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Abstract

Various smart devices (smartphone, smart-TV, in-car navigating system, etc.) are incorpo-

rating spoken language interfaces, as known as spoken dialogue systems (SDS), to help users

finish tasks more efficiently. The key role in a successful SDS is a spoken language under-

standing (SLU) component; in order to capture language variation from dialogue participants,

the SLU component must create a mapping between natural language inputs and semantic

representations that correspond to users’ intentions.

The semantic representation must include “concepts” and a “structure”: concepts are domain-

specific topics, and the structure describes relations between concepts and conveys intention.

Most of knowledge-based approaches originated from the field of artificial intelligence (AI).

These methods leveraged deep semantics and relied heavily on rules and symbolic interpre-

tations, which mapped sentences into logical forms: a context-independent representation

of a sentence covering its predicates and arguments. However, most prior work focused on

learning a mapping between utterances and semantic representations, where such organized

concepts still remain predefined. The need of predefined structures and annotated semantic

concepts results in extremely high cost and poor scalability in system development. Thus,

current technology usually limits conversational interactions to a few narrow predefined do-

mains/topics. Because domains used in various devices are increasing, to fill the gap, this

dissertation focuses on improving generalization and scalability of building SDSs with little

human effort.

In order to achieve the goal, two questions need to be addressed: 1) Given unlabeled conver-

sations, how can a system automatically induce and organize the domain-specific concepts?

2) With the automatically acquired knowledge, how can a system understand user utterances

and intents? To tackle above problems, we propose to acquire domain knowledge that captures

human’s salient semantics, intents, and behaviors. Then based on the acquired knowledge,

we build an SLU component to understand users.

The dissertation focuses on several important aspects for above two problems: Ontology

Induction, Structure Learning, Surface Form Derivation, Semantic Decoding, and Intent Pre-

diction. To solve the first problem about automating knowledge learning, ontology induction

extracts domain-specific concepts, and then structure learning infers a meaningful organiza-

tion of these concepts for SDS design. With the structured ontology, surface form derivation



learns natural language variation to enrich its understanding cues. For the second problem

about how to effectively understand users based on the acquired knowledge, we propose to

decode users’ semantics and to predict intents about follow-up behaviors through a matrix

factorization model, which outperforms other SLU models.

Furthermore, the dissertation investigates the performance of SLU modeling for human-

human conversations, where two tasks are discussed: actionable item detection and itera-

tive ontology refinement. For actionable item detection, human-machine conversations are

utilized to learn intent embeddings through convolutional deep structured semantic models

for estimating the probability of appearing actionable items in human-human dialogues. For

iterative ontology refinement, ontology induction is first performed on human-human conver-

sations and achieves similar performance as human-machine conversations. The integration of

actionable item estimation and ontology induction induces an improved ontology for manual

transcripts. Also, the oracle estimation shows the feasibility of iterative ontology refinement

and the room for further improvement.

In conclusion, the dissertation shows the feasibility of building a dialogue learning system that

is able to understand how particular domains work based on unlabeled human-machine and

human-human conversations. As a result, an initial SDS can be built automatically according

to the learned knowledge, and its performance can be iteratively improved by interacting with

users for practical usage, presenting a great potential for reducing human effort during SDS

development.
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List of Abbreviations

AF Average F-Measure is an evaluation metric that measures the performance of a ranking

list by averaging the F-measure over all positions in the ranking list.

AMR Abstract Meaning Representation is a simple and readable semantic representation in

AMR Bank.

AP Average Precision is an evaluation metric that measures the performance of a ranking

list by averaging the precision over all positions in the ranking list.

ASR Automatic Speech Recognition, also known as computer speech recognition, is the

process of converting the speech signal into written text.

AUC Area Under the Precision-Recall Curve is an evaluation metric that measures the

performance of a ranking list by averaging the precision over a set of evenly spaced

recall levels in the ranking list.

CBOW Continuous Bag-of-Words is an architecture for learning distributed word represen-

tations, which is similar to the feedforward neural net language model but uses con-

tinuous distributed representation of the context.

CDSSM Convolutional Deep Structured Semantic Model is a deep neural net model with a

convolutional layer, where the objective is to maximize the similarity between semantic

vectors of two associated elements.

CMU Carnegie Mellon University is a private research university in Pittsburgh.

DSSM Deep Structured Semantic Model is a deep neural net model, where the objective is

to maximize the similarity between semantic vectors of two associated elements.

FE Frame Element is a descriptive vocabulary for the components of each frame.

IA Intelligent Assistant is a software agent that can perform tasks or services for an

individual. These tasks or services are based on user input, location awareness, and

the ability to access information from a variety of online sources.

ICSI International Computer Science Institute is an independent, non-profit research orga-

nization located in Berkeley, California, USA.
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IR Information Retrieval is the activity of obtaining information resources relevant to an

information need from a collection of information resources. Searches can be based on

metadata or on full-text (or other content-based) indexing.

ISCA International Speech Communication Association is a non-profit organization that

aims to promote, in an international world-wide context, activities and exchanges in

all fields related to speech communication science and technology.

LTI Language Technologies Institute is a research department in the School of Computer

Science at Carnegie Mellon University.

LU Lexical Unit is a word with a sense.

MAP Mean Average Precision is an evaluation metric that measures the performance of a

ranking list by averaging the precision over all positions in the ranking list.

MF Matrix Factorization is a decomposition of a matrix into a product of matrices in the

discpline of linear algebra.

MLR Multinomial Logistic Regression is a classification method that generalizes logistic

regression to multiclass problems, i.e. with more than two possible discrete outcomes.

NLP Natural Language Processing is a field of artificial intelligence and linguistics that

studies the problems intrinsic to the processing and manipulation of natural language.

POS Part of Speech tag, also known as word class, lexical class or lexical class are traditional

categories of words intended to reflect their functions within a sentence.

RDF Resource Description Framework (RDF) is a family of World Wide Web Consortium

(W3C) specifications originally designed as a metadata data model.

SDS Spoken Dialogue System is an intelligent agent that interacts with a user via natural

spoken language in order to help the user obtain desired information or solve a problem

more efficiently.

SGD Stochastic Gradient Descent is a gradient descent optimization method for miniming

an objective function that is written as a sum of differentiable functions.

SLU Spoken Language Understanding is a component of a spoken dialogue system, which

parses the natural languages into semantic forms that benefit the system’s understand-

ing.

SPARQL SPARQL Protocol and RDF Query Language is a semantic query language for

databases, able to retrieve and manipulate data stored in RDF format.



SVM Support Vector Machine is a supervised learning method used for classification and

regression based on the Structural Risk Minimization inductive principle.

WAP Weighted Average Precision is an evaluation metric that measures the performance of

a ranking list by weighting the precision over all positions in the ranking list.

WOZ Wizard-of-Oz is a research experiment in which subjects interact with a computer

system that subjects believe to be autonomous, but which is actually being operated

or partially operated by an unseen human being.
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1Introduction
“ Computing is not about computers any more. It is about living.

”
Nicholas Negroponte, Massachusetts Institute of Technology Media Lab

founder and chairman emeritus

A spoken dialogue system (SDS) is an intelligent agent that interacts with a user via natural

spoken language in order to help the user obtain desired information or solve a problem

more efficiently. Despite recent successful personal intelligent assistants (e.g. Google Now1,

Apple’s Siri2, Microsoft’s Cortana3, and Amazon’s Echo4), spoken dialogue systems are still

very brittle when confronted with out-of-domain information. The biggest challenge therefore

results from limited domain knowledge. In this introductory chapter, we first introduce how

an SDS is developed and articulate a research problem existing in the current development

procedure. This chapter outlines the contributions this dissertation brings to address the

challenges, and provides a roadmap for the rest of this document.

1.1 Introduction

Spoken language understanding (SLU) has also seen considerable advancements over the

past two decades [150]. However, while language understanding remains unsolved, a variety

of practical task-oriented dialogue systems have been built to operate on limited specific

domains. For instance, the CMU Communicator system is a dialogue system for a air travel

domain that provides information about flight, car, and hotel reservations [137]. Another

example, the JUPITER system, is a dialogue system for a weather domain, which provides

forecast information for the requested city [175]. More recently, a number of efforts in industry

(e.g. Google Now, Apple’s Siri, Microsoft’s Cortana, Amazon’s Echo, and Facebook’s M) and

1http://www.google.com/landing/now/
2http://www.apple.com/ios/siri/
3http://www.microsoft.com/en-us/mobile/campaign-cortana/
4http://www.amazon.com/oc/echo
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academia have focused on developing semantic understanding techniques for building better

SDSs [1, 14, 56, 72, 103, 107, 120, 129, 131, 138, 160, 166].

These systems aim to automatically identify user intents as expressed in natural language,

extract associated arguments or slots, and take actions accordingly to fulfill the user’s re-

quests. Typically, a SDS architecture is composed of the following components: an automatic

speech recognizer (ASR), a spoken language understanding (SLU) module, a dialogue man-

ager (DM), and an output manager. When developing a dialogue system in a new domain, we

may be able to reuse some components that are designed independently of domain-specific in-

formation, for example, the speech recognizer. However, the components that are integrated

with domain-specific information have to be reconstructed for each new domain, and the

cost of development is expensive. With a rapidly increasing number of domains, the current

bottleneck of the SDS is SLU.

1.2 The Problem

The classic development process of a dialogue system involves 1) specifying system require-

ments, 2) designing and implementing each module in a dialogue system to meet all require-

ments, and 3) evaluating the implemented system. In the first step, dialogue system developers

need to specify the scope of a target dialogue system (i.e. the domain that the system can

support and operate) to identify domain-specific concepts, a.k.a. slots, and arguments for slot

filling; determine the structure of each task to specify the potential intents and associated

slots for intent classification; indicate the desired interaction between the system and a user

such as the dialogue flow for DM usage. Most of the prior studies focused on implementa-

tion of each component in the SDS pipeline under an assumption that the domain-specific

schema is given. However, due to unlimited domains, identifying domain-specific information

becomes a large issue during SDS development.

Conventionally, the domain-specific knowledge is manually defined by domain experts or

developers . For common domains like a weather domain or a bus domain, system developers

are usually able to identify such information. However, information of some niche domains

(e.g. a military domain) is withheld by experts, making the knowledge engineering process

more difficult [13]. Furthermore, the experts’ decisions may be subjective and may not cover

all possible real-world users’ cases [168].

In the second step, implementing each component usually suffers from a common issue, data

scarcity. Specifically, training intent detectors and slot taggers of SLU requires a set of

utterances labeled with task-specific intents and arguments. One simple solution is to create

hand-crafted grammars so that the component can be built without any annotated data.
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Another solution is to simulate an environment to collect utterances, such as a Wizard-of-

Oz (WOZ) method and crowd-sourcing, so that the collected data can be used to train the

models [6, 76]. However, the collected data may be biased by developers’ subjectivity, because

users’ perspectives of a task might not be foreseen by dialogue system developers [168].

Furthermore, poor generalization and scalability of current systems result in limited prede-

fined information, and even biases the subsequent data collection and annotation. Another

issue is about the efficiency: the manual definition and annotation process for domain-specific

tasks can be very time-consuming, and have high financial costs. Finally, the maintenance

cost is also non-trivial: when new conversational data comes in, developers, domain experts,

and annotators have to manually analyze the audios or the transcripts for updating and ex-

panding the ontologies. Identifying domain knowledge and collecting training data as well

as annotations require domain experts and manual labors, resulting in high cost, long du-

ration, and poor scalability of SDS development. The challenges, generalization, scalability,

efficiency, are the main bottleneck in the current dialogue systems.

1.3 Towards Improved Scalability, Gernalization & Effi-
ciency for SDS

Usually participants engage in a conversation in order to achieve a specific goal such as accom-

plishing a task or acquiring answers to questions, for example, to obtain a list of restaurants in

a specific location. Therefore in the context of this dissertation, domain-specific information

refers to the knowledge specific to an SDS-supported task rather than the knowledge about

general dialogue mechanisms. To tackle the above problems, we aim to mine the domain-

specific knowledge from unlabeled dialogues (e.g. conversations collected by a call center,

recorded utterances that cannot be handled by existing systems, etc.) to construct a domain

ontology, and then model the SLU component based on the acquired knowledge and unlabeled

data in an unsupervised manner.

The dissertation mainly focuses on two parts:

• Knowledge acquisition is to learn the domain-specific knowledge that is used by an

SLU component. The domain-specific knowledge is represented by a structured ontol-

ogy, which allows SDS to support the target domain, and thus comprehend meanings.

An example of the necessary domain knowledge about restaurant recommendation is

shown in Figure 1.1, where the learned domain knowledge contains semantic slots and

their relations5. The acquired domain ontology provides an overview of a domain or

5The slot is defined as a semantic unit usually used in dialogue systems.
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Restaurant 

Asking 

Conversations 

target 

food 
price 

seeking 

quantity 

PREP_FOR 

PREP_FOR 

NN AMOD 

AMOD 

AMOD 

Organized Domain Knowledge 

Unlabelled Collection 

Knowledge Acquisition 

Figure 1.1: An example output of the proposed knowledge acquisition approach.

Organized 

Domain 

Knowledge 

price=“cheap” 
target=“restaurant” 
intent=navigation 

SLU Modeling 

SLU 

Component 

“can i have a cheap restaurant” 

Figure 1.2: An example output of the proposed SLU modeling approach.

multiple domains, which can guide developers for designing the schema or be directly

utilized by the SLU module.

• SLU modeling is to build an SLU module that is able to understand the actual meaning

of domain-specific utterances based on the domain-specific knowledge and then further

provide better responses. An example of the corresponding understanding procedure

in a restaurant domain is shown in Figure 1.2, where the the SLU component analyzes

an utterance “can i have a cheap restaurant” and output a semantic representation

including low-level slots price=“cheap” and target=“restaurant” and a high-level intent

navigation.

With more available conversational data, to acquire the domain knowledge, recent approaches

are data-driven in terms of generalization and scalability. In the past decade, the computa-

tional linguistics community has focused on developing language processing algorithms that

can leverage the vast quantities of available raw data. Chotimongkol et al. proposed a

machine learning technique to acquire domain-specific knowledge, showing the potential for

reducing human effort in the SDS development [44]. However, the work mainly focused on
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the low-level semantic units like word-level concepts. With increasing high-level knowledge

resources, such as FrameNet, Freebase and Wikipedia, this dissertation moves forward to in-

vestigate the possibility of developing a high-level semantic conversation analyzer for a certain

domain using an unsupervised machine learning approach. The human’s semantics, intent,

and behavior can be captured from a collection of unlabelled raw conversational data, and

then be modeled for building a good SDS.

In terms of practical usage, the acquired knowledge may be manually revised to improve sys-

tem performance. Even though some revision might be required, the cost of revision is already

significantly lower than the cost of analysis. Also, the automatically learned information may

employ real-world users’ cases and avoid biasing subsequent annotations. This thesis focuses

on the highlighted parts, inducing acquiring domain knowledge from the dialogues using avail-

able resources, and modeling an SLU module using the automatically acquired information.

The proposed approach combining both data-driven and knowledge-driven perspectives shows

the potential for improving generalization, maintenance, efficiency, and scalability of dialogue

system development.

1.4 Thesis Statement

The main purpose of this work is to automatically develop an SLU module for SDS by utilizing

the automatically learned domain knowledge in an unsupervised fashion. This dissertation

mainly focuses on acquiring the domain knowledge that is useful for better understanding and

designing the system framework and further modeling the semantic meaning of the spoken

language. For knowledge acquisition, there are two important stages – ontology induction

and structure learning. After applying them, an organized domain knowledge is inferred

from unlabeled conversations. For SLU modeling, there are two aspects – semantic decod-

ing and intent prediction. Based on the acquired ontology, semantic decoding analyzes the

semantic meaning in each individual utterance and intent prediction models user intents to

predict possible follow-up behaviors. In conclusion, the thesis demonstrates the feasibility of

building a dialogue learning system that is able to automatically learn salient knowledge and

understand how the domains work based on unlabeled raw conversations. With the acquired

domain knowledge, the initial dialogue system can be constructed and improved quickly by

continuously interacting with users. The main contribution of the dissertation is presenting

the potential for reducing human work and showing the feasibility of improving scalability and

efficiency for dialogue system development by automating the knowledge learning process.
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1.5 Thesis Structure

The dissertation is organized as below.

• Chapter 2 - Background and Related Work

This chapter reviews background knowledge and summarizes related works. The chap-

ter also discusses current challenges of the task, describes several structured knowledge

resources and presents distributional semantics that may benefit understanding prob-

lems.

• Chapter 3 - Ontology Induction for Knowledge Acquisition

This chapter focuses on inducing a domain ontology that are useful for developing SLU

in SDS based on the available structured knowledge resources in an unsupervised way.

Part of this research work has been presented in the following publications [31, 33]:

– Yun-Nung Chen, William Yang Wang, and Alexander I. Rudnicky, “Unsupervised

Induction and Filling of Semantic Slots for Spoken Dialogue Systems Using Frame-

Semantic Parsing,” in Proceedings of 2013 IEEE Workshop on Automatic Speech

Recognition and Understanding (ASRU’13), Olomouc, Czech Republic, 2013.

(Student Best Paper Award)

– Yun-Nung Chen, William Yang Wang, and Alexander I. Rudnicky, “Leveraging

Frame Semantics and Distributional Semantics for Unsupervised Semantic Slot

Induction for Spoken Dialogue Systems,” in Proceedings of 2014 IEEE Workshop

on of Spoken Language Technology (SLT’14), South Lake Tahoe, Nevada, USA,

2014.

• Chapter 4 - Structure Learning for Knowledge Acquisition

This chapter focuses on learning the structures, such as the inter-slot relations, for help-

ing SLU development. Some of the contributions have been presented in the following

publications [39, 40]:

– Yun-Nung Chen, William Yang Wang, and Alexander I. Rudnicky, “Jointly Model-

ing Inter-Slot Relations by Random Walk on Knowledge Graphs for Unsupervised

Spoken Language Understanding,” in Proceeding of The 2015 Conference of the

North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies (NAACL-HLT’15), Denver, Colorado, USA, 2015.

– Yun-Nung Chen, William Yang Wang, and Alexander I. Rudnicky, “Learning

Semantic Hierarchy for Unsupervised Slot Induction and Spoken Language Un-

derstanding,” in Proceedings of The 16th Annual Conference of the Interna-
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tional Speech Communication Association (INTERSPEECH’15), Dresden, Ger-

many, 2015.

• Chapter 5 - Surface Form Derivation for Knowledge Acquisition

This chapter focuses on deriving the surface forms conveying semantics for entities from

the given ontology, where the derived information contributes to better understanding.

Some of the work has been published [32]:

– Yun-Nung Chen, Dilek Hakkani-Tür, and Gokhan Tur, “Deriving Local Relational

Surface Forms from Dependency-Based Entity Embeddings for Unsupervised Spo-

ken Language Understanding,” in Proceedings of 2014 IEEE Workshop of Spoken

Language Technology (SLT’14), South Lake Tahoe, Nevada, USA, 2014.

• Chapter 6 - Semantic Decoding in SLU Modeling

This chapter focuses on decoding users’ spoken languages into corresponding semantic

forms, which corresponds to the goal of SLU. Some of these contributions have been

presented in the following publication [38]:

– Yun-Nung Chen, William Yang Wang, Anatole Gershman, and Alexander I. Rud-

nicky, “Matrix Factorization with Knowledge Graph Propagation for Unsupervised

Spoken Language Understanding,” in Proceeding of The 53rd Annual Meeting of

the Association for Computational Linguistics and The 7th International Joint

Conference on Natural Language Processing of the Asian Federation of Natural

Language Processing (ACL-IJCNLP 2015), Beijing, China, 2015.

• Chapter 7 - Intent Prediction in SLU Modeling

This chapter focuses on modeling user intents in SLU, so that the SDS is able to pre-

dict the users’ follow-up actions and further provide better interactions. Some of the

contributions have been presented by following publications [28, 36, 37, 42]:

– Yun-Nung Chen and Alexander I. Rudnicky, “Dynamically Supporting Unexplored

Domains in Conversational Interactions by Enriching Semantics with Neural Word

Embeddings,” in Proceedings of 2014 IEEE Workshop of Spoken Language Tech-

nology (SLT’14), South Lake Tahoe, Nevada, USA, 2014.

– Yun-Nung Chen, Ming Sun, Alexander I. Rudnicky, and Anatole Gershman,

“Leveraging Behavioral Patterns of Mobile Applications for Personalized Spoken

Language Understanding,” in Proceedings of The 17th ACM International Confer-

ence on Multimodel Interaction (ICMI’15), Seattle, Washington, USA, 2015.

– Yun-Nung Chen, Ming Sun, and Alexander I. Rudnicky, “Matrix Factorization

with Domain Knowledge and Behavioral Patterns for Intent Modeling,” in Ex-

tended Abstract of The 29th Annual Conference on Neural Information Processing
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Systems – Machine Learning for Spoken Language Understanding and Interactions

Workshop (NIPS-SLU’15), Montreal, Canada, 2015.

– Yun-Nung Chen, Ming Sun, Alexander I. Rudnicky, and Anatole Gershman, “Un-

supervised User Intent Modeling by Feature-Enriched Matrix Factorization,” in

Proceedings of The 41st IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP’16), Shanghai, China, 2016.

• Chapter 8 - SLU in Human-Human Conversations

This chapter investigates the feasibility of applying the technologies developed for

human-machine interactions to human-human interactions, expanding the application

usage to more practical and broader genres. Part of the research work has been pre-

sented in the following publications [34, 35]:

– Yun-Nung Chen, Dilek Hakkani-Tür, and Xiaodong He, “Detecting Actionable

Items in Meetings by Convolutional Deep Structured Semantic Models,” in Pro-

ceedings of 2015 IEEE Workshop on Automatic Speech Recognition and Under-

standing (ASRU’15), Scottsdale, Arizona, 2015.

– Yun-Nung Chen, Dilek Hakkani-Tür, and Xiaodong He, “Learning Bidirectional

Intent Embeddings by Convolutional Deep Structred Semantic Models for Spo-

ken Language Understanding,” in Extended Abstract of The 29th Annual Confer-

ence on Neural Information Processing Systems – Machine Learning for Spoken

Language Understanding and Interactions Workshop (NIPS-SLU’15), Montreal,

Canada, 2015.

• Chapter 9 - Conclusions and Future Work

This chapter concludes the main contributions and discusses a number of interesting

directions that can be explored in the future.
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2Background and Related

Work

“ Everything that needs to be said has already been said. But since no one

was listening, everything must be said again.

”
André Gide, Nobel Prize in Literature winner

With an emerging trend of using mobile devices, spoken dialogue systems (SDS) are being

incorporating in several devices (e.g. smartphone, smart-TV, navigating system). In the

architecture of SDSs, spoken language understanding (SLU) plays an important role and

there are many unsolved challenges. The next section first introduces a typical pipeline of an

SDS and elaborates the functionality of each individual component. Section 2.2 details how

SLU works with different examples, reviews the related literature and discusses their pros and

cons; following the literature review, we briefly sketch the idea of the proposed approaches

and how it is related to prior studies. Then semantic resources that are used for benefiting

language understanding are introduced, where the resources with explicit semantics, Ontology

and Knowledge Base, are presented in Section 2.3, and implicit semantics based on the theory,

Distributional Semantics, are presented in Section 2.4.

2.1 Spoken Dialogue System (SDS)

A typical SDS is composed of a recognizer, a spoken language understanding (SLU) module,

a dialogue manager (DM), and an output manager. Figure 2.1 illustrates the system pipeline.

The functionality of each component is summarized below.

• Automatic Speech Recognizer (ASR)

The ASR component takes raw audio signals and then transcribes into word hypotheses

with confidence scores. The top one hypothesis would then be transmitted into the next

component.

• Spoken Language Understanding (SLU)

The goal of SLU is to capture the core semantics given the input word hypothesis; And
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Figure 2.1: The typical pipeline in a dialogue system.

the extracted information can be populated into task-specific arguments in a given se-

mantic frame [82]. Therefore the task of an SLU module is to identify user intents and

fill associated slots based on the word hypotheses. This procedure is also called semantic

parsing, semantic decoding, etc. The SLU component typically includes an intent de-

tector and slot taggers. An example utterance “I want to fly to Taiwan from Pittsburgh

next week” can be parsed into find flight(origin=“Pittsburgh”, destination=“Taiwan”, de-

parture date=“next week”), where find flight is classified by the intent detector; and the

associated slots are later filled by the slot taggers based on the detected intent. This

component also estimates confidence scores of decoded semantic representations for next

component usage.

• Dialogue Manager (DM) / Task Manager

Subsequent to the SLU processing, the DM interacts with users to assist them in

achieving their goals. Given the above example, DM should check whether required

slots are properly assigned (departure date may not properly specified) and then de-

cide the system’s action such as ask date or return flight(origin=“Pittsburgh”, destina-

tion=“Taiwan”). This procedure should access knowledge bases as a retrieval database

to acquire the desired information. Due to possible misrecognition and misunderstand-

ing errors, this procedure involves dialogue state tracking and policy selection to make

more robust decisions [85, 164].

• Output Manager / Output Generator

Traditional dialogue systems are mostly used through phone calls, so the output man-

ager mainly interacts with two modules, a natural language generation (NLG) module

and a speech synthesizer. However, with increasing usage of various multimedia devices

(e.g. smartphone, smartwatch, and smart-TV), the output manager does not need to

focus on generating spoken responses. Instead, recent trend is moving toward display-

ing responses via different channels; for example, the utterance “Play Lady Gaga’s Bad

Romance.” should correspond to an output action that launches a music player and

10



then plays the specified song. Hence an additional component, multimedia response, is

introduced in the infrastructure in order to handle diverse multimedia outputs.

– Multimedia Response

Given the decided action, a multimedia response considers which channel is more

suitable to present the returned information based on environmental contexts,

user preference, and used devices. For example, return flight(origin=“Pittsburgh”,

destination=“Taiwan”) can be presented through visual responses by listing the

flights that satisfy the requirement in desktops, laptops, etc., and through spoken

responses by uttering “There are seven flights from Pittsburgh to Taiwan. First is

...” in the smartwatches.

– Natural Language Generation (NLG)

Given the current dialogue strategy, the NLG component generates the corre-

sponding natural language responses that humans can understand for the purpose

of natural dialogues. For example, an action from DM, ask date, can generate a

response “Which date will you plan to fly?”. Here the responses can be template-

based or outputted by statistical models [29, 163].

– Speech Synthesizer / Text-to-Speech (TTS)

In order to communicate with users via speech, a speech synthesizer simulates

human speech based on the natural language responses generated by the NLG

component.

All basic components in a dialogue system should interact with each other, so errors may

propagate and then result in poor performance. In addition, several components (e.g. the

SLU module) need to incorporate the domain knowledge in order to handle task-specific

dialogues. Because domain knowledge is usually predefined by experts or developers, when

there are more and more domains, making SLU scalable has been a main challenge of SDS

development.

2.2 Spoken Language Understanding (SLU)

In order to allow machines to understand natural language, a semantic representation1 is

introduced. A semantic representation of an utterance carries its core content, so that the

actual meaning behind the utterance can be inferred only through the representation. For ex-

ample, an utterance “show me action movies directed by james cameron” can be represented

1In this document, we use the terms “semantic representation” and “semantic form” interchangeablely.
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as action=“show”, target=“movie”, genre=“action”, director=“james cameron”. Another ut-

terance “find a cheap taiwanese restaurant in oakland” can be formed as action=“find”, tar-

get=“restaurant”, price=“cheap”, type=“taiwanese”, location=“oakland”. The semantic rep-

resentations are able to convey the core meaning of the utterances, which can be more easily

processed by machines. The semantic representation is not unique, and there are several

forms for representing meanings. Below we describe two types of semantic forms:

• Slot-Based Semantic Representation

The slot-based representation is a flat structure of semantic concepts, which are usually

used in simpler tasks. Above examples belong to slot-based semantic representations,

where semantic concepts are action, target, location, price, etc.

• Relation-Based Semantic Representation

The relation-based representation includes structured concepts, which are usually used

in tasks that have more complicate dependency relations. For instance, “show me action

movies directed by james cameron” can be represented as movie.directed by, movie.genre,

director.name=“james cameron”, genre.name=“action”. This representation is the same

as movie.directed by(?, “james cameron”) ∧ movie.genre(?, “action”), which originated

from the logic form in the artificial intelligence field. The semantic slots in the slot-based

representation are formed as relations here.

The main purpose of an SLU component is to convert the natural language into semantic

forms. In the natural language processing (NLP) field, natural language understanding (NLU)

also refers to semantic decoding or semantic parsing. Therefore, this section reviews related

literature and studies how they approach the problems for language understanding. After

that, the following chapters focus on addressing the challenges that building an SDS suffers

from, namely:

• How can we define semantic elements from unlabeled data to form a semantic schema?

• How can we organize semantic elements and then form a meaningful structure?

• How can we decode semantics for test data while considering noises in the mean time?

• How can we utilize the acquired information to predict user intents for improving system

performance?

2.2.1 Leveraging External Resources

Building semantic parsing systems requires large training data with detailed annotations.

With rich web-scaled resources, a lot of NLP research therefore leveraged external human
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knowledge resources for semantic parsing. For example, Berant et al. proposed SEMPRE2,

which used the web-scaled knowledge bases to train the semantic parser [10]. Das et al.

proposed SEMAFOR3, which utilized a lexicon developed based on a linguistic theory – Frame

Semantics to train the semantic parser [50]. However, such NLP tasks deal with individual

and focused problems, ignoring how parsing results are used by applications.

Tur et al. were among the first to consider unsupervised approaches for SLU, where they

exploited query logs for slot-filling [152, 154]. In a subsequent study, Heck and Hakkani-Tür

studied the Semantic Web for an unsupervised intent detection problem in SLU, showing

that results obtained from the unsupervised training process align well with the performance

of traditional supervised learning [82]. Following their success of unsupervised SLU, recent

studies have also obtained interesting results on the tasks of relation detection [32, 125, 75],

entity extraction [159], and extending domain coverage [41, 28, 57]. Section 2.3 will introduce

the exploited knowledge resources and the corresponding analyzers in detail. However, most of

the prior studies considered semantic elements independently or only considered the relations

appearing in the external resources, where the structure of concepts used by real users might

be ignored.

2.2.2 Structure Learning and Inference

From a knowledge management perspective, empowering dialogue systems with large knowl-

edge bases is of crucial significance to modern SDSs. While leveraging external knowledge

is the trend, efficient inference algorithms, such as random walks, are still less-studied for

direct inference on knowledge graphs of the spoken contents. In the NLP literature, Lao et al.

used a random walk algorithm to construct inference rules on large entity-based knowledge

bases, and leveraged syntactic information for reading the web [101, 102]. Even though this

work has important contributions, the proposed algorithm cannot learn mutually-recursive

relations, and does not to consider lexical items—in fact, more and more studies show that,

in addition to semantic knowledge graphs, lexical knowledge graphs that model surface-level

natural language realization, multiword expressions, and context, are also critical for short

text understanding [91, 109, 110, 145, 158].

2.2.3 Neural Model and Representation

With the recently emerging trend of neural systems, a lot of work has shown the success of

applying neural-based models in SLU. Tur et al. have shown that deep convex networks are

effective for building better semantic utterance classification systems [153]. Following their

2http://www-nlp.stanford.edu/software/sempre/
3http://www.ark.cs.cmu.edu/SEMAFOR/
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success, Deng et al. have further demonstrated the effectiveness of applying the kernel trick to

build better deep convex networks for SLU [54]. Nevertheless, most of work used neural-based

representations for supervised tasks, so there is a gap between approaches used for supervised

and unsupervised tasks.

In addition, recently Mikolov proposed recurrent neural network based language models to

capture long dependency and achieved the state-of-the-art performance in recognition [114,

116]. The proposed continuous representations as word embeddings have further boosted the

state-of-the-art results in many applications, such as sentiment analysis, sentence completion,

and relation detection [32, 117, 144]. The detail of distributional representations will be

described in Section 2.4. Despite the advances of several NLP tasks, how unsupervised SLU

can incorporate neural representations remains unknown.

2.2.4 Latent Variable Modeling

Most of the studies above did not explicitly learn latent factor representations from data, so

they may neglect errors (e.g. misrecognition) and thus produce unreliable results of SLU [12].

Early studies on latent variable modeling in speech included the classic hidden Markov model

for statistical speech recognition [94]. Recently, Celikyilmaz et al. were the first to study the

intent detection problem using query logs and a discrete Bayesian latent variable model [23].

In the field of dialogue modeling, the partially observable Markov decision process (POMDP)

model is a popular technique for dialogue management [164, 172], reducing the cost of hand-

crafted dialogue managers while producing robustness against speech recognition errors. More

recently, Tur et al. used a semi-supervised LDA model to show improvement on the slot

filling task [155]. Also, Zhai and Williams proposed an unsupervised model for connecting

words with latent states in HMMs using topic models, obtaining interesting qualitative and

quantitative results [174]. However, for unsupervised SLU, it is unclear how to take latent

semantics into account.

2.2.5 The Proposed Method

Towards unsupervised SLU, this dissertation proposes an SLU model to integrate the advan-

tages of prior studies and overcome the disadvantages mentioned above. The model leverages

the external knowledge while combining frame semantics and distributional semantics, and

learns latent feature representations while taking various local and global lexical, syntactic

and semantic relations into account in an unsupervised manner. The details will be presented

in the following chapters.
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Table 2.1: The frame example defined in FrameNet.

Frame: Food

Semantics
physical object
noun: almond, apple, banana, basil, beef, beer, berry, ...

Frame Element constituent parts, descriptor, type

2.3 Domain Ontology and Knowledge Base

There are two main types of knowledge resources available, generic concept and entity-based,

both of which may benefit SLU modules for SDSs. Below we first introduce the detailed

definition of each resource and discuss the corresponding work and tools that are useful for

leveraging such resources.

2.3.1 Definition

For generic concept and entity-based knowledge bases, the former covers the concepts that

are more common, such as a food domain and a weather domain. The latter usually contains

a lot of named entities that are specific for certain domains, for example, a movie domain

and a music domain. The following describes examples of these knowledge resources, which

contain the rich semantics and may be beneficial for understanding tasks.

2.3.1.1 Generic Concept Knowledge

There are two semantic knowledge resources for generic concepts, FrameNet and Abstract

Meaning Representation (AMR).

• FrameNet4 is a linguistically semantic resource that offers annotations of predicate-

argument semantics, and associated lexical units for English [4]. FrameNet is developed

based on semantic theory, Frame Semantics [64]. For example, the phrase “low fat

milk” should be analyzed with “milk” evoking the food frame, where “low fat” fills the

descriptor FE of that frame and the word “milk” is the actual LU. A defined frame

example is shown in Table 2.1.

• Abstract Meaning Representation (AMR) is a semantic representation language

including the meanings of thousands of English sentences. Each AMR is a single rooted,

directed graph. AMRs include PropBank semantic roles, within-sentence coreference,

named entities and types, modality, negation, questions, quantities, etc [5]. The AMR

4http://framenet.icsi.berkeley.edu
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The boy wants to go ARG1 

ARG0 

ARG0 

boy 
go-01 

want-01 

instance 

instance 
(w / want-01 
    :ARG0 (b / boy) 
    :ARG1 (g / go-01 
                   :ARG0 b)) 

Figure 2.2: A sentence example in AMR Bank.

Google Knowledge Graph Bing Satori Freebase 

Figure 2.3: Three famous semantic knowledge graph examples (Google’s Knowledge Graph,
Bing Satori, and Freebase) corresponding to the entity “Lady Gaga”.

feature structure graph of an example sentence is illustrated in Figure 2.2, where the

“boy” appears twice, once as the ARG0 of “want-01 ”, and once as the ARG0 of “go-01 ”.

2.3.1.2 Entity-Based Knowledge

• Semantic Knowledge Graph is a knowledge base that provides structured and de-

tailed information about the topic with a lists of related links. Three different knowledge

graph examples, Google’s knowledge graph5, Microsoft’s Bing Satori, and Freebase, are

shown in Figure 2.3. The semantic knowledge graph is defined by a schema and com-

posed of nodes and edges connecting the nodes, where each node represents an entity-

type and the edge between each node pair describes their relation, as called as property.

An example from Freebase is shown in Figure 2.4, where nodes represent core entity-

types for the movie domain. The domains in the knowledge graphs span the web, from

“American Football” to “Zoos and Aquariums”.

5http://www.google.com/insidesearch/features/search/knowledge.html
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Figure 2.4: A portion of the Freebase knowledge graph related to the movie domain.

I want to find some inexpensive and very fancy bars in north. 
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expensiveness degree building 
part_orientaional 

Figure 2.5: An example of FrameNet categories for an ASR output labelled by probabilistic
frame-semantic parsing.

• Wikipedia6 is a free-access, free content Internet encyclopedia, which contains a large

number of pages/articles related to a specific entity [124]. It provides basic background

knowledge for help understanding tasks in the natural language processing (NLP) field.

2.3.2 Knowledge-Based Semantic Analyzer

With the available knowledge resources mentioned above, there are many work that utilizes

such knowledge for different tasks. The prior approaches or tools can serve as analyzers and

facilitate the target task of this dissertation, unsupervised SLU for dialogue systems.

2.3.2.1 Generic Concept Knowledge

• FrameNet

SEMAFOR7 is a state-of-the-art semantic parser for frame-semantic parsing [48, 49].

Trained on manually annotated sentences in FrameNet, SEMAFOR is relatively accu-

rate in predicting semantic frames, FE, and LU from raw text. SEMAFOR is augmented

by the dual decomposition techniques in decoding, and thus produces semantically-

6http://en.wikipedia.org/wiki/Wikipedia
7http://www.ark.cs.cmu.edu/SEMAFOR/
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show me what richard lester directed 

(s / show-01 
 :ARG1 (d / direct-01 
  :ARG0 (p / person 
   :name (n / name 
    :op1 "lester” 
    :op2 "richard")))) 

Figure 2.6: An example of AMR parsed by JAMR on an ASR output.

Michael Jordan is a machine learning expert. 

Michael Jordan is my favorite player. 

Figure 2.7: An example of Wikification.

labeled outputs in a timely manner. Note that SEMAFOR does not consider the rela-

tions between frames but treat each frame independently. Figure 2.5 shows the output

of probabilistic frame-semantic parsing.

• Abstract Meaning Representation (AMR)

JAMR8 is the first semantic parser that parses the sentences into AMRs [65]. Trained

on manually defined AMR Bank, JAMR applied an algorithm for finding the maximum,

spanning, connected subgraph and showed how to incorporate extra constraints with

Lagrangian relaxation. Figure 2.6 shows the output of JAMR on an example sentence.

2.3.2.2 Entity-Based Knowledge

• Semantic Knowledge Graph

Freebase API9 is an API for accessing the data, and the data can also be dumped

directly.

• Wikipedia

8http://github.com/jflanigan/jamr
9https://developers.google.com/freebase/
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Wikifier10 is an entity linking (also known as Wikification, Disambiguation to Wikipedia

(D2W)) tool. The task is to identify concepts and entities in texts and disambiguate

them into the corresponding Wikipedia pages. An example is shown in Figure 2.7,

where the entities “Micheal Jordan” in two sentences refer to different people, pointing

to different Wikipedia pages.

2.4 Distributional Semantics

The distributional view of semantics hypothesizes that words occurring in the same con-

texts may have similar meanings [79]. As the foundation for modern statistical semantic,

an early success that implements this distributional theory is latent semantic analysis (a.k.a.

LSA) [53, 66]. Brown et al. proposed an early hierarchical clustering algorithm that ex-

tracts word clusters from large corpora [21], which has been used successfully in many NLP

applications [111]. Recently, with the advance of deep learning techniques, continuous word

embeddings (a.k.a. word representations, or neural embeddings) have further boosted the

state-of-the-art results in many NLP tasks, due to its rich continuous representations (e.g.

vectors, or sometimes matrices, and tensors) that capture the context of the target semantic

unit [7, 156].

The continuous word vectors are derived from a recurrent neural network architecture [115].

The recurrent neural network language models use the context history to include long-distance

information, outperforming standard bag-of-words n-gram language models. ,Interestingly,

the vector-space word representations learned from the language models were shown to cap-

ture syntactic and semantic regularities [118, 119]. The word relationships are characterized

by vector offsets, where in the embedded space, all pairs of words sharing a particular relation

are related by the same constant offset.

Based on the considered contexts of embedding training, there are two types, linear and

dependency-based embeddings, which are described in Section 2.4.1 and Section 2.4.2 respec-

tively. Also, a considered unit can be a word or a word sequence (sentence, paragraph), and

Section 2.4.3 and Section 2.4.4 detail training procedures.

2.4.1 Linear Word Embedding

Typical neural embeddings use linear word contexts, where a window size is defined to produce

contexts of the target words, a.k.a. word2vec [117, 118, 119]. There are two model architec-

tures for learning distributed word representations: continuous bag-of-words (CBOW) model

10http://cogcomp.cs.illinois.edu/page/software_view/Wikifier
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Figure 2.8: The CBOW and Skip-gram architectures. The CBOW model predicts the current
word based on the context, and the Skip-gram model predicts surrounding words given the
target word [117].

and continuous skip-gram model, where the former predicts the current word based on the

context and the latter predicts surrounding words given the current word.

• Continuous Bag-of-Words (CBOW) Model

The word representations are learned by a recurrent neural network language

model [115], as illustrated in Figure 2.8. The architecture contains an input layer, a

hidden layer with recurrent connections, and the corresponding weight matrices. Given

a word sequence w1, ..., wT , the objective function of the model is to maximize the prob-

ability of observing the target word wt given its contexts wt−c, wt−c+1, ..., wt+c−1, wt+c,

where c is the window size:

1

T

T∑
t=1

∑
−c≤i≤c,i 6=0

log p(wt | wt+i). (2.1)

The objective can be trained using stochastic gradient updates via backpropagation

over the observed corpus.

• Continuous Skip-Gram Model

The training objective of the skip-gram model is to find word representations that are

useful for predicting the surrounding words, which is similar to the CBOW architecture.

Given a word sequence as the training data w1, ..., wT , the objective function of the

model is to maximize the average log probability:

1

T

N∑
i=t

∑
−c≤i≤c,i 6=0

log p(wt+i | wt) (2.2)

The objective can also be obtained in the similar way.
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Figure 2.9: The target words and associated dependency-based contexts extracted from the
parsed sentence for training depedency-based word embeddings.

The rich semantics contained by word embeddings helps learn relations of slot-fillers, so

following chapters utilize the properties for the SLU task.

2.4.2 Dependency-Based Word Embedding

Most neural embeddings use linear bag-of-words contexts, where a window size is defined to

produce contexts of the target words [117, 118, 119]. However, some important contexts may

be missing due to smaller windows, while larger windows capture broad topical content. To

solve the above problems, a dependency-based embedding approach was proposed to derive

contexts based on the syntactic relations the word participates in for training embeddings,

where the embeddings are less topical but offer more functional similarity compared to original

embeddings [108].

Figure 2.9 shows the extracted dependency-based contexts for each target word from the

dependency-parsed sentence, where headwords and their dependents can form the contexts

by following the arc on a word in the dependency tree, and −1 denotes the directionality

of the dependency. After replacing original bag-of-words contexts with dependency-based

contexts, we can train dependency-based embeddings for all target words [16, 17, 169].

For training dependency-based word embeddings, each target x is associated with a vector

vx ∈ Rd and each context c is represented as a context vector vc ∈ Rd, where d is the

embedding dimensionality. We learn vector representations for both targets and contexts

such that the dot product vx · vc associated with “good” target-context pairs belonging to

the training data D is maximized, leading to the objective function:

arg max
vx,vc

∑
(w,c)∈D

log
1

1 + exp(−vc · vx)
, (2.3)

which can be trained using stochastic-gradient updates [108]. We thus expect the syntac-

tic contexts to yield more focused embeddings, capturing more functional and less topical
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similarity. The dependency-based word embeddings capture more structure information, and

their properties are used for the proposed approaches presented in following chapters.

2.4.3 Paragraph Embedding

The paragraph vector is a distributed memory model, a.k.a. doc2vec, which holds the similar

assumption as CBOW word vectors: the paragraph vectors are asked to contribute to the

prediction task of the next word given many contexts sampled from the paragraph. Figure 2.10

illustrates the framework for learning paragraph vectors. Comparing to the architecture of

the CBOW model, the additional paragraph token that is mapped to a vector via a matrix

D. In this model, the concatenation or average of this vector with a context of three words

is used to predict the fourth word. The paragraph vector can be viewed as another word,

acting as a memory that represents the missing information from the current context or the

topic of the paragraph [104]. Then the paragraph vector is also the semantic representations

of each paragraph, so called paragraph embeddings.

2.4.4 Sentence Embedding

The sentence embeddings originated from information retrieval (IR), where the user click

logs were utilized as implicit information to mine the relations between queries and docu-

ments [90, 139, 140]. In the deep neural network architecture, a vector in the semantic layer

can represent the semantics of a word sequence (a query or a document). Therefore, the

vector representations can be treated as sentence embeddings, a.k.a. sent2vec. Different

from above embeddings, training sentence embeddings requires the paired data, which can be

viewed as supervised training. Although the goal of this thesis is unsupervised SLU, training

sentence embeddings from available data may provide additional knowledge and then help
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Figure 2.11: Illustration of the CDSSM architecture for the IR task.

the target task. Chapter 8 will apply the technique for improved SLU.

2.4.4.1 Architecture

The model is a deep neural network with a convolutional layer, called convolutional deep

structured semantic model (CDSSM), whose architecture is illustrated in Figure 2.11 [69, 90,

139, 140]. The model contains: 1) a word hashing layer obtained by converting one-hot word

representations into tri-letter vectors, 2) a convolutional layer that extracts contextual features

for each word with its neighboring words defined by a window, 3) a max-pooling layer that

discovers and combines salient features to form a fixed-length sentence-level feature vector,

and 4) a semantic layer that further transform the max-pooling layer to a low-dimensional

semantic vector for the input sentence.

Word Hashing Layer lh. Each word from a word sequence (i.e. an utterance) is converted

into a tri-letter vector [90]. For example, the tri-letter vector of the word “#email#” (# is

a word boundary symbol) has non-zero elements for “#em”, “ema”, “mai”, “ail”, and “il#”

via a word hashing matrix Wh. Then we build a high-dimensional vector lh by concatenating

all word tri-letter vectors. The advantages of tri-letter vectors include: 1) OOV words can be

represented by tri-letter vectors, where the semantics can be captured based on the subwords

such as prefix and suffix; 2) the tri-letter space is smaller. For example, each word in a 40K

word vocabulary can be represented by a 10,306-dimensional vector using letter trigrams,

showing a four-fold dimensionality reduction with few collisions. When the vocabulary size

is larger, the reduction of dimensionality is even more significant. Therefore, incorporating

tri-letter vectors improves the representation power of word vectors and also reduces the OOV
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problem while maintaining a small vocabulary size.

Convolutional Layer lc. A convolutional layer extracts contextual features ci for each

target word wi, where ci is the vector concatenating the word vector of wi and its surrounding

words within a window (the window size is set to 3). For each word, a local feature vector lc

is generated using a tanh activation function and a global linear projection matrix Wc:

lci = tanh(W T
c ci), where i = 1, ..., d, (2.4)

where d is the total number of windows.

Max-Pooling Layer lm. The max-pooling layer forces the network to only retain the most

useful local features by applying the max operation over each dimension of lci across i in (2.4),

lmj = max
i=1,...,d

lci(j). (2.5)

The convolutional and max-pooling layers are able to capture prominent words of the word

sequences [69, 139]. As illustrated in Fig. 8.3, if we view the local feature vector lc,i as a topic

distribution of the local context window, e.g., each element in the vector corresponds to a

hidden topic and the value corresponds to the activation of that topic, then taking the max

operation at each element keeps the max activation of that hidden topic across the whole

sentence.

Semantic Layer y. The global feature vector lm in (2.5) is fed to feed-forward neural network

layers to output the final non-linear semantic features y as the output layer.

y = tanh(W T
s lm), (2.6)

where Ws is a learned linear projection matrix. The output semantic vector can be either

document embeddings yD or query embeddings yQ.

2.4.4.2 Training Procedure

With the pairs of queries and clicked documents, the idea of this model is to learn the

embeddings for queries and documents such that the documents with the same queries can

be close to each other in the continuous space. Below we define the semantic score between

a query Q and a document D using the cosine similarity between their embeddings:

CosSim(Q,D) =
yQ · yD
|yQ||yD|

. (2.7)

The posterior probability of a document given a query is computed based on the semantic
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score through a softmax function,

P (D | Q) =
exp(CosSim(Q,D))∑
D′ exp(CosSim(Q,D′))

, (2.8)

where D′ is a document from the archive.

For training the model, we maximize the likelihood of the associated documents given the

queries through the click logs. The parameters of the model θ = {Wc,Ws} is optimized by

an objective:

Λ(θ) = log
∏

(Q,D+)

P (D+ | Q). (2.9)

The model is optimized using mini-batch stochastic gradient descent (SGD) [90]. Then each

document can be represented as a vector, and we can transform the input queries into the

vector to estimate the relevance scores for the retrieval task.

2.5 Evaluation Metrics

In the rest of the document, we evaluate the proposed approaches using different metrics. This

section introduces how the metrics are computed and when they are used for measurement. In

most of binary classification tasks, precision, recall, f-measure, accuracy are standard metrics

for evaluation.

� Precision (P) (also called positive predictive value) is the fraction of retrieved instances

that are true positives.

� Recall (R) is the fraction of relevant instances that are retrieved.

� F-Measure (F1) is the harmonic mean that combines precision and recall.

F1 = 2 · P ·R
P +R

(2.10)

� Accuracy (ACC) is the fraction of all instances that have correct labels, which is mostly

used for prediction problems.

Precision and recall are single-value metrics based on the whole list of documents returned

by the system. For systems that return a ranked sequence of instances, it is desirable to also

consider the order in which the returned instances are presented.

� Precision at K (P@K) corresponds to the number of relevant instances in the top K

returned results, but fails to take into account the positions of the relevant documents
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among the top K. The metric is usually used for some tasks where measuring recall is

not meaningful. Especially for modern retrieval tasks, as many queries have thousands

of relevant instances, it is more suitable to evaluate the top returned instances.

� Average Precision (AP) is a measure that considers the ranked positions of instances. By

computing the precision and recall at every position in the ranking list, a precision-recall

curve can be plotted, where P (r) as a function of recall r. AP computes the average

value of P (r) over the interval from r = 0 to r = 1. For a ranked list of returned

instances l = s1, ..., sk, ..., sn, where the sk is the instance ranked at k-th position, the

AP is

AP (l) =

∑n
k=1 P@k × 1[sk is relevant]

number of reference instances
, (2.11)

where P@k is the precision at cut-off k in the list and 1 is an indicator function equaling

1 if k-th ranked instance sk is relevant, 0 otherwise.

� Area Under the Curve (AUC) computes average precision over a set of evenly spaced

recall levels based on predicted scores, not from positions in the ranking list. The

difference between AUC and AP is that AUC focuses on the predicted scores more while

AP is more sensitive to the positions. For ranking problems, AP and AUC are used

interchangeablely because both evaluate the ranking performance [18]. In addition, AUC

can be measured as the area under the precision-recall curve or the receiver operating

characteristic (ROC) curve.

When there are multiple ranking lists (e.g. multi-class labels, multiple queries), there are

three common ways to average the values, micro, macro, and weighted.

micro calculates metrics globally by considering each element of the label indicator as a

label.

macro calculates metrics for each label, and find their unweighted mean. This does not take

label imbalance into account.

weighted calculates metrics for each label, and find their average, weighted by the impor-

tance of each label.

Following metrics are reported for measuring the whole performance.

� Mean Average Precision (MAP) is the unweighted mean (macro average) of AP scores

for all lists l1, ..., lq, ..., lQ.

MAP =
1

Q

Q∑
q=1

AP (lq), (2.12)
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where AP (lq) is AP performance of the q-th ranking list.

� Weighted Average Precision (WAP) is the weighted mean (weighted average) of AP

scores for all lists l1, ..., lq, ..., lQ.

WAP =

∑Q
q=1w(lq) ·AP (lq)∑Q

q=1w(lq)
, (2.13)

where AP (lq) is AP performance of the q-th ranking list and w(lq) is the defined im-

portance of the list q.

� Micro F-Measure is the global F-measure by considering all labels together. This is

usually used for imbalanced data when the metric prefers to be biased towards the most

populated ones.

In the following chapters, we basically evaluate the proposed approaches using above standard

metrics. Multiple evaluation metrics are sometimes integrated to fit for some complicated

cases.
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3Ontology Induction for

Knowledge Acquisition

“ The deductive method is the mode of using knowledge, and the inductive

method the mode of acquiring it.

”
Henry Mayhew, English social researcher and journalist

When building a dialogue system, a domain-specific knowledge base is required. To acquire

the such knowledge, we allow a system to automatically induce an ontology for a certain

domain from unlabeled dialogues by leveraging external resources (e.g. frame semantics and

news articles). The chapter focuses on automatically extracting domain-specific concepts that

can be used for building SDSs from unlabeled conversations.

3.1 Introduction

The distributional view of semantics hypothesizes that words occurring in the same contexts

may have similar meanings [79]. Recently, with the advance of deep learning techniques,

the continuous representations as word embeddings have further boosted the state-of-the-art

results in many applications. Frame semantics, on the other hand, is a linguistic theory that

has not been explored in the speech community, although there has been some successful

applications in NLP [47, 81, 84]. The theory defines meaning as a coherent structure of

related concepts, and provides an existing foundation for ontology induction [63].

Recently, a lot of prior work leveraged available semantic resources for unsupervised SLU [152,

154]. The major difference between our work and previous unsupervised studies is that,

instead of leveraging the discrete representations of web search queries or knowledge graphs,

we build our model on top of the recent success of deep learning—we utilize the continuous-

valued word embeddings trained on Google News to induce semantic ontologies for task-

oriented SDSs [117, 118, 119]. Our approach is clearly relevant to recent studies on deep

learning for SLU. To the best of our knowledge, our work is the pioneering study that combines

a distributional view of meaning from the deep learning community, and a linguistic frame

semantic view for improved SLU [31].
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The chapter focuses on using probabilistic frame-semantic parsing to automatically induce

and adapt a semantic ontology for designing SDS in an unsupervised fashion [31, 50], allevi-

ating some of the challenging problems for developing and maintaining SLU-based interactive

systems [? ]. Comparing to the traditional approach where domain experts and developers

manually define the semantic ontology for SDS, the proposed approach has the advantages

to reduce annotation effort, avoid human-induced biases, and lower maintenance cost [31].

Given unlabeled dialogues, we investigate an unsupervised approach for automatic induction

of semantic slots, basic semantic units used in SDSs. To do this, we use a state-of-the-art

probabilistic frame-semantic parsing approach [48], and perform an unsupervised approach

to adapt, rerank, and map generic FrameNet-style semantic parses to the target semantic

space that is suitable for domain-specific conversation settings [4]. We utilize continuous

word embeddings trained on very large external corpora (e.g. Google News) to improve the

adaptation process. To evaluate the performance of our approach, we compare the automat-

ically induced semantic slots with the reference slots created by domain experts. Empirical

experiments show that the slot creation results generated by our approach align well with

those of domain experts. Our main contributions of this chapter are three-fold:

• We exploit continuous-valued word embeddings for unsupervised SLU;

• We propose the first approach of combining distributional and frame semantics for

inducing a semantic ontology from unlabeled speech data;

• We show that this synergized method yields the state-of-the-art performance.

3.2 Proposed Framework

The main motivation of the work is to use a FrameNet-trained statistical probabilistic se-

mantic parser to generate initial frame-semantic parses from ASR decodings of the raw audio

conversation files. Then we adapt the FrameNet-style frame-semantic parses to the semantic

slots in the target semantic space, so that they can be used practically in the SDSs. The

semantic mapping and adaptation problem are formulated as a ranking problem, where the

domain-specific slots should be ranked higher than the generic ones. The framework is il-

lustrated in Figure 3.1. This thesis proposes the use of unsupervised clustering methods to

differentiate generic semantic concepts from target semantic concepts for task-oriented dia-

logue systems [31]. Also, considering that using the small in-domain conversations as the

training data may not be robust enough, this thesis proposes a radical extension: we aim

at improving the semantic adaptation process by leveraging distributed word representations

trained on very large external datasets [118, 119].
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Figure 3.1: The proposed framework for ontology induction
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Figure 3.2: An example of probabilistic frame-semantic parsing on ASR output. FT: frame
target. FE: frame element. LU: lexical unit.

3.2.1 Probabilistic Semantic Parsing

In our approach, we parse all ASR-decoded utterances in our corpus using SEMAFOR intro-

duced in Section 2.3.2, and extract all frames from semantic parsing results as slot candidates

and corresponding lexical units (LU) as slot-fillers. For example, Figure 3.2 shows an example

of an ASR-decoded text output parsed by SEMAFOR. SEMAFOR generates three frames

(capability, expensiveness, and locale by use) for the utterance, which we consider as slot can-

didates. Note that for each slot candidate, SEMAFOR also includes the corresponding lexical

unit (“can i”, “cheap”, and “restaurant”), which we consider as possible slot-fillers.

Since SEMAFOR was trained on FrameNet annotation, which has a more generic frame-

semantic context, not all the frames from the parsing results can be used as the actual slots

in the domain-specific dialogue systems. For instance, in Figure 3.2, we see that the frames

expensiveness and locale by use are essentially the key slots for the purpose of understanding in

the restaurant query domain, whereas the capability frame does not convey particular valuable

information for SLU in this domain. In order to fix this issue, we first compute the prominence

of these slot candidates, then use a slot ranking model to rank the most important slots, and

eventually generate a list of induced slots for use in domain-specific dialogue systems.
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3.2.2 Independent Semantic Decoder

With outputted semantic parses, we extract the frames with the top 50 highest frequency as

our slot candidates for training SLU in an unsupervised manner. The features for training

are generated by word confusion network, where a confusion network features are shown to

be useful in developing more robust systems for SLU [73]. We build a vector representation

of an utterance as u = [x1, ..., xj , ...].

xj = E[Cu(n-gramj)]
1/|n-gramj |, (3.1)

where Cu(n-gramj) counts how many times n-gramj occurs in the utterance u,

E(Cu(n-gramj)) is the expected frequency of n-gramj in u, and |n-gramj | is the number

of words in n-gramj .

For each slot candidate si, we generate a set of pseudo training data Di to train a binary

classifier Mi for predicting the existence of si in an utterance, Di = {(uk, l
i
k) | uk ∈ R+, lik ∈

{−1,+1}}Kk=1, where lik = +1 when the utterance uk contains the slot candidate si in its

semantic parse, lik = −1 otherwise, and K is the number of utterances.

3.2.3 Adaptation Process and SLU Model

The generic concepts should be distinguished from the domain-specific concepts in the adap-

tation process. With the trained independent semantic decoders for all slot candidates, adap-

tation process computes the prominence of slot candidates for ranking and then selects a list of

induced slots associated with their corresponding semantic decoders for use in domain-specific

dialogue systems. Then with each induced slot si and its corresponding trained semantic de-

coderMi, an SLU model can be built to predict whether the semantic slot occurs in the given

utterance in a fully unsupervised way. In other words, the SLU model is able to transform

testing utterances into semantic representations without human involvement. The detail of

the adaptation is described in the following section.

3.3 Slot Ranking Model

The purpose of the ranking model is to distinguish between generic semantic concepts and

domain-specific concepts that are relevant to an SDS. To induce meaningful slots for the

purpose of SDS, we compute the prominence of the slot candidates using a slot ranking

model described below.

With the semantic parses from SEMAFOR, the model ranks the slot candidates by integrating
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two scores [31, 33]: (1) the normalized frequency of each slot candidate in the corpus, with

the assumption that slots with higher frequency may be more important; (2) the semantic

coherence of slot-fillers corresponding to the slot. Assuming that domain-specific concepts

focus on fewer topics, the coherence of the corresponding slot-fillers can help measure the

prominence of the slots because they are similar to each other.

w(s) = (1− α) · log f(s) + α · log h(s), (3.2)

where w(s) is the ranking weight for the slot candidate s, f(s) is its normalized frequency

from semantic parsing, h(s) is its coherence measure, and α is the weighting parameter within

the interval [0, 1], which balances the frequency and coherence.

For each slot s, we have a set of corresponding slot-fillers, V (s), constructed from the utter-

ances including the slot s in the parsing results. The coherence measure of the slot s, h(s), is

computed as the average pair-wise similarity of slot-fillers to evaluate if slot s corresponds to

centralized or scattered topics.

h(s) =

∑
xa,xb∈V (s) Sim(xa, xb)

|V (s)|2
, (3.3)

where V (s) is the set of slot-fillers corresponding slot s, |V (s)| is the size of the set, and

Sim(xa, xb) is the similarity between the slot-filler pair xa and xb. The slot s with higher h(s)

usually focuses on fewer topics, which is more specific and more likely to be a slot for the

dialogue system. The detail about similarity measure is introduced in the following section.

3.4 Word Representations for Similarity Measure

To capture the semantics of each word, we transform each token x into a corresponding vector

x by following methods. Given that word representations can capture semantic meanings,

the topical similarity between each slot-filler pair xa and xb can be computed as

Sim(xa, xb) =
xa · xb

‖xa‖‖xb‖
. (3.4)

We assume that words occurring in similar domains have similar semantic representations,

and thus Sim(xa, xb) will be larger when xa and xb are semantically related and their vectors

should be close to each other in the topic space. To build the vector representations for words,

we consider three techniques: in-domain clustering vector, in-domain embedding vector, and

external embedding vector.
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3.4.1 In-Domain Clustering Vector

Section 2.4 introduces distributional semantics, and a lot of studies have utilized the

semantically-rich continuous word representations to benefit many NLP tasks. The in-domain

data is used to cluster words through different clustering algorithms, such as K-means cluster-

ing [80], spectral clustering [122]. For each word x, we construct a vector x = [c1, c2, ..., cK ],

where ci = 1 when the word x is clustered into the i-th cluster, and ci = 0 otherwise, and

K is the number of clusters. The assumption is that topically similar words may be clus-

tered together because they occur with the same contexts more frequently. Therefore, the

cluster-based vectors that carry the such information can help measure similarity between

words.

3.4.2 In-Domain Embedding Vector

Considering that continuous space word representations may capture more robust topical

information, we leverage word embeddings trained on the in-domain data to involve distri-

butional semantics of slot-fillers [119]. More specifically, to better adapt the FrameNet-style

parses to the target task-oriented SDS domain, we make use of continuous word embeddings

derived from a recurrent neural network architecture introduced in Section 2.4.1 [115]. There-

fore, for all slot fillers, we build word embeddings as their word vectors for computing the

coherence in (3.3).

3.4.3 External Embedding Vector

Since the distributional semantic theory may benefit our SLU task, we leverage word rep-

resentations trained from large external data to better differentiate semantic concepts. The

rationale behind applying the distributional semantic theory to our task is straight-forward:

because spoken language is a very distinct genre comparing to the written language on which

FrameNet is constructed, it is necessary to borrow external word representations to help

bridge these two data sources for the unsupervised adaptation process. The word embed-

dings trained on the external data are able to capture both syntactic and semantic relations,

which provide more robust relatedness information between words and may help distinguish

the domain-specific information from the generic concepts compared to ones trained on the

internal data [118, 119].
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Table 3.1: The statistics of training and testing corpora.

Train Test Total

Dialogue 1522 644 2166
Utterance 10571 4882 15453
Male : Female 28 : 31 15 : 15 43 : 46
Native : Non-Native 33 : 26 21 : 9 54 : 47
Avg. #Slot 0.959 0.952 0.957

3.5 Experiments

To evaluate the effectiveness of our induced slots, we performed two evaluations. First, we

examine the slot induction accuracy by comparing the ranked list of frame-semantic parsing

induced slots with the reference slots created by developers of the corresponding system [171].

Secondly, based on the ranked list of induced slots, we can train a semantic decoder for each

slot to build an SLU component, and then evaluate the performance of our SLU model by

comparing against the human annotated semantic forms. For the experiments, we evaluate

both on ASR results of the raw speech, and on the manual transcripts.

3.5.1 Experimental Setup

We used the Cambridge In-Car SLU corpus1, which has been used on several other SLU

tasks such as supervised slot filling and dialogue act classification [30, 86]. The dialogue

corpus was collected via a restaurant information system for Cambridge. Users can specify

restaurant suggestions by area, price range and food type and can then query the system for

additional restaurant specific information such as phone number, post code, signature dish

and address [71, 148].

Subjects were asked to interact with multiple SDSs in an in-car setting [70, 148]. There

were multiple recording settings for different noise conditions: 1) a stopped car with the

air condition control on and off; 2) a driving condition; and 3) in a car simulator. The

distribution of each condition in this corpus is uniform. The corpus contains a total number

of 2,166 dialogues, and 15,453 utterances, which is separated into training and testing parts

as shown in Table 3.1. The training part is for self-training the SLU model.

The data is gender-balanced, with slightly more native than non-native speakers. The vocab-

ulary size is 1,868. An ASR system was used to transcribe the speech; the word error rate

(WER) was reported as 37%. There are 10 slots created by domain experts: addr, area, food,

name, phone, postcode, price range, signature, task and type.

1http://www.repository.cam.ac.uk/handle/1810/248271
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Figure 3.3: The mappings from induced slots (within blocks) to reference slots (right sides of
arrows).

3.5.2 Implementation Detail

For clustering, we perform K-means clustering. The parameter K, the number of clusters,

can be empirically set, where we use K = 50 for all experiments. For the parameter α in

(2.7), we tune it by using a development set, which contains first 302 dialogues and total 2,515

utterances. For training independent semantic decoders, we apply support vector machine

(SVM) with linear kernel to classify whether each utterance contain a semantic concept.

To include distributional semantics information for the external data, we use the distributed

vectors trained on 109 words from Google News2. Training was performed using the CBOW

architecture, which predicts the current word based on the context, with sub-sampling using

threshold 1×e−5, and with negative sampling using 3 negative examples per each positive one.

The resulting vectors have dimensionality 300, vocabulary size is 3× 106; the entities contain

both words and automatically derived phrases. The dataset provides a larger vocabulary and

better coverage.

3.5.3 Evaluation Metrics

Our metrics take the entire list into account and evaluate the performance by the metrics

that are independent on the selected threshold, in order to eliminate the influence of different

thresholds when producing inducing induced slots.

3.5.3.1 Slot Induction

To evaluate the accuracy of the induced slots, we measure their quality as the proximity

between induced slots and reference slots. Figure 3.3 shows the mappings that indicate

semantically related induced slots and reference slots [31]. For example, expensiveness →
2https://code.google.com/p/word2vec/
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Table 3.2: The performance with different α tuned on a development set (%).

Approach
ASR Transcripts

α
Slot Induction SLU Model

α
Slot Induction SLU Model

AP AUC WAP AF AP AUC WAP AF

(a) Baseline .0 58.17 56.16 35.39 36.76 .0 55.03 53.52 36.99 35.96

(b) In. Cluster. .4 64.76 63.55 40.54 37.28 .5 63.59 62.89 42.25 36.95
(c) In. Embed. .6 66.98 65.82 42.74 37.50 .4 57.96 56.51 39.78 36.61
(d) Ex. Embed. .8 74.51 73.51 46.04 37.88 .8 64.99 64.17 43.28 38.57

Max RI (%) - +39.9 +44.1 +32.9 +3.0 - +18.1 +19.9 +18.0 +7.3

price, food → food, and direction → area show that these induced slots can be mapped into

the reference slots defined by experts and carry important semantics in the target domain

for developing the task-oriented SDS. Note that two slots, name and signature, do not have

proper mappings, because they are too specific on restaurant-related domain, where name

records the name of restaurant and signature refers to signature dishes. This means that

the 80% recall is achieved by our approach because we consider all outputted frames as slot

candidates. Since we define the adaptation task as a ranking problem, with a ranked list of

induced slots and their associated scores, we can use the standard AP defined in (2.11) and

AUC as our metrics, where the induced slot is counted as correct when it has a mapping to

a reference slot.

3.5.3.2 SLU Model

Semantic slot induction is essential for providing semantic categories and imposing seman-

tic constraints for SLU modeling. Therefore, we are also interested in understanding the

performance of our unsupervised SLU models. For each induced slot with the mapping to

a reference slot, we can compute an F-measure of the corresponding semantic decoder, and

weight AP with corresponding F-measure as WAP defined in (2.13) to evaluate the perfor-

mance of slot induction and SLU tasks together. The metric scores the ranking result higher

if the induced slots corresponding to better semantic decoders are ranked higher. Another

metric is the average F-measure (AF), which is the average micro F-measure of SLU models

at all cut-off positions in the ranked list. Compared to WAP, AF additionally considers the

slot popularity in the dataset.

3.5.4 Evaluation Results

Table 3.2 shows all results. The row (a) is the baseline, which only considers the frequency

of slot candidates for ranking. It is found that the performance of slot induction for ASR is

better than for manual results. The better AP and AUC scores of ASR results from biased

37



recognition results, which are optimized to recognize domain-specific words better. Thus the

ASR results contain more accurate slot-fillers and the performance of slot induction is biased

and better than the results on manual transcripts.

Rows (b)-(d) show performance after leveraging distributional word representations, in-

domain clustering vector, in-domain embedding vector and external embedding vector. In

terms of both slot induction and SLU modeling, we find that most results are improved by

including distributed word information. With in-domain data (row (b) and row (c)), the per-

formance of slot induction can be significantly improved, from 58% to 67% on AP and from

56% to 65% on AUC for ASR results, and from 55% to 64% on AP and from 54% to 63% on

AUC for manual transcripts. Also, for SLU modeling, in-domain clustering and in-domain

embedding approaches outperform the baseline. Using external data to train word embed-

dings (row (d)), the performance for both slot induction and SLU modeling is significantly

improved for ASR and manual transcripts, which shows the effectiveness of involving external

data for the similarity measurement. The reason may be that external word embeddings have

more accurate vector representations to measure similarity because they are trained on the

large data, while in-domain approaches rely on a small in-domain training set, which may be

biased by the data and may be sensitive to recognition errors.

We see that leveraging distributional semantics with frame-semantic parsing produces promis-

ing slot ranking performance; this demonstrates the effectiveness of our proposed approaches

for slot induction. The 72% of AP indicates that our proposed approach can generate good

coverage for domain-specific slots in a real-world SDS, reducing labor cost of system develop-

ment.

3.6 Discussion

3.6.1 Balance between Frequency and Coherence

To analyze the influence of coherence, we analyze the performance with different α values in

(3.2) for slot induction and SLU modeling in Figure 3.4 and 3.5 respectively.

Figure 3.4 shows that the best performance of the in-domain clustering vector (blue line with

circles) is when the frequency and coherence have similar weights for both ASR and manual

transcripts. However, the in-domain embedding (red line with squares) and the external

embedding (green line with triangles) perform best when α = 0.8, 0.9, indicating that the

coherence plays an important role for inducing slots and that the coherence is more reliable

when our word representations are better.

Among three proposed approaches, the external embedding vector often performs better and
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Figure 3.4: The performance of slot induction learned with different α values.
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Figure 3.5: The performance of SLU modeling with different α values.

more stable, and the reason may be that word representations trained on the larger data

carry more accurate semantic information for better coherence estimation. For SLU modeling,

Figure 3.5 shows the similar trend as slot induction. In sum, when word representations are

reliable, the coherence helps both slot induction and SLU modeling.

3.6.2 Sensitivity to Amount of Training Data

To further analyze the effectiveness of the proposed approach in a real world, we examine the

performance of the induced slots learned from different amount of training data, where α is

optimized and fixed for each approach. We compare the performance of all approaches using

20%, 40%, 60%, 80% and 100% amount of the training set in Figure 3.6. It can be found that
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Figure 3.6: The performance of slot induction learned from different amount of training data.

the baseline approach is insensitive to the data size, probably because the slot distribution

is similar across dialogues. However, the best approach that uses external embeddings shows

higher sensitivity to the training amount, where at least 40% training data can achieve higher

than 55% of AP. In conclusion, scarce training data may not cover a complete set of important

slot-fillers, so that the approach produces less reliable coherence measurements and is more

sensitive to the amount of training data.

3.7 Summary

This chapter proposes the first unsupervised approach unifying distributional and frame se-

mantics for domain ontology induction. Our work makes use of a state-of-the-art semantic

parser, and adapts the generic linguistic FrameNet representation to a semantic space char-

acteristic of a domain-specific SDS. With the incorporation of distributional word representa-

tions, we show that our automatically induced semantic slots align well with reference slots,

yielding the state-of-the-art performance. Also, we demonstrate that it is feasible for the

automatically induced ontology to benefit SLU tasks. The automating process of ontology

induction reduces the cost of human annotations, speeding up SDS development.
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4Structure Learning for

Knowledge Acquisition

“ A scene has to have a rhythm of its own, a structure of its own.

”
Michelangelo Antonioni, Academy Award winner

Ontology induction extracts the domain-specific concepts, but the induced information is flat

and unstructured. Assuming that a well-organized ontology may help understanding, inter-

slot relations, which represent dependencies between semantic concepts, should be considered

for organizing the domain knowledge. In order to acquire the relations, a structure learning

approach is introduced in this chapter.

4.1 Introduction

From a engineering perspective, quick and easy development turnaround time for domain-

specific dialogue applications is critical [28]. From a knowledge management perspective,

empowering dialogue systems with large knowledge bases is of crucial significance to mod-

ern SDSs. Our work that builds on top of frame-semantic parsing clearly aligns with recent

studies on leveraging semantic knowledge resources for SLU, which combines two above per-

spectives [32, 57, 75, 76, 83]. However, an important requirement for building a successful

SDS is to define a coherent slot set and the associated slot-fillers for an SLU component.

Unfortunately, since the semantic slots are often mutually-related, it is not easy for domain

experts and professional annotators to design a such slot set for better semantic representation

of SLU.

It is challenging to manually design such a coherent and complete slot set, while considering

various lexical, syntactic, and semantic dependencies in the mean time [40, 86]. Take the

restaurant domain for example, “restaurant” is the target slot, and important adjective mod-

ifiers such as “Asian” (a restaurant type) and “cheap” (the price of food in the restaurant)

should be included in the slot set, so that the semantic representation of SLU can be more

coherent and complete.
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However, most work treats each slot independently and have not considered the inter-slot

relations when inducing the semantic slots. Assuming that a well-organized ontology may

benefit a better SLU component construction and the system development, the semantic

structure of the ontology should be included when inducing the domain knowledge. Due

to the importance of lexical knowledge and structure information, we first use syntactically-

informed random walk algorithms to combine the semantic and lexical knowledge graphs, and

globally inducing the semantic slots for building better unsupervised SLU components.

Specifically, instead of considering slots independently, this chapter takes a data-driven ap-

proach to model word-to-word relations via syntactic dependencies and further infer slot-

to-slot relations. To do this, we incorporate the typed dependency grammar theory in a

state-of-the-art, frame-semantic driven, and unsupervised slot induction framework [31, 51].

In particular, we build two knowledge graphs: a slot-based semantic knowledge graph and a

word-based lexical knowledge graph with typed dependency triples. We then study stochastic

relations between slots and words, using a mutually-reinforced random walk inference proce-

dure to combine these two knowledge graphs. To produce a structured ontology, we use the

jointly learned inter-slot relations to induce a coherent slot set in an unsupervised fashion.

Our contributions in this chapter are three-fold:

• We are among the first to combine semantic and lexical knowledge graphs for unsuper-

vised SLU;

• We propose a novel typed syntactic dependency grammar driven random walk model

for relation discovery;

• Our experimental results suggest that jointly considering inter-slot relations helps obtain

a more coherent and complete semantic slot set, showing that the ontology structure is

essential to build a better SLU component.

4.2 The Proposed Framework

The approach is built on top of the success of an unsupervised frame-semantic parsing ap-

proach introduced in Chapter 3 [31]. The main motivation is to use a FrameNet-trained

statistical probabilistic semantic parser to generate initial frame-semantic parses from ASR

decodings of the raw conversations, and then adapt the FrameNet-style frames to the semantic

slots in the target semantic space, so that they can be used practically in the SDSs. In stead

of inducing an unstructured ontology, this chapter improves the adaptation process by lever-

aging distributed word embeddings associated with typed syntactic dependencies between

words to infer inter-slot relations in order to learn a well-organized ontology [108, 118, 119].
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Figure 4.1: The proposed framework of structure learning.

The proposed framework is shown in Figure 4.1. Frame-semantic parsing, independent se-

mantic decoder, and adaptation process are similar to ones from Chapter 3, except that the

slot ranking model does consider the relation information. Finally, we build an SLU model

based on the learned semantic decoders and induced slots to evaluate whether the ontology

structure helps SLU modeling.

4.3 Slot Ranking Model

The goal of the ranking model is to extract domain-specific concepts from all fine-grained

frames outputted by frame-semantic parsing. To induce meaningful slots for the purpose of

SDS, we compute the prominence of slot candidates by additionally considering their structure

information.

With the semantic parses from SEMAFOR, where each frame is viewed independently and

inter-slot relations are not included, our model ranks slot candidates by integrating two

information: (1) the frequency of each slot candidate in the corpus, and (2) the relations

between slot candidates. Assuming that domain-specific concepts are usually related to each

other, globally considering inter-slot relations induces a more coherent slot set. As the baseline

in Chapter 3, we consider only the frequency of each slot candidate as its prominence without

the structure information.

Since syntactic dependency relations between fillers may help measure the prominence of

corresponding slots. First we construct two knowledge graphs, one is a slot-based semantic

knowledge graph and another is a word-based lexical knowledge graph, both of which encode

the typed dependency relations in their edge weights. We also connect two graphs to model

the relations between slot-filler pairs. The integrated graph that incorporates dependency

relations of semantic and lexical elements can compute the prominence of slot candidates by

a random walk algorithm. The details are described as follows.
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Figure 4.2: A simplified example of the integration of two knowledge graphs, where a slot can-
didate si is represented as a node in a semantic knowledge graph and a word wj is represented
as a node in a lexical knowledge graph.

4.3.1 Knowledge Graphs

We construct two undirected graphs, semantic and lexical knowledge graphs. Each node in

the semantic knowledge graph is a slot candidate si outputted by the frame-semantic parser,

and each node in the lexical knowledge graph is a word wj .

• Slot-based semantic knowledge graph is built as Gs = 〈Vs, Ess〉, where Vs = {si}
and Ess = {eij | si, sj ∈ Vs}.

• Word-based lexical knowledge graph is built as Gw = 〈Vw, Eww〉, where Vw = {wi}
and Eww = {eij | wi, wj ∈ Vw}.

With two knowledge graphs, we build edges between slots and slot-fillers to integrate

them as shown in Figure 4.2. Thus the integrated graph can be formulated as G =

〈Vs, Vw, Ess, Eww, Ews〉, where Ews = {eij | wi ∈ Vw, sj ∈ Vs}. Ess, Eww, and Ews cor-

respond to slot-to-slot relations, word-to-word relations, and word-to-slot relations respec-

tively [26, 27].

4.3.2 Edge Weight Estimation

To incorporate different strengths of dependency relations in the knowledge graphs, we as-

sign weights for edges. The edge weights for Eww and Ess are measured based on the

dependency parsing results. The example utterance “can i have a cheap restaurant” and

its dependency parsing result are illustrated in Figure 4.3. The arrows denote the de-

pendency relations from headwords to their dependents, and words on arcs denote types
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Figure 4.3: The dependency parsing result on an utterance.

of dependencies. All typed dependencies between two words are encoded in triples and

form a word-based dependency set Tw = {〈wi, t, wj〉}, where t is the typed dependency

between the headword wi and the dependent wj . For example, Figure 4.3 generates

〈restaurant,amod, cheap〉, 〈have,dobj, restaurant〉, etc. for Tw. Similarly, we build a slot-

based dependency set Ts = {〈si, t, sj〉} by transforming dependencies between slot-fillers

into ones between slots. For example, 〈restaurant,amod, cheap〉 from Tw is transformed into

〈locale by use,amod, expensiveness〉 for building Ts, because both sides of the non-dotted line

are parsed as slot-fillers by SEMAFOR.

For all edges within a single knowledge graph, we assign the weight of the edge connecting

nodes xi and xj as r̂(xi, xj), where x is either s (slot) or w (word). Since weights are

measured based on relations between nodes regardless of directions, we combine the scores

for two directional dependencies:

r̂(xi, xj) = r(xi → xj) + r(xj → xi), (4.1)

where r(xi → xj) is the score that estimates the dependency including xi as a head and xj

as a dependent. In Section 4.3.2.1 and 4.3.2.2, we propose two scoring functions for r(·),
frequency-based as r1(·) and embedding-based as r2(·) respectively.

For edges of Ews, we estimate edge weights based on the frequency that slot candidates and

words are parsed as slot-filler pairs. In other words, the edge weight between a slot-filler wi

and a slot candidate sj , r̂(wi, sj), is equal to how many times the filler wi corresponds to the

slot candidate sj in the parsing results.

4.3.2.1 Frequency-Based Measurement

Based on the parsed dependency set Tx, we use t∗xi→xj to denote the most frequent typed

dependency with xi as a head and xj as a dependent.

t∗xi→xj = arg max
t
C(xi −→

t
xj), (4.2)
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Table 4.1: The contexts extracted for training dependency-based word/slot embeddings from
the utterance of Figure 3.2.

Typed Dependency Relation Target Word Contexts

Word 〈restaurant,amod, cheap〉 restaurant cheap/amod
cheap restaurant/amod−1

Slot 〈locale by use,amod, expensiveness〉 locale by use expensiveness/amod
expansiveness locale by use/amod−1

where C(xi −→
t
xj) counts how many times the dependency 〈xi, t, xj〉 occurs in the dependency

set Tx. Then the scoring function that estimates the dependency xi → xj is measured as

r1(xi → xj) = C(xi −−−−→
t∗xi→xj

xj), (4.3)

which equals to the highest observed frequency of the dependency xi → xj among all types

from Tx.

4.3.2.2 Embedding-Based Measurement

It is shown that a dependency-based embedding approach introduced in Section 2.4.2 is able

to capture more functional similarity because it uses dependency-based syntactic contexts for

training word embeddings [108]. Table 4.1 shows some extracted dependency-based contexts

for each target word from the example in Figure 4.3, where headwords and their dependents

can form the contexts by following the arc on a word in the dependency tree, and −1 denotes

the directionality of the dependency. We learn vector representations for both words and

contexts such that the dot product vw · vc is maximized when they are associated with

“good” word-context pairs belonging to the training data.

Then we can obtain the dependency-based slot and word embeddings using Ts and Tw respec-

tively.

With trained dependency-based embeddings, we estimate the probability that xi is a headword

and xj is its dependent via a typed dependency t as

P (xi −→
t
xj) =

Sim(xi, xj/t) + Sim(xj , xi/t
−1)

2
, (4.4)

where Sim(xi, xj/t) is the cosine similarity between word/slot embeddings vxi
and context

embeddings vxj/t after normalizing to [0, 1]. Then we can measure the scoring function r2(·)
as

r2(xi → xj) = C(xi −−−−→
t∗xi→xj

xj) · P (xi −−−−→
t∗xi→xj

xj), (4.5)
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which is similar to (4.3) but additionally weighted with the estimated probability. The es-

timated probability smooths the observed frequency to avoid overfitting due to the smaller

dataset.

4.3.3 Random Walk Algorithm

We first compute Lww = [r̂(wi, wj)]|Vw|×|Vw| and Lss = [r̂(si, sj)]|Vs|×|Vs|, where r̂(wi, wj) and

r̂(si, sj) are either from frequency-based (r1(·)) or embedding-based measurements (r2(·)).
Similarly, Lws = [r̂(wi, sj)]|Vw|×|Vs| and Lsw = [r̂(wi, sj)]

T
|Vw|×|Vs| are computed, where r̂(wi, sj)

is the frequency that sj and wi are a slot-filler pair computed in Section 4.3.2. Then we only

keep the top N highest weights for each row in Lww and Lss (N = 10), which means that we

filter out edges with smaller weights within a single knowledge graph. Column-normalization

are performed for Lww, Lss, Lws, Lsw [141]. They can be viewed as word-to-word, slot-to-slot,

and word-to-slot relation matrices.

4.3.3.1 Single-Graph Random Walk

Here we perform a random walk algorithm only on the semantic knowledge graph to propagate

scores based on inter-slot relations through the edges Ess.

R(t+1)
s = (1− α)R(0)

s + αLssR
(t)
s , (4.6)

where R
(t)
s denotes importance scores of slot candidates Vs in t-th iteration. In the algo-

rithm, the score is the interpolation of two scores, the normalized baseline importance of

slot candidates (R
(0)
s ), and scores propagated from the neighboring nodes in the seman-

tic knowledge graph based on slot-to-slot relations Lss. The algorithm will converge when

R∗s = R
(t+1)
s ≈ R(t)

s and R∗s satisfies the equation,

R∗s = (1− α)R(0)
s + αLssR

∗
s. (4.7)

We can solve R∗s as

R∗s =
(

(1− α)R(0)
s eT + αLss

)
R∗s = M1R

∗
s, (4.8)

where the e = [1, 1, ..., 1]T . It has been shown that the closed-form solution R∗s of (4.8) is

the dominant eigenvector of M1, or the eigenvector corresponding to the largest absolute

eigenvalue of M1 [100]. The solution of R∗s denotes the updated importance scores for all ut-

terances. Similar to the PageRank algorithm, the solution can also be obtained by iteratively

updating R
(t)
s [19].
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4.3.3.2 Double-Graph Random Walk

We borrow the idea from two-layer mutually reinforced random walk to propagate scores

based on not only internal importance propagation within the same graphs but also external

mutual reinforcement between different knowledge graphs [26, 27, 93].{
R

(t+1)
s = (1− α)R

(0)
s + αLssLswR

(t)
w

R
(t+1)
w = (1− α)R

(0)
w + αLwwLwsR

(t)
s

(4.9)

In the algorithm, they are the interpolations of two scores, the normalized baseline importance

(R
(0)
s and R

(0)
w ) and the scores propagated from another graph. For the semantic knowledge

graph, LswR
(t)
w is the score from the word set weighted by slot-to-word relations, and then

the scores are propagated based on slot-to-slot relations Lss. Similarly, nodes in the lexical

knowledge graph also include scores propagated from the semantic knowledge graph. Then

R
(t+1)
s and R

(t+1)
w can be mutually updated by the latter parts in (4.9) iteratively. When the

algorithm converges, R∗s and R∗w can be derived similarly.

{
R∗s = (1− α)R

(0)
s + αLssLswR

∗
w

R∗w = (1− α)R
(0)
w + αLwwLwsR

∗
s

(4.10)

R∗s = (1− α)R(0)
s + αLssLsw

(
(1− α)R(0)

w + αLwwLwsR
∗
s

)
= (1− α)R(0)

s + α(1− α)LssLswR
(0)
w + α2LssLswLwwLwsR

∗
s

=
(

(1− α)R(0)
s eT + α(1− α)LssLswR

(0)
w eT + α2LssLswLwwLws

)
R∗s

= M2R
∗
s.

(4.11)

The closed-form solution R∗s of (4.11) can be obtained from the dominant eigenvector of M2.

4.4 Experiments

The goal of the experiments is to validate the effectiveness of including the structure infor-

mation for SLU modeling. We evaluate our approach in two ways. First, we examine slot

induction performance by comparing the ranking list of induced slots with the reference slots

created by system developers [171]. Second, with the ranked list of induced slots and their as-

sociated semantic decoders, we evaluate the SLU performance. In the following experiments,

we evaluate performance on both ASR transcripts and manual transcripts.
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Table 4.2: The performance of induced slots and corresponding SLU models (%)

Approach
ASR Transcripts

Slot Induction SLU Model Slot Induction SLU Model
AP AUC WAP AF AP AUC WAP AF

(a) Baseline (α = 0) 56.69 54.67 35.82 43.28 53.01 50.80 36.78 44.20

(b)
Single

Freq. 63.88 62.05 41.67 47.38 63.02 61.10 43.76 48.53
(c) Embed. 69.04 68.25 46.29 48.89 75.15 74.50 54.50 50.86

(d)
Double

Freq. 56.83 55.31 32.64 44.91 52.12 50.54 34.01 45.05
(e) Embed. 71.48 70.84 44.06 47.91 76.42 75.94 52.89 50.40

4.4.1 Experimental Setup

The data is the Cambridge University SLU corpus described in the previous chapter. For

the parameter setting, the damping factor for random walk α is empirically set as 0.9 for

all experiments1. For training semantic decoders, we use SVM with linear kernel to predict

the probability of each semantic slot. We use the Stanford Parser to obtain the collapsed

typed syntactic dependencies and set the dimensionality of embeddings d = 300 in all exper-

iments [143].

For evaluation, we measure their quality as the proximity between induced slots and reference

slots. Figure 3.3 shows the mappings between induced slots and reference slots [31]. As the

metrics in Chapter 3, we use AP and AUC for evaluating slot induction, and WAP and AF

for evaluating slot induction and SLU tasks together.

4.4.2 Evaluation Results

Table 4.2 shows results on both ASR and transcripts. The row (a) is the baseline considering

only the frequency of each slot candidate for ranking. Rows (b) and (c) show performance

after leveraging a semantic knowledge graph through random walk. Rows (d) and (e) are

results after combining two knowledge graphs. We find that almost all results are improved

by additionally considering inter-slot relations in terms of single- and double-graph random

walk for both ASR and manual transcripts.

4.4.2.1 Slot Induction

For both ASR and manual transcripts, almost all results outperform the baseline, which

shows that inter-slot relations significantly influence the performance of slot induction. The

best performance is from results using double-graph random walk with the embedding-based

1The performance is different from results in Chapter 3 since we do not need a dev set in the experiments.
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measurement, which integrate a semantic knowledge graph and a lexical knowledge graph to-

gether and jointly consider slot-to-slot, word-to-word, and word-to-slot relations when scoring

the prominence of slot candidates to generate a coherent slot set.

4.4.2.2 SLU Model

For both ASR and manual transcripts, almost all results outperform the baseline, which shows

the practical usage for training dialogue systems. The best performance is from the results of

single-graph random walk with embedding-based measurement, which only use the semantic

knowledge graph to involve inter-slot relations. The semantic knowledge graph is not as

precise as the lexical one and may be influenced more by the performance of the semantic

parser. Although the row (e) does not show better performance than the row (c), double-

graph random walk may be more robust because it additionally includes word relations to

avoid from relying only on relations tied with slot candidates.

4.4.3 Discussion and Analysis

4.4.3.1 Comparing Frequency- and Embedding-Based Measurements

Table 4.2 shows that all results with the embedding-based measurement perform better than

ones with frequency-based measurement. The frequency-based measurement also brings large

improvement for single-graph approaches, but not for double-graph ones. The reason is prob-

ably that using observed frequencies in the lexical knowledge graph may result in overfitting

issues due to the smaller dataset. Additionally incorporating embedding information can

smooth edge weights and deal with data sparsity to improve the performance, especially for

the lexical knowledge graph.

4.4.3.2 Comparing Single- and Double-Graph Approaches

Considering that the embedding-based measurement performs better, we only compare results

of single- and double-graph random walk using the measurement (rows (c) and (e)). It can

be seen that the difference between them is not consistent in terms of slot induction and SLU

modeling.

For evaluating slot induction (AP and AUC), double-graph random walk (row (e)) performs

better on both ASR and manual results, which implies that additionally integrating the

lexical knowledge graph helps decide a more coherent and complete slot set because we can

model the score propagation more precisely (not only slot-level but word-level information).
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Table 4.3: The top inter-slot relations learned from the training set of ASR outputs.

Rank Relation

1 〈locale by use,nn, food〉
2 〈food,amod, expensiveness〉
3 〈locale by use,amod, expensiveness〉
4 〈seeking,prep for, food〉
5 〈food,amod, relational quantity〉
6 〈desiring,dobj, food〉
7 〈seeking,prep for, locale by use〉
8 〈food,det, quantity〉

However, for SLU evaluation (WAP and AF), single-graph random walk (row (c)) performs

better, which may imply that the slots carrying coherent relations from the row (e) may

not have good semantic decoder performance so that the performance is decreased a little.

For example, double-graph random walk scores the slots local by use and expensiveness higher

than the slot contacting, while the single-graph method ranks the latter higher. The slots,

local by use and expensiveness, are more important on this domain but contacting has very

good performance of its semantic decoder, so the double-graph approach does not show the

improvement when evaluating SLU. This allows us to try an improved method of jointly

optimizing the slot coherence and SLU performance in the future.

4.4.3.3 Relation Discovery Analysis

To interpret inter-slot relations, we output the relations that connect slots with highest scores

from the best results (row (e)) in Table 4.3. It can be shown that the outputted inter-slot

relations are reasonable and usually connect two important semantic slots. The automatically

learned structure is able to construct a corresponding slot-based semantic knowledge graph

as Figure 4.4a.

To evaluate the performance of the automatically learned knowledge graph, we also construct

a semantic knowledge graph based on human-annotated data, where the shown relations are

the most frequent typed dependencies between two slots in the domain-expert annotated

data. The reference knowledge graph is shown in Figure 4.4b. Here we can clearly see similar

structures between the generated one and the reference one, where the nodes with same colors

represent semantically similar concepts. This proves that inter-slot relations help decide a

coherent and complete slot set and enhance the interpretability of semantic slots. Thus, from

a practical perspective, developers are able to design the framework of dialogue systems more

easily.
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NN
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desiring

DOBJ

(a) A simplified example of the automatically de-
rived knowledge graph.

type

food pricerange

task

DOBJ

AMOD
AMOD

AMOD

PREP_IN

area

(b) The reference knowledge graph.

Figure 4.4: The automatically and manually created knowledge graphs for a restaurant do-
main.

4.5 Summary

The chapter proposes an approach of considering inter-slot relations for slot induction to

output a more coherent slot set, where two knowledge graphs, a slot-based semantic knowl-

edge graph and a word-based lexical knowledge graph, are built and jointly modeled by a

random walk algorithm. The automatically induced slots carry coherent and interpretable

relations and can be used for better understanding, showing that relation information helps

SLU modeling.
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5
Surface Form Derivation

for Knowledge

Acquisition

“ From principles is derived probability, but truth or certainty is obtained

only from facts.

”
Tom Stoppard, Academy Award and Tony Award winner

With the available structured ontology, the domain knowledge can be learned for building a

domain-specific dialogue system. However, entities in the ontology have various surface forms,

for example, in a movie domain, “movie” and “film” can be used to refer to the same entity

of an ontology. This chapter focuses on deriving surface forms and shows that the derived

surface forms can benefit SLU modeling performance.

5.1 Introduction

An SLU component aims to detect semantic frames that include domain-related information.

Traditional SDSs are trained with annotated examples and support limited domains. Recent

studies utilized structured semantic knowledge such as Freebase, FrameNet, etc. to obtain

domain-related knowledge and help SLU for tackling open domain problems in SDSs [3, 15,

31, 33, 76, 82, 83].

Knowledge graphs, such as Freebase, usually carry rich information for named entities, which

is encoded in triples of entity pairs and their relations. Such information is usually used for

interpretation of natural language in SDSs [76, 89, 152]. However, the entity lists/gazatteers

may bring noises and ambiguity to SLU; for example, the commonly used words “Show me”

and “Up” can be movie names, and “Brad Pitt” can be an actor name or a producer name,

which makes interpretation more difficult. Some work focused on assigning weights for enti-

ties or entity types to involve prior background knowledge of entities, where the probabilistic

confidences offer better cues for SLU [89, 76]. Also, a lot of work focused on mining natural

language forms based on the ontology by web search or query click logs, which benefit discov-

ering new relation types from large text corpora [75, 74]. The mined data can also be used

to help SLU by adaptation from the text domain to the spoken domain [83].
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User Utterance: 
find movies produced by james cameron 

SPARQL Query (simplified): 
SELECT ?movie {?movie. ?movie.produced_by?producer. ?producer.name"James Cameron".} 

Logical Form: 
λx. Ǝy. movie.produced_by(x, y) Λ person.name(y, z) Λ z=“James Cameron” 

Relation: 
movie.produced_by producer.name 

User Utterance: 
who produced avatar 

SPARQL Query (simplified): 
SELECT ?producer {?movie.name"Avatar". ?movie.produced_by?producer.} 

Logical Form: 
λy. Ǝx. movie.produced_by(x, y) Λ movie.name(x, z) Λ z=“Avatar” 

Relation: 
movie.name movie.produced_by 

produced_by 

name 

MOVIE PERSON 

produced_by 

name 

MOVIE PERSON 

Figure 5.1: The relation detection examples.

On the other hand, the distributional view of semantics hypothesizes that words occurring in

the same contexts may have similar meanings, and words can be represented as high dimen-

sional vectors [119, 118, 117, 169, 16, 17]. Furthermore, dependency-based word embeddings

were proposed to capture more functional similarity ,based on the dependency-based contexts

instead of the linear contexts using a similar training procedure [108].

Following the successes brought by word embeddings, we leverage dependency-based entity

embeddings to learn relational information including entity surface forms and entity contexts

from the text data. We further integrate derived relational information as local cues and

gazetteers as background knowledge to improve the performance for relation detection in a

fully unsupervised fashion.

5.2 Knowledge Graph Relation

Given an utterance, we can form a set of relations that encode user intents for informa-

tional queries based on the semantic graph ontology. Figure 5.1 presents two user utterances

and their invoked relations, which can be used to create requests in query languages (i.e.,

SPARQL Query Language for RDF1). Two examples in this figure include two nodes and

the same relation movie.produced by, and we differentiate these examples by including the

originating node types in the relation (movie.name, producer.name) instead of just plain

names (the nodes with gray color denote specified entities). Given all these, this task is richer

than the regular relation detection task. The motivation to do that is, since we are trying

to write queries to the knowledge source, we need to make sure that the queries are well-

1http://www.w3.org/TR/ref-sparql-query/
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Semantics Inference 

from Gazetteers 
Entity 

Dict. 

Surface Form 

Derivation 
Entity 

Embeddings 

PF (r | w) 

Entity Surface Forms 

PC (r | w) 

PE (r | w) 

Entity Syntactic Contexts 

Knowledge Graph Entity 

Probabilistic 

Enrichment 

Ru (r) 

Relabel 

Boostrapping 

Final Results 

“find me some films directed by james cameron” 
Input Utterance 

Background Knowledge 

Local Surface Form 

Query 

Snippets 

Knowledge Graph 

Figure 5.2: The proposed framework of surface form derivation.

formed; and relation arcs originate from the correct nodes in them. Therefore, this chapter

focuses on detecting not only the relation movie.produced by but also the specified enti-

ties producer.name and movie.name, so that we can obtain a better understanding of user

utterances.

5.3 Proposed Framework

The whole system framework is shown in Figure 5.2. There are two major components: 1)

we first utilize background knowledge as a prior to infer relations, and 2) we capture natural

language surface forms for detecting local observations, which are described in Sections 5.4

and Section 5.5 respectively. Then probabilistic enrichment is used to integrate probabilistic

information from background knowledge and local relational observations given the input

utterance. Finally, an unsupervised learning approach is proposed to boost the performance.

The detail is presented in Section 5.6.

5.4 Relation Inference from Gazetteers

Due to ambiguity about entity mentions, we utilize prior knowledge from gazetteers to es-

timate the probability distribution of associated relations for each entity [76]. For exam-

ple, “James Cameron” can be a director or a producer, which infers movie.directed by or

movie.produced by relations respectively. Given a word wj , the estimated probability of an

inferred relation ri is defined as

PE(ri | wj) = PE(ti | wj) =
C(wj , ti)∑

tk∈T (wj)
C(wj , tk)

, (5.1)
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Avatar is a 2009 American epic science fiction film Cameron. directed by James 

nsub 
num det cop 

nn vmod 
prop_by 

nn 

$movie $director nn nn nn 
prop pobj 

Figure 5.3: An example of dependency-based contexts.

where ti is the type corresponding to the relation ri (e.g. the entity type director.name infers

the relation movie.directed by), T (wj) denotes a set of all possible entity types for a word

wj , and C(wj , ti) is the number of times the specific entity wj is observed with a specific type

ti in the knowledge graph. For example, C(wj , ti) is the number of movies James Cameron

has directed.

5.5 Relational Surface Form Derivation

5.5.1 Web Resource Mining

Based on the ontology, we extract all possible entity pairs that are connected with specific

relations. Following the previous work, we get search snippets for entity pairs tied with

specific relations by web search2 [75, 82]. Then we mine the patterns used in natural language

realization of the relations. With the mined query snippets, we use dependency relations to

learn natural language surface forms of each specific relation by dependency-based entity

embeddings introduced below.

5.5.2 Dependency-Based Entity Embedding

As Section 2.4.2 introduces, dependency-based embeddings contain more relational informa-

tion because they are trained on dependency-based contexts [108]. An example sentence

“Avatar is a 2009 American epic science fiction film directed by James Cameron.” and its

dependency parsing result are illustrated in Figure 5.3. Here the sentence comes from snip-

pets returned by searching the entity pair, “Avatar” (movie) and “James Cameron” (director).

The arrows denote dependency relations from headwords to their dependents, and words on

arcs denote types of dependency relations. Relations that include a preposition are “col-

lapsed” prior to context extraction (dashed arcs in Figure 5.3), by directly connecting a head

and the object of a preposition, and subsuming the preposition itself into the dependency

2http://www.bing.com
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Table 5.1: The contexts extracted for training dependency entity embeddings in the example
of the Figure 5.3.

Word Contexts

$movie film/nsub−1

is film/cop−1

a film/det−1

2009 film/num−1

american film/nn−1

epic film/nn−1

science film/nn−1

fiction film/nn−1

film
avatar/nsub, is/cop, a/det, 2009/num, american/nn
epic/nn, science/nn, fiction/nn, directed/vmod

directed $director/prep by

$diretor directed/prep by−1

label. Before training embeddings, we replace entities with their entity tags such as $movie

for “Avatar” and $director for “James Cameron”.

The dependency-based contexts extracted from the example are given in Table 5.1, where

headwords and their dependents can form the contexts by following the arc on a word in the

dependency tree, and −1 denotes the directionality of the dependency. With the target words

and associated dependency-based contexts, we can train dependency-based entity embeddings

for all target words [169, 16, 17].

5.5.3 Surface Form Derivation

In addition to named entities detected by gazetteers, there are two different relational surface

forms used in natural language, entity surface forms and entity syntactic contexts, which are

derived from trained embeddings through following approaches.

5.5.3.1 Entity Surface Forms

With only background knowledge gazetteers provided in Section 5.4, the unspecified entities

cannot be captured because a knowledge graph does not contain such information like words

“film” and “director”. This procedure is to discover words that play the same role and carry

similar functional dependency as the specified entities. For example, the entity $character

may derive the word “role”, and $movie may derive “film”, “movie” as their entity surface

forms. The unspecified entities provide important cues for inferring corresponding relations.

We first define a set of entity tags E = {ei} and a set of words W = {wj}. Based on the
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trained dependency-based entity embeddings, for each entity tag ei, we compute the score of

a word wj as

SFi (wj) =
FormSim(wj , ei)∑

ek∈E FormSim(wj , ek)
, (5.2)

where FormSim(w, e) is the cosine similarity between the embeddings of the word w and the

entity tag e. SFi (wj) can be viewed as the normalized weights of words and indicate the

importance for discriminating different entities. Based on SFi (wj), we propose to extract

top N similar words for each entity tag ei, to form a set of entity surface forms Fi, where Fi

includes surface form candidates of entity ei. The derived words may have similar embeddings

as the target entity, for example, “director” and $director may encode the same context

information such as directed/prep by−1 in their embeddings. Therefore, the word “director”

can be extracted by the entity tag $director to serve as its surface form. With derived words

Fi for entity tag ei, we can normalize relation probabilities a word wj ∈ Fi infers.

PF (ri | wj) = PF (ei | wj) =
SFi (wj)∑

k,wj∈Fk
SFk (wj)

, (5.3)

where ri is a relation inferred from the entity tag ei, S
F
k (wj) is the score of a word wj that

belongs to the set Fk extracted by the entity tag ek, and PF (ri | wj) is similar to PE(ri | wj)
in (5.1) but based on derived words instead of specified entities.

5.5.3.2 Entity Syntactic Contexts

Another type of relational cues comes from contexts of entities; for example, a user utterance

“find movies produced by james cameron” includes an unspecified movie entity “movies” and

a specified entity “james cameron”, which may be captured by entity surface forms via PF and

gazetteers via PE respectively. However, it does not consider local observations “produced by”.

In this example, the most likely relation of an entity “james cameron” from the background

knowledge is director.name, which infers movie.directed by, and local observations are

not used to derive the correct relation movie.produced by for this utterance.

This procedure is to discover the relational entity contexts based on syntactic dependencies.

With dependency-based entity embeddings and their context embeddings, for each entity tag

ei, we extract top N syntactic contexts to form a set of entity contexts Ci, which includes

the words that are the most activated by a given entity tag ei. The extraction procedure is

similar to one in Section 5.5.3.1; for each entity tag ei, we compute the score of the word wj

as

SCi (wj) =
CxtSim(wj , ei)∑

ek∈E CxtSim(wj , ek)
, (5.4)

where CxtSim(wj , ei) is the cosine similarity between the context embeddings of a word wj
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and the embeddings of a entity tag ei.

The derived contexts may serve as indicators of possible relations. For instance, for the

entity tag $producer, the most activated contexts include “produced/prep by−1”, so the word

“produced” can be extracted by this procedure for detecting local observations other than

entities. Then we can normalize the relation probabilities the contexts imply to compute

PC(ri | wj) similar to (5.3):

PC(ri | wj) = PC(ei | wj) =
SCi (wj)∑

k,wj∈Ck
SCk (wj)

. (5.5)

5.6 Probabilistic Enrichment and Bootstrapping

Hakkani-Tür et al. proposed to use probabilistic weights for unsupervised relation detec-

tion [76]. We extend the approach to integrate induced relations from prior knowledge

PE(ri | wj) and from local relational surface forms PF (ri | wj) and PC(ri | wj) to enrich

the relation weights for effectively detecting relations given utterances. The experiments

integrate multiple distributions in three ways:

• Unweighted

Rw(ri) =

{
1 , if PE(ri | w) > 0 or PF (ri | w) > 0 or PC(ri | w) > 0.

0 , otherwise.
(5.6)

This method combines possible relations from all sources, which tends to capture as

many as possible relations (higher recall).

• Weighted

Rw(ri) = max(PE(ri | w), PF (ri | w), PC(ri | w)) (5.7)

This method assumes that the relation ri invoked in word w comes from the source

that carries the highest probability, so it simply selects the highest one among the three

sources.

• Highest Weighted

Rw(ri) = max(P ′E(ri | w), P ′F (ri | w), P ′C(ri | w)),

P ′(ri | w) = 1[i = arg max
i
P (ri | w)] · P (ri | w). (5.8)

This method only combines the most likely relation for each word, because P ′(ri | w) = 0

when a relation ri is not the most likely relation of a word w.
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Table 5.2: An example of three different methods in the probabilistic enrichment (w = “pitt”).

Relation Probabilistic Weight actor produced by location

Original
PE(r | w) 0.7 0.3 0
PF (r | w) 0.4 0 0.6
PC(r | w) 0 0 0

Enrichment
Unweighted Rw(r) 1 1 1
Weighted Rw(r) 0.7 0.3 0.6
Highest Weighted Rw(r) 0.7 0 0.6

Algorithm 1: Bootstrapping

Data: a set of user utterances U = {uj}; relation weights for utterances, Ruj (ri), uj ∈ U ;
Result: a multi-class multi-label classifier E that estimates relations given an utterance
Initializing relation labels L0(uj) = {ri | Ruj

(ri) ≥ δ};
repeat

Training ensemble of M weak classifiers Ek on U and Lk(uj);

Classifying the utterance uj by Ek and output the probability distribution of relations as

R
(k+1)
ui (ri);

Creating relation labels L(k+1)(uj) = {ri | R(k+1)
uj (ri) ≥ δ};

until L(k+1)(uj) ∼ Lk(uj);

return Ek;

An example of relation weights about the word “pitt” with three different methods is shown

in Table 5.2. The final relation weight of the relation ri given an utterance u, Ru(ri), can be

compute as

Ru(ri) = max
w∈u

Rw(ri). (5.9)

With enriched relation weights, Ru(ri), we train a multi-class, multi-label classifier in an

unsupervised way, where we learn ensemble of weak classifiers by creating pseudo training

labels in each iteration for boosting the performance [52, 75, 106, 149]. The detail of the

algorithm is shown in Algorithm 1. Then the returned classifier Ek can be used to detect

relations given unseen utterances.

5.7 Experiments

5.7.1 Experimental Setup

The experiments use a list of entities/gazetteers from the publicly available Freebase knowl-

edge graph. The list includes 670K entities of 78 entity types, including movie names, actors,

release dates, etc. after filtering out the movie entities with lower confidences [89].

The relation detection datasets include crowd-sourced utterances addressed to a conversa-
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Table 5.3: Relation detection datasets used in the experiments.

Query Statistics Train Test

% entity only 8.9% 10.7%
% relations only with specified movie names 27.1% 27.5%
% relations only with specified other names 39.8% 39.6%
% more complicated relations 15.4% 14.7%
% not covered 8.8% 7.6%

#utterance with SPARQL annotations 3338 1084

tional agent and are described in Table 5.3. Both train and test sets are manually annotated

with SPARQL queries, which are used to extract relation annotations. Most of data includes

the relations with either specified movie names or specified other names. In addition, the

relations only with specified movie names are difficult to capture by gazetteers, which empha-

sizes the contribution of this task. We use 1/10 training data as a development set to tune

the parameters δ, M , and the optimal number of iterations in Algorithm 1. The training set

is only used to train the classifier of Algorithm 1 for bootstrapping in an unsupervised way;

note that manual annotations are not used here.

For retrieving snippets, we use 14 entity pairs from a knowledge graph related to movie

entities, which include director, character, release date, etc. We extract snippets related

to each pair from web search results, and we end up with 80K snippets, where the pairs

of entities are marked in the returned snippets3. For all query snippets, we parse all with

the Berkeley Parser, and then convert output parse trees to dependency parses using the

LTH Constituency-to-Dependency Conversion toolkit4 for training dependency-based entity

embeddings [95, 128]. The trained entity embeddings have dimension 200 and vocabulary

size is 1.8× 105.

In the experiments, we train multi-class, multi-label classifiers using icsiboost [61], a

boosting-based classifier, where we extract word unigrams, bigrams, and trigrams as classifi-

cation features. The evaluation metric we use is micro F-measure for relation detection [76].

The performance with all of the proposed approaches before and after bootstrapping with

N = 15 (top 15 similar words of each tag) is shown in Table 5.4 and Table 5.5 respectively.

5.7.2 Results

The first baseline here (row (a)) uses gazetteers to detect entities and then infers relations

by background knowledge described in Section 5.4. Row (b) is another baseline, which uses

the retrieved snippets and their inferred relations as labels to train a multi-class multi-label

3In this work, we use top 10 results from Bing for each entity pair.
4
http://nlp.cs.lth.se/software/treebank_converter
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Table 5.4: The micro F-measure of the first-pass SLU performance before bootstrapping
(N = 15) (%).

Approach Unweighted Weighted Highest

(a)
Baseline

Gazetteer 35.21 37.93 36.08
(b) Gazetteer + Weakly Supervised 25.07 39.04 39.40

(c) BOW Gazetteer + Surface Form 34.23 36.57 34.69

(d) Gazetteer + Surface Form 37.44 41.01 39.19
(e) Dep.-Based Gazetteer + Context 35.31 38.04 37.25
(f) Gazetteer + Surface Form + Context 37.66 40.29 40.07

Table 5.5: The micro F-measure of SLU performance with bootstrapping (N = 15) (%).

Approach Unweighted Weighted Highest

(a)
Baseline

Gazetteer 36.91 40.10 38.89
(b) Gazetteer + Weakly Supervised 37.39 39.07 39.98

(c) BOW Gazetteer + Surface Form 34.91 38.13 37.16

(d) Gazetteer + Surface Form 38.37 41.10 42.74
(e) Dep.-Based Gazetteer + Context 37.23 38.88 38.04
(f) Gazetteer + Surface Form + Context 38.64 41.98 43.34

classifier, then outputs relation probabilities for each utterance as Ru(w), and integrates with

the first baseline [75]. Here the data for training only uses patterns between entity pairs

in the paths of dependency trees. Row (c) is results of adding entity surface forms derived

from original embeddings, which is shown for demonstrating the effectiveness of dependency-

based entity embeddings (row (d)). Row (e) is results of adding entity contexts, and row (f)

combines both of entity surface forms and entity contexts. Below we analyze the effectiveness

of proposed approaches.

5.8 Discussion

We analyze the effectiveness of learned entity surface forms and entity contexts, and compare

different probabilistic enrichment methods, and validate the effectiveness of bootstrapping

below.

5.8.1 Effectiveness of Entity Surface Forms

Row (c) and row (d) show the performance of using entity surface forms derived from CBOW

and dependency-based embeddings respectively. It can be found that the words derived from

original embeddings do not successfully capture surface forms of entity tags, and the results

cannot be improved. On the other hand, results from dependency-based embeddings outper-
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Table 5.6: The examples of derived entity surface forms based on dependency-based entity
embeddings.

Entity Tag Derived Word

$character character, role, who, girl, she, he, officer
$director director, dir, filmmaker
$genre comedy, drama, fantasy, cartoon, horror, sci
$language language, spanish, english, german
$producer producer, filmmaker, screenwriter

form baselines for all enrichment methods, which demonstrate the effectiveness of including

entity surface forms based on dependency relations for relation detection. To analyze re-

sults of entity surface forms, we show some examples about derived words in Table 5.6. It

can be shown that the functional similarity carried by dependency-based entity embeddings

effectively benefits relation detection task.

5.8.2 Effectiveness of Entity Contexts

Row (e) shows results of adding entity contexts learned from dependency-based contexts.

It does not show significantly improvement compared to baselines. Nevertheless, combining

with dependency-based entity surface forms, F-measure achieves 43% by highest weighted

probabilistic enrichment, which implies that including local observations based on syntactic

contexts may help relation detection, but the influence is not significant. The derived entity

contexts of an entity tag $actor include “plays” and “starring”, which help capture the

implied relations of utterances.

5.8.3 Comparison of Probabilistic Enrichment Methods

From Table 5.4 and Table 5.5, among the three probabilistic enrichment methods, unweighted

method performs worst, because it does not differentiate the relations with higher and lower

confidence, and some relations with lower probabilities will be mistakenly outputted. Com-

paring between weighted and highest weighted methods, the first baseline using the weighted

method performs better, while other approaches using the highest weighted method perform

better. The reason probably is that the weighted method can provide more possible relations

for the baseline only using gazetteers to increase the recall, so the weighted method benefits

the first baseline. On the other hand, proposed approaches have higher recall and the high-

est weighted method provides more precise relations, resulting in better performance when

applying the highest weighted method.
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Figure 5.4: Learning curves over incremental iterations of bootstrapping.

5.8.4 Effectiveness of Bootstrapping

The F-measure learning curves of all results using highest weighted probabilistic enrichment

on the test set are presented in Figure 5.4. The light blue line marked with circles is the first

baseline, which applies only gazetteers with probability distribution of entity types to relation

detection. After bootstrapping, the performance is significantly improved and achieves about

39% of F-measure. Another baseline using a weakly supervised classifier (orange line marked

with squares) performs well before bootstrapping, while the performance cannot be signifi-

cantly improved with increased iterations. All other results show significant improvements

after bootstrapping. The best result is the combination of all approaches (green line marked

with crosses), and the curve shows the effectiveness and efficiency of bootstrapping. The

probable reason is that the probabilities came from different sources can complement each

other, and then benefit classifiers. Also, only adding dependency-based entity surface forms

(yellow line marked with triangles) performs similar to the combination result, showing that

the major improvement comes from relational entity surface forms. The figure demonstrates

the effectiveness of bootstrapping for improving relation detection.

5.8.5 Overall Results

The proposed approaches successfully capture local information other than background knowl-

edge, where relational surface forms can be learned by dependency-based entity embeddings
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trained on query snippets. After combining with prior relations induced by gazetteers, rela-

tional information from the text domain can benefit relation detection for the spoken domain.

Also, the fully unsupervised approach shows the effectiveness of applying structured knowl-

edge to SLU for tackling open domain problems.

5.9 Summary

This chapter proposes to automatically capture relational surface forms including entity sur-

face forms and entity contexts based on dependency-based entity embeddings. The detected

semantics viewed as local observations can be integrated with background knowledge by prob-

abilistic enrichment methods. Experiments show that open-domain SLU can be significantly

improved by involving derived entity surface forms as local cues together with prior knowledge.

Therefore, it is shown that the surface forms corresponding to an ontology carry important

knowledge for building a good SLU component.
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6Semantic Decoding in

SLU Modeling

“ Semantics is about the relation of words to thoughts, but it is also about

the relation of words to other human concerns. Semantics is about the

relation of words to reality - the way that speakers commit themselves to a

shared understanding of the truth, and the way their thoughts are anchored

to things and situations in the world.

”
Steven Pinker, Johnstone Family Professor at Harvard University

With an organized ontology automatically learned by knowledge acquisition, this chapter

further introduces a novel matrix factorization (MF) approach to learn latent feature vectors

for utterances and semantic concepts. More specifically, our model learns semantic slots for a

domain-specific SDS in an unsupervised fashion, and then performs semantic decoding using

latent MF techniques. To further consider the global semantic structure, such as inter-word

and inter-slot relations, we augment the latent MF-based model with the ontology structure.

The final goal of the model is to predict semantic slots and word patterns of each given

utterance, considering their inference relations and domain-specificity in a joint fashion.

6.1 Introduction

A key component of an SDS is the SLU module—it parses the users’ utterances into semantic

representations; for example, the utterance “find a cheap restaurant” can be parsed into

action=“find”, price=“cheap”, target=“restaurant” [129]. To design the SLU module of an

SDS, most previous studies relied on predefined slots for training the decoder [14, 56, 72, 138].

However, these predefined semantic slots may bias the subsequent data collection process, and

the cost of manually labeling utterances for updating the ontology is high [? ].

In recent years, these problems led to the development of unsupervised SLU techniques [82,

83, 31, 33]. However, a challenge of SLU is inference of hidden semantics. Taking the utter-

ance “can i have a cheap restaurant” as an example, from its surface patterns, we can see
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that it includes explicit semantic information about “price (cheap)” and “target (restaurant)”;

however, it also includes hidden semantic information, such as “food” and “seeking”, since the

SDS needs to infer that the user wants to “find” some cheap “food”, even though they are not

directly observed in the surface patterns. Nonetheless, these implicit semantics are impor-

tant semantic concepts for domain-specific SDSs. Traditional SLU models use discriminative

classifiers to predict whether the predefined slots occur in the utterances or not, ignoring the

unobserved concepts and the hidden semantic information [86].

As mentioned in Chapter 2, most of prior studies did not explicitly learn latent factor rep-

resentations from the data—while we hypothesize that the better robustness in noisy data

can be achieved by explicitly modeling the measurement errors (usually produced by ASR)

using latent variable models and taking additional local and global semantic constraints into

account. To the best of our knowledge, this work is the first to learn latent feature represen-

tations in unsupervised SLU, taking various local and global lexical, syntactic, and semantic

information into account.

In this chapter, we take a rather radical approach: we propose a novel matrix factorization

(MF) model for learning latent features for SLU, taking account of additional structure in-

formation such as word relations, induced slots, and slot relations simultaneously. To further

consider global coherence of induced slots, we combine the MF model with a knowledge graph

propagation based model, fusing both a word-based lexical knowledge graph and a slot-based

semantic knowledge graph. In fact, as it is shown in the Netflix challenge, MF is credited as

the most useful technique for recommendation systems [98]. Also, the MF model considers

unobserved patterns and estimates their probabilities instead of viewing them as negative

examples. However, to the best of our knowledge, the MF technique is not yet well explored

in the SLU and SDS communities, and it is not very straight-forward to use MF methods to

learn latent feature representations for semantic parsing in SLU. To evaluate the performance

of our model, we compare it to standard discriminative SLU baselines, and show that our

MF-based model is able to produce strong results in semantic decoding, and the knowledge

graph propagation model further improves the performance. Our contributions are three-fold:

• We are among the first to study MF techniques for unsupervised SLU, taking account

of additional information;

• We augment the MF model with a knowledge graph propagation model, increasing the

global coherence of semantic decoding using induced slots;

• Our experimental results show that the unsupervised MF-SLU outperforms strong dis-

criminative baselines, obtaining promising results.
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Figure 6.1: (a): The proposed framework of semantic decoding. (b): Our MF method com-
pletes a partially-missing matrix for implicit semantic parsing. Dark circles are observed facts,
and shaded circles are inferred facts. Ontology induction maps observed surface patterns to
semantic slot candidates. Word relation model constructs correlations between surface pat-
terns. Slot relation model learns slot-level correlations based on propagating the automatically
derived semantic knowledge graphs. Reasoning with matrix factorization incorporates these
models jointly, and produces a coherent and domain-specific SLU model.

6.2 Proposed Framework

This chapter introduces an MF technique for unsupervised SLU. The proposed framework is

shown in Figure 6.1a. Given utterances, the task of the SLU model is to decode their surface

patterns into semantic forms and simultaneously differentiate the target semantic concepts

from the generic semantic space for task-oriented SDSs. Note that our model does not require

any human-defined slots and domain-specific semantic representations for utterances.

In the proposed model, we first build a feature matrix to represent training utterances, where

each row represents an utterance, and each column refers to an observed surface pattern or

an induced slot candidate. Figure 6.1b illustrates an example of the matrix. Given a testing
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utterance, we convert it into a vector based on the observed surface patterns, and then fill

in the missing values of all slot candidates. In the first utterance in the figure, although

the semantic slot food is not observed, the utterance implies the meaning facet food. The

MF approach is able to learn latent feature vectors for utterances and semantic elements,

inferring implicit semantic concepts to improve the decoding process—namely, by filling the

matrix with probabilities (lower part of the matrix).

The feature model is built on the observed word patterns and slot candidates, where slot can-

didates are obtained from the ontology induction component through frame-semantic parsing

(the yellow block in Figure 6.1a) [31]. Section 6.3.1 explains the detail of the feature model.

In order to additionally consider inter-word and inter-slot relations, we propose a knowledge

graph propagation model based on two knowledge graphs, which includes a word relation

model (blue block) and a slot relation model (pink block), described in Section 6.3.2. The

method of automatic knowledge graph construction is introduced in Section 4.3.1, where we

leverage distributed word embeddings associated with typed syntactic dependencies to model

the relations [39, 108, 118, 119].

Finally, we train the SLU model by learning latent feature vectors for utterances and slot can-

didates through MF techniques. Combining with a knowledge graph propagation model based

on word/slot relations, the trained SLU model estimates a probability that each semantic slot

occurs in a testing utterance, and how likely each slot is domain-specific simultaneously. In

other words, the SLU model is able to transform testing utterances into domain-specific se-

mantic representations without human involvement.

6.3 Matrix Factorization for Spoken Language Under-
standing (MF-SLU)

Considering the benefits brought by MF techniques, including 1) modeling noisy data, 2)

modeling hidden semantics, and 3) modeling long-range dependencies between observations,

in this work we apply an MF approach to SLU modeling for SDS. In our model, we use U to

denote a set of input utterances, W as a set of word patterns, and S as a set of semantic slots

that we would like to predict. The pair of an utterance u ∈ U and a word pattern/semantic

slot x ∈ {W ∪ S}, 〈u, x〉, is a fact. The input to our model is a set of observed facts O,

and the observed facts for a given utterance is denoted by {〈u, x〉 ∈ O}. The goal of our

model is to estimate, for a given utterance u and a given word pattern/semantic slot x, the

probability, p(Mu,x = 1), where Mu,x is a binary random variable that is true if and only if x

is the word pattern/domain-specific semantic slot in the utterance u. We introduce a series of

exponential family models that estimate the probability using a natural parameter θu,x and
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the logistic sigmoid function:

p(Mu,x = 1 | θu,x) = σ(θu,x) =
1

1 + exp (−θu,x)
(6.1)

We construct a matrix M|U |×(|W |+|S|) as observed facts for MF by integrating a feature model

and a knowledge graph propagation model below.

6.3.1 Feature Model

First, we build a word pattern matrix Fw with binary values based on observations, where

each row represents an utterance and each column refers to an observed unigram. In other

words, Fw carries basic word vectors for utterances, which is illustrated as the left part of the

matrix in Figure 6.1b.

To induce the semantic elements, we parse all ASR-decoded utterances in our corpus us-

ing SEMAFOR [48, 49], and extract all frames from semantic parsing results as slot can-

didates [31, 55]. Figure 3.2 shows an ASR-decoded utterance example “can i have a cheap

restaurant” parsed by SEMAFOR. Three FrameNet-defined frames capability, expensiveness,

and locale by use are generated for the utterance, which we consider as slot candidates for a

domain-specific dialogue system [4]. Then we build a slot matrix Fs with binary values based

on the induced slots, and the matrix also denotes slot features for all utterances (right part

of the matrix in Figure 6.1b).

To build a feature model MF , we concatenate two matrices:

MF = [ Fw Fs ], (6.2)

which is the upper part of the matrix in Figure 6.1b for training utterances. Note that we do

not use any annotations, so all slot candidates are included.

6.3.2 Knowledge Graph Propagation Model

As mentioned in Chapter 3, because SEMAFOR was trained on FrameNet annotation, which

has a more generic frame-semantic context, not all the frames from the parsing results can

be used as the actual slots in the domain-specific dialogue systems. For instance, we see

that the frames expensiveness and locale by use are essentially key slots for the purpose of

understanding in the restaurant query domain, whereas the capability frame does not convey

particularly valuable information for SLU.

Assuming that domain-specific concepts are usually related to each other, considering global
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relations between semantic slots induces a more coherent slot set. It is shown that the relations

on knowledge graphs help make decisions on domain-specific slots [39]. Similar to Chapter 4,

we consider two directed graphs, semantic and lexical knowledge graphs, where each node in

the semantic knowledge graph is a slot candidate si generated by the frame-semantic parser,

and each node in the lexical knowledge graph is a word wj .

• Slot-based semantic knowledge graph is built as Gs = 〈Vs, Ess〉, where Vs = {si ∈
S} and Ess = {eij | si, sj ∈ Vs}.

• Word-based lexical knowledge graph is built as Gw = 〈Vw, Eww〉, where Vw =

{wi ∈W} and Eww = {eij | wi, wj ∈ Vw}.

The edges connect two nodes in the graphs if there is a typed dependency between them. The

structured graph helps define a coherent slot set. To model the relations between words/slots

based on the knowledge graphs, we define two relation models below.

• Semantic Relation

To model word semantic relations, we compute a matrix RSw = [Sim(wi, wj)]|W |×|W |,

where Sim(wi, wj) is the cosine similarity between the dependency embeddings of word

patterns wi and wj after normalization. For slot semantic relations, we compute

RSs = [Sim(si, sj)]|S|×|S| similarly1. The matrices RSw and RSs model not only semantic

similarity but functional similarity since we use dependency-based embeddings [108].

• Dependency Relation

Assuming that important semantic slots are usually mutually related to each other, that

is, connected by syntactic dependencies, our automatically derived knowledge graphs

are able to help model the dependency relations. For word dependency relations, we

compute a matrix RDw = [r̂(wi, wj)]|W |×|W |, where r̂(wi, wj) measures a dependency

relation between two word patterns wi and wj based on the word-based lexical knowledge

graph, and the detail is described in Section 4.3.1. For slot dependency relations, we

similarly compute RDs = [r̂(si, sj)]|S|×|S| based on the slot-based semantic knowledge

graph.

With the built word relation models (RSw and RDw ) and slot relation models (RSs and RDs ), we

combine them as a knowledge graph propagation matrix MR
2.

MR =
[ RSDw 0

0 RSDs

]
, (6.3)

1For each column in RS
w and RS

s , we only keep top 10 highest values, which correspond the top 10 seman-
tically similar nodes.

2The values in the diagonal of MR are 0 to model the propagation from other entries.
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where RSDw = RSw +RDw and RSDs = RSs +RDs to integrate semantic and dependency relations.

The goal of this matrix is to propagate scores between nodes according to different types of

relations in the knowledge graphs [26].

6.3.3 Integrated Model

With a feature model MF and a knowledge graph propagation model MR, we integrate them

into a single matrix.

M = MF · (αI + βMR)

= [ Fw Fs ] ·
[ αI + βRw 0

0 αI + βRs

]
=
[ αFw + βFwRw 0

0 αFs + βFsRs

]
,

(6.4)

where M is the final matrix and I is an identity matrix. α and β are weights for balancing

original values and propagated values, where α + β = 1. The matrix M is similar to MF ,

but some weights are enhanced through the knowledge graph propagation model, MR. The

word relations are built by FwRw, which is the matrix with internal weight propagation on

the lexical knowledge graph (the blue arrow in Figure 6.1b). Similarly, FsRs models the

slot correlations, and can be treated as the matrix with internal weight propagation on the

semantic knowledge graph (the pink arrow in Figure 6.1b). The propagation models can be

treated as running a random walk algorithm on the graphs.

Fs contains all slot candidates generated by SEMAFOR, which may include some generic

slots (such as capability), so the original feature model cannot differentiate domain-specific

and generic concepts. By integrating with Rs, the semantic and dependency relations can

be propagated via edges in the knowledge graph, and domain-specific concepts may have

higher weights based on the assumption that slots for dialogue systems are often mutually

related [39]. Hence, the structure information can be automatically involved in the matrix.

Also, the word relation model brings the same function, but on the word level. In conclusion,

for each utterance, the integrated model not only predicts probabilities that semantic slots

occur but also considers whether the slots are domain-specific. The following sections describe

the learning process.
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6.3.4 Parameter Estimation

The proposed model is parameterized through weights and latent component vectors, where

the parameters are estimated by maximizing the log likelihood of observed data [46].

θ∗ = arg max
θ

∏
u∈U

p(θ |Mu)

= arg max
θ

∏
u∈U

p(Mu | θ)p(θ)

= arg max
θ

∑
u∈U

ln p(Mu | θ)− λθ,

(6.5)

where Mu is the vector corresponding to the utterance u, because we assume that each

utterance is independent of others.

To avoid treating unobserved facts as designed negative facts and to complete missing entries

of the matrix, our model can be factorized by a matrix completion technique with a low-rank

latent semantics assumption [97, 134]. Bayesian personalized ranking (BPR) is an optimiza-

tion criterion that learns from implicit feedback for MF by a matrix completion technique,

which uses a variant of the ranking: giving observed true facts higher scores than unobserved

(true or false) facts to factorize the given matrix [134]. BPR was shown to be useful in

learning implicit relations for improving semantic parsing [38, 135].

6.3.4.1 Objective Function

To estimate the parameters in (6.5), we create a dataset of ranked pairs from M in (6.4):

for each utterance u and each observed fact f+ = 〈u, x+〉, where Mu,x ≥ δ, we choose each

word pattern/slot x− such that f− = 〈u, x−〉, where Mu,x < δ, which refers to the word

pattern/slot we have not observed to be in utterance u. That is, we construct the observed

data O from M . Then for each pair of facts f+ and f−, we want to model p(f+) > p(f−)

and hence θf+ > θf− according to (6.1). BPR maximizes the summation of each ranked pair,

where the objective is ∑
u∈U

ln p(Mu | θ) =
∑
f+∈O

∑
f− 6∈O

lnσ(θf+ − θf−). (6.6)

The BPR objective is an approximation to the per utterance AUC (area under the ROC

curve), which directly correlates to what we want to achieve – well-ranked semantic slots per

utterance.
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6.3.4.2 Optimization

To maximize the objective in (6.6), we employ a stochastic gradient descent (SGD) algo-

rithm [134]. For each randomly sampled observed fact 〈u, x+〉, we sample an unobserved fact

〈u, x−〉, which results in |O| fact pairs 〈f−, f+〉. For each pair, we perform an SGD update

using the gradient of the corresponding objective function for MF [68].

6.4 Experiments

6.4.1 Experimental Setup

In this experiment, we used the Cambridge University SLU corpus as previous chapters [86,

30]. The domain about restaurant recommendation in Cambridge; subjects were asked to

interact with multiple SDSs in an in-car setting. The corpus contains a total number of 2,166

dialogues, including 15,453 utterances (10,571 for self-training and 4,882 for testing). The

vocabulary size is 1,868. There are 10 slots created by domain experts: addr, area, food, name,

phone, postcode, price range, signature, task, and type.

For the parameter setting, weights for balancing feature models and propagation models, α

and β in (6.4), are set as 0.5 to give the same influence, and the threshold for defining the

unobserved facts δ is set as 0.5 for all experiments. We use the Stanford Parser3 to obtain

the collapsed typed syntactic dependencies and set the dimensionality of embeddings d = 300

in all experiments [143].

To evaluate the performance of automatically decoded slots, we measure their quality as the

proximity between predicted slots and reference slots via mappings shown in Figure 3.3. To

eliminate the influence of threshold selection, we take the whole ranking list into account

and use the metric that are independent of the selected threshold for evaluation. For each

utterance, with the predicted probabilities of all slot candidates, we can compute AP to

evaluate the performance of SLU by treating the slots with mappings as positive. MAP is

computed for evaluating all utterances. For all experiments, we perform paired t-test on AP

scores of results to test the significance.

6.4.2 Evaluation Results

Table 6.1 shows the MAP performance of predicted slots for all experiments on ASR and

manual transcripts. For the first baseline using explicit semantics, we use the observed data

3
http://nlp.stanford.edu/software/lex-parser.shtml
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Table 6.1: The MAP of predicted slots (%); † indicates that the result is significantly better
than MLR (row (b)) with p < 0.05 in t-test.

Approach
ASR Transcripts

w/o w/ Explicit w/o w/ Explicit

(a)
Explicit

SVM 32.48 36.62
(b) MLR 33.96 38.78

(c)

+ Implicit
Baseline

Random 3.43 22.45 2.63 25.09
(d) Majority 15.37 32.88 16.43 38.41
(e)

MF
Feature 24.24 37.61† 22.55 45.34†

(f) Feature + KGP 40.46† 43.51† 52.14† 53.40†

to self-train models for predicting the probability of each semantic slot by SVM with linear

kernel and multinomial logistic regression (MLR) (row (a)-(b)) [127, 86]. It is shown that

SVM and MLR perform similarly, and MLR is slightly better than SVM because it has

better capability of estimating probabilities. For modeling implicit semantics, two baselines

are performed as references, random (row (c)) and majority (row (d)) approaches, where

the former assigns random probabilities for all slots, and the later assigns probabilities for

slots based on their frequency distribution. To improve probability estimation, we further

integrate the results from implicit semantics with one from explicit approaches, MLR (row

(b)), by averaging their probability distributions.

Two baselines, random and majority, cannot model the implicit semantics, producing poor

results. The random results integrated with MLR significantly degrades the performance of

MLR for both ASR and manual transcripts. Also, results of the majority approach integrated

with MLR does not produce any difference compared to the MLR baseline. Among the

proposed MF approaches, only using feature model for building the matrix (row (e)) achieves

24.2% and 22.6% of MAP for ASR and manual results respectively, which are worse than

two baselines using explicit semantics. However, with the combination of explicit semantics,

using only the feature model significantly outperforms the baselines, where the performance

comes from about 34.0% to 37.6% and from 38.8% to 45.3% for ASR and manual results

respectively. Additionally integrating a knowledge graph propagation (KGP) model (row

(e)) outperforms the baselines for both ASR and manual transcripts, and the performance is

further improved by combining with explicit semantics (achieving MAP of 43.5% and 53.4%).

The experiments show that the proposed MF models successfully learn implicit semantics and

consider structural relations and domain-specificity simultaneously.

6.4.3 Discussion and Analysis

With promising results obtained by the proposed models, we analyze detailed difference be-

tween different relation models in Table 6.2.
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Table 6.2: The MAP of predicted slots using different types of relation models in MR (%);
† indicates that the result is significantly better than the feature model (column (a)) with
p < 0.05 in t-test.

Model Feature Feature + Knowledge Graph Propagation Model

Rel. (a) None (b) Semantic (c) Dependent (d) Word (e) Slot (f) All

MR -
[
RS

w 0
0 RS

s

] [
RD

w 0
0 RD

s

] [
RSD

w 0
0 0

] [ 0 0
0 RSD

s

] [
RSD

w 0
0 RSD

s

]
ASR 37.61 41.39† 41.63† 39.19† 42.10† 43.51†

Manual 45.34 51.55† 49.04† 45.18 49.91† 53.40†

6.4.3.1 Effectiveness of Semantic and Dependency Relation Models

To evaluate the effectiveness of semantic and dependency relations, we consider each of them

individually in MR of (6.3) (columns (b) and (c) in Table 6.2). Comparing to the original

model (column (a)), both modeling semantic relations and modeling dependency relations

significantly improve the performance for ASR and manual results. It is shown that semantic

relations help the SLU model infer implicit meanings, and then prediction becomes more

accurate. Also, dependency relations successfully differentiate the generic concepts from the

domain-specific concepts, so that the SLU model is able to predict more coherent set of

semantic slots [39]. Integrating two types of relations (column (f)) further improves the

performance.

6.4.3.2 Comparing Word/ Slot Relation Models

To analyze performance results from inter-word and inter-slot relations, the columns (d) and

(e) show results considering only word relations and only slot relations respectively. It can be

seen that the inter-slot relation model significantly improves the performance for both ASR

and manual results. However, the inter-word relation model only performs slightly better

results for ASR output (from 37.6% to 39.2%), and there is no difference after applying the

inter-word relation model on manual transcripts. The reason may be that inter-slot relations

carry high-level semantics that align well with the structure of SDS, but inter-word relations

do not. Nevertheless, combining two relations (column (f)) outperforms both results for ASR

and manual transcripts, showing that different types of relations can compensate each other

and then benefit the SLU performance.

6.5 Summary

This chapter presents an MF approach to self-train the SLU model for semantic decoding

with consideration of a well-organized ontology in an unsupervised way. The purpose of
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the proposed model is not only to predict the probability of each semantic slot but also to

distinguish between generic semantic concepts and domain-specific concepts that are related

to an SDS. The experiments show that the MF-SLU model obtains promising results of

semantic decoding, outperforming strong discriminative baselines.
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7Intent Prediction in SLU

Modeling

“ It’s really interesting to me how all of us can experience the exact same

event, and yet come away with wildly disparate interpretations of what

happened. We each have totally different ideas of what was said, what was

intended, and what really took place.

”
Marya Hornbacher, Pulitzer Prize nominee

SLU modeling has different aspects: shallow understanding and deep understanding. In

addition to low-level semantic concepts from semantic decoding, deeply understanding users

involves more high-level intentions. Since users usually take observable actions motivated

by their intents, predicting intents along with follow-up actions can be viewed as another

aspect about SLU. A good SLU module is able to accurately understand low-level semantic

meanings of utterances and high-level user intentions, which allows SDSs to further predict

users’ follow-up actions in order to offer better interactions. This chapter focuses on predicting

user intents, which correspond to observable actions, using a feature-enriched MF technique,

in order to deeply understand users in the unsupervised and semi-supervised manners.

7.1 Introduction

In a dialogue system, SLU and DM modules play important roles because they first map

utterances into semantics and then into intent-triggered actions. The semantic representa-

tions of user utterances usually refer to the specified information that directly occurs in the

utterances. To involve deeper understanding, high-level intentions should be considered. For

example, in a restaurant domain, “find me a taiwanese restaurant” has a semantic form as

action=“find”, type=“taiwanese”, target=“restaurant”, and a follow-up intended action might

be asking for its location or navigation, which can be viewed as the high-level intention. As-

suming an SDS is able to predict user intents (e.g. navigation), the system not only returns

the user a restaurant list but also asks whether the user needs the corresponding location or

navigating instructions, and then automatically launches the corresponding application (e.g.
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Maps), providing better conversational interactions and more friendly user experience [147]

To design the SLU module of an SDS, most previous studies relied on the predefined ontology

and schema to bridge intents and semantic slots [14, 41, 56, 72, 138].

Recently, dialogue systems are appearing on smart-phones and allowing users to launch ap-

plications1 via spontaneous speech. Typically, an SDS needs predefined task domains to

understand corresponding functions, such as setting alert clock and query words via browser,

Each app supports a single-turn request task. However, traditional SDSs are unable to dy-

namically support functions provided by newly installed or not yet installed apps, so that

open domain requests cannot be handled due to lack of predefined ontologies. We address the

following question: with an open domain single-turn request, how can a system dynamically

and effectively provide the corresponding functions to fulfill users’ requests? This chapter

first focuses on understanding a user’s intent and identifying apps that can support such

open domain requests.

In addition to the difficulty caused by language ambiguity, behavioral patterns also influence

user intents. Typical intelligent assistants (IA) treat each domain (e.g. restaurant search,

messaging, etc.) independent of each other, where only current user utterances are considered

to decide the desired apps in SLU [28]. Some IAs model user intents by using contexts from

previous utterances, but they do not take into account behavioral patterns of individual

users [11]. This work improves intent prediction based on our observation that the intended

apps usually depend on 1) individual preference (some people prefer Message to Email)

and 2) behavioral patterns at the app level (Message is more likely to follow Camera, and

Email is more likely to follow Excel). Since behavioral contexts from previous turns affect

intent prediction, we refer it as a multi-turn interaction task.

To improve understanding, some studies utilized non-verbal contexts like eye gaze and head

nod as cues to resolve the referring expression ambiguity and to improve driving perfor-

mance [77, 99]. Because human users often interact with their phones to carry out compli-

cated tasks that span multiple domains and applications, user behavioral patterns as addi-

tional non-verbal signals may provide deeper insights into user intents [142, 24]. For example,

if a user always texts his friend via Message instead of Email right after finding a good

restaurant via Yelp, this behavioral pattern helps disambiguate apps corresponding to the

communicating utterance “send to alex”.

Another challenge of SLU is inference of hidden semantics, which is mentioned in the previous

chapter. Considering a user utterance “i would like to contact alex”, we can see that its

surface patterns includes explicit semantic information about “contact”; however, it also

includes hidden semantic information such as “message” and “email”, since the user is likely

1In the rest of the document, we use the word “app” in stead of the word “application” for simplification.
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to launch some apps such as Messenger (message) or Outlook (email) even though they

are not directly observed in the surface patterns. Traditional SLU models use discriminative

classifiers to predict whether predefined slots occur in the utterances or not and ignore hidden

semantic information. However, in order to provide better interactions with users, modeling

hidden intents helps predict user-desired apps. Therefore, this chapter proposes a feature-

enriched MF model to learn low-ranked latent features for SLU [98]. Specifically, an MF-

SLU model is able to learn relations between observed features and unobserved features, and

estimate probabilities of all unobserved patterns instead of viewing them as negative instances

as described in Chapter 6. Therefore, the feature-enriched MF-SLU incorporates rich features,

including semantic and behavioral cues, to infer high-level intents.

For the single-turn request task, the model takes account of app descriptions and spoken

utterances along with enriched semantic knowledge in a joint fashion. More specifically, we

use entity linking methods based on structured knowledge resources, which are to locate

slot fillers in a given utterance, and then types of identified fillers are extracted as semantic

seeds to enrich the features of the utterance. In additional to slot types, low-level semantics

of the utterance is further enriched with related knowledge that is automatically extracted

through neural word embeddings. Then applying feature-enriched MF-SLU enables an SDS

to dynamically support non-predefined domains based on the semantics-enriched models. We

evaluate the performance by examining whether predicted apps are capable of fulfilling users’

requests.

For the multi-turn interaction task, the model additionally incorporates contextual behavior

history to improve intent prediction. Here we take personal app usage history into account,

where the behavioral patterns are used to enrich utterance features, in order to infer user

intents better. Finally the system is able to provide behavioral and context-aware personalized

prediction by feature-enriched MF techniques. To evaluate the personalized performance, we

examine whether predicted apps are what the users actually launch.

We evaluate the performance by examining whether predicted applications can satisfy users’

requests. The experiments show that our MF-based approach can model user intents and

allow an SDS to provide better responses for both unsupervised single-turn requests and

supervised multi-turn interactions. Our contributions include:

• This is among the first attempts to apply feature-enriched MF techniques for intent

modeling, incorporating different sources of rich information (app description, semantic

knowledge, behavioral patterns);

• The feature-enriched MF-SLU approach jointly models spoken observations, available

text information, and structured knowledge to infer user intents for single-turn requests,

taking hidden semantics into account;
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Figure 7.1: Total 13 tasks in the corpus (only pictures are shown to subjects for making
requests).

• The behavioral patterns can be incorporated into the feature-enriched MF-SLU ap-

proach to model user preference for personalized understanding in multi-turn interac-

tions;

• Our experimental results indicate that feature-enriched MF-SLU approaches outperform

most strong baselines and achieve better intent prediction performance.

7.2 Data Description

The data for intent prediction focuses on mobile app interactions, where there are two

datasets, single-turn request and multi-turn interaction. The detail is described below.

7.2.1 Single-Turn Request for Mobile Apps

Considering to expand useful domains of SDS, we extract the most popular apps from mobile

app stores for defining important domains users tend to access frequently, and the defined
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Table 7.1: The recording examples collected from some subjects for single-turn requests.

ID Task Description Utterance Transcript

3 Phone Call
please dial a phone call to alex
can i have a telcon with alex

10 Navigation
how can i go from my home to cmu
i’d like navigation instruction from my home to cmu

domains are used to design the experiments for this task. Figure 7.1 shows total 13 domains

we define for experiments. The speech data is collected from 5 non-native subjects (1 female

and 4 males). They are only provided with pictures referring to domain-specific tasks in

a random order. For each picture/task, a subject is asked to use 3 different ways to make

requests for fulfilling the task implied by the displayed picture, and then subjects are asked to

manually annotate apps from Google Play2 that can support the corresponding tasks. These

annotated apps are treated as our ground truth for evaluation.

Thus 39 utterances (total 13 tasks and 3 ways for each) are collected from each subject.

Figured 7.1 shows provided pictures and implied tasks, and some recording examples are

shown in Table 7.1. The corpus contains 195 utterances. An ASR system was used to

transcribe speech into text, and WER is reported as 19.8%. Here we use Google Speech API

to perform better recognition results because it covers more named entities, which may be

out-of-vocabulary words for most recognizers. The average number of words in an utterance is

6.8 for ASR outputs and 7.2 for manual transcripts, which implies the challenge of retrieving

relevant apps with limited information in a short spoken request.

The data to populate the database was collected from Google Play in November 2012. Each

Android app in Google Play has its own description page, and the extracted metadata includes

its name, number of downloads, and content description3. Total 140,854 apps were available4;

only 1,881 apps that have more than one million downloads were considered to return to users.

7.2.2 Multi-Turn Interaction for Mobile Apps

To understand how user spoken language produced in the course of multi-app tasks might be

modeled, we conducted a longitudinal study with 14 participants to investigate how people

structure and perform such tasks via speech [37]. We investigated users’ behaviors across

multiple domains/apps. An Android logging app was installed on users’ phones to record app

2https://play.google.com/store
3Google does not provide the absolute number of downloads. Instead, it discretizes this number into several

ranges.
4Google defines two major categories for the programs, “game” and “application”. This paper only uses

apps with category “application”.
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Figure 7.2: The dialogue example for multi-turn interaction with multiple apps

invocations, time and location (users had the ability to drop sensitive personal activities).

Participants came in regularly to annotate their activities including [146]:

1. Task Structure — link apps that served a common goal.

2. Task Description — type in a brief description of the goal or intention of the task.

For example, in the upper part of Figure 7.2, Settings and Music are linked together since

they were used for the goal of “play music via bluetooth speaker”.

Then users were later shown tasks that they had annotated earlier along with the meta-data

(date, location, and time), the task description they furnished earlier, and the apps that had

been grouped (Meta, Desc, App lines in Figure 7.2). They were asked to use a WoZ system

to repeat the same task via speech. The wizard arrangement was not concealed and the

human wizard was in the same space (albeit not directly visible). The wizard was instructed

to respond directly to participants’ goal-directed requests and to not accept out-of-domain

inputs. Participants were informed that they do not need to follow the order of the apps used

on their smart-phones. Other than for being on-task, we did not constrain what users could

say.

Conversations between users (U) and the wizard (W) were recorded, segmented into utter-

ances and transcribed by both a human and a cloud speech recognizer. An example dialogue

is shown in the lower part of Figure 7.2. Each user utterance was further associated with the

apps that are able to handle it. As in Figure 7.2, Settings would deal with the utterance
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“connect my phone to bluetooth speakers” (U1) and Music would take care of music-related

utterances such as “and play music” (U2) and “shuffle playlist” (U3).

The smart-phone app usage data was collected from 14 participants with Android OS version

4. This included 533 multi-app spoken dialogs with 1607 utterances (about 3 user utterances

per dialogue). Among these dialogues, there are 455 multi-turn dialogues (82.3%), which

provides behavioral information for intent prediction. With Google Speech API, the WER is

22.7%5.

7.3 Feature-Enriched MF-SLU

Under the app-oriented SDS, the main idea is to predict user intents along with correspond-

ing apps. For single-turn requests, given a user utterance, how can an SDS dynamically

support functions corresponding to requests beyond predefined domains in an unsupervised

manner [28]? For multi-turn interactions, the goal is to predict the apps that are more likely

to be used to handle the user requests given input utterances and behavioral contexts, consid-

ering not only the desired functionality but also user preference. We build an SLU component

to model user intents: we frame the task as a multi-class classification problem, where we

estimate the probability of each intent/app a given an utterance u, P (a | u), using a proposed

feature-enriched MF approach.

As Chapter 6 described, an MF model considers the unobserved patterns and estimates

their probabilities instead of viewing them as negative, allowing it to model the implicit

information [38]. Due to several advantages of MF techniques, such as modeling noisy data,

hidden semantics, and long-range dependencies, an MF approach is applied to intent modeling.

First we define 〈x, y〉 as a fact, which refers to an entry in a matrix. The input of our model

is a set of observed facts O, and the observed facts for a given utterance is denoted by

{〈x, y〉 ∈ O}. The goal of our model is to estimate, for a given utterance x and an app-related

intent y, the probability, P (Mx,y = 1), where Mx,y is a binary random variable that is true

if and only if y is the app for supporting the utterance x. Similarly, a series of exponential

family models are introduced to estimate the probability using a natural parameter θx,y and

the logistic sigmoid function:

P (Mx,y = 1 | θx,y) = σ(θx,y) =
1

1 + exp (−θx,y)
(7.1)

For single-turn requests and multi-turn interactions, we construct a matrix M as observed

facts using different types of enriched features, and the matrix can then be factorized by a

matrix completion technique with the assumption that the matrix is low-rank.

5The dataset is available at http://AppDialogue.com.
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the low-rank matrix for implicit information modeling. Dark circles are observed facts, and
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Algorithm 2: Semantics Enrichment Procedure

Data: a word observation set W in the utterance; a vocabulary V ; the word relatedness
function fs(·)

Result: a set of enriched semantics S

initializating S∗ = {};
for w ∈W do

Extracting the words with similarity higher than a threshold from the vocabulary,
V ∗ = {v | fs(w, v) ≥ δ, v ∈ V };
Enrich the semantic set S∗ ← S∗ ∪ V ∗;

end
S ← S∗;

7.3.1 Feature-Enriched Matrix Construction

For each of single-turn request and multi-turn interaction tasks, we construct a feature-

enriched matrix below. The illustration of two matrices is shown in Figure 7.3. They are

enriched with various modalities. For unsupervised single-turn requests, the matrix in Fig-

ure 7.3a incorporates word observations, enriched semantics, and pseudo relevant apps for

intent modeling. For supervised multi-turn interactions, the matrix in Figure 7.3b models

word observations and contextual behavior for intent prediction. Below we use a similar MF

framework, which contains three sets of information, lexical features (word observation ma-

trix), low-level semantic features (enriched semantics matrix), and high-level intent results

(intent matrix), to model user intents [42].

7.3.1.1 Word Observation Matrix

A word observation matrix features with binary values based on n-gram word patterns. For

single-turn requests, two word observation matrices are built, where FAw is for textual app

descriptions and FUw is for spoken utterances. Each row in the matrix represents an app/ut-

terance and each column refers to an observed word pattern. In other words, FAw and FUw

carry basic word vectors for all apps and all utterances respectively. Similarly, for multi-

turn interactions, a word observation matrix, FUw , is constructed for spoken utterances. The

left-most column set in Figure 7.3 illustrates lexical features for the given utterances.

7.3.1.2 Enriched Semantics Matrix

For single-turn requests, considering to include open domain knowledge based on user utter-

ances, we utilize distributed word representations to capture syntactic and semantic relation-

ship for acquiring domain knowledge [28, 33].
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• Embedding-based semantics

We enrich original utterances with semantically similar words, where the similarity is

measured by word embeddings trained on all app descriptions [28, 118]. Algorithm 2

shows the procedure of acquiring domain knowledge for semantics enrichment. This

procedure is to obtain semantically related knowledge for enriching original utterances.

For example, “compose an email to alex” focuses on the email writing domain, and

generated semantic seeds may include the tokens “text” and “contacting”. Then word

embeddings can help provide additional words with similar concepts. For example, the

nearest vectors of “text” include “message”, “msg”, etc. in the continuous space. This

procedure leverages rich semantics by incorporating conceptually related knowledge, so

that the system can provide proper apps for supporting open domain requests.

• Type-embedding-based semantics

In addition to semantically similar words, types of concepts are included to further

expand semantic information. For example, “play lady gaga’s bad romance” may contain

the types “singer” and “song” to improve semantic inference (domain-related cues about

music playing), where we detect all entity mention candidates in the given utterances

and use entity linking with Freebase and Wikipedia to mine entity types [28].

– Wikipedia page linking

For an entity mention set in the given utterance, we output a set of linked

Wikipedia pages, where an integer linear programming (ILP) formulation to gen-

erate the mapping from mentions to Wikipedia pages [43, 133]. For each entity,

we extract the definition sentence from the linked page, and then all words parsed

into adjectives or nouns in the noun phrase just following the part-of-speech pat-

tern (VBZ) (DT) such as “is a/an/the” are extracted as semantic concepts. For

example, the sentence about the entity “lady gaga” is “Stefani Joanne Angelina

Germanotta, better known by her stage name Lady Gaga, is an American singer

and songwriter.”, and the entity types, “American singer” and “songwriter”, are

extracted.

– Freebase list linking

Each mention can be linked to a ranked list of Freebase nodes by Freebase API6,

and we extract the top K notable types for each entity as the acquired knowledge.

Then an enriched semantics matrix can be built as FUs , where each row is a utterance

and each column corresponds a semantic element shown in Figure 7.3.

For multi-turn interactions, we enrich utterances with contextual behaviors to incorporate

behavioral information into personalized and context-aware intent modeling. Figure 7.3b

6https://developers.google.com/freebase/

88

https://developers.google.com/freebase/


illustrates the enriched behavioral features as FUb , where the second utterance “tell vivian

this is me in the lab” involves “Camera” acquired from the previous turn “take this photo”.

The behavioral history at turn t, ht, can be formulated as {a1, ..., at−1}, which is a set of apps

that were previously launched in the ongoing dialogue.

7.3.1.3 Intent Matrix

To link word patterns with corresponding intents, an intended app matrix FAa is constructed,

where each column corresponds to launching a specific app. Hence, the entry is 1 when the

app and the intent correspond to each other, and 0 otherwise,

For unsupervised single-turn requests, to induce user intents, we use a basic retrieval model

for returning top K relevant apps for each utterance u, and treat them as pseudo intended

apps [28], which is detailed in Section 7.4.1. Figure 7.3a includes an example of utterance “i

would like to contact alex”, where the utterance is treated as a request to search for relevant

apps such as “Outlook” and “Skype”. Then we build an app matrix FUa with binary values

based on the top relevant apps, which also denotes intent features for utterances. Note that

we do not use any annotations, the app-related intents are returned by a retrieval model and

may contain some noises.

For personalized intent prediction on multi-turn interactions, the intent matrix can be directly

acquired from users’ app usage logs. FUa can be built and illustrated in the right part of matrix

from Figure 7.3b.

7.3.1.4 Integrated Model

As shown in Figure 7.3, we integrate word matrices, an enriched semantics matrix, and

intent matrices from both apps and utterances together for training an MF-SLU model. The

integrated model for single-turn requests can be formulate as

M = [
FA
w 0 FA

a

FU
w FU

s FU
a

]. (7.2)

Similarly, the integrated matrix for multi-turn interactions can be built as

M = [ FU
w FU

s FU
a ]. (7.3)

Hence, the relations among word patterns, domain knowledge, and behaviors can be automat-

ically inferred from the integrated model in a joint fashion. The goal of the feature-enriched

MF-SLU model is, for a given user utterance, to predict the probability that the user intents
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to launch each app.

7.3.2 Optimization Procedure

With the built matrix, M , we can learn a model θ∗ that can best estimate the observed

patterns by parametrizing the matrix through weights and latent component vectors, where

the parameters are estimated by maximizing the log likelihood of observed data similar to

(6.5) [46].

θ∗ = arg max
θ

∏
x∈X

p(θ |Mx)

= arg max
θ

∏
x∈X

p(Mx | θ) · p(θ)

= arg max
θ

∑
x∈X

ln p(Mx | θ)− λθ,

(7.4)

where X is a set indicating row information. For single-turn requests, Mx is a row vector

corresponding either an app or an utterance; for multi-turn interactions, Mx corresponds to

an utterance. Here the assumption is that each row (app/utterance) is independent of others.

Similar to Chapter 6, we apply BPR to parameterize the integrated model, and create a

dataset by sampling from M . In single-turn requests, for each app/utterance x and each

observed fact f+ = 〈x, y+〉, we choose each feature y− referring to the word/semantics that

does not correspond to x or the app that is not returned as by the basic retrieval model

according to the utterance x. Also, in multi-turn interactions, for each utterance x (e.g. “take

this photo” in Figure 7.3b) we created pairs of observed and unobserved facts: f+ = 〈x, y+〉
and f− = 〈x, y−〉, where y+ corresponds to an observed lexical/behavioral/intent feature (e.g.,

“photo” for lexical, “null” for behavior, “camera” for intended app) and y− corresponds to

an unobserved feature (e.g. “tell”, “camera”, “email”). Then for each pair of facts f+ and

f−, we maximize the margin between p(f+) and p(f−) with the objective:∑
x∈X

ln p(Mx | θ) =
∑
f+∈O

∑
f− 6∈O

lnσ(θf+ − θf−). (7.5)

The BPR objective is an approximation to the per utterance AUC, which correlates with

well-ranked apps per utterance. The fact pairs constructed from sampled observed facts

〈x, y+〉 and unobserved facts 〈x, y−〉 form |O|, and an SGD update is applied to maximize

the objective for MF [68, 134].

Finally we can obtain estimated probabilities of various features given the current utterance,

which corresponds to probabilities of intended apps given the utterance, P (a | u). For single-

turn requests, Figure 7.3a shows that hidden semantics, “message” and “email”, are inferred

from “i would like to contact alex” because relations between features are captured by the

90



model based on app descriptions and previous user utterances. For multi-turn interactions,

as shown in Figure 7.3b, hidden semantics (e.g. “tell”, “email”) can also be inferred from

“send it to alice” in this model based on both lexical and behavioral features.

7.4 User Intent Prediction for Mobile App

For each test utterance u, with the trained MF model, we can predict the probability of

each intended app a based on the observed features corresponding to the current utterance

by taking into account two models, a baseline model for explicit semantics and a feature-

enriched MF-SLU model for implicit semantics:

P (a | u) = Pexp(a | u)× Pimp(a | u)

= Pexp(a | u)× P (Mu,a = 1 | θ),
(7.6)

where P (a | u) is an integrated probability for ranking apps, Pexp(a | u) is the probability

outputted by the baseline model that considers explicit semantics, and Pimp(a | u) is the

probability estimated by the MF-based model. The fused probabilities are able to consider

hidden intents by learning latent semantics from the enriched features. The baselines for

modeling explicit semantics Pexp(a | u) for single-turn requests and multi-turn interactions

are described below.

7.4.1 Baseline Model for Single-Turn Requests

Considering an unsupervised task of ranking apps based on user spoken requests, the baselines

for modeling explicit semantics Pexp(a | u) for single-turn requests apply a language modeling

retrieval technique for query likelihood estimation, and app-related behaviors are ranked by

Pexp(a | u) =
P (u | a)P (a)

P (u)

∝ P (u | a) =
1

|u|
∑
w∈u

logP (w | a),
(7.7)

where u is a user’s query, a is an app-related intent, w represents a token in the query, and

P (u | a) represents the probability that user speaks the utterance u to make the request for

launching the app a7 [28, 130]. For example, in order to use the app Gmail, a user is more

likely to say “compose an email to alex”, while the same utterance should correspond to a

lower probability when launching the app Maps. To estimate the likelihood by the language

modeling approach, we use the description content of this app with assumption that it carries

7Here we assume that the priors for apps/utterances are the same.
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semantically related information. For example, the description of Gmail includes a text

segment “read and respond to your conversations”, and Maps includes texts “navigating”

and “spots” in its description.

7.4.2 Baseline Model for Multi-Turn Interactions

In multi-turn interactions, the goal is to predict the apps that are more likely to be used

to handle user requests given input utterances and behavioral contexts, considering not only

the desired functionality but also user preference. Considering that multi-app tasks are often

user-specific, we want to build a personalized SLU component for each user to model his/her

intents; we frame the task as a multi-class classification problem, and perform a standard

MLR to model explicit semantics, where the model uses a standard maximum likelihood

estimation approach by the gradient ascent to estimate the likelihood Pexp(a | u).

7.5 Experimental Setup

In single-turn requests, we train a word embedding model to enrich utterances with domain

knowledge for semantics enrichment, which is described in Section 7.5.1. To build an intent

matrix, a retrieval model is applied to acquire pseudo intended apps. This procedure is

detailed in Section 7.5.2. In multi-turn interactions, we group 70% of each user’s multi-app

dialogues (chronologically ordered) into a training set, and use the rest 30% as a testing set.

In the experiments, we then build a user-independent and user-dependent (personalized) SLU

model to estimate the probability distribution of all apps. All experiments are performed on

both ASR and manual transcripts as follows.

7.5.1 Word Embedding

To include distributional semantics for SLU, we use description contents of all apps to train

word embeddings using CBOW, which predicts the current word based on the context8. The

resulting vectors have dimensionality 300, and vocabulary size is 8× 105 [118].

7.5.2 Retrieval Setup

Lemur toolkit9 is used to perform our retrieval model for ranking apps. For the retrieval

setting, word stemming10 and stopword removal11 are applied, and we assign an equal weight

8
https://code.google.com/p/word2vec/

9
http://www.lemurproject.org/

10
http://tartarus.org/martin/PorterStemmer/

11
http://www.lextek.com/manuals/onix/stopwords1.html

92

https://code.google.com/p/word2vec/
http://www.lemurproject.org/
http://tartarus.org/martin/PorterStemmer/
http://www.lextek.com/manuals/onix/stopwords1.html


to each term in the query to eliminate the influence of weighting [130]. To further consider

popularity of apps, for each returned list, we rerank “popular” apps to the top of this list,

where “popular” means the apps with more than ten million downloads, because we assume

that users are more willing to use/install popular apps, and also our ground truth is based on

subjects’ annotations, where most reference apps belong to the set of popular apps we define.

7.6 Results

Under the app-oriented SDS, the main idea is to model users’ intents; therefore, we evaluate

the model performance by measuring whether the predicted apps satisfy users’ need. For

single-turn requests, we use subject-labeled apps as our ground truth for evaluating our

returned apps, where we use standard metrics of information retrieval, MAP and P@10 in

the experiments. Similarly, for multi-turn interactions, we also evaluate the performance

by MAP to consider the whole ranking list of all apps corresponding to each utterance.

Considering that the multi-turn interaction task is supervised, we additionally report turn

accuracy (ACC) as the percentage of our top-1 predictions that match the correct apps, which

is exactly the same as P@1.

7.6.1 Results for Single-Turn Requests

We evaluated the proposed feature-enriched MF approach for single-turn requests in Table 7.2

and Table 7.3, which present the results using different features before and after integrating

with the feature-enriched MF-SLU model for ASR and manual transcripts.

Table 7.2 shows that almost all results are improved after combining with the MF model, in-

dicating that hidden semantics modeled by MF techniques helps estimate intent probabilities.

For ASR results, enriching semantics using embedding-based (row (b)) and type-embedding-

based semantics (row (c)) significantly improve the baseline performance (row (a)) using a

basic retrieval model, where the MAP performance is increased from 25.1% to 31.5%. Then

the performance can be further improved by integrating MF to additionally model hidden

semantics, where row (b) achieves 34.2% on MAP. The reason why type-embedding-based

semantics (row (c)) does not perform better compared with embedding-based semantics (row

(b)) is that the automatically acquired type information appears to introduce noises, and row

(c) is slightly worse than row (b) for ASR results.

For manually transcribed speech in Table 7.2, the semantic enrichment procedure and MF-

SLU models also improve the performance. Different from ASR results, the best result for user

intent prediction is based on the features enriched with type-embedding-based semantics (row

(c)), achieving 34.0% on MAP. The reason may be that manual transcripts are more likely to
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Table 7.2: User intent prediction for single-turn requests on MAP using different training
features (%). LM is a baseline language modeling approach that models explicit semantics.

Feature for Single-Turn Request
ASR Transcripts

LM w/ MF-SLU LM w/ MF-SLU

(a) Word Observation 25.1 29.2 (+16.2%) 26.1 30.4 (+16.4%)

(b) Word + Embedding Semantics 32.0 34.2 (+6.8%) 33.3 33.3 (-0.2%)
(c) Word + Type-Embedding Semantics 31.5 32.2 (+2.1%) 32.9 34.0 (+3.4%)

Table 7.3: User intent prediction for single-turn requests on P@10 using different training
features (%). LM is a baseline language modeling approach that models explicit semantics.

Feature for Single-Turn Request
ASR Transcripts

LM w/ MF-SLU LM w/ MF-SLU

(d) Word Observation 28.6 29.5 (+3.4%) 29.2 30.1 (+2.8%)

(e) Word + Embedding Semantics 31.2 32.5 (+4.3%) 32.0 33.0 (+3.4%)
(f) Word + Type-Embedding Semantics 31.3 30.6 (-2.3%) 32.5 34.7 (+6.8%)

capture the correct semantic information by word embeddings and have more consistent type

information, allowing the MF technique to model user intents better and more accurate.

Also, Table 7.3 shows the similar trends on P@10, where row (e) with MF is best result for

ASR, and row (f) is best results for manual transcripts. In sum, the results show that rich

features carried by app descriptions and utterance-related contents can help intent prediction

in single-turn requests using the proposed MF-SLU model for most cases. The evaluation

results also prove the effectiveness of our feature-enriched MF-SLU models, which incorporate

enriched semantics and model implicit semantics along with explicit semantics in a joint

fashion, demonstrating promising performance.

7.6.2 Results for Multi-Turn Interactions

To analyze whether contextual behaviors convey informative cues for personalized intent

prediction, Table 7.4 and Table 7.5 show the personalized SLU performance using lexical and

behavioral features individually on both ASR and manual transcripts, where we build an SLU

model for each subject and then predict intents of given utterances using the corresponding

user-dependent models.

For the baseline MLR that models explicit semantics, we can see that lexical features alone

(row (a)) achieve better performance than behavioral features alone (row (b)), indicating that

the majority of utterances contains explicit expressions that are predictable. In addition,

combining behavior history patterns with lexical features (row (c)) performs best in terms of

the two measures. This implies that users’ personal app usage patterns can improve prediction
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Table 7.4: User intent prediction for multi-turn interactions on MAP (%). MLR is a multi-
class baseline for modeling explicit semantics. † means that all features perform significantly
better than lexical/behavioral features alone; § means that integrating using MF can signifi-
cantly improve the MLR model (t-test with p < 0.05).

Feature for Multi-Turn Interaction
ASR Transcripts

MLR w/ MF-SLU MLR w/ MF-SLU

(a) Word Observation 52.1 52.7 (+1.2%) 55.5 55.4 (-0.2%)
(b) Behavioral Pattern 25.2 26.7 (+6.0%§) 25.2 26.7 (+6.0%§)

(c) Word + Behavioral Features 53.9† 55.7† (+3.3%§) 56.6 57.7† (+1.9%§)

Table 7.5: User intent prediction for multi-turn interactions on turn accuracy (%). MLR
is a multi-class baseline for modeling explicit semantics. † means that all features perform
significantly better than lexical/behavioral features alone; § means that integrating using MF
can significantly improve the MLR model (t-test with p < 0.05).

Feature for Multi-Turn Interaction
ASR Transcripts

MLR w/ MF-SLU MLR w/ MF-SLU

(d) Word Observation 48.2 48.3 (+0.2%) 51.6 51.3 (-0.6%)
(e) Behavioral Pattern 19.3 20.6 (+6.7%) 19.3 20.6 (+6.7%)

(f) Word + Behavioral Features 50.1† 51.9† (+3.6%§) 52.8 54.0† (+2.3%)

by allowing the model to capture dependencies between lexical and behavioral features.

To evaluate the effectiveness of modeling latent semantics via MF, we can find that the

performance of the MLR model integrated with MF-SLU estimation. For ASR transcripts,

combining MLR with MF-SLU outperforms all MLR models (significant improvement with

p < 0.05 in t-test), because MF is able to model latent semantics under lexical and behavioral

patterns. For manual results, integrating with the MF-SLU model does not perform better

when using only lexical features (row (a)), possibly because manually transcribed utterances

contain more clear and explicit semantics, so that learning latent semantics does not improve

the performance. However, using behavioral features or using all features show significantly

better performance when combining with the proposed MF-based method.

Table 7.5 shows the similar trend as Table 7.4, where the improvement of ACC is more than

the improvement of MAP, showing that the model produces accurate prediction of the top

returned intent. Comparing results for ASR and manual transcripts, we observed that the

performance is worse when user utterances contain recognition errors, possibly because the

explicit expression contains more noises and thus results in worse prediction. The benefit of

MF techniques on ASR results is more pronounced (3.3% and 3.6% relative improvement of

MAP and ACC respectively) than for manual transcripts, showing the effectiveness of MF in

modeling latent semantics in noisy data.
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Finally, our experiments show the feasibility of disambiguating spoken language inputs for

better intent prediction using behavioral patterns. The best prediction on ASR reaches 55.7%

of MAP and 51.9% of ACC.

7.6.3 Comparing between User-Dependent and User-Independent Models

To deeply investigate the performance for personalized models, we conduct experiments to

compare the difference between user-independent models and user-dependent models in Ta-

ble 7.6 and Table 7.7.

The first two rows are baseline results using maximum likelihood estimation (MLE), which

predict the intended apps based on the observed app distribution. Here it can be found that

the user-dependent model (row (b)) performs better than the user-independent model (row

(a)). Note that MLE only considers the observed frequency of app usage, so there is no

difference between ASR and manual results. The rows (c) and (d) use MLR to model explicit

semantics, where the performance is significantly better than MLE, and user-dependent mod-

els (row (d)) still outperform user-independent models (row (c)) using lexical alone, behavioral

alone, or combined features for both ASR and manual transcripts.

To analyze the capability of modeling hidden semantics, the rows (e) and (f) apply MF to

model the implicit semantics before integrating with models about explicit semantics. Using

an MF model alone does not perform better compared to MLR, because MF takes latent in-

formation into account and has weaker capability of modeling explicit observations. However,

the performance of the user-independent model through behavioral patterns achieves 39.9%

for both ASR and manual transcripts, but combining with lexical features only performs 21.2%

and 19.8% for ASR and manual results. The results may be unreliable due to data sparsity in

MF. Personalized results (row (f)) perform much better than user-independent models (row

(e)), indicating that inference relations between apps are more obvious for individual users.

Then we investigate the performance using different combinations in rows (g) and (h), where

row (g) combines user-independent MLR (row (c)) and personalized MF (row (e)), and row

(h) combines personalized MLR (row (d)) and personalized MF (row (e)). By integrating

personalized MF, both models are improved for ASR and manual transcripts. Between these

two combinations, it can be found that utilizing user-specific data to model both explicit and

implicit semantics (row (h)) is able to achieve the best performance, where the best results

are 55.7% and 57.5% on ASR and manual transcripts respectively.

Table 7.7 shows the performance of turn accuracy, and almost all trends are the same, except

for the user-independent MF model using only behavioral patterns (row (e)), which produces

more reasonable results, 7.6% for both ASR and manual transcripts. The poor performance
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Table 7.6: User intent prediction for multi-turn interactions on MAP for ASR and manual
transcripts (%). † means that all features perform significantly better than lexical/behavioral
features alone; § means that integrating with MF significantly improves the MLR model
(t-test with p < 0.05).

Approach
ASR Transcripts

Lex. Behav. All Lex. Behav. All

(a)
MLE

User-Independent 19.6
(b) Personalized 27.9

(c)
MLR

User-Independent 46.4 18.7 50.1† 51.3 18.7 53.1
(d) Personalized 52.1 25.2 53.9† 55.5 25.2 56.6

(e)
MF-SLU

User-Independent 19.4 39.9 21.2 16.8 39.9 19.8
(f) Personalized 29.8 43.8 29.8 30.8 43.8 31.5

(g) (c) + Personalized MF-SLU 51.1 20.3 54.2†§ 53.3 20.3 57.6†§

(h) (d) + Personalized MF-SLU 52.7 26.7 55.7†§ 55.4 26.7 57.7†§

Table 7.7: User intent prediction for multi-turn interaction on ACC for ASR and manual
transcripts (%). † means that all features perform significantly better than lexical/behavioral
features alone; § means that integrating with MF significantly improves the MLR model
(t-test with p < 0.05).

Approach
ASR Transcripts

Lex. Behav. All Lex. Behav. All

(a)
MLE

User-Independent 13.5
(b) Personalized 20.2

(c)
MLR

User-Independent 42.8 14.9 46.2† 47.7 14.9 48.8
(d) Personalized 48.2 19.3 50.1† 51.6 19.3 52.8

(e)
MF-SLU

User-Independent 13.4 7.6 14.8 10.1 7.6 13.6
(f) Personalized 21.7 16.5 21.8 23.3 16.5 24.2

(g) (c) + Personalized MF-SLU 47.6 16.4 50.3†§ 49.1 16.4 53.5†§

(h) (d) + Personalized MF-SLU 48.3 20.6 51.9†§ 51.3 20.6 54.0†

of the user-independent model is expectable, because different users usually have different

preference and history usage. In terms of ACC, the best performance is 51.9% and 54.0% on

ASR and manual results respectively, concluding that applying personalized SLU on explicit

and implicit semantics is better.

7.7 Summary

This chapter presents a feature-enriched MF-SLU approach to learn user intents based on the

automatically acquired rich features, in one case taking account into domain knowledge and in

another case incorporating behavioral patterns along with user utterances. In a smart-phone

intelligent assistant setting (e.g. requesting an app launch), the proposed model considers
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implicit semantics to enhance intent inference given the noisy ASR inputs for single-turn re-

quest dialogues. The model is also able to incorporate users’ behavioral patterns and their

app preferences to better predict user intents in multi-turn interactions. We believe that

the proposed approach allows systems to handle users’ open domain intents when retriev-

ing relevant apps that provide desired functionality either locally available or by suggesting

installation of suitable apps and doing so in an unsupervised way. The framework can be

extended to incorporate personal behavior history and use it to improve a system’s ability to

assist users to pursue multi-app activities. In sum, the effectiveness of the feature-enriched

MF model can be shown in different domains, indicating good generality and providing a

reasonable direction for future work.
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8SLU in Human-Human

Conversations

“ We have already discovered how quickly we become dependent on the Inter-

net and its applications for business, government and research, so it is not

surprising that we are finding that we can apply this technology to enable

or facilitate our social interactions as well.

”
Vint Cerf, “The father of the Internet” and Turing Award winner

The recent successes of voice interactions with smart devices (human-machine genre)

and improvements in speech recognition for conversational speech show the possibility of

conversation-related applications. Previous chapters focus on supporting human-machine

interactions by SDS. After building SDS to handle open-domain dialogues, with available

human-machine data from IAs, this chapter investigates the task of SLU in human-human

conversations (human-human genre). Specifically, a system is proposed to detect action-

able items in conversations and dynamically provide participants access to information (e.g.

scheduling a meeting, taking notes) without interrupting the dialogues. Furthermore, domain

ontology induction can be improved by filtering out the utterances without actionable items,

and then the refined ontology provides better domain knowledge for SLU modeling. The

iterative framework shows the feasibility of continuously improving system performance from

a practical perspective.

8.1 Introduction

Meetings pose unique knowledge sharing opportunities, and have been a commonly accepted

practice to coordinate work of multiple parties in organizations. With the surge of smart

phones, computing devices have been easily accessible and real-time information search has

been a common part of regular conversations [20]. Furthermore, recent improvements in con-

versational speech recognition suggest the possibility of speech recognition and understanding

on continual and background audio recording of conversations [112]. In meetings, discussions

99



me018: Have <from_contact_name>they</from_contact_name> ever 
responded to <contact_name>you</contact_name>? 
me011: Nope. 
 
mn015: Yeah it's - or - or just - Yeah. It's also  all on my - my home 
page at E_M_L. It's called "An Anatomy of afind Spatial Description". But 
I'll send <email_content>that link</email_content>. 
 
mn015: I suggest w- to - for - to proceed with this in - in the sense that 
maybe,  <date>throughout this week</date>,  the <contact_name>three of 
us</contact_name>  will - will talk some more about maybe segmenting off 
different regions, and we make up some - some toy a- observable 
"nodes" - is that what th- 

find_email 
action: check emails of me011, 
search for any emails from them 

send_email 
action: email all participants, 
"link to An Anatomy of Spatial 
Description" 

create_calendar_entry 
action: open calendars of 
participants, marking times free for 
the three participants and schedule 
an event 

Figure 8.1: The ICSI meeting segments annotated with actionable items. The triggered
intents are at the right part along with descriptions. The intent-associated arguments are
labeled within texts.

could be a rich resource for identifying participants’ next actions and then assist with the

action executions.

In this chapter, we investigate a novel task of actionable item detection in multi-party meet-

ings, with the goal of providing participants easy access to information and performing actions

that a personal assistant would handle without interrupting the meeting discussions. Action-

able items in meetings would include discussions on scheduling, emails, action items, and

search. Figure 8.1 shows some meeting segments from the ICSI meeting corpus, where ac-

tionable items and their associated arguments are annotated [92]. A meeting assistant would

then take an appropriate action, such as opening the calendars of the involved participants

for the dates being discussed, finding the emails and documents being discussed, or initiating

a new one.

Most of the previous work on language understanding of human-human conversations focuses

on analyzing task-oriented dialogues such as customer service conversations, and aims to infer

semantic representations and bootstrap language understanding models [6, 31, 38, 39, 151].

These would then be used in human-machine dialogue systems that automate the targeted

task, such as travel arrangements. In this work, we assume presence of task-oriented dia-

logue systems (human-machine genre), such as personal assistants that can schedule meetings

and send emails, and focus on adapting such systems to aid users in multi-party meetings

(human-human genre). Previous work on meeting understanding investigated detection of

decisions [22, 62], action items [167], agreement and disagreements [67, 88], and summariza-

tion [27, 136, 165]. Our task is closest to detection of action items, where action items are

considered as a subgroup of actionable items.

Utterances in the human-human genre are more casual and include conversational terms, but

100



schedule a meeting with <contact_name>John</contact_name> 

<start_time>this afternoon</start_time> 

how about the <contact_name>three of us</contact_name> discuss this 
later <start_time>this afternoon</start_time>? 

Human-Machine Genre 

Human-Human Genre 

create_calendar_entry 

create_calendar_entry 

Figure 8.2: The genre mismatched examples with the same action.

the terms related to the actionable item (arguments), such as dates, times, and participants

are similar. Figure 8.2 shows genre-mismatched examples (human-machine v.s. human-

human), where both utterances have the same action create calendar entry. The similarity

between two genres suggests that the data available from human-machine interactions (source

genre) can be useful in recognizing actionable items in human-human interactions (target

genre). Furthermore, due to the mentioned differences, the use of adaptation methods could

be promising.

In this work, we treat actionable item detection in meetings as a meeting utterance clas-

sification task, where each user utterance can trigger an actionable item. Recent studies

used CDSSM to map questions into relation-entity triples for question answering, which

motivates us to use CDSSM for learning relations between actions and their triggering

utterances [169, 170]. Also, several studies investigated embedding vectors as features

for training task-specific models, which can incorporate more informative cues from large

data [8, 28, 33, 41, 69]. Hence, for utterance classification, this chapter first focuses on taking

CDSSM features to help detect triggered actions. Second, embedding adaptation has been

studied using different languages and external knowledge [59, 60]. Due to the genre mismatch,

embedding adaptation is proposed to fit the target genre and provide additional improvement.

Third, we investigate whether actionable cues help improve ontology induction, and propose

an iterative framework for automating system learning. It can benefit both human-machine

and human-human interactions.

8.2 Convolutional Deep Structured Semantic Models
(CDSSM)

We describe how to train CDSSM for actionable item detection, whose architecture is de-

scribed by Section 2.4.4.1.
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300 300 300 300 

U A1 A2 An 

CosSim(U, Ai) 

P(A1 | U) P(A2 | U) P(An | U) 

… 

Semantic Similarity 
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Word Sequence: x 

Word Hashing Matrix: Wh 

Word Hashing Layer: lh 

Convolution Matrix: Wc 

Convolutional Layer: lc 

Max Pooling Operation 

Max Pooling Layer: lm 

Semantic Projection Matrix: Ws 

Semantic Layer: y 

Utterance 
Action 

Figure 8.3: Illustration of the CDSSM architecture for the predictive model.

8.2.1 Architecture

The model is a deep neural network with a convolutional layer illustrated in Figure 8.3 [69,

90, 139, 140]. The model contains: 1) a word hashing layer obtained by converting one-

hot word representations into tri-letter vectors, where the total number of tri-letters in our

experiments is about 20.6K, 2) a convolutional layer that extracts contextual features for each

word with its neighboring words defined by a window, 3) a max-pooling layer that discovers

and combines salient features to form a fixed-length sentence-level feature vector, and 4) a

semantic layer that further transform the max-pooling layer to a low-dimensional semantic

vector for the input sentence. The final output semantic vector, y, can be either utterance

embeddings yU or action embeddings yA.

8.2.2 Training Procedure

The meeting data contains utterances and associated actions. The idea of this model is to

learn embeddings for utterances and actions such that utterances with same actions can be

close to each other in the continuous space. Below we define the semantic score between an

utterance U and an action A using the cosine similarity between their embeddings:

CosSim(U,A) =
yU · yA
|yU ||yA|

. (8.1)
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8.2.2.1 Predictive Model

The posterior probability of a possible action given an utterance is computed based on the

semantic score through a softmax function,

P (A | U) =
exp(CosSim(U,A))∑
A′ exp(CosSim(U,A′))

, (8.2)

where A′ is an action candidate.

For model training, we maximize the likelihood of the correctly associated actions given the

utterances across the training set. The parameters of the model θ1 = {Wc,Ws} is optimized

by an objective:

Λ(θ1) = log
∏

(U,A+)

P (A+ | U). (8.3)

The model is optimized using mini-batch SGD [90]. Then we can transform test utterances

into vector representations.

8.2.2.2 Generative Model

Similarly, we can estimate the posterior probability of an utterance given an action using the

reversed setting,

P (U | A) =
exp(CosSim(U,A))∑
U ′ exp(CosSim(U ′, A))

, (8.4)

which is a generative model that emits utterances for each given action. Also, the model

parameters θ2 is optimized by an objective:

Λ(θ2) = log
∏

(U+,A)

P (U+ | A). (8.5)

The model can be obtained similarly and performs a reversed estimation for the relation

between utterances and actions.

8.3 Adaptation

Practically the data for the target genre may be unavailable or insufficient to train CDSSM,

so there may be a mismatch between source and target genres. Based on the model trained on

the source genre (θ1 or θ2), each utterance and action from the target genre can be transformed

into a vector. Then it is possible that embeddings of the target data cannot accurately esti-

mate the score CosSim(U,A) due to the mismatch. Below we focus on adaptation approaches
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Figure 8.4: Action distribution for different types of meetings.

that adjust embeddings generated by the source genre to fit the target genre, where two

adaptation approaches are proposed.

8.3.1 Adapting CDSSM

Because CDSSM is trained on a mismatched genre (human-machine genre), the CDSSM can

be adapted by continually training the model using the data from the target genre (human-

human genre) for several epochs (usually stop early before fully converged). Then the final

CDSSM contains information about both genres, so it can be robust because of data from

different genres and specific to the target genre.

8.3.2 Adapting Action Embeddings

Instead of adapting the whole CDSSM, this section applies an adaptation technique to di-

rectly learn adapted action embeddings that may be proper for the target genre. After

converting actions and utterances from the target genre into vectors using CDSSM trained

on the source genre, the idea here is to move the action embeddings based on the distribution

of corresponding utterance embeddings, and then adjusted action embeddings can fit to the

target genre better. A similar idea was used to adapt embeddings based on the predefined

ontology [60, 173].

Here we define Q as a set of action embeddings and R as a set of utterance embeddings

obtained from the trained model (θ1 or θ2). Then we define two objectives, Φact and Φutt, to

model action and utterance embeddings respectively.

Φact(Q̂, R̂) =

n∑
i=1

αi|q̂i − qi|2 +
∑
l(rj)=i

βij |q̂i − r̂j |2
 , (8.6)
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Φutt(R̂) =

n∑
i:l(ri)=1

αi|r̂i − ri|2 +
∑

l(rj)=l(ri)

βij |r̂i − r̂j |2
 , (8.7)

where qi ∈ Q is the original action embedding of the i-th action, ri ∈ R is the original utterance

embedding of the i-th utterance, and l(·) indicates the action label for an utterance. The idea

here is to learn new action embeddings q̂i that are close to qi and the utterances labeled

with the action i, r̂j . Also, Φutt suggests to learn new utterance embeddings r̂i close to ri

and other utterances with the same action label. Here α and β control relative strengths of

associations. An objective Φ(Q̂, R̂) combines them together:

Φ(Q̂, R̂) = Φact(Q̂, R̂) + Φutt(R̂). (8.8)

With an integrated objective Φ(Q̂, R̂), the sets of adapted action embeddings and adapted

utterance embeddings (Q̂ and R̂ respectively) can be obtained simultaneously by an efficient

iterative updating method [9, 60]. The updates for q̂i and r̂i are:

∆q̂i =
αqi +

∑
βij r̂j

α+
∑
β

,∆r̂i =
αri +

∑
βij r̂j

α+
∑
β

. (8.9)

Then the adapted action embeedings Q are obtained in order to estimate better scores for

the target domain. Below we use the notation ŷA to refer to the adapted action embeddings.

8.4 Actionable Item Detection

In order to predict possible actions given utterances, for each utterance U , we transform it

into a vector yU , and then estimate the semantic similarity with vectors for all actions. For

the utterance U , the estimated semantic score of the k-th action is defined as:

ĈosSim(U,Ak) =
yU · ˆyAk

|yU || ˆyAk
|
, (8.10)

which is similar to (8.1), but replaces the original action embeddings yA with the adapted

embeddings ŷA. Note that the utterance embeddings are the original ones, so they can match

the embeddings of test utterances.

The estimated semantic scores can be used in two ways [139]:

1. As final prediction scores: ̂CosSim(U,A) is directly treated as the prediction score of an

actionable item detector.

2. As features of a classifier: ̂CosSim(U,A) is an input feature of a classifier and then a

multi-class classifier can be trained as an actionable item detector. Then the trained
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classifier outputs final prediction scores of actions given each test utterance for the

detection task.

8.4.1 Unidirectional Estimation

With predictive and generative models from Section 8.2.2.1 and Section 8.2.2.2, here for the

utterance Ui, we define the final prediction score of the action Aj using the predictive model

as SP (i, j) and using the generative model as SG(i, j), where the prediction score can be

obtained via above two ways.

8.4.2 Bidirectional Estimation

Considering that the estimation from two directions may model the similarity in different

ways, we can incorporate bidirectional estimation by fusing prediction scores, SP (i, j) and

SG(i, j), to balance the effectiveness between predictive and generative models.

SBi(i, j) = γ · SP (i, j) + (1− γ) · SG(i, j), (8.11)

where γ is a weight to control contributions from both sides.

8.5 Iterative Ontology Refinement

We assume that utterances corresponding to the action create single reminder contain core

information in the conversations, so inducing a domain ontology while considering these ut-

terances in the mean time can focus more on important concepts and may benefit the per-

formance of ontology induction. The ontology induction approach proposed by Chapter 3 is

based on w(s) in (2.7), where w(s) is an importance measurement of the slot s. Therefore,

we utilize SBi(i, j), which estimates the probability of an actionable item as shown in (8.11),

to adjust original frequency scores into f ′(s) for all slots in the conversation, and then update

ranking scores based on weighted frequencies,

w′(s) = (1− α) · log f ′(s) + α · h(s), (8.12)

f ′(s) =
∑
i

(
tfs(i) · SBi(i)

)
, (8.13)

where f ′(s) is the weighted frequency of a slot s, tfs(i) is the term frequency of the slot s in

the utterance Ui, and SBi(i) can be viewed as the probability that the utterance Ui refers to

create single reminder via bidirectional estimation. Specifically, SBi(i) is equal to SBi(i, j) in
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(8.11), which estimates the probability that the utterance Ui contains the action Aj (Aj is

create single reminder). Below we use SBi(i) for simplification.

In order to avoid decreasing weights for slots in actionable utterances, we proposed two types

of estimation for SBi(i).

• Original estimation: SBi(i)

• Highly confident adjustment: ŜBi(i)

ŜBi(i) =

{
1 , if SBi(i) > δ.

SBi(i) , otherwise.
(8.14)

The adjustment is to retain weights for slots in highly confident actionable utterances,

and it is also to emphasize the difference of carried information between actionable

utterances and others.

The refined ontology may produce a better SLU model, which improves intent prediction per-

formance. Then the ontology can be further improved if actionable scores are more accurate

due to better intent prediction. Therefore it forms an iterative framework and may benefit

SLU in both human-machine and human-human conversations.

8.6 Experiments

8.6.1 Experimental Setup

The dataset is from the ICSI meeting corpus1, where 22 meetings previously used as test and

developmentsets are included for the actionable item detection task [2, 92]. These include

three types of meetings, Bed, Bmr, and Bro, which include regular project discussions between

colleagues and conversations between students and their advisors2. The total numbers of

utterances are 4544, 9227, and 7264 for Bed, Bmr, and Bro respectively.

Actionable items were manually annotated, where the annotation schema was designed

based on the Microsoft Cortana conversational agent schema. There are in total

42 actions in Cortana data, and we identified 10 actions that are relevant to meet-

ing scenarios: find calendar entry, create calendar entry, open agenda, add agenda item, cre-

ate single reminder, send email, find email, make call, search, and open setting, where 2 actions

1http://www1.icsi.berkeley.edu/Speech/mr/
2Bed (003, 006, 010, 012), Bmr (001, 005, 010, 014, 019, 022, 024, 028,030), Bro (004, 008, 011, 014, 018,

021, 024, 027)
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Table 8.1: Actionable item detection performance on the average AUC using bidirectional
estimation (%).

Approach #dim
Mismatch- Adapt- Match-
CDSSM CDSSM CDSSM

(a)
w/o

Sim (CosSim(U,A)) 49.10 50.36 50.57

(b) AdaptSim (ĈosSim(U,A)) 55.82 60.08 62.34

(c)
SVM

Embeddings 300 55.71 63.95 69.27
(d) (c) + Sim 311 59.09 65.08 68.86
(e) (c) + AdaptSim 311 59.23 65.71 69.08

(find email and open agenda) do not occur in Cortana data. There are total 318 utterances

annotated with actionable items, which accounts for about 2% of all utterances. Figure 8.4

shows actionable item distribution in the meeting corpus, where it can be found that different

types of meetings contain slightly different distribution of actionable items, but some actions

frequently occur in all meetings, such as create single reminder and find calendar entry.

Two meetings were annotated by two annotators, and we test the agreement for two settings

using Cohen’s Kappa coefficient [45]. First, the average agreement about whether an utterance

includes an actionable item is 0.64; second, the average agreement about annotated actions

(including others) is 0.67, showing that the actionable items are consistent across persons.

The detail of the dataset can be found in Appendix A.

Due to imbalanced classes (number of non-actionable utterances is larger than number of

actionable ones), the evaluation focuses on detection performance for each action. Here we

compute AUC for each action as the metric to evaluate whether the detector is able to

effectively detect an action, and then report average AUC over all classes (10 actions plus

others).

8.6.2 CDSSM Training

To test the effect of CDSSM training data, we conduct experiments using following models:

• Mismatch-CDSSM: a CDSSM trained on conversational agent data, which mismatches

with the target genre.

• Adapt-CDSSM: a CDSSM pretrained on conversational agent data and then continually

trained on meeting data.

• Match-CDSSM: a CDSSM trained on meeting data, which matches with the target

genre.
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For all experiments, the total number of training iterations is set to 300, the dimension of

the convolutional layer is 1000, and the dimension of the semantic layer is 300, where Adapt-

CDSSM is trained on two datasets with 150 iterations for each.

8.6.3 Implementation Details

Considering that individuals may have consistent ways of referring to actionable items, to

show the applicability of our approach to different speakers and meeting types, we take one

of meeting types as training data and test on each of remaining two. Hence, we have 6 sets

of experiments and report the average of AUC scores for evaluation, which is similar to 6-

fold cross-validation. Note that the meeting data used in Match-CDSSM and Adapt-CDSSM

is the training set of meeting data. The multi-class classifier we apply for actionable item

detection in Section 8.4 is SVM with RBF kernel using a default setting [25]. The parameters,

α and β in (8.6), are set to 1 in order to balance the effectiveness of original embeddings and

utterance embeddings with the same action. The parameter γ in (8.11) is set as 0.5 to allow

predictive and generative models contribute equally.

8.7 Evaluation Results

Experimental results of bidirectional estimation with different CDSSMs are shown in Ta-

ble 8.1. Rows (a) and (b) use the semantic similarity as final prediction scores, where Sim

(row (a)) uses CosSim(Ui, Aj) and AdaptSim (row (b)) uses ĈosSim(Ui, Aj) as SP (i, j) or

SG(i, j). Rows (c)-(e) use the similarity as features and then train an SVM classifier to es-

timate final prediction scores, where row (c) takes utterance embedding vectors as features,

and rows (d) and (e) include the semantic similarity as additional features for the classifier.

Hence the dimension of features is 311, including 300 values of utterance embeddings and 11

similarity scores for all actions.

When we treat the semantic similarity as final prediction scores, adapted embeddings (Adapt-

Sim) perform better, achieving 55.8%, 60.1%, and 62.3% for Mismatch-CDSSM, Adapt-

CDSSM, and Match-CDSSM respectively. Due to the fact that the learned embeddings

do not fit the target genre well, the similarity treated as features of a classifier can be com-

bined with other features to automatically adapt the reliability of similarity features. Row

(c) shows the performance using only utterance embeddings, and including similarity scores

as additional features can improve the performance for Mismatch-CDSSM (from 55.7% to

59.1%) and Adapt-CDSSM (from 64.0% to 65.1%). The action embedding adaptation fur-

ther adjusts embeddings to the target genre based on Section 8.3.2, and row (c) shows that

the performance can be further improved (59.2% and 65.7%). Below we discuss results in
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Table 8.2: Actionable item detection performance on AUC (%).

Approach #dim P (A | U) P (U | A) Bidir

(a)

Mismatch

w/o
Sim (CosSim(U,A)) 47.45 48.17 49.10

(b) AdaptSim (ĈosSim(U,A)) 54.00 53.89 55.82
(c)

SVM
Embeddings 300 53.07 48.07 55.71

(d) (c) + Sim 311 52.80 54.95 59.09
(e) (c) + AdaptSim 311 52.75 55.22 59.23

(a)

Adapt

w/o
Sim (CosSim(U,A)) 48.67 50.09 50.36

(b) AdaptSim (ĈosSim(U,A)) 59.46 56.96 60.08
(c)

SVM
Embeddings 300 60.06 59.03 63.95

(d) (c) + Sim 311 60.78 60.29 65.08
(e) (c) + AdaptSim 311 61.60 61.13 65.71

(a)

Match

w/o
Sim (CosSim(U,A)) 56.33 43.39 50.57

(b) AdaptSim (ĈosSim(U,A)) 64.19 60.36 62.34
(c)

SVM
Embeddings 300 64.33 65.58 69.27

(d) (c) + Sim 311 64.52 64.81 68.86
(e) (c) + AdaptSim 311 64.72 65.39 69.08

different aspects.

8.7.1 Comparing Different CDSSM Training Data

Because the target genre is not always available or not enough for training CDSSM, we

compare results using CDSSM trained on different data. From Table 8.2, model adaptation

(Adapt-CDSSM) improves the performance of Mismatch-CDSSM in all cases, showing that

embeddings pre-trained on the mismatched data are successfully adapted to the target genre

and then results in better performance. Although Adapt-CDSSM takes more data than

Match-CDSSM, Match-CDSSM performs better. However, for row (a), we can see that Match-

CDSSM is not robust enough, because the generative model (P (U | A)) performs 43.4%

on AUC, even worse than Mismatch-CDSSM. It shows that the bidirectional model, the

embedding adaptation, and additional classifiers help improve the robustness so that Match-

CDSSM achieves better performance compared to Adapt-CDSSM.

The best result from matched features is one using only embeddings features (69.27% in row

(c)), and a possible reason is that embeddings fit well to the target genre, so adding similarity

cannot provide additional information to improve the performance.
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Figure 8.5: The average AUC distribution over all actions in the training set before and after
action embedding adaptation using Match-CDSSM.

8.7.2 Effectiveness of Bidirectional Estimation

From Table 8.2, it is shown that all results from the bidirectional estimation significantly

outperform results using unidirectional estimation across all CDSSMs and all methods except

for rows (a) and (b) from Match-CDSSM. Comparing between the predictive model (P (A | U))

and the generative model (P (U | A)), the performance is similar and does not show that a

certain direction is better in most cases. The improvement of bidirectional estimation suggests

that the predictive model and the generative model can compensate each other, and then

provides more robust estimated scores.

8.7.3 Effectiveness of Adaptation Techniques

Two adaptation approaches, CDSSM adaptation and action embedding adaptation, are use-

ful when the features do not perfectly fit to the target genre. When without SVM, model

adaptation and action embedding adaptation improve the performance from 49.1% to 50.4%

and to 55.8% respectively. Applying both adaptation techniques achieves 60.1% on average

AUC. After we use similarity scores as additional features of SVM, using individual adapta-

tion improves the performance, and applying both techniques achieves further improvement.

Therefore, it is shown that the proposed CDSSM and adaptation approaches can be applied
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when the data for the target genre is unavailable or scarce.

On the other hand, when using matched data for CDSSM training (Match-CDSSM), action

embedding adaptation still improves the performance before SVM (from 50.6% to 62.3%).

Figure 8.5 shows the performance distribution over all actions in the training set before and

after action embedding adaptation, where we find that all AUC scores are increased except for

others so that overall performance is improved. The reason why matched data cannot induce

good enough embeddings is that there are much more utterances belonging to others in the

meetings, so CDSSM is more sensitive to the action others. However, the adaptation adjusts

all action embeddings equally, forcing to increase the reliability of other action embeddings.

Therefore, although the adapted result of others drops, the performance of all other actions

is improved, resulting in better overall performance.

8.7.4 Effectiveness of CDSSM

To evaluate whether CDSSM provides better features for actionable item detection, we com-

pare the performance with three baselines trained on the meeting corpus:

• AdaBoost with ngram features

A boosting classifier is trained using unigram, bigram and trigram features [61].

• SVM with ngram features

An SVM classifier is trained using unigram, bigram and trigram features [25].

• SVM with paragraph embeddings doc2vec

An SVM classifier is trained using paragraph vectors3 introduced in Section 2.4.3, where

the training set of paragraph vectors is the same as one CDSSM takes, the vector

dimension is set to 300, and the window size is 3 [104].

First two baselines use lexical features while the third one uses semantic features. Table 8.3

shows that two lexical baselines perform similarly, and AdaBoost is slightly better than SVM.

Semantic embeddings trained on the meeting data as features perform better than lexical fea-

tures, where doc2vec obtains 59.8% on AUC [104]. For the proposed approaches, both unidi-

rectional CDSSMs outperform three baselines, achieving 64.3% for the predictive model and

65.6% for the generative model. In addition, bidirectional CDSSM improves the performance

to 69.3%, showing a promising result and proving the effectiveness of CDSSM features.

3https://radimrehurek.com/gensim/index.html
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Table 8.3: Actionable item detection performance on AUC (%).

Approach AUC

Baseline
AdaBoost ngram (n = 1, 2, 3) 54.31

SVM ngram (n = 1, 2, 3) 52.84
SVM doc2vec 59.79

Proposed
SVM CDSSM: P (A | U) 64.33
SVM CDSSM: P (U | A) 65.58
SVM CDSSM: Bidirectional 69.27

8.7.5 Discussion

In addition to the power of CDSSM features, another advantage of CDSSM is the ability

of generating more flexible action embeddings. For example, the actions open agenda and

find email in the meeting data do not have corresponding predefined intents in the Cortana

data; however, CDSSM is still able to generate the action embedding for find email by in-

corporating the semantics from find message and send email. The flexibility may fill the gap

between mismatched annotations. In the future work, we plan to investigate the ability of

generating unseen action embeddings in order to remove the domain constraint for practical

usage.

8.8 Extensive Experiments

To investigate the feasibility of applying proposed ontology induction and iterative ontology

refinement to real-world human-human interactions, below we briefly introduce a real-world

dialogue data and discuss results produced by the proposed approaches. The detail of the

dataset is presented in Appendix B.

8.8.1 Dataset

The dataset is a set of insurance-related dialogues, where each conversation is a phone call

between a customer and an agent collected by MetLife4. There are total 155 conversations

and the number of utterances is 5,229 segmented by different speakers. WER is reported as

31.8% using end-to-end deep recurrent neural network models trained on SwitchBoard [113].

In the dataset, we consider all utterances annotated with either customer intents or agent

actions as actionable utterances, and therefore the number of reference actionable utterances

is 753, accounting for only 14% of total 5,229 utterances.

4https://www.metlife.com/
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Table 8.4: The learned ontology performance with α = 0.8 tuned from Chapter 3 (%)

Approach α
ASR Manual

Slot Structure Slot Structure
AP AUC AP AUC AP AUC AP AUC

Baseline: Frequency .0 47.36 43.37 13.48 11.36 61.29 59.46 26.13 25.94
+ OriginAct SBi 45.19 43.14 13.36 11.31 59.98 58.97 26.35 26.11

+ AdjustAct ŜBi 44.97 42.92 13.36 11.31 60.83 59.83 26.85 26.60
+ OracleAct S∗Bi 47.15 44.28 14.47 12.20 70.59 66.65 37.88 37.77

External Word Vec. .8 51.83 49.61 15.25 12.82 65.48 64.67 40.47 40.20
+ OriginAct SBi 51.27 49.17 15.17 12.75 66.45 65.66 40.44 40.19

+ AdjustAct ŜBi 51.33 49.24 15.21 12.79 65.77 64.96 40.72 40.45
+ OracleAct S∗Bi 50.46 48.37 15.31 12.87 82.66 82.43 57.04 56.86

Max RI (%) - +9.4 +14.4 +13.1 +12.8 +8.4 +10.4 +55.8 +56.0

Considering the performance of an induced ontology, we evaluate induced slots and their struc-

ture individually. For slot evaluation, there are total 31 human-annotated slots: Statement,

Transfer, Law, Request, Inspecting, Verification, Sending, Getting, Receiving, Quantity, Com-

merce pay, Contacting, Information, Grant permission, Needing, Motion, Perception experience,

Awareness, Have as requirement, Sent items, Locative relation, Desiring, Assistance, Process-

ing materials, Capability, Undergo change, Vehicle, Temporal collocation, Evidence, Visiting, and

Intentionally act. The associated slot fillers labeled by annotators are shown in Table B.4. The

uncovered slots contain Cancel, Refund, Delete, Discount, Benefit, Person, Status and Care and

the detail is shown in Table B.5. Therefore, FrameNet coverage in this dataset is about 79.5%.

Below evaluation metrics of induced slots are AP and AUC by comparing induced slots and

reference ones covered by FrameNet. For structure evaluation, there are 212 reference slot

pairs connected with typed dependency relations shown in Table B.6-B.11. AP and AUC are

also computed as evaluation metrics in the experiments.

8.8.2 Ontology Induction

To evaluate the performance of ontology induction on the real-world data, we perform ontology

induction proposed by Chapter 3 on the insurance-related dataset. That is, the ranking weight

w(s) in (2.7) is computed for each slot candidate to induce a domain ontology. The results of

ontology induction are shown in Table 8.4, where the weight α is empirically set based on the

value tuned from Chapter 3 (α = 0.8). For results before adding actionable item information,

it can be found that the proposed ontology induction using external word vectors performs

better than only using frequency for both ASR and manual transcripts, which aligns well with

our findings in Chapter 3.
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Figure 8.6: The AUC trend of actionable item detection with different thresholds δ.

8.8.3 Iterative Ontology Refinement

Because utterances related to the intent create single reminder indicate that agents may need

to take notes when listening to them, we utilize the CDSSM trained on Cortana data to

detect actionable utterances corresponding to create single reminder, where the bidirectional

estimation SBi(i) denotes the actionable score of the utterance Ui. Then the adjusted im-

portance of each slot w′(s) is estimated in (8.12) based on detected actionable utterances.

The threshold δ in (8.14) is decided according to the trend of actionable item performance

shown in Figure 8.6, where we remain original weights for more highly confident actionable

utterances when δ decreases (δ = 1 indicates that we use original estimation SBi(i)). Because

δ = 0.5 − 0.55 is most efficient to retain higher weights for actionable utterances according

to the largest slope (max ∂AUC
∂δ ), we set the thresholds to 0.55 and 0.50 to compute ŜBi(i)

for ASR and manual transcripts respectively. The decided threshold also aligns well as our

intuition, where the estimated probability higher than about 0.5 suggests actionable utter-

ances. Table 8.4 also presents the results of integrating actionable scores based on original

estimation (OriginAct) SBi, adjusted estimation (AdjustAct) ŜBi, and oracle estimation (Or-

acleAct) S∗Bi. The oracle estimation of actionable utterances is to show the upper bound for

the performance of iterative ontology refinement.

For ASR transcripts, additionally integrating actionable scores does not show any improve-

ment for both baseline and external word vector results. However, for manual transcripts,

leveraging estimated actionable scores (OriginAct and AdjustAct) slightly improves the per-

formance of the induced slots and the learned structure. Also, oracle scores (OracleAct)

significantly improve the performance for both baseline and external word vector results, sug-

gesting that there is still a large room for improvement. The experiment demonstrates the
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effectiveness of iterative ontology refinement using actionable information. Due to the similar

performance of actionable item detection for ASR and manual transcripts, the incapability

of refining the ontology for ASR results is probably resulted from recognition errors.

8.8.4 Influence of Recognition Errors

Due to higher WER of ASR results in the dataset (31%), recognition errors may degrade

the performance of ontology induction. In terms of induced slots, the ASR baseline achieves

47.36% of AP and 43.37% of AUC, while the manual baseline performs 61.29% of AP and

59.46% of AUC. The external word vector approach for ASR performs 51.83% of AP and

49.61% of AUC, and for manual one is 65.48% of AP and 64.67% of AUC. The performance

difference between ASR and manual results is more than 10% due to recognition errors.

On the other hand, in terms of the induced ontology structure, the ASR baseline performs only

13.48% of AP and 11.36% of AUC, while manual baseline is 26.13% and 25.94%. Performing

the external word vector approach improves ASR results to 15.25% of AP and 12.82% of

AUC, where the improvement is about 2%. However, the external word vector approach is

able to improve manual results to 40.47% of AP and 40.20% of AUC, where the improvement

is more than 10%. The difference of the induced structure is due to the poor performance of

the originally induced ontology on ASR transcripts. Therefore, unlike the results on human-

machine dialogues shown in Table 3.2, robustness is an important issue for ontology induction

of human-human conversations.

8.8.5 Balance between Frequency and Coherence

To analyze the sensitivity of α (tradeoff between the frequency and the coherence), we show

the performance of ontology induction in terms of individual slots with different α in Fig-

ure 8.7 and Figure 8.8 for ASR and manual transcripts respectively5. The best performance

is α = 0.7, which is close to the tuned value based on our previous experiments (α = 0.8) in

Chapter 3. In terms of structure performance, Figure 8.9 and Figure 8.10 show the trends of

performance over different α for ASR and manual results respectively. The optimal value of

α is 0.7 for ASR and α = 0.8 for manual transcripts.

In sum, the value of α tuned from human-machine conversations can be also applied to

human-human dialogues. In addition, the balance between the frequency and the coherence

in the insurance data for both slot and structure performance has similar trends when com-

paring with Figure 3.4, demonstrating the effectiveness of the proposed ontology induction

5The left figure contains the baseline, proposed approaches, and oracle results; the right one only contains
all but the oracle one.
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Figure 8.7: The performance of the induced slots with different α values for ASR transcripts;
the right one shows the detailed trends about the baseline and the proposed ones.
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Figure 8.8: The performance of the induced slots with different α values for manual tran-
scripts; the right one shows the detailed trends about the baseline and the proposed ones.

approaches for human-human conversations.

8.8.6 Effectiveness of Actionable Item Information

To eliminate the influence brought by recognition errors, we analyze the results for manual

transcripts after leveraging actionable item information. From Table 8.4, the original action-

able scores (OriginAct) slightly improve ontology induction using the external word vector

approach, probably because the difference between actionable scores from different utterances

is too subtle to significantly change the final ranking list. However, when we remains weights

for slots in highly confident actionable utterances, leveraging ŜBi(i) (AdjustAct) significantly
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Figure 8.9: The performance of the learned structure with different α values for ASR tran-
scripts; the right one shows the detailed trends about the baseline and the proposed ones.
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Figure 8.10: The performance of the learned structure with different α values for manual
transcripts; the right one shows the detailed trends about the baseline and the proposed ones.

improves the induced ontology, especially for the structure performance. Figure 8.8 and Fig-

ure 8.10 show that the oracle actionable scores are able to significantly improve the ontology

performance in terms of both individual slots and the structure. Due to the performance of

actionable item detection lower than 60% for the mismatched genre, there is a large room

for potential improvement. Nevertheless, we can conclude that actionable item information

provides additional cues to help induce the domain ontology for human-human dialogues and

demonstrate the feasibility of the proposed iterative framework.
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8.9 Summary

This chapter focuses on applying SLU techniques developed for human-machine interactions

to human-human interactions, specifically, detecting actionable items in human-human con-

versations, where a CDSSM is built to learn both utterance and action embeddings. Then

the latent semantic features generated by CDSSM show the effectiveness of detecting actions

in meetings compared to lexical features, and also outperform the state-of-the-art semantic

paragraph vectors. The adaptation techniques are proposed to adjust the learned embeddings

to fit the target genre when the source genre does not match well with target genre, improving

detection performance. The actionable item information is also demonstrated to be useful

for iterative ontology refinement in human-human dialogues. This chapter highlights a fu-

ture research direction by transferring knowledge across genres and shows the feasibility and

potential for applying the proposed approaches on the real world data.
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9Conclusions and Future

Work

“ Mobile communications and pervasive computing technologies, together

with social contracts that were never possible before, are already beginning

to change the way people meet, mate, work, war, buy, sell, govern and

create.

”
Howard Rheingold, critic, writer, and teacher

9.1 Conclusions

This dissertation consists in automatically acquiring domain knowledge from available se-

mantic resources and then understanding both semantics of individual utterances and user

intents. Owing to the increasing amount of spoken interactions from different domains, au-

tomating the system development is a trend considering efficiency and maintenance. The

thesis addresses two challenges of SDS: the lack of a predefined structured ontology and shal-

low understanding, and proposes knowledge acquisition and SLU modeling techniques to show

potential solutions.

For knowledge acquisition, semantic concepts, the structure, and surface forms are automat-

ically learned. It is shown that such information is helpful to better understand semantics.

For SLU modeling, we consider a structured ontology to predict semantics of individual ut-

terances, because knowledge acquisition demonstrates the effectiveness of the automatically

learned ontology for an understanding task. The proposed MF-SLU framework is useful and

easy to expand for incorporating more features and predicted elements for both low-level

semantic decoding and high-level intent prediction.

To further investigate the performance of SLU techniques applied to human-human dialogues,

this dissertation exploits SLU techniques for human-machine conversations to detect action-

able items in human-human conversations through the proposed CDSSM. The learned action

embeddings are useful to detect actionable utterances, and further refine the induced ontology
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in the real world human-human conversations. The iterative framework presents the feasibil-

ity of continuously improving understanding performance for human-human dialogues, and

ultimately benefiting human-machine dialogue systems.

9.2 Future Work

This dissertation presents instantiations of automating the development process for SDS based

on unlabeled conversations, and points to some potential research directions discussed below.

9.2.1 Domain Discovery

The proposed approach can be directly applied to utterances that cannot be handled by

the current systems (e.g. Siri, Cortana) in order to discover new domains. The discovered

domains can guide system developers for handling the domains users are more interested in.

Supporting proper and important domains is the most efficient way to improve current system

performance [78].

9.2.2 Large-Scaled Active Learning of SLU

Considering the rapidly increasing amount of data, it is essential to acquire knowledge from

large data effectively. However, noisy labels may degrade the performance of SLU modeling.

To ensure the quality of the SLU component, distinguishing highly-confident acquired knowl-

edge from noisy knowledge can improve the learned model. Different active learning methods

can be applied when the data has diverse qualities in order to achieve better performance.

• Active learning without labels

Fang and Zhu proposed an “uncertain labeling knowledge” based active learning

paradigm to characterize the knowledge set of each labelers and filter uncertain in-

stances for better learning performance [58]. From a practical perspective, training

data selection is critical for large-scaled data, where submodular subset selection can be

considered to properly select data for SLU training in order to address the issue about

large-scaled data [162, 161].

• Active learning with labels

Crowdsourcing techniques are usually applied to filer noisy labels for bootstrapping the

performance in the most efficient way [157, 126]. The explicit labels are more accurate

but require additional cost.
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The above approaches can be applied based on different engineering situations (e.g. different

amount of available labels, different quality requirements, etc.), and it can also be fused to

improve the flexibility.

9.2.3 Iterative Learning through Dialogues

The conversational interactions between users and systems can be utilized to refine the per-

formance of current systems [123]. The performed interactions that fulfill user requests can

be treated as verified positive samples for retraining the SLU model so that final performance

can be iteratively improved when users interact with the systems more. That also indicates

that the system keeps learning and refining the applied knowledge to better understand users

and then provide proper responses. This can also benefit active learning using implicitly

inferred labels.

9.2.4 Error Recovery for System Robustness

Due to multiple components in an SDS, error propagation is the main issue for user-aware

performance. The errors may come from the recognition component, the imperfect domain

ontology, or incorrectly decoded semantic representations. For each component, some research

directions are presented below.

• Recognition

The unlabeled dialogues for knowledge acquisition may contain recognition errors, which

make the automatically acquired knowledge unreliable. Controlling the focused topic

of a single dialogue may decrease probabilities of out-of-topic words and help learn

out-of-vocabulary (OOV) words so that the ASR performance can be improved [147].

• Domain ontology

The automatically induced domain ontology may not be perfect, and the SLU model

mostly relies on the uncertain knowledge to decode semantics of utterances. Therefore,

quality control could be handled by the approaches mentioned in Section 9.2.2.

• Semantic representation

The incorrect semantic decoding greatly affects understanding performance. The reli-

able semantic forms can be controlled based on some strategies of belief tracking in the

dialogue systems [132, 96, 121, 105, 87].

Each types of errors should be controlled and recovered afterwards in order to improve sys-

tem robustness. To sum up, the dissertation presents the feasibility of automating the SLU
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development process with little manual effort, demonstrating effectiveness, scalability, and

efficiency of the proposed framework for building dialogue systems.
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Fernández, Matthew Frampton, Michael W Frandsen, Clint Frederickson, Martin Gra-
ciarena, et al. The CALO meeting speech recognition and understanding system. In
Proceedings of 2008 IEEE Spoken Language Technology Workshop (SLT), pages 69–72,
2008.

[152] Gokhan Tur, Dilek Z Hakkani-Tür, Dustin Hillard, and Asli Celikyilmaz. Towards un-
supervised spoken language understanding: Exploiting query click logs for slot filling. In
Proceedings of The 12th Annual Conference of the International Speech Communication
Association (INTERSPEECH), 2011.

[153] Gokhan Tur, Li Deng, Dilek Hakkani-Tür, and Xiaodong He. Towards deeper under-
standing: deep convex networks for semantic utterance classification. In Proceedings of
The 37th IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 5045–5048, 2012.

[154] Gokhan Tur, Minwoo Jeong, Ye-Yi Wang, Dilek Hakkani-Tür, and Larry P Heck. Ex-
ploiting the semantic web for unsupervised natural language semantic parsing. In Pro-
ceedings of The 13th Annual Conference of the International Speech Communication
Association (INTERSPEECH), 2012.

[155] Gokhan Tur, Asli Celikyilmaz, and Dilek Hakkani-Tür. Latent semantic modeling for
slot filling in conversational understanding. In Proceedings of 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8307–8311.
IEEE, 2013.

[156] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and
general method for semi-supervised learning. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics (ACL), pages 384–394, 2010.

137



[157] Sudheendra Vijayanarasimhan and Kristen Grauman. Large-scale live active learning:
Training object detectors with crawled data and crowds. International Journal of Com-
puter Vision, 108(1-2):97–114, 2014.

[158] Fang Wang, Zhongyuan Wang, Zhoujun Li, and Ji-Rong Wen. Concept-based short text
classification and ranking. In Proceedings of the 23rd ACM International Conference
on Information and Knowledge Management (CIKM), pages 1069–1078. ACM, 2014.

[159] Lu Wang, Dilek Hakkani-Tür, and Larry Heck. Leveraging semantic web search and
browse sessions for multi-turn spoken dialog systems. In Proceedings of The 39th IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2014.

[160] Wayne Ward and Sunil Issar. Recent improvements in the CMU spoken language
understanding system. In Proceedings of the Workshop on Human Language Technology,
pages 213–216, 1994.

[161] Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes. Using document summarization
techniques for speech data subset selection. In Proceedings of 2013 Conference of the
North American Chapter of the Association for Computational Linguistics - Human
Language Technologies (NAACL-HLT), pages 721–726, 2013.

[162] Kai Wei, Yuzong Liu, Katrin Kirchhoff, Christopher Bartels, and Jeff Bilmes. Submod-
ular subset selection for large-scale speech training data. In Proceedings of the 39th
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3311–3315. IEEE, 2014.
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AAIMU: Actionable Items

in Meeting Understanding

A.1 AIMU Dataset

The actionable items annotations are performed on a subset of the ICSI meeting corpus1 [92],
where 22 meetings that were used as test and development data sets in previous work [2]
are included for the actionable item detection task. These include three types of weekly
meetings, Bed, Bmr, and Bro, which include regular project discussions between colleagues
and conversations between students and their advisers2. The meeting types and associated
data sizes are shown in Table A.1, and the meeting types are detailed as below as also
described in the ICSI meeting corpus data collection documentation [92].

Table A.1: The data set description

Name Type #Utt

Bed Even Deeper Understanding 4,544
Bmr Meeting Recorder 9,227
Bro Robustness 7,264

• Even Deeper Understanding meetings focus mainly on issues in natural language un-
derstanding and neural theories of language.

• Meeting Recorder meetings are concerned mostly with the ICSI meeting corpus data
collection project, but include some discussions of more general speech research.

• Robustness meetings focus on signal processing techniques to compensate for noise,
reverberation and other environmental issues in speech recognition.

A.2 Semantic Intent Schema

To collect actionable resources in meetings, we annotate each utterance that can trigger an
actionable item with the corresponding intent and associated arguments (i.e., slot-fillers).

Although utterances in the human-human genre are more casual and include conversational
terms, some intents and the terms related to the actionable item, such as dates, times, and

1http://www.icsi.berkeley.edu/Speech/mr/
2Bed (003, 006, 010, 012), Bmr (001, 005, 010, 014, 019, 022, 024, 028,030), Bro (004, 008, 011, 014, 018,

021, 024, 027)

http://www.icsi.berkeley.edu/Speech/mr/


participants are similar in terms of form and content to the ones in human-machine genre.
Figure 8.2 shows utterance examples with the same intents, create calendar entry, from dif-
ferent genres (human-machine v.s. human-human). Therefore, we apply the semantic intent
schema for an intelligent assistant to meeting conversations.

A.2.1 Domain, Intent, and Argument Definition

We chose five domains that may contain actions triggered by utterances in meetings, where
there are total 10 intents in these domains. Table A.2 shows the detailed schema and descrip-
tion.
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Table A.2: The description of the semantic intent schema for meetings

Domain Action Description

Calendar

Intents

find calendar entry check the calendar of participants to find a specific event
create calendar entry create a new event in the opening period of participants’ calendars
open agenda check the meeting agenda
add agenda item create a new entry for the meeting agenda

Argument

contact name owners of the targeted calendars
start date, end date exact date or generic descriptions like “tomorrow” or “yesterday”
start time, end time exact time or generic descriptions like “afternoon”
entry type e.g. “meeting”, “talk”, “discussion”
title the meeting goal, e.g. “discussion on finite state automaton”
absolute location exact location
implicit location implicitly described location
agenda item the content of the agenda item

Reminders

Intent create reminder create a reminder of participants

Argument

contact name the person who should get the reminder or the speaker when note taking
reminder text the reminder content, also could be a referral
start date targeted date/meeting reference; exact time or generic descriptions
start time exact time or generic descriptions

Communication

Intents
send email initialize an email to someone
find email search the specific content from email
make call dial a phone call to someone

Argument

contact name person/people who will be contacted
email subject what the email is about
email content what to include in the email (could also be a description, such as ”the paper”)
from contact name the email sender (could be the speaker of the utterance)

OnDevice
Intent open setting launch the setting of devices (e.g. computer, projector)

Argument setting type the type to modify

Search
Intent search retrieve information through the search engine

Argument query term word sequence to search for
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Figure A.1: Action distribution for different types of meetings.

A.3 Annotation Agreement

Randomly selected two meetings were annotated by two annotators, and we tested the agree-
ment for three meeting types using Cohen’s Kappa coefficient [45]. The agreements are shown
in Table A.3.

Agreement Bed003 Bed010 Average

Actionable 0.699 0.642 0.644
Type 1.000 1.000 1.000

Overall 0.70 0.646 0.673

Table A.3: Annotation agreement during different settings.

• Actionable Utterance Agreement
We treat 10 defined actions as positive and others as negative (binary) to compute the
actionable utterance agreement. The average agreement about whether an utterance
includes an actionable item is 0.644.

• Action Type Agreement
To deeply analyze action types cross annotators, we compute the agreement on the ac-
tionable utterances that both annotators agree with (positive). The average agreement
is 1.000, indicating that both annotators always decide on the same action if they both
agree that there is an action in this utterance. It also suggests that most actions may
not be ambiguous.
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• Overall Agreement
We treat 10 actions and others as total 11 considered labels, and the average agreement
about the annotations is 0.673, showing that the actionable items are consistent across
human annotators.

A.4 Statistical Analysis

Actionable items were manually annotated based on the designed schema. There are total
318 turns annotated with actionable items, which account for about 1.5% of all of the turns.
The detailed numbers are shown in Table A.4, where the number of actionable utterances
in Bed meetings are much more than ones in Bmr and Bro meetings. It suggests that the
number of actionable utterances may depend on the meeting type. For example, a project
status update meeting usually contains more actionable items about reminders, so there is a
difference across meeting types and across meeting groups.

Meeting #Utt #Utt w/ Actions Percentage

Bed 4,544 192 4.2%
Bmr 9,227 116 1.3%
Bro 7,264 110 1.5%

Total 21,035 318 1.5%

Table A.4: The annotation statistics

Figure A.1 shows actionable item distribution in the meeting corpus, where it can be
found that different types of meetings contain slightly different distribution of actionable
items, but some actions frequently occur in all meetings, such as create single reminder and
find calendar entry. Some actions such as open setting and make call rarely appear in all meet-
ings.
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BInsurance Dataset

B.1 Dataset

The dataset is a set of insurance-related dialogues, where each conversation is a phone call
between a customer and an agent collected by MetLife1. There are total 155 conversations and
the number of utterances is 5,229 segmented by different speakers. The WER is reported as
31.8% using end-to-end deep recurrent neural network models trained on SwitchBoard [113].

Table B.1: The data statistics.

#Utt
#Word #Word
(ASR) (Manual)

Mean (µ) 33.74 388.64 462.72
S.D. (σ) 28.37 368.41 435.63

Total 5,229 60,239 71,722

B.2 Annotation Procedure

To obtain the reference domain ontology and actionable utterances, annotators were asked
to rate the degree about actionable items for all utterances and to annotate semantic con-
cepts. Figure B.1 shows the annotation interface, where following information is asked for
annotating.

• The customer intent degree (1 to 5)
The value indicates whether the annotator thinks the customer intent can be inferred
from the given utterance.
(1: strongly disagree, 2: disagree, 3: maybe, 4: agree, 5: strongly agree)

• The agent action degree (1 to 5)
The value indicates whether the annotator thinks the agent action can be inferred from
the given utterance.
(1: strongly disagree, 2: disagree, 3: maybe, 4: agree, 5: strongly agree)

• The semantically important frames associated with arguments in the utterances
(checked/unchecked)
The checked FrameNet based frames are salient concepts for understanding the given
utterances, which correspond to domain-specific knowledge.

1https://www.metlife.com/

https://www.metlife.com/


Figure B.1: The annotation interface.

• Additional slots and fillers that are not covered by FrameNet
The additional concepts are manually created when they are important for domain
knowledge but are not produced by the frame semantic parser. These concepts are used
to estimate the FrameNet coverage in the dataset.

• Dialogue Act (checked/unchecked)
The selected acts correspond categories of the goals in the given utterance, where there
are six types for selection: Social, Question, Info Statement, Process, Action Commit, and
Others.

To obtain more accurate ground truths, we take the degree labels into account when an-
notators agree (degree = 4) or strongly agree (degree = 5) for intent utterances and action
utterances (threshold is set as 4). The number of recruited annotators is 7, and all of them
were asked to start with the same annotation exercise2 and then allowed them to see the sug-
gested labels. Therefore, annotators can understand requirements better and provide more
consistent annotations for quality management. Also, the exercise can be used to compute
the rater agreement, where the inter-rater agreement is reported in Table B.2.

Table B.2 shows that the agreement is 0.71 when we consider only utterances annotated with
customer intents, and the agreement is 0.66 when we consider only utterances annotated with
agent intents. The difference indicates annotators’ confusion between intents and actions,
because they sometimes refer to the same one but sometimes refer to different ones. The

2The exercise human-human dialogue contains 38 utterances and is included in 155 conversations.

150



Table B.2: The inter-rater agreements for different annotated types (%).

Annotation Type Cohen’s Kappa

Customer Intent 0.7149
Agent Action 0.6610

Customer Intent or Agent Action 0.7567

Kappa agreements higher than 0.65 suggest that action utterances and intent utterances
in the human-human dialogues are generally consistent across annotators. In addition, the
inter-rater agreement is about 0.76 when we take into account the utterances labeled with
either customer intents or agent actions. Then we can conclude that the agreement can be
higher if we remove the confusion between intents and actions. Table B.3 shows the detail of
pair-wised agreements when we consider utterances annotated with either customer intents
or agent actions as actionable utterances. In sum, the number of actionable utterances is 753,
accounting for only 14% of total 5,229 utterances.

Table B.3: The detail of inter-rater agreements for actionable utterances (%).

Rater 2 Rater 3 Rater 4 Rater 5 Rater 6 Rater 7

Rater 1 0.7226 0.8430 0.7226 0.8430 0.3596 0.7226
Rater 2 0.8742 1.0000 0.8742 0.5366 0.7697
Rater 3 0.8742 1.0000 0.6415 0.8742
Rater 4 0.8742 0.5366 0.7697
Rater 5 0.6415 0.8742
Rater 6 0.5366

B.3 Reference Ontology

The reference ontology includes a set of slots and their inter-slot relations as the structure.

B.3.1 Ontology Slots

We compute the frequency of each checked slots and keep ones with the total frequency
higher than 10 in total 155 dialogues. Then there are total 31 reference slots based on
FrameNet. The slots and associated slot fillers are detailed in Table B.4. To measure the
coverage of FrameNet, we analyze the human-labeled additional slots and words, where there
are 8 concepts uncovered by FrameNet. The uncovered slots and their fillers are is shown in
Table B.5. Therefore, the FrameNet coverage in this dataset is about 79.5% (31 covered and
8 uncovered).
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Table B.4: The reference FrameNet slots associated with fillers and corresponding frequency.

Slot (Frequency) Slot Filler (Frequency)

Statement (45)
claim (21), adding (5), claims (4), note (3), add (2), speak (2), said (1), notes (1), reported (1), added (1),
statement (1), remarks (1), stating (1), talk (1)

Transfer (39) transfer (30), transferring (4), transferred (3), transfered (1), transfering (1)

Law (38) policy (38)

Request (36) call (14), calling (11), request (7), called (2), requested (1), requesting (1)

Inspecting (35) check (26), checking (3), inspection (3), checked (2), inspect (1)

Verification (32) confirmation (10), verify (8), make sure (5), confirm (5), verifying (2), confirmed (1), verified (1)

Sending (29) send (21), sending (3), sent (3), mailed (2)

Getting (27) get (23), got (3), gotten (1)

Receiving (23) received (10), receive (8), receiving (5)

Quantity (22) number (14), both (3), all (1), few (1), amount (1), touch (1), any (1)

Commerce pay (21) pay (7), paid (6), payment (6), payments (2)

Contacting (20) contact (6), call (5), email (5), emailed (1), calls (1), phone (1), contacting (1)

Information (20) information (19), informations (1)

Grant permission (17) let (10), approval (3), permit (2), lets (1), approved (1)

Needing (16) need (14), needed (1), needs (1)

Motion (13) go (6), going (5), move (2)

Perception experience (12) see (11), heard (1)

Awareness (12) know (10), aware (2)

Have as requirement (11) take (9), need (2)

Sent items (11) mail (11)

Locative relation (11) up (6), out (4), off (1)

Desiring (11) wanted (6), want (5)

Assistance (11) help (6), assist (3), helping (1), assisting (1)

Processing materials (11) processing (6), process (3), processed (2)

Capability (11) can (8), ahead (2), could (1)

Undergo change (11) change (8), changes (2), changed (1)

Vehicle (10) vehicle (8), car (2)

Temporal collocation (10) now (6), todays (1), when (1), in-depth (1), currently (1)

Evidence (10) showing (6), show (2), verify (1), confirming (1)

Visiting (10) call (10)

Intentionally act (10) do (6), did (3), step (1)



Table B.5: The labeled slots uncovered by FrameNet.

Additional Slot Slot Filler

Cancel cancellation, canceled, cancel, cancelled
Refund refund, deduct, debiting
Delete delete, deleting
Discount discount, discounts
Benefit beneficiary, beneficiaries, benefit
Person whom, who, someone
Status status, eligibility
Care care

B.3.2 Ontology Structure

The reference slot pairs connected with typed dependencies are verified by an annotator to
produce a list of slot pairs for structure evaluation. The reference ontology structure composed
of inter-slot typed dependencies is shown in Table B.6–B.11, where there are 212 slot pairs.
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Table B.6: The reference ontology structure composed of inter-slot relations (part 1).

Slot Pair Dependency

〈Assistance, Capability〉 dobj-1, aux
〈Assistance, Desiring〉 dep-1
〈Assistance, Grant permission〉 comp-1
〈Assistance, Perception experience〉 comp-1
〈Assistance, Temporal collocation〉 tmod
〈Assistance, Transfer〉 comp
〈Awareness, Capability〉 aux
〈Awareness, Commerce pay〉 comp-1
〈Awareness, Desiring〉 comp-1, comp
〈Awareness, Getting〉 comp-1, dep
〈Awareness, Grant permission〉 comp-1
〈Awareness, Information〉 prep
〈Awareness, Intentionally act〉 comp-1, aux
〈Awareness, Needing〉 comp, dep-1
〈Awareness, Perception experience〉 comp
〈Awareness, Quantity〉 dobj
〈Awareness, Request〉 dep, rcmod-1
〈Awareness, Sending〉 comp
〈Awareness, Statement〉 dep
〈Awareness, Temporal collocation〉 advmod
〈Capability, Commerce pay〉 aux-1
〈Capability, Contacting〉 aux-1
〈Capability, Evidence〉 aux-1
〈Capability, Getting〉 aux-1
〈Capability, Grant permission〉 aux-1
〈Capability, Have as requirement〉 comp, aux-1
〈Capability, Inspecting〉 aux-1
〈Capability, Intentionally act〉 aux-1
〈Capability, Motion〉 aux-1
〈Capability, Perception experience〉 aux-1
〈Capability, Receiving〉 aux-1
〈Capability, Request〉 aux-1
〈Capability, Sending〉 comp, aux-1
〈Capability, Sent items〉 prt
〈Capability, Statement〉 aux-1
〈Capability, Transfer〉 aux-1
〈Capability, Verification〉 aux-1
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Table B.7: The reference ontology structure composed of inter-slot relations (part 2).

Slot Pair Dependency

〈Commerce pay, Desiring〉 comp-1
〈Commerce pay, Grant permission〉 rcmod
〈Commerce pay, Inspecting〉 comp-1
〈Commerce pay, Intentionally act〉 aux
〈Commerce pay, Law〉 nsubj-1, nsubjpass
〈Commerce pay, Locative relation〉 prt
〈Commerce pay, Motion〉 nsubj-1, comp
〈Commerce pay, Perception experience〉 comp-1
〈Commerce pay, Processing materials〉 prep-1
〈Commerce pay, Quantity〉 nsubjpass
〈Commerce pay, Receiving〉 dobj-1
〈Commerce pay, Sending〉 nsubjpass-1
〈Commerce pay, Statement〉 comp-1
〈Commerce pay, Temporal collocation〉 advmod
〈Commerce pay, Verification〉 comp-1
〈Contacting, Desiring〉 comp-1
〈Contacting, Getting〉 prep-1
〈Contacting, Grant permission〉 comp-1
〈Contacting, Information〉 dobj
〈Contacting, Inspecting〉 dobj-1
〈Contacting, Intentionally act〉 comp-1
〈Contacting, Motion〉 comp-1
〈Contacting, Needing〉 comp-1
〈Contacting, Quantity〉 nn-1, dep
〈Contacting, Receiving〉 dobj-1
〈Contacting, Request〉 comp-1
〈Contacting, Sending〉 dobj-1
〈Contacting, Sent items〉 conj or-1
〈Contacting, Statement〉 prep
〈Contacting, Temporal collocation〉 advmod
〈Desiring, Evidence〉 dobj
〈Desiring, Getting〉 comp-1, comp
〈Desiring, Grant permission〉 comp-1, comp
〈Desiring, Have as requirement〉 dobj
〈Desiring, Information〉 nsubj
〈Desiring, Inspecting〉 nsubj-1, comp
〈Desiring, Intentionally act〉 aux, comp-1
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Table B.8: The reference ontology structure composed of inter-slot relations (part 3).

Slot Pair Dependency

〈Desiring, Motion〉 comp
〈Desiring, Needing〉 comp
〈Desiring, Quantity〉 xsubj
〈Desiring, Request〉 nsubj
〈Desiring, Sending〉 comp, advcl-1
〈Desiring, Statement〉 comp, comp-1
〈Desiring, Temporal collocation〉 advcl-1
〈Desiring, Transfer〉 comp
〈Desiring, Vehicle〉 dobj
〈Desiring, Verification〉 comp
〈Evidence, Law〉 dobj
〈Evidence, Quantity〉 det-1
〈Evidence, Request〉 dobj-1
〈Getting, Grant permission〉 aux
〈Getting, Information〉 dobj
〈Getting, Intentionally act〉 aux, comp-1
〈Getting, Law〉 dobj
〈Getting, Locative relation〉 advmod
〈Getting, Motion〉 comp-1
〈Getting, Needing〉 comp-1
〈Getting, Perception experience〉 advcl-1
〈Getting, Quantity〉 dobj
〈Getting, Request〉 comp
〈Getting, Sent items〉 prep
〈Getting, Statement〉 nsubj
〈Getting, Temporal collocation〉 advmod, prt-1
〈Getting, Vehicle〉 vmod-1, prep
〈Getting, Verification〉 dobj
〈Grant permission, Have as requirement〉 comp
〈Grant permission, Inspecting〉 discourse-1, comp
〈Grant permission, Intentionally act〉 comp, advcl-1
〈Grant permission, Law〉 dep
〈Grant permission, Motion〉 comp
〈Grant permission, Perception experience〉 comp, comp-1
〈Grant permission, Quantity〉 nsubj
〈Grant permission, Statement〉 comp
〈Grant permission, Temporal collocation〉 advmod
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Table B.9: The reference ontology structure composed of inter-slot relations (part 4).

Slot Pair Dependency

〈Grant permission, Transfer〉 comp
〈Grant permission, Undergo change〉 comp
〈Grant permission, Verification〉 dep
〈Have as requirement, Intentionally act〉 comp-1
〈Have as requirement, Law〉 prep
〈Have as requirement, Motion〉 comp-1
〈Have as requirement, Needing〉 comp-1
〈Have as requirement, Perception experience〉 comp
〈Have as requirement, Quantity〉 nsubj
〈Have as requirement, Statement〉 comp-1
〈Have as requirement, Vehicle〉 dobj
〈Information, Inspecting〉 dobj-1
〈Information, Locative relation〉 advmod
〈Information, Motion〉 prep-1
〈Information, Needing〉 dep, nsubj-1
〈Information, Perception experience〉 dobj-1
〈Information, Processing materials〉 vmod
〈Information, Quantity〉 det, dobj-1
〈Information, Receiving〉 dobj-1, rcmod
〈Information, Sending〉 dobj-1
〈Information, Verification〉 dep, xsubj-1
〈Inspecting, Motion〉 comp-1
〈Inspecting, Needing〉 comp-1
〈Inspecting, Perception experience〉 conj and
〈Inspecting, Request〉 comp-1
〈Inspecting, Statement〉 prep
〈Inspecting, Temporal collocation〉 advmod
〈Intentionally act, Law〉 prep
〈Intentionally act, Motion〉 comp-1, parataxis
〈Intentionally act, Needing〉 comp, comp-1
〈Intentionally act, Perception experience〉 dep, dep-1
〈Intentionally act, Receiving〉 aux-1
〈Intentionally act, Request〉 prep
〈Intentionally act, Sending〉 aux-1
〈Intentionally act, Statement〉 comp-1
〈Intentionally act, Temporal collocation〉 advmod-1, advmod
〈Intentionally act, Transfer〉 nsubj
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Table B.10: The reference ontology structure composed of inter-slot relations (part 5).

Slot Pair Dependency

〈Intentionally act, Undergo change〉 aux-1, dep
〈Intentionally act, Verification〉 dep-1
〈Law, Motion〉 nsubj-1
〈Law, Needing〉 dobj-1
〈Law, Perception experience〉 dobj-1
〈Law, Quantity〉 nn-1
〈Law, Request〉 comp, prep-1
〈Law, Sending〉 rcmod, prep-1
〈Law, Statement〉 prep-1
〈Law, Temporal collocation〉 advmod
〈Law, Undergo change〉 comp-1
〈Law, Vehicle〉 prep
〈Locative relation, Motion〉 advcl, prt-1
〈Locative relation, Perception experience〉 advmod-1
〈Locative relation, Sending〉 prt-1
〈Locative relation, Sent items〉 prt-1
〈Locative relation, Temporal collocation〉 conj and, advmod-1
〈Motion, Needing〉 comp, comp-1
〈Motion, Perception experience〉 comp, dep-1
〈Motion, Quantity〉 xsubj
〈Motion, Receiving〉 comp
〈Motion, Sending〉 comp
〈Motion, Statement〉 comp, comp-1
〈Motion, Temporal collocation〉 advmod
〈Motion, Transfer〉 comp
〈Motion, Vehicle〉 dobj
〈Motion, Visiting〉 dobj
〈Needing, Perception experience〉 comp
〈Needing, Quantity〉 dobj
〈Needing, Request〉 comp
〈Needing, Statement〉 comp-1, comp
〈Needing, Temporal collocation〉 dep-1, advmod
〈Needing, Transfer〉 comp
〈Needing, Verification〉 comp
〈Perception experience, Quantity〉 dobj
〈Perception experience, Receiving〉 advcl
〈Perception experience, Request〉 conj and-1
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Table B.11: The reference ontology structure composed of inter-slot relations (part 6).

Slot Pair Dependency

〈Perception experience, Sending〉 conj and
〈Perception experience, Statement〉 comp
〈Perception experience, Temporal collocation〉 prep-1, advmod
〈Processing materials, Statement〉 dobj
〈Processing materials, Verification〉 prep-1
〈Quantity, Statement〉 nn, det-1
〈Quantity, Vehicle〉 nn
〈Receiving, Request〉 comp
〈Receiving, Sent items〉 prep
〈Receiving, Statement〉 comp, comp-1
〈Receiving, Temporal collocation〉 advmod
〈Receiving, Visiting〉 comp
〈Request, Statement〉 prep
〈Request, Temporal collocation〉 dep-1, advmod
〈Request, Visiting〉 dep
〈Sending, Sent items〉 dobj
〈Sending, Statement〉 iobj, det-1
〈Sending, Temporal collocation〉 advmod
〈Sending, Verification〉 dobj
〈Sent items, Temporal collocation〉 nn-1
〈Statement, Temporal collocation〉 advmod
〈Statement, Undergo change〉 comp
〈Statement, Vehicle〉 dobj
〈Statement, Verification〉 vmod
〈Temporal collocation, Undergo change〉 advmod-1
〈Temporal collocation, Verification〉 nsubj, advmod-1
〈Transfer, Visiting〉 dobj
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