ C1

πτ d

(
log

C2

τ d
+ log(C3/ε)

)
.

Given this sample complexity upper bound, the upper bounds on minimax risk and resolution
follow identical arguments to the noiseless case (Section 7.7.1).
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7.5.3 Tubular Noise

Under this noise model we get samples uniformly from a tubular region of width σ around the
manifold. This model highlights an important phenomenon in high-dimensions. Although, we
receive samples uniformly from a full D dimensional shape these samples concentrate tightly
around a d dimensional manifold. We show that with some care we can still reconstruct the
homology at a rate independent of D.
Theorem 7.5.5. Under the tubular noise model we establish the following cases.

1. If σ ≥ 2τ then the model is non-identifiable and hence, Rn = 1 and n(ε) >∞.
2. If σ ≤ C0τ , with C0 small and τ ≤ τ0(a, d), then

Rn �∗ e−nτ
d

,

where τ0(a, d) is a constant which depends on a and d. Also,

n(ε) �∗ 1/τ d

and

τn �∗
(

1

n
log (1/ε)

)1/d

.

Remark 7.5.6. The case when σ is very close to τ is significantly more involved since it involves
the exact calculation of the volume of the tubular region and establishing tight upper and lower
bounds here is an open problem we are attempting to address in current work.

Lower bound: Proof Sketch

1. When d < D and σ ≥ 2τ the two manifolds M1 and M2 that we have considered thus far
are still identifiable because even when σ ≥ τ M2 has a “dimple” along the co-dimensions
that M1 does not. To show that the class Q is still not identifiable we require a different
construction. Consider the manifolds M1 and M2 with two points placed above and below
the manifold at a distance 2τ above their centers along each of the co-dimensions. Denote
these new manifolds M ′

1 and M ′
2. It is clear that H(M ′

1) 6= H(M ′
2), however Q′1 = Q′2

since the extra points hide the “dimple” and the two manifolds cannot be distinguished.

2. When d < D, and σ ≤ C0τ we return to our old constructions of M1 and M2. There is
however an important difference in that the two manifolds differ on full D-dimensional
sets, and one might suspect that TV (q1, q2) = O(τD) or perhaps O(σD−dτ d). As we show
in Section 7.7.1 however, TV (q1, q2) is still O(τ d), and we recover an identical lower
bound to the noiseless case.

Upper bound: Proof Sketch

We are interested in case when σ ≤ C0τ (in particular σ < τ/24 will suffice). Our proof will
involve two main steps which we sketch here.
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1. We first show that if we consider balls of sufficiently large radius ε (compared to σ) then
the probability mass in these balls is O(εd). This is a manifestation of the phenomenon
alluded to earlier: inside large enough balls the mass is concentrated around the lower
dimensional manifold. Precisely, define kε = infp∈M Q(Bε(p)). In Lemma 7.7.4, we show
that, if ε� σ is large, kε is of order Ω(εd).

2. There is however a disadvantage to considering balls that are too large. The homology of
the union of balls around the samples may no longer have the right homology. Using tools
from NSW, we show that we can balance these two considerations for manifolds with high
condition number, i.e. provided σ < τ/24, we can choose balls that are both large relative
to σ and whose union still has the correct homology.

We will prove the following main lemma in Section 7.7.
Lemma 7.5.7. LetNε be the ε-covering number of the submanifoldM . LetU =

⋃n
i=1 Bε+τ/2(Xi).

Let Ĥ = H(U). Then if

n >
1

kε
(log(Nε) + log(1/δ)) ,

P(Ĥ 6= H(M)) < δ as long as σ ≤ ε/2 and ε < (
√

9−
√

8)τ
2

.

Notice, that we require σ < (
√

9−
√

8)τ
4

which is satisfied if σ < τ/24 (for instance). To obtain the
upper bound set ε = 2σ, and observe that Nε = O(1/εd) = O(1/τ d) and kε = O(εd) = O(τ d).
This gives us that if

n ≥ C1

τ d

(
log

(
C2

τ d

)
+ log

(
1

δ

))
we recover the right homology with probability at least 1− δ. The upper bound on minimax risk
and resolution follows from similar arguments to those made previously.

7.5.4 Additive Noise

For additive noise we consider two cases. In the first case, we derive the minimax rates for
additive Gaussian noise under the somewhat restrictive assumption that C

√
Dσ < τ . This

problem is related of the problem of separating mixtures of Gaussians (which corresponds to the
case where the manifold is a collection of points and 2τ is the distance between the closest pair).
In this case have the following theorem.
Theorem 7.5.8. For all τ ≤ τ0(a, d) and 8

√
Dσ < τ ,

Rn �∗ e−nτ
d

,

where τ0(a, d) is a constant which depends on a and d. Also,

n(ε) �∗ (1/τ d) log(1/ε)

and
τn �∗ ((1/n) log(1/ε))1/d .
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As in the clutter noise case we need to first clean the data and then take a union of balls around
the points which survive. We analyze this procedure in Section 7.7.

Deconvolution

Here we consider more general known noise distributions but work over the class of distributions
Q(Φ) over manifolds with τ fixed. We first use deconvolution to estimate a deconvolved measure
P̂n which is concentrated around the manifold. We then draw samples from this measure, clean
them and construct a union of balls H around these samples, and show that H has the right
homology with high probability. The class of noise distributions we will consider satisfy the
following assumption on its density.
Assumption 4. Denote ρ(R) = inf |t|∞≤R |Φ?(t)|, whereR > 0, |t|∞ = max1≤j≤m |tj| and Φ?(t)
is the Fourier transform of the symmetric noise density Φ. We assume ρ(R) > 0.

This is a standard assumption in the literature on deconvolution (see [70, 113]), since as described
deconvolution requires us to divide by the Fourier transform of the noise which needs to be
bounded away from 0 for the procedure to be well behaved. The assumption is satisfied by a
variety of noise distributions including Gaussian noise. Our main result says that for this broad
class of noise distributions the deconvolution procedure described above will achieve an optimal
rate of convergence.
Theorem 7.5.9. In the additive noise case with τ fixed for Φ satisfying Assumption 4. Rn � e−n.
Hence, n(ε) � log(1/ε).

Lower Bound: Proof SketchTo obtain the lower bound one can consider the same construction
from the previous subsection with additive Gaussian noise. If τ is taken to be fixed we obtain the
desired bound.

Upper Bound: Proof Sketch Our proof of the upper bound follows similar lines to that of
Koltchinskii [113]. We deviate in two significant aspects. Koltchinskii only assumes an upper
bound on the density, which he shows is sufficient to estimate weak geometric characteristics
like the dimension of the manifold. To show that we can accurately reconstruct its homology we
require both an upper and lower bound and our methods are quite different. Koltchinskii uses an
epsilon net of the entire compact set containing the manifold critically in his construction and
his procedure is thus not implementable/practical. Our algorithm instead draws a small number
of samples from the deconvolved measure and uses those to estimate the homology resulting in
a practical procedure. We prove the following upper bound.
Lemma 7.5.10. Given n samples fromQ(Φ) with Φ satisfying Assumption 4, there existC1, C2, c1 >
0 such that P (H(H) 6= H(M)) ≤ C1e

−c1n, where H is a union of balls of radius 5ε+τ
2

centered
around m ≥ C2n samples drawn from the deconvolved measure P̂n with a kernel Ψ with param-
eters γ, ε (specified in the proof). The samples are cleaned using the deconvolved measure by
considering balls of radius 4ε at a threshold 2γ.
Remark 7.5.11. The cleaning procedure we use here is different from the Algorithm CLEAN.
We remove points around which a ball of appropriate radius has low probability mass under the
deconvolved measure. This is equivalent to using the deconvolved measure in place of the k-NN
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density estimate implicitly constructed by the CLEAN procedure.

Simple calculations show that this lemma together with the lower bound give the exponential
minimax rate described in Theorem 7.5.9.

7.6 Tight lower bound

In the previous sections we used Le Cam’s lemma to establish the lower bound

Rn = Ω
(
exp

(
−nτ d

))
for d ≥ 1 and D > d.

In this section we use a different construction based on the direct analysis of the likelihood ratio
test to show that

Rn = Ω

(
1

τ d
exp

(
−nτ d

))
,

as n → ∞ thus establishing rate optimal asymptotic minimax bounds for the problem. The
techniques we use here extend in a straightforward way to the noisy settings. Although, we do
not consider the extension here non-asymptotic bounds are also straightforward.

7.6.1 Coupon collector lower bound

We begin with a theorem from the book [141].
Lemma 7.6.1 (Theorem 3.8 of [141]). Let the random variableX denote the number of trials for
collecting each of the n types of coupons. Then for any constant c ∈ R, and m = n log n− cn,

lim
n→∞

P(X > m) = 1− exp (− exp (c)) .

7.6.2 Main result

Theorem 7.6.2. For any constant δ < 1, we have

Rn ≥ Ω

(
min

(
1

τ d
exp

(
−nτ d

)
, δ

))
as n→∞.

Proof. Notice that since

m = Θ

(
1

(4τ)d

)
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the theorem is implied by the statement that

n = m logm+m log

(
1

δ

)
=⇒ Rn ≥ cδ

for some constant c. We will focus on proving this claim.

Let us consider the case when samples are drawn according to P0. From Lemma 7.6.1 we have
that if

n = m logm+m log

(
1

δ

)
then the probability with which we do not see a point in each of the m spheres is

1− exp(− exp(− log 1/δ)) ≥ cδ

since δ < 1, for some constant c. It is easy to see that if we do not see a point in each of the m
spheres then

L(X) ≥ 1

m

1

(1− 1/m)n
..= Tm,n.

When n = m logm+m log
(

1
δ

)
,

Tm,n →
1

δ
> 1

so asymptotically the likelihood ratio test always rejects the null.

From this we can see the probability of a Type I error→ cδ, and RT
n ≥ cδ, which gives

Rn ≥
c

2
δ

as desired.

7.7 Technical proofs

7.7.1 Key technical lemmas from NSW

We will need two technical lemmas, which follow from the paper [146].
Lemma 7.7.1 (Ball volume lemma, Lemma 5.3 in [146]). Let p ∈ M . Now consider A =
M ∩Bε(p). Then

vol(A) ≥ (cos(θ))d vol(Bd
ε (p))

where Bd
ε (p) is the a d-dimensional ball in the tangent space at p, θ = sin−1 ε

2τ
.

Next, consider a collection of balls {Br(pi)}i=1,...,n centered around points pi on the manifold
and such that M ⊂ ∪li=1Br(pi).
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Lemma 7.7.2 (Sampling lemma, Lemma 5.1 in [146]). Let Ai = Br(pi) be a collection of sets
such that ∪li=1Ai forms a minimal cover of M . If Q(Ai) ≥ α, and

n >
1

α

(
log l + log

(
2

δ

))
then w.p. at least 1 − δ/2, each Ai contains at least one sample point, and M ⊂ ∪ni=1B2r(xi).
Further we have that l ≤ vol(M)

cosd(θ)vdrd
.

Proofs for the noiseless case

Lower bound Here we describe the densities on the two manifolds M1 and M2. There are two
sets of interest to us: W1 = M1 \M2 which corresponds to the two “holes” of radius 4τ in the
annulus, and W2 = M2 \M1 which corresponds to the d-dimensional piece added to smoothly
join the inner pieces of the two annuli in M2.

By construction, vol(W1) = 2vd(4τ)d where vd is the volume of the unit d-ball. vol(W2) is
somewhat tricky to calculate exactly due to the curvature of W2 but it is easy to see that vol(W2)
is also O(τ d) with the constant depending on d.

One of the densities is constructed in the following way, on the set of larger volume (betweenW1

and W2) we set f(x) = a, and evenly distribute the rest of the mass over the remaining portion
of the manifold (we are guaranteed that the mass on the rest of the manifold is at least a since
otherwise the constraint f(x) ≥ a can never be satisfied).

The other density is constructed to be equal (to the first density) outside the set on which the two
manifolds differ. The remaining mass is spread evenly on the set where they do differ. We are
again guaranteed that f(x) ≥ a by construction.

Let us now calculate the TV between these two densities. This is just the integral of the difference
of the densities over the set where one of the densities is larger. Since the two densities are equal
outside W1 ∪W2 and disjoint over W1 ∪W2 it is clear that

TV (p1, p2) = amax(vol(W1), vol(W2) ≤ O(aτ d)

with the constant depending on d. The lower bound follows from the calculations described
previously.

Upper bound The NSW lemma tells us that for

n > ζ1

(
log(ζ2) + log

(
1

δ

))
,

with

ζ1 =
vol(M)

a cosd θ1vol(Bd
ε/4)

,
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ζ2 =
vol(M)

cosd θ2vol(Bd
ε/8)

,

θ1 = sin−1 ε

8τ
and θ2 = sin−1 ε

16τ
,

we have P(Ĥ 6= H(M)) < δ.

By assumption, we have vol(M) ≤ C. We further take ε = τ/2. It is clear that in ζ1 and
ζ2 all terms except the ball volumes are constant. This gives us that ζ1 = C1/(aτ

d) and ζ2 =
C2/(aτ

d).

Now, the NSW lemma can be restated as if

n =
C1

τ d

(
log

C2

τ d
+ log(1/δ)

)
we recover the homology with probability at least 1− δ. Notice that this means that the minimax
risk ≤ δ.

A straightforward rearrangement of this gives us

Rn ≤ C2/(aτ
d) exp(−naτ d/C1)

for appropriate C1, C2. To bound the resolution we rewrite this as

Rn ≤ exp

(
−naτ

d

C1

+ log

(
C2

aτ d

))
.

One can verify that if

τ d ≤ C
log n log(1/ε)

n

for an appropriately large C, we have Rn ≤ ε as desired.

Proofs for the clutter noise case

Lower bound This is a straightforward extension of the noiseless case. The densities are con-
structed in an identical manner. The contribution to the densities from the clutter noise is identical
in each case. As in the analysis for the noiseless case we bound the total variation distance be-
tween the two densities. We have an additional factor of π which is the mixture weight of the
component corresponding to the density on the manifold.

TV (q1, q2) = πamax(vol(W1), vol(W2)) ≤ Cdπaτ
d.

Given this bound the calculations are identical to those in the noiseless case.

Upper bound As a preliminary step we will need to clean the data to eliminate points that are
far away from the manifold. Our analysis will show that Algorithm 5 will achieve this, with high
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probability. We will then show that taking a union of balls of the appropriate radius around the
remaining points will give us the correct homology, with high probability.

Let a = infx∈M f(x), which is strictly positive by assumption. Define,

A = tuber(M) and B = RD − tube2r(M)

where

r <
(
√

9−
√

8)τ

2
.

Following Niyogi et al. [147], we define

αs = inf
t∈A

Q(Bs(t)) andβs = sup
t∈B

Q(Bs(t))

where s = 2r. Then

αs ≥
vDs

D(1− π)

vol(Box)
+ πavdr

d cosd θ = α

and

βs ≤
vDs

D(1− π)

vol(Box)
= β

where θ = sin−1( r
2τ

). The second term of the bound on αs follows in two steps: first observe
that for any point x in A, Bs(x) ⊇ Br(t) where t is the closest point on M to x. Now, we use
Lemma 7.7.1 to bound Q(Br(t)).

We will now invoke Algorithm CLEAN on the data with threshold

t =

(
vDs

D(1− π)

vol(Box)
+
πavdr

d cosd θ

2

)
and radius 2r. Let I be the set of vertices returned.

Define the events

E1 =

{
{Xi : i ∈ I} ⊇ {Xi ∈ A} and {Xi : i ∈ Ic} ⊇ {Xi ∈ B}

}

and
E2 =

{
M ⊂

⋃
i∈I

B2r(Xi)
}
.

We will show that E1 and E2 both hold with high probability.

For E1 to hold, we need β to be not too close to α, in particular β < α/2 will suffice. This
happens with probability 1, for τ small if d < D. By Lemma 7.7.8, E1 happens with probability
at least 1− δ/2, provided that n > 4κ log κ, where

κ = max

(
1 +

200

3πavdrd cosd(θ)
log

(
2

δ

)
, 4

)
.
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Now we turn to E2. Let p1, . . . , pN ∈ M be such that Br(p1), . . . , Br(pN) forms a minimal
covering of M . From Lemma 7.7.2, we have that N ≤ vol(M)

cosd(θ)vdrd
. Let Aj = Br(pj). Then

Q(Aj) ≥
vDs

D(1− π)

vol (Box)
+ πavdr

d cosd(θ)

≥ πavdr
d cosd(θ) ≡ γ.

Using again Lemma 7.7.2, if n > 1
γ

(
logN + log

(
2
δ

))
, then with probability at least 1 − δ/2,

each Ai contains at least one sample point, and hence M ⊂
⋃
i∈I B2r(Xi), which implies that E2

holds.

Combining these we are now ready to again apply the main result from NSW. We restate this
lemma in a slightly different form here.
Lemma 7.7.3. [NSW] Let S be a set of points in the tubular neighborhood of radius R around
M . Let U =

⋃
x∈S Bε(x). If S is R-dense in M then Ĥ(U) = H(M) for all R < (

√
9−
√

8)τ ,
if ε = R+τ

2
.

Combining the previously established facts with the lemma above we obtain Lemma 7.5.4. Tak-
ing r = (

√
9 −
√

8)τ/4 in that lemma, we can see that if n ≥ C1

πτd
(log C2

τd
+ log(C3/ε)) then we

recover the correct homology with probability at least 1− ε.

This is a sample complexity upper bound. Corresponding upper bounds on the minimax risk and
resolution follow the arguments of the noiseless case.

Proofs for the tubular noise case

Lower bound In this setting we get samples uniformly in a full dimensional tube around the
manifold. We are interested in the case when σ ≤ C0τ for a small constant C0.

Let us denote the density q1 at a point in the tube around M1 by θ1 and the density q2 around M2

by θ2. Since, it is not straightforward to decide whether θ1 ≤ θ2 or not we will need to consider
both possibilities. We will show the calculations assuming θ1 ≤ θ2 (the other calculation follows
similarly).

Now, remember from the definition of total variation TV = q1(G) − q2(G) where G is the set
where q1 > q2. We need an upper bound on total variation and so it suffices to use TV ≤
q1(G+)− q2(G−) where G+ and G− are sets containing and contained in G respectively.

Since, θ1 < θ2 we have G is contained in the holes (of radius 4τ ) of the two annuli, and G
contains a strip of width at least 2τ − 2σ in these holes. These are G+ and G−.

We need to upper bound the mass under q1 in G+ and lower bound the mass under q2 in G−.
We can now follow the a similar argument to the one made below (in the tubular noise upper
bound) to obtain bounds on the various volumes. In each case, the volume of the tubular region
is Ω(vol(M)σD−d), and bothM1 andM2 have constant volume, in particular c1 ≤ vol(M) ≤ C1.
Giving us that the tubular region has volume Ω(σD−d).
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It is also clear that both G+ and G− have volumes that are Ω(σD−dτ d) (these can be calculated
exactly since they are cylindrical with no additional curvature but we will not need this here).
Here we use that σ is not too close to τ (and in particular is at most a constant fraction of
τ ).

Since q1 and q2 are both uniform in their respective tubes, it follows that

TV (q1, q2) ≤ Ω

(
σD−dτ d

σD−d

)
= Ω(τ d).

Notice, that we assumed θ1 ≤ θ2 above. The other calculation is nearly identical and we will not
reproduce it here.

Upper bound Denote by Mσ the tube of radius σ around M . Recall that we are interested in the
case when σ � τ , and ε = τ/2.
Lemma 7.7.4. If ε� σ (in particular ε ≥ 2σ will suffice)

kε = Ω(εd).

Proof. For any p ∈M ,

Q(Bε(p)) =
vol(Bε(p) ∩Mσ)

vol(Mσ)
.

We will prove the claim by deriving derive an upper bound on the denominator and a lower bound
on the numerator using packing/covering arguments, both bounds holding uniformly in p.

Upper bound on vol(Mσ)
We consider a covering ofM by γ-balls of d dimensions, and denote the number of balls required
Nγ , and the centers Cγ . It is clear Nγ is bounded by the number of balls of radius γ/2 one can
pack in M . A simple volume argument then gives

Nγ ≤ C
vol(M)

(γ/2)d
,

for some constant C. Given this covering of M , it is easy to see that γ + σ D-dimensional balls
around each of the centers in Cγ covers the tubular region. Thus, we have

vol(Mσ) ≤ vDNγ(γ + σ)D ≤ vDC
vol(M)

(γ/2)d
(γ + σ)D,

for any γ. Selecting γ = σ, we have

vol(Mσ) ≤ CD,d vol(M)σD−d

for some constant CD,d depending on the manifold and ambient dimensions, independent of σ.

Lower bound on vol(Bε(p) ∩Mσ)
Define

A(p) = M ∩Bε−σ(p),

B(p) = M ∩Bε(p),

Bσ(p) = Mσ ∩Bε(p).

190



Denote with Nσ the number of points we can “pack” in A(p) such that the distance between any
two points is at least 2σ. Denote the points themselves by the set C. Then,

vol(Bσ) ≥ NσvDσ
D

where vD is the volume of the unit ball in D-dimensions. To see this just note that every point
that is at most σ away from any point in C is contained in Bσ, and these sets are disjoint so the
union of σ balls around C is contained in Bσ.

Now, to prove a lower bound on Nσ we invoke some ideas from [146]. Consider, the map
f described in Lemma 5.3 in [146], which projects the manifold onto its tangent space, and
observe its action on A(p). It is clear by their discussion that this map projects the manifold onto
a superset of a ball of radius (ε − σ) cos θ, for θ = sin−1( ε−σ

2τ
). In addition to being invertible,

this map is a projection, and only shrinks distances between points. So if we can derive a lower
bound on the number of points we can “pack” in this projection then it is also a lower bound on
Nσ. Now, the set is just a ball in d-dimensions of radius (ε − σ) cos θ. Using, the fact that 2σ
balls around each of the points in C must cover this set a simple volume argument shows

Nσ(2σ)d ≥ vd((ε− σ) cos θ)d,

i.e.

Nσ ≥ CD,d

(
(ε− σ) cos θ

σ

)d
,

which gives a lower bound.

Putting the upper and lower bound together, we get

kε = inf
p∈M

Q(Bε(p))

≥ C ′D,d
1

vol(M)σD−d

(
(ε− σ) cos θ

σ

)d
σD

= C ′D,d
[(ε− σ) cos θ]d

vol(M)
,

for some quantity C ′D,d, independent of σ.

We will prove the following main lemma.
Lemma 7.7.5. LetNε be the ε-covering number of the submanifoldM . LetU =

⋃n
i=1 Bε+τ/2(Xi).

Let Ĥ = H(U). Then if

n >
1

kε
(log(Nε) + log(1/δ)) ,

P(Ĥ 6= H(M)) < δ as long as

σ ≤ ε/2 and ε <
(
√

9−
√

8)τ

2
.

Proof. This is a straightforward consequence of Lemma 7.7.3 and Lemma 7.7.2.
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Proof of Theorem 7.5.8 (additive case)

Lower Bound

From Lemma 7.7.9 we see that convolution only decreases the total variation distance, and so
the lower bound for the noiseless case is still valid here.

Upper Bound

We will again proceed by a similar argument to the clutter noise case. Let
√
Dσ < r, R = 8r

and s = 4r and set αs = infp∈AQ(Bs(p)) and βs = supp∈B Q(Bs(p)), where A = tuber(M),
B = RD − tubeR(M).

As in the clutter noise case, we will need the two events E1 and E2 to hold with high probabil-
ity.

We will use the following version of a common χ2 inequality, established by Niyogi et al.
[147].
Lemma 7.7.6. For a D-dimensional Gaussian random vector

P(||ε|| >
√
T ) ≤ (ze1−z)D/2

where z = T
Dσ2

Using this inequality,
P(||ε|| ≥ 4r) ≤ (16 exp{−15})D/2 ≡ t

and
P(||ε|| ≥ 2r) ≤ (4 exp{−3})D/2 ≡ γ.

Observe that these are both constants. Next, it is easy to see that

αs ≥ Q(Bs−r(p)) ≥ avdr
d(cos θ)d(1− γ) ≡ α,

where θ = sin−1(r/(2τ)), and
βs ≤ vD(8r)Dt ≡ β.

As in the clutter noise, we need β to be sufficiently smaller than α if we are to successfully clean
the data. As we are interested in the case when r is small, if D > d then we can take β ≤ α/2,
while, if D = d then we will need that the dimension is quite large (observe that both γ and t
tend to zero rapidly rapidly as D grows).

We are now in a position to invoke the Lemma 7.7.8 to ensure E1 holds with high probability
for n large enough. Further, one can see that the mass of an r/2-ball close to manifold is at
least

Q(Ai) ≥ avd(1− γ)(cos θ)d(r/2)d
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for θ = sin−1(r/(4τ)). This quantity is also O(rd) as desired, and for n large enough we can
ensure E2 holds with high probability. Under the condition on σ, and r we have r ≤ (

√
9−
√

8)τ
8

.
At this point we can invoke Theorem 5.1 from the paper [147] to see that for n �∗ 1

τd
we recover

the correct homology with high probability.

Deconvolution

Upper bound Recall, that the kernel Ψ satisfies

Ψ{x : |x| ≥ ε} ≤ γ (7.2)

with ε and γ being small constants that we will specify in our proof.

The starting point of our proof will be a uniform concentration result from Koltchinskii [113].
Lemma 7.7.7. Consider the event

A = {max
x
|P̂n(B2ε(x))− P̂Ψ(B2ε(x))| < γ}.

For any small constants ε and γ, there exists q ∈ (0, 1) such that

P (Ac) ≤ 4qn.

This lemma tells us that the deconvolved measure is uniformly close to a smoothed (by the kernel
Ψ) version of the true density.

Our first step will be to draw

m >
1

ω

(
log l + log

(
2

δ

))
samples from P̂n, where ω = infx∈M P̂n(B2ε(x)), and l is the 2ε covering number of the mani-
fold, and δ = 8qn. Denote, this sample Z. We know that l ≤ vol(M)

cosd(θ)vd(2ε)d
.

Let us first show that we can choose ε and γ so that ω is at least a small positive constant.

ω = inf
x∈M

P̂n(B2ε(x))

≥ inf
x∈M

PΨ(B2ε(x))− γ.

Notice that,
PΨ(B2ε) ≥ P (Bε)Ψ(x : |x| ≤ ε).

So, we have,

ω ≥ inf
x∈M

P (Bε(x))(1− γ)− γ.

Using the ball volume lemma we have,

ω ≥ avdε
d cosd θ(1− γ)− γ
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where θ = sin−1(ε/2τ). Notice, that τ is a fixed constant, and ε and γ are constants to be chosen
appropriately. It is clear that for γ ≤ Cd,τ ε, with Cd,τ small we have

ω ≥ c

for a small constant c which depends on τ ,d and our choices of ε and γ.

We now use the sampling lemma 7.7.2 to conclude that w.p. at least 1− 4qn,

1. The m samples are 4ε dense around M .
2. M ⊂ ∪mi=1B4ε(xi)

Our next step will be a cleaning step. This cleaning procedure differs from the Algorithm
CLEAN in that we use the deconvolved measure to clean the data. In particular, we will re-
move all points from Z for which P̂n(B4ε(Zi)) ≤ 2γ. Denote the remaining points by W . Our
estimator will then be constructed from

H =
⋃

B 5ε+τ
2

(Wi).

To analyze this cleaning procedure, we use the uniform concentration lemma 7.7.7 above, and
consider the case when event A happens.

1. All points far away from M are eliminated: In particular, for any point x if we have

dist(B4ε(x),M) ≥ ε

then the corresponding point is eliminated.

To see this is simple. We eliminated all points with deconvolved empirical mass P̂n(B4ε) <
2γ. Since, we are assuming eventA happened, we have for any remaining point PΨ(B4ε) >
γ. Now, we have that

Ψ{x : |x| ≥ ε} ≤ γ.

From this we see that some part of B4ε must be within ε of M , and we have arrived at a
contradiction.

2. All points close to M are kept: In particular, for any point x if

dist(x,M) ≤ 2ε

then the corresponding point is kept.

We need to show P̂n(B4ε(x)) ≥ 2γ. Notice, that P̂n(B4ε(x)) ≥ P̂n(B2ε(π(x))) where
π(x) is the projection of x onto M . This quantity is just ω.

To finish, we need to show that we can choose ε and γ such that ω ≥ 2γ. Since, ω ≥
avdε

d cosd θ(1− γ)− γ which as a function of γ is continuous, bounded from below by a
constant depending on τ , d and ε and monotonically increasing as γ decreases we have for
γ small enough

ω ≥ 2γ.
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3. The set H has the right homology: We have shown that the cleaning eliminates all points
outside a tube of radius 5ε, and further keeps all points in a tube of radius 2ε. From the
sampling result we know the points that we keep are 4ε dense and that M ⊂ ∪mi=1B4ε(xi).
We can now apply lemma 7.7.3 to conclude that H has the right homology provided

ε <
(
√

9−
√

8)τ

5
.

Since τ is a fixed constant we can always choose ε small enough to satisfy this condition.
To review, we need to select γ and ε to satisfy three conditions

(a) ω ≥ avdε
d cosd θ(1− γ)− γ has to be atleast a small positive constant.

(b) ω ≥ 2γ.

(c) ε < (
√

9−
√

8)τ
5

.

Each of these can be satisfied by choosing γ and ε small enough.

Now, returning to m. We have

m >
1

ω

(
log l + log

(
2

δ

))
where ω = infx∈M P̂n(B2ε(x)), and l is the 2ε covering number of the manifold l ≤

vol(M)
cosd(θ)vd(2ε)d

, and δ = 8qn. It is clear that all terms except those in n are constant. In
particular it is easy to see that

m ≥ Cn

for C large enough is sufficient.

From this we can conclude with probability at least 1 − 8qn our procedure will construct an
estimator with the correct homology. Since, q ∈ (0, 1) the success probability can be re-written
as at least 1− e−cn for c small enough. Together this gives us the deconvolution lemma.

7.7.2 Additional technical lemmas

The cleaning lemma

In this section we sharpen Lemma 4.1 of Niyogi et al. [147], also known as the A-B lemma,
by using Bernstein’s inequality instead of Hoeffding’s inequality. This modification is crucial to
obtain minimax rates.
Lemma 7.7.8. Let βs ≤ β < α/2 ≤ αs/2. If n > 4β log β, where

β = max

(
1 +

200

3α
log

(
1

δ

)
, 4

)
,

then procedure CLEAN(α+β
2

) will remove all points in region B and keep all points in region A
with probability at least 1− δ.
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Proof. We use the notation established in section 7.5.2. We first analyze the set A.

For a point Xi in A, let q = q(i) = Q(Bs(Xi)), and define,

Zj = I(Xj ∈ Bs(Xi)), j 6= i,

where I denotes the indicator function. Notice that the random variables {Zj, j 6= i} are inde-
pendent Bernoulli with common mean q.

We will consider two cases.

Case 1: α ≤ q ≤ 2α.
Notice that if

q − 1

n− 1

∑
j 6=i

Zj ≤
α

4

the point Xi will not be removed. By Bernstein’s inequality, the probability that Xi will instead
be removed is

P

(
q − 1

n− 1

∑
j 6=i

Zj ≥
α

4

)
≤ exp

{
−1

2

(n− 1)(α/4)2

2α + α/12

}
≤ exp

{
− 3

200
(n− 1)α

}
.

Case 2: q > 2α.
In this case if

q − 1

n− 1

∑
j 6=i

Zj ≤ q − 3α

4

the point Xi will be removed. Another application of Bernstein’s inequality yields

P

(
q − 1

n− 1

∑
j 6=i

Zj ≥ q − 3α

4

)

≤ exp

{
−1

2

(n− 1)(q − 3α/4)2

q + (q − 3α/4)/3

}
≤ exp

{
−1

2
(n− 1)

[
q

2
+

9α2

32p
− 3α

4

]}
≤ exp

{
−(n− 1)α

8

}
.

Now, consider a point Xi in the region B, and define q and the Zjs in an identical way. This time
if

1

n− 1

∑
j 6=i

Zj − q ≤
α

4
,
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the point Xi will not be removed. By Bernstein’s inequality,

P

(
1

n− 1

∑
j 6=i

Zj − q ≥
α

4

)
≤ exp

{
−1

2

(n− 1)(α/4)2

α/2 + α/12

}
≤ exp

{
− 3

56
(n− 1)α

}
.

Putting all the pieces together, we obtain that the cleaning procedure succeeds on all points with
probability at least n exp

{
− 3

200
(n− 1)α

}
. This requires,

n− 1 >
200

3α

(
log n+ log

(
1

δ

))
i.e.

n > 1 +
200

3α
log

(
1

δ

)
+

200

3α
log n.

If δ < 1/2, then 1 + 200
3α

log
(

1
δ

)
> 200

3α
, so it is enough to solve

n > x+ x log n

with x = 1 + 200
3α

log
(

1
δ

)
. The result of the lemma follows.

Convolution only decreases total variation

Lemma 7.7.9. Let P and Q two probability measures in RD with common dominating measure
µ. Then,

TV(P ? Φ, Q ? Φ) ≤ CφTV(P,Q).

where ? denotes deconvolution and Φ is a probability measure on RD.

Proof. This is a standard result, but we provide a proof for completeness. Let p ? φ denote the
Lebesgue density of the probability distribution P ? Φ, i.e.

p ? φ(z) =

∫
φ(z − x)p(x)dµ(x), z ∈ RD.
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Similarly, q ? φ denotes the analogous quantity for Q ? Φ. Then,

2TV(P ? Φ, Q ? Φ) =

∫
RD
|p ? φ(z)− q ? φ(z)| dz

=

∫
RD

∣∣∣∣∫ φ(z − x)p(x)dµ(x)

−
∫
φ(z − x)p(x)dµ(x)

∣∣∣∣ dz
=

∫
RD

∣∣∣∣∫ φ(z − x)(p(x)

−q(x))dµ(x)| dz

≤
∫
RD

∫
|φ(z − x)(p(x)

−q(x))| dµ(x)dz

≤
∫ ∫

RD
φ(z − x)dz |p(x)− q(x)| dµ(x)

=

∫
|(p(x)− q(x)| dµ(x)

= 2TV(P,Q).
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Chapter 8

Cluster Trees on Manifolds

In this chapter we investigate the problem of estimating the cluster tree for a density f supported
on or near a smooth d-dimensional manifold M isometrically embedded in RD. We analyze a
modified version of a k-nearest neighbor based algorithm recently proposed by Chaudhuri and
Dasgupta [44]. The main results of this chapter show that under mild assumptions on f and
M , we obtain rates of convergence that depend on d only but not on the ambient dimension
D. We also show that similar (albeit non-algorithmic) results can be obtained for kernel density
estimators. We sketch a construction of a sample complexity lower bound instance for a natural
class of manifold oblivious clustering algorithms. We further briefly consider the known manifold
case and show that in this case a spatially adaptive algorithm achieves better rates.

8.1 Introduction

In this chapter, we study the problem of estimating the cluster tree of a density when the density
is supported on or near a manifold. Let X := {X1, . . . , Xn} be a sample drawn i.i.d. from
a distribution P with density f . The connected components Cf (λ) of the upper level set {x :
f(x) ≥ λ} are called density clusters. The collection C = {Cf (λ) : λ ≥ 0} of all such clusters
is called the cluster tree and estimating this cluster tree is referred to as density clustering.

The density clustering paradigm is attractive for various reasons. One of the main difficulties
of clustering is that often the true goals of clustering are not clear and this makes clusters, and
clustering as a task seem poorly defined. Density clustering however is estimating a well defined
population quantity, making its goal, consistent recovery of the population density clusters, clear.
Typically only mild assumptions are made on the density f and this allows extremely general
shapes and numbers of clusters at each level. Finally, the cluster tree is an inherently hierarchical
object and thus density clustering algorithms typically do not require specification of the “right”
level, rather they capture a summary of the density across all levels.

The search for a simple, statistically consistent estimator of the cluster tree has a long history.
Hartigan [90] showed that the popular single-linkage algorithm is not consistent for a sample
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from RD, with D > 1. Recently, Chaudhuri and Dasgupta [44] analyzed an algorithm which
is both simple and consistent. The algorithm finds the connected components of a sequence of
carefully constructed neighborhood graphs. They showed that, as long as the parameters of the
algorithm are chosen appropriately, the resulting collection of connected components correctly
estimates the cluster tree with high probability.

In this chapter, we are concerned with the problem of estimating the cluster tree when the density
f is supported on or near a low dimensional manifold. The motivation for this work stems from
the problem of devising and analyzing clustering algorithms with provable performance that
can be used in high dimensional applications. When data live in high dimensions, clustering
(as well as other statistical tasks) generally become prohibitively difficult due to the curse of
dimensionality, which demands a very large sample size. In many high dimensional applications
however data is not spread uniformly but rather concentrates around a low dimensional set. This
so-called manifold hypothesis motivates the study of data generated on or near low dimensional
manifolds and the study of procedures that can adapt effectively to the intrinsic dimensionality
of this data.

8.1.1 Contributions

Here is a brief summary of the main contributions of this chapter:

1. We show that the simple algorithm studied in the paper [44] is consistent and has fast rates
of convergence for data on or near a low dimensional manifold M . The algorithm does
not require the user to first estimate M (which is a difficult problem). In other words, the
algorithm adapts to the (unknown) manifold.

2. We show that the sample complexity for identifying salient clusters is independent of the
ambient dimension.

3. We sketch a construction of a sample complexity lower bound instance for a natural class
of clustering algorithms that we study in this chapter.

4. We show that in the known manifold case a modified spatially adaptive algorithm achieves
better rates, similar to the near minimax-optimal rates of Chaudhuri and Dasgupta [44].

5. We introduce a framework for studying consistency of clustering when the distribution is
not supported on a manifold but rather, is concentrated near a manifold. The generative
model in this case is that the data are first sampled from a distribution on a manifold and
then noise is added. The original data are latent (unobserved). We show that for certain
noise models we can still efficiently recover the cluster tree on the latent samples.

6. We show similar statistical results for the level sets of kernel density estimates for an
appropriately chosen bandwidth. Computing the level sets of the kernel density estimate is
however a challenging problem that we do not address in this thesis.

7. We present some simulations to confirm our theoretical results.
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8.1.2 Related Work

The idea of using probability density functions for clustering dates back to Wishart [203]. Har-
tigan [90] expanded on this idea and formalized the notions of high-density clustering, of the
cluster tree and of consistency and fractional consistency of clustering algorithms. In particular,
Hartigan [90] showed that single linkage clustering is consistent when D = 1 but is only frac-
tionally consistent when D > 1. Stuetzle and R. [181] and Stuetzle [180] have also proposed
procedures for recovering the cluster tree. None of these procedures however, come with the
theoretical guarantees given by Chaudhuri and Dasgupta [44], which demonstrated that a gener-
alization of Wishart’s algorithm allows one to estimate parts of the cluster tree for distributions
with full-dimensional support near-optimally under rather mild assumptions. This paper forms
the starting point for our work and is reviewed in more detail in the next section.

In the last two decades, much of the research effort involving the use of nonparametric density
estimators for clustering has focused on the more specialized problems of optimal estimation of
the support of the distribution or of a fixed level set. However, consistency of estimators of a
fixed level set does not imply cluster tree consistency, and extending the techniques and analyses
mentioned above to hold simultaneously over a variety of density levels is non-trivial. See for
example the papers [52, 53, 135, 155, 159, 160, 161, 172, 193, 200], and references therein.
Estimating the cluster tree has more recently been considered by Kpotufe and von Luxburg [117]
who also give a simple pruning procedure for removing spurious clusters. Steinwart [178] and
Sriperumbudur and Steinwart [177] propose procedures for determining recursively the lowest
split in the cluster tree and give conditions for asymptotic consistency with minimal assumptions
on the density.

8.2 Background and Assumptions

Let P be a distribution supported on an unknown d-dimensional manifoldM . We assume that the
manifold M is a d-dimensional Riemannian manifold without boundary embedded in a compact
set X ⊂ RD with d < D. We further assume that the volume of the manifold is bounded from
above by a constant, i.e., vold(M) ≤ C. The main regularity condition we impose on M is that
its condition number be not too large. The condition number of M is 1/τ , where τ is the largest
number such that the open normal bundle about M of radius r is imbedded in RD for every
r < τ . The condition number is discussed in more detail in the previous chapter as well as the
paper [146].

The Euclidean norm is denoted by ‖ · ‖ and vd denotes the volume of the d-dimensional unit
ball in Rd. B(x, r) denotes the full-dimensional ball of radius r centered at x and BM(x, r) ..=
B(x, r)∩M . For Z ⊂ Rd and σ > 0, define Zσ = Z+B(0, σ) and ZM,σ = (Z+B(0, σ))∩M .
Note that Zσ is full dimensional, while if Z ⊆M then ZM,σ is d-dimensional.

Let f be the density of P with respect to the uniform measure on M . For λ ≥ 0, let Cf (λ) be
the collection of connected components of the level set {x ∈ X : f(x) ≥ λ} and define the
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cluster tree of f to be the hierarchy C = {Cf (λ) : λ ≥ 0}. For a fixed λ, any member of Cf (λ)
is a cluster. For a cluster C its restriction to the sample X is defined to be C[X] = C ∩X. The
restriction of the cluster tree C to X is defined to be C[X] = {C ∩X : C ∈ C}. Informally, this
restriction is a dendrogram-like hierarchical partition of X.

To give finite sample results, following Chaudhuri and Dasgupta [44], we define the notion of
salient clusters. Our definitions are slight modifications of those in Chaudhuri and Dasgupta [44]
to take into account the manifold assumption.
Definition 9. ClustersA andA′ are (σ, ε) separated if there exists a nonempty S ⊂M such that:

1. Any path along M from A to A′ intersects S.

2. supx∈SM,σ f(x) < (1− ε) infx∈AM,σ∪A′M,σ f(x).

Chaudhuri and Dasgupta [44] analyze a robust single linkage (RSL) algorithm (in Figure 8.1).
An RSL algorithm estimates the connected components at a level λ in two stages. In the first
stage, the sample is cleaned by thresholding the k-nearest neighbor distance of the sample points
at a radius r and then, in the second stage, the cleaned sample is connected at a connection radius
R. The connected components of the resulting graph give an estimate of the restriction Cf (λ)[X].
In Section 8.4 we prove a sample complexity lower bound for the class of RSL algorithms which
we now define.
Definition 10. The class of RSL algorithms refers to any algorithm that is of the form described
in the algorithm in Figure 8.1 and relying on Euclidean balls, with any choice of k, r and R.

We define two notions of consistency for an estimator Ĉ of the cluster tree:
Definition 11 (Hartigan consistency). For any sets A, A′ ⊂ X , let An (resp., A′n) denote the
smallest cluster of Ĉ containing A∩X (resp, A′ ∩X). We say Ĉ is consistent if, whenever A and
A′ are different connected components of {x : f(x) ≥ λ} (for some λ > 0), the probability that
An is disconnected from A′n approaches 1 as n→∞.
Definition 12 ((σ, ε) consistency). For any sets A, A′ ⊂ X such that A and A′ are (σ, ε) sepa-
rated, let An (resp., A′n) denote the smallest cluster of Ĉ containing A ∩X (resp, A′ ∩X). We
say Ĉ is consistent if, whenever A and A′ are different connected components of {x : f(x) ≥ λ}
(for some λ > 0), the probability that An is disconnected from A′n approaches 1 as n→∞.

The notion of (σ, ε) consistency is similar that of Hartigan consistency except restricted to (σ, ε)
separated clusters A and A′, and typically associated with a finite sample of size n. Chaudhuri
and Dasgupta [44] prove the following theorem, establishing finite sample bounds for a particular
RSL algorithm. In this theorem there is no manifold and f is a density with respect to the
Lebesgue measure on RD.
Theorem 8.2.1. There is a constant C such that the following holds. Suppose that we run the
algorithm in Figure 8.1 with

R =
√

2r and k = C

(
D log n

ε2

)
log2(1/δ)
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1. For each Xi, rk(Xi) := inf{r : B(Xi, r) contains k data points}.
2. As r grows from 0 to∞:

(a) Construct a graph Gr,R with nodes {Xi : rk(Xi) ≤ r} and edges (Xi, Xj) if
‖Xi −Xj‖ ≤ R.

(b) Let C(r) be the connected components of Gr,R.
3. Denote Ĉ = {C(r) : r ∈ [0,∞)} and return Ĉ.

Figure 8.1: Robust Single Linkage (RSL) Algorithm

then with probability at least 1− δ, the algorithm output Ĉ is (σ, ε) consistent provided

λ ≥ 1

vD(σ/2)D
k

n

(
1 +

ε

2

)
.

The theorem as stated does not explicitly give a sample complexity bound but it is straightforward
to obtain one by plugging in the value for k and solving for n in the inequality that restricts λ to
be large enough (as a function of n).

In particular, notice that if

n ≥ O

(
D

λε2vD(σ/2)D
log

D

λε2vD(σ/2)D

)
then we can resolve any pair of (σ, ε) clusters at level at least λ. It is important to note that this
theorem does not apply to the setting when distributions are supported on a lower dimensional
set for at least two reasons: (1) the density f is singular with respect to the Lebesgue measure
on X and so the cluster tree is trivial, and (2) the definitions of saliency with respect to X are
typically not satisfied when f has a lower dimensional support.

8.3 Clustering on Manifolds

In this section we show that the RSL algorithm can be adapted to recover the cluster tree of a
distribution supported on a manifold of dimension d < D with the rates depending only on d. In
place of the cluster salience parameter σ, our rates involve a new parameter ρ

ρ := min

(
3σ

16
,
ετ

72d
,
τ

16

)
.

The precise reason for this definition of ρ will be clear from the proofs (particularly of Lemma
8.3.3) but for now notice that in addition to σ it is dependent on the condition number 1/τ and
deteriorates as the condition number increases. Finally, to succinctly present our results we use
µ := log n+ d log(1/ρ).
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Theorem 8.3.1. There are universal constants C1 and C2 such that the following holds. For any
δ > 0, 0 < ε < 1/2, run the algorithm in Figure 8.1 on a sample X drawn from f , where the
parameters are set according to the equations

R = 4ρ and k = C1 log2(1/δ)(µ/ε2).

Then with probability at least 1 − δ, Ĉ is (σ, ε) consistent. In particular, the clusters containing
A[X] and A′[X], where A and A′ are (σ, ε) separated, are internally connected and mutually
disconnected in C(r) for r defined by

vdr
dλ =

1

1− ε/6

(
k

n
+
C2 log(1/δ)

n

√
kµ

)
provided

λ ≥ 2

vdρd
k

n
.

Before we prove this theorem a few remarks are in order:

1. To obtain an explicit sample complexity, as in Theorem 8.2.1, we plug in the value of k and
solve for n from the inequality restricting λ. The sample complexity of the RSL algorithm
for recovering (σ, ε) clusters at level at least λ on a manifold M with condition number at
most 1/τ is

n = O

(
d

λε2vdρd
log

d

λε2vdρd

)
where ρ = C min (σ, ετ/d, τ). Ignoring constants that depend on d the main difference
between this result and the result of Chaudhuri and Dasgupta [44] (Theorem 8.2.1) is that
our results only depend on the manifold dimension d and not the ambient dimension D
(typically D � d). There is also a dependence of our result on 1/(ετ)d, for ετ � σ. In
Section 8.4 we sketch the construction of an instance that suggests that this dependence is
not an artifact of our analysis and that the sample complexity of the class of RSL algorithms
is at least n ≥ 1/(ετ)Ω(d).

2. Another aspect is that our choice of the connection radius R depends on the (typically)
unknown ρ, while for comparison, the connection radius in Chaudhuri and Dasgupta [44]
is chosen to be

√
2r. Under the mild assumption that λ ≤ nO(1) (which is satisfied for

instance, if the density on M is bounded from above), we show in Section 8.9.8 that an
identical theorem holds for R = 4r. k is the only real tuning parameter of this algorithm
whose choice depends on ε and an unknown leading constant.

3. It is easy to see that this theorem also establishes consistency for recovering the entire
cluster tree by selecting an appropriate schedule on σn, εn and kn that ensures that all
clusters are distinguished for n large enough (see Chaudhuri and Dasgupta [44] for a formal
proof).

Our proofs structurally mirror those in Chaudhuri and Dasgupta [44]. We begin with a few
technical results in 8.3.1. In Section 8.3.2 we establish (σ, ε) consistency by showing that the
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clusters are mutually disjoint and internally connected. The main technical challenge is that the
curvature of the manifold, modulated by its condition number 1/τ , limits our ability to resolve the
density level sets from a finite sample, by limiting the maximum cleaning and connection radii
the algorithm can use. In what follows, we carefully analyze this effect and show that somewhat
surprisingly, despite this curvature, essentially the same algorithm is able to adapt to the unknown
manifold and produce a consistent estimate of the entire cluster tree. Similar manifold adaptivity
results have been shown in classification [54] and in non-parametric regression [30, 116].

8.3.1 Technical results

In our proof, we use the uniform convergence of the empirical mass of Euclidean balls to their
true mass. In the full dimensional setting of Chaudhuri and Dasgupta [44], this follows from
standard VC inequalities. To the best of our knowledge however sharp (ambient dimension
independent) inequalities for manifolds are unknown. We get around this obstacle by using
the insight that, in order to analyze the RSL algorithms, uniform convergence for Euclidean balls
around the sample points and around a fixed minimum s-netN ofM (for an appropriately chosen
s) suffice to analyze the RSL algorithm.

Recall, an s-netN ⊆M is such that every point of M is at a distance at most s from some point
in N . Let

Bn,N :=
{
B(z, s) : z ∈ N ∪X, s ≥ 0

}
be the collection of balls whose centers are sample or net points. We are ready to state our
uniform convergence lemma. The proof is in Section 8.9.3.
Lemma 8.3.2 (Uniform Convergence). Assume k ≥ µ. Then there exists a constant C0 such that
the following holds. For every δ > 0, with probability > 1− δ, for all B ∈ Bn,N , we have:

P (B) ≥ Cδµ

n
=⇒ Pn(B) > 0,

P (B) ≥ k

n
+
Cδ
n

√
kµ =⇒ Pn(B) ≥ k

n
,

P (B) ≤ k

n
− Cδ

n

√
kµ =⇒ Pn(B) <

k

n
,

where Cδ := 2C0 log(2/δ), and µ := 1 + log n + log |N | = Cd + log n + d log(1/s). Here
Pn(B) = |X ∩ B|/n denotes the empirical probability measure of B, and C is a universal
constant.

Next we provide a tight estimate of the volume of a small ball intersected with M . This bounds
the distortion of the apparent density due to the curvature of the manifold and is central to many
of our arguments. Intuitively, the claim states that the volume is approximately that of a d-
dimensional Euclidean ball, provided that its radius is small enough compared to τ . The lower
bound is based on Lemma 5.3 of Niyogi et al. [146] while the upper bound is based on a modifi-
cation of the main result of Chazal [46].
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Lemma 8.3.3 (Ball volumes). Assume r < τ/2. Define S := B(x, r) ∩M for a point x ∈ M .
Then (

1− r2

4τ 2

)d/2
vdr

d ≤ vold(S) ≤ vd

(
τ

τ − 2r1

)d
rd1,

where r1 = τ − τ
√

1− 2r/τ . In particular, if r ≤ ετ/72d for 0 ≤ ε < 1, then

vdr
d(1− ε/6) ≤ vold(S) ≤ vdr

d(1 + ε/6).

8.3.2 Separation and Connectedness

Lemma 8.3.4 (Separation). Assume that we pick k, r and R to satisfy the conditions:

r ≤ ρ

R = 4ρ

vdr
d(1− ε/6)λ ≥ k

n
+
Cδ
n

√
kµ

vdr
d(1 + ε/6)λ(1− ε) ≤ k

n
− Cδ

n

√
kµ.

Then with probability 1− δ, we have:

1. All points in Aσ−r and A′σ−r are kept, and all points in Sσ−r are removed.

2. The two point sets A ∩X and A′ ∩X are disconnected in Gr,R.

Proof. The proof is analogous to the separation proof of Chaudhuri and Dasgupta [44] with
several modifications. Most importantly, we need to ensure that despite the curvature of the
manifold we can still resolve the density well enough to guarantee that we can identify and
eliminate points in the region of separation.

Throughout the proof, we will assume that the good event in Lemma 8.3.2 (uniform convergence
for Bn,N ) occurs. Since r ≤ ετ/72d, by Lemma 8.3.3 vol(BM(x, r)) is between vdrd(1 − ε/6)
and vdr

d(1 + ε/6), for any x ∈ M . So if Xi ∈ A ∪ A′, then BM(Xi, r) has mass at least
vdr

d(1− ε/6) · λ. Since this is ≥ k
n

+ Cδ
n

√
kµ by assumption, this ball contains at least k sample

points, and hence Xi is kept.

On the other hand, if Xi ∈ Sσ−r, then the set BM(Xi, r) contains mass at most vdrd(1 + ε/6) ·
λ(1− ε). This is ≤ k

n
− Cδ

n

√
kµ. Thus by Lemma 8.3.2 BM(Xi, r) contains fewer than k sample

points, and hence Xi is removed.

To prove the graph is disconnected, we first need a bound on the geodesic distance between two
points that are at most R apart in Euclidean distance. Such an estimate follows from Proposition
6.3 in Niyogi et al. [146] who show that if ‖p− q‖ = R ≤ τ/2, then the geodesic distance

dM(p, q) ≤ τ − τ
√

1− 2R

τ
.
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In particular, if R ≤ τ/4, then dM(p, q) < R
(
1 + 4R

τ

)
≤ 2R. Now, notice that if the graph is

connected there must be an edge that connects two points that are at a geodesic distance of at
least 2(σ− r). Any path between a point in A and a point in A′ along M must pass through Sσ−r
and must have a geodesic length of at least 2(σ − r). This is impossible if the connection radius
satisfies 2R < 2(σ − r), which follows by the assumptions on r and R.

All the conditions in Lemma 8.3.4 can be simultaneously satisfied by setting k := 16C2
δ (µ/ε2),

and
vdr

d(1− ε/6) · λ =
k

n
+
Cδ
n

√
kµ. (8.1)

The condition on r is satisfied since
λ ≥ 2

vdρd
k

n

and the condition on R is satisfied by its definition.
Lemma 8.3.5 (Connectedness). Assume that the parameters k, r and R satisfy the separation
conditions (in Lemma 8.3.4). Then, with probability at least 1− δ, A[X] is connected in Gr,R.

Proof. Let us show that any two points in A∩X are connected in Gr,R. Consider y, y′ ∈ A∩X.
Since A is connected, there is a path P between y, y′ lying entirely inside A, i.e., a continuous
map P : [0, 1] → A such that P (0) = y and P (1) = y′. We can find a sequence of points
y0, . . . , yt ∈ P such that y0 = y, yt = y′, and the geodesic distance on M (and hence the
Euclidean distance) between yi−1 and yi is at most η, for an arbitrarily small constant η.

Let N be minimal R/4-net of M . There exist zi ∈ N such that ‖yi − zi‖ ≤ R/4. Since yi ∈ A,
we have zi ∈ AM,R/4, and hence the ball BM(zi, R/4) lies completely inside AM,R/2 ⊆ AM,σ−r.
In particular, the density inside the ball is at least λ everywhere, and hence the mass inside it is
at least

vd(R/4)d(1− ε/6)λ ≥ Cδµ

n
.

Observe that R ≥ 4r and so this condition is satisfied as a consequence of satisfying Equation
8.1. Thus Lemma 8.3.2 guarantees that the ball BM(zi, R/4) contains at least one sample point,
say xi. (Without loss of generality, we may assume x0 = y and xt = y′.) Since the ball lies
completely in AM,σ−r, the sample point xi is not removed in the cleaning step (Lemma 8.3.4).

Finally, we bound d(xi−1, xi) by considering the sequence of points (xi−1, zi−1, yi−1, yi, zi, xi).
The pair (yi−1, yi) are at most s apart and the other successive pairs at most R/4 apart, hence
d(xi−1, xi) ≤ 4(R/4) + η = R + η. The claim follows by letting η → 0.

8.4 A lower bound instance for the class of RSL algorithms

Recall that the sample complexity in Theorem 8.3.1 scales as

n = O

(
d

λε2vdρd
log

d

λε2vdρd

)
207



where ρ = C min (σ, ετ/d, τ). For full dimensional densities, Chaudhuri and Dasgupta [44]
showed the information theoretic lower bound

n = Ω

(
1

λε2vDσD
log

1

λε2vDσD

)
.

Their construction can be straightforwardly modified to a d-dimensional instance on a smooth
manifold. Ignoring constants that depend on d, these upper and lower bounds can still differ by a
factor of 1/(ετ)d, for ετ � σ. In this section we provide an informal sketch of a hard instance for
the class of RSL algorithms (see Definition 10) that suggests a sample complexity lower bound
of n ≥ 1/(ετ)Ω(d).

We first describe our lower bound instance. The manifoldM consists of two disjoint components,
C and C ′. The component C in turn contains three parts, which we call ‘top’, ‘middle’, and ‘bot-
tom’ respectively. The middle part, denoted M2, is the portion of the standard d-dimensional
unit sphere Sd(0, 1) between the planes x1 = +

√
1− 4τ 2 and x1 = −

√
1− 4τ 2. The top part,

denoted M1, is the upper hemisphere of radius 2τ centered at (+
√

1− 4τ 2, 0, 0, . . . , 0). The
bottom part, denoted M3, is a symmetric hemisphere centered at (−

√
1− 4τ 2, 0, 0, . . . , 0). Thus

C is obtained by gluing a portion of the unit sphere with two (small) hemispherical caps. C as
described does not have a condition number at most 1/τ because of the “corners” at the intersec-
tion of M2 and M1 ∪M3. This can be fixed without affecting the essence of the construction by
smoothing this intersection by rolling a ball of radius τ around it (a similar construction is made
rigorous in Theorem 6 of Genovese et al. [81]). Finally, the component C ′ is a sphere far away
from C whose function ensure that f integrates to 1.

Let P be the distribution onM whose density overC is λ if |x1| > 1/2, and λ(1−ε) if |x1| ≤ 1/2,
where λ is chosen small enough such that λ vold(C) ≤ 1. The density over C ′ is chosen such that
the total mass of the manifold is 1. Now M1 and M3 are (σ, ε) separated at level λ for σ = Ω(1).
The separator set S is the equator of M2 in the plane x1 = 0.

We now provide some intuition for why RSL algorithms will require n ≥ 1/(ετ)Ω(d) to succeed
on this instance. We focus our discussion on RSL algorithms with k > 2, i.e. on algorithms
that do in fact use a cleaning step, ignoring the single linkage algorithm which is known to be
inconsistent for full dimensional densities.

Intuitively, because of the curvature of the described instance, the mass of a sufficiently large
Euclidean ball in the separator set is larger than the mass of a corresponding ball in the true
clusters. This means that any algorithm that uses large balls cannot reliably clean the sample and
this restricts the size of the balls that can be used. Now if points in the regions of high density
are to survive then there must be k sample points in the small ball around any point in the true
clusters and this gives us a lower bound on the necessary sample size.

The RSL algorithms work by counting the number of sample points inside the balls B(x, r)
centered at the sample points x, for some radius r. In order for the algorithm to reliably resolve
(σ, ε) clusters, it should distinguish points in the separator set S ⊂ M2 from those in the level λ
clusters M1 ∪M3. A necessary condition for this is that the mass of a ball B(x, r) for x ∈ Sσ−r
should be strictly smaller than the mass inside B(y, r) for y ∈ M1 ∪M3. In Section 8.9.4, we
show that this condition restricts the radius r to be at most O(τ

√
ε/d).
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1. For each Xi, rk(Xi) := inf{r : B(Xi, r) contains k data points}.
2. As r grows from 0 to∞:

(a) Construct a graph Gr,R with nodes {Xi : rk(Xi) ≤ rXi}, where rXi is the
V -ball radius of Xi for V = vdr

d, and edges (Xi, Xj) if ‖Xi −Xj‖ ≤ R.
(b) Let C(r) be the connected components of Gr,R.

3. Denote Ĉ = {C(r) : r ∈ [0,∞)} and return Ĉ.

Figure 8.2: Spatially Adaptive Robust Single Linkage Algorithm

Now, consider any sample point x0 in M1 ∪M3 (such an x exists with high probability). Since
x0 should not be removed during the cleaning step, the ball B(x0, r) must contain some other
sample point (indeed, it must contain at least k − 1 more sample points). By a union bound, this
happens with probability at most

(n− 1)vdr
dλ ≤ O(d−d/2nτ dεd/2λ).

If we want the algorithm to succeed with probability at least 1/2 (say) then

n ≥ Ω

(
dd/2

τ dλεd/2

)
.

8.5 A modified algorithm for the known manifold case

In this section we consider the case when the manifold is known. In particular, we assume that
we have an oracle that given as input a point x ∈ M and a number V returns us a radius rx such
that vold(BM(x, rx)) = V . We call the ball B(x, rx) the V -ball around x, and the oracle a V -ball
oracle.

Given access to the V -ball oracle we show that a modified spatially adaptive RSL algorithm
achieves the rate

n ≥ O

(
1

λvdρdε2
log

1

λvdρdε2

)
where

ρ ..= min
{ σ

10
,
τ

16

}
.

In particular, ρ no longer depends on ετ and for the case of τ fixed (ignoring constants depending
on d) the algorithm achieves the near minimax optimal rates of Chaudhuri and Dasgupta [44], in
the manifold setting with d replacing D.

The modified algorithm is in Figure 8.2 and it uses two parameters, k and V , to be specified
shortly.

We begin with a preliminary lemma which is a straightforward consequence of Lemma 8.3.3.
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Lemma 8.5.1. If V = vdr
d, then rl ≤ rx ≤ ru, where

rl := r

(
1− 6r

τ

)
and ru := r

(
1 +

6r

τ

)
.

Theorem 8.5.2. There are universal constants C1 and C2 such that the following holds. For any
δ > 0, 0 < ε < 1/2, run the algorithm in Figure 8.2 on a sample X drawn from f , where the
parameters are set according to the equations

R = 4ru = r

(
1 +

6r

τ

)
and k = C1 log2(1/δ)(µ/ε2)

for r defined by

vdr
dλ =

k

n
+
C2 log(1/δ)

n

√
kµ.

Then with probability at least 1 − δ, Ĉ is (σ, ε) consistent. In particular, the clusters containing
A[X] and A′[X], where A and A′ are (σ, ε) separated, are internally connected and mutually
disconnected in C(r) provided

λ ≥ 2

vdρd
k

n
.

Proof. The theorem is a straightforward consequence of the following lemma.

Lemma 8.5.3 (Separation and Connectedness). For the parameter choices prescribed in the
theorem, provided we satisfy the following

5ru ≤ σ and R ≤ τ/2

V λ ≥ k

n
+
Cδ
n

√
kµ

V λ(1− ε) ≤ k

n
− Cδ

n

√
kµ

the following properties hold w.p. at least 1− δ:

1. All points in Aσ−ru and A′σ−ru are kept, and all points in Sσ−ru are removed.

2. The two point sets A[X] and A′[X] are disconnected in the graph Gr,R.

3. A[X] and A′[X] are internally connected.

Proof. The proof is similar to that of Theorem 8.3.1 and we only highlight the differences.

1. The V -ball around any point x in the manifold has volume exactly V by definition, and
hence part (1) is true under the good event described in Lemma 8.3.2. In particular notice
that using V -balls removes the necessity for estimating the ball volumes.

2. We show part (2) by contradiction. Assume that the graph connects a pair of points from
A and A′. Then the connection step guarantees that every edge of the path from A to A′ is
of Euclidean distance ≤ R ≤ τ/2, and hence geodesic distance ≤ 2R. Therefore, by part
(1), there must be an edge of (geodesic) length 2(σ − ru). This gives us a contradiction,
provided 2R ≤ 2(σ − ru).
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3. For part (3) note that R = 4ru ≥ 4rx, and hence an R/4-ball around any net point in
AM,R/4 contains at least one sample point. The rest of the proof is unchanged.

As in the proof of Theorem 8.3.1, we set the parameters according to k = C2
δ (µ/ε2), and

vdr
dλ =

k

n
+
Cδ
n

√
kµ.

By our assumption on ρ and λ, we can see that r ≤ ρ, and that

ru = r

(
1 +

6r

τ

)
≤ ρ

(
1 +

6ρ

τ

)
≤ 2ρ.

Now, setting R = 4ru, we find that the requirements R ≤ τ/2 and R + r ≤ σ are automatically
satisfied. Similarly, the final requirement

vdr
dλ(1− ε) ≤ k

n
− Cδ

n

√
kµ

is also satisfied because of our choices of r and k.

8.6 Cluster tree recovery in the presence of noise

So far we have considered the problem of recovering the cluster tree given samples from a density
supported on a lower dimensional manifold. In this section we extend these results to the more
general situation when we have noisy samples concentrated near a lower dimensional manifold.
Indeed it can be argued that the manifold + noise model is a natural and general model for high-
dimensional data.

In the noisy setting, it is clear that we can infer the cluster tree of the noisy density in a straight-
forward way. A stronger requirement would be consistency with respect to the underlying latent
sample. Following the literature on manifold estimation ([21, 81]) we consider two main noise
models. For both of them, we specify a distribution Q for the noisy sample.

1. Clutter Noise: We observe data Y1, . . . , Yn from the mixture

Q := (1− π)U + πP

where 0 < π ≤ 1 and U is a uniform distribution on X .

Denote the samples drawn from P in this mixture

X = {X1, . . . , Xm}.

The points drawn from U are called background clutter. In this case, we can show:
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Theorem 8.6.1. There are universal constants C1 and C2 such that the following holds. For any
δ > 0, 0 < ε < 1/2, run the algorithm in Figure 8.1 on a sample {Y1, . . . , Yn}, with parameters

R := 4ρ k := C1 log2(1/δ)(µ/ε2).

Then with probability at least 1 − δ, Ĉ is (σ, ε) consistent. In particular, the clusters containing
A[X] and A′[X] are internally connected and mutually disconnected in C(r) for r defined by

πvdr
dλ =

1

1− ε/6

(
k

n
+
C2 log(1/δ)

n

√
kµ

)
provided

λ ≥ max

{
2

vdρd
k

n
,
2v

d/D
D (1− π)d/D

vdεd/Dπ

(
k

n

)1−d/D
}

where ρ is now slightly modified (in constants), i.e., ρ := min
(
σ
7
, ετ

72d
, τ

24

)
.

2. Additive Noise: The data are of the form Yi = Xi + ηi where X1, . . . , Xn ∼ P ,and η1, . . . , ηn
are a sample from any bounded noise distribution Φ, with ηi ∈ B(0, θ). Note that Q is the
convolution of P and Φ, Q = P ? Φ.
Theorem 8.6.2. There are universal constants C1 and C2 such that the following holds. For any
δ > 0, 0 < ε < 1/2, run the algorithm in Figure 8.1 on the sample {Y1, . . . , Yn} with parameters

R := 5ρ k := C1 log2(1/δ)(µ/ε2).

Then with probability at least 1 − δ, Ĉ is (σ, ε) consistent for θ ≤ ρε/24d. In particular, the
clusters containing {Yi : Xi ∈ A} and {Yi : Xi ∈ A′} are internally connected and mutually
disconnected in C(r) for r defined by

vdr
d(1− ε/12)(1− ε/6)λ =

k

n
+
Cδ
n

√
kµ

if

λ ≥ 2

vdρd
k

n

and θ ≤ ρε/24d, where
ρ := min

(σ
7
,
τ

24
,
ετ

144d

)
.

The proofs for both Theorems 8.6.1 and 8.6.2 appear in Section 8.9.5. Notice that in each case
we receive samples from a full D-dimensional distribution but are still able to achieve rates
independent of D because these distributions are concentrated around the lower dimensional M .
For the clutter noise case we produce a tree that is consistent for samples drawn from P (which
are exactly on M ), while in the additive noise case we produce a tree on the observed Yis which
is (σ, ε) consistent for the latent Xis (for θ small enough). It is worth noting that in the case of
clutter noise we can still consistently recover the entire cluster tree. Intuitively, this is because
the k-NN distances for points on M are much smaller than for clutter points that are far away
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from M . As a result the clutter noise only affects a vanishingly low level set of the cluster tree.
In the case of additive noise with small variance, it is possible to recover well-separated clusters
at ambient dimension independent rates. It is also possible to recover the cluster tree in the
presence of general additive noise distributions via deconvolution [21, 114] but we do not pursue
this approach here.

8.7 Kernel Density Estimators

The results of the previous sections have used k-nearest neighbors based density estimators.
However, similar (albeit non-algorithmic) results can be obtained for kernel density estima-
tors.

For the full dimensional cases we consider the usual kernel density estimators

f̂h(x) =
1

nhD

n∑
i=1

K

(
x−Xi

h

)
.

For the manifold case we consider the following estimator (notice that unlike the usual kernel
density estimate it does not integrate to 1),

f̂h(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
.

In each case, K : RD → R is a kernel. In each case, there is an associated population quantity
that will be useful. In the full dimensional case

fh(x) =
1

hD
EX∼fK

(
x−X
h

)
and in the manifold case

fh(x) =
1

hd
EX∼fK

(
x−X
h

)
.

As before C(f̂h) denotes the cluster tree of the kernel density estimate.

8.7.1 Assumptions and preliminaries

We will make one of the following assumptions on the kernel:
Assumption 5 (Bounded support).

[5A] For the case of full-dimensional densities we will assume the kernel has bounded support
and integrates to 1, i.e.

{x : K(x) > 0} ⊆ B(0, 1)
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and ∫
x∈RD

K(‖x‖) = 1.

Following Giné and Guillou [83], we will further assume that the class of functions

F =

{
K

(
x− ◦
h

)
, x ∈ RD, h > 0

}
satisfies, for some positive number A and v

sup
P
N (Fh, L2(P ), ε‖F‖L2(P )) ≤

(
A

ε

)v
where N (T, d, ε) denotes the ε-covering number of the metric space (T, d), F is the enve-
lope function of F and the supremum is taken over the set of all probability measures on
RD. A and v are called the VC characteristics of the kernel.

[5B] For the case of densities supported on lower-dimensional manifolds we will assume a
particular form for the kernel

K(x) =
I(x ≤ 1)

vd
.

Observe that this kernel also satisfies the VC assumption above.

The first assumption is quite mild and can be further relaxed to include kernels with an appropri-
ate tail decay, albeit at the cost of more complicated proofs. The second assumption allows us to
avoid dealing with integrals over the manifold but can also be similarly relaxed.
Assumption 6 (Bandwidth regularity: BR(m)). For some c > 0,

hn ↘ 0,
nhmn
| log hn|

→ ∞ | log hn|
log log n

→∞ and hmn ≤ chm2n.

We will first state two preliminary results showing the uniform consistency of the kernel density
estimate.

The first Lemma appears in a similar form in the paper of Rinaldo and Wasserman [161] (Propo-
sition 9) and is a modification of a result of Giné and Guillou [83] (Corollary 2.2). The proof is
omitted.
Lemma 8.7.1 (Full dimensional density). Given n samples from a distribution which has a
bounded density f with respect to the Lebesgue measure on RD

1. For n ≥ n0, where n0 is a constant depending only on the VC characteristics ofK, ‖K‖∞, ‖K‖2

and fmax, and fixed h ≤ h0 depending only on ‖K‖∞ and fmax there is a constant C de-
pending on K such that

P

(
‖f̂h − fh‖∞ ≥ C ′ · C

√
fmax log(1/h)

nhD

)
≤
(

1

h

)C′
for any large enough constant C ′ depending on K and fmax of our choice.
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2. For any sequence hn ≤ h0 as before, satisfying Assumption 6, BR(D), for all n ≥ n0 as
before

P

(
‖f̂hn − fhn‖∞ ≥ C ′ · C

√
fmax log(1/hn)

nhDn

)
≤
(

1

h

)C′
.

For the ball kernel of Assumption 5 a similar result holds for densities supported on a lower
dimensional manifold.
Lemma 8.7.2 (Manifold case). Given n samples from a distribution supported on a smooth
Riemannian manifoldM with condition number at most 1/τ with bounded density f with respect
to the uniform measure on M

1. For n ≥ n0, where n0 is a constant depending only on the VC characteristics ofK, ‖K‖∞, ‖K‖2

and ‖f‖∞, and fixed h ≤ min( τ
8
, h0) where h0 depends only on ‖K‖∞ and ‖f‖∞ there is

a constant Cδ depending on δ and n0 such that

P

(
‖f̂h − fh‖∞ ≥ C ′ · C

√
fmax log(1/h)

nhd

)
≤
(

1

h

)C′
.

2. For any sequence hn ≤ min( τ
8
, h0) as before, satisfying Assumption 6, BR(d), for all

n ≥ n0 as before

P

(
‖f̂hn − fhn‖∞ ≥ C ′ · C

√
fmax log(1/hn)

nhdn

)
≤
(

1

h

)C′
.

Proof. The proof follows along the lines of those in the papers of Giné and Guillou [83], Ri-
naldo and Wasserman [161]. The main modification to achieve d rates involves a more careful
calculation of the variance.

To apply Talagrand’s inequality in the proof of Giné and Guillou [83] we need to bound

sup
g∈F

Varfg.

F is the set of kernel functions with various bandwidths, and centers anywhere on M .

Let us show how to bound supg∈Fh Varfg for a single bandwidth h.

VarX∼p

(
K

(
x−X
h

))
= EX

[
K

(
x−X
h

)
− EXK

(
x−X
h

)]2

≤
[
EXK2

(
x−X
h

)]
=

∫
X∈M

K2

(
x−X
h

)
f(X)dX

≤ ‖K‖2
∞

∫
I(X ∈ B(x, h))f(X)dX

≤ hdCd‖K‖2
∞‖f‖∞.
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The last step follows if h ≤ τ
8

by the ball volume Lemma 8.3.3. Notice that the variance does
not depend on x and so the bound holds uniformly over all x on M .

Replacing this bound on the variance in the proof of Giné and Guillou [83] we obtain the desired
result.

8.7.2 Rates of convergence for the cluster tree

Our first result mirrors the main result of Chaudhuri and Dasgupta [44].
Theorem 8.7.3 (Full dimensional cluster tree). There is a constant Cδ depending on the VC
characteristics of the kernel, ‖K‖∞, ‖K‖2, ‖f‖∞ and δ such that the following holds with prob-
ability at least 1 − δ, C(p̂σ) is (σ, ε) consistent for any pair of clusters A, A′ at level at least λ
for

n ≥ Cδ
σDλ2ε2

log

(
1

σ

)
.

Notice, in particular that while for the k-nearest neighbor based algorithm the choice of k de-
pends on ε for the kernel density estimate the optimal choice of bandwidth depends on σ. Also
notice unlike the result of Chaudhuri and Dasgupta [44] this result requires the density to be
uniformly upper bounded.

Proof. To prove this theorem it suffices to show that the regionsA andA′ are internally connected
and mutually separated.

Let us first show that σ-clustersA andA′ (for any λ, ε > 0) are connected and separated in C(fσ).
Consider any point x ∈ A ∪ A′,

fσ(x) =

∫
y∈B(x,σ)

K

(
y − x
h

)
f(y)dy ≥ λ

∫
y∈B(x,σ)

K

(
y − x
h

)
dy ≥ λ.

Similarly, we can see that for any point in the separator S, fσ(x) < λ(1 − ε). In particular,
σ-clusters A and A′ are distinguished in C(fσ) at level λ as desired.

Now, we use Lemma 8.7.1. Notice for a constant Cδ

n ≥ Cδ
σDλ2ε2

log

(
1

σ

)
we have

‖f̂σ − fσ‖∞ ≤
λε

2

with probability 1− δ. Let E1 denote the event {‖f̂σ − fσ‖∞ ≤ λε
2
}.

Now, let us consider the cluster tree of f̂σ at level λ − λε
2

. On E1, for any point x ∈ A ∪ A′

we know fσ ≥ λ and thus f̂σ ≥ λ − λε
2

. Similarly for x ∈ S we have f̂σ < λ − λε
2

. These
together show that on E1 A and A′ are distinguished in C(f̂σ) at level λ− λε

2
. This establishes the

theorem.
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To establish Hartigan consistency we select a schedule hn satisfying Assumption 6. Under mild
conditions connected components of any level set at λ, are (σ, ε) separated for some σ, ε > 0 and
are distinguished for n large enough.

We can similarly give a manifold version of this result. Define

ρ = min
(
σ,
τ

8
,
ετ

72d

)
.

Theorem 8.7.4 (Cluster tree on manifolds). There is a constant Cδ depending on the VC charac-
teristics of the kernel, ‖K‖∞, ‖K‖2, ‖f‖∞ and δ such that the following holds with probability
at least 1 − δ, for all ε ≤ 1/2 C(p̂ρ) is (σ, ε) consistent for any pair of clusters A, A′ at level at
least λ for

n ≥ Cδ
ρDλ2ε2

log

(
1

ρ

)
.

Proof. Let us again consider fρ. For any point x ∈ A ∪ A′,

fρ(x) =
1

hd
EX∼fK

(
x−X
h

)
=

1

vdρd

∫
X∈BM (x,h)

dX ≥ λ
(

1− ε

6

)
where the second equality follows from the assumed form of the kernel, and the inequality fol-
lows from Lemma 8.3.3 under the assumption on ρ. Similarly, for any point in S we have

fρ(x) < λ (1− ε)
(

1 +
ε

6

)
.

The gap between these is at least λε/2, and hence A and ′ are distinguished in fρ at level λ(1 −
ε/6).

The proof that these clusters are distinguished in f̂ρ follows from an identical argument to the
one in the proof of Theorem 8.7.3, replacing the use of Lemma 8.7.1 with Lemma 8.7.2.

8.8 Simulations

Figure 8.3 depicts the results of simulations we performed to test our main theoretical predictions.
For Figure 8.3(B) we sample data from a mixture distribution on a unit d-sphere. The mixture
has 10 salient clusters (with a total mixture weight of 0.7) mixed with uniform samples on the
sphere with mixture weight 0.3. Finally, we mix samples from this density with D-dimensional
clutter noise with π = 0.8. A sample is shown in Figure 8.3(A) for d = 2, D = 3 and n = 1000.
For Figures 8.3(C)-(H) we simulate data from the lower bound instance described in Section
8.4.

In Figure 8.3(B), we plot the probability of successfully recovering the 10 clusters in the cluster
tree as a function of sample size. The figure confirms that the sample size is independent of the
ambient dimension D but (typically) gets worse with the manifold dimension d. In particular,
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Figure 8.3: Figures show the average probability of success across 10 trials for different
(n, d,D, ε).

the figure shows that for D = {20, 40, 60, 80, 100} (in the same color) sample complexities are
nearly unchanged. Figures 8.3(C)-(H), shows the effect on sample size of (ε, d) for the lower
bound instance. Notice, that for a fixed ε and n the probability of success decays rapidly with
increasing d and that for a fixed d and n the probability of success grows with ε, in agreement with
our 1/εΩ(d) prediction and in contrast to the 1/ε2 scaling predicted by Chaudhuri and Dasgupta
[44] for recovering a full-dimensional cluster tree.

8.9 Additional proofs

In this section we first prove some technical lemmas before giving full proofs of various claims
made in the chapter.

8.9.1 Volume estimates for small balls on manifolds

Theorem 8.9.1. If
r ≤ ετ

12d

for 0 ≤ ε < 1 then
vdr

d (1− ε) ≤ vol(S) ≤ vdr
d (1 + ε) .

Proof. The lower bound follows from Niyogi et al. [146] (Lemma 5.3) who show that

Lemma 8.9.2. For r < τ
2

vol(S) ≥
(

1− r2

4τ 2

)d/2
vdr

d.

218



The upper bound follows from Chazal [46] who shows that

Lemma 8.9.3. For r < τ
2

vol(S) ≤ vd

(
τ

τ − 2α

)d
αd

where

α = τ − τ
√

1− 2r

τ
.

To produce the result of the theorem we will need some careful manipulation of these two lem-
mas. In particular, we need the following estimates

Lemma 8.9.4.
f(x) = (1− x)1/2 ≥ 1− x

2
− x2

if 0 ≤ x ≤ 1
2
.

f(x) = (1 + x)n ≤ 1 + 2nx

if 0 ≤ x ≤ 1
2n

.
f(x) = (1− x)−1 ≤ 1 + 2x

if 0 ≤ x ≤ 1/2.
f(x) = (1− x)n ≥ 1− 2nx

if 0 ≤ x ≤ 1
2n

.

The proof of this lemma is straightforward based on approximations via Taylor’s series and we
omit them.

Using Lemma 8.9.4 we have

α ≤ r

(
1 +

4r

τ

)
if r ≤ τ

4
. Now, using this also notice that

τ

τ − 2α
≤ 1

1− 2r
τ

(
1 + 4r

τ

) ≤ 1 +
4r

τ

(
1 +

4r

τ

)

where the second inequality follows from Lemma 8.9.4 if r ≤ τ/8.

Combining these we have the following:

for all r ≤ τ
8

vdr
d

(
1− r2

4τ 2

)d/2
≤ vol(S) ≤ vdr

d

(
1 +

6r

τ

)d
The final result now follows another application of Lemma 8.9.4 on each side of this inequality.

219



8.9.2 Bound on covering number

We need the following bound on the covering number of a manifold. See the paper [146] (p. 16)
for a proof.
Lemma 8.9.5. For s ≤ 2τ , the s-covering number of M is at most

vold(M)

cosd(arcsin(s/4τ))vd(s/2)d
≤ O

(
vold(M)cd

vdsd

)
for an absolute constant c. In particular, if vold(M) is bounded above by a constant, the s-
covering number of M is at most O(cd/(vds

d)).

Proof. We prove only the second claim. For s ≤ 2τ , we have arcsin(s/4τ) ≤ π/6, and hence
cos(arcsin(s/4τ)) ≥

√
3/2. Plugging this in the bound, we get

|N | ≤ vold(M)(2/
√

3)d

vd(s/2)d
,

which gives the claim with c = 4/
√

3.

8.9.3 Uniform convergence

In this subsection, we prove uniform convergence for balls centered on sample and net points
(Lemma 8.3.2). Consider the family of balls centered at a fixed point z, Bz :=

{
B(z, s) : s ≥

0
}

. This collection has VC dimension 1. Thus with probability 1 − δ′, it holds that for every
B ∈ Bz, we have

max
{P (B)− Pn(B)√

P (B)
,
P (B)− Pn(B)√

Pn(B)

}
≤ 2

√
log(2n) + log(4/δ′)

n
,

where P (B) is the true mass of B, and Pn(B) = |X∩B|/n is its empirical measure. By a union
bound over all z ∈ N , setting δ′ := δ/(2|N |), the following holds uniformly for every z ∈ N
and every B ∈ Bz with probability 1− δ/2:

max
{P (B)− Pn(B)√

P (B)
,
P (B)− Pn(B)√

Pn(B)

}
≤ 2

√
log(2n) + log(8|N |/δ)

n
.

To provide a similar uniform convergence result for balls centered at a sample point Xi, we
consider the (n− 1)-subsample Xn−1

i of X obtained by deleting Xi from the sample. Let P n−1
i

be the empirical probability measure of this subsample:

Pn−1(B) :=
1

n− 1

∑
j 6=i

I[Xi ∈ B].
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It is easy to check that Pn−1 is uniformly close to Pn. In particular, for every set B containing
Xi, we have

Pn−1(B) ≤ Pn(B) ≤ Pn−1(B) +
1

n
. (8.2)

Now, with probability at least 1− δ/(2n), for any ball B centered at Xi,

P (B)− Pn−1(B) ≤ 2

√
log(2n− 2) + log 8n/δ

n− 1
·
√
P (B),

Pn−1(B)− P (B) ≤ 2

√
log(2n− 2) + log 8n/δ

n− 1
·
√
Pn−1(B).

Using (8.2), we get

P (B)− Pn(B) ≤ 2

√
log(2n− 2) + log 8n/δ

n− 1
·
√
P (B),

Pn(B)− P (B) ≤ 2

√
log(2n− 2) + log 8n/δ

n− 1
·
√
Pn(B) +

1

n
.

By a union bound over all Xi ∈ X, we get the claimed inequalities for all sample points with
probability 1− δ/2.

Putting together our bounds for balls around sample and net points, with probability at least 1−δ,
it holds that for all B ∈ Bn,N , we have

P (B)− Pn(B) ≤ O
(√µ+ log(1/δ)

n

)
·
√
P (B),

Pn(B)− P (B) ≤ O
(√µ+ log(1/δ)

n

)
·
√
Pn(B) +

1

n
.

for µ = 1 + log n+ log |N | = O(d) + log n+ d log(1/s) (using Lemma 8.9.5). The lemma now
follows using simple manipulations of these inequalities (see [44] for details).

8.9.4 Sketch of the lower bound instance

The following lemma gives an estimate of the volume of the intersection of a small ball with a
sphere.
Lemma 8.9.6 (Volume of a spherical cap). Suppose Sd is a d-dimensional sphere of radius τ
(embedded in Rd+1), and let x ∈ Sd. Then, for small enough r, it holds that

vold(B(x, r) ∩ Sd) = vdr
d

(
1− cd

r2

τ 2
+Od

( r4

τ 4

))
where cd := d(d−2)

8(d+2)
. Note that c1 < 0, c2 = 0, and cd > 0 for all d ≥ 3.
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In this section, we prove Lemma 8.9.6. The height h of the cap can be easily checked to be equal
to h = r2/2τ . Now, the volume of the cap is given by the formula

vcap =
π(d+1)/2τ d

Γ((d+ 1)/2)
Iα(d/2, 1/2)

where the parameter α is defined by

α :=
2τh− h2

τ
=
r2

τ 2

(
1− r2

4τ 2

)
.

Further Iα(·, ·) represents the incomplete beta function:

Iα(z, w) =
B(α; z, w)

B(z, w)

=

∫ α
0
uz−1(1− u)w−1du

B(z, w)

=
Γ(z + w)

Γ(z)Γ(w)

∫ α

0

uz−1(1− u)w−1du.

Thus,

vcap =
π(d+1)/2τ d

Γ((d+ 1)/2)
· Γ((d+ 1)/2))

Γ(d/2)Γ(1/2)
·
∫ α

0

ud/2−1(1− u)−1/2du

=
πd/2τ d

Γ(d/2)

∫ α

0

ud/2−1(1− u)−1/2du

=
dvdτ

d

2

∫ α

0

ud/2−1(1− u)−1/2du.

Since α → 0 as r → 0, we can approximate the integral by expanding the integrand as a Taylor
series around 0:

vcap =
dvdτ

d

2

∫ α

0

ud/2−1
(

1 + u/2 +O(u2)
)
du

=
dvdτ

d

2

(
αd/2

d/2
+

1

2

αd/2+1

d/2 + 1
+O(αd/2+2)

)
= vdτ

dαd/2
(

1 +
d

2(d+ 2)
α +O(α2))

)
.

Finally, using α := r2

τ2
(1− r2

τ2
), we get

vcap = vdr
d

(
1− r2

4τ 2

)d/2(
1 +

dr2

2(d+ 2)τ 2
+O

( r4

τ 4

))
= vdr

d ·
(

1− dr2

8τ 2
+

dr2

2(d+ 2)τ 2
+Od

( r4

τ 4

))
,
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which simplifies to the claimed estimate.

We now show that it must be the case that r ≤ O(τ
√
ε/d). We argued that for the algorithm to

reliably resolve the (σ, ε) separated clusters M1 and M3, an r-ball around a sample point in Sσ−r
must have mass appreciably smaller than those around points in M1. By the previous lemma, the
two kinds of balls have volumes

vdr
d

(
1− cd

r2

12
+Od

(r4

14

))
= vdr

d
(
1− cdr2 +Od(r

4)
)

and

vdr
d

(
1− cd

r2

4τ 2
+Od

( r4

16τ 4

))
= vdr

d

(
1− cd

r2

4τ 2
+Od

( r4

τ 4

))
.

Thus we must have

vdr
dvdr

d
(

1− cdr2 +Od(r
4)
)
· λ(1− ε) ≤ vdr

d

(
1− cd

r2

4τ 2
+Od

( r4

τ 4

))
· λ.

This implies that r2 ≤ O
(

4τ2ε
(1−4τ2)cd

)
. Hence if τ ≤ 1/4, we have r ≤ τ

√
ε/cd. Plugging in

cd = Ω(d) gives us the claim.

8.9.5 Clustering with noisy samples

8.9.6 Proof of Theorem 8.6.1

As before we begin by showing separation followed by a proof of connectivity. Recall that
ρ := min

(
σ
7
, ετ

72d
, τ

24

)
.

Lemma 8.9.7 (Separation). Assume that we pick k, r and R to satisfy the conditions:

r ≤ ρ, R = 4ρ

π · vdrd(1− ε/6) · λ ≥ k

n
+
Cδ
n

√
kµ,

π · vdrd(1 + ε/6) · λ(1− ε) + (1− π) · vDrD ≤
k

n
− Cδ

n

√
kµ.

Then with probability 1− δ, it holds that:

1. All points in AM,σ−r and A′M,σ−r are kept, and all points in X \Mr and Sσ−r are removed.
Here, Mr is the tubular region around M of width r.

2. The two point sets A[X] and A′[X] are disconnected in the graph Gr,R.

Proof. The proof of the first claim is similar to the noiseless setting, except that the probability
mass inside a ball now has contributions from both the manifold and the background clutter. For
x ∈ Sσ−r, the probability mass of the ball B(x, r) under Q is at most πvdrd(1 + ε/6) · λ(1 −
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ε) + (1 − π)vDr
D, which is at most k

n
− Cδ

n

√
kµ. Thus x is removed during the cleaning step.

Similarly, if x /∈ Mr, the ball B(x, r) does not intersect the manifold, and hence its mass is at
most (1−π)vDr

D. Hence all points outsideMr are removed. Finally, if x ∈ (AM,σ−r∪A′M,σ−r)∩
X, then the mass of the ball BM(x, r) is at least vdrd(1− ε/6)λ (ignoring the contribution of the
noise). This is at least k

n
+ Cδ

n

√
kµ, and hence x is kept.

To prove the second claim, suppose that setsA∩X andA′∩X are connected inGr,R. Then there
exists a sequence of sample points y0, y1, . . . , yt such that y0 ∈ A, yt ∈ A′ and d(yi−1, yi) ≤ R
for all 1 ≤ i ≤ t. Let xi be the projection of yi on M , i.e., xi is the point of M closest to yi. We
have already showed that each yi lies inside the tube Mr, so d(xi, yi) ≤ r, and hence by triangle
inequality, we have d(xi−1, xi) ≤ R+ 2r ≤ τ/4. Hence, the geodesic distance between xi−1 and
xi is < 2(R + 2r). Now, by an argument analogous to the noiseless setting, there exists a pair
(xi−1, xi) which are at a (geodesic) distance at least 2(σ − r). This is a contradiction since our
parameter setting implies that 2(σ − r) ≥ 2(R + 2r).

Lemma 8.9.8 (Connectedness). Assume that the parameters k, r and R satisfy the separation
conditions (in Lemma 8.9.7). Then, with probability at least 1− δ, A ∩Y is connected in Gr,R.

Proof. The proof of this lemma is identical to Lemma 8.3.5 and is omitted.

We now show how to pick the parameters to satisfy the conditions in Lemma 8.9.7. Set k :=
144C2

δ (µ/ε2), and define r by

πvdr
d(1− ε/6) · λ =

k

n
+
Cδ
n

√
kµ.

It is easy to check that this setting satisfies all our requirements, provided that the term (1 −
π)vDr

D arising from the clutter noise satisfies the additional constraint

(1− π)vDr
D ≤ (ε/2)× πvdrdλ.

The definition of r implies that r is upper bounded by
(

2k
nλπvd

)1/d

. Thus it suffices to ensure
that

(1− π)vD

(
2k

nλπvd

)D/d
≤ (ε/2) · 2k

n
=
kε

n
.

This is equivalent to the condition

λ ≥ 2v
d/D
D

vdεd/D
· (1− π)d/D

π
·
(
k

n

)1−d/D

,

which is assumed by Theorem 8.6.1.
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8.9.7 Proof of Theorem 8.6.2

Let P be a distribution on a manifold M with density f . Let X = (X1, . . . , Xn) be the latent
sample from P , and let Y = (Y1, . . . , Yn) be the observed sample. The only fact that we use
about the observed sample is that it is close to the corresponding latent sample point: d(Yi, Xi) ≤
θ, where θ is the noise radius. We show that we can adapt the RSL algorithm to resolve (σ, ε)
separated clusters (A,A′), provided that θ is sufficiently small compared to both σ and ε.

Again, we will pick values for k, r, R based on a parameter ρ, defined as ρ := min(σ
7
, τ

24
, ετ

144d
).

Lemma 8.9.9 (Separation). Suppose k, r, R are chosen to satisfy

θ ≤ r/2 r ≤ ρ R := 5ρ,

vd(r − 2θ)d(1− ε/6) · λ ≥ k

n
+
Cδ
n

√
kµ,

vd(r + 2θ)d(1 + ε/6) · λ(1− ε) ≤ k

n
− Cδ

n

√
kµ,

then, with probability 1 − δ, the following holds uniformly over all (σ, ε) separated clusters
(A,A′):

1. If a latent sample pointXi ∈ AM,σ−r+2θ∪A′M,σ−r+2θ, then the corresponding sample point
Yi is kept during the cleaning step. If Xi ∈ SM,σ−r−2θ, then Yi is removed.

2. The sets {Yi : Xi ∈ A} and {Yi : Xi ∈ A′} are disconnected in the graph Gr,R.

Proof. To prove the first claim, suppose Xi ∈ Aσ−r+2θ∪A′σ−r+2θ. Consider the ball BM(Xi, r−
2θ). It is completely inside AM,σ ∪A′M,σ, hence the density f inside it is at least λ. Moreover, if
Xj is in BM(Xi, r − 2θ), then by triangle inequality, we have

d(Yj, Yi) ≤ d(Xj, Yj) + d(Xj, Xi) + d(Yi, Xi) ≤ r.

Hence the ball B(Xi, r) contains at least k sample points, provided BM(Xi, r − 2θ) contains at
least k points from X. Finally, the true mass of the set BM(Xi, r − 2θ) is at least

vd(r − 2θ)d(1− ε/6) · λ ≥ k

n
+
Cδ
n

√
kµ.

Hence it contains at least k latent sample points, and we are done.

Similarly, suppose Xi ∈ Sσ−r−2θ, and consider the ball BM(Xi, r + 2θ). It is completely con-
tained inside SM,σ and hence the density inside the ball is at most λ(1 − ε). Moreover, if Xj is
outside the set, then

d(Yj, Yi) ≥ d(Xj, Xj)− d(Xi, Yi)− d(Xj, Yj) > r.

Hence the ball B(Yi, r) contains fewer than k sample points, provided BM(Xi, r + 2θ) contains
fewer than k points from X. The true mass of the ball BM(Xi, r + 2θ) is at most

vd(r + 2θ)d(1 + ε/6) · λ(1− ε) ≤ k

n
− Cδ

n

√
kµ.
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Hence the ball contains fewer than k latent sample points, and we are done.

We now prove that the graphGr,R is disconnected. Suppose not. Then there must exist a sequence
of latent sample points x0, x1, . . . , xt ∈ Y and a corresponding sequence of noisy sample points
y0, . . . , yt ∈ X such that x0 ∈ A, xt ∈ A′, and d(yi−1, yi) ≤ R. Clearly d(xi−1, xi) ≤ R +
2θ ≤ τ/4. Thus the geodesic distance between xi−1 and xi is less than 2(R + 2θ). However,
by the (σ, ε) separation condition, we must have a successive pair (xi−1, xi) whose geodesic
distance is at least 2(σ − r). This is a contradiction since we have set our parameters such that
2(σ − r) ≥ 2(R + 2θ).

Lemma 8.9.10 (Connectedness). Assume that the conditions of Lemma 8.9.9 are satisfied. Then,
with probability at least 1− δ, the following holds uniformly over all A: if infx∈AM,σ f(x) ≥ λ,
then {Yi : Xi ∈ A} is connected in Gr,R.

Proof. The proof is similar to that of Lemma 8.3.5, so we indicate only the necessary modifi-
cations, omitting the details. We now use a net of radius (R − 2θ)/4, and the condition that
R ≥ 4r is replaced by R − 2θ ≥ 4r. Finally, the xi’s defined in the proof are latent sample
points, whereas the algorithm observes an arbitrary point yi in a θ-ball around the xi. Thus, the
distance between yi−1 and yi is at most

4 · R− 2θ

4
+ d(yi, xi) + d(yi−1, xi−1) ≤ R.

In order to satisfy the conditions stated in Lemma 8.9.9, we need the assumption that θ is small
compared to r. More precisely, we will assume that θ ≤ rε/24d. Under this assumption, we can
satisfy the above conditions by ensuring that

vdr
d(1− ε/12)(1− ε/6) · λ ≥ k

n
+
Cδ
n

√
kµ,

vdr
d(1 + ε/6)(1 + ε/6) · λ(1− ε) ≤ k

n
− Cδ

n

√
kµ

As before, we can satisfy these equations by setting k := O(C2
δµ/ε

2), and r according to

vdr
d(1− ε/12)(1− ε/6) · λ =

k

n
+
Cδ
n

√
kµ.

8.9.8 Connection radius for polynomially bounded densities

In this section, we prove that in our algorithm (Figure 8.1), we can pick the connection radius
R to be R := 4r, independent of the other parameters, provided that the density level satisfies
λ ≤ nA for some absolute constant A. (Our original setting picked R = 4ρ and r ≤ ρ.)
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More precisely, we will argue that the parameter µ in the algorithm can be safely replaced by
a related parameter µ̃ := 2A log n without affecting the performance of the algorithm. Pick
k = O(C2

δ µ̃/ε
2), and set r, R by the equations

vdr
dλ =

1

1− ε/6

(
k

n
+
C2 log(1/δ)

n

√
kµ̃

)
,

R = 4r.

The crucial ingredient in the analysis of our algorithm is the uniform convergence property of
balls centered at the sample points and net points (Lemma 8.3.2), so we first verify that this
statement remains true. Note that by our choice of r, we have

vdr
dλ ≥ k

n
≥ 1

n
,

so that 1/rd ≤ vdnλ ≤ vdn
A+1 ≤ nA+1 (since vd < 1 for sufficiently large d). As before, we

consider a net N of radius R/4 (i.e., r); by Lemma 8.9.5, size of this net is at most cd/rd for
some absolute constant c > 0. Thus by Lemma 8.3.2, we have the uniform convergence property,
provided the parameter µ is replaced by

log n+ log |N | = log n+ log(1/rd) +O(1) = (A+ 2) log n+O(1).

Notice that µ̃ is picked to be a safe upper bound on this quantity, hence the lemma holds when µ
is replaced by µ̃.

Finally, it is easy to check that our choice of parameters satisfies all the conditions given in
the separation lemma. Hence the separation and connectedness guarantees (Lemmas 8.3.4 and
8.3.5), together with their proofs, remain unaffected.

8.10 Discussion

In this chapter we have shown that simple non-parametric estimators based on k nearest neigh-
bors and kernel density estimates are manifold adaptive estimators of the cluster tree. We have
also introduced the problem of cluster tree recovery in the presence of noise. Many open ques-
tions remain, particularly regarding the minimax optimal rates of convergence and rates of con-
vergence in the tubular noise case which we hope to address in future work.

One of the main advantages of the k nearest neighbors based estimator is its easy computability.
In the case of known manifolds we have shown a more general spatially adaptive algorithm
achieves better rates and in current work we are trying to understand the extent to which spatially
adaptive estimators can help when the manifold is unknown.

Finally, simple modifications of these simple non-parametric estimators can also be used as esti-
mators of various geometric properties of the level sets of the density. We are currently working
on these extensions.
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Chapter 9

Conclusions and Future Work

Much of this thesis characterizes how structure helps avoid the curse of dimensionality in a va-
riety of problems. A genuinely unified and comprehensive understanding of various notions
of intrinsic low-dimensionality and their effect on our ability to learn from noisy and high-
dimensional data is still not available.

Statistical performance guarantees are only one half of the story. Often our ability to make in-
ferences from large datasets is limited by the limited computational resources we have available.
Understanding and characterizing tradeoffs between statistical and computational complexities is
an important future direction. Recently, for instance Shender and Lafferty [170] have attempted
a partial characterization for linear regression. Developing a framework, akin to the minimax
framework that we have used throughout this thesis, but one that takes computational complexity
into account would be extremely interesting.

While these are broad goals that we hope to address in the near future, we conclude this chapter
with several concrete problems that we are addressing in our current work.

9.1 Sparse high-dimensional inference

9.1.1 Sparse Maximum Mean Discrepancy

The two sample testing problem is the following hypothesis testing problem: given two sets of
samples, one from a distribution P and the other from a distribution Q, distinguish if P = Q or
not.

One natural approach to this problem, is an RKHS embedding based test, which uses a test
statistic known as the Maximum Mean Discrepancy (MMD) [86].

MMD(P,Q) = sup
f∈F
||Pf −Qf ||H
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where F is an RKHS with kernel k.

The MMD is similar in form to the maximum kernel CCA coefficient and similar to kernel CCA
suffers from the curse of dimensionality and is unsuited to the high-dimensional two sample
testing problem.

Motivated by similar considerations to the one in Chapter 3 we can define a sparse additive
MMD which computes the MMD statistic over additive RKHSs. Formally the population statistic
is,

MMDs(P,Q) = sup
f∈F
||Pf −Qf ||H − λ1||f ||D − λ2||f ||1

where F is now an additive RKHS,

F =

{
f : f(X) =

p∑
j=1

fj(Xj), fj ∈ Hj

}

In current work we are investigating this statistic in an attempt to precisely characterize when it
outperforms the vanilla MMD.

9.1.2 Convex relaxations and sparse additive kernel PCA

There are two other interesting directions in which the work of Chapter 3 could be extended.
One is to consider other matrix factorization problems like principal components analysis (PCA)
and the other is to consider convex relaxations. We describe both of these together.

Kernel PCA is often motivated as PCA in feature space. One can take a slightly different per-
spective. One possible proposal for kernel PCA is:

max
f∈H

1

n

n∑
i=1

f 2(Xi)

subject to ||f ||2H ≤ 1

For a gram matrix K, using the representer theorem we obtain

max
α

1

n
αTK2α

subject to αTKα ≤ 1

which is just a generalized eigenvalue problem. If K is invertible then it is equivalent to the
eigenvalue problem

max
α

1

n
αTKα

subject to αTα ≤ 1

229



The natural semidefinite lift of the PCA problem from d’Aspremont et al. [55] is

max
V�0

tr(V XTX)

subject to tr(V ) = 1

Now, the sparse version is to just

max
V�0

tr(V XTX)

subject to tr(V ) = 1

||V ||1 ≤ c1

In additive kernel PCA we focus on additively decomposed Hilbert spaces. So we have

f(X) =

p∑
i=1

fj(Xj)

We would like to now induce sparsity at the level of functions. Let us focus on the convex
relaxation approach.

We would like to solve

max
α

1

n

(∑
j

KXjαj

)T (∑
j

KXjαj

)

subject to

p∑
j=1

√
αTj KXjαj ≤ 1

p∑
j=1

√
αTj K

2
Xj
αj ≤ c1

Ignoring cross terms in the objective we arrive at

max
α

1

n

∑
j

αTj K
2
Xj
αj

subject to

p∑
j=1

√
αTj KXjαj ≤ 1

p∑
j=1

√
αTj K

2
Xj
αj ≤ c1
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The natural convex lift of this problem would be to

max
A�0

1

n

∑
j

tr(AjK
2
Xj

)

subject to

p∑
j=1

√
tr(AjKXj) ≤ 1

p∑
j=1

√
tr(AjK2

Xj
) ≤ c1

In current work we are investigating the statistical properties of this approach to sparse additive
kernel PCA.

9.1.3 Fast algorithms for additive kernel problems

Despite the impressive theoretical guarantees for the additive kernel formulations for regression
[115, 156] and CCA [20], they are not widely used because of the computational difficulty in
solving these problems. These problems are typically second order cone programs for which
off-the-shelf solutions are not yet scalable. The backfitting algorithms for the functional versions
[20, 157] are often much more tractable and preferred in practice.

It would be interesting to investigate the scalability of new first order optimization methods like
the Alternating Directions Method of Multipliers (ADMM) algorithm of Boyd et al. [32].

Consider the following additive kernel regression formulation from Raskutti et al. [156]

(α̂1, . . . , α̂p) = arg min
αj∈Rn,αTj KXjαj≤1

{
1

2n
||y −

p∑
j=1

KXjαj||22+ (9.1)

λn

p∑
j=1

√
1

n
||KXjαj||22 + ρn

p∑
j=1

√
αTj KXjαj

}

One possible ADMM procedure solves the following equivalent program

(α̂1, . . . , α̂p) = arg min
αj∈Rn

{
1

2n
||y −

p∑
j=1

KXjαj||22+

λn√
n

p∑
j=1

||xj||2 + ρn

p∑
j=1

||zj||2 +

p∑
j=1

gj(wj)

}
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subject to wj = αj

xj = KXjαj

zj = K
1/2
Xj
αj

where gj(x) is the convex indicator function of the set xTKXjx ≤ 1, i.e. gj(x) = 0 if xTKXjx ≤
1 and∞ otherwise.

Now, we form the augmented Lagrangian. For a given penalty parameter ρ.

L(α,w, x, z, a, b, c) =

{
1

2n
||y −

p∑
j=1

KXjαj||22+
λn√
n

p∑
j=1

||xj||2 + ρ

p∑
j=1

||zj||2 +

p∑
j=1

gj(wj)

+

p∑
j=1

aTj (wj − αj) +

p∑
j=1

bTj (zj −K1/2
Xj
αj) +

p∑
j=1

cTj (xj −KXjαj)

+
ρ

2

(
p∑
j=1

||wj − αj||22 + ||zj −K1/2
Xj
αj||22 + ||xj −KXjαj||22

)}

The ADMM algorithm involves minimizing this expression in α,w, x, z and then performing
dual ascent on a, b, c. Each of these steps is reasonably simple (most are closed form). After
some calculus we arrive at the following algorithm:

1.

αj ←
(
K2
Xj
/n+ ρ(I +KXj +K2

Xj
)
)−1

︸ ︷︷ ︸
cache this

(
KXjy/n+ a

+K
1/2
Xj
b+KXjc+ ρ(w +K

1/2
Xj
z +KXjx)

)

2. zj ← Sρn/ρ

(
||K1/2

Xj
αj − bj

ρ
||2
) K

1/2
Xj

αj−
bj
ρ

||K1/2
Xj

αj−
bj
ρ
||2

3. xj ← Sλn/(ρ
√
n)

(
||KXjαj −

cj
ρ
||2
)

KXjαj−
cj
ρ

||KXjαj−
cj
ρ
||2

4. wj ← ΠCj(αj)
where ΠCj is the Euclidean projection onto the set αTj KXjαj ≤ 1. The projection Π(x)
can be computed in two steps:

(a) If xTKXjx ≤ 1 return x.

(b) Else return u = (λKXj + I)−1αj where λ is selected so that uTKXju = 1.

5. aj ← aj + ρ(wj − αj)
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6. bj ← bj + ρ(zj −K1/2
Xj
αj)

7. cj ← cj + ρ(xj −KXjαj)

It would be interesting to comprehensively compare this algorithm with the backfitting proce-
dures in terms of their computational complexity.

9.2 Other statistical problems in topological data analysis

In this thesis (in particular Chapter 7) we have focussed on homology inference from random
samples. Homology inference requires the selection of a tuning parameter to select the “scale”,
i.e. the radius parameter in the union of balls. Persistent homology is a method for probing
topological properties of point clouds and functions. The method involves tracking the birth and
death of topological features as one varies this tuning parameter. Features with short lifetimes
are informally considered to be ”topological noise.” Many of these fascinating ideas however do
not yet have a rigorous statistical backing. In recent work [16], we derived confidence intervals
on topological features. This allows us to distinguish between significant features and topolog-
ical noise. There are several other interesting questions that we hope to investigate in future
work including for instance understanding the power (ability to control the Type II error) of the
confidence intervals we have proposed.

9.2.1 Machine learning with topological features

TDA provides the user with an extensive toolbox of interesting topological summaries of point
clouds. Recently the papers [142, 152, 153] have considered various supervised learning prob-
lems on distributions (i.e. where each data point is a distribution or a sample from a distribu-
tion).

More generally one could consider both supervised and unsupervised learning problems on gen-
eral point clouds. In this context, TDA could be useful to generate various powerful features
from these point clouds on which standard machine learning algorithms could be applied.

9.3 Clustering with noisy and high-dimensional data

There are several natural extensions to the work on clustering described in this thesis. In the pa-
per [118], we considered the extension of our work on spectral clustering to selectively sampled
similarities. The algorithm we consider in this work selectively samples entire rows of the sim-
ilarity matrix, which is natural for instance in network tomography applications. Characterizing
the minimax rate here remains open, as does the problem of precisely understanding spectral
clustering with randomly sampled similarities.
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In this thesis we considered the problem of block structured activations, which arise for instance
when a natural ordering of objects (and features) is known. A natural extension would be to
consider the problem of clustering with side information, where the side information is used to
infer this ordering (perhaps partially). In the worst case of course this problem reduces to the
bi-clustering problem, also considered in this thesis.
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