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Abstract

Linear models, which support efficient learning and inference, are the
workhorses of statistical machine translation; however, linear decision rules
are less attractive from a modeling perspective. The combination of a simple
learning technique and such a simple model means the overall learning pro-
cess may ignore useful non-linear information present in the feature set. This
places significant and undue burden on those tasked with improving transla-
tion systems to carefully design features that fall within the assumptions of
linear models – a highly unintuitive and error-prone task.

We relax three assumptions of linear models by abandoning a static set of fea-
tures and expanding the feature set as part of learning; we do this using two
types of feature induction operators. First, we show that by augmenting the
feature set with conjunctions of features, we can learn interactions among
multiple features. We then show that by discretizing real-valued features
into a finite set of indicator features, we can achieve non-linear transforma-
tions of individual features. This technique enables us to recover a translation
system performing on par with the state-of-the-art without the the usual (ar-
bitrary) transformation from probabilities to log-probabilities – in fact, we
out-perform the state-of-the-art, demonstrating that the customary log trans-
form is not always optimal. These two techniques are not mutually exclusive
in that indicator features resulting from the expansion of real-valued features
can also participate in conjunctions. Further, these techniques produce inter-
pretable models, exposing which non-linearities are important. Throughout
this thesis, we apply structured regularization, which considers relationships
among parameters when assigning their values; this technique mitigates the
data sparsity that accompanies the larger parameter sets produced by feature
induction.
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Table of Notation1

x A scalar
x A vector
x The length of the vector x
|x| The length of the vector x
|x| The absolute value of the scalar x
‖x‖p The `p norm of the vector x
JπK Returns 1 if the predicate π is true, 0 otherwise
R A regularization function
β A regularization constant
L A loss function
f Vector of source (foreign/“French”) words
e Vector of target (“English”) words
w Vector of real-valued model weights
ê(f) Estimator of f ’s translation
ẽ A human (empirical) translation
D A complete hypothesis derivation
d A derivation for a partial hypothesis
H(D) A feature vector for a complete derivation
h(d) A feature vector for a partial derivation
Φd(h) Feature induction operator on h(d)

, Equal by definition
i _ j Concatenation of feature identifiers i and j
∇g(x) Gradient of the function g(x)

R The set of real numbers
N The set of integers
Y(f) The set of possible target outputs for f
{xi : πi} Set containing all xi that satisfy predicate πi
〈a, b〉 Tuple with elements a and b

1See also Appendix B for a comprehensive explanation of all notation and symbols.
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Background 1
I like the dreams of the future better than the history of the
past.

—Thomas Jefferson

Every man is a quotation from all his ancestors.
—Ralph Waldo Emerson

AS THE STATE-OF-THE-ART IN MACHINE TRANSLATION has evolved, each innovation in iso-
lation is typically accompanied by theory, empirical evidence, and contemporary as-

sumptions. In this chapter, we review how prevailing models for SMT evolved with an
emphasis on how they have become more general – and in doing so we point out some
historical conventions that have lingered despite current advances. These historical con-
ventions include the use of a log transform to convert translation model probabilities into
features and the dubious equal treatment of dense and sparse features. We will discuss the
original generative Brown model, Och’s log-linear model optimized toward corpus proba-
bility, and Och’s linear model directly optimized toward an arbitrary objective function (e.g.
BLEU). Finally, we will touch on recent work that seeks to handle large numbers of features
while optimizing toward a surrogate loss function (e.g. MIRA and PRO), which emulate
optimization toward an arbitrary objective function.

1.1 A Brief History of Modeling in SMT

Brown et al. (1993) present a probabilistic model of translation, which defines the probabil-
ity of an English translation e of a foreign sentence f under the distribution p(e|f). This can
be expanded according to Bayes’ Rule, consistent with their source-channel interpretation
of translation:

1



1.1. A BRIEF HISTORY OF MODELING IN SMT

P (e|f) =
P (e)P (f |e)

P (f)
(1.1)

The Brown paper then quickly moves on to transform this into the “fundamental equa-
tion of statistical machine translation”, which shows the inference-time decision rule that
seeks the most likely English translation ê:

ê(f) = argmax
e

P (e)P (f |e) (1.2)

Notice that the denominator P (f) falls away as it is a constant for each f . P (e) corre-
sponds to a language model and P (f |e) corresponds to a translation model (in reverse, as
explained by the noisy-channel model). From a modern perspective, this model “weights”
each of these component models equally. While this may empirically be suboptimal because
of model error or estimation error, it is theoretically optimal under Bayes’ Rule. Importantly,
it allows the translation model and language model to be trained separately. This allows
much larger monolingual data to be used to estimate the language model.

Och and Ney (2002)1 move away from this generative source-channel approach in favor
of a log-linear model with features H, corresponding weights w, and a latent variable
aligning phrases a:2

P (e,a|f) =
exp

∑|H|
i=0wiHi(f ,a, e)

Z(f)
(1.3)

where Z(f) is a normalizer, which sums over the set of all possible translations of f as
generated by the function Y(f), ensuring that each conditional distribution sums to unity:

Z(f) =
∑

e′,a′∈Y(f)

exp

|H|∑
i=0

wiHi(f ,a
′, e′) (1.4)

1Papineni, Roukos, and Ward (1998) had previously proposed such an exponential model with discrimina-
tive training, but in the context of translating from a natural language to a formal language.

2Och and Ney (2002) originally present these equations without the latent alignment variable a. We present
it here for completeness.
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CHAPTER 1. BACKGROUND

This exponential formulation has two major advantages:

1. the model allows the system designer to add arbitrary features that expose to the
model information about different aspects of translation hypotheses; and

2. it introduces optimizable parameters w for each of the features in a principled way.

Och notes that the Brown model does not account for the translation model and language
model being imperfectly estimated and that we can correct for this in the exponential model
by weighting the components. Conveniently, this log-linear model generalizes the source-
channel model in that we can recover Brown’s model by using the following feature set
(Och and Ney, 2002):

hLM (f ,a, e) = logP (e) (1.5)

hTM (f ,a, e) = logPa(f |e) (1.6)

Och also noted that comparable performance could be achieved by using the feature
hTM (f ,a, e) = logPa(e|f). While this formulation is incorrect from the perspective of Bayes’
Rule, it empirically supports this feature-based view of translation over the source-channel
model.

Besides the change in form, an additional purpose has been assigned to the model’s
definition: It is now both a decision rule for inference and an objective function for training.
Since Och’s model (Equation 1.3) has the free parameters w (which are tuned), it was also
used as an objective function for optimization using Generalized Iterative Scaling (GIS).
Further, the features used in this model are unusual in that they are real-valued; though
log-linear models are typically defined as having real-valued features, in practice it is more
common for only indicator features to be used.

With Och’s log-linear model, we see that there are now two layers of optimization:

• first, the translation model parameters and language model parameters are each esti-
mated separately using relative frequencies; and

• second, the parameters of the log-linear model w are optimized toward Equation 1.3
(holding the internal parameters of the translation model and language model fixed).
Note that in this context, the translation model and language model have been re-cast
as real-valued features.

3



1.1. A BRIEF HISTORY OF MODELING IN SMT

As we did with the Brown model, we can remove all terms that are constant with regard
to f to obtain the model’s inference-time decision rule:3

ê(f) = argmax
a,e

|H|∑
i=0

wiHi(f ,a, e) (1.7)

It is striking how much simpler the decision rule is versus the overall model’s objective
function. Another disconnect in this log-linear setup is that the objective function used dur-
ing optimization (likelihood) is entirely different than the evaluation function (e.g. BLEU).
This was motivation for Minimum Error Rate Training (MERT) (Och, 2003), which directly
minimizes the number of errors produced over a set of parallel tuning sentences by a model
with a particular set of weights w according to an arbitrary error function E, using a corpus
of reference translations ẽ:4

ŵ = argmin
w

E (ẽ, ê(f ;w)) (1.8)

Here, we overload the notation ê to indicate the decoding of the entire tuning corpus.

Och (2003) present MERT as an optimizer for the log-linear model of Equation 1.3, and
in fact the decision rule remains the same as Equation 1.7. However, when using MERT as
an optimizer, the relation to a log-linear model (Equation 1.3) becomes more tenuous – in
fact, MERT is simply optimizing a linear model (which also happens to share the decision
rule of Equation 1.7):

score(f ,a, e) =

|H|∑
i=0

wiHi(f ,a, e) (1.9)

For models that have been directly optimized toward BLEU, the term log-linear becomes
overly specific. Throughout the rest of this work, we will refer to this more generally as a
linear model.

MERT no longer compels us to believe that an exponential model such as Equation 1.3
is a good measure of translation quality (i.e. that it should be our objective function). In
this context, the log transform of probability models into features begins to seem arbitrary:

3Notice that decoding uses the Viterbi derivation (as denoted by a being included in argmax) rather than
the Viterbi target string (which would correspond to summing over all a). This is common to most modern
decoders due to the burdens of non-local features.

4This is often notated as ŵ = argminw

∑
(f ,ẽ)∈S E (ẽ, ê(f ;w)), which implies that the error function must

decompose linearly over sentences. This is not the case for BLEU’s brevity penalty. In practice, the sufficient
statistics tend to decompose linearly, making computation of the final corpus-level error surface efficient.

4



CHAPTER 1. BACKGROUND

Since we are no longer tied to the Brown model nor the log-linear model of translation,
we are left with little theoretical justification for our log transform. In fact, many systems
actually use raw probabilities as features (Gimpel and Smith, 2009). While it has been
observed empirically that many common features produce better translation quality in log
space rather than probability space, the question still remains whether a log transform is
optimal. We will return to this question in Section 2.1.

Besides the questionable log transform, the standard model formulation also hides many
parameters from the final pass optimizer. In some sense, this is desirable since MERT only
scales to a small number of features (Hopkins and May, 2011) and so summarizing a large
number of features into a single real-value makes MERT more efficient and less prone to
overfitting. However, to be optimal in terms of MERT’s objective function, the model score
(which summarizes these many statistics) must satisfy several properties (Section 2.1). In
practice, satisfying these properties can be very difficult. Further, it can even be difficult to
know if these properties are satisfied.

Recent work in optimization for SMT has focused on enabling the use of more features
(Shen, Va, and Rey, 2004; Liang et al., 2006; Chiang, Marton, and Resnik, 2008; Hopkins
and May, 2011). These typically trade some approximation of the objective function for the
ability to scale to large feature sets. We will return to such optimizers in Section 1.4. With
the general ability to add many features to models, this brings into question a second his-
torical practice: previously, many of the free parameters of child models were hidden from
the second-stage optimizer (MERT) via a first-stage optimization procedure; why should we
still continue to optimize these parameters toward a first-pass proxy objective function such
as likelihood when we now have the ability to jointly optimize them toward a more reliable
objective?

1.2 Features on Structured Hypotheses for Efficient Inference

So far, we have establish the modern feature-based view of modeling. In this section, we
briefly define attributes of features and the interplay between the features and inference.
This will inform our choices in constructing feature induction operators in the next chapter.
First, we define three types of feature visibility:

• Observable features. Direct attributes of the source input (e.g. sentence-level source
language model, source LDA topic)

• Output features. Attributes of the model’s output (e.g. language model, word
penalty, lexical probabilities)
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1.2. FEATURES ON STRUCTURED HYPOTHESES FOR EFFICIENT INFERENCE

• Latent features. Not visible in either the input nor output, but only in latent variables
of the model (e.g. segmentation, source tree, target tree, entropy, source phrase
count)

Together, we refer to the output features and latent features as non-observable features.

We also define two types of feature locality:

• Local features. Stateless features (e.g. phrase features) that do not require additional
state information in the dynamic program

• Non-local features. Stateful features (e.g. target language model) that do require
additional state information in the dynamic program – these will always be hypothesis
or latent features

Feature locality is relative to the way in which the inference problem of decoding is
decomposed into subproblems. For example, in a phrase-based decoder, any feature that
is computable given only a single phrase pair and the input sentence is local, while fea-
tures that cross phrase boundaries are non-local. Similarly, in a chart-based decoder, local
features must be computable from a single grammar rule or the input sentence. Factoring
features in this way allows for efficient inference by allowing search to be decomposed into
smaller reusable subproblems in the spirit of dynamic programming.5

Next, we consider the features of a standard machine translation system using a factor
graph (Kschischang, Frey, and Loeliger, 2001) as a visual representation in Figure 1.1 with
a focus on understanding how the features and the inference procedure are intertwined.
The undirected edges in this graph should not be interpreted as a generative story nor a
particular ordering of events. Note that the source sentence f is fully observed and so is
constant for any partial derivation – that is, we may incorporate it into any feature without
additional inference cost. We then choose a derivation D of this sentence including how to
segment the phrases in the case of a phrase-based system or which grammar rules to apply
in the case of a syntactic system. We also assign the task of performing any reordering
to the random variable D making D both latent and structured. For each the n phrases
(or grammar rules) chosen by D, each phrase is associated with some number of target
terminals mi with lexical forms ei. The feasible assignment to each of these random vari-

5Due to the presence of non-local features, we cannot actually perform dynamic programming since the best
solution to each subproblem is not guaranteed to be globally optimal. This is, in fact, the primary reason that
machine translation decoders typically use inexact inference.
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f

D

r1
rn

...

e1 ei... ej em......

Source sentence

Derivation including
segmentation,
reordering, and
grammar rules

(n phrases or rules)

Each rule r (or
phrase) generates

zero or more
target terminals

Each target position
chooses a word ei

Latent
alignment
variable a}

e2

Non-local features
such as the LM

are grouped within
one compatibility function

ΨPhrase(f,r,e1...ek) = { hTGS(f,r,e1...ek), hLexSGT(f,r,e1...ek), ... }

...Phrase/rule local features
have access to f,
the current rule r,

and r 's terminals e
within their

compatibility function

(D may affect ordering)

ΨBigramLM(e1, e2) = { hBigramLM(e1, e2) }

Figure 1.1: The features of a typical statistical machine translation visualized as a
factor graph. The factors (square boxes) indicate phrase-local and rule-local features
ΨPhrase(f , r, e1 . . . ek) and a non-local bigram language model feature ΨBigramLM(e1, e2). Lo-
cal features are distinguished from non-local features in that they do not cross any rule
boundaries (they can be computed without any state s). Throughout this thesis, we will
use it to our advantage that as long as new features do not create any new factors, in-
ference complexity remains the same. We use D to indicate a structured random variable
over the derivation including segmentation, choice of grammar rules (or source phrases),
and reordering constraints. We use a bigram LM as an example here for simplicity – in our
experiments, we use larger LMs. Lines are dashed solely for readability.
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ables is heavily constrained by the grammar rules or phrase table, as well as the reordering
hyperparameters of the system (reordering length limit, etc.).6

1.3 Inference: Linear Models over Structured Hypotheses

The formulation of features from the previous section is based largely on the needs of
efficient inference. In this section, we describe inference in modern decoders since we seek
to keep inference efficient throughout this thesis. Decoding a given source sentence f can be
expressed as search over target hypotheses e, each with an associated complete derivation
D. To find the best-scoring hypothesis ê(f), a linear model applies a set of weights w to a
complete hypothesis’ feature vector H (Equation 1.7):

ê(f) , argmax
e,D

|H|∑
i=0

wiHi(f , e, D)

However, this hides many of the realities of performing inference in modern decoders.
Traditional inference would be intractable if every feature were allowed access to the entire
derivation D and its associated target hypothesis e. Decoders take advantage of the fact
that local features decompose over partial derivations d. For a complete derivation D, the
global features H(D) are an efficient summation over local features h(d):

ê(f) = argmax
e,D

|H|∑
i=0

wi
∑
d∈D

hi(d)︸ ︷︷ ︸
Hi(D)

(1.10)

However, this view ignores non-local features such as the language model (LM), which can-
not be exactly calculated given an arbitrary partial hypothesis, which may lack both left and
right context.7 Such features require special handling including future cost estimation. In
this study, we limit ourselves to local features, leaving the traditional non-local LM feature

6For those readers more familiar with the language of Markov random fields, since the factorization of a
MRF is a priori ambiguous, we organize the features on vertices V into compatibility functions, also frequently
called factors (not to be confused with factored machine translation). Each compatibility function Ψv ∈ F(d)
where v ⊆ V defines the scope of the compatibility function and F is responsible for taking a derivation d
and factorizing it into compatibility functions (Sutton and Mccallum, 2010). In Figure 1.1, each compatibility
function is represented by a small square box. In the abstract, a compatibility function is composed of several
feature functions (also sometimes referred to as potential functions), which may be applied to any random
variables of the correct type. When we instantiate this random field for a particular input sentence, then each
compatibility function is bound to a particular instances of its random variables and its constituent feature
functions are likewise bound to a subset of those random variable instances.

7This is especially problematic for chart-based decoders.
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unchanged. In general, feature locality is relative to a particular structured search space,
and is not necessarily related to the structured features described in Section 6.3.2.

Decoders incorporate non-local features by maintaining a state object s, which includes
the minimal information from nearby partial derivations required to compute all features
(local features never use s). As the state object becomes more complex, the search for a
best derivation is prone to become slower or lossier. Incorporating the state s, we reach a
final formulation:8

ê(f) = argmax
e,D

|H|∑
i=0

wi
∑
〈d,s〉∈D

hi(d, s)︸ ︷︷ ︸
Hi(D)

(1.11)

This view of the inference problem provides us with a clear picture of how decoders
make inference efficient. The decoder can quickly aggregate the scores of local features
from local derivations with state from nearby partial derivations updating the ranking as
the search progresses. Since many of these partial hypotheses are shared among larger
hypotheses, these costs can be amortized in a dynamic programming fashion. In practice,
the scope of the language model feature is too broad to allow dynamic programming to
be efficient, and so the inference problem is organized such that it factors over rules or
phrases. The non-local state s is the key reason why exact dynamic programming is no
longer possible in MT decoding. Instead, approximate inference is typically carried out
using a modified beam search that includes cube pruning as a nested search problem over
which partial hypotheses should be considered for combination (Huang and Chiang, 2007).

With the introduction of this approximate inference to accommodate non-local features,
we are now left with the possibility of search errors, which can arise when a poor decision
early in the search procedure discards a partial hypothesis that would later have partic-
ipated in the hypothesis with the best model score (Auli et al., 2009). To mitigate (but
certainly not overcome) this danger, decoders require non-local feature functions to per-
form future cost estimation9 in which features provide an estimate of their value once
the full hypothesis has been completed, but within the context of only a partial hypothe-
sis (Moore and Quirk, 2007; Zens, 2008; Zens and Ney, 2008). Alternatively, this can be
viewed as a mechanism of making the scores of partial hypotheses within the same search

8 From the view of Markov random fields and compatibility functions, we could substitute the state object
for a decomposition over compatibility functions Ψ: ê(f) = argmaxd,e

∑|H|
i=0 wi

∑
Ψv∈F(d)

hi(Ψv)

︸ ︷︷ ︸
Hi(d)

9Future cost estimation is also often referred to as rest cost estimation.
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stack comparable so that the decoder does not opportunistically make local choices that will
inevitably lead to worse translations in a larger context.

Finally, substituting this definition of the global feature vector back into our original
decision rule, we obtain this high-level view of our linear model: From this perspective,
we see a clear distinction between the global features H, which is important from the
perspective of the final linear model, and the myopic local feature functions h, which is
important for inference efficiency (and often the way features are formally described in the
literature). This distinction will become important in Chapter 6.

Not only are current decoding algorithms efficient, but they also produce empirically
good results. While exact decoding algorithms exist for both phrasal and syntactic machine
translation models (Rush, Chang, and Collins, 2013), when Chang and Collins (2011) ap-
plied Lagrangian Relaxation to perform exact decoding of phrase-based models, they ob-
served that the quality of phrase-based decoding with a beam size of 100 was effectively
the same (insignificantly better) as using exact decoding, according to BLEU.

1.4 Learning: Non-Convex Objectives in High Dimensions

Throughout this thesis, we will apply the techniques of feature induction (Section 2.3) and
regularization (Section 2.4). While MERT has proven to be a strong baseline, traditional
MERT does not scale to larger feature sets (such as those resulting from feature induction)
in terms of both inefficiency and overfitting (Hopkins and May, 2011).

Because of this, we use the PRO optimizer (Hopkins and May, 2011) as our baseline
learner since it has been shown to perform comparably to MERT for a small number of
features, and to significantly outperform MERT for a large number of features (Hopkins
and May, 2011; Ganitkevitch et al., 2012). PRO works by sampling pairs of hypotheses
from the decoder’s k-best list and then providing these pairs of binary training examples
(where the gold binary label is a correctly ranked or not) to a standard binary classifier to
obtain a new set of weights for the linear model. This procedure of sampling training pairs
and then optimizing the pairwise rankings is repeated for a specified number of iterations.
We select and sample exemplars uniformly at random to avoid pathologically long negative
samples (Nakov, Guzmán, and Vogel, 2013).

Other recent MT optimizers such as MIRA (Chiang, Marton, and Resnik, 2008), the
linear structured SVM (Cherry and Foster, 2012a), Rampion (Gimpel and Smith, 2012),
HOLS (Flanigan, Dyer, and Carbonell, 2013), AROW (Chiang, 2012) and regularized MERT
(Galley et al., 2013) have also been shown to be effective in optimizing larger feature sets.
Any of these optimizers that are scale insensitive or can be reformulated as scale insensitive
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(Galley et al., 2013) are compatible with the structured regularization techniques described
in this thesis.10

10Since we eventually dispense with nearly all of the original dense features in Chapter 6 and all of our
regularization terms are scale sensitive, one would need to use the `1-renormalized variant of regularized
MERT.
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Overview 2
A theory must be tempered with reality.

—Jawaharlal Nehru

So once you know what the question actually is, you’ll know
what the answer means.

—Douglas Adams, The Hitchhiker’s Guide to the Galaxy

FEATURE ENGINEERING remains a significant human cost in the development of state-of-
the-art machine translation systems. While this is partly due to the complex nature

of human language, known theoretical limitations of current modeling and learning pro-
cedures are also to blame. This thesis seeks to reduce the cost of feature engineering and
improve translation quality by addressing those issues through improved learning. In this
chapter, we outline those limitations, discuss how they are a burden in practice, and state
the claims and contributions of this thesis.

2.1 Theoretical Motivation: Assumptions and Pitfalls of Linear

Modeling

We follow Nguyen, Mahajan, and He (2007) in enumerating the restrictions placed upon a
feature set within a linear model, which are assumed to hold whenever a linear model is
used as an inference mechanism:1

1. Linearity. A feature must be linearly correlated with the objective function. That
is, there should be no region that matters less than other regions. For example, this
forces a system designer to decide use between logP (e) and P (e).

1The authors originally presented these in the context of a log-linear model. However, these properties also
hold for linear models.
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CHAPTER 2. OVERVIEW

2. Monotonicity. A feature value of x1 for a hypothesis h1 must indicate that h1 is
better than any other hypothesis hi having a lesser value of that feature xi < x1.
For example, consider a simple length penalty implemented as a signed difference:
WordCount(f) − WordCount(e). To meet the monotonicity requirement, a system de-
signer must use the absolute value to indicate that deviating from the length of the
source sentence in either direction is bad.

3. Independence. Inter-dependence among features is ignored by the model. That is, a
feature f1 may not contribute more toward the model score in the presence of another
feature f2 than when f2 is not active. For example, if a system has 3 language models,
each trained on a different genre, each of those language models contributes equally
to a hypothesis’ score, regardless of the genre of the source sentence.

Linearity and monotonicity are most important when considering initially2 continuous
features such as probabilities and counts since these assumptions are trivially satisfied for
initially discrete features such as indicator features.

Independence is not strictly a requirement of a linear model nor most popular learners
used in SMT including MERT, MIRA, and PRO. That is, the optimization procedure will not
fail when dependent features are added to an otherwise independent feature set. How-
ever, when inter-dependence exists between features, the model cannot take advantage of
this information. Independence manifests itself differently for real-valued versus indicator
features.

For indicator features (the boolean case), the classic example of a function that cannot
be captured by a linear model is XOR, which is shown in Figures 2.1 and 2.2. Yet for such
simple boolean features, it can be fairly easy for a human engineer to design such features.

However, when considering real-valued features, interactions between features become
much less intuitive. Interactions between real-valued features manifest when particular
values of multiple features together indicate that a hypothesis has a different quality than a
simple weighted sum of those values, as shown in Figures 2.3 and 2.4.

f1=0 f1=1

f2=0 0 1
f2=1 1 2

Figure 2.1: An example of how a linear model
combines indicator features using the weights
w1=w2=1

f1=0 f1=1

f2=0 0 1
f2=1 1 0

Figure 2.2: An example of the XOR function.
Notice that there exists no weight vector for a
linear model that can produce this outcome.

2We distinguish initial features from the induced features described in Section 2.3.
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f1=0.1 f1=0.2 . . .

f2=0.1 0.2 0.3 . . .

f2=0.2 0.3 0.4 . . .

. . .

Figure 2.3: A feasible scenario in a linear
model. A linear model can produce the out-
comes in this table given the weights w1=w2=
1

f1=0.1 f1=0.2 . . .

f2=0.1 0.2 0.3 . . .

f2=0.2 0.3 0.5 . . .

. . .

Figure 2.4: A model that allows inter-
dependence between features. There exists
no set of weights w such that w · f will pro-
duce the values in this table, indicating that it
is not possible in a linear model.

2.1.1 Feature Non-Linearity and Separability

Unlike models that rely primarily on a large number of sparse indicator features, state-of-
the-art machine translation systems rely heavily on a small number of dense real-valued
features. However, unlike indicator features, real-valued features are more prone to the
limitations of linear models, as we just discussed.

Decoders use a linear model to rank hypotheses, selecting the highest-ranked derivation.
Since the absolute score of the model is irrelevant, non-linear responses are useful only
in cases where they elicit novel rankings. In this section, we will discuss these cases in
terms of separability. Here, we are separating the correctly ranked pairs of hypotheses from
the incorrect in the implicit pairwise rankings defined by the total ordering on hypotheses
provided by our model.

When the local feature vectors h of each oracle-best3 hypothesis (or hypotheses) are
distinct from those of all other competing hypotheses, we say that the inputs are ora-
cle separable given the feature set. If there exists a weight vector that distinguishes the
oracle-best ranking from all other rankings under a linear model, we say that the inputs are
linearly separable given the feature set. If the inputs are oracle separable but not linearly
separable, we say that there are uncaptured non-linearities that are unexplained by the
feature set. For example, this can happen if a feature is positively related to quality in some
regions but negatively related in other regions (i.e. non-monotonicity with regard to the
objective).

As we add more sentences to our corpus, the likelihood of achieving separability de-
creases. For a given corpus, if all hypotheses are oracle separable, we can always produce
the oracle translation – assuming an optimal (and potentially very complex, overparameter-
ized) model and weight vector. If our hypothesis space also contains all reference transla-
tions, we can always recover the reference. In practice, both of these conditions are typically

3We define the oracle-best hypothesis in terms of some external quality measure such as BLEU.
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violated to a certain degree. However, if we modify our feature set such that some lower-
ranked higher-quality hypothesis can be separated from all higher-ranked lower-quality
hypotheses, then we can improve translation quality. For this reason, we argue that separa-
bility remains an informative tool for thinking about modeling in MT.

2.2 Practical Motivation: A View from Feature Engineering

We have pointed out several theoretical limitations of linear models. We now turn our
attention to how these assumptions can negatively impact the development of statistical
machine translation systems. When constructing MT systems, system developers often wish
to improve system performance via feature engineering, the process of designing features
to contribute to the system’s predictive model.

A common development pattern when improving SMT systems is to 1) create a new
translation feature that (hopefully) predicts some desirable (or undesirable) facet of trans-
lations and then 2) expose this as a new feature whose weight can be tuned by an optimizer.
These component translation features, which are increasingly complex models on their own,
are not optimized directly toward our true objective function (e.g. BLEU); yet once we have
the opportunity to optimize directly to our objective, we fit a global linear model, a rather
blunt one-size-fits-all approach.

But what if a feature has the potential to improve quality in some contexts, but not
others? This is likely a common scenario since during feature engineering, developers may
look through system output and devise models to address specific observed shortcomings;
however, it is impossible for feature developers to consider all of the situations in which their
new models might have negative side effects. We address these shortcomings by allowing
translation features to be reweighted depending on context. This context could range from
document topic to the average number of letters per word – or combinations thereof. As
discussed in Section 2.1, linear models are simply incapable of such fine distinctions unless
they are explicitly encoded into the feature set, placing this burden squarely on the human
system designers.

2.3 Approach: Feature Induction to Combat Underfitting

The limitations of linear models make them subject to underfitting – not fitting the tuning
data as tightly as desired. In the process of relaxing the assumptions of linear models,
we will apply feature induction to provide the model with more degrees of freedom. Our
feature induction operators produce features that are more specific than the input feature
set – as if the features have been split into more fine-grained categories:
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• The conjoin operator will multiply two real-valued features or compute the logical
conjunction of two indicator features; this relaxes the linear assumption of indepen-
dence.

• The discretize operator will split a single real-valued feature into bins; this relaxes
the linear assumptions of linearity and monotonicity.

This enables our transformed model to produce non-linear responses with regard to the
initial feature set H while inference remains linear with regard to the optimized parameters
w′. We visualize the difference between the original linear model and our formulation of
learning with feature induction in Figure 2.5. Importantly, our transformed feature set
requires no additional non-local state information for inference. In our experiments, we
perform feature induction once at the beginning of learning, though other formulations are
possible.

We define feature induction as a function Φ(h) that takes the result of the feature
vector h(f , d, s) ∈ R|h| and returns a set of |h′| tuples 〈y′, j〉 where y′ ∈ R is a transformed
feature value and j is the transformed feature index. Building on equation 1.10, we can
apply feature induction as follows:

ê(f) = argmax
e,D

∑
〈d,s〉∈D

∑
〈y′,j〉∈Φ(h(d,s))

w′jy
′

︸ ︷︷ ︸
h′(f ,e,d)

(2.1)

Learning

H Learning w
Original Linear Model: w • H

H Feature 
Induction

w'

Induced Linear Model: w' • H'
H'

Figure 2.5: Top: A traditional learning procedure, assigning a set of weights to a fixed
feature set. Bottom: Our feature induction technique expands the feature set as part of
learning, while still producing a linear model for inference, albeit with more features.
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2.4 Challenges: Regularization to Combat Overfitting

While feature induction will allow us to more tightly fit the tuning data, we also run the risk
of overfitting the tuning data such that the learned parameters no longer generalize to held-
out test data. To combat the overfitting tendencies introduced by feature induction, we will
apply various types of regularization, which encourage the learning procedure to make
use of the induced features only as necessary. When the distribution encouraged by the
regularizer matches that of the population data (i.e. a held-out test set), we can optimize
larger feature sets on smaller data while still improving the quality of our predictions. We
will return to this basic trade off between underfitting and overfitting as a theme throughout
this thesis.

2.5 Thesis Statement

We have introduced linear models as the state-of-the-art in statistical machine translation.
We have also suggested that direct optimization of a linear model may produce suboptimal
results in a SMT system due to uncaptured non-linearities.

In this thesis, we develop methods that address these shortcomings of linear learning.
We claim that:

1. by expanding the feature set during learning we can render the learned model non-
linear with regard to the initial feature set;

2. discretization of initial features will result in a significant improvement in overall
translation quality as measured by automatic metric scores; and

3. conjunction of initial features will result in a significant improvement in overall trans-
lation quality as measured by automatic metric scores.

To support these claims, this thesis makes the following contributions:

1. a method of feature discretization to relax the properties of linearity and monotonicity
(Chapter 6);

2. a method of feature conjunction to relax the property of independence that performs
feature induction learning (Chapter 4);

3. evidence that discretization can be used to recover a system with at least state-of-the-
art performance by performing a non-linear transformation of the standard feature
set without the typical log transform applied (Chapter 6);
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4. evidence that conjunctions of features can improve translation quality (Chapters 4
and 5); and

5. three real-world scenarios where these theoretical tools improve machine translation
quality (Chapters 4,5, and 6).

In order to achieve these goals, we further contribute:

6. a method of evaluating the impact of experimental results that is robust to optimizer
instability such as randomized optimization procedures and experimental configura-
tions having high variance due to large feature sets (Chapter 3);

7. a method of regularizing discretized features, allowing their weights to be reliably
estimated (Chapter 6); and

8. a method of regularizing conjoined feature sets having intuitive groupings (Chap-
ter 4).

9. a method of regularizing very large conjoined feature sets without a priori obvious
groupings, allowing them to be used with conventionally-sized tuning sets (Chap-
ter 5).

From an engineering perspective, the resulting model will still be directly usable in
conventional decoders with minimal to no modification. From a scientific perspective, the
resulting model will be interpretable, giving us insight into which non-linear factors are
most important in achieving high quality translations.

2.6 Related Work

Previous work on feature discretization in machine learning has focused on the conversion
of real-valued features into discrete values for learners that are either incapable of handling
real-valued inputs or perform suboptimally given real-valued inputs (Dougherty, Kohavi,
and Sahami, 1995; Kotsiantis and Kanellopoulos, 2006). Such learners include decision
trees, Bayesian networks, and rule learners.

Kernel methods such as support vector machines (SVMs) are often considered when
non-linear interactions between features are desired since they allow for easy usage of non-
linear kernels. Wu, Su, and Carpuat (2004) showed improvements using a non-linear ker-
nel PCA method for word sense disambiguation versus a support vector machine model.
Tsochantaridis et al. (2004) introduce a support vector machine for structured output
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spaces and show applications in grammar learning, named-entity recognition, text classifi-
cation, and sequence alignment. This line of work later included application to information
retrieval, protein alignment, and classification with unbalanced classes (Joachims et al.,
2009). Giménez and Màrquez (2007) used a support vector machine to annotate a phrase
table with binary features indicating whether or not a phrase translation was appropriate
given the context. Wang, Shawe-Taylor, and Szedmak (2007) present a string-kernel SVM
model of machine translation, but apply it only on very small data due to inherent scal-
ing difficulties. Even within kernel methods, learning non-linear mappings with kernels
remains an open area of research; For example, Cortes, Mohri, and Rostamizadeh (2009)
investigated learning non-linear combinations of kernels.

However, kernel methods remain slow due to complex training and inference require-
ments. This poses a challenge in machine translation, which is a complex structured pre-
diction problem involving non-local features. Kernel methods also make it difficult to map
back to the primal form of the problem to recover features and their weights – that is they
are generally not interpretable. Further complicating matters is the issue of future cost
estimation, which requires a model to estimate the future values of non-local features to
avoid excessive search errors during approximate inference. Nor would such an approach
be compatible with most decoders available, slowing adoption of the work. Additionally,
much work has already been done to make inference fast with linear models in current
decoders.

Decision trees and random forests are also commonly used as non-linear learners. Deci-
sion trees have been successfully used in many areas of natural language processing includ-
ing language modeling (Jelinek et al., 1994; Xu and Jelinek, 2004) and parsing (Charniak,
2010; Magerman, 1995). While they are considerably easier to interpret than kernel meth-
ods, they have some important deficiencies in the context of this work. As with kernel
methods, it is again very difficult to perform future cost estimation for such models, a re-
quirement of our modern decoding algorithms. Second, traditional learning procedures for
neither MT nor decision trees can be applied due to the structured hypothesis space.

Feature augmentation using conjunctions of features has been explored in various ar-
eas of machine learning. Della Pietra, Della Pietra, and Lafferty (1995) describe a greedy
algorithm for iteratively adding features to a random field based on expected gain (Della
Pietra, Della Pietra, and Lafferty, 1997). Mccallum (2003) extends this work to conditional
random fields, but also constructs the conjunctions iteratively. Guyon and Elisseeff (2003)
describes a checklist for applying machine learning to a problem, which recommends using
conjunctive features if one suspects inter-dependence among the features. Guyon also notes
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that while a model may be linear in its parameters, the model may be rendered non-linear
in its input variables via feature construction – the approach we take in this work.

Research has also been done on “unpacking” real-valued generative features into a few
sufficient statistics. These unpacked statistics can then be optimized directly alongside other
features in the translation system, providing the opportunity for a tighter fit. For exam-
ple, Chen et al. (2011) explored unpacking the sufficient statistics of various phrase table
smoothing methods and demonstrated an improvement in translation quality.

The most closely related work to this proposal is that of Nguyen, Mahajan, and He
(2007). Nguyen attempted to use discretized real-valued features using 20-50 bins. How-
ever, with this small number of bins they saw no improvement. Nguyen also did not yet
have access to reliable methods for optimizing large numbers of features available at that
time, so they instead used a modified version of minimum risk annealing (Smith and Eisner,
2005). Nguyen did observe a small improvement when attempting to relax the feature inde-
pendence constraint using Gaussian Mixture Model (GMM) features, which were separately
trained toward a likelihood-based objective and then added as features into a standard MT
model.

Neural networks have recently gained popularity as a means of learning new feature
representations with non-linear relationships. Recent work has investigated recurrent neu-
ral networks (Schwenk, 2012; Auli et al., 2013; Kalchbrenner and Blunsom, 2013), which
add non-local state to inference, and additive neural networks (Liu et al., 2013a), which
learn locally non-linear mappings. While these models have shown promise as methods of
augmenting existing models, they have not yet offered a path for replacing or transforming
existing real-valued features. This may be partially due to requiring many more internal pa-
rameters to perform otherwise simple transformations that are better represented as simple
discretization or conjunction operations (Chapter 6). The uninterpretable nature of rep-
resentations learned by neural networks also means that (1) they are opaque to post-hoc
analysis; and (2) it is more difficult to encode prior knowledge using techniques such as
regularization, making them less appropriate as data becomes more sparse.

2.7 Roadmap

The remainder of this thesis is structured as follows.

• In Chapter 3, we discuss how to evaluate machine translation experiments given a
randomized optimizer

We then explore increasingly complex feature induction operators along with corresponding
regularization techniques.
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• In Chapter 4, we explore a domain adaptation task using conjunctions between source
domain indicator features and traditional dense features. When combined with a
group regularizer that takes feature complexity into account, we observe an improve-
ment.

• In Chapter 5, we add sparse source-target lexical indicator conjunctions and target-
target lexical indicator conjunctions. By applying a regularization technique that in-
duces groups during learning, we are able to optimize our parameters on a traditional
tuning data set while retaining nearly 1 million active features.

• In Chapter 6, we replace the traditional dense features with discretized features;
rather than discovering structure among features, we induce features that are by def-
inition structurally related. We find that when this structure is leveraged by neigh-
bor regularization, a novel regularization strategy, we can discard the traditional log
transform while still observing improvements in quality.

• In Chapter 7, we discuss how to build conjunctions on top of discretized features
and generalize neighbor regularization across multiple spatial relationships simulta-
neously.

Finally, we summarize and discuss future directions in Chapter 8.
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Evaluation: Robust Hypothesis
Testing under Randomized
Optimization1 3

Insanity: doing the same thing over and over and expecting
different results.

—John Dryden, The Spanish Friar

OBJECTS IN MIRROR ARE CLOSER THAN THEY APPEAR.
—U.S. Federal Vehicle Safety Standards, Section 571.111

Trust, but verify. (Доверяй, но проверяй)
—Old Russian Proverb

WHEN ANALYZING THE RESULTS of a statistical machine translation experiment, a re-
searcher seeks to determine whether some innovation (e.g., a new feature, model,

or inference algorithm) improves translation quality in comparison to a baseline system. To
answer this question, he runs an experiment to evaluate the behavior of the two systems on
held-out data. In this chapter, we consider how to make such experiments more statistically
reliable. We provide a systematic analysis of the effects of optimizer instability—an extra-
neous variable that has previously been seldom controlled for—on experimental outcomes,
and outline a methodology for reporting results more accurately. While these controls are
generally good practice for the field, they are particularly important in enabling us to draw
strong conclusions about the results in this thesis since we push the limits of optimizers
with high dimensional feature sets.

The need for statistical hypothesis testing for machine translation (MT) has been ac-
knowledged since at least Och (2003). In that work, the proposed method was based on
bootstrap resampling and was designed to improve the statistical reliability of results by
controlling for randomness across test sets. However, there has been no consistently used

1Elements of this chapter were originally published as J. Clark, C. Dyer, A. Lavie, N. Smith, “Better Hypoth-
esis Testing for Statistical Machine Translation: Controlling for Optimizer Instability”, ACL. July 2011.
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CHAPTER 3. EVALUATION

strategy that controls for the effects of unstable estimates of model parameters.2 While the
existence of optimizer instability has long been an acknowledged problem, it was previ-
ously only infrequently discussed in relation to the reliability of experimental results, and,
to our knowledge, this is the first systematic study of its effects on hypothesis testing. In
this chapter, we present a series of experiments demonstrating that optimizer instability can
account for substantial amount of variation in translation quality, which, if not controlled
for, could lead to incorrect conclusions both by automatic metrics and human evaluators.
We then show that it is possible to control for this variable with a high degree of confidence
with only a few replications of the experiment and close this chapter by outlining best
practices for significance testing for machine translation that take these factors into consid-
eration. Following the initial publication of this work, the research community has largely
embraced this methodology with over 125 recent publications citing the recommendations
in Clark et al. (2011).

3.1 Nondeterminism and Other Optimization Pitfalls

Statistical machine translation systems consist of a model whose parameters are estimated
to maximize some objective function on a set of development data. Because the standard
objectives (e.g., 1-best BLEU, expected BLEU, marginal likelihood) are not convex, only ap-
proximate solutions to the optimization problem are available, and the parameters learned
are typically only locally optimal and may strongly depend on parameter initialization and
search hyperparameters. Additionally, stochastic optimization and search techniques, such
as minimum error rate training (Och, 2003) and Markov chain Monte Carlo methods (Arun
et al., 2010), constitute a second, more obvious source of noise in the optimization proce-
dure. Online subgradient techniques such as MIRA (Crammer et al., 2006; Chiang, Marton,
and Resnik, 2008) have an implicit stochastic component as well based on the order of the
training examples.

This variation in the parameter vector affects the quality of the model measured on both
development data and held-out test data, independently of any experimental manipulation.
Thus, when trying to determine whether the difference between two measurements is sig-
nificant, it is necessary to control for variance due to noisy parameter estimates. This can be
done by replication of the optimization procedure with different starting conditions (e.g.,
by running MERT many times).

2We hypothesize that the convention of “trusting” BLEU score improvements of greater than 1.0 BLEU, is
not merely due to an appreciation of what qualitative difference a particular quantitative improvement will
have, but also an implicit awareness that ignoring optimizer instability leads to results that are not consistently
reproducible.
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Unfortunately, common practice in reporting machine translation results was previously
to run the optimizer once per system configuration and to draw conclusions about the ex-
perimental manipulation from this single sample. However, it could be that a particular
sample is on the “low” side of the distribution over optimizer outcomes (i.e., it results in
relatively poorer scores on the test set) or on the “high” side. The danger here is obvi-
ous: a high baseline result paired with a low experimental result could lead to a useful
experimental manipulation being incorrectly identified as useless. On the other hand, a low
baseline paired with a high experimental result could lead to a negligible gain (or even a
degradation) being reported as beneficial. We now turn to the question of how to reduce
the probability of falling into this trap.

3.2 Related Work

The use of statistical hypothesis testing has grown apace with the adoption of empirical
methods in natural language processing. Bootstrap techniques (Efron, 1979; Wasserman,
2003) are widespread in many problem areas, including for confidence estimation in speech
recognition (Bisani and Ney, 2004), and to determine the significance of MT results (Och,
2003; Koehn, 2004; Zhang, Vogel, and Waibel, 2004; Zhang and Vogel, 2010). The boot-
strap relies on subsampling to create virtual test corpora by subsampling the actual test
corpus; these virtual test sets are then used to estimate the probability of the observed dif-
ference occurring due to chance. Such methods are particularly adept at detecting when a
small number of data points are disproportionately affecting the results, which suggests the
results will not generalize (we quantify this phenomena as ssel, below).

Approximate randomization (AR) has been proposed as a more reliable technique for
MT significance testing, and evidence suggests that it yields fewer type I errors (i.e., claim-
ing a significant difference where none exists; Riezler and Maxwell, 2005). AR creates
virtual test sets by repeatedly shuffling the hypotheses of two systems between two virtual
sets; the difference between these virtual sets is calculated to estimate the differences we
would observe by chance (as opposed to measuring the systematic effects of an experi-
menter’s intervention). AR is discussed in further detail in Section 3.3.3.

Other uses of significance tests in NLP include the MUC-6 evaluation (Chinchor, 1993)
and parsing (Cahill et al., 2008). Yeh (2000) also discusses several alternatives for sig-
nificance testing in NLP. However, these previous methods have all been applied in ways
that assume model parameters are elements of the system rather than extraneous variables.
This is unrealistic since downstream consumers of these reported innovations typically do
not take the model parameters as part of the implementation (in fact, full model parameters
are rarely, if ever published – nor should we expect them to be). Downstream consumers
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will be subject to any optimizer noise, which is a motivating factor for quantifying and
reporting it.

Prior work on optimizer noise in MT has focused primarily on reducing optimizer in-
stability (whereas our concern is how to deal with optimizer noise, when it exists). Foster
and Kuhn (2009) measured the instability of held-out BLEU scores across 10 MERT runs
to improve tune/test set correlation. However, they only briefly mention the implications
of the instability on significance. Cer, Jurafsky, and Manning (2008) explored regulariza-
tion of MERT to improve generalization on test sets. Moore and Quirk (2008) explored
strategies for selecting better random “restart points” in optimization. Cer, Manning, and
Jurafsky (2010) measured the standard deviation over 5 MERT runs as part of exploring
which metric provided the best translation quality when used as the objective function of
optimization.

Following the initial publication of this work, others have considered how to control
for this variation by randomly subsampling and permuting the optimization corpus (Cherry
and Foster, 2012b).

3.3 Experiments

In our experiments, we ran the MERT optimizer to optimize BLEU on a held-out develop-
ment set many times to obtain a set of optimizer samples on two different pairs of systems
(4 configurations total). Each pair consists of a baseline system (System A) and an “experi-
mental” system (System B), which previous research has suggested will perform better.

The first system pair contrasts a baseline phrase-based system (Moses) and experimen-
tal hierarchical phrase-based system (Hiero), which were constructed from the Chinese-
English BTEC corpus (0.7M words), the later of which was decoded with the cdec decoder
(Koehn et al., 2007; Chiang, 2007; Dyer et al., 2010). The second system pair contrasts
two German-English Hiero/cdec systems constructed from the WMT11 parallel training
data (98M words).3 The baseline system was trained on unsegmented words, and the ex-
perimental system was constructed using the most probable segmentation of the German
text according to the CRF word segmentation model of Dyer (2009). The Chinese-English
systems were optimized 300 times, and the German-English systems were optimized 50
times.

Our experiments used the default implementation of MERT that accompanies each of
the two decoders. The Moses MERT implementation uses 20 random restart points per
iteration, drawn uniformly from the default ranges for each feature, and, at each iteration,

3http://statmt.org/wmt11/
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Metric System Avg ssel sdev stest

BTEC Chinese-English (n = 300)

BLEU ↑ System A 48.4 1.6 0.2 0.5
System B 49.9 1.5 0.1 0.4

MET ↑ System A 63.3 0.9 - 0.4
System B 63.8 0.9 - 0.5

TER ↓ System A 30.2 1.1 - 0.6
System B 28.7 1.0 - 0.2

WMT German-English (n = 50)

BLEU ↑ System A 18.5 0.3 0.0 0.1
System B 18.7 0.3 0.0 0.2

MET ↑ System A 49.0 0.2 - 0.2
System B 50.0 0.2 - 0.1

TER ↓ System A 65.5 0.4 - 0.3
System B 64.9 0.4 - 0.4

Table 3.1: Measured standard deviations of different automatic metrics due to test-set and
optimizer variability. sdev is reported only for the tuning objective function BLEU.

200-best lists were extracted with the current weight vector (Bertoldi and Federico, 2009).
The cdec MERT implementation performs inference over the decoder search space which
is structured as a hypergraph (Kumar et al., 2009). Rather than using restart points, in
addition to optimizing each feature independently, it optimizes in 5 random directions per
iteration by constructing a search vector by uniformly sampling each element of the vector
from (−1, 1) and then renormalizing so it has length 1. For all systems, the initial weight
vector was manually initialized so as to yield reasonable translations as this is common
practice. However, we note that even more optimizer instability could have been elicited
by starting from uniform weights. Results are reported using BLEU (Papineni et al., 2002),
METEOR4 (Banerjee and Lavie, 2005; Denkowski and Lavie, 2010), and TER (Snover et al.,
2006).

3.3.1 Extraneous variables in one system

In this section, we describe and measure (on the example systems just described) three
extraneous variables that should be considered when evaluating a translation system. We
quantify these variables in terms of standard deviation s, since it is expressed in the same
units as the original metric. Refer to Table 3.1 for the statistics.

4METEOR version 1.2 with English ranking parameters and all modules.
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Local optima effects sdev The first extraneous variable we discuss is the stochasticity of
the optimizer. As discussed above, different optimization runs find different local maxima.
The noise due to this variable can depend on many number of factors, including the number
of random restarts used (in MERT), the number of features in a model, the number of
references, the language pair, the portion of the search space visible to the optimizer (e.g.
10-best, 100-best, a lattice, a hypergraph), and the size of the tuning set. Unfortunately,
there is no proxy to estimate this effect as with bootstrap resampling. To control for this
variable, we must run the optimizer multiple times to estimate the spread it induces on
the development set. Using the n optimizer samples, with mi as the translation quality
measurement of the development set for the ith optimization run, and m is the average of
all mi’s, we report the standard deviation over the tuning set as sdev:

sdev ,

√√√√ n∑
i=1

(mi −m)2

n− 1

A high sdev value may indicate that the optimizer is struggling with local optima and chang-
ing hyperparameters (e.g. more random restarts in MERT) could improve system perfor-
mance.

Overfitting effects stest As with any optimizer, there is a danger that the optimal weights
for a tuning set may not generalize well to unseen data (i.e., we overfit). For a randomized
optimizer, this means that parameters can generalize to different degrees over multiple
optimizer runs. We measure the spread stest induced by optimizer randomness on the test
set metric score, as opposed to the overfitting effect in isolation. The computation of stest is
identical to sdev except that the mi are the translation metrics calculated on the test set. In
Table 3.1, we observe that stest > sdev, indicating that optimized parameters are likely not
generalizing well.

Test set selection ssel The final extraneous variable we consider is the selection of the
test set itself. A good test set should be representative of the domain or language for which
experimental evidence is being considered. However, with only a single test corpus, we
may have unreliable results because of idiosyncrasies in the test set. This can be mitigated
in two ways. First, replication of experiments by testing on multiple, non-overlapping test
sets can eliminate it directly. Since this is not always practical (more test data may not be
available), the widely-used bootstrap resampling method (Section 3.2) also controls for test
set effects by resampling multiple “virtual” test sets from a single set, making it possible to
infer distributional parameters such as the standard deviation of the translation metric over
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(very similar) test sets.5 Furthermore, this can be done for each of our optimizer samples.
By averaging the bootstrap-estimated standard deviations over optimizer samples, we have
a statistic that jointly quantifies the impact of test set effects and optimizer instability on a
test set. We call this statistic ssel. Different values of this statistic can suggest methodological
improvements. For example, a large ssel indicates that more replications will be necessary
to draw reliable inferences from experiments on this test set, so a larger test set may be
helpful.

To compute ssel, assume we have n independent optimization runs which produced
weight vectors that were used to translate a test set n times. The test set has ` seg-
ments with references R = 〈R1, R2, . . . , R`〉. Let X = 〈X1,X2, . . . ,Xn〉 where each Xi =

〈Xi1, Xi2, . . . , Xi`〉 is the list of translated segments from the ith optimization run list of the
` translated segments of the test set. For each hypothesis output Xi, we construct k boot-
strap replicates by drawing ` segments uniformly, with replacement, from Xi, together with
its corresponding reference. This produces k virtual test sets for each optimization run i.
We designate the score of the jth virtual test set of the ith optimization run with mij . If
mi = 1

k

∑k
j=1mij , then we have:

si ,

√√√√ k∑
j=1

(
mij −mi

)2
k − 1

ssel ,
1

n

n∑
i=1

si

3.3.2 Comparing Two Systems

In the previous section, we gave statistics about the distribution of evaluation metrics across
a large number of experimental samples (Table 3.1). Because of the large number of trials
we carried out, we can be extremely confident in concluding that for both pairs of systems,
the experimental manipulation accounts for the observed metric improvements, and fur-
thermore, that we have a good estimate of the magnitude of that improvement. However,
it is not generally feasible to perform as many replications as we did, so here we turn to
the question of how to compare two systems, accounting for optimizer noise, but without
running 300 replications.

We begin with a visual illustration how optimizer instability affects test set scores when
comparing two systems. Figure 3.1 plots the histogram of the 300 optimizer samples each

5Unlike actually using multiple test sets, bootstrap resampling does not help to re-estimate the mean metric
score due to test set spread since the mean over bootstrap replicates is approximately the aggregate metric
score.
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Figure 3.1: Histogram of test set BLEU scores for the BTEC phrase-based system (left) and
BTEC hierarchical system (right). While the difference between the systems is 1.5 BLEU in
expectation, there is a non-trivial region of overlap indicating that some random outcomes
will result in little to no difference being observed.
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Figure 3.2: Relative frequencies of obtaining differences in BLEU scores on the WMT
system as a function of the number of optimizer samples. The expected difference is 0.2
BLEU. While there is a reasonably high chance of observing a non-trivial improvement (or
even a decline) for 1 sample, the distribution quickly peaks around the expected value given
just a few more samples.
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p-value
n System A System B BTEC WMT
1 high low 0.25 0.95
1 median median 0.15 0.13
1 low high 0.0003 0.003

p-value (95% CI)
5 random random 0.001–0.034 0.001–0.38
50 random random 0.001–0.001 0.001–0.33

Table 3.2: Two-system analysis: AR p-values for three different “single sample” scenarios
that illustrate different pathological scenarios that can result the optimizer produces a solu-
tion that is on the “low” or “high” side of the distribution over test set scores. For “random,”
we simulate an experiment with n optimization replications by drawing n optimized system
outputs from our pool and performing AR; this simulation was repeated 250 times and the
95% CI of the AR p-values is reported.

from the two BTEC Chinese-English systems. The phrase-based system’s distribution is cen-
tered at the sample mean 48.4, and the hierarchical system is centered at 49.9, a difference
of 1.5 BLEU, corresponding to the widely replicated result that hierarchical phrase-based
systems outperform conventional phrase-based systems in Chinese-English translation. Cru-
cially, although the distributions are distinct, there is a non-trivial region of overlap, and
experimental samples from the overlapping region could suggest the opposite conclusion!

To further underscore the risks posed by this overlap, Figure 3.2 plots the relative fre-
quencies with which different BLEU score deltas will occur, as a function of the number of
optimizer samples used.

3.3.3 When is a difference significant?

To determine whether an experimental manipulation results in a statistically reliable
difference for an evaluation metric, we use a stratified approximate randomization (AR)
test. This is a nonparametric test that approximates a paired permutation test by sampling
permutations (Noreen, 1989). AR estimates the probability p(CHANCE), also known as a p-
value, that a measured difference in metric scores arose by chance by randomly exchanging
sentences between the two systems. If there is no significant difference between the sys-
tems (i.e., the null hypothesis is true), then this shuffling should not change the computed
metric score. Crucially, this assumes that the samples being analyzed are representative of
all extraneous variables that could affect the outcome of the experiment. Therefore, we
must include multiple optimizer replications. Also, since metric scores (such as BLEU) are
in general not comparable across test sets, we stratify, exchanging only hypotheses that cor-
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Algorithm 1 APPROXIMATERANDOMIZATION

c← 0
B Compute observed difference o between systems A and B using metric m

(e.g. BLEU averaged over replicas)
o← |m(A)−m(B)|
B Shuffle data N times
for i ∈ [1, N ] do
B For each sentence in the test corpus
for j ∈ [1, |R|] do

Shuffle hypothesis j between virtual system A and B with probability 0.5
end for
B Compute difference between test statistics for this virtual by-chance trial
v ← |m(Ai)−m(Bi)
B Accumulate count of by-chance trials where the difference exceeds the observed
difference
if v > o then
c← c+ 1

end if
end for
B Compute relative frequency to estimate the probability that observed difference oc-
curred by chance
p(CHANCE)← c+1

N+1
return p(CHANCE)

respond to the same sentence. We sketch the algorithm for AR in Algorithm 1, following
Riezler and Maxwell (2005).

Table 3.2 shows the p-values computed by AR, testing the significance of the differences
between the two systems in each pair. The first three rows illustrate “single sample” testing
practice. Depending on luck with MERT, the results can vary widely from insignificant (at
p > .05) to highly significant.

The last two lines summarize the results of the test when a small number of replications
are performed, as ought to be reasonable in a research setting. In this simulation, we
randomly selected n optimizer outputs from our large pool and ran the AR test to determine
the significance. We repeated this procedure 250 times and analyze the 95% confidence
interval (CI) – the middle 95% of the samples. The p-values reported are the p-values at the
edges of the 95% confidence interval according to AR seen in the 250 simulated comparison
scenarios.

These results indicate that we are very likely to observe a significant difference for BTEC
at n = 5, and a very significant difference by n = 50 (Table 3.2). Similarly, we see this
trend in the WMT system: performing more replications leads to more significant results
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(equivalently, the probability of the result occurring due to chance falls), which will be
easier to reproduce.

Based on the average (true) performance of the systems reported in Table 3.1, we expect
significance over a large enough number of independent trials. The number of independent
trials to achieve significance will depend on the magnitude of the true difference between
the systems and the magnitude of the noise generated by the optimizer. A larger number of
independent trials will have the following effects:

• reduce the likelihood of either incorrectly reporting a positive result due to optimizer
noise, a “lucky” result that the community would find difficult to reproduce;

• reduce the likelihood failing to observe a positive result due to optimizer noise, an
“unlucky” result that might cause a researcher to abandon a potentially fruitful line of
research;

• increase the accuracy of the observed metric score (averaged over N replicas) with
regard to the true metric score (averaged over an infinite number of replicas).

3.3.4 The Limitations of p-values

As with any model, p-values will sometimes be a poor estimate of the phenomenon they
seek to predict. In this case, we are attempting to predict whether or not the magnitude
of a difference between two metric scores is due to chance. Recently, some fields have
begun moving away from p-values, citing the inability of many practitioners to understand
and interpret them (Trafimow and Marks, 2015). In this section, we discuss some common
misunderstandings and offer some advice on how to avoid misinterpreting p-values.

The most important points are:

• a p-value can indicate whether a difference of this magnitude is likely to be generated
again by some random process (a randomized optimizer)

• a p-value does not indicate whether a difference of this magnitude is meaningful (in
terms of translation quality)

So even though a large difference may more frequently correspond to smaller p-values,
this is not guaranteed. In fact, small differences can be quite significant and vice versa. For
example:

• Consider a deterministic optimizer and a null experimental manipulation. This means
we have two exactly duplicate sets of system outputs. There will of course be a zero
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difference in metric scores, but also a p-value of zero. This is because shuffling hy-
potheses between the systems produces no change, indicating that this difference (of
zero) is likely to be reproducible.

• Consider a pathologically unstable optimizer and a null experimental manipulation.
The outputs both between the replicas and between the two “systems” will be very
different. For a small number of replicas, variance will be high and so shuffling is likely
to change the difference in scores, giving an insignificant p-value, though this could be
reduced toward zero with sufficiently many replications. This correctly mirrors that
more replicas will be needed to increase the probability of repeating this experiment.

• Consider a comparison with system A being a real MT system and system B being the
references. In this case, shuffling hypotheses will almost certainly degrade system B.
Since the difference of deltas between the original A-B and the shuffled A-B will be
large, we will observe a small, significant p-value.

These examples illustrate a few points about our p-values:

• that this significance test does not account for the user giving it too few (optimizer)
samples, which is why it’s important to report how many optimizer samples were
used;

• that this significance test is still subject to errors in the experimental setup including
failing to represent all confounding variables (for example, if the same random seed
is erroneously used in multiple replicas); and

• that the test only provides information about the replicability of a delta, not whether
or not the magnitude can be assigned external meaning (in terms of translation qual-
ity).

When computed properly and interpreted thoughtfully, the p-value described here can
be informative tool for reasoning about whether or not an experiment might be repeatable.
However, interpretation is not meaningful in isolation and factors such as the number of
replicas must also be considered.

3.4 Chapter Summary

No experiment can completely control for all possible confounding variables. Nor are met-
ric scores (even if they are statistically reliable) a substitute for thorough human analysis.
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However, we believe that the impact of optimizer instability has been neglected by stan-
dard experimental methodology in MT research, where single-sample measurements are
too often used to assess system differences. In this chapter, we have provided evidence
that optimizer instability can have a substantial impact on results. However, we have also
shown that it is possible to control for it with very few replications (Table 3.2). We therefore
advocate the following methodology, which we apply throughout this thesis:

• Optimization (e.g. MERT, MIRA, PRO, etc.) and test set evaluation should be run at
least three times to produce average metric scores; more replications may be neces-
sary for experimental manipulations with more subtle effects;6

• Report either p-values that take multiple optimizer replicas into account or report the
standard deviation on the test set over optimizer replicas stest; and

• When manually analyzing system output, use the median system according to a trusted
metric; preferably, the median should be determined based on one test set and a sec-
ond test set should be manually analyzed.

6Source code to carry out the AR test for multiple optimizer samples on the three metrics in this chapter is
available from http://github.com/jhclark/multeval.
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Open-Domain Machine
Translation using Conjunctions1 4

Coming together is a beginning; keeping together is progress;
working together is success.

—Henry Ford

Conjunction junction, what’s your function?
—Jack Sheldon (Schoolhouse Rock)

TRANSLATION STYLE CAN CHANGE DRAMATICALLY among texts from different domains.
Rather than focusing on adapting the dense component features of the MT system

to capture the style each domain, we augment the standard translation model and lan-
guage model features with conjunctive features and optimize weights on a single tuning set
that contains a mixture of domains. In this chapter, we show that this approach is simple,
fast, and effective in improving translation quality.

4.1 Introduction

Machine translation systems are often used for information assimilation, which allows users
to make sense of information written in various languages they do not speak. This use case
is particularly important for translation web services, such as Bing Translator and Google
Translate, which seek to make more of the web accessible to more users. A crucial chal-
lenge facing such systems is that they must translate documents from a variety of different
domains, but it has been observed that the performance of statistical systems can suffer sub-
stantially when testing conditions deviate from training conditions (Bertoldi and Federico,
2009).

1Elements of this chapter were originally published as J. Clark, C. Dyer, and A. Lavie, “One System, Many
Domains: Open-Domain Statistical Machine Translation via Feature Augmentation”, AMTA.2012.
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LanguageModel
WordCount
TargetGivenSource
...

news_LanguageModel
news_WordCount
news_TargetGivenSource
...

web_LanguageModel
web_WordCount
web_TargetGivenSource
...

LanguageModel
WordCount
TargetGivenSource

web_LanguageModel
web_WordCount
web_TargetGivenSource

news_LanguageModel
news_WordCount
news_TargetGivenSource
...

Domain-Agnostic Independent
Domain-Specific

Joint Domain-Specific
(This Work)

Figure 4.1: A comparison of feature sets from a baseline domain-agnostic system (left), the
features sets of an approach to domain adaptation using m domain-specific systems (mid-
dle), and the feature set used in this work (right). Each feature type (e.g. LanguageModel)
may have many conjoined instances (e.g. news_LanguageModel, web_LanguageModel), but
all conjoined instances of the feature fire the same value as the domain agnostic feature –
however, in the right two scenarios, each feature instance may have a different weight. Only
3 of the 7 typical baseline features (Section 4.4) are shown for brevity.

However, it is not always possible or cost-effective to collect a large body of training
data for all of the desired application domains. In fact, training data tends to be collected
opportunistically from any available sources rather than from curated sources that match
the distribution of test data (Koehn and Schroeder, 2007). As a result, inputs from each
application domain may frequently be very different from the training data. With such do-
main mismatches being commonplace, this chapter looks at a way of adapting the behavior
of a translation system based on the domain of the input documents, which can be matched
during both tuning and test time.

One of the key trade offs in designing a statistical model is the balance between bias
and variance. In domain adaptation, we would like to bias each domain’s model toward
the distribution of that specific domain, yet we also desire models with low variance. Since
each domain has less tuning data individually versus the aggregation of all the domains,
this gives us statistically less reliable estimates for each domain’s parameters.

So what options do we have for making this trade off when faced with m domains? If
we desire lower variance, we may ignore the domains entirely and build a single system
with |H| features; however, it will suffer from a bias toward some average over the do-
mains. Another design would be to separately optimize a set of feature weights for each of
the m domains, effectively creating m independent translation systems that share a com-
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CHAPTER 4. DOMAIN CONJUNCTIONS

mon translation model and language model. This strategy expects that each component
feature (the language model, lexical probabilities, etc.) would have varying contributions
among the different domains. However, from an optimization perspective, this means that
we would have m distinct sets of domain-specific tuning data and that the optimization
procedures for each domain cannot share statistics among the domains. In this scenario,
we would suffer from higher variance – each model’s parameters would be more sparsely
estimated while removing the possibility of relying on the more reliably estimated features
of the non-adapted model.

In this work, we propose a solution that allows us to incrementally make this trade off
in a soft, principled way, without entirely committing to one extreme or the other. First,
we describe a simple method of feature augmentation in which we create a single system
with |H|(m + 1) features and optimize its weights using a regularization strategy that al-
lows the optimizer to prefer the better-estimated domain-agnostic features (Section 4.2).
Next, we evaluate our approach on a Czech→English system and a Arabic→English system
(Section 4.4) and observe a significant improvement of up to 1.0 BLEU, controlling for both
test set variation and optimizer instability (Section 4.5). Finally, we compare our work with
previous approaches (Section 4.6) and conclude (Section 4.7).

Language 
Model 

Estimation

Mixed
Domain
Parallel 
Corpus

Mixed
Domain

Monolingual 
Corpus

Word 
Alignment

Hierarchical
Grammar 
Extraction

Optimization Decoding Evaluation

Mixed
Domain
Parallel 
Corpus

Mixed
Domain
Parallel 
Corpus

Domain
Specific
Parallel 
Tuning
Data

Domain
Specific
Parallel 

Evaluation
Data

Figure 4.2: Our experimental pipeline. Shaded components are affected by this work with
the optimization component being the primary focus. The optimizer and its dependent
steps are run multiple times to control for optimizer instability (Chapter 3).

4.2 Feature Induction Approach

Our approach can be effectively described as two modifications to a conventional statistical
system, which define a simple feature induction approach:
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1. For each sentence in the tuning set and evaluation set, annotate it with its domain as
an observable indicator feature such as news=true

2. In addition to the original features, conjoin every feature in the initial model (e.g.
WordCount=3, LanguageModel=0.9) with the domain indicator feature, resulting in
features such as news_WordCount=3 and news_LanguageModel=0.9 (Figure 4.1)

This approach corresponds to a feature induction operator:

ΦDomain(h) ,
{
〈Hi · hj , i _ j〉 : Hi ∈ HDomains, hj ∈ hDense

}
(4.1)

where the _ operator indicates concatenation of a feature identifier with a bin identifier to
form a new, unique feature identifier. Notice that the domain indicator features HDomain

are fully observed and so are constant over the entire derivation while the dense features
hDense vary within partial derivations.

This imposes minimal requirements on the data: the parallel and monolingual training
data can be completely unlabeled, while only the tuning and test sets need domain labels for
each sentence. This is easy to satisfy in many scenarios. For example, if we are translating
data for many different product marketing campaigns, each will have their own specific
style of language targeting their consumers. It is likely we will only have a small sample
of tuning and test data for each campaign, but it is easy to associate each with a particular
domain label.

Unlike approaches that build m domain-specific systems and optimize weights for each
of them separately (the middle scenario in Figure 4.1), our approach allows the optimizer to
be informed by the data from all domains when estimating weights for the domain-agnostic
features shared by all domains (the features at the top right of Figure 4.1). This framework
also opens up new possibilities including having multiple granularities of domains such as
news and news-political retaining the coarser features to combat data sparsity while using
the finer features to fit the data more tightly. Similarly, we could encode multiple commu-
nication mediums in combination with topics as in news-political and blog-political.

Similarly, Daumé III (2007) describes a simple kernelized method for feature augmen-
tation in which the features of each data point are labeled as either “general domain” or
with a specific target domain. Like Daumé, we accomplish domain adaptation via feature
augmentation. However, SMT models are more complex than those studied by Daumé.
Particular characteristics that could affect performance include:

• separate training data sets for the (closed-form) estimation of the huge number of
parameters in the translation model and language model
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• a much smaller tuning data set for estimating the relatively few number of parameters
in the final linear model that aggregates the features exposed by these component
models2

• non-local features (e.g. the language model), which require special handling beyond
the simple preprocessing step proposed by Daumé

Our approach is distinguished from previous approaches primarily in its simplicity. We
do not construct domain-specific translation models nor domain-specific language models
– our feature augmentation affects only the tuning and evaluation data, not the training
data (Figure 4.2). Instead, we merely estimate domain-specific weights for each feature
(in addition to domain-agnostic weights). However, we do this estimation jointly for all
domains such that the general domain weights can be estimated using the tuning data from
all domains.

4.2.1 Ease of Implementation

Translation Model Augmentation: For a batch system in which we have access to all
of the sentences to be translated ahead of time, we can first extract sentence-level gram-
mars.3 In this case, feature augmentation of the translation model can be implemented
as a preprocessing step similar to the “10 lines of Perl” described by Daumé (2007): Each
sentence’s grammar will have additional features appended to each grammar rule such that
they contain a general domain version of each feature and a feature conjoined with the
current sentence’s domain. For realtime systems,4 in which we do not have sentence-level
translation models, the feature augmentation must be performed at runtime, requiring a
simple decoder modification.

Language Model Augmentation: Given that sentence-level language models are gener-
ally not used,5 domain augmentation of the language model feature cannot be implemented
as a preprocessing step. Therefore, the domain of each input sentence must be passed to
the decoder, and the language model must be modified such that it returns two features
for each sentence: LanguageModel = p and domain-LanguageModel = p where p is the lan-

2For example, the translation model is one component model – its parameters are estimated from the parallel
training data, and it typically exposes about 7 features to the aggregate model

3This is the default usage pattern for the cdec decoder.
4For example, Moses does not use sentence-level phrase tables.
5We are not aware of any major decoders that support sentence-level language models. This is likely due

to sentence-level LMs being impractical due to their large size, which results from the large space of target
translations.
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guage model probability of each partial hypothesis. In the case of the cdec decoder, which
was used to implement this work, the modification involved only a few lines of code.

4.2.2 Impact on Time and Space Requirements

In this section, we describe the minimal impact that this technique has on development and
runtime time and space requirements. During system development, no additional time nor
space is required for building additional translation models or language models since we
construct only one per language pair. This also holds at runtime, which can be important
if multiple deployed translation systems are competing for CPU and RAM resources on a
shared server.

The main burden introduced by feature augmentation is the larger number of features
itself. As discussed above in Section 1.4, this is not an issue for PRO since it scales robustly
to very large feature sets. However, traditional MERT would likely fare poorly as its time
complexity scales linearly with the number of features in the model.

The space requirement induced by these extra features is minimal. As noted by Daumé
(2007), for an initial feature set with |H| features our feature space is in R|H|. Then for 2
domains, this gives us a feature space R3|H| or for m domains, our feature vector will be in
R(m+1)|H| where the constant of 1 represents the background domain while the 1 . . .m sets
of additional parameters correspond to specific domains.

4.2.3 Learning

In this chapter, we use the PRO optimizer as described in Section 1.4. We use L-BFGS to
optimize our binary classifier. The procedure of sampling training pairs and then optimiz-
ing the pairwise rankings is repeated for 30 iterations. Our baseline system includes a `2
regularizer (the `2 norm is discussed further in Chapter 5).

4.3 Feature Complexity Regularization

We note that in the absence of other evidence we prefer to give weight to the background
features, since they have more data to estimate them and are therefore more likely to
generalize well to unseen data. We encode this preference as a regularizer (equivalently,
as a prior). Let w be the weight vector and let the function SPECIFIC(H) return true iff a
feature H is a domain-specific feature. Then we define the regularization hyperparameter
βC and regularization term in our objective function as:
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Rcomplexity , βC

|H|∑
i=0

JSPECIFIC(Hi)K · w2
i (4.2)

Since βC is constant with regard to w, this regularization term differs from the squared
`2 norm by only a constant. Alternatively, we can view complexity regularization as par-
titioning the feature set into 2 groups (domain-agnostic and domain-specific) and then
applying a `2 regularizer with weight βC to the domain-specific group. This preserves the
convexity6 of the objective function and makes it easy to incorporate into the gradient-based
updates of PRO. With this in mind, the gradient is:

∇wRcomplexity = βC

|H|∑
i=0

2 · JSPECIFIC(Hi)K · wi (4.3)

We apply this penalty to the domain-specific features in addition to the default `2 regu-
larizer.

Complexity regularization is similar to the group lasso (a mixed-norm `1,2) with two
groups (domain-agnostic versus domain-specific), though we use a squared `2 penalty. The
group lasso is discussed further in Section 5.2.3.

4.4 Experimental Setup

Formalism: In our experiments, we use a hierarchical phrase-based translation model
(Chiang, 2007). A corpus of parallel sentences is first word-aligned, and then phrase trans-
lations are extracted heuristically. In addition, hierarchical grammar rules are extracted
where phrases are nested. Such aligned subphrases are used to generalize their parent
phrases by being substituted as a single non-terminal symbol [X]. In general, our choice of
formalism is rather unimportant – our techniques should apply to most common phrase-
based and chart-based paradigms including Hiero and syntactic systems. Our decision to
use Hiero was primarily motivated by the cdec decoder’s API being most amenable to im-
plementing these techniques.

Decoder: For decoding, we will use cdec (Dyer et al., 2010), a multi-pass decoder that
supports syntactic translation models and sparse features.

6Each internal iteration of PRO solves a convex binary classification problem. The end-to-end optimization
procedure is not convex.
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Sentences Translations
NIST Train

Total 5.4M 1
MT06 (tune)

Newswire 1033 4
Web 764 4
Total 1797 4

MT08 (test)
Newswire 813 4
Web 547 4
Total 1360 4

MT09 (test)
Newswire 586 4
Web 727 4
Total 1313 4

Figure 4.3: Corpus statistics for Arabic→English experiments. Note that the training data
was sampled in different quantities to create learning curves, simulating lower data scenar-
ios.

Optimizer: Optimization is performed using PRO (Hopkins and May, 2011) as imple-
mented by the cdec decoder. We run PRO for 30 iterations as suggested by Hopkins and
May (2011), though analysis indicates that the parameters converged much earlier. The
PRO optimizer internally uses a L-BFGS optimizer with the default `2 regularization im-
plemented in cdec. Any additional regularization (as described in Section 4.3) is explicitly
noted.

Baseline Features: We use the baseline features produced by Lopez’ suffix array grammar
extractor (Lopez, 2008a; Lopez, 2007; Lopez, 2008b), which is distributed with cdec:

• logPcoherent(e|f): The coherent phrase-to-phrase translation probability (Lopez, 2008b,
p. 103). The phrasal probability of each English SCFG antecedent (e.g. “el [X] gato”)
given a particular foreign SCFG antecedent “the [X] cat” combined with coherence,
the ratio of successful source extractions to the number of attempted extractions

• logPlex(e|f), logPlex(f |e): The lexical alignment probabilities within each translation
rule, as computed by a maximum likelihood estimation over the Viterbi alignments

• logPLM(e): The log probability of the target translation hypothesis under a language
model

• c(e) The count of target words (terminals) in the target translation hypothesis
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Sentences
CzEng Train (Sections 1-97)∗ 1M

Tune (Sents)
Sec 98

Test (Sents)
Sec 99

Fiction 500 1000
EU Legislation 500 1000
Subtitles 500 1000
Parallel Web 500 1000
Tech Docs 500 1000
News 500 1000
Total 3000 6000

Figure 4.4: Corpus statistics for Czech→English experiments. The tuning and test sets
have one reference. We use the ∗ to indicate that sections were sampled to create a more
balanced data set. Project Navajo data was omitted due to its small size. No domain-specific
information from the training set was used in the construction of our models.

• c(glue) The count of glue rules used in the derivation

• c(OOVTM) The count of source tokens that were not recognized by the translation
model (out of vocabulary) and were therefore passed through

• c(OOVLM) The count of target tokens that were not recognized by the language model
(out of vocabulary)

Domain-Specific Features: In addition to the baseline features, as standalone features
with each of the 7 features conjoined with each of the m domains, for a total of 7(m + 1)

features overall.

Complexity Regularization: In our experiments, we used a hyperparameter value of
βC = 5000, 10 times the default global `2 regularizer constant of β2 = 500. This value
worked well and so no tuning (manual or otherwise) was performed.

Arabic Resources: We build an Arabic→English system, training on the large NIST MT
2009 constrained training corpus7 of approximately 5 million sentence pairs with about

7A list of the resources available as part of the NIST MT 2009 constrained training resources is available at
http://www.itl.nist.gov/iad/mig/tests/mt/2009/MT09_ConstrainedResources.pdf
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181 million English words. We tune on the NIST MT 2006 dataset and test on NIST MT
2008 and 2009.8 Full details are shown in Figure 4.3.

Czech resources: We also construct a Czech→English system based on the CzEng 1.0 data
(Bojar et al., 2012). Both sides of the data were lowercased as a preprocessing step. For
our experiments, we sampled a training set of 1M sentences and training and tuning sets
that are evenly balanced among the various domains contained in CzEng. Full details are
shown in Figure 4.4.

Evaluation: We quantify increases in translation quality using automatic metrics including
BLEU (Papineni et al., 2002). We control for test set variation and optimizer instability by
measuring statistical significance according to approximate randomization (Clark et al.,
2011).9 Evaluation is performed on tokenized lowercased references.

4.5 Results and Analysis

We show the results of using feature augmentation for domain adaptation to an
Arabic→English system in Figure 4.5. There, we see an overall improvement of only 0.2 -
0.3 BLEU. Interestingly, we see an improvement of up to 0.7 BLEU in the weblog domain
while we see no improvement in the newswire domain. We suspect this is due to the domain
of the training data being more aligned with the newswire data.

However, on the Czech→English system in Figure 4.6, we see an improvement of 1.0
BLEU on the test set consisting of the 6 domains listed in Figure 4.4. In this case, we suspect
that the much larger number of domains hinders the domain agnostic system from being
able to tightly fit to any of the individual domains as well as the domain augmented system.

We also did an analysis of the Czech results with and without complexity regularization.
We did not observe any significant improvements with the extra conjunctive features unless
complexity regularization was enabled. That is, complexity regularization was necessary to
achieve improvements with this many domains. Despite some domains improving, others
regressed, indicating higher variance. Complexity regularization was effective in reducing
this variance, allowing for gains in aggregate.

8The NIST MT test sets are available from the LDC as catalog numbers LDC2010T{10,11,12,13,17,21,23}.
One of the four references for the Arabic MT08 weblog data was not processed correctly in the officially released
XML document and is mismatched with regard to the source sentences. There is no obvious way of reversing
this error. However, since three references are still valid, this should have negligible impact on the results.

9MultEval 0.5.1 is available at http://github.com/jhclark/multeval
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Baseline Domain
Aug-
mented

MT08
News 47.8 47.8 (±)

Web 30.5 31.0 (+0.5)

All 40.5 40.7 (+0.2)

MT09
News 51.6 51.5 (±)

Web 31.6 32.3 (+0.7)

All 41.9 42.2 (+0.3)

Figure 4.5: Results of multi-domain experiments on the large NIST MT Arabic→English data
set as measured by the BLEU metric. Differences in BLEU scores are shown in parenthe-
ses. The domain augmented system has 21 features. Both the Meteor and TER evaluation
metrics agreed with BLEU in the conditions where BLEU improved. Boldfaced results indi-
cate significance at the 0.01 level according to approximate randomization over 5 optimizer
replications.

Baseline Domain
Aug-
mented

Test (All Domains) 46.5 47.5 (+1.0)

Figure 4.6: Results of feature augmentation experiments on the 1M sentence
Czech→English data set as measured by the BLEU metric. Differences in BLEU scores are
shown in parentheses. The domain augmented system has 49 features. Both the Meteor
and TER evaluation metrics also showed improvements. Results are significant at the 0.01
level according to approximate randomization over 3 optimizer replications.

To gain a deeper understanding of the changes in translation quality resulting from our
modifications, we used the Meteor X-Ray visualization tool (Denkowski and Lavie, 2010).
We present two improved examples from the MT08 newswire test set in Figure 4.7. In gen-
eral, improvements follow the pattern of these examples, remaining subtle yet consistent.

4.6 Related Work

Domain adaptation in statistical machine translation has been widely investigated.

Component model adaptation: Perhaps the largest body of work focuses on adapting the
translation model and language model. Koehn and Schroeder (2007) explore several tech-
niques for domain adaptation in SMT including multiple translation models (via multiple
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Figure 4.7: A Meteor X-Ray visualization of 2 improved examples, cherry picked from the
MT08 newswire test set. The alignment to the reference (top border) for the baseline system
(left border) is shown as shaded blocks while the alignment between the reference and the
augmented system (right border) is shown using dots. Improvements are generally subtle,
but consistent.

46



CHAPTER 4. DOMAIN CONJUNCTIONS

factored decoding paths), interpolated language models, and multiple language models. Xu
et al. (2007) build a general domain translation system and then construct domain-specific
language models and tune domain-specific feature weights to aggregate the component
models. Unlike the work in this chapter, the optimization procedure for training these final
feature weights cannot share statistics among domains. Foster and Kuhn (2007) train inde-
pendent models on each domain and use a mixture model (both linear and log-linear) to
weight the component models (both the translation model and language model) appropri-
ately for the current context. This was later extended by Foster, Goutte, and Kuhn (2010)
to examine fine-grained instance-level characteristics rather than requiring each domain to
have a distinct model.

Word alignment: Civera and Juan (2007) explore an extension of the HMM alignment
model that performs domain adaptation using mixture modeling.

Automatic Post-Editing: Isabelle, Goutte, and Simard (2007) use an automatic post-
editor to accomplish domain adaptation, effectively “translating” from a domain-agnostic
version of the target language into a domain-adapted version of the target language.

Monolingual data: Others have used monolingual data to improve in-domain perfor-
mance. Ueffing, Gholamreza, and Sarkar (2007) use source monolingual data in various
ways to improve target domain performance, focusing on corpus filtering techniques such
that more relevant data is included in the models. Bertoldi and Federico (2009) saw large
improvements by using automatic translations of monolingual in-domain data to augment
the training data of their original system.

Domain identification: Closely related to domain adaptation is domain identification.
Banerjee et al. (2010) focus on the problem of determining the domain of the input data
so that the appropriate domain-specific translation system can be used.

EBMT: Phillips (2012) describes the Cunei framework, which natively uses instance-based
features to determine which translation examples are most relevant given the current con-
text. One major application area of this framework is domain adaptation.

Multi-Task Learning: Simianer, Wäschle, and Riezler (2011) propose a variant of mini-
mum error rate training (MERT) that allows for multi-task learning. Like our work, multi-
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task MERT allows sharing of common parameters among various task-specific optimization
problems.

NLP: Other areas of NLP have also seen work on domain adaptation. For instance, Dredze
et al. (2007) report their experiments in a shared task for domain adaptation of dependency
parsing in which they explored adding features more likely to transfer across domains and
removing features less likely to transfer.

Machine learning: Domain adaptation has also been well-studied from a more general
machine learning perspective. Daumé (2006) points out that “the most basic assump-
tion used in statistical learning theory is that training data and test data are drawn from
the same underlying distribution” and goes on to formulate the MEGA (Maximum Entropy
Genre Adaptation) model. Blitzer, McDonald, and Pereira (2006; Blitzer (2007) describe
structural correspondence learning, which automatically discovers features that behave sim-
ilarly in both a source and target domain. Ben-David et al. (2010) provide formal bounds on
source and target error for various discriminative learning criteria. Huang and Yates (2012)
propose a domain adaptation method of representation learning, which automatically dis-
covers features more likely to generalize across domains. By using posterior regularization
to bias the process of representation learning, they observe improvements on a part of
speech tagging task and a named entity recognition task. Domain adaptation has also been
framed as a semi-supervised learning problem in which unlabeled in-domain data is used
to augment out-of-domain labeled data (Daumé III, Kumar, and Saha, 2010).

Perhaps most similar to this work is Daumé (2007), which proposes a method for feature
augmentation in which the features of each data point augmented with a label of either
“general domain” or a specific target domain.

4.7 Chapter Summary

In this chapter, we presented a very simple technique for performing domain adaptation
by inducing conjunction features consisting of domain indicator features and traditional
dense features. In order to mitigate the additional data sparsity of this larger feature set,
we applied complexity regularization. We observed improvements of 1.0 BLEU using these
techniques together. In the future, we hope to apply this technique to domains of varying
granularity and combine it with more complex feature sets. Note that it is possible to
have hierarchical domain structures or even overlapping domains due to the simplicity and
flexibility of conjunctions. We have shown that technique is easy to interpret, simple to
implement, low-cost to deploy, and effective in terms of improving translation quality.
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Structure-Inducing
Regularization: Inducing Large
Feature Sets on Small Data1 5

Alone we can do so little; together we can do so much.
—Helen Keller

Great acts are made up of small deeds.
—Lao Tzu

AS FEATURE SETS HAVE BECOME LARGER AND SPARSER, our relatively small tuning data
sets have been pushed to the limits of their ability to reliably estimate feature weights.

Previous regularization techniques such as `1 assign zero weight to many features during
optimization, allowing for better generalization by discarding features. In this chapter, we
show it is possible to reduce the count of unique weights rather than the count of non-
zero weights, allowing the model to retain more sparse features while still generalizing and
improving translation quality on unseen data. This allows us to more tightly fit the high
quality, task-specific human translations used in tuning data sets rather than resorting to
larger training data whose quality often cannot be closely controlled by system builders.
Using this technique, we are able to induce nearly 1 million sparse features and estimate
weights on a traditional tuning set.

5.1 Introduction

In the previous chapter, we described how simple conjunctions between source features and
standard MT features can be exploited to better fit the data. In this chapter, we consider
conjunctions on a much larger scale. Source and target lexical indicators are conjoined with
their neighbors to form features ranging from unigram indicators through very sparse rule
indicators. Typically, it would not be advisable to use such a large feature set on a standard

1Elements of this chapter are in preparation as “Conjoined Features in Statistical Machine Translation with
Pairwise `∞ Regularization” Forthcoming.
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tuning set of 3000 sentences or less. Since most features would be observed only a few
times, the optimizer is apt to learn poorly estimated weights that do not generalize well.

Others have approached this issue by directly decreasing the number of features they
attempt to tune on the development set. It is not uncommon to use around 10,000 features
on the development set. However, for larger feature sets, recent research has focused on
scalable optimization methods that allow weights to be estimated directly from the training
data (Dyer, Simianer, and Riezler, 2012; Flanigan, Dyer, and Carbonell, 2013; Yu et al.,
2013). However, this makes a strong assumption about the training data: that it is drawn
from the same distribution as the system’s test data.2

However, in many real-world machine translation scenarios, this assumption does not
hold. The vast majority of parallel and monolingual training data results from processes
such as parliamentary proceedings and Internet forums. This data is often available free of
charge to the machine translation community. Far less data may exist for a specific task due
to the cost of human translation. For example, given a marketing campaign, a company
may wish to use a very specific vocabulary to describe their products when disseminating
their marketing materials in multiple languages. Similarly, for a conversational translation
task, tightly fitting the translation style of parliamentary proceedings will yield undesirable
results (e.g. for pro-drop languages, the system will be biased toward third person rather
than second person).

Two phase optimization has long enabled machine translation systems to cheaply esti-
mate features from a large, potentially out-of-domain training corpus while tightly fitting
a smaller high-quality task-specific tuning corpus using more expensive optimization pro-
cedures. Rather than abandon this framework, we explore techniques to make it more
robust.

In this chapter, we describe a method for tuning nearly 1 million features on a standard
tuning set by adding an intuitive, well-defined, and fast regularization term to the PRO
objective. This regularizer induces groups as part of learning and, as a result:

• favors fewer unique feature weights rather than fewer non-zero features

• decides group membership using an error signal directly from a task-specific objective
such as BLEU rather than using a surrogate loss function or heuristic prior to learning
or requiring group membership to be specified manually

This grouping effect allows us to reduce variance due to overfitting while introducing less
bias than a traditional regularizer since we can more tightly fit the distribution of the tuning
data.

2The i.i.d. (independently and identically distributed) assumption is a widespread condition for generaliza-
tion according to machine learning theory.
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In the remainder of this chapter, we first review `p and mixed norm regularization (Sec-
tion 5.2) and introduce the OSCAR regularizer including an efficient proximal implemen-
tation and its integration with PRO (Section 5.3). Next, we present our experimental setup
(Section 5.4) and examine the results (Section 5.6). Finally, we discuss related work (Sec-
tion 5.7) and conclude (Section 5.8).

5.2 Background

5.2.1 `p Regularization

Regularization is already a widely used technique to avoid overfitting. Perhaps the most
intuitive criterion is the `0 “norm”:3

‖w‖0 , lim
ε→0

N∑
i=1

|wi|ε (5.1)

= |{i : wi 6= 0}| (5.2)

which adds a penalty directly on the count of active features. This regularizer directly en-
codes the assumption that using less features in the model will lead to less overfitting. It is
one of many approaches used for feature subset selection. Regularizers are considered an
embedded method of selection, though other methods are possible (Guyon and Elisseeff,
2003). Unfortunately, exact optimization of this norm is NP-hard (Ge, Jiang, and Ye, 2011).
While smoothed approximations do exist (Mohimani, Babaie-zadeh, and Jutten, 2007; Hy-
der and Mahata, 2009), the simpler regularizers are generally favored in the literature.

The `1 regularizer adds a penalty term for the magnitude of each feature weight:

‖w‖1 ,
|w|∑
i=1

|wi| (5.3)

Since `1 is non-smooth, it requires a specialized solver. Algorithms for efficiently incor-
porating `1 into various regression objectives have been widely studied (Park and Hastie,
2007; Andrew and Gao, 2007) including the well-known Lasso algorithm for least squares
regression (Tibshirani, 1996). Despite its differences from the `0 norm, in practice, `1 tends
to produce solutions with parameter sparsity, those having fewer non-zero weights. In

3Strictly speaking, `0 is not a norm since it fails 2 of the 3 conditions for a norm. `0 is not subadditive (i.e.
the triangle inequality f(x + y) ≤ f(x) + f(y)) nor is it absolutely homogeneous (f(cx) = |c|f(x)). In fact,
the only property of a norm that `0 satisfies is positivity (it assigns non-negative values to non-negative vectors
and zero to zero vectors).
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fact, in many cases, the solution to the `1 optimization problem has equivalent sparseness
to the `0 optimization problem (Donoho, 2004). From a Bayesian perspective, a `1 penalty
is equivalent to placing a Laplace prior on the weights.

The squared `2 regularizer adds a penalty term for the magnitude of each feature
weight:

‖w‖22 ,
|w|∑
i=1

w2
i (5.4)

In the statistics literature, it is often called ridge regression when the wi are coefficients
in a linear regression model. From a Bayesian perspective, it is equivalent to placing a
zero-mean normal distribution as a prior on the weights. The `2 norm is perhaps the most
attractive from the perspective of simplicity in that it is strictly convex and smooth, which
allows it to be readily incorporated into any objective function without special solvers.
However, the `2 norm is known to produce less parameter sparsity, leaving more active
features overall.

The `∞ regularizer (also known as the maximum norm or uniform norm) adds a penalty
term for the magnitude of the largest active feature weight:

‖w‖∞ , lim
x→∞

‖w‖∞ (5.5)

= max
i
|wi| (5.6)

This regularizer is rarely used by itself in practice. In theory, this pressure on the fea-
ture with the greatest magnitude will encourage equality of the largest parameters given
that they are equally helpful in minimizing the overall objective function. However, most
batch learning strategies will naturally produce such a solution. Furthermore, there are
only marginal benefits to reducing the magnitudes of the largest model parameters; this
regularizer is not effective in producing solutions with parameter sparsity.

We graphically summarize these regularization strategies in Figure 5.1, showing the
constraint regions for a model with two parameters. As both parameter weights approach
zero (the axes), the regularizers behave similarly by being permissive. However, as the
parameter magnitudes increase toward the corners of the plots, the regularizers become
increasingly permissive from left to right.

Any of these regularizers can be written in one of two equivalent forms (Kloft et al.,
2009). Given a convex loss function L and a regularization term R, the two forms are
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CHAPTER 5. STRUCTURE-INDUCING REGULARIZATION

Figure 5.1: Visualizations of constraint regions for a model with two parameters for three
standard `p regularizers: `1 (left), `2 (center), and `∞ (right). `0 is omitted since it does not
directly constrain the model weights but rather the count of non-zero model parameters.

penalty form (Tikhonov Regularization):

ŵ , argmin
w

L(x,y,w) +R(w) (5.7)

and constraint form (Ivanov Regularization):

ŵ , argmin
w

L(x,y,w) s.t. R(w) ≤ τ (5.8)

where τ is a constraint on the maximum value of the regularization term. In this work, we
will typically write the penalty form, but may visualize and discuss the effects of regularizers
in constraint form for the sake of exposition.

5.2.2 Elastic Net Regularization: Combining `1 and `2

The elastic net regularizer combines `1 and `2 (Zou and Hastie, 2005), preserving some of
the most important qualities of both. Formally, it is defined as:

RElastic , ‖w‖1 + ‖w‖22 (5.9)

In particular, it is strictly convex like `2 (`1 does not necessarily have a unique solution)
while still retaining the parameter sparsity property of `1. These properties can be observed
in the Elastic Net’s constraint regions in Figure 5.2. Yet unlike either of the methods in
isolation, it exhibits a soft grouping property – parameters tend to fall to zero together. In
the extreme case when features are perfectly correlated, the features within each perfectly
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Figure 5.2: The constraint region of a two dimensional model regularized by the Elastic
Net with varying choices of regularization constants. The middle dotted line represents a
standard choice that takes advantage of the properties of the Elastic Net. The inner gray
line recovers `1 while the outermost circle recovers `2.

correlated group will receive exactly the same weight. However, in general, within each
automatically discovered feature group, the parameters tend to be highly correlated, though
not necessarily exactly equal. We will return to this issue in Section 5.3.

5.2.3 The Group Lasso: A mixed norm

The group lasso (Yuan and Lin, 2006) and the sparse group lasso (Friedman, Hastie, and
Tibshirani, 2010) allow users to embed prior knowledge about group structure into the
optimization problem.

Given a partitioning of features into groups g ∈ G where λg denotes the regularization
constant for g and wg denotes the subset of weights corresponding to group g, the group
lasso regularizer is defined as:

Rgroup(w,G) ,
∑
g∈G

λg‖wg‖2 (5.10)

Note that the iteration over the groups actually makes this a mixed `2,1 norm. If each
group contains exactly one feature s.t. Gi = {wi}, then the group lasso simplifies to `1. On
the other hand, if a single group contains all features G1 = {1, . . . , N}, then we recover a `2
regularizer (Martins et al., 2011).
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Figure 5.3: The constraint region of a two dimensional model comparing the Elastic Net
(left) and OSCAR (right). Left: The inner solid gray line is the constraint region for Lasso
(`1). The dashed shape represents a typical configuration of the elastic net. The outer
black circle recovers `2. The sharp corners of the `1 constraint region incident on the axes
represent exact zero values for one or both model parameters. Right: For OSCAR, the
additional 4 corners shown in the dotted line represent exact equality in magnitude of the
two model parameters, which is encouraged by OSCAR. The outer black line recovers a `∞
regularizer.

The group lasso has been extended to support non-overlapping groups, including tree-
and graph-structured groups (Jacob, Obozinski, and Vert, 2009). It has also found some
popularity in structured prediction (Martins et al., 2011).

Unlike the soft groups induced by the elastic net, the group lasso requires these groups
to be pre-specified. Further, a hyperparameter λg must be learned or specified for each
group. If such knowledge is straightforward and low-cost to encode, the group lasso is
likely to result in a better model. Otherwise, a poor choice of groups may result in either
no improvement if the hyperparameters are learned or — if the hyperparameters are also
poorly specified — a degradation in model quality.

5.3 OSCAR: Inducing and regularizing groups exactly

OSCAR (Octagonal Selection and Clustering Algorithm for Regression) is a combination
of a `2 regularizer, which seeks to control the overall number of active features, and a
pairwise `∞ regularizer, which seeks to control the overall degrees of freedom (unique
feature weights) by grouping features with similar weights.
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To encourage this, the combination of a `1 and pairwise `∞ term called OSCAR has been
proposed (Bondell and Reich, 2008). It is defined as:

ROSCAR = β1

|w|∑
i=1

|wi|+ β∞

|w|∑
i=1

i−1∑
j=1

max
(
|wi|, |wj |

)
(5.11)

These constraint regions are visualized in Figure 5.3. The octagonal shape of the constraint
region gives OSCAR its name. Compared to the soft grouping property of the Elastic Net,
OSCAR promotes exact grouping of feature weights, which are visualized as the pointed
corners furthest from the axes.

Note that in two dimensions, the pairwise formulation has no effect beyond a standard
`∞ regularizer. However, with more parameters, the move to a pairwise formulation allows
more than one group to be formed. That is, without the pairwise term, the exact grouping
property would only apply to a single group that must include the feature with the greatest
magnitude.

This penalty form may also be simplified to depend on a single parameter at a time, if
we first sort w by the magnitude of each parameter weight such that w1 ≤ w2 ≤ . . . ≤ wN :

ROSCAR = β1

|w|∑
i=1

(β∞(i− 1) + 1) |wi| (5.12)

This form highlights that the contribution pairwise `∞ penalty increases linearly as we
iterate through the sorted weights. We will elaborate on this and use it to our advantage in
Section 5.3.2.

While this objective is convex, it is non-smooth and so requires a specialized solver.
Unfortunately, the originally proposed solver is cast as a huge quadratic program, which
the authors admit may overwhelm standard solvers. A more efficient max-flow solver was
proposed in Mairal et al. (2010), but the resulting complexity remains O(n5) for n features.
Both solvers are prohibitively expensive for the nearly 1 million features we are seeking to
optimize.

5.3.1 Background: Proximal Gradient Methods

Proximal gradient methods are useful for efficiently solving optimization problems that can
be posed as the summation of a smooth convex component f(x) and a non-smooth convex
component r(x) (Combettes and Pesquet, 2010; Parikh and Boyd, 2013):
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Figure 5.4: Visualization of a prox operator moving initial points v (x’s) to proximal points
(filled circles) that are closer to the optimum of r(x) and still within its convex set r(x)
(shaded area).

min f(w) + r(w) (5.13)

In this work, r(w) will correspond to the OSCAR regularization term. In a proximal
gradient method, each optimization iteration first takes a step toward minimizing f(w)

and then takes another step that incorporates the contributions of r(w). Formally, the
proximal operator solves the optimization problem of moving a weight vector v (that has
been updated based on f(w)) toward the optimum of r(w):

proxr(v) = argmin
w

(r(w) + ‖w − v‖2) (5.14)

Because this effectively projects the initial weight vector v toward the minimum of the
function r(w) while still compromising between remaining near to v, proxr(v) is sometimes
called a proximal point with regard to r(w) (Parikh and Boyd, 2013). Figure 5.4 visualizes
the effects of a proximal operator.

The proximal operator may also be interpreted as an step in the direction of the gradient
of r(x) for some small constant c:

proxr(v) = v − c∇r(w) (5.15)

Proximal methods (including projected gradient methods) can also be used to minimize
any of the `p penalties mentioned so far. Duchi and Singer (2009) describe the Forward
Backward Splitting (FOBOS) framework along with concrete projection algorithms for `1,
`2, `∞ and mixed-norm `1,2. We use this formulation for both `1 and the elastic net in our
experiments.
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5.3.2 FastOSCAR: A proximal solver for OSCAR

FastOSCAR is a proximal method that defines anO(N) proximal operator for OSCAR (Zhong
and Kwok, 2011; Zhong and Kwok, 2012),4 making it very attractive for very large feature
sets.5 Despite its efficiency, FastOSCAR still provides an exact solution.

Within each instance of the proximal step, FastOSCAR begins with each feature weight
having its own cluster where the clusters are sorted by decreasing magnitudes of the current
pre-proximal feature weights. From this point on, each proximal feature weight includes a
`1 and pairwise `∞ penalty and each cluster is defined to have a common weight equal to the
average of its component proximal feature weights. Importantly, if the value drops under
zero, it is clipped as with `1 solvers. FastOSCAR then hypothesizes merging the current
cluster with the next cluster until the common weight of the current cluster (including
newly added regularization penalties) is no longer greater than the weight of the next
cluster (this works due to the pre-sorted nature of the feature weights). One of the keys to
FastOSCAR’s efficiency is that the merge operation can be implemented as fixed number of
addition operations (updating number of members in the group and a sum of weights).

Let q be the current iteration’s weight vector w sorted by weight magnitude. Then the
common weight value for the group spanning from i to j in q is given by:

COMMONVALUE(Gi:j ,q) = max

(∑
k∈Gi:j qk − β1 − β∞(N − k)

j − i+ 1
, 0

)
(5.16)

We provide a formal algorithm for the FastOSCAR proximal operator in Algorithm 2.

5.4 Experimental Setup

Formalism: In our experiments, we use a hierarchical phrase-based translation model (Chi-
ang, 2007). A corpus of parallel sentences is first word-aligned, and then phrase translations
are extracted heuristically. In addition, hierarchical grammar rules are extracted where
phrases are nested. In general, our choice of formalism is rather unimportant – our tech-
niques should apply to most common phrase-based and chart-based paradigms including
Hiero and syntactic systems.

4FastOSCAR is also re-derived in a more general form and called FISTA-GPO by Zeng and Figueiredo (2014)
5We have released a generic implementation of FastOSCAR at http://github.com/jhclark/prunejuice/

as part of this work. It has been integrated into the cdec MT decoder at http://github.com/jhclark/cdec/
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Algorithm 2 FASTOSCAR Proximal Operator
Input: Pre-proximal (unregularized) weight vector w
Output: Post-proximal (regularized) weight vector w′

Let N = |w|
Compute a as ai = |wi|
B We retain a mapping between indices in w and q,G
q← SORTDECREASING(a)
From the sorted indices q, create groups G1:1 . . .GN :N

Initialize a stack S = [G1:1]
for i ∈ [2, N ] do
G′ ← Gi:i
while S > 0 and COMMONVALUE(G′,q) ≥ COMMONVALUE(Gtop,q) do
G′ ← G′ ∪ Gtop
Pop Gtop from S

end while
Push G onto S

end for
zi ← COMMONVALUE(Gk) where wi ∈ Gk
w′i ← sign(wi) · zi
return w′

Decoder: For decoding, we will use cdec (Dyer et al., 2010), a multi-pass decoder that
supports syntactic translation models and sparse features.

Optimizer: Optimization is performed using PRO (Hopkins and May, 2011) as imple-
mented by the cdec decoder. We run PRO for 30 iterations as suggested by Hopkins and
May (2011). Our baseinle PRO optimizer internally uses an ADAGRAD optimizer with the
default `2 regularization implemented in cdec. Any additional regularization is explicitly
noted. The hyperparameters for each regularizer are tuned using grid search on data kept
separate from the dev and test sets.

Baseline Features: We use the baseline features produced by Lopez’ suffix array grammar
extractor (Lopez, 2008a), which is distributed with cdec. The addition of sparse features in
other experimental conditions is noted explicitly. These baseline features are:

• logPcoherent(e|f): The coherent phrase-to-phrase translation probability (Lopez, 2008b).

• logPlex(e|f), logPlex(f |e): The lexical alignment probabilities within each translation
rule, as computed by a maximum likelihood estimation over the Viterbi alignments
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Figure 5.5: Our modified PRO optimization procedure including the FastOSCAR proximal
operator.

• logPLM(e): The log probability of the target translation hypothesis under a language
model

• c(e) The count of target words (terminals) in the target translation hypothesis

• c(glue) The count of glue rules used in the derivation

• c(OOVTM) The count of source tokens that were not recognized by the translation
model (out of vocabulary) and were therefore passed through

• c(OOVLM) The count of target tokens that were not recognized by the language model
(out of vocabulary)

Zh→En Ar→En Cz→En
Train 303K 5.4M 1M
WeightTune 1664 1797 3000
HyperTune 1085 1056 2000
Test 1357 1313 2000

Table 5.1: Corpus statistics: number of parallel sentences.
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Chinese Resources: For the Chinese→English experiments, including the completed work
presented in this proposal, we train on the Foreign Broadcast Information Service (FBIS)
corpus6 of approximately 300,000 sentence pairs with about 9.4 million English words. We
tune weights on the NIST MT 2006 dataset, tune hyperparameters on NIST MT05, and test
on NIST MT 2008. See Table 5.1.

Arabic Resources: We build an Arabic→English system, training on the large NIST MT
2009 constrained training corpus7 of approximately 5 million sentence pairs with about
181 million English words. We tune weights on the NIST MT 2006 dataset, tune hyperpa-
rameters on NIST MT 2005, and test on NIST MT 2008.8 See Table 5.1.

Czech resources: We also construct a Czech→English system based on the CzEng 1.0 data
(Bojar et al., 2012). First, we lowercased and performed sentence-level deduplication of
the data.9 Then, we uniformly sampled a training set of 1M sentences (sections 1 – 97)
along with a weight-tuning set (section 98), hyperparameter-tuning (section 99), and test
set (section 99) from the paraweb domain contained of CzEng.10 Sentences having length
less than 5 were discarded due to their noisy nature. See Table 5.1.

Evaluation: We quantify increases in translation quality using case-insensitive BLEU (Pap-
ineni et al., 2002). We control for test set variation and optimizer instability by averaging
over multiple optimizer replicas (Chapter 3).11

5.4.1 Sparse Features: Simple Lexical Conjunctions

To test the utility of OSCAR in machine translation, we add several categories of sparse
feature templates already in use in machine translation. For the sake of exposition, we cast
these feature templates as instances of conjunctions.

6Distributed as part of the NIST Open MT Evaluation as Linguistic Data Consortium catalog number
LDC2003E14

7A list of the resources available as part of the NIST MT 2009 constrained training resources is available at
http://www.itl.nist.gov/iad/mig/tests/mt/2009/MT09_ConstrainedResources.pdf

8The NIST MT test sets are available from the LDC as catalog numbers LDC2010T{10,11,12,13,17,21,23}.
One of the four references for the Arabic MT08 weblog data was not processed correctly in the officially released
XML document and is mismatched with regard to the source sentences. There is no obvious way of reversing
this error. However, since three references are still valid, this should have negligible impact on the results.

9CzEng is distributed deduplicated at the document level, leading to very high sentence-level overlap.
10The section splits recommended by Bojar et al. (2012).
11MultEval 0.5.1: github.com/jhclark/multeval
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5.5. HYPERPARAMETER TUNING

We begin with lexical word identities on the source and target. We then add conjunc-
tions of these features using two operations:

• Conjoin across: This produces lexical translation indicators (e.g. does “gato” trans-
late as “cat”?) and may apply inside any rule.

• Conjoin neighbor: Conjoin with the lexical indicator on the left or right. This pro-
duces n-gram features.

On the source, we limit this to rule boundaries while we allow it to cross rule boundaries
on the target side (like a standard LM). In the extreme, these two types of conjunctions also
recover the widely used rule identity indicator features that use an indicator for each unique
SCFG translation rule.

This corresponds to the feature induction operators:

ΦAcross(h) ,
{
〈hi · hj , i _ j〉 : hi ∈ hSrcUnigrams, hj ∈ hTgtUnigrams

}
(5.17)

ΦTarget(h) ,
{
〈hi · hj , i _ j〉 : hi ∈ hTgtUnigrams, hj ∈ hTgtUnigrams

}
(5.18)

where the _ operator indicates concatenation of a feature identifier with a bin identifier to
form a new, unique feature identifier. The union of these induced features along with the
original dense features are included in our models.

We view this process as a series of steps:

• Simple initial features are specified by the user

• Conjunctions are applied to generate a much larger, more specific feature space (in-
tuitively, a splitting operation)

• The regularizer induces feature groups, discarding overly specific distinctions (intu-
itively, a merge operation)

5.5 Hyperparameter Tuning

For the systems with `1 regularization, we tuned the hyperparameter β1 by sweeping through
values in the set {1e−1, 1e−2, . . . , 1e−7}. We ran PRO to completion on the tuning set and
selected the value that maximized BLEU on the hyperparameter sweep data set (see above).
For our reported results, we sweep each language individually.

For the systems with OSCAR regularization, we performed some preliminary investiga-
tion on the tuning set of the Arabic→English data set. With the goal of controlling the num-
ber of unique weights rather than the number of active features, we noticed that β1 = 1e−6
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el        gato    come

the     cat      eats

el_the=1
el_cat=1
el_eats=1

gato_the=1
gato_cat=1
gato_eats=1

come_the=1
come_cat=1
come_eats=1

el     gato     come

the     cat     eats

the_cat=1 cat_eats=1

the_cat_eats=1

el     gato     come

the     cat     eats

el_gato_come__the_cat_eats=1

Figure 5.6: Diagrams of indicator features. Conjoining across the rule on yields lexical trans-
lation features (right). Conjoining with neighboring words yields n-gram features (center).
Combining these two operators eventually leads to full-rule features (right).

was very stable across multiple feature sets. We use this value in all of our experiments
with OSCAR. On the other hand, β∞ was far more sensitive, particularly in the region
{1e−8, 2e−8, . . . , 9e−8}. We performed a parameter sweep on β∞ for all of our experiments
with OSCAR. However, we also observed that β∞ = 3e−8 gave good performance across
data sets. The relative unimportance of β1 in the context of OSCAR is intuitive given our
new focus on reducing the number of unique weights rather than reducing the number of
active features.

5.6 Results

Table 5.2 shows the experimental results for sparse features with `1 and OSCAR. In our
first comparison, we add the sparse features described in Section 5.4.1 along with a `1

regularizer (row 2). In the Arabic-English system, while the feature space contains nearly
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Condition #NonZero #Unique Tune BLEU Test BLEU
Zh→En

Baseline (`2) 8 8 29.4 23.5
SparseFeats (`1 + `2) 75,952 55,746 36.0 22.8? (-0.7)

SparseFeats (OSCAR) 677,728 922 34.4 24.1? (+0.6)

Ar→En
Baseline (`2) 8 8 42.2 47.7
SparseFeats (`1 + `2) 79,961 56,657 50.5 48.3? (+0.6)

SparseFeats (OSCAR) 824,563 608 48.6 49.4? (+1.7)

Cz→En
Baseline (`2) 8 8 33.3 38.5
SparseFeats (`1 + `2) 115,210 77,732 36.9 38.3? (-0.2)

SparseFeats (OSCAR) 826,440 2,273 35.8 38.7? (+0.2)

Table 5.2: Translation quality for systems using a standard feature set and PRO with `2
regularization (row1) compared to systems using sparse conjoined features (rows 2 – 3).
Differences in BLEU are shown in parentheses. Row 2 shows the effect of `1 regularization
whereas row 3 includes OSCAR. All scores are averaged over 3 end-to-end optimizer repli-
cations. ? denotes significantly different than the baseline (row 1) with p(CHANCE) < 0.01
under Clark et al. (2011).

1 million features, the `1 regularizer selects less than 100k as active features, with almost
all of those having unique feature weights. However, after applying the OSCAR regularizer,
nearly all the features become active while a mere 608 receive unique feature weights (i.e.
were placed into different groups). The benefits of this grouping effect can be seen in the
model’s ability to generalize. Despite the OSCAR model preforming worse than the `1 model
on the tuning set, it still outperforms `1 on the test set.

5.6.1 Analysis of Chinese→English `1 Result

The significant underperformance of `1 for the Chinese→English experiments merits some
special attention. Intuitively, one might expect that as we increase β1, the penalty will
eventually push the newly added sparse features toward weights of zero, allowing us to
recover levels of quality comparable with the baseline system in the worse case. In practice,
we observed that on the tuning set, we do recover a BLEU score comparable to the baseline
system; however, the optimizer achieves this via a somewhat pathological set of feature
weights, including assigning negative weights to logPrule(t|s), logPlex(t|s), and logPlex(s|t)
(positive weights should be expected as these are generally strong features). We made
several attempts to improve the performance of the `1 system including initializing PRO
using the weights from other strong systems, attempting multiple restarts within PRO, doing
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additional finer-grained hyperparameter sweeps on β1, and even tuning β1 directly on the
test set. None of these led to any meaningful improvements and so we conclude that PRO
with standard `1 simply did not manage to prevent overfitting in this case.

For Chinese→English, we were able to recover the baseline performance using a Group
Lasso regularizer. We divided the features into sparse and dense groups and allowed dif-
ferent regularization penalties for each group. We fixed the regularization penalties for the
dense features to those of the baseline system and conducted a hyperparameter sweep for
the regularization penalties of the sparse features. However, this resulted in a very strong
`1 penalty, which set all of the sparse features to zero. While we did exactly recover the
baseline performance (as opposed to the drop of -0.7 BLEU observed for traditional `1), this
very harsh hyperparameter setting is a disappointing result for `1.

5.6.2 Analysis of Arabic→English OSCAR Result

We also analyzed some of the translations from the Arabic→English test set to better un-
derstand the effects of OSCAR. In Figure 5.7, we show four hand-picked examples of im-
provements. In the first example, we recover a missing determiner. The derivation contains
a bigram feature for in-a, which receives a small positive weight, shared with over 10,000
other features, including in-an and in-the. We also noticed that the n-gram feature in-to

shares the same magnitude, but with a negative sign (perhaps because the system should
prefer “into”). In the second example, we recover the word “might”. The derivation for
this hypothesis contains a feature for the Arabic Y

�
¯ (qd) translating as “might”. Again, this

feature receives a small positive weight, shared with many other features.

5.7 Related Work

Feature grouping has also been explored in NLP. Suzuki and Nagata (2013) propose an
efficient feature grouping algorithm for named entity recognition and dependency parsing
tasks with up to 15 million features. Unlike OSCAR, their algorithm requires both the
number and values of the allowable weights to be pre-specified.

More recently, more advanced regularization techniques have been explored in MT.
Vaswani, Huang, and Chiang (2012) used a smoothed `0 “norm” in the IBM word align-
ment models and observed improvements in both alignment and translation quality. Their
implementation uses a projected gradient algorithm (a subclass of proximal gradient meth-
ods). Liu et al. (2013b) perform small-scale experiments on IWSLT data with an OSCAR-like
objective. However, their algorithm requires repeatedly decoding the entire training data
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REF: the jordanian king heads to canada in a business trip
BASELINE: jordanian king to visit canada in working visit.
OSCAR: jordanian king to visit canada in a working visit.

REF: sarkozy might visit libya “soon” (presidency).
BASELINE: sarkozy was to visit libya “soon” (presidency).
OSCAR: sarkozy might visit libya “soon” (presidency).

REF: however difficult the fight is in iraq, we must win it. ”
BASELINE: whatever the difficult struggle in iraq should be on our victory.
OSCAR: whatever the difficult struggle in iraq we win.

REF: the pakistan people’s party decided to reserve its decision.
BASELINE: ppp decided to retain the resolution.
OSCAR: pakistan people’s party decided to retain the resolution.

Figure 5.7: Hand-picked examples in which OSCAR improved over the baseline. Often,
these improvements are the result of features having small positive weights.

and their feature grouping criterion is not driven by the top-level objective function (i.e.
PRO/BLEU).

Green et al. (2013) has also explored large feature sets using PRO. Similar to our
contrastive baselines, Green applied `1 regularization with FOBOS and analyzed feature sets
up to 500k features. Unlike the work in this chapter, they excluded features whose count in
the training data fell below a certain threshold. Green found that their algorithm “overfits
badly to MT06” and found that it was necessary to combine several tuning sets in order
to avoid this overfitting. They observed that using rule ID features on an Arabic→English
task yielded about 0.5 BLEU improvement on average over a PRO baseline with dense
features, which is consistent with our experiments. They also observed gains in a phrase-
based scenario when adding sparse lexicalized reordering features.

Another recent line of work has involved optimizing feature weights directly on the
training data. Yu et al. (2013) tuned 20M sparse features directly on the training data,
noting improvements over PRO tuned on small tuning data. They also observed that PRO
without strong regularization began to degrade with tens of thousands of features. Auli,
Galley, and Gao (2014) observed improvements when turning a phrase-based system with
a discriminative reordering model having nearly 3M features using an expected BLEU (min-
imum risk) objective. This required n-best lists to be produced for the entire training data.
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5.8 Chapter Summary

In this chapter, we have described the integration of the FastOSCAR regularizer into PRO.
We observed improvements of up to 1.7 BLEU while estimating weights for nearly 1 million
features, given as few as 1300 parallel sentences. Such large feature sets have previously
only been successfully used in MT when doing learning on the entire training data. We
have also argued that due to the frequent scarcity of high-quality truly task-specific data, it
can be advantageous to leverage a small amount of data. We conclude that OSCAR’s prior
toward fewer degrees of freedom is an effective tool for tuning a large number of features
on a small amount of data for a MT system.
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Discretization: Inducing
Non-Linear Transforms of
Initially-Continuous Features1 6

The straight line leads to the downfall of humanity.
—Friedensreich Hundertwasser

LINEAR MODELS, which support efficient learning and inference, are the workhorses of
statistical machine translation; however, linear decision rules are less attractive from a

modeling perspective. In this chapter, we introduce a technique for learning arbitrary, rule-
local, non-linear feature transforms that improve model expressivity, but do not sacrifice the
efficient inference and learning associated with linear models. To demonstrate the value of
our technique, we discard the customary log transform of lexical probabilities and drop
the phrasal translation probability in favor of raw counts. We observe that our algorithm
learns a variation of a log transform that leads to better translation quality compared to
the explicit log transform. We conclude that non-linear responses play an important role in
SMT, an observation that we hope will inform the efforts of feature engineers.

6.1 Introduction

Linear models using log-transformed probabilities as features have emerged as the dom-
inant model in MT systems. This practice can be traced back to the IBM noisy channel
models (Brown et al., 1993), which decompose decoding into the product of a translation
model (TM) and a language model (LM), motivated by Bayes’ Rule. When Och and Ney
(2002) introduced a log-linear model for translation (a linear sum of log-space features),
they noted that the noisy channel model was a special case of their model using log proba-
bilities. This same formulation persisted even after the introduction of MERT (Och, 2003),
which optimizes a linear model; again, using two log probability features (TM and LM) with

1Elements of this chapter were originally published as J. Clark, C. Dyer, and A. Lavie, “Locally Non-Linear
Learning for Statistical Machine Translation via Discretization and Structured Regularization”, TACL. 2014.
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equal weight recovered the noisy channel model. Yet systems now use many more features,
some of which are not even probabilities. Nor do we now believe that equal weights be-
tween the TM and LM provides optimal translation quality; the probabilities in the TM do
not obey the chain rule nor Bayes’ rule, nullifying several theoretical mathematical justifica-
tions for multiplying probabilities. The story of multiplying probabilities may just amount
to heavily penalizing small values.

The community has abandoned the original motivations for a linear interpolation of
log-transformed features. Is there empirical evidence that we should continue using this
particular transformation? Do we have any reason to believe it is better than other non-
linear transformations? To answer these questions, we will explore the issue of non-linearity
in models for MT. In the process, we will discuss the impact of linearity on feature engineer-
ing and develop a general mechanism for learning a class of non-linear transformations of
real-valued features.

Applying a non-linear transformation such as log to features is one way of achieving a
non-linear response function, even if those features are aggregated in a linear model. Alter-
natively, we could achieve a non-linear response using a natively non-linear model such as
a SVM (Wang, Shawe-Taylor, and Szedmak, 2007) or RankBoost (Sokolov, Wisniewski, and
Yvon, 2012). However, MT is a structured prediction problem, in which a full hypothesis
is composed of partial hypotheses. MT decoders take advantage of the fact that the model
score decomposes as a linear sum over both local features and partial hypotheses to effi-
ciently perform inference in these structured spaces (Section 1.3) – currently, there are no
scalable solutions to integrating the hypothesis-level non-linear feature transforms typically
associated with kernel methods while still maintaining polynomial time search. Another
alternative is incorporating a recurrent neural network (Schwenk, 2012; Auli et al., 2013;
Kalchbrenner and Blunsom, 2013) or an additive neural network (Liu et al., 2013a). While
these models have shown promise as methods of augmenting existing models, they have
not yet offered a path for replacing or transforming existing real-valued features.

In the remainder of this chapter, we describe local discretization, our approach to learn-
ing non-linear transformations of individual features, compare it with globally non-linear
models (Section 6.2), present our experimental setup (Section 6.4), empirically verify the
importance of non-linear feature transformations in MT and demonstrate that discretization
can be used to recover non-linear transformations (Section 6.5), discuss related work (Sec-
tion 6.6), sketch some qualitative comparisons with other non-linear methods (Section 6.7),
and conclude (Section 6.8).
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1.00.5
h0

1.00.5
h1 h2 h3 h4R

Figure 6.1: Left: A real-valued feature. Bold dots represent points where we could imagine
bins being placed. However, since we may only adjust w0, these “bins” will be rigidly fixed
along the feature function’s value. Right: After discretizing the feature into 4 bins, we may
now adjust 4 weights independently, to achieve a non-linear re-shaping of the function.

6.2 Discretization and Feature Induction

Recall from Section 2.1.1 that a feature set that is too coarse can cause the data to be less
separable than desired, resulting in uncaptured non-linearities. In this section, we propose
a feature induction technique based on discretization that produces a feature set that is
allows the resulting model to fit more uncaptured non-linearities.

Discretization allows us to avoid many non-linearities (Section 2.1.1) while preserving
the fast inference provided by feature locality (Section 1.2). In general, feature locality is
relative to a particular structured hypothesis space, and is unrelated to the structured
features described in Section 6.3.2. We first discretize real-valued features into a set of
indicator features and then use a conventional optimizer to learn a weight for each indicator
feature (Figure 2.5). This technique is sometimes referred to as binning and is closely
related to quantization. Effectively, discretization allows us to re-shape a feature function
(Figure 6.1). In fact, given an infinite number of bins, we can perform any non-linear
transformation of the original function.

For now, we assume a binning function BIN(x) ∈ R → N, which we define in Sec-
tion 6.2.2. To simplify notation, we define a helper function ϕi(x), which generates a new
binned feature identifier given an initial feature hi with value x:

ϕi(x) , i _ BIN(x) (6.1)

where the _ operator indicates concatenation of a feature identifier with a bin identifier to
form a new, unique feature identifier.
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Our feature induction function operator ΦDisc iterates over the initially continuous fea-
tures, maps each value to a binned feature identifier, and assigns it the value 1:

ΦDisc(h) , {〈1, ϕi(hi)〉 : hi ∈ h} (6.2)

6.2.1 Local Discretization

Unlike other approaches to non-linear learning in MT, we perform non-linear transforma-
tion on partial hypotheses as in equation 2.1 where discretization is applied as Φi(hi(d)),
which allows locally non-linear transformations, instead of applying Φ to complete hy-
potheses as in Φi(Hi(D)), which would allow globally non-linear transformations. This
enables our transformed model to produce non-linear responses with regard to the initial
feature set H while inference remains linear with regard to the optimized parameters w′.
Importantly, our transformed feature set requires no additional non-local information for
inference.

By performing transformations within a local context, we effectively reinterpret the fea-
ture set. For example, the familiar target word count feature found in many modern MT
systems is often conceptualized as “what is the count of target words in the complete hy-
pothesis?” A hypothesis-level view of discretization would view this as “Did this hypothesis
have 5 target words?”. Only one such feature will fire for each hypothesis. However, local
discretization reinterprets this feature as “How many phrases in the complete hypothesis
have 1 target word?” Many such features are likely to fire for each hypothesis. We provide
a further example of this technique in Figure 6.2. In this study, we limit ourselves to local
features, leaving the traditional non-local LM feature unchanged.

In terms of predictive power, this transformation can provide the learned model with
increased ability to discriminate between hypotheses. This is primarily a result of moving
to a higher-dimensional feature space. As we introduce new parameters, we expect that
some hypotheses that were previously indistinguishable under H become separable under
H′ (Section 2.1.1). We show specific examples comparing linear, locally non-linear, and
globally non-linear models in Figures 6.4 - 6.8. As seen in these examples, locally non-
linear models (Equation 2.1, 6.2) are not an approximation nor a subset of globally non-
linear models, but rather a different class of models.

We summarize this section with the Venn diagram in Figure 6.3, comparing the strengths
of globally versus locally non-linear models. The overlap represents the space of data sets
separable by both approaches given some feature set. Here, we emphasize that local feature
induction is not an approximation of traditional feature induction, but rather a distinct class
of models.
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hTM=0.1 hTM=0.2

hCount=2

hTM=0.113

hTM_0.1=1 hTM_0.2=1

hTM_0.1=1

hCount_2=1

el    gato    come       furtivamente

Figure 6.2: We perform discretization locally on each grammar rule or phrase pair, op-
erating on the local feature vectors h. In this example, the original real-valued features
are crossed out with a solid gray line and their discretized indicator features are writ-
ten above. When forming a complete hypothesis from partial hypotheses, we sum the
counts of these indicator features to obtain the complete feature vector H. In this example,
H = {HTM_0.1 : 2, HTM_0.2 : 1, HCount_2 : 1}

Globally Non-Linear Locally Non-Linear

Difficult Inference Fast Inference

Figure 6.3: We use a Venn diagram to conceptualize the space of non-linear transformations
that are possible under local (transforming h) versus global (transformingH) discretization.
While many of the same rankings are reachable (overlapping region), sometimes locally
transformation is capable of distinctions that global transformation is not, and sometimes
the opposite is true.
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Figure 6.4: An example showing a collinearity over multiple input sentences S3, S4 in which the oracle-
best hypothesis is “trapped” along a line with other lower quality hypotheses in the linear model’s output
space. Ranking shows how the hypotheses would appear in a k-best list with each partial derivation
having its partial feature vector h under it; the complete feature vector H is shown to the right of each
hypothesis and the oracle-best hypothesis is notated with a ∗. Pairs explicates the implicit pairwise
rankings. Pairwise Ranking graphs those pairs in order to visualize whether or not the hypotheses are
separable. (⊕ indicates that the pair of hypotheses is ranked correctly according to the extrinsic metric
and 	 indicates the pair is ranked incorrectly. In the pairwise ranking row, some ⊕ and 	 points are
annotated with their positions along the third axis H3 (omitted for clarity). Collinearity can also occur
with a single input having at least 3 hypotheses.
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Figure 6.5: An example showing a collinearity for a single sentence.
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Figure 6.6: An example showing a trivial “collision” in which two hypotheses of differing quality receive
the same model score until local discretization is applied. The two hypotheses are indistinguishable under
a linear model with the feature set H, as shown by the zero-difference in the “pairs” row. While a globally
non-linear transformation does not yield any improvement, local discretization allows the hypotheses to
be properly ranked due to the higher-dimensional feature spaceH2, H4. See Figure 6.4 for an explanation
of notation.
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Figure 6.7: A example in which the initial binning step of discretization prevents the model from dis-
tinguishing two hypotheses that were previously separable by causing them to collide. This can happen
when two feature scores are sufficiently close that they fall in the same bin. Such occurrences are mit-
igated by the presence of other features. Experimentally we observe that this does not affect aggregate
translation quality.

76



CHAPTER 6. DISCRETIZATION

Linear Locally Non-Linear

R
an

ki
ng

∗S
1
6

kitten
hB:1.0 = {HB:1.0}

S2
6

small
hA:1.0

cat
hA:1.0 = {HA:2.0}

∗S
1
7

big
hA:1.0

marine
hA:1.0

mammal
hB:1.0 = {HA:2.0, HB:1.0}

S2
7

manitee
hA:0.0 = {}

∗ S
1
8

the
hB:-4.0

common
hB:1.0

house
hB:1.0

cat
hB:1.0 = {HB:-1.0}

S2
8

feline
hA:1.0 = {HA:1.0}

∗S
1
9

the
hB:-4.0

kanine
hA:1.0 = {HA:1.0, HB:-4.0}

S2
9

big
hB:1.0

dog
hB:1.0 = {HB:2.0}

∗S
1
6

kitten
hB1 :1 = {HB

1 :1}

S2
6

small
hA1 :1

cat
hA1 :1 = {HA

1 :2}

∗S
1
7

big
hA1 :1

marine
hA1 :1

mammal
hB1 :1 = {HA

1 :2, HB
1 :1}

S2
7

manitee
hA1 :0 = {}

∗S
1
8

the
hB−4:1

common
hB1 :1

house
hB1 :1

cat
hB1 :1 = {HB

−4:1, HB
1 :3}

S2
8

feline
hA1 :1 = {HA

1 :1}

∗S
1
9

the
hB−4:1

kanine
hA1 :1 = {HA

1 :1, HB
−4:1}

S2
9

big
hB1 :1

dog
hB1 :1 = {HB

1 :2}

Pa
ir

s

(S1
6 , S

2
6) {∆HA:-2.0, ∆HB:1.0} ⊕

(S2
6 , S

1
6) {∆HA:2.0, ∆HB:-1.0} 	

(S1
7 , S

2
7) {∆HA:2.0, ∆HB:1.0} ⊕

(S2
7 , S

1
7) {∆HA:-2.0, ∆HB:-1.0} 	

(S1
8 , S

2
8) {∆HA:-1.0, ∆HB:1.0} ⊕

(S2
8 , S

1
8) {∆HA:1.0, ∆HB:-1.0} 	

(S1
9 , S

2
9) {∆HA:1.0, ∆HB:-6.0} ⊕

(S2
9 , S

1
9) {∆HA:-1.0, ∆HB:6.0} 	

(S1
6 , S

2
6) {∆HA

1 :-2, ∆HB
1 :1} ⊕

(S2
6 , S

1
6) {∆HA

1 :2, ∆HB
1 :-1} 	

(S1
7 , S

2
7) {∆HA

1 :2, ∆HB
1 :1} ⊕

(S2
7 , S

1
7) {∆HA

1 :-2, ∆HB
1 :-1} 	

(S1
8 , S

2
8) {∆HA

1 :-1, ∆HB
1 :3, ∆HB

−4:1} ⊕
(S2

8 , S
1
8) {∆HA

1 :1, ∆HB
1 :-3, ∆HB

−4:-1} 	
(S1

9 , S
2
9) {∆HA

1 :1, ∆HB
1 :-2, ∆HB

−4:1} ⊕
(S2

9 , S
1
9) {∆HA

1 :-1, ∆HB
1 :2, ∆HB

−4:-1} 	

Pa
ir

w
is

e
R

an
ki

ng

ΔHA-6 6
⊕

-6

6
ΔHB

⊖

⊖⊖
⊕

⊕

⊕
⊖

Inseparable

ΔHA-3 3

⊕

-3

3
ΔHB

⊖
⊖

⊖
⊕

⊕

⊕

⊖

1

1

HB:1-4

HB:-1-4

HB:1-4

HB:-1-4

Separable

Figure 6.8: An example demonstrating a non-linear decision boundary induced by discretization. The
non-linear nature of the decision boundary can be seen clearly when the induced feature setHA
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(right) is considered in the original feature space HA, HB (left). In the pairwise ranking row, two axes
(HA

1 , H
B
1 ) are plotted while the third axis HB

−4 is indicated only as stand-off annotations for clarity. Given
a larger number of hypotheses, such situations could also arise within a single sentence. See Figure 6.4
for an explanation of notation.
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6.2.2 Binning Algorithm

To initialize the learning procedure, we construct the binning function BIN used by the
indicator dicretizer Φ. We have two desiderata: (1) any monotonic transformation of a
feature should not affect the induced binning since we should not require feature engineers
to determine the optimal feature transformation and (2) no bin’s data should be so sparse
that the optimizer cannot reliably estimate a weight for each bin. Therefore, we construct
bins that are (i) populated uniformly subject to (ii) each bin containing no more than one
feature value. We call this approach uniform population feature binning.

While one could consider the predictive power of the features when determining bin
boundaries, this would suggest that we should jointly optimize and determine bin bound-
aries, which is beyond the scope of this work. This problem has recently been considered
for NLP by Suzuki and Nagata (2013) and for MT by Liu et al. (2013b), though the latter
involves decoding the entire training data.

Let X be the list of feature values to bin where i indexes feature values xi ∈ X and
their associated frequencies fi. We want each bin to have a uniform size u. For the sake of
simplifying our final algorithm, we first create adjusted frequencies f ′i so that very frequent
feature values will not occupy more than 100% of a bin via the following algorithm, which
iterates over k:

uk , 1

|X |

|X |∑
i=1

fki (6.3)

fk+1
i , min(fki , u

k) (6.4)

which returns u′ = uk when fki < uk ∀i. Next, we solve for a binning B of N bins where bj
is the population of each bin:

argmin
B

1

N

N∑
j=1

|bj − u′| (6.5)

We use Algorithm 3 to produce this binning. In our experiments, we construct a translation
model for each sentence in our tuning corpus; we then add a feature value instances to X
for each rule instance.

6.3 Structure-Aware Regularization

Unfortunately, choosing the right number of bins can have important effects on the model,
including:
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Algorithm 3 POPULATEBINSUNIFORMLY(X , N)

B Remaining values for bj , s.t. bk > 0 ∀k
def R(j) = |X | − (N − j − 1)
B Remaining frequency mass within ideal bound
def C(j) = j · u′ −

∑j
k bk

i← 1 B Current feature value
for j ∈ [1, N ] do

while i ≤ R(j) and fi ≤ C(j) do
bj ← bj ∪ {xi}
i← i+ 1

end while
B Handle value that straddles ideal boundaries

by minimizing its violation of the ideal
if i ≤ R(j) and fi−C(j)

fi
< 0.5 then

bj ← bj ∪ {xi}
i← i+ 1

end if
end for
return B

• Fidelity. If we choose too few bins, we risk degrading the model’s performance by dis-
carding important distinctions encoded in fine differences between the feature values.
In the extreme, we could reduce a real-valued feature to a single indicator feature.

• Sparsity. If we choose too many bins, we risk making each indicator feature too
sparse, which is likely to result in the optimizer overfitting such that we generalize
poorly to unseen data.

While one may be tempted to simply throw more data or millions of sparse features
at the problem, we elect to more strategically use the existing data, since (1) large in-
domain tuning data is not always readily available, and (2) when it is available, it can add
considerable computational expense. In this section, we explore methods for mitigating
data sparsity by embedding more knowledge into the learning procedure.

6.3.1 Overlapping Bins

One simple way we could combat sparsity is to extend the edges of each bin such that they
cover their neighbors’ values (see Equation 6.2):

ΦOverlap(h) ,
{〈r

BINi(hi) ∈ ∪i+1
k=i−1BINk(hi)

z
, ϕi(hi)

〉
: hi ∈ h

}
(6.6)
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Figure 6.9: A fine-grained histogram of the number of grammar rules having each value
of the plex(f |e) feature. The bin boundaries are placed at intervals along the feature value
such that the population is distributed evenly among the bins

This way, each bin will have more data points to estimate its weight, reducing data sparsity,
and the bins will mutually constrain each other, reducing the ability to overfit. We include
this technique as a contrastive baseline for structured regularization.2

6.3.2 Linear Neighbor Regularization

Regularization has long been used to discourage optimization solutions that give too much
weight to any one feature. This encodes our prior knowledge that such solutions are
unlikely to generalize. Regularization terms such as the `p norm are frequently used in
gradient-based optimizers including our baseline implementation of PRO.

Unregularized discretization is potentially brittle with regard to the number of bins cho-
sen. Primarily, it suffers from sparsity. At the same time, we note that we know much more
about discretized features than initial features since we control how they are formed. These
features make up a structured feature space. With these things in mind, we propose linear
neighbor regularization, a structured regularizer that embeds a small amount of knowledge
into the objective function: that the indicator features resulting from the discretization of
a single real-valued feature are spatially related. We expect similar weights to be given to

2We also performed some preliminary experiments with simple thresholds where each bin includes all values
less than some threshold, but did not observe any differences with overlapping bins.
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the indicator features that represent neighboring values of the original real-valued feature
such that the resulting transformation appears somewhat smooth.

To incorporate this knowledge of nearby bins, the linear neighbor regularizer RLNR uses
a set of 3-tuples that indicate each feature’s left and right neighbors 〈l, k, r〉 ∈ N to penalize
each feature’s weight by the squared amount it differs from its neighbors’ midpoint:

RLNR(w, l, k, r) ,
(

1

2
(wl + wr)− wk

)2

(6.7)

RLNR(w;N ) , β
∑

〈l,k,r〉∈N

RLNR(w, l, k, r) (6.8)

This is a special case of the feature network regularizer of Sandler (2010) and is similar
to the fused lasso (Tibshirani and Saunders, 2005). Unlike traditional regularizers, we do
not hope to reduce the active feature count. With the basic PRO loss function l and a `2
regularization term R2, the complete modified loss function of the convex optimization
problem internal to each iteration of PRO is then:

L(w) = l(x,y;w) +R2(w) +RLNR(w) (6.9)

6.3.3 Monotone Neighbor Regularization

However, as β → ∞, the linear neighbor regularizer RLNR forces a linear arrangement of
weights – this violates our premise that we should be agnostic to non-linear transformations.
We now describe a structured regularizer RMNR whose limiting solution is any monotone
arrangement of weights. We augment RLNR with a smooth damping term D(w, l, k, r),
which has the shape of a bathtub curve with steepness γ:

D(w, l, k, r) , tanh2γ
1
2(wl + wr)− wk

1
2(wl − wr)

(6.10)

RMNR(w,N ) , β
∑

〈l,k,r〉∈N

D(w, l, k, r)RLNR(w, l, k, r) (6.11)

D is nearly zero while wk ∈ [wl, wr] and nearly one otherwise. Briefly, the numerator
measures how far wk is from the midpoint of wl and wr while the denominator scales that
distance by the radius from the midpoint to the neighboring weight.
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6.4 Experimental Setup

Formalism: In our experiments, we use a hierarchical phrase-based translation model (Chi-
ang, 2007). A corpus of parallel sentences is first word-aligned, and then phrase translations
are extracted heuristically. In addition, hierarchical grammar rules are extracted where
phrases are nested. In general, our choice of formalism is rather unimportant – our tech-
niques should apply to most common phrase-based and chart-based paradigms including
Hiero and syntactic systems.

Decoder: For decoding, we will use cdec (Dyer et al., 2010), a multi-pass decoder that
supports syntactic translation models and sparse features.

Optimizer: Optimization is performed using PRO (Hopkins and May, 2011) as imple-
mented by the cdec decoder. We run PRO for 30 iterations as suggested by Hopkins and
May (2011). The PRO optimizer internally uses a L-BFGS optimizer with the default `2
regularization implemented in cdec. Any additional regularization is explicitly noted.

Baseline Features: We use the baseline features produced by Lopez’ suffix array grammar
extractor (Lopez, 2008a), which is distributed with cdec. Note that these features may be
simplified or removed as specified in each experimental condition. These features are:

• logPcoherent(e|f): The coherent phrase-to-phrase translation probability (Lopez, 2008b).

• logPlex(e|f), logPlex(f |e): The lexical alignment probabilities within each translation
rule, as computed by a maximum likelihood estimation over the Viterbi alignments

• logPLM(e): The log probability of the target translation hypothesis under a language
model

• c(e) The count of target words (terminals) in the target translation hypothesis

• c(glue) The count of glue rules used in the derivation

• c(OOVTM) The count of source tokens that were not recognized by the translation
model (out of vocabulary) and were therefore passed through

• c(OOVLM) The count of target tokens that were not recognized by the language model
(out of vocabulary)

Chinese Resources: For the Chinese→English experiments, including the completed work
presented in this proposal, we train on the Foreign Broadcast Information Service (FBIS)
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Zh→En Ar→En Cz→En
Train 303K 5.4M 1M
WeightTune 1664 1797 3000
HyperTune 1085 1056 2000
Test 1357 1313 2000

Table 6.1: Corpus statistics: number of parallel sentences.

corpus3 of approximately 300,000 sentence pairs with about 9.4 million English words. We
tune weights on the NIST MT 2006 dataset, tune hyperparameters on NIST MT05, and test
on NIST MT 2008. See Table 6.1.

Arabic Resources: We build an Arabic→English system, training on the large NIST MT
2009 constrained training corpus4 of approximately 5 million sentence pairs with about
181 million English words. We tune weights on the NIST MT 2006 dataset, tune hyperpa-
rameters on NIST MT 2005, and test on NIST MT 2008.5 See Table 6.1.

Czech resources: We also construct a Czech→English system based on the CzEng 1.0 data
(Bojar et al., 2012). First, we lowercased and performed sentence-level deduplication of
the data.6 Then, we uniformly sampled a training set of 1M sentences (sections 1 – 97)
along with a weight-tuning set (section 98), hyperparameter-tuning (section 99), and test
set (section 99) from the paraweb domain contained of CzEng.7 Sentences having length
less than 5 were discarded due to their noisy nature. See Table 6.1.

Evaluation: We quantify increases in translation quality using case-insensitive BLEU (Pap-
ineni et al., 2002). We control for test set variation and optimizer instability by averaging
over multiple optimizer replicas (Clark et al., 2011).8

3Distributed as part of the NIST Open MT Evaluation as Linguistic Data Consortium catalog number
LDC2003E14

4A list of the resources available as part of the NIST MT 2009 constrained training resources is available at
http://www.itl.nist.gov/iad/mig/tests/mt/2009/MT09_ConstrainedResources.pdf

5The NIST MT test sets are available from the LDC as catalog numbers LDC2010T{10,11,12,13,17,21,23}.
One of the four references for the Arabic MT08 weblog data was not processed correctly in the officially released
XML document and is mismatched with regard to the source sentences. There is no obvious way of reversing
this error. However, since three references are still valid, this should have negligible impact on the results.

6CzEng is distributed deduplicated at the document level, leading to very high sentence-level overlap.
7The section splits recommended by Bojar et al. (2012).
8MultEval 0.5.1: github.com/jhclark/multeval
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6.5. RESULTS

Bits 4 8 12
Features 101 1302 12,910
Test BLEU 36.4 36.6 36.8

Table 6.2: Translation quality for Cz→En system with varying bits for discretization. For all
other experiments, we tune the number of bits on held-out data.

6.5 Results

6.5.1 Does Non-Linearity Matter?

In our first set of experiments, we seek to answer “Does non-linearity matter?” by starting
with our baseline system of 7 typical features (the log probability system) and we then
remove the log transform from all of the log probability features in our grammar (the Probs.
system). The results are shown in Table 6.3 (rows 1, 2). If a naïve feature engineer were
to remove the non-linear log transform, the systems would degrade between 1.1 BLEU and
3.6 BLEU. From this, we conclude that non-linearity does affect translation quality. This
is a potential pitfall for any novel real-valued feature including probability features, count
features, similarity measures, etc.

6.5.2 Learning Non-Linear Transformations

Next, we evaluate the effects of discretization (Disc), overlapping bins (Over.), linear neigh-
bor regularization (LNR), and monotone neighbor regularization (MNR) on three language
pairs: a small Zh→En system, a large Ar→En system and a large Cz→En system. In the first
row of Table 6.3, we use raw probabilities rather than log probabilities for pcoherent(t|s),
plex(t|s), and plex(s|t). In rows 3 – 7, all translation model features (without the log-
transformed features) are then discretized into indicator features.9 The number of bins
and the structured regularization strength were tuned on the hyperparameter tuning set.

Discretization alone does not consistently recover the performance of the log trans-
formed features (row 3). The naïve overlap strategy in fact degrades performance (row 4).
Linear neighbor regularization (row 5) behaves more consistently than discretization alone,
but is consistently outperformed by the monotone neighbor regularizer (row 6), which is
able to meet or significantly exceed the performance of the log transformed system. Im-
portantly, this is done without any knowledge of the correct non-linear transformation. In
the final row, we go a step further by removing pcoherent(t|s) altogether and replacing it
with simple count features: c(s) and c(s, t), with slight to no degradation in quality. We

9We also keep a real-valued copy of the word penalty to help normalize the language model.
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Condition Zh→En Ar→En Cz→En
P 20.8? (-2.7) 44.3? (-3.6) 36.5? (-1.1)

log P 23.5† 47.9† 37.6†

Disc P 23.4† (-0.1) 47.2† (-0.7) 36.8? (-0.8)

Over. P 20.7? (-2.8) 44.6? (-3.3) 36.6? (-1.0)

LNR P 23.1?† (-0.4) 48.0† (+0.1) 37.3 (-0.3)

MNR P 23.8† (+0.3) 48.7?† (+0.8) 37.6† (±)

MNR C 23.6† (±) 48.7?† (+0.8) 37.4† (-0.2)

Table 6.3: Top: Translation quality for systems with and without the typical log transform.
Bottom: Translation quality for systems using discretization and structured regularization
with probabilities P or counts C as the input of discretization. MNR P consistently recov-
ers or outperforms a state-of-the-art system, but without any assumptions about how to
transform the initial features. Differences in BLEU versus the log P system are shown in
parentheses. Note that we observe much larger improvements (up to 4.4 BLEU) when a
good transform is unknown (compare to raw P system). All scores are averaged over 3
end-to-end optimizer replications. ? denotes significantly different than log probs (row 2)
with p(CHANCE) < 0.01 under Clark et al. (2011) and † is likewise used with regard to P
(row 1).

take this as evidence that a feature engineer developing a new real-valued feature may find
discretization and monotone neighbor regularization useful.

We also observe that different data sets benefit from non-linear feature transformation
to different degrees (Table 6.3, rows 1, 2). We noticed that discretization with monotone
neighbor regularization is able to improve over a log transform (rows 2, 6) in proportion to
the improvement of a log transform over probability-based features (rows 1, 2).

To provide insight into how translation quality can be affected by the number of bits for
discretization, we offer Table 6.2.

In Figure 6.10, we present the weights learned by the Ar→En system for probability-
based features. We see that even without a bias toward a log transform, a log-like shape
still emerges for many SMT features based only on the criteria of optimizing BLEU and a
preference for monotonicity. However, the optimizer chooses some important variations
on the log curve, especially for low probabilities, that lead to improvements in translation
quality.

6.6 Related Work

Previous work on feature discretization in machine learning has focused on the conversion
of real-valued features into discrete values for learners that are either incapable of handling
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Figure 6.10: Plots of weights learned for the discretized pcoherent(e|f) (top) and c(f) (bot-
tom) for the Ar→En system with 4 bits and monotone neighbor regularization. p(e|f) >
0.11 is omitted for exposition as values were constant after this point. The gray line fits a
log curve to the weights. The system learns a shape that deviates from the log in several
regions. Each non-monotonic segment represents the learner choosing to better fit the data
while paying a strong regularization penalty.

real-valued inputs or perform suboptimally given real-valued inputs (Dougherty, Kohavi,
and Sahami, 1995; Kotsiantis and Kanellopoulos, 2006).

Decision trees and random forests have been successfully used in language modeling
(Jelinek et al., 1994; Xu and Jelinek, 2004) and parsing (Charniak, 2010; Magerman,
1995).

Kernel methods such as support vector machines (SVMs) are often considered when
non-linear interactions between features are desired since they allow for easy usage of non-
linear kernels. Wu, Su, and Carpuat (2004) showed improvements using non-linear kernel
PCA for word sense disambiguation. Tsochantaridis et al. (2004) describe a structured SVM
for grammar learning, named-entity recognition, text classification, and sequence align-
ment. Even within kernel methods, learning non-linear mappings with kernels remains an
open area of research; For example, Cortes, Mohri, and Rostamizadeh (2009) investigated
learning non-linear combinations of kernels. Taskar, Guestrin, and Koller (2003) describe
a method for incorporating kernels into structured Markov networks. Tsochantaridis et
al. (2004) then proposed a structured SVM for grammar learning, named-entity recogni-
tion, text classification, and sequence alignment. This was followed by a structured SVM
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with inexact inference (Finley and Joachims, 2008) and the latent structured SVM (Yu and
Joachims, 2009).

In MT, Giménez and Màrquez (2007) used a SVM to annotate a phrase table with binary
features indicating whether or not a phrase translation was appropriate in context. Nguyen,
Mahajan, and He (2007) also applied non-linear features for SMT n-best reranking.

Perhaps most similar to this work is that of Toutanova and Ahn (2013), which uses
gradient-boosting machines, a form of regression decision trees, to induce locally non-linear
features. They apply these features in a n-best reranking framework. He and Deng (2012)
directly optimize the lexical and phrasal probability features using expected BLEU to gen-
erate a new phrase table. Nguyen, Mahajan, and He (2007) explore bin features, Gaussian
mixture models, and Parzen windows for global non-linear learning in a re-ranking frame-
work. Nelakanti et al. (2013) use tree-structured `p regularizers to train language models
and observe improvements in perplexity over a Kneser-Ney. Yogatama and Smith (2014)
apply a variety of structured regularizers based on the group lasso to achieve improvements
on topic classification, sentiment analysis, and forecasting.

Learning parameters under weak order restrictions has also been studied for regression.
Isotonic regression (Barlow et al., 1972; Robertson, Wright, and Dykstra, 1988; Silvapulle
and Sen, 2005) fits a curve to a set of data points such that each point in the fitted curve is
greater than or equal to the previous point in the curve. Nearly isotonic regression allows
violations in monotonicity (Tibshirani, Hoefling, and Tibshirani, 2011).

6.7 Qualitative Comparison with Other Non-Linear Models

While many models are capable of producing non-linear responses to input features, the
specific class of non-linear responses can often differ significantly. In this section, we com-
pare several well-known non-linear models while considering the following:

• Expressivity: What are the set of outputs that can be produced by the model? VC
dimensionality is one way that this is often quantified. However, to avoid being sen-
sitive to pathological arrangements of inputs, which may not be able to be shattered,
we instead discuss specific classes of non-linear responses relevant to understanding
discretization.

• Overfitting: Does the model have a large number of parameters? Even if the model’s
expressivity theoretically allows for tightly fitting the tuning data, is it easy to avoid
overfitting with regard to held-out test data?
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• Underfitting: It it theoretically and practically easy to find a good parameterization
that maximizes the objective function on the tuning data? Underfitting can be a
concern for some non-convex loss functions.

• Feature locality: What are the considerations that must be made in inference and
learning for structured prediction?

6.7.1 Neural Networks
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Figure 6.11: A neural network simulating discretization with a single real-valued input
neuron (top), single tanh hidden layer with 3 neurons (middle), and a single softmax real-
valued output (bottom). The log10 transformation of the input that the network seeks to
approximate is shown below the output neuron. The projection matrix for each layer is
shown in bold above each layer. The hidden layer uses a tanh function while the output
layer uses a softmax function. The network is instantiated three times with different input
values: 0.01 (left), 0.1 (middle), and 1.0 (right) to show points of interest in the log10
transformation. See section 6.7.1 for a full discussion.

Neural networks (NN’s) have recently gained popularity in NLP and MT (Schwenk,
2012; Auli et al., 2013; Kalchbrenner and Blunsom, 2013). While they are known to be
capable of producing non-linear responses to inputs, we will specifically compare their re-
sponses to the class of non-linear responses that are possible via discretization. Neural
networks are directed graphical models, which typically consist of an input layer analogous
to the initial features H, one or more hidden layers that learn a new representation of the
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initial features, and an output layer analogous to the final scoring function. Often, a non-
linear transformation such as tanh is applied to each neuron of the hidden layer (with the
notable exception of log bi-linear models); in practice, tanh tends to act as a differentiable
proxy for indicator variables since it asymptotically approaches 0 or 1 very quickly. This
makes the neurons in the hidden layer analogous to the transformation Φ into indicator
bins performed by discretization.

NN’s are known to be universal function approximators(Scarselli and Tsoi, 1998), but
these proofs often come with caveats such as requiring a prohibitively large number of
neurons in the hidden layer(s), further motivating us to more transparently compare NN’s
with discretization.

With this in mind, there are direct similarities between the expressivity of NN with a
single hidden layer and discretization. To make this concrete, figure 6.11 shows how a
single-layer NN might accomplish a log10 transformation using a manually chosen set of
weights. Unlike our implementation of discretization, the “bins” formed by the hidden layer
are cumulative in nature (i.e. they are active if the input is greater than some value as op-
posed to if the input is in some range). The single neuron in the input layer represents
a single real-valued feature. It is then projected into a new feature representation in the
hidden layer; the first projection matrix has been chosen such that each of the three hid-
den neurons become active for inputs of 0.01, 0.1, and 1.0, respectively (see the network
instances, left to right). The output projection matrix is analogous to the typical weights of
a linear model or bin weights in the case of discretization.

• Expressivity: Not only is the neural network able to approximate a log transform and
many other of non-linear transformations enabled by discretization, as a universal
function approximator (Scarselli and Tsoi, 1998), it is able to approximate an even
wider range of functions.

• Overfitting: With this additional expressivity comes an enhanced ability to overfit
the tuning data. In this thesis, we mitigate the overfitting due to discretization by
applying a structured regularizer. However, in the case of neural networks, it is less
clear how to apply such a regularizer since we have no reason to believe a priori that
the weights projecting the hidden layer to the output layer should be spatially related
to each other.

• Underfitting: To avoid underfitting due to non-convexity, neural networks require
additional consideration during learning. For example, Liu et al. (2013a) use both
pre-training and post-training to avoid poor local optima.
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Figure 6.12: A decision tree, showing a possible emulation of a discretized log transform
for a single real-valued feature (attribute A). See section 6.7.2 for a full discussion.

• Feature locality: As with global discretization, exact application of NN’s at the hypothesis-
level during decoding is computationally infeasible. Liu et al. (2013a) propose addi-
tive NN’s, which address this issue by applying non-linear transformations only within
rule-local contexts, consistent with the concept of locally non-linear models presented
in this chapter.

While neural networks are a promising means of non-linear modeling, their very broad
expressive power requires additional considerations during learning. Because of this, the
same structured regularization tools that make discretization practical for SMT are not
readily applicable to NN’s.

6.7.2 Decision Trees

Decision trees are another popular non-linear model. They are constructed by iteratively
adding levels to the decision tree by selecting the attribute that maximizes some splitting
criterion such as information gain or gain ratio. For regression, each leaf of the decision
tree can then produce an output value.

The default tests considered by C4.5, a popular decision tree induction algorithm, are
(Quinlan, 1996):
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• A = x for a discrete (categorical) attribute A for each outcome x. (These are typically
implemented as indicator features in modern MT systems.)

• A ≤ x for a continuous (real-valued) attribute A. To find the threshold x that maxi-
mizes the splitting criterion, the observed unique values of A are sorted. The midpoint
value between each of the observed values is considered a candidate threshold. The
threshold that maximizes the splitting criterion is selected. (This procedure results in
a sort of discretization).

Comparing the model characteristics of decision trees to discretization:

• Expressivity: Given unbounded tree depth, the tree can exactly create arbitrary map-
pings of the training data. Thus, decision trees can express transformations beyond
what is possible with discretization. When a path from the root of the decision tree
to a leaf includes multiple attributes, the decision tree can also model conjunctions, a
topic we will return to in the next chapter.

• Overfitting: The ability to arbitrarily partition the output space enables some particu-
larly pathological solutions and so pruning heuristics are critical to prevent overfitting.

• Underfitting: Despite the highly non-convex parameter space of decision trees, they
are capable of very tightly fitting the tuning data. Underfitting is only a concern
insomuch as the pruning heuristics cause the learned model to be overly simple. This
is often addressed by using random decision forests (Ho, 1995), which aggregate
many simple decision trees to reduce bias on both tuning and test data while still
constraining the ability to overfit.

• Feature locality: The same principles of local non-linearity and a PRO-like objective
can be leveraged in the context of decision trees (Toutanova and Ahn, 2013).

Toutanova and Ahn (2013) explored this direction using gradient boosting machines, a
form of regression decision trees along with a PRO-like objective to induce decision trees
that use only phrase-local features. The decision trees were first learned in isolation and
were exposed as new features into the overall MT linear model as a second optimization
pass in which the decision trees were held fixed.

In future work, it may be possible to leverage the fact that decision trees can exactly
represent discretization to apply structured regularization to regression decision trees.
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6.7.3 Kernel Methods in Max-Margin Learning

Kernel methods are used in large margin learning, which includes the popular Support
Vector Machine (SVM). However, the underlying difference in model expressivity in these
techniques is due to the choice of kernel – a SVM with a linear model is still simply a method
for learning the weights of a linear model.

The polynomial kernel is not capable of re-shaping individual real-valued features in a
manner similar to discretization; its primary strength lies in its ability to model conjunc-
tions. Similarly, the Gaussian Radial Basis Function (RBF) Kernel is effectively a scaled
measure of the Euclidean distance between two feature vectors, which does not enable
many of the transformations possible with discretization. While the sigmoid (hyperbolic
tangent) kernel is equivalent to a trivial neural network with zero hidden layers and a tanh
output layer, this lack of a hidden layer makes it incapable of re-shaping individual features.
NLP-specific convolution kernels such as the tree kernel and string kernel have also been
proposed (Collins and Duffy, 2001). For these reasons, contemporary kernel methods are
not directly comparable to discretization.

6.7.4 Splines and Kernel Density Estimation

A spline is a piecewise polynomial function in which the pieces are smoothly connected.
They are often used for non-linear curve fitting. Yu and Deng (2009) describe the use of
splines for arbitrary non-linear estimation problems and suggest their usefulness in signal
processing. Along this same line of work, both bins and splines are mentioned as possible
ways of handling continuous features in maximum entropy models (Yu, Deng, and Acero,
2008) though empirical results were not presented. Splines have also found use in speech
recognition for reparameterizing HMMs (Yu et al., 2008). Splines may be seen as a smooth
alternative to the piecewise constant function resulting from the discretization approach
described in this chapter.

Closely related to splines is kernel density estimation (also called the Parzen-Rosenblatt
window), which uses a kernel function to estimate a probability distribution given a sample
of data from that distribution. While this is not the same estimation problem we face in
maximizing an objective function such as PRO in a structured prediction task, there are
some similarities worth mentioning. Namely, when using the uniform kernel, a piecewise
constant function much like our implementation of discretization can be recovered; when
using continuous kernels (e.g. Epanechnikov, Gaussian, or Logistic), a smooth spline-like
curve can be produced.

In the future, such methods may allow for smooth generalizations of discretization.
However, curve fitting and density estimation are inherently different problems than feature
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induction, so significant work remains to adapt these techniques for use in regression or
ranking for structured prediction.

6.8 Chapter Summary

In the absence of highly refined knowledge about a feature, discretization with structured
regularization enables higher quality impact of new feature sets that contain non-linearities.
In our experiments, we observed that discretization out-performed naïve features lacking a
good non-linear transformation by up to 4.4 BLEU and that it can outperform a baseline by
up to 0.8 BLEU while dropping the log transform of the lexical probabilities and removing
the phrasal probabilities in favor of counts. Looking beyond this basic feature set, non-
linear transformations could be the difference between showing quality improvements or
not for novel features. As researchers include more real-valued features including counts,
similarity measures, and separately-trained models with millions of features, we suspect
this will become an increasingly relevant issue. We conclude that non-linear responses play
an important role in SMT, even for a commonly-used feature set, an observation that we
hope will inform feature engineers.
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Combining Conjunctions and
Discretization with Structured
Regularization 7

Nature’s patterns sometimes reflect two intertwined features.
—Brian Greene

Innovation is about bad ideas, or ideas that look like bad
ideas.

—Ben Horowitz

DISCRETIZATION AND CONJUNCTION along with appropriate structured regularization have
proven to be useful tools, improving translation quality while requiring less of feature

engineers. Discretization provides additional freedom for the model to re-shape initially
continuous features while conjunctions allow us to leverage interactions among features.
In this chapter, we combine these two techniques to capture interactions among specific sub-
regions of multiple initially continuous features. Toward this goal, we generalize neighbor
regularization to encode spatial relationships among discretized features that have been
conjoined. While we do not observe any improvements in translation quality, we offer some
future directions for this line of work.

7.1 Introduction

Relaxing independence assumptions has often proven to be an effective technique for im-
proving the accuracy of a model, provided that learning can cope with the resulting sparsity.
In this thesis, we have discussed methods for relaxing the independence assumptions be-
tween initially discrete and initially continuous features (Chapter 4) and among multiple
initially discrete features (Chapter 5). In Chapter 6, we relaxed the assumptions of linearity
and monotonicity. Yet we are still left with an independence assumption among initially
continuous features.
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When might this matter? Consider discretized features for source and target length.
A discretized target length feature may be able to strongly favor using long contiguous
blocks of human-authored text. However, this may be a bad idea when the source phrase is
only 1 word long (this can happen frequently due to the garbage collector effect1 in word
alignment); ideally, a good model would learn to penalize 1 word being translated as 5
words. By creating a conjunction on top of discretized phrase lengths, we could arrive at
features such as SrcLen1_TgtLen5, giving the model the capability to directly penalize such
bad mappings.

Similarly, consider the translation of a source word with count 10 as a target word
with count 10,000. Typically, we should expect that low-frequency words will translate
as low-frequency words – otherwise, we may be translating a content word as a function
word. Again, a conjunction of discretized features would allow us to directly learn that such
mappings do not correspond to high quality translations. In this chapter, we will formally
describe how to combine discretization, conjunction, and their associated regularization
strategies to allow the model to explore these possibilities.

7.2 Conjunctions on Discretized Features

Recall that we defined the discretization of initially continuous features into indicator fea-
tures ΦDisc in terms of a binning function BINi(x) ∈ R→ N. If ϕi(x) = i _ BIN(x), then the
feature set inducted by discretization is:

h′k = Jϕi(hi) = kK ∀i ∈ [0, |h|] (7.1)

And our feature induction operator for discretization is:

ΦDisc(h) , {〈1, ϕi(hi)〉 : hi ∈ h} (7.2)

We extend this to conjunctions on top of these discretized features by inducing a sec-
ondary feature set. For conjunctions of order 3, we would have the feature set that takes
the shape of a tensor:

h′′i,j,k = h′i · h′j · h′k ∀i, j, k ∈
[
0, |h′|

]
(7.3)

A conjunction of 3 discretized features is visualized in Figure 7.1.

1The garbage collector effect refers to infrequent words being aligned to several words in difficult-to-align
sentence pairs.
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Algorithm 4 CONJOINDISCRETIZEDFEATS(h)

h′ ← {}
B Iterate over all pairs of features (for order 2 conjunctions)
for hi ∈ h do

for hj ∈ h do
B Iterate over the bins generated by discretizing each feature
for i′ ∈ ϕi(hi) do

for j′ ∈ ϕj(hj) do
B Conjoined the discretized features into a new feature ID
k ← i′ _ j′

B Fire the conjoined feature
h′ ← h′ ∪ {〈1, k〉}

end for
end for

end for
end for
return h′

Without loss of generality, we define the feature induction operator for conjoined dis-
cretized features of order 3 as:

ΦDiscConj(h) ,
{〈

1, ϕi(hi)
_ ϕj(hj)

_ ϕk(hk)
〉

: hi ∈ h, hj ∈ h, hk ∈ h, hi 6= hj 6= hk
}

(7.4)

While this equation shows an order 3 conjunction, arbitrary orders may be defined similarly.
For example, a conjunction of order 2 would result in a 2 dimensional matrix of conjunctions
while order 3 would imply a 3 dimensional tensor. For exposition, we also provide an
imperative algorithm for equation 7.4 in algorithm 4.

7.3 Structured Regularization

In order to combat the increased sparsity that results from the additional free parameters
of our induced features, we again turn to structured regularization. There are several reg-
ularization strategies we could consider:

1. Smooth toward neighboring features. We already pursued a strategy of this sort in
Chapter 6, but with tensor-structured features we now have multiple directions that
could be considered neighbors. For example, in Figure 7.1, the inner-most feature
w1,1,1 would have 6 immediate neighbors.

2. Smooth toward parent features. We could also consider smoothing toward features
in lower dimensional spaces, which should have more data to estimate their param-
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eters. For example, for a conjoined feature SrcLen2_TgtLen3, we could consider
encouraging its weight to be similar to the weights of SrcLen2 and TgtLen3.

3. Smooth toward zero. If we view these conjoined features as small corrections for
cases where feature independence does not hold, then we should consider the fea-
tures’ weights to be zero-based. This standard regularization strategy contradicts the
previous strategy in that they encourage similarity toward different conflicting points.

4. Minimize the number of degrees of freedom. We could consider reducing the num-
ber of overall unique weights instead of pushing the weights toward zero. In this case,
there is no conflict with smoothing toward neighbors. (Chapter 5)

We chose to view these conjunctions as zero-based corrections rather than inheriting
from their weights from lower dimensional parent features. The main reason is that all
conjunctions will have at least two parents and the parents’ weights can be very different.
For example, SrcLen2 may have a small positive weight and TgtLen5 may have a very
positive weight while the actual weight we desire for the conjoined feature may be negative
(since a very different length ratio is symptomatic of garbage collection in word alignment).
Because of this, we chose not to explore strategy 2 any further.

Under our perspective of zero-based corrections, we start with the assumption that
feature-wise independence is good enough in most cases. We enforce this by smoothing
toward zero. In cases where the data motivates feature-wise dependence, we further as-
sume that these corrections will behave similarly for neighboring features. For example, we
expect that the features SrcLen2_TgtLen2, SrcLen2_TgtLen3, and SrcLen3_TgtLen2 should
all behave similarly while SrcLen1_TgtLen5 would behave similarly to SrcLen1_TgtLen4.

In this chapter, we consider strategy 1 in a technique we call tensor neighbor regular-
ization (Section 7.3.1) and strategy 3 using complexity regularization in Section 7.3.2. We
also use strategy 4 in our experiments by directly using the OSCAR regularizer described in
Chapter 5.

7.3.1 Tensor Neighbor Regularization

Recall that monotone neighbor regularization encourages each feature’s weight to fall be-
tween the weights of its immediate neighbors:

RMNR(w;N ) , β
∑

〈l,i,r〉∈N

D(w, l, i, r)RLNR(w, l, i, r)

In cases where wi falls between its left and right neighbors wl and wr, the penalty will
be nearly zero. Because we now have tensor-structured features, we generalize from the
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W2,2,2

W0,0,0

Wi,  ,  

W ,j ,  

W  , ,k 

Figure 7.1: Visualization of conjunction of 3 discretized features. We use darker colors
to indicate higher weights. Monotone tensor neighbor regularization will not penalize the
gradual weight decay originating in the upper left corner. However, the high weight in the
bottom right corner would be strongly penalized since it is very different from its neighbors
and would only be learned if it was strongly supported by the data.

concept of left and right neighbors to any direct neighbors, by building on the neighbors
from the discretization of individual features NDisc. Without loss of generality, the neigh-
bors for order 2 conjunctions of discretized features NDiscConj are formed by visiting each
conjoined feature and produces a tuple for each direction where neighbors exist as shown
in Figure 7.2:

NDiscConj(h) ,
⋃

〈al,ak,ar〉∈NDisc

⋃
〈bl,bk,br〉∈NDisc

{〈
al

_ bk, ak
_ bk, ak

_ br
〉
,
〈
ak

_ bl, ak
_ bk, ak

_ br
〉}

7.3.2 Complexity Regularization

Just as we did in Section 4.3, we prefer to give higher weight to simpler features since
they will have more data to estimate them and are more likely to generalize well to unseen
data. This is also consistent with our view of the conjunctions of discretized features as
corrections to be made on top of the initial feature set — in situations where the initial
feature set is good enough, these features should be assigned zero weight. Given a function
ORDER(hi), which returns the number of initial features used in a conjoined feature, we use
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ak bkal bk ar bk

ak bl
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Figure 7.2: Visualization of how the set of neighbors N is computed in Equation 7.5 for
tensor neighbor regularization. For conjunctions of order 2 (as shown on the face of this
tensor), each feature will have 4 neighbors, represented by two 3-tuples. For conjunctions
of order 3, each feature would have 6 neighbors, represented by three tuples.

a conjunction complexity regularizer with hyperparameter βC:

Rcomplexity , βC

|h|∑
i=0

JORDER(hi) > 1K · w2
i (7.5)

7.4 Experimental Setup

Since the experiments in this chapter depend strongly on discretization, we use an identical
experimental setup to Chapter 6. Our formalism is a hierarchical phrase-based translation
model (Chiang, 2007). A corpus of parallel sentences is first word-aligned, and then phrase
translations are extracted heuristically. In addition, hierarchical grammar rules are ex-
tracted where phrases are nested. In general, our choice of formalism is rather unimportant
– our techniques should apply to most common phrase-based and chart-based paradigms
including Hiero and syntactic systems. For decoding, we use cdec (Dyer et al., 2010), a
multi-pass decoder that supports syntactic translation models and sparse features. Opti-
mization is performed using PRO (Hopkins and May, 2011) as implemented by the cdec
decoder, with the addition of the regularizers and feature induction techniques described
in this chapter. We run PRO for 30 iterations as suggested by Hopkins and May (2011).
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The PRO optimizer internally uses a L-BFGS optimizer with the default `2 regularization
implemented in cdec. Any additional regularization is explicitly noted.

We use the baseline features produced by Lopez’ suffix array grammar extractor (Lopez,
2008a), which is distributed with cdec. Note that these features may be simplified or re-
moved as specified in each experimental condition. These features are:

• logPcoherent(e|f): The coherent phrase-to-phrase translation probability (Lopez, 2008b).

• logPlex(e|f), logPlex(f |e): The lexical alignment probabilities within each translation
rule, as computed by a maximum likelihood estimation over the Viterbi alignments

• logPLM(e): The log probability of the target translation hypothesis under a language
model

• c(e): The count of target words (terminals) in each translation rule

• c(glue): The count of glue rules used in the derivation

• c(OOVTM): The count of source tokens that were not recognized by the translation
model (out of vocabulary) and were therefore passed through

• c(OOVLM): The count of target tokens that were not recognized by the language model
(out of vocabulary)

We also add source features that are useful only when conjunction is applied:

• c(f): The count of source words (terminals) in each translation rule

For the experiments in this chapter, we use the discretized real-valued features from the
previous chapter as our baseline. This gives us the following intermediate features when
applying conjunction on top of discretization:

• discretized Pcoherent(e|f): The coherent phrase-to-phrase translation probability (Lopez,
2008b).

• discretized Plex(e|f), discretized Plex(f |e): The lexical alignment probabilities within
each translation rule, as computed by a maximum likelihood estimation over the
Viterbi alignments

• discretized c(f): The count of source words (terminals) in each translation rule

• discretized c(e): The count of target words (terminals) in each translation rule

• discretized c(glue): The count of glue rules used in the derivation
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• discretized c(OOVTM): The count of source tokens that were not recognized by the
translation model (out of vocabulary) and were therefore passed through

• discretized c(OOVLM): The count of target tokens that were not recognized by the
language model (out of vocabulary)

• logPLM(e): The log probability of the target translation hypothesis under a language
model

All of bins from all of the features (except the language model) are then conjoined with
each other as formally described in equation 7.4.

We quantify changes in translation quality using case-insensitive BLEU (Papineni et al.,
2002). We control for test set variation and optimizer instability by averaging over multiple
optimizer replicas (Clark et al., 2011).2

7.5 Results

We present the results of our experiments in Table 7.1. The first row is a standard sys-
tem with log transformed features while the second row uses discretized probabilities with
monotone neighbor regularization exactly as described in Chapter 6. We compare against
the stronger discretized system since this chapter builds on discretization. Unfortunately,
we did not observe any improvements over discretization in isolation. To mitigate potential
local optima issues, we tried initializing PRO with best weights for the discretized system,
but did not see any positive effects. We also experimented with applying OSCAR on top of
tensor neighbor regularization to reduce the overall number of free parameters, but did not
observe any improvements over discretization in isolation.

To further analyze the effects of conjunctions on top of discretization, we compare the
BLEU score of the systems during tuning (Table 7.2) to testing (Table 7.1). Despite observ-
ing no improvements on the test set, we do observe improvements on the tuning set. When
we look into the relative feature weights in the Arabic→English system, we find that aside
from the language mode, the most highly weighted features are conjunctions of the target
word count and the lexical translation probability. For example, TgtCount1_LexFGivenE0.5
receives a positive weight of 0.07 while TgtCount4_LexFGivenE0.5 receives a negative
weight of -0.11, which we might interpret as meaning we should give a boost to single
word translations when they have a very good inverse lexical translation probability. On
the other hand, we see a negative weight of -0.06 for TgtCount1_LexFGivenE0.001 and
a positive weight of 0.05 for TgtCount4_LexFGivenE0.001, which could be interpreted as

2MultEval 0.5.1: github.com/jhclark/multeval
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Condition Zh→En Ar→En Cz→En
log P 23.5 47.9 37.6
Disc P + MNR 23.8 48.7 37.6
Disc P + Conj + TNR 23.3? (-0.5) 48.6 (-0.1) 37.7 (+0.1)

Table 7.1: Top: Test set translation quality for systems with the typical log transform and
for discretized probabilities Bottom: Test set translation quality for systems using conjunc-
tions on discretized probabilities and tensor neighbor regularization.

Condition Zh→En Ar→En Cz→En
log P 29.2 42.9 37.8
Disc P + MNR 29.8 42.9 38.3
Disc P + Conj + TNR 30.8 (+1.0) 45.5 (+2.6) 38.8 (+0.5)

Table 7.2: Top: Tuning set translation quality for systems with the typical log transform
and for discretized probabilities Bottom: Tuning set translation quality for systems using
conjunctions on discretized probabilities and tensor neighbor regularization.

penalizing short translations with a poor inverse lexical translation probability and giving a
boost to longer translations, even if they have a poor inverse lexical translation probability.
While these initially sound promising, further investigation reveals that these weights are
strongly correlated with that of their components. For example, TgtCount1 already has a
weight of -0.6, TgtCount4 has a weight of 0.03, good lexical probabilities are encouraged,
and bad lexical probabilities are discouraged. It appears that we learn to more tightly fit
local “bumps” in the conjoined feature space, but in a way that only helps the tuning set.
After hyperparameter tuning, structured regularization is successful in preventing this over-
fitting from being overly harmful to test set generalization. However, we do not observe any
inter-dependence among the discretized real-valued features in the standard MT feature set.

7.6 Related Work and Techniques

Toutanova and Ahn (2013) used gradient-boosting machines, a form of regression decision
trees, to induce locally non-linear features. They apply these features in a n-best rerank-
ing framework. As a form of decision trees, these models would have also been able to
accomplish both discretization and conjunction, though do not easily allow integration of
structured regularization.

We also provide some concrete examples showing how other well-known non-linear
learners might encode the source-to-target length balancing phenomena that we have used
as a running example throughout this chapter. Figure 7.3 shows a neural network formula-
tion in which the first hidden layer approximates discretization and the second hidden layer
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performs an XOR operator much like a conjunction. Similarly, figure 7.4 shows a decision
tree formulation. Notice that neither of these models allow for the same straightforward
application of structured regularization nor a straightforward path of joint optimization
alongside the other components of the MT system. See section 6.7 for a more in-depth
discussion of the trade-offs between these models and discretization with structured regu-
larization.
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Figure 7.3: A neural network design that attempts to balance source length with target
length. The network has two real-valued input neurons (top), a first tanh hidden layer imi-
tating discretization with 3 neurons per input neuron, a second tanh hidden layer imitating
the XOR function as conjunctions could do, and a single softmax real-valued output (bot-
tom). The projection matrix for each layer is shown in bold above each layer. The network
is instantiated twice with different input values: a well-matched source-to-target length that
scores well (left) and a poorly matched source-to-target length that scores poorly (right).
See section 6.7.1 for a full discussion.
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Figure 7.4: A decision tree, showing an attempt at balancing the source and target length.
The top branches on SrcLen and each of the 4 columns that branch on TgtLen emulate
discretization. Conjunction is emulated by duplicating the “discretized” TgtLen tree in se-
quence after the SrcLen decisions. See section 6.7.2 for a full discussion.
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7.7 Chapter Summary

The combination of discretization and conjunction into a single feature induction operator
allows us to relax the assumptions of linearity, monotonicity, and independently for initially
continuous features. Tensor neighbor regularization provides a framework for coping with
the resulting sparsity. While we still imagine that there may be feature sets for which this
may be useful, we do not observe improvements beyond using discretization in isolation,
suggesting that there may not be strong interdependence among the traditional real-valued
features in MT.
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There will come a time when you believe everything is finished.
Yet that will be the beginning.

—Louis L’Amour

What you get by achieving your goals is not as important as
what you become by achieving your goals.

—Henry David Thoreau

I hate quotations. Tell me what you know.
—Ralph Waldo Emerson

FEATURE INDUCTION when combined with appropriate structured regularization is an ef-
fective technique for improving the quality of a statistical machine translation system

while simultaneously reducing sensitivity to the form of manually engineered features. In
this thesis, we have shown that discretization and conjunctions are useful feature induction
operators and we have observed gains on induced feature sets ranging from a few dozen
features to nearly a million features. Due to strong regularization, none of these scenarios
necessitated moving to a significantly larger set of tuning data.

We have argued that the premise of log-transformed features is now largely historical
with only anecdotal empirical support, prior to this thesis (Chapter 1). We pointed out
several axiomatic limitations of linear models and made the case for feature induction as
a method for relaxing those assumptions while still preserving efficient inference (Chap-
ter 2). In order to reliably evaluate our experiments that estimate large parameter sets
on relatively small data, we proposed a technique for controlling for optimizer instability
(Chapter 3), which has now been widely adopted by the machine translation community,
including over 125 recent citations. Next, we explored conjunctions as a way of approach-
ing domain adaptation in machine translation (Chapter 4) and as a means of tightly fitting
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a single domain using nearly 1 million induced features (Chapter 5). We then explored dis-
cretization (Chapter 6), which enables local feature transformations during optimization.
Finally, we combined these techniques using a regularizer that is aware of its neighbors in
multi-dimensional space (Chapter 7).

We summarize the feature induction operator and regularization techniques used in
each chapter in Figure 8.1. Similarly, we summarize the observed differences in translation
quality in Figure 8.2.

To promote adoption in the research community, the code for all of these experiments is
publicly released1 including a stand-alone regularization library2 and an evaluation library
for multiple optimizer replicas.3

Feature induction operators (Φ) Regularization (R)

Chapter 4
Conjunctions:
InitiallyDiscrete × InitiallyContinuous

Complexity regularization

Chapter 5
Conjunctions:
InitiallyDiscrete × InitiallyDiscrete

OSCAR

Chapter 6 Discretization: InitiallyContinuous
Linear & monotone
neighbor regularization

Chapter 7
Conjunctions on discretization:
InitiallyContinuous × InitiallyContinuous

Tensor regularization

Figure 8.1: A summary of the feature induction techniques and regularization techniques
from each chapter.

BLEU Change

Chapter 4 +1.0
Chapter 5 +1.7

Chapter 6 +0.8 vs baseline
+4.4 vs no non-linear transform

Chapter 7 ±

Figure 8.2: A summary of the quality improvements observed in each chapter.

1http://github.com/jhclark/cdec
2http://github.com/jhclark/prunejuice
3http://github.com/jhclark/multeval
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8.1. SUMMARY

8.1 Summary

We outlined three assumptions on feature sets imposed by linear models and argued that
they unduely burden feature engineers:

• Linearity. Within each translation unit (each source sentence), if plot the objective
function score of each translation hypotheses versus a feature’s score of that transla-
tion hypothesis, they must form a straight line. Visually, we must be able to plot of
y = mx + b where y is the value of the objective function and x is the value of the
feature for some m and b.

• Monotonicity. Within each translation unit, if we rank the translation hypotheses by
an objective function, a feature must return monotonically increasing or decreasing
values as we iterate over the ranked translation hypotheses.

• Independence. A feature’s contribution to the model score may not depend on the
presence of any other feature. That is, inter-dependence between features is ignored.

We divided features into two broad categories:

• Initially discrete. These indicator features may suffer from the independence as-
sumption of linear models.

• Initially continuous. These features including probabilities and counts are subject to
all three assumptions of linear models.

And we defined two classes of feature induction operators, which we applied to relax the
assumptions of linear models:

• Discretization. By transforming a single real-valued feature into a larger number of
features, we can piece-wise learn a non-linear transformation of each of those initial
features using the induced feature set. This relaxes the linearity and monotonicity
restrictions on the initial feature set. We then use neighbor regularization to combat
the resulting sparsity of the model.

• Conjunction. To learn inter-dependencies among initial features, we form conjunc-
tions among all features that are dense enough to be reliably estimated. This en-
ables our model to respond differently when multiple features all fire for a hypothe-
sis, rather than simply returning the dot product of the individual features and their
weights.
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8.2 Contributions

This thesis makes the following contributions to the field of machine translation:

1. a method of feature conjunction to relax the property of independence between ini-
tially discrete and initially continuous features (Chapter 4);

2. a method of feature conjunction to relax the property of independence between ini-
tially discrete and initially discrete features (Chapter 5);

3. evidence that discretization can be used to recover a system with at least state-of-the-
art performance by performing a non-linear transformation of the standard feature
set without the typical log transform applied (Chapter 6);

4. a method of feature discretization of initially continuous features to relax the proper-
ties of linearity and monotonicity (Chapter 6);

5. a method of combining feature discretization and conjunction between initially con-
tinuous and initially continuous features to relax the properties of linearity, mono-
tonicity, and independence (Chapter 7);

6. evidence that conjunctions of features can improve translation quality (Chapters 4
and 5); and

7. three real-world applications of these theoretical tools in machine translation (Chap-
ters 4,5, and 6).

In order to achieve these, we also contribute:

6. a method of evaluating the impact of experimental results that is robust to optimizer
instability such as randomized optimization procedures and experimental configura-
tions having high variance due to large feature sets (Chapter 3);

7. a method of regularizing discretized features, allowing their weights to be reliably
estimated (Chapter 6); and

8. a method of regularizing conjoined feature sets with intuitive groupings (Chapter 4).

9. a method of regularizing very large conjoined feature sets without a priori obvious
groupings, allowing them to be used with conventionally-sized tuning sets (Chap-
ter 5).
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8.3 The Future of Feature Induction in Machine Translation

Looking beyond the scope of this work, we make connections to very recent work and offer
some suggestions for future directions that may bring together several independent lines of
work.

8.3.1 Neural networks

Near the completion of this thesis, several positive results have been published showing
improvements due to the addition of neural network models (Devlin et al., 2014; Sutskever,
Vinyals, and Le, 2014). These hidden layers of these networks are generally regarded as
a type of representation learning or feature learning with an output layer that performs
a softmax operation over the learned features (Bengio, Courville, and Vincent, 2013). In
fact, standard machine translation models can be seen as a trivial neural network with no
hidden layer where softmax serves as our decision rule. These recent methods have focused
on representation learning on the training data and use millions of words to estimate their
parameters. However, current models still remain slightly modified versions of standard
neural networks. We speculate that making these models more aware of the structure of the
machine translation problem including alignment, reordering, and hierarchical structure
they will become even more useful tools. As these models evolve, the community will also
have to reconcile how to maintain fast inference while models require increasingly more
context. For example, recurrent neural networks theoretically have unbounded left state
whereas current MT decoding algorithms assume bounded left state in order to provide fast
inference.

Auto-encoder networks are another technique for representation learning that produce
embeddings as output rather than a predictive model. For example, Zou et al. (2013)
learned bilingual word embeddings for phrase-based machine translation and observed
small improvements by exposing a single feature based on cosine similarity. Such instances
where arbitrary feature transformations such as cosine similarity must be chosen are a good
opportunity to applying discretization to achieve a better fit during the final optimization
pass. We suggest that embeddings and the feature induction techniques proposed in this
thesis may be combined to achieve an even greater impact.

However, neural networks may still benefit from manually engineered feature sets along-
side learned representations (Mikolov and Zweig, 2012; Auli et al., 2013). We suggest that
such strategies are also a good match for lower data scenarios where overfitting is a concern
as it allows the neural network to shrink along with the data size.
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Neural networks also suffer from highly non-convex objective functions, even when
optimizing corpus likelihood. This is problematic to the degree that optimizers find poor
local optima due to the bumpy nature of the objective function. We suggest that initializing
neural networks with a structure similar to discretization or conjunction may be a useful
method of avoiding particularly bad local optima.

Finally, neural networks may benefit from feature transformations when their input is
real-valued. Despite being universal function approximators, a neural network may need
to use a large number of parameters to perform certain non-linear transformations of real-
valued input neurons. This provides a middle ground compared to directly adding manually
engineered features to a neural network – initial features may be discretized and then fed
into a neural network to learn a further improved representation. This also opens up the
possibility of applying structured regularization such as monotone neighbor regularization
directly to the parameters of a neural network.

8.3.2 Jointly Optimized Hybrid Models

Model design presents a basic tradeoff among model expressivity, data sparsity, and the
human cost of embedding domain knowledge. Given larger data, more expressive models
have the capacity to learn nuances of the problem. In such cases, far less domain knowledge
may be required, as demonstrated by the recent successes of neural networks. When faced
with smaller data, highly expressive models with too many parameters are prone to overfit.
This requires more domain knowledge to be built into the model – this can be in the form of
careful feature engineering (a common approach so far) or informative regularization (the
approach advocated by this thesis).

Yet it is misleading to cast this as a strict dichotomy – often we have a large amount
of out-of-domain data and a small amount of in-domain data. For years, the community
has trained coarse features on the out-of-domain data and performed final tuning on the
in-domain set. Throughout this thesis, we have focused on improving our ability to fit the
in-domain data. This staged pipeline approach hides many aspects of the out-of-domain
training data from the in-domain optimization phase. Other recent work has demonstrated
improvements in optimization of large feature sets or neural networks directly on the train-
ing data. However, this approach ignores the utility of small in-domain data.

Future work will likely benefit from combining these approaches. Rather than a staged
approach, this could take the form of joint optimization toward a combined objective func-
tion that considers both large out-of-domain data and small in-domain data. We envision a
tuned hyperparameter that balances the contributions of the out-of-domain and in-domain
data while automatically learning a feature representation that leverages both. Such a
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model could include manually engineered features, features induced by discretization and
conjunction, and fully learned representations as in a locally additive neural network or a
source context neural network. Formally, we envision the neural network as a new feature
induction operator ΦNN with projection matrix A and bias vector B:

ΦNN(h) = tanh(Ah + B) (8.1)

which can be combined into a composite feature induction operator Φ∗ = {ΦConj,ΦDisc,ΦNN}
as in equation 2.1:

ê(f) = argmax
e,D

∑
d∈D

∑
〈y′,j〉∈Φ∗(h(d))

w′jy
′

︸ ︷︷ ︸
h′(d)

Inference remains straightforward. However, unlike the feature induction operators in
the rest of this thesis, the derivatives for learning this model now depend on the identities
of the individual rules in the derivations. Learning with this new feature induction operator
would require storing these when sampling exemplars for PRO. Backpropagation would also
be required to update the projection matrix A. A small number of tuned hyperparameters
would allow heavier regularization of the sparser induced features, allowing these hybrid
models to be highly expressive while getting the most out of any amount of data.

8.4 Conclusions

We have discussed feature induction as a technique for reducing a system’s sensitivity to
an initial manually engineered feature set. We observed that it can improve translation
quality when used with appropriate regularization in multiple scenarios. We hope that
these techniques will enable systems to more fully exploit the information within data and
features while reducing human effort.

112



List of Tables

3.1 Measured standard deviations of different automatic metrics due to test-set
and optimizer variability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Two-system analysis of approximate randomization p-values . . . . . . . . . . 30

5.1 Corpus statistics for OSCAR experiments . . . . . . . . . . . . . . . . . . . . . 60
5.2 Results for OSCAR experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Corpus statistics for discretization experiments . . . . . . . . . . . . . . . . . . 83
6.2 Bits results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Results for discretization experiments . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Results of experiments with conjunctions on discretization . . . . . . . . . . .102
7.2 Results of experiments with conjunctions on discretization for tuning set . . .102

113



List of Figures

1.1 Features of a typical SMT system as a graphical model . . . . . . . . . . . . . . 7

2.1 XOR example for linear model combining indicator features . . . . . . . . . . . 13

2.2 XOR function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Feasible function for a linear model . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Non-linear function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Incorporating discretization into the learning procedure . . . . . . . . . . . . . 16

3.1 Histogram of test set BLEU scores for many optimizer replicas . . . . . . . . . 29

3.2 Relative frequencies of obtaining differences in BLEU scores for many opti-
mizer replicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Comparison of features sets from domain-agnostic and domain-augmented
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Experimental pipeline for domain augmentation experiments . . . . . . . . . . 37

4.3 Corpus statistics for Arabic→English experiments . . . . . . . . . . . . . . . . 42

4.4 Corpus statistics for Czech→English experiments . . . . . . . . . . . . . . . . . 43

4.5 Results of multi-domain experiments on NIST MT Arabic→English data set . . 45

4.6 Results of feature augmentation experiments on the Czech→English data set . 45

4.7 Meteor X-Ray visualization of two improved examples . . . . . . . . . . . . . . 46

5.1 Constraint regions for `p regularizers . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Constraint regions for elastic net . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Constraint region for elastic net versus OSCAR . . . . . . . . . . . . . . . . . . 55

5.4 Visualization of prox operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Modified PRO optimization procedure with FastOSCAR . . . . . . . . . . . . . 60

5.6 Diagrams of features for OSCAR experiments . . . . . . . . . . . . . . . . . . . 63

5.7 Improved examples for OSCAR experiments . . . . . . . . . . . . . . . . . . . 66

6.1 Discretization reshaping a feature . . . . . . . . . . . . . . . . . . . . . . . . . 70

114



LIST OF FIGURES

6.2 Local discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Venn diagram of trade-offs for non-linear models . . . . . . . . . . . . . . . . . 72
6.4 Collinearity for multiple sentences . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5 Collinearity for a single sentence . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.6 Linear collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.7 Discretization collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.8 Non-linear decision boundary for discretization . . . . . . . . . . . . . . . . . . 77
6.9 Histogram of discretized grammar rules . . . . . . . . . . . . . . . . . . . . . . 80
6.10 Plot of weights learned for a discretized feature . . . . . . . . . . . . . . . . . 86
6.11 A neural network simulating discretization . . . . . . . . . . . . . . . . . . . . 88
6.12 A decision tree implementing discretization . . . . . . . . . . . . . . . . . . . . 90

7.1 Visualization of monotone tensor neighbor regularization . . . . . . . . . . . . 98
7.2 Visualization of monotone tensor neighbors . . . . . . . . . . . . . . . . . . . . 99
7.3 A neural network simulating conjunctions on discretization . . . . . . . . . . .103
7.4 A decision tree implementing discretization and conjunction . . . . . . . . . .104

8.1 A summary of the feature induction techniques and regularization techniques
from each chapter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

8.2 A summary of the quality improvements observed in each chapter. . . . . . . .107

115



List of Algorithms

1 APPROXIMATERANDOMIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 FASTOSCAR Proximal Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3 POPULATEBINSUNIFORMLY(X , N) . . . . . . . . . . . . . . . . . . . . . . . . . 79
4 CONJOINDISCRETIZEDFEATS(h) . . . . . . . . . . . . . . . . . . . . . . . . . . 96

116



References

Andrew, Galen and Jianfeng Gao. 2007. Scalable Training of L1-Regularized Log-Linear
Models. In International Conference on Machine Learning.

Arun, Abhishek, Barry Haddow, Philipp Koehn, Adam Lopez, Chris Dyer, and Phil Blun-
som. 2010. Monte Carlo techniques for phrase-based translation. Machine Translation,
24(2):103–121, June.

Auli, Michael, Michel Galley, and Jianfeng Gao. 2014. Large-scale Expected BLEU Training
of Phrase-based Reordering Models. In Empirical Methods in Natural Language Process-
ing.

Auli, Michael, Michel Galley, Chris Quirk, and Geoffrey Zweig. 2013. Joint Language and
Translation Modeling with Recurrent Neural Networks. In Empirical Methods in Natural
Language Processing, pages 1044–1054.

Auli, Michael, Adam Lopez, Hieu Hoang, and Philipp Koehn. 2009. A Systematic Analysis
of Translation Model Search Spaces. In Workshop on Statistical Machine Translation,
pages 224–232.

Banerjee, Pratyush, Jinhua Du, Baoli Li, Sudip Kr Naskar, Andy Way, and Josef Van Gen-
abith. 2010. Combining Multi-Domain Statistical Machine Translation Models using
Automatic Classifiers. In Association for Machine Translation in the Americas.

Banerjee, Satanjeev and Alon Lavie. 2005. METEOR: An Automatic Metric for MT Evalua-
tion with Improved Correlation with Human Judgments. In Proceedings of the ACL 2005
Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization.

Barlow, R. E., D. Bartholomew, J. M. Bremner, and H. D. Brunk. 1972. Statistical inference
under order restrictions; the theory and application of isotonic regression. Wiley.

Ben-David, Shai, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. 2010. A Theory of Learning from Different Domains. Machine
Learning, 79(1-2):151–175, October.

117



References

Bengio, Yoshua, Aaron Courville, and Pascal Vincent. 2013. Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis & Machine Intelli-
gence,, 35(8):1798–1828.

Bertoldi, Nicola and Marcello Federico. 2009. Domain Adaptation for Statistical Machine
Translation with Monolingual Resources. In Workshop on Statistical Machine Transla-
tion, pages 182–189.

Bisani, M and H Ney. 2004. Bootstrap Estimates for Confidence Intervals in ASR Perfor-
mance Evaluation. In IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 409–412.

Blitzer, John. 2007. Domain Adaptation of Natural Language Processing Systems. Ph.D.
thesis, University of Pennsylvania.

Blitzer, John, Ryan McDonald, and Fernando Pereira. 2006. Domain Adaptation with Struc-
tural Correspondence Learning. In Empirical Methods in Natural Language Processing,
pages 120–128, Sydney.
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Additional Notes on Neighbor
Regularization A

A.1 Derivation of ∇RMNR

In this section, we provide the gradient of the monotone monotone neighbor regularizer
RMNR, which is needed for implementing the technique in most optimizers. First, we dupli-
cate the definitions of RMNR (see p.81) then show its gradient.

We begin with the inner term of linear neighbor regularization, which is the basis for
monotone neighbor regularization:

RLNR(w, j) , (M(w, j))2 (A.1.1)

Next, we define the distance of the current weight wj from the midpoint of its adjacent
weights:

M(w, j) , 1

2
(wj−1 + wj+1)− wj (A.1.2)

We also define the span covered by the adjacent weights as:

S(w, j) , 1

2
(wj−1 − wj+1) + ε (A.1.3)

Note that we include a small positive quantity ε so that this quantity is guaranteed to be
non-zero since it is frequently used as a denominator.

Using these two terms, we define the smooth damping factor of monotone neighbor
regularization:

D(w, j) , tanh2γ M(w, j)

S(w, j)
(A.1.4)
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A.1. DERIVATION OF ∇RMNR

Finally, we combine the damping factor with linear neighbor regularization to obtain the
monotone neighbor regularizer:

RMNR(w) , β

|h|−1∑
j=2

D(w, j)RLNR(w, j) (A.1.5)

Prior to differentiating, we expand all terms that include wj since it is non-constant in the
context of this partial derivative:

RMNR(w) = β

|h|−1∑
j=2

[
tanh2γ

1
2(wj−1 + wj+1)− wj
1
2(wj−1 − wj+1) + ε

][
1

2
(wj−1 + wj+1)− wj

]2

(A.1.6)

By applying standard differentiation rules, we obtain the partial derivative for each of the
weights wj , which together form the gradient for monotone neighbor regularization:

∂RMNR(w)

∂wj
=− 2

[
tanh

(
1
2(wj+1 + wj−1)− wj
1
2(wj+1 − wj−1) + ε

)]
·
[

1

2
(wj−1 + wj+1)− wj

]

− 2γ
1
2(wj+1 − wj−1) + ε

·

[
sech

(
1
2(wj+1 + wj−1)− wj

1
2 wj+1 − wj−1 + ε

)]2

·

[
tanh

(
1
2(wj+1 + wj−1)− wj

1
2 wj+1 − wj−1 + ε

)]2γ−1

·
[

1

2
(wj−1 + wj+1)− wj

]2

(A.1.7)

Finally, we simplify using previously defined variables:

∂RMNR(w)

∂wj
=− 2

[
tanh

(
M(w, j)

S(w, j)

)]
· [M(w, j)]

− 2γ

S(w, j)
·
[
sech

(
M(w, j)

S(w, j)

)]2

·
[
tanh

(
M(w, j)

S(w, j)

)]2γ−1

· [M(w, j)]2

(A.1.8)

In practice, floating point arithmetic can cause M(w,j)
S(w,j) to be rounded to zero, which causes

tanh
(
M(w,j)
S(w,j)

)
to be undefined. In such cases, we define ∂RMNR(w)

∂wj
to be zero. For example,

a weight may differ only slightly from the midpoint of its neighbors and when divided by a
reasonably large span will round to zero. In this case, we intuitively do not want to penalize
this wj since it is already close to a desirable value.
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Notation B
B.1 Evaluation and Hypothesis Testing

s — Standard deviation (p. 26)

sdev — Standard deviation over optimizer replicas on the development set (p. 26)

stest — Standard deviation over optimizer replicas on the test set (p. 27)

ssel — Average over optimizer replicas of the standard deviation according to boot-
strap resampling of the hypotheses within each optimizer replica (p. 27)

n — Number of optimizer replicas (p. 26)

mi — Translation quality measurement of the ith optimization run (p. 26)

` — In the context of evaluation, the number of segments in the test set (p. 28). See
also `p regularization in the context of optimization.

R — In the context of evaluation, the references for each segment in the test set
(p. 28)

X — In the context of evaluation, the test set translations over all optimizer replicas
(p. 28)

p — In the context of hypothesis testing, the p-value or p(CHANCE), the probability
that the magnitude of a difference is due to chance (p. 30)

B.2 Features and Modeling

w — The weight vector isomorphic to a feature set. (p. 8)
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B.2. FEATURES AND MODELING

f — A source sentence, a vector of word tokens. (p. 8). f is used by a convention
following early work in MT in which the source language was French.

f — A particular source word token. (p. 8)

e — A target sentence, a vector of word tokens. (p. 8). e is used by a convention
following early work in MT in which the target language was English.

e — A particular target word token (p. 8)

D — A complete derivation of some hypothesis. (p. 8)

d — A partial derivation of some hypothesis. (p. 8)

ê(f) — The best-scoring hypothesis for some source sentence. (p. 8)

H(D) or H — The global feature vector associated with some complete derivation.
(p. 8)

h(d) or h — The local feature vector associated with some partial derivation. (p. 8)

h′ — A new feature set resulting from feature induction on h. (p. 16)

w′ — A set of weights learned for the feature set h′. (p. 16)

Φ(y) — A feature transformation function that takes the result of the feature function
y = h(x) ∈ R and returns a tuple 〈y′, j〉 (p. 16)

`p — Specifies the norm of a regularizer with regard to the `p ball. (p. 10)

BINi(x) — A binning function that takes a feature value x ∈ R for a specific feature
with index i and returns a bin index. (p. 70)

X — A list of feature values to bin. (p. 78)

fi — A frequency associated with some feature value with index i inside the list of
observed feature values X (p. 78)

u′ — The uniform bin size where u′ is the number of feature values that will reside
inside each bin if the bins are to have (nearly) equal size. (p. 78)

x — The cardinality (number of items in the set) for some set x. We use this notation
to distinguish from absolute value. (p. 78)

|x|— The absolute value of the scalar x. (p. 78)
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APPENDIX B. NOTATION

B — A binning for a particular feature that is a total mapping on ranges of a real-
valued feature to bin indices. (p. 78)

N — The desired number of bins for each feature. (p. 78)

R2 — An `2 regularization term. (p. 81)

RLNR — A linear neighbor regularization term. (p. 81)

RMNR — A monotone neighbor regularization term. (p. 81)

D— A smooth damping term used within monotone neighbor regularization. (p. 81)

β — A regularization constant / regularization weight. (p. 81)

γ — A steepness for the bathtub curve in the dampening term for monotone neighbor
regularization. (p. 81)

L— A loss function. (p. 81)

c(x) — A count of some property of a translation rule, used for computing features.
(p. 59)

A — An attribute in a decision tree. (p. 90)

B.3 Figure Notation

In the context of visuzlizations in figures. . .

⊕— Indicates that the pair of hypotheses is ranked correctly according to the extrinsic
metric. (p. 73)

	 — Indicates that the pair of hypotheses is ranked incorrectly according to the ex-
trinsic metric. (p. 73)
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Terminology and Abbreviations C
C.1 Generic

MACHINE TRANSLATION (MT)

STATISTICAL MACHINE TRANSLATION (SMT)

BILINGUAL EVALUATION UNDERSTUDY (BLEU): A commonly-used quality evaluation
metric for MT.

METRIC FOR EVALUATION OF TRANSLATION WITH EXPLICIT ORDERING (METEOR): A
commonly-used quality evaluation metric for MT.

TRANSLATION ERROR RATE (TER): A commonly-used quality evaluation metric for
MT.

MINIMUM ERROR RATE TRAINING (MERT): An optimization algorithm for SMT sys-
tems.

BASIC TRAVEL EXPRESSION CORPUS (BTEC): One of the data sets used in our experi-
ments

WORKSHOP ON MACHINE TRANSLATION (WMT): A yearly evaluation workshop that
releases data used in our experiments

C.2 Evaluation and Hypothesis Testing

APPROXIMATE RANDOMIZATION (AR) [p. 30]

CONFIDENCE INTERVAL (CI) [p. 31]
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