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Abstract
Surveillance video recording is becoming ubiquitous in daily life

for public areas such as supermarkets, banks, and airports. The rate at
which surveillance video is being generated has accelerated demand
for machine understanding to enable better content-based search ca-
pabilities. Analyzing human activity is one of the key tasks to un-
derstand and search surveillance videos. In this thesis, we perform a
comprehensive study on analyzing human activities from short term
to long term and from simple to complicated activities in surveillance
video achieves.

A general, efficient and robust human activity recognition frame-
work is proposed. We extract local descriptors at salient points from
videos to represent human activities. The local descriptor is called
Motion SIFT (MoSIFT) which explicitly augments appearance features
with motion information. A quantization and classification framework
then applies the descriptors to recognize activities of interest in surveil-
lance videos. We further propose constraint-based clustering ,bigram
models, and a soft-weighting scheme to improve the robustness and
performance of the algorithm by exploring spatial and temporal rela-
tionships between local descriptors. Detection is another essential task
of surveillance video analysis. The difficulty of detection lies in identi-
fying the temporal position in a video . Therefore, we propose a sliding
window approach to search candidate positions with cascade classifi-
cation to reduce false positives. Finally, we perform a study to utilize
automatic human activities analysis to improve geriatric health care.
We explore the statistical patterns between a patient’s daily activity
and his/her clinical diagnosis. Our main contributions are an intelli-
gent visual surveillance system based on efficient and robust activity
analysis and a demonstration exploring long term human activity pat-
terns though video analysis.
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Chapter 1

Introduction

In this thesis, we study the human activity analysis problem and we especially fo-
cus on large surveillance video archives. Human activity analysis is to understand
activities which people are performing in videos. The goal of human activity anal-
ysis is to identify interested human activities in noisy environments and various
circumstances. We especially target real world surveillance scenarios which con-
tain large amounts of data and also have diverse and complex environments. Au-
tomatic human activity analysis can not only detect interested activities but also
provide a way to understand the video content. Furthermore, we want to utilize
the informative analysis results to understand videos over long periods of time
and be able to explore long term activity patterns.

We propose to characterize human activities in surveillance video though the
use of spatio-temporal interest points. A spatio-temporal interest point is an area
of interest containing a distinguishing shape and sufficient motion. A descriptor
is a feature extracted to describe both shape and motion around an interest point.
Each interest point captures and represents small but informative components of
an activity in the video. The small components can be raising a finger, bending a
knee or lips moving. We assume that an activity can be described though a com-
bination of different types of these small components. Since interest points are
small, they can capture local movements and are less affected by posture, illumi-
nation and occlusion. Therefore, the task of comparing the similarity of two ac-
tivities transforms into a search for similar, conceptually meaningful components
exhibited in the video.
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Furthermore, we propose a sliding window approach with a cascade of clas-
sifiers to attack the challenge that the same activities can deform significantly in
shape and length. The reason to introduce multiple scale sliding windows is to
scan though all possible locations and times. The sliding window approach gen-
erates a tremendous amount of negative windows and increases the false positive
rate in the detection task. Cascade architecture is a approach to not only keep
strong detection rate but also significantly reduce false positive rate.

Finally, we perform a study to utilize automatic human activity analysis to im-
prove geriatric health care. Geriatric health care is improved by observing elder
patients’ daily living to predict or prevent their physical and mental illness. How-
ever, it requires a tremendous amount of human effort to keep tracking a patient’s
daily living. A patient’s health condition can not be evaluated in a short period
of time. Therefore, automatic long term activity analysis is an emerging research
topic in the health care domain. We explore the statistical patterns between patient
daily activities and clinical diagnoses to assist better health care. The promising
experimental result directly supports the idea that even imperfect human activity
analysis can still provide strong evidence to assist medical doctors in understand-
ing elder patients’ long term patterns and improving their diagnoses.

1.1 Motivation

Visual surveillance is omnipresent in our daily life. Some systems are set up for
security proposes such as video recording in banks and ATMs. Some systems are
designed for access control to restricted areas, e.g. to permit face identification at
an entrance. Some systems aim to perform congestion analysis such as surveil-
lance systems at highways or major streets. These surveillance systems collect a
huge amount of video but most of the data needs to be reviewed by a human op-
erator to extract informative knowledge. Currently, many research efforts focus
on developing intelligent visual surveillance systems to replace traditional pas-
sive video surveillance systems which can only store surveillance videos but are
not able to identify or describe interesting activities.

Most surveillance tasks focus on human activities. Therefore, human detec-
tion, human movement tracking, human activity recognition and person identifi-
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Figure 1.1: Surveillance video recording is omnipresent in our daily life. They
are monitoring public indoor areas, e.g. banks, airports and ATMs, and outdoor
areas, e.g. traffic intersections.

cation are popular topics in computer vision. A general intelligent visual surveil-
lance system framework usually includes the following stages: modeling envi-
ronments, detecting motions, classifying moving objects, tracking, understanding
and describing human activities, and human identification. We will especially fo-
cus on human activity analysis suitable for large archives of video surveillance
data. There are a lot of well known difficulties in automatic activity characteri-
zation: Activities under observation can vary in posture, appearance, scale, back-
ground, and occlusions which make activity analysis extremely difficult.

Moreover, there is an important and exciting problem in the video analysis do-
main. What is the basic semantic unit to express the content of the video? In text
documents, there are words and phrases to represent the semantic concepts. Re-
searchers have proposed many efficient algorithms to categorize, index, retrieve
and summarize documents though words and phrases. However, lack of basic
semantic units makes it a big challenge to access video content efficiently. Human
activities are usually the essential part in most video content. A robust human
activity analysis can further provide reliable semantic units to represent the video
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content.
In this thesis, we especially focus on the human activity analysis problem in

the clinical domain, specifically a nursing home surveillance video archive. In a
nursing home, one staff member needs to take care of several elderly patients and
provide doctors with daily observations to assist treatment diagnoses. Although
the staff have professional training and are able to observe clinical information
from patients’ daily living, they can not focus their attention on the patients every
single second. Surveillance video recording is currently only a marginally useful
tool to staff and doctors. Therefore, we want to design a system that not only
records but also performs analysis tasks. In a nursing home environment, we
want to detect unusual activities and also recognize patients’ routine activities,
e.g. eating, chatting, etc. In the end, the detection results can be analyzed and will
provide long term activity patterns to assist doctors.

The potential benefits of human activity analysis apply not only to surveillance
video but also to other areas. Video activity understanding can be widely used in
many applications such as video retrieval, video gaming, video conferencing, and
vision-based user interfaces. Our approach can be extended to analyze various
activities in different circumstances, e.g. scoring goals in sports videos, controlling
TVs and video games with gestures, detecting car accidents in the street etc. We
believe though the study of activity analysis, we can develop semantic descriptors
to assist others in accessing video content efficiently.

1.2 Thesis Statement

In this thesis, we aim to attack two major tasks in video analysis. The first task
is to develop techniques for robust and accurate human activity analysis based
on real-world surveillance video archives. The second task is to extend activity
analysis to describe human behaviors over a long period of time.

To robustly and accurately analyze human activity, our approach is inspired
by object recognition approaches which rely on sparsely detected features to char-
acterize an object. We extract spatio-temporal descriptors called MoSIFT at salient
points from the video to represent human activities. These video descriptors de-
compose complicated human activities into small location-independent units. We

4



then propose a constraint-based clustering algorithm to cluster video descriptors
into conceptually meaningful sets and improve the quantization process. A bi-
gram model is also proposed to capture structure information of activities to make
the algorithm more robust. A bag-of-word feature is then constructed for each
video clip to represent its content. A soft-weighting scheme is applied to improve
the traditional bag-of-word representation directly borrowed from text domain.
A classification framework applies the bag-of-word features to recognize activi-
ties of interest in surveillance video. Furthermore, a brute-force scan and cascade
classifier approach is applied to extend the activity recognition framework into a
detection framework.

Detecting and recognizing human activities in a video provides fundamental
tools for users to analyze the content in that video. Current video analysis tech-
niques detect or recognize a short term activity. Surveillance video systems often
record a long period of time and this continuous recording provides valuable in-
formation. Analyzing long term activity is a very challenging task and it is domain
specific. In this thesis, we especially focus on elderly patient health care since it
has become an growing need in our aging society. We demonstrate that automatic
video analysis of patients’ daily lives over time is informative to a doctor’s diag-
nosis and is able to further improve the quality of life to nursing home residents.
This case study shows a promising research direction for the multimedia commu-
nity.

1.3 Thesis Contribution

This dissertation makes four contributions in computer vision and multimedia
analysis.

• The first contribution is to develop a robust video feature descriptor, MoSIFT,
and a solid activity recognition framework. MoSIFT explicitly describes
both appearance and motion of an interest region at multiple scale from
a video. The activity recognition framework consists of interest point ex-
traction, video codebook construction/mapping, bag-of-word feature repre-
sentation, and modeling. The constraint-based clustering, bigram and soft-
weighting scheme are introduced to enhance the bag-of-word representation
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to improve recognition performance. Detecting and describing motions ex-
plicitly improves the activity recognition performance significantly. Efficient
bag-of-word representation gives us the ability to build a recognition system
on hundred hours of video.

• The second contribution comes from building an activity detection frame-
work. A brute-force search strategy is achieved by sliding a fixed length win-
dow over a video to generate candidate windows. A cascade SVM classifier
is built to identify interesting activities among all the candidate windows.
The false positive rate is decreased by the good properties of the cascade
architecture and concatenating positive prediction strategy. This algorithm
has the top performance in official surveillance video event detection bench-
mark in TRECVID [86].

• The third contribution comes from a successful case study in analyzing the
long term activity from a surveillance video achieve in the nursing home
health care domain. A long term activity analysis is domain dependent and
there is no general solution. The case study we perform in the CareMe-
dia [90] project is to detect activities in residents’ daily lives over time to
better estimate their health conditions. We demonstrate that observations in
surveillance video are informative. Furthermore, we successfully simulate
automatic video analysis and prove the inaccurate automatic video analysis
over a long period of time can assist medical doctors to estimate patients’
health conditions more accurately. This work as we know is the first to
demonstrate that the video surveillance can assist health care by observing
patients over time.

• The fourth and last contribution is to build two video analysis applications
to demonstrate that the proposed techniques are practical. We successfully
parallelize MoSIFT activity recognition by the Sprout [70] architecture to
achieve real time activity analysis. This technique enables us to build real-
world applications. We demonstrate the proposed activity analysis tech-
niques in two aspects: a interactive interface and a intelligent store surveil-
lance system. The success in building these real-world applications gives
us confidence that the proposed work can be applied to many emerging ar-
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Figure 1.2: System framework of visual activity recognition/detection. There are
three major steps in the training phrase: local feature extraction, video codebook
construction, activity model training. The test video will be mapped by video
codebook and be classified into associated activities.

eas, e.g. content-based video retrieval, traffic load analysis, tracking, day
care surveillance, etc. Given the exponential growth of video content, our
proposed techniques help users to access video content efficiently.

1.4 Visual Activity Analysis

In this thesis, our framework of visual activity analysis is based on a local feature
approach. Local feature (interest point) approaches, such as SIFT, have demon-
strated great successes in object recognition/detection. An interest point is a
point in the image/video which has several desired properties. First, the local
structure around the interest point should be rich in terms of local information
content. Second, the interest point should be stable under local and global per-
turbation, including deformations from perspective transformation as well as il-
lumination/brightness variations. Given these properties, the interest points can
be reliably computed with a high degree of reproducibility.

Figure 1.2 illustrates the framework of an activity analysis system. We define
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activity analysis as comprehensive activity recognition and detection. In terms of
comprehensiveness, we want to detect an activity and recognize it regardless of
its form and duration. The form of a human activity can be roughly described by
three categories: single person, person with object, and multiple persons. Each
form has very different appearances and characteristics. The duration of a human
activity can vary from a couple of seconds to several minutes. These variations
make the activity analysis a challenging task. In our framework, we apply a lo-
cal feature approach to visual activity analysis. In a local feature approach, there
are three major parts: local feature extraction, video codebook construction and
activity model training. Local feature extraction has two key tasks: interest point
detection and description. The local feature extraction method we developed,
MoSIFT, not only detects and describes interest points in local appearance from
spatial and temporal domains but also further captures explicit motion informa-
tion. Video codebook construction is a quantization process to transfer arbitrary
numbers of interest points from video segments into fixed length feature vectors.
An activity model is then trained by a machine learning algorithm. We apply a
Support Vector Machine (SVM) [17] here due to its robust and solid performance.

Originally, this framework was designed to accomplish a recognition task. A
recognition task identifies a specific video pattern such as people running in a
video segment. The assumption of the recognition task is that a video segment
is provided and it should be classified as a given activity. A detection task is to
localize and identify the pattern in a video. To extend our framework to achieve
detection, we build a fixed length sliding window to scan through the video. Each
sliding window is a video segment to which we can apply our method and recog-
nize the desired activity. However, the sliding window approach normally gener-
ates a tremendous amount of potential examples and the target activity we want
to detect is usually very rare in the video. This fits well into the framework of cas-
cade classifiers which have been proven to significantly reduce the false positive
rate.
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1.5 Long Term Activity Analysis

Beside comprehensive activity analysis, we would like to further explore possible
ways to utilize these analysis results to understand long term changes or trends.
This work is valuable in many areas. For example, we can model customers’ shop-
ping behaviors via surveillance cameras which are common in a lot of stores. Over
a long period of time, we would be able to analyze customers’ shopping trends
by observing touching, surveying, and trying products in stores. In our study,
we will focus on geriatric health care to explore long term activity analysis. Fig-
ure 1.3 shows the conceptual overview of geriatric patient behavior monitoring
and analysis. In this thesis, we focus on activity analysis from surveillance video
and employ a case study on long term activity analysis to predict patients’ health
conditions.

In our study, we try to show that comprehensive activity analysis results are
strongly correlated with doctors’ diagnoses. In geriatric domain, diagnoses are
based on several evaluation methods which are proved to strongly reflect patients’
health conditions in the medical domain [5, 22, 23, 51, 61, 69]. Our promising re-
sults give us confidence that surveillance video can further assist doctors to make
more accurate diagnoses. This study employs an example to demonstrate that we
can analyze long term activity with surveillance videos.

1.6 Datasets

In this thesis, we will evaluate our methods and analysis on five video datasets:
the KTH dataset [78], the Hollywood dataset [50], the Gatwick Airport Surveil-
lance video archive [85], the TRECVID 2009 Sound and Vision dataset [86], and
the CareMedia dataset [82, 90]. The KTH and Hollywood are standard datasets
used by researchers to evaluate activity recognition performances. The Gatwick
archive was collected for activity detection tasks and features a complicated real
world environment. The Sound and Vision collection is widely used to evaluate
video analysis tasks, e.g. semantic video feature extraction and video retrieval.
The CareMedia dataset is mainly used to explore long term activity analysis and
is also captured in a complex real world environment.
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Figure 1.3: Conceptual overview of geriatric patient behavior monitoring and
analysis. The ultimate goal is to extract various information from multiple
sources, analyze social interactions and interested behaviors, and provide an in-
formation access to medical doctors. In this thesis study, we focus on activity
analysis from surveillance video and employ a case study on long term activity
analysis to predict patients’ health conditions.
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Dataset # activities # examples Size Description
KTH [78] 6 598 2 hours Static background.

Standard dataset.
Hollywood [50] 8 663 64+ hours Movie scenes.

Camera motions.
Edited cuts.

Gatwick [85] 10 14081 100+ hours Static background.
Surveillance video.

Sound and Vision [86] 20 93902 380 hours TV programs.
CareMedia [90] 19 6904 14976+ hours Static background.

Surveillance video.

Table 1.1: Dataset used in our experiments. In CareMedia dataset, we only use the
examples from one chosen camera during dining periods.

1.6.1 KTH

The KTH human activity dataset is widely used by researchers to evaluate activity
detection and recognition [28, 29, 43, 47, 50, 54, 60, 64, 67, 72, 76, 78, 83, 92, 93]. The
dataset contains six types of human actions (walking, jogging, running, boxing,
hand waving, and hand clapping) performed by 25 different persons. Each per-
son performs the same action four times under four different scenarios (outdoors,
outdoors at a different scale, outdoors with camera moving, and indoors). The whole
dataset contains 598 video clips and each video clip contains only one action. In
KTH, each action is performed by a single person in a relatively simple environ-
ment. The KTH dataset provides a common benchmark to evaluate and compare
activity detection and recognition algorithms. Figure 1.4 gives some examples
from KTH dataset. In the figure we can see that several actions are quite similar,
such as jogging and running, and this makes the dataset more challenging.

1.6.2 Hollywood

The Hollywood dataset contains video samples with human action from 32 movies.
Each sample is labeled according to one or more of 8 action classes: (Answer
Phone, Get Out Car, Hand Shake, Hug Person, Kiss, Sit Down, Sit Up, and
Stand Up). The dataset is divided into a test set from 20 movies and two training
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Figure 1.4: Some examples of the KTH dataset. Figure adapted from [78]

sets of 12 movies different from the test set. The Automatic training set is obtained
using automatic script-based action annotation and contains 233 video samples
with approximately 60% correct labels. The Clean training set contains 219 video
samples with manually verified labels. The test set contains 211 samples with
manually verified labels. Figure 1.5 shows some examples from the Hollywood
dataset. The dataset is frequently used to evaluate human action recognition al-
gorithms and is more challenging than the KTH dataset due to camera motion,
cluttered backgrounds and various deformation of interesting activities.

1.6.3 Gatwick

The TRECVID 2008 [85] surveillance event detection dataset was recorded of Lon-
don Gatwick International Airport provided by NIST [65]. It consists of 50-hours
(5 days x 2 hours/day x 5 cameras) of video in the development set and another
50-hours in the evaluation set. There are around 190K frames per 2-hour video
with an image resolution 720 x 576. This dataset contains highly crowded scenes,
severely cluttered background, large variation in viewpoints, and very different
expressions of the same activities; all embedded in a huge amount of data. To-
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Figure 1.5: Some examples of the Hollywood dataset. The first row shows ”kiss”
activities. The second row demonstrates ”Answer Phone” activities. The bottom
row shows ”Get out Car” activities. Figure adapted from [50]

gether, these characteristics make activity detection on this dataset a formidable
challenge. To the best of our knowledge, human activity detection on such a large,
challenging dataset with these practical concerns has not been evaluated and re-
ported prior to TRECVID 2008. In this dataset, 10 human activities are evaluated:

(Object Put, People Meet, People Split Up, Pointing, Cell To Ear,

Embrace, Person Runs, Elevator No Entry, Take Picture, and Opposing Flow).

Standardized annotations of activities in the development set were provided
by NIST [65]. In this dataset, NIST uses the term ”event” instead of activity. A
video event usually indicates a visible incident performed by human in a video
which is actually an human activity. To be consistent in this thesis, we will use the
term ”activity” to reduce confusion. Figure 1.6 shows all five camera views in the
Gatwick dataset.
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Figure 1.6: Some example views of the Gatwick dataset. Each example corre-
sponds to a different camera.

1.6.4 Sound and Vision

The 2009 TRECVID [86] Sound and Vision dataset was collected to perform high-
level feature extraction and retrieval tasks. In video content retrieval, high-level
(semantic) features are believed to be important meta-data to enable searching in
video content [34]. Among possible semantic features, some can be detected by
still images but many can be only analyzed from appearance with motions. In
the TRECVID 2009 evaluation, the dataset contain 280 hours of videos; 100 hours
of videos for training and the other 180 hours for evaluation. Twenty concepts
were evaluated by concept recognition performance: (Airplane flying, Boat and
ship, Bus, Cityscape, Classroom, Demonstration or protest, Hand, Nighttime,
Singing, Telephone, Chair, Infant, Traffic intersection, Doorway, Person play-
ing musical instrument, Person playing soccer, Person riding a bicycle, Person-
eating, and Female human face closeup). Among those concepts, many can
be recognized by analyzing human activity or motions. The Sound and Vision
dataset is a collection of news magazine, science news, news reports, documen-
taries, educational programming and archival videos by Netherlands Institute of
Sound and Vision. This dataset contains a lot of variety and we want to demon-
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Figure 1.7: Some examples of TRECVID 2009 Sound and Vision dataset. For the
first row, from left to right are ”Boat and Ship”, ”Doorway”, and ”Person play-
ing soccer”. For the second row, from left to right are ”Person playing musical
instrument”, ”Bus”, and ”Female human face closeup”.
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strate our proposed algorithm is solid to analyze the real world video programs.
Figure 1.7 shows some examples from the Sound and Vision dataset.

Figure 1.8: Camera placement in the nursing home in the CareMedia dataset.

1.6.5 CareMedia

The CareMedia dataset is a surveillance video data collection from a geriatric
nursing home collected by the Carnegie Mellon University Informedia group. We
placed 23 cameras in public areas such as the dining room, TV room, and hall-
way in the nursing house. We recorded patients’ lives for 25 hours per day for 25
days with 23 cameras. The recording is at 640x480 resolution and 30 fps MPEG-2
format. In total we collected over 13,000 hours of videos which occupy about 25
terabytes. Figure 1.8 shows the camera set up in the nursing home. Figure 1.9
gives some examples showing the environment in the nursing home. From this
dataset, we specifically choose camera 133 in the dining room as our evaluation
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Figure 1.9: Some examples of the CareMedia dataset. In the first row, from left to
right are ”Staff activity: Feeding” and ”Walking though” activities. In the second
row, from left to right are ”Wheelchair movement” and ”Physically aggressive:
Pulling or tugging”.

set. This camera captures patients’ activities during lunch and dinner time. In
total, we have 6904 activities annotated in this evaluation set. From the examples
shown in Figure 1.9, the CareMedia dataset is a very challenging dataset which
contains crowded scenes, severely cluttered background, large variance in view-
points, very different performances of the same activities, and severely changing
illumination. The tempo of patients’ activity is much slower than usual which
creates a big challenge for robust activity analysis.
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1.7 Applications

Human activity analysis is a fundamental function of video understanding. A
robust and stable activity analysis algorithm could be widely used in many video
applications. We will discuss two different applications in this dissertation. One is
an intelligent surveillance video system which not only records surveillance video
but also shows activity detection results to help the surveillance administrator
easily catch interesting events in the video. The other set of applications we will
demonstrate here are vision based interactive applications. The system can detect
and recognize human activities such as gestures as control input. It can be applied
to video gaming, TV control, and interactive computer input methods.

1.7.1 Intelligent Surveillance Video Systems

Figure 1.10 shows the interface of an intelligent surveillance video system for
Gatwick airport surveillance videos. The system is able to detect and summa-
rize a set of pre-defined human activities. A threshold bar can be set to con-
trol the amount of data you want to analyze. It is a advanced surveillance sys-
tem that saves a surveillance administrator a tremendous amount of time. A
robust visual human activity analysis algorithm is a key component in this in-
telligent surveillance video system. In our chapter on applications (Chapter 7),
we demonstrate another intelligent surveillance video application which analyzes
customers’ shopping behaviors in a shopping store.

1.7.2 Interactive Applications

Interactive vision-based applications require not only robust visual activity anal-
ysis algorithms but also low latency. Currently, it is computationally expensive to
achieve robust visual activity analysis. Parallelism and cluster-based distributed
systems now can improve these vision-based systems not only in terms of through-
put but also latency. Figure 1.11 demonstrates a system which detects human ges-
tures to control a television at interactive speeds. This implementation gives us
confidence that the visual activity analysis technique could be practical in our life
soon.
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Figure 1.10: A intelligent surveillance video system on the Gatwick airport
surveillance video. Our system detects specific activities and users can set up
thresholds to show specific activities or summarize surveillance videos. The ap-
plication can speed up video play and fast forward when there isn’t any interest-
ing activity.
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Figure 1.11: Setup of TV/camera for gestural control system.
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Chapter 2

Related work

Automatic analysis and interpretation of human activities have received a great
deal of attention from both industries and academic research in recent years. This
is motivated by many real-world surveillance applications that require tremen-
dous amounts of observation by human operators. An intelligent surveillance
system is usually composed of computer vision and information retrieval tech-
niques. In computer vision, environment modeling, motion segmentation, object
classification, tracking, activity understanding and person identification are all
active research topics. In information retrieval, data mining, question answering
and information summarization can provide essential tools to access the surveil-
lance data efficiently. Human activity detection and recognition are the core tech-
niques in visual surveillance systems. Researchers are looking to develop ro-
bust video concept detection and recognition which is a strong semantic basis for
further video search and mining. In activity detection and recognition analysis,
there are three main approaches: Model-based, Appearance-based and Part-based
methods. In information retrieval, semantic concept detection is a popular re-
search topic that includes much image and video analysis research. Furthermore,
the TRECVID event detection task provides a platform for researchers to eval-
uate their human activity detection algorithms on real-world surveillance video
datasets. In the end of this chapter, we will discuss some related work on assisting
health care by sensors and other computer tools.

21



Figure 2.1: Two model based approaches. The top figure shows how to decom-
pose a human body into fourteen elliptical cylinders to simulate walking. The
bottom figure demonstrates a tennis image sequence which is modeled by HMM.
The figures are adapted from [38, 94].

2.1 Model-based Approaches

Model-based approaches attempt to build motion or action models by estimat-
ing model parameters, such as pose and scale. Researchers first try to extract a
body outline to analyze human motions. Akita [4] decomposed a human body
into six parts: head, torso, arms and legs. A cone model is built which consists of
six segments corresponding to their counterparts in stick images. Hogg [38] used
elliptical cylinder models to describe human walking. A human body is repre-
sented by 14 elliptical cylinders and each cylinder is described by three parame-
ters: the length of the axis, and the major and minor axes of the ellipse cross sec-
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tion. This approach attempts to recover the 3D structure of a walking person. Hid-
den Markov Models (HMMs) have been used to recognize tennis actions. Yamato
et al. [94] extracted a symbol sequence from a image sequence and built HMMs to
model tennis actions. Bregler [15] further extended HMMs by applying dynam-
ical models which contain spatial and temporal blob information extracted from
human bodies. Model-based approaches require not only a good model which
can describe the motions and actions but also must track body parts consistent
with the constructed models. It has been shown that tracking body parts is a very
difficult problem by itself and models are usually built for limited domains and
environments. Figure 2.1 gives some examples of model-based approaches.

2.2 Appearance-based Approaches

Appearance-based methods attack the problem by measuring similarity to pre-
viously observed data. Template matching is a widely used technique. Polana et
al. [71] compute a spatio-temporal motion magnitude template as the basis for rec-
ognizing activities. They first detect activities by measuring periodicity and then
classify them by comparing the motion magnitude to training examples. Bobick et
al. [11] construct Motion-Energy Images (MEI) and Motion History Images (MHI)
as temporal templates and then search for the same patterns in test data. Dalal
et al. [24] propose grids of Histograms of Oriented Gradients (HoG) descriptors
to describe the appearance and significantly improve pedestrian detection. Ap-
pearance models can be generally extended to detect various actions without con-
structing domain specific models. However, they rely fundamentally on segmen-
tation to extract the actors out from the background, which is also a very difficult
task. Detecting pose and scale are also essential factors that determine the detec-
tion and recognition performance. Deformation in shapes is another challenge to
appearance-based approaches. Figure 2.2 shows some examples of MHI and HOG
approaches. From the examples, it is clear that appearance-based approaches can
be heavily affected by cluttered background, occlusion, and deformation.
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Figure 2.2: Two appearance-based approaches. The top figure shows a template
of arms-wave by Motion History Image (MHI). The button figure demonstrates a
pedestrian image and corresponding HoG and weighted HoG images. The figures
are adapted from [11, 24]

2.3 Part-based Approaches

Part-based approaches have been received attention in recent years. They do not
require constructing specific models, unlike the model-based approaches. They
also have fewer assumptions than appearance-based methods about capturing
the global appearance. These approaches were first inspired by object recognition
in static images. They first detect salient points from interested objects and then
decompose the object into a combination of these salient points. This has several
advantages. Instead of observing the global appearance, a part-based approach
tries to search for small discriminative components extracted from the object. This
results in an advantage helping to overcome occlusion and posture variations.
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Since we only extract informative components, we obtain robustness to deal with
variations. The salient points normally contain specific lighting-invariant charac-
teristics and this reduces the effect from illumination change.

In part-based approaches, the essential part is salient point detection, or so
called interest point detection. There are a variety of methods to detect interest
points from static images in the spatial domain. Typically, a response function is
calculated at every location in the image and salient points correspond to local
maxima of the response function. One of the most popular approaches to detect
interest points is to detect corners, such as the Harris corner detector [31]. The spa-
tial corners are defined as the regions which contain large variations in orthogonal
directions, which are the x and y coordinates in still images. The variation is mea-
sured by gradient vectors. The gradient vectors are the derivatives of a smoothed
image L(x, y, σ) = I(x, y) ∗ g(x, y, σ), where g is the Gaussian smoothing kernel,
σ denotes the smoothing scale and I is the original image. The response function
at each point is the rank of the second moment matrix of gradients calculated in a
local window which is related to eigenvalues in both directions. A high response
strength means large variations in both x and y direction which is a spatial cor-
ner. Another popular method to detect interest points is to use a Difference of
Gaussians (DoG), such as SIFT [55]. The image is first convolved with Gaussian
filters at different scales, and then the differences of successive Gaussian-blurred
images are taken. Salient points are taken as maxima/minima of the difference
of Gaussians that occur at multiple scales. Specifically, a DoG image is given by
D(x, y, σ) = L(x, y, kiσ)−L(x, y, kjσ) where L(x, y, kσ) = I(x, y)∗G(x, y, kσ) is the
original image convolved with a Gaussian blur function at scale kσ which k indi-
cates scale. Once DoG images have been obtained, salient points are identified as
local minima/maxima of the DoG images across scales.

In videos, we need to extract points not only with informative spatial locations
but also interesting temporal information. We call these points spatio-temporal
interest points. Spatio-temporal interest points are used to decompose compli-
cated motions and actions into small and independent components. Laptev et
al. [49] extended the Harris interest point detector to detect spatio-temporal cor-
ners in video sequences. Instead of a 2-D Gaussian smoothing kernel in a still
image, a 3-D Gaussian smoothing kernel is applied to the video. A video can
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Figure 2.3: Some spatio-temporal interest point examples from a walking se-
quence. The figures are adapted from [49].

Figure 2.4: Some examples from Dollar’s interest point detection and volumetric
features. The most left figure shows interest point detection from a boxing action.
The other two figures illustrate hand waving and boxing volumetric features. The
figures are adapted from [27, 45]

be seen as a cuboid of successive images. Therefore, a smoothed video clip is
L(x, y, t, δ, τ) = I(x, y, t) ∗ g(x, y, t, δ, τ), where g is the Gaussian smoothing kernel,
δ controls spatial scale, τ controls temporal scale and I is the original video. Sim-
ilar to the Harris detector, Laptev constructs a second-moment matrix which is a
3-by-3 matrix composed of first order spatial and temporal derivatives. The detec-
tor searches for points which have both high eigenvalues in all three dimensions
from the second-moment matrix. Therefore, an interest point is a region which
has large variations in both spatial and temporal directions. To be more specific, a
spatio-temporal corner is a spatial interest corner corresponding to the moments
with non-constant motion. Figure 2.3 gives some examples of spatio-temporal
interest points detected in a walking image sequence.

Dollar et al. [27] attempted to detect periodic frequency components. The re-
sponse function has the form R = (i ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 where g(x, y, δ)
is the 2D Gaussian smoothing kernel, applied only on the spatial dimensions,
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and hev and hod are a quadrature pair of 1D Gabor filters which are applied in
the temporal direction. They are defined as hev(t, τ, w) = − cos(2πtw)e−t

2/τ2 and
hod(t, τ, w) = − sin(2πtw)e−t

2/τ2 . Dollar set up w = 4/τ to constrain the response
function R with two parameters δ and τ which correspond to the spatial and tem-
poral scale of the detector. The response function is applied to the video cuboid
and local maxima are extracted as interest points. Periodic motions represent one
important type of motions but can not represent every complicated activity. How-
ever, this approach has shown very impressive recognition results and it is widely
used.

Both of the above approaches attempt to decompose human behaviors into
small, characteristic and location independent components with shape and mo-
tion information. Ke et al. [45, 46] proposed volumetric features to describe events.
The features are extracted from optical flow and are represented as a combination
of small volumes. This method combines the part-based method with a motion
model. It still decomposes the complicated motions into small units. However,
the combination of the volumes can capture the outline of the whole action. It
does not achieve as robust recognition results as the interest point method, but it
provides another informative feature for analyzing actions.

2.4 Video Content Mining

In addition to robust recognition techniques, researchers are also interested in ap-
plying inference mechanisms to analyze recognition results to understand video
content. The recognition results explore what is in the video; however, integrat-
ing spatial and temporal relationships with recognition results provides a clear
understanding of the whole video content. This includes interaction between
people, interaction between people and the environment and description of the
environment. Event detection usually has very complicated circumstances with
a combination of people, objects, time, and environment. Therefore, researchers
try to build up graph models to monitor event processing and to incorporate the
observations into recognition results.

David et al. [25] proposed a system which is able to answer a user’s queries
about human activities. The system returns video clips that satisfy the users’
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queries, removing any other clips that are not relevant to the query. A query usu-
ally describes a scenario, and a scenario is built up using a set of spatial relations,
temporal relations and logical operators. An inference mechanism is applied to
object or motion recognition results to infer the presence of the predefined scenar-
ios. A bipartite network represents each query graphically. Each node represents
a video feature detected by a vision algorithm, such as object and behavior recog-
nitions, and the network maps low-level raw features to higher-level semantics,
such as ”a person opens a car door”.

Boger et al. [12] proposed a Markov decision process framework to assist peo-
ple with Dementia. A Markov decision process framework is a plan graph which
contains four different state variables: environment variables, activity status vari-
ables, system behavior variables and user variables. This graph connects human
actions with system behavior and its environment. This plan graph decomposes
a complicated action into several steps described by state variables which contain
information not only from the patient but also from the environment and the as-
sisting system. Using sensors and detectors, the system can collect information
from all three aspects: user, environment and system, and the system can also
monitor which step the user is attempting in order to give appropriate assistance.

2.5 Semantic Feature Extraction

The semantic gap is a fundamental challenge in content based video retrieval [32,
35]. Semantic concept detections can be a promising approach to bridge the se-
mantic gap by adding understandable meta-data provided by semantic detec-
tors [34]. Generic approaches for large-scale concept detection have received a
lot of attention recently. However, most research efforts still focus on keyframe
classification, and motion-related concept detection is an understudied research
topic. Cees et al. [81] proposed extracting multiple frames in the same video seg-
ment to capture motion related to semantic concepts. Inoue et al. [40] proposed
aggregating image features from every frame inside a video segment to capture
motions inside the sequence. Those state-of-the art motion-related concept de-
tectors actually do not analyze motions at any level of detail. Therefore, robust
activity analysis could be helpful to extract semantic concepts which are related
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Figure 2.5: An example of using human detection and tracking to help detecting
activities in a surveillance video. The motion edge image and edge detection are
extracted from video. Human detection and tracking results help the system to
focus on person related regions. A cascaded classifier is applied to identify inter-
esting activities. The figure is adapted from [96]

to motion.

2.6 Activity detection in a surveillance video

Although many activity analysis techniques have been demonstrated to perform
robustly in selected datasets, a real-world surveillance video archive is still ex-
tremely challenging, due to complicated environments, cluttered backgrounds,
occlusions, illumination changes, multiple activities, and great deformations of
an activity. NIST provides researchers a platform to study and evaluate activity
detection algorithms by annotating 100 hours of airport surveillance video. Zhu et
al. [100] proposed detecting activities by describing appearance and motions from
person tracking results. A person tracking result first filters the background, then
spatio-temporal cubes are extracted from the tracked person. A spatio-temporal
cube is described by gradients and optical flows and a SVM classifier is applied
to identify an interesting activity. The proposed method is strongly affected by
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human detection results and occlusions. This algorithm is not able to analyze per-
son to person and person to object activities as well. Yang et al. [96] proposed
an activity representation scheme using a set of motion edge history images and
human trackers. The false positive rate is reduced significantly by a cascaded Ad-
aboost classifier. The algorithm again relies on human tracking and is only able to
handle single person activities. Human detection and tracking are widely applied
in activity detection task in surveillance video [97, 98]. This is a efficient way to
reduce the search space because human detectors and trackers filter non-person
related regions directly. However, current human detection and tracking algo-
rithms still have high error rates. Accumulating errors from human detectors and
trackers should be avoided to build a robust activity detector in surveillance video
domain. Figure 2.5 illustrates an approach to use human detection and tracking
results to detect interesting activities, which is adapted from Yang et al. [96].

2.7 Health care analysis

More and more researchers are starting to utilize sensors and other tools to moni-
tor and analyze human behaviors to assist health care. Adami et al. [2] proposed
a system for unobtrusive detection of movement in bed that uses load cells in-
stalled at the corners of a bed. The movement detection during sleeping provides
doctors a useful diagnostic feature to estimate quality of sleep. Michael et al. [58]
proposed to use Global Position System (GPS) enabled cell phones to track people
to understand their social interactions. It is believed that an elderly person with
more social interactions tends to be more healthy. Unay [88] proposed fusing clini-
cal and patient-demographics related observations with visual features computed
from brain longitudinal MRI (magnetic resonance imaging) data for improved de-
mentia diagnosis. This work demonstrates that processed sensor data (MRI can
be treated as a sensor) can slightly improve the diagnosis. All these related works
attempt to use sensors to collect desired data to improve health care. However,
the information from a sensor is limited and can not really reflect the details of a
person’s daily life. Surveillance recording, in the other hand, requires more dif-
ficult post processing but provides comprehensive views of a person’s daily life.
In conclusion, the surveillance method is a complementary method to the sensor
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approach but reveals detailed observations.
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Chapter 3

Motion SIFT

This chapter presents our Motion SIFT (MoSIFT) algorithm to detect and represent
interest points in videos. Interest point detection [55] reduces the video from a
volume of pixels to a sparse but descriptive set of features. Ideally, interest points
should densely sample those portions of the video where activities occur while
avoiding regions of low movement. Therefore, our goal is to develop a method
that generates a sufficient but manageable number of interest points that can cap-
ture the information necessary to recognize arbitrary human activities. In contrast
to previous work that either focuses entirely on appearance or spatio-temporal
extrema, MoSIFT identifies spatially-distinctive regions that exhibit sufficient mo-
tion at a variety of spatial scales (see Figure 3.1). The information in the neighbor-
hood of each interest point is expressed using a descriptor that explicitly encodes
both an appearance and a motion component. The former aspect is captured us-
ing the popular SIFT descriptor [55] and the latter using a SIFT-like encoding on
local optical flow. Details of our algorithm are described in the following sections.

3.1 MoSIFT interest point detection

Popular spatio-temporal interest point detectors [27, 49] generalize established 2D
interest point detectors (such as the Harris corner detector [31]) to 3D. While this
is arguably elegant from a mathematical perspective, such detectors are restricted
to encoding motions in an implicit manner, thus providing limited sensitivity for
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Figure 3.1: Interest points detected with SIFT (left) and MoSIFT (right). Green
circles denote interest points at different scales while magenta arrows illustrate
optical flows. Note that MoSIFT identifies distinctive regions that exhibit signifi-
cant motion, which corresponds well to human activity while SIFT fires strongly
on the cluttered background.

smooth gestures, such as circular motions which lack sharp space-time extrema.
The philosophy behind the MoSIFT detector is to treat appearance and motion
separately, and to explicitly identify those spatially-distinctive regions in a frame
that exhibit sufficient motion.

Like other SIFT-style keypoint detectors, MoSIFT finds interest points at mul-
tiple spatial scales. MoSIFT’s fundamental operations are performed on a pair of
consecutive video frames. Two major computations are employed: SIFT interest
point detection on the first frame to identify candidate features; and optical flow
computation between the two frames, at a scale appropriate to the candidate fea-
ture, to eliminate those candidates that are not in motion. The MoSIFT detector
scans through every frame of the video (overlapping pairs) to identify keypoints
in each frame.

The candidate interest points are determined using SIFT [55] on the first frame
of the pair. For completeness, we now briefly review this interest point detector.
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High Frequency 
BandsStages of low pass filters

Low Frequency 
Bands

Figure 3.2: For each octave, the initial image is repeatedly convolved with Gaus-
sians to produce images with different scales on the left. After each octave, the
image is down-sampled by a factor of 2. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian (DoG) images on the right. The DoG is ap-
proximate to a band-pass filter that discards all but a handful of spatial frequencies
that are present in the original grayscale image. Figures are adapted and revised
from [55].

3.1.1 Scale-invariant feature transform

SIFT interest points are scale invariant and all scales of a frame image must be
considered. A Gaussian function is employed as a scale-space kernel to produce
a scale space transform of the first frame. The whole scale space is divided into a
sequence of octaves and each octave is further subdivided into a sequence of in-
tervals, where each interval is a scaled frame. The number of octaves and intervals
is determined by the frame size. The first interval in the first octave is the original
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frame. In each octave, the first interval is denoted as I(x, y). We can denote each
interval as

L(x, y, kσ) = G(x, y, kσ) ∗ I(x, y) (3.1)

where ∗ denotes the convolution operation in x and y, and G(x, y, kσ) is a Gaus-
sian smoothing function:

G(x, y, kσ) =
1

2πσ2
e−(x

2+y2)/2σ2

(3.2)

In the next octave, the first image is down-sampled by factor of 2 from the current
octave. Difference of Gaussian (DoG) images, which approximate the output of
a band-pass Laplacian of Gaussian operator, are then computed by subtracting
adjacent intervals

D(x, y, kσ) = L(x, y, kσ)− L(x, y, (k − 1)σ) (3.3)

A band-pass filter discards all but a handful spatial frequencies that are present in
the original grayscale image. Figure 3.2 illustrates the idea of Gaussian and DoG
pyramids. Once the pyramid of DoG images has been generated, the local ex-
trema (minima/maxima) of the DoG images across adjacent scales are used as the
candidate interest points. In the implementation, a local extremum is determined
within 3x3 regions at the current and adjacent scales (see Figure 3.3). The algo-
rithm scans through each octave and interval in the DoG pyramid and extracts all
of the possible interest points at each scale.

3.1.2 Motion SIFT

The original SIFT algorithm was designed to detect distinctive interest points
in still images, and therefore considers only appearance information. Thus, the
candidates include a large number of interest points on a cluttered but station-
ary background that are not useful for describing human activities. Therefore,
MoSIFT only seeks to retain those interest points that are in motion. This is done
by calculating the optical flow [56] between the pair of frames. Optical flow pyra-
mids are constructed over two Gaussian pyramids from consecutive frames. Opti-
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Figure 3.3: A local extrema of the DoG images is detected in 3x3 regions at the
current and adjacent scales. Figure adapted from [55].

cal flow is computed at each of the multiple scales used in SIFT. Candidate points
(local extrema from DoG pyramids) are selected as MoSIFT interest points only
if they contain sufficient motion in the optical flow pyramid at the appropriate
scale. Thus, MoSIFT identifies interest points on distinctive regions that are in
motion. Compared to video cuboids or spatio-temporal volumes, the optical flow
representation explicitly captures the magnitude and direction of a motion, rather
than implicitly modeling motion through appearance change over time. Our hy-
pothesis (supported by our experiments in Section 3.4.1) is that MoSIFT’s explicit
representation of motion, described below, plays a critical role in its ability to ac-
curately recognize activities. Figure 3.1 contrasts the interest points detected by
the original SIFT algorithm with those identified by MoSIFT; note that we focus
primarily on regions of the image with significant human activity.

MoSIFT interest points are scale invariant in the spatial domain. However,
they are not scale invariant in the temporal domain. Temporal invariance is a
complicated and ill-defined problem. If the temporal invariant is defined by the
completeness of a simple and straightforward motion such as eyelids moving up.
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MoSIFT can achieve this temporal invariant by calculating optical flow on multi-
ple scales in time. However, a complete motion such as blinking contains at least
two different simple motions, eyelids moving up and down. The temporal in-
variant is then hard to define with this assumption. Normally, a human activity is
composed of a lot of simple motions. Therefore, we decide to implement temporal
invariance at the activity level instead of at the interest point level by segmenting
videos into different temporal intervals. We will discuss more about activity level
temporal invariance in Chapter 5.

3.2 MoSIFT feature description

Since MoSIFT interest points combine distinctive appearance with sufficient mo-
tion, it is natural that the MoSIFT descriptor should explicitly encode both appear-
ance and motion. We are not the first to propose representations that do this; sev-
eral researchers [50, 76] have reported the benefits of augmenting spatio-temporal
representations with histograms of optical flow (HoF). However, unlike those ap-
proaches, where the appearance and motion information is separately aggregated,
MoSIFT constructs a single feature descriptor that concatenates appearance and
motion, as described below.

The appearance component is the 128-dimensional SIFT descriptor for the given
patch, briefly summarized as follows. The magnitude and direction for the inten-
sity gradient are calculated for every pixel in a region around the interest point in
the Gaussian-blurred image. An orientation histogram with 8 bins is formed, with
each bin covering 45 degrees. Each sample in the neighboring window is added to
a histogram bin and weighted by its gradient magnitude and its distance from the
interest point. Pixels in the neighboring region are normalized into 256 (16×16)
elements. Elements are grouped as 16 (4×4) grids around the interest point. Each
grid contains its own orientation histogram to describe sub-region orientation.
This leads to a SIFT feature vector with 128 dimensions (4×4×8 = 128). Each vec-
tor is normalized to enhance its invariance to changes in illumination. Figure 3.4
illustrates the SIFT descriptor grid aggregation.

MoSIFT adapts the idea of grid aggregation in SIFT to optical flow. The optical
flow describing local motion at each pixel is a 2D vector with the same structure
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Figure 3.4: MoSIFT aggregates appearance and motion information using a SIFT-
like scheme. The region of interest is normalized into 256 elements. Elements
are grouped as 16 grids and each grid is described by an 8 dimensional vec-
tor. This makes MoSIFT a 256 dimensional descriptor where 128 dimensions de-
scribe appearance and the other 128 dimensions represent motion. Figure adapted
from [55].

as the gradient describing local appearance. This enables us to encode motion
with the same scheme as that used by SIFT for appearance. A key benefit of this
aggregation approach is that our descriptor becomes tolerant to small deforma-
tions and partial occlusion (just as standard SIFT was designed to be tolerant to
these effects). The two aggregated 128-dimensional histograms (appearance and
optical flow) are concatenated to form the MoSIFT descriptor, which is a vector
of 256 dimensions. Since directions of appearance and motion indicate the shape
of an activity, we don’t do rotation on either appearance or motion. Rotation in-
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Figure 3.5: The four major steps of MoSIFT activity recognition: interest point
extraction, codebook constrcution, bag-of-word representation, and classification.
In this figure, each interest point is represented by a N dimensional vector (N =
256 in MoSIFT), and each video segment is denoted as a K (decided by cross-
validation) dimensional bag-of-word feature.

variance is achieved in SIFT but we are not convinced that is helpful for analyzing
activities. For example, raising one’s hand has a different meaning than pushing
one’s hand forward. We want to be able to distinguish these two activities by the
direction of motion.

3.3 MoSIFT activity recognition

In MoSIFT activity recognition (illustrated in Figure 3.5), there are four major
steps: interest point extraction, video codebook construction/mapping, bag-of-
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word feature representation, and modeling. Here, we discuss more details of how
we implement this in our experimental setting.

3.3.1 Interest point extraction

In MoSIFT feature extraction, sufficient motion is determined by the size of the
frame. In our implementation, we extract interest points which contain either
vertical or horizontal movements which are larger than 0.5% of frame height or
width. In different scales or octaves, the frame size changes and the sufficient
motion is then determined by the current scale.

3.3.2 Video codebook construction/mapping

The video codebook is constructed by the standard K-means clustering algorithm.
Two major issues arise here: sampling and number of codewords. The first prob-
lem is sampling. Normally, a couple hundred interest points would be extracted
from each frame pair. This equals at least one hundred thousand interest points
extracted per hour. It is not practical to run a clustering algorithm on all inter-
est points from training data due to memory limitations. Sampling is required
to reduce the number of interest points for the clustering process and sampling
the right distribution is an important step to get a better video codebook. In our
experiments, we applied standard random sampling. However, our experimental
results also demonstrated that the capability to train clustering on all extracted in-
terest points can significantly improve the recognition result. The second issue is
the size of the video codebook (k in K-means clustering). From our experimental
results, it is clear that the size of the codebook is a strong factor in recognition per-
formance. Unfortunately there is no clear objective function to optimize the size of
the codebook. In our experimental setting, we use cross-validation to determine
the size of video codebook.

3.3.3 Bag-of-word representation and classification

We adopt the popular bag-of-features representation and discriminant classifica-
tion for action recognition, summarized as follows. Each video clip is represented
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by a histogram of occurrence of each codeword (bag of features). This histogram
is treated as a K-element input vector for a support vector machine (SVM) [13],
with a χ2 kernel. The χ2 kernel is defined as:

K(xi, xj) = exp(− 1

A
D(xi, xj)), (3.4)

whereA is a scaling parameter that is determined empirically though cross-validation.
D(xi, xj) is the χ2 distance defined as:

D(xi, xj) =
1

2

m∑
k=1

(uk − wk)2

uk + wk
, (3.5)

with xi = (u1, ..., um) and xj = (w1, ..., wm). Prior work has shown that this kernel
is well suited for bag-of-words representations [99]. SVM is a binary classifier.
we adopt the standard one-vs-rest strategy to train multiple SVMs for multi-class
learning.

3.4 MoSIFT evaluation: activity recognition

In this section, we evaluate our MoSIFT algorithms on four different datasets:
KTH, Hollywood, Gatwick, and CareMedia. The KTH and Hollywood datasets
are standard datasets and are widely used in academia to evaluate activity recog-
nition algorithms. The Hollywood dataset is from edited movie scenes and has
many camera motions. The Gatwick and CareMedia datasets are real-world surveil-
lance datasets in two different domains. Their cluttered backgrounds and multi-
ple activities provide exciting challenges to automatic activity recognition algo-
rithms.

3.4.1 The KTH dataset

The KTH human motion dataset [78] has become a standard benchmark for eval-
uating human activitiy recognition algorithms. Although KTH is much smaller
than the datasets that form the focus of our research, it serves as a consistent point
of comparison against current state-of-the-art techniques. Figure 3.6 illustrates

42



Figure 3.6: Some examples of MoSIFT from the KTH dataset. In the left two
columns, from top to bottom are boxing hand waving and walking. In right two
columns, from top to bottom are hand clapping, jogging and running. Green cir-
cle indicates interest points and purple arrows show the direction of motion. As
seen in these sequences, jogging and running are very similar.

some examples of MoSIFT interest points detected in different activities in KTH
dataset. As seen in the examples, jogging and running are very similar and hard
to distinguish.

We follow [27, 45, 64, 93] in performing leave-one-out cross-validation to eval-
uate our approach. Leave-one-out cross-validation uses 24 subjects to train activ-
ity models and then tests on the remaining subject. Performance is reported as the
average accuracy over 25 runs.

As we discussed earlier, the size of the video codebook is a significant factor in
recognition performance. Therefore, cross-validation is used to determine the size
of codebook. A small codebook size will cause coarse clustering in which small
changes can’t be distinguished. A large codebook size will increase the dimen-
sion of the bag-of-word feature resulting in worse performance due to ”curse of
dimensionality” in the classification process. Figure 3.7 shows the relationship be-
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Figure 3.7: Codebook size is an important factor in recognition performance. A
small codebook size leads to coarse clustering and loses detail of the activities. A
large codebook size captures motion details of the activities but it results in high
dimensionality in classifier vectors which may weaken the performance. In the
KTH dataset, 900 video codewords result in the best performance. The size of
codebook is determined by cross-validation.

tween codebook size and recognition performance. In the KTH, a video codebook
of size 900 gives the best performance according to cross-validation. The confu-
sion matrix for 900 video codewords is given in Figure 3.8. The major confusions
occur between jogging and running.

Table 3.1 summarizes our results on the KTH dataset. We observe that MoSIFT
demonstrates a significant improvement over current methods, many of which
employ bag-of-features with different descriptors. In particular, Laptev et al. [50]
employed a bag-of-features approach on feature descriptors which describe ap-
pearance (histogram of gradient, HoG) and motion (histogram of optic flow, HoF)
with aggregating neighborhoods which gives the second best published results.
By applying the t-test, the improvement is statistically significant given a 95%
confidence interval. Wong et al [93] and Niebles et al. [64] both use HoG to de-
scribe spatio-temporal cuboids around interest points which only implicitly de-
scribe motions. This leads to less efficiency to fully describe activities. The final
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Figure 3.8: Confusion matrix for the KTH activities. This is achieved by 900 video
codewords. The major confusions occur between jogging and running.

Method Accuracy
MoSIFT 95.83%
Laptev et al. [50] 91.8%
Wong et al. [93] 86.7%
Niebles et al. [64] 83.3%
Dollar et al. [27] 81.5%
Schuldt et al. [78] 71.7%
Ke et al. [45] 62.7%

Table 3.1: MoSIFT significantly outperforms current methods on the standard
KTH dataset.

comparison (Ke et al. [45]) is against a boosted cascade that operates solely on
optical flow without modeling appearance. Clearly, an explicit representation of
motion alone is insufficient for human activity recognition. These results are a
strong validation for our decision to combine appearance and motion into a sin-
gle descriptor.
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Figure 3.9: Some examples of MoSIFT from the Hollywood dataset. Top left is a
handshaking activity. Top right is a man getting out from a car. Bottom left is a
kissing activity and a standing up activity in bottom right. A green circle indicates
interest points and the purple arrows show the direction of motion.

3.4.2 The Hollywood movie dataset

The Hollywood dataset is another standard dataset used to evaluate activity recog-
nition algorithms. The Hollywood dataset collects human activity clips from real-
world movies, which is the major difference from the laboratory collection of the
KTH dataset. Since the dataset is selected from movie scenes, it contains more
dynamic backgrounds and the activities in the dataset have more variety than the
KTH dataset. This dataset also includes a large number of camera motions in
the video clips. Camera motion will produce MoSIFT interest points that are not
related to interesting activities. However, in most cases, the activity we want to
recognize is the main focus of the shot which leads to fewer problems distinguish-
ing multiple activities in this dataset.

In the Hollywood dataset, we apply a video codebook of size 1000 to construct
our bag-of-word features via cross-validation. We train our models with clean
training examples which contain 219 video samples with manually verified la-
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Activity Random Laptev [50] MoSIFT
AnswerPhone 10.6% 13.4% 17.5%
GetOutCar 6.0% 21.9% 45.3%
HandShake 8.8% 18.6% 18.9%
HugPerson 10.1% 29.1% 39.7%
Kiss 23.5% 52.0% 49.5%
SitDown 13.8% 29.1% 34.7%
SitUp 4.6% 6.5% 7.5%
StandUp 22.6% 45.4% 44.3%
Average 12.5% 27.0% 32.2%

Table 3.2: MoSIFT significantly improves recognition performance on the Holly-
wood movie dataset. The performance is measured by average precision.

bels. The test set has 211 samples. The result is shown on Table 3.2. Following
the same experimental setting as [50], we measure the performance by average
precision (AP). Comparing this with Laptev’s spatio-temporal interest point ap-
proach, MoSIFT outperforms significantly by t-test given 95% confidence. MoSIFT
demonstrates robustness on the Hollywood dataset and proves its consistent ac-
tivity recognition performance in different domains (both the KTH and Holly-
wood datasets).

3.4.3 The Gatwick dataset

The 2008/2009 TRECVID surveillance event detection dataset [85, 86] was col-
lected by 5 cameras at London Gatwick International Airport. We evaluate recog-
nition performance in a forced-choice setting (i.e., “which of the 10 events is this?”)
using the annotations provided by NIST. There were a total of 6,439 events in the
development set. The size of the video codebook was fixed at 2000 after cross
validation on the development set. Since the data were captured by 5 cameras
over 5 different days, we evaluated each camera independently using 5-fold cross-
validation and averaged their results. There were not enough annotated exam-
ples for OpposingFlow, ElevatorNoEntry and TakePicture to run cross valida-
tion; therefore, we do not report performance results of these three tasks. We use
average precision as the metric, which is typical for TRECVID high-level feature
recognition.
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Figure 3.10: Some examples of MoSIFT from the Gatwick dataset. Top left is a
person running through the scene. Top right is an ”object put” activity. Bottom
left is a ”pointing” activity (the lady left in the scene) in a busy environment.
Bottom right is an embracing activity. A green circle indicates interest points and
purple arrows show the direction of motion.

In the Table 3.3, we compare MoSIFT again with Laptev et al. [50] which has
the second best performance in the KTH dataset. In the comparison, MoSIFT out-
performs Laptev’s method on five of seven activities (CellToEar, ObjectPut, Peo-
pleSplitUp, Pointing, and PersonRuns) and on the average of all seven activities.
By applying the t-test, the improvement is considered to be statistically significant.
The improved performance of Latptev’s method mainly comes from aggregated
descriptors and the ability to detect slow or smooth motions in videos. Compared
with a random classifier result, MoSIFT appears to be a robust algorithm for real-
world surveillance video archives.

48



Activity Random Laptev [50] MoSIFT
CellToEar 6.98% 19.42% 22.61%
Embrace 8.03% 29.35% 29.97%
ObjectPut 18.03% 44.24% 47.22%
PeopleMeet 22.32% 44.69% 41.68%
PeopleSplitUp 13.63% 56.91% 57.88%
Pointing 26.11% 41.54% 44.61%
PersonRuns 4.95% 32.56% 36.12%
Average 14.29% 38.39% 40.01%

Table 3.3: MoSIFT significantly improves recognition performance on the 100-
hour Gatwick surveillance dataset. The performance is measured by average pre-
cision.

3.4.4 The CareMedia dataset

The CareMedia dataset is a collection of surveillance video data from a geriatric
nursing home. The surveillance system was designed to collect information about
patients’ daily activities and to provide useful statistics to help doctors’ diagno-
sis. With the help of doctors whose patients were in this elder nursing house,
we defined 19 different human actions that doctors are interested in. They can
be categorized into two types. The first type (pass 1) is concerned with patients’
movement activities and the second type (pass 2) is about patients’ detailed be-
haviors (See Appendix B). The movement activity category contains 12 activities.
The detail behavior category has 7 superordinate behavior codes and each su-
perordinate code contains couple more subordinate codes. Figure 9 shows some
examples from the four activities.

We choose camera 133 in the dining room as our evaluation set. This camera
captures patients’ activities during lunch and dinner time. In total, we labeled
2528 activities from the movement category and 4376 activities from the patients’
detailed behavior category. We did a cross-validation on the data and discovered
that 1000 video codewords represent the best vocabulary size. Five-folder cross
validation was applied in our evaluation. In this evaluation, we want to under-
stand how accurate the proposed algorithm might be. Therefore, we chose to
use Average Precision (AP) which is commonly used in retrieval tasks. AP not
only reflects correct predictions but it also considers the ranking provided by the
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Figure 3.11: Some examples of MoSIFT from the CareMedia dataset. Top left is a
”Object paced on table” activity. Top right is a ”standing up” activity. Bottom left
is an activity where one patient is pulling the other patient’s fingers. Bottom right
is a eating activity. Green circle indicates interest points and purple arrows show
the direction of motion.
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classifiers. We first show the performance of movement activities in Table 3.4.
MoSIFT results a strong performance on the movement activity category which
has clear definitions and distinguishing motion patterns. In the CareMedia collec-
tion, MoSIFT outperforms the Laptev’s method by a large margin because MoSIFT
captures smooth activities better than the Laptev’s method. In a nursing home,
residents move slowly and this criterion gives MoSIFT a substantial performance
improvement. By applying the t-test, both movement activity and detailed be-
havior categories significantly outperform Laptev’s method by a 95% confidence
interval. Among movement activities, ”Communicates with staff” has a poor per-
formance comparing to other activities. ”Communicates with staff” contains a lot
of verbal activities which can’t be recognized from video.

Table 3.5 shows the performance in the detailed behavior category. The de-
tailed behavior category is more complicated than the movement activity cate-
gory. Each behavior in this category contains a set of activities. For an example,
there are 19 sub-category activities defined and annotated in ”Physical aggressive
behaviors”: Splitting, Grabbing, Banging, Pinching or squeezing, Punching, Elbow-
ing, Slapping, Tackling, Using object as weapon, Taking from others, Kicking, Scratching,
Throwing, Knocking over, Pushing, Pulling or tugging, Biting, Hurting self, Obscene
gestures, and other. Each sub-category activity contains very few positive exam-
ples. Due to insufficient positive examples, we decided to train models for super-
ordinate behaviors instead of each sub-category activity. Due to complexity of the
detailed behavior category, the activity recognition performance drops dramati-
cally from the movement behavior category. We still believe our framework can
achieve a robust performance for each sub-category given enough training data.
Our performance here also shows that we need to incorporate audio features to
explore some activities related to verbal behaviors.

The CareMedia dataset is a real world surveillance video dataset, containing
interactions between people, cluttered background, occlusion to activities, and
changes in the environment. It is not a clean labratory dataset for researchers just
to evaluate their algorithms. The data from Camera 133 was collected over 25 days
which exhibited a lot of varieties and presented a big challenge for recognition.
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Activity Random Laptev MoSIFT
Walking though 36.67% 69.97% 84.68%
Walking to a standing point 22.94% 54.24% 72.31%
Standing up 3.48% 32.75% 47.29%
Sitting down 3.61% 34.41% 53.11%
Object placed on table 17.80% 29.91% 51.17%
Object removed from table 13.49% 36.90% 42.87%
Wheelchair movement 1.70% 18.10% 16.83%
Communicates with staff 0.32% 1.31% 1.77%
Average 12.50% 34.70% 46.25%

Table 3.4: MoSIFT provides the robust activity recognition performance in the
CareMedia dataset on the movement activity category. MoSIFT significantly out-
performs the Laptev’s method here because MoSIFT is able to better capture
smooth activities. The performance is measured by average precision.

Activity group Random Laptev MoSIFT
Pose and/or motor action 12.13% 20.98% 26.13%
Positive activities 32.38% 30.45% 37.83%
Physical aggressive activities 1.46% 4.12% 4.02%
Physical non-aggressive activities 22.90% 28.12% 28.24%
Verbal aggressive activities 0.80% 1.12% 1.99%
Verbal non-aggressive activities 8.20% 9.91% 11.32%
Staff activities 20.68% 24.81% 27.11%
Average 14.08% 17.07% 19.87%

Table 3.5: MoSIFT provides robust activity recognition performance in the Care-
Media dataset for the detail behavior category. Given each behavior here con-
tains many sub-category activities. The performance drops dramatically from the
movement activity category. We believe more positive training examples from
each sub-category can significant improve the detail activity recognition results.
The performance is measured by average precision.

52



3.5 Summary

A new video feature descriptor, MoSIFT, is proposed in this chapter. MoSIFT ex-
plicitly describes both appearance and motion of a interest region at multiple scale
from a video. We successfully build an activity recognition framework based on
MoSIFT. The activity recognition framework consists of interest point extraction,
video codebook construction/mapping, bag-of-word feature representation, and
modeling. Robustness is demonstrated by applying the framework to four differ-
ent datasets. The evaluation on the KTH dataset shows the proposed algorithm
outperforms the state-of-the-art methods significantly. The evaluation on the Hol-
lywood dataset demonstrates that the proposed method performs well with cam-
era motions on the edited movie scenes. The evaluations on the Gatwick and
CareMedia datasets further shows that our framework is able to recognize inter-
esting activities accurately in real-world surveillance video archives.
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Chapter 4

Improving the robustness of MoSIFT
activity recognition

In the bag-of-feature (BoF) framework, building a efficient video codebook can be
the key factor to the performance. In BoF, each codeword is independent of the
others. This assumption simplifies the relationships between different codewords
and allows BoF to be constructed easily and efficiently. In video analysis, this as-
sumption generally ignores the sequence information in both spatial and temporal
domains which also provide essential information. Exploring spatial and tempo-
ral sequence information in BoF representations is an on-going research topic.

In this chapter, we try to improve the robustness of our MoSIFT activity recog-
nition by constructing a more informative BoF representation. Three algorithms
are proposed here: a constraint-based video interest point clustering approach,
a bigram model, and a soft-weighting scheme. Constraint-based video interest
points add temporal constraints during the clustering process to construct a video
codebook with sequential information. The bigram model tries to embed spa-
tial and temporal sequence information by adding frequent co-occurring interest
point pairs in both spatial and temporal domains. The soft weighting scheme
changes the codebook mapping process to a probabilistic mixture model. Each
interest point is represented by a mixture of several codewords through probabil-
ities instead of being assigned to one codeword (hard weighting).
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4.1 Constraint-based Video Interest Point Clustering

The MoSIFT interest point detector tends to detect a good number of interest
points from moving objects. Therefore, we frequently extract interest points from
the video which are both spatially and temporally nearby. By visually examin-
ing our clustering results, we discovered that the clustering algorithm is some-
times too sensitive. It occasionally separates continuous components into dif-
ferent clusters. These components come from the same image location along a
time sequence, and one would intuitively expect them to be clustered into the
same group. This mainly happens for two reasons. First, the method we use
to detect interest point tends to extract rich features with large dimensionality.
Ideally, we would only extract points along representative moving points from
local maxima in one area. However, our approach extracts a large number of
video interest points and some of these only have small differences in the high-
dimensional feature space. During the clustering process, this small difference
can cause conceptually similar interest points to be separated into different clus-
ters due to an over-sensitivity of the clustering algorithm. The second reason is
related to the cluster center point initialization and distance function in the clus-
tering algorithm. These two factors can greatly impact the clustering result and
ultimately the activity classification accuracy. Cluster center point initialization
makes the clustering result unstable because the initial center points may not be
appropriate for the current dataset, and forcing clustering result to descend into a
locally optimal solution which isn’t well suited to the recognition task. In a high
dimensional feature space, a distance metric can dramatically affect the shape of
clusters’ boundaries and the clustering result as well. In our proposed method,
we would like the spatially and temporally co-located components to be clustered
into the same cluster. Therefore, we introduce a pair-wise constraint clustering al-
gorithm to force video interest points which are spatially and temporally nearby
to be clustered into the same cluster during the clustering process. Figure 4.1
shows a pair of constraints from the boxing action in the KTH dataset.
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Figure 4.1: Red points indicate interest points extracted from the motion and green
points show a pair of constraints which are considered as continuous, related com-
ponents. The right frame is 5 frames after the left frame.

4.1.1 K-means Clustering

K-Means is a traditional clustering algorithm which iteratively partitions a dataset
into K groups. The algorithm relocates group centroids and re-partitions the
dataset iteratively to locally minimize the total squared Euclidean distance be-
tween the data points and the cluster centroids. Let X = {xi}i=1∼n, xi ∈ <m be the
set of data points. n denotes the total number of data points in the dataset. m is the
dimensionality of feature for data points. We denote U = {uj}j=1∼K , uj ∈ <m as
centroids of clusters and K is the number of clusters. L = {lj}j=1∼n, lj ∈ {1 ∼ K}
denotes cluster label for each data point in X. The K-Means clustering algorithm
can be formalized to locally minimize the objective function as follows:

Ok−means =
∑
xi∈X

D(xi, uli) (4.1)

D(xi, uli) = ||xi, uli | |
2 = (xi, uli)

T (xi, uli) (4.2)

where Ok−means is the objective function of K-Means and D() denotes a distance
function, which is the Euclidean distance. The EM algorithm can be applied to
locally minimize the objective function. In fact, K-Means can be seen as mixture
of K Gaussians under the assumption that Gaussians have the identity matrices
as covariance matrices and uniform priors. The objective function is the total
squared Euclidean distance between a data point to its center point. There are
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three steps to achieve K-Means with the EM process: initialization, the E-step and
the M-step. We first initialize K centroids in the feature space and then start to
execute the E-step and M-step iteratively until the objective function converges
or the algorithm reaches the maximal number of iterations. In the E-step, every
point is assigned to the cluster that minimizes the sum of the distance between
data points and centroids. The M-step updates centroids based on the grouping
information computed in the E-step. The EM algorithm is theoretically guaran-
teed to monotonically decrease the value of objective function and to converge to
a locally optimal solution. As we mentioned before, an unfortunate centroid ini-
tialization can sometimes result in a less-than-ideal locally optimal solution and
clustering result.

4.1.2 EM Clustering with Pairwise Constraints

In the original K-Means algorithm, data points are independent of each other.
However, in our proposed method, video interest points could have either spa-
tial or temporal dependencies between each other. Our idea is to add constraints
to video interest points which are both spatially and temporally nearby, increas-
ing their chance of being clustered into the same prototype. Although we are not
tracking interest points in our framework, we want to pair video interest points
which are from the same activity motion component and encourage them to clus-
ter into the same prototype.

Semi-supervised clustering algorithms have been getting more attention in re-
cent years. These methods use data labels in the clustering process and signifi-
cantly improve the clustering performance. Basu et al. [8] proposed adding pair-
wise constraints in a clustering algorithm to guide it toward a better grouping of
the data. Their algorithm reads manually annotated data and applies this infor-
mation to the clustering process. They have two different types of relationships
between data: must-link pairs and cannot-link pairs. Their idea is very simple.
Penalties will be added to the objective function if two data points which are la-
beled as must-link belong to different clusters during the clustering process. If
two points are labeled cannot-link but belong to the same cluster during the clus-
tering process, penalties will also be added. In our proposed method, we will

58



only penalize pairs which are spatially and temporally nearby (which we there-
fore consider potential continuous components) but belong to different clusters.
This is the same as the must-link relation in Basu’s method. However, we do
not need to manually label the data points. The constraint pairs we generate are
purely from the observed video interest points, and their spatial and temporal
proximity; therefore they are pseudo-labels in our framework.

To achieve this, we revise the objective function of the K-Means clustering pro-
cess as follows:

Oconstraint =
∑
xi∈X

D(xi, uli) +
∑

(xi,xj)∈Xnear

1

D(xi, xj)
δ(li 6= lj) (4.3)

δ(true) = 1, δ(false) = 0 (4.4)

The first term of the new objective function remains the same as K-Means. The
second term represents our idea to penalize pairs which are considered to be con-
tinuous components but do not belong to the same cluster. Xnear denotes to the
set which contains spatially and temporally nearby pairs. The function equals
one if two data points are not in the same cluster. In the second term, we can see
that the penalty is correlated to the inverse distance between the two data points.
Theoretically, two continuous components should be very similar in feature space
because they are part of the same motion unit over time. Based on this assump-
tion, the penalty is high if they do not belong to the same cluster. However, two
exceptions may happen. The motion is too fast or the motion is changing. If the
motion is too fast, we may link different parts together no matter how we define
”spatially and temporally nearby”. We can try to set up a soft boundary instead of
a hard boundary to weaken the strict definition. In practice, we extract thousands
of video interest points from our data set. It is not tractable to use soft bounds
for all interest points, given that n-squared pairs are involved in the EM process.
Therefore, we may occasionally mis-label two different interest points as must-
link and penalize them if they are not in the same cluster. The other reason we
may mis-label data pairs comes from changing motion. Since we try to constrain
spatially and temporally nearby interest points as pairs, we have a good chance of
linking two points from two different actions which transition seamlessly. Since
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we neither track interest points nor analyze the points’ spatial relationship, we
can not avoid these exceptions when we try to connect video cubes with cluster-
ing constraints. However, we can reduce the penalty for these mis-labeled pairs.
In both types of exceptions, we believe these pairs should have large differences
in the feature space. This means that the distance between the two video interest
points should be large, resulting in a small penalty. Instead, the objective function
will be penalized more when a pair that looks similar in feature space is not in the
same cluster. The objective function will be penalized less if the pair is actually
quite different in feature space which hopefully means the pair does not originate
from one continuous motion.

In our work, we replace the Euclidean distance in K-Means by the Mahalanobis
distance to satisfy the Gaussian assumption for partitioning data points. The Ma-
halanobis distance function is:

D(xi, uli) = ||xi, uli | |
2 = (xi, uli)

TAli(xi, uli) (4.5)

Ali is a m by m diagonal matrix called covariance matrix. Because we update our
distance function, we need to also revise the distance function between two points
since they may belong to two different Gaussians. The formula for our pair-wised
constraint clustering algorithm can be written as:

Oconstraint =
∑
xi∈X

D(xi, uli) +
∑

(xi,xj)∈Xnear

1

D′(xi, xj)
δ(li 6= lj) (4.6)

D(xi, uli) = ||xi, uli | |Ali

2 = (xi, uli)
TAli(xi, uli) (4.7)

D′(xi, xj) =
1

2
(||xi, xj| |Ali

2 + ||xi, xj| |Alj

2) (4.8)

δ(true) = 1, δ(false) = 0 (4.9)

The distance function, D′(xi, xj), between two data points considers a mix of dis-
tances from both Gaussians. The optimization process still relies on the EM pro-
cess. The only difference is in the M-Step, where we not only update centroids but
also update the covariance matrices for the clusters. Figure 4.2 illustrates the idea
of K-mean clustering with pair-wise constraints.
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Figure 4.2: The left picture demonstrates regular K-mean clustering result. The
yellow line here indicates a constraint. The right picture demonstrates how clus-
tering result can be changed based on the added constraint.

4.1.3 Experimental results

We tested our proposed constraint-based clustering in the standard KTH dataset.
In this experiment, we evaluated our constrained clustering on a more general
video interest point descriptor, HoG. We did not apply this in MoSIFT because
MoSIFT has reached 95% accuracy and it would be difficult to demonstrate per-
formance improvements. The HoG descriptors basically extract histograms of
gradients from interest points. We used 600 video codewords determined via
cross-validation. We set up a hard boundary of ”spatially and temporally nearby
points” with a 2x2x5 window size, 2 pixel distance difference in both the x and y

axis and for interest points extracted within 5 frames. This may not be the optimal
setup, however, we want to evaluate in principle if constraints can improve recog-
nition performance. Among 1.6 million video interest points extracted from the
KTH dataset, we obtained around 0.38 million pairs fulfilling our definition. We
randomly sampled constraints and added them into the clustering process in dif-
ferent amount. Figure 4.3 shows the recognition performance with different num-
bers of constraints added to clustering process. Figure 4.3 demonstrates that if we
don’t provide enough constraints, less accurate recognition will result. When we
provide around 2500 pairs of constraints, the performance is statistically signifi-
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Figure 4.3: We evaluated how sensitive the performance of our algorithm to the
number of constraints in KTH dataset. In the KTH dataset, it shows 2500 con-
straints will significantly improve activity recognition results.

cantly better than the baseline (84.28% vs. 86.39%) by a 95% confidence interval.
In any case, additional constraints do not hurt performance. The performance
numbers after 2500 constraints are not statistically different. The constraint-based
clustering indeed stabilizes the clustering process and results significantly better
recognition accuracy. Beside its improved result, the proposed constraint-based
clustering algorithm can also apply to Dollar’s and Laptev’s methods. It does not
require additional assumptions as long as a ”spatially and temporally nearby”
boundary can be defined. In general, constraint-based clustering stabilizes the
clustering result and makes a more consistent video codebook.

4.2 Bigram model of video codewords

The bag-of-words feature representation is often used to represent an activity us-
ing spatio-temporal interest points. A video codebook is constructed by clustering
spatio-temporal interest points. Each interest point is then assigned to its closest
vocabulary word (a cluster) and the histogram of video words is computed over
a space-time volume to describe an activity.
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A bag-of-words feature representation is easy to compute and efficient for de-
scribing an action. However, its histogram does not contain any spatial or tem-
poral constraints, which leads to loss of shape and periodicity information. In
text analysis, a bigram model is often used to capture the co-occurrence of adja-
cent words in order to boost classification results [9]. This inspired us to build
a bigram model in video codewords. Although it is computationally intractable
to model all possible sequences of video codewords in a space-time volume, co-
occurrence of only two video words requires minimal computation and provides
some spatial and temporal constraints that help model shapes and motions.

4.2.1 The bigram model

Bigrams are a way to apply pair-wised constraints in a bag-of-word representa-
tion. Through these constraints on video codewords, additional spatial structure
and temporal information can be embedded into bigrams. We first define adja-
cent video words as a pair of video words which co-occur in a kernel where ds
and dt denote the spatial and temporal boundary. Experience has shown that
good vocabulary sizes for action recognition are in the range of a hundred to a
thousand words. Pair-wise correlations can result in very large numbers of pairs.
Some research [74, 75] reduces the number of correlations by clustering. Instead,
we select bigrams based on their tf-idf weights (term frequency-inverse document
frequency) which is common in information retrieval and text classification. Term
frequency (tf) is the frequency of a bigram in the dataset. Inverse document fre-
quency (idf) indicates how informative a bigram is by dividing the number of all
activities by the number of activities containing this bigram, and then taking the
logarithm of the quotient. All bigrams can then be ranked by their tf-idf weights
and we pick a sufficient number of bigrams to provide extra constraints to enrich
the bag-of-word features and boost activity classification performance.

As we pick n bigrams with video codebook of m vocabularies, the histogram
size will be n+m. We calculate the histogram as a vector:

H(i) =
1

|pi|

|pi|∑
p∈{pi}

1

|C|

|C|∑
c∈C

h(p, c) (4.10)
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h(p, c) = exp(−gD(p, c)) (4.11)

where pi is the set of interest points with vocabulary label i and |pi| is the size of
this vocabulary. C is the set of interest points around interest point p and h(p, c)

is a weighting function for a pair of interest points. If the pair is far apart, it
contributes less to the histogram. g is a fixed parameter of h(p, c) and D(p, c)

measures the distance between interest points, a Euclidean distance in our case.

4.2.2 Experimental results

We first evaluate bigram constraints on the KTH dataset. We obtained pair-wise
constraints to enrich local features with shape and time sequence information by
using a bigram model. We added bigrams our bag-of-word representations in two
different ways: the MoSIFT detector with non-aggregated HoG and HOF descrip-
tors and the MoSIFT detector with full MoSIFT descriptor (aggregated HoG and
HOF). The size of the kernel is 5x5x60, which is 5 pixels in the spatial dimensions
and 60 frames in the temporal dimension. The number of bigrams we used was
300, which was determined to be reasonable through cross-validation. In fact,
cross-validation shows that the first 300 bigrams significantly improve recogni-
tion performance. Beyond that, performance initially remains stable and eventu-
ally declines slightly as the number of bigram increases further. Table 4.1 shows
that the bigram model improves weaker descriptors by a substantial amount from
89.2% to 93.3% and statically significant by a 95% confidence interval. However, it
provides only a small improvement over the MoSIFT descriptor (95.83% to 96.2%).
The high accuracy of the MoSIFT detector and descriptor at 95.83% means that
among 24 actions a subject performs, only 1 action is misrecognized. For certain
actions in KTH such as running vs. jogging, we found that even humans have
difficulties in distinguishing them.

We further evaluate the bigram model on the Gatwick surveillance video col-
lection. The kernel size is again set up as 5x5x60. 600 bigrams are applied though
cross-validation in Gatwick collection. Table 4.2 again demonstrates improvement
by adding global information though bigrams. The good bigram model slightly
improves recognition performance on all activities in the Gatwick collection. By
applying a t-test, the improvement is statistically significant given a 95% confi-
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Method Accuracy
MoSIFT with Bigram 96.2%
MoSIFT 95.83%
HoG + HoF with Bigram 93.3%
HoG + HoF 89.15%

Table 4.1: Adding bigrams into the bag-of-word representation significantly im-
proves weak video interest point descriptors (HoG + HoF). Due to the already
high performance of the MoSIFT descriptor, the improvement of adding the bi-
gram model is limited. The evaluation is applied to KTH dataset.

Activity Random MoSIFT MoSIFT with Bigrams
CellToEar 6.98% 22.72% 22.79%
Embrace 8.03% 29.55% 31.13%
ObjectPut 18.03% 46.81% 49.12%
PeopleMeet 22.32% 41.12% 45.57%
PeopleSplitUp 13.63% 58.33% 61.13%
Pointing 26.11% 44.24% 44.35%
PersonRuns 4.95% 36.78% 40.79%
Average 14.29% 39.94% 42.13%

Table 4.2: Bigrams capture some global information and slightly improve activity
recognition performance in Gatwick surveillance video collection. The perfor-
mance is measured by average precision.

dence interval.

4.3 Keyword weighting

Term weighting is known to have critical impact on text document categoriza-
tion. Visual codewords are fundamentally different than text words. Each text
word has its semantic meaning and naturally contains language context. Visual
codewords are formed by data clustering where each codeword is distinguished
from other codewords in the feature space. In other words, each codeword is not
guaranteed to contain any semantic meaning but is only statistically similar. In
the worst case, different codewords can actually represent the same context due
to unsuitable clustering methods.

In visual bag-of-features, conventional term frequency (tf) and inverse docu-
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ment frequency (idf) are widely used [52, 79, 99]. In [66], binary weighting, which
indicates the presence and absence of a visual word with values 1 and 0 respec-
tively, is used. However, all the conventional weighting schemes are performed
after visual codeword construction which is the nearest neighbor search in the vo-
cabulary (codebook) in the sense that each interest point is mapped to the most
similar visual code (i.e., the nearest cluster centroid). This process is critical. Each
interest point is then a code without its raw feature after this stage. A wrong as-
signment can not be corrected later. For example, two interest points assigned to
the same visual codeword are not necessarily equally similar to that visual code-
word, meaning that their distances to the cluster centroid are different. Ignoring
their similarity with the visual word during weight assignment causes the contri-
bution of two interest to be points equal, thus making it more difficult to assess
the importance of a visual codeword in an image or a video. Therefore, the direct
assignment of an interest point to its nearest neighbor is not the best choice.

4.3.1 Soft weighting

In order to tackle this problem, Agarwal et al. [3] proposed a probabilistic mixture
model approach to train the distribution from local features and code new features
by posterior mixture probabilities. This method is sophisticated and solves the
aforementioned problem. However, it requires a training process which is not
efficient for large scale datasets.

We propose a straight forward approach called soft-weighting to weight the
significance of visual codewords. The basic idea is that one interest point will not
be only assigned to one video codeword (cluster) but also share its importance
with several related codewords in BoF. For each interest point in a video clip, we
select the top-N nearest visual codwords instead of searching only for the nearest
one. Suppose we have a visual codebook of K visual codewords, we use a K-
dimensional vector W = w1, ..., wk, ..., wK with each component wk representing
the weights of a visual codeword k in a video clip such that

wk =
N∑
i=1

Mi∑
j=1

1

2i−1
sim(j, k) (4.12)
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Weighting schemes Accurancy
tf 95.83%
soft-weighting 96.58%

Table 4.3: The soft weighting scheme slightly improves performance of KTH
dataset. Given MoSIFT has a very high baseline already (95.83%), the improve-
ment isn’t significant.

sim(j, k) =
1

rankj,k
(4.13)

where Mi represents the number of interest points whose ith nearest neighbor is
visual codeword k. sim(j, k) is a measurement which represents the similarity
between interest point j and visual codeword k. rankj,k is the rank of visual code-
word k to interest point j. Empirically, inverse rank ( 1

rankj,k
) gives more stable

performance than the distance functions from our experimental results. We find
N = 5 is a reasonable setting from cross validation.

By using the proposed soft-weighing scheme, we expect to address the funda-
mental problems of weighting schemes which are originally designed for the text
categorization domain.

4.3.2 Experimental results

We first evaluated the soft-weighting scheme on the KTH dataset. We set up soft-
weighting on distributing video codeword weights to 4 closest clusters instead of
the closest cluster used in hard-weighting. The performance is shown on Table 4.3.
From the result, the soft-weighting doesn’t improve the performance significantly.
The reason is MoSIFT already has very high performance on the KTH dataset
(95.8%). Therefore, we try to evaluate soft-weighting on a large, real TV-program
dataset, the TRECVID 2009 Sound and Vision dataset.

We evaluate the soft-weighting scheme on the TRECVID 2009 Sound and Vi-
sion dataset - a popular and huge video dataset for semantic retrival. We applied
the MoSIFT activity recognition algorithm for high-level feature extraction evalu-
ation. In the experiment, we also want to demonstrate that MoSIFT is an efficient
and robust video feature to detect semantic concepts in video content.

TRECVID temporally segments videos into basic units called shots. The high-
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Weighting schemes SIFT MoSIFT
tf 6.64% 8.95%
tf-idf 6.71% 9.17%
soft-weighting 8.90% 11.66%

Table 4.4: The soft weighting scheme significantly improves performance of both
SIFT and MoSIFT from hard weighing schemes imported from the text retrieval
domain. MoSIFT is demonstrated as a powerful video feature for semantic video
concept extraction. The evaluation is applied in TRECVID 2009 Sound and Vision
dataset and measured by average precision.

level extraction task is to classify each shot and recognize target concepts. In our
framework, we construct a BoF for each shot with 2000 video codewords by cross-
validation. In the experiments, we use the 20 semantic concepts which are selected
in the TRECVID-2009 evaluation. These concepts cover a wide variety of types,
including objects, indoor/outdoor scenes, people, activities, etc. Note this dataset
is a multi-label dataset, which means each shot may belong to multiple classes or
none of the classes.

Currently, SIFT is a robust and popular feature to extract semantic concepts.
Here, we evaluate our soft weighting scheme on both SIFT and MoSIFT to demon-
strate that the algorithm can generally improve BoF of any type. Average preci-
sion (AP) is used to measure the performance here. The result is summarized in
Table 4.4. The experimental result shows that the soft-weighting algorithm out-
performs the popular weighting schemes from text retrieval domain. The result
is not surprising since the soft-weight scheme preserves more information from
low level features which is the key difference to the text domain. The result also
demonstrates that the soft-weighting scheme works for both image and video BoF
representation.

We further compare performance of SIFT and MoSIFT in more detail. We first
defined activity related concepts as dynamic concepts which are 7 concepts among
20 concepts: {Airplane flying, Singing, Person playing a musical instrument,
Person riding a bicycle, Person eating, and People dancing}. The performance
comparison is shown in Table 4.5. It is not surprising that MoSIFT significantly
outperforms SIFT in this category (15.22% vs 9.02%). However, the experimen-
tal result also shows that MoSIFT still outperforms SIFT in static concepts which
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Concept category SIFT MoSIFT
Static concepts (13) 8.85% 9.73%
Dynamic concepts (7) 9.02% 15.22%

Table 4.5: MoSIFT outperforms SIFT in both static concept and dynamic concept
categories. There are 13 static concepts which include object and scene concepts. 7
concepts are related to activities and defined as dynamic concepts. The evaluation
is applied in TRECVID 2009 Sound and Vision dataset and is measured by average
precision.

are objects, scenes, and people related concepts. By analyzing the result, we dis-
cover that MoSIFT gives the focus to moving objects in video shots by filtering
background noise. It then improves performance for object and people related
concepts but SIFT retains its advantage on analyzing scene concepts.

4.4 Summary

In this chapter, we introduced three algorithms to enhance the bag-of-feature rep-
resentation. The constraint-based interest point clustering approach tends to clus-
ter spatially and temporally similar video interest points into the same clusters.
This approach considers the spatial and temporal relationships in the clustering
process which improves the recognition performance in the KTH dataset. Bigrams
capture pairwise relationships based on co-occurrence within a spatial and tem-
poral kernel. The bigram is represented as additional dimensions in the bag-of-
word representation. In the Gawick surveillance video collection, we success-
fully demonstrate the improved performance from the bigram model. The soft-
weighting scheme releases one-to-one video codeword mapping by share the sim-
ilarities to several codewords. This is similar to building a probabilistic mixture
model from local features. This approach significantly improves the recognition
performance in the TRECVID 2009 Sound and Vision dataset. In summary, mod-
eling spatial and temporal relationships is a promising way to capture global in-
formation and enhances the bag-of-word representation. Our proposed methods
successfully validate this idea.
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Chapter 5

Activity detection

The proposed activity recognition framework from Chapter 3 extracts MoSIFT
features from a video segment, represents this segment as a bag-of-feature, and
classifies this representation into an interesting activity. The framework has an
important assumption: the video segmentation has to be provided. A video is a
sequence of still images and an activity happens in a sub-sequence of the images.
An activity may start in any position of the sequence and last for an arbitrary
length. The sub-sequence is the video segment we mentioned which is required
by our proposed activity recognition framework. To determine a sub-sequence
which contains an interesting activity is very challenging because it requires un-
derstanding the structure of the activity, which is what the recognition system
attempts to learn. Therefore, the assumption of having the video segmentation is
not realistic in real-world video. Activity detection detects when an activity starts
and ends, and identifies what the activity is. It is the essential technique required
in surveillance video analysis.

Activity detection not only identifies an activity of interest but also specifies
when it happens and how long it lasts. In contrast to activity recognition, activity
detection has to specify the time period of an activity, which is a temporal seg-
ment. A temporal segment defines the starting and ending time of an activity.
Defining a temporal segment is a very subjective task. In our experience, even
human users will have large disagreements in temporal segmentation when they
annotate activities in a video. Therefore, detecting a temporal segment in a video
is a very tough task. Inspired by face detection [73, 77, 84], we attempt to avoid
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segmenting a video. Instead of a temporal segmentation, we formulate activity
detection as a search and classification problem: a search strategy generates po-
tential video segments and a classifier determines where or not they contain the
interesting activities. A standard search approach is brute-force search, in which
the video is scanned in a temporal order and over multiple scales. Each window
will then be classified by activity models to determine the likelihood that the spe-
cific activity occurs in this window.

A brute-force search strategy usually faces the rare event problem when only
very few windows are positive among a large amount of negative windows. This
results in a very challenging task to train an accurate classifier. A classifier will
usually be biased to negative examples given the priors and thus has very high
false positive rates. Viola and Jones [89] proposed a face detection method based
on a cascade of classifiers to solve the rare event problem and speed up face detec-
tion. Each classifier stage is designed to reject a portion of the non-face regions and
pass all faces. Most image regions are rejected quickly, resulting in very fast face
detection performance which also maintains high detection rates but low false
positive rates. Inspired by Viola’s method, we propose a cascade SVM classifier
to reduce the false positive rate but keep high detection rates in activity detection.

5.1 Video temporal segmentation

Since accurate video segmentation is a subjective problem, we try to avoid predict-
ing definite segmentation in an activity detection task. Instead, a general brute-
force method is applied by sliding a fixed length window over time to generate
potential video segments. The sliding window will have overlaps to cover all
possible video segments. Note that we apply a fixed length window instead of
multiple scale windows; we will discuss this decision. Figure 5.1 illustrates how
we partition a video and segment an activity into a small number of temporal
segments.

There are two advantages of applying this sliding window approach: efficiency
and robustness:
• Efficiency: The sliding window strategy does not require computational ef-

forts to analyze the content inside the window. Therefore, this brute-force
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Figure 5.1: Illustration of the sliding window strategy. Blue windows indicate
positive window and purple windows are annotated as negative. Concatenating
positive windows (CPW) approach concatenates positive windows as an activity
prediction shown by a light blue window.

approach can generate potential segments quickly. Furthermore, the strat-
egy does not scan through multiple scales. The number of candidate win-
dows is controlled in a reasonable number. For example, a window slides
every 5 frame in a 25 fps video. 18,000 candidate windows are generated per
hour. Activity models can be trained efficiently by the number of candidate
windows generated by this approach.

• Robustness: This search strategy will not miss any potential segments since
it slides every short temporal distance. A question arises here: given that
we do not scan a video at multiple scales, how can ensure that we detect all
activities of all lengths? A long activity is decomposed into couple candi-
date windows and a short activity is covered by a candidate window in this
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search strategy. As long as an activity is not shorter than sliding temporal
distance, it is covered by our candidate windows.

This strategy is based on two assumptions. First, each window has to be small
enough to capture a unique portion of an activity but large enough to contain suf-
ficient information to be classified accurately. Second, it requires a combination
method which combines consecutive windows of an activity to achieve tempo-
ral invariance of the activity detector. The fundamental idea of this search strat-
egy is that each window has unique and sufficient motion and shape information
to be distinguished by classifiers. The classifier learns components of an activ-
ity instead of the whole activity. A simple combination strategy is applied by
concatenating positive predicted windows (CPW) as a positive prediction. This
search strategy provides an alternative way to achieve temporal invariance of ac-
tivity recognition. Overall, this strategy will heavily rely on activity recognition
performance. Our proposed MoSIFT activity recognition was proved to be a state-
of-the-art method [20] to support this activity detection strategy.

5.2 Cascade SVM classifier on activity detection

Although the sliding window search approach has good properties, such as effi-
ciency and robustness, it also has a major disadvantage: too many negative win-
dows are generated. This results in a rare event problem when only very few
windows are positive among a large number of negative windows. The classi-
fier trained on this data will be biased to negative examples due to the priors and
then has a high false positive rate. The cascade architecture fits well to this prob-
lem of maintaining a high detection rate but a low false positive rate. We propose
a cascade SVM classifier to utilize the advantage of a cascade architecture and
the robust performance of SVM. We will briefly introduce the concept of cascade
architecture first.

A cascade architecture is illustrated in Figure 5.2. The key idea is inherited
from AdaBoost which combines a collection of high precision classifiers to form a
strong classifier. The classifiers are called weak because they are not expected to
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Figure 5.2: Illustration of the cascade architecture with 3 stages.

have the best performance in classifying all examples in the training data. In order
to boost weak classifiers, each classifier emphasizes the examples which are incor-
rectly classified by the previous weak classifiers. In our detection task, simpler
classifiers are first used to reject the majority of windows before more complex
classifiers are called upon to achieve low false positive rates. In Figure 5.2, each
stage demonstrates as a weak classifier. Each weak classifier keeps most of the
positive examples but rejects a good number of negative examples. Face detec-
tion has shown that a cascade architecture can reduce false positives rapidly but
keep a high detection rate. While we could have used AdaBoost similar to Viola
and Jones [89], AdaBoost is sensitive to noisy data and outliers. Given that the in-
terest points may be extracted from unrelated motions and the same activity has
large variations, an activity classifier will face noisy data and outliers. We there-
fore proposed a cascade SVM classifier which is more robust to noisy data and
outliers. We summarize our cascade SVM classifier implementation below.

Given a set of positive examples P and negative examples N , we construct a
cascade SVM classifier s that achieves a high detection rate on the positive exam-
ples and a low false positive rate on the negative examples. For each node in the
cascade, we randomly choose a set of negative examples N ′ ⊂ N that have been
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Algorithm 5.1 Train a cascade SVM classifier
Input: positive examples P , negative examples N , number of maximum stages
k
Output: a binary classifier s

1. N ′ ⊂ N that have been misclassified by pervious stages, where |N ′| = |P |. if
|N ′| < |P |, then return s
2. Train a SVM si on N ′ + P
3. Adjust SVM threshold in si which pass all P
4. s = s+ si
5. if i >= k return s else goto step 1

misclassified by previous stages, where |N ′| = |P |. A SVM [17] classifier is trained
on P and N

′ . We adjust the SVM threshold so that it passes all positive examples
as true positive predictions and minimizes the false positive rate. Note that we
don’t train on selected features as in AdaBoost, we train the SVM classifier using
the whole feature set. The reason is that the SVM classifier has better tolerance
on noisy data and outliers. We then eliminate the negative examples that were
correctly classified as negative and train the next stage in the cascade using the
remaining examples. The stopping criteria for a cascade SVM classifier is when
there aren’t enough negative examples, or when it reaches the maximal number of
stages we want to train. In the testing phase, if at any point in the cascade a classi-
fier rejects the window under inspection, no further processing is performed and
the search moves on to the next window. Only the windows that pass all classi-
fiers are predicted as positive. The cascade therefore has the form of a degenerate
decision tree. The algorithm of cascade SVM classifier is shown in algorithm 5.1.

The cascade architecture has interesting implications for the performance of
the individual classifiers. Because the activation of each classifier depends entirely
on the behavior of its predecessor, the false positive rate for an entire cascade is:

F =
K∏
i=1

fi (5.1)
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Similarly, the detection rate is:

D =
K∏
i=1

di (5.2)

where k indicates the number of stages in the cascade, and fi, di indicates the false
positive rate and detection rate for each stage respectively. Thus, to match the ex-
pected false positive rate, each classifier can have surprisingly poor performance.
For example, for a 32-stage cascade to achieve a false positive rate of 10−6, each
classifier needs only to achieve a false positive rate about 65%. At the same time,
each classifier needs to be exceptionally capable if it is to achieve a adequate de-
tection rate. For example, to achieve a detection rate about 90%, each classifier
in the aforementioned cascade needs to achieve a detection rate of approximately
99.7%.

5.3 Experimental results

We evaluated our proposed methods on the TRECVID 2008 surveillance dataset [85]
which was collected at Lodon Gatwick International Airport. This dataset is eval-
uated in the official TRECVID event detection benchmark which multiple research
groups participated in. This is the first surveillance dataset published which mul-
tiple detection algorithms developed from international research groups are eval-
uated. There were a total of 6,439 events in the development set which was anno-
tated by NIST. It consists of 50-hours (5 days x 2 hours/day x 5 cameras) of videos
in the development set and another 50-hours in the evaluation set which makes
9406519 frames in total (4709896 frames in the development set). Our sliding win-
dow search approach generates 941979 candidate windows in the development
set (around 1.88 million windows total) by sliding every 5 frames with each win-
dow 25 frames (1 sec) in length.

The detection performance is measured as a tradeoff between two error types:
missed detections (MD) and false positive (FP). The two error types will be com-
bined into a single error measure using the Detection Cost Rate (DCR) model,
which is a linear combination of the two errors. The DCR model distills the needs
of a hypothetical application into a set of predefined constant parameters that in-
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clude the event priors and weights for each error type. DCR is used to evaluate
detector performance in TRECVID 2008 event detection evaluation.

An activity can occur at any time and for any duration. Therefore, in order
to compare the output to the reference annotations, an one-to-one temporal map-
ping is needed between the system and reference observations. A system obser-
vation here is an activity detection and a reference observation indicates an anno-
tation. The mapping is required because there is no pre-defined segmentation in
the video. The mapping basically aligns an activity detection to an annotation if
they have a overlap. If an activity overlaps more than one annotation, the activity
will be mapped to the annotation which has a longer overlap and a higher detec-
tion score. The alignment formulas below assume the mapping is performed for
a single event (Ei) at a time.

M(Osi , Orj) =


0 if Mid(Osi) > End(Orj) +5t

0 if Mid(Osi) < Beg(Orj) -5t

1 + Et ∗ TimeCongru(Osi , Orj) + EDS ∗DecScoreCongru(Osi)

(5.3)

TimeCongru(Osi , Orj) =
Min(End(Osi), End(Orj))−Max(Beg(Osi), Beg(Orj))

Max( 1
25
, Dur(Orj))

(5.4)

DecScoreCongru(Osi) =
Dec(Osi)−MinDec(s)

RangDec(s)
(5.5)

Detect(Osi) = max
∀rj∈r

(M(Osi , Orj)) (5.6)

where Osi is the ith observation of the event for the detector s, Orj is the jth ref-
erence observation of the event (from annotation), Beg() indicates the beginning
of the observation, End() indicates the end of the observation, Mid() indicates the
middle point of the observation, Dec(Osi) is the detection score of the observation
Osi , MinDec(s) is the minimum decision score of s, RangeDec(s) indicates the
range of decision score from s, Et and EDS are two constants to weight time and
decision score(set to 1e−8 and 1e−6 respectively), and5t is set to 0.5 seconds (12.5
frames). Detect() maps the system observation to the reference observation which
comes up the highest mapping score M(). If Detect() ends up 0, it is a false posi-
tive. Any reference observation which is not mapped with a system observation
counts as a missed detection.
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Activity # positive positive ratio
CelltoEar 8044 0.17%
Embrace 21920 0.47%
ObjectPut 13147 0.28%
PeopleMeet 52804 1.12%
PeopleSplitUp 63136 1.34%
PersonRuns 7987 0.17%
Pointing 24470 0.52%
Total 151908 4.07%

Table 5.1: Activity detection is a rare event problem. In the development set, there
are 4.7 million candidate windows. Totally, only 4.07% of candidate windows
contain interesting activities.

Given the definition of missed detection and false positive, the DCR model is
formulated as follows:

DCR(s, Ei) = PMiss(s, Ei) +Beta ∗ PFP (s, Ei) (5.7)

where PMiss() is the rate of missed detection and PFP () is the false positive rate.
Beta is the weight to combine missed detection and false positive rates and it is
set up as 0.005 in the evaluation provided by NIST. The measures unit is in terms
of Cost per Unit Time which has been normalized so that an DCR = 0 indicates
perfect performance and an NDCR = 1 is the cost of a system that provides no
output, i.e. PMiss = 1 and PFP = 0.

Activity detection is a typical rare event problem. Using our search strategy (a
25 frame fixed window sliding for 5 frames), only 4.07% candidate windows con-
tain at least one of interesting activities. The positive ratio of individual activity is
shown in Table 5.1. From the table, it is noticeable that the positive ratios of inter-
esting activities are mostly lower than 1%. This statistic demonstrates the need to
train a cascade classifier to solve the rare event issue in the activity detection task.

We designed experiments to evaluate the cascade SVM classifier in the TRECVID
2008 event detection task. Since there are five cameras, we built a cascade SVM
classifier for each activity in each camera. In each stage of the cascade, a SVM clas-
sifier is trained on MoSIFT bag-of-word features. We build a MoSIFT video code-
book of 1,000 video vocabulary size from cross-validation. In these experiments,
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Activity single SVM 2 stages 6 stages 10 stages
CelltoEar 47.4 11.70 3.79 3.07
Embrace 45.2 11.67 4.08 3.33
ObjectPut 38.8 9.46 4.28 4.07
PeopleMeet 43.5 11.75 4.87 3.93
PeopleSplitUp 44.5 10.47 6.48 6.76
PersonRuns 54.8 13.42 6.33 4.52
Pointing 41.9 13.08 5.52 4.86
Average 45.2 11.65 5.05 4.36

Table 5.2: The comparison of cascade SVM classifiers with different numbers of
stages. The cascade SVM classifier significantly improves detection performance
on the TRECVID 2008 surveillance video dataset. The performance is measured
as DCR.

our evaluation is measured as DCR proposed by NIST. The activity models are
trained on the development set and tested on the evaluation set. Table 5.2 shows
the performance. We build activity models for single SVM, 2 stage, 6 stage, and
10 stage cascade SVM classifier. The DCR keeps improving as we keep adding
stages. However, after 10 stages, some activity models start to run out of negative
examples to train further stages. In our experimental results, the DCR improve-
ments mainly come from rapidly reducing the false positive rate but maintaining
a high detection rate.

With sufficient and robust cascade SVM classifiers, we evaluate our activity
temporal invariance strategy by concatenating positive windows (CPW) as a sin-
gle positive prediction. The performance of CPW is demonstrated in Table 5.3.
It is obvious that CPW further improves detection results in terms of reducing
DCR. Our observations tell us that the concatenation strategy can further reduce
the false positive rate but does not decrease the detection rate much.

5.4 Summary

We introduced a sliding window search strategy and a cascade SVM classifier
to extend our MoSIFT activity recognition framework to achieve robust activ-
ity detections. This approach extends Viola and Jones’ work for static-scene ob-
ject detection to the spatio-temporal domain. Applying this framework on the
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Activity Cascade SVM CPW
CelltoEar 3.07 2.75
Embrace 3.33 2.94
ObjectPut 4.07 3.30
PeopleMeet 3.93 3.28
PeopleSplitUp 6.76 4.19
PersonRuns 4.52 4.47
Pointing 4.86 3.57
Average 4.36 3.50

Table 5.3: The concatenating positive windows (CPW) approach not only sig-
nificantly improves detection performance on the TRECVID 2008 surveillance
video dataset but also achieves activity temporal invariance. The performance
is measured by DCR. The proposed method is the top performance in the official
TRECVID evaluation.

TRECVID 2008 surveillance video dataset, we learn this detection framework can
detect activities in real-world surveillance videos and our detection system tops
the performance at the official TRECVID evaluation. We successfully demon-
strated that a cascade SVM classifier can reduce the false positives rapidly while
maintaining a high detection rate. Our concatenating positive window approach
not only achieves temporal activity invariance but also improves the detection
performance.

In summary, the proposed activity recognition and detection algorithms con-
stitute a comprehensive study of a video activity analysis framework. These tech-
niques allow us to discover and identify interesting activities in the video. Es-
pecially in the health care domain, this study provides essential tools to build
surveillance systems which automatically analyze patients’ daily lives.
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Chapter 6

Long term activity analysis

In the previous chapters, we discussed how to recognize (Chapter 3) and detect
(Chapter 5) activities. In this chapter, we will discuss how to utilize activity analy-
sis to study long term human activity from surveillance video archives. Long term
activity analysis is a very challenging topic that is not well studied in surveillance
video system research. We first give our definition of a long term activity analy-
sis. In our definition, there are two types of long term activity analysis. The first
is to measure the change over time from a person’s daily activities to discover in-
teresting trends. The second type is to summarize a person’s activities over time
to understand his/her daily life. Specifically, an observation longer than several
weeks will be considered a long term analysis in this thesis. For example, observa-
tion of a person’s eating habits over a month is a long term activity analysis. This
analysis detects when and how much he/she eats every day. This analysis can
provide information related to his/her weight and health. Multiple disciplines,
computer vision, information retrieval, data mining and machine learning, jointly
frame this research. In our opinion, there are three major topics to study to achieve
long term activity analysis: video activity analysis, temporal data collection, and long
term pattern extraction.

• Video activity analysis: Activity analysis which includes activity recogni-
tion and detection is a research topic which is increasingly popular in com-
puter vision research [29, 44, 53, 54, 60, 72, 91]. These techniques extract
semantic units (activity related) from videos to improve the ability to search
and mine. However, diversity of activities combined with camera motions
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and cluttered backgrounds make video activity analysis extremely difficult
for real-world applications. Our proposed methods in Chapter 3 and Chap-
ter 5 give us a solid ability to analyze video content and further explore long
term understanding.

• Temporal data collection: Long term analysis is based on studying a topic
over a long period of time. Learning over time is a growing research area
in the machine learning and information retrieval fields, e.g. discovering
trends in discussion forums [48, 80]. Collecting a suitable dataset to study
is a challenging task. The collected data must not only last a long time but
must also exhibit temporal changes or meaningfully different observations
over that time.

• Long term pattern extraction: Given observations over a period of time,
finding a pattern can provide useful information to users [6, 19]. The pat-
tern can be a summarization of the observations or a trend discovered from
the observations. Finding a long term pattern is very domain specific. Do-
main knowledge is used to understand the information needed over time.
Therefore, transforming the information need to a machine-learnable task
that extracts the long term pattern is the key research goal that we want to
explore.

Considering the three components we discussed above, we propose a case
study of long term activity analysis on the CareMedia dataset [90]. CareMedia is a
surveillance video collection where video activity analysis can be applied. Many
activities can be observed visually by automatic systems. The CareMedia collec-
tion records the daily lives of the residents in a nursing home over one month.
The dataset provides a suitable dataset to analyze long term activities. For ex-
ample, a resident may walk less and less over the course of a month, which is
observable from the dataset. Furthermore, there is a great desire to understand
elderly patients’ daily lives and medical doctors believe this is strongly related
to the patients’ overall health. Elderly patients’ long term activity observations
can provide an assistance to diagnose their health more accurately. For example,
if we discover that a patient performed more positive activities, e.g. eating and
walking, this normally indicates that his/her health is not getting worse.
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6.1 Long term health care in nursing homes

Nearly 2.5 million Americans currently reside in nursing homes and assisted liv-
ing facilities in the United States, accounting for approximately 5% of persons 65
years and older [63]. The aging of the ”Baby Boomer” generation is expected to
lead to an exponential growth in the need for some form of long-term care (LTC)
for this segment of the population within the next twenty-five years. In light of
these sobering demographic shifts, it is urgent to address the profound concerns
that exist about the quality-of-care (QoC) and quality-of-life (QoL) of this frailest
segment of our population. We will discuss traditional nursing home health care
and computer aided health care in the following.

6.1.1 Traditional nursing home health care

Traditional nursing home health care is performed mainly by nursing staff. In
nursing homes, nursing staff members not only provide care for residents’ daily
lives but also make notes of the interesting activities which have been designated
by medical doctors. These notes help doctors to understand the patients’ daily
lives and make accurate diagnoses. Nursing staff members have been trained pro-
fessionally to be able to maintain QoC and QoL of residents. Professional training
not only gives them the necessary knowledge to provide health care but also to
notice unusual mental and physical behaviors. Therefore, nursing staff members
can be assumed to be capable to maintain QoC and QoL, and collect information
to assist medical doctors.

However, the United States General Accounting Office (GAO) reported that in
2003 [68],

One in five nursing homes nationwide (about 3,500 homes) had seri-
ous deficiencies that caused residents actual harm or placed them in
immediate jeopardy ... Moreover, GAO found significant understate-
ment of care problems that should have been classified as actual harm
or higher - serious avoidable pressure sores, severe weight loss, and
multiple falls resulting in broken noses and other injuries...

The GAO attributes the underreporting of such problems to:
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• lack of clarity regarding the definition of harm

• inadequate state supervisory review of surveys

• delays in timely investigation of complaints

• predictability of the timing of annual nursing home surveys

Equally importantly, without methods to continuously record, monitor and
document the care of these residents, it is exceedingly difficult to verify resident-
specific data reported by nursing staff and review complaint investigations. These
tasks would be greatly aided by automatic tools that enable accurate assessments
of patient care and treatment. For example, we analyzed 320 camera-hours of
data collected with 4 video cameras. In this data collection, nursing staff observed
4 physical aggressions but missed 3. Video recording observed all 7 physical ag-
gressions [10]. This small analysis gives us a confidence that automatic tools (e.g.
surveillance recording) can be a great help to current nursing homes health care.

In summary, although professional training gives the nursing staff the ability
to maintain QoC and QoL for nursing home residents, deficiencies in nursing staff
and lack of 24 hour supervision create a need to develop computer aided health
care systems, which provide auxiliary protection in addition to nursing staff to
ensure QoC and QoL of nursing home residents.

6.1.2 Computer aided health care

In the past decade, more and more devices have been developed to monitor and
observe people’s physical or mental state for health care purposes. For example,
devices can be attached to beds, wrists, or heads to record brain waves and pose
changes during sleep to understand sleep quality (see Figure 7.3). These data
collected by health care devices can provide medical doctors insight into a patient,
which doctors can use to make more accurate diagnoses or adopt more efficient
treatments based on individual needs.

These devices are currently designed for special purposes only and are usu-
ally attached to the patient’s body. The specialization enables us to collect inter-
esting information accurately. These devices capture specific information about
a narrow aspect of health, e.g. blood pressures or brain waves. However, health
care in nursing homes requires not only these specific computer aided devices but
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Figure 6.1: Several health care aided device examples. Top left one is a sensor
attached to a bed to detect sleeping posture. Top right is a binary sensor to detect
door status. Bottom left is a accelerometer in a watch to measure motor activities.
Bottom right is a head band which collects brain waves to aid health care (sleeping
quality).

also a general and unobtrusive approach which collects and observes residents’
daily activities naturally. The reason to have a general method is that unexpected
activities happen frequently in our daily lives and some activities are too compli-
cated to be detected or measured by one device. An unobtrusive approach can
observe patients naturally and decrease the inconvenience to the patient. Surveil-
lance video recording is the prime example of a general and unobtrusive method.
This method can capture complicated information but also increases the difficulty
of developing an automatic analysis system. Recently, many researchers proposed
utilizing sensors and video cameras to analyze people’s daily activities to assist
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QoC and QoL [36, 37, 57]. The sensors capture time, location and coarse ap-
pearances of specific activities in an area. Radio-frequency identification (RFID)
is also widely applied to identify people in a nursing home. Combining multiple
devices with different purposes is a way to observe a nursing home more gen-
erally. However, surveillance video provides an alternative way to observe and
analyze people’s behaviors naturally and directly. Although video recordings are
more difficult to process automatically than sensors, video is complementary to
sensor approaches because it can monitor interesting activities without requiring
patients to wear devices. The CareMedia nursing home health care project was
proposed to provide a general and unobtrusive solution to assist health care in
nursing homes by video monitoring of the public portion of the nursing home
environments.

6.2 CareMedia health care

Due to the great QoC and QoL needs of nursing home residents, the CareMedia
project attempts to expose all aspects of residents’ ongoing daily lives to medi-
cal doctors to help improve their health care through video monitoring. The 24-
hours/7 days a week surveillance video monitoring not only records a lot of data
but also stores detail which is required to understand patients’ physical and men-
tal conditions. Modern computer vision, information retrieval, data mining and
machine learning techniques provide a good foundation to study behaviors asso-
ciated with senile dementia from surveillance video.

The three CareMedia collaborative efforts are: data collection, human manual
observation, and automatic observation. As we mentioned in section 1.6.5, the
data collection was done by recording all the public areas of a nursing home over
25 days using 23 ceiling mounted cameras. A tremendous effort was made to lo-
cate cameras to ensure an un-occluded view of every point in the recorded space,
synchronize video streams, and store a huge amount of encoded video. Post pro-
cessing of this data is our major research focus. We categorize post processing
into two types: human manual observation and automatic observation. Interac-
tive multimedia retrieval techniques are applied to achieve efficient human man-
ual observation, and computer vision and machine learning algorithms help us to
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Figure 6.2: The CareMedia long term health care system conceptual architec-
ture. Predicting patients’ health condition accurately is an important goal of the
CareMedia nursing home health care project. Patients’ health conditions are rep-
resented by medical doctors’ diagnoses. Therefore, combining three major ap-
proaches would significantly improve the quality of diagnosis. The three major
approaches are nursing staff observations, manual observations by coders and
automatic observations from surveillance videos.

observe interesting activities automatically.
The ultimate goal of the CareMedia is to help medical doctors to understand

residents’ health conditions. In this long term activity analysis work, we will focus
on studying how to analyze activities over long periods of time to help medical
doctors make a better diagnosis. Figure 6.2 illustrates our framework of this study.
The upper part of the diagram shows the traditional nursing home health care
system. The nursing staff members observe the daily activities from patients and
record these observations to assist medical doctors in making the diagnoses. Of
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course, doctors also observe patients directly in addition to these reports/notes.
This process has many drawbacks that we discussed earlier. The major problem
is that nursing staff can not keep their eyes on all residents all the time to observe
every detail. However, some details may provide the critical information which
medical doctors would require to improve their diagnoses. Surveillance video
should theoretically record every single detail. Video recording not only contains
the informative data but also has a tremendous amount of useless content. Post
processing is then important to the extract useful information and then reduce the
size of the data doctors must look at. Two post processing steps are applied in
the CareMedia project: manual observation and automatic observation which are
shown in the bottom part of the diagram. Combining these three sources (nursing
staff observations, manual observations, and automatic observations) of patients’
daily lives, we hope to improve the quality of medical doctors’ diagnoses signifi-
cantly and relate it more closely to the true health condition of the patients.

6.2.1 Manual observations

In addition to real time health care provided by nursing staff members, surveil-
lance video can be used as an auxiliary method to improve QoC and QoL. Al-
though this approach is not a real time process, it stores all the recorded activities
and can be to reviewed repeatedly. There are three major steps to post process the
collection: indexing, annotating, and summarizing. The indexing step enables the
efficient annotating step. The summarizing step communicates the annotation to
researchers and medical doctors clearly and efficiently.

1. Indexing: Due to the large amount of video recorded for the CareMedia
project, it’s not possible to access video efficiently without indexing the data.
The intuitive way to index the collection is sorting and storing by time and
camera location. The basic retrieval method is to search a video by time and
location.

2. Annotating: Given a coding manual designed by medical doctors, experi-
enced coders can annotate interesting activities in the surveillance video col-
lection. This is the observation process which enters information observed
from the collection into the database. The trained coders must understand
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Figure 6.3: The CareMeedia long term manual observation diagram. Experienced
coders annotate surveillance video which captures resident’s daily activities and
the observation coded by coders can become an informative source for medical
doctors to make better diagnoses.

the clear definition of each activity to be annotated. They play the same
role as nursing staff in observing residents’ daily activities. The two major
differences to real time nursing staff observations are the ability to review
activities repeatedly, and the ability to comprehensively observe all public
areas of the nursing home.

3. Summarizing: The annotated data is stored in a database which can be
searched by time, category, resident’s name and location. The system can
also generate histograms or statistical analysis to summarize a resident’s
daily activities to provide more information.

Annotating videos not only costs a tremendous amount of human time but
also is a tedious task. Efficient and accurate annotations are needed to provide
high quality information for further use [18, 95]. An annotation codebook was de-
signed by medical doctors (see Appendix B). In the CareMedia project, there were
two classes of codes. The first class contains 12 activities which have clear defini-
tions and are highly related to movements. We call this class the movement activ-
ity category. The second class contains 7 superordinate behavior codes which are
called the detailed behavior category. Each superordinate behavior code is com-
posed of some subordinate behavior codes. The full CareMedia coding manual is
included as Appendix B. To code efficiently, a coder is assigned a period of time
and a location to observe. The video coding interface is shown in figure 6.4. Each
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Figure 6.4: The CareMeedia manual coding interface, there showing the interface
includes a video player for review and discovery, and the coding form.

time, the coder only tracks one person in order to annotate that person’s activities
as accurately as possible. Usually, there are multiple activities happening in the
same scene. A coder will code one activity at a timeinstead of multi-tasking. A
coder can review the video from 1x to 5x speed. Some simple computer vision fil-
ters (e.g. motion extraction) assist the coders to simplify the annotating task. Each
position and time is reviewed by at least two coders. We begin the CareMedia
manual observation coding at meal time (lunch and dinner) which contains the
most activities in public areas.

The annotated data is stored in a database and can be retrieved by time, res-
ident, location, and category. Figure 6.5 shows the event window for a retrieval
result. This annotated data plays the same role as notes/documents observed
by nursing staff but it is more complete. The manual observation (annotated
data) provides detailed information to give medical doctors a more comprehen-
sive view of a resident. Furthermore, this information can actually predict doctors’
diagnosis fairly accurately. We will discuss this in more detail in chapter 6.3.1.
Figure 6.3 illustrates the role of manual observation in CareMedia nursing health
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Figure 6.5: CareMedia event window to show annotated activities in the system.
The system will show details of each event in the right panel. The event list can
be filtered by time, location, resident and behavior type.

care. The manual observations can be an informative source for diagnoses or pre-
dict a diagnosis score accurately by machine learning to further improve doctors’
judgements.

6.2.2 Automatic observations

In place of manual observations requiring much human effort, computer vision
and machine learning provide an alternative way to observe residents’ daily lives
automatically. Activity recognition and detection are two algorithms which are ca-
pable of observing residents’ activities automatically from surveillance videos [33].
This video analysis approach plays the same role as experienced coders. The
machine applies established activity models to detect interesting activities in the
video archive and saves the detection results into a database. This approach can
save a tremendous amount of human effort and the process can be faster than
coders (since machines can work 24 hours per day). The disadvantage is that the
observation accuracy is much worse than manual coding.

Figure 6.6 illustrates automatic observations. Our proposed video analysis
methods are based on supervised learning, with the manual annotations provid-
ing training examples for training activity models. The ”learned by” line in the fig-
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Figure 6.6: CareMeedia long term automatic observation diagram. Automatic
video analysis algorithm trained from manual annotations detects and recognize
interested activities in the video archive. The automatic coding data provides
assist information for medical doctors to survey and helps them to make better
diagnosis.

ure indicates that we train activity models from manual annotations. Even though
we achieved good video activity analysis accuracy in the pervious chapters (Chap-
ter 3, 5), the analysis performance is still far from perfect. The most important
question then becomes: does automatic video analysis have good enough perfor-
mance to provide informative observations which can be used to assist medical
doctors in making a better diagnosis? We will answer this question in our experi-
mental result section (chapter 6.3.2).

6.3 Experimental results

We have to design experiments to answer two questions. The first question is:
does manual observation help predict patients’ health conditions? The second
question is: do current video analysis techniques have adequate performance for
understanding the health of patients? Before discussing the experimental designs,
we have to understand how to measure patients’ health conditions. For senile
dementia, medical diagnoses are provided with the aid of instruments that mea-
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sure patients’ health condition efficiently, such as the Severe Impairment Battery
(SIB) [69], Cohen-Mansfield Agitation Inventory-Community (CMAI-C) [22],
Neuropsychiatric Inventory (NPI-NH) [23], Cornell Scale for Depression in De-
mentia (CSDD) [5], Physical Self-Maintenance Scale (PSMS) [51], and Cumu-
lative Illness Rating Scale for Geriatrics (CIRS-G) [61]. Each instrument is de-
signed to evaluate an aspect of a patient’s health condition. For example: SIB
is designed to test cognitive impairments, PSMS evaluates ability to daily living
activities, and CIRS-G is applied to measure medical burden.

In our experimental setting, we focus on predicting PSMS which is the most
complete diagnostic instrument in our dataset. Since most residents in the nursing
home have some level of senile dementia, some measurements are not completely
evaluated on each resident during the observed month. PSMS is the only diag-
nosis in the database for which two evaluations were completed for 15 residents
during the month. Appendix A shows all six categories and the score system of
PSMS. Each PSMS activity is scored from 1 to 5. A score of 1 and 2 normally indi-
cates that the patient is capable of doing the activity on their own with very minor
help. A score of 3 normally means that the patient requires moderate assistance
to perform the activity. A score of 4 and 5 regularly applies if the patient is not
functional for the activity. The final PSMS score is the sum of all six activities and
represents the ability to perform daily living activities.

Therefore, to answer both questions above, our experiments were designed
to evaluate how well the manual observation and automatic observation predict
PSMS scores. The manual observation can be treated as an oracle activity analysis
which recognizes every activity during the period. The automatic observation
is the automatic video analysis result which is predicted by the learned activity
models. Given the 30 (15 residents x 2 times) PSMS diagnosis samples we have,
it’s unrealistic to predict the detailed scoring system of 1 − 5. Therefore, we turn
this diagnosis prediction to a binary classification problem which is learnable by
machines. From PSMS scoring system, it is clear that a score of 3 is the dividing
threshold. A resident who gets a score under 3 generally demonstrates his/her
ability to finish the activity. A resident with a score above 3 (includes 3) normally
is not capable of the activity. Therefore, we transfer the task of predicting PSMS
diagnostic scores to predicting binary capability in each PSMS activity. In other
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word, a diagnosis with score above 3 (includes) is labeled as positive (incapable to
achieve the activity) and a diagnosis with score lower than 3 (capable to execute
the activity) is annotated as negative. For the final PSMS score (sum of all six
PSMS activities), we set up 18 (3x6) as the threshold.

We now obtain labels for the classification task by turning the PSMS scores to
positive and negative labels. The next step is to transform manual observation
(oracle video analysis) and automatic observation (automatic video analysis) into
feature vectors to be able to train binary classifications. This classification task is
to summarize a person’s activities over time to predict his/her health condition
which fits our second definition of a long term activity analysis. Unfortunately,
we did not discover major health condition changes during the observed month
from our diagnostic database. Therefore, we only focus on predicting patients’
health conditions through summarization observed over time in this case study.

6.3.1 Oracle video analysis

The two PSMS diagnoses were collected in the middle and end of the recording
month respectively. Therefore, a descriptor has to be generated to describe the
manual observations within the two weeks before the end of the diagnostic eval-
uation. The descriptor is then the feature vector to train models which predict
residents’ capability in each PSMS activity. There are 12 codes in the movement
activity category and there are 83 codes with 7 superordinate behavior codes in the
detailed behavior category. Combining both categories, there are 95 codes. A his-
togram descriptor is generated by counting the frequency of each code within the
2 weeks. The descriptor is a 95 dimensional vector and each dimension indicates
the frequency of one code. This descriptor summarizes the observed activities of
a patient during the two weeks.

With labels (converted from PSMS scores) and feature vectors (histogram of
manual codings), a SVM classifier with radial basis function is trained to predict
the capability to perform PSMS activities. There, we need to first setup a baseline
to compare with. The baseline is that we randomly guess the patient’s capability
to perform the PSMS activities which is 66.67% (measured by average precision).
The baseline is higher than 50% because the residents in the nursing home all have
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Category Random SVM SVM-FS Top feature
Toilet 66.67% 92.53% 91.53% Staff activities: Feeding
Feeding 30.00% 50.00% 59.33% Staff activities: Feeding
Dressing 73.33% 86.17% 96.08% Standing Up
Grooming 76.67% 90.75% 90.75% Standing Up
Ambulation 36.67% 57.33% 57.33% Staff activities: Feeding
Bathing 83.33% 90.06% 98.33% Positive: Others
PSMS 66.67% 92.53% 94.20% Staff activities: Feeding

Table 6.1: Oracle detectors to predict the capability of PSMS activities. SVM clas-
sification has a solid performance and feature selection (SVM-FS) keeps boosting
the performance. The top feature indicates the most discriminative feature among
95 coded activities. Manual observation is able to predict daily living capability
of a resident 94.20% correctly.

some level of senile dementia. If you just randomly guess he/she isn’t capable to
execute PSMS activities, the chance you are correct is 66.56%. We call the manual
observation as oracle video analysis setting because we assume all the observa-
tions coded by experienced coders are correct. This is the same as the situation
where we would have a perfect video analysis system. Average precision is ap-
plied to measure the performance and leave one out cross validation is employed
(take one resident out and train on the other 14 residents). The performance is
shown in Table 6.1.

Surprisingly, a SVM classifier can predict the functionality of PSMS to 92.53%

correct. Among each PSMS category, all SVM predictions outperform the random
guesses significantly. This is a surprising result for two reasons: The first reason
is that only approximately 20% of the CareMedia data was coded and the annota-
tions are highly biased to meal times. The second reason is that 3 PSMS activities
(Toilet, Dressing, and Bathing) aren’t observed in any of the public areas. Groom-
ing is also hard to evaluate given our coding strategy. However, despite the biased
annotations and the non-specialized coding scheme, manual observations are still
very informative to PSMS diagnoses. This is a solid indication that surveillance
video can be an informative source to medical diagnoses.

We further explore feature selection on the proposed histogram observation
feature. We apply the F-score to select features. F-score is a simple technique
which measures the discrimination of a feature. Given training vectors xk, k =
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1, ...,m, if the number of positive and negative instances are n+ and n−, respec-
tively, the then F-score of the ith feature is defined as:

F (i) =
(x+i − xi)2 + (x−i − xi)2

1
n+−1

∑n+

k=1(x
+
k,i − x

+
i )

2 + 1
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k=1(x

−
k,i − x

−
i )

2
(6.1)

where xi, x+i , and x−i are the average of the ith feature of the whole, positive, and
negative data sets respectively; x+k,i is the ith feature of the kth positive instance
and x−k,i is the ith feature of the kth negative instance. The numerator indicates
the discrimination between the positive and negative sets, and the denominator
indicates the one within each of the two sets. The larger the F-score is, the more
likely this feature is more discriminative. Therefore, we use this score as feature
selection criterion. We select features with high F-score and then apply SVM for
training/predicting until we find a set of features which maximizes the perfor-
mance. The feature selection further boosts performance to 94.20% and the most
discriminative feature is listed in Table 6.1. From the result, it is obvious that ”Ac-
tivities: Feeding” provides a lot of information to predict PSMS functionalities
since the annotation is biased to meal times. However, having the ability to eat
during meal time can be interpreted as being more healthy in general and this
further supports our hypothesis that observations from video recording can be a
great aid to understanding patients’ health conditions.

6.3.2 Simulated automatic video analysis

The manual observation is actually the ideal case, where we can assume that the
activity analysis is perfect. Although it is impractical, the results shown in Ta-
ble 6.1 can serve as a theoretical upper bound to indicate how useful activity
analysis can be. To get a more realistic estimate (as opposed to the perfect ”or-
acle” video analysis) of the activity analysis utility with the state-of-the-art ac-
tivity analysis techniques, we repeated the experiments after introducing noise
into the perfect activity analysis. The result from Table 3.4 and Table 3.5 show
that the current activity recognition system can achieve 45% and 19% MAP in the
movement activity and detailed behavior categories respectively. Because mean
average precision is a rank-based measure and difficult to simulate, we approx-
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Figure 6.7: Simulated video analysis of predicting PSMS. SVM-fs serves as theo-
retical upper bound. The results using simulated ”noisily” analysis are shown at
50%, 20%, and 10% breakeven precision recall (shown as ”50% BPR”, ”20% BPR”,
and ”10% BPR” respectively). C133 BPR indicates recognizers are simulated by
recognition performance by Camera 133 which is the set from which we really
built a activity recognition system.

imated this MAP with a breakeven precision-recall point at x where x is desired
MAP. Breakeven precision-recall is usually a good approximation for mean av-
erage precision. They are equivalent to each other if the precision-recall curve
is mirror symmetric to the line of precision=recall. This was easily achieved by
randomly switching the labels of positively annotated activities to be (incorrectly)
labeled as negative and conversely switching some negatively labeled activities as
incorrect positive examples, until we achieve the desired breakeven point where
precision is equal to recall. This made the activity labels appear roughly equiva-
lent to a recognizer with MAP of x.

Figure 6.7 shows the performance of predicting the patients’ capability to per-
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form PSMS activities under different settings. SVM with feature selection on man-
ual observations here serves as a theoretical upper bound. In a more realistic set-
ting, we investigate the performance after introducing recognition noise into the
video analysis results. In this case, the prediction performance keep decreasing
as more and more noise is added. However, even when the breakeven precision-
recall of these activity recognition results is only 10%, the prediction MAP can still
be boosted to 13% better than random. Given current video analysis techniques,
we extrapolate the performance obtained from Camera 133 (shown in Table 3.4
and Table 3.5) to simulate recognizers on the whole datase. The performance on
predicting PSMS capability approaches to 86%. We believe at this level of accuracy
automatic systems could provide helpful suggestions for diagnostic assistance.
We doesn’t show the performance of simulated results with feature selection be-
cause feature selection does not improve the noisy data. This experience suggests
that although the video analysis provided by the state-of-the-art automatic video
analysis algorithms is far from perfect, they still have the potential to augment
traditional health care and improve medical diagnoses.

It is worth mentioning that all of the above discussion assume the video analy-
sis is based on activity detection. However, the algorithms we apply to camera 133
is an activity recognition. In practice, activity recognition still outperforms activ-
ity detection due to the temporal segmentation issue. However, our experimental
results still give a strong indication that weak activity detectors are potentially in-
formative for medical diagnoses. Therefore, this study gives a solid evidence that
automatic video analysis has real potential to assist long term health care.

6.4 Summary

In this chapter, we demonstrated the ability to extend video activity analysis to
long term activity analysis. We use a case study, CareMedia, to demonstrate a
way to analyze long term activities by video activity analysis techniques. In this
case study, the long term activity analysis task is to analyze long term health care
in nursing home environments. Although there are many aspects in health care,
we focus on summarizing patients’ behaviors over a period of time to predict
their health condition. We successfully demonstrated that the manual observa-

100



tions from surveillance video are able to predict patients’ capabilities of PSMS, a
medical diagnosis. Furthermore, the automatic video observations obtained from
our proposed video analysis techniques show promising potential to evaluate pa-
tient’s health condition accurately over time. This long term health care analysis
not only successfully validates the idea of the CareMedia project but also demon-
strates a way to analyze long term activity from a video surveillance archive.
Meanwhile, the experimental results show that even currently inaccurate video
analysis techniques can still provide informative observations from video record-
ing and have the capability to predict health conditions in our case study.
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Chapter 7

Applications

There are many applications for robust video activity analysis. In this chapter,
we demonstrate two applications in two important domains: interactive interface
and intelligent surveillance video system. A gestural TV control system demon-
strates a natural vision-based interactive interface to control a television set. A
customer shopping behavior analysis system provides an intelligent surveillance
video system. But before building these systems, we must solve an important
problem: robust video activity analysis is computationally expensive.

MoSIFT demonstrates the ability to analyze video activities accurately. How-
ever, calculating SIFT and optical flow at multiple scales from every frame in a
high-resolution stream is extremely expensive and slow. Fortunately, the increas-
ing availability of large-scale computer clusters is driving efforts to parallelize
video applications so that they can be mapped across a distributed infrastructure.
The majority of these efforts, such as MapReduce [26] and Dryad [42], focus on
efficient batch analysis of large data sets; while such systems accelerate the of-
fline indexing of video content, they do not support continuous processing. A
smaller set of systems provide support for the continuous processing of stream-
ing data [1, 7, 21, 87] but most of these focus on queries using relational operators
and data types, or are intended for mining applications in which throughput is
optimized over latency.

In collaboration with Intel Labs Pittsburgh [41], we successfully parallelized
the MoSIFT activity recognition framework on the Sprout [70]. Sprout is a dis-
tributed stream processing system designed to enable the creation of interactive
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multimedia application. Interaction requires low end-to-end latency, typically
well under 1 second [14, 16, 62]. Sprout achieves low latency by exploiting the
coarse-grained parallelism inherent in such applications, executing parallel tasks
on clusters of commodity multi-core servers. Its programming model facilitates
the expression of application parallelism while hiding much of the complexity of
parallel and distributed programming.

Therefore, we will first discuss how to implement parallelized MoSIFT activ-
ity recognition on the Sprout architecture. Then we will introduce two real world
applications: a gestural TV control system and a customer behavior analysis ap-
plication.

7.1 Parallel MoSIFT activity recognition

We implemented a parallel activity recognition application using MoSIFT features
on the Sprout. Figure 7.1 shows the decomposition of the application into the
Sprout stages. The implementation uses both coarse-grained parallelism at the
stage level, and fine-grained parallelism within stages using OpenMP. This section
describes our implementation and the methods used to parallelize its execution,
following the processing order shown in Figure 7.1.

7.1.1 Frame pairs and tiling

Since MoSIFT computes optical flow, processing is based on frame pairs. A video
data source decomposes the video into a series of overlapping frame pairs, which
are input to the main processing stages. Since the MoSIFT interest points are local
to regions of an image pair, we exploit intra-frame parallelization using an image
tiler stage. The tiler divides each frame into a configurable number of uniformly
sized overlapping sub-regions. The tiles are sent to a set of feature extraction
stages to be processed in parallel. Overlap of the tiles ensures that interest points
near the tile boundaries are correctly identified. The tiler also generates meta-data
that includes positions and sizes of the tiles, for merging the results of feature
extraction.

This tiling approach is an example of coarse-grained parallelization, since it
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Image tiler

Tile merger

Gaussian pyramid

Optical flow

Extrema, scaling, orientation

Compute descriptors

Feature extraction

Accumulate histogram

Event identification

Classification

...

Frame pairs

Sub-frame pairs

Sub-frame features

Frame features

Event ids

Figure 7.1: Sprout application graph for MoSIFT-based activity recognition.
Coarse-grained (intra-frame) parallelism is exploited through tiling. Fine-grained
parallelism is used within stages that implement the processing steps shown in
shaded boxes.
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does not require any changes to the inner workings of the feature extraction stage.
The Sprout runtime and APIs make it easy to reconfigure applications to make
use of such parallelization. As another example of coarse-grained parallelization,
we also run parallel instances of the entire graph of stages in Figure 7.1, using a
round-robin data splitter to distribute frame pairs to the parallel instances. This
latter technique improves throughput only, while the tiling approach improves
both throughput and latency.

7.1.2 Feature extraction

Four major stages are involved in the MoSIFT feature extraction process: Gaussian
pyramid, Optical flow, Local extrema (interest point detection), and Compute de-
scriptors. All stages other than the local extrema detection can be fine-grained
parallelized.

In the Gaussian pyramid and optical stages, a Gaussian pyramid is applied
to each image in the frame pair. These are computed in parallel in two separate
threads (one thread for the first image and the other for the second image). The op-
tical flow is then computed between corresponding frames in Gaussian pyramids.
We parallelize this set of computations using OpenMP to assign loop invocations
to a set of threads. As image size and computation time varies over the octaves,
we do not parallelize by octave. Rather, we parallelize by interval, assigning com-
putation for a particular interval index across all octaves to a single thread. This
ensures a balanced load among the threads for the optical flow computations.

The local extrema stage detects MoSIFT interest point by detecting local ex-
trema (minima/maxima) of the DoG images across adjacent scales. This step re-
quires few computations and we do not employ parallelism in this stage. The
final step of the feature extraction stage is the descriptor computation. Since inter-
est points are independent, descriptors are computed in parallel over the interest
points, limited only by the available cores on the processing node.

7.1.3 Tile merger and classification

After the feature descriptors are constructed, each feature extraction stage sends
the descriptors to a tile merger stage, which collects the feature descriptors and

106



adjusts their positions in the whole frame. In the classification stage, features
are mapped to codewords in a previously-generated camera-specific codebook.
A histogram is generated for the current frame pair, and accumulated into his-
tograms representing different time windows. The histogram is constructed in
parallel over the features, up to the number of available cores. Finally, an SVM is
used on normalized histograms to identify specific activities.

7.2 Real time gestural TV control system

Vision-based user interfaces enable natural interaction modalities such as ges-
tures. Such interfaces require computationally intensive video processing at low
latency. We demonstrate an application that recognizes gestures to control TV op-
erations. Accurate recognition is achieved by MoSIFT, and video processing at
low latency is again built by the Sprout. This application demonstrates our robust
video analysis techniques which can be used in interactive applications.

Our application involves a situation where the television set is actively ob-
serving the viewers all the time. This enables any viewer to control a TV’s op-
erations, such as channel selection and volume, without additional devices such
as remote controls, motion sensors or special clothing, simply by gesturing to the
TV set. We define 6 gestures to control a TV, figure 7.2 shows a ”channel up” ges-
ture. The application is an implementation of a low-latency gesture recognition
system that processes video from a commodity camera to identify complex ges-
tures in real time and interpret them to control the TV set. While this application
uses a commodity webcam, our proposed approach can be applied to video from
depth-enhanced cameras that will soon become available. Such sensors offer in-
creased resiliency to background clutter, and initial reports indicate that they are
well suited for natural user interfaces [59].

Our application allows any user standing or sitting in front of a TV set to con-
trol its operations through gestures. The TV is equipped with a camera that ob-
serves the users watching the programs. When a user gives an ”attention” signal
by raising both arms, the control application then observes this user more care-
fully for a few seconds to recognize a control command. Examples of control
commands can be hand and arm motion upward or outward, as well as crossing
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Figure 7.2: User gesturing ”Channel Up”.

hands/arms. In the current interface, e.g., a left hand moving upwards indicates
a channel should be switched up, and a left hand moving outwards signifies that
the channel should be switched down. Analogously we use the right hand to con-
trol the volume of the audio. Crossing gestures are used to shut off the TV. User
tests showed that downward motions cannot be effectively executed by seated
users; therefore we avoided downward motions in the current gesture command
set.

In this application, we highlight two aspects of our human-activity recognition
research. First, we employ MoSIFT to recognize gestures accurately. Although
computationally more expensive, this approach significantly outperforms state-
of-the-art approaches on standard action recognition KTH data sets. These results
validate our belief that MoSIFT is capable to analyze gestures or any further body
languages to control devices.

Second, we utilize a cluster-based distributed runtime system that achieves
low latency by exploiting the parallelism inherent in video understanding appli-
cations to run them in interactive time scales. In particular, although straight-
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forward sequential implementations of MoSIFT can process relatively small col-
lections of videos, such as the popular KTH dataset, they cannot process data at
the speed required for the real-world applications that are the primary focus of
our research. Our application implements the computationally challenging, but
highly accurate MoSIFT descriptor on top of the Sprout runtime, and parallelizes
execution across a cluster of several 8-core machines, to detect TV control gestures
in full-frame-rate video with low latency.

Figure 7.3 illustrates our application data flow. Each video frame from a cam-
era that observes the user is sent to two separate tasks, face detection and MoSIFT
detection task. The incoming frame is duplicated (Copy stage) and sent to two
different stages which initialize tasks. The face detection task starts from a scale
stage (Scaler) which scales the frame to a desired size. The tiling stage (Tiler) is an
example of coarse-grained parallelization. The tiler divides each frame into con-
figurable number of uniformly sized overlapping sub-regions. The tiles are sent
to a set of stages to be processed in parallel. The tiler also generates meta-data
that includes positions and sizes of the tiles, for merging the results. The face de-
tected in the scaled frame is de-scaled via Descaler stage to recover the resolution.
The face detection result is then sent to the display stage to display and a clas-
sify stage which will further fuse the face detection result with MoSIFT features to
detect gestures. The MoSIFT detection task accumulates frame pairs, and then ex-
tracts MoSIFT features that encode optical flow in addition to appearance. These
features, filtered by the positions of detected faces, are aggregated over a window
of frames to generate a histogram of their occurrence frequencies. The histogram
is treated as an input vector to a set of support vector machines trained to detect
gestures in video streaming. These processes are included in the Classify stage.
The gesture detection result is further sent to the TV control stage to perform the
associated TV controlling.

7.3 Shopping mall customer behavior analysis

We would like to demonstrate the suitability of our proposed activity detection
method to real-world applications. Customer shopping behavior analysis is very
important to retailers. Information about the popularity of a product is very valu-
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Figure 7.3: Application flow of the video gestural TV control system. The applica-
tion includes face detection to specify face location, MoSIFT activity recognition
to identify gestures, and TV control system to control a TV set. The system is
constructed by Sprout and runs frull-frame-rate with low latency.

able to retailers and manufactures. Currently, many online retailers, e.g. Ama-
zon.com, can simply apply machine learning techniques to understand customer’s
shopping behaviors through logs and click paths. However, similar analysis is
very challenging for traditional stores because it is hard to monitor customers’
behavior in the store.
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Figure 7.4: A touching example in a shopping mall surveillance video. The red
bounding box indicates a touching activity.

However, almost every store has a surveillance video system which records
activities in the store. Originally, the surveillance systems were built for security
desires. This valuable recording actually provides a dataset for customer behavior
analysis. Our proposed application detects the ”touching” activity in the video.
A touching activity is an action where a customer touches a product on a shelf.
Touching can be either just purely touching or taking a product from a shelf. By
detecting touching activities, we can calculate the fraction of customers who are
interested in a product. Customers touch a product when they either are inter-
ested in that product or purchase that product. Both are valuable behaviors from
customers. We applied the application on the NEC Shopping-Mall dataset. The
NEC Shopping-Mall dataset is a surveillance video data collection from a super-
market in Japan. It has 2 calibrated cameras and contains 2 hours of recording.
The recording was at 640x480 resolution and 30 fps MPEG-1 format. We prelimi-
nary evaluated the first hour for the touching activity detection.

We applied our activity detection algorithm with a people detection algorithm.
The people detection [30] first detects people in the video and provides a rectan-
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gular bounding box to apply the activity detection. Figure 7.4 shows that our
system detects a touching activity in a crowded shopping mall. The performance
to correctly detect a touching activity is at 69% precision and 61% recall. This per-
formance gives a solid tool to analyze customers’ touching behaviors in the store
and, furthermore, the system can also be supported by the Sprout to run in real
time.

7.4 Summary

To demonstrate the feasibility of video activity analysis, we successfully built
two applications in two important domains, interactive interface and intelligent
surveillance system. Furthermore, with help from Intel Labs Pittsburgh, we suc-
cessfully parallelized the MoSIFT activity analysis framework on the Sprout ar-
chitecture. This technique enables us to build MoSIFT applications to run at full
frame rate with low latency. The interactive interface application we built is a sys-
tem which recognizes human gestures to a television set. The intelligent surveil-
lance application is a system which analyzes customers’ shopping behaviors by
detecting touching activities in a shopping store. These two applications show
the great potential to extend video analysis and long term video analysis tech-
niques to various domains. The applications also demonstrate that video activity
analysis is sufficiently mature for real-world applications. Although video activity
analysis is still a very tough computer vision and machine learning task, adopting
current techniques to build practical applications is now possible.
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Chapter 8

Conclusion

Long term activity analysis is an emerging research area in multimedia commu-
nities. In this thesis, we specifically focus on analyzing activities from surveil-
lance video achieves. In order to analyze activities over a long period of time,
there are several fundamental problems to address. First, a solid video feature
must describe motions explicitly. Second, a robust activity recognition framework
must identify the interesting activities. Third, a solid activity detection technique
should specify when the interesting activity happens. Finally, long term activity
analysis must be framed on a machine learning task. We consider our study on the
CareMedia long term health care analysis as a case study of a long term activity
analysis. Specifically, we study long term video activity analysis in nursing homes
where the analysis can improve quality of care and quality of life of nursing home
residents.

The motivation of this research comes from two phenomena that we observed.
First, a large amount of surveillance video is recorded every day without process-
ing. Second, observations over time provide a unique view to analyze data. Tradi-
tionally, video recording is mainly for security concerns. It is only used to review
as evidence. However, many activities can actually be detected from surveillance
videos to either prevent harm or understand human behaviors. Furthermore,
surveillance video keeps recording day after day which is a valuable information
source to understand human behavior over time. A long term behavior analysis is
valuable, e.g. customer shopping behavior model, patients’ behavioral changes,
and traffic loads over time. All these observations inspire us to study long term
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activity analysis of surveillance video archives.
In this work, we first study the two essential components for video analysis,

activity recognition and detection through a powerful video feature descriptor,
MoSIFT. We then perform a case study on the CareMedia data to demonstrate a
way to analyze long term activity to help the nursing home health care.

8.1 Contributions

The first contribution of this study is to develop a framework of MoSIFT activity
recognition. MoSIFT is a descriptor which explicitly describes both appearance
and motion of a region of interest at multiple scales from a video. The activ-
ity recognition framework consists of interest point extraction, video codebook
construction/mapping, bag-of-word feature representation, and modeling. The
constraint-based clustering approach, bigram model and soft-weighting scheme
are introduced to enhance the bag-of-word representation and further improve
recognition performance. In developing this framework, we learnt several impor-
tant concepts to build a robust activity recognition:
• Explicitly describing motions is critical in video feature descriptors.

• Instead of detecting interest points in temporal space with complex criteria,
it is more important to detect what people can observe directly from a video.

• Dense descriptors are efficient and robust to build accurate activity models.

• The bag-of-word feature is an efficient and robust approach to represent in-
terest points.

• Encoding relationships into the bag-of-word feature can substantially im-
proves the recognition performance.

• The chi-square kernel of SVM performs strongly on modeling histogram fea-
tures.

The second contribution comes from building an activity detection strategy.
A brute-force search strategy is achieved by sliding a fixed length window over a
video to generate candidate windows. A cascade SVM classifier is built to identify
interesting activities among all the candidate windows. The false positive rate
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is decreased by the good property of the cascade architecture and concatenating
positive prediction strategy. From building this activity detection framework, we
learned:

• Temporal segmentation is a subjective task and is not practical.

• The brute-force search strategy always generates too many negative exam-
ples and results in high false positive rates.

• The cascade architecture efficiently reduces false positive rates but maintains
a high detection rate.

• The cascade architecture consumes negative examples very fast.

The third contribution comes from a successful case study to analyze long term
activity from surveillance video in the nursing home health care domain. A long
term activity analysis is domain dependent and there is no general way to solve
this problem. The case study we proposed in the CareMedia project is to detect
nursing home residents’ daily lives over time to better estimate their health condi-
tions. We demonstrate that the observations in surveillance video are informative
by predicting patients’ diagnoses from manual annotations. Furthermore, we suc-
cessfully simulate automatic video analysis results and demonstrate that inaccu-
rate video analysis can still assist medical doctors to make better diagnoses. This
work as we know is the first to validate that video surveillance can assist health
care by observing patients over a long period of time. It also demonstrates that
multimedia techniques are now able to analyze information accurately if reason-
able task is designed. By applying our method to long term health care analysis,
we learned:

• Long term activity analysis is very domain specific. It requires domain
knowledge to understand what information is needed.

• It is important to design a machine learnable approach to analyze the long
term activity.

• Since automatic activity analysis is still not very accurate, it is important to
first evaluate the ideal condition. For example, are the interesting activates
sufficient for analyzing the desired long term pattern?

• The ideal condition can be achieved by manual observations.
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• Simulations can provide a solid estimate of the automatic video analysis per-
formance.

• Current video analysis techniques are bebining to provide helpful informa-
tion but more fundamental computer vision and machine learning research
is still needed.

• Sensors can definitely be a great auxiliary source to visual activity analysis
and the long term activity analysis.

The fourth and last contribution is to demonstrate two video analysis appli-
cations. We successfully parallelize MoSIFT activity recognition by the Sprout
architecture to achieve real time activity analysis. This technique enables us to
build real-world applications. We demonstrate the proposed activity analysis
techniques in two aspects: an interactive interface and an intelligent retail store
surveillance system. The success in building real-world applications gives us the
confidence that the proposed methods can be applied to many emerging areas,
e.g. content-based video retrieval, traffic load analysis, tracking, day care surveil-
lance systems etc. Given the exponential growth of video content, our proposed
techniques can provide a tool to access video content efficiently. We learned sev-
eral lessons when we build the applications:
• Coarse-grained and fine-grained parallelism are needed to improve the la-

tency in video processing.

• Video activity analysis can be integrated with other techniques, e.g. face
detections or sensors.

• A large number of human annotations are still required to train a robust
activity model.

8.2 Future Work

There are many future research opportunities in long term activity analysis and
the more general research area of video activity analysis. We categorize future
research into four directions: low level video features, video activity analysis, long
term activity analysis, and video content understanding.
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MoSIFT is extended from SIFT and is proved to be a robust low level feature
to describe video content. However, MoSIFT also inherits the weakness of SIFT.
Interest points detected by MoSIFT emphasize high contrast points around cor-
ners or edges. Sometimes, it is not enough to describes activities. Also, camera
motions cause motions all over a video which causes our algorithm to report bad
results. However, camera motions are unavoidable in real-world videos. Due to
the properties of MoSIFT, MoSIT is not sensitive to motions which are moving
away from cameras. All these problems require further research toward making
MoSIFT more robust.

In the area of video analysis, many interesting problems remaining for future
work. First, the bag-of-word feature representation does not capture structure
information. Although we proposed several methods to connect interest points,
capturing global structure is still an on-going research direction. Our proposed
recognition framework has very solid performance in many different domains.
On the other hand, the proposed activity detection method can still be improved.
To improve the proposed activity detection method, the most urgent topic is to
segment the video more accurately to limit the search space. It may not be able
to detect activity segments. However, predicting possible locations instead of the
brute-search strategy could significantly decrease false positive rates.

Long term activity analysis requires much future research. The highest pri-
ority problem is to build a protocol which gives a guide line for transforming a
domain specific long term analysis task to a machine learnable task. This is a
challenging problem. It requires designing an application to analyze the domain
dependent information need, constructing a system to observe the necessary in-
formation, developing a feature which represents the long term observations, and
finally building a model to fill the information needs. Each step requires a lan-
guage to facilitate communication between users and systems. Mixed-initiative
learning [39] may be a good approach to construct communication between users
and systems. Furthermore, senors provide more accurate information than video
recording. Combining sensors with vision-based long term activity analysis is a
emerging topic to explore.

Finally, we want to extend these video analysis techniques from surveillance
video domain to the general video domain. Concept-based video content retrieval
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is a promising direction in the video retrieval field. Here, MoSIFT is a solid and
robust feature to detect semantic concepts. However, tremendous human effort
would be required to annotate data in order to train a concept detector. Automati-
cally associating images/video and text is a promising way to obtain robust anno-
tations from the internet. This could open a new research domain for researchers
to explore.
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Appendix A

The PSMS coding manual

Table A.1: A full description of Physical Self-
Maintenance Scale (PSMS).

Category Description Score

Toilet Ability to care
for self at toilet;
ability to
control bowels
and bladder

1 = Cares for self at toilet completely, no inconti-
nence
2 = Needs to be reminded or needs help in clean-
ing self or has rare accidents
3 = Soiling or wetting while asleep more than
once a week
4 = Soiling or wetting while awake more than
once a week
5 = No control of bowels or bladder

Feeding

Ability to feed
self

1 = Eats without assistance
2 = Eats with minor assistance at meal time
and/or with special preparation of food or help
in cleaning up after meals
3 = Feeds self with moderate assistance
4 = Requires extensive assistance for all meals
5 = Does not feed self at all and resists efforts of
others to feed him/her
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Dressing

Ability to dress
self

1 = Dresses, undresses, and selects clothing from
own wardrobe
2 = Dresses and undresses self with minor assis-
tance
3 = Needs moderate assistance in dressing or se-
lection of clothes
4 = Needs major assistance in dressing but coop-
erates with efforts of others to help
5 = Completely unable to dress self and resists
efforts

Grooming

Ability to
groom self

1 = Always neatly dressed, well-groomed, with-
out assistance
2 = Grooms self and adequately with occasional
minor assistance, e.g. shaving
3 = Needs moderate and regular assistance or su-
pervision in grooming
4 = Needs total grooming care but can remain
well-groomed after help from others
5 = Actively negates all efforts of others to main-
tain grooming

Ambulation Ability to
ambulate
within
residence or
outside
residence

1 = Goes about grounds or city
2 = Ambulates within residence or about one
block distance
3 = Ambulates with assistance
4 = Sits unsupported in chair or wheelchair but
cannot propel self without help
5 = Bedridden more than half the time

Bathing

Ability to bathe
or wash self

1 = Bathes self (tub, shower, sponge bath) with-
out help
2 = Bathes self with help in getting in and out of
tub
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3 = Washes face and hands only but cannot bathe
rest of body
4 = Does not wash self but is cooperative with
those who bathe him/her
5 = Does not try to wash self and resists efforts to
keep him/her clean

Total Sum of above 6
categories

range from 6-30
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Appendix B

The CareMedia coding manual

Code Activity
2001 Walking through
2002 Walking to a standing stop
2003 Standing up (the act of)
2004 Sitting down (the act of)
2005 Object placed on table
2006 Object removed from table
2007 Wheelchair movement
2008 Enters
2009 Exits
2010 Attempts to exit
2011 Communicates with staff
2011 Knocks on window

Table B.1: The coding manual of the movement activity category. The code is the
key to save in the database. There are 12 activities in movement activity category
in the coding manual.
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Table B.2: The coding manual of the detail behavior
category. The code is the key to save in the database.
Major activity indicates superordinate behavior de-
scriptions. Minor activity means subordinate behavior
descriptions. There are 83 codes in this category by 7
superordinate behavior codes.

Code Major activity Minor activity

100 Pose and/or Motor Action Assisted Action

101 Pose and/or Motor Action Sleeping/Napping

102 Pose and/or Motor Action Prone

103 Pose and/or Motor Action Supine

104 Pose and/or Motor Action Stooped

105 Pose and/or Motor Action Facial dyskinesia

106 Pose and/or Motor Action Tremors

107 Pose and/or Motor Action Unsteady gait

108 Pose and/or Motor Action Other motor behaviors

200 Positive Smiles

201 Positive Makes eye contact with person, object or activity

202 Positive Socially appropriate touch, hug, kiss, holding hands

203 Positive Dancing

204 Positive Clapping pleasantly (e.g., to music)

205 Positive Conversing pleasantly with others

206 Positive Singing

207 Positive Helping staff with their chores

208 Positive Easily directed by staff in daily activities

209 Positive Positive or affectionate verbal comments

210 Positive Petting a real or stuffed animal or doll

211 Positive Feeding or attempting to feed self

212 Positive Other

300 Physically Aggressive Spitting

301 Physically Aggressive Grabbing

124



302 Physically Aggressive Banging

303 Physically Aggressive Pinching or squeezing

304 Physically Aggressive Punching

305 Physically Aggressive Elbowing

306 Physically Aggressive Slapping

307 Physically Aggressive Tackling

308 Physically Aggressive Using object as weapon

309 Physically Aggressive Taking from others

310 Physically Aggressive Kicking

311 Physically Aggressive Scratching

312 Physically Aggressive Throwing

313 Physically Aggressive Knocking over

314 Physically Aggressive Pushing

315 Physically Aggressive Pulling or tugging

316 Physically Aggressive Biting

317 Physically Aggressive Hurting self

318 Physically Aggressive Obscene gestures

319 Physically Aggressive Other

400 Physically Non-aggressive Fidgeting/restless

401 Physically Non-aggressive Pacing

402 Physically Non-aggressive Wandering (lost)

403 Physically Non-aggressive Exit seeking

404 Physically Non-aggressive Picking

405 Physically Non-aggressive Hoarding or hiding objects

406 Physically Non-aggressive Unusual motor behaviors

407 Physically Non-aggressive Eating or mouthing objects

408 Physically Non-aggressive Interfering with others

409 Physically Non-aggressive Urinating

410 Physically Non-aggressive Defacating

411 Physically Non-aggressive Eating

412 Physically Non-aggressive Drinking
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413 Physically Non-aggressive Other

500 Verbally Aggressive Scream/yell

501 Verbally Aggressive Threatening or hostile comments

502 Verbally Aggressive Argumentative

503 Verbally Aggressive Name calling

504 Verbally Aggressive Cursing

505 Verbally Aggressive Other

600 Verbally Non-aggressive Repeats self without obvious purpose

601 Verbally Non-aggressive Nagging, pleading or calling for help

602 Verbally Non-aggressive Refuses care, activities, food or medications

603 Verbally Non-aggressive Bossy or demanding

604 Verbally Non-aggressive Whiny or repetitive complaints

605 Verbally Non-aggressive Talks to self

606 Verbally Non-aggressive Sneezing

607 Verbally Non-aggressive Coughing

608 Verbally Non-aggressive Other

700 Staff Activities Talking

701 Staff Activities Feeding

702 Staff Activities Getting food from cart

703 Staff Activities Organizing, processing or dispensing medication

704 Staff Activities Assisting a resident or another & Staff member

705 Staff Activities Busing trays

706 Staff Activities Vacuuming

707 Staff Activities Mopping

708 Staff Activities Writing or documenting care activities

709 Staff Activities Redirecting a resident & Verbally or & Physically

710 Staff Activities Other activity, non-patient related

711 Staff Activities Other activity involving a patient

126



Appendix C

Experiment parameters

Experiment Dataset Codebook
size

cost, gamma Description

Table 3.1 KTH 900 8, 0.5 Leave-one-out cross
validation

Table 3.2 Hollywood 1000 8, 1 Evaluate on test set
Table 3.3 Gatwick 2000 7, 4 5-folder cross valida-

tion by 5 days
Table 3.4 CareMedia 1000 8, 2 5-folder cross valida-

tion
Table 3.5 CareMedia 1000 8, 1 5-folder cross valida-

tion
Figure 4.1.3 KTH 600 8, 1 constraints with

2x2x5 window size
Table 4.1 KTH 900 8, 0.1 300 bigrams with

5x5x60 kernel size
Table 4.2 Gatwick 2000 1, 4 600 bigrams with

5x5x60 kernel size
Table 4.3 KTH 900 8, 0.5 4 closer clusters are

soft-weighted
Table 4.4 Sound and Vision 2000 8, 2 4 closer clusters are

soft-weighted
Table 5.2 Gatwick 2000 7, 4 cascade classifier

Table C.1: Parameters used in our experiments. Cost and gamma indicates two
parameters in SVM kernel
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Y. Xing, and S. Zdonik. Scalable distributed stream processing. In Proc.
Innovative Data Systems Research, 2003. 7

[22] J. Cohen-Mansfield, M. Marx, and A. Rosenthal. A description of agitation
in a nursing home. In Journal of Gerontology, 1989. 1.5, 6.3

[23] J. Cummings. Neuropsychiatric inventory. In Nursing Home, 1996. 1.5, 6.3

[24] N. Dala and B. Triggs. Histograms of oriented gradients for human detec-
tion. In CVPR, 2005. 2.2

[25] N. David, D. Doermann, L. David, and D. D. Mining tool for surveillance
video. In Proc. Storage and Retrieval Methods and Applications for Multimedia,
2004. 2.4

[26] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large
clusters. CACM, 51(1), 2008. 7

[27] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via
sparse spatio-temporal features. In IEEE Workshop on PETS, 2005. 2.4, 2.3,
3.1, 3.4.1, 3.4.1

[28] A. Fathi and G. Mori. Action recognition by learning mid-level motion fea-
tures. In CVPR, 2008. 1.6.1

[29] A. Gilbert, J. Illingworth, and R. Bowden. Scale invariant action recognition
using compound features mined from dense spatio-temporal corners. In
ECCV, 2008. 1.6.1, 6

[30] M. Han, W. Xu, H. Tao, and Y. Gong. An algorithm for multple object tra-
jectory tracking. In CVPR, 2004. 7.3

[31] C. Harris and M. Stephens. A combined corner and edge detector. In Proc.
Alvey Vision Conference, 1988. 2.3, 3.1

[32] A. Hauptmann, M. Christel, and R. Yan. Video retrieval based on semantic
concepts. In Proceedings of the IEEE 96, 2008. 2.5

[33] A. Hauptmann, H. Wactlar, J. Yang, Y. Qi, R. Yan, and J. Gao. Automated
analysis of nursing home observations. In IEEE Pervasive Computing, Special
Issue on Pervasive Computing for Successful Aging, 2004. 6.2.2

131



[34] A. Hauptmann, R. Yan, and W. Lin. How many high-level concepts will fill
the semantic gap in news video retrieval? In CIVR, 2007. 1.6.4, 2.5

[35] A. Hauptmann, R. Yan, W.-H. Lin, M. Christel, and H. Wactlar. Can high
level concepts fill the semantic gap in video retrieval? a case study with
broadcast news. In IEEE Transactions on Multimedia, 2007. 2.5

[36] T. Hayes, S. Hagler, D. Austin, J. Kaye, and M. Pavel. Unobtrusive assess-
ment of walking speed in the home using inexpensive pir sensors. In 31th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, 2009. 6.1.2

[37] T. Hayes, M. Pavel, and J. Kaye. An approach for deriving continuous health
assessment using in-home sensors. In Festival of International Conferences on
Caregiving, Disability, Aging and Technology, 2007. 6.1.2

[38] D. Hogg. Model-based vision: a program to see a walking person. Image
and Vision Computing, 1(1), 1983. 2.1

[39] Y. Huang and T. Mitchell. Framework for mixed-initiative clustering. In
NESCAI, 2007. 8.2

[40] A. Inoue, S. Hao, T. Saito, K. Shinoda, I. Kim, and C. Lee. Titgt at trecvid
2009 workshop. In Proc. TRECVID Workshop, 2009. 2.5

[41] Intel Labs Pittsburgh. http://www.pittsburgh.intel-research.

net/. 7

[42] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In European Confer-
ence on Computer Systems, 2007. 7

[43] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically inspired system
for action recognition. In ICCV, 2007. 1.6.1

[44] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically inspired system
for action recognition. In ICCV, 2007. 6

[45] Y. Ke, R. Sukthankar, and M. Hebert. Efficient visual event detection using
volumetric features. In ICCV, 2005. 2.4, 2.3, 3.4.1, 3.4.1

[46] Y. Ke, R. Sukthankar, and M. Hebert. Event detection in crowded videos. In

132

http://www.pittsburgh.intel-research.net/
http://www.pittsburgh.intel-research.net/


ICCV, 2007. 2.3
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