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Abstract

Compositionality is the principle behind building complex systems by com-
posing together simpler sub-systems. First, a complex task is broken down into
a pipeline of simpler, more straightforward tasks. Once systems are built for the
simpler tasks, intricate details are abstracted away and components are pipelined
together to reason about the overall task. The knowledge and resources spent
building the systems for the sub-task are then reused towards building various
complex systems. This divide-and-conquer approach to compositionality promotes
the flexibility, efficiency, and overall practicality of these systems.

While traditional sequence systems such as cascade models leveraged composi-
tionality, contemporary end-to-end models such as encoder-decoder models fail to
satisfy even the basic compositionality requirements, i.e., having a clear understand-
ing of the function of each component. The lack thereof hinders the practical use of
end-to-end systems, despite these approaches having advanced the state-of-the-art
in a wide range of sequence tasks.

In this thesis, with a focus on sequence tasks for speech and language, we iden-
tify four characteristics of compositionality that facilitate the practical deployment of
end-to-end models, i.e., having component or sub-task level (1) Performance Mon-
itoring, (2) Search and Retrieval, (3) Resource Pooling, and (4) Reusability. We
present three models with the above characteristics, which exhibit different levels of
reusability behavior, from direct plug-and-play ability to the ability for further fine-
tuning towards the end task. The first is the CTC Hybrid model, which creates a hy-
brid of models by decomposing a sequence task into alignment using a CTC model
and language generation using a language model. For a fully differentiable alter-
native, we present LegoNN modular encoder-decoder models, which build reusable
encoder and decoder modules across various sequence tasks, with the ability for fur-
ther fine-tuning. Lastly, we present our Compositional E2E model with searchable
hidden intermediates that allows using the sub-task formulations to build an end-to-
end task model. It also allows reusing pre-trained sub-task models for retrieving
better intermediate representations in the fully-differentiable model.

Finally, we discuss practical implications on the evaluation of end-to-end models,
where we show how to make their evaluation more reliable and informative by testing
their generalizability towards each sub-task in a complex sequence task.
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Chapter 1

Introduction

Compositionality is the principle behind building complex systems by composing together sim-
pler sub-systems using only the high-level understanding of each sub-system. It is studied and
applied extensively in the building of various complex systems, from physical machinery (Levis
et al., 1994) to software systems (Baldwin and Clark, 1999). Compositionality takes a hierar-
chical approach towards building systems by reasoning about the problem recursively. First, a
complex task is broken down into a pipeline of simpler, more straightforward tasks. Once systems
are built for the simpler tasks, intricate details are abstracted away and components are pipelined
together to reason about the overall task. The knowledge and resources spent building the sys-
tems for the sub-task can be reused in the construction of other complex systems (Zwiers, 1989).
A clear interface or understanding of the high-level functionality of each component makes it
possible to reuse them and also upgrade them in a modular fashion (Baldwin and Clark, 1999).
For example, if a more efficient or a better performing component is developed, all systems us-
ing this component can simply upgrade provided the interface remains the same. Furthermore,
the breakdown into simpler tasks allows leveraging additional domain knowledge, expertise, and
other resources, if available, for each component (Levis et al., 1994). Overall, this divide-and-
conquer approach of compositionality promotes the overall practicality of system building, going
from creating stand-alone systems to their large-scale development.

While maintaining the holistic view, compositionality takes many forms in each field. A lan-
guage is compositional if the meaning of every complex expression £ in that system depends
on, and depends only on, the syntactic structure of £ and the meanings of the simple parts of £
(Johnson, 2020). Compositionality plays an essential role in understanding languages; for exam-
ple, paragraph coherence and discourse analysis rely on decomposition into sentences (Johnson,
1992; Kuo, 1995) and sentence-level semantics relies on decomposition into lexical units (Liu
et al., 2020c). In sequence modeling, a class of machine learning tasks that work on structured
sequences such as speech and text, the models broke down the combinatorial space of sentences
by decomposing them into words or other linguistic units such as phonemes or characters, or
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byte-pair encoding, aiding in generalization to new sentences while capturing meaning both in
the form of representations (Mikolov et al., 2013) and during sentence prediction (Mohri et al.,
2002).

The application of compositionality in sequence models does not end there; traditional ap-
proaches relied heavily on the principle of compositionality in order to tackle these sequence
processing tasks. Cascade models carefully decomposed a complex sequence task into a pipeline
of systems that individually solve sub-tasks required to solve the overall problem. For example,
speech translation systems that seek to process speech in one language and output text in another
language were built by pipelining together speech recognition (ASR) and machine translation
(MT) systems. Such chaining of sub-systems is used extensively to build practical systems for
various sequence tasks such as hybrid ASR (Hinton et al., 2012), phrase-based MT (Koehn et al.,
2007), and cascaded ASR-MT systems for speech translation (ST) (Pham et al., 2019).

With the recent explosion in computing power, fully differentiable end-to-end approaches,
such as encoder-decoder models, have become popular and effective for sequence tasks. They
have played a critical role in advancing the state-of-the-art in a wide range of sequence tasks, such
as ASR (Park et al., 2019) and MT (Vaswani et al., 2017). However, these end-to-end models are
constructed and trained as an atomic unit, where all components are tightly coupled to each other,
preventing a clear understanding of the function of each part (Dalmia et al., 2019b). Thereby,
they fail to satisfy even the basic requirement for compositionality, i.e. having a clear interface
between components. This incapability to follow the principles of compositionality limits the
practicality of these systems in several ways. Specifically, such models are unable to:

1. Measure the quality of the individual components of the end-to-end model - This pre-
vents diagnosis of individual components, causing practitioners to invest more time and
compute resources in selecting hyperparameters, discovering bugs and reasoning about the
architecture of the model.

2. Reuse/transfer components across different tasks - This leads to practitioners building
individual stand-alone systems for each new task they would like to support, wasting com-
pute on components that share logical functions with components from an already trained
model for a different task.

3. Perform search and retrieval over the components for each sub-task - This prevents
practitioners from adapting individual components to other domains using external models.
For example, while adapting an end-to-end speech translation model on a different speech
domain but the same translation style.

4. Utilize additional resources for training individual components - There is still a signif-
icant lack of datasets for complex sequence tasks, as needed by end-to-end models, repre-
senting real-world scenarios that require a comprehensive coverage of different domains
and languages. Practitioners would benefit from having the ability to make use of the more
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comprehensive datasets available for simpler tasks to mitigate this issue.
Therefore, despite the advantages of end-to-end approaches in simplicity (Bahdanau et al., 2015;
Chan et al., 2016) and effectiveness (Vaswani et al., 2017; Park et al., 2019), traditional cascade
models, which followed the principles of compositionality, are still a more popular choice for
practical deployment among practitioners. It is important to consider how to incorporate compo-
sitional properties into the next generation of end-to-end models.

In this thesis, we identify four characteristics of compositionality, which facilitate the practical
deployment of end-to-end models: component or sub-task level (1) Performance Monitoring,
(2) Search and Retrieval, (3) Resource Pooling, and (4) Reusability. We present three models
that have the above characteristics, which exhibit different levels of reusability behavior, from
direct plug-and-play ability to the ability for further fine-tuning towards the end task. Our first
model is the CTC Hybrid model, which creates a hybrid of models by decomposing a sequence
task into alignment using a CTC model and language generation using a language model. For
a fully differentiable alternative, we present LegoNN modular encoder-decoder models, which
build reusable encoder and decoder modules across various sequence tasks, with the ability for
further fine-tuning. Lastly, we present our Compositional E2E model with searchable hidden
intermediates that allows using the sub-task formulations to build an end-to-end task model. It
also allows reusing pre-trained sub-task models for retrieving better intermediate representations
in the fully-differentiable model.

To round out the thesis, we discuss practical implications on the evaluation of end-to-end
models, where we show how to make their evaluation more reliable and informative by testing
their generalizability towards each sub-task in a complex sequence task.

1.1 Thesis Outline and Contributions

A more detailed outline of this thesis is as follows:

1. Chapter 2 discusses the past, present, and our intentions for the future of sequence models.
This chapter would provide a background on sequence models, covering both the tradi-
tional sequence models that exploited compositionality and the current state of end-to-end
models. We then discuss the practical implications that we would like to consider for the
next generation of end-to-end models.

2. Chapter 3 discusses the CTC Hybrid Models. These models create a hybrid system by
decomposing a sequence task into alignment using a CTC model and language generation
using a language model. For the speech recognition task, we show that by decomposing
words into language-independent phone sequences we can pool resources from other lan-
guages to learn better CTC models (Dalmia et al., 2018). This work has also been the
basis for our larger efforts on pooling resources across languages to build multilingual
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speech recognition models (Li et al., 2019, 2020b) and language models (Dalmia et al.,
2019a). This work was applied to our DARPA LORELEI 2018 and 2019 speech challenge
submissions for bootstrapping speech recognition systems under extremely low-resource
conditions (Chaudhary et al., 2019).

. Chapter 4 discusses our LegoNN framework for building modular encoder-decoder mod-
els (Dalmia et al., 2022). These are fully-differentiable end-to-end encoder-decoder models
that have a defined interface between the encoder and the decoder components. Without
any fine-tuning, the decoder from one task, say MT, can be used towards another like ASR.
LegoNN models composed from multiple tasks and domains can also be extended to have
more than two modular components by further decomposing the task. We also studied the
effectiveness of enforcing modularity in ASR systems in (Dalmia et al., 2019b).

. Chapter 5 builds upon the LegoNN encoder systems to extend the CTC formulation to non-
monotonic sequence tasks such as machine and speech translation and shows its efficacy
towards joint CTC and Attention modeling (Yan et al., 2022a). We also discuss two tech-
niques of decoding models that are jointly modeling both the CTC and Attention based
formulations for sequence tasks. This work intends to strengthen Chapter 3 by showing
how the CTC monotonic and length assumptions can be relaxed by performing reordering
and length-adjustment in the encoder, making it ideal for non-monotonic sequence tasks.
It also strengthens Chapter 4 by allowing a more advanced one-pass beam search that con-
siders both the CTC and Attention distributions.

. Chapter 6 and Chapter 7 discusses our Compositional E2E model with searchable hidden
intermediates. We present an end-to-end framework that exploits compositionality to learn
searchable hidden representations at intermediate stages of a sequence model using decom-
posed sub-tasks. These hidden intermediates can be improved using beam search to en-
hance overall performance and can also incorporate external models at intermediate stages
of the network to search for better representations. We present two instances of our Compo-
sitional E2E model, (1) Speech Translation (Dalmia et al., 2021) and (2) Spoken Language
Understanding (Arora et al., 2022) that extracts hidden intermediates from a speech recog-
nition sub-task. This work was crucial in our submissions to IWSLT 2021 (Inaguma et al.,
2021b) and IWSLT 2022 (Yan et al., 2022b). We also show its effectiveness in translating
endangered languages such as Nahutl (Shi et al., 2021).

. Chapter 8 discusses practical implications for the evaluation of end-to-end sequence mod-
els. We show that as sequence tasks become complex testing their generalizability on input
variations are not enough and it is important to test generalizability towards each sub-task
of the overall task. Given a dataset for a decomposable task, like Spoken Language Under-
standing, our method optimally creates a test set for each sub-task to individually assess
sub-components of the end-to-end model (Arora et al., 2021).



Chapter 2

Sequence Modeling Systems: Past, Current
and Future

2.1 Past: Cascade Systems

Our work takes inspiration from the traditional cascaded systems (Koehn et al., 2007; Povey et al.,
2011; Pham et al., 2019), which use several sub-components that are trained separately. These
systems successfully exploited search capabilities of the cascaded systems to compose the final
task output from individual system predictions using beam-search (Inaguma et al., 2020b; Pham
et al., 2019) and more sophisticated lattice based search (Koehn et al., 2007; Povey et al., 2011;
Zhang et al., 2019; Beck et al., 2019). They have the ability to incorporate external models to re-
score each individual system (Och and Ney, 2002; Huang and Chiang, 2007), the ability to easily
adapt individual components towards out-of-domain data (Koehn and Schroeder, 2007; Peddinti
et al., 2015), and finally the ability to monitor performance of the individual systems towards the
decomposed sub-task (Tillmann and Ney, 2003; Meyer et al., 2016).

2.2 Current: E2E Encoder-Decoder Systems

Recently, there has been a growing interest in training a single end-to-end (E2E) system to per-
form these sequence-to-sequence tasks using methods such as the encoder-decoder models (Bah-
danau et al., 2015; Chan et al., 2015; Vaswani et al., 2017), the non-autoregressive models (Gu
etal., 2018; Chan et al., 2020; Saharia et al., 2020) and the tranducer based models (Graves, 2012;
Zhang et al., 2020). These end-to-end approaches are attractive in part due to their simplistic de-
sign and the reduced need for hand-crafted features; however, studies have shown mixed results
compared to cascaded systems particularly for complex sequence tasks like like speech transla-
tion (Inaguma et al., 2020b) and spoken language understanding (Coucke et al., 2018). Among
these, we are particularly interested in popular end-to-end encoder-decoder models (Bahdanau
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Table 2.1: Encoder swap of the attention based encoder-decoder model trained with a different
random seed tested on two different sequence tasks, ASR, measured in % word error rate (%
WER ({)), and MT, measured in BLEU (7).

Eval 2000 () newstest2014 (1)

Sequence Model SWB CH En — De
Original ‘ Attention Based Enc-Dec 8.5 17.7 29.7
After Encoder Swap | Attention Based Enc-Dec  569.0 892.0 0.2

et al., 2015; Chan et al., 2016; Vaswani et al., 2017) that have played a critical role in a wide
range of NLP and speech tasks.

Conditioned on previously generated output tokens and the full input sequence, encoder-
decoder models (Sutskever et al., 2014) factorize the joint target sequence probability into a prod-
uct of individual time steps. They are trained by minimizing the token-level cross-entropy (CE)
loss between the true and the decoder predicted distributions. Input sequence information is en-
coded into the decoder output through an attention mechanism (Bahdanau et al., 2015) which is
conditioned on current decoder states, and run over the encoder output representations.

The problem of tight coupling of the encoder and decoder components in the end-to-end se-
quence model is highlighted in Table 2.1. The decoder cross-attention over the encoder hidden
representation makes it not only conditioned on the encoder outputs but also dependent on the
encoder architectural decisions and internal hidden representations. The whole ASR or MT sys-
tem fall apart under a simple test of re-usability, i.e. switching an encoder with another similar
one that is only different in its initial random seed, which brings our point about the lack of
compositionality in encoder-decoder models.

2.3 Future of E2E Systems

In this thesis, we would like to bridge the practical considerations of the cascaded systems along
with the strong modeling capabilities of the end-to-end models. We envision a future of end-to-
end models that have the practical considerations that go towards building cascaded systems. By
exploiting the principles of compositionality, we believe that we can build end-to-end systems
that are practical for real-world scenarios while avoiding the issues of pipelining systems, like
error propagation. The practical considerations that we consider in our thesis is growing interest
and are being studied individually (Andreas et al., 2016; Raunak et al., 2019; Lake, 2019), how-
ever a holistic view with a unified end-to-end framework for such practical considerations is still
missing. We will now introduce the properties of compositionality that we would like to bring to
end-to-end systems and present some related works.
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2.3.1 Performance Monitoring

We would like to have the ability to monitor the performances of the individual components of an
end-to-end model. This would allow practitioners to diagnose and reason on which components
of the end-to-end model is working better or worse. Such capabilities were used extensively in
cascaded approaches (Tillmann and Ney, 2003; Meyer et al., 2016), where the community would
question the quality of individual components of the neural network along with the quality of
doing the overall task. In the current state of end-to-end models, it is possible to only evaluate
the model towards the performance of the end-task and the decoders components for encoder-
decoder models in terms of perplexity (Bahdanau et al., 2015). There has been some work on post-
hoc analysis the representations learned by the encoders by evaluating them on an auxiliary task
(Palaskar et al., 2019), however these task does not necessarily tests the quality with respect to the
overall task and an improvement in these auxiliary task may not translate towards improvement
towards the performance on the final task.

2.3.2 Reusability

We would like to have end-to-end models that have reusable components. Where a component
trained on one task can be re-used towards a component for another task or domain. For example,
components that share the same functionality across tasks should be reusable. Cascaded systems
(Sperber and Paulik, 2020) have used this elegant property to reduce wastage of compute and
time spend in building these systems by re-using systems that share a common functionality, like
ASR and MT systems being re-used for building speech translation systems or language models
being reused for both ASR and MT systems. In the end-to-end research previous works have con-
sidered pre-training using trained components (Zheng et al., 2021; Inaguma et al., 2020b). There
have been many also proposals for inducing a modular structure on the space of learned concepts
either through hierarchically gating information flow or via high-level concept blueprints (An-
dreas et al., 2016; Devin et al., 2017; Purushwalkam et al., 2019) to enable zero- and few-shot
transfer learning (Andreas et al., 2017; Socher et al., 2013; Gupta et al., 2020; Pathak et al., 2019).

2.3.3 Search and Retrieval

We would like to have the ability of cascaded systems to compose a final output by using the pre-
diction from individual components of an end-to-end model with sophisticated search techniques
like beam search (Inaguma et al., 2020b; Pham et al., 2019) or lattice based search (Koehn et al.,
2007; Povey et al., 2011; Zhang et al., 2019; Beck et al., 2019). In an end-to-end model, the
input sequence undergoes many transformations from representations in one modality to repre-
sentations in another. For instance, an end-to-end build for spoken language understanding task
(Lugosch et al., 2019) first learns a sequence of speech representations which is then transformed
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into a sequence of word representations, which is followed by learning a sentence representation
before the final task of predicting intents. The ability for search and retrieval would allow prac-
titioners to adapt individual components of the neural network towards new domains and style
intended for each modality transformation leading to the final task.

2.3.4 Resource Pooling

We would like the ability to be able to pool resources from the decomposed tasks to build an end-
to-end system towards the complex task. Traditional cascade models are conveniently exploiting
this benefit by training individual systems on the decomposed task (Sperber and Paulik, 2020).
With the advancement in pre-training and multi-task learning this aspect of compositionality is
gaining interest among the end-to-end sequence modeling community. Due to the limited avail-
ability of the end-to-end datasets, recent works have considered using self-supervised techniques
to learn better representation models in both speech (Baevski et al., 2020) and language (Devlin
etal., 2019). We consider this work to be complimentary to our work, as the representation learn-
ing framework is task agnostic and requires adaptation towards the task at hand. There has also
been many works to pool resources across languages for a variety of sequence tasks like machine
translation (Liu et al., 2020a), speech recognition (Dalmia et al., 2018, 2019a; Conneau et al.,
2020) and speech translation (Li et al., 2020a)
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Chapter 3

CTC Hybrid Systems

The following Chapters 3, 4 and 5 introduces the building blocks for our CTC Hybrid Systems
and LegoNN Modular Encoder-Decoder Systems. Chapter 3 gives a background on CTC Hybrid
Systems built for speech recognition (Miao et al., 2015) and presents our work that utilizes the
task decomposition in CTC Hybrid Systems to pool resources across languages to build strong
ASR systems for low resource speech recognition. Chapter 4 then discusses how to build our end-
to-end Modular Encoder-Decoder Systems using the LegoNN framework. In this work, we also
propose building modality agnostic CTC encoders showing how we can extend the CTC Hybrid
Systems to non-monotonic sequence prediction tasks. Chapter 5 shows how we can build joint
CTC/Attn models (Kim et al., 2017) for non-monotonic sequence tasks like speech and machine
translation. Although the joint model does not have the properties of our intended future for
sequence models §2.3, this work is motivated through principles of task compositionality and
further strengthens our work on CTC encoders for non-monotonic sequence task. These CTC
encoders built for speech and machine translation can then be used to build CTC Hybrid Systems
as it was shown in Chapter 3 for building ASR systems.

3.1 Connectionist Temporal Classification

The Connectionist Temporal Classification (CTC) algorithm is an alignment-free sequence pre-
diction approach which marginalizes over the likelihoods of all possible alignments of an input
X of length 7" and an output Y of length L, where L. < T' (Graves et al., 2006). CTC resolves
the input-output length mismatch by introducing a blank token & to represent a null emission,
defining an output vocabulary of V 4+ & where V is the original vocabulary of Y. Now a possible
output alignment A = [ay, ..., ar] for a; € {V + @} can be produced with the same length as X.
With the set of all possible alignments Ay y, the overall likelihood of an output Y is:
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Note that due to the conditional independence assumption in CTC, we can write Equation (3.3)
where the summand corresponds to the combined probability densities from all possible align-
ments for emitting tokens V + & at a particular time-step ¢.

In a non-autoregressive CTC network an ENcoper models a sequence of hidden representa-
tions h = [h;, ..., hy], where hy € R?. The output emission log-probabilities is given by the affine
projection of h followed by the log-softmax function, denoted as SorrmaxOuT. These emission
log-probabilities are equivalently represented as a weighted finite-state transducer (WFST) £ with
T states, where each state ¢ in £ is connected to state ¢ + 1 by |V + &| arcs whose weights are
defined as the emission log-probabilities at ¢, SorrmaxOut(h,).

h = Encoper(X) (3.4)
Ei111 = SortmaxOuT(hy) (3.5)

During training, we seek to maximize the overall log-likelihood of Ay y for the target se-
quence Y by constructing the target-constrained emissions WEST, Cx.y> which is the intersection
of the log-probabilistic emission graph £ with an unweighted target graph ). ) is constructed
with the possible representations of Y under the CTC rules for blank tokens and repeated tokens.

Rather than producing a soft alignment between the input and target sequences, the CTC
loss (Graves et al., 2006) maximizes the log conditional likelihood of the output, by integrating
over all possible monotonic alignments between both sequences. During training, the forward-
backward algorithm is used for efficient computation of the marginalization sum. For inference,
only one forward pass through the encoder-only model is needed to generate output probability
distributions over the full target sequence in a non-autoregressive fashion.

3.1.1 Results using Transformer Encoders and SpecAugment

Since the introduction of CTC based models, there has been great strides towards improving
encoders using Transformers (Vaswani et al., 2017) and stabilizing training using SpecAugmen-
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Table 3.1: Results, measured in % WER (), presenting the CTC model trained using transformer
encoder blocks (Vaswani et al., 2017) and SpecAugmentation (Park et al., 2019). We provide an
LSTM CTC model trained using a similar sized BPE units presented in (Sanabria and Metze,
2018) for comparision.

Model SWBD (J) CallHome (|)
LSTM-CTC (Sanabria and Metze, 2018) 20.6 33.5
Transformer-CTC 11.5 241

tation (Park et al., 2019). They have enabled training larger models and also towards target units
that are larger than character or phoneme level. To compare with the LSTM-CTC based mod-
els like in (Sanabria and Metze, 2018) we trained a Trasnformer-CTC based model on the 300h
Switchboard Conversational data and tested them on the eval2000 test sets. Table 3.1 shows that
we can build stronger CTC based models with transformer based encoders and SpecAugmenta-
tion. Details about the model and the dataset preparations are provided in §4.5.1.

3.2 CTC Hybrid Systems

Context independent models trained using the CTC loss can be elegantly combined with a lan-
guage model to generate output sequences that are conditioned on the context. Thereby, behaving
like a decoder from an encoder-decoder model while retaining the traditional separation of cas-
caded systems. In the context of speech recognition, the CTC model behaves like an acoustic
model and the separation from language model allows for domain independence and adaptation
or re-use of individual components. Having this hybrid approach also allows training of the lan-
guage model on larger amounts of text data available (Zenkel et al., 2017). The ability to modify
individual components also allow practitioners to modify the decoding strategies based on the
scenario, like a WFST based decoding (Miao et al., 2015) allows for a stronger search capability
but have a fixed vocabulary decoding. On the other hand, an RNN-LM based decoding (Zenkel
et al., 2017; Dalmia et al., 2019a) allows for modelling longer contexts and open vocabulary
decoding but are limited to left-to-right beam search based re-scoring.

Table 3.2 presents the state-of-the-art CTC Hybrid ASR model that we developed using trans-
former encoders (Vaswani et al., 2017) and SpecAugmentation (Park et al., 2019) on the 300
hour Switchboard dataset. These models are comparable to the current encoder decoder base-
lines while maintaining the flexibility that we desire from a sequence system. Additional details
on the model and the dataset preparation is provided in §4.5.1. We use the WFST based decoding
(Miao et al., 2015) with a trigram language model and the vocabulary from the training data. We
do not use any additional data for a fair comparision with the encoder-decoder baseline. How-
ever, unlike encoder-decoder models, this performance can be improved further by simply adding
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Table 3.2: Results, measured in % WER (), presenting the CTC Hybrid models for the speech
recognition task. The models are trained on the 300h Switchboard corpora and tested on the
eval2000 test sets. We provide a baseline encoder-decoder model for comparision.

Model SWBD ({) CallHome ()
Baseline Enc-Dec 8.5 18.0
Transformer-CTC 11.5 24.1
+ WFST Decoding 9.1 19.4

more in-domain text to train the language model (Sanabria and Metze, 2018).

Such hybrid models with non-autoregressive CTC encoders and LM based decoding are be-
coming increasingly popular as self-supervised models are improving (Baevski et al., 2020) as the
CTC models allow for easy tuning of the self-supervised models. Additionally, with the adapta-
tion of CTC models for other non-monotonic sequence tasks (Saharia et al., 2020; Libovicky and
Helcl, 2018; Inaguma et al., 2020a) we expect that these hybrid models would start to re-appear
as the future of sequence modeling.

3.3 Resource Pooling across languages through decomposi-
tion:
Multilingual Low Resource Speech Recognition

Techniques for multilingual and crosslingual speech recognition can help in low resource sce-
narios, to bootstrap systems and enable analysis of new languages and domains. End-to-end
approaches, in particular sequence-based techniques, are attractive because of their simplicity
and elegance. While it is possible to integrate traditional multilingual bottleneck feature extrac-
tors as front-ends, we show that end-to-end multilingual training of sequence models is effective
on context independent models trained using Connectionist Temporal Classification (CTC) loss.
We show that our model improves performance on Babel languages by over 6% absolute in terms
of word/phoneme error rate when compared to monolingual systems built in the same setting for
these languages. We also show that the trained model can be adapted crosslingually to an unseen
language using just 25% of the target data. We show that training on multiple languages is impor-
tant for very low resource crosslingual target scenarios, but not for multilingual testing scenarios.
Here, it appears beneficial to include large well prepared datasets.
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3.4 Introduction

State-of-the-art speech recognition systems with human-like performance (Saon et al., 2017,
Xiong et al., 2016) are trained on hundreds of hours of well-annotated speech. Since annotation
is an expensive and time-consuming task, similar performance is typically unattainable on low
resource languages. Multilingual or crosslingual techniques allow transfer of models or features
from well-trained scenarios to those where large amounts of training data may not be available,
cannot be transcribed, or are otherwise hard to come by (Stolcke et al., 2006; Grézl et al., 2016).

The standard approach is to train a context dependent Hidden Markov Model based Deep
Neural Network acoustic model with a “bottleneck” layer using a frame based criterion on a
large multilingual corpus (Vesely et al., 2012; Knill et al., 2013; Vu et al., 2012). The network up
to the bottleneck layer can be used as a language-independent feature extractor while adapting to
anew language. Generating such a model requires the preparation of frame level segmentation in
each language, which is usually achieved by training separate monolingual systems first. This is
a cumbersome multi-step process. Moreover, if the speaking style, acoustic quality, or linguistic
properties of the recordings are very different across a set of languages, the segmentations may
be inconsistent across languages and thus sub-optimal for generating features in a new language.

Multiple Softmax Layers + CTC Loss
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Figure 3.1: Multilingual CTC model following the “shared hidden layer” approach.

On the other hand, end-to-end training approaches which directly model context independent
phones are elegant, and greatly facilitate speech recognition training. Most do not require an
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explicit alignment of transcriptions with the training data, and there are typically fewer hyper-
parameters to tune. We show that sequence training in multilingual settings can create feature
extractors, which can directly be ported to new languages using a linear transformation (on very
limited data), or re-trained on more data, opening a door to end-to-end language universal speech
recognition.

3.5 Related Work and Babel Dataset

Some of the early works in multilingual and crosslingual speech recognition involved the use
of language independent features like articulatory features (Stuker et al., 2003) to train HMM
based systems. Authors in (Burget et al., 2010) used subspace Gaussian mixture model to map
phonemes of different languages together. Authors in (Schultz and Waibel, 2001) introduce the
use of a shared phone set to build HMM based language independent acoustic models and show
the adaptation of pre-existing models towards a new language.
With the on-set of deep learning the focus of the models shifted to learning features across lan-
guages which can be mapped to the same space (Stolcke et al., 2006; Ghoshal et al., 2013). Au-
thors in (Swietojanski et al., 2012) looked at unsupervised pretraining on different languages for
a cross lingual recognition. The dominant architecture for multilingual or crosslingual speech
recognition has been the so-called “shared hidden layer” model, in which data is passed through
a series of shared feed-forward layers, before being separated into multiple language-specific
softmax layers, which are trained using cross-entropy (Scanzio et al., 2008; Vesely et al., 2012;
Heigold et al., 2013). This architecture can also be used as a “bottleneck” feature extractor, from
which “language independent” features are extracted, on top of which a target-language acous-
tic model can be built. Authors in (Grézl et al., 2014) showed that these multilingual models
can be adapted to the specific language to improve performance further. The work by (Vesely
etal., 2012; Grézl et al., 2011) presented bottleneck features for multilingual systems where they
showed feature porting is possible and gave competitive results when compared to systems with
monolingual features. Other approaches (Tong et al., 2017; Vu et al., 2014) constructed a shared
language independent phone set, which could then also be adapted to the target language. Our
proposed model is inspired by the former approach which tries to learn latent features by sharing
hidden layers across languages.

Connectionist Temporal Classification (CTC, (Graves et al., 2006)) lends itself to low-
resource multilingual experiments, because systems built on CTC tend to be significantly
easier to train than those that have been trained using hidden Markov models (Miao et al.,

IThis work used releases IARPA-babel105b-v0.4, IARPA-babel201b-v0.2b, IARPA-babel401b-v2.0b, IARPA-
babel302b-v1.0a (these 4 languages will be called the “MLing” set), and IARPA-babel106b-v0.2g, IARPA-
babel307b-v1.0b, IARPA-babel204b-v1.1b, IARPA-babell04b-v0.4bY (these 4 languages will be called the
“BAB300” set), and IARPA-babel202b-v1.0d and IARPA-babel205b-v1.0 for testing.
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2015, 2016). Miiller et al. (2017) shows that multilingual CTC systems with shared phones can
improve performance in a limited data setting. As per our knowledge there has not been any
prior work that have looked into learning “bottleneck” like features for a CTC based model and
seen how it performs multilingually and crosslingually with adaptation.

For this work we use several languages from IARPA’s Babel' project to test our model. These
are mostly telephony (8kHz) conversational speech data in a low resource language. These were
accompanied by a lexicon and dictionary in Extended Speech Assessment Methods Phonetic
Alphabet (X-SAMPA) format. Table 3.3 summarizes the amount of training data in hours along
with the number of phonemes (including the CTC blank symbol) present for the languages we
used in our experiments on the “Full Language Pack” (FLP) condition.

Table 3.3: Overview of the FLP Babel Corpora used in this work.

Subset | Language | # Phones + () | Training Data
Turkish 50 79 hrs
MLing | Haitian 40 67 hrs
Kazakh 70 39 hrs
Mongolian | 61 46 hrs
Ambharic 67 43 hrs
Bab300 | Tamil 41 69 hrs
Tagalog 48 85 hrs
Pashto 54 78 hrs
For Kurmanji | 45 42 hrs
testing | Swahili 40 44 hrs

Table 3.4: Word (% WER) and phoneme error rate (% PER) for each of the test languages, on
the Babel conversational development test sets.

Model Kazakh Turkish Haitian Mongolian
WER PER WER PER WER PER WER PER
Monolingual 559 409 | 53.1 362 | 490 369 | 582 452

Multilingual (MLing) 532 365 | 528 344 | 478 349 | 559 4l1.1
MLing & FineTuning (FT) | 50.6 35.1 | 49.0 322 | 46.6 332 | 534 39.6
MLing + SWBD 523 36.6 | 513 33.0 | 458 339 | 545 402
MLing + SWBD & FT 48.2 335 | 48.7 319 | 443 319 | 515 378

3.6 Multilingual CTC Model

A model trained with CTC loss is a sequence based model which automatically learns alignment
between input and output by introducing an additional label called the blank symbol ((}), which
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corresponds to ‘no output’ prediction. Given a sequence of acoustic features X = (xy,...,X,)
with the label sequence z = (z4, . . ., Z,), the model tries to maximize the likelihood of all possible
CTC paths p = (p1, - - - , pn) Which lead to the correct label sequence z after reduction. A reduced
CTC path is obtained by grouping the duplicates and removing the () (e.g. B(AADAABBC') =
AABC).

PEX)= )  P®X)

pECTC_Path(z)

Like in (Miao et al., 2015) we use this loss along with stacked Bidirectional LSTM layers to
encode the acoustic information and make frame-wise predictions.

In our CTC multilingual model, we share the bidirectional LSTM encoding layer till the final
layer and project the learned embedding layer to the phones of the respective target languages.
The intuition behind this model is that training on more than one language will help in better
regularization of weights and learning a better representation of features, as it will be trained
on more data. We hypothesize that the final phoneme discrimination can be learned in a linear
projection of the last layer. Figure 3.1 shows the schematic diagram of our multilingual model.
Mathematically this can be written as,

X ={Xp UXUXz3... Xz} Xpi = (27, .., 27%;)

e = EncoderBiLSTM(X) e c RnXQ*hdim

( softmax(Wpie+br;) ifXe Xy,
softmax(Wyse +brs) ifX € Xy

\ softmax(Wp,e +by,) ifXeXg,

Unlike (Vesely et al., 2012), we do not have any bottleneck layer, and the whole model is
sequence trained based on CTC loss.

3.7 Experiments and Observations

3.7.1 Multilingual CTC model

To align with project goals, we chose to perform experiments on a set of four languages which
are the closest/ have maximum phone overlap with Kurmanji — Kazakh, Turkish, Mongolian
and Haitian. We used a 6-layer bidirectional LSTM network with 360 cells in each direction,
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which performed best on average across the majority of Babel languages in a systematic search
experiment. Table 3.4 shows the results. For consistency, we used absolutely identical settings
across all languages, and did not perform any language-specific tuning, other than choosing the
lowest perplexity language model between 3-gram and 4-gram models for WFST-based decoding.
Techniques such as blank scaling and applying a softmax temperature can often improve results
significantly, but we did not apply any of them here for consistency.

In our multilingual experiments, we use the same 6-layer Bi-LSTM network with 360 cells
(per direction) in each layer as our shared encoded representation®. Again, this setup performed
best on average on a larger set of languages. Multilingual training on the “MLing” set (the four
languages shown in Table 3.4) improves WER by 1.7% (absolute) on average, while keeping
the LSTM layers shared across all languages. If we fine-tune the entire model towards each
language specifically, performance improves further, by 4.4% on average over the baseline. If
we roughly double the amount of training data by adding the Switchboard 300h training set to the
“MLing” training data, performance improves yet again, for both the universal (MLing+SBWD)
and language-specific (MLing+SWBD & FT) case. Overall, WER and PER improve by about
6% absolute (>10% relative), which is in line with other results reported on comparable tasks
discussed in section 3.5.

As expected, reductions in the error rates tend to be higher for the lower resource languages,
like Kazakh and Mongolian.

3.7.2 Data Selection

Given that adding a seemingly unrelated, but high resource language improved the performance of
the model on four low resource languages, we further studied the impact of varying the source(s)
ofthe extra data. Specifically, we replaced the 300 h Switchboard corpus with four more unrelated
Babel languages, “BAB300” composed of Tamil, Amharic, Pashto, and Tagalog. The results on
the test data are summarized in Table 3.5. We can see that adding Switchboard data outperforms
adding more unrelated Babel languages.

Table 3.5: Word error rate (% WER) on the test languages when switching the SWBD data with
300 hrs equivalent of Babel.

Model Kazakh Turkish Haitian Mongolian
MLing + BAB300  57.5 52.0 47.8 56.7
MLing + SWBD 52.3 51.3 45.8 54.5

While our main goal here has been the creation of a multilingual recognizer, we verified
that models that have been trained on a single Babel language plus 300 h of Switchboard do

2The code to train the multilingual model is released as part of EESEN (Miao et al., 2015).
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not outperform the fine-tuned MLing+SWBD system, while there is no clear pattern on other
languages. This indicates that it is generally beneficial to train (sequence-based) multilingual
systems on closely related languages, and/or on large amounts of well-prepared but unrelated

monolingual data, but that adding a large number of languages may in fact prevent the model
from training well.

3.7.3 Representation Learning

In order to study to what extent the CTC sequence models have learned useful bottleneck like
discriminatory audio features that are independent of the input language, we attempt to port a
model to an unseen language. We aim to use the trained model as a language-independent fea-
ture extractor that can linearly separate any language into a phoneme sequence. To do this, we
replace the softmax layer (or “layers” in the multilingual case) of a “donor” CTC model with
a single softmax, which we then train with varying amounts of data from the target language,
Kurmanyji in our case. Figure 3.2 shows how different “donor” models behave in this situation.
In the crosslingual case, it becomes beneficial to train the LSTM layers with as many different
languages as possible (“MLing+BAB300” outperforms “MLing+SWBD” and “MLing”), while
a single related language (Turkish) outperforms adaptation on a larger amount of data from an
unrelated language (SWBD). There is a large gap between monolingual systems and multilingual
systems. Improvements become smaller once training is performed on 4 h (10%) of data or more,
but even then the re-estimation of the softmax layer (with ca. 32k parameters) benefits from more
data.

I MLing+SWBD Turkish swbd & MLing+BAB300
g MLing

Softmax Adaptation
on Kurmaniji

65

57.5 \‘\‘\‘\o
Monolingual Kurmanji Model on 100% data

50

Phoneme Error Rate (PER)

1% 5% 10% 20% 50%
Percentage amount of Training data. (100% is 42 hours)

Figure 3.2: Crosslingual training of CTC softmax layer only on top of different “donor” models.

It thus seems that multilingual systems do indeed learn a portable, language independent
representation, which is useful when porting to a new language, while the sheer amount of data
is less beneficial.
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Figure 3.3: Crosslingual training of Kurmanji and Swahili systems.

3.7.4 Crosslingual Explorations

Figure 3.4 shows that for both related and unrelated languages, a multilingual system surpasses
the monolingual baseline once about 25% of the original data has been seen. The behavior of
retraining (“full network adaptation”) seems independent of the original trained languages.

To further investigate how multilingual models can be used in crosslingual settings, and with
varying amounts of training data, we compare “softmax’ adaptation and full network adaptation
(retraining) on Kurmanji and Swahili, two languages which we did not see in training. We use
the (MLing + SWBD) and (MLing + BAB300) “donor” models. Figure 3.3 shows that for small
amounts of adaptation data, and a target language that is related to the pre-trained languages
(Kurmanji), “softmax adaptation” is competitive, and an initialization with many languages is
beneficial.

When the entire network can be retrained (“full network adaptation”, shown on the right side
of Figure 3.3), there is very little difference between the “donor” systems’ performance.

3.7.5 Extending this approach with transformer based CTC models

The above study was done in 2018 and since then there have been many advances in the com-
munity which help make better speech recognition models. In particular, Transformers (Vaswani
etal., 2017) and SpecAugment (Park et al., 2019) have led to better encoders and training stability
respectively. In this section, we apply the above approach, but replacing LSTMs with Transform-
ers and applying SpecAugmentation during training. We also added more languages and build a
bigger model. The results are presented in Table 3.6.
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Figure 3.4: PER on different amounts of crosslingual data using a full network end-to-end adap-
tation (retraining).

Table 3.6: Results presenting the techniques developed in this chapter with the more recent Trans-
former encoders and SpecAugmentation. The table shows the phoneme error rate (% PER) for

each of the test languages, on the Babel conversational development test sets. We have added the
monolingual CTC phoneme error rates for comparison.

Phoneme Error Rate %
Model Type Model Name Eng Tur Tgl Vie Kaz Amh Jav Total
LSTM-CTC Monolingual-CTC (Mortensen et al., 2018) - 344 320 - 37.8 333 421 359
Transformer-CTC Multilingual-CTC (Dalmia et al., 2018) 253 27.7 285 319 315 286 352 298

We use the English LDC Switchboard Dataset (Godfrey and Holliman, 1993; Consortium,
2002a,b) and 6 languages from the IARPA BABEL Program: Turkish, Tagalog, Vietnamese,
Kazakh, Amharic and Javanese.> These datasets contain 8kHz recordings of conversational
speech each containing around 50 to 80 hours of training data, with an exception of around 300
hours for English.

The model was trained using the ESPnet toolkit (Watanabe et al., 2018). To prepare our
speech input features we first upsample the audio to 16kHz, augment it by applying a speed per-
turbation of 0.9 and 1.1, and then extract global mean-variance normalized 83 log-mel filterbank
and pitch features. Input frames are processed by an audio encoder with convolutional blocks
to subsample by 4 (Watanabe et al., 2018) before feeding to 12 transformer-encoder blocks with
a feed-forward dim of 2048, attention dim of 256, and 4 attention heads. We augment our data
with the Switchboard Strong (SS) augmentation policy of SpecAugment (Park et al., 2019) and
apply a dropout of 0.1 for the entire network. We use the Adam optimizer to train 100 epochs

3We use the Full Language Packs (FLP) released by the IARPA Babel Research Program (IARPA-
BAA-11-02): TARPA-babel105b-v0.4, IARPA-babel106-v0.2g, IARPA-babel107b-v0.7, IARPAbabel302b-v1.0a,
IARPAbabel307b-v1.0b, IARPAbabel402b-v1.0b
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with an inverse square root decay schedule, a transformer-Ir scale (Watanabe et al., 2018) of 5,
25k warmup steps, and an effective batchsize of 768.

3.8 Conclusion

In this chapter, we present the CTC hybrid models which decompose a sequence task into align-
ment using the CTC loss and language generation using a language model. In order to show the
resource pooling aspects for the CTC component of the hybrid model, we demonstrate that it
is possible to train multilingual and crosslingual acoustic models by decomposing words from
different languages into universal phone sequences. In multilingual settings, it seems beneficial
to train on related languages only, or on large amounts of clean data; there is no benefit simply
from training on many languages. It is thus possible to combine e.g. Switchboard and Babel data.
In very low resource crosslingual scenarios, it is possible to adapt a model to a previously unseen
language by re-training the softmax layer only. CTC models can learn a language independent
representation at the input to the softmax layer. We find that training the models trained on related
languages help, as does training on many languages, rather than large amounts of data. As more
and more data is available, and the whole network can be retrained, and the effect of the choice
of language for the multilingual training disappears.
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Chapter 4

Modular Encoder-Decoder Systems

In Chapter 3, we build sequence prediction models using CTC Hybrid Systems that decompose
the overall task into alignment using the CTC encoder and language generation using a language
model. These systems exhibit all the properties of compositionality but suffer from the inability
to tune the model on end task data.

This chapter aims to build an end-to-end alternative based on the encoder-decoder architecture
(Bahdanauetal., 2015; Chan etal., 2016) that is also compositional in nature. We present LegoNN
a framework for building modular encoder-decoder models that defines a clear interface between
the encoder and decoder modules and allows re-using decoder modules trained from different
seeds, architectures, or even different tasks into an encoder module that is trained separately.
These models also have the ability to further fine-tune the model on end-to-end task data.

4.1 LegoNN: Building Modular Encoder-Decoder Models

State-of-the-art encoder-decoder models (e.g. for machine translation (MT) or speech recognition
(ASR)) are constructed and trained end-to-end as an atomic unit. No component of the model can
be (re-)used without the others. We describe LegoNN, a procedure for building encoder-decoder
architectures with decoder modules that can be reused across various MT and ASR tasks, with-
out the need for any fine-tuning. To achieve reusability, the interface between each encoder and
decoder modules is grounded to a sequence of marginal distributions over a discrete vocabulary
pre-defined by the model designer. We present two approaches for ingesting these marginals;
one is differentiable, allowing the flow of gradients across the entire network, and the other is
gradient-isolating. To enable portability of decoder modules between MT tasks for different
source languages and across other tasks like ASR, we introduce a modality agnostic encoder
which consists of a length control mechanism to dynamically adapt encoders’ output lengths in
order to match the expected input length range of pre-trained decoders. We present several ex-
periments to demonstrate the effectiveness of LegoNN models: a trained language generation
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Figure 4.1: LegoNN Framework: Building encoder-decoder models in the LegoNN framework,
allows practitioners to reuse components like decoder modules for various sequence prediction
tasks. For example, in this figure an English predicting decoder from German-English machine
translation system can be re-used for both Romanian-English machine translation and English
speech recognition without any fine-tuning steps. This saves overall compute resources, pro-
motes re-usability, allows practitioners to utilize decoders from high-resourced tasks for under-
resourced ones. The composed model is end-to-end differentiable leaving room for further im-
provements through fine-tuning.

LegoNN decoder module from German-English (De-En) MT task can be reused with no fine-
tuning for the Europarl English ASR and the Romanian-English (Ro-En) MT tasks to match or
beat respective baseline models. When fine-tuned towards the target task for few thousand up-
dates, our LegoNN models improved the Ro-En MT task by 1.5 BLEU points, and achieved
12.5% relative WER reduction for the Europarl ASR task. Furthermore, to show its extensibility,
we compose a LegoNN ASR model from three modules — each has been learned within different
end-to-end trained models on three different datasets — boosting the WER reduction to 19.5%.

4.2 Introduction

Training end-to-end models for machine translation (MT) or automatic speech recognition (ASR)
requires the learning of multiple implicit functions (Bahdanau et al., 2015; Sutskever et al., 2014;
Vaswani etal., 2017; Chan etal., 2016; Bahdanau et al., 2016). An MT model implicitly does both
word translation and language generation, while an ASR model combines phoneme recognition,
pronunciation modeling, and language generation. These fully differentiable models are concep-
tually simple and work well in practice. However, they forgo opportunities to share common
logical functions between different tasks, such as their decoders. This leads to wasted compute
during training and less interpretable architectures overall.
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Motivated by modularity principles in software design (Baldwin and Clark, 1999) where mod-
ules have interpretable interfaces and are reusable within other programs, we introduce LegoNN,
a procedure for constructing encoder-decoder models with decoder modules that can be reused
across various sequence generation tasks such as MT, ASR, or Optical Character Recognition
(OCR). As summarized in Figure 4.1, for Al models, enforcing modularity helps save computing
resources by reusing components and helps build systems for under-resourced tasks by utilizing
shareable components from higher-resourced tasks. Additionally, having interpretable interfaces
enables monitoring the performance of individual encoder or decoder modules and their contri-
butions to the overall end-to-end performance.

More concretely, in our LegoNN encoder-decoder framework, encoders have an interpretable
interface by outputing a sequence of distributions over a discrete vocabulary, derived from the
final output labels (e.g. phonemes or sub-words). During training, we add an additional Connec-
tionist Temporal Classification (CTC) loss (Graves et al., 2006) to the encoder output to enforce
this modularity (§4.4.1). Our decoder modules are extended with Ingestor layers (ING) that ac-
cept these distributions as input (§4.4.4). We experiment with two types of ingestor layer: a
differentiable Weighted Embedding (WEmb) ingestor allowing gradient flow across the entire
network and a gradient-isolating Beam Convolution (BeamConv) one. Given that LegoNN de-
coder modules can be trained for one MT task and then reused for another M T task with a different
source language or for a sequence generation task with the same target language such as ASR or
OCR, we propose a modality agnostic encoder for a sequence prediction task that uses an output
length controller (OLC) unit to adapt any input modality to a sequence of encoder representations
that matches the expected input length of another (§4.4.3). LegoNN:s, as also demonstrated in our
experiments, enable the sharing of trained decoders ! and intermediate modules between different
tasks and domains without jointly training for both tasks and no fine-tuning steps. The composed
LegoNN model preserves end-to-end differentiability of each individual system, allowing room
for further improvements through fine-tuning.

Our experiments show that we can achieve modularity without sacrificing performance. On
the standard large-scale En-De WMT and Switchboard ASR benchmarks, LegoNN models reach
levels of performance competitive with non-modular architectures (§4.6.1), while still passing
our stress tests for testing modularity (§4.6.2). We show the value of modularity by seamlessly
composing a decoder module trained within a German-English (De-En) WMT system with other
pre-trained encoder modules from different MT and ASR systems, without any joint training or
fine-tuning, to match or beat generation performance for the Europarl English ASR task and the
Romanian-English (Ro-En) WMT task (§4.6.3). When such composed LegoNN models are fine-
tuned for few thousand steps towards the target domain, they improve the Ro-En MT task by 1.5
BLEU points and improve the Europarl ASR task by 12.5% WER relative to the baseline system

'Our work on LegoNNs are orthogonal to the recent work on sharing pre-trained encoders, e.g BERT (Devlin
et al., 2019). Combining the benefits of these two complementary approaches is left for future work.
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(§4.6.4). To demonstrate the flexibility of reusing LegoNN modules, we construct an ASR system
which is composed of modules that have been trained independently on three different tasks,
without performing any fine-tuning and with almost no performance degradation. Modules are:
(1) a phoneme recognizer from the Europarl ASR model, (2) a pronunciation model from the
TED-LIUM ASR model, and (3) a language generation decoder from the WMT model (§4.6.3).
With a few end-to-end fine-tuning steps, the composed model beats the Europarl ASR baseline
model by 19.5% relative WER, also improving over the previously composed LegoNN model
for this task (§4.6.4).

4.3 Background

4.3.1 Cross-Entropy Loss in Encoder-Decoder Models

Given an input sequence Xi.r, encoder-decoder models (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Bahdanau et al., 2015) compute an output sequence L.y by factorizing
the probability of the joint target sequence into a product of auto-regressively generated outputs
conditioned on previously generated tokens and the input sequence. They are trained by min-
imizing the token-level cross-entropy (Fcg) loss between the true tokens (L) and the predicted
distributions of the decoder (PYAw) over the set of output tokens Van, Where L,, € Vayn:

h%,. = encoder(X1.7) 4.1)

PYam — softmax(decoder(h ., L., 1)) (4.2)
N

FCE(Ll:NalID%R}n) = —log (H P%%Z) (4.3)
n=1

where the encoder processes the input sequence (X;.7) and communicates it to the decoder
through an attention mechanism (Bahdanau et al., 2015; Chan et al., 2016; Luong et al., 2015),
which is conditioned on the decoder state. The encoder-decoder model thereby models the
likelihood for next token prediction given the previous output tokens and the input sequence:

P%Alm = P<yAttn ’ Xl:Ta Ll:n—l) (44)

n

where PYam is the distribution of the random variable y2™ for position n, PYam_ over the output
vocabulary space.
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4.3.2 Connectionist Temporal Classification Loss

Rather than producing a soft alignment between the input and target sequences, the CTC loss
(Graves et al., 2006) maximizes the log conditional likelihood of the output, by integrating over
all possible monotonic alignments between both sequences:

PYe = softmax (encoder(X1.7) * W,) (4.5)
T

Fere(Lin, PYGS) = —log ) (H PZE:C) (4.6)
2€Z(L,T) \t=1

W, € R&Perel projects the encoder representations into the output vocabulary space of Verc.
Z(L,T) € {(t,))|t € {1:T},l € Yerc} is the space of all possible monotonic alignments of
L into T time steps, and the probability of an alignment =z is the product of locally normalized
output probabilities per time step IP%{CTTC € RT*Perel We omit the extra CTC blank symbol in
the equation above for clarity of presentation; see (Graves et al., 2006) for more details. The
marginalization sum is efficiently computed during training using dynamic programming.

4.4 LegoNN for Modular Encoder-Decoder Models

We propose decomposing encoder-decoder models into one (or more) encoder modules followed
by an auto-regressive decoder module, which can be reused for other tasks and domain, without
sacrificing its end-to-end differentiability. Each module produces a sequence of marginal distri-
butions over a pre-defined discrete vocabulary, which is consumed by an ingestor component in
the subsequent module. LegoNN modules trained either jointly or independently can be reused
for new tasks without the need of any fine-tuning. The LegoNN procedure introduces three op-
erations:

4.4.1 Designer-defined module interface

We look at encoder-decoder models as full software programs that execute the specific function
of mapping one sequence of input symbols or vectors to another. Although some components of
software programs, i.e. libraries, may be reused for numerous future programs, trained decoder
components of the traditional encoder-decoder models (Sutskever et al., 2014; Bahdanau et al.,
2015) are not designed to be reused independently with other models or tasks. A well-defined
and abstract input/output interfaces are prerequisites for developing reusable software libraries;
however, encoder-decoder models fall short in this respect. To convert decoders into reusable
modules, the interface connecting them to encoders must: (1) be interpretable, and (2) use a
vocabulary abstraction that generalizes to future tasks.
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Figure 4.2: LegoNN Encoder-Decoder Model: This figure presents the schematics and the
information flow in our LegoNN encoder-decoder model. LegoNN decomposes encoder-decoder
models into reusable modules by: (1) grounding module output into an interpretable vocabulary;
(2) adding an ingestor (ING) to process input marginal distributions; and (3) an output length
controller (OLC) to match the input length of subsequent modules. Blocks with lighter colors in
the figure show reused modules between the MT and ASR tasks without gradient updates.

4.4.1.1 Interpretable interfaces between encoders and decoders

Encoders communicate with decoders through a sequence of continuous hidden representations
that are by-products of the end-to-end model optimization process. These hidden vectors are
uninterpretable and have a completely different meaning for different random seeds and training
hyper-parameters even when the same task, model, and training data are used. As we see from
Equation 4.2, although the decoder is conditioned on encoder states (h¥,) the encoder-decoder
still directly models the conditional next word prediction over the input (Equation 4.4) as these
encoder states have no physical meaning.

To enable reusability between different tasks and models, LegoNN grounds encoder outputs
into a discrete vocabulary that is pre-defined by the model designer. For applications such as ASR
and MT, such intermediate discrete vocabulary can be defined over phonemes, or some byte-pair
encoding (BPE) dictionary (Sennrich et al., 2016; Kudo and Richardson, 2018) driven from the
task labels. The chosen intermediate vocabulary is not necessarily the same as the model’s output
dictionary.

To enforce the desired encoder vocabulary during learning, the decoder token-level cross-
entropy loss is combined with the supervised CTC loss which is applied to the encoder position-
wise, locally-normalized output distributions. Having the CTC loss at the encoder output doesn’t
prevent the flow of gradients between the decoder and encoder modules. We chose the CTC
loss because of its suitability for sequence prediction tasks, which are the focus of the proposed
LegoNN procedure. Following the notation introduced in §4.3, a LegoNN encoder-decoder

30



model effectively models the likelihood for next token prediction given the previous output to-
kens (L1.,-1) and the encoder states (IP’%{CTIC):

P%Attn — P(ystm | ]P)%):CZIC7 Ll:nfl) (47)

Note how the conditional is different from Equation 4.4. Here, the encoder states (IP’%{CITC) are not
simply transformations of the input (X;.7), but are distributions being modeled by the CTC loss
given the input:

PYGC = P(yrr | Xur) (4.8)

This modeling framework allows the decoder module to accept any encoder that produces the
same distribution, Y5, as the decoder was trained toward and hence building an interpretable
interface to enforce modularity between the encoder-decoder modules. The above modeling also
gives the encoder and decoder modules in the LegoNN modular framework specific functional-
ities towards the target task. For example, an MT encoder module is not expected to solve the
overall translation task but rather acts as a word/phrase translation component or an ASR en-
coder module acts as a phoneme/sub-word recognizer whose outputs are later refined using an
auto-regressive decoder.

A LegoNN model is not restricted to contain only two modules; an encoder and a decoder.
There may be a sequence of encoder modules, each designed to perform a certain function through
their respective pre-defined output vocabulary. The ASR system is one example whose encoder
can be divided into two modules, a phoneme recognizer and a pronunciation model, followed by
the auto-regressive language generating module. In this case, the CTC loss is applied more than
once. During learning, LegoNN models optimize a joint loss over each module:

M-1
Fovj = Fer(LY" | PYAm) + Z Fere(LY', PYér) (4.9)

=1

Where M is the total number of modules in the LegoNN system, PY " is the prediction in module 7,
L is the target sequence and )" is the pre-defined vocabulary for L at the interface of module i. All
modules in the LegoNN systems have a CTC loss at their output except the final auto-regressive
decoder module with a token-level CE loss.

Furthermore, applying a supervised loss at the output of each module brings two extra bene-
fits: (a) It extends our ability to evaluate and diagnose the performance on multiple points across
the model. This can guide modeling decisions, e.g. adding more modeling capacity to one mod-
ule over the other. (b) An encoder module may be trained in conjunction with its decoder or
independently by itself. For an ASR task, this may be useful when getting access to more au-
dio training data or adapting the system to new acoustic condition where re-training the decoder
would be wasteful.

31



4.4.1.2 Defining vocabularies that generalize across tasks

As with software libraries, designing a module interface with the right level of generality is chal-
lenging, but enables greater reuse of modules across tasks and domains. To reuse a decoder mod-
ule from an MT LegoNN model to an ASR task, the output vocabulary of the speech encoder must
be compatible with the input vocabulary of the translation decoder. This is true even within a sin-
gle task — for example, in ASR, a vocabulary of phonemes developed for a phoneme recognizer
module in a read speech dataset, e.g. audio books, may not be the best one for spontaneous con-
versational situations, which is full of hesitations and false starts. We propose designing a shared
vocabulary by combining target units of multiple potential future tasks and finding a vocabulary
at their intersection.

4.4.2 LegoNN Encoder-Decoder model

Figure 4.2 provides the schematics of our proposed LegoNN Encoder-Decoder model, which
follows the modeling framework described in the section above. The model is designed to work
for various sequence prediction tasks with various input modalities such as speech or text. The
designed LegoNN modules take into account reusing LegoNN decoder modules across different
tasks such as MT and ASR. For this purpose, we designed a modality agnostic encoder with an
output length controller unit (§4.4.3), which we call the LegoNN encoder as shown in the left
side of Figure 4.2. The LegoNN decoder, as shown on the right side of Figure 4.2, is modified
with an added ingestor component (§4.4.4) that would consume the distributions produced by the
LegoNN encoder. We have detailed the individual modules in the following sections.

4.4.3 LegoNN Encoder

For an input X;.7, which can either be filter banks for speech frames or embeddings for text
tokens, the LegoNN encoder consists of two sets of repeating blocks. The first set of repeat-
ing blocks, like the transformer encoder blocks (Vaswani et al., 2017) simply encodes the input
context through repeating blocks of multi-head self-attention, MHA(z, z, x), and position-wise
feedforward layers, FFN(x).

X = LayerNorm(X); X = X + MHA(X, X, X) (4.10)
Xy = X + FFN(LayerNorm (X)) (4.11)

These blocks are followed by a final LayerNorm(X) that returns an input context-aware represen-
tations of length 7'. Since these lengths can be quite different for different modalities like speech
and text, we add a second set of repeating blocks called the output length controller unit.
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4.4.3.1 Ouput Length Controller (OLC) unit

One of the challenges of using modules across sequential tasks, where inputs and outputs have
different lengths, is adapting the output length of an encoder module trained on one task to match
the expected input length of another. For example, encoder modules from an ASR task encode
inputs in more time steps compared to an MT encoder. Naive up- or down-sampling approaches,
e.g., pooling or replicating time-steps (Libovicky and Helcl, 2018), cover only integer length
ratios, which is either aggressively down-sampling or unnecessarily up-sampling output sequence
lengths. To solve this problem, we introduce an Output Length Controller (OLC) component in
LegoNN encoders to enable working with fractional length ratios between inputs and outputs of
the same module.

OLC is a novel application of cross-attention (Bahdanau et al., 2015) between two groups
of transformer layers in a multi-layer module. Let a layer [ be the last one to process an input
sequence of length 7', X;.7, which we want to convert into K length. The OLC first initializes a

sequence of positional embeddings K, h'E,,

h'E. = SinusoidalPE(1 : K) + LearnablePE(1 : K) (4.12)

where LearnablePE and SinusoidalPE are learnable and sinusoidal positional embeddings respec-
tively (Gehring et al., 2017; Vaswani et al., 2017).

The h}E, representations then pass through the second set of repeating transformer blocks,
which applies cross attention to the learned representations from the first set of transformer blocks,
Xi.r. These repeating blocks consist of multihead self-attention, MHA(y, y, y), multiheaded
cross-attention, MHA (y, z, x), and position-wise feedforward layers, FFN(y).

h™® = LayerNorm(h™) (4.13)
h"® = h*® + MHA (h"E, hE h'E) (4.14)
h™® = h™* + MHA (LayerNorm(h™®), X, X) (4.15)
hi%. = h** + FFN(LayerNorm(h™)) (4.16)

These blocks are followed by a final LayerNorm(h™®), which now returns a sequence of K repre-
sentations encoding the input representations of length 7". These K can be either up-sampling or
down-sampling depending on the input modality. Here we set K as a factor for the input length
that tries to match the length of the output length of the MT and ASR encoder.

4.4.3.2 CTC Interface

Finally the encoder representations, h(%; is transformed into the encoder vocabulary size followed
by a softmax operation, as shown in Equation 4.5, to produce a distribution (IP’%;:C%C) over the
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encoder vocabularies. These distributions are passed to the LegoNN decoder and to the CTC loss
computation.

4.4.4 LegoNN Decoder with Ingestor of probability distributions

The LegoNN Decoder is the standard transformer decoder (Vaswani et al., 2017) with an added
Ingestor (ING) component to consume input marginal distributions from preceding encoder mod-
ules. We propose two ingestor architectures; one that is differentiable, allowing for commu-
nicating gradients between modules, and another discrete one that communicates a ranked list
of hypotheses while keeping the modules gradient-isolated. These ingestor components can be
added on top of any module that accepts a distribution, so in a multi-module system (Equation
4.9) these can be part of a legoNN Encoder.

4.4.4.1 A Weighted Embedding Ingestor (WEmb)

The weighted embedding ingestor (WEmb) computes an expected embedding vector (h) of the
encoder distributions (IP’%{%}C) per output time-step. Since these embedding vectors are formed
out of a local normalized conditionally independent CTC distributions, we need to re-encode the
positional information in these embeddings. We combine the expected embedding vector (h) with
sinusoidal positional embedding (PE) before applying a few layers of self-attention transformer
encoder blocks (Vaswani et al., 2017) (Equation 4.10-4.11) to aggregate information across time-

steps.

h = PY5° % Wemy; h = h + PE(h) (4.17)

h = TransformerEncoder(h) (4.18)

where Pi‘é}? is the output distribution of the previous module i — 1, Wiy, € RP&¢!*d and d is the

input dimension of the current module i, where a module denotes the modularity point as shown
in Equation 4.9.

The first operation, to compute the expected embedding, is equivalent to a 1-D convolution
operation with a receptive field RF=1. When extended to larger receptive fields, WEmb offers
the opportunity to learn local confusion patterns of the previous module: h = COHVID(]P%}?IECI);
with RF > 1.

4.4.4.2 A Beam Convolution Ingestor (BeamConv)

i—1
Rather than using the full output probability values IP’{CI}C , the beam convolution ingestor (Beam-

Conv) uses only the token indices of the top-p, per-position hypotheses, from the output of the
preceding module. This creates an information bottleneck (Tishby et al., 1999) in the model
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Figure 4.3: Benefits of LegoNN: Given a scenario where practioners have an De-En MT sys-
tem and want to build additional ASR and MT systems, with the LegoNN framework, they only
need to build new encoder systems and can directly re-use decoder modules from their inventory.
For example, re-using De-En MT decoder for Ro-En MT task and English ASR task. Addition-
ally, when building an ASR system on a different domain they can re-use components from both
ASR and MT systems like the pronunciation module from the previous ASR system and decoder
module from De-En MT system.

where gradients cannot be communicated.

yi—l
top-p (P77 ) = argma i1 4.19
p-p(P, ") = arg XAcpfcm,w:pZ“ (4.19)

acA

i—1
where ]P’ZCTC is the output distribution at position k& for module 2 — 1. The top-p indices are embed-

ded into d dimensional table, and, similar to the WEmb ingestor, we apply positional embedding
and self-attention transformer encoder blocks. Furthermore, we can also use the 2-D convolution
to aggregate local information.

i—1
r = Embedding <t0p-p(Pi‘}§C )) ; h =ConvlD(r) (4.20)
h=h+PE(h); h = TransformerEncoder(h) (4.21)

where r € RT*¥*4 when beam size =k and RF > 1 for input of 7" time steps.
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4.4.5 LegoNN: Modularity Tests and Benefits of Modularity

To present the efficacy of LegoNN, we subject the LegoNN models to a variety of experiments.
These tests are designed to show that LegoNNs do not compromise on performance, are modular,
and flexible across tasks.

4.4.5.1 Performance Tests

We show that we can build strong LegoNN models that are comparable to the baseline encoder
decoder models across benchmark datasets for both speech recognition (ASR) and machine trans-
lation (MT).

4.4.5.2 Modularity Tests

To show that LegoNN models are indeed modular, we subject LegoNN and the baseline encoder-
decoder to various stress tests that check the modularity of these models. Similar to (Naik et al.,
2018), these tests are designed to check if an encoder-decoder system is modular or not. We
consider three basic tests:
1. Random-Seed Swap - Encoder or Decoder modules trained from a different random seed
should have the same functionality and hence swappable.

2. Architecture Swap - Encoders or Decoders modules trained with different architectures
should have the same functionality and hence swappable.

3. Decoder Plug - Encoders trained in isolation should be able to plug-in to Decoders from
previously trained LegoNN models that have the same interface.

4.4.5.3 Benefits of Modularity

In order to present the benefits of modularity, we consider a practical scenario where practitioners
need to build multiple ASR and MT tasks, as shown in Figure 4.3. In a situation where practi-
tioners have a high resourced De-En machine translation model in their inventory, we show that
with LegoNN models they can save compute resources and leverage the well trained De-En De-
coder by applying Decoder Plug to build systems for other MT and ASR tasks. In particular, we
consider three scenarios:

1. Romanian-English (Ro-En) MT - In order to build a machine translation system for an
under-resourced task such as Romanian-English MT. Practitioners using the LegoNN
framework only need to build the Ro-En LegoNN encoder and re-use the De-En Decoder.
They can also benefit the Ro-En MT task by using the De-En Decoder module trained on
larger corpora.

2. English ASR - Practitioners can also use LegoNN decoders from an MT task for a different
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task on a different modality. The OLC ensures that the expected encoder length for both
MT and ASR task matches, thereby making the De-En Decoder re-usable.

3. Different Domain English ASR - We show that LegoNN modularity points are not limited to
be between Encoder and Decoders. While building an English ASR system on a different
domain, practitioners can re-use components from both the English ASR and De-En MT
system.

All the composed LegoNN models are end-to-end differentiable allowing further fine-tuning to
improve performance if the practitioner has additional compute resources available.

4.5 Experimental Setup

All our encoder-decoder models use the transformer architecture (Vaswani et al., 2017) imple-
mented in the fairseq library (Ott et al., 2019) and run on DGX-1 nodes with 8 NVIDIA V100
GPUs. For both tasks, we apply LayerNorm (Ba et al., 2016) before every residual connection
and a final one at the end of all the transformer blocks. We use Adam optimizer (Kingma and
Ba, 2014) with eps = 1e™? betas = (0.9,0.999), label smoothing=0.1, and a gradient clip norm
= 5.0. More details are provided regarding the data setup and a detailed model description is
provided in Appendix A.1.1, A.1.2 and A.7.1.

4.5.1 Speech recognition task

Data: For our speech recognition experiments, we follow the standard 300 hours Switch-
board (LDC97S62 (Godfrey and Holliman, 1993)) setup, and the Switchboard (SWB) and
CallHome (CH) subsets of the HUBS5 Eval2000 set (LDC2002S09 (Consortium, 2002b),
LDC2002T43 (Consortium, 2002a)) for testing. We follow the data preparation setup of
ESPNET (Watanabe et al., 2018), where we have 100 and 2000 target SentencePiece (Kudo and
Richardson, 2018) units trained on the 300h text. We follow the same recipe for processing
the TED-LIUM (Rousseau et al., 2014) and Europarl (Iranzo-Sénchez et al., 2020) data, with
phonemes generated using (Park and Kim, 2019), detailed in Appendix A.1.2. We use the last
model for inference with a beam size of 20 and length penalty of 1.0. We do not use an external
LM or joint decoding over the encoder and decoder output (Watanabe et al., 2018). [0.05in]
Model architecture: Input features are processed using two 2-D convolution blocks with 3 x 3
kernels, 64 and 128 feature maps respectively, 2 x 2 maxpooling, and ReLU non-linearity. The
baseline model uses transformers (Vaswani et al., 2017) with 16 encoder blocks and 6 decoder
blocks, each with 1024 dimensions, 16 heads, 4096 feed-forward units, and Sinusoidal positional
embeddings are added to the output of the convolutional context layers (Mohamed et al., 2019).
For the LegoNN encoder-only model trained using the CTC loss, we use the same architecture
as the encoder of the baseline model along with a length control unit which reduces the length of
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the input by a factor of 1.5 with a maximum allowable length of 230 time-steps. These positional
embeddings are then passed through 6 layers of transformer layers with cross-attention as
described in §4.4.3. The LegoNN decoder uses the same architecture as the baseline decoder.
All Ingestor components (§4.4.4) use RF=1, 3 layers of transformers with 1024 dimensions, 16
heads and 4096 feed-forward layer. The BeamConv ingestor uses K=10, and embedding size=
100.

Training: We use an average batch-size=300 utterances, weight decay=1e¢~°, and Ir=1¢3
with 35k warm-up steps then exponentially decay to 5¢=% over 44k steps. We follow the SS
augmentation policy of SpecAugment (Park et al., 2019) without time-warping.

4.5.2 Machine translation task

Data: We train our models on the standard 4.5M dataset from WMT En-De task, as used by
(Vaswani et al., 2017; Ott et al., 2018). We filter the training data to have a length ratio of 1.5
with 250 as max tokens. We test them on the newstest2011-2016 sets excluding the newstest2013
for the validation set. We use the shared 32K BPE vocabulary (Sennrich et al., 2016) provided
by (Vaswani et al., 2017). We average a moving window of 10 checkpoints, and pick the one
with the best validation BLEU score. A beam of 5 and length penalty of 0.6 are used for de-
coding. Models are evaluated on case-sensitive tokenized BLEU with compound-splitting using
multi-bleu.pl (Moses-SMT, 2018). For De-En decoder models, we use the WMT19 data and
prepare it as needed for the transfer task, detailed in Appendix A.1.1 and A.1.2. For the WMT16
Ro-En task, we use the data prepared by (Lee et al., 2018).

Model architecture: The baseline model uses transformers (Vaswani et al., 2017) with 12 en-
coder blocks and 6 decoder blocks, each with 1024 dimensions, 16 heads, 4096 feed-forward
units, and sinusoidal positional embeddings. All embedding tables are shared across the model.
To control for the extra parameters in the proposed LegoNN models, we added 6 additional en-
coder blocks which improved the baseline model. Other strategies for using these parameters
in the baseline model yielded inferior performance. The LegoNN encoder model uses 12 trans-
former blocks with 1024 dimensions, 8 heads, and 2048 feed-forward units, with OLC, upsam-
pling the input length by a factor of 2, applied to the second half of the encoder. The LegoNN
decoder use the same architecture as the baseline decoder. All Ingestor components (§4.4.4) use
RF 1, 3 layers of transformers with 1024 dimensions, 16 heads and 4096 feed-forward units. The
BeamConv ingestor uses K=200 and embedding size=300. Input embedding tables are shared
with encoder, ingestor, and decoder tables where applicable.

Training: We use an average batch-size=4000 sentences, weight decay=0.1, and lr=1¢~? with
35k warm-up steps then inverse square root decay for 45k steps.
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Figure 4.4: With reference performance of LegoNN models of Tables 4.1 and 4.2 (normaliza-
tion to 100% enables us to plot ASR and MT performances in the same graph), we show the
interchangeability of LegoNN models compared to traditional enc-dec models under three condi-
tions: swapping encoder and decoder modules of two models trained with different random seeds
(left), swapping modules between LegoNN models with different architectures and trained with
different ingestor types (middle), and matching arbitrary decoder modules with LegoNN encoder
modules trained in-isolation (right).

4.6 Results

The objective of our experiments is to demonstrate the feasibility of reusing LegoNN modules
between ASR and MT tasks, as presented in the four scenarios on the right side of Figure 4.3.

4.6.1 Performance of LegoNN models

First, we show the performance of LegoNN models on their original tasks, without sharing any
modules. Table 4.1 and 4.2 show the performance of models trained > with the LegoNN procedure:
A CTC loss over an intermediate vocabulary at the encoder output with the proposed output
length controller (OLC) and ingestor (ING) components for both ASR and MT benchmarks. For
the WMT task, our best LegoNN model with the WEmb ingestor is only 0.8 BLEU behind our
strong baseline encoder-decoder model (better than the publicly available reference model by
(Ott et al., 2018)*) while being composed of modular reusable pieces (as we show in §4.6.2 and
§4.6.3). For the ASR task, our LegoNN models reach the same level of performance as the
baseline encoder-decoder model. The good ASR performance of the gradient-isolated case of
the BeamConv ingestor shows that the ASR task is amenable to decomposition of linguistic unit
recognition and language generation components. *

2Table 4.1 and 4.2 report averaged scores over three random seeds.

3We downloaded the public model by (Ott et al., 2018) to score the newstest2011-2016 test sets which weren’t
reported in their original paper.

4Using CTC models with language models is common for ASR (Miao et al., 2015; Amodei et al., 2016) and
there can be some confusion regarding the relation of LegoNNs with them. We discuss this in the Appendix A.7.
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Table 4.1: BLEU Scores (1) on WMT for LegoNN and baseline enc-dec MT models.

Loss Criterion WMT En—De

MT Task CTC CE  dev(l) test(])
Scaling NMT (Ott et al., 2018) X 4 273 28.0°
Baseline Models (Our Implementation)

Baseline Enc-Dec X v 27.6 28.3
LegoNN Models

Encoder Only v X 19.1 18.5

Encoder + BeamConv Decoder v/ v 26.7 26.9

Encoder + WEmb Decoder v v 27.2 27.5

Table 4.2: % WER (]) on SWBD 300h (no LM) for LegoNN and baseline enc-dec ASR models.

Loss Criterion Eval 2000

ASR Task CTC CE SWB() CH(})
LAS + SpecAugment (Park et al., 2019) X v 73% 14.4%
IBM SWBD 300h (Tiiske et al., 2020) X v 7.6%  14.6%
ESPNET (Karita et al., 2019) v v 9.0% 18.1%
Kaldi Hybrid system (Povey et al., 2016) LF-MMI 8.8% 18.1%

Baseline Models (Our Implementation)
Baseline Enc-Dec X v 8.5% 18.0%
LegoNN Models

Encoder Only v X 11.5% 24.1%
Encoder + BeamConv Decoder v v 8.5% 18.2%
Encoder + WEmb Decoder v v 8.4% 18.2%

4.6.2 Modularity of LegoNN models

Figure 4.4 shows that LegoNN are modular; the decoder modules can be reused with encoders
from other models for the same task >(section §4.6.3 presents cross-task performance). The 100%
reference level refers to the respective performance of the LegoNN and encoder-decoder models
from Table 4.1 and 4.2. Normalizing the scores with respect to their reference performance al-
lows us to plot ASR and MT systems in the same figure. For both ASR and MT tasks, with no
fine-tuning, the performance barely changes when modules are swapped between two different
models trained with different random seeds or completely different architectures, even though
these two models have different learning dynamics due to the use of different ingestor types (Fig-

3 All statistics computed in Figure 4.4 report averaged scores across all possible combinations of mixing three
random seeds from each module.

40



Table 4.3: BLEU scores (1) on Ro-En MT task using a LegoNN model composed of a decoder
from a De-En MT model and an encoder-only module trained on Ro-En data.

MT Task Ro—En BLEU (1) GPU Hours ()
Baseline Ro-En Enc-Dec 34.0 144
LegoNN Encoder only 30.7 120°
+ DE-EN WMT LeEcoNN MoDULES

BeamConv Decoder 33.0 0’
WEmb Decoder 35.0 0’

ure 4.4, left and middle). The right side of Figure 4.4 presents the case where a LegoNN encoder
module is trained in isolation of any decoder module using a CTC loss, for either ASR or MT, then
matched with an arbitrary decoder module at inference time. This is the most challenging condi-
tion, especially for the MT task. Relying entirely on the indices of top-p hypotheses, rather than
their floating point marginal probabilities, the BeamConv ingestor shows more robustness when
reused within the same task as compared to the WEmb ingestor. The traditional encoder-decoder
models, which is built without reusability in mind, fail completely under all these conditions
(shown on the right side of the three sub-figures).

4.6.3 Transfer of LegoNN modules across tasks

LegoNN modules can be reused across tasks with no fine-tuning and with almost no performance
degradation. Table 4.3 shows the improved MT performance by 1.0 BLEU point when a Ro-
En LegoNN encoder module is composed with a LegoNN decoder module that is trained on
the De-En data (the second LegoNN scenario in Figure 4.3). Table 4.4 takes this a step further
by mixing an MT trained decoder (De-En data) with an ASR trained encoder on the Europarl
speech dataset (the third LegoNN scenario in Figure 4.3). The BeamConv ingestor depends on
a fixed beam size k£, which cannot be changed after initial training of the decoder module. This
explains the inferior performance for the BeamConv as compared to the WEmb ingestor (which
uses the full marginal distribution) when reused in a new task.  To demonstrate the flexibility
in building sequence-to-sequence models with LegoNN, Table 4.5 shows the fourth LegoNN
scenario in Figure 4.3. A pronunciation modeling module trained on the TED-LIUM dataset is
used in conjunction with a phoneme recognition module trained on the Europarl dataset. Then, a
decoder trained on the De-En WMT task is added to the ASR model to bring the final WER, with
no fine-tuning updates, just 0.6% from the baseline encoder-decoder model. The TED-LIUM
dataset is used in this experiment because it is closer in speaking style to Europarl. Both the
public TED talks and the Parliament speeches exhibit similarities in speaking style and are not
as spontaneous as the Switchboard data. However, there is a clear domain mismatch which is
apparent in the 26.7% WER of the initial TED-LIUM system when evaluated on the Europarl
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Table 4.4: % WER ({) on Europarl ASR task using a LegoNN model composed of a decoder
from a De-En MT model and an encoder-only module trained on Europarl ASR data.

ASR Task Europarl % WER () GPU Hours (])
Baseline Europarl Enc-Dec 18.4% 22
LegoNN Encoder only 19.5% 13¢
+ DE-EN WMT LeGoNN MoDULES

BeamConv Decoder 22.8% 0’
WEmb Decoder 18.4% 0’

Table 4.5: % WER on the Europarl test with ASR encoder decomposed into two modules. Mod-
ules trained on the TED-LIUM dataset are combined with ones trained on Europarl and WMT
to bring the overall WER of the LegoNN ASR system just 0.6% from the baseline with no fine-
tuning.

ASR Task Europarl % WER ({)
Baseline Europarl Enc-Dec 18.4%
TED. Phoneme Recognizer + TED. Pronunciation Model 26.7%
Europarl Phoneme Recognizer + TED. Pronunciation Model 20.5%
Europarl Phoneme Recognizer + TED. Pronunciation Model + De-En WMT Decoder 19.0%

test set. Utilizing LegoNN to develop models for new tasks benefits from the data-efficiency
of encoder-only modules (Additional experiments regarding the data-efficiency of encoder-only
models is shown in Appendix A.6) and overall shorter development time, e.g., 13 vs 22 gpu-hours
on Europarl ASR and 120 vs 144 gpu-hours on Ro-En WMT. ¢’

4.6.4 Fine-tuning of LegoNN models

So far, we showed matching or better results for LegoNN models composed of pre-trained mod-
ules with no fine-tuning. Given that LegoNN decoders with the WEmb ingestor preserve full dif-
ferentiability, such LegoNN models composed of pre-trained modules can be fine-tuned towards
the target task. Table 4.6 shows that fine-tuning the De-En decoder with the Ro-En encoder
achieves another 0.5 BLEU point, leading to an improvement of 1.5 points over the baseline
model. Although the non-fine-tuned two-module LegoNN model is better than the three-module
one for the Europarl English ASR task, fine-tuning LegoNN models composed of two pre-trained
modules achieved 12.5% WER reduction, compared to a 19.5% reduction for the three-module
one. Fine-tuning the three-modules helped reduce the domain mismatch while preserving the

®GPU hours for encoder training can be improved further by using CuDNN based CTC implementation (nvidia,
2022)

"Composing LegoNN decoders with the LegoNN encoders, is a simple plug and play and doesn’t require any
fine-tuning steps. So no additional gpu hours is used for the decoder.
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Table 4.6: BLEU (1) on Ro-En WMT and %WER ({) on Europarl ASR task for the LegoNN
models before and after end-to-end fine-tuning of the model composed of modules from different
tasks in Table 4.3, Table 4.4 and Table 4.5.

Composed LegoNN Model No fine-tuning With fine-tuning Metric
Table 4.3: Ro-En WMT Encoder + De-En WMT Decoder 35.0 35,5 BLEU(1)
Table 4.4: Europarl ASR Encoder + De-En WMT Decoder 18.4 16.1 % WER ({)
Table 4.5: Europarl Phoneme Recognizer + TED. Pronun. Model + De-En WMT Decoder 19.0 148 % WER ({)

benefits of the TED-LIUM data.

4.7 Related work

This work is related to the large body of work on probabilistic modeling for ASR and MT (Je-
linek, 1997; Brown et al., 1990) where predictors produce normalized probabilities to be easily
combined. However, probabilistic models only combine output scores as opposed to chaining
modules while preserving their full differentiability as in LegoNN models. Hierarchical mixture
of experts (Jordan and Jacobs, 1994) and Graph transformer networks (Bottou et al., 1997) mo-
tivated this work, however, the first doesn’t ground intermediate representations and the second
communicates them in the form of directed graphs.

The proposed LegoNN procedure builds upon several research efforts for sequence to se-
quence learning. Encoder-decoder models for machine translation (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Bahdanau et al., 2015; Vaswani et al., 2017) and speech recogni-
tion (Chan et al., 2016; Bahdanau et al., 2016) form the basis of this work. Although the CTC
loss (Graves et al., 2006) has first been applied to speech recognition (Graves et al., 2013; Sak
et al., 2014; Hannun et al., 2014a; Chan et al., 2020), more recently it was shown effective for
machine translation as well (Libovicky and Helcl, 2018; Saharia et al., 2020). This encourages
us to utilize the CTC loss for enforcing the intermediate vocabulary in LegoNN. Other non-
autoregressive sequence to sequence mapping methods (Gu et al., 2018; Ghazvininejad et al.,
2019, 2020a; Chen et al., 2019) are potential alternatives. The CTC loss has been combined with
the cross-entropy loss in encoder-decoder speech recognition systems to encourage monotonic
alignment between input and output sequences (Kim et al., 2017; Karita et al., 2019). Different
from LegoNN, their decoder attends over the encoder hidden output representations, maintaining
their tight coupling.

There have been many proposals for inducing a modular structure on the space of learned
concepts either through hierarchically gating information flow or via high-level concept
blueprints (Andreas et al., 2016; Devin et al., 2017; Purushwalkam et al., 2019) to enable zero-
and few-shot transfer learning (Andreas et al., 2017; Socher et al., 2013; Gupta et al., 2020;
Pathak et al., 2019).
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4.8 Conclusion

In this chapter, we presented the LegoNN procedure for constructing encoder-decoder models
that are composed of reusable modules. LegoNN models preforms competitively to the best
encoder-decoder ASR and MT models on large scale benchmarks. A key to reusable modules is
a pre-defined vocabulary that is shared between many tasks across which modules can be reused.
Without any fine-tuning steps, a LegoNN decoder trained for the De-En WMT task can replace an
ASR decoder module without any impact on performance, and provide better generation quality
for a Ro-En WMT task. When fine-tuned for few thousand steps, LegoNN models composed
from multiple tasks and domains improve Ro-En WMT baseline model by 1.5 BLEU points and
provide up to 19.5% WER reductions to the Europarl English ASR task.
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Chapter 5

Joint CTC/Attn Models for
Non-Monotonic Sequence Tasks

This chapter builds upon Chapter 4 and (Kim et al., 2017) to build joint CTC/Attn Models for non-
monotonic tasks like speech and machine translation. Inspired by the principles of task composi-
tionality we build Hierarchical encoders that perform reordering and length-adjustment thereby
validating the length and monotonicity assumptions for CTC. We also present two joint decod-
ing strategies for models that jointly model both CTC and Attention based models. They further
strengthen our proposed systems as these strategies can be directly applied to the legoNN models
shown in Chapter 4. Additionally, the techniques introduced in this chapter for building CTC
encoders can be used to extend the CTC Hybrid Systems (Chapter 3) towards non-monotonic
tasks like speech and machine translation.

5.1 Joint CTC/Attention for Speech and Machine Translation

Connectionist Temporal Classification (CTC) is a widely used approach for speech recognition
that performs conditionally independent monotonic alignment. At first sight, this may seem very
different than the standard attentional approaches to machine translation. However, we show that
the distinct properties of these approaches are actually complementary in joint CTC/attention
based translation when effectively coerced into a single network. We first propose to jointly train
encoders with an initial length-adjustment stage followed by a target-oriented re-ordering stage.
Encoding inputs in this hierarchical manner produces representations that are monotonic with
respect to the output, easing the alignment burden of the attentional decoder. We then propose
to jointly decode by synchronizing likelihood estimation along hypothesis expansion via step-
wise input consumption or output production. Since CTC does not model dependencies between
outputs and determines output lengths using hard alignment information, it complements the
autoregressive generation of attentional decoders which are prone to exposure, label, and length
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biases. Our joint models outperform pure-attention baselines across six benchmark text-to-text
(MT) and speech-to-text (ST) tasks.

5.2 Introduction

Connectionist Temporal Classification (CTC) (Graves et al., 2006), a non-autoregressive se-
quence transduction framework, has seen a recent surge in machine (MT) and speech translation
(ST) (Xiao et al., 2022). Originally proposed for automatic speech recognition (ASR), CTC
predicts monotonic alignments of output units to input frames of speech with a conditional
independence assumption that each frame-level prediction can be made independently. At first
glance, the aforementioned properties seem to make CTC poorly fit for translation. Unlike ASR,
translation contains non-monotonic input-to-output mappings due to word-order differences
(Bahdanau et al., 2015; Ghazvininejad et al., 2020a) and expansion where outputs may be longer
than inputs (Haviv et al., 2021). Additionally, context is often required to coherently and faith-
fully translate original meanings (Qian et al., 2021a; Yin et al., 2021). ST is further complicated
by the compositional nature of the task as it requires both recognizing and translating the input
(Dalmia et al., 2021; Bahar et al., 2021).

Still, CTC’s promise of fast, parallelized, and streaming compatible inference has enticed
the non-autoregressive translation community (Saharia et al., 2020; Kasai et al., 2021). Various
up-sampling techniques (Libovicky and Helcl, 2018; Dalmia et al., 2022) have been proposed to
overcome CTC’s assumption that the input length is at least as long as the output. Further, self-
attention has been shown to be effective for handling non-monotonic mappings (Chuang et al.,
2021) and hierarchical multi-tasking has been shown to be effective for task composition (Deng
et al., 2022; Yan et al., 2022b). Despite these cumulative efforts, purely CTC-based methods in
MT and ST currently lag behind their autoregressive counterparts and have not reached the same
prevalence as they have in ASR (Gu and Kong, 2021; Inaguma et al., 2021a).

Inspired by the success of Hybrid CTC/Attention in ASR (Watanabe et al., 2017), we in-
vestigate jointly modeling CTC with an autoregressive attentional encoder-decoder for transla-
tion. Our conjecture is that the monotonic alignment and conditional independence properties of
CTC, which weaken purely CTC-based translation, actually strengthen the joint modeling sce-
nario through three mechanisms: (1) by encouraging input representations to be re-ordered such
that they are monotonic with respect to the output, thereby simplifying the task of the attentional
decoder, (2) by augmenting autoregressive likelihood estimation with conditionally independent
likelihoods that do not model dependence between outputs, easing exposure/label biases that
inhibit generalization towards unseen scenarios and (3) by incorporating the hard input-output
alignments into the decoding process, thereby making it easier for the decoder to generate sen-
tences that are the correct length compared to standard autoregressive models

We first propose a hierarchical encoding scheme for effective joint training of CTC and atten-
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tional decoders with a shared encoder. By decomposing input-to-output alignment into an initial
length-adjustment stage followed by a re-ordering stage, we resolve the critical incompatibility
between CTC’s monotonic alignment property and the functional demands of MT/ST. We fur-
ther propose a generic one-pass beam search algorithm for efficient joint decoding of CTC and
attentional likelihoods which can synchronize hypothesis expansion along either the output or
input axes. Qutput-synchronous one-pass beam search proposes candidates at each step using
autoregressive decoder output posteriors and augments likelihood estimations of the resulting hy-
potheses using CTC prefix scoring. The Input-synchronous variant proposes candidates using
conditionally independent CTC input-to-output alignment posteriors and augments likelihood es-
timations using the decoder.

We show the efficacy of joint CTC-Attention for MT and ST on multiple language-pairs and
in multilingual settings; both joint training and joint decoding yield improvements over attention-
only baselines (§5.6). We demonstrate conjecture (1) by examining the monotonicity of decoder
source attention in our proposed models (§5.6.2). This monotonicity alleviates the burden of
variable word-ordering across languages, allowing multilingual decoders to more efficiently share
source attention parameters across languages (§5.6.2). We demonstrate conjecture (2) by showing
superior performance of our joint models when tested towards out-of-domain scenarios (§5.6.3).
We demonstrate conjecture (3) by examining the stability of length prediction in joint decoding.
We find that output lengths can be smoothly controlled in joint models while purely autoregressive
models degenerate for long output lengths (§5.6.3). Finally, we present the choice of input vs.
output-synchronous one-pass beam search as proposition of speed vs. accuracy (§5.6.4).

5.3 Background and Motivation

This section first provides a general formulation of seq2seq transduction before showing how
CTC and attentional decoder models function under this formulation in §5.3.1 and §5.3.2 respec-
tively. We also discuss the previously proposed Hybrid CTC/Attention architecture for ASR
(Watanabe et al., 2017) in §5.3.3. We form conjectures regarding the key mechanisms behind the
empirical findings of this prior work, motivating our approach in §5.4.

Seq2seq transduction is a mapping of a T-length input sequence, X = {x; € S™|t =
1,...,T}, to an L-length output sequence, Y = {y; € V*¢|l = 1,...,L}.! Using Bayesian de-
cision theory, we seek output, Y, from all possible sequences, V'&x:

Y = argmax P(V|X) (5.1)
Yevie

where P(Y'|X) is the posterior distribution. CTC and attentional decoders both follow this frame-

'In ASR, MT, and ST, the output sequences consist of discrete vocabulary units while the input sequence may
be real or discrete depending on whether the source is speech or text.
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work, but do so with different modeling properties.

5.3.1 CTC Models

CTC (Graves et al., 2006) is from a family of alignment-based networks (Hinton et al., 2012;
Graves, 2012) which find warping paths between sequences of different lengths such that each
unit in the input is mapped to a unit in the output. Input-to-output alignment is an important
property of CTC, but requires several modeling assumptions.

First, CTC makes a length assumption that the T-length inputs are at least as long as the L-
length outputs.? This allows for the introduction of alignment sequences which are of identical
length to the input, Z = {z, € V' U {@}|t = 1...T}, where @ denotes a null emission.
Instead of producing output posteriors, P(Y|X), CTC produces alignment posteriors, P(Z|X).
Every alignment sequence, Z, maps deterministically to an output sequence, Y, using CTC’s
repeat and blank removal operations.> Note that this Z — Y operation compresses Z without
any possibility of re-ordering where if 2; — y;, z» — y;s, and @ < 7’ then it must be true that
j < j'. Therefore CTC requires a monotonicity assumption that the input-to-output warping path
can be modeled by one-to-one input-to-alignment mapping (via P(Z|X) posterior) followed by
monotonic alignment-to-output compression (via blank/repeat rules).

Since there may be a number of Z which map to the same Y, CTC estimates the output
posterior during training, P(Y'|X), by marginalizing over alignment posteriors, P(Z|X), for
the set of all alignments that map to the output, Z(X,Y’). Further, CTC makes a conditional
independence assumption, yielding an estimation of Eq. (5.1):

PY|X)~ > HPzt!X Z1e=T) (5.2)

ZeZ(X\Y)

~

& Pere(Z1X)

Critically, this conditional independence assumption grants the Markov property for efficiently
computing Eq. (5.2) via dynamic programming during inference. Conditional independence
also allows CTC to eschew exposure and label biases (Hannun, 2019) that are apparent in their
autoregressive counterparts (Bottou et al., 1997; Ranzato et al., 2016).

5.3.2 Attentional Decoder Models

While CTC approximates the Bayesian formulation in Eq. (5.1), the attentional decoder exactly
models the likelihood of output units, P(y;|y;.-1, X ), conditioned on the input, X, and the pre-

2L < T holds true for most cases in ASR and ST, it does not in MT. We address this limitation in §5.4.1.1.
3If Z = [a, 2, a, b, b], repeat removal first yields Z’ = [a, &, a, b] before blank removal yields Y = [a, a, b].
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viously generated output sequence, y;.,_1, as follows:

L
PAttn(Y’X) 2 H P(yl‘ylzl—la X) (5.3)

=1

Compared to the conditionally independent CTC, the autoregressive attentional decoders enable
contextualization. However, the local normalization for P(y;|y;.—1, X ) engenders exposure and
label biases (Bottou et al., 1997; Ranzato et al., 2016).

Since the attention mechanism performs soft-alignment of input-to-output (Bahdanau et al.,
2015), there is also no monotonicity assumption as in CTC. This allows for flexible mappings,
which are fit for translation tasks with large amounts of re-ordering, but prior works have shown
that too much flexibility can destabilize optimization (Kim et al., 2017). Lastly, output lengths are
not aligned with input lengths as in CTC. Instead, the attentional decoder is as an autoregressive
generator where generation is stopped by introducing a special stop token, <eos>, to the output
vocabulary, y; € V' U {<eos>}. Since these models need to predict P(y; = <eos>|y1,-1, X),
label bias with respect to the stop token, <eos>, manifests as a brevity problem (Murray and
Chiang, 2018).

5.3.3 Joint CTC/Attention Modeling for ASR

As previously shown by (Kim et al., 2017; Watanabe et al., 2017), jointly modeling CTC and
an attentional decoder is highly effective in ASR. Not only was overall performance improved
over CTC-only and attention-only approaches, joint modeling was showed faster and more robust
convergence during training. Per conjecture (1), the mechanism behind these improvements is
the enrichment of encoder representations with target-oriented alignment information, which
reduces the input-to-output alignment burden on the attentional decoder.

The foundation of this architecture is a shared encoder, Enc, which feeds into both CTC,
Perc(+), and attentional decoder, Payy(+), posteriors:

h = Enc(X) (5.4)
PCTC(Zt|X) = CTC(ht) (55)
P (| X, y14-1) = Dec(h, y14-1) (5.6)

where CTC(-) denotes a projection to the CTC output vocabulary, V' U{ &} followed by softmax,
and Dec(-) denotes autoregressive decoder layers followed by a projection to the decoder output
vocabulary, V'¢ U {<eos>}, and softmax. The joint network is optimized via a multi-tasked
objective, LASR = LASR + A\LASR where \ interpolates the CTC loss and the cross-entropy loss
of the decoder.
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Watanabe et al. (2017) propose to jointly decode with a one-pass beam search approximating:

~

Y = argmax{( Z PCTC(.)) X PAttn(->/\} (5.7

Yevietx Zez

where ¥ represents the most likely output from all possible outputs, V'¢'x. Watanabe et al. (2017)
found that joint decoding improves over attention-only decoding and stabilizes the hypothesis
lengths. Per conjecture (2), the mechanism behind the former effect is the conditional indepen-
dence of CTC likelihood estimations, which eases the exposure and label biases of the attentional
decoder. Per conjecture (3), the mechanism behind the latter effect is the output length informa-
tion inherent in CTC’s input-to-output alignment likelihoods, which eases the length problem of
the attentional decoder.

5.4 Proposed Joint CTC/Attn for MT/ST

In training, our objective is to apply joint CTC/Attention modeling in translation to enrich a
shared encoder with target-oriented alignment information. The joint CTC/Attention construc-
tion with a monolithic encoder (§5.3.3) has several key limitations when applied to translation.
Firstly, we need to relax the monotonicity assumption (§5.3.1) of CTC to fit the MT/ST tasks.
Further, for MT we seek to account for the length assumption of CTC, and for ST we seek to rec-
ognize before translating the input. We therefore propose to use a hierachical encoding scheme
(§5.4.1) which first aligns inputs to length-adjusted source-oriented encodings before aligning to
re-ordered target-oriented encodings.

In decoding, our objective is to improve generalization and end detection by augmenting
autoregressive likelihoods with conditionally independent CTC alignment likelihoods. Our pro-
posed joint decoding method is a synchronous one-pass beam search (§5.4.2) which can perform
either output or input-synchronous hypothesis expansion (§5.4.2.1). We theorize that while both
variants are valid approximations of the joint decoding objective, input-synchronous is expected
to be faster while output synchronous to be more accurate (§5.4.2.2).

5.4.1 Hierachical Encoding for MT/ST

In order to build target-oriented encodings for translation, we decompose the process into two
functions: length-adjustment and re-ordering. For MT, we up-sample the lengths of the source-
oriented encodings in order to satisfy the length assumption of CTC (§5.3.1). For ST, we down-
sample the lengths of the source-oriented encodings to coerce a discrete textual representation
of the real-valued speech input. We enforce source-orientations using CTC criteria that seek to
align intermediate encoder representations towards source text sequences.
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Figure 5.1: Hierarchical MT/ST encoders where representations are first up/down-sampled by
SrRcENcyp/sT and then re-ordered by TGTENCy/sT.

We then obtain target-oriented encodings with hierarchical encoder layers, where re-ordering
is enforced using CTC criteria that seek to align final representations towards target text se-
quences. This style of hierarchical encoding via intermediate CTC supervision has been ap-
plied successfully for various multi-objective scenarios (Sanabria and Metze, 2018; Higuchi et al.,
2022; Deng et al., 2022; Yan et al., 2022b). For our purposes, the intermediate supervision to-
wards source text allows for the compartmentalization of length-adjustment to the initial encoder
layers, leaving only the task of re-ordering of text-to-text for latter encoder layers.

5.4.1.1 MT/ST Encoder Architectures

As shown in Figure 5.1, our MT and ST hierarchical encoders consist of the following compo-

nents:
hSRC = SRCENCMT/ST(X) (58)
Pere (27| X)) = SReCTCyrrys (hi*) (5.9)
h™" = ToTENCyrst(h5™) (5.10)
Pere (27| X)) = TarCTCyryst(h; ) (5.11)

where SRcEncyr(+) is realized by N; Transformer (Vaswani et al., 2017) layers followed by
N5 up-sampling LegoNN Output Length Controller (OLC) layers (Dalmia et al., 2022), while
TGoTENCyr(-) is realized by N3 non-up-sampling LegoNN OLC layers. We chose LegoNN based
on its previously demonstrated effectiveness for up-sampling textual representations.
SrcEncgr(+) is realized by N convolutional blocks for downsampling (Dong et al., 2018) fol-
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Algorithm 1 General One-Pass Beam Search: lines 10/11 invoke output/input-synchronous vari-
ants.
1: procedure SEArRcH(X, N, STEP, b, p)
2 topPrtHs = {<sos>: 1.0}; allEndHs = {}
3 for: € N do
4 prtHs, endHs = Step(topPrtHs, X, ¢, p, N)
5: topPrtHs = top-k(prtHs, k = b)
6
7
8
9

allEndHs = allEndHs U endHs
end for
return top-1(allEndHs)
: end procedure

10: Searcu(X, maxL, OutpuTSTEP, b, D) > output-sync
11: Searcu(X, T, INpUuTSTEP, b, D) > input-sync

lowed by N, Conformer (Gulati et al., 2020), while TGTENcgr(-) is realized by N3 Conformer lay-
ers. We chose Conformer based on its previously demonstrated effectiveness for modeling local
and global dependencies in speech signals. The hierarchical encoders are jointly optimized with
an attentional decoder using a multi-tasked objective, £ = Lsrccte + A1 Lrerere + Ao Larm, Where
A’s interpolate between source-oriented CTC, target-oriented CTC, and decoder cross-entropy.

5.4.2 One-Pass Synchronous Joint Decoding

In order to make the joint decoding in Eq. (5.7) computationally tractable, we need to estimate
CTC and attentional decoder likelihoods on a subset of all possible output sequences, V' C V'€,
There are a family of two-pass decoding algorithms (Watanabe et al., 2017; Sainath et al., 2019),
which accomplish this by first estimating the likelihoods of V' with one module and then re-
scoring the estimates with the other module. In these approaches, the subset V' is determined
asynchronously, meaning the joint likelihood is not considered until the re-scoring step. If the
attentional decoder is used to determine V', then V' would suffer from exposure/label bias and the
length problem (§5.3.3). On the other hand, if CTC is used to determine ), the lack of contextual
modeling in CTC leads to poor estimates of V' — particularly for translation.

Instead, we synchronize the two likelihood estimators along the hypothesis expansion step of
beam search. This way the selection of V' considers the joint likelihood in a one-pass synchronous
beam search, removing the problematic first-pass of the two-pass approaches. Watanabe et al.
(2017) achieve one-pass joint decoding by synchronizing hypothesis expansion along with the
step-wise production of output units by the attentional decoder. We consider this to be an output-
synchronous one-pass beam search. It is also possible to perform an input-synchronous one-pass
beam search, where hypotheses are expanded along with the step-wise consumption of input units

*Input-synchronization was previously applied for decoding CTC/LM (Hannun et al., 2014b) and RNN-T (Saon
et al., 2020), but not for jointly decoding CTC/Attentional decoder.
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Algorithm 2 Output-Synchronous Step Function: Algorithm 3 Input-Synchronous Step Function:
attentional decoder proposes candidates to expand CTC proposes candidates to expand hypotheses
hypotheses which are all of /-length at step /. which are all produced from ¢ input units at step z.

1: procedure OUTPUTSTEP(prtHs, X, [, p, maxL) 1: procedure INPUTSTEP(prtHs, X, t,p, T)
2:  newPrtHs = {}; endHs = {} 2 newPrtHs = {}; endHs = {}
3 for y1.;1 € prtHs do 3 CTCCnds = top-k(Pcrc(2¢|X),k = p)
4: attnCnds = top-k(Paun (v:|X, y1:1—1),k = p) 4: for y € prtHs do
5: for ¢ € attnCnds do 5: for ¢ € CTCCnds do
6

if (c~is @) or (cis y[-1]) then

Hypothesis  7: y=y
6: Y1 = Y1:1-1 D C Expansion 8: else
9: y=y®dc
10: end if
7: acrc = CTCScore(y1:1, X1:1) 11: acrc = CTCScore(F, X1:¢)
8: aamn = AttnScore(yi:1, X1:7) Joint 12: A = AttnScore(y, X1.1)
9: B = LengthPen(y1.) Scoring 13: B = LengthPen(7)
10: Paeam (y1:1|X) = acrc + aam + 3 14: Paeam (7| X) = acrc + aar + 8
11: if (c is <eos>) or (I is max L) then 15: if t is T then
12: endHs[y1.1] = Pgeam(*) End 16: endHs([j] = Pgeam(-)
13: else Detection 17: else
14: newPrtHs[y1.] = Peam(*) 18: newPrtHs[§] = Pgeam(+)
15: end if 19: end if
16: end for 20: end for
17: end for 21: end for
18: return newPrtHs, endHs 22: return newPrtHs, endHs
19: end procedure 23: end procedure

(and production of input-to-output alignment units) by CTC.* In fact, both variants can be unified
under a general one-pass beam search algorithm as shown in Algorithm 1. The two variants are
distinguished only by the iteration range, N, and beam step function, STEP.

5.4.2.1 Input/Output-Synchronous Beam Steps

As shown in Algorithms 2 and 3, both beam step functions consist of the same operational blocks:
hypothesis expansion, joint scoring, and end detection. However, the inner-workings differ.

The OutpuTSTEP performs hypothesis expansion by computing the attentional decoder’s out-
put posterior at label step I, Pau (1| X, y1.4—1) for each partial hypothesis, 31.,_1. A pre-beam size,
p, is used to select the top candidate output units (Seki et al., 2019), attnCnds, which are used to
expand the partial hypotheses via concatenation, denoted by &. The INpuTSTEP performs hypoth-
esis expansion by computing CTC’s alignment posterior at time step ¢, Pcrc(2¢/X). The same
pre-beam size, p, is used to select top candidate alignment units, CTCCnds, but partial hypotheses
are only expanded for non-blank and non-repeat candidates.

In the joint scoring block, the attentional decoder likelihood, AttnScore(-), and length
penalty/reward, LengthPen(-), are applied similarly in both variants (He et al., 2016). However,
CTC likelihood, CTCScore(-), is applied over the full input, X;.7, in OutpuTSTEP and over the
partial input, X, in INpuTSTEP. This critical difference creates a speed vs. accuracy trade-off
(§5.4.2.2).

Finally in end detection, OutputSTEP must check for the stop token, <eos>, which may be
proposed by attnCnds. On the other hand, INpuTSTEP simply knows the end when all input units
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\ Model Type \ MT ST

Joint Joint Decoding IWSLT14 IWSLT14  MTedX | MuST-C-v2 MuST-C-v2 MTedX
Model Name Train? Decode? Method De-En Es-En All-En En-De En-Ja All-En
Pure-Attn (Prior) X X Attn O-sync (32.15)f (38.95)f -0 21.0¢ 11.6* -0
Pure-Attn (Ours) X X Attn O-sync | 32.8 (33.73) 39.0(39.86) 25.6 27.8 14.3 22.7
Joint CTC/Attn v X CTC I-sync 27.3 33.8 22.4 24.4 10.2 21.4
Joint CTC/Attn v X Attn O-sync 33.6 39.5 28.0 28.3 14.2 23.7
Joint CTC/Attn 4 v Joint I-sync 337 39.7 27.8 29.2 15.1 25.1
Joint CTC/Attn v v Joint O-sync 34.1 39.9 28.1 29.2 15.3 25.1

Table 5.1: Test set performances, as measured by BLEU (1), of our proposed joint CTC/Attention
models compared to pure-attention baselines. Joint CTC/Attention models are always jointly
trained, but can be either jointly decoded using input/output synchronony or decoded using only
their CTC or attention branches. For IWSLT 14, we mention (tokenized BLEU') for comparison
with prior works. "Raunak et al. (2020) and *Fukuda et al. (2022) are based on fairseq (Ott et al.,
2019). ¢Prior MTedX works show only All-All or pair-wise settings.

have been consumed (t = 7). Note that the stop token is only in the decoder’s vocabulary (§5.3.2)
and is thus never proposed by CTCCnds.

5.4.2.2 Theoretical Speed vs. Accuracy

By comparing the CTC likelihood estimation in INPUTSTEP vs. in OUPTPUTSTEP, it can be seen
that there is a trade-off between speed and accuracy. First, note that the step-wise estimate in
OurputSteP, CTCScore(y.;, X1.1), is a marginalization over the likelihoods of all possible align-
ments of the partial hypothesis, y1., as follows: ), P(Z|X). Since the partial hypotheses in
each step are single unit increments on the previous step, 71,1, a dynamic programming imple-
mentation computes the likelihood with O(bpT") log-additions (Watanabe et al., 2017).

Next, consider that the complexity of the step-wise estimate in INpuTSTEP, CTCScore(7, X1.¢),
is only O(bp) as a dynamic programming implementation only needs to increment the score of
the previous step with the alignment posterior information of the current ¢-th step (Hannun et al.,
2014b). Although this makes the INPUTSTEP faster, the estimation only yields a marginalization
over the likelihoods of a pruned set of partial alignments of the partial hypothesis, 7, as follows:
>z P(Z]|X1.). Evenatstep T, the estimation is not equivalent to the full marginalization over Z
as beam pruning yields only a subset Z’ C Z which can be considered.’ Therefore, the speed-up
of the time-synchronous variant comes at the cost of accuracy — and this trade-off is a function
of beam size.

SConsider that with b=1, t=2, and prtHs={[<sos>, a]}, CTCScore([<sos>,a], X1.2) will not consider
Perc(Z1:2 = [@, ]| X1.2) since the hypothesis [<sos>] was pruned t=1.
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5.5 Experimental Setup

Data: We examine the efficacy of our proposed approaches on two language pairs for each
of the MT and ST tasks. For MT, we use German-to-English (De-En) and Spanish-to-English
(Es-En) from IWSLT14 (Cettolo et al., 2012). For ST, we use English-to-German (En-De) and
English-to-Japanese (En-Ja) from MuST-C-v2 (Di Gangi et al., 2019). We also examine the
multilingual setting of 6 European languages to English (All-En) from MTedX (Salesky et al.,
2021) for both tasks. Full dataset descriptions for reproducibility are in §B.1.

Modeling: We compare our joint CTC/Attention models to purely attentional encoder-decoder
baselines. All proposed and baseline models were tuned separately, using validation sets only,
within the same hyperparameter search spaces for training and for decoding to ensure fair com-
parison. All experiments were conducted using ESPnet (Watanabe et al., 2018). Full descriptions
of model sizes, hyperparameters, and pre-processing are in §B.1.

Evaluation: Unless otherwise indicated, we measure performance with detokenized case-
sensitive BLEU (Post, 2018) on punctuated 1-references.

5.6 Results and Analyses

We first present main results on 6 benchmark MT and ST tasks in §5.6.1. We then examine the
effect of hierarchical encoding (§5.4.1) on the decoder’s source attention and present evidence
towards conjecture (1) in §5.6.2. We also examine the effect of synchronous decoding (§5.4.2) on
the generalization and length stability of beam search hypotheses, presenting evidence towards
conjecture (2) and (3) respectively in §5.6.3. Finally in §5.6.4, we experimentally validate the
theoretical speed vs. accuracy trade-offs of input and output-synchrony (§5.4.2.2).

5.6.1 Main Results

As shown in Table 5.1, joint CTC/Attention outperforms pure-attention across 3 MT tasks
(IWSLT14 De-En + Es-En and MtedX All-En) and 3 ST tasks (MuST-C-v2 En-De + En-Ja and
MTedX All-En). In the second horizontal partition, we show that joint training of hierarchical
encoders with output-synchronous decoding of only the attention branch outperforms the
pure-attention models without any joint training. In the last horizontal partition, we show that
both joint input and output-synchronous decoding yield further improvements.
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Figure 5.2: Layer-wise monotonicity of the source-attention patterns produced by MT/ST de-
coders.

5.6.2 Benefits of Hierarchical Encoding

We examine the regularization effect that CTC joint training has on the attentional decoder, per
conjecture (1), by first quantifying the monotonicity, m of a (L, T") shaped source attention pat-
tern, A:
m = ( Z [argmax A; > argmax Al_1]>/L
oo €T teT

where [-| denotes the Iverson bracket. We compute m over all examples in our validation sets
for De-En MT and En-De ST and show the layer-wise averages over all examples and attention
heads in Figure 5.2. It can be seen that the decoder source attention patterns are more monotonic
when using jointly trained hierarchical encoders.

We further examine the source attention parameters in our All-En models to understand the
impact that the aforementioned regularization has on multilingual parameter sharing. To do so,
we extract sparse subnets for each language pair following the Lottery Ticket Sparse Fine-Tuning
proposed by Ansell et al. (2022) and compute the pair-wise sharing across the 6 source languages,
as measured by the count of overlapping parameters between subnets. In Figure 5.3, we show
the relative change (A%) in multilingual sharing when using hierachical encoding compared to
the baseline. The broad increases suggest that the target-orientation of our encoder reduced the
decoder’s burden of soft-aligning target English outputs to source languages with varying word-
orders, allowing for more efficient allocation of modeling capacity.
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Figure 5.3: Improvement of multilingual sharing in MT/ST decoder source attention parameters
when using joint CTC/Attention vs. attention-only training, as measured by pair-wise A% in
sparse subnet overlap.

5.6.3 Benefits of Synchronous Decoding

We examine the generalization effect that augmenting autoregressive likelihoods with condition-
ally independent likelihoods has during inference, per conjecture (2), by evaluating De-En MT
and En-De ST models on out-of-domain EuroParl test sets (Iranzo-Sanchez et al., 2020). As
shown in Table 5.2, joint CTC/Attention models outperform pure-attention baselines with consis-
tency across in-domain (In-D) and out-of-domain (Out-D) settings. Further, synchronous joint
decoding methods outperform their two-pass re-scoring counterparts (§5.4.2), suggesting that
joint selection of the hypothesis set is necessary for easing the respective weaknesses of autore-
gressive and conditionally independent likelihood estimation.

We also examine the smoothing effect that CTC’s alignment information has on length control
of hypothesis generation, per conjecture (3), by sliding length penalty. As shown in Figure 5.4,
pure-attention MT/ST baselines rapidly degenerate when forced to produce hypotheses that are
longer than references which exhibits the label bias with respect to the stop token (§5.3.2). On
the other hand, synchronous joint decoding produces gradually longer outputs, suggesting that
the output length information inherent in CTC alignments (§5.3.1) eases the decoder’s brevity
problem.
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| Type | MT (De-En) | ST (En-De)
Decoding | IWSLT14 EuroParl | MuST-C-v2 EuroParl

Model Method (In-D) (Out-D) (In-D) (Out-D)
Pure-Attn | Attn O-Sync |  32.8 158 | 278 20.5
Joint C/A | Attn O-Sync 33.6 17.1 28.3 21.0
+CTC Rescore 33.6 17.1 28.3 21.0
Joint C/A | Joint O-Sync 34.1 17.6 29.2 21.7
Joint C/A | CTC I-Sync 27.3 13.1 24.4 16.5
+Attn Rescore 29.5 13.9 26.2 17.8
Joint C/A | Joint I-Sync 33.7 17.4 29.2 21.1

Table 5.2: In/out domain test performances of joint CTC/attention models with various decoding
methods.

Table 5.3: Speed vs. accuracy for joint input/output-sync decoding of En-De ST val. set as a fxn.
of beam size.

5.6.4 [Experimental Speed vs. Accuracy

Finally, we perform an experimental validation of our theoretical understanding of the speed vs.
accuracy trade-off (§5.4.2.2) between the two synchronous joint decoding variants. To quantify
speed, we compute the real-time factor (RTF) as the ratio of decoding time over the duration
of input speech. To quantify accuracy beyond the BLEU metric, we compute the search error
rate (Meister et al., 2020) by counting the sequences for which the hypothesis has higher exact
likelihood (5.7) than the reference. For the same beam size, output is slower but more accurate
than input-synchronous.

5.7 Discussion and Relation to Prior Work

There is a line of prior work seeking to enhance attentional encoder-decoder MT models with
lexical (Alkhouli et al., 2016; Song et al., 2020), syntactical (Wang et al., 2019; Bugliarello and
Okazaki, 2020; Deguchi et al., 2021), and phrasal (Watanabe, 2021; Zhang et al., 2021) alignment
information derived from external discrete or latent knowledge bases. Our method of hierarchi-
cal encoding to enhance the attentional decoder with CTC alignment properties is related, but
conceptually different in that we do not incorporate external information.

There is also a line of prior work based on hard alignment frameworks in statisical (Jelinek,
1997; Koehn et al., 2003) and sequence aligning (Graves, 2012; Ghazvininejad et al., 2020a; Sa-
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Figure 5.4: Elasticity of BLEU and length ratios (|hyp|/|ref]) w.r.t length penalty in validation
sets.

haria et al., 2020) approaches ASR and MT which can be considered to be input-synchronous dur-
ing their decodings. There are efforts towards integrating neural (Hannun et al., 2014b; Zhou et al.,
2022) or n-gram language models (Devlin et al., 2014; Miao et al., 2015) into input-synchronous
decoding of these hard alignment models. Our method of joint decoding is a new direction in
which we seek to integrate a conditional language model (the attentional decoder) without break-
ing input-synchrony.

5.8 Conclusion

In this chapter, we propose to jointly train and decode CTC/Attention models for translation. Our
hierarchical encoding method regularizes source attention patterns with monotonicity, allowing
for more efficient allocation of attention parameters. Our synchronous decoding method reduces
exposure, label, and length biases persistent in autoregressive likelihood estimation, allowing
for more generalized and controllable inference. This chapter helps to strengthen the previous
chapters 3 and 4. It strengthens Chapter 3 by proposing techniques to build strong CTC encoders
for non-monotonic sequence tasks. It also discusses the joint decoding of sequence models that
model both CTC and attention distributions, such as the LegoNN models in Chapter 4.
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Part 11

Compositional E2E Systems with
Searchable Hidden Intermediates
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Chapter 6

Searchable Intermediates Framework

The following two chapters aims to build compositional E2E models for complex sequence tasks
that can be decomposed into a pipeline of simpler sequence tasks. We show that using our search-
able hidden intermediates framework allows composing the simpler sequence tasks into an end-to-
end framework to solve the overall complex sequence task. In this chapter, we first introduce the
searchable hidden intermediates framework for building compositional E2E systems and apply
them towards tasks like speech translation and speech recognition. In the next chapter, we apply
our framework to spoken language understanding where we show how this framework enables
end-to-end sequence labeling spoken utterances using the token level tagging formulation.

6.1 Searchable Hidden Intermediates for
End-to-End Models of Decomposable Sequence Tasks

End-to-end approaches for sequence tasks are becoming increasingly popular. Yet for complex
sequence tasks, like speech translation, systems that cascade several models trained on sub-tasks
have shown to be superior, suggesting that the compositionality of cascaded systems simplifies
learning and enables sophisticated search capabilities. In this chapter, we present an end-to-end
framework that exploits compositionality to learn searchable hidden representations at interme-
diate stages of a sequence model using decomposed sub-tasks. These hidden intermediates can
be improved using beam search to enhance the overall performance and can also incorporate ex-
ternal models at intermediate stages of the network to re-score or adapt towards out-of-domain
data. One instance of the proposed framework is a Multi-Decoder model for speech translation
that extracts the searchable hidden intermediates from a speech recognition sub-task. The model
demonstrates the aforementioned benefits and outperforms the previous state-of-the-art by around
+6 and +3 BLEU on the two test sets of Fisher-CallHome and by around +3 and +4 BLEU on the

!'All code and models are released as part of the ESPnet toolkit: https://github.com/espnet/espnet.
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English-German and English-French test sets of MuST-C.!

6.2 Introduction

The principle of compositionality loosely states that a complex whole is composed of its parts and
the rules by which those parts are combined (Lake and Baroni, 2018). This principle is present
in engineering, where task decomposition of a complex system is required to assess and optimize
task allocations (Levis et al., 1994), and in natural language, where paragraph coherence and
discourse analysis rely on decomposition into sentences (Johnson, 1992; Kuo, 1995) and sentence
level semantics relies on decomposition into lexical units (Liu et al., 2020c).

Similarly, many sequence-to-sequence tasks that convert one sequence into another
(Sutskever et al., 2014) can be decomposed to simpler sequence sub-tasks in order to reduce the
overall complexity. For example, speech translation systems, which seek to process speech in
one language and output text in another language, can be naturally decomposed into the tran-
scription of source language audio through automatic speech recognition (ASR) and translation
into the target language through machine translation (MT). Such cascaded approaches have been
widely used to build practical systems for a variety of sequence tasks like hybrid ASR (Hinton
et al., 2012), phrase-based MT (Koehn et al., 2007), and cascaded ASR-MT systems for speech
translation (ST) (Pham et al., 2019).

End-to-end sequence models like encoder-decoder models (Bahdanau et al., 2015; Vaswani
et al., 2017), are attractive in part due to their simplistic design and the reduced need for hand-
crafted features. However, studies have shown mixed results compared to cascaded models par-
ticularly for complex sequence tasks like speech translation (Inaguma et al., 2020b) and spoken
language understanding (Coucke et al., 2018). Although direct target sequence prediction avoids
the issue of error propagation from one system to another in cascaded approaches (Tzoukermann
and Miller, 2018), there are many attractive properties of cascaded systems, missing in end-to-end
approaches, that are useful in complex sequence tasks.

In particular, we are interested in (1) the strong search capabilities of the cascaded systems
that compose the final task output from individual system predictions (Mohri et al., 2002; Kumar
et al., 2006; Beck et al., 2019), (2) the ability to incorporate external models to re-score each
individual system (Och and Ney, 2002; Huang and Chiang, 2007), (3) the ability to easily adapt
individual components towards out-of-domain data (Koehn and Schroeder, 2007; Peddinti et al.,
2015), and finally (4) the ability to monitor performance of the individual systems towards the
decomposed sub-task (Tillmann and Ney, 2003; Meyer et al., 2016).

In this chapter, we seek to incorporate these properties of cascaded systems into end-to-end
sequence models. We first propose a generic framework to learn searchable hidden intermediates
using an auto-regressive encoder-decoder model for any decomposable sequence task (§6.4). We
then apply this approach to speech translation, where the intermediate stage is the output of ASR,
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Figure 6.1: The left side present the schematics and the information flow of our proposed frame-
work applied to ST, in a model we call the Multi-Decoder. Our model decomposes ST into ASR
and MT sub-nets, each of which consist of an encoder and decoder. The right side displays a
Multi-Sequence Attention variant of the DECODERy; that is conditioned on both speech informa-
tion via the ENCODER,; and transcription information via the ENCODERg;.

by passing continuous hidden representations of discrete transcript sequences from the ASR sub-
net decoder to the MT sub-net encoder. By doing so, we gain the ability to use beam search with
optional external model re-scoring on the hidden intermediates, while maintaining end-to-end
differentiability. Next, we suggest mitigation strategies for the error propagation issues inherited
from decomposition.

We show the efficacy of searchable intermediate representations in our proposed model,
called the Multi-Decoder, on speech translation with a 5.4 and 2.8 BLEU score improvement
over the previous state-of-the-arts for Fisher and CallHome test sets respectively (§6.7). We ex-
tend these improvements by an average of 0.5 BLEU score through the aforementioned benefit
of re-scoring the intermediate search with external models trained on the same dataset. We also
show a method for monitoring sub-net performance using oracle intermediates that are void of
search errors (§6.7.1). Finally, we show how these models can adapt to out-of-domain speech
translation datasets, how our approach can be generalized to other sequence tasks like speech
recognition, and how the benefits of decomposition persist even for larger corpora like MuST-C
(§6.7.2).

6.3 Background and Motivation

6.3.1 Compositionality in Sequences Models

The probabilistic space of a sequence is combinatorial in nature, such that a sentence of L words
from a fixed vocabulary V would have an output space S of size [V|F. In order to deal with
this combinatorial output space, an output sentence is decomposed into labeled target tokens,
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Y= (ylay% s 7yL)a where Ui e V.

L

P(y|x)= HP(yZ- | X, Y1:i-1)

=1

An auto-regressive encoder-decoder model uses the above probabilistic decomposition in
sequence-to-sequence tasks to learn next word prediction, which outputs a distribution over the
next target token y; given the previous tokens ¥, 1 and the input sequence x = (xy, Xy, . . ., X7),
where T is the input sequence length. In the next sub-section we detail the training and inference
of these models.

6.3.2 Auto-regressive Encoder-Decoder Models

Training: In an auto-regressive encoder-decoder model, the ENcopEr maps the input sequence
X to a sequence of continuous hidden representations h” = (hf hZ ... hE), where h? € R,
The DEcobper then auto-regressively maps h” and the preceding ground-truth output tokens,
911-1, to hP, where h? € R? The sequence of decoder hidden representations form h” =
(hP hP, ... hP) and the likelihood of each output token y; is given by SorrmaxOur, which
denotes an affine projection of h” to V followed by a softmax function.

h” = ENncoper(x)
ﬁlD = Decoper (h”, §1,.1) (6.1)
P(y; | 9141, h") = SOFTMAXOUT(ﬁlD) (6.2)

During training, the DEcopEgr performs token classification for next word prediction by consider-
ing only the ground truth sequences for previous tokens §. We refer to this A” as oracle decoder
representations, which will be discussed later.

Inference: During inference, we can maximize the likelihood of the entire sequence from the
output space S by composing the conditional probabilities of each step for the L tokens in the

sequence.
h? = Decoper(h”, yy,.1) (6.3)
P(y | X,91..1) = SorrMaxOurt(h?)
L
¥ = argmax H P(y; | X,y1:i-1) (6.4)
Yes o1

This is an intractable search problem and it can be approximated by either greedily choosing
argmax at each step or using a search algorithm like beam search to approximate y¥. Beam search
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(Reddy, 1988) generates candidates at each step and prunes the search space to a tractable beam
size of B most likely sequences. As B — oo, the beam search result would be equivalent to
equation 6.4.

GREEDYSEARCH = argmax P(y; | X, y1..1)
Ui

BeaMSEARCH = BEaM(P(y; | X, 41.-1))

In approximate search for auto-regressive models, like beam search, the DEcODER receives al-
ternate candidates of previous tokens to find candidates with a higher likelihood as an overall
sequence. This also allows for the use of external models like Language Models (LM) or Con-
nectionist Temporal Classification Models (CTC) for re-scoring candidates (Hori et al., 2017).

6.4 Proposed Framework

In this section, we present a general framework to exploit natural decompositions in sequence
tasks which seek to predict some output C from an input sequence A. If there is an intermediate
sequence B for which A — B sequence transduction followed by B — C prediction achieves the
original task, then the original .4 — C task is decomposable.

In other words, if we can learn P(B | A) then we can learn the overall task of P(C | A)
through maxz(P(C | A, B)P(B | A)), approximated using Viterbi search. We define a first
encoder-decoder Su_4_,sNET to map an input sequence A to a sequence of decoder hidden states,
h”%. Then we define a subsequent SuBi_,cNET to map h” to the final probabilistic output space
of C. Therefore, we call hP5 hidden intermediates. The following equations shows the two sub-
networks of our framework, Sus_4_,sNET and SuBz_,cNET, which can be trained end-to-end while
also exploiting compositionality in sequence tasks.

SusB 4_,sNET:
h” = ENcopEr 4(A)
fi”’® = Decopers(h” $5, )
P(yP | 9%, ., h¥) = SorrmaxOut(h’?) (6.5)
SuBs_,¢NET:
P(C | h") = Sup_.cNer(h’?) (6.6)

2Note that this framework does not use locally-normalized softmax distributions but rather the hidden represen-
tations, thereby avoiding label bias issues when combining multiple sub-systems (Bottou et al., 1997; Wiseman and
Rush, 2016).
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Note that the final prediction, given by equation 6.6, does not need to be a sequence and can be a
categorical class like in spoken language understanding tasks. Next we will show how the hidden
intermediates become searchable during inference.

6.4.1 Searchable Hidden Intermediates

As stated in section §6.3.2, approximate search algorithms maximize the likelihood, P(y | x), of
the entire sequence by considering different candidates y; at each step. Candidate-based search,
particularly in auto-regressive encoder-decoder models, also affects the decoder hidden repre-
sentation, h?, as these are directly dependent on the previous candidate (refer to equations 6.1
and 6.3). This implies that by searching for better approximations of the previous predicted to-
kens, y;.1 = (Vsean)i-1, We also improve the decoder hidden representations for the next token,
h? = (h2, ). AS yuew — ¥, the decoder hidden representations tend to the oracle decoder

D hP. A perfect search

representations that have only errors from next word prediction, h,_, ,
is analogous to choosing the ground truth ¢ at each step, which would yield A”.

Dg

BEAM *

We apply this beam search of hidden intermediates, thereby approximating h”5 with h

Dp
BEAM

This process is illustrated in algorithm 2, which shows beam search for h; 2, that are subsequently
passed to the SuBz_,¢NET.? In line 7, we show how an external model like an LM or a CTC model
can be used to generate an alternate sequence likelihood, Py, (le ), which can be combined with
the Sus 4_,sNET likelihood, P5(y? | x) , with a tunable parameter .

We can monitor the performance of the SuB 4_,sNET by comparing the decoded intermediate
sequence y2 to the ground truth 5. We can also monitor the Subs_.cNET performance by
using the aforementioned oracle representations of the intermediates, h25 which can be obtained
by feeding the ground truth $Z to DEcoper. By passing hi”# to Susg_,cNET, we can observe its

performance in a vacuum, i.e. void of search errors in the hidden intermediates.

6.4.2 Multi-Decoder Model

In order to show the applicability of our end-to-end framework we propose our Multi-Decoder
model for speech translation. This model predicts a sequence of text translations y*" from an input
sequence of speech x and uses a sequence of text transcriptions y*** as an intermediate. In this
case, the Su 4_,gNET in equation 6.5 is specified as the ASR sub-net and the SuBs_,¢NET in equa-
tion 6.6 is specified as the MT sub-net. Since the MT sub-net is also a sequence prediction task,
both sub-nets are encoder-decoder models in our architecture (Bahdanau et al., 2015; Vaswani
et al., 2017). In Figure 6.1 we illustrate the schematics of our transformer based Multi-Decoder

3The algorithm shown only considers a single top approximation of the search; however, with added time-

complexity, the final task prediction improves with the n-best h2’5 for selecting the best resultant C.
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Algorithm 2 Beam Search for Hidden Intermediates: We perform beam search to approximate
the most likely sequence for the sub-task A — B, y5 . while collecting the corresponding
DEecoper hidden representations, h?2 . The output h2 | is passed to the final sub-network to

predict final output C and y2 , , is used for monitoring performance on predicting 5.

1: Initialize: BEAM <— {sos}; k <— beam size;
2: h¥A + ENCODER 4(x)

3: for (=1 to max,s do

4. foryP, € BEam do

5: h’® < Decoper;z(hP4,y? )

6: for y? € y5, + {V} do

7: s1 < Pas(yP | X)' Poer(y7)?
8: H o (s1.yP . h®)

9: end for

10: end for

11: BEAM <— arg‘max(H)

12: end for

13: (sB,y8 . hDB )« argmax(BEAM)

BEAM

14: Returny®  — Sus4_sNET Monitoring
15: Return h?”3_ — Final SuBgz_,¢NET

BEAM

ST model which can also be summarized as follows:

h®* = ENCODER ¢ (X) ©7)
AP — Drcoper,s (W™ 3i5,) ©%)
h" — Encoprry (A7) (6.9)
A/ = Decoperg, (h™", 337 ) (6.10)

As we can see from Equations 6.9 and 6.10, the MT sub-network attends only to the decoder
representations, P+, of the ASR sub-network, which could lead to the error propagati