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ABSTRACT 

 
When we work on a practical scheduling task, we usually do not have complete 
knowledge of the related resources and constraints. For example, when scheduling a 
conference, we may not know the exact sizes of available rooms or equipment needs of 
some speakers. The task of constructing a schedule based on incomplete data gives rise to 
several related problems, including the representation of uncertainty, efficient search for 
schedules, and elicitation of additional data that help to reduce uncertainty. 

In this thesis we introduce a new information elicitation approach aiming to 
resolve uncertainty in order to increase quality of optimization while keeping the number 
of questions the user has to answer to a minimum. The approach differs from other 
approaches in terms of working with a continuous domain with a large number of 
uncertain variables, not having a need for bootstrapping, tight integration with the 
optimization process and integration of multiple approaches to elicitation. 

The approach estimates the potential impact of asking a question on the schedule 
quality, based on available information such as stated user preferences or information 
about the uncertainty itself such as a probability distribution of typical values. The 
elicitation approach unifies three different elicitation algorithms which we also developed 
as a part of this work. The unified elicitor is a part of a scheduling system that supports 
the use of incomplete data. This work has been part of the RADAR project 
(www.radar.cmu.edu) at Carnegie Mellon University, which is aimed at building an 
intelligent system for assisting an office manager. 

The purpose of this thesis is to introduce a new elicitation algorithm and to 
confirm the following hypothesis: 

  
Using the presented elicitation procedure we can pick questions that improve the 

quality of produced schedules significantly better than picking questions randomly or by 

using simple heuristics. 

 
We present evaluation results in the conference scheduling domain using different 

problem sizes, even though theoretically our approach is generalizable to optimization 
under uncertainty in any other domain. We show that we perform better than random 
picking of questions and simple heuristics and the difference becomes more prominent as 
the problem size increases. 
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1. INTRODUCTION 

 

1.1. Motivation 

 
When we work on a practical scheduling task, we usually do not have complete 
knowledge of the related resources and constraints. For example, when scheduling a 
conference, we may not know the exact sizes of available rooms or equipment needs of 
some speakers. The task of constructing a schedule based on incomplete data gives rise to 
several related problems, including the representation of uncertainty, efficient search for 
schedules, and elicitation of additional data that help to reduce uncertainty. 
            Uncertain information has a negative effect on the quality of schedules produced 
by an optimizer as the optimizer is forced to effectively "guess" the missing information, 
most of the time erring on the side of safety and not utilizing the available resources to 
their full extent. Resolving this uncertainty by asking questions on all possible uncertain 
pieces of information is impractical and in most cases impossible as no human user 
would be willing to answer thousands upon thousands of questions which may be typical 
in a practical scheduling task. Furthermore, some questions may not make sense to ask. 
For example, if we are trying to assign a hotel room to a guest who stated no preferences 
and there are no non-smoking rooms available, asking the guest’s smoking preference is 
not very useful. Likewise, when trying to find matches on a social networking application 
we would not consider a question about a person’s unknown height to be important, if all 
potential matches for that person stated that they do not care about height. An effective 
elicitation method would produce an ordering of potential questions maximizing the 
increase in quality of the assignment as each question is answered.  
            Although researchers have long realized the importance of uncertain information 
in scheduling and optimization problems, the related work has been limited [Sahinidis, 
2004; Bidot, 2005]. Researchers have developed several domain-specific systems for 
optimization based on incomplete data [Chajewska et al., 1998; Averbakh, 2001; 
Lodwick et al., 2001; Moore, 2002; Balasubramanian and Grossmann, 2003; Lin et al., 
2004]; however, they have not studied a general problem of scheduling under uncertainty. 
            We have investigated the problem of elicitation to aid in scheduling based on 
uncertain information about available resources and user preferences. The previous 
techniques have turned out inapplicable to this problem, and we have developed a new 
mechanism for improving scheduling under uncertainty. 
 

1.2. Overview of the Results 

 
We evaluate our approach to elicitation in the conference scheduling and vendor order 
domains. We show that our approach satisfies our research hypothesis and in particular it 
produces a ranking of questions that is significantly better at improving the quality of 
optimized schedules than the rankings produced by simple heuristics or random picking 
of  questions. For  example,  in  Figure 1  we  show   the   evaluation   results   comparing  
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Figure 1: Comparison of our elicitation approach (solid) with random picking of questions (dashed) for 
conference scheduling problem with 3300 potential questions.  

 
 
our system to the random picking of questions for a conference scheduling problem with 
3300 possible questions to ask to the human user. In order to achieve 85% of the fully 
certain schedule quality, our elicitation approach needs the human user to answer only 
17.5% of the questions while random picking of questions needs 45%. This difference 
becomes even more  prominent  when  we look  at  the  number  of  questions we need  to  
achieve 95% of the fully certain schedule quality; our approach only needs 18% of the 
questions while random picking requires 62%. In vendor orders domain, our approach 
needs only 5% of the questions to be answered in order to achieve fully certain schedule 
quality while random picking needs more than 90% of the questions. 
 

1.3. Overview of the Approach 

 
We introduce the domain we chose and architecture we use for our approach and explain 
each component of the overall system. We also state the key contributions of our research. 
  
1.3.1. DOMAIN 
 
We use an academic conference as our main development and evaluation domain. Rooms 
are our resources and we need to assign them to sessions. We try to produce a schedule of 
high quality based on known constraints and preferences. 
 Rooms have a set of physical properties such as room size, seating capacity, and 
so on as well as properties relating to resources placed in the rooms such as microphones 
and projectors. We also keep information about distances between rooms. 
 Each event has an importance and specifies preferences and constraints relating to 
the room we may assign it to. 
 Most importantly, we allow having uncertain information about room properties, 
session importances, and session preferences and constraints.  
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1.3.2. ARCHITECTURE 

 
The scheduling architecture consists of the components shown in Figure 2. We briefly 
describe the role of these components. We have given a more detailed description of 
these components in the chapters on the representation of uncertainty (Chapter 2), and 
scheduling based on uncertain knowledge (Chapter 3). 
 

World model: This component maintains the description of a scheduling scenario, 
which includes the information about resources, constraints, and current schedule. It 
keeps a persistent copy of the world model on disk, and a fast-access copy in memory. 
We cover the representation in Chapter 2 
  Scorer: The scoring module is a fast procedure for evaluating schedule quality, 
which computes the expected quality of each assignment. The system uses it for 
automatic scheduling and for feedback during manual scheduling. We cover the scorer as 
a module for the scheduler in Chapter 3. 

 

 

 

Figure 2: Architecture of the scheduling system. 

 
             

• Provide the exact value for an uncertain room property. 
Example: Find out the size of the conference room. 

• Provide the exact value for an uncertain request importance. 
Example: Find out the importance of the demo. 

• Provide the exact specification for a set of acceptable values for start time, end time, duration, 
or room property in an event description. 
Example: Find out the acceptable duration of the demo. 

• Provide the exact specification for a set of preferred values for start time, end time, duration, or 
room property in an event description. 
Example: Find out the preferred room size for the discussion. 

• Select a room and time for an event. 
Example: Select a time slot for the workshop. 

             

 

Table 1: Types of requests to the user. The system may ask the user to find out more information about 
available resources and scheduling constraints, and to schedule some events manually. 

Top-level control 

World model Scorer Scheduler Elicitor 

Editing resources 
and constraints 

Collaborative 
scheduling 

Elicitation 
requests 

Graphical user interface 



 

4 

 

Scheduler: The scheduling module uses the description of rooms and events, and 
searches for a schedule of high expected quality. The search algorithm is based on hill-
climbing and it does not guarantee optimality. If we apply this algorithm to construct a 
new schedule, it begins with the initially empty schedule and gradually improves it. If we 
use it to repair a schedule after changing resources or constraints, it starts with the old 
schedule. At each step, it either assigns a slot to some unscheduled event, or moves some 
scheduled event to a better slot. It continues the search until it cannot find further 
improvements, or until reaching a time limit. We cover the scheduler in Chapter 3. 

Elicitor: The algorithm behind this module is the main focus of this dissertation.. 
The elicitation module determines whether the scheduler needs manual help, and 
generates respective requests to the user. We list the request types and give example 
requests in Table 1. 
 For each potential request, the elicitor analyzes the expected schedule 
improvement due to the user’s help, and the expected human effort of addressing this 
request; it evaluates the utility of a request by the difference between the expected 
improvement and the required effort. The system selects the requests with positive utility, 
ranks them from the highest to the lowest utility, and displays them in this order. We 
cover the elicitation process in Chapter 4. 
 Top-level control: This module coordinates the invocation of the other modules, 
and it also routes data among them. Currently, it uses simple control procedures; we are 
now working on a more intelligent version, which will include heuristics and learning 
mechanisms for making the best use of the search algorithm, and for improving its co-
ordination with the manual scheduling. 

Interface: The graphical user interface consists of three main screens, as shown 
in Figure 2. The first screen is for editing the description of rooms and events, the second 
is for constructing and repairing conference schedules, and the third is for keeping track 
of the requests generated by the elicitor. 
 
1.3.3. KEY CONTRIBUTIONS 

 
In this work, we have investigated a novel approach to information elicitation and this 
has led to three main contributions: 

• As a part of the elicitation process, we use a fast heuristic computation of the 
expected utility of potential questions to determine initial question rankings. We 
explain this process in detail in Section 4.2.  

• We use B* search [Berliner, 1979] for refining question rankings. Section 4.3 
covers this process. 

• We employ a synergy of domain-independent and domain-specific elicitation 
techniques under a unified elicitation approach. The end result is our Integrated 
Elicitor which we cover in Section 4.4. 

 

1.4. Related Work 

 

 Elicitation of missing knowledge is important in a wide range of domains, from 
recommender applications on the web [Burke, 1999; Stolze and Ströbel, 2003], to 
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understanding preferences of auction participants [Chen and Pu, 2004]. We review some 
of these applications and discuss their relation to our problem. 
 Burke's [1996] FindME systems use domain knowledge to provide the users with 
assisted browsing when the users cannot specify the attributes of the object the users are 
trying to retrieve. The process involves two steps: an initial query and the subsequent 
quick modifications or tweaks to the results by the user. The tradeoffs, category 
boundaries, and search strategies within a given domain have to be known, and the user 
may need to do a long series of attribute tweaks [Burke et al., 1997]. [Burke, 1999; Stolze 
and Ströbel, 2003] apply this method to different domains, such as video rental and 
general-purpose shopping. This technique is impractical for our problem because the 
amount of tweaking needed in a domain with continuous variables would render the 
problem intractable, and we would need to provide an impractical amount of initial 
knowledge.   
 Gajos and Weld [2005] employ preference elicitation to find the best interface 
design for the user. Their method involves example critiquing and asking actual 
elicitation questions; however, it is limited to binary queries and to the elicitation of 
preference weights.  

Pu [2003b] gives guidelines and empirical results for designing a good interface 
for preference elicitation. Linden [1997], Torrens [2003], and Pu and Faltings [2000; 
2002; 2003a] employ example critiquing to assist the user in finding the best airline 
tickets. In all cases, the user needs to answer a lot of questions for each flight selection, 
which makes the underlying technique impractical for our problem, which involves a 
large number of selections. Faltings states that, for each travel planning task, thirty 
examples needed to be shown at each step of tweaking [Faltings et al., 2004]. Even 
compounding critiques together to form more complex critiques at each step  
[McCarthy, 2005] fails in our domain. This is because, although they may reduce the 
amount of critiquing the user has to provide, they cannot deal with continuous preference 
functions. 
 Stolze [2003; 2004] introduces a different kind of preference elicitation. He 
suggests that users are more comfortable in providing the intended use for the desired 
object rather than desired attributes. Once the search returns the top matches, the user can 
fine-tune attributes to get different matches. This methodology was used commercially by 
AOL’s PersonaLogic system, Active Buyer Guide, and PurchaseSource systems [Stolze 
and Rjaibi, 2001]. Stolze and Ströbel [2001] also go over a method for building a 
decision tree in order to decide which questions to ask. 
 Boutilier [1997; 2003c] addresses a problem similar to our research: doing 
elicitation in order to improve a solution to an optimization problem. He uses Ceteris 
Paribus Nets to represent preferences where conditional dependence and independence 
can be contained under a ceteris paribus interpretation [Boutilier et al., 2003a, Boutilier et 

al., 2004a], as well as generalized additive independence models [Braziunas and Boutilier, 
2005]. Boutilier deals with linear utility constraints and allows uncertain preferences, 
which is similar to our approach; he decides which question to ask by considering the 
possible reduction in maximum regret in general purpose domains [Wang and Boutilier, 
2003; Boutilier et al., 2005] and specific domains, such as resource allocation in 
computing systems [Boutilier et al., 2003b; Patrascu et al., 2005]. His approach is limited 
to elicitation in problems with discrete variables. For example, the resource allocation 
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problem involves eliciting the desired amount of memory out of an explicit set of 
possible values. 
 Sometimes, user preferences can be approximated through preferences of other 
“similar” users. A new user expresses preferences for a set of items, and the system finds 
other users who have similar ratings. The challenge here is picking the right set of 
preferences to ask the new users to provide. For example, some approaches try to identify 
items that the user will most likely have a preference about, or items that would 
potentially give most value to the recommender system [Rashid et al., 2002]. Boutilier 
used expected value of information in order to choose which questions to ask [Boutilier 
and Zemel, 2003; Boutilier et al., 2003d]. This “collaborative filtering” approach has 
been used for making recommendations to the users on Internet news [Resnick et al., 
1994], videos [Hill et al., 1995], music [Shardanand and Maes, 1995], and products 
provided by eBay and Amazon [Schafer et al., 2001]. This approach requires users to 
rank related items; the sheer number of possible “items” as well as failing to account for 
the fine-grained detail in user preferences makes this approach impractical for our 
problem.  

Burke [2000b] uses similarity-based heuristics to make recommendations based 
on past user ratings of available options. These heuristics include Euclidean distance [Ha 
and Haddawy, 1998] and probabilistic distance [Ha and Haddawy, 2003]. This 
collaborative filtering approach requires a lot of knowledge engineering. A lot of past 
ratings are required though, which creates problems in domains like ours. Burke [2000a] 
also noted a possibility to integrate collaborative filtering with the knowledge-based 
approach; however, it would not solve our problem either since our domain would require 
an impractically large knowledge base. 

Another approach using similarity between utility models of different users is 
producing clusters of known utility functions [Chajewska et al., 1998]. When a new 
user’s utility function needs to be elicited, the system asks questions that allow finding 
the related cluster. The shortcomings of this approach are similar to the previous 
approach by Burke. A big database of utility models is needed for effective clustering. 
Furthermore, as the utility models can widely differ and are very complex in our domain, 
we are very likely to end up with lots of clusters leading to quite a few questions needed 
to differentiate between them. 

Preference elicitation is also important in reducing the number of queries in 
combinatorial auctions, where the system needs to figure out which bundle of items the 
user would be most satisfied with [Smith et al., 2002; Boutilier et al., 2004b; Sandholm 
and Boutilier, 2006]. Common variations on this kind of elicitation include incremental 
auctions [Kress and Boutilier, 2004] and using value queries [Zinkevich et al., 2003; 
Blum et al., 2004]. 

The existing research in the area has been successful in finding and improving 
methods for doing preference elicitation in various scenarios; however, in these scenarios 
either an optimizer is not the target “client” for the elicitation or the elicitation domain is 
assumed to be simpler than our domain. We do not make an assumption about the 
variables in our domain being discrete or the number of possible variations in the 
preferences. We also use B* search [Berliner, 1979], which was originally developed for 
playing games such as chess or backgammon against human opponents, into the 
elicitation process. Furthermore, our elicitation system is tightly connected with the 
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optimizer and our approach’s main objective is getting the most important information 
for improving optimization. 
 

1.5. Thesis Outline 

 
In this thesis, we first introduce the domain we use for applying our elicitation approach: 
Planning an academic conference. We cover the main objects in this domain including 
rooms, events and the concept of a “schedule” which provides the means for assigning 
events to time slots in rooms. We explain how we measure the quality of a schedule and 
introduce how we represent uncertainty which may exist in our knowledge about rooms 
and events. We give information on inference rules which the system uses in generating 
common sense assumptions when information is unavailable. We then introduce the 
optimization algorithm which we use to produce a schedule.  
 As expected, we dedicate most of the document to details of the elicitation 
algorithm. We introduce the elicitation problem in the conference planning domain and 
the three different kinds of elicitors we use in order to improve the quality of schedules 
produced by the optimization algorithm.  We also give, in detail, the evaluation 
methodology we follow and the results of our evaluation using different scenarios. We 
introduce another domain, placing vendor orders for sessions in a conference and 
evaluate our approach in this domain. 
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2. REPRESENTATION 

 

2.1. Scheduling  Problem 
 

We begin with an example of a conference scenario, and use it to illustrate the 
representation of resources and constraints. Suppose that we need to assign rooms to 
events at a small one-day conference, which starts at 11:00am and ends at 4:30pm, and 
that we can use three rooms: Bean Auditorium, Wean 100, which is a classroom, and 
Wean 250, which is a conference room (Table 2). These rooms host other events on the 
same day, and they are available for the conference only at the following times: 

 

 Bean Auditorium:  11:00am–1:30pm and 3:30pm–4:30pm. 
 Wean 100:   11:00am–2:30pm. 
 Wean 250:   12:00pm–4:30pm. 

 

We describe each room by a set of properties; in this example, we consider three 
properties: 

 

Size:   Room area in square feet. 
Mikes:  Number of microphones. 
Stations:  Maximal number of demo stations that can be set up in the room. 

 

The conference includes five events: demonstration, discussion, tutorial, 
workshop, and conference-committee meeting (Table 3). For each event, the conference 
committee specifies its importance, as well as constraints and preferences on its time and 
room properties. We construct a schedule by assigning a room and time slot to every 
event; we give an example schedule in Figure 3.  
 

 
Bean 
Auditorium 

Wean100 Wean 250 

Size 1200     700     500     
Stations 10     5     5     

Mikes 5     1     2     
 

Table 2: Available rooms and their properties. 
 
 

 Demo Discussion Tutorial Committee Workshop 
Importance 50 30 75 10 50 
Start time Any Any 11am  3pm–4pm Any 
End time 
Duration 

Any 
≥60 

Any 
≥30 

1pm 
≥30 

3pm-4pm 
≥15 

Any 
≥60 

Room size ≥600 ≥200 ≥400 ≥400 ≥600 
Stations ≥5 Any Any Any Any 
Mikes Any ≥2 ≥1 Any ≥1 

 

Table 3: Events and related constraints. 
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 Bean Auditorium Wean 100 Wean 250 

11:00 

11:30 
Tutorial Unavailable 

12:00  

12:30 

1:00 

Demo 

1:30 

2:00 

 
Workshop 

 

2:30 

 

3:00 

Unavailable 

3:30 

4:00 
Committee meeting 

Unavailable 
Discussion 

 

Figure 3:  Example schedule. 

 
We define constraints on acceptable schedules by limiting appropriate start times, 

end times, durations, and room properties for each event. For example, we may specify 
that the committee meeting starts and finishes between 3:00pm and 4:00pm, has an 
acceptable duration of 15 minutes or more, and the minimal acceptable room size for it is 
400 square feet. In Table 3, we give example constraints for all five events; note that the 
schedule in Figure 3 satisfies these constraints. 

 

2.2. Resources and Constraints 
 

We now describe the representation of available resources, scheduling requirements, and 
specific schedules. We use room objects to represent resources; event objects to represent 
events and constraints; and assignment objects to represent selection of a room and time 
slot for each event.  
 
2.2.1. ROOMS  
 

The main resource represented in the current system is rooms, which may be in multiple 
buildings. The system also keeps data about other relevant resources related to rooms, 
such as portable equipment or services. 

We represent a room by a name and a list of properties, such as its size, number of 
microphones, and the building containing it. The system allows the user to define an 
arbitrary list of room properties, where each property is either numeric or nominal; for 
instance, the size of a room is a number, whereas the building that contains a room is a 
nominal value. In Table 2, we give an example of three rooms, represented by three 
properties. 

We also specify distances between rooms, which represent some measure of the 
difficulty of getting from one room to another. The distances may not be in feet; for 
example, we may measure distances in walking minutes. 

For each room, we specify its availability for the conference, represented by a 
collection of time intervals. For instance, Bean Auditorium in the example is available for 
two intervals: 11:00 am – 1:30 pm and 3:30 pm – 4:30 pm. 
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Figure 4: Example of a room hierarchy. 

 
We arrange rooms into a tree-structured hierarchy, where the top node 

corresponds to the set of all rooms, other nonleaf nodes are specific room types, and the 
leaves are individual rooms. In Figure 4, we give an example of a room hierarchy with 
four room types: auditoriums, small rooms, classrooms, and meeting rooms. 

We use the hierarchy to specify default property values, which are inherited by 
descendant nodes. For example, consider the hierarchy in Figure 4. The default number 
of microphones for the auditoriums is 5, and this value is inherited by any auditorium 
without a specified number of microphones. Bean Auditorium inherits this value, 
whereas Acorn Auditorium has an explicitly specified value, which differs from the 
default.  We also use the hierarchy to help us deal with uncertainty about room properties. 
If a given room property is not known, the system can estimate a value from nodes higher 
in the hierarchy. For example, if we define small rooms to be between 500 and 800 
square feet, the system would estimate the size of a meeting room to be in that range in 
the absence of an explicit room size. 
 

2.2.2. EVENTS  
 

We next describe the representation of conference events, such as workshops and demo 
sessions, and related scheduling constraints. The representation of an event includes its 
name, importance, list of hard constraints on scheduling the event, and list of soft 
preferences. 

We represent an event importance by a positive integer; the higher this value, the 
greater the importance. For instance, the importance of the workshop in the motivating 
example is 50, whereas the importance of the committee meeting is 10 (Table 3); 
intuitively, it means that finding a good time slot for the workshop is five times more 
important than that for the committee meeting.  

When specifying an event, we can impose hard constraints on its start time, end 
time duration, and properties of a room allocated for this event, as well as its time and 
position with respect to other events. We define constraints by sets of acceptable values 
for each of these parameters. We give an example of such constraints in Table 3; for 
instance, the committee meeting requires a room of size at least 400 square feet, and it 
has to start no earlier than 3 pm and end no later than 4 pm, and continue for at least 15 
minutes. 

 

• Room-property constraints: For each room property, we can define acceptable 
values, which limit the rooms that can be used for the event. For a numeric 

Auditorium – 5 mikes 

Room 

Small Rooms 

Classroom Meeting Room 

Bean Auditorium Wean 100 Wean 250 Acorn Auditorium 

1 mike 
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property, we define acceptable values by a list of nonoverlapping intervals; for a 
nominal property, we define a list of acceptable values. 

• Distance constraints: We may constrain the maximal and minimal allowed 
distance of an event from other events. For example, as shown in Table 4, the 
demo needs to be at least 100 and at most 300 feet from the tutorial session. Note 
that these constraints involve pairs of events, which makes them different from 
room-property constraints. 

• Temporal constraints: We may define two types of temporal constraints. The 
constraints on the start time, end time, and duration of an event, defined by a set 
of acceptable intervals are first type of temporal constraints.  For example, the 
tutorial in the motivating example should start no earlier than 11 am, end no later 
than 1pm, and its duration should be at least 30 minutes (Table 3). Constraints on 
the relative start times of events are the second type of temporal constraints. We 
may specify that the difference between the start times of two events, or start time 
of one event and end time of another, should be within a certain interval. For 
example, we may specify that the discussion should be immediately before the 
tutorial, or that the demo should start between 2 and 3 hours before the discussion 
and should not overlap with the committee meeting (Table 5).  

 

 

First  
Event 

Second  
Event 

Min. 
Distance 

Max. 
Distance 

Demo Tutorial 100 300 
Demo Committee 150 250 
Demo Workshop Any 100 
Discussion Committee Any 100 
Discussion Workshop 100 150 
Tutorial Committee Any 200 

Table 4: Examples of distance constraints: We can specify maximal and minimal allowed distances (in feet) 
between events. 

 

 

First Event Second Event Constraint 

Demo Discussion 2–3 hours before 
Discussion Tutorial Immediately before 
Workshop Demo Immediately after 
Demo Committee Non-overlap 

Table 5: Examples of relative-time constraints. 
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2.2.3. SCHEDULE  
 

When the system builds a schedule, it must satisfy all hard constraints; for instance, if the 
constraints are as shown in Table 5, it must not consider a schedule where the discussion 
is after the tutorial. 

To build a schedule, we need to assign a specific room and time slot to each event. 
We represent this assignment by four variables: a pointer to the event, a pointer to a room, 
a start time, and a duration. Alternatively, we can decide that an event is not a part of the 
schedule, which is also considered an assignment.  We call such an event rejected, and 
represent it internally by setting the related room pointer to NIL. 

A partial schedule is a set of assignments, where different assignments 
correspond to different events, and some events do not have assignments. A full schedule 
is a set of assignments that includes exactly one assignment for each event. For example, 
the schedule in Figure 5 is a partial schedule, where we have assigned rooms for the 
committee meeting, tutorial, and discussion, and decided that we do not include demo 
into the conference, but we have not yet made a decision for the workshop. 

Note that we distinguish unassigned and rejected events. An event is rejected if 
we have decided that it is not a part of the conference, whereas an event is unassigned if 
we have not yet made any decision. When the system builds a new schedule, it can 
temporarily mark some events as unassigned; however, the final schedule must not have 
unassigned events. 

Also note that we always have an option of rejecting an event, regardless of its 
constraints, and a schedule with rejected events is valid. Thus, we can build a valid 
schedule by simply rejecting all events, regardless of their constraints; however, its 
quality would be very poor.  

 
 
 

 

 Bean Auditorium Wean 100 Wean 250 

11:00 

11:30 
Tutorial Unavailable 

12:00 

12:30 

01:00 

 

01:30 

02:00 

 

02:30 

 

03:00 

Unavailable 

03:30 

04:00 
Committee Meeting 

Unavailable 
Discussion 

Rejected: Demo  

Unassigned: Workshop 

Figure 5: Example of a partial schedule. 
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2.3. Schedule Quality 
 

We next define schedule quality, based on the notion of preferences, which represent soft 
constraints. We measure quality on the scale from −penalty to 1.0, where penalty is a 
nonnegative real value that represents the penalty for the worst possible schedule. 
Intuitively, the zero quality corresponds to satisfactory assignments, negative quality 
values represent poor assignments, and positive values mean unusually good assignments. 

For each event, we specify preferences that represent the desirable selection of a 
room and time slot. We represent a specific preference by a piecewise-linear function that 
shows the dependency of the assignment quality on its start time, end time, duration, 
some room property, or relative distance or time with respect to other events. The domain 
of this function is the set of acceptable values for the related property, and the range is the 
quality values between −penalty and 1.0. 
 In Figure 6, we show an example preference, which determines the dependency of 
the assignment quality on the room size; in this example, the minimal acceptable room 
size is 600, and penalty is 5.0, which means that the function range is from −5.0 to 1.0.  

Note that this function is monotonically increasing, and we can specify it by three 
values of the room size, which correspond to the segment endpoints: the minimal 
acceptable size (600), which corresponds to the quality of −penalty; the satisfactory size 
(1000), which corresponds to the zero quality; and the minimal value of the “perfect” size 
(1200), which corresponds to the quality of 1.0. Although the system allows arbitrary 
functions, we often use this three-point scheme, which matches the human intuition for 
many preferences. In Table 6, we give example preferences for the conference described 
earlier; in this example, we use this scheme to describe functions with the range from 
−5.0 to 1.0. 
 
 
 

Room size200 400 600 800 1000 1200 1400

Quality

-6

-5

-4

-3

-2

-1

1

 
Figure 6:  Example of a preference function, which shows the dependency of the assignment quality on the 
room size for the demo. 
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For each preference, we specify its weight, which is a positive integer that shows 
its relative importance compared to other preferences.  In the example, the most 
important event is the committee meeting. The discussion session and the workshop are 
only half as important, and the tutorial and the demo session have very low importance 
(see Table 6). 

If we reject an event, then this assignment has the worst possible quality, which 
is –penalty. If an event has a room and time slot, we instantiate the respective start time, 
duration, and room properties into the event’s preference functions, and take the weighted 
sum of their values. If an event has k preference functions, their values are p1,…, pk, and 
their weights are  w1,…, wk, then the assignment quality is 

 

 (2.1)    (w1 · p1 + … + wk · pk) / (w1 + … + wk). 

 
 

 Demo Discussion Tutorial Committee Workshop 

Importance 1 5 1 10 5 

Min 60  30 30 15 60 

Good 120  60 45 30 75 

 
Duration 

Best 150 90 60 60 120 

Min 600 200 400 400 600 

Good 1000 400 600 600 800 Room size 

Best 1200 600 800 800 1000 

Min 5 0 

Good 10 1 

 
Stations 

Best 15 

 
Any 

2 

 
Any 

 
Any 

Min 2 1 1 
Good 3 1 1 

 
Mikes 

Best 
Any 

4 2 

 
Any 

 1 
 

Table 6: Scheduling preferences; we specify preference functions using a three-point scheme, where the 
“min” value of the argument corresponds to the −5.0 quality value, “good” gives the quality of 0.0, and 
“best” gives the quality of 1.0. 

 
 

 Acorn Auditorium Wean 100 Wean 250 

11:00 

11:30 
Tutorial Unavailable 

12:00  

12:30 

1:00 

Demo 

1:30 

2:00 

 
Workshop 

 

2:30 

 

3:00 

Unavailable 

3:30 

4:00 
Committee meeting 

Unavailable 
Discussion 

 

Figure 7:  Example schedule. 
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The overall schedule quality is the weighted sum of the quality values for 

individual assignments. That is, if a schedule includes n assignments, their quality values 
are Qual1,…, Qualn, and their importances are imp1,…, impn, then the overall schedule 
quality is 

(2.2)  (imp1 · Qual1 + … + impn · Qualn) / (imp1 + … + impn). 
 

For example, if we use the preferences in Table 6 and the schedule is as shown in 
Figure 7, then the quality of the time slot for the demo is 0.75, for the discussion is 0.75, 
for the tutorial is 0.62, for the committee meeting is 1.00, and for the workshop is −0.17, 
and the overall schedule quality is 0.50. 

We use an optimization algorithm that uses the description of rooms and events, 
and searches for a high-quality schedule (see Chapter 3). The algorithm is based on hill-
climbing and it does not guarantee optimality. 

 

2.4. Uncertain Resources 
 

When scheduling a conference, we may have incomplete data about resources, event 
importances, and preferences; for instance, we may not know the exact size of the 
conference room, or the relative importance of the demo and discussion. We represent 
uncertain values of room properties, event importances, and preference weights by 
probability density functions, approximated by collections of uniform distributions. 
Specifically, we encode an uncertain value by a set of disjoint intervals that may contain 
it, with a  probability  assigned  to  each  interval;  the  sum  of  these  probabilities  is 1.0.  
 
 
 

Room size200 400 600 800 1000 1200 1400

Probability

0.001

0.002

0.003

0.004

 

Figure 8:  Probability density function for uncertain room size, which is between 500 and 750 with 0.75 
probability, and between 1000 and 1250 with 0.25 probability. 
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In Figure 9(a), we summarize this encoding and give the related constraints on 
probabilities and endpoints of intervals. 

For example, suppose that the exact size of the conference room is uncertain. 
Recent measurements suggest that it is between 500 and 750, whereas old records show 
that it is between 1000 and 1250. If we trust the measurements more than the old records, 
but not completely, we may assume that the size is between 500 and 750 with 0.75 
probability, and between 1000 and 1250 with 0.25 probability; in Figure 8, we show the 
corresponding probability density function. 
 

2.5. Uncertain Preferences 
 

The representation of uncertain preferences is based on the combination of piecewise-
linear functions with uncertain values. Specifically, we represent a preference by a 
piecewise-linear function that may have uncertain y-coordinates. For example, suppose 
that we need to encode a preference for a room size. Suppose further that the minimal 
allowed size is 600, and that 1200 is definitely enough, but we are uncertain about sizes 
between 600 and 1200. We believe that 800 may be an acceptable size, but there is a risk 
that it would be barely enough. We also believe that the size of 1000 should make the 
attendees perfectly happy, but there is a chance that some attendees would prefer a larger 
room. We may represent it by the function in Figure 10(a), where the quality for the size 

of 800 is an uncertain value between −5.0 and 0.0, and the quality for the size of 1000 is 
an uncertain value between 0.0 and 1.0. 

We also allow specifying an uncertain preference by multiple functions and their 
probabilities. For example, suppose that some conference event requires at least 600 
square feet, and the description of the event indicates that the optimal room size is 800, 
but a member of the conference committee has told us that the appropriate size is 1200. If 
we trust the committee member more than the description, but not completely, we may 
assume that the description is correct with probability 0.25. We then represent the size 
preference by two different piecewise-linear functions, with the probabilities of 0.75 and 
0.25, as shown in Figure 10(b). 

The developed system allows the use of uncertain quality values and multiple 
piecewise-linear functions at the same time; that is, we may specify several piecewise-
linear functions with their probabilities, and use uncertain y-coordinates in each function.  

 

2.6. Utility Function 
 

If the description of rooms and events includes uncertainty, the schedule utility depends 
on the mathematical expectation of the quality and on the standard deviation of the 
expected quality. When the system constructs a schedule, it keeps track of the expected 
quality of candidate schedules. The quality computation is based on the assumption that 
all probability distributions are independent. If some of them are dependent, the 
computation does not give the exact expected quality, but it usually provides a good 
approximation. 
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(a) Representation of an uncertain value. 

 
prob1: from min1 to max1 
prob2: from min2 to max2 

… 
probm: from minm to maxm 

 
We describe an uncertain value by multiple intervals and respective probabilities, and we 
specify each interval by its minimal and maximal value. The intervals do not overlap, and 
the sum of the probabilities is 1.0, which means that we impose the following constraints 
on the related values: 
 

 min1 ≤ max1 ≤ min2 ≤ max2 ≤ …≤ minm ≤ maxm 

 prob1 + prob2 + … + probm = 1.0 
             

(b) Representation of an uncertain function. 

 

prob1: (x11, y11), (x12, y12), … 

prob2: (x21, y21), (x22, y22), … 

… 

probm: (xm1, ym1), (xm2, ym2), … 
 
We describe an uncertain function by multiple piecewise-linear functions and respective 
probabilities. The description of each piecewise-linear function is a list of segment 
endpoints sorted by x-coordinate. The x-coordinate of a point must be a specific number, 
whereas its y-coordinate may be either a number or an uncertain value. For each 
piecewise-linear function, the x-coordinates of its endpoints are distinct: 
 

 x11 < x12 < … 

 x21 < x22 < … 

  … 

 xm1 < xm2 < … 
 
Furthermore, the probabilities that correspond to different piecewise-linear functions sum 
to 1.0: 
 

 prob1 + prob2 + … + probm = 1.0 
             

Figure 9: Encoding of uncertain values and functions. We use uncertain values to represent room 
properties, event importances, and preference weights, and uncertain functions to represent 
preferences. 
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(a) Piecewise-linear function with uncertain y-values. 
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(b) Two piecewise-linear functions and their probabilities. 

Figure 10: Examples of uncertain preference functions; the first function includes uncertain quality values, 
whereas the second is encoded by two different functions, with probabilities of 0.75 and 0.25. 
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The algorithm inputs a fully certain preference function, represented by the coordinates of its 
endpoints, x1…xl and y1…yl; and an uncertain value, represented by vectors prob1…probm, 
min1…minm, and max1…maxm, as shown in Figure 9(a). It returns the mathematical expectation of 
applying the certain preference function to the uncertain value. We assume that all intervals of the 
uncertain value are in the domain of the preference function, that is, x1 ≤ min1 ≤ maxm ≤ xl. If the 
uncertain value does not satisfy this assumption, then it violates the related hard constraint, and 
the system does not apply the preference function to this value.  

The algorithm consists of three procedures: PREF-FOR-CERTAIN, which determines the 
value of a piecewise-linear function for a fully certain argument, PREF-FOR-UNIFORM, which 
determines the expected value of a piecewise-linear function for an uncertain argument 
represented by a single uniform distribution, and EXPECTED-CERTAIN-PREF, which determines the 
expected value of a piecewise-linear function for an uncertain argument represented by multiple 
uniform distributions and their probabilities. 
             
 

Input to PREF-FOR-CERTAIN is a piecewise-linear function, represented by vectors x1…xl and y1…yl, and a 
fully certain argument arg. Output is the value of the function for this argument. 
 
PREF-FOR-CERTAIN (x, y, l; arg) 
Find index a such that either arg = xa or xa−1 < arg < xa 

if arg = xa then return ya 
return (ya · arg − ya−1 · arg + ya−1 · xa − ya · xa−1) / (xa − xa−1) 

________________________________________________________________________ 
 

Input to PREF-FOR-UNIFORM is a piecewise-linear function, represented by vectors x1…xl and y1…yl, and a 
uniform-distribution argument, represented by the endpoints of the distribution, min-arg and max-arg. 
Output is the expected value of the function for this uncertain argument. 

 
PREF-FOR-UNIFORM (x, y, l; min-arg, max-arg) 
if min-arg = max-arg then return PREF-FOR-CERTAIN(x, y, l; min-arg) 
Find index a such that either min-arg = xa or xa < min-arg < xa+1 
Find index b such that either max-arg = xb or xb−1 < max-arg < xb 
min-y = PREF-FOR-CERTAIN (x, y, l; min-arg) 
max-y = PREF-FOR-CERTAIN (x, y, l; max-arg) 
if a = b − 1 then return (min-y + max-y) / 2 
sum = (xa+1 − min-arg) · (min-y + ya+1) / 2 
for j = a + 1 to b − 2 do 
 sum = sum + (xj+1 − xj) · (yj + yj+1) / 2 
sum = sum + (max-arg − xb−1) · (yb−1 + max-y) / 2 
return sum / (max-arg − min-arg) 

________________________________________________________________________ 
 

Input to EXPECTED-CERTAIN-PREF is a piecewise-linear function, represented by vectors x1…xl and y1…yl, 
and an uncertain argument, represented by vectors prob1…probm, min1…minm, and max1…maxm, as shown 
in Figure 9(a). Output is the expected value of the function for the uncertain argument. 
 
EXPECTED-CERTAIN-PREF (x, y, l; prob, min, max, m) 
mean = 0 
for i = 1 to m do 

 mean = mean + probi · PREF-FOR-UNIFORM (x, y, l; mini, maxi) 
return mean 
________________________________________________________________________________________________________________________________________________ 
 

Figure 11: Computing the mathematical expectation of a fully certain piecewise-linear function 
applied to an uncertain property value. 
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The algorithm inputs an uncertain value, represented by the vectors prob1…probm, min1…minm, and 

max1…maxm, as shown in Figure 5(a). It returns the mathematical expectation of this uncertain value. 
 
EXPECTED-UNCERTAIN-VALUE (prob, min, max, m)  
mean = 0 
for i 1 to m do 
 mean = mean + probi · (mini + maxi) / 2 
return mean 
          __________________________  

Figure 12: Computing the mathematical expectation of an uncertain value, represented by a 
collection of uniform distributions and their probabilities. 

 
             

 

The algorithm inputs an uncertain preference function, represented by a collection of functions, 
pref1…prefm, and their probabilities, prob1…probm. Every prefi is a piecewise-linear function, which may 
include uncertain y-coordinates, as shown in Figure 9 (b). It also inputs an uncertain value val, represented 
by a collection of intervals and their probabilities, as shown in Figure 9(a). It returns the expected value of 
applying the uncertain preference function to the uncertain value. 
 

EXPECTED-UNCERTAIN-PREF (prob, pref, m; val)  
mean = 0 
for i = 1 to m do 

for every uncertain y-coordinate in the representation of prefi do 

Call EXPECTED-UNCERTAIN-VALUE to find the expected value of the uncertain y 

  Replace the uncertain y in prefi with its expected value 
  Call EXPECTED-CERTAIN-PREF (see Fig. 7) to find E(prefi(val)), 

which is the expected value of applying the resulting fully certain function prefi 
to the uncertain value val 

  mean = mean + probi · E(prefi(val)) 
return mean 
             

Figure 13. Computing the mathematical expectation of an uncertain preference function applied to 
an uncertain property value. 

 
If a schedule violates some hard constraint with a nonzero probability, the overall 

schedule quality is −penalty regardless of the other constraints. If the schedule satisfies 
all hard constraints, the system computes the expected quality of each assignment. To 
estimate the assignment quality for a specific event, it determines the expected values of 
the related preference functions,  E(p1),…, E(pk), as well as the expected values of their 
weights, E(w1),…, E(wk), and uses them to compute the expected quality of the 
assignment, which is 
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The procedure in Figure 12 finds the mean of a probability-density function 
represented by a collection of uniform distributions. We use it to determine the expected 
values of uncertain preference weights, E(w1),…, E(wk). The procedure in Figure 11 
gives the expected value of a fully certain preference function applied to an uncertain 
argument, and the procedure in Figure 13 determines the expected value of an uncertain 
preference function. We use these procedures to compute the expected preference values, 
E(p1),…, E(pk). 
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The system uses the expected quality of assignments, along with the expected 
values of event importances, to compute the expected quality of the overall schedule, 
 

(2.4)  
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2.7. Inference Rules 
 

In the presence of uncertain or missing information, the system may be able to resolve 
some of the uncertainty through inference based on the available information. For 
example, a speaker may state that she expects to have an attendance of 45 people. If all 
we know about a room is its size in square feet then we cannot directly reason if a given 
room size in square feet satisfies the attendance preference for the event. The system 
needs a mechanism to convert the expected attendance into a size preference in square 
feet. An example inference rule that can be used in this case is: 

 

If we do not know the room-size preference, but know the number of attendees, 

assume that the minimal acceptable size is ten square feet per person, a capacity 

of twenty square feet per person is good, and the most preferred capacity is thirty 

square feet per person (Figure 14). 
 

 We use inference rules for reducing the uncertainty in room properties such as the 
size of a room as well as in event preferences such as in the example above.  
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Figure 14: Result of applying the example rule with an expected attendance of 10 for the event.  
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2.7.1. RULE SYNTAX 
 

An inference rule consists of five parts: a name, priority, applicability conditions, 
variables to be used by the rule, a target, and effects which set the value of the target. We 
use two sets of rules: room rules which affect rooms and event rules which affect events. 
The priority of a rule shows its “importance” and helps to resolve conflicts; a greater 
number means higher importance. The applicability conditions determine when the 
system uses the rule. For room rules, these conditions include a list of room types, as well 
as a list of room properties and respective value sets. For event rules, we include a list of 
event types and a list of room properties with value sets. A value set may have a list of 
nonoverlapping intervals or a special marker specifying that the room property must be 
absent or present. The marker has values SPECIFIED and UNSPECIFIED. For example in 
Section 2.7, we give an example of an event rule where we state that the Expected 

Attendance must be SPECIFIED and Size Preference must be UNSPECIFIED (Figure 15). 
The list of variables includes the names of the known room properties used in 

computing default values. Each of these properties must be specified as either SPECIFIED 

or a list of intervals in applicability conditions. In the example, we compute the effects of 
the rule based on the room size preference, so the variables include only Size Preference 

in Figure 15(a). 
The effects list is a list of room properties, event properties or preferences and 

related defaults. Each element includes a property name and its default value, which may 
be a specific value or an uncertain value expressed by a set of intervals with probabilities. 
The rules cannot have effects on any properties used in the rule's conditions; also, 
different elements of the list must refer to different properties. If an effect is a specific 
value, it may be a number, or any arithmetic or C# function based on properties listed as 
variables. In our example, the effect sets the size preference based on the expected 
attendance of the event Figure 15(b). 

If the rule effect is a probability distribution, we represent it as a list of intervals, 
where each interval includes a probability, lower-end value, and upper-end value. The 
probability of an interval is a number, and the sum of these probabilities must be 1.0. 
Each lower-end and upper-end value may be either a number or a linear combination of 
properties listed as variables. For example, in Figure 15(a), we are inferring number of 
mikes in an auditorium when it is not specified. The rule states that with 30% probability 
auditoriums have only one microphone, and with 70% probability the number of 
microphones is given as a function of the room size. 
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 NAME Auditorium-Mikes 

 PRIORITY 2 
 APPLICABILITY 
   Room types 
     AUDITORIUM 
   Properties 

     Size: [1000...2000] 
     Capacity: SPECIFIED 
     Mikes: UNSPECIFIED 
 

 VARIABLES: Capacity 

 EFFECTS 
   Mikes: 

     0.3 prob.: [ ]1  

     0.7 prob.: 
400

1
100

size − 
+ 

 
 

 
 

 

 

 NAME Size-Preference 

 PRIORITY 5 
 APPLICABILITY 
   Event types 
     ALL 
   Properties 

     Size pref.: UNSPECIFIED 
     Exp. attend.: SPECIFIED 
 

 

 VARIABLES: Expected attend. 

 EFFECTS 
   Size preference: 

     

Acceptable :10 .

Good : 20 .

Best : 30 .

Exp Attendance

Exp Attendance

Exp Attendance

⋅

⋅

⋅

 

 
 
 

 

Figure 15. Example inference rules for rooms (a), and events (b). 

 
 
 
 
 
 
 
 

 

Table 7: Bean Auditorium with prioritized properties. 

 
2.7.2. PRIORITIES OF PROPERTY VALUES 
 

We next describe an algorithm for applying inference rules. Note that rules may conflict 
with each other and they may also conflict with values inherited from a parent  
(Figure 4 on page 10) and with explicitly specified values. To resolve these conflicts, the 
system assigns a priority to each known value, and compares it with priorities of 
conflicting rules. 

For each known property value of each room, properties of events, and event 
preferences, the system keeps a priority, which is a natural number; note that the system 
does not keep priority of values marked to be explicitly unknown. Intuitively, this priority 
shows the reliability of the system's knowledge. For example, consider Bean Auditorium 
from Table 2. We add three new properties: Reception-Capacity, which is the number of 
people that can fit into the room when used for a reception, Banquet-Capacity, which is 

Property Value Priority 

Room type AUDITORIUM - 
Size 1200 +∞ 
Mikes UNSPECIFIED - 
Other-Capacity 150 +∞ 
Reception-Capacity  100 2 
Banquet-Capacity [ ]100 150K  0 

(a)               (b) 
 

Figure 15: Example inference rules for rooms (a) and events (b). 
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the capacity when used for a banquet, and Other-Capacity, which is the capacity for other 
events (Table 7). 

The knowledge of Size and Capacity in this example is very reliable (+∞), the 
knowledge of Reception-Capacity is unreliable (2), and the knowledge of Banquet-

Capacity is even less reliable (0). If the user explicitly specifies a property, its priority is 
+∞. If a room inherits a property from its parent in the hierarchy, then the system marks it 
as INHERITED without a priority, and then uses the priority of inherited values specified as 
a parameter to the system; in the current implementation, the priority of all inherited 
values is the same.  

 
 

2.7.3. RULE APPLICABILITY 
 

A default rule is applicable to a specific room if it satisfies all of the following conditions. 
 

• The type of the room is among the types specified in the rule. 
• For every room property specified as SPECIFIED in the applicability conditions, the 

related value in the room specification is either a numeric value or a set of ranges 
of values with probabilities. 

• For every room property marked as UNSPECIFIED in the applicability conditions, 
the related value in the room specification is UNSPECIFIED. 
 

For every room property specified by a list of numeric intervals in the applicability 
conditions, the value in the room specification is either a numeric value in this range or a 
set of ranges of values that are completely contained in this range. In other words, the 
probability that this value is in the specified range must be 100%. For example, if a rule 
has an applicability condition stating that the banquet capacity of a room has to be 
between 75 and 200, Bean Auditorium (Table 7) would satisfy this condition. As another 
example, if the condition states that the banquet capacity has to be between 150 and 200, 
the rule is not applied to the Bean Auditorium. 

 
2.7.4. APPLICATION PRIORITY  
 

When the system applies a rule to a specific room, it computes the application priority; 
intuitively, this priority shows the reliability of the related default values. The application 
priority is the minimum among the rule's priority and the priorities of all known room 
properties that are listed in the rule's applicability conditions. Note that the system 
ignores the UNSPECIFIED properties when computing the priority. For example, suppose 
that we apply the “Auditorium-Mikes” rule (Figure 15a) to Bean Auditorium. The only 
known property in the applicability conditions is Capacity, and the priority for this 
property in Bean Auditorium is +∞, and the priority of the rule itself is 2. The application 
priority is the minimum of these three values, which is 2. We give the algorithm for 
calculating the application priority of an inference rule applied to a room in Figure 16. 
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The procedure inputs an inference rule, rule, and a room, room, and returns the application priority 
______________________________________________________________________________________ 
APPLICATION-PRIORITY-ROOM(rule, room) 

Min-Priority = PRIORITY-OF(rule) 
for each property in APPLICABILITY-CONDITIONS-OF(rule) 

if property ≠  UNSPECIFIED 
 Property-Name = GET-NAME(property)  

  Room-Property = GET-PROPERTY(Room, Property-Name)   

     Prop-Priority = PRIORITY-OF(Room-Property) 
    if (Min-Priority > Prop-Priority) then Min-Priority = Prop-Priority 

return Min-Priority 

______________________________________________________________________________________ 
Figure 16: Calculation of the application priority of an inference rule to a room. 

 
 

When a rule is applicable to a room, the system may replace some of the room's property 
values with new values generated by the rule. The new values used in the replacement are 
called applicable effects. An effect is applicable if it satisfies the following conditions. 

 
• This value is among the effects in the rule specification. 
• The old value in the room specification is marked as UNSPECIFIED or the old 

value's priority is strictly smaller than the application priority. 
 
 

2.7.5. APPLICATION LOOP  
 

The “application loop” involves applying all rules to a given room or event. The system 
sorts the rules in decreasing order of their priority, and then applies them one by one. 
When it finds a rule with applicable defaults, it replaces the related values in the room or 
event specification with the new values, and sets the priority of these values to the 
application priority. For example, if it applies the “Auditorium-Mikes” rule to the Bean 
Auditorium, it sets the Mikes value of Bean Auditorium to be 1 with 30% probability and 
9 with 70% probability, and the related priority to 2. 

If the system changes some property during its pass through all rules, then it goes 
back to the beginning of the application loop and makes a second pass through all rules. 
If the second pass also changes some property, the system makes a third pass, and so on. 
We present the pseudo code in Figure 17. 

If the total number of rules is R, and the number of room properties is P, then the 
system can make at most 1P R⋅ + passes through the loop for applying room rules. This is 
because a minimum of one rule can be applied on each pass which would, at a minimum, 
change one room property. One extra pass through the loop is required to determine no 
rules are applicable which results in 1P R⋅ +  passes.  
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________________________________________________________________________________________________________________________________________________ 
APPLICATION-LOOP() 

Event-Rule-List = SORT-EVENT-RULES() 
Room-Rule-List = SORT-ROOM-RULES() 
for each event in all-events 
 repeat 
  event-changed = FALSE 

for each rule in Event-Rule-List do 

   event-before-application = event 

  event = APPLY-RULE(rule, event) 
  if (event ≠ event-before-application) event-changed = TRUE 
until(!event-changed) 

for each room in all-rooms 

 repeat 
  room-changed = FALSE 

for each rule in Room-Rule-List 

   room-before-application = room 

  room = APPLY-RULE(rule, room) 
  if (room != room-before-application) room-changed = TRUE 
until(!room-changed) 

________________________________________________________________________________________________________________________________________________ 
Figure 17: Application loop for inference rules. 
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3. SEARCH FOR SCHEDULES 

 
We now describe an algorithm for constructing a schedule based on uncertain 

knowledge of resources and constraints, which is also used as a subroutine of the elicitor. 
We explain the representation of uncertain facts, present the search for a schedule, and 
give empirical results on its effectiveness. 
 

3.1. Search Algorithm 

The purpose of search is to construct a schedule with a high expected quality; that is, we 
use the expected quality as the utility function. The system begins with the empty 
schedule and gradually improves it; at each step, it either assigns a slot to some 
unscheduled event, or moves some scheduled event to a better slot. 

In Figure 18, we give the main steps of the hill-climbing search algorithm, which 
processes the events in decreasing order of their expected importances. When processing 
an event, it evaluates every assignment consistent with the event’s constraints, and selects 
the assignment that gives the greatest utility increase. After processing all events, the 
algorithm returns to the beginning of the sorted list of events and repeats the processing. 
It stops when the last iteration through all events has not led to any improvements, or 
when it has reached a time limit. 
 
             

SCHEDULER() 
Sorted-List = Sort all events in order of decreasing importance 
for each event in all-events 

 rooms[event] = Get all acceptable rooms for event  
 timeslots[event] = Get all acceptable time slots for event 
sched = Create empty schedule 
improvement = 0 
old-utility = Minimum possible utility 

repeat  
 for i = 0 to COUNT(all-events) 
  event = Sorted-List[i]; 
  for each room in rooms[event] 
   for each timeslot in timeslots[event] 
    backup-schedule = sched 
    overlapping-events = Events overlapping with event in sched  

Remove overlapping-events from sched 

    dist-events = Get events with unacceptable distance from event in sched  
Remove distance-events from sched 

    rel-events = Events with unaccep. start times relative to event  in sched 
    Remove relative-events from sched 

    new-utility = Calculate utility of sched 
    if (new-utility ≤ old-utility) 
     schedule = backup-schedule 

else 
improvement = new-utility – old-utility 

     old-utility = new-utility 

until (improvement = = 0 or time limit is reached) 
             

Figure 18: Searching for a high-quality schedule. 
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We next present a more detailed description of this search algorithm. We list its 
main variables in Figure 20, show its main procedures and calls between them in  
Figure 19, and give pseudo-code for these procedures in Figures 19–25. Note that the 
algorithm includes a mechanism for caching intermediate results of the assignment-
quality computation, which allows fast evaluation of candidate assignments. This 
mechanism is essential for efficiency as the quality computation is the most time-
consuming part of the algorithm. 

We use two global variables, accessible from all procedures: the set of all 
conference events, denoted all-events, and the set of all available rooms, denoted  
all-rooms. In addition, the top-level procedure, which is called SCHEDULER (Figure 27), 
inputs four parameters that control the search: the beginning and end times of the 
conference, the discrete time step used in scheduling, and the limit on the search time. 
When the algorithm constructs the schedule, it only considers start times and durations 
divisible by the given time step. For instance, if this step is thirty minutes, then all 
scheduled events start and end on half hour. 

 
 

 

Figure 19: Main procedures of the algorithm given in Figures 19–25. 
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(a) Global variables 

We use two global variables, accessible from all procedures: 
 All-Events  set of all conference events 
 All-Rooms  set of all available rooms 
We index all events by their place in the schedule, which allows fast retrieval of the events in a given room 
that overlap a given time slot. 
 
(b) Event structure 
We represent a conference event by a data structure that includes its importance, constraints and 
preferences, place in the current schedule, and intermediate results of related computations. We use the 
following fields of event in the pseudo-code: 
 
imp[event]      expected importance of the event 
min-start[event]   minimal acceptable start time 
max-start[event]   maximal acceptable start time 
min-dur[event]    minimal acceptable duration 
max-dur[event]    maximal acceptable duration 
 

min-start-num[event]  min-start converted to discrete time steps 
max-start-num[event]  max-start converted to discrete time steps 
min-dur-num[event]   min-dur converted to discrete time steps 
max-dur-num[event]  max-dur converted to discrete time steps 
 

room[event]     room of the event in the current schedule 
start[event]     current start time of the event 
dur[event]      current duration of the event 
 

num-prefs[event]    total number of the event’s preferences 
room-score-limit[event] upper limit on the possible sum of rewards for satisfying the room-property and 

         distance preferences 
start-score-limit[event] upper limit on the possible sum of rewards for satisfying the start-time preferences 
dur-score-limit[event]  upper limit on the possible reward for satisfying the duration preference 
 

room-score[event]  sum of the current rewards for satisfying the room-property and distance preferences 
start-score[event]   sum of the rewards for the start-time preferences 
dur-score[event]   reward for the duration preference 
 
(c) Search parameters 

We use four parameters to control the search algorithm, which are inputs of the top-level procedure, called 
scheduler (Figure 27): 
 
conf-start    time of the conference beginning; events cannot start before this time 
conf-end     time of the conference end; events cannot end after this time 
step       discrete time step used in scheduling; all start  times and durations must be divisible by it 
run-time-limit  limit on the overall search time 
 
(d) Local arrays 

When the algorithm computes the quality of candidate assignments for a given event, it uses five arrays for 
caching intermediate results: 
 
room-diffs   differences between the quality of new candidate rooms and that of the event’s current room 
start-diffs  diff. between the quality of new candidate start times and that of the event’s current start time 
dur-diffs   diff. between the quality of new candidate durations and that of the event’s current duration 
end-diffs   diff. between the quality of new candidate end times and that of the event’s current end time 
slot-diffs   differences between the quality of new candidate time slots and that of the event’s current 

time slot; each candidate slot is defined by its start time and duration 
                        

Figure 20: Main variables in the procedures given in Figures 4–10 
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This procedure inputs an event, the beginning and end times of the conference, and the time step 
used in scheduling. It converts the acceptable start times and durations of the given event into the 
respective numbers of time steps. For example, if the conference begins at 11am, the step is 30 
minutes, and the range of acceptable times is “1pm...3pm,” it converts this range into “4...8.” 

TIME-NUMS(event, conf-start, conf-end, step) 
min-start = MAX(min-start[event], conf-start) 
min-start-num[event] =┌(min-start − conf-start) / step┐ 
max-start = MIN(max-start[event], conf-end − min-dur[event]) 
max-start-num[event] =└(max-start − conf-start) / step┘ 
min-dur-num[event] =┌min-dur[event] / step┐ 
max-dur = MIN(max-dur[event], conf-end − conf-start) 
max-dur-num[event] =└max-dur / step┘ 
                      

For a given event, the procedure determines the upper limits on the possible rewards for 
satisfying room related preferences, start-time preferences, and duration preferences. For instance, 
if an event includes five room preferences, four start-time preferences, and one duration 
preference, then the respective limits are 0.5, 0.4, and 0.1. 
 

SCORE-LIMITS(event) 
num-room = COUNT(room-property-preferences[event]) + COUNT(distance-preferences[event]) 
num-start = COUNT(start-time-preferences[event]) + COUNT(relative-start-preferences[event]) 
num-dur = COUNT(duration-preferences[event]) 
num-prefs[event] = num-room + num-start + num-dur 
room-score-limit[event] = num-room / num-prefs[event] 
start-score-limit[event] = num-start / num-prefs[event] 
dur-score-limit[event] = num-dur / num-prefs[event] 
                      

The initialization procedure inputs the beginning and end times of the conference, and the time 
step used in scheduling. It converts the acceptable start times and durations of all events into the 
respective numbers of time steps, determines the upper limits on the possible rewards, creates the 
initial empty schedule by setting the rooms of all events to NIL, and sorts the events by 
importance. 

INITIALIZATION(conf-start, conf-end, step) 
for each event in All-Events 
 TIME-NUMS(event, conf-start, conf-end, step); SCORE-LIMITS(event) 
for each event in All-Events 
 room[event] = NIL 
 room-score[event] = 0; start-score[event] = 0; dur-score[event] = 0 
for each event in All-Events 
 imp[event] = GET-EXPECTED-IMPORTANCE(event) 
SORT-IN-DECREASING-IMPORTANCE-ORDER(All-Events) 
                      

Figure 21: Initialization procedures of the scheduling algorithm. 
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The procedure determines the total reward score of an event. 
 

TOTAL-SCORE(event) 
return imp[event] · (room-score[event] + start-score[event] + dur-score[event]) 
                      
For a given event, the procedure finds the difference between the quality of a new room and that of the 
event’s old room. 
 

ROOM-PROP-DIFF(event, new-room) 
unscaled-diff = 0 
all-room-property-preferences = GET-ALL-ROOM-PROPERTY-PREFERENCES(event) 
for each preference in all-room-property-preferences 

 if PREFERENCE-IS-UNACCEPTABLE-IN-ROOM(preference, new-room) then return NIL 
    new-reward = GET-EXPECTED-REWARD(new-room, preference) 
    old-reward = GET-EXPECTED-REWARD(room[event], preference) 
    unscaled-diff = unscaled-diff + new-reward − old-reward 
return imp[event] · unscaled-diff / num-prefs[event] 
                      

The procedure finds the difference between the distance rewards for placing a given event into a new room 
and those for its old room. 
 

DISTANCE-DIFF(event, new-room) 
dist-diff = 0 
all-room-distance-preferences = GET-ALL-ROOM-DISTANCE-PREFERENCES(event) 
for each preference in all-room-distance-preferences 
    other-event = GET-OTHER-EVENT-IN-PREFERENCE(preference, event) 
    if DISTANCE-PREFERENCE-IS-UNACCEPTABLE(preference, new-room, room[event]) 
       then dist-diff = dist-diff − TOTAL-SCORE(other-event) 
    else  
       new-reward = GET-EXPECTED-REWARD(preference, new-room, room[other-event]) 
         old-reward = GET-EXPECTED-REWARD(preference, room[event], room[other-event]) 
       dist-diff = dist-diff  + imp[event]· (new-reward − old-reward) / num-prefs[event] 
other-events = GET-EVENTS-WITH-DISTANCE-PREFERENCE-TO(event) 
for each other-event in other-events 

    if DISTANCE- IS-UNACCEPTABLE(room[other-event], new-room) 
       then dist-diff = dist-diff − TOTAL-SCORE(other-event) 
    else  
       new-reward = GET-EXPECTED-DISTANCE-REWARD(room[other-event], new-room) 
       old-reward = GET-EXPECTED-DISTANCE-REWARD(room[other-event], room[event]) 
        dist-diff = dist-diff  + imp[other-event] · (new-reward − old-reward) / num-prefs[other-event] 
return dist-diff 
                      

The procedure evaluates the reward for placing an event into a given new room. If the properties of this 
room are unacceptable, it returns NIL. If the room quality is so low that its use would worsen the schedule 
regardless of the time-slot selection, it also returns NIL. Else, it returns the difference of the room-related 
reward scores between this room and the event’s old room. 
 

ROOM-DIFF(event, new-room) 
prop-diff = ROOM-PROP-DIFF(event, new-room) 
if prop-diff = NIL then return NIL 
dist-diff = DISTANCE-DIFF(event, new-room) 
if dist-diff = NIL then return NIL 
slot-diff-limit = imp[event] · (start-score-limit[event] + dur-score-limit[event] 
       − start-score[event] − dur-score[event]) 
if prop-diff + dist-diff + slot-diff-limit ≤ 0 then return NIL 
return prop-diff + dist-diff 
                      

Figure 22: Computing the reward-score difference between a new room and the old room of a given event. 
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The procedure finds the difference between the rewards related to a new start time of an event and those 
related to its old start time. 

START-TIME-DIFF(event, new-start) 
if IS-UNACCEPTABLE-START(new-start, event) then return NIL 
new-reward = GET-EXPECTED-START-TIME-REWARD(new-start, event)  
old-reward = GET-EXPECTED-START-TIME-REWARD(start[event], event) 
start-diff=imp[event] · (new-reward − old-reward)/num-prefs[event] 
for each relative-start-time-pref in relative-start-time-preferences[event] 
   other-event = GET-OTHER-EVENT-IN-PREFERENCE(preference, event) 
   if START-TIME-IS-UNACCEPTABLE(new-start, other-event)  
      then start-diff = start-diff − TOTAL-SCORE(other-event) 
   else  
      new-reward = GET-EXPECTED-START-TIME-REWARD(new-start, time[other-event]) 
      old-reward = GET-EXPECTED-START-TIME-REWARD(start[event], time[other-event]) 
      start-diff = start-diff  + imp[event] · (new-reward − old-reward) / num-prefs[event] 
for each other-event in GET-EVENTS-WITH-RELATIVE-START-TIME-PREFERENCE(event) 
   if IS-UNACCEPTABLE-START(new-start, event, other-event)  
      then start-diff = start-diff − TOTAL-SCORE(other-event) 

   else  
      new-reward = GET-EXPECTED-REWARD(new-start, event, other-event) 
      old-reward = GET-EXPECTED-REWARD(start[event], event, other-event)  
      start-diff = start-diff  + imp-other[event] · (new-reward − old-reward) / num-prefs[other-event] 
return start-diff 
                      

The procedure finds the difference between the reward for a new duration of an event and that for its old 
duration. 

DURATION-DIFF(event, new-dur) 
if IS-UNACCEPTABLE-DURATION(new-dur, event) then return NIL 
new-reward = GET-EXPECTED-REWARD(new-dur, event) 
old-reward  = GET-EXPECTED-REWARD(dur[event], event) 
return imp[event] · (new-reward − old-reward) / num-prefs[event] 
                      

For a given event, the procedure finds the difference between the relative-time rewards of other events with 
respect to its new end time and those with respect to its old end time. 

END-TIME-DIFF(event, new-end) 
old-end = start[event] + dur[event] 
end-diff = 0 
for each other-event in GET-EVENTS-WITH-RELATIVE-START-TIME-PREFERENCE(event, end-time[event]) 
   if  IS-UNACCEPTABLE-START-TIME(new-end, other-event)  
      then end-diff = end-diff − TOTAL-SCORE(other-event) 
      else  
         new-reward = GET-EXPECTED-REWARD(new-end, other-event) 
         old-reward = GET-EXPECTED-REWARD(old-end, other-event) 
         end-diff += imp-other[event]  · (new-reward − old-reward) / num-prefs[other-event] 
return end-diff 
                      

The procedure inputs an event and its new place in the schedule, and computes the total reward of the 
events that overlap with this place. 

OVERLAP-SCORE(event, new-room, new-start, new-dur)  
score = 0 
for each other-event in GET-OVERLAPPING-EVENTS(event) 
   score = score + TOTAL-SCORE[other-event] 
return score 
                      

Figure 23: Computing the reward-score differences related to the start time, duration, and end time of a 
given event. 
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The procedure inputs an event and three reward-score differences between its new candidate slot 
and its old slot. The first difference is for the start-time preferences, the second is for the duration 
preferences, and the third is for the relative-time preferences of the other events with respect to 
the end time of the given event. It checks if the new slot is sufficiently good. If the slot’s quality 
is so low that its use would worsen the schedule regardless of the room selection, the procedure 
returns NIL; else, it returns the difference of the time-related reward scores between this new slot 
and the old slot. 

TIME-SLOT-DIFF(event, start-diff, dur-diff, end-diff) 
if start-diff == NIL or dur-diff == NIL or end-diff == NIL then return NIL 
slot-diff = start-diff + dur-diff + end-diff 
room-diff-limit = imp[event] · (room-score-limit[event] − room-score[event]) 
if slot-diff + room-diff-limit ≤ 0 then return NIL 
return slot-diff 
              

The procedure inputs an event, the beginning and end times of the conference, and the time step 
used in scheduling. It evaluates the quality of all potential time slots for this event; each slot is 
defined by its start time and duration. It returns the two-dimensional array slot-diffs, indexed by 
start times and durations; for each slot, it shows the difference between the quality of this slot and 
that of the event’s old slot. If a time slot is unacceptable, the procedure marks it by NIL. If the slot 
is acceptable, but contains a smaller sub-slot with the same or higher quality, the procedure also 
marks it by NIL, which prevents the use of unnecessarily long slots. For example, if the 9am–
11am slot is acceptable, but its 9am–10am sub-slot has the same quality, the procedure marks the 
9am–11am slot by NIL. 

CANDIDATE-SLOTS(event, conf-start, conf-end, step) 
for start-num from min-start-num[event] to max-start-num[event] 
   new-start = conf-start + start-num · step 
   start-diffs[start-num] = START-TIME-DIFF(event, new-start) 
for dur-num from min-dur-num[event] to max-dur-num[event] 
   new-dur = dur-num · step 
   dur-diffs[dur-num] = DURATION-DIFF(event, new-dur) 
conf-end-num = └(conf-end − conf-start) / step┘ 

min-end-num = min-start-num[event] + min-dur-num[event] 
max-end-num = MIN(max-start-num[event] + max-dur-num[event], conf-end-num) 
for end-num from min-end-num to max-end-num 
   new-end = conf-start + end-num · step 
   end-diffs[start-num] = END-TIME-DIFF(event, new-end) 
for start-num from min-start-num[event] to max-start-num[event] 
   if start-diffs[start-num] ≠ NIL then best-slot-diff = NIL 

   for dur-num from min-dur-num[event] to MIN(max-dur-num[event],  conf-end-num − start-

num) 
      slot-diff = TIME-SLOT-DIFF(event, start-diffs[start-num], dur-diffs[dur-num],  
            end-diffs[start-num + dur-num]) 
      if slot-diff = NIL or (best-slot-diff ≠ NIL and best-slot-diff ≥ slot-diff) 
         then slot-diffs[start-num, dur-num] = NIL 
      else best-slot-diff = slot-diff, slot-diffs[start-num, dur-num] = slot-diff 
return slot-diffs 
                  

Figure 24: Evaluation of candidate time slots for a given event, where each slot is defined by its start time 
and duration. 
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The procedure inputs a room, the start time and duration of a time slot, represented by the 
respective time-step numbers, the beginning time of the conference, and the time step. 

It checks if the room is available for the conference during a given time slot, and returns TRUE if 
it is available. 

AVAILABILITY-CHECK(room, start-num, dur-num, conf-start, step) 
start = conf-start + time-num · step  
end = start + dur-num · step 
for each availability-interval in GET-ALL-AVAILABLE-INTERVALS(room) 
   if start[availability-interval] ≥ start and end[availability-interval] ≤ end 

      return TRUE 
return FALSE 
                

The procedure inputs a room, the start time and duration of a time slot, represented by the 
respective time-step numbers, the beginning time of the conference, and the time step. If the room 
is available for the given time slot, the procedure returns the input start time. If not, it returns the 
earliest start time after the input start time that allows using the room for the specified duration. If 
we cannot use the room for the specified duration at any later time, it returns NIL. 

NEXT-AVAIL-START(room, start-num, dur-num, conf-start, step) 
start = conf-start + start-num · step;  end = start + dur-num · step 

room-end = GET-ENDING(GET-LATEST-AVAILABLE-INTERVAL(room)) 
if end > room-end then return NIL 
earliest-interval = GET-EARLIEST-AVAILABLE-INTERVAL- ENDING-BEFORE(room, end) 
room-start = GET-START(earliest-interval) 
if start ≥ room-start then return start-num 
interval-start-num = ┌(room-start − conf-start) / step┐ 
return NEXT-AVAIL-START(room, interval-start-num,  dur-num, conf-start, step) 
                  

Figure 25: Checking the availability of a room, and identifying the earliest available time slot in a room 
after a given time. 
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The procedure removes an event from the schedule, adjusting the reward scores of the other events that 
have distance or start-time preferences with respect to that event. The representation of each event includes 
pointers to the other-event preferences affected by this event, allowing fast retrieval of the related events. 

REMOVAL(event) 
room[event] = NIL; room-score[event] = 0; start-score[event] = 0; dur-score[event] = 0 

for each other-event in GET-EVENTS-WITH-DISTANCE-PREFERENCE(event) 
   ADJUST-DISTANCE-REWARD(other-event) 
for each other-event in GET-EVENTS-WITH-START-TIME-PREFERENCE(event) 
   ADJUST-START-TIME-REWARD(other-event) 
                

The procedure moves an event to a new room, removes the events whose distances to this event have 
become unacceptable, and re-computes the rewards for the related distance preferences. 

NEW-ROOM(event, new-room) 
room[event] = new-room 
for each preference in GET-ALL-ROOM-DISTANCE-PREFERENCES(event) 
   other-event = GET-OTHER-EVENT-IN-PREFERENCE(preference, event) 
   if IS-UNACCEPTABLE-DISTANCE(event, other-event)  then REMOVAL(other-event) 
for each other-event in GET-EVENTS-WITH-RELATIVE-DISTANCE-PREFERENCE(event) 
   if IS-UNACCEPTABLE-DISTANCE(other-event, event) then  REMOVAL(other-event) 
      else RECOMPUTE-DISTANCE-REWARD(other-event, event) 
RECOMPUTE-ROOM-SCORE(event, room-score[event]) 
                

The procedure changes the start time of an event, and removes the other events that violate the related time 
constraints. 

NEW-START-TIME(event, new-start) 
start[event] = new-start 
for each preference in GET-ALL-RELATIVE-START-PREFERENCES(event) 
   other-event = GET-OTHER-EVENT-IN-PREFERENCE(preference, event) 
   if IS-UNACCEPTABLE-START-TIME(start[event], other-event) then REMOVAL(other-event) 
for each other-event in GET-EVENTS-WITH-RELATIVE-START-TIME-PREFERENCE(event, start[event]) 
   if IS-UNACCEPTABLE-START-TIME(start[event], other-event) then REMOVAL(other-event) 
      else RECOMPUTE-START-TIME-REWARD(other-event, event) 
RECOMPUTE-START-SCORE(event, start-score[event]) 
                

The procedure changes an event’s duration, and removes the other events that violate the related time 
constraints. 

NEW-DURATION(event, new-dur, old-end) 
dur[event] = new-dur 
RECOMPUTE-DUR-SCORE(event, dur-score[event]) 
if start[event] + dur[event] = old-end then return 
for each other-event in GET-EVENTS-WITH-RELATIVE-START-TIME-PREFERENCE(event, end[event]) 
   if IS-UNACCEPTABLE-START-TIME(end[event], other-event) then REMOVAL(other-event) 
      else RECOMPUTE-START-SCORE(other-event, start-score[other-event]) 
                

The procedure moves an event to a given new place in the schedule, removes the events that conflict with 
this new assignment, and re-computes the related rewards. 

NEW-ASSIGNMENT(event, new-room, new-start, new-dur) 
for each other-event in GET-OVERLAPPING-EVENTS(event) 
   REMOVAL(other-event) 
old-end = start[event] + dur[event] 
NEW-ROOM(event, new-room) 
NEW-START-TIME(event, new-start) 
NEW-DURATION(event, new-dur, old-end) 
                

Figure 26: Changing an event’s assignment, which involves removal of the conflicting events and re-
computation of the related rewards. 
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The procedure inputs an event, the beginning and end times of the conference, and the time step used in 
scheduling. It finds the best new place in the schedule for the given event, and then moves the event to this 
place. If the event has already been in its best place, it returns FALSE. 

BEST-ASSIGNMENT(event, conf-start, conf-end, step) 
for each room in All-Rooms 
   room-diffs[room] = ROOM-DIFF(event, room) 
slot-diffs = CANDIDATE-SLOTS(event, conf-start, conf-end, step) 
best-asst-diff = 0 
for each room in All-Rooms 
   if room-diffs[room] ≠ NIL then  

      start-num= NEXT-AVAIL-START(room, min-start-num[event],  min-dur-num[event], 
               conf-start, step)  
   while start-num ≠ NIL and start-num ≤ max-start-num[event] 
      if start-diffs[start-num] ≠ NIL then dur-num = min-dur-num[event] 

     while dur-num ≤ max-dur-num[event]  
      and AVAILABILITY-CHECK(room, start-num, dur-num, conf-start, step) 

         if slot-diffs[start-num, dur-num] ≠ NIL then  
            asst-diff = rooms-diffs[room] + slot-diffs[start-num, dur-num] 
             − OVERLAP-SCORE(event, room, conf-start + start-num · step, dur-num · step) 
         if asst-diff > best-asst-diff then  
            best-asst-diff = asst-diff 
            best-room = room 
            best-start-num = start-num 
            best-dur-num = dur-num 

            dur-num = dur-num + 1 
         start-num = NEXT-AVAIL-START(room, start-num + 1, min-dur-num[event], conf-start, 
               step) 
if best-asst-diff = 0 then return FALSE 
best-start = conf-start + best-start-num · step 
best-dur = best-dur-num · step 
NEW-ASSIGNMENT(event, best-room, best-start, best-dur) 
return TRUE 
                       

The top-level scheduling procedure inputs the beginning and end times of the conference, the time step 

used in scheduling, and the limit on the search time. It begins with the empty schedule and searches for 

local improvements; at each step, it improves the assignment of one event. It stops after either reaching the 

time limit or iterating through all events without funding any improvements. 

SCHEDULER(conf-start, conf-end, step, run-time-limit) 
INITIALIZATION(conf-start, conf-end, step) 
num-events = COUNT-EVENTS(All-Events) 
num-unchanged = 0 
while(not LIMIT-REACHED(run-time-limit)) 
   for each event in SORT-IN-DECREASING-IMPORTANCE(All-Events) 
      change = BEST-ASSIGNMENT(event, conf-start, conf-end, step) 
      if change then num-unchanged = 0 
         else num-unchanged = num-unchanged + 1 
      if num-unchanged = num-events then return 
                  

Figure 27: Top-level search procedure, which reschedules one event at a time, until reaching a local 
maximum or hitting the time limit. 
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3.2. Extensions 

We now outline some techniques for improving the search efficiency; we have 
implemented these techniques and used them in the experiments in Section 3.3. 

Expected rewards: If the description of rooms and events includes uncertainty, 
the procedures in Figure 22 and Figure 23 compute the mathematical expectations of 
rewards. We have given algorithms for fast computation of expected rewards in Section 
2.3. 

Event indexing: We index the events by their place in the current schedule, that 
is, by room and time slot, which allows fast retrieval of the events that occupy a given 
room during a given time interval. In particular, it allows fast identification of the events 
that conflict with a newly scheduled event. 

Constraint pointers: The representation of each event includes pointers to the 
distance constraints and relative-time constraints of the other events affected by this event. 
When the system moves an event, it uses these pointers to identify the affected events and 
re-computes their rewards. 

Room availability: For every room, we represent its availability for the 
conference by a sorted list of nonoverlapping time intervals; this representation allows 
fast checking whether the room is available for a given time slot. 
 End times: The system supports constraints and preferences for the end times of 
events, in addition to constraints for start times, durations, and room properties. For 
instance, we may specify that the workshop should end after the demo and before 3pm. 
These constraints require a modification to the evaluation of time slots in the CANDIDATE-
SLOTS procedure (Figure 24), as well as adding the re-computation of end-time rewards to 
REMOVAL, NEW-START-TIME, and NEW-DURATION (Figure 25). 
 Preference weights: The description of preferences may include their weights, 
which show the relative importance of each preference. For example, we may indicate 
that the size of a room for the workshop is twice more important than the preferred time 
and duration of the workshop. The system computes the reward for an assignment as the 
weighted sum of preference rewards; that is, if an event has k preferences, their weights 
are w1,…, wk, and the respective rewards are r1,…, rk, then the assignment quality is 
(w1 · r1 + … + wk · rk) / (w1 + … + wk). The use of weights requires modifications to the 
computation of reward limits in SCORE-LIMITS (Figure 21), as well as to the reward 
computations in the ROOM-PROP-DIFF and DISTANCE-DIFF procedures in Figure 22, and the 
START-TIME-DIFF, DURATION-DIFF, and END-TIME-DIFF procedures in Figure 23. 
 Multi-day schedule: If a conference continues for several days, we specify its 
beginning and end times for each day, and the system marks all rooms as unavailable 
outside of the specified “business hours.” 

Initial schedule: The system can start its search from a given initial schedule 
rather than from the empty schedule. We use this option to repair an old schedule after 
changes in the availability of rooms and related resources. We also use it if the user 
builds a manual schedule and then applies the system to finalize it. This also provides the 
elicitor with a set of assignments it can use in generating questions.  

The user can optionally impose a penalty on rescheduling of events, which 
prevents the system from making changes that would give only an insignificant 
improvement. This preserves the initial schedule as much as possible which in turn makes 
elicitation results more accurate. This is because elicitation takes into account the 
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schedule as it was when elicitation was ran. It also helps making the system more 
practical as in real life there is a cost for moving an event from an already scheduled 
room to another. 

Locked assignments: The user can “lock” some events in the manually selected 
places, and apply the system to find assignments for the other events. This option requires 
a modification to the top-level SCHEDULER procedure (Figure 27); specifically, 
SCHEDULER should skip the locked events in its main loop, thus ensuring that they remain 
in their original places. 
 

3.3. Experiments 

As the optimization is not the main focus of this work we only provide evaluation 
results for reference. We have applied the developed system to several scheduling 
problems, and compared the quality of the automatically constructed schedules with the 
results of manual scheduling. These problems involve the scheduling of four-day 
conferences, with the time discretized to fifteen-minute steps.  Every room has fifteen 
properties, and every event has between fifteen and twenty constraints and preferences. 

We have used a 2.4-GHz Xeon computer, and set the time limit to ten seconds. 
On the other hand, we have not imposed any time limit on manual scheduling; most 
subjects have spent five to ten minutes on small scheduling problems, and ten to twenty 
minutes on large problems. In Figure 28, we summarize the results of these experiments, 
which show that the system has outperformed the human subjects. 

We have also evaluated the dependency of the quality of automatically 
constructed schedules on the search time, and we show the results in Figure 29. If the 
knowledge is fully certain, the system constructs a schedule in about three seconds. If the 
knowledge is uncertain, it needs about nine seconds because it spends more time for 
computing the expected quality of candidate assignments. 

 

 

Figure 28: Comparison of manual and automatic scheduling. We give the results for small problems (5 
rooms and 32 events), medium problems (9 rooms and 62 events), and large problems (13 rooms and 84 
events). We show the quality of manual schedules by grey bars, and the results of automatic scheduling by 
white bars. 
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Figure 29: Dependency of the schedule quality on the running time. We show the results of scheduling 
with fully certain knowledge (solid line) and uncertain knowledge (dashed line); both problems include 13 
rooms and 84 events. 
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4. ELICITATION OF ADDITIONAL DATA 

 

4.1. Elicitation Problem 

When considering candidate schedules in search for a schedule, the system computes not 
only the expected quality of candidate schedules, but also the standard deviation of the 
expected quality. If this standard deviation is high, the true schedule quality may turn out 
much lower than the expected quality. For example, if the properties of Wean 100 are 
uncertain, and the schedule is as shown in Figure 2 (page 3), then we risk placing the 
workshop and tutorial into a low-quality room. 
 The system may reduce uncertainty by asking the human administrator to provide 
more accurate data. For instance, it may ask to measure the size of Wean 100 and check 
the number of microphones in the room. We list the types of possible questions in  
Table 1; every question corresponds to an uncertain value, and the number of possible 
questions equals the number of uncertain values. 
 The human effort involved in providing answers may vary from question to 
question. For example, checking the number of microphones is easier than measuring the 
room size. We represent this effort by question costs; that is, we assign different costs to 
different questions by encoding manually, and subtract the costs of all answered 
questions from the final schedule quality. Costs cannot be uncertain. 
 The purpose of the elicitation procedure is to identify a small number of critical 
questions, which help to improve the schedule without incurring a high elicitation cost. 
There are three smaller modules which make up the overall elicitation approach which 
we call the unified elicitor. The heuristic elicitor (Section 4.2) generates an initial list of 
questions. The questions are then passed to the rule-based elicitor (Section 4.3) which 
may tag on more questions. The search elicitor (Section 4.3) takes the final list and can 
re-rank or remove questions. 
 

4.2. Estimate of Question Utilities 
 

The system estimates a question utility by the impact of the respective uncertain value on 
the standard deviation of the schedule quality. To determine this impact, in the heuristic 
elicitor it replaces all other uncertain parameters by their mathematical expectations, and 
then computes the standard deviation of the schedule quality. We show this computation 
for an uncertain room property in Figure 30, for an uncertain event importance in Figure 
31, and for an uncertain range of acceptable values in Figure 32. We do not show the 
computation for an uncertain range of preferred values because it is similar to the 
computation for uncertain acceptable values in Figure 32. In search elicitor we use the 
optimizer in order to get a more accurate value for the impact of each question. 
 For instance, consider the example in Chapter II repeated in Figure 2 (page 3), 
and suppose that the Wean 250 has a size between 500 and 750, the importance of the 
demo is between 40 and 60, its minimal acceptable duration is between 60 and 90, and all 
other resources and preferences are fully certain, as shown in Table 2 and Table 3 Then, 
the impact of the size of Wean 250 on the standard deviation of the schedule quality is 
0.00027, the impact of the demo importance is 0.026, and the impact of the minimal 
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acceptable duration of the demo is zero. Therefore, finding out about demo importance is 
the most important to ask about. 
 

 

 

 

 
Bean 

Auditorium 
Wean100 Wean 250 

Size 1200     700     500–750     
Stations 10     5     5     

Mikes 5     1     2     
Table 8: Available rooms and their properties. 

 

 

 

 Demo Discussion Tutorial Committee Workshop 
Importance 40-60 30 75 10 50 

Start time Any Any 11am  3pm–4pm Any 
End time 
Duration 

Any 
≥60–90 

Any 
≥30 

1pm 
≥30 

3pm–4pm 
≥15 

Any 
≥60 

Room size ≥600 ≥200 ≥400 ≥400 ≥600 
Stations ≥5 Any Any Any Any 
Mikes Any ≥2 ≥1 Any ≥1 

Table 9: Events and related constraints. 
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The procedure inputs the lowest and highest possible values of an uncertain room property, low-p 
and high-p; its minimal and maximal acceptable values, min-ac and max-ac; and its minimal and 
maximal preferred values, min-pref and max-pref. Note that min-ac ≤ min-pref ≤ max-pref ≤ max-

ac; furthermore, for a valid schedule, min-ac ≤ low-p < high-p ≤ max-ac. The procedure returns 
the standard deviation of the reward for satisfying the preference for the given room property. 

It uses the following local variables:  
low-r, high-r  reward values for low-prop and high-prop  
p-small, p-large  probability that the property value is below min-pref / above max-pref  
exp-r    mathematical expectation of the reward value  
exp-sqr-r  mathematical expectation of the squared reward value 

LOCAL-IMPACT(low-p, high-p, min-ac, max-ac, min-pref, max-pref) 

if (min-pref ≤ low-p < high-p ≤ max-pref) then return 0 

low-r = REWARD(low-p, min-ac, max-ac, min-pref, max-pref) 

high-r = REWARD(high-p, min-ac, max-ac, min-pref, max-pref) 

if (min-ac ≤ low-p < high-p < min-pref) then return (high-r − low-r) / (2 · 3 ) 

if (max-pref < low-p < high-p ≤ max-ac) then return (low-r − high-r) / (2 · 3 ) 

if min-pref ≤ low-p then p-small = 0 else p-small = (min-pref − low-p) / (high-p − low-p) 

if  high-p ≤ max-pref then p-large = 0 else p-large = (high-p − max-pref) / (high-p − low-p) 

exp-r = p-small · (low-r + 1) / 2 + p-large · (high-r + 1) / 2 + (1 − p-small − p-large) 

exp-sqr-r = p-small · (low-r
2 + low-r + 1) / 3 + p-large · (high-r

2 + high-r + 1) / 3 

     + (1 − p-small − p-large) 

return (exp-sqr-r − exp-r
2)0.5

 

             

The procedure inputs the lowest and highest possible values of an uncertain room property, low-

prop and high-prop; a list of the events scheduled in the room with this property, events; and the 
sum of the importances of all conference events, sum-imps. It returns the impact of the uncertain 
room property on the standard deviation of the schedule quality. 

It uses the following local variables:  
std-r  standard deviation of the related reward for one event 
total-sqr-std weighted sum of the squared standard deviations for all events 

PROPERTY-IMPACT(low-prop, high-prop, events, sum-imps) 

for each event in events  

 k = COUNT(preferences[event]) 

 imp = importance[event] 

 min-ac = GET-MINIMAL-ACCEPTABLE-VALUE-OF-PROPERTY() 

max-ac = GET-MAXIMAL-ACCEPTABLE-VALUE-OF-PROPERTY() 

 min-pref = GET-MINIMAL-PREFERRED-VALUE-OF-PROPERTY() 

max-pref = GET-MAXIMAL-PREFERRED-VALUE-OF-PROPERTY() 

    std-r = LOCAL-IMPACT(low-prop, high-prop, min-ac, max-ac, min-pref, max-pref) 

 total-sqr-std = total-sqr-std + (imp · std-r / k)2 

return total-sqr-std
0.5 / sum-imps 

             

Figure 30: Computing the impact of an uncertain room property on the standard deviation of the overall 
schedule quality. Note that this computation uses the REWARD procedure, given in Figure 33. 
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The procedure inputs an uncertain event importance, represented by its lowest and highest 

possible values, low-imp and high-imp; the quality of the respective event assignment, qual; and 

the sum of the importances of all conference events, sum-imps. 

It returns the impact of the uncertain importance on the standard deviation of the schedule quality. 

The computation of this impact is an approximation, based on the assumption that low-imp and 

high-imp are significantly smaller than sum-imps. 

IMPORTANCE-IMPACT(low-imp, high-imp, qual, sum-imps) 

std-imp = (high-imp − low-imp) / (2 · 3 ) 

return qual · std-imp / sum-imps 
             

Figure 31: Impact of an uncertain importance on the schedule quality. 

 
             

The procedure inputs an uncertain range of acceptable values, represented by the lowest and 
highest possible values of its left endpoint, l-min-ac and h-min-ac, and the lowest and highest 
possible values of its right endpoint, l-max-ac and h-max-ac. 

It also inputs the respective range of preferred values, represented by its endpoints, min-p and 
max-p; the actual value of the respective property in the current schedule, prop; the number of 
preferences in the respective event, k; the importance of this event, imp; and the sum of the 
importances of all conference events, sum-imps. 

Note that l-max-ac ≤ min-p ≤ max-p ≤ h-max-ac; furthermore, for a valid schedule, h-max-ac ≤ 
prop ≤ l-min-ac. 

The procedure returns the impact of the acceptable-value uncertainty on the standard deviation of 
the schedule quality. 

It uses the following local variables:  

exp-r   mathematical expectation of the reward value  

exp-sqr-r  mathematical expectation of the squared reward value 

CONST-IMPACT(l-min-ac, h-min-ac, l-max-ac, h-max-ac, min-p, max-p, prop, k, imp, sum-imps) 
if min-p≤ prop ≤ max-p then return 0 
if prop < min-p then  

exp-r = 1 − ((min-p − prop) / (h-min-ac − l-min-ac)) ·  
(ln(min-p − l-min-ac) − ln(min-pref − h-min-ac))  

     exp-sqr-r = 2 · exp-r − 1 + (min-p − prop)2 / ((min-p − l-min-ac) · (min-p − h-min-ac)) 
else exp-r = 1 − ((prop − max-pref) / (h-max-ac − l-max-ac))·  
    (ln(h-max-ac − max-p) − ln(l-max-ac − max-p))  
    exp-sqr-r = 2 · exp-r − 1 + (prop − max-p)2 / ((h-max-ac − max-p) · (l-max-ac − max-p)) 
return imp · ((exp-sqr-r − exp-r

2)0.5 / k) / sum-imps 
             

Figure 32: Computing the impact of an uncertain range of acceptable values on the standard deviation of 
the schedule quality. 
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The procedure inputs a property value, prop; the minimal and maximal acceptable values for this 

property, min-ac and max-ac; and minimal and maximal preferred values, min-pref and max-pref. 

Note that min-ac ≤ min-pref ≤ max-pref ≤ max-ac. If the property is within the acceptable 

interval, the procedure returns the respective reward value; else, it returns NIL. 

REWARD(prop, min-ac, max-ac, min-pref, max-pref) 

if min-ac ≤ prop < min-pref then return (prop − min-ac) / (min-pref – min-ac) 

if min-pref ≤ prop ≤ max-pref then return 1 

if max-pref < prop ≤ max-ac then return (max-ac − prop) / (max-ac − max-pref) 

return NIL 
             

Figure 33: Computing the reward for satisfying a given preference. 

 
 The elicitation procedure estimates the utility of all candidate questions, prunes 
the questions whose estimated utilities are no greater than their costs, and then selects a 
given number of questions with the greatest difference between the utility and cost. It 
then uses best-first search (Figure 35) to select the most important among the remaining 
candidate questions. 
 

4.3. Search for Optimal Questions 

 
The problem we are addressing is the identification of critical uncertain information. We 
consider the case of a conference where we need to assign sessions to locations. Each 
session has a set of requirements together with their respective importance levels and 
each location has a set of properties. These pieces of information may be uncertain. The 
final goal is to create a schedule of high quality and reduce the uncertainty in the final 
schedule. We propose an algorithm which would create questions leading to a significant 
schedule improvements at a low cost. We assume that all the variables are independent, 
which is a simplification. 

We calculate the overall utility in terms of utility of assigning each conference 
session to a certain location. We add session utilities, weighing each session by its 
importance; 

(4.1) ( ) ( ) ( )
( )

,

s Sessions p Pref s

Utility weight s weight p utility p s
∈ ∈

 
 = ⋅ ⋅
 
 

∑ ∑ . 

 
The utility is a real value between predefined minimum and maximum utility 

values. In our system, we use -5 and 1 for these values. For each preference we calculate 
the utility by plugging the relevant location attribute into the relevant preference function. 
1 denotes maximum possible utility and -5 denotes that the organizer of the event would 
be just as happy without an assignment. We also allow handling of cases where if hard 
preferences are violated, the whole assignment becomes unacceptable. If the happiness 
for any such preference of a session is violated, we assume that the utility for that whole 
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session is –6 capturing the fact that having this assignment is worse than having no 
assignment. The weights are scaling factors such that the overall utility itself ends up 
being in the range –6 and 1.  

Uncertainty can exist in the system in weights, in preference functions and in 
location attributes. All of the uncertain variables, except for preference functions, are 
composed of a set of value ranges and probabilities. For each of these variables we define 
the mean and standard deviation to be 

 

(4.2) i ix p x= ⋅∑ , 

 

(4.3) ( )
2

x i ip x xσ = ⋅ −∑ . 

 
The information about the available locations, preferences of session organizers 

and attributes of the organizers form what we call the world state. We provide this world 
state as an input to the optimizer. 

We show the types of questions the system can generate in Table 1 on page 3. 
Note that the system generates questions based on question classes, which means that, if a 
new element is added to an existing class, for example a new room attribute called 
“number of available chairs”, the system can readily pick up that attribute and generate 
related questions. The system also allows more specialized questions. For example we 
can define a question template which depends on a specific attribute rather than a class of 
attributes.  

The heuristic elicitor ranks each uncertain variable based on the standard 
deviation of overall utility due to that uncertainty. While we calculate the standard 
deviation due to a particular variable, we average all the other variables which may factor 
in. For example, in calculation for an uncertain room capacity preference if the actual 
room capacity of the assigned room is uncertain as well, we average the room capacity. 
We also weigh the standard deviation by the importance of the session and the particular 
preference, 

 

(4.4)  ( ) ( ) ( ) ( ),utility s x
s sessions

StandardDeviation x weight s weight x σ
∈

= ⋅ ⋅∑ . 

 
 After the system makes the ranking, we eliminate all uncertain variables that get a 
score less than a preset threshold. We then apply the search elicitor. There are two 
versions of the search elicitor, the first version deals with all uncertain variables except 
preference functions, whereas the second version deals with uncertain preference 
functions. The search elicitor produces a weight for each uncertain variable. If this weight 
is zero the variable is not worth asking about.  
 The search elicitor ranks potential questions using a non-adversarial variant of B* 
search [Berliner, 1979].To evaluate each node in the search space, we use the optimizer 
directly giving us a more accurate ranking than estimation we use for heuristic elicitor. 
When evaluating a potential question, the search starts out with looking at the utility at 
extreme points of the complete uncertain value range. If the maximum possible utility is 
below a certain threshold we stop and not ask the question. If the minimum possible 
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utility is above a certain threshold we stop as well and record this utility value as the new 
question weight. If either of these conditions is not true, then we split the complete region 
of possible values into two equally likely regions and repeat the process for each of those 
regions. We can perform this search in parallel looking at the complete list of questions 
given to the search elicitor. In this case we would need to make sure the minimum 
possible utility is higher than the maximum possible utility of others. We show an 
example of this ranking process in Figure 34 with two potential questions.  

Even though optimization is very central to the search elicitor, the search elicitor 
is domain-independent and it can work with any optimizer. We give the pseudo-code for 
both versions of the search elicitor in Figure 35, Figure 36 and Figure 37.  
 Sometimes less questions than the user can potentially answer get generated. In 
these cases, we use the rule-based elicitor to generate more questions. The rule-based 
elicitor infuses domain knowledge into elicitation and it uses hand coded rules to 
generate supplemental questions about room properties. In the conference scheduling 
domain, the rule-based elicitor takes into account the sessions assigned to each room with 
uncertain properties as well as the importance of the sessions and the requesters when 
ranking potential questions. We also allow the user to specify some attributes to have a 
bigger weight than the others. For example, in the implemented system, we weigh the 
attributes about a room’s capacity heavier than the other attributes. Compiling rules for 
each domain is a relatively simple task given general knowledge about the domain. For 
the implemented system we spent less than a day for creating rules even though we had 
no previous expertise and we expect this to be the same for other domains. We give the 
pseudo-code for the rule-based elicitor in Figure 38. 
 
 
 

100-150:40%

151-200:60%

Min util.:0.1

Max util.:0.5

100-150:40%

151-200:60%

Min util.:0.1

Max util.:0.5

160-200:50% 100-160:50%
Min util.:0.15

Max util.:0.35

100-120:25% 120-160:25%
Min util.:0.28

Max util.:0.33

0-1:50%

2-3:50%

Min util.:0

Max util.:0.4

0-1:50%

2-3:50%

Min util.:0

Max util.:0.4

0-1:50% 2-3:50%
Min util.:0.1

Max util.:0.25

1 2

3 4

5

Uncertain room size Uncertain number of projectors

 
 

Figure 34: Example relative ranking of two uncertain variables by search elicitor. Circles denote step 
number and we refine the range of possible utility values at each step using the optimizer. After step 5, the 
minimum possible utility of asking about the size of a room becomes higher than the maximum possible 
utility for asking about the number of projectors. Therefore, we rank the question about uncertain room size 
higher than the question about uncertain number of projectors. 
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The procedure inputs a preference function with domain x, prop; the cost of asking questions, 

cost; acceptable difference between question cost and potential gain, epsilon; and maximum 

number of iterations, maxSteps.  

QUESTION-EVALUATION(pref, cost, epsilon, maxSteps) 

dl = GET-UTILITY-INCREASE(xmin[pref], pref) 

dr = GET-UTILITY-INCREASE(xmax[pref], pref) 

interval = CREATE-NEW-INTERVAL(xmin[pref], xmax[pref], dl, dr, 1) 

highSum = dhigh[interval] 

lowSum = dlow[interval] 

pq = CREATE-PRIORITY-QUEUE(index on diff) 

INSERT(pq,interval) 

while(true) 

 if (highSum ≤ (1 + epsilon) · cost) return 0 

 if (lowSum ≥ (1 - epsilon) · cost) return lowSum; 

 if (size[pq] ≥ maxSteps) return smallest-positive-integer; 

 interval = POP(pq) 

 highSum = highSum – dhigh[interval] · prob[interval] 

 lowSum = lowSum – dlow[interval] · prob[interval] 

 xmid = GET-POINT-AT-MID-PROBABILITY(pref, xl[interval], xr[interval]) 

 deltamid = GET-UTILITY-INCREASE(xmid, pref) 

 intervall = CREATE-INTERVAL(xl[interval], xmid, dl[interval], dmid, 0.5 · prob[interval]) 

 intervalr = CREATE-INTERVAL(xmid, xr[interval], dmid, dl[interval], 0.5 · prob[interval]) 

 highSum = highSum + dhigh[intervall] · prob[intervall] + dhigh[intervalr] · prob[intervalr] 

 lowSum = lowSum + dlow[intervall] · prob[intervall] + dlow[intervalr] · prob[intervalr] 

    INSERT(pq,intervall) 

    INSERT(pq,intervalr) 
             

Figure 35: Search elicitor algorithm for handling all uncertain variables except preference functions. 
 

             

The procedure inputs the left and right boundaries of the interval, xl and xr; the change in utility 

on left half, deltal; change in utility on right half, deltar; and interval probability, prob. The output 

is an interval.  

CREATE-NEW-INTERVAL(xl, xr, deltal, deltar, prob) 

i = new interval 

xl [i] = xl 

xr [i] = xr 

deltal [i] = deltal 

deltar [i] = deltar 

deltahigh [i] = MAX(deltal [i], deltar [i]) 

deltalow [i] = MIN(deltal [i], deltar [i]) 

probability[i] = prob 

diff[i] = (deltahigh[i] – deltalow[i]) ] · probability[i] 
             

Figure 36: Helper function for search elicitor algorithm. 
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The procedure inputs an array of preference functions with probabilities prob, pref; the cost of 

asking questions, cost; and the required difference between question cost and potential gain, 

delta. The output is a Boolean. 

QUESTION-EVALUATION(pref[], cost, delta) 

SORT-ASCENDING(pref on prob) 

accumulatedGains = 0 

for each prefFunction in pref  

 certainWorldstate = replace(pref in worldstate with prefFunction) 

 accumulatedGains = accumulatedGains +  

  GET-UTILITY-INCREASE(worldstate, newWorldstate) · prob[prefFunction] 

 if (accumulatedGains > cost + delta) return true 

return false 
             

Figure 37: Search elicitor algorithm for handling uncertain preference functions. 

 
             

The procedure inputs an array of rooms, rooms; and a hashtable of uncertain attributes with key 

room, attrib. The output is a ranked list of attributes to ask questions on. 

SUPPLEMENTAL-QUESTIONS(pref[], cost, delta) 

for each room in rooms  

 questionList = new question array 

 roomWeight = 1 

 for each event in room 

  requesterWeight = GET-REQUESTER-WEIGHT(event) 

  eventWeight = GET-EVENT-WEIGHT(event) 

  roomWeight = roomWeight + requesterWeight · eventWeight 

 for each attribute in attrib[room] 

  attributeWeight = GET-ATTRIBUTE-WEIGHT(attribute) 

  questionWeight = roomWeight · attributeWeight 

  questionList = INSERT(attribute with questionWeight) 

SORT-DESCENDING(questionList on questionWeight) 

return questionList 
             

Figure 38: Rule-based elicitor algorithm for choosing supplemental questions on room attributes. 

 

4.4. Integrated Elicitor 

 
The Integrated Elicitor combines the following three components: 
 

• Search Elicitor: The search elicitor uses best-first search to identify high-utility 
questions. For each question, it considers possible answers, and evaluates the 
utility of each answer. Search elicitor takes a list of potential questions as an input 
which can be generated by either the heuristic or rule-based elicitors or both. 
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• Heuristic Elicitor: The heuristic elicitor evaluates the probabilistic impact of 
each uncertain value on the schedule score, and uses these impacts as utility 
estimates. This corresponds to the first filter mentioned in the previous section. 

• Rule-based elicitor: The rule-based elicitor uses simple heuristics to evaluate 
question utilities; it is much less accurate than the other two algorithms. The rule-
based elicitor provides the system with more questions when less than what can 
be answered at each step is generated by the other elicitors. These supplementary 
questions use the algorithm in Figure 38. 

 
 
4.4.1. SEARCH ELICITOR 
 
Search Elicitor inputs a set of candidate questions, and evaluates each of them separately. 
It first calls Optimizer to construct a schedule, and then uses this schedule for evaluating 
questions. This initial optimization is essential; the use of Search Elicitor with an 
unoptimized schedule does not give useful results. 
 
When evaluating a question, Search Elicitor begins with rough lower and upper bounds 
on its utility, and then gradually narrows these bounds during its search. We use four 
parameters that determine when to terminate the search: 
 

• Per-question time: The time limit for evaluating one question. When Elicitor 
reaches this limit, it terminates the evaluation of the current question. 

• Low utility: If the utility of a question falls below this value, Elicitor rejects it; this 
value must be nonnegative. When the upper utility bound becomes no larger than 
the low-utility value, Elicitor terminates the evaluation of the current question. 

• High utility: If the utility of a question is above this value, Elicitor considers it 
important; this value must be no smaller than the low importance. When the lower 
utility bound becomes no smaller than the high-utility value, Elicitor terminates 
the evaluation of the current question. We define this value empirically. 

• Utility ratio: The upper limit on the ratio of the upper utility bound to the lower 
bound that represents an "accurate" estimate; this value must be strictly greater 
than 1.0. When the ratio of the upper bound to the lower bound becomes no larger 
than the utility ratio, Elicitor terminates the evaluation of the current question. We 
define this value empirically. 

 
We also use a parameter that controls the invocation of Improver, the sub-module used in 
the “GetUtilityIncrease” procedure in Figure 35. Improvement time sets the time limit 
given to Improver, when Search Elicitor calls it to improve the schedule for a specific 
answer. 
 
After evaluating all questions, Search Elicitor sorts them in decreasing order of 
importance. The sorted list of questions consists of three parts. 
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• Beginning: The beginning of the list includes all “unknown” values, in the same 
order as in the input of Search Elicitor. Thus, we consider “unknown” values most 
important to get answers for. 

• Middle: The middle of the list includes all “important” questions, in the same 
order as in the input of Search Elicitor. 

• End: The end of the list includes all other questions that have not been rejected, in 
the decreasing order of their lower utility bounds. 

 
 
4.4.2. INTEGRATION OF ELICITORS  
 
The Integrated Elicitor algorithm combines Search Elicitor, Heuristic Elicitor, and Rule-
based elicitor (Figure 39). It uses the following parameter, in addition to the five 
parameters for Search Elicitor: 
 

• Input size for Search Elicitor: This is the number of questions evaluated by 
Search Elicitor. We use it to control the trade-off between the accuracy and speed 
of Integrated Elicitor. 

 
The main steps of the integrated elicitation are as follows. 
 

1. Invoke Heuristic Elicitor, which identifies all uncertain values that affect the 
schedule utility, and sorts them in the decreasing order of their estimated utilities. 

2. Invoke Rule-based elicitor to rank the questions that are not yet in the list, and 
append them to the end of the list, in the order determined by Rule-based elicitor. 

3. Invoke Search Elicitor to re-evaluate the efficiency of the most important 
questions. 

 
 

 

 
Figure 39: Steps of the Integrated Elicitor. 
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4.5. Evaluation 
 
 

The uncertainty in a world state almost always reduces the quality of the schedule 
produced by the optimizer. We evaluate the improvement in the optimized schedule 
quality as questions are answered. An effective elicitation procedure should reduce the 
uncertainty in a world state, by asking a small number of questions, to a level such that 
the quality of the produced schedule is close to the quality from a fully certain world state.  
 For this main evaluation section for elicitation, we use problems from the 
conference scheduling domain. In Section 5.5 we provide supplemental evaluation results 
in the vendor orders domain to show general applicability of our approach. 
 

4.5.1. METHODOLOGY 

When evaluating the effectiveness of the generated questions, we start out by choosing a 
world state with uncertainty and the corresponding fully certain world state. We run the 
desired elicitation procedure and generate possible questions. Then, we answer a preset 
number of the top questions and run optimization using the new world state. We evaluate 
the system answering a batch of questions at each step instead of just one as this saves 
time. This also makes the test more realistic because in real life, users may prefer 
answering questions as a batch instead of just answering a single question, and re-running 
the system. We merge the resulting schedule with the fully certain world state and 
evaluate the quality of the schedule with full certainty. We show this process in Figure 40. 
 We generate the world states we use for this evaluation by first manually creating 
a fully certain world state. Then, for each problem size, we randomly pick a different 
number of room properties to be uncertain. We keep the number of sessions the same 
while we adjust the number of rooms. For smaller problem sizes, we have a smaller 
number of rooms. We use manually picked ranges to substitute for fully certain values. 
These ranges almost always contain the certain value. In order to make the experiments 
reproducible, we use and store a random seed in the picking of variables we make 
uncertain. 
 We keep a copy of the world state files and all the related evaluation material 
online. They are all contained in the zip archive at 
http://www.cs.cmu.edu/~eugene/Radar/Tests/ulas.zip. There are description files that 
describe the contents of each folder. The input files are named using a standardized 
naming convention. The names are in the form  rR-rqQ-sS.stp where R stands for number 
of rooms, Q stands for number of uncertain room properties, and S stands for the random 
seed that we use. 
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Figure 40: Evaluation procedure. 
 

 

We select the uncertain world state from a pool of four different world states with 
different sizes. We list these world states in Table 10. For each world state, we use five 
different elicitation systems: 

1. Heuristic and rule-based elicitors together 
We vary the number of questions we answer as a batch. We answer 10, 20, 
50, or 100 questions at a time. 

2. Search and rule-based elicitors together 
We vary the number of questions the search elicitor considers. It considers 
the 10, 20, 50, or 100 top questions. We answer 20 questions at a time. 

3. Heuristic, search and rule-based elicitors together (full system) 
We vary the number of questions the search elicitor considers. It considers 
the 10, 20, 50, or 100 top questions. We answer 20 questions at a time. 

4. Rule-based elicitor 
5. Random ordering of questions 

We average 10 runs where we pick which question to answer randomly. 
 

World state  
name 

Number of 
rooms 

Number of 
sessions 

Length of 
conference 

Number of  
possible questions 

Largest 

World state 
88 84 4 days ~3300 

Large 

World state 
50 84 4 days 1000 

Medium 

World state 
20 84 4 days 500 

Small 

World state 
10 84 4 days 100 

 

Table 10: List of world states we use for evaluation. 

Select uncertain world state u and certain state c  

Run desired elicitation on u 

Update u using the answers. 

Optimize u and extract schedule s 

Merge s with c to produce merged state m 

Evaluate and record the quality of m 

Answer first batch of questions 
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For each scenario and for each elicitation system, we determine the change in the 
schedule quality as questions are answered. We plot both the actual quality and the 
estimated quality. The actual quality is the schedule quality we achieve when we evaluate 
the schedule using fully certain knowledge. The estimated schedule quality reflects the 
optimizer’s estimate of the quality in the presence of uncertainty.  

We also plot all the systems together for comparison in terms of both the schedule 
quality and the percentage remaining loss in schedule quality due to uncertainty as we 
answer each generated question: 

(4.5) 
( )

( )

−
=

−

FullyCertainQuality CurrenQuality
RemainingLossInQuality

FullyCertainQuality FullyUncertainQuality
. 

 

We apply a two tailed T-test in order to verify that the full elicitation system achieves a 
significantly better quality than each of the other systems. We use the standard formula 
for a two-tailed T-test  

(4.6) 
( )µ−

=
 
 
 

X
t

S
n

. 

 

We subtract the remaining loss for each of the five systems from the remaining loss for 
the full system after each question is answered. This gives us about as many observations 
as there are questions (n). Our primary hypothesis is that the mean (µ) of all observations 
is zero and we test at a 99% confidence level. 
 
 
4.5.2. LARGEST WORLD STATE 

 We show the results of using the heuristic and rule-based elicitors in Figure 41. It 
takes the heuristic elicitor roughly 1000 questions in order to achieve a schedule quality 
very close to that of a fully certain schedule when we answer 20 or 50 questions at a time. 
This figure is slightly better when we answer 10 questions at a time and slightly worse 
when we answer 100 at a time. The 1000 question figure, corresponds to roughly 30% of 
the possible questions.  
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(a) Answering 10 questions at once.  (b) Answering 20 questions at once. 
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(c) Answering 50 questions at once.  (d) Answering 100 questions at once. 

Figure 41: Dependency of the schedule quality on the number of answered questions using heuristic and 
rule-based elicitors on world state with 3300 unknowns. Dashed lines show the schedule quality as 
estimated, whereas solid lines show the actual schedule quality.  

 
 
 

We then evaluate the elicitation system with the search and rule-based elicitors. 
We show the results in Figure 42. As the search elicitor is meant to enhance the list of 
questions it is given instead of generating questions of its own, the search elicitor does 
not perform very well when given questions sorted based on simple heuristics used by the 
rule-based elicitor. Even when the search considers 100 questions at a time, the schedule 
quality does not reach the quality of a fully certain schedule until the end. 
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(a) Search considers top 10 questions.  (b) Search considers top 20 questions. 
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(c) Search considers top 50 questions.  (d) Search considers top 100 questions. 

 

Figure 42: Dependency of the schedule quality on the number of answered questions using search and 
rule-based elicitors on world state with 3300 unknowns. Dashed lines show the schedule quality as 
estimated, whereas solid lines show the actual schedule quality. We rerun the elicitation after we answer 
each batch of 20 questions. 
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(a) Search considers top 10 questions.  (b) Search considers top 20 questions. 
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(c) Search considers top 50 questions.  (d) Search considers top 100 questions. 

 

Figure 43: Dependency of the schedule quality on the number of answered questions using search, 
heuristic, and rule-based elicitors together on world state with 3300 unknowns. Dashed lines show the 
schedule quality as estimated, whereas solid lines show the actual schedule quality. We rerun the elicitation 
after we answer each batch of 20 questions. 

 
The search elicitor has a much better performance when used in conjunction with 

the heuristic and rule-based elicitors. The heuristic elicitor provides the search elicitor 
with a much stronger list of questions (possibly augmented by rule-based elicitor 
questions) than the rule-based elicitor. The search elicitor further improves this list. We 
show the results in Figure 43. Except for the case where the search elicitor only considers 
10 questions, this elicitation method reaches the maximum score at around 500 questions 
out of a possible 3300. This corresponds to less than 15 percent of the possible questions. 
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 Finally, we compare the best of each previous elicitation approach with each other, 
random selection of questions, and the rule-based elicitor. The rule-based elicitor 
performs about as well as random selection followed by the search elicitor and heuristic 
elicitor. Full system performs the best as we show in Figure 44.  
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  (a) Rule-based elicitor    (b) Random ordering 
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 (c) Comparison  of all systems   (d) Remaining loss for all systems 
 

Figure 44: Dependency of the schedule quality on the number of answered questions using rule-based 
elicitor and random question selection on world state with 3300 unknowns. Dashed lines show the schedule 
quality as estimated, whereas solid lines show the actual schedule quality. We also compare all systems 
with one another. 
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Compared 
system 

Observed 

mean ( X ) 

Observed 
std. dev.(S) 

Test 
statistic (t) 

Random -0.126 0.132 -12.291 
Heuristic -0.056 0.086 -8.358 
Search -0.108 0.093 -14.851 
Rule-based -0.190 0.219 -11.142 

Table 11: Two tailed T-test application comparing different elicitation systems for world state with 3300 
unknowns. 

 

Compared 
system 

% of 
questions 

Random 45% 
Heuristic 33% 
Search 26% 
Rule-based 44% 
Full 17.5% 

Table 12: Percentage of the generated questions that we had to answer in order to achieve 85% of the fully 
certain schedule quality for each system for world state with 3300 unknowns. 

 

 We show the results of our hypothesis testing in Table 11. According to the test 
statistic values, we reject the primary hypothesis and we accept the alternate hypothesis 
stating that the full elicitation system achieves a significantly different quality than each 
of the other systems. In particular, based on the large negative t statistic values, we can 
say that the full system will have a lower remaining error on average than the other 
systems with a 99% confidence. 
 We also tabulate the percentage of the generated questions that we had to answer 
in order to achieve 85% of the fully certain schedule quality for each system in Table 12. 
We see that rule-based elicitor and random picking questions perform on par with one 
another. The search elicitor has a slightly better performance than the heuristic elicitor 
while the full system requires only 17.5% of the questions to be answered before 
reaching 85% of the fully certain schedule quality. 
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4.5.3. LARGE WORLD STATE 

 We show the results of using the heuristic and rule-based elicitors in Figure 45. It 
takes the heuristic elicitor roughly 500 questions in order to achieve a schedule quality 
that is within 25% of that of a fully certain schedule when we answer 20 or 50 questions 
at a time. The actual quality is not reached until much later. This figure is slightly better 
when we answer 10 questions at a time and much worse when we answer 100 at a time. 
The 500 question figure, corresponds to 50% of the possible questions.  
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(a) Answering 10 questions at once.  (b) Answering 20 questions at once. 
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(c) Answering 50 questions at once.  (d) Answering 100 questions at once. 

Figure 45: Dependency of the schedule quality on the number of answered questions using heuristic and 
rule-based elicitors on world state with 1000 unknowns. Dashed lines show the schedule quality as 
estimated, whereas solid lines show the actual schedule quality. 
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We then evaluate the elicitation system with the search and rule-based elicitors. 
We show the results in Figure 46. As expected, the search elicitor does not perform very 
well when used just in conjunction with the rule-based elicitor. The graphs exhibit dips in 
quality as more questions are answered which we attribute to the optimizer’s quirks in 
dealing with more information in the presence of resource scarcity.  
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(a) Search considers top 10 questions.  (b) Search considers top 20 questions. 
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(c) Search considers top 50 questions.  (d) Search considers top 100 questions. 

 

Figure 46: Dependency of the schedule quality on the number of answered questions using search and 
rule-based elicitors on world state with 1000 unknowns. Dashed lines show the schedule quality as 
estimated, whereas solid lines show the actual schedule quality. We rerun the elicitation after we answer 
each batch of 20 questions. 
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(a) Search considers top 10 questions.  (b) Search considers top 20 questions. 
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(c) Search considers top 50 questions.  (d) Search considers top 100 questions. 

 

Figure 47: Dependency of the schedule quality on the number of answered questions using search, 
heuristic, and rule-based elicitors together on world state with 1000 unknowns. Dashed lines show the 
schedule quality as estimated, whereas solid lines show the actual schedule quality. We rerun the elicitation 
after we answer each batch of 20 questions. 

 

The search elicitor again has a much better performance when used in conjunction 
with the heuristic and rule-based elicitors together. We show the results in Figure 46. 
When the search elicitor considers the top 20 questions, this elicitation method reaches 
the maximum score at around 400 questions out of a possible 1000. This corresponds to 
40 percent of the possible questions. When the search elicitor considers 50 or a 100 
questions, it comes within 25% of a fully certain schedule’s quality with about 250 
questions which corresponds to 25% of the possible questions. 
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Finally, we compare the best of each previous elicitation approach with each other, 
random selection of questions, and the rule-based elicitor. The rule-based elicitor 
performs about as well as random selection followed by the search elicitor and heuristic 
elicitor. Full system performs the best as we show in Figure 48. 
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  (a) Rule-based elicitor    (b) Random ordering 
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 (c) Comparison  of all systems   (d) Remaining loss for all systems 
 

 
Figure 48: Dependency of the schedule quality on the number of answered questions using rule-based 
elicitor and random question selection on world state with 1000 unknowns. Dashed lines show the schedule 
quality as estimated, whereas solid lines show the actual schedule quality. We also compare all systems 
with one another. 
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Compared 
System 

Observed 

Mean ( X ) 

Observed 
std. dev.(S) 

Test 
statistic (t) 

Random -0.184 0.123 -10.592 
Heuristic -0.090 0.167 -3.831 
Search -0.156 0.092 -12.023 
Rule-based -0.189 0.181 -7.372 

Table 13: Two tailed T-test application comparing different elicitation systems for world state with 1000 
unknowns. 

 

Compared 
system 

% of 
questions 

Random 89% 
Heuristic 86% 
Search 83% 
Rule-based 70% 
Full 42% 

Table 14: Percentage of the generated questions that we had to answer in order to achieve 85% of the fully 
certain schedule quality for each system for world state with 1000 unknowns. 

 

 We show the results of our hypothesis testing in Table 13. According to the test 
statistic values, we reject the primary hypothesis and we accept the alternate hypothesis 
stating that the full elicitation system achieves a significantly different quality than each 
of the other systems. In particular, based on the large negative t statistic values, we can 
say that the full system will have a lower remaining error on average than the other 
systems with a 99% confidence. 
 We also tabulate the percentage of the generated questions that we had to answer 
in order to achieve 85% of the fully certain schedule quality for each system in Table 14. 
We see that heuristic elicitor, search elicitor and random picking questions perform on 
par with one another. The rule based elicitor has a slightly better performance than the 
others while the full system requires only 42% of the questions to be answered before 
reaching 85% of the fully certain schedule quality. 
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4.5.4. MEDIUM WORLD STATE 

 We show the results of using the heuristic and rule-based elicitors in Figure 49. It 
takes the heuristic elicitor roughly 250 questions in order to achieve a schedule quality 
very close to that of a fully certain schedule when we answer 20 or 50 questions at a time. 
This figure is slightly better when we answer 10 questions at a time and slightly worse 
when we answer 100 at a time. The 250 question figure, corresponds to roughly 50% of 
the possible questions.  
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(a) Answering 10 questions at once.  (b) Answering 20 questions at once. 
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(c) Answering 50 questions at once.  (d) Answering 100 questions at once. 

Figure 49: Dependency of the schedule quality on the number of answered questions using heuristic and 
rule-based elicitors on world state with 500 unknowns. Dashed lines show the schedule quality as estimated, 
whereas solid lines show the actual schedule quality.  
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We then evaluate the elicitation system with the search and rule-based elicitors. 
We show the results in Figure 50. The search elicitor reaches the peak quality value for 
the first time around the 50% mark as well. The graphs exhibit dips in quality as more 
questions are answered which we attribute to the optimizer’s quirks in dealing with more 
information in the presence of resource scarcity. 
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(a) Search considers top 10 questions.  (b) Search considers top 20 questions. 
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(c) Search considers top 50 questions.  (d) Search considers top 100 questions. 

 

Figure 50: Dependency of the schedule quality on the number of answered questions using search and 
rule-based elicitors on world state with 500 unknowns. Dashed lines show the schedule quality as estimated, 
whereas solid lines show the actual schedule quality. We rerun the elicitation after we answer each batch of 
20 questions. 
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(a) Search considers top 10 questions.  (b) Search considers top 20 questions. 
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(c) Search considers top 50 questions.  (d) Search considers top 100 questions. 

 

Figure 51: Dependency of the schedule quality on the number of answered questions using search, 
heuristic, and rule-based elicitors together on world state with 500 unknowns. Dashed lines show the 
schedule quality as estimated, whereas solid lines show the actual schedule quality. We rerun the elicitation 
after we answer each batch of 20 questions. 

 

With the number of rooms diminishing and number of sessions staying the same, 
the search elicitor does not have a much better performance when used in conjunction 
with the heuristic and rule-based elicitors together. We show the results in Figure 51. 
When the search elicitor considers the top 10, 20, or 100 questions, this elicitation 
method reaches the maximum score at around 250 questions out of a possible 500. This 
corresponds to 50 percent of the possible questions. 
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Finally, we compare the best of each previous elicitation approach with each other, 
random selection of questions, and the rule-based elicitor. The rule-based elicitor 
performs about as well as the full system followed by the heuristic elicitor and search 
elicitors. Random system performs the worst as we show in Figure 52. 
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  (a) Rule-based elicitor    (b) Random ordering 
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 (c) Comparison  of all systems   (d) Remaining loss for all systems 
 

 

Figure 52: Dependency of the schedule quality on the number of answered questions using rule-based 
elicitor and random question selection on world state with 500 unknowns. Dashed lines show the schedule 
quality as estimated, whereas solid lines show the actual schedule quality. We also compare all systems 
with one another. 
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Compared 
System 

Observed 

Mean ( X ) 

Observed 
std. dev.(S) 

Test 
statistic (t) 

Random -0.237 0.165 -7.085 
Heuristic -0.033 0.102 -1.640 
Search -0.146 0.137 -5.322 
Rule-based 0.009 0.131 0.330 

Table 15: Two tailed T-test application comparing different elicitation systems for world state with 500 
unknowns. 

 

Compared 
system 

% of 
questions 

Random 90% 
Heuristic 57% 
Search 81% 
Rule-based 59.5% 
Full 56% 

Table 16: Percentage of the generated questions that we had to answer in order to achieve 85% of the fully 
certain schedule quality for each system for world state with 500 unknowns. 

 

 We show the results of our hypothesis testing in Table 15. According to the test 
statistic values, we reject the primary hypothesis for random, and search elicitors and we 
accept the alternate hypothesis stating that the full elicitation system achieves a 
significantly different quality than each of the other systems. In particular, based on the 
large negative t statistic values, we can say that the full system will have a lower 
remaining error on average than the other systems with a 99% confidence. 
 The rule-based and heuristic elicitors however, have test statistics within the 
critical range which means we accept the primary hypothesis stating those elicitors, 
which are based on simple heuristics and simple standard deviation, do as well on this 
world state as the complete system. We believe that the primary reason this happens is 
because of the limited options the optimizer has as a result of resource scarcity. 
Furthermore, as fewer variables are present, simple heuristics can do well and the 
heuristics used in the rule-based elicitor seem to be a good match for solving this 
particular problem. 
 We also tabulate the percentage of the generated questions that we had to answer 
in order to achieve 85% of the fully certain schedule quality for each system in Table 16. 
We see that search elicitor and random picking questions perform on par with one 
another. The heuristic and rule based elicitors exhibit similar performance to the full 
system however, the full system still requires the least number of questions reaching 85% 
of the fully certain schedule quality with 56% of the questions answered. 
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4.5.5. SMALL WORLD STATE  

 We show the results of using the heuristic and rule-based elicitors in Figure 53. It 
takes the heuristic elicitor roughly 38 questions in order to achieve a schedule quality 
very close to that of a fully certain schedule when we answer 20 or 50 questions at a time. 
This figure is around 22 when we answer 1 or 10 questions at a time. The 22 question 
figure, corresponds to 22% of the possible questions.  
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(a) Answering 1 question at once.  (b) Answering 10 questions at once. 
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(c) Answering 20 questions at once.  (d) Answering 50 questions at once. 

Figure 53: Dependency of the schedule quality on the number of answered questions using heuristic and 
rule-based elicitors on world state with 100 unknowns. Dashed lines show the schedule quality as estimated, 
whereas solid lines show the actual schedule quality.  
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We then evaluate the elicitation system with the search and rule-based elicitors. 
We show the results in Figure 54. The search elicitor reaches the peak quality value for 
the first time around the 38% mark. The graphs exhibit dips in quality as more questions 
are answered which we attribute to the optimizer’s quirks in dealing with more 
information in the presence of resource scarcity. 
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(a) Search considers top 10 questions.  (b) Search considers top 20 questions. 
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(c) Search considers top 50 questions.  (d) Search considers top 100 questions. 

 

Figure 54: Dependency of the schedule quality on the number of answered questions using search and 
rule-based elicitors on world state with 100 unknowns. Dashed lines show the schedule quality as estimated, 
whereas solid lines show the actual schedule quality. We rerun the elicitation after we answer each batch of 
20 questions. 
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(a) Search considers top 10 questions.  (b) Search considers top 20 questions. 
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(c) Search considers top 50 questions.  (d) Search considers top 100 questions. 

 

Figure 55: Dependency of the schedule quality on the number of answered questions using search, 
heuristic, and rule-based elicitors together on world state with 100 unknowns. Dashed lines show the 
schedule quality as estimated, whereas solid lines show the actual schedule quality. We rerun the elicitation 
after we answer each batch of 20 questions. 

 

With the number of rooms diminishing even further and number of sessions 
staying the same, the search elicitor does not have a much better performance when used 
in conjunction with the heuristic and rule-based elicitors together. We show the results in 
Figure 55. The unified elicitor reaches the maximum score at around 25 questions out of 
a possible 100. This corresponds to 25 percent of the possible questions. 
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Finally, we compare the best of each previous elicitation approach with each other, 
random selection of questions, and the rule-based elicitor. All systems except for random 
picking of questions perform very close to one another. Full system performs slightly 
better and the random system performs the worst as we show in Figure 56. 
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  (a) Rule-based elicitor    (b) Random ordering 
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 (c) Comparison  of all systems   (d) Remaining loss for all systems 
 

 

Figure 56: Dependency of the schedule quality on the number of answered questions using rule-based 
elicitor and random question selection on world state with 100 unknowns. Dashed lines show the schedule 
quality as estimated, whereas solid lines show the actual schedule quality. We also compare all systems 
with one another. 
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Compared 
system 

Observed 

Mean ( X ) 

Observed 
std. dev.(S) 

Test 
statistic (t) 

Random -0.323 0.835 -3.868 
Heuristic 0.136 1.177 1.153 
Search -0.004 0.162 -0.239 
Rule-based -0.208 0.256 -8.156 

Table 17: Two tailed T-test application comparing different elicitation systems for world state with 100 
unknowns. 

 

Compared 
system 

% of 
questions 

Random 80% 
Heuristic 16% 
Search 35% 
Rule-based 70.5% 
Full 13% 

Table 18: Percentage of the generated questions that we had to answer in order to achieve 85% of the fully 
certain schedule quality for each system for world state with 100 unknowns. 

 

 We show the results of our hypothesis testing in Table 17. According to the test 
statistic values, we reject the primary hypothesis for only the random elicitor, accepting 
the alternate hypothesis stating that the full elicitation system achieves a significantly 
different quality than the random system. In particular, based on the large negative t 
statistic values, we can say that the full system will have a lower remaining error on 
average than the random system and the rule-based elicitor with a 99% confidence. 
 The remaining two systems however, has a test statistic well within the acceptable 
limit which means we accept the primary hypothesis stating those systems do as well on 
this world state as the complete system. We believe that the primary reason this happens 
is because of the limited options the optimizer has as a result of resource scarcity. The 
difference between the quality of a fully certain world state and the starting uncertain one 
is very little. 
 We also tabulate the percentage of the generated questions that we had to answer 
in order to achieve 85% of the fully certain schedule quality for each system in Table 18. 
We see that rule-based elicitor and random picking questions perform on par with one 
another. The search elicitor requires 35% of the questions to be answered while the 
heuristic elicitor exhibit similar performance to the full system. However, the full system 
still requires the least number of questions reaching 85% of the fully certain schedule 
quality with only 13% of the questions answered. 
 Considering all of the world states we have used for evaluation, we can see that 
the unified system outperforms the others considerably when the world state is large and 
the optimizer has a lot of choices. As the optimizer’s possible choices become smaller 
and smaller, the unified system’s performance is matched by the other simpler systems 
excluding the random picking of questions. 
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5. VENDOR ELICITATION 

 

We explore applying our approach to information elicitation to the vendor order problem 
in order to show the generalizability of our approach. We treat this domain as a secondary 
domain and therefore we do not evaluate the results as exhaustively as we do for the 
conference domain. 
 

5.1. Vendor Order Problem 

 
In a typical conference scenario, sessions can require services that external vendors 
provide such as mobile equipment not found in rooms or food deliveries. We use a 
vendor optimizer in order to find a placement of vendor orders given a conference 
schedule and needs of individual sessions. However, similar to the case with scheduling 
rooms, uncertainty can exist making the optimizer perform worse. 
 Uncertainty can exist in different parts of vendor information. The system may 
not have a complete list of vendors, we may not know all the items a vendor provides, 
and we may not know the prices of all the items available from all vendors.  
 We need an elicitation method which would make use of user preferences, any 
partial knowledge about vendors as well as any penalties related to spending money. 
 

5.2. Representation of Partial Knowledge 

 
The basic objects we represent in the system related to vendor orders are services, 
resource functions, resource items, vendors, and the cost penalty function.  
 Services are broad categories representing a specific session need. For example, 
floral, tables and meals are services. A session can request one or more of these services. 
We show a table of sample services and their explanations in Table 19. 
 

 

 

Service Explanation 

Floral Flower arrangements 
Table Tables needed for reception desks 
Meal Any sort of food ordered for sessions 
Security Security personnel for big sessions 
PC Laptop Laptop personal computers 
Apple Laptop Apple based laptops 
Computer Any computer 

Table 19: A subset of the services we represent in the system. 
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(a) Cost function.    (b) Utility function. 

Figure 57: Resource functions for a session that requires tables. 

 
Each session has a set of resource functions. Each resource function represents a 

service the session requires. A resource function is made up of two functions: A cost 
function which shows the dependency of the total order cost on the number of ordered 
items, and a utility function which shows the dependency of the increase in the overall 
quality increase on the number of ordered items. We represent both functions as 
piecewise-linear functions. If multiple vendors offer items that can provide the same 
service at different prices, the cost function for this service would reflect the cheapest 
alternative. We show an example resource function in Figure 57 for a session that 
requires tables. The cost function is completely linear and each table costs $10 to rent per 
hour. The utility function states that the session requires at least three tables and six tables 
and higher would get the highest quality. 

Resource items are actual items that provide one or more services. For example, a 
rose arrangement would provide a floral service and vegetarian meal would provide a 
meal service. A Dell laptop would satisfy both the laptop pc and computer services. 
Items may also have different cost types. For example, a vendor may charge per item (e.g. 
a florist) or per item per hour (e.g. a vendor renting laptops). We assume that the list of 
resource items is complete, that is the system knows about all the possible items and 
respective services before it starts. However, this does not mean that we know about all 
the items a given vendor provides. 

Each vendor in the system has a list of resource items and respective prices. The 
price can be a numerical value, or a marker stating that the vendor does not offer this item 
or that we do not know whether or not the vendor offers this item (and therefore the price 
for the item). We make the following assumptions about items a vendor offers: 

• If an item type is available from a vendor, the vendor can provide an unlimited 
supply of such items. 

• The unit price does not depend on the order size, which means that vendors do not 
give discounts or charge premiums for large orders. 

• We allow unknown costs, but we do not allow uncertain costs specified by 
probability distributions. 
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The system also has a flag which we use for marking whether or not the list of 
vendors is complete. An incomplete list would mean that there are vendors the system 
does not yet know about. 

There is a cost associated with each vendor order and if we place too many orders 
we end up spending too much money. Therefore, we have a penalty in the system which 
captures this concept and makes sure the system takes into account costs of placing 
orders. The cost penalty function shows the dependence of this penalty on the amount of 
money spent on vendor orders. The cost function is a piecewise-linear function that 
represents the dependency between the amount of all expenses and the penalty for 
spending this money. It must be fully certain and monotonically increasing, although it 
may not be strictly increasing. The penalty is in the same range as the schedule quality 
and is subtracted from it. We show an example cost penalty function in Figure 58. 
 
 

5.3. Search for Optimal Orders 
 

The module we use for searching for optimal vendor orders to place is called resource 

optimizer. The resource optimizer starts with a list of resource functions and outputs a list 
of suggested orders. It ultimately lets the human user decide which suggestions 
to follow. 

The resource optimizer repeatedly selects the best order to place and determines 
whether that order improves the overall schedule score. The algorithm works in two 
passes to account for the possibility of running into local maxima. First it evaluates all 
possible orders and determines the maximum attainable score. Then it starts from the 
beginning again, keeping track the placed orders, and stops when it reaches the 
predetermined score. 
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Figure 58: Example cost penalty function. 
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The algorithm inputs the resource functions for all sessions and items, represented by the vectors rf1…rfm, 
and the initial cost that we are starting from. It returns a prioritized list of suggested orders. 
 
BEST-ORDERS-SEARCH (rf, initialCost)  
pq = new priority queue 
for each resource in rf 

Add the first incremental order to pq 
currentQuality =  0  
bestQuality = 0 
currentCost = initialCost 
while(!ISEMPTY(pq)) 
  Pop an incremental order from the priority queue and store its quality and cost. 
   If there is another incremental order for this request/resource, push it on the priority queue. 

currentQuality += quality 
 currentCost += cost 
costAdjustedQuality = currentQuality – GET-PENALTY-FOR-COST(currentCost) 
bestQuality = MAX(bestQuality, costAdjustedQuality) 

for each resource in rf 

Add the first incremental order to pq 
currentQuality =  0  
bestQuality = 0 
currentCost = initialCost 
while(!ISEMPTY(pq) and costAdjustedQuality < bestQuality) 
  Pop an incremental order from the priority queue and store its quality and cost. 
  If there is another incremental order for this request/resource, push it on the priority queue. 

currentQuality += quality  
currentCost += cost 

  costAdjustedQuality = currentQuality - GET-PENALTY-FOR-COST(currentCost) 
 
          __________________________  

Figure 59: Computation of the list of best vendor orders to place. 

  

 

To select the best order to place, the orders are inserted into a priority queue. We 
determine the priority of a given order according to the following heuristic: We first 
compare on "schedule quality increase per cost increase" (which we call quotient), then 
on cost increase, and finally on request name and resource name in order to break ties. 
Since it is possible for the quotient to be infinite (if cost increase is zero), we treat all 
incremental orders with infinite quotient as being better than any incremental orders with 
finite quotients. We show the steps of the algorithm in Figure 59. 

 

5.4. Elicitation of Vendor Data 
 

Uncertainty in the vendor information means the vendor optimizer may not be able to 
place orders from vendors which may offer an item for a cheaper price. Even worse, the 
vendor optimizer may not be able to place an order which would satisfy a certain service 
because it does not have information about any vendors that may provide a resource item 
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satisfying that service. We need an effective elicitation mechanism which would generate 
an ordered (in terms potential usefulness) list of questions on uncertainties in vendor data. 
 We can ask the user to find out information about the items each vendor provides, 
the prices of those items and whether or not the list of vendors the system knows about is 
complete. We show a list of request types in Table 20. 
 
 
             

• Provide the exact value for the price of a resource item from a given vendor. 
Example: Find out the price of ordering a Dell laptop from Shadyside Computers. 

• Provide the exact value for the price of a set of resource items from a given vendor that may 
satisfy a certain service. 
Example: Find out the price of ordering a Dell laptop, IBM laptop, or Sony laptop from 
Shadyside Computers. 

• Provide whether or not a vendor offers a certain resource item and the price. 
Example: Find out whether Oakland Florists offers rose arrangements; if found, please enter the 
price. 

• Provide whether or not a vendor offers a set of resource items that may satisfy a certain service 
and the price. 
Example: Find out whether Oakland Florists offers rose arrangements, spring bouquets, or 
potted arrangements; if found, please enter the price. 

• Verify if the list of vendors is complete. 
Example: Find out whether any available vendors are not yet in the system; if you find such 
vendors, please enter their names. 

             
 

Table 20: Types of requests about vendors to the user. The system may ask the user to find out more 
information about available vendors, and resource items offered by those vendors. 

 
             
 

The algorithm returns a prioritized list of suggested orders. 
 
VENDOR-ELICITATION()  
currentCost = GET-STARTING-COST() 
startingPenalty = GET-PENALTY-FOR-COST(startingCost) 
allServices = GET-ALL-SERVICES() 
for each service in allServices 
 items = GET-ITEMS-SATISFYING-SERVICE(service) 
 for each item in items 
  costFunctions[service] += costFunction[item] 
 unifiedCostFn[service] = Unify costFunctions[service] by picking highest cost increase 
per item 
 bestScore = -1 
 for each point in unifiedCostFn[service] 
  score = GET-PENALTY-FOR-COST(startingCost + cost[point]) 
  if (score > bestScore) bestScore = score 
 score[service] = bestScore 
sortedServices = Sort services in allServices based on each service’s score 
return sortedServices 
 
          __________________________  

Figure 60: Vendor elicitation algorithm. 
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 The vendor information elicitation algorithm starts out by enumerating all of the 
services and the corresponding resource functions the system knows about. It ranks the 
services based on the potential increase in penalty due to costs as more items are ordered. 
We show the vendor elicitation algorithm in Figure 60. 
  

5.5. Experiments 
 

We evaluate the vendor elicitor based on the information about vendors and the relevant 
vendor orders placed for the conference setting used in Section 3.1. We compare the 
results to just selecting questions to answer at random. 

There are 13 vendors and 146 items each vendor might offer. We allow the 
system to have the price of one randomly selected item for each service category. The 
total number of possible questions is about one thousand (1050 to be exact) including 
questions about the price for each item, whether or not a given vendor offers a given item 
and so on. We observe the change in the quality of the produced schedules after each 
question is answered and show the results in Figure 61 (a). We calculate the remaining 
loss in quality in the same way as in the previous sections and show the graph in Figure 
61 (b). We see that the vendor elicitor reaches the schedule quality of a fully certain 
world state after we answer about only 5% of the questions. For random elicitation, this 
figure is around 90%.  
 
 
 

        
(a) Comparison  of two systems   (b) Remaining loss for two systems 

 

 
Figure 61: Dependency of the schedule quality on the number of answered questions using vendor elicitor. 
Dashed lines show the random selection, whereas solid lines show the vendor elicitor. 
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6. CONCLUSIONS 

 
In this thesis, we presented a novel approach to elicitation for improving the quality of 
optimization under uncertainty. There are three main contributions we made: 
 

• Fast computation of expected impact for potential questions 
The heuristic elicitor algorithm involves considering the standard deviation in 
schedule quality due to possible answers of a question in order to determine that 
question’s priority. This provides us with a very quick way of estimating question 
importances in a more reliable way than simple heuristics. 
 

• Use of the optimizer as a part of B* search for refining the order of questions 
The search elicitor algorithm involves using a very tight integration with the 
optimizer in deciding on the order of questions. Instead of looking at just the standard 
deviation, the search elicitor actually uses quick runs of the optimizer as a way to 
evaluate nodes in the search space to get a more realistic estimate of the impact of 
answering a given question. 
 

• Unifying different elicitation strategies 
We unify the heuristic, rule-based and search elicitors producing a system which aims 
to do better than each of the individual elicitation strategies. The heuristic and rule-
based elicitor outputs are refined by the search elicitor producing a more effective list 
of questions. 

 
 All of these contributions are applicable not just in the domains that we have 
applied them to but to any resource allocation problem with uncertainty. Even though 
primarily our work has been implemented within the RADAR architecture, the elicitation 
approach makes no domain specific assumptions with only the exception of the rule 
based elicitor which we do not claim as a contribution by itself.  
 We also evaluated each of the implemented elicitation systems using different 
problem sizes in the academic conference planning domain and in the vendor orders 
domain. We found that the full system helps optimizer produce a schedule of equivalent 
quality to a fully certain world state when less than 18% of possible questions are 
answered. In the vendor orders domain this figure was around 5%. 
 

6.1. Limitations 

Our approach seems to do much better as the number of possible questions and the 
difference in quality between the schedules produced from the initial uncertain world 
state and the final fully certain world state increases. Accordingly, one limitation of the 
approach is that if the number of possible questions is small, a heuristic approach much 
like the Rule-based elicitor or using simple standard deviation like the Heuristic Elicitor 
can achieve results as good as the unified system. 
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 Another limitation of the approach is that the costs cannot be learnt automatically. 
That is, it is not possible for the system to observe how long a certain question or a class 
of questions (for example, questions about room size) generally take to answer and adjust 
the costs of such questions accordingly. 
 

6.2. Future Work 

We plan to design and implement a number of extensions to the approach that will 
complement the existing modules. We present them here in the order we would like to 
work on them. 
 The first extension we would like to work on is modeling variable cost in the 
system. By looking at the previously posed questions and time taken to answer them, we 
can have our system dynamically adjust the cost of asking questions. This would mean 
more accurate question weights and would help improve the prioritization of questions.  
 Another extension which would be very useful in a practical scenario is 
considering the possibility of partial uncertainty reduction instead of the complete 
elimination of uncertainty. A user may be able to answer a question giving a tighter range 
of values than before and this may still help us in producing a better schedule. Ranking 
such questions higher than the ones which need complete or almost complete certainty 
may improve the effectiveness of the elicitation system. 
 Even though we have made the assumption that the uncertain variables we ask 
questions about are completely independent, in some domains this may not be true. One 
possible future work direction is exploring domains where this assumption does not hold 
and seeing how this impacts the effectiveness of our algorithm. We believe that this may 
lead to certain tweaks to the algorithm which would make it more resistant to problems 
due to the violation of this assumption. 
 Another extension involves learning from past elicitation results. Given the 
ranking of different kinds of uncertainty and various properties of the world state we may 
be able to derive some “common sense” rules. The system can then use these rules to 
generate certain questions automatically without having to go through the other 
elicitation modules. For example, it may turn out to be the case that whenever there is an 
Auditorium with an uncertain number of microphones with the possibility of no 
microphones existing in the room we always generate a question about the microphones 
in that auditorium. 
 As a final extension, we want to improve our approach by considering how 
answering one question can make answering another one easier or harder and how in 
some cases grouping questions together can make sense. For example, if we are already 
asking the user to measure the size of a room, then asking them to count the number of 
projectors in the room at the same time would make sense. However, this would also 
mean the projector question could be taking the slot of another question which may 
potentially be more important. 
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