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Abstract
Kernel methods are versatile in machine learning and statistics. For instance, Kernel two-

sample test induces Maximum Mean Discrepancy (MMD) to compare two distributions and
serves as a distance metric for learning implicit generative models (IGMs). Kernel goodness-
of-fit test, as another example, induces Kernel Stein Discrepancy (KSD) to measure model-
data discrepancy and connects to a variational inference procedure for explicit generative
models (EGMs). Other extensions include time series modeling, graph-based learning, and
more. Despite their ubiquity, kernel methods often suffer from two fundamental limitations:
the difficulty in kernel selection for complex downstream tasks and the tractability of large-
scale problems. This thesis addresses both challenges in several complementary aspects.

In part I, we tackle the issue of kernel selection in learning implicit generative models
(IGMs) with kernel MMD. Conventional methods using a fixed kernel MMD have lim-
ited success on high-dimensional complex distributions. We propose to optimize MMD
with neural-parametrized kernels, which is more expressive and improves the state-of-the-
art results on high-dimensional distributions (Chapter 2). We also formulate kernel selection
problems as learning kernel spectral distributions, and enrich the spectral distributions by
learning IGMs to draw samples from it (Chapter 3).

In part II, we aim at learning suitable kernels for Stein variational inference descent
(SVGD) in explicit generative modeling (EGMs). Although SVGD with fixed kernels shows
encouraging performance in low-dimensional (within hundreds) Bayesian inference tasks, its
success with high-dimensional problems such as image generation is limited. We propose the
noise-conditional kernel SVGD (NCK-SVGD) for adaptive kernel learning, which is the first
SVGD variant successfully scaled up for distributions with the dimension of several thou-
sands, and performs competitively as state-of-the-art IGMs. With a novel entropy regularizer,
NCK-SVGD enjoys flexible control between sample diversity and quality (Chapter 4).

In part III, we address the kernel tractability challenge with variants of random Fourier
features (RFF). We propose to learn non-uniformly weighted RFF, which performs as good
as the uniformly-weighted RFF while demanding less memory (Chapter 5). For the kernel
contextual bandit problem, we reduce the computational cost of the kernel UCB algorithm by
using RFF to approximate the predictive mean and confidence estimate (Chapter 6).

In part IV, We extents kernel learning for time series modeling and graph-based learning.
For change-point detection over time series, we optimize the kernel two-sample test via
auxiliary generative models, acting as surrogate samplers of unknown anomaly distributions
(Chapter 7). For graph-based transfer learning, we construct the graph Laplacian by kernel
diffusion and leverage label propagation to transfer knowledge from source to target domains
(Chapter 8).
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Chapter 1

Introduction

1.1 Motivations and Background

Kernel methods are ubiquitous in machine learning research (Scholkopf and Smola, 2001; Hofmann
et al., 2008) with a broad range of topics, including Support Vector Machines for classification and
regression problems (Cortes and Vapnik, 1995; Drucker et al., 1997), non-linear component analysis for
dimensionality reduction (Schölkopf et al., 1998; Bach and Jordan, 2002), Gaussian Processes for se-
quential modeling and extrapolations (Williams and Rasmussen, 2006), large-scale kernel approximation
techniques (Williams and Seeger, 2001; Rahimi and Recht, 2008), kernel learning based on structured
data such as trees and graphs (Vishwanathan et al., 2004, 2010), and more.

A newly emerging topic in kernel learning is on kernelized discrepancy analysis for generative models.
That is, for optimizing a generative model, we need to measure the discrepancy between the true-data
distribution (denoted as P) and the system-produced distribution (denoted as Q), and to develop tractable
algorithms for minimizing the discrepancy. Kernel methods provide a principled way to specify the
desirable properties of the objective functions and induce analytical forms for solving the optimization
problems (Gretton et al., 2012a; Chwialkowski et al., 2016; Liu et al., 2016).

A fundamental question we need to answer is about how to define or measure the discrepancy between
two distractions. Existing work on this aspect can be divided into two important classes of kernelized
discrepancies, as characterized below.

• Maximum Mean Discrepancy (MMD): Given two easy-to-sample distributions P and Q, MMD
is a data-to-data metric that defines the discrepancy Mk(P,Q) over the samples from both P and
Q, respectively. In other words, no explicit density modeling about P nor Q is required. MMD
has been found useful in kernelized two-sample hypothesis testing about two distributions as an
application (Gretton et al., 2012a).

• Kernel Stein Discrepancy (KSD): Given an easy-to-sample distribution P and an explicit density
model Q, KSD is a data-to-model metric that defines the discrepancy Sk(P,Q) via the samples from
P and the gradients of the log-density of Q. In other words, KSD avoids the sampling process (often
expensive) from an explicit density model. KSD has been found useful for kernelized goodness-of-
fit test as an application (Chwialkowski et al., 2016; Liu et al., 2016).
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In comparison, the main difference between MMD and KSD is that the former only requires samples
from the model distribution Q instead of explicit density information while the latter requires explicit
density modeling of distribution Q without the need for sampling. The complementary perspectives of
MMD and KSD lead to different usages of them in two categories of generative models (Diggle and
Gratton, 1984), as introduced below.

• Implicit Generative Models (IGMs): IGMs model the sampling process that draw novel samples
from underlying data distributions. The most well-known example is Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014), and recent variants are capable to generate high fidelity
samples from high-dimensional complex real-world datasets (Brock et al., 2019; Karras et al.,
2019). Notably, IGMs is implicit as it does not define explicit densities of model distributions.

• Explicit Generative Models (EGMs): EGMs model explicit densities of underlying data distribu-
tions. EGMs can be either normalized or un-normalized, where the former often has limited function
classes such as normalization flow (Dinh et al., 2016), and the later often has powerful expressive
power such as deep energy models (Du and Mordatch, 2019). While un-normalized EGMs learn
robust features for many downstream tasks (Grathwohl et al., 2020), high-dimensional inference of
un-normalized EGMs is expensive when using MCMC sampling (Welling and Teh, 2011).

As IGMs are sampling-based methods, MMD is a natural choice of metric for evaluating the discrep-
ancy between P and Q by comparing the generated samples from Q against real samples from P. On the
other hand, as EGMs are based on explicit density modeling of Q, KSD is a natural choice of metric for
evaluating the discrepancy, eluding the expensive MCMC sampling from un-normalized density models
when the dimensionality is high.

KSD also connects to a kernelized variational inference algorithm, namely Stein Variational Gradient
Descent (SVGD) (Liu and Wang, 2016). SVGD iteratively transforms samples to approximate the target
EGMs, with gradient updates that optimally decrease the KL divergence, and the gradient flow of KL
amounts to the KSD (Liu, 2017). SVGD has shown encouraging results in several low-dimensional
Bayesian inference tasks (Feng et al., 2017; Gong et al., 2019), but how to make it successful in high-
dimensional spaces is an open challenge.

1.2 Challenges

Although kernelized discrepancies offer principled perspectives for learning of IGMs and sampling of
EGMs, the performance of kernel-based algorithms in downstream tasks are often hinged on the choice
of kernels (e.g., which kernel families to use and what kernel hyper-parameters to set). This issue is
commonly known as the kernel selection problem (a.k.a., kernel learning or kernel optimization). Kernel
selection for traditional supervised learning settings (e.g., classification with SVMs and regression with
Gaussian Processes) has been studied (Rakotomamonjy et al., 2008; Gönen and Alpaydın, 2011; Wilson
and Adams, 2013). Nonetheless, how to successfully apply kernelized discrepancies to modern deep
generative modeling problems (e.g., high-dimensional computer vision datasets) is still under explored. In
the scope of this thesis, we aim at providing solutions or insights to the following open research questions:
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1. What kernel function classes are suitable for learning high-dimensional IGMs?

2. What kernel function classes are suitable for drawing samples from high-dimensional EGMs?

3. How to optimize kernel two-sample test when samples from one distribution are extremely sparse?

4. How to construct an unified kernel when the cross-domain graphs have very sparse links?

Besides tackling the kernel learning challenge for higher dimensional applications and sample-sparsity
problems, kernel-based algorithms are often suffered from the tractability in the large number of instances
regime. For example, consider solving a linear regression of n instances {(xi, yi)}ni=1 where xi ∈ Rd and
yi ∈ R. The time complexity is O(nd2) and the memory cost is O(nd). Its kernel-based counterpart,
however, requires solving a linear system which takes O(n3) time and O(n2) memory usage. Such
complexity is far from desirable in big-data applications. To overcome the kernel scalability issue, several
kernel approximation techniques have been proposed, and random features (Rahimi and Recht, 2008,
2009) is arguably one of the most elegant and impactful approach. For shift-invariant kernels, the kernel
function can be approximated by an inner product of two random feature maps, hence greatly reducing
time/space complexity to the linear case. In this thesis, we seek to further improve random features by
asking two research questions:

1. Can we derive non-uniformly weighted random features that requires less samples (hence less
memory) while maintaining a similar kernel approximation error?

2. Can we leverage random features to speed-up the kernel contextual bandit algorithms, which solves
sequential decision making problems that heavily rely on the kernel matrix computation?

1.3 Thesis Structure and Contributions

Thesis Statement This thesis aims to advance kernel-based algorithms in two complementary aspects:
the expressiveness of kernel functions for modern complex applications and the tractability of kernel
methods in the large-scale setting (e.g., large data and high-dimensional). The contributions of this thesis
can be summarized into three folds. (1) We propose generic frameworks that optimize deep kernels
for deep generative modeling, including both IGMs and EGMs families; (2) We present non-uniform
random Fourier features for large-scale kernel approximations which enjoys less memory usage and study
applications in kernel contextual bandit problems; (3) We extend kernel learning to two novel applications
with structured information such as time series change-point detection and graph-based transfer learning.

We outline the thesis structure and contributions of the individual chapters below.
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Part I: Learning Kernels for Implicit Generative Modeling. We tackle the kernel selection challenge
when using kernel MMD to learning IGMs. Dziugaite et al. (2015); Li et al. (2015b) are the first
pioneering works that train IGMs by minimizing the kernel MMD, without any kernel selection procedure.
Nevertheless, due to the restricted power of simple Gaussian kernels and the sampling variance of empir-
ical estimated MMD, they only achieve limited success on low-dimensional datasets (several hundreds at
most) with simple structure such as MNIST, but fail on high-dimensional distributions (several thousands
and higher) with complex objects such as CIFAR-10, CelebA, and more.

• In Chapter 2, we revisit the kernel two-sample test and introduce its connection with learning IGMs.
We first point out the deficiency of using simple kernel MMD (e.g., pre-defined Gaussian kernels)
when training IGMs on high-dimensional data distributions. We then propose to enrich the function
class of MMD via deep neural-parameterized kernels, which also leads to a min-max objective
where the maximization is regarded as the kernel selection procedure, hence the name MMD GAN.
From the perspective of Integral Probability Metric, we connect MMD GAN with many GAN
frameworks such as state-of-the-art Wasserstein GAN (Arjovsky et al., 2017; Gulrajani et al., 2017).
Quantitative speaking, MMD GAN significantly outperforms its predecessor that did not conduct
kernel learning, and also consistently improves upon state-of-the-art W-GAN on conventional image
generation metric such as Inception score and FID score.

The content of Chapter 2 appears in (Li et al., 2017):
Chun-Liang Li∗, Wei-Cheng Chang∗, Yu Cheng, Yiming Yang, and Barnabás Póczos.
MMD GAN: Towards deeper understanding of moment matching network. In NeurIPS, 2017.
Code available at: https://github.com/OctoberChang/MMD-GAN

• In Chapter 3, we take a further step to optimize shift-invariant kernels via the lens of kernel spectral
distribution. Existing kernel learning approaches (Gönen and Alpaydın, 2011; Wilson and Adams,
2013) explicitly model the spectral density with simple exponential families (e.g., mixture of Gaus-
sians), often resulting in limited capacity of kernels. We model the sampling process of kernel
spectral distributions via learning IGMs, which induces an implicit kernel learning (IKL) framework
by constructing kernel evaluations using the Fourier samples draw from the IGMs. The IGMs can be
optimized by back-propagation from task-dependent kernel learning objectives. We demonstrate the
success of IKL framework on training generative models (MMD-GAN IKL) for the unsupervised
image/text generation as well as learning more discriminative kernels for classification.

The content of Chapter 3 appears in (Li et al., 2019):
Chun-Liang Li, Wei-Cheng Chang, Youssef Mroueh, Yiming Yang, and Barnabás Póczos.
Implicit kernel learning. In AISTATS, 2019.
Code available at: https://github.com/OctoberChang/kernel_rff_learn
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Part: II: Learning Kernels for Explicit Generative Modeling. We aim at learning suitable kernels for
Stein Variation Gradient Descent (SVGD) to draw samples from score-based EGMs. Induced from the
Kernel Stein Discrepancy, Stein Variational Gradient Descent (SVGD) (Liu and Wang, 2016; Liu, 2017)
is a deterministic sampling algorithm that iteratively transports a set of particles to approximate a given
distribution, based on functional gradient descent in RKHS. SVGD with simple pre-determined kernels
has shown promising results on several low-dimensional (within hundreds) Bayesian inference tasks.
However, how to make its inference effective and scalable for complex high-dimensional distributions
(several thousands and more) is an open question that have not been studied in sufficient depth.

• In Chapter 4, we first point out the challenge of high-dimension inference is to deal with multi-
modal distributions with many low-density regions, where SVGD can fail even on simple Gaussian
mixtures. To this end, we propose noise-conditional kernel SVGD (NCK-SVGD), where the kernels
are conditionally learned or selected based on the multi-scale noise-perturbed data distributions.
With an additional entropy regularization term in the objective, NCK-SVGD enjoys flexible control
between sample diversity and quality. Quantitatively speaking, NCK-SVGD achieves a new state-
of-the-art FID score of 21.95 on CIFAR-10 among the score-based EGMs, and is comparable to
recent GAN-based models in the IGM family.

The content of Chapter 4 appears in (Chang et al., 2020a):
Wei-Cheng Chang, Chun-Liang Li, Youssef Mroueh, and Yiming Yang.
Kernel stein generative modeling. In submission to NeurIPS 2020 (arXiv:2007.03074).

Part: III: Large-scale Kernel Approximation. We address the kernel scalability challenge (regarding
number of instances) by studying variants of random Fourier features (RFF) (Rahimi and Recht, 2008).
The value of shift invariant kernels can be approximated by an inner product of two Fourier feature maps,
where the Fourier bases are equally-weighted samples draw from the kernel spectral distributions. RFF has
received great attention in the past decade due to its mathematically elegant form and decent performance
on certain classification/regression benchmarks. Recently, many advanced variants (Yang et al., 2014;
Sinha and Duchi, 2016; Yu et al., 2016; Bach, 2017) have been proposed to improve RFF under different
contexts and settings.

• In Chapter 5, we propose to use unequally-weighted Fourier bases to approximate the kernel inte-
gral, backed by a novel bias-variance trade-off insight. While seemingly counter-intuitive, James-
Stein effect (Stein, 1956; Muandet et al., 2014) suggests a family of biased estimators could result
in lower risk than the Monte Carlo estimate. Thus, we consider learning the data-driven reweighing
scheme on RFF via optimizing the kernel approximation error. By lowering variance with slighted
biased estimates, data-driven RFF enjoys better kernel approximation when number of RFF is small,
which results in less memory demand for large-scale applications.

The content of Chapter 5 appears in (Chang et al., 2017a):
Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, and Barnabás Póczos.
Data-driven random Fourier features using stein effect. In IJCAI, 2017.
Code available at : https://github.com/OctoberChang/stein_rff
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• In Chapter 6 we aim to improve the scalability of kernel contextual bandit algorithms, in particular
in the regime of upper-confident-bound (UCB) framework. While the kernel UCB enjoys provably
non-regret guarantee, its computational cost is expensive because of iteratively updating the inverse
of the kernel matrix (i.e., O(KT 3) up to T -trial where K is number of arm). To this end, we
propose using RFF to approximate the posterior mean and covariance estimate of the Kernel UCB
algorithms. Empirically, we find that the number of RFF at the rate of O(polylog(t)) is sufficient to
have bounded kernel approximate error of similar regret, and enjoys order of magnitude (e.g., 10x)
faster computation time compared to the exact kernel UCB algorithm.

The content of Chapter 6 appears in (Chang et al., 2019b):
Wei-Cheng Chang, Rajat Sen, Yiming Yang, and Sanjay Shakkottai.
Fast kernel contextual bandits with random Fourier features. Technical Report, 2019.
Code available at: https://github.com/OctoberChang/rff_ucb

Part: IV: Extensions to Time-Series Modeling and Graph-based Learning. Kernel methods also
found applications with structured data information such as time series and graph. In particular, we are
interested in time series change-point detection (CPD) problems, where anomalies occur suggesting a
distribution shift from the history to current time window. We also look at graph-based transfer learning
problems where graph Laplacians can be constructed by different kernel families.

• In Chapter 7, we formulate the time series change-point detection as finding distribution shift
problems using kernel two-sample test. We first demonstrate conventional kernel selection strategies
for kernel two-sample test end up sub-optimal performance when only very sparse (or even no prior)
samples available from anomaly distributions. Thus, we propose to optimize a test power lower
bound via an auxiliary generative model mimicking the sampling process from the anomaly distri-
bution. With deep kernel parameterization, the proposed kernel learning framework can empirically
detects different types of change-points on both synthetic datasets and real-world applications.

The content of Chapter 7 appears in (Chang et al., 2019a):
Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, and Barnabás Póczos.
Kernel change-point detection with auxiliary deep generative models. In ICLR, 2019.
Code available at: https://github.com/OctoberChang/klcpd_code

• In Chapter 8, we focus on the setting of transductive transfer learning where source domains and
target domains have heterogeneous feature space (e.g., English v.s. other languages). One key
challenge of graph-based label propagation methods emerges: how to compute kernel value between
data from different domains if they are not in the same feature space? We propose diffusion kernel
completion to construct an unified graph Laplacian across domains and leverage semi-supervised
label propagation to transfer knowledge from the source to the target domain.

The content of Chapter 8 appears in (Chang et al., 2017b):
Wei-Cheng Chang∗, Yuexin Wu∗, Hanxiao Liu, and Yiming Yang.
Cross-domain kernel induction for transfer learning. In AAAI, 2017.
Code available at: https://github.com/OctoberChang/KerTL
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Additional Contributions Apart form the kernel-based algorithms for generative models and structured
data, I have also worked on different topics during course of PhD study as listed below.

Large-scale multi-label text classification (Chang et al., 2020c, 2018; Liu et al., 2017)
Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming Yang, and Inderjit Dhillon.
Taming pretrained transformers for extreme multi-label text classification. In KDD, 2020.
Code available at: https://github.com/OctoberChang/X-Transformer

Wei-Cheng Chang, Hsiang-Fu Yu, Inderjit Dhillon, and Yiming Yang.
SeCSeq: Semantic coding for sequence-to-sequence based extreme multi-label classification.
In NeurIPS CDNNRIA Workshop, 2018.
Code available at: https://github.com/OctoberChang/SeCSeqXMC

Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang.
Deep learning for extreme multi-label text classification. In SIGIR, 2017.

Pre-training tasks for large-scale retrieval (Chang et al., 2020b)
Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar.
Pre-training tasks for embedding-based large-scale retrieval. In ICLR, 2020.

Time series modeling with deep learning (Lai et al., 2018)
Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu.
Modeling long-and short-term temporal patterns with deep neural networks. In SIGIR, 2018.
Code available at: https://github.com/laiguokun/LSTNet

Word quality estimation for machine translation (Hu et al., 2018)
Junjie Hu, Wei-Cheng Chang, Yuexin Wu, and Graham Neubig.
Contextual encoding for translation quality estimation. In WMT, 2018.
Code available at: https://github.com/JunjieHu/CEQE
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Part I

Kernel Learning for Implicit Generative
Models

9





Chapter 2

Optimizing Kernels for Generative
Moment Matching Network

2.1 Background

Modeling arbitrary density is a statistically challenging task (Wasserman, 2013). For many applications,
however, accurate density estimation is not necessary since we are only interested in sampling from
the approximated distribution. Instead of estimating the density of PX , Implicit Generative Models
(IGM) (Goodfellow et al., 2014; Mohamed and Lakshminarayanan, 2016) starts from a base distribution
PZ over Z , such as Gaussian distributions, then trains a transformation function gθ such that Qθ ≈ PX ,
where Qθ is the underlying distribution of gθ(z) and z ∼ PZ .

In the heart of learning IGMs is to define a distance D(PX ,Qθ) between the data distribution PX
and the model distribution Qθ if we can only access samples from these two distributions. We then
train transformation function (i.e., the generator) gθ by optimizing the defined distance. Generative
Adversarial Network (GAN) (Goodfellow et al., 2014) train a binary classifier fφ to estimate the distance
between PX and Qθ, which corresponds to the dual norm of Jensen-Shannon divergence. Using auxiliary
neural networks to estimate different distances for training GANs have been widely studied, such as f -
divergence (Mao et al., 2017; Nowozin et al., 2016). Integral probability metrics (IPM) (Müller, 1997)
is another class of distance for learning IGMs, including total variation (Zhao et al., 2017), Wasserstein
distance (Arjovsky et al., 2017; Gulrajani et al., 2017), Cramer distance (Bellemare et al., 2017), Fisher
IPM (Mroueh and Sercu, 2017), and more.

We focus on learning IGMs with kernel maximum mean discrepancy (MMD), which is also an IPM-
based distance (Gretton et al., 2012a). Specifically, Generative moment matching network (GMMN) (Dz-
iugaite et al., 2015; Li et al., 2015b) learns the generator gθ by minimizing the MMD distance, induced by
fixed mixture of Gaussian kernels. However, GMMN do not have promising empirical results comparable
with GAN on challenging benchmarks (Yu et al., 2015; Liu et al., 2015). In this chapter, we improve
GMMN by optimizing deep neural-parameterized kernels for more discriminative MMD distance be-
tween PX and Qθ, and draw a deeper connection between GMMN, two-sample test, kernel learning, and
adversarial training.
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2.2 Two-Sample Test and Generative Moment Matching Network

Assume we are given data {xi}ni=1, where xi ∈ X and xi ∼ PX . If we are interested in sampling
from PX , it is not necessary to estimate the density of PX . Instead, Generative Adversarial Network
(GAN) (Goodfellow et al., 2014) trains a generator gθ parameterized by θ to transform samples z ∼ PZ ,
where z ∈ Z , into gθ(z) ∼ Qθ such that Qθ ≈ PX . To measure the distance D(PX ,Qθ) between PX
and Qθ via their samples {x}ni=1 and {gθ(zj)}nj=1 during the training, Goodfellow et al. (2014) trains the
discriminator fφ parameterized by φ for help. The learning is done by playing a two-player game, where
fφ tries to distinguish xi and gθ(zj) while gθ aims to confuse fφ by generating gθ(zj) similar to xi.

On the other hand, distinguishing two distributions by finite samples is known as Two-Sample Test in
statistics. One way to conduct two-sample test is via kernel maximum mean discrepancy (MMD) (Gretton
et al., 2012a). Let k be the kernel of a reproducing kernel Hilbert space (RKHS) Hk of functions on a
set X . We assume that k measurable and bounded, supx∈X k(x, x) < ∞. Given a kernel k with regular
conditions, the square of MMD distance between two distributions P and Q is defined as

Mk(P,Q) , ‖µP − µQ‖2H = EP[k(x, x′)]− 2EP,Q[k(x, y)] + EQ[k(y, y′)], (2.1)

where µP = Ex∼P[k(x, ·))], µQ = Ey∼Q[k(y, ·))] are the kernel mean embedding for P and Q.

Theorem 1 ((Gretton et al., 2012a, Theorem 5, p727)). Given a kernel k, if k is a characteristic kernel,
then Mk(P,Q) = 0 iff P = Q.

One example of characteristic kernel is Gaussian kernel k(x, x′) = exp(‖x − x′‖2). Based on
Theorem 1, Li et al. (2015b); Dziugaite et al. (2015) propose generative moment-matching network
(GMMN), which uses Mk(P,Q) as D(P,Q) and trains gθ by

min
θ
Mk(PX ,Qθ), (2.2)

with a fixed Gaussian kernel k rather than training an additional neural-parameterized discriminator f
as GAN. While GMMN is easy to train without solving a minmax objective as GANs, the empirical
performance is not satisfactory as we show in Figure 2.1.

2.2.1 MMD with Kernel Learning

In practice, we consider finite samples from two distributions to estimate the MMD distance. Given
X = {x1, · · · , xn} ∼ P and Y = {y1, · · · , yn} ∼ Q, one estimator of Mk(P,Q) is

M̂k(X,Y ) =
1(
n
2

)∑
i 6=i′

k(xi, xi′)−
2(
n
2

)∑
i 6=j

k(xi, yj) +
1(
n
2

) ∑
j 6=j′

k(yj , yj′).

Because of the sampling variance, M̂(X,Y ) may not be zero even when P = Q. We then conduct
hypothesis test with null hypothesis H0 : P = Q. For a given allowable probability of false rejection α,
we can only reject H0, which imply P 6= Q, if M̂(X,Y ) > cα for some chose threshold cα > 0.
Otherwise, Q passes the hypothesis test and Q is indistinguishable from P under this test. Please refer
to Gretton et al. (2012a) for more details.
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Intuitively, if kernel k cannot result in high MMD distance Mk(P,Q) when P 6= Q, M̂k(P,Q) has
more chance to be smaller than cα. Then we are unlikely to reject the null hypothesis H0 with finite
samples, which implies Q is not distinguishable from P. Therefore, instead of training gθ via Eq. (2.2)
with a pre-specified kernel k as GMMN, we consider training gθ via

min
θ

max
k∈K

Mk(PX ,Qθ), (2.3)

which takes different possible characteristic kernels k ∈ K into account. On the other hand, we could also
view Eq. (2.3) as replacing the fixed kernel k in Eq. (2.2) with the adversarially learned kernel via kernel
learning arg maxk∈KMk(PX ,Qθ) to have stronger signal where PX 6= Qθ to train gθ. We refer interested
readers to Fukumizu et al. (2009) for more rigorous discussions about testing power and increasing MMD
distances.

However, it is difficult to optimize over all characteristic kernels when we solve Eq. (2.3). By Gretton
et al. (2012a,b) if f is an injective function and k is characteristic, then the compositionally-induced kernel
k̃ = k◦f , where k̃(x, x′) = k(f(x), f(x′)) is still characteristic. If we have a family of injective functions
parameterized by φ, which is denoted as fφ, we are able to change the objective to be

min
θ

max
φ

Mk◦fφ(PX ,Qθ). (2.4)

We consider the case that combining Gaussian kernels with injective functions fφ, where k̃(x, x′) =

exp(−‖fφ(x) − fφ(x)′‖2). One example function class of f is {fφ|fφ(x) = φx, φ > 0}, which is
equivalent to the kernel bandwidth tuning. A more advanced realization will be discussed in Section 2.3.
Next, we abuse the notation Mfφ(P,Q) to be MMD distance given the composition kernel of Gaussian
kernel and fφ in the following. Note that Gretton et al. (2012b) consider the linear combination of
characteristic kernels, which can also be incorporated into the discussed composition kernels. More
general kernels are studied in Wilson et al. (2016).

2.2.2 Properties of MMD with Kernel Learning

Arjovsky et al. (2017) discuss different distances between distributions adopted by existing deep learning
algorithms, and show many of them are discontinuous, such as Jensen-Shannon divergence (Goodfellow
et al., 2014) and Total variation (Zhao et al., 2017), except for Wasserstein distance. The disconti-
nuity makes the gradient descent infeasible for training. From Eq. (2.4), we train gθ via minimizing
maxφMfφ(PX ,Qθ). Next, we show maxφMfφ(PX ,Qθ) also enjoys the advantage of being a continuous
and differentiable objective in θ under mild assumptions.

Assumption 2. g : Z × Rm → X is locally Lipschitz, where Z ⊆ Rd. We will denote gθ(z) the
evaluation on (z, θ) for convenience. Given a Lipschitz fφ and a probability distribution Pz over Z , g
satisfies Assumption 2 if there are local Lipschitz constants L(θ, z) for fφ ◦ g, which is independent of φ,
such that Ez∼Pz [L(θ, z)] < +∞.

Theorem 3. The generator function gθ parameterized by θ is under Assumption 2. Let PX be a fixed
distribution overX andZ be a random variable over the spaceZ . We denote Qθ the distribution of gθ(Z),
then maxφMfφ(PX ,Qθ) is continuous everywhere and differentiable almost everywhere in θ.
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If gθ is parameterized by a feed-forward neural network, it satisfies Assumption 2 and can be trained
via gradient descent as well as propagation, since the objective is continuous and differentiable followed
by Theorem 3.

Recall that IPM defines the probability distance as

D(P,Q) = sup
f∈F

Ex∼P[f(x)]− Ey∼Q[f(y)]. (2.5)

With different function class F , we can recover several distances, such as total variation, Wasserstein
distance, and MMD distance. For MMD, the function class F is {‖f‖Hk ≤ 1, where H is RKHS
associated with kernel k. Different from many distances (e.g., Wasserstein distance), there is an analytical
representation (Gretton et al., 2012a) of MMD-based IPM, which is

Mk(P,Q) =

[
sup
f∈Hk

Ex∼P[f(x)]− Ey∼Q[f(y)]

]2

= EP[k(x, x′)]− 2EP,Q[k(x, y)] + EQ[k(y, y′)]. (2.6)

Thus, GMMN does not require an additional discriminator network fφ to estimate the distanceD(P,Q) =

Mk(P,Q). Here, we provide an interpretation of the proposed MMD with kernel learning under the IPM
framework. The MMD distance with adversarial learned kernels is

max
k∈K

Mk(P,Q) = sup
f∈Hk1∪...∪Hkn

Ex∼P[f(x)]− Ey∼Q[f(y)],

where ki ∈ K,∀i. The proposed MMD distance with kernel learning is still defined by IPM but with a
larger function class. Next, we prove maxφMfφ(PX ,Qθ) is not only a valid probability distance, but also
enjoys the weak converegence under Assumption 2.
Theorem 4. (weak∗ topology) Let {Pn} be a sequence of distributions. Considering n → ∞, under

mild Assumption 2, maxφMfφ(PX ,Pn) → 0 ⇐⇒ Pn
D−→ PX , where D−→ means converging in distribu-

tion (Wasserman, 2013).
Theorem 4 shows that maxφMfφ(PX ,Pn) is a sensible cost function to the distance between PX and

Pn. The distance is decreasing when Pn is getting closer to PX , which benefits the supervision of the
improvement during the training. All proofs are omitted to Section 2.6. Next, we introduce a practical
realization of training gθ by optimizing minθ maxφMfφ(PX ,Qθ).

2.3 MMD GAN

To approximate Eeq. (2.4), we use neural networks to parameterized gθ and fφ with expressive power.
For gθ, the assumption is locally Lipschitz, where commonly used feed-forward neural networks satisfy
this constraint. Also, gradient 5θ (maxφ fφ ◦ gθ) has to be bounded, which can be done by weight
clipping φ (Arjovsky et al., 2017) or gradient penalty (Gulrajani et al., 2017). The non-trivial part is fφ has
to be injective. For an injective function f , there exists an function f−1 such that f−1(f(x)) = x,∀x ∈ X
and f−1(f(g(z))) = g(z), ∀z ∈ Z1, which can be approximated by an autoencoder. In the following, we

1Note that injective is not necessary invertible.
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denote φ = {φe, φd} to be the parameter of discriminator networks, which consists of an encoder fφe , and
train the corresponding decoder fφd ≈ f−1 to regularize f . The objective (2.4) is relaxed to be

min
θ

max
φ

Mfφe
(P(X ),P(gθ(Z)))− λEy∈X∪g(Z)‖y − fφd(fφe(y))‖2. (2.7)

Note that Bińkowski et al. (2018) extend the analysis of Theorem 3 to get rid of the injective constraint.
Our empirical study suggests autoencoder objective is not necessary to the success of MMD GAN training
as we will show in Section 2.4.5, which is consistent with Bińkowski et al. (2018).

The proposed algorithm is similar to GAN (Goodfellow et al., 2014), which aims to optimize two
neural networks gθ and fφ in a minmax formulation, while the meaning of the objective is different.
In Goodfellow et al. (2014), fφe is a discriminator (binary) classifier to distinguish two distributions. In
the proposed algorithm, distinguishing two distribution is still done by two-sample test via MMD, but with
an adversarially learned kernel parametrized by fφe . gθ is then trained to pass the hypothesis test. Because
of the similarity of GAN, we call the proposed algorithm MMD GAN. We present an implementation with
the weight clipping in Algorithm 1, but one can easily extend to other Lipschitz approximations, such as
gradient penalty Gulrajani et al. (2017).

Algorithm 1: MMD GAN, our proposed algorithm.
input : α the learning rate, c the clipping parameter, B the batch size, nc the number of

iterations of discriminator per generator update.
initialize generator parameter θ and discriminator parameter φ;
while θ has not converged do

for t = 1, . . . , nc do
Sample a minibatches {xi}Bi=1 ∼ P(X ) and {zj}Bj=1 ∼ P(Z)

gφ ← ∇φMfφe
(P(X ),P(gθ(Z)))− λEy∈X∪g(Z)‖y − fφd(fφe(y))‖2

φ← φ+ α · RMSProp(φ, gφ)

φ← clip(φ,−c, c)
Sample a minibatches {xi}Bi=1 ∼ P(X ) and {zj}Bj=1 ∼ P(Z)

gθ ← ∇θMfφe
(P(X ),P(gθ(Z)))

θ ← θ − α · RMSProp(θ, gθ)

2.3.1 Feasible Set Reduction

Theorem 5. For any fφ, there exists f ′φ such that Mfφ(Pr,Qθ) = Mf ′φ
(Pr,Qθ) and Ex[fφ(x)] �

Ez[fφ′(gθ(z))].
With Theorem 5, we could reduce the feasible set of φ during the optimization by solving

min
θ

max
φ

Mfφ(Pr,Qθ)s.t. E[fφ(x)] � E[fφ(gθ(z))]

which the optimal solution is still equivalent to solving (2.3). However, it is hard to solve the constrained
optimization problem with backpropagation. We relax the constraint by ordinal regression (Herbrich et al.,
1999) to be

min
θ

max
φ

Mfφ(Pr,Qθ) + λmin
(
E[fφ(x)]− E[fφ(gθ(z))], 0

)
,
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which only penalizes the objective when the constraint is violated. In practice, we observe that reducing
the feasible set makes the training faster and stabler.

2.3.2 Encoding Perspectives and Relations to WGAN

Besides from using kernel selection to explain MMD GAN, the other way to see the proposed MMD
GAN is viewing fφe as a feature transformation function, and the kernel two-sample test is performed
on this transformed feature space (i.e., the code space of the autoencoder). The optimization is finding
a manifold with stronger signals for MMD two-sample test. From this perspective, GMMN (Li et al.,
2015b; Dziugaite et al., 2015) is the special case of MMD GAN if fφe is the identity mapping function.
In such circumstance, the kernel two-sample test is conducted in the original data space.

If we composite fφ with linear kernel instead of Gaussian kernel, and restricting the output dimension
h to be 1, we then have the objective

min
θ

max
φ
‖E[fφ(x)]− E[fφ(gθ(z))]‖2. (2.8)

Parameterizing fφ and gθ with neural networks and assuming ∃φ′ ∈ Φ such f ′φ = −fφ, ∀Φ, recovers
Wasserstein GAN (WGAN) (Arjovsky et al., 2017) 2. If we treat fφ(x) as the data transform function,
WGAN can be interpreted as first-order moment matching (linear kernel) while MMD GAN aims to match
infinite order of moments with Gaussian kernel form Taylor expansion (Li et al., 2015b). Theoretically,
Wasserstein distance has similar theoretically guarantee as Theorem 1, 3 and 4. In practice, Arora et al.
(2017) show neural networks does not have enough capacity to approximate Wasserstein distance. In
Section 7.4.1, we demonstrate matching high-order moments benefits the results. Mroueh et al. (2017) also
propose McGAN that matches second order moment from the primal-dual norm perspective. However, the
proposed algorithm requires matrix (tensor) decompositions because of exact moment matching (Zellinger
et al., 2017), which is hard to scale to higher order moment matching. On the other hand, by giving up
exact moment matching, MMD GAN can match high-order moments with kernel tricks.

Difference from Other Works with Autoencoders Energy-based GANs (Zhao et al., 2017; Zhai et al.,
2016) also utilizes the autoencoder (AE) in its discriminator from the energy model perspective, which
minimizes the reconstruction error of real samples x while maximize the reconstruction error of generated
samples gθ(z). In contrast, MMD GAN uses AE to approximate invertible functions by minimizing
the reconstruction errors of both real samples x and generated samples gθ(z). Also, Arjovsky et al.
(2017) show EBGAN approximates total variation, with the drawback of discontinuity, while MMD GAN
optimizes MMD distance. The other line of works (Kingma and Welling, 2013; Makhzani et al., 2015; Li
et al., 2015b) aims to match the AE codespace f(x), and utilize the decoder fdec(·). Kingma and Welling
(2013); Makhzani et al. (2015) match the distribution of f(x) and z via different distribution distances and
generate data (e.g. image) by fdec(z). Li et al. (2015b) use MMD to match f(x) and g(z), and generate
data via fdec(g(z)). The proposed MMD GAN matches the f(x) and f(g(z)), and generates data via g(z)

directly as GAN. Ulyanov et al. (2017) is similar to MMD GAN but it considers KL-divergence without
showing continuity and weak∗ topology guarantee.

2Theoretically, they are not equivalent but the practical neural network approximation results in the same algorithm.
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2.4 Experiments and Results

Datasets We train MMD GAN for image generation on the MNIST (LeCun et al., 1998), CIFAR-10
(Krizhevsky and Hinton, 2009), CelebA (Liu et al., 2015), and LSUN bedrooms (Yu et al., 2015) datasets,
where the size of training instances are 50K, 50K, 160K, 3M respectively.

Network Architecture and Kernel Designs In our experiments, we follow the architecture of DC-
GAN (Radford et al., 2016) to design gθ by its generator and fφ by its discriminator except for expanding
the output layer of fφ to be h dimensions. The loss function of MMD GAN is implicitly associated with
a family of characteristic kernels. Similar to the prior works (Dziugaite et al., 2015; Li et al., 2015b;
Sutherland et al., 2017), we consider a mixture of K RBF kernels k(x, x′) =

∑K
q=1 kσq(x, x

′) where kσq
is a Gaussian kernel with bandwidth parameter σq. Tuning kernel bandwidth σq optimally still remains
an open problem. In this works, we fixed K = 5 and σq to be {1, 2, 4, 8, 16} and left the fφ to learn the
kernel (feature representation) under these σq.

Hyper-parameters We use RMSProp (Tieleman and Hinton, 2012) with learning rate of 0.00005 for a
fair comparison with WGAN as suggested in Arjovsky et al. (2017). We ensure the boundedness of model
parameters of discriminator by clipping the weights point-wisely to the range [−0.01, 0.01] as required by
Assumption 2. The dimensionality h of the latent space is manually set according to the complexity of
the dataset. We thus use h = 16 for MNIST, h = 64 for CelebA, and h = 128 for CIFAR-10 and LSUN
bedrooms. The batch size is set to be B = 64 for all datasets.

2.4.1 Qualitative Analysis

Comparison with GMMN We start with comparing MMD GAN with GMMN on two standard bench-
marks, MNIST and CIFAR-10. We consider two variants for GMMN. The first one is original GMMN,
which trains the generator by minimizing the MMD distance on the original data space. We call it
as GMMN-D. To compare with MMD GAN, we also pretrain an autoencoder for projecting data to a
manifold, then fix the autoencoder as a feature transformation, and train the generator by minimizing the
MMD distance in the code space. We call it as GMMN-C. The results are pictured in Figure 2.1. Both
GMMN-D and GMMN-C are able to generate meaningful digits on MNIST because of the simple data
structure. By a closer look, nonetheless, the boundary and shape of the digits in Figure 2.1a and 2.1b are
often irregular and non-smooth. In contrast, the sample digits in Figure 2.1c are more natural with smooth
outline and sharper strike. For CIFAR-10 dataset, both GMMN variants fail to generate meaningful
images, but resulting some low level visual features. We observe similar cases in other complex large-
scale datasets such as CelebA and LSUN bedrooms, thus results are omitted. On the other hand, the
proposed MMD GAN successfully outputs natural images with sharp boundary and high diversity. The
results in Figure 2.1 confirm the success of the proposed adversarial learned kernels to enrich statistical
testing power, which is the key difference between GMMN and MMD GAN.

If we increase the batch size of GMMN to 1024, the image quality is improved, as shown in Figure 2.2.
However, it is still not competitive to MMD GAN with B = 64. This demonstrates that the proposed
MMD GAN can be trained more efficiently than GMMN with smaller batch size.
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(a) GMMN-D, MNIST (b) GMMN-C, MNIST (c) MMD GAN, MNIST

(d) GMMN-D, CIFAR-10 (e) GMMN-C, CIFAR-10 (f) MMD GAN, CIFAR-10

Figure 2.1: Generated samples from GMMN-D (Dataspace), GMMN-C (Codespace) and our MMD GAN
with batch size B = 64.

(a) GMMN-D, MNIST (b) GMMN-C, MNIST (c) GMMN-D, CIFAR-10 (d) GMMN-C, CIFAR-10

Figure 2.2: Generative samples from GMMN-D and GMMN-C with training batch size B = 1024.

Comparing with GANs There are several representative extensions of GANs. We consider recent state-
of-art WGAN (Arjovsky et al., 2017) based on DCGAN structure Radford et al. (2016), because of the
connection with MMD GAN. The results are shown in Figure 2.3. For MNIST, the digits generated from
WGAN in Figure 2.3a are more unnatural with peculiar strikes. In Contrary, the digits from MMD GAN
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(a) WGAN MNIST (b) WGAN CelebA (c) WGAN LSUN

(d) MMD GAN MNIST (e) MMD GAN CelebA (f) MMD GAN LSUN

Figure 2.3: Generated samples from WGAN and MMD GAN on MNIST, CelebA, and LSUN bedroom
datasets.

in Figure 2.3d enjoy smoother contour. Furthermore, both WGAN and MMD GAN generate diversified
digits, avoiding the mode collapse problems appeared in the literature of training GANs. For CelebA,
we can see the difference of generated samples from WGAN and MMD GAN. Specifically, we observe
varied poses, expressions, genders, skin colors and light exposure in Figure 2.3b and 2.3e. By a closer
look (view on-screen with zooming in), we observe that faces from WGAN have higher chances to be
blurry and twisted while faces from MMD GAN are more spontaneous with sharp and acute outline of
faces. As for LSUN dataset, we could not distinguish salient differences between the samples generated
from MMD GAN and WGAN.

2.4.2 Quantitative Evaluation

To quantitatively measure the quality and diversity of generated samples, we compute the inception
score (Salimans et al., 2016) on CIFAR-10 images. The inception score is used for GANs to measure
samples quality and diversity on the pretrained inception model (Salimans et al., 2016). Models that
generate collapsed samples have a relatively low score. Table 2.1 lists the results for 50K samples
generated by various unsupervised generative models trained on CIFAR-10 dataset. The inception scores
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of DFM (Warde-Farley and Bengio, 2017), ALI (Dumoulin et al., 2017) and Improved-GAN (Salimans
et al., 2016) are directly derived from the corresponding references.

Although both WGAN and MMD GAN can generate sharp images as we show, our score is better
than other GAN techniques except for DFM (Warde-Farley and Bengio, 2017). This seems to confirm
empirically that higher order of moment matching between the real data and fake sample distribution
benefits generating more diversified sample images. Also note DFM appears compatible with our method
and combing training techniques in DFM is a possible avenue for future work.

Method Scores ± std.

Real data 11.95± .20

DFM (Warde-Farley and Bengio, 2017) 7.72
ALI (Dumoulin et al., 2017) 5.34

Improved GANs (Salimans et al., 2016) 4.36

MMD GAN 6.17 ± .07
WGAN 5.88 ± .07

GMMN-C 3.94 ± .04
GMMN-D 3.47 ± .03

Table 2.1: Inception scores of MMD GAN and different GAN algorithms.

2.4.3 Stability of MMD GAN

(a) MNIST (b) CelebA (c) LSUN Bedrooms

Figure 2.4: Training curves and generative samples at different stages of training. We can see a clear
correlation between lower distance and better sample quality.

We further illustrate how the MMD distance correlates well with the quality of the generated samples.
Figure 2.4 plots the evolution of the MMD GAN estimate the MMD distance during training for MNIST,
CelebA and LSUN datasets. We report the average of the M̂fφ(PX ,Pθ) with moving average to smooth
the graph to reduce the variance caused by mini-batch stochastic training. We observe during the whole
training process, samples generated from the same noise vector across iterations, remain similar in nature.
(e.g., face identity and bedroom style are alike while details and backgrounds will evolve.) This qualitative
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observation indicates valuable stability of the training process. The decreasing curve with the improving
quality of images supports the weak∗ topology shown in Theorem 4. Also, We can see from the plot that
the model converges very quickly. In Figure 2.4b, for example, it converges shortly after tens of thousands
of generator iterations on CelebA dataset.

2.4.4 Computation Issue

We conduct time complexity analysis with respect to the batch size B. The time complexity of each
iteration is O(B) for WGAN and O(KB2) for our proposed MMD GAN with a mixture of K RBF
kernels. The quadratic complexity O(B2) of MMD GAN is introduced by computing kernel matrix,
which is sometimes criticized for being inapplicable with large batch size in practice. However, we point
that there are several recent works, such as EBGAN Zhao et al. (2017), also matching pairwise relation
between samples of batch size, leading to O(B2) complexity as well.

Empirically, we find that under GPU environment, the highly parallelized matrix operation tremen-
dously alleviated the quadratic time to almost linear time with modest B. Figure 2.5 compares the
computational time per generator iterations versus different B on Titan X. When B = 64, which is
adapted for training MMD GAN in our experiments setting, the time per iteration of WGAN and MMD
GAN is 0.268 and 0.676 seconds, respectively. When B = 1024, which is used for training GMMN in its
references (Li et al., 2015b), the time per iteration becomes 4.431 and 8.565 seconds, respectively. This
result coheres our argument that the empirical computational time for MMD GAN is not quadratically
expensive compared to WGAN with powerful GPU parallel computation.

Figure 2.5: Computation time per one generator update step with different batch sizes.

2.4.5 Better Lipschitz Approximation and Necessity of Auto-Encoder

We used weight-clipping for Lipschitz constraint in Assumption 2. Another approach for obtaining a
discriminator with the similar constraints that approximates a Wasserstein distance is Gulrajani et al.
(2017), where the gradient of the discriminator is constrained to be 1 between the generated and data
points. Inspired by Gulrajani et al. (2017), an alternative approach is to apply the gradient constraint as
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a regularizer to the witness function for a different IPM, such as the MMD. This idea was first proposed
in Bellemare et al. (2017) for the Energy Distance (in parallel to our submission), which was shown
in Gretton (2017) to correspond to a gradient penalty on the witness function for any RKHS-based MMD.
Here we undertake a preliminary investigation of this approach, where we also drop the requirement
in Algorithm 1 for fφ to be injective, which we observe that it is not necessary in practice. We show
some preliminary results of training MMD GAN with gradient penalty and without the auto-encoder in
Figure 2.6. The preliminary study indicates that MMD GAN can generate satisfactory results with other
Lipschitz constraint approximation. One potential future work is conducting more thorough empirical
comparison studies between different approximations.

(a) Cifar10, Giter = 300K (b) CelebA, Giter = 300K

Figure 2.6: MMD GAN results using gradient penalty Gulrajani et al. (2017) and without auto-encoder
reconstruction loss during training.

2.5 Summary

We introduce a new deep generative model trained via MMD with adversarially learned kernels. We
further study its theoretical properties and propose a practical realization MMD GAN, which can be
trained with much smaller batch size than GMMN and has competitive performances with state-of-the-art
GANs. We can view MMD GAN as the first practical step forward connecting moment matching network
and GAN. One important direction is applying developed tools in moment matching (Muandet et al., 2017)
on general GAN works based the connections shown by MMD GAN. Also, in Section 2.3.2, we connect
WGAN and MMD GAN by first-order and infinite-order moment matching. Finally, we observe that it is
not mandatory in practice as we show in Section 2.4.5.
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2.6 Appendix

2.6.1 Proof of Theorem 3

The proof is following the Lemma from Borisenko and Minchenko (1992), where we state below.
Lemma 6 ( Borisenko and Minchenko (1992)). Define τ(x) = max{f(x, u) | u ∈ U}. If f is locally
Lipschitz in x, U is compact and ∇f(x, u∗(x)) exists, where u∗(x) = arg maxu f(x, u), then τ(x) is
differentiable almost everywhere.

For simplicity, we define kφ , k ◦ fφ. We aim to show

max
φ

Mφ(PX ,Qθ) = Ex,x′ [kφ(x, x′)]− 2Ex,z[kφ(x, gθ(z))] + Ez,z′ [kφ(gθ(z), gθ(z
′))] (2.9)

is differentiable with respect to φ almost everywhere by using the auxiliary Lemma 6. We first show that
Ez,z′ [kφ(gθ(z), gθ(z

′))] in Eq. 2.9 is locally Lipschitz in θ. By definition, kφ(x, x′) = k(fφ(x)− fφ(x′)),
thus,

Ez,z′
[
kφ

(
gθ(z), gθ(z

′)
)
− kφ

(
gθ′(z), gθ′(z

′)
)]

= Ez,z′
[
k
(
fφ
(
gθ(z)

)
− fφ

(
gθ(z

′)
))]
− Ez,z′

[
k
(
fφ
(
gθ′(z)

)
− fφ

(
gθ′(z

′)
))]

≤ Ez,z′
[
Lk

∥∥∥fφ(gθ(z))− fφ(gθ(z′))− fφ(gθ′(z))+ fφ
(
gθ′(z

′)
)∥∥∥]

≤ Ez,z′
[
LkL(θ, z)‖θ − θ′‖+ LkL(θ, z′)‖θ − θ′‖

]
= 2LkEz[L(θ, z)]‖θ − θ′‖. (2.10)

The first inequality is because Gaussian kernel k is Lipschitz (locally Lipschitz) in (x, x′), which a upper
bound Lk for Lipschitz constants. By Assumption 2, Ez[L(θ, z)] <∞, we prove Ez,z′ [kφ(gθ(z), gθ(z

′))]

is locally Lipschitz. The similar argument is applicable to other terms in Eq. 2.9. Therefore, Eq. 2.9 is
locally Lipschitz in θ.

Last, with the compactness assumption in Φ, and the differentiable assumption in Mφ(PX ,Qθ), apply
Lemma 6 proves Theorem 3.

2.6.2 Proof of Theorem 4

Proof. We first show that, if Pn
D−→ P then maxφMfφ(Pn,P)→ 0. The result is based on (Dudley, 2018,

Corollary 11.3.4). Similar proof is also shown in Arbel et al. (2018). Following Dudley (2018), the only
thing we need to show is proving ‖k(fφ(x), ·)− k(fφ(y), ·)‖Hk is Lipschitz. By definition, we know that
‖k(fφ(x), ·)− k(fφ(y), ·)‖Hk = 2

[
1− k(fφ(x), fφ(y))

]
. Also, since Gaussian kernel k is Lipschitz, we

have k(0)− k(x, x′) ≤ Lk‖0− (x− x′)‖. With k(0) = 1 for Gaussian kernel,

‖k(fφ(x), ·)− k(fφ(y), ·)‖Hk ≤ 2Lk‖fφ(x)− fφ(y)‖ ≤ 2LkL‖x− y‖,

where the last inequality holds since fφ is also Lipschitz function with Lipschitz constant L.
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The other direction, maxφMfφ(Pn,P) → 0 then Pn
D−→ P, is relatively simple. Without loss of

generality, we assume there exists φ such that fφ is an identity function (up to scaling), which recover

the Gaussian kernel k. Therefore, maxφMfφ(Pn,P) → 0 implies Pn
D−→ P, which completes the proof

because MMD with any Gaussian kernels is weak Gretton et al. (2012a).

2.6.3 Proof of Theorem 5

Proof. The proof assumes fφ(x) is scalar, but the vector case can be proved with the same sketch. First,
if E[fφ(x)] > E[fφ(gθ(z))], then φ = φ′. If E[fφ(x)] < E[fφ(gθ(z))], we let f = −fφ, then E[f(x)] >

E[f(gθ(z))] and flipping sign does not change the MMD distance. If we parameterized fφ by a neural
network, which has a linear output layer, φ′ can realized by flipping the sign of the weights of the last
layer.
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Chapter 3

Learning Kernel Spectral Distributions

3.1 Background

Kernel methods are among the essential foundations in machine learning and have been extensively
studied in the past decades. In supervised learning, kernel methods allow us to learn non-linear hypothesis.
They also play a crucial role in statistics. Kernel maximum mean discrepancy (MMD) (Gretton et al.,
2012a) is a powerful two-sample test, which is based on a statistic computed via kernel functions. Even
though there is a surge of deep learning in the past years, several successes have been shown by kernel
methods and deep feature extraction. Wilson et al. (2016) demonstrate state-of-the-art performance by
incorporating deep learning, kernel and Gaussian process. Also, in Chapter 2, we show MMD GAN
reaches state-of-the-art performance on generating complex image data.

In practice, however, kernel selection is always an important step. Instead of choosing by a heuristic,
several works have studied kernel learning. Multiple kernel learning (MKL) (Bach et al., 2004; Lanckriet
et al., 2004; Bach, 2009; Gönen and Alpaydın, 2011; Duvenaud et al., 2013) is one of the pioneering
frameworks to combine predefined kernels. One recent kernel learning development focus on learning
kernel spectral distributions (Fourier transform of the kernel). Wilson and Adams (2013) model spectral
distributions via Gaussian mixtures, which is an extension of linear combination of kernels (Bach et al.,
2004). Oliva et al. (2016) extend it to Bayesian non-parametric models. In addition to model spec-
tral distribution with explicit density models, many works optimize the sampled random features or its
weights (Băzăvan et al., 2012; Yang et al., 2015; Sinha and Duchi, 2016; Chang et al., 2017a; Bullins et al.,
2018). The other orthogonal approach to is learning feature maps for standard kernels (e.g., Gaussian).
Feature maps learned by deep learning lead to state-of-the-art performance on different tasks (Hinton and
Salakhutdinov, 2008; Wilson et al., 2016; Li et al., 2017).

In this chapter, we propose to model kernel spectral distributions with implicit generative models,
which we call Implicit Kernel Learning (IKL). The IGMs are learned to generate samples from the desir-
able kernel spectral distributions according to different downstream tasks. We start from the generic IKL
framework and propose an easily-implemented neural network parameterization which satisfies Bochner’s
theorem (Rudin, 1962). We then demonstrate two applications of the proposed IKL. Firstly, we explore
MMD GAN (Li et al., 2017) with IKL on learning to generate images and text. Secondly, we consider a
standard two-staged supervised learning task with Random Kitchen Sinks (Sinha and Duchi, 2016). The
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conditions required for training IKL and its theoretical guarantees in both tasks are also studied. In both
tasks, we show that IKL leads to competitive or better performance than heuristic kernel selections and
existing approaches modeling kernel spectral densities. It demonstrates the potentials of learning more
powerful kernels via deep generative models.

3.2 IKL Framework

Given data x ∈ Rd, kernel methods compute the inner product of the feature transformation ϕ(x) in a
high-dimensional Hilbert space H via a kernel function k : X × X → R, which is defined as k(x, x′) =

〈ϕ(x), ϕ(x′)〉H , where ϕ(x) is usually high or even infinitely dimensional. If k is shift invariant (i.e.
k(x, y) = k(x− y)), we can represent k as an expectation with respect to a spectral distribution Pk(ω).

Bochner’s theorem (Rudin, 1962) A continuous, real valued, symmetric and shift-invariant function k
on Rd is a positive definite kernel if and only if there is a positive finite measure Pk(ω) such that

k(x− x′) =

∫
Rd
eiω
>(x−x′)dPk(ω) = Eω∼Pk

[
eiω
>(x−x′)

]
.

IKL objective We restrict ourselves to learning shift invariant kernels. According to that, learning
kernels is equivalent to learning a spectral distribution by optimizing

arg max
k∈K

∑
i=1

Ex∼Pi,x′∼Qi
[
Fi(x, x

′)k(x, x′)
]

=

arg max
k∈K

∑
i=1

Ex∼Pi,x′∼Qi
[
Fi(x, x

′)Eω∼Pk
[
eiω
>(x−x′)

]]
,

(3.1)

where F is a task-specific objective function and K is a set of kernels. Eq. (3.1) covers many popular
objectives, such as kernel alignment (Gönen and Alpaydın, 2011) and MMD distance (Gretton et al.,
2012a). Existing works (Wilson and Adams, 2013; Oliva et al., 2016) learn the spectral density Pk(ω)

with explicit forms via parametric or non-parametric models. When we learn kernels via Eq. (3.1),
accessing the density of Pk(ω) is not necessary as long as we can estimate kernel evaluations k(x−x′) =

Eω[eiω
>(x−x′)] via sampling from Pk(ω) (Rahimi and Recht, 2008). Alternatively, implicit probabilistic

(generative) models define a stochastic procedure that can generate (sample) data from Pk(ω) without
modeling Pk(ω). Recently, the neural implicit generative models (MacKay, 1995) regained attentions
with promising results (Goodfellow et al., 2014) and simple sampling procedures. We first sample ν from
a base distribution P(ν) (e.g., Gaussian distribution), then use a deterministic function hψ parametrized
by ψ, to transform ν into ω = hψ(ν), where ω follows the complex target distribution Pk(ω). Inspired by
the success of deep implicit generative models (Goodfellow et al., 2014), we propose an Implicit Kernel
Learning (IKL) method by modeling Pk(ω) via an implicit generative model hψ(ν), where ν ∼ P(ν),
which results in

kψ(x, x′) = Eν
[
eihψ(ν)>(x−x′)

]
, (3.2)

and reducing Eq. (3.1) to solve

arg max
ψ

∑
i=1

Ex∼Pi,x′∼Qi
[
Fi(x, x

′)Eν
(
eihψ(ν)>(x−x′)

)]
. (3.3)
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The gradient of Eq. (3.3) can be represented as∑
i=1

Ex∼Pi,x′∼QiEν
[
∇ψFi(x, x′)eihψ(ν)>(x−x′)

]
.

Thus, Eq. (3.3) can be optimized via sampling x, x′ from data and ν from the base distribution to estimate
gradient as shown above (SGD) in every iteration. Next, we discuss the parametrization of hψ to satisfy
Bochner’s Theorem, and describe how to evaluate IKL kernel in practice.

Symmetric Pk(ω) To result in real valued kernels, the spectral density has to be symmetric, where
Pk(ω) = Pk(−ω). Thus, we parametrize hψ(ν) = sign(ν) ◦ h̃ψ(abs(ν)), where ◦ is the Hadamard
product and h̃ψ can be any unconstrained function if the base distribution P(ν) is symmetric (i.e., P(ν) =

P(−ν)), such as standard normal distributions.

Kernel Evaluation Although there is usually no closed form for the kernel evaluation kψ(x, x′) in
Eq. (3.2) with fairly complicated hψ, we can evaluate (approximate) kψ(x, x′) via sampling finite number
of random Fourier features k̂ψ(x, x′) = ϕ̂hψ(x)>ϕ̂hψ(x′), where

ϕ̂hψ(x)> = [ϕ(x;hψ(ν1)), . . . , ϕ(x;hψ(νm))] ∈ Rm

and ϕ(x;ω) is the evaluation on ω of the Fourier transformation ϕ(x) (Rahimi and Recht, 2008).
Next, we demonstrate two example applications covered by Eq. (3.3), where we can apply IKL, in-

cluding maximum mean discrepancy (MMD) for generative modeling and kernel alignment for supervised
learning.

3.3 IKL Application to MMD-GAN

Although the composition kernel with a learned feature embedding fφ is powerful in MMD GAN (e.g.,
Chapter 2), choosing a good base kernel k is still crucial in practice (Bińkowski et al., 2018). Different
base kernels for MMD GAN, such as rational quadratic kernel (Bińkowski et al., 2018) and distance
kernel (Bellemare et al., 2017), have been studied. Instead of choosing it by hands, we propose to learn
the base kernel by IKL, which extend the compositional kernels to be kψ,φ = kψ ◦ fφ with the form

kψ,φ(x, x′) = Eν
[
eihψ(ν)>(fφ(x)−fφ(x′))

]
. (3.4)

We then extend the MMD GAN objective to be

min
θ

max
ψ,φ

Mψ,φ(PX ,Qθ), (3.5)

where Mψ,φ is the MMD distance with the IKL kernel objective (3.4). Clearly, for a given φ, the
maximization over ψ in Eq. (3.5) can be represented as (3.1) by letting F1(x, x′) = 1, F2(x, y) = −2

and F3(y, y′) = 1. In wwidehat follows, we will use for convenience kψ,φ, kψ and kφ to denote kernels
defined in (3.4), (3.2), and the compositional kernel k(fφ(x), fφ(x′)), respectively.
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3.3.1 Property of MMD GAN with IKL

As proven by Arjovsky and Bottou (2017), some probability distances adopted by existing works (e.g.
Goodfellow et al. (2014)) are not weak (i.e. Pn

D−→ P then D(Pn‖P) → 0), which cannot provide better
signal to train gθ. Also, they usually suffer from discontinuity, hence it cannot be trained via gradient
descent at certain points. We extend Theorem 3 and Theorem 4 to prove that maxψ,φMψ,φ(PX ,Qθ)

is a continuous and differentiable objective in θ and weak under mild assumptions based the following
Assumption.
Assumption 7. gθ(z) is locally Lipschitz and differentiable in θ; fφ(x) is Lipschitz in x and φ ∈ Φ is
compact. fφ ◦ gθ(z) is differentiable in θ and there are local Lipschitz constants, which is independent of
φ, such that Ez∼Pz [L(θ, z)] < +∞. The above assumptions are adopted by Arjovsky et al. (2017). Lastly,
assume given any ψ ∈ Ψ, where Ψ is compact, kψ(x, x′) = Eν

[
eihψ(ν)>(x−x′)

]
and |kψ(x, x′)| < ∞ is

differentiable and Lipschitz in (x, x′) which has an upper bound Lk for Lipschitz constant of (x, x′) given
different ψ.

Theorem 8. Assume function gθ and kernel kψ,φ satisfy Assumption 7, maxψ,φMψ,φ is weak, that is,

maxψ,φMψ,φ(PX ,Pn)→ 0⇐⇒ Pn
D−→ PX . Also, maxψ,φMψ,φ(PX ,Qθ) is continuous everywhere and

differentiable almost everywhere in θ.

Lemma 9. Assume X is bounded. Let x, x′ ∈ X , kψ(x, x′) = Eν
[
eihψ(ν)>(x−x′)

]
is Lipschitz in (x, x′)

if Eν
[
‖hψ(ν)‖2

]
<∞.

Note that Eν [‖hψ(ν)‖2] is the variance since Eν [hψ(ν)] = 0. We penalize λh(Eν
[
‖hψ(ν)‖2

]
− u)2

as an approximation of Lemma 9 in practice to ensure that assumptions in Theorem 8 are satisfied. The
algorithm with IKL and gradient penalty (Bińkowski et al., 2018) is shown in Algorithm 2.

Algorithm 2: MMD GAN with IKL
Input: η the learning rate, B the batch size, nc number of f, h updates per g update, m the
number of basis, λGP the coefficient of gradient penalty, λh the coefficient of variance constraint.
Initial: parameter θ for g, φ for f , ψ for h
Define: L(ψ, φ) = Mψ,φ(PX ,Qθ)− λGP (‖∇x̂fφ(x̂)‖2 − 1)2 − λh(Eν [‖hψ(ν)‖2]− u)2

while θ has not converged do
for t = 1, . . . , nc do

Sample {xi}Bi=1 ∼ P(X ), {zj}Bj=1 ∼ P(Z), {νk}mk=1 ∼ P(ν)

(ψ, φ)← φ+ ηAdam
(

(ψ, φ),∇ψ,φL(ψ, φ)
)

Sample {xi}Bi=1 ∼ P(X ), {zj}Bj=1 ∼ P(Z), {νk}mk=1 ∼ P(ν)

θ ← θ − ηAdam
(
θ,∇θMψ,φ(PX ,Qθ)

)

3.3.2 Experiments and Results

We consider image and text generation tasks for quantitative evaluation. For image generation, we
evaluate the inception score (Salimans et al., 2016) and FID score (Heusel et al., 2017) on CIFAR-
10 (Krizhevsky and Hinton, 2009). We use DCGAN (Radford et al., 2016) and expands the output
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of fφ to be 16-dimensional as Bińkowski et al. (2018). For text generation, we consider a length-32
character-level generation task on Google Billion Words dataset. The evaluation is based on Jensen-
Shannon divergence on empirical 4-gram probabilities (JS-4) of the generated sequence and the validation
data as used by Gulrajani et al. (2017); Heusel et al. (2017); Mroueh et al. (2018). The model architecture
follows Gulrajani et al. (2017) in using ResNet with 1D convolutions. We train every algorithm 10, 000

iterations for comparison.
For MMD GAN with fixed base kernels, we consider the mixture of Gaussian kernels k(x, x′) =∑
q exp(−‖x−x

′‖2
2σ2
q

) (Li et al., 2017) and the mixture of RQ kernels k(x, x′) =
∑

q(1 + ‖x−x′‖2
2αq

)−αq . We
tuned hyperparameters σq and αq for each kernel as reported in Appendix 3.6.4.

Lastly, for learning base kernels, we compare IKL with SM kernel (Wilson and Adams, 2013) fφ,
which learns mixture of Gaussians to model kernel spectral density. It can also be treated as the explicit
generative model counter part of the proposed IKL.

In both tasks, P(ν), the base distribution of IKL, is a standard normal distribution and hψ is a 3-layer
MLP with 32 hidden units for each layer. Similar to the aforementioned mixture kernels, we consider the
mixture of IKL kernel with the variance constraints E[‖hψ(ν)‖2] = 1/σq, where σq is the bandwidths for
the mixture of Gaussian kernels. Note that if hψ is an identity map, we recover the mixture of Gaussian
kernels. We fix λh to be 10 and resample m = 1024 random features for IKL in every iteration. For other
settings, we follow Bińkowski et al. (2018) and the hyperparameters can be found in Appendix 3.6.4.

Quantitative and Qualitative Results We compare MMD GAN with the proposed IKL and different
fixed kernels. We repeat the experiments 10 times and report the average result with standard error in
Table 3.1. Note that for inception score the larger the better; while JS-4 the smaller the better. We also
report WGAN-GP results as a reference. Sampled images on larger datasets are shown in Figure 3.1.

Method Inception Scores (↑) FID Scores (↓) JS-4 (↓)

Gaussian 6.726± 0.021 32.50± 0.07 0.381± 0.003

RQ 6.785± 0.031 32.20± 0.09 0.463± 0.005

SM 6.746± 0.031 32.43± 0.08 0.378± 0.003

IKL 6.876± 0.018 31.98± 0.05 0.372± 0.002

WGAN-GP 6.539± 0.034 36.413± 0.05 0.379± 0.002

Table 3.1: Inception scores, FID scores, and JS-4 divergece results.

Bińkowski et al. (2018) show RQ kernels outperform Gaussian and energy distance kernels on image
generation. Our empirical results agree with such finding: RQ kernels achieve 6.785 inception score while
for Gaussian kernel it is 6.726, as shown in the left column of Table 3.1. In text generation, nonetheless,
RQ kernels only achieve 0.463 JS-4 score1 and are not on par with 0.381 acquired by Gaussian kernels,
even though it is still slightly worse than WGAN-GP. These results imply kernel selection is task-specific.
On the other hand, the proposed IKL learns kernels in a data-driven way, which results in the best

1For RQ kernels, we searched 10 possible hyperparameter settings and reported the best one in Appendix, to ensure the
unsatisfactory performance is not caused by the improper parameters.
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Figure 3.1: Samples generated by MMDGAN-IKL on CIFAR-10, CELEBA and LSUN dataset.

performance in both tasks. In CIFAR-10, although Gaussian kernel is worse than RQ, IKL is still able
to transforms P(ν), which is Gaussian, into a powerful kernel, and outperforms RQ on inception scores
(6.876 v.s. 6.785). For text generation, from Table 3.1 and Figure 3.2, we observe that IKL can further
boost Gaussian into better kernels with substantial improvement. Also, we note that the difference between
IKL and pre-defined kernels in Table 3.1 is significant based on the t-test at 95% confidence level.

0 2000 4000 6000 8000 10000
g  iterations

0.38
0.40
0.42
0.44
0.46
0.48
0.50

JS
-4

Gaussian
RQ
IKL

Figure 3.2: Convergence of MMD GANs with different kernels on text generation.

The SM kernel (Wilson and Adams, 2013), which learns the spectral density via mixture of Gaussians,
does not significantly outperforms Gaussian kernel as shown in Table 3.1, since Li et al. (2017) already
uses equal-weighted mixture of Gaussian formulation. It suggests that proposed IKL can learn more
complicated and effective spectral distributions than simple mixture models.

Study of Variance Constraints In Lemma 9, we prove bounding variance E[‖hψ(ν)‖2] guarantees kψ
to be Lipschitz as required in Theorem 8. We investigate the importance of this constraint. In Figure 3.3,
we show the training objective (MMD), E[‖hψ(ν)‖2] and the JS-4 divergence for training MMD GAN
(IKL) without variance constraint, i.e. λh = 0. We could observe the variance keeps going up without
constraints, which leads exploded MMD values. Also, when the exploration is getting severe, the JS-4
divergence starts increasing, which implies MMD cannot provide meaningful signal to gθ. The study
justifies the validity of Theorem 8 and Lemma 9.
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Figure 3.3: Learning MMD GAN (IKL) without the variance constraint on Google Billion Words datasets
for text generation.

Figure 3.4: Computational time per one generator step with different batch sizes.

In Section 3.3, we propose to constrain variance via λh(Eν
[
‖hψ(ν)‖2

]
− u)2. There are other

alternatives, such as constraining L2 penalty or using Lagrange. In practice, we do not observe significant
difference. Although we show the necessity of the variance constraint in language generation in Figure 3.3,
we remark that the proposed constraint is a sufficient condition. For CIFAR-10, without the constraint, we
observe that the variance is still bouncing between 1 and 2 without explosion as Figure 3.3. Therefore, the
training leads to a satisfactory result with 6.731± 0.034 inception score, but it is slightly worse than IKL
in Table 3.1. The necessary or weaker sufficient conditions are worth further studying as a future work.

Model Capacity and Computational Time One concern of the proposed IKL is the computational
overhead introduced by sampling random features as well as using more parameters to model the hψ. For
fφ, the number of parameters for DCGAN is around 0.8 million for size 32 × 32 images and 3 millions
for size 64 × 64 images. The ResNet architecture used in Gulrajani et al. (2017) has around 10 millions
parameters. In contrast, in all experiments, we use simple three layer MLP as hψ for IKL, where the input
and output dimensions are 16, and hidden layer size is 32. The total parameters are just around 2,000.
Compared with fφ, the additional number of parameters used for hψ is almost negligible.
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The other concern of IKL is sampling random features for each examples. See Figure 3.4 for results,
where we usem = 1024 random features for each iteration. We measure the time per iteration of updating
critic iterations (f for WGAN-GP and MMD GAN with Gaussian kernel; f and h for IKL) with different
batch sizes under Titan X. The difference between WGAN-GP, MMD GAN and IKL are not significant.
The reason is computing MMD and random feature is highly parallelizable, and other computation, such
as evaluating fφ and its gradient penalty, dominates the cost because fφ has much more parameters as
aforementioned. Therefore, we believe the proposed IKL is still cost effective in practice.

IKL with and without Neural Networks on GAN training Instead of learning a transform function
hψ for the spectral distribution as we proposed (namely, IKL-NN), the other realization of IKL is to keep
a pool of finite number learned random features Ω = {ω̂i}mi=1, and approximate the kernel evaluation by
k̂Ω(x, x′) = ϕ̂Ω(x)>ϕ̂Ω(x′), where ϕ̂Ω(x)> = [ϕ(x; ω̂1), . . . , ϕ(x; ω̂m)]. During the learning, it directly
optimize ω̂i. Many existing works study this idea for supervised learning, such as Băzăvan et al. (2012);
Yang et al. (2015); Sinha and Duchi (2016); Chang et al. (2017a); Bullins et al. (2018). We call the latter
realization as IKL-RFF. Next, we discuss and compare the difference between IKL-NN and IKL-RFF.

The crucial difference between IKL-NN and IKL-RFF is, IKL-NN can sample arbitrary number of
random features by first sampling ν ∼ P(ν) and transforming it via hψ(ν), while IKL-RFF is restricted
by the pool size m. If the application needs more random features, IKL-RFF will be memory inefficient.
Specifically, we compare IKL-NN and IKL-RFF with different number of random features in Figure 3.5.
With the same number of parameters (i.e., |hψ| = m × dim(ν))2 , IKL-NN outperforms IKL-RFF of
m = 128 on Inception scores (6.876 versus 6.801). For IKL-RFF to achieve the same or better Inception
scores of IKL-NN, the number of random features m needs increasing to 4096, which is less memory
efficient than the IKL-NN realization. In particular, hψ of IKL-NN is a three-layers MLP with 2048

number of parameters (16 × 32 + 32 × 32 + 32 × 16), while IKL-RFF has 2048, 65536 number of
parameters, for m = 128, 4096, respectively.

Figure 3.5: The comparison between IKL-NN and IKL-RFF on CIFAR-10 under different number of
random features.

2|hψ| denotes number of parameters in hψ , m is number of random features and dim(ν) is the dimension of the ν.
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Algorithm JS-4

IKL-NN 0.372± 0.002

IKL-RFF 0.383± 0.002

IKL-RFF (+2) 0.380± 0.002

IKL-RFF (+4) 0.377± 0.002

IKL-RFF (+8) 0.375± 0.002

Table 3.2: The comparison between IKL-NN and IKL-RFF on Google Billion Word.

On the other hand, using large m for IKL-RFF not only increases the number of parameters, but
might also enhance the optimization difficulty. Zhang et al. (2017) discuss the difficulty of optimizing
RFF directly on different tasks. Here we compare IKL-NN and IKL-RFF on challenging Google Billion
Word dataset. We train IKL-RFF with the same setting as Section 3.3, where we set the pool size m
to be 1024 and the updating schedule between critic and generator to be 10 : 1, but we tune the Adam
optimization parameter for IKL-RFF for fair comparison. As discussed above, please note that the number
of parameters for hψ is 2048 while IKL-RFF uses 16384 when m = 1024. The results are shown in
Table 3.2. Even IKL-RFF is using more parameters, the performance 0.383 is not competitive as IKL-
NN, which achieves 0.372.

In Algorithm 2, we update fϕ and h in each iteration with nc times, where we use nc = 10 here.
We keep the number of updating fϕ to be 10, but increase the number of update for {ω̂i}1i=1024 to be
12, 14, 18 in each iteration. The result is shown in Table 3.2 with symbols +2, +4 and +8 respectively.
Clearly, we see IKL-RFF need more number of updates to achieve competitive performance with IKL-
NN. The results might implies IKL-RFF is a more difficult optimization problem with more parameters
than IKL-NN. It also confirms the effectiveness of learning implicit generative models with deep neural
networks (Goodfellow et al., 2014), but the underlying theory is still an open research question. A better
optimization algorithm (Zhang et al., 2017) may improve the performance gap between IKL-NN and
IKL-RFF, which worth more study as future work.

3.4 IKL Application to Random Kitchen Sinks

We also show that the proposed IKL framework can benefit conventional kernel methods in supervised
learning. Rahimi and Recht (2009) propose Random Kitchen Sinks (RKS) as follows. We sample ωi ∼
Pk(ω) and transform x ∈ Rd into

ϕ̂(x) = [ϕ(x;ω1), . . . , ϕ(x;ωM )], where sup
x,ω
|ϕ(x;ω)| < 1.

We then learn a classifier on the transformed features ϕ̂(x;ω). Kernel methods with random Fourier
features (Rahimi and Recht, 2008) is an example of RKS, where Pk(ω) is the spectral distribution of the
kernel and ϕ(x;ω) =

[
cos(ω>x), sin(ω>x)

]
. We usually learn a model w by solving

arg min
w

λ

2
‖w‖2 +

1

n

n∑
i=1

`
(
w>ϕ̂(xi)

)
. (3.6)
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If ` is a convex loss function, the objective (3.6) can be solved efficiently to global optimum.
Spectral distributions Pk are usually set as a parameterized form, such as Gaussian distributions, but

the selection of Pk is important in practice. If we consider RKS as kernel methods with random fea-
tures, then selecting P is equivalent to the well-known kernel selection (learning) problem for supervised
learning (Gönen and Alpaydın, 2011).

Two-Stage Approach We follows Sinha and Duchi (2016) to consider kernel learning for RKS with
a two-stage approach. In stage 1, we consider kernel alignment (Cristianini et al., 2002) of the form,
argmaxk∈K E(x,y),(x′,y′)

∑
i 6=j yy

′k(x, x′). By parameterizing k via the implicit generative model hψ as
in Section 3.2, we have the following problem:

argmax
ψ

E(x,y),(x′,y′)yy
′Eν
[
eihψ(ν)>(x−x′),

]
. (3.7)

which can be treated as (3.1) with F1(x, x′) = yy′. After solving (3.7), we learn a sampler hψ where we
can easily sample. Thus, in stage 2, we thus have the advantage of solving a convex problem (3.6) in RKS
with IKL. The algorithm is shown in Algorithm 3.

Algorithm 3: Random Kitchen Sinks with IKL
Stage 1: Kernel Learning
Input: X = {(xi, yi)}ni=1, the batch size B for data and m for random feature, learning rate η
Initialization: ψ for transformation function h
while ψ has not converged do

Sample {(xi, yi)}Bi=1 ⊆ X and sample {νj}mj=1 ∼ P(ν)

gψ ← ∇ψ 1
B(B−1)

∑
i 6=i′ yiyi′

1
m

∑m
j=1 e

ihψ(νj)
>(xi−xi′ ))

ψ ← ψ − ηAdam(ψ, gψ)

Stage 2: Random Kitchen Sinks
Sample {νi}Mi=1 ∼ P(ν), note that M is not necessarily equal to m
Transform X into ϕ(X) via hψ and {νi}Mi=1

Learn a linear classifier on (ϕ(X), Y )

Note that in stage 1, we resample {νj}mj=1 in every iteration to train an implicit generative model hψ.
The advantage of Algorithm 3 is the random features used in kernel learning and RKS can be different,
which allows us to use less random features in kernel learning (stage 1), and sample more features for
RKS (stage 2).

One can also jointly train both feature mapping ω and the model parameters w, such as neural
networks. We remark that our intent is not to show state-of-the-art results on supervised learning, on which
deep neural networks dominate (Krizhevsky et al., 2012; He et al., 2016). We use RKS as a protocol to
study kernel learning and the proposed IKL, which still has competitive performance with neural networks
on some tasks (Rahimi and Recht, 2009; Sinha and Duchi, 2016). Also, the simple procedure of RKL with
IKL allows us to provide some theoretical guarantees of the performance, which is sill challenging of deep
learning models.
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Comparison with Existing Works Sinha and Duchi (2016) learn non-uniform weights for M random
features via kernel alignment in stage 1 then using these optimized features in RKS in the stage 2. Note that
the random features used in stage 1 has to be the same as the ones in stage 2. A jointly training of feature
mapping and classifier can be treated as a 2-layer neural networks (Băzăvan et al., 2012; Alber et al.,
2017; Bullins et al., 2018). Learning kernels with aforementioned works will be more costly if we want
to use a large number of random features for training classifiers. In contrast to implicit generative models,
Oliva et al. (2016) learn an explicit Bayesian nonparametric generative model for spectral distributions,
which requires specifically designed inference algorithms. Learning kernels for (3.6) in dual form without
random features has also been proposed. It usually require costly steps, such as eigendecomposition of
the Gram matrix (Gönen and Alpaydın, 2011).

3.4.1 Consistency and Generalization

The simple two-stages approach, IKL with RKS, allows us to provide the consistency and generalization
guarantees. For consistency, it guarantees the solution of finite sample approximations of (3.7) approach
to the optimum of (3.7) (population optimum), when we increase number of training data and number of
random features. We firstly define necessary symbols and state the theorem.

Let s(xi, xj) = yiyj be a label similarity function, where |yi| ≤ 1. We use sij to denote s(xi, xj)
interchangeably. Given a kernel k, we define the true and empirical alignment functions as,

T (k) = E [s(x, x′)k(x, x′)]

T̂ (k) = 1
n(n−1)

∑
i 6=j sijk(xi, xj).

In the following, we abuse the notation kψ to be kh for ease of illustration. Recall the definitions of
kh(x, x′) = 〈ϕh(x), ϕh(x′)〉 and k̂h(x, x′) = ϕ̂h(x)>ϕ̂h(x′). We define two hypothesis sets

FH = {f(x) = 〈w,ϕh(x)〉H |h ∈ H, 〈w,w〉 ≤ 1}
F̂mH = {f(x) = w>ϕ̂h(x)|h ∈ H, ‖w‖ ≤ 1, w ∈ Rm}.

Definition 10. (Rademacher’s Complexity) Given a hypothesis set F , where f : X × X → R if f ∈ F ,
and a fixed sample X = {x1, . . . , xn}, the empirical Rademacher’s complexity of F is defined as

Rn
X(F) =

1

n
Eσ

[
sup
f∈F

n∑
i=1

σif(xi)

]
,

where σ are n i.i.d. Rademacher random variables.
We then have the following theorems showing that the consistency guarantee depends on the com-

plexity of the function class induced by IKL as well as the number of random features. The proof can be
found in Appendix 3.6.3.
Theorem 11. (Consistency) Let ĥ = arg maxh∈H T̂ (k̂h), with i.i.d, samples {νi}mi=1 drawn from P(ν).
With probability at least 1− 3δ, we have |T (k̂

ĥ
)− suph∈H T (kh)| ≤

2EX
[
Rn−1
X (FH) + Rn−1

X (F̂mH )
]

+

√
8 log 1

δ

n
+

√
2 log 4

δ

m
.
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Applying Cortes et al. (2010a), We also have a generalization bound, which depends number of
training data n, number of random features m and the Rademacher complexity of IKL kernel, as shown
below.

Theorem 12. (Generalization (Cortes et al., 2010a)) Define the true and empirical misclassification for
a classifier f as R(f) = P(Y f(X) < 0) and R̂γ(h) = 1

n

∑n
i=1 min {1, [1− yf(xi)/γ]+}. Then

sup
f∈F̂H

{R(f)− R̂γ(f)} ≤ 2

γ
Rn
X(F̂H) + 3

√
log 2

δ

2n

with probability at least 1− δ.

The Rademacher complexity Rn
X(FH), for example, can be 1/

√
n or even 1/n for kernels with differ-

ent bounding conditions (Cortes et al., 2010a). We would expect worse rates for more powerful kernels.
It suggests the trade-off between consistency/generalization and using powerful kernels parametrized by
neural networks.

3.4.2 Experiment and Results

We evaluate the proposed IKL on both synthetic and benchmark binary classification tasks. For IKL, P(ν)

is standard Normal and hψ is a 3-layer MLP for all experiments. The number of random features m to
train hψ in Algorithm 3 is fixed to be 64. Other experiment details are described in Appendix 3.6.4.

Kernel learning with a poor choice of Pk(ω) We generate {xi}ni=1 ∼ N (0, Id) with yi = sign(‖x‖2−√
d), where d is the data dimension. A two dimensional example is shown in Figure 3.6. Competitive

baselines include random features (RFF) (Rahimi and Recht, 2008) as well as OPT-KL (Sinha and Duchi,
2016). In the experiments, we fix M = 256 in RKS for all algorithms. Since Gaussian kernels with the
bandwidth σ = 1 is known to be ill-suited for this task (Sinha and Duchi, 2016), we directly use random
features from it for RFF and OPT-KL. Similarly, we set P(ν) to be standard normal distribution as well.

Figure 3.6: Left: the training examples when d = 2. Right: the classification error v.s. data dimension.
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The test error for different data dimension d = {2, 4, . . . , 18, 20} is shown in Figure 3.6. Note that
RFF is competitive with OPT-KL and IKL when d is small (d ≤ 6), while its performance degrades rapidly
as d increases, which is consistent with the observation in Sinha and Duchi (2016). More discussion of the
reason of failure can be referred to Sinha and Duchi (2016). On the other hand, although using standard
normal as the spectral distribution is ill-suited for this task, both OPT-KL and IKL can adapt with data and
learn to transform it into effective kernels and result in slower degradation with d.

Note that OPT-KL learns the sparse weights on the sampled random features (M = 256). However,
the sampled random features can fail to contain informative ones, especially in high dimension (Bullins
et al., 2018). Thus, when using limited amount of random features, OPT-IKL may result in worse
performance than IKL in the high dimensional regime in Figure 3.6.

(a) MNIST (4-9) (b) MNIST (5-6)

(c) CIFAR-10 (auto-truck) (d) CIFAR-10 (plane-bird)

Figure 3.7: Test error rate versus number of basis in second stage on benchmark binary classification tasks.
We report mean and standard deviation over five runs. Our method (IKL) is compared with RFF (Rahimi
and Recht, 2009), OPT-KL (Sinha and Duchi, 2016), SM (Wilson and Adams, 2013) and the end-to-end
training MLP (NN).

Performance on benchmark datasets Next, we evaluate our IKL framework on standard benchmark
binary classification tasks. Challenging label pairs are chosen from MNIST (LeCun et al., 1998) and
CIFAR-10 (Krizhevsky and Hinton, 2009) datasets; each task consists of 10000 training and 2000 test
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examples. For all datasets, raw pixels are used as the feature representation. We set the bandwidth of
RBF kernel by the median heuristic. We also compare with Wilson and Adams (2013), the spectral
mixture (SM) kernel, which uses Gaussian mixture to learn spectral density and can be seen as the explicit
generative model counterpart of IKL. Also, SM kernel is a MKL variant with linear combination (Gönen
and Alpaydın, 2011). In addition, we consider the joint training of random features and model parameters,
which can be treated as two-layer neural network (NN) and serve as the lower bound of error for comparing
different kernel learning algorithms.

The test error versus different M = {26, 27, . . . , 213} in the second stage are shown in Figure 3.7.
First, in light of computation efficiency, SM and the proposed IKL only sample m = 64 random features
in each iteration in the first stage, and draws different number of basis M from the learned hψ(ν) for the
second stage. OPT-KL, on the contrary, the random features used in training and testing should be the
same. Therefore, OPT-IKL needs to deal with M random features in the training. It brings computation
concern when M is large. In addition, IKL demonstrates improvement over the representative kernel
learning method OPT-KL, especially significant on the challenging datasets such as CIFAR-10. In some
cases, IKL almost reaches the performance of NN, such as MNIST, while OPT-KL degrades to RFF
except for small number of basis (M = 26). This illustrates the effectiveness of learning kernel spectral
distribution via the implicit generative model hψ. Also, IKL outperforms SM, which is consistent with
the finding in Section 3.3 that IKL can learn more complicated spectral distributions than simple mixture
models (SM).

3.5 Summary

We propose a generic kernel learning algorithm, IKL, which learns sampling processes of kernel spectral
distributions by transforming samples from a base distribution P(ν) into ones for the other kernel (spectral
density). We compare IKL with other algorithms for learning MMD GAN and supervised learning
with Random Kitchen Sinks (RKS). For these two tasks, the conditions and guarantees of IKL for are
studied. Empirical studies show IKL is better than or competitive with the state-of-the-art kernel learning
algorithms. It proves IKL can learn to transform P(ν) into effective kernels even if P(ν) is less favorable
to the task.

We note that the preliminary idea of IKL is mentioned in Băzăvan et al. (2012), but they ended
up with a algorithm that directly optimizes sampled random features (RF), which has many follow-up
works (e.g. Sinha and Duchi (2016); Bullins et al. (2018)). The major difference is, by learning the
transformation function hψ, the RF used in training and evaluation can be different. This flexibility allows
a simple training algorithm (SGD) and does not require to keep learned features. In our studies on GAN
and RKS, we show using a simple MLP can already achieve better or competitive performance with those
works, which suggest IKL can be a new direction for kernel learning and worth more studies.

We highlight that IKL is not conflict with existing works but can be combined with them. In Sec-
tion 3.3, we show combining IKL with kernel learning via embedding (Wilson et al., 2016) and mixture
of spectral distributions (Wilson and Adams, 2013). Therefore, in addition to the examples shown in
Section 3.3 and Section 3.4, IKL is directly applicable to many existing works with kernel learning via
embedding (e.g. Dai et al. (2014); Li and Póczos (2016); Wilson et al. (2016); Al-Shedivat et al. (2017);
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Arbel et al. (2018); Jean et al. (2018); Chang et al. (2019a)). A possible extension is combining with
Bayesian inference (Oliva et al., 2016) under the framework similar to Saatchi and Wilson (2017). The
learned sampler from IKL can possibly provide an easier way to do Bayesian inference via sampling.

3.6 Appendix

3.6.1 Proof of Theorem 8

The proof is a straightforward extension of Section 2.6.1 and 2.6.2. We still include the full derivation for
completeness.

First, We need to show ‖kψ(fφ(x), ·) − kψ(fφ(y), ·)‖HK is Lipschitz. By definition, we know that
‖kψ(fφ(x), ·) − kψ(fφ(y), ·)‖HK = 2(1 − kψ(fφ(x), fφ(y))). Also, since kψ(0) = 1 and kψ(0) −
kψ(x, x′) ≤ Lk‖0− (x− x′)‖ (Lipschtiz assumption of kψ), we have

‖kψ(fφ(x), ·)− kψ(fφ(y), ·)‖HK ≤ 2Lk‖fφ(x)− fφ(y)‖ ≤ 2LkL‖x− y‖,

where the last inequality holds as fφ is also a Lipschitz function with Lipschitz constant L.

The other direction, maxψ,φMψ,φ(P,Pn) → 0 then Pn
D−→ P, is relatively simple. We assume there

exists ψ′ and φ′ such that hψ and fφ are identity functions (up to scaling), which recover the Gaussian
kernel k. Therefore, maxψ,φMψ,φ(P,Pn) → 0 implies Mψ′,φ′(P,Pn) → 0, which completes the proof
because MMD with any Gaussian kernel is weak (Gretton et al., 2012a).

Next, we show the proof of continuity. We are going to show

max
ψ,φ

Mψ,φ(PX ,Pθ) = Ex,x′ [kψ,φ(x, x′)]− 2Ex,z[kψ,φ(x, gθ(z))] + Ez,z′ [kψ,φ(gθ(z
′), gθ(z))] (3.8)

is differentiable with respect to φ almost everywhere by using the auxiliary Lemma 6. We fist show
Ez,z′ [kψ,φ(gθ(z

′), gθ(z))] in (3.8) is locally Lipschitz in θ.

Ex,x′
[
kψ,φ

(
gθ(z), gθ(z

′)
)
− kψ,φ

(
gθ′(z), gθ′(z

′)
)]

=Ez,z′
[
kψ

(
fφ
(
gθ(z)

)
− fφ

(
gθ(z

′)
))]
− Ez,z′

[
kψ

(
fφ
(
gθ′(z)

)
− fφ

(
gθ′(z

′)
))]

≤Ez,z′
[
Lk

∥∥∥fφ(gθ(z))− fφ(gθ(z′))− fφ(gθ′(z))+ fφ
(
gθ′(z

′)
)∥∥∥]

≤Ez,z′
[
LkL(θ, z)‖θ − θ′‖+ LkL(θ, z′)‖θ − θ′‖

]
=2LkEz

[
L(θ, z)

]
‖θ − θ′‖.

The first inequality is followed by the assumption that k is locally Lipschitz in (x, x′), with a upper
bound Lk for Lipschitz constants. By Assumption 7, Ez

[
L(θ, z)

]
<∞, we prove Ez,z′

[
kψ
(
fφ(gθ(z))−

fφ(gθ(z
′))
)]

is locally Lipschitz. The similar argument is applicable to other terms in Eq. (3.8); therefore,
Eq. (3.8) is locally Lipschitz in θ.

Last, with the compactness assumption on Φ and Ψ, and differentiable assumption on Mψ,φ(PX ,Pθ),
applying Lemma 6 proves Theorem 8.
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3.6.2 Proof of Lemma 9

Without loss of the generality, we can rewrite the kernel function as kψ(t) = Eν
[

cos
(
hψ(ν)>t

)]
, where

t is bounded. We then have

‖∇tkψ(t)‖ =
∥∥∥Eν[ sin

(
hψ(ν)>t

)
hψ(ν)

]∥∥∥
≤ Eν

[∣∣ sin(hψ(ν)>t)
∣∣× ‖hψ(ν)‖

]
≤ Eν

[
‖t‖‖hψ(ν)‖2

]
The last inequality follows by | sin(x)| < |x|. Since t is bounded, if Eν [‖hψ(ν)‖2] < ∞, there exist a
constant L such that ‖∇tkψ(t)‖ < L,∀t.

By mean value theorem, for any t and t′, there exists s = αt+ (1− α)t′, where α ∈ [0, 1], such that

kψ(t)− kψ(t′) = ∇skψ(s)>(t− t′).

Combining with ‖∇tkψ(t)‖ < L,∀t, we prove

kψ(t)− kψ(t′) ≤ L‖t− t′‖.

3.6.3 Proof of Theorem 11

We first prove two Lemmas.

Lemma 13. (Consistency with respect to data) With probability at least 1− δ, we have

sup
h∈H
|T̂ (kh)− T (kh)| ≤ 2EX

[
Rn−1
X (FH)

]
+

√
2

n
log

1

δ

Proof. Define

ρ(x1, . . . , xn) = sup
h∈H
|T̂ (kh)− T (kh)|,

since |kh(x, x′)| ≤ 1, it is clearly

sup
x1,...,xi,x′i,...,xn

|ρ(x1, . . . , xi, . . . xn)− ρ(x1, . . . , x
′
i, . . . xn)| ≤ 2

n
.

Applying McDiarmids Inequality, we get

P (ρ(x1, . . . , xn)− E[ρ(x1, . . . , xn)] ≥ ε) ≤ exp

(
−nε2

2

)
.

By Lemma 14, we can bound

E[ρ(x1, . . . , xn)] ≤ 2EX
[
Rn−1
X (FH)

]
and finish the proof.
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Lemma 14. Given X = {x1, . . . , xn}, define

ρ(x1, . . . , xn) = sup
h∈H
|T̂ (kh)− T (kh)|,

we have

E
[
ρ(x1, . . . , xn)

]
≤ 2EX

[
Rn−1
X (FH)

]
.

Proof. The proof is closely followed by Dziugaite et al. (2015). Given h, we first define th(x, x′) =

s(x, x′)kh(x, x′) as a new kernel function to simplify the notations. We are then able to write

E
[
ρ(x1, . . . , xn)

]
= EX

[
sup
h∈H

∣∣∣∣∣∣E
[
th(z, z′)

]
− 1

n(n− 1)

∑
i 6=j

th(xi, xj)

∣∣∣∣∣∣
]

≤ EX,Z
[

sup
h∈H

∣∣∣∣∣∣ 1

n(n− 1)

∑
i 6=j

(th(zi, zj)− th(xi, xj))

∣∣∣∣∣∣
]

by using Jensen’s inequality. Utilizing the conditional expectation and introducing the Rademacher
random variables {σi}n−1

i=1 , we can write the above bound to be

1

n

∑
i

EX−i,Z−iExi,zi
[

sup
h∈H

∣∣∣∣
∑

i 6=j th(zi, zj)− th(xi, xj)

n− 1

∣∣∣∣ ]

= EX,ZEX′,Z′,σ
[

sup
h∈H

∣∣∣∣∣ 1

n− 1

n−1∑
i=1

σi(th(z′, zn)− th(x′, xn))

∣∣∣∣∣
]

(3.9)

The equality follows by X −X ′ and −(X −X ′) has the same distributions if X and X ′ are independent
samples from the same distribution. Last, we can bound it by

≤ EXEσ,X′
[

sup
h∈H

∣∣∣∣∣ 2

n− 1

n−1∑
i=1

σith(x′, xi)

∣∣∣∣∣
]

≤ EXEσ
[

sup
f∈FkH

∣∣∣∣∣ 2

n− 1

n−1∑
i=1

σif(xi)

∣∣∣∣∣
]

= 2EX [Rn−1
X (FH)]

The second inequality follows by s(x, x′)φ(x′) ∈ F since |s(x, x′)| ≤ 1.

Lemma 15. (Consistency with respect to sampling random features) With probability 1− δ, we have

| sup
h∈H

T̂ (kh)− sup
h∈H

T̂ (k̂h)| ≤

√
2 log 4

δ

m
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Proof. Let the optimal solutions be

h∗ = arg maxh∈H T̂ (kh)

ĥ = arg maxh∈H T̂ (k̂h),

By definition,
T̂ (k̂h)

=
1

n(n− 1)

∑
i 6=j

sij

(
1

m

m∑
k=1

cos(h(νk)
>(xi − xj))

)

=
1

m

m∑
k=1

(
1

n(n− 1)
sij cos(h(νk)

>(xi − xj))
)

It is true that | 1
n(n−1)sij cos(h(νk)

>(xi − xj)| ≤ 1 since |sij | < 1 and | cos(x)| < 1. we then have

P(| suph∈H T̂ (kh)− suph∈H T̂ (k̂h)| > ε)

≤ P(|T̂ (kh∗)− T̂ (k̂h∗)| > ε) + P(|T̂ (kĥ)− T̂ (k̂ĥ)| > ε)

≤ 4 exp

(
−mε

2

2

)
,

where the last inequality follows from the Hoeffding’s inequality.

With Lemma 13 and Lemma 15, we are ready to prove Theorem 11. We can decompose

|T (k̂ĥ)− sup
h∈H

T (kh)|

≤ | sup
h∈H

T (kh)− sup
h∈H

T̂ (kh)|+ | sup
h∈H

T̂ (kh)− T̂ (k̂ĥ)|+ |T̂ (k̂ĥ)− T (k̂ĥ)|

≤ sup
h∈H
|T (kh)− T̂ (kh)|+ | sup

h∈H
T̂ (kh)− T̂ (k̂ĥ)|+ sup

h∈H
|T̂ (k̂h)− T (k̂h)|

We then bound the first and third terms by Lemma 13 and the second term by Lemma 15. Last, using a
union bound completes the proof.

3.6.4 Hyperparameters of GAN and RKS experiments

IKL on GAN For Gaussian kernels, we use σq = {1, 2, 4, 8, 16} for images and σq = {0.5, 1, 2, 4, 8}
for text; for RQ kernels, we use αq = {0.2, 0.5, 1, 2, 5} for images and αq = {0.04, 0.1, 0.2, 0.4, 1} for
text. We used Adam as optimizer. The learning rate for training both fφ and gθ is 0.0005 and 0.0001 for
image and text experiments, respectively. The batch size B is 64. We set hyperparameter nc for updating
critic to be nc = 5 and nc = 10 for CIFAR10 and Google Billion Word datasets. The learning rate of of
hψ for Adam is 10−6

IKL on RKS For OPT-KL, we use the code provided by Sinha and Duchi (2016)3. We tune the
hyperparameter ρ = {1.25, 1.5, 2, 4, 16, 64} on the validation set. For RFF, OPT-KL, and IKL, the linear
classifier is Logistic Regression Fan et al. (2008)4, as to make reasonable comparison with MLP. We

3https://github.com/amansinha/learning-kernels
4https://github.com/cjlin1/liblinear
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use 3-fold cross validation to select the best C on training set and present the error rate on test set. For
CIFAR-10 and MNIST, we normalize data to be zero mean and one standard deviation in each feature
dimension. The learning rate for Adam is 10−6. We follow Bullins et al. (2018) to use early stopping
when performance on validation set does not gain.
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Part II

Kernel Learning for Explicit Generative
Models
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Chapter 4

Kernel Stein Generative Modeling

4.1 Background

Drawing novel samples from the data distribution is at the heart of generative models, where existing work
can be put into two categories, namely the Implicit Generative Models (IGM) and the Explicit Generative
Models (EGM). Recall that in Chapter 2 and 3, we demonstrate how kernel learning improve moment
matching networks for implicit generative modeling.

On the other hand, EGMs typically optimize the likelihood of non-normalized density models (e.g.,
energy-based models (LeCun et al., 2006)) or learn score functions (Hyvärinen, 2005; Vincent, 2011)
(i.e., gradient of log data-density). Because of the explicitly modeling of densities or gradient of log-
densities, EGM is still favorable for many applications such as anomaly detection (Du and Mordatch,
2019; Grathwohl et al., 2020), image processing (Song and Ermon, 2019) and more. However, the
generative capability of many EGMs is not as competitive with GAN on high-dimensional distributions,
such as images. Recent advances in Stochastic Gradient Langevin Dynamics (SGLD) (Welling and Teh,
2011) has led to certain success in EGMs, especially with energy-based models (Du and Mordatch,
2019; Nijkamp et al., 2019; Grathwohl et al., 2020) and score-based models (Song et al., 2019) for high-
dimension inference tasks such as image generation. As a stochastic optimization procedure, SGLD moves
samples along the gradient of log-density, with carefully controlled diminishing random noise, which
converges to the true data distribution with a theoretical guarantee. The recent noise-conditioned score
network (Song and Ermon, 2019) estimates the score functions using perturbed data distributions with
varying degrees of Gaussian noises. For inference, they consider annealed SGLD to produce impressive
samples that are comparable to state-of-the-art (SOTA) GAN-based models on CIFAR-10.

Another interesting sampling technique is Kernel Stein variational gradient descent (SVGD) (Liu and
Wang, 2016; Liu, 2017), which iteratively produce samples via deterministic updates that optimally reduce
the KL divergence between the model and the target distribution. The particles (samples) in SVGD interact
with each other, simultaneously moving towards a high-density region following the gradients, and also
pushing each other away due to a repulsive force induced from the kernels. These interesting properties
of SVGD has made it promising in various challenging applications such as Bayesian optimization (Gong
et al., 2019), deep probabilistic models (Wang and Liu, 2016; Feng et al., 2017; Pu et al., 2017), and
reinforcement learning (Haarnoja et al., 2017).
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Despite the attractive nature of SVGD, how to make its inference effective and scalable for complex
high-dimensional data distributions is an open question that have not been studied in sufficient depth.
One major challenge in high-dimensional inference is to deal with multi-modal distributions with many of
low-density regions, where SVGD can fail even on simple Gaussian mixtures. A remedy for this problem
is to use “noise-annealing”. However, such a relatively simple solution may still lead to deteriorating
performance along with the increased dimensionality of data.

In this chapter, we aim to significantly enhance the capability of SVGD for sampling from complex and
high-dimensional distributions. Specifically, we propose a novel method, namely the Noise Conditional
Kernel SVGD or NCK-SVGD in short, where the kernels are conditionally learned or selected based on
the perturbed data distributions. Our main contributions can be summarized in three folds. Firstly, we
propose to learn the parameterized kernels with noise-conditional auto-encoders, which captures shared
visual properties of sampled data at different noise levels. Secondly, we introduce NCK-SVGD with an
additional entropy regularization, for flexible control of the trade-off between sample quality and diversity,
which is quantitatively evaluated with precision and recall curves. Thirdly, the proposed NCK-SVGD
achieves a new SOTA FID score of 21.95 on CIFAR-10 within the EGM family and is comparable to the
results of GAN-based models in the IGM family. Our work shows that high dimensional inference can be
successfully achieved with SVGD.

4.2 Score-based Generative Modeling: Inference and Estimation

In this section, we review Stein Variational Gradient Descent (SVGD) for drawing samples from target
distributions and describe how to estimate score functions via a recent advance in Noise Conditional Score
Network (NCSN).

4.2.1 Stein Variational Gradient Descent (SVGD)

Let pd(x) be a positive and continuously differentiable probability density function on Rd. For simplicity,
we denote pd(x) as p in the following derivation. SVGD (Liu and Wang, 2016; Liu, 2017) aims to find a
set of particles {xi}ni=1 ∈ Rd to approximate p, such that the empirical distribution q(x) =

∑
i δ(x− xi)

of the particles weakly converges to p when n is large. Here δ(·) denotes the Dirac delta function.
To achieve this, SVGD begins with a set of initial particles from q, and iteratively updates them with

a deterministic transformation function Tφ(·):

x′ ← Tφ(x) = x + εφ(x), let φ∗q,p = arg max
φ∈H

{
− d

dε
KL
(
Tφ(q) || p

)∣∣∣
ε=0

s.t. ‖φ‖H ≤ 1
}
, (4.1)

where Tφ(q) is the measure of the updated particles x′ = Tφ(x) and φ∗q,p : Rd → Rd is the optimal
transformation function maximally decreasing the KL divergence between the target data distribution p
and the transformed particle distribution Tφ(q), for φ in the unit ball in the RKHS.

By letting ε go to zero, the continuous Stein descent is therefore given by dXt = φ∗qt,p(Xt)dt, where qt
is the density of Xt. A key observation from Liu (2017) is that, under some mild conditions, the negative
gradient of KL divergence in Eq. (4.1) is exactly equal to the square Kernel Stein Discrepancy (KSD):

− d

dt
KL(qt || p) = S(qt || p)2 = max

φ∈F

(
Ex∼qt [Apφ(x)]

)2
, (4.2)
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where Apφ(x) = ∇ log p(x)>φ(x) +∇ · φ(x), ∇ · φ =
∑d

j=1 ∂xjφj(x) and Ap is the Stein operator
that maps a vector-valued function φ to a scalar-valued function Apφ.

KSD S(q || p) provides a discrepancy measure between q and p and S(q || p) = 0 iff q = p given
thatH is sufficiently large. By takingH to be a reproducing kernel Hilbert space (RKHS), KSD provides
a closed-form solution of Eq. (4.2). Specifically, let H0 be a RKHS of scalar-valued functions with a
positive definite kernel k(x,x′), and H = H0 × . . . ,H0 the corresponding d × 1 vector-valued RKHS.
The optimal solution of Eq. (4.2) (Liu et al., 2016; Chwialkowski et al., 2016) is S(q || p) = ‖φ∗q,p(·)‖H
where

φ∗q,p(·) ∝ Ex∼q[Apk(x, ·)] = Ex∼q[∇ log p(x)>k(x, ·) +∇xk(x, ·)]. (4.3)

The remaining question is how to estimate the score function sp(x) = ∇x log pd(x) based on the
unknown data distribution x ∼ pd(x) for generative modeling tasks.

4.2.2 Score Estimation

To circumvent the expensive Monte Carlo Markov Chain (MCMC) sampling or the intractable partition
function when estimating the non-normalized probability density (e.g., energy-based models), Score
Matching (Hyvärinen, 2005) directly estimates the score by arg minθ

1
2Epd(x)[‖sθ(x)−∇x log pd(x)‖22],

where sθ(x) : Rd → Rd. To train the model sθ(x), we use the equivalent objective

arg min
θ

Epd(x)

[
tr
(
∇xsθ(x)

)
+

1

2
‖sθ(x)‖22

]
(4.4)

without the need of accessing ∇x log pd(x). However, score matching is not scalable to deep neural
network and high-dimensional data (Song et al., 2019) due to the expensive computation of tr(∇xsθ(x)).

To overcome this issue, denoising score matching (DSM) (Vincent, 2011) instead matches sθ(x) to a
non-parametric kernel density estimator (KDE) (i.e., 1

2Epσ(x̃)

[
‖sθ(x̃)−∇x̃ log pσ(x̃)‖2

]
) where pσ(x̃) =

1
n

∑n
i=1 pσ(x̃|xi) and pσ(x̃|x) ∝ exp(−‖x̃− x‖2/2σ2) is a smoothing kernel with isotropic Gaussian of

variance σ2. Vincent (2011) further show that the objective is equivalent to the following

1

2
Epσ(x̃|x)pd(x)

[
‖sθ(x̃)−∇x̃ log pσ(x̃|x)‖2

]
, (4.5)

where the target ∇x̃ log pσ(x̃|x) = (x − x̃)/σ2 has a simple closed-form. We can interpret Eq. (4.5) as
learning a score function sθ(x̃) to move noisy input x̃ toward the clean data x.

One caveat of the DSM is that the optimal score sθ∗(x) = ∇x log pσ(x) ≈ ∇xpd(x) is true only
when the noise σ is small enough. However, learning the score function with the single-noise perturbed
data distribution will lead to inaccurate score estimation in the low data density region on high-dimension
data space, which could be severe due to the low-dimensional manifold assumption. Thus, Song and
Ermon (2019) propose learning a noise-conditional score network (NCSN) based on multiple perturbed
data distributions with Gaussian noises of varying magnitudes:

1

2L

L∑
l=1

σ2
l · Epσl (x̃|x)pd(x)

[
‖sθ(x̃;σl)−∇x̃ log pσl(x̃|x)‖2

]
, (4.6)
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where {σl}Ll=1 is a positive geometric sequence such that σ1 is large enough to mitigate the low density
region on high-dimension space and σL is small enough to minimize the effect of perturbed data. Note
that σ2

l is to balance the scale of loss function for each noise level σl.
After learning the noise conditional score functions sθ(x̃, σ), Song and Ermon (2019) conduct anneal

SGLD to draw samples from a sequence of the model’s score, under annealed noise levels σ1 > · · · > σL,
which is

xt+1 ← xt +
ηl
2
sθ(xt, σl) + α

√
ηlzt, ∀t = 1, . . . , T and l = 1, . . . , L, (4.7)

where zt ∼ N (0, 1) is the standard normal noise and α is a constant controlling the diversity of SGLD. It
is crucial to choose the learning rate ηl = η0 · σ2

l /σ
2
L, which balances the scale between the gradient term

‖ηlsθ(x, σl)‖ and the noise term ‖√ηlzt‖. See detailed explanation in Song and Ermon (2019).

4.3 Challenges of SVGD in High-dimension

In this section, we provide a deeper analysis of SVGD on a toy mixture model with an imbalance mixture
weights, as the dimension of the data distribution increases.

4.3.1 Mixture of Gaussian with Disjoint Support

Consider a simple mixture distribution pd(x) = πp1(x) + (1 − π)p2(x), where p1(x) and p2(x) having
disjoint, separated supports, and π ∈ (0, 1). Wenliang et al. (2019); Song and Ermon (2019) demonstrate
that score-based sampling methods such as SGLD can not correctly recover the mixture weights of these
two modes in reasonable time. The reason is that the score function∇x log pd(x) will be∇x log p1(x) in
the support of p1 and∇x log p2(x) in the support of p2. In either case, the score-based sampling algorithms
are blind about the mixture weights, which may leads to samples with any reweighing of the components,
depending on the initialization. We now show that the Vanilla SVGD (SVGD) also suffer from this issue
on a 2-dimensional mixture of Gaussian pd(x) = 0.2N ((−5,−5), I) + 0.8N ((5, 5), I). We use the
ground truth scores (i.e.,∇x log pd(x)) when sampling with SVGD. See the middle left of Figure 4.1a for
the samples and the green curve in Figure 4.1b for the error (e.g., Maximum Mean Discrepancy) between
the generated samples and the ground truth samples. This phenomenon can also be explained by the
objective of SVGD, as KL-divergence is not sensible to the mixture weights.

4.3.2 Anneal SVGD in High-dimension

To overcome this issue, Song and Ermon (2019) propose Anneal-SGLD (A-SGLD) with a sequence of
noise-perturbed score functions, where injecting noises with varying magnitudes of the variance will
enlarge the support of different mixture components, and mitigate the low-data density region in high-
dimensional settings. We also perform Anneal-SVGD (A-SVGD) with a sequence of noise-perturbed
score functions as used in A-SGLD, and consider the RBF kernel bandwidth to the median pairwise
distance of samples from pd(x).

For the low-dimensional case (e.g., d = 2), A-SVGD produces samples that represents the correct
mixture weights of pd(x), as shown in bottom left of the Figure 4.1a. However, the performance of
A-SVGD deteriorates as d increases, as shown in the red curve of Figure 4.1b. On the other hand,
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(a) Samples visualization (b) MMD loss versus data dimension

Figure 4.1: (a) Visualization of real data from pd(x) and samples from different inference algorithms. The
three figures in the left column are on 2-dimensional mixture of Gaussian. The right column is showing
the results of different sampling algorithms on 64-dimensional distributions, and we visualize only the
first two dimension, as the real-data distribution is isotropic. (b) Maximum Mean Discrepancy (MMD)
between the real-data samples (Pd) and generated samples (Q) from different inference algorithms, where
A-SGLD means Anneal-SGLD, A-SVGD means Anneal-SVGD with a fixed kernel, and NCK-SVGD
means Anneal-SVGD with noise-conditional kernels. Note that SGLD (blue) and SVGD (green) have
alike samples with even mixture weights, so two curves overlapped.
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Figure 4.2: Medians of pairwise distance under different noise σ(1) > · · · > σ(10) across d.

the performance of A-SGLD seems to be rather robust w.r.t. the increasing d (i.e., the orange curve
in Figure 4.1b and top-right samples in Figure 4.1a).

We argue that the failure of A-SVGD in high-dimension may be due to the inadequate kernel choice,
which are fixed to the median pairwise distance based on the real-data distribution pd(x), regardless of
the different noise level of pσ. In Figure 4.2, we present med({‖x − y‖2 s.t. x,y ∼ pσ}), the median
pairwise distance where samples are from different noise-perturbed pσ, along with the increase of d. We
observe that, in low-dimensional setting (e.g., d = 2), the medians of different pσ do not deviate too
much. It explains the good performance of A-SVGD when d < 8 in Figure 4.1b. Nevertheless, in high-
dimensional settings (e.g., d = 64), the median differs a lot for the largest and smallest noise-perturbed
data distribution (i.e., pσ1 v.s. pσ10). The bandwidths suitable for large perturbed noise σ10 no longer
holds for small perturbed noise σ1, hence limiting performance of fixed kernels.

Following this insight, we propose noise-conditional kernels (NCK) for A-SVGD, namely NCK-
SVGD, where the data-driven kernels k(x,x;σ) is conditional on annealing noises σ to dynamically
adapt the varying scale changes. In this example, we can set the bandwidth of RBF kernel to be the
median pairwise distance from noise-perturbed data distributions conditional on different noises σ. See
the samples visualization and performance of NCK-SVGD in Figure 4.1a and 4.1b, respectively.

4.4 SVGD with Noise-conditional Kernels and Entropy Regularization

In Figure 4.1b, we show a simple noise-conditional kernel (NCK) for A-SVGD leads to considerable
gain on the Gaussian mixtures as described in Section 4.3. Here we discuss how to learn the NCK with
deep neural networks for complex real-world data distributions. What’s more, we extend the proposed
NCK-SVGD with entropy regularization for the diversity trade-off.
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4.4.1 Learning Deep Noise-conditional Kernels

Kernel selection, also known as kernel learning, is a critical ingredient in kernel methods,and has been
actively studied in many applications such as generative modeling (Sutherland et al., 2017; Li et al., 2017;
Bińkowski et al., 2018; Li et al., 2019), Bayesian non-parametric learning (Wilson et al., 2016), change-
point detection (Chang et al., 2019a), statistical testing (Wenliang et al., 2019), and more.

To make the kernel adapt to different noises, we consider a deep NCK of the form

kψ(x,x′;σ) = krbf
(
Eψ(x, σ), Eψ(x′, σ);σ

)
+ kimq

(
Eψ(x, σ), Eψ(x′, σ);σ

)
, (4.8)

where the Radius Basis (RBF) kernel krbf(x,x
′;σ) = exp(−γ(σ)‖x − x′‖22), the inverse multiquadratic

(IMQ) kernel kimq(x,x′;σ) = (1.0 + ‖x − x′‖22)τ(σ), and the learnable deep encoder Eψ(x, σ) with
parameters ψ. Note that the kernel hyper-parameters γ and τ is also conditional on the noise σ.

Next, we learn the deep encoder Eψ(x, σ) : Rd → Rh via the noise-conditional auto-encoder
framework to capture common visual semantic in noise-perturbed data distributions of {σl}Ll=1:

1

2L

L∑
l=1

1

σ2
l

· Epσl (x̃|x)pd(x)

[ ∥∥Dϕ

(
Eψ(x̃, σl), σl

)
− x

∥∥2
]
, (4.9)

where Dϕ(x, σl) : Rh → Rd is the corresponding noise-conditional decoder, and h is the dimension of
the code-space of auto-encoder. Similar to the objective Eq. (4.6), the scaling constant 1/σ2

l is to make
the reconstruction loss of each noise level to be scale-balanced.

We note that the kernel learning via autoencoding is simple to train and is working well in our
experimental study. There are many recent advance in deep kernel learning (Wilson et al., 2016; Jacot
et al., 2018; Wenliang et al., 2019), which can potentially bring additional performance. We leave
combining advanced kernel learning into the proposed algorithm as future work.

4.4.2 Entropy Regularization and Diversity Trade-off

Similarly to Wang and Liu (2019), we propose to learn a distribution q such that , for β ≥ 1 minq Fβ(q) =

KL(q, p)− (β−1)H(q). The first term is the fidelity term the second term controls the diversity. We have

Fβ(q) =

∫
q log(q/p) + (β − 1)

∫
q log(q) = β

∫
q log

(
q/p

1
β
)

= βKL(q, p
1
β ).

Remark 16. Note that writing KL(q, p
1
β ) is an abuse of notation, since p

1
β is not normalized. Nevertheless

as we will see next, sampling from p
1
β can be seamlessly achieved by an entropic regularization of the stein

descent.

Proposition 17. Consider the continuous Stein descent dXt = φ∗qt,p,β(Xt)dt where: φ∗qt,p,β(x) =

Ex′∼qtsp(x′)K(x′, x) + β∇x′K(x′, x) We have: dFβ(qt)
dt = −β2S2(qt, p

1
β ). Hence the φ∗p,qtβ is a descent

direction for the entropy regularized KL divergence. More importantly the decreasing amount is the
closeness in the Stein sense of qt to the smoothed distribution p

1
β .

See Appendix 4.7.1 for the detailed derivation. From this proposition we see if β is small, entropic
regularized stein descent, will converge to p

1
β , and will converge only to the high likelihood modes of the
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distribution and we have less diversity. If β is high, on the other hand, we see that we will have more
diversity but we will target a smoothed distribution p

1
β , since we have equivalently:

dKL(q, p
1
β )

dt
= −βS2(qt, p

1
β ).

Hence β controls the diversity of the sampling and the precision / recall of the sampling. As shown
in Figure 4.3, we visualize the non-normalized density of a 2-dimensional Gaussian mixture p(x)1/β with
varying choices of the entropy regularizer β. Specifically, we consider

p(x) ∝ 0.8N
(
(5, 5), I

)
+ 0.2N

(
(−5,−5), I

)
+ 0.6N

(
(5,−5), I

)
+ 0.4N

(
(−5, 5), I

)
.

When β is small (e.g., β = 0.5), the resulting p1/β shows mode dropping compared to original p.
When β is large (e.g., β = 4.0), the resulting p1/β covers all four modes, but wrongly with the almost
equal weights. We also confirm the effect of diversity regularizer β on real-world datasets, as shown in
Section 4.5.3.

Remark 18. In Eq. (4.7), α plays the same role as β and ensures convergence of SGLD to p
1
α .

Algorithm 4: NCK-SVGD with Entropic Regularization.

input : {σl}Ll=1 the data-perturbing noises, sθ(x, σ) the noise conditional score function,
kψ(x,x′;σ) the noise conditional kernel, a set of initial particles {x(0)

i }ni=1,
the entropic regularizer β, an initial learning rate ε, and a maximum iteration T .

output: A set of particles {x(T )
i }ni=1 that approximates the target distribution.

for l← 1 to L do
ηl ← ε · (σl/σL)2

for t← 1 to T do
xti ← x

(t−1)
i + ηl · φ∗qt,p,β(x

(t−1)
i ), where

φ∗qt,p,β(x) = 1
n

∑n
j=1

[
kψ(x

(t−1)
j ,x;σl)sθ(x, σl) + β · ∇

x
(t−1)
j

kψ(x
(t−1)
j ,x;σl)

]
.

x
(0)
i ← x

(T )
i ,∀i = 1, . . . , n.

(a) β = 0.5 (b) β = 1.0 (c) β = 2.0 (d) β = 4.0

Figure 4.3: (non-normalized) density of p1/β where p(x) is a 2-dimensional mixture of Gaussian with
imbalance mixture weights.
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4.5 Experiments and Results

We begin with the experiment setup and show NCK-SVGD not only produces good quality images on
MNIST/CIFAR-10/CelebA datasets, but also offers flexible control between the sample quality and diver-
sity. A-SGLD is the primary competing method, and we use the recent state-of-the-art realization (Song
and Ermon, 2019) for comparison.

Network Architecture For the noise-conditional score network, we use the pre-trained model (Song
and Ermon, 2019)1. For the noise-conditional kernel, we consider a modified NCSN architecture where
the encoder consists of ResNet with instance normalization layer, and the decoder consists of U-Net-type
architecture. The critical difference to the score network is the dimension of bottleneck layer h, which
is h = 196 for MNIST and h = 512 for CIFAR-10. Note that h for both MNIST and CIFAR-10 are
considerably smaller than the data dimension, which is d = 768 for MNIST and d = 3072 for CIFAR-10.
In contrast, the dimension of the hidden layers of NCSN is around 4x larger than the data dimension.

Kernel Design We consider a Mixture of RBF and IMQ kernel on the data-space and code-space
features, as defined in Eq. (4.8). The bandwidth of RBF kernel γ(σ) = γ0/med(Xσ), wheremed(Xσ) de-
notes the median of samples’ pairwise distance drawn from anneal data distributions pσ(x̃|x). We search
for the best kernel hyper-parameters γ0 = {0.4, 0.6, 0.8, 1.0, 2.0, 4.0} and τ0 = {−0.1,−0.2,−0.3,−0.4}.

Inference Hyper-parameters Following Song and Ermon (2019), we choose L = 10 different noise
levels where the standard deviations {σi}Li=1 is a geometric sequence with σ1 = 1 and σ10 = 0.01. Note
that Gaussian noise of σ = 0.01 is almost indistinguishable to human eyes for image data. For A-SGLD,
we choose T = 100 and ε = 2 × 10−5 and α = {0.1, 0.2, . . . , 1.1, 1.2}. For NCK-SVGD, we choose
n = 128, T = 50, ε = {2, 4, 6} × 10−4, β = {0.01, 0.05, 0.1, 0.2, . . . , 1.0, . . . , 3.9, 4.0}.

Evaluation Metric We report the Inception (Salimans et al., 2016)2 and FID (Heusel et al., 2017)3

scores using 50k samples. In addition, We also present the Improved Precision Recall (IPR) curve (Kynkään-
niemi et al., 2019)4 to justify the impact of entropy regularization and kernel hyper-parameters on diversity
versus quality trade-off. For the IPR curve on MNIST, we use data-space features (i.e., raw image pixels)
to compute the KNN-3 data manifold, as gray-scale images do not apply to the VGG-16 network. For the
IPR curve on CIFAR-10, we follow the origin setting of Kynkäänniemi et al. (2019) that uses code-space
embeddings from the pre-trained VGG-16 model to construct the KNN-3 data manifold. For simplicity,
we generate 1024 samples to compute the precision and recall, and report the average of 5 runs with
different random seeds.
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(a) Ablation of NCK-SVGD (b) Comparison with A-SGLD (c) Representative samples

Figure 4.4: MNIST experiment evaluated with Improved Precision and Recall (IPR). (a) NCK-SVGD-
D (data-space kernels) and NCK-SVGD-C (code-space kernels) with varying kernel bandwidth (γ from
RBF kernel) and the entropy-regularizer α. (b) With 0.5% of A-SGLD (i.e., 5 steps at noise-level l = 0)
as initialization, NCK-SVGD-C achieves higher recall than A-SGLD. (c) Uncurated samples of NCK-
SVGD-C, including the high-precision/low-recall (A) to low-precision/high-recall (B).

4.5.1 Quantitative Evaluation

MNIST Results We analyze variants of NCK-SVGD quantitatively with IPR (Kynkäänniemi et al.,
2019) on MNIST, as shown in Figure 4.4. NCK-SVGD-D denotes the NCK-SVGD with data-space
kernels and NCK-SVGD-C as the NCK-SVGD with code-space kernels. We have three main observa-
tions. First and foremost, both NCK-SVGD-D and NCK-SVGD-C demonstrate flexible control between
the quality (i.e., Precision) and diversity (i.e., Recall) trade-off. This finding aligns well with our the-
oretical analysis on the entropy regularization constant β explicitly controls the samples diversity (i.e.,
the green and red curve in Figure 4.4a). Furthermore, the bandwidth γ of RBF kernel also impacts
the sample diversity, which attests the original study of SVGD on the repulsive term ∇x′k(x′,x) (Liu,
2017). Secondly, NCK-SVGD-C improves upon NCK-SVGD-D on the higher precision region, which
justifies the advantages from using deep noise-conditional kernel with auto-encoder learning. Finally,
when initializing with samples obtained from 5 out of 100 steps of A-SGLD at the first noise-level σ1

(i.e., 0.5% of total A-SGLD), NCK-SVGD-C achieves a higher recall compared to the SOTA A-SGLD.

CIFAR-10 Results We compare the proposed NCK-SVGD (using code-space kernels) with two repre-
sentative families of generative models: IGMs (e.g., WGAN-GP (Gulrajani et al., 2017), MoLM (Ravuri
et al., 2018), SN-GAN (Miyato et al., 2018), ProgressGAN (Karras et al., 2018)) and gradient-based
EGMs (e.g., EBM (Du and Mordatch, 2019), Short-run MCMC (Nijkamp et al., 2019), A-SGLD (Song
and Ermon, 2019), JEM (Grathwohl et al., 2020)). See Tab. 4.1 for the Inception/FID scores and Figure 4.5
for the IPR curve.

1https://github.com/ermongroup/ncsn
2https://github.com/openai/improved-gan/tree/master/inception_score
3https://github.com/bioinf-jku/TTUR
4https://github.com/kynkaat/improved-precision-and-recall-metric
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Model Inception FID

CIFAR-10 Unconditional

WGAN-GP (Gulrajani et al., 2017) 7.86 36.4
MoLM (Ravuri et al., 2018) 7.90 18.9

SN-GAN (Miyato et al., 2018) 8.22 21.7
ProgressGAN (Karras et al., 2018) 8.80 -

EBM (Ensemble) (Du and Mordatch, 2019) 6.78 38.2
Short-MCMC (Nijkamp et al., 2019) 6.21 -
A-SGLD (Song and Ermon, 2019) 8.87 25.32

NCK-SVGD 8.20 21.95

CIFAR-10 Conditional

EBM (Du and Mordatch, 2019) 8.30 37.9
JEM (Grathwohl et al., 2020) 8.76 38.4

SN-GAN (Miyato et al., 2018) 8.60 17.5
BigGAN (Brock et al., 2019) 9.22 14.73

Table 4.1: CIFAR-10 Inception and FID scores Figure 4.5: CIFAR-10 Precision-Recall Curve

(a) MNIST (b) CIFAR-10 (c) Intermediate samples

Figure 4.6: Uncurated samples generated from NCK-SVGD on MNIST and CIFAR-10 datasets.

Motivated from the MNIST experiment, we initialized the NCK-SVGD using A-SGLD samples
generated from the first 5 noise-levels {σ1, . . . , σ5}, then continue running NCK-SVGD for the remaining
latter 5 noise-levels {σ6, . . . , σ10}. This amounts to using 50% of A-SGLD as initialization.

Comparing within the gradient-based EGMs (e.g., EBM, Short-run MCMC, and A-SGLD), NCK-
SVGD achieves new SOTA FID score of 21.95, which is considerably better than the competing A-SGLD
and is even better than some class-conditional EGMs. The Inception score 8.20 is also comparable to top
existing methods, such as SN-GAN (Miyato et al., 2018).

From the IPR curve of Figure 4.5, we see that NCK-SVGD improves over the A-SGLD with sizable
margin, especially in the high recall region. This again certifies the advantage of noise-conditional kernels
and the entropy regularization indeed encourages samples with higher-recall.
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4.5.2 Qualitative Analysis

We present the generated samples from NCK-SVGD in Figure 4.6. Our generated images have higher
or comparable quality to those from modern IGM like GANs or gradient-based EGMs. To intuit the
procedure of NCK-SVGD, we provide intermediate samples in Figure 4.6c, where each row shows how
samples evolve from the initialized samples to high quality images.

Similar to the study in Section 4.3, we compare NCK-SVGD with two SVGD baselines, namely the
vanilla SVGD (i.e., SVGD) and anneal SVGD with a fixed kernel (i.e., A-SVGD), on three image gener-
ation benchmarks. From Figure 4.7, 4.8, 4.9, we observe that the proposed NCK-SVGD produces higher
quality samples comparing against two baselines, SVGD and A-SGLD. Thus, we omit the quantitative
evaluation, as the performance difference can be clearly distinguish from the sample quality alone.

(a) SVGD (b) A-SVGD (c) NCK-SVGD

Figure 4.7: SVGD baseline comparison on MNIST.

(a) SVGD (b) A-SVGD (c) NCK-SVGD

Figure 4.8: SVGD baseline comparison on CIFAR-10.

(a) SVGD (b) A-SVGD (c) NCK-SVGD

Figure 4.9: SVGD baseline comparison on CelebA.
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(a) IPR of different β (b) Corrsponding samples of different β

Figure 4.10: Varying entropy regularizer β on the Improved Precision Reccall (IPR) curve and its
corresponding samples. For A, the β = 0.01 and (P,R) = (0.99, 0.04). For B, the β = 0.2 and
(P,R) = (0.96, 0.24). For C, the β = 0.8 and (P,R) = (0.90, 0.54). For D, the β = 2.2 and
(P,R) = (0.81, 0.83). The empirical observation on MNIST’s IPR curve aligns well with our theoretical
insights on the entropy-regularization β.

4.5.3 The Effect of Entropy Regularization on Precision/Recall

From the MNIST’s IPR curve in Figure 4.10, we see the empirical evidence that supports the theoretical
insights on the entropy-regularizer β of NCK-SVGD. We visualize four representative samples on the
IPR curve, namely A,B,C,D, corresponding to different β of 0.01, 0.2, 0.8, 2.2, respectively. When β
is small (e.g., point A), the precision is high and recall is small. The resulting samples show that many
modes are disappearing. In contrary, when β is large (e.g., point D), the precision becomes lower but
recall is greatly increase. The resulting samples have better coverage in different digits.

4.6 Summary

In this chapter, we presented NCK-SVGD, a diverse and deterministic sampling procedure of high-
dimensional inference for image generations. NCK-SVGD is competitive to advance stochastic MCMC
methods such as A-SGLD, and reaching a lower FID scores of 21.95. In addition, NCK-SVGD with en-
tropic regularization offers a flexible control between sample quality and diversity, which is quantitatively
verified by the precision and recall curves.
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4.7 Appendix

4.7.1 Proof of Proposition 17

We propose to learn a distribution q such that , for β ≥ 1

min
q
Fβ(q) = KL(q, p)− (β − 1)H(q)

The first term is the fidelity term the second term controls the diversity. We have

Fβ(q) =

∫
q log(q/p) + (β − 1)

∫
q log(q)

Its first variation is given by:

DqF(q) = ∇x log

(
q

p

)
+ (β − 1)∇x log(q) = ∇x log

(
qβ

p

)

Proposition 19. Consider the continuous Stein descent

dXt = φ∗p,qt,β(Xt)dt

where:

φ∗p,qt,β(x) = Ex′∼qtsp(x
′)K(x′, x) + β∇x′K(x′, x)

We have:
dFβ(qt)

dt
= −β2S2(qt, p

1
β ).

Hence the f∗p,qtβ is a descent direction for the entropy regularized KL divergence. More importantly the

decreasing amount is the closeness in the Stein sense of qt to the smoothed distribution p
1
β .

From this proposition we see if β is small, entropic regularized stein descent, will converge to p
1
β , and

will converge only to the high likelihood modes of the distribution and we have less diversity. If β is high,
on the other hand, we see that we will have more diversity but we will target a smoothed distribution p

1
β .

Hence β controls the diversity of the sampling and the precision / recall of the sampling.

Proof. Let qt be the density of qt, We have:

∂qt
∂t

= −div(qtφ
∗
p,qt,β)
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It follows that we have:

dFβ(qt)

dt
=

∫ 〈
∇xDqF(qt),φ

∗
p,qt,β

〉
qt

=

∫ 〈
∇x log(qβt /p),φ

∗
p,qt,β

〉
qt

=

∫ 〈
φ∗p,qt,β, β∇x log(qt)− sp(x)

〉
qt

= −
(∫ 〈

sp,φ
∗
p,qt,β

〉
qt − (β)

∫ 〈
∇xqt, f∗p,qt,β

〉)
= −

(∫ 〈
sp,φ

∗
p,qt,β

〉
qt + (β)

∫
div(f∗p,qt,β)qt

)
(Using divergence theorem)

= −β2

(∫ 〈
1

β
sp,

1

β
φ∗p,qt,β

〉
qt +

1

β

∫
div(f∗p,qt,β)qt

)
= −β2S2(q, p

1
β )

≤ 0

4.7.2 Toy Experiment Setup in Section 4.3

For the results in Figure 4.1, we mainly follow the setting of Song and Ermon (2019) with

pd(x) = 0.2N ((−5,−5), I) + 0.8N ((5, 5), I).

We generate 1024 samples for each subfigure of Figure 4.1. The score function can be analytically derived
from pd. The initial samples are all uniformly chosen in the square 8× 8. For SGLD and SVGD, we use
T = 1000. For A-SGLD, A-SVGD, NCK-SVGD, we use T = 100, L = 10, σ1 = 20.0, σ10 = 1.0. The
learning rate ε is chosen from {0.1, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0}. When evaluating with Maxmimum Mean
Discrepancy Mk(Pd, Q) between the real data samples from pd and the generated samples from different
sampling methodsQ, we consider the RBF kernel and set bandwidth by median heuristic. The experiment
was run on one Nvidia 2080Ti GPU.
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Part III

Large-scale Kernel Approximations
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Chapter 5

Data-driven Random Fourier Features

5.1 Background

Kernel methods offer a comprehensive collection of non-parametric techniques for modeling a broad
range of problems in machine learning. However, standard kernel machines such as kernel SVM or
kernel ridge regression suffer from slow training and prediction which limits their use in real-world
large-scale applications. Consider, for example, the training of linear regression over n labeled data
points {(xi, yi)}ni=1 where xi ∈ Rd with n� d and yi is a binary label. The time complexity of standard
least square fit isO(nd2) and the memory demand isO(nd). Its kernel-based counterpart requires solving
a linear system with an n-by-n kernel matrix, which takes O(n3 + n2d) time and O(n2) memory usage
as typical. Such complexity is far from desirable in big-data applications.

Recently, significant efforts have been devoted into low-rank kernel approximation for enhancing the
scalability of kernel methods. Among existing approaches, random features (Rahimi and Recht, 2008,
2009) have drawn considerable attention and yielded state-of-the-art results in classification accuracy on
benchmark data sets (Huang et al., 2014; Dai et al., 2014; Li and Póczos, 2016). Specifically, inspired
from Bochner’s theorem ‘(Rudin, 1962), random Fourier features have been studied for evaluating the
expectation of shift-invariant kernels (i.e., k(x,x′) = g(x − x′) for some function g). Rahimi and Recht
(2008) estimated the expectation by Monte-Carlo methods (MC); Yang et al. (2014) leveraged the low-
discrepancy properties of Quasi-Monte Carlo (QMC) sequences to reduce integration errors.

Both the MC and QMC methods rely on the (implicit) assumption that all the M random features
are equally important, and hence assign a uniform weight 1

M to the features in kernel estimation. Such
a treatment, however, is arguably sub-optimal for minimizing the expected risk in kernel approximation.
Avron et al. (2016) presented a weighting strategy for minimizing a loose error bound which depends on
the maximum norm of data points. On the other hand, Bayesian Quadrature (BQ) is a powerful framework
that solves the integral approximation by E[f(x)] ≈

∑
m βmf(xm) where f(xm) is feature function and

βm is with non-uniform weights. BQ leverages Gaussian Process (GP) to model the prior of function f(·),
and the resulted estimator is Bayes optimal (Huszár and Duvenaud, 2012). Thus, BQ could be considered
a natural choice for kernel approximation. Nonetheless, a well-known limitation (or potential weakness)
is that the performance of Bayesian-based models relies on extensive hyper-parameter tuning, e.g., on the
condition of the covariance matrix in the Gaussian prior, which is not suitable for large-scale applications.
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To address the fundamental limitations of the aforementioned work, we propose a novel approach to
data-driven feature weighting in the approximation of shift-invariant kernels, which motivated by the
by Stein Effect in the statistical literature, and solve it using an efficient stochastic algorithm with a
convex optimization objective. We also present a natural extension of BQ to the applications of kernel
approximation. The adapted BQ together with standard MC and QMC methods serve as representative
baselines in our empirical evaluations on six benchmark data sets. The empirical results show that the
proposed Stein-Effect Shrinkage (SES) estimator consistently outperforms the baseline methods in terms
of lowering the kernel approximation errors, and was competitive to or better than the best performer
among the baseline methods in most task-oriented evaluations (on supervised learning of regression and
classification tasks).

5.1.1 Random Fourier Features

At the heart of kernel methods lies the idea that inner products in high-dimensional feature spaces can be
computed in an implicit form via a kernel function k : X × X → R, which is defined on a input data
domain X ⊂ Rd such that k(x,x′) = 〈φ(x), φ(x′)〉H, where φ : X → H is a feature map that associates
kernel k with an embedding of the input space into a high-dimensional Hilbert space H. A key to kernel
methods is that as long as kernel algorithms have access to k, one need not to represent φ(x) explicitly.
Most often, that means although φ(x) can be high-dimensional or even infinite-dimensional, their inner
products, can be evaluated by k. This idea is known as the kernel trick.

Rahimi and Recht (2008) propose a low-dimensional feature map z(x) : X → R2M for the kernel
function k

k(x,x′) ≈ 〈z(x), z(x′)〉 (5.1)

under the assumption that k fall in the family of shift-invariant kernel. The starting point is a celebrated
result that characterizes the class of positive definite functions:

Theorem 20 (Bochner’s theorem Rudin (1962)). A continuous, real valued, symmetric and shift-invariant
function k on Rd is a positive definite kernel if and only if there is a positive finite measure P(w) such that

k(x− x′) =

∫
Rd

2
[

cos(wTx) cos(wTx′) + sin(wTx) sin(wTx′)
]
dP(w). (5.2)

The most well-known kernel that belongs to the shift-invariant family is Gaussian kernel k(x − x′) =

exp(−‖x−x
′‖2

2σ2 ), the associated density P(w) is again Gaussian, N (0, σ−2Id).

Monte Carlo Estimation Rahimi and Recht (2008) approximate the integral representation of the kernel
(5.2) by Monte Carlo method as follows,

k(x− x′) ≈ 1

M

M∑
m=1

hx,x′(wm) = 〈z(x), z(x′)〉, (5.3)
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where

hx,x′(w) := 2
[

cos(wTx) cos(wTx′) + sin(wTx) sin(wTx′)
]

z(x) :=
1√
M

[φw1(x), . . . , φwM (x)] (5.4)

φw(x) :=
√

2[cos(wTx), sin(wTx)]

and w1, . . . ,wM are i.i.d. samples from P(w).
After obtaining the randomized feature map z, training data could be transformed into {(z(xi), yi}ni=1.

As long as M is sufficiently smaller than n, this leads to more scalable solutions, e.g., for regression we
get back to O(nM2) training and O(Md) prediction time, with O(nM) memory requirements. We can
also apply random features to unsupervised learning problems, such as kernel clustering (Chitta et al.,
2012).

Quasi-Monte Carlo Estimation Instead of using plain MC approximation, Yang et al. (2014) propose
to use the low-discrepancy properties of Quasi-Monte Carlo (QMC) sequences to reduce the integration
error in approximations of the form (5.3). Due to space limitation, we restrict our discussion to the
background that is necessary for understanding subsequent sections. We refer interested readers to the
comprehensive reviews (Caflisch, 1998; Dick et al., 2013) for more detailed exposition.

The QMC method is generally applicable to integrals over a unit cube. So the procedure is to first
generate a discrepancy sequence t1, . . . , tM ∈ [0, 1]d, and transform it into a sequence w1, . . . ,wM in
Rd. To convert the integral presentation of kernel (5.2) to an integral over the unit cube, a simple change
of variables suffices. For t ∈ Rd, define Φ−1(t) = [Φ−1

1 (t1), . . . ,Φ−1
d (td)] ∈ Rd, where we assume that

the density function in (5.2) can be written as p(w) =
∏M
i=1 pj(wj) and φj is the cumulative distribution

function (CDF) of pj , j = 1, . . . , d. By setting w = Φ−1(t), the integral (5.2) is equivalent to

k(x− x′) =

∫
Rd
hx,x′(w)p(w)dw =

∫
[0,1]d

hx,x′(Φ
−1(t))dt.

5.1.2 Bayesian Quadrature for Random Features

Random features constructed by either MC (Rahimi and Recht, 2008) or QMC (Yang et al., 2014) ap-
proaches employ equal weights 1/M on integrand functions as shown in (5.3). An important question is
how to construct different weights on the integrand functions to have a better kernel approximation.

Given a fixed QMC sequence, Avron et al. (2016) solve the weights by optimizing a derived error
bound based on the observed data. There are two potential weakness of Avron et al. (2016). First, Avron
et al. (2016) does not fully utilize the data information because the optimization objective only depends
on the upper bound information of |xi| instead of the distribution of xi. Second, the error bound used in
Avron et al. (2016) is potentially loose. Due to technical reasons, Avron et al. (2016) relaxes hx,x′(w) to
hx,x′(w)sinc(Tw) when they derive the error bound to optimize. It is not studied whether the relaxation
results in a proper upper bound.

On the other hand, selecting weights by such way is closely connected to the Bayesian Quadrature
(BQ), originally proposed by Rasmussen and Ghahramani (2003) and theoretically guaranteed under
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Bayes assumptions. BQ is a Bayesian approach that puts prior knowledge on functions to solve the
integral estimation problem. We first introduce the work of Rasmussen and Ghahramani (2003), and then
discuss how to apply BQ to kernel approximations.

Standard BQ considers a single integration problem with form

f̄ =

∫
f(w)dP(w). (5.5)

To utilize the information of f , BQ puts a Gaussian Process (GP) prior on f with mean 0 and covariance
matrix KGP where

KGP (w,w′) = Cov(f(w), f(w′)) = exp(−‖w −w′‖22
2σ2

GP

).

After conditioning on sample w1, · · · ,wM from P, we obtain a closed-form GP posterior over f and use
the posterior to get the optimal Bayes estimator f̂1 as

f̂ = EGP
[∫

f(w)dP(w)

]
= γ>K−1

GP f(W ) =
M∑
m=1

β
(m)
BQ f(wm),

where γm =
∫
KGP (w,wm)dP(w), βmBQ = (K−1

GPγ)m, and f(W ) = [f(w1), · · · , f(wM )]. Clearly,
the resulting estimator is simply a new weighted combination of the empirical observations f(wm) by
β

(m)
BQ derived from the Bayes perspective.

In kernel approximation, we could treat it as a series of the single integration problem. Therefore,
we could directly apply BQ on it. Here we discuss the technical issues of applying BQ on kernel
approximation. First, we need to evaluate γ. For Gaussian kernel, we derive the closed-form expression

γm =

∫
KGP (w,wm)P(w) = exp

(−‖wm − 0‖22
σ2
GP + σ−2

)
where γm is a random variable evaluated at wm.

Data-driven by Kernel Hyper-parameters The most import issue of applying BQ on kernel approxi-
mation is that it models the information of hx,x′ by the kernel KGP . In practice, we usually use Gaussian
kernel forKGP , then the feature information of (x,x′) is modeling by the kernel bandwidth. As suggested
by Rasmussen and Williams (2006), one could tune the best hyper-parameter either by maximizing the
marginal likelihood or cross-validation based on the metrics in interested. Note that the existing BQ
approximates the integral representation of a kernel function value, evaluated at a single pair of data
(x,x′). However, it is unfeasible to tune individual σGP for n2 pairs of data. Therefore, we tune a global
hyper-parameter σGP on a subset of pair data points.

1For the square loss.
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5.2 Stein Effect Shrinkage (SES) Estimator

In practice, it is well known that the performance of Gaussian Process based models heavily depend on
hyper-parameter σGP , i.e. the bandwidth of kernel function kGP . Therefore, instead of using Bayesian
way to obtain the optimal Bayes estimator from BQ, we start from the risk minimization perspective by
considering the Stein effect to derive the shrinkage estimator for random features.

The standard estimator of Monte-Carlo methods is the unbiased empirical average using equal weights
1
M for M samples which sum to 1. However, Stein effect (or James-–Stein effect) suggests a family of
biased estimators could result in a lower risk than the standard empirical average. Here we extend the
analysis of non-parametric Stein effect to the kernel approximation with random features by considering
the risk functionR(k, k′) = Ex,x′,w(k(x− x′)− k′(x− x′;w))2.
Theorem 21. (Stein effect on kernel approximation) Let k̂(x − x′,w) = 1

M

∑M
m=1 hx,x′(wm). For any

estimator µ, which is independent of x and w, there exists 0 ≤ α < 1 such that k̃(·) = αµ+ (1− α)k̂(·)
is an estimator with lower riskR(k, k̃) < R(k, k̂).

Proof. The proof closely follows Muandet et al. (2014) for a different problem under the non-parametric
setting 2. By bias-variance decomposition, we have

R(k, k̂) = Ex,x′
[
Varw(k̂(x− x′,w))

]
R(k, k̃) = (1− α)2Ex,x′

[
Varw(k̂(x− x′,w))

]
+ α2Ex,x′

[
(µ− k(x− x′))2 ].

By elementary calculation, we haveR(k, k̃) < R(k, k̂) when

0 ≤ α ≤
2Ex,x′

[
Varw(k̂(x− x′,w))

]
Ex,x′

[
Varw(k̂(x− x′,w))

]
+ Ex,x′

[
(µ− k(x− x′))2 ]

and the optimal value happened at

α∗ =
2Ex,x′

[
Varw(k̂(x− x′,w))

]
Ex,x′

[
Varw(k̂(x− x′,w))

]
+ Ex,x′

[
(µ− k(x− x′))2 ] < 1

Corollary 22. (Shrinkage estimator) If k(x−x′) > 0, there is a shrinkage estimator k̃(·) = (1−α∗)k̂(·)
that has lower risk than the empirical mean estimator k̂(·) by setting µ = 0.

The standard shrinkage estimator derived from Stein effect uses the equal weights 1−α
M to minimize

the variance; however, a non-uniform weights usually results in better performance in practice Huszár and
Duvenaud (2012). Therefore, based on the analysis of Theorem 21, we proposed the estimator k̃(x −
x′,w) =

∑M
m=1 βmh(wm) obtained by minimizing the empirical risk with the constraint

∑M
m=1 β

2
m ≤ c

to shrink the weights, where c is a small constant. With Lagrangian multiplier, we end up the following
risk minimization formulation which is data-driven by directly taking k(x,x′) into account,

min
β∈RM

∑
(x,x′)∼D

[
k(x,x′)− [z(x) ◦ z(x′)]Tβ

]2
+ λβ‖β‖2, (5.6)

2The original Stein effect has a Gaussian distribution assumption.
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where ◦ denotes the Hadamard product, and λ is the regularization coefficient to shrink the weights.
The objective function (5.6) can be further simplified as a least squares regression (LSR) formulation,

min
β∈RM

‖t− Zβ‖2 + λββ
Tβ, (5.7)

where t ∈ Rn2
, Z ∈ Rn2×M , such that for all i, j ∈ S = {1, . . . , n}, there exist a corresponding pair

mapping function ξ : ξS(i, j)→ k satisfying tk := φ(xi)
Tφ(xj) and Z(k, :) := z(xi) ◦ z(xj).

We approximately solve optimization problem (5.7) via the matrix sketching techniques (Avron et al.,
2013, 2017a; Woodruff et al., 2014):

min
β∈RM

‖St− SZβ‖2 + λββ
Tβ, (5.8)

where S ∈ Rr×n2
is the randomized sketching matrix. Solving the sketched LSR problem (5.8) now costs

only O(rd2 + Ts) where Ts is the time cost of sketching. From the optimization perspective, suppose
β∗ be the optimal solution of LSR problem (5.7), and β̃ be the solution of sketched LSR problem (5.8).
Wang et al. (2017) prove that if r = O(M/ε+ poly(M)), the the objective function value of (5.8) at β̃ is
at most ε worse than the value of (5.7) at β∗. In practice, we consider an efficient Ts = O(r) sampling-
based sketching matrix where S is a diagonal matrix with Si,i = 1/pi if row i was include in the sample,
and Si,i = 0 otherwise. That being said, we form a sub-matrix of Z by including each row of Z in the
sub-matrix independently with probability pi. Woodruff et al. (2014) suggests to set pi proportional to
‖Zi‖, the norm of ith row of Z, to have a meaningful error bound.

5.3 Experiments and Results

In this section, we empirically demonstrate the benefits of our proposed method on six data sets listed in
Table 5.1. The features in all the six data sets are scaled to zero mean and unit variance in a preprocessing
step. We consider two different tasks: i) the quality of kernel approximation and ii) the applicability in
supervised learning. Both the relative kernel approximation errors and the regression/classification errors
are reported on the test sets.

Comparing Methods and Hyper-parameters
• MC: Monte Carlo approximation with uniform weight.

• QMC: Quasi-Monte Carlo approximation with uniform weight. We adapt the implementation of
Yang et al. (2014) on Github. 3

• BQ: QMC sequence with Bayesian Quadrature weights. We modify the source code from Huszár
and Duvenaud (2012). 4

Gaussian RBF kernel is used through all the experiments where the kernel bandwidth σ is tuned on
the set {2−10, 2−8, . . . , 28, 210} that is in favor of Monte Carlo methods. For QMC method, we use
scrambling and shifting techniques recommended in the QMC literature (See Dick et al. (2013) for

3https://github.com/chocjy/QMC-features
4http://www.cs.toronto.edu/ duvenaud/
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more details). In BQ framework, we consider the GP prior with the covariance matrix kGP (w,w′) =

exp(−‖w−w
′‖22

2σ2
GP

) where σGP is tuned on the set {2−8, 2−6, . . . , 26, 28} over a subset of sampled pair data

(x,x′). Likewise, regularization coefficient λβ of in the proposed objective function (5.6) is tuned on
the set {2−8, 2−6, . . . , 26, 28} over the same subset of sampled pair data. For regression task, we solve
ridge regression problems where the regularization coefficient λ is tuned by five folds cross-validation.
For classification task, we solve L2-loss SVM where the regularization coefficient C is tuned by five
folds cross-validation. All experiments code are written in MATLAB and run on a Intel(R) Xeon(R) CPU
2.40GHz Linux server with 32 cores and 190GB memory.

(a) cpu (b) census (c) years

(d) adult (e) mnist (f) covtype

Figure 5.1: Kernel approximation results. x-axis is number of samples used to approximate the integral
and y-axis shows the relative kernel approximation error.

Quality of Kernel Approximation In our setting, the most natural metric for comparison is the quality
of approximation of the kernel matrix. We use the relative kernel approximation error ‖K − K̃‖F /‖K‖F
to measure the quality, as shown in Figure 5.1.

SES outperforms the other methods on cpu, census, adult, mnist, covtype, and is competitive with the
best baseline methods over the years data sets. Notice that SES is particularly strong when the number of
random features is relatively small. This phenomenon confirms our theoretical analysis, that is, the smaller
the random features are, the larger the variance would be in general. Our shrinkage estimator with Stein
effect enjoys better performance than the empirical mean estimators (MC and QMC) using uniformly
weighted features without shrinkage. Although BQ does use weighted random features, its performance
is still not as good as SES because tuning the covariance matrix in the Gaussian Process is rather difficult.
Moreover, it is even harder to tune a global bandwidth for all integrand functions that approximate the
kernel function.
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Dataset Task n d M MC QMC BQ SES

CPU regression 6554 21 512 3.35% 3.29% 3.29% 3.27%
Census regression 18,186 119 256 8.46% 6.60% 6.44% 6.49%
Years regression 463,715 90 128 0.474% 0.473% 0.473% 0.473%
Adult classification 32,561 123 64 16.21% 15.57% 15.87% 15.45%
MNIST classification 60,000 778 256 7.33% 7.72% 7.96% 7.71%
Covtype classification 581,012 54 128 23.36% 22.88% 23.13% 22.67%

Table 5.1: Data Statistics and Supervised learning errors. n is number of instances, d is dimension of
instances, M is number of random features. For regression, we report the relative regression error ‖y −
ỹ‖2/‖y‖2. For classification task, we report the classification error.

Supervised Learning We investigate if better kernel approximations reflect better predictions in the
supervised learning tasks. The results are shown in Table 5.1. We can see that among the same data set
(cpu, census, adult, and covtype) our method performs very well in terms of kernel approximation, and it
also yields lower errors in most of the cases of the supervised learning tasks. Note that we only present
partial experiment results on some selected number of random features. However, we also observe that
the generalization error of our proposed method may be higher than that of other state-of-the-art methods
at some other number of random features that we did not present here. This situation is also observed in
other works (Avron et al., 2016): better kernel approximation does not always result in better supervised
learning performance. Under certain conditions, less number of features (worse kernel approximation)
can play a similar role of regularization to avoid overfitting (Rudi and Rosasco, 2017). Rudi and Rosasco
(2017) suggest to solve this issue by tuning number of random features.

(a) M = 32 (b) M = 128 (c) M = 512 (d) sum of weights

Figure 5.2: A comparison of distribution of weights on adult data set. M is the number of random features.

(a) M = 64, census (b) M = 256, census (c) M = 64, covtype (d) M = 256, covtype

Figure 5.3: A comparison of different sampled size training data in solving objective function (5.8).
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Distributions of Feature Weights We are interested in the distributions of random feature weights
derived from BQ and SES. For different numbers of random features (M = 32, 128, 512), we plotted the
corresponding histograms and compared them with the equal weight of 1/M used in MC and QMC, as
shown in Figure 5.2. When the number of random features is small, the difference between BQ and SES
is big. As the number of random features increases, the weights of each method gradually converge to
a stable distribution, and get increasingly closer to the uniform weight spike. This empirical observation
agrees with the theoretical analysis we found, namely with the role of the weight estimator in the bias-
variance trade-off.

Behavior of Randomized Optimization Solver In theory, our randomized solver only needs to sample
O(M) data in our proposed objective function (5.8) to have a sufficiently accurate solution. We verify
this assertion by varying the sampled data size r in sketching matrix S and examine it affects the relative
kernel approximation errors. The results are shown in Figure 5.3. For census data set, we observe that
as the number of sampled data r exceeds the number of random features M , the kernel approximation of
our proposed method outperforms the state-of-the-art, QMC. Furthermore, the number of sampled data
required by our proposed randomized solver is still the same order of M even for a much larger data set
covtype, with 0.5 millions data points. On the other hand, BQ does not have consistent behavior regarding
the sampled data size, which is used for tuning the hyperparmaeter σGP . This again illustrates that BQ is
highly sensitive to the covariance matrix and is difficult to tune σGP on only a small subset of sampled
data. In practice, we found that we usually only need to sample up to 2 ∼ 4 times the number of random
features M to get a relatively stable and good minimizer β∗.

Uniform v.s. Non-uniform Shrinkage Weight We conducted experiments with SES using a uniform
shrinkage weight versus using non-uniform shrinkage weights on the cpu and census data sets. The results
in Figures 5.4 confirm our conjecture that non-uniform shrinkage weights are more beneficial, although
both enjoy the lower empirical risk from the Stein effect. We also observed similar behavior on other data
sets, and we omit those results.

(a) cpu data set (b) census data set

Figure 5.4: Comparison of uniform and non-uniform shrinkage weight.
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5.4 Discussion and Conclusion

Nyström methods (Williams and Seeger, 2001; Drineas and Mahoney, 2005) is yet another line of research
for kernel approximation. Specifically, eigendecomposition of the kernel matrix is achieved via low rank
factorization with various sampling techniques (Wang and Zhang, 2013). We refer interested readers to
the comprehensive study (Yang et al., 2012) for more detailed comparisons. This chapter only focus on
the study of random Fourier features.

Finally, we notice Sinha and Duchi (2016) proposes a weighting scheme for random features which
matches the label correlation matrix with the goal to optimize the supervise objective (e.g. classification
errors). In contrast, our work aims to optimize the kernel approximation, which does not require the label
information to solve weights and can be applied to different tasks after solving the weights once.

To conclude, we propose a novel shrinkage estimator, which enjoys the benefits of Stein effect w.r.t.
lowering the empirical risk compared to empirical mean estimators. Our estimator induces non-uniform
weights on the random features with desirable data-driven properties. We further provide an efficient ran-
domized solver to optimize this estimation problem for real-world large-scale applications. The extensive
experimental results demonstrate the effectiveness of our proposed method.
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Chapter 6

Kernel Contextual Bandit at Scale

6.1 Background

The contextual bandit problem is an important challenge in many real-world machine learning applications
such as online advertisement optimization (Bottou et al., 2013; Li et al., 2010). In the advertisement use-
case, the learning algorithm sequentially observes user features, places an advertisement and receives a
reward in terms of click/no-click. This is encompassed by the general contextual bandit setting (Auer,
2002; Langford and Zhang, 2008), which is defined as a sequential game of T -trials, such that in each
round t, the learner receives a context (e.g., user features), selects an action (e.g. an ad. placement),
and receives a noisy feedback of the reward (e.g. click/no-click). In this setting, the objective is to
maximize the expected cumulative reward, which involves a careful trade-off between the exploration of
all possibilities and exploitation of previously known good decisions.

As discussed in Foster et al. (2018), at a high-level, there are two families of contextual bandit
algorithms: agnostic-based (a.k.a. expert setting) and realizability-based methods. Agnostic-based meth-
ods (Langford and Zhang, 2008; Agarwal et al., 2014; Sen et al., 2018) aim to find the best expert/policy
in a class of experts Π = {π1, . . . , πM}. The regret analysis of agnostic-based methods is generically
applicable across policy classes (under mild assumptions). However, the policy optimization relies on
training cost-sensitive classification oracles, which may be expensive. Realizability-based methods use
a model based approach (the model could be either parametric or non-parametric; however tractable
algorithms are available only for a few cases). Examples include LinUCB and related kernel algorithms
(Li et al., 2010; Chu et al., 2011; Srinivas et al., 2010; Chowdhury and Gopalan, 2017) as well as
Thompson Sampling based algorithms (Agrawal and Goyal, 2013; Chowdhury and Gopalan, 2017); we
refer to Foster et al. (2018) for additional discussion.

Recently, Krishnamurthy et al. (2016); Foster et al. (2018) show that the realizability-based LinUCB
algorithm is competitive in practice with representative agnostic-based baselines that use linear policy
functions. There have been several notable efforts in extending the linear realizable reward function in
LinUCB to a more expressive function class (e.g. a Gaussian Process (Srinivas et al., 2010; Krause and
Ong, 2011), functions with small RKHS norm (Valko et al., 2013)). While RKHS functions indeed have
high expressivity, bandit algorithms using kernels are faced with computational challenges. For instance,
recall T being the time horizon, the CGP-UCB algorithm (Krause and Ong, 2011) needs O(T 3) compu-

75



tation owing to the inverse of the kernel-gram matrix. Even the incremental version KernelUCB (Valko
et al., 2013) demands O(T 2) computation, leading to intractability with large data-sets (e.g. when T is in
the tens of thousands).

Random Fourier Features (RFF), proposed in Rahimi and Recht (2008, 2009), is now a mainstream
technique that enables one to speed up kernel methods. The basic idea is to replace evaluations of (shift-
invariant) kernels by an approximation based on a finite sum of s random Fourier features. In the context
of Kernel Ridge Regression (KRR), the corresponding approximate regression problem can be solved in
O(Ts2) time and O(Ts) space, where T is the number of samples for KRR (Avron et al., 2017b). This
can lead to a considerable speed-up in the regime where s is much smaller than T .

6.2 Kernel Upper-Confident-Bound Framework

We consider the problem of stochastic contextual bandits under the predictable rewards setting. Contexts
are drawn from X ⊆ Rd and actions from a finite set A := {1, . . . , N}, for some fixed integer N . A
contextual bandit algorithm (Li et al., 2010) M participates in a sequential game of T -trials, where at
each time-step t ∈ {1, . . . , T}, the bandit algorithm M first observes contextual features xa,t ∈ X for
each arm a ∈ A. Next, based on the observations in the previous trials, M selects an arm at ∈ A and
receives the reward yat,t = f(xat,t) + εt. Here, f(·) is an unknown reward function and εt is a zero-
mean noise random variable. Finally, the bandit M improves its strategy for selecting the next arm by
augmenting its previous information with the new observation, (xat,t, at, yat,t). It should be noted that
feedback is not obtained for arms a 6= at (i.e. the unplayed arms). For simplicity, we define xt := xat,t
and yt := yat,t to be the context and reward at time t, when there is no ambiguity.

Cumulative Regret The goal of the learnerM is to maximize the cumulative reward over T trials, or
equivalently, minimize the cumulative regret, defined as R(T ) =

∑T
t=1 f(xa∗t ,t) − f(xt), where a∗t =

arg maxa∈A f(xa,t). Cumulative regret is a metric widely used in the literature Agarwal et al. (2012);
Krause and Ong (2011); Valko et al. (2013).

Assumptions and Notations The main assumption of this paper is that the reward function f lies in
Hk i.e the Reproducing Kernel Hilbert Space (RKHS) associated with a positive semi-definite kernel
k(x,y) ∈ R where x,y ∈ X . We briefly review notation and assumptions about RKHS used in this
paper, and refer interested reader to Wahba (1990); Scholkopf and Smola (2001) for more details.

Let ||f ||Hk denote the RKHS norm of a function f w.r.t the kernel k(·, ·). Note that f ∈ Hk iff ||f ||Hk
is finite. We assume that the RKHS norm of the reward function is bounded that is ||f ||Hk ≤ B. In this
work, we focus on shift-invariant kernels that is k(x,y) = k(x−y). Further we assume that k(x,x) = 1

for all x ∈ X and 0 < k(x,y) ≤ 1 for all x,y ∈ X . Of particular interest is the well-known RBF
kernel k(x,y) = exp(−γ||x−y||2) which satisfies these conditions. We also assume that the noise in the
observations (defined above) is bounded i.e |εt| < σ and i.i.d sub-gaussian for all t. Further we require
that the diameter of X is bounded by D, similar to the assumptions in Rahimi and Recht (2008); Avron
et al. (2017b).
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Kernel UCB Framework Upper Confidence Bound (UCB) algorithms have been popular in the multi-
armed bandit literature (Lai and Robbins, 1985; Auer, 2002). UCB algorithms rely on the principle
of optimism - in the context of stochastic N -armed bandits the idea is to choose the arm that has the
maximum upper bound at time t defined by µa,t + σa,t, where µa,t is the empirical mean of arm a

till that time while σa,t is a confidence estimate. These algorithms were generalized to the contextual
setting where the rewards depend linearly on the contextual features (Chu et al., 2011; Li et al., 2010).
However, linear reward assumptions are not expressive enough and unlikely to hold in practice. This
inspired the development of kernel bandit GP-UCB (Srinivas et al., 2010) and its contextual variants
CGP-UCB (Krause and Ong, 2011), which generalize the reward function from linear form to lie in
general RKHS. The theoretical guarantees were further refined in Valko et al. (2013). Gaussian Processes
(GPs) (Rasmussen, 2004) are central to these kernel bandit settings.

A GP over a domain X is denoted by GP (µ(x), k(x,x′)) and is fully specified by the mean function
µ(x) = E[f(x)] and a covariance/kernel function k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))]. w.l.o.g,
a GP prior over f is set to having prior with zero mean and its covariance as PSD kernel k(·, ·). In
this setting, after observing noisy samples yT = [y1, .., yT ] at points AT = {x1, ..,xT } such that yt =

f(xt) + εt (εt ∼ N(0, σ2 = λT )), the posterior mean and covariance of f is given by,

µT (x) = kT (x)T (KT + λT I)
−1yT ,

kT (x,x′) = k(x,x′)− kT (x)T (KT + λT I)
−1kT (x′),

σ2
T (x) , kT (x,x). (6.1)

We denote KT ∈ RT×T as the gram matrix such that the (i, j)-th entry is k(xi,xj) and kT (x) =

[k(x,x1), ..., k(x,xT )]T . In the CGP-UCB algorithm (Krause and Ong, 2011), the expected mean reward
of arm a at time t is set to µt−1(xa,t) and the upper confidence bound is set to a multiple of σt−1(xa,t),
where the prior kernel of the GP corresponds to the RKHS kernel k s.t the reward function lies inHk. For
more details, we refer readers to the original papers (Krause and Ong, 2011; Srinivas et al., 2010). Before,
we move further, it will be beneficial to define a fundamental quantity that appears in the analysis of GP
based UCB algorithms: the maximum information gain (Srinivas et al., 2010).

Maximum Information Gain We define a slightly more general version of the maximum Information
gain (Srinivas et al., 2010; Krause and Ong, 2011). Given a PSD kernel k(., .), a sequence of parameters
ΛT = {λ1, ..., λT } such that λt > 0, ∀t ∈ [T ], and an ordered subsetAT = {x1, ..xT } ⊂ X , let us define
the quantity,

I(AT , k,ΛT ) =
1

2

T∑
t=1

log
(
1 + λ−1

t σ2
t−1(xt)

)
, (6.2)

where σt() is as defined in eq. (6.1). Then the maximum information gain associated with the kernel k(., .)

and the parameters ΛT is given by,

γT (ΛT ) = max
AT

I(AT , k,ΛT ). (6.3)

Kernel Approximation Although non-parametric kernel methods are powerful universal function ap-
proximators, they often suffer from the scalability issues as number of instances increase. For example,
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the CGP-UCB algorithm (Krause and Ong, 2011) adapted to the finite arm settings requires the inversion
of the Gram-matrix at each time-step. This leads to a computational complexity of O(Nt2 + t3) at each
time-step. In Algorithm 1 of the KernelUCB paper (Valko et al., 2013), even with the online inverse
update of Kt using Schur complement (Zhang, 2006; Petersen et al., 2008), it requires O(t2) cost for
the kernel matrix vector product, for each arm a ∈ A. This together leads to O(t2N) cost per time step
t. When running contextual bandit experiment for T trials, KernelUCB results in O(T 3N) cost in total,
where N is number of arms.

On the other hand, in the linear case, LinUCB (Li et al., 2010) only requires O(d2N) cost to compute
the parameters per time step t, resulting in O(TNd2) time complexity for a total T -trail. It is clear that
LinUCB is computationally faster than KernelUCB if d < T , which typically holds as the contextual
bandit plays for a long time horizon such as tens of thousands or more.

We aim to bridge the computational gap between the kernel contextual bandits and the LinUCB
algorithm using Random Fourier features (RFF) (Rahimi and Recht, 2008, 2009). The key idea is from
Bochner’s Theorem: Any shift-invariant kernel (i.e., k(x, z) = k(x − z), k(0, 0) = 1) has an associated
density function pk(·) satisfying

k(x, z) =

∫
Rd
e−2πiηT (x−z)pk(η)dη, (6.4)

where we closely follow the notation in (Avron et al., 2017b). If we define ϕ(x,η) = e−2πiηTx, then
we have the relation k(x, z) = Eη∼pk(.)[ϕ(x,η)∗ϕ(z,η)] where ϕ(x)∗ denotes the conjugate transpose.
Therefore, with η1, ...,ηs drawn randomly from pk(.), the random Fourier features are defined as ψs(x) =
1√
s

(
ϕ(x,η1), ...., ϕ(x,ηs)

)
. This results in the approximation,

k̃s(x, z) = ψs(x)∗ψs(z) =
1

s

s∑
l=1

e−2πiηTl (x−z) (6.5)

RBF kernel is an example of (6.4) such that ψs(x) = 1√
s
(
√

2 cos(ηT1 x+b1), . . . ,
√

2 cos(ηTs x+bs)) with

η1, . . . ,ηs and b1, . . . , bs sampled independently from 1
Z exp

(
− γ‖η‖22

)
and uniformly from [0, 2π],

respectively.

For x1, ...,xt ∈ X , let Kt ∈ Rt×t denote the gram matrix such that Ki,j = k(xi,xj). Also, let
Zt,s ∈ Ct×s be a matrix such that the ith row is ψs(xi)∗. Then, K̃t,s = Zt,sZ

∗
t,s is an approximation

of the gram matrix K. Note that our focus will be on the RBF kernel, where Zt,s is real-valued and
therefore, we will use transpose and conjugate-transpose interchangeably. We restate one of the main
results from Rahimi and Recht (2008) that will be useful in subsequent sections.

Theorem 23 (Uniform Approximation Rahimi and Recht (2008)). If the space X is a compact subset
of Rd with diameter D, then the random feature approximation defined in Eq. (6.5) has the following
guarantee,

P
(
|k̃s(x, z)− k(x, z)| > ε

)
≤ δ, ∀x, z ∈ X . (6.6)

for s ≥ C(d+2)
ε2

log
(
σηD
εδ

)
, ζ(ε, δ). Here, C is a universal constant and ση = Eη∼pk [ηT η].
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6.3 Random Fourier Features for Kernel UCB

6.3.1 RFF-UCB-NI: A Non-incremental Algorithm

we propose the non-incremental version of our algorithm (RFF-UCB-NI) which uses random Fourier
features for the kernel contextual bandit problem, and compares with the CGP-UCB algorithm (Krause and
Ong, 2011). The natural way to approximate CGP-UCB would be to replace the kernel mean and variance
estimates with the corresponding approximated versions, through random Fourier features. However,
initial studies (Cortes et al., 2010b; Sutherland and Schneider, 2015; Sriperumbudur and Szabó, 2015)
suggest that O(t) random features are needed for achieving a εt = O(1/

√
t) scaling of approximation

error. A richer history of this literature is available in Li et al. (2018). However, recent work shows
much better bounds. Specifically, for kernel ridge regression (KRR), Avron et al. (2017b) shows that o(t)
random features suffices (as opposed to O(t) from prior literature), for risk bounds that are comparable
with unapproximated KRR. Furthermore, the authors in Rudi and Rosasco (2017) show that in fact, only
O(
√
t log t) features suffices for aO(1/

√
t) bound (and has minimax optimality (Caponnetto and De Vito,

2007)). We refer the interested readers to the recent papers Li et al. (2018); Sun et al. (2018); Carratino
et al. (2018); Szabó and Sriperumbudur (2018) and the references therein. It should be noted that these
risk bounds rely on spectral approximation of the kernel-gram matrix and directly analyzes the empirical
risk in KRR. This is not immediately applicable to the regret analysis in the bandit setting.

Algorithm 5: Non-Incremental RFF-UCB-NI
Initialize GP prior µ0(x) = 0 and σ0(x) = k(x,x) for all x ∈ X .
for t = 1, 2, . . . , T do

Let λt = max{t/(max{1, log t}), σ2} and st = max(11 log t (log(16 log t/δ) + 2 log t) , 2).
Receive context vectors {xa,t} for all a ∈ A.
Let σ̂2

a,t := k(xa,t,xa,t)− kt−1(xa,t)
T (K̂t−1,st + λtI)

−1kt−1(xa,t) for all a ∈ A.

Let σ̂m,t = mina σ̂a,t and define s′t = ζ
( √

βtσ̂m,t
(B+σ) log2 t

, δ
t2

)
, for ζ() defined in Theorem 23.

Let µ̂a,t = kt−1(xa,t)
T (K̂t−1,s′t

+ λtI)
−1yt.

Let at = arg maxa∈A(µ̂a,t + 3
√

2βtσ̂a,t).
Select arm at and observe reward yt. Let xt = xa,t.

In our algorithm, we incorporate the spectral bounds mentioned above, in order to provide approxima-
tion error bounds on the variance/confidence estimates for each arm. Equipped with these estimates, we
use just enough kernel random features such that the approximation error in the mean function is no more
than a multiple of the minimum confidence estimate. This leads to a data-dependent bound on the number
of RFF’s, that can be much less thanO(t) at time t. In Algorithm 5, kt−1(x) = [k(x1,x), ..., k(xt−1,x)]T ,
where xt is as defined in the algorithm. K̂t−1,s is the gram-matrix at time t, approximated by s random
features i.e K̂t−1,s = Zt−1,sZ

T
t−1,s. We set βt = 2B2 + 300γt(Λt) log3(t/δ).

The key idea in the algorithm is that a multiplicative approximation of the variance σa,t can be achieved
by using only st random features. After that, in approximating the kernel mean of any arm µa,t−1, the
approximation error |µa,t−1 − µ̂a,t−1| needs to be not more than a multiple of

√
βtσa,t, which can be
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achieved by having s′t random features for the approximating the gram-matrix in the kernel mean function.
The inversion of Zt−1,sZ

T
t−1,s+λtI can be performed by the Woodbury matrix identity Hager (1989),

as follows,

λ−1
t I− λ−2

t Zt−1,s(I + λ−1
t ZTt−1,sZt−1,s)

−1ZTt−1,s

Thus the variance and mean function for all the arms can be calculated in O(Nc2
t + c3

t ) cost at time-step
t, where ct := max(st, s

′
t).

6.3.2 Theoretical analysis of RFF-UCB-NI

In this section, we provide regret bounds and computational cost bounds for the non-incremental algorithm
(Algorithm 5). We show that we can achieve, essentially the same regret bound as the exact CGP-UCB
algorithm Krause and Ong (2011), but with a data dependent computational cost bound that can be much
lesser that

∑T
t=1O(Nt2 + t3) (cost of CGP-UCB). Our main theoretical result is provided as Theorem 24.

Theorem 24. Let Λt = {λ1, ..., λt} for λt as defined in Algorithm 5 and let γt(Λt) be as defined in
Eq. (6.3). When the reward function and the noise at each time-step follows the conditions in Section 6.2
and under the assumption that ||Kt||2 ≥ λt, the regret of Algorithm 5 satisfies the bound,

P

(
R(T ) ≤

√
81TβTγT (λT )

log(1 + λ−1
T )

,∀T

)
≥ 1− 7δ. (6.7)

The total computational cost C(T ) over T time-steps of Algorithm 5 has the data dependent bound,

C(T ) = O

(
T∑
t=1

(Nc2
t + c3

t )

)
,

where ct = max
(

22 log2(16t log t/δ), ζ
( √

βtσm,t−1

(B+σ) log2 t
, δ
t2

))
and σm,t = arg mina∈A k(xa,t,xa,t)− kt−1(xa,t)

T (Kt−1 + λtI)
−1kt−1(xa,t).

The proof is in Appendix 6.6.3. Note that σm,t is the minimum variance estimate without any
approximation, at time t.

Discussion Our theoretical bounds should be compared with CGP-UCB (Krause and Ong, 2011), for
the finite arms setting. The regret bound in Theorem 24 is order-wise the same as Theorem 1(3) in Krause
and Ong (2011). However, CGP-UCB requires a total computational cost ofO

(∑T
t=1(Nt2 + t3)

)
while

the data dependent computational cost bound of our algorithm is O
(∑T

t=1(Nc2
t + c3

t )
)

, which can be
considerably lesser than that of CGP-UCB. This is because we can approximate the variances σa,t by only
st = O(polylog(t)) random features through spectral approximation bounds on the kernel-gram matrix.
As for the kernel mean functions of each arm, we use s′t features which are sufficient for the approximation
error in the mean function not to be order-wise more than the minimum variance. In Figure 6.1, we show
the data dependent random features st and s′t specified by RFF-UCB-NI algorithm grow much slower
than t. In fact s′t is often dominated by st, which grows as O(polylog(t)). Consequently, RFF-UCB-
NI enjoy less computational cost (in running time) compared to CGP-UCB when operating the kernel
inverse. Finally, in Figure 6.1a, we show that our assumption ||Kt||2 > λt, holds on real datasets.
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(a) ‖Kt‖ versus λt (b) ‖Kt − K̂t−1,st‖/‖Kt‖ (c) #random features st
(d) running time of kernel
inverse

Figure 6.1: Running RFF-UCB-NI algorithm on letter dataset. The kernel norm assumption of Theorem
24 is verified in Figure 6.1a. Figure 6.1b plot the relative kernel approximation error. We present the
data-dependent random features st and s

′
t in comparison with time step t. Lastly, we compare the running

time of inversing the kernel matrix in GP-UCB and RFF-UCB-NI algorithms.

6.3.3 RFF-UCB: A Fast Incremental Algorithm

Inspired by the theoretical analysis of RFF-UCB-NI, we introduce a faster incremental version, namely
RFF-UCB. We consider the setting where the context xt is shared among the arms, but the reward
function fa(·) is different for different arms. LinUCB (Li et al., 2010) and its kernel variants (Krause
and Ong, 2011) are commonly evaluated in this setting in practice. In the linear case, this setting is
equivalent to fitting a single function with context being dependent on actions. We first note that, with the
Woodbury identity (Petersen et al., 2008) and the PSD property of kernel matrix, the predictive mean µ̂a,t
and confidence widths σ̂a,t of the CGP-UCB at time step t can be approximated by s RFF as:

µ̂a,t ≈ ψs(xt)TC−1
a,tZ

T
a,tya,t (6.8)

σ̂a,t ≈
√
ψs(xt)TC

−1
a,tψs(xt). (6.9)

where Za,t is the RFF matrix at time t for arm a, whose rows correspond toma(t) RFF inputs (e.g., ma(t)

contexts that are observed previously for action a), and define Ca,t := (ZTa,tZa,t + λtI). Note that with
linear kernel, ψs(xt) = xt, these equations reduce to the LinUCB algorithm.

The remaining questions are how to set the scheduling rule of random features st, and how to maintain
fast incremental update of model parameters with new instances as well as random features dynamically
increasing. In RFF-UCB-NI, we saw that st grew logarithmically in t. In RFF-UCB, we set

st = α · blog2 tc+ s0 (6.10)

where α, s0 is the slope and intercept. We found this setting to be sufficient for kernel approximation
in practice, as later supported by our empirical experiments. This suggests that our bound on st in
Theorem 24 can be possibly improved, which we leave as future work. Also, note that in practice, we
set λt = λ i.e a constant, unlike in RFF-UCB-NI.

We now present the RFF-UCB outlined in Algorithm 6. Specifically, when a new instance/context xt
arrives, we use the Sherman Morrison formula (Petersen et al., 2008) to efficiently compute the inverse of
C−1
t via a rank-one update:(

Ct + ψ(xt)ψ(xt)
T
)−1

= C−1
t +

C−1
t ψ(xt)ψ(xt)

TC−1
t

1 + ψ(xt)TC
−1
t ψ(xt)
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Similarly, when sampling new random features, we consider the Schur complement as well as the Wood-
bury identity to efficiently update the inverse C−1

t without computing it from scratch expensively. More
detailed derivations are available in Appendix 6.6.1.

Algorithm 6: RFF-UCB with fast incremental update

for t = 1, 2, . . . , T do
Observe context features xt ∈ Rd at time t.

// Incremental update model for additional RFFs
st = α · blog2 tc+ s0

if st > st−1 then
Construct Z̃a,t with new η1, . . . ,ηα ∼ pk(·)
Θa,t−1 ← UpdateFeature(Θa,t−1, Z̃a,t), ∀a ∈ A

// prediction to select arm
for a = 1, . . . , N do

µ̂a,t ← ψs(xt)
TC−1

a,tZ
T
a,tya,t

σ̂a,t ←
√
ψs(xt)TC

−1
a,tψs(xt)

pa,t ← µa,t + β · σ̂a,t
Select arm at = arg maxa∈A pa,t with ties broken arbitrarily, and Observe a real-valued
reward ya,t

// Incremental update model for additional instance
Θa,t ← UpdateInstance(Θa,t−1, ψ(xt), ya,t)

Time Complexity We analyze the computational cost of RFF-UCB, which can be divided into three
terms: 1) mean and confidence bound estimation, 2) the UpdateInstance () function, and 3) the Update-
Feature () function. For each time step t, it is straightforward to see that computing 1) and 2) together
takes O(Ns2

t ) since ZTy can be maintain incrementally. Note that O(Ns2
t ) can be as cheap as LinUCB

if st equals to data dimension as constant. For the UpdateFeature () function, the main complexity is
O
(
(tst + s2

t )α
)
. which is dominated by the first term O(tstα). Putting all together, the total cost up to T -

trail is
∑T

t=1O(Ns2
t ) +

∑k≤logT
k=1

(
α2k log k

)
, which can be simplified as O(αNT log2 T ) in total. Note

that the computational cost of RFF-UCB is close to that of LinUCB, which isO(NTd2), if d = O(log T ).

6.4 Experiment and Results

We compare the proposed RFF-UCB algorithm with representative methods across realizability-based
alternatives of UCB variants, as well as competitive methods in agnostic-based framework. Detailed
descriptions of the datasets, benchmark algorithms, as well as further experimental results are included in
Appendix 6.6.4.

82



Datasets Following Agarwal et al. (2014); Foster et al. (2018); Sen et al. (2018), we study on six
multi-class classification datasets using a transformation from a supervised setting to a contextual bandit
setting Beygelzimer et al. (2011); Dudík et al. (2011). This evaluation strategy has been widely used in
contextual bandit literature Agarwal et al. (2014); Foster et al. (2018); Sen et al. (2018). Specifically,
At each time-step, the feature (context) of an instance is revealed, following which the contextual bandit
algorithm chooses one of the N classes, and the reward observed is 1 if its the correct class otherwise it
is 0. This is bandit feedback as the correct class is never revealed, if not chosen. Table 6.1 summarizes
the dataset statistics. Since LinUCB is slow on high-dimensional dataset (i.e., CIFAR-100), we use
the pretrained VGG16 model Simonyan and Zisserman (2014)1 for feature extraction that yielded a low
dimension feature space d̃.

Dataset T N d d̃

letter 20,000 26 16 N/A
sensor 58,509 11 48 N/A
MNIST 60,000 10 780 N/A

CIFAR-100 60,000 100 3,072 512
shuttle 58,000 7 9 N/A
covtype 581,012 7 54 N/A

Table 6.1: Data statistics: T the number of instances, N the number of classes, d the number of unique
features. d̃ the number of unique features after dimension reduction. N/A denotes for not applying
dimension reduction.

Algorithms We evaluate RFF-UCB against six competitive baselines. The first two are realizability-
based methods: LinUCB Li et al. (2010) and CGP-UCB Krause and Ong (2011). LinUCB is equivalent to
the RFF-UCB without using random Fourier features but using the original features instead. CGP-UCB
is equivalent to the dual counterpart of RFF-UCB when using infinite random features.

The remaining baselines, borrowed from Bietti et al. (2018), are agnostic-based frameworks, including
ε-Greedy Langford and Zhang (2008), Online-Cover Agarwal et al. (2014), Bagging Bietti et al. (2018)
(explores a basket of policies using posterior updates and Thompson sampling), and RegCB Foster et al.
(2018) (online optimistic algorithm). For additional discussion on agnostic-based approaches, we refer to
Bietti et al. (2018).

Evaluation Each dataset is split into training set and test set. All hyper-parameters are tuned via five
folds cross-validation on the training set, see Appendix 6.6.4 for more details on the hyper-parameters
and the range of grid search. We conduct online evaluation on the test set with cumulative mean rewards
as the evaluation metric. The implemented algorithms (LinUCB, CGP-UCB and RFF-UCB) are run in
mini-batch setting with batch size 100 i.e learned parameters are only updated every 100 time-steps. All
results are averaged of 10 runs with different random seeds.

1https://github.com/geifmany/cifar-vgg

83

https://github.com/geifmany/cifar-vgg


Figure 6.2: Test reward comparison of realizability-based methods: RFF-UCB, LinUCB and CGP-UCB
methods. The y-axis is test rewards and x-axis is number of examples (rounds). Results are averaged
under 10 different random seeds.

Figure 6.3: Running time comparison of realizability-based methods: RFF-UCB, LinUCB and CGP-
UCB algorithms. The y-axis is running time and x-axis is number of examples (rounds). Results are
averaged under 10 different random seeds.

Comparison to realizability-based models Figure 6.2 and Figure 6.3 show the performance of the
methods in cumulative mean reward and their running time curves on three representative datasets, re-
spectively. More results on the remaining datasets are available in Appendix 6.6.4 due to the space limits.

The proposed RFF-UCB performs almost equally as good as CGP-UCB, suggesting the number of
random features st for kernel approximation is sufficient. Importantly, the number of random features (i.e.,
#RFF) st = α·blog2 tc+s0 controls the trade-off between kernel approximation quality and computational
efficiency. In one extreme, when st is equal to the feature dimension d, then the computational cost of
RFF-UCB is almost the same as LinUCB but the performance of the method would be sub-optimal due
to inaccurate kernel approximation. In the other extreme, when st is in the same order of O(t), although
enjoying good kernel approximation, there’s no saving in the computation cost, ending with same time
complexity as in CGP-UCB.

With reasonable choices of s0 and α by our scheduling rule (6.10), the performance of RFF-UCB
is very competitive in comparison with CGP-UCB while enjoying significantly less running time than
CGP-UCB. As shown in Figure 6.3 (and Figure 6.6 in the Appendix), RFF-UCB has a speedup of more
than 10x over to CGP-UCB in regions with a large T (e.g. T > 103). Interestingly, for high dimensional
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Figure 6.4: Test reward comparison of agnostic-based approaches: ε-Greedy, Online-Cover, Bagging,
and RegCB algorithms. The y-axis is test rewards and x-axis is number of examples (rounds). Results
are averaged under 10 different random seeds.

datasets such as MNIST and CIFAR-100, the running time of RFF-UCB becomes very close to or even
faster than that of LinUCB. In other words, when st = O(log t) is smaller than feature dimension d, RFF-
UCB can actually performs as good as the exact kernel UCB algorithm CGP-UCB while maintaining the
low computation cost as the linear model LinUCB. A more comprehensive study of different scheduling
rule for st is presented in Appendix 6.6.4.

Comparison to agnostic-based approaches We now show how RFF-UCB performs in comparison
with other state-of-the-art contextual bandit solvers implemented in the Vowpal Wabbit (VW) library.
Figure 6.4 shows the test-set cumulative mean rewards on all the six datasets.

Overall, the proposed RFF-UCB algorithm outperforms all agnostic-based algorithms except on the
CIFAR-100 dataset; the second best algorithm is RegCB, which has performed strongly in the contextual
bandit literature Foster et al. (2018); Bietti et al. (2018). A crucial fact worth noticing is that all the
agnostic-based algorithms implemented in VW only support linear reward functions, with the choice of
bagging over multiple learners. Thus, it is less surprising to see the kernel contextual bandit algorithms
such as RFF-UCB and CGP-UCB with non-linear reward functions to have superior performance over
those with linear oracles. A supporting evidence of the above argument can be found in the CIFAR-100
results of Figure 6.4. Note that for feature extraction from CIFAR-100 we used a pretrained deep neural
network with VGG16 architecture Simonyan and Zisserman (2014). The extracted feature representations
already provide good classification accuracy through a logistic output layer in the original model. In this
case, the advantage of kernel contextual bandit algorithms becomes less clear.
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Finally, we omit the running time comparison between RFF-UCB and the agnostic-based frameworks
implemented in Vowpal Wabbit. It is important to note that our implementation of RFF-UCB is based
on Python with Numpy and Scipy package while Vowpal Wabbit library is implemented in C/C++ with
highly optimized packages, thus making it hard to compare the running times.

6.5 Summary

In this chapter, we present computational efficient kernel UCB algorithms via random Fourier features.
For the non-incremental RFF-UCB-NI algorithm, we not only prove the same order of regret bound
as of CGP-UCB, but also derive a data dependent bound for the computational cost, which is much
less than that of non-approximated kernel UCB algorithms. Motivated by this theory, we propose a fast
incremental algorithm (RFF-UCB) and show that it empirically performed comparably or better than the
other representative baseline methods on multiple benchmark datasets, while being more than 10x faster
compared to other kernel UCB algorithms.
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6.6 Appendix

6.6.1 Derivation Details of RFF-UCB Online Update

Algorithm 7: UpdateFeature(Θ, Z̃) via Schur Complement

Define B := ZT Z̃ (s× r matrix)
Define D := Z̃T Z̃ (r × r matrix)

// update Z and C

Z← [Z, Z̃]

C11 ← C, C22 ← D

C12 ← B, C21 ← BT

Cnew ← [C11,C12;C21,C22]

// update ZTy and C−1

ZTy← [ZTy; Z̃Ty], M := D−BTC−1B

C−1
11 ← C−1 + (C−1B)M−1(C−1B)T

C−1
12 ← −C−1BM−1, C−1

21 ← −M−1BC−1

C−1
22 ←M−1

C−1 ← [C−1
11 ,C

−1
12 ;C−1

21 ,C
−1
22 ]

Algorithm 8: UpdateInstance(Θ, ψ(xt), yt) via Sherman-Morrison rank-one update

C← C + ψ(xt)ψ(xt)
T

Define vt := C−1ψs(xt)

C−1 ← C−1 − (1 + σ̂2
t )
−1vtv

T
t

ZTy← ZTy + yt · ψs(xt)
Z← [Z;ψs(xt)

T ]

y← [y; yt]

6.6.2 Kernel Approximation Guarantees

In this section, we introduce two main kernel approximation results. The first one is adapted from a bound
on the approximation error of kernel ridge regression in Cortes et al. (2010b). This will be useful in
bounding the approximation gaps in the posterior kernel mean function in our algorithm.
Theorem 25 ( Cortes et al. (2010b)). Let Kt ∈ Rt×t denote the kernel gram matrix and K̂t,s be its
approximation using s random features. Let µt(x) be as defined in Eq. 6.1. and let µ̂t,s(x) be its
approximated version with Kt replaced by Kt,s. Then, we have the following,

|µ̂t,s(x)− µt(x)| ≤ (B + σ)t||K̂t,s −Kt||2
λ2
t

≤ (B + σ)t2||K̂t,s −Kt||∞
λ2
t

(6.11)

The next theorem provides spectral approximation bounds for the random Fourier features.
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Theorem 26 ( Avron et al. (2017b)). Let Kt be the kernel gram matrix at time t and K̂t,s be its approxi-
mation using s random features. Then we have,

(1−∆)(Kt + λtI) 4 (K̂t,s + λtI) 4 (1 + ∆)(Kt + λtI) (6.12)

with probability at least 1− δ, provided s ≥ 8
3∆2

t
λt

log
(

16 t
(λtδ)

)
and ||Kt||2 ≥ λt.

This leads us to our first lemma which says that with the choice of number of random features in
Algorithm 5, the difference between the true variance and approximated are uniformly bounded.
Lemma 27. Let σ2

a,t := k(xa,t,xa,t) − kt−1(xa,t)
T (Kt−1 + λtI)

−1kt−1(xa,t) be the actual variance
estimates for all a ∈ A. Let σ̂2

a,t be the approximated one, as defined in Algorithm 5. Then, we have the
following,

P
(

1

2
σ2
a,t ≤ σ̂2

a,t ≤
3

2
σ2
a,t, ∀a ∈ A, t ∈ [T ]

)
≥ 1− π2

6
δ

Proof. This follows directly from Theorem 26. Recall the definition of st and substitute δ/t2 in place of
δ in Theorem 26. Putting in ∆ = 1/2, and observing that st ≥ 8

3∆2
t
λt

log
(

16 t
(λt(δ/t2))

)
, we have that,

1

2
kt−1(xa,t)

T (Kt−1 + λtI)
−1kt−1(xa,t) ≤ kt−1(xa,t)

T (K̂t−1,st + λtI)
−1kt−1(xa,t)

≤ 3

2
kt−1(xa,t)

T (Kt−1 + λtI)
−1kt−1(xa,t), for all a ∈ A

with probability at least 1− δ
t2

. Substituting the above in the expression of σ̂2
a,t and σ2

a,t and applying an
union bound over all t yields the lemma, since

∑
(1/t2) ≤ π2/6.

This brings us to our second key approximation lemma which bounds the difference in the approxi-
mation of the kernel mean function.
Lemma 28. Let µa,t = kt−1(xa,t)

T (Kt−1 +λtI)
−1yt, be the actual mean estimate for arm a ∈ A. Then

for the choice of parameters in Algorithm 5, we have the following bound,

P

(
|µ̂a,t − µa,t| ≤

√
3

2
βtσm,t ∀a ∈ A, t ∈ [T ]

)
≥ 1− π2

3
δ.

Proof. By Theorem 23, and the choice of s′t in Algorithm 5, we have that,

||K̂t,s −Kt||∞ ≤
√
βtσ̂m,t

(B + σ) log2 t

≤

√
3
2βtσm,t

(B + σ) log2 t
,

with probability 1− δ
t2

, given that the h.p event in Lemma 27 holds. Therefore, by Theorem 25, we have,

|µ̂a,t − µa,t| ≤
√

3

2
βtσm,t ∀a ∈ A
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w.p 1− δ
t2

, given that the h.p event in Lemma 27 holds. Let E1 be the h.p event in Lemma 27. Then, we
have that,

P

(
|µ̂a,t − µa,t| >

√
3

2
βtσm,t for any a ∈ A, t ∈ [T ]

)

≤P

(
|µ̂a,t − µa,t| >

√
3

2
βtσm,t for any a ∈ A, t ∈ [T ] | E1

)
+ P(Ec1)

≤
T∑
t=1

δ

t2
+
π2

6
δ ≤ π2

3
δ.

This completes the proof.

6.6.3 Regret Bound

In this section, we first show that the true mean function can closely approximate the reward function f ,
and then go on to show that the approximated mean function is not too far away from the true kernel mean
estimates. This is sufficient to show the final regret bound.
Theorem 29 (Srinivas et al. (2010)). Consider the true kernel mean estimate µa,t = kt−1(xa,t)

T (Kt−1 +

λtI)
−1yt. We have the following high-probability bounds,

P
(
|f(xa,t)− µa,t| ≤

√
βtσa,t ∀a ∈ A, t ∈ [T ]

)
≥ 1− δ.

Now, we are ready to prove our main theorem.

Proof of Theorem 24. From Theorem 29 and Lemma 28 we have that,

P

(
|f(xa,t)− µ̂a,t| ≤

(
1 +

√
3

2

)√
βtσa,t ∀a ∈ A, t ∈ [T ]

)
≥ 1−

(
1 +

π2

3

)
δ

=⇒ P
(
|f(xa,t)− µ̂a,t| ≤ 3

√
βtσa,t ∀a ∈ A, t ∈ [T ]

)
≥ 1− 7δ

Let E =
{
|f(xa,t)− µ̂a,t| ≤ 3

√
βtσa,t ∀a ∈ A, t ∈ [T ]

}
be the h.p event in the equation above. Let at

be the arm chosen at time t. Given E, we have the following,

µ̂at,t + 3
√

2βtσ̂at,t ≥ µ̂a∗,t + 3
√

2βtσ̂a∗,t ≥ µ̂a∗,t + 3
√
βtσa∗,t ≥ f(xa∗,t).

This implies that,

rt = f(xa∗,t)− f(xat,t) ≤ 3(1 +
√

3)
√
βσat,t ≤ 9

√
βσat,t

Therefore, given E, we have,
∑T

t=1 r
2
t ≤

∑T
t=1 81βtσ

2(xat,t). Now, we have that,

βtσ
2(xat,t) ≤ βTλt(λ−1

t σ2(xat,t)) ≤ βT
1

log(1 + λ−1
t )

log(1 + λ−1
t σ2(xat,t))

≤ βT
1

log(1 + λ−1
T )

log(1 + λ−1
t σ2(xat,t))

since s2 ≤ C log(1 + s2), for s ∈ [0, λ−1
t ], where C = λ−1

t / log(1 + λ−1
t ). Note that σ2(xat,t) ≤ 1.

The result follows from the fact that R(T )2 ≤ T
∑T

t=1 r
2
t .
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Figure 6.5: Test Rewards of RFF-UCB versus GP-UCB

6.6.4 Additional Experiment settings and Results

Hyper-parameters For agnostic-based approaches, we consider the implementation of the well-known
online learning system Vowpal Wabbit (VW)2 with the linear predictive class. For ε-Greedy, we tune
the constant ε ∈ {0.01, 0.05, 0.10, 0.15, 0.25, 0.30, 0.35}. For Online-Cover and Bagging, we tune
number of policies M ∈ {1, 2, 4, 8, 16, 32} and set the reduction method to be doubly robust estimator.
For RegCB, we search the mellowness parameter C0 ∈ 10{−1,−2,−3,−4} and tune the reduction method
from either DR or MTR. For realizability-based algorithms, we implement LinUCB, CGP-UCB, RFF-
UCB and tune the exploration coefficient β ∈ {0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45}. For kernel UCB
algorithms CGP-UCB and RFF-UCB, we first compute the kernel bandwidth using medium heuristic ,
denoted as γ0, and search the best bandwidth γ = γ0 · c0 where c0 ∈ {0.25, 0.50, 1, 2, 4}.

Additional Results We present additional experiment results of the realizability-based methods, as
shown in Figure 6.5 and Figure 6.6. In general, RFF-UCB is close to the performance of CGP-UCB,
while being more than 10x faster most cases, except on the letter dataset. On covtype and shuttle dataset,
RFF-UCB is even 100x faster than CGP-UCB.

Figure 6.7 and Figure 6.8 demonstrate RFF-UCB algorithm set by a variety choices of (α, s0) ap-
peared in the scheduling rule st (Eq. (6.10)). Specifically, we examine α = {32, 64, 128, 256} and
s0 = {128, 256, 512}.

2http://hunch.net/~vw/
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Figure 6.6: Running time of RFF-UCB versus GP-UCB

Figure 6.7: Test Rewards of RFF-UCB versus GP-UCB
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Figure 6.8: Running time of RFF-UCB versus GP-UCB
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Part IV

Extensions to Time-Series and
Graph-based Learning
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Chapter 7

Kernel Change-point Detection

7.1 Background

Detecting changes in the temporal evolution of a system (biological, physical, mechanical, etc.) in time
series analysis has attracted considerable attention in machine learning and data mining for decades
(Basseville et al., 1993; Brodsky and Darkhovsky, 2013). This task, commonly referred to as change-
point detection (CPD) or anomaly detection, aims to predict significant changing points in a temporal
sequence of observations. CPD has a broad range of real-world applications such as medical diagnostics
(Gardner et al., 2006), industrial quality control (Basu and Meckesheimer, 2007), financial market analysis
(Pepelyshev and Polunchenko, 2015), video anomaly detection (Liu et al., 2018) and more.

Figure 7.1: A sliding window over the time
series input with two intervals: the past and
the current, where wl, wr are the size of
the past and current interval, respectively.
X(l), X(r) consists of the data in the past and
current interval, respectively.

As shown in Figure 7.1, we focus on the retrospective
CPD (Takeuchi and Yamanishi, 2006; Li et al., 2015a),
which allows a flexible time window to react on the change-
points. Retrospective CPD not only enjoys more robust de-
tection (Chandola et al., 2009) but embraces many applica-
tions such as climate change detection (Reeves et al., 2007),
genetic sequence analysis (Wang et al., 2011), networks
intrusion detection (Yamanishi et al., 2004), to name just
a few. Various methods have been developed (Gustafsson
and Gustafsson, 2000), and many of them are parametric
with strong assumptions on the distributions (Basseville
et al., 1993; Gustafsson, 1996), including auto-regressive
models (Yamanishi and Takeuchi, 2002) and state-space
models (Kawahara et al., 2007) for tracking changes in the
mean, the variance, and the spectrum.

Ideally, the detection algorithm should be free of distributional assumptions to have robust perfor-
mance as neither true data distributions nor anomaly types are known a priori. Thus the parametric
assumptions in many works are unavoidably a limiting factor in practice. As an alternative, nonparametric
and kernel approaches are free of distributional assumptions and hence enjoy the advantage to produce
more robust performance over a broader class of data distributions.
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Kernel two-sample test has been applied to time series CPD with some success. For example, Har-
chaoui et al. (2009) presented a test statistic based upon the maximum kernel fisher discriminant ratio for
hypothesis testing and Li et al. (2015a) proposed a computational efficient test statistic based on maximum
mean discrepancy with block sampling techniques. The performance of kernel methods, nevertheless,
relies heavily on the choice of kernels. Gretton et al. (2007, 2012a) conducted kernel selection for RBF
kernel bandwidths via median heuristic. While this is certainly straightforward, it has no guarantees of
optimality regarding to the statistical test power of hypothesis testing. Gretton et al. (2012b) show explic-
itly optimizing the test power leads to better kernel choice for hypothesis testing under mild conditions.
Kernel selection by optimizing the test power, however, is not directly applicable for time series CPD due
to insufficient samples, as we discuss in the following.

Notations and Settings Given a sequence of d-dimensional observations {x1, . . . , xt, . . .}, xi ∈ Rd,
our goal is to detect the existence of a change-point1 such that before the change-point, samples are i.i.d
from a distribution P, while after the change-point, samples are i.i.d from a different distribution Q.

Notice that there are multiple settings for change point detection (CPD) where samples could be
piecewise iid, non-iid autoregressive, and more. It is truly difficult to come up with a generic framework
to tackle all these different settings. In this work, following the previous CPD works (Harchaoui et al.,
2009; Kawahara et al., 2007; Matteson and James, 2014; Li et al., 2015a), we stay with the piecewise iid
assumption of the time series samples.

Two-sample Test Hypothesis test offers thorough statistical guarantees of whether two finite sample
sets are the same distribution. Following Gretton et al. (2012a), the hypothesis test is defined by the null
hypothesis H0 : P = Q and alternative H1 : P 6= Q, using test statistic mM̂k(X,Y ). peter: provide
a hyper-link to MMD definition! For a given allowable false rejection probability α (i.e., false positive
rate or Type I error), we choose a test threshold cα and reject H0 if mM̂k(X,Y ) > cα. We now describe
the objective to choose the kernel k for maximizing the test power (Gretton et al., 2012b; Sutherland et al.,
2017). First, note that, under the alternative H1 : P 6= Q, M̂k is asymptotically normal,

M̂k(X,Y )−Mk(P,Q)√
Vm(P,Q)

D−→ N (0, 1), (7.1)

where Vm(P,Q) denotes the asymptotic variance of the M̂k estimator. The test power is then

Pr
(
mM̂k(X,Y ) > cα

)
−→ Φ

( Mk(P,Q)√
Vm(P,Q)

− cα

m
√
Vm(P,Q)

)
(7.2)

where Φ is the CDF of the standard normal distribution. Given a set of kernels K, We aim to choose a
kernel k ∈ K to maximize the test power, which is equivalent to maximizing the argument of Φ.

1Technically speaking, two-sample test only informs whether two finite sample sets are from the same distribution or not.
We abuse the change-point notation as equivalent to that two sample sets differs in distribution. One can further apply other
segmentation techniques such as maximum partition strategy to locate a single change point after the detection of two-sample
test.
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7.2 Optimizing Test Power of Kernel CPD

In time series CPD, we denote P as the distribution of usual events and Q as the distribution for the event
when change-points happen. The difficulty of choosing kernels via optimizing test power in Eq. (7.2) is
that we have very limited samples from the abnormal distribution Q. Kernel learning in this case may
easily overfit, leading to sub-optimal performance in time series CPD.

7.2.1 Difficulties of Optimizing Kernels for CPD

To demonstrate how limited samples of Q would affect optimizing test power, we consider kernel selection
for Gaussian RBF kernels on the Blobs dataset (Gretton et al., 2012b; Sutherland et al., 2017), which is
considered hard for kernel two-sample test. P is a 5 × 5 grid of two-dimensional standard normals, with
spacing 15 between the centers. Q is laid out identically, but with covariance εq−1

εq+1 between the coordinates
(so the ratio of eigenvalues in the variance is εq). Left panel of Fig. 7.2 shows X ∼ P (red samples),
Y ∼ Q (blue dense samples), Ỹ ∼ Q (blue sparse samples) with εq = 6. Note that when εq = 1, P = Q.

For εq ∈ {4, 6, 8, 10, 12, 14}, we take 10000 samples for X,Y and 200 samples for Ỹ . We consider
two objectives: 1) median heuristic; 2) max-ratio ηk∗(X,Y ) = arg maxk M̂k(X,Y )/

√
Vm(X,Y ); for

choosing kernels among 20 kernel bandwidths. We repeat this process 1000 times and report the test
power under false rejection rate α = 0.05. As shown in the right panel of Fig. 7.2, optimizing kernels
using limited samples Ỹ significantly decreases the test power compared to Y (blue curve down to the
cyan curve). This result not only verifies our claim on the inaptness of existing kernel learning objectives
for CPD task, but also stimulates us with the following question, How to optimize kernels with very limited
samples from Q, even none in an extreme?

7.2.2 A Practical Lower Bound on Optimizing Test Power

We first assume there exist a surrogate distribution G that we can easily draw samples from (Z ∼ G,
|Z| � |Ỹ |), and also satisfies the following property:

Mk(P,P) < Mk(P,G) < Mk(P,Q),∀k ∈ K. (7.3)

Besides, we assume dealing with non trivial case of P and Q where a lower bound 1
mvl ≤ Vm,k(P,Q), ∀k

exists. Since Mk(P,Q) is bounded, there exists an upper bound vu. With bounded variance vl
m ≤

Vm,k(P,Q) ≤ vu
m condition, we derive an lower bound γk∗(P,G) of the test power

max
k∈K

Mk(P,Q)√
Vm(P,Q)

− cα/m√
Vm(P,Q)

≥ max
k∈K

Mk(P,Q)√
vu/m

− cα√
mvl

≥ max
k∈K

Mk(P,G)√
vu/m

− cα√
mvl

, γk∗(P,G).

(7.4)

Just for now in the blob toy experiment, we artifact this distribution G by mimicking Q with the
covariance εg = εq−2. We defer the discussion on how to find G in the later paragraph. Choosing kernels
via γk∗(X,Z) using surrogate samples Z ∼ G, as represented by the green curve in Fig. 7.2, substantially
boosts the test power compared to ηk∗(X, Ỹ ) with sparse samples Ỹ ∼ Q. This toy example not only
suggesets that optimizing kernel with surrogate distribution G leads to better test power when samples
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Figure 7.2: Left: 5 × 5 Gaussian grid, samples from P, Q and G. We discuss two cases of Q, one of
sufficient samples, the other of insufficient samples. Right: Test power of kernel selection versus εq.
Choosing kernels by γk∗(X,Z) using a surrogate distribution G is advantageous when we do not have
sufficient samples from Q, which is typically the case in time series CPD task.

from Q are insufficient, but also demonstrates that the effectiveness of our kernel selection objective holds
without introducing any autoregressive/RNN modeling to control the Type-I error.

Test Threshold Approximation The test threshold cα is a function of k and P. Under H0 : P = Q,
mM̂k(X,Y ) converges asymptotically to a distribution that depends on the unknown data distribution
P (Gretton et al., 2012a, Theorem 12); thus there is no analytical form of cα, which makes optimizing
Eq. (7.4) difficult. Commonly-used heuristics iteratively estimate cα by the permutation test and fixing it
during optimization (Sutherland et al., 2017), which is computationally demanding and non-differentiable.

For X,X ′ ∼ P, we know that cα is a function of the empirical estimator M̂k(X,X
′) that controls the

Type I error. Bounding M̂k(X,X
′) could be an approximation of bounding cα. Therefore, we propose

the following objective that maximizing a lower bound of test power

arg max
k∈K

Mk(P,G)− λM̂k(X,X
′), (7.5)

where λ is a hyper-parameter to control the trade-off between Type-I and Type-II errors, as well as
absorbing the constants m, vl, vu in variance approximation. Note that in experiment, the optimization
of Eq. (7.5) is solved using the unbiased estimator of Mk(P,G) with empirical samples.

7.2.3 Surrogate Distributions using Generative Models

The remaining question is how to construct the surrogate distribution G without any sample from Q.
Injecting random noise to P is a simple way to construct G. While straightforward, it may result in a
sub-optimal G because of sensitivity to the level of injected random noise. As no prior knowledge of Q,
to ensure (7.3) hold for any possible Q (e.g. Q 6= P but Q ≈ P), intuitively, we have to make G as closed
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to P as possible. We propose to learn an auxiliary generative model Gθ parameterized by θ such that

M̂k(X,X
′) < min

θ
Mk(P,Gθ) < Mk(P,Q), ∀k ∈ K.

To ensure the first inequality hold, we set early stopping criterion when solving Gθ in practice. Also, if
P is sophisticate, which is common in time series cases, limited capacity of parametrization of Gθ with
finite size model (e.g. neural networks) (Arora et al., 2017) and finite samples of P also hinder us to fully
recover P. Thus, we derive a min-max formulation to consider all possible k ∈ K when we learn G,

min
θ

max
k∈K

Mk(P,Gθ)− λM̂k(X,X
′), (7.6)

and solve the kernel for the hypothesis test in the mean time. In experiment, we use simple alternative
(stochastic) gradient descent to solve each other.

7.3 KLCPD: Realization for Time Series Applications

In this section, we present a realization of the kernel learning framework for time series CPD.

Compositional Kernels To have expressive kernels for complex time series, we consider compositional
kernels k̃ = k ◦ f that combines RBF kernels k with injective functions fφ:

K =
{
k̃ | k̃(x, x′) = exp(−‖fφ(x)− fφ(x)′‖2)

}
. (7.7)

The resulted kernel k̃ is still characteristic if f is an injective function and k is characteristic (Gretton
et al., 2012a). This ensures the MMD endowed by k̃ is still a valid probabilistic distance. One example
function class is {fφ|fφ(x) = φx, φ > 0}, equivalent to the kernel bandwidth tuning. Inspired by the
recent success of combining deep neural networks into kernels (Wilson et al., 2016; Al-Shedivat et al.,
2017; Li et al., 2017), we parameterize the injective functions fφ by recurrent neural networks (RNNs) to
capture the temporal dynamics of time series.

For an injective function f , there exists a function F such that F (f(x)) = x, ∀x ∈ X , which can
be approximated by an auto-encoder via sequence-to-sequence architecture for time series. One practical
realization of f would be a RNN encoder parametrized by φ while the function F is a RNN decoder
parametrized by ψ trained to minimize the reconstruction loss. Thus, our final objective is

min
θ

max
φ

Mfφ

(
P,Gθ

)
− λ · M̂fφ

(
X,X ′

)
− β · Eν∈P∪Gθ‖ν − Fψ

(
fφ(ν)

)
‖22. (7.8)

Practical Implementation In practice, we consider two consecutive windows in mini-batch to esti-
mate M̂fφ

(
X,X ′

)
in an online fashion for the sake of efficiency. Specifically, the sample X ∼ P is

divided into the left window segment X(l) = {xt−w, . . . , xt−1} and the right window segment X(r) =

{xt, . . . , xt+w−1} such that X = {X(l), X(r)}. We now reveal implementation details of the auxiliary
generative model and the deep kernel.
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Generator gθ Instead of modeling the explicit density Gθ, we model a generator gθ where we can draw
samples from. The goal of gθ is to generate plausibly counterfeit but natural samples based on historical
X ∼ P, which is similar to the conditional GANs (Mirza and Osindero, 2014). We use sequence-to-
sequence (Seq2Seq) architectures (Sutskever et al., 2014) where gθe encodes time series into hidden states,
and gθd decodes it with the distributional autoregressive process to approximate the surrogate sample Z:

H = gθe
(
X(l),0

)
, h̃ = ht−1 + ω, Z = gθd

(
X

(r)
�1, h̃

)
.

where ω ∼ P(W ) is a dh-dimensional random noise sampled from a base distribution P(W ) (e.g.,
uniform, Gaussian). H = [ht−w, . . . , ht−1] ∈ Rdh×w is a sequence of hidden states of the generator’s
encoder. X(r)

�1 = {0, xt, xt+1, . . . , xt+w−2} denotes right shift one unit operator over X(r).

Deep Kernel Parametrization We aim to maximize a lower bound of test power via back-propagation
on φ using the deep kernel form k̃ = k ◦ fφ. On the other hand, we can also view the deep kernel
parametrization as an embedding learning on the injective function fφ(x) that can be distinguished by
MMD. Similar to the design of generator, the deep kernel is a Seq2Seq framework with one GRU layer of
the follow form:

Hν = fφ
(
ν
)
, ν̂ = Fψ

(
Hν

)
.

where ν ∼ P ∪Gθ are from either the time series data X or the generated sample Z ∼ gθ(ω|X).

We present an realization of KL-CPD in Algorithm 9 with the weight-clipping technique. Note that
other advanced regularization techniques such as gradient penalty (Gulrajani et al., 2017) and spectral
normalization (Miyato et al., 2018) are also applicable. The stopping condition is based on a maximum
number of epochs or the detecting power of kernel MMD Mfφ

(
P,Gθ) ≤ ε. This ensure the surrogate Gθ

is not too close to P, as motivated in Section 7.2.3.

Algorithm 9: KL-CPD, our proposed algorithm.
input : α the learning rate, c the clipping parameter,w the window size, nc the number of

iterations of deep kernels training per generator update.
while Mk◦fφ(P,Gθ) > ε do

for t = 1, . . . , nc do
Sample a minibatch Xt ∼ P, denote Xt = {X(l)

t , X
(r)
t }, and ω ∼ P(Ω)

gradient(φ)← ∇φMk◦fφ
(
P,Gθ

)
− λM̂k◦fφ

(
X

(l)
t , X

(r)
t

)
− βEν∼P∪Gθ‖ν − Fψ

(
fφ(ν)

)
‖22

φ← φ+ α · RMSProp(φ, gradient(φ))

φ← clip(φ,−c, c)
Sample a minibatch Xt′ ∼ P, denote Xt′ = {X(l)

t′ , X
(r)
t′ }, and ω ∼ P(Ω)

gradient(θ)← ∇θMk◦fφ
(
P,Gθ

)
θ ← θ − α · Adam(θ, gradient(θ))
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7.3.1 Relations to MMD GAN

Lastly, we remark that although our proposed method KL-CPD has a similar objective function as ap-
peared in MMD GAN (Li et al., 2017), we would like to point out the underlying interpretation and
motivations are radically different, as summarized below.

The first difference is the interpretation of inner maximization problem maxkMk(P,G). MMD
GANs (Li et al., 2017; Bińkowski et al., 2018) treat whole maximization problem maxkMk(P,G) as
a new probabilistic distance, which can also be viewed as an extension of integral probability metric
(IPM). The properties of the distance is also studied in Li et al. (2017); Arbel et al. (2018). A follow-up
work (Arbel et al., 2018) by combining Mroueh et al. (2018) pushs maxkMk(P,G) further to be a scaled
distance with gradient norm. However, the maximization problem (7.4) in this work defines the lower
bound of the test power, which also takes the variance of the empirical estimate and the test threshold
approximation into account, instead of the distance.

Regarding the goals, MMD GAN aims to learn a generative model that approximates the underly-
ing data distribution P of interests. All the works (Dziugaite et al., 2015; Li et al., 2015b; Sutherland
et al., 2017; Li et al., 2017; Bińkowski et al., 2018; Arbel et al., 2018; Li et al., 2019) use MMD or
maxkMk(P,G) to define distance, then optimize G to be as closed to P as possible. However, that is not
the goal of this work, where G is just an auxiliary generative model which needs to satisfies Eq. (7.3).
Instead, we aim to find the most powerful k for conducting hypothesis test. In practice, we still optimize
G toward P because we usually have no prior knowledge (sufficient samples) about Q, and we want to
ensure the lower bound still hold for many possible Q (e.g. Q can be also similar to P). However, even
with this reason, we still adopt early stopping to prevent the auxiliary G from being exactly the same as P.

7.4 Experiments and Results

7.4.1 Evaluation on Real-world Data

We presents a comparative evaluation of the proposed KL-CPD and seven representative baselines on
benchmark datasets from real-world applications of CPD, including the domains of biology, environmental
science, human activity sensing, and network traffic loads. The data statistics are summarized in Table
7.1. We pre-process all dataset by normalizing each dimension in the range of [0, 1]. Detailed descriptions
of all real-world datasets are itemized as follows.

• Bee-Dance2 records the pixel locations in x and y dimensions and angle differences of bee move-
ments. Ethologists are interested in the three-stages bee waggle dance and aim at identifying the
change point from one stage to another, where different stages serve as the communication with
other honey bees about the location of pollen and water.

• Fishkiller3 records water level from a dam in Canada. When the dam not functions normally, the
water level oscillates quickly in a particular pattern, causing trouble for the fish. The beginning and
end of every water oscillation (fish kills) are treated as change points.

2http://www.cc.gatech.edu/~borg/ijcv_psslds/
3http://mldata.org/repository/data/viewslug/fish_killer/
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• HASC4 is a subset of the Human Activity Sensing Consortium (HASC) challenge 2011 dataset,
which provides human activity information collected by portable three-axis accelerometers. The
task of change point detection is to segment the time series data according to the 6 behaviors: stay,
walk, jog, skip, stair up, and stair down.

• Yahoo5 contains time series representing the metrics of various Yahoo services (e.g. CPU uti-
lization, memory, network traffic, etc) with manually labeled anomalies. We select 15 out of
68 representative time series sequences after removing some sequences with duplicate patterns in
anomalies.

Dataset T #sequences domain #labels

Bee-Dance 826.66 6 R3 19.5
Fishkiller 45175 1 R+ 899

HASC 39397 1 R3 65
Yahoo 1432.13 15 R+ 36.06

Table 7.1: Dataset. T is length of time series, #labels is average number of labeled change points.

Experiment Setting and Evaluation Metric Following Lai et al. (2018); Saatçi et al. (2010); Liu
et al. (2013), the datasets are split into the training set (60%), validation set (20%) and test set (20%) in
chronological order. Note that training is fully unsupervised for all methods while labels in the validation
set are used for hyperparameters tuning. For quantitative evaluation, we consider receiver operating
characteristic (ROC) curves of anomaly detection results, and measure the area-under-the-curve (AUC)
as the evaluation metric. AUC is commonly used in CPD literature (Li et al., 2015a; Liu et al., 2013;
Xu et al., 2017). For dataset with multiple sequences, mean of AUC is reported. We compare KL-CPD
with real-time CPD methods (ARMA, ARGP, RNN,LSTNet) and retrospective CPD methods (ARGP-
BOCPD, RDR-KCPD, Mstats-KCPD). Note that OPT-MMD is a deep kernel learning baseline which
optimizes MMD by treating past samples as P and the current window as Q (insufficient samples).

Overall Comparison with representative CPD approaches In Table 7.2, the first four rows present the
real-time CPD methods, followed by three retrospective-CPD models, and the last is our proposed method.
KL-CPD shows significant improvement over the other methods on all the datasets, except being in a
second place on the Yahoo dataset, with 2% lower AUC compared to the leading ARGP. This confirms
the importance of data-driven kernel selection and effectiveness of our kernel learning framework.

Distribution matching approaches like RDR-KCPD and Mstats-KCPD are not as competitive as KL-
CPD, and often inferior to real-time CPD methods. One explanation is both RDR-KCPD and Mstats-
KCPD measure the distribution distance in the original data space with simple kernel selection using
the median heuristic. The change-points may be hard to detect without the latent embedding learned by
neural networks. KL-CPD, instead, leverages RNN to extract useful contexts and encodes time series in

4http://hasc.jp/hc2011
5https://webscope.sandbox.yahoo.com/catalog.php?datatype=s
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Method Bee-Dance Fishkiller HASC Yahoo

ARMA (Box, 2013) 0.5368 0.8794 0.5863 0.8615
ARGP (Candela et al., 2003) 0.5833 0.8813 0.6448 0.9318

RNN (Cho et al., 2014) 0.5827 0.8872 0.6128 0.8508
LSTNet (Lai et al., 2018) 0.6168 0.9127 0.5077 0.8863

ARGP-BOCPD (Saatçi et al., 2010) 0.5089 0.8333 0.6421 0.9130
RDR-KCPD (Liu et al., 2013) 0.5197 0.4942 0.4217 0.6029

Mstats-KCPD (Li et al., 2015a) 0.5616 0.6392 0.5199 0.6961

OPT-MMD 0.5262 0.7517 0.6176 0.8193
KL-CPD (Proposed method) 0.6767 0.9596 0.6490 0.9146

Table 7.2: AUC on four real-world datasets. KL-CPD has the best AUC on three out of four datasets.

a discriminative embedding (latent space) on which kernel two-sample test is used to detection changing
points. This also explains the inferior performance of Mstats-KCPD which uses kernel MMD with a fix
RBF kernel. That is, using a fixed kernel to detect versatile types of change points is likely to fail.

Finally, the non-iid temporal structure in real-world applications may raise readers concern that the im-
provement coming from adopting RNN and controlling type-I error for model selection (kernel selection).
Indeed, using RNN parameterized kernels (trained by minimizing reconstruction loss) buys us some gain
compared to directly conduct kernel two-sample test on the original time series samples (Figure 7.3 cyan
bar rises to blue bar). Nevertheless, we still have to do model selection to decide the parameters of RNN.
In Table 7.2, we studied a kernel learning baseline, OPT-MMD, that optimizes an RNN parameterized
kernel by controlling type-I error with insufficient samples of Q. OPT-MMD is inferior to the KL-CPD
that introduce the surrogate distribution with an auxiliary generator, which again verifies our claims. On
the other hand, from Table 7.2, we can also observe KL-CPD is better than other RNN alternatives,
such as LSTNet. Those performance gaps between KL-CPD, OPT-MMD (regularizing type-I only) and
other RNN works indicate the proposed maximizing testing power framework via an auxiliary distribution
serves as a good surrogate for kernel (model) selection.

Figure 7.3: Ablation test of KL-CPD. Figure 7.4: Varying wr on Bee-Dance.
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Ablation Test on Different Kernels and Auxiliary Distributions We further examine how kernels
with different encoders fφ and different auxiliary distributions affect KL-CPD. For MMD-dataspace,
fφ is an identity map, equivalent to kernel selection with median heuristic in data space. For MMD-
codespace, {fφ, Fψ} is a Seq2Seq autoencoder minimizing reconstruction loss without optimizing test
power. For MMD-negsample, the same objective as KL-CPD except for replacing the auxiliary generator
with injecting Gaussian noise to P.

The results are shown in Figure 7.3. We first notice the mild improvement of MMD-codespace over
MMD-dataspace, showing that using MMD on the induced latent space is effective for discovering bene-
ficial kernels for time series CPD. Next, we see MMD-negsample outperforms MMD-codespace, show-
ing the advantages of injecting a random perturbation to the current interval to approximate gθ(z|X(l)).
This also justify the validity of the proposed lower bound approach by optimizing Mk(P,G), which is
effective even if we adopt simple perturbed P as G. Finally, KL-CPD models the G with an auxiliary
generator gθ to obtain conditional samples that are more complex and subtle than the perturbed samples
in MMD-negsample, resulting in even better performance. In Figure 7.4, we also demonstrate how the
tolerance of delay wr influences the performance. Due to space limit, results other than Bee-Dance
dataset are omitted, given they share similar trends. KL-CPD shows competitive AUC mostly, only
slightly decreases when wr = 5. MMD-dataspace and MMD-codespace, in contrast, AUC degradation
is much severe under low tolerance of delay (wr = {5, 10}).

7.4.2 In-depth Analysis on Simulated Data

To further explore the performance of KL-CPD with controlled experiments, we follow other time series
CPD papers (Takeuchi and Yamanishi, 2006; Liu et al., 2013; Matteson and James, 2014) to create three
simulated datasets each with a representative change-point characteristic: jumping mean, scaling variance,
and alternating between two mixtures of Gaussian (Gaussian-Mixtures). See detailed setting below.
• Jumping-Mean: Consider the one-dimensional auto-regressive model to generate 5000 samples
y(t) = 0.6y(t− 1)− 0.5y(t− 2) + εt, where y(1) = y(2) = 0, εt ∼ N (µ, 1.5) is a Gaussian noise
with mean µ and standard deviation 1.5. A change point is inserted at every 100 + τ time stamps
by setting the noise mean µ at time t as

µn =

0 n = 1,

µn−1 + n
16 n = 2, . . . , 49,

where τ ∼ N (0, 10) and n is a natural number such that 100(n− 1) + 1 ≤ t ≤ 100n.

• Scaling-Variance: Same auto-regressive generative model as Jumping-Mean, but a change point
is inserted at every 100 + τ time stamps by setting the noise standard deviation of εt at time t as

σn =

1 n = 1, 3, . . . , 49,

ln(e+ n
4 ) n = 2, 4, . . . , 48,

where τ ∼ N (0, 10) and n is a natural number such that 100(n− 1) + 1 ≤ t ≤ 100n.
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• Gaussian-Mixtures: Time series data are sampled alternatively between two mixtures of Gaussian
0.5N (−1, 0.52) + 0.5N (1, 0.52) and 0.8N (−1, 1.02) + 0.2N (1, 0.12) for every 100 time stamps,
which is defined as the change points.

Method Jumping-Mean Scaling-Variance Gaussian-Mixtures

ARMA 0.7731 (0.06) 0.4801 (0.07) 0.5035 (0.08)
ARGP 0.4770 (0.03) 0.4910 (0.07) 0.5027 (0.08)
RNN 0.5053 (0.03) 0.5177 (0.08) 0.5053 (0.08)

LSTNet 0.7694 (0.09) 0.4906 (0.07) 0.4985 (0.07)

ARGP-BOCPD 0.7983 (0.06) 0.4767 (0.08) 0.5027 (0.08)
RDR-KCPD 0.6484 (0.11) 0.7574 (0.06) 0.6022 (0.11)

Mstats-KCPD 0.7309 (0.05) 0.7534 (0.04) 0.6026 (0.08)

KL-CPD 0.9454 (0.02) 0.8823 (0.03) 0.6782 (0.05)

Table 7.3: AUC on three artificial datasets. Mean and standard deviation under 10 random seeds.

Main Results on Simulated data The results are summarized in Table 7.3. KL-CPD achieves the best
in all cases. Interestingly, retrospective-CPD (ARGP-BOCPD, RDR-KCPD, Mstats-KCPD) have better
results compared to real-time CPD (ARMA, ARGP, RNN,LSTNet), which is not the case in real-world
datasets. This suggests low reconstruction error does not necessarily lead to good CPD accuracies. As
for why Mstats-KCPD does not have comparable performance as KL-CPD, given that both of them use
MMD as distribution distance? Notice that Mstats-KCPD assumes the reference time series (training
data) follows the same distribution as the current interval. However, if the reference time series is highly
non-stationary, it is more accurate to compute the distribution distance between the latest past window and
the current window, which is the essence of KL-CPD.

MMD versus Dimensionality of Data We study how different encoders fφ would affect the power of
MMD versus the dimensionality of data. We generate an simulated time series dataset by sampling be-
tween two multivariate Gaussian N (0, σ2

1Id) and N (0, σ2
2Id) where the dimension d = {2, 4, 6, . . . , 20}

and σ1 = 0.75, σ2 = 1.25.

Figure 7.5 plots the one-dimension data and AUC results. We see that all methods remain equally
strong in low dimensions (d ≤ 10), while MMD-dataspace decreases significantly as data dimensionality
increases (d ≥ 12). An explanation is non-parametric statistical models require the sample size to grow
exponentially with the dimensionality of data, which limits the performance of MMD-dataspace because
of the fixed sample size. On the other hand, MMD-codespace and KL-CPD are conducting kernel two-
sample test on a learned low dimension codespace, which moderately alleviates this issue. Also, KL-CPD
finds a better kernel (embedding) than MMD-codespace by optimizing the lower bound of the test power.

105



Figure 7.5: MMD with different encoder fφe versus data dimension, under 10 random seeds.

Figure 7.6: Conditionally generated samples by KL-CPD and system-predicted CPD scores on Bee-
Dance (Left) and HASC (Right) datasets. In the first three subplots are ground truth signals (blue line),
10 conditional generated samples (green lines) and change points (red vertical line). The last subplot is
MMD scores, which peaks around ground truth change points mostly.

7.5 Summary

In this chapter, we propose KL-CPD, a new kernel learning framework for two-sample test for change-
point detection (CPD) problems. The key insight is to optimize a lower bound of the test power with
an auxiliary generator, which resolves the issue of insufficient samples in CPD applications. The deep
kernel parametrization of KL-CPD combines the latent space of RNNs with RBF kernels that effectively
detect a variety of change-points from different real-world applications. Extensive evaluation of our new
approach along with strong baseline methods on benchmark datasets shows the outstanding performance
of the proposed method in retrospective CPD. With simulation analysis in addition we can see that
the new method not only boosts the kernel power but also evades the performance degradation as data
dimensionality increases.
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Chapter 8

Graph-based Transfer Learning

8.1 Background

Transfer learning (TL) aims to address the label-sparse problem arising in many real-world applications as
acquiring a large quantity of labeled data is extremely expensive and labor-intensive. TL methods address
this problem by transferring the trained models from label-rich domain (source domain) to a relevant but
label-sparse domain (target domain) according for the task of interest. Using topic classification of web
blogs as an example (as in Pan et al. (2010)), obtaining a large set of labeled instances is often difficult
especially when the web blogs are newly released. On the other hand, large collections of labeled news
stories in relevant topics may be easily found on the internet. Thus if we can successfully transfer the
classification models or the induced features from the news-story domain to the web blog domain, then the
label-sparse problem in the target domain would be effectively addressed. Another motivating example
is to transfer the text classification models from a label-rich language (e.g., English) to a label-sparse
or label-sparser language (e.g., Italian or Turkish). Unlike English or a few internationally dominating
languages, most of the other languages in the world have much less labeled documents in comparison.
This means that TL would have a tremendous impact on the true success of text classification for all
languages in the world if we can solve TL in all the cross-lingual settings. Notice an important difference
between the two examples we have introduced, i.e., in the first example both source and target domain
share the same feature space (the same vocabulary of English), while in the second example the two
domains have different feature spaces (i.e., the vocabularies of two different languages). Nevertheless, TL
across different feature spaces (heterogeneous) is usually a tougher problem than TL within the common
feature space (homogeneous).

The literature of TL methods (Pan and Yang, 2009) reveals promising results in a variety of real-world
applications, such as text classification (Pan et al., 2010; Duan et al., 2012), image classification (Zhu
et al., 2011; Kulis et al., 2011), sentiment analysis (Glorot et al., 2011; Zhou et al., 2014), recommendation
systems (Li et al., 2009), and more. Let us outline the major differences among existing approaches based
on their basic assumptions in relating source and target domain, as well as on how labeled and unlabeled
data in both domains are jointly leveraged during the TL process.

Transductive Transfer Learning (TTL) is one of the representative approach. TTL focuses on cross-
domain kernel construction and the utilization of unlabeled data in both source and target domains during
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the learning procedure. Adaptation Regularization based Transfer Learning (ARTL) (Long et al., 2013)
is a representative work of TTL methods. It constructs a unified kernel and applies graph-based label
propagation technique under certain regularized constraints to infer labels in target domain. This kernel-
based approach is highly effective even given limited training data. However, ARTL or any existing
TTL-based methods, to the best of our knowledge, is not applicable to the heterogeneous feature setting,
which is the focus of this paper. The difficulty arises in cross-domain kernel construction. How could a
kernel value between data from different domains be computed if they are not in the same feature space?

One common stream of approaches, Feature Representation Transfer Learning (FRTL), which can be
used in heterogeneous settings addresses the problems by learning a common feature space, and then per-
forming model transfer or parameter adaptation within that subspace. An important assumption adopted
by most existing FRTL approaches is the availability of cross-domain parallel data. i.e., corresponding
instances that have both source and target representations. There are various way to learn the common
feature representation. For example, Argyriou et al. (2008) tried to induce a shared projection matrix
for both source and target domain. Glorot et al. (2011) applied a deep learning technique, the stack
denoised autoencoder (SDA), for a non-linear projection onto the shared latent space in cross-domain
sentiment classification. Chandar et al. (2016) proposed a correlational neural network (CorrNet) approach
that combines autoencoders (AE) and canonical correlation analysis (CCA) in the way that AE learns
a generalized representation for each domain while CCA captures the joint representation of the two
domains by maximizing the correlation in-between. Notice that above state-of-the-art neural network
methods (CorrNet) usually require large amount of parallel data to achieve competitive results. Such large
size of parallel data may not be realistic to obtain given fixed budgeted resources in real world applications.
(e.g. human labeling for parallel sentences in low-resource languages)

8.2 KerTL: Kernel Transfer Learning on Graphs

Settings and Notations Let us first formally define the Transfer Learning (TL) problem of interest, and
then show how to formulate TL as an optimization problem with graph regularization. For any single
data domain D = X × Y , denote by D = O ∪ U the training set consisting of both labeled examples
O = {xi, yi} and unlabeled examples U = {xi} drawn from X × Y and X respectively. If the context is
clear, we abuse the notation of x to denote a feature vector in D without distinguishing whether it comes
from O or U .

We focus on TL involving two domains with heterogeneous features but a shared label space. Specifi-
cally, we are given a source domain Ds = Xs ×Y and a target domain Dt = Xt ×Y where Xs is allowed
to differ from Xt. We in addition assume the accessibility to a parallel set PL = {(x(pls)

i ,x
(plt)
i )} where

x
(pls)
i ∈ Ds, x

(plt)
i ∈ Dt. Each feature pair in PL corresponds to “one” datum’s representation in two

domains. Given Ds, Dt and PL, our goal is to make predictions on the unlabeled target-domain data Ut
with low expected error. Notice that all data points are already specified in Ds ∪Dt. The parallel set PL
only suggests inter-domain relations, namely which data in Ds have counter-parts in Dt.
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8.2.1 TL with Graph Laplacian

The aforementioned parallel-data-based TL problem can be formulated in a way that is compatible with
graph-based SSL. Specifically, we view all (both labeled and unlabeled) data points in Ds ∪Dt as nodes
in a graph, whose edges encode inter-node similarities summarized in a |Ds ∪Dt| × |Ds ∪Dt| adjacency
matrix W . Our task therefore becomes making predictions on the target-domain unlabeled nodes (Ut) in
the graph. With limited supervision available, it is desirable to propagate from labeled nodes to unlabeled
ones with respect to the manifold structure of the graph, on the assumption that nodes sharing high
similarities should also share similar labels.

For brevity we assume a binary label space Y = {−1, 1}. Denote by y the true label and by f(x)

the corresponding predicted value. Predicted values over all nodes in Ds ∪Dt are further concatenated to
form a long vector f = [fs,ft]

> of length |Ds ∪Dt|. Our problem is then formalized as:

min
f

∑
(x,y)∈Os∪Ot

`(f(x), y) + γf>Lf , (8.1)

where L is the graph Laplacian characterizing smoothness of graph and γ is a positive scalar controlling
the regularization strength. Laplacian L is defined as L = W1−W .

The term in (8.1) is the empirical loss between predicted labels and true labels on subsets Os and
Ot. While the last term indicates the normalization penalty with respect to the manifold structure of all
data. Specifically, we can show that this Laplacian can be reformulated as f>Lf = 1

2

∑
i,j wij(fi− fj)2,

which reveals the motivation of the penalty: nodes that have strong similarities (with large wij) should
have close prediction scores (fi and fj).

8.2.2 Graph Constructions

The adjacency matrix W and its associated Laplacian L play a key role in our formulation. In the
homogeneous setting, there are widely-accepted routines to compute W using either cosine or radial
basis function (RBF) measurements. Nonetheless, under the heterogeneity assumption, all those methods
would become inappropriate in evaluating similarities for the inter-domain part. This implies the need of
completing (instead of directly computing) the inter-domain similarities through both the pre-computed
intra-domain similarities and the information from the parallel data, which is one of the key contributions
in our work. In the following, we start from homogeneous graph construction and then move on to the
more generic framework of tackling heterogeneous scenarios.

Homogeneous Graph Construction Given a pair of data points xi,xj in homogeneous feature space
X , one could compute the pair-wise similarity wij using different functions, among which two typical

choices are cosine measurement and RBF measurement wij = exp(−‖xi−xj‖
2

σ2 ). The choice of similarity
function is usually domain-specific. For example, with text data (term frequency), cosine measurement is
empirically often a better choice in characterizing documents with similar (proportional) word counts.

Besides, one would usually consider “dropping out” some weights (i.e. truncating a subset of wij’s to
0) which is called “sparsification” in order to emphasize local information and to lower the computation
cost. A common practice is to keep weights only of each node’s k nearest neighbors (kNN). Compared
to ε-graphs where one specifies a fixed threshold for truncating all edge weights, the kNN graph allows
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“adaptive” neighborhood radius for both strongly and weakly connected points (Zhu et al., 2005), and
often leads to better classification results.

Heterogeneous Graph Construction The construction for intra-domain similarities stays valid within
the heterogeneity setting. However, the inter-domain scores cannot be directly computed (neither 〈xi,xj〉
(cosine) nor ‖xi − xj‖ (RBF) can be calculated as xi and xj are in different feature spaces). To simplify
our discussion, suppose the data are in a well-arranged order such that the adjacency matrix W is in the
following form:

W =

[
Ws,s Ws,t

Wt,s Wt,t

]
, (8.2)

where Ws,s, Wt,t represent the intra-domain parts, and Ws,t = W>t,s represent the inter-domain parts.
Suppose xi and xj are a pair of parallel data, which means they are two alternative views of one datum.

Then, it is always reasonable to set wij = 1 since a datum and itself should always be similar to itself.
However, these entries are the only observable cells in Ws,t and Wt,s. All the remaining cells should be
completed using information from intra-domain similarities and parallel data.

Such off-diagonal matrix completion problem has strong resemblance with the bipartite graph edge
completion problem, where nodes in Ds and Dt form a bipartite graph and the goal is to complete the
bipartite edges (Ws,t) in the middle (Liu and Yang, 2015). In the following, we use Ŵs,t to denote the
completed matrix and Ws,t for the original (observed) version.

Random Walk Completion Let us consider the task of completing the missing (p, q)-th entry in Ws,t.
Although the value of (ws,t)pq is unknown, some other entry (r, q) in the same column might have been
observed and hence (ws,t)pq should be close to (ws,t)rq if the two “must-links” (p, q) and (r, q) are similar.
Such similarity is provided as (ws,s)pr. This suggests completing (ws,t)pq by aggregating all elements in
the q-th column of Ws,t weighted by the p-th row in Ws,s. Namely (ŵs,t)pq ←

∑
r(ws,s)pr(ws,t)rq. The

above can be expressed in the matrix form

Ŵs,t ←Ws,sWs,t. (8.3)

When Ws,s is normalized as a column-stochastic matrix, equation (8.3) amounts to one-step random walk
for each column in Ws,t. Alternatively, completion can be carried out row-wisely

Ŵs,t ←Ws,tWt,t. (8.4)

Combining (8.3) and (8.4) leads to one-step simultaneous random walk in both source and target domain:

Ŵs,t ←Ws,sWs,tWt,t. (8.5)

By further allowing varying number of random walk steps on both sides (k steps on both sides in total),
and by aggregating the effect of all different steps, we obtain

Ŵ
(k)
s,t =

k∑
i=0

(
k

i

)
W i
s,sWs,tW

k−i
t,t . (8.6)
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Compared to one-step random walk completion, (8.6) takes into account multi-step transduction over the
graph, which is particularly desirable in our case where missing entries in Ws,t may not have observed
entries as its direct neighbor.

8.2.3 Diffusion Kernel Completion

We propose the following diffusion kernel completion

Ŵs,t = exp (αsWs,s)Ws,t exp (αtWt,t) . (8.7)

This is equivalent to the aggregation of infinite number of weighted Random Walk Completions. Specifi-
cally,

Ŵs,t =

∞∑
k=0

Ŵ
(k)
s,t (αs, αt). (8.8)

where Ŵ (k)
s,t denotes the weighted Random Walk Completion:

Ŵ
(k)
s,t (αs, αt) =

k∑
i=0

(
k

i

)
αisW

i
s,sWs,tα

k−i
t W k−i

t,t . (8.9)

positive scalars αs and αt are corresponding to the weights for the source- and target- domain graphs,
respectively. Due to space limit, we do not provide the proof details.

Low Rank Approximation of Diffusion Kernel As in many other matrix completion tasks, it can be
useful to impose low-rank assumptions on Ŵs,t. The compressed sensing theory (Candès and Recht,
2009) implies there is still hope to recover Ŵs,t even if our intra-domain matrices are non-informative
(e.g. identity matrices). To some extent, the low-rank factorization process is a denoising procedure
trying to recover the missing signals.

Thus, we first take the low-rank eigen-decomposition on both exp(αsWs,s) and exp(αtWt,t) such that

exp(αsWs,s) ≈ Qs exp(αsΛs)Q
>
s (8.10)

exp(αtWt,t) ≈ Qt exp(αtΛt)Q
>
t , (8.11)

where Λs,Λt are the ks, kt leading eigen-values for Ws,s, Wt,t respectively, and Qs, Qt are the corre-
sponding stacked eigen-vectors for Ws,s, Wt,t.

The diffusion kernel completion (8.7) is then modified as

Ŵs,t =
(
Qs exp(αsΛs)Q

>
s

)
Ws,t

(
Qt exp(αtΛt)Q

>
t

)
. (8.12)

Optimization Algorithms The proposed graph construction method gives us a joint adjacency matrix
W for all data points in both the source and target domains, along with its associated graph Laplacian. To
recap, our task is to solve the optimization problem:

min
f

h(f) ≡
∑

i∈O∫∪Ot

`(fi, yi) + γf>Lf , (8.13)
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It is not hard to verify that (8.13) is a convex optimization problem when `(·, ·) is convex. This enables
us to adopt a wide range of optimization techniques. In particular, we compute the exact solution for the
square loss and use Adagrad which is a widely-tested sub-gradient method (Duchi et al., 2011) for other
losses (e.g. logistic and hinge loss).

Note that our computation could be fast when using the low-rank approximation. The computational
bottleneck of our method during optimization lies in the multiplication of L and f when calculating the
gradient of (8.13). Recall L is a function of W , the gradient computation can be carried out in linear
time over |Dt| and |Ds| when the diagonal blocks Ws,s, Wt,t take kNN forms, making their multiplication
with f cost as much as O(k|Ds|) and O(k|Ds|), respectively. Similarly, the time complexity of doing
matrix-vector multiplication with the off-diagonal block Ŵs,t will be O(dmax(|Ds|, |Dt|)) where d is the
low-rank dimension.

8.3 Experiments and Results

8.3.1 Benchmark Datasets and Comparing Methods

Amazon Product Reviews (APR) The APR dataset (Prettenhofer and Stein, 2010) was designed for
evaluations of sentimental classification with transfer learning in cross-language and cross-domain set-
tings. It consists of Amazon product reviews on books (B), DVDs (D) and music (M), and written in
English (EN), German (GE), French (FR) and Japanese (JP). For each language on each product type (B,
D or M), there are 2000 labeled reviews for training and 2000 labeled reviews for testing, respectively.
Parallel data are also provided for each language pair, which we will describe with an example task
in the next. Following the settings in Zhou et al. (2014), we treat English as the source language,
and the remaining three languages (German, French and Japanese) as the target languages. For each
language pair (EN-GE, EN-FR or EN-JP), we have 6 cross-product-type pairs, constituting overall 18
cross-language and cross-product-type combinations (e.g. EN-B-FR-D as shown in the first column of
Table 8.2). Specifically, EN-B-FR-D represents TL task with English reviews on Books as source domain,
and French reviews on DVD products as target domain. The parallel dataset for the EN-B-FR-D task is
obtained by running Google translation over the 2,000 French book reviews in the training set, and by
treating the system-produced translations as the English behalf of the parallel data.

MNIST Handwritten Images The MNIST dataset consists of 70, 000 images in total, with digits from
0 to 9 as the class labels (one per image). We follow the setting in Chandar et al. (2016), to treat left half
of each image (28 × 28 pixels) as a source-domain instance, while right half of the image as a target-
domain instance. Raw pixel values are used as features. We randomly sampled 3, 000 images from the
full set as the unlabeled parallel set, 2, 000 images as the source-domain training set, 1, 024 images as
the target-domain training set, and another of 2, 000 images as the test set (only the target-domain portion
is used). We call the classification with respect to each target label (a digit from 0 to 9) as a task in
image recognition. Although the source and target domains have same feature dimensions, the features
are indeed heterogeneous (direct cosine/RBF computation of two half images would not indicate label
similarity). The idea would be more clear if we cut images in a 1/3 and 2/3 fashion, but for the ease of
comparison with existing methods, we keep the same cutting scheme (Chandar et al., 2016).
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Constructing unbalance training sets and size-varying parallel sets To simulate the label-sparsity
of target domain in TL problem, we construct unbalanced training set on the APR and MNIST data sets.
Recall in TL each training set has the source-domain part and the target-domain part, respectively. For each
task in APR, we use the full set of 2000 source domain labeled instances, and a randomly sampled subset
of m target domain labeled instances (m = 2, 4, 8, 16, 32) from the full set as the final training data. The
remaining target-domain labeled instances (2000 −m) are used for validation (hyper-parameter tuning).
For MNIST, the source domain training pool has the full size of 2, 000 instances. Another m instances
(for m = 2, 4, 8, 16, 32) randomly sampled from the target-domain training set are used to complete the
full training set. For the parallel data in each task, we randomly sampled from the available pool with the
sample sizes of l = 64, 128, 256, 512, 1024, 2000 for APR (l = 64, 128, 256, 512, 1024, 2048, 3000 for
MNIST). The size-reduced samples allow us to evaluate transfer learning under the label-unbalanced and
parallel-data-sparse conditions. For each value of m and l, we repeated the random sampling 10 times,
and averaged the performance of the target-domain classifiers over the randomly sampled training sets and
parallel data for each task in the evaluation. Table 8.1 summarizes the statistics of the datasets.

Comparing Methods We include six methods as baselines for comparison. Two of them are repre-
sentative methods (SVM and SSL) in supervised classification where only the target-domain labeled data
are used for training. We also include two TL baselines (HFA and MMDT), which use labeled data in
both source domain and target domain for training, but cannot leverage parallel data. The remaining two
methods (HHTL and CorrNet) are the state-of-the-art TL methods which use both the labeled data in both
domains as well as parallel data in addition. Some details of these baseline methods are described below.

• Support Vector Machine (SVM): We used the L2-SVM from LIBLINEAR (Fan et al., 2008).

• Semi-Supervised Learning (SSL) (Zhu et al., 2005): We implemented the graph-based label propa-
gation method for Semi-Supervised Learning framework.

• Heterogeneous Feature Augmentation (HFA) (Li et al., 2013): This method embeds heteroge-
neous domain data into shared high-dimensional space, and deploys a Multiple Kernel Learning
solver (Kloft et al., 2011). We used the code from the website 1.

• Max Margin Domain Transform (MMDT) (Hoffman et al., 2013): This method uses an asymmetric
transformation matrix to map features across domains, which is optimized with respect to all the
target categories. We used the code from the website 2.

• Hybrid Heterogeneous Transfer Learning (HHTL) (Zhou et al., 2014): This method uses a parallel
corpus to learn a shared embedding space for source and target domains. Classifiers then can be
trained on the labeled data in both domains. We used the code provided by the authors.

• Correlational neural network (CorrNet) (Chandar et al., 2016): This method uses autoencoders
to simultaneously minimize classification errors in both domains, and to capture cross-domain
correlations based on a parallel dataset. Similar to HHTL, classifiers are trained after the data
are mapped onto the shared latent space. We used the code from the website 3.

1https://github.com/transmatrix-github/HFA-release
2https://github.com/jhoffman/MaxMarginDomainTransforms
3https://github.com/apsarath/CorrNet
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Experiment Settings Our experimental results involve two random factors. The first comes from the
random sampling of the target domain labeled training sets, and the second comes from the random
sampling of the parallel datasets. All the experiments with random samples are repeated 10 times with
different random seeds. Mean and standard deviation of the Area under Curve (AUC) of ROC are reported
for evaluation and comparison.

In HHTL and CorrNet, after learning the projected matrices, we trained linear SVMs (Fan et al.,
2008) on the projected training data. For all the methods using SVM classifiers (in SVM, HFA, MMDT,
HHTL and CorrNet), we set the regularization parameter C = 1. For hyper-parameter tuning, we set
the default hyper-parameters of HFA and MMDT the same as in their papers. We adopted the hyper-
parameter of HHTL on the APR data, with a grid search of the optimal regularization coefficient among
λ = 0.001, 0.01, 1, 10, and 100, and the corruption probability among p = 0.5, 0.6, 0.7, 0.8, and 0.9 on
the MNIST dataset. Similarly, for CorrNet on the MNIST dataset we used a grid search for the number of
hidden units as 20, 50, 100, and 200, and λ = 0.2, 2, and 20 on the APR dataset.

For KerTL, we used the cosine similarity and RBF kernel on the APR and MNIST datasets, respec-
tively. We keep the top 128 eigenvectors in the eigen-decomposition part for efficient computation, and
set the regularization coefficient γ to be 2−10.

8.3.2 Quantitative Evaluation

TL methods vs. non-TL methods In the first set of experiments we fixed the training-set size in the
target domain as m = 2, and the parallel-set size as l = 1024. Figure 8.1 shows the averaged AUC
scores of those methods. All the TL methods which leverage parallel data (HHTL, CorrNet and KerTL)
significantly outperformed the methods that cannot take advantage of parallel data (SVM, SSL, HFA and
MMDT). Among the TL methods, our KerTL outperforms all the other methods on both the APR and
MNIST data sets. Tables 8.2 and 8.3 show the task-specific performance scores on the two data sets,
respectively. Again, the performance of KerTL dominates across most of those tasks. On the MNIST
dataset in particular, KerTL improved the result of CorrNet (which is the strongest baseline) from 93.2%

to 96.2% in AUC, which is equivalent to reducing the error rate from 6.8% to 3.8%, i.e., a 44.1% reduction
in error. Such an improvement is indeed significant.

Data sets APR MNIST

Source domain training set 2000 2000
Target domain training set 2000 1024
Target domain test set 2000 2000
Parallel data size 2000 3000

Table 8.1: Data Statistics

On APR on MNIST
(target training-set size =2, parallel-set size = 1024)
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Figure 8.1: Comparison on APR and MNIST.
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Tasks SVM SSL HFA MMDT HHTL CorrNet KerTL

EN-B-GE-D 0.564 0.558 0.550 0.563 0.707 0.604 0.715
EN-B-GE-M 0.500 0.542 0.536 0.528 0.711 0.659 0.730
EN-B-FR-D 0.525 0.513 0.522 0.513 0.747 0.729 0.748
EN-B-FR-M 0.541 0.540 0.544 0.542 0.687 0.717 0.738
EN-B-JP-D 0.528 0.527 0.541 0.524 0.643 0.692 0.713
EN-B-JP-M 0.534 0.537 0.541 0.505 0.611 0.665 0.724
EN-D-GE-B 0.502 0.509 0.499 0.482 0.772 0.692 0.796
EN-D-GE-M 0.500 0.542 0.517 0.531 0.737 0.672 0.755
EN-D-FR-B 0.548 0.549 0.547 0.514 0.743 0.739 0.785
EN-D-FR-M 0.541 0.540 0.537 0.543 0.724 0.696 0.741
EN-D-JP-B 0.549 0.561 0.558 0.516 0.694 0.719 0.717

EN-D-JP-M 0.534 0.537 0.536 0.506 0.683 0.747 0.713

EN-M-GE-B 0.502 0.509 0.520 0.476 0.704 0.668 0.786
EN-M-GE-D 0.564 0.558 0.519 0.561 0.728 0.631 0.740
EN-M-FR-B 0.548 0.549 0.542 0.515 0.745 0.672 0.789
EN-M-FR-D 0.525 0.513 0.508 0.511 0.755 0.670 0.764
EN-M-JP-B 0.549 0.561 0.526 0.529 0.622 0.675 0.739
EN-M-JP-D 0.528 0.527 0.551 0.487 0.655 0.707 0.708

Average 0.532 0.537 0.533 0.519 0.704 0.687 0.745
± Std ±0.021 ±0.018 ±0.016 ±0.023 ±0.047 ±0.037 ±0.029

Table 8.2: Overall results on APR dataset with target domain training-set size of 2 and parallel set size of
1024. Bold-faced numbers indicate the best result on each row.

Tasks SVM SSL HFA MMDT HHTL CorrNet KerTL

Digit 0 0.950 0.965 0.891 0.855 0.971 0.987 0.989
Digit 1 0.906 0.915 0.500 0.838 0.989 0.994 0.996
Digit 2 0.699 0.739 0.539 0.567 0.867 0.931 0.962
Digit 3 0.628 0.785 0.637 0.664 0.861 0.892 0.939
Digit 4 0.672 0.613 0.500 0.477 0.867 0.937 0.958
Digit 5 0.598 0.607 0.500 0.543 0.774 0.877 0.959
Digit 6 0.848 0.877 0.677 0.536 0.937 0.962 0.985
Digit 7 0.714 0.736 0.441 0.686 0.919 0.956 0.968
Digit 8 0.494 0.592 0.720 0.651 0.823 0.890 0.936
Digit 9 0.674 0.690 0.430 0.623 0.846 0.918 0.929

Average 0.718 0.752 0.584 0.644 0.885 0.934 0.962
± Std ±0.143 ±0.133 ±0.138 ±0.118 ±0.067 ±0.041 ±0.023

Table 8.3: Overall results on MNIST dataset with target domain training-set size of 2 and parallel set size
of 1024. Bold-faced numbers indicate the best result on each row.
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TL methods with varying-sized parallel data The second set of experiments compares the perfor-
mance of TL methods (HHTL, CorrNet and KerTL) with varying sized parallel data, while the training-
set size is fixed as m = 2 in the target domain. As shown in Figure 8.2, KerTL outperforms HHTL and
CorrNet in most regions of the parallel-set sizes, on both the ARP and NMIST data sets. We also observed
that the performance of HHTL was very sensitive to the settings of its hyper-parameters. When we fixed
those parameter values and varied the sizes of the parallel data, HHTL’s performance was either unstable
(on MNIST) or decreasing (on APR) as the parallel data size increased.
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Figure 8.2: CorrNet, HHTL and KerTL on the APR dataset (left) and the MNIST dataset (right) with a
varying quantity of parallel data.
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Figure 8.3: SVM, SSL and KerTL on the APR dataset (left) and the MNIST dataset (right) with a varying
quantity of labeled data in the target domain.
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Influence of label sparsity in the target domain The third set of experiments compares KerTL with
SVM, SSL, HFA and MMDT under the condition that the labeled training instances are extremely sparse
in the target domain, specifically with m = 2, 4, 8, 16, 32. Size of parallel datasets are l = 1024 in those
experiments. Figure 8.3 shows results on APR and MNIST datasets. On both data sets, the curves of SVM,
SSL and HFA increase rapidly when the training-set sizes are below 200. Without leveraging parallel data,
MMDT does not perform well on both data set as target domain training data increase. We suspect the
reason is that when source and target domain is very different (APR and MNIST in our setting), linear
transform of the mapping with max margin criterion is not possible to find good representation without the
help of parallel data. On the other hand, HFA is only comparable to KerTL when target domain training
data is large enough since it does not utilize parallel data. KerTL has a nearly flat curve, substantially
outperforming the others in the label-sparse regions. This implies KerTL could successfully transferred
source-domain training data especially when source and target domain (m = 2 ∼ 32) training data are
very imbalanced.

But why the performance curve of KerTL is below that of SVM when the training-set size in the
target domain is beyond 200 on the APR data? We believe that it is caused by the imperfect parallel data
we used in KerTL. Recall that in our previous example of the EN-B-FR-D task, the parallel data are the
paired English/French book reviews, assuming that the ideal parallel set of (manually aligned) English
book reviews and French DVD reviews are not available. In other words, the parallel data provided in
APR has a domain mismatch with respect to the reviews on different product types, which is most helpful
when the label-sparse issue is severe.

In contrast, the parallel data sets in MNIST do not have a domain mismatch issue, as each pair in the
parallel set consists of the left-half (as the source-domain instance) and right-half (as the target-domain
instance) in the same image. We argue that the APR way of constructing parallel data is more realistic
than that in MNIST, because we usually cannot get each image instance halfly labeled and halfly unlabeled
in real-word applications of image classification.

8.4 Summary

In this chapter, we proposed a novel framework for graph-based transfer learning via cross-domain kernel
induction. Our approach uses a parallel corpus to calibrate domain-specific graph Laplacians into a unified
kernel, and to optimize semi-supervised label propagation based on the labeled and unlabeled data in
both domains. Our extensive experiments show that all the TL methods in our evaluation significantly
outperformed non-TL ones (SVM and SSL), and that the proposed method outperforms other state-of-the-
art TL methods (HFA, MMDT, HHTL and CorrNet) when the target-domain labeled data are extremely
sparse and the quantity of available parallel data is also limited. Those results indicates cross-language
and cross-domain kernel induction is a promising direction to pursue in transfer learning.
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Part V

Conclusions and Future Work
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Chapter 9

Concluding Remarks

9.1 Main Contributions

In this thesis, we advance kernel-based algorithms in four complementary directions: kernelized data-to-
data discrepancy for learning implicit generative models (IGMs); kernelized data-to-model discrepancy to
sample from explicit generative models (EGMs); random features for large-scale kernel contextual bandit
problems; kernel learning for structured data such as time-series and cross-domain graphs. With problem
of interests in mind, we highlight main contributions below.

Implicit Generative Models (Part I): Learning IGMs via a fixed kernel maximum mean discrepancy
(MMD) has limited success on high-dimensional computer vision datasets. We address the kernel selec-
tion challenge by optimizing the kernel MMD via deep compositional kernels, where neural-parametrized
encoders (e.g., convolutions) induce semantic low-dimensional manifolds for base kernels. The proposed
MMD GAN enhances the tractability of kernel-based IGMs to higher-dimensional datasets.

Explicit Generative Models (Part II): Drawing samples from EGMs with kernelized variational in-
ference methods, namely Stein Variational Gradient Descent (SVGD), fails to recover mixture weights
of multi-modal distributions, and degrades significantly as data-dimension increases. We propose noise-
conditional kernels SVGD (NCK-SVGD) that works in tandem with the noise-conditional score estimator
for drawing samples from high-dimensional multi-modal distributions. With an entropy regularizer, NCK-
SVGD enjoys flexible control between the sample quality and diversity, measured by precision and recall.

Large-scale Kernel Approximation (Part III): We improve the tractability of large-scale kernel ap-
proximation (when number of instances is large) using non-uniformly weighted random features. The
advantage of non-uniformly weighting scheme is justified by the risk minimization perspective using bias-
variance trade-off. We further improve the computational efficiency of kernel contextual bandit problems
by using variants of random features.
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Kernels for Structured Data (Part IV): We extend the kernel learning framework to two applications
with structured information, namely time series and cross-domain graphs. To address the sample-sparsity
issue in CPD problem, we optimize kernel two-sample test via an auxiliary IGMs generating pseudo
negative samples from anomaly distributions. To construct the cross-domain graph Laplacian, we leverage
diffusion kernels (i.e., infinite random walks from the source graph and the target graph) to induce an
unified graph, so that cross-domain knowledge can be transferred via label propagation.

9.2 Discussions

Several interesting research questions are worth discussing for deeper understanding of kernel-based
methods in generative modeling:

• Does IGMs suffer from curse of dimensionality? Yes. Studies on kernel density estimators
(KDEs) should that curse of dimensionality is indeed an issue: the minimax convergence rate
O(n−4/(4+d)) is very slow when d is large, and this optimal rate can not be improved (Stone,
1982; Tsybakov, 2008) unless we assume extra smoothness. Especially, the minimax convergence
rate of IGMs is an active research topic, as IGMs are trained with adversarial losses instead of the
conventional L2 loss. Recently, Singh et al. (2018); Uppal et al. (2019) study the minimax con-
vergence rates of nonparametric density estimators under adversarial losses, including Wasserstein
distance and Maximum Mean Discrepancy. They show that learning IGMs is typically not easier
than explicit density estimation, and the curse of dimensionality would also limit the performance
of GAN-based IGMs.

• Does the min-max optimization of GANs always converge? Without careful regularization
of the critic functions, the training dynamic of GANs may not always converge (Nagarajan and
Kolter, 2017; Mescheder et al., 2018). It is possible to analyze the training dynamics of min-
max optimization problems, under some critical assumptions. For example, by simple bilinear
forms of critic functions and gradient penalties to ensure smoothness, Mescheder et al. (2018)
present local convergence of training GANs. More recently, Nouiehed et al. (2019); Lin et al.
(2020) establish some local convergence rates under specific noncovex-concave settings of the
min-max problem. However, for general nonconvex-nonconcave settings of min-max problems
the convergence property is still an open question.

• Can we we tell if a generative model is only memorizing the training data? We have been using
the commonly-received evaluation metrics in this thesis, including Inception Score (Salimans et al.,
2016), Fréchet Inception Distance (FID) (Heusel et al., 2017) and precision/recall curves (Simon
et al., 2019; Kynkäänniemi et al., 2019). However, we acknowledge that each metric has its
own limitation(s). For example, a memory GAN which stores all training samples without any
generalization (i.e., no learning) would receive a perfect FID score (Lucic et al., 2018). Developing
better evaluation metrics is certainly a meaningful direction for future work. Using simulated
data with ground true densities would also allow us to detect the cases when the system merely
memorizes the training data without any generalization.
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• Why consider kernels in additional to neural networks? Kernel methods such as Gaussian
Processes (GPs) have many nice properties such as provable generalization, explicit modeling of
uncertainty, and more. Kernel methods are closely related to deep neural networks. For example,
a convolutional neural network with a certain prior over the model weights is equivalent to a GP in
the limit of infinitely many filters (Garriga-Alonso et al., 2019). It is possible to get best of both
worlds by combining kernels with deep neural networks. Shankar et al. (2020) proposed deep
compositional kernels that perform on par with ResNet-32 on the CIFAR-10 dataset, although its
performance still has a room to be improved.

9.3 Future Work

I consider the following as promising directions for future research.

• Explicit Generative Models Deep kernel exponential families belong also define explicit densities
and received great attention in recent years (Strathmann et al., 2015; Arbel and Gretton, 2018;
Dai et al., 2019; Wenliang et al., 2019; Arbel et al., 2020). However, estimating the model with
score matching suffers the tractability issue from high-dimensional and large-data applications with
cubic complexity (Sutherland et al., 2018). Instead, kernel density estimator (KDE) offers a non-
parametric estimation of the score function, which can be used in conjunction with the annealed
Langevin dynamic for score-based EGMs (Song and Ermon, 2019, 2020). An interesting follow-up
is to improve the KDE with deep neural parametrized kernels and study it generalization ability by
examining nearest neighbor results, image inpainting, and interpolation.

• Kernel on Graphs Graph Kernels (GKs) and Graph neural networks (GNNs) are two mainstream
approaches for learning on graph-structured data such as social network and biological networks.
Popular choice of GKs include Weisfeiler-Lehman kernels (Shervashidze et al., 2011), graphlet
kernels (Shervashidze et al., 2009), random walk kernels (Vishwanathan et al., 2010; Gärtner et al.,
2003). However, graph kernels can be computational expensive, and using hand-crafted features in
kernels may limited the downstream performance compared to state-of-the-art GNNs. To solve the
scalability challenge, it is possible to approximate the graph kernel via random Fourier features (Wu
et al., 2019b,a). The open research question is how to leverage deep kernel learning framework and
recent advance in NTK (Du et al., 2019) into graph kernels to improve its performance.

• Kernel on Natural Language Word mover distance (WMD) (Kusner et al., 2015) measures the
distance between two documents and show decent performance of text classification at the cost
of high computational cost. To solve the computational issue, word mover embedding (Wu et al.,
2018) approximate the WMD with an inner product of linear map using ideas similar to random
Fourier features. However, Wu et al. (2018) only consider uniformly-sampled documents as the
sampling bases from kernel spectral distributions. Potential improvements can be made by learning
the kernel spectral distributions via the IKL framework proposed in Chapter 3.
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• Large-scale Softmax Approximation There has been a surge of recent interest in developing
sampling technique for the cross-entropy Softmax distribution, which is the de-facto loss function
in modern classification tasks. Quadratic kernel softmax (Blanc and Rendle, 2018) uses a kernel-
based sampling method and quadratic approximation of the softmax function to draw each sample
in sublinear time. Following this idea, Random Fourier Softmax (Rawat et al., 2019) method utilizes
Random Fourier Features to enable more efficient and accurate sampling from an approximate
Softmax distribution. An interesting research idea is to incorporate recent advancing development
in random Fourier features such as orthogonality (Yu et al., 2016), non-uniform weights (Chang
et al., 2017a; Sinha and Duchi, 2016), quadrature-based features (Munkhoeva et al., 2018) into the
Random Fourier Softmax problem, and examine if it leads to more efficient approximation with less
sampling bases.
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