
Exploiting Compositionality in Sequence Models

Siddharth Dalmia

CMU-LTI-22-015

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:

Florian Metze, CMU (co-chair)
Alan W Black, CMU (co-chair)

Shinji Watanabe, CMU
Abdelrahman Mohamed, FAIR

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

In Language and Information Technologies

© 2022, Siddharth Dalmia

www.lti.cs.cmu.edu

Keywords: compositionality, modularity, reusability, performance monitoring, search and
retrieval, sequence models for speech and language

To my family

iv

Abstract
Compositionality is the principle behind building complex systems by com-

posing together simpler sub-systems. First, a complex task is broken down into
a pipeline of simpler, more straightforward tasks. Once systems are built for the
simpler tasks, intricate details are abstracted away and components are pipelined
together to reason about the overall task. The knowledge and resources spent
building the systems for the sub-task are then reused towards building various
complex systems. This divide-and-conquer approach to compositionality promotes
the flexibility, efficiency, and overall practicality of these systems.

While traditional sequence systems such as cascade models leveraged composi-
tionality, contemporary end-to-end models such as encoder-decoder models fail to
satisfy even the basic compositionality requirements, i.e., having a clear understand-
ing of the function of each component. The lack thereof hinders the practical use of
end-to-end systems, despite these approaches having advanced the state-of-the-art
in a wide range of sequence tasks.

In this thesis, with a focus on sequence tasks for speech and language, we iden-
tify four characteristics of compositionality that facilitate the practical deployment of
end-to-end models, i.e., having component or sub-task level (1) Performance Mon-
itoring, (2) Search and Retrieval, (3) Resource Pooling, and (4) Reusability. We
present three models with the above characteristics, which exhibit different levels of
reusability behavior, from direct plug-and-play ability to the ability for further fine-
tuning towards the end task. The first is the CTC Hybrid model, which creates a hy-
brid of models by decomposing a sequence task into alignment using a CTC model
and language generation using a language model. For a fully differentiable alter-
native, we present LegoNN modular encoder-decoder models, which build reusable
encoder and decoder modules across various sequence tasks, with the ability for fur-
ther fine-tuning. Lastly, we present our Compositional E2E model with searchable
hidden intermediates that allows using the sub-task formulations to build an end-to-
end task model. It also allows reusing pre-trained sub-task models for retrieving
better intermediate representations in the fully-differentiable model.

Finally, we discuss practical implications on the evaluation of end-to-endmodels,
wherewe show how tomake their evaluationmore reliable and informative by testing
their generalizability towards each sub-task in a complex sequence task.

vi

Acknowledgments
First and foremost, I would like to thank my advisors Florian Metze and Alan W

Black for their continued support, involvement, and help during this journey. They
spent countless hours discussing research and problems in the current systems with
me. I enjoyed hearing about their experiences with building sequence systems be-
fore the deep learning era. Learning about its flexibility and practicality inspired
this thesis. Thank you for always taking a practitioners’ standpoint during our brain-
storming sessions. Thank you for all the support during internships and job search,
and for guiding me to grow into a better researcher and individual over the last six
years.

I also want to thankmymentors and themembers of my committee, ShinjiWatan-
abe and AbdelrahmanMohamed. Shinji, I cannot thank you enough for your involve-
ment in my research. It has been a great experience working with you and all of the
members of your lab. Thank you for the support during the final years of my PhD.
Thank you believing in my abilities and giving me numerous opportunities to men-
tor students, involving me in research discussions and helping me build new connec-
tions and collaborations. Abdo, your research work has been my inspiration since I
began my career in speech technologies. Thank you for giving me the opportunity to
work with you. I really enjoyed our brainstorming sessions. You helped expand the
horizons of my research and helped me realize a more general view of my interests.
Thank you for your mentorship and I hope we get to work more in the future.

I am fortunate to have had the opportunity to work with many collaborators
throughout my PhD, many of whom have also become my close friends since. I
have had a lot of fun discussing research ideas, traveling to conferences, and debug-
ging compute infrastructure with our research group (sinbad), in particular Xinjian
Li, Ramon Sanabria, Suyoun Kim, Elizabeth Salesky, Shruti Palaskar, Juncheng Li,
Eric Riebling, Yun Wang, Vikas Raunak, Roshan Sharma, and others. I still miss
the nice collaborative space we had at 407 S Craig St. I was also lucky to be part of
the WAVLab, where I had the opportunity to interact, mentor and collaborate with
many students such as Brian Yan, Siddhant Arora, Yifan Peng, Xuankai Chang, Jia-
tong Shi, Dan Berrebbi, Aswin Subramanian, Matthew Maciejewski, and others. I
also would like to thank my internship mentors and collaborators at FAIR, AWS AI
and Google. To name a few, Dmytro Okhonko, Abdo, Mike Lewis, Sergey Edunov,
Luke Zettlemoyer at FAIR; Katrin Kirchhoff, Yuzong Liu, Srikant Ronanki, Julian
Salazar at AWS AI; Ron Weiss, Tara Sainath, Yu Zhang, Alexis Conneau, Ankur
Bapna, Simran Khanuja at Google. They introduced me to many new challenges that

exist in practical sequence models, and my interactions with them always involved
deep discussions that left me enlightened at the end. I also had the opportunity to
work with many brilliant researchers in my department, like Graham Neubig, David
Mortensen, Bhiksha Raj, Abhilasha Ravichander, Maria Ryskina, Patrick Fernandes,
Vijay Viswanathan, Alissa Ostapenko and the members of the DARPA LORELEI
and KAIROS program. I think the work presented here would not have been pos-
sible without the contribution and support of all my collaborators. Of many impor-
tant software libraries that made this thesis possible, I want to particularly thank the
maintainers of EESEN and ESPNet for actively helping me with my requests and
questions. I would also like to thank Stacey Young, Kate Schaich, Jessica Maguire,
and Mary Jo Bensasi for helping simplify our daily life in LTI.

I must also thank the members of the MultiSpeech Lab in INRIA Nancy, specif-
ically, Emmanuel Vincent, Irina Illina, Juan Cordovilla, Imran Sheikh and Sunit
Sivasankaran for giving me the first taste of speech research, and my undergraduate
professors Aruna Malapati, Tathagata Ray and Bhanu Murthy for getting me excited
about research and helping me build a strong foundation to pursue my interests.

I could not do justice to my life in Pittsburgh without thanking the friends I
have made during these six years. To name a few, Alex, Dheeraj, Chaitanya, Anant,
Shivani, AVK, Devendra, Tejas, Soumya, Saksham, “gedi”, Will, Chirag, Khyathi,
Aakanksha, Pallu, Paul, Hai, Danish, Sai, Stas, Rohit, Raphael, Arti, Andrew and
many others. You guys made this journey much more fun than it would have been
otherwise. Thank you for keeping me sane, providing support, and all the laughs and
fun we had along the way. My friends from undergrad and school – Varun, Naveen,
Bala, Rohan, Shalaka, Tarana, “goodfellas”, my hostel wing-mates: I am glad we are
still connected across the globe! Brian Yan and Patrick Fernandes – I will really miss
our climbing and gym sessions, thank you! Karan Ahuja, Arnav Choudhary, Deepak
Gopinath, Rajat Kulsreshtha, Sujeath Pareddy (may his soul rest in peace), Abhilasha
Ravichander, Shruti Rijhwani, Maria Ryskina, Samridhi Shree, Eva Spiliopoulou –
I think there is no better way to describe them other than as my family in Pittsburgh.
Thank you for sticking around by my side during all the difficult and the good times!

Finally, I would like to thank my parents, Sarla and Sharad Dalmia, for their
unparalleled emphasis on my education and for the support during my PhD. Thank
you for believing in me and giving me every opportunity I needed to go as far as I
could in my career. None of this would have been possible without you.

viii

Contents

1 Introduction 1
1.1 Thesis Outline and Contributions . 3

2 Sequence Modeling Systems: Past, Current and Future 5
2.1 Past: Cascade Systems . 5
2.2 Current: E2E Encoder-Decoder Systems . 5
2.3 Future of E2E Systems . 6

I CTC Hybrid and LegoNN Modular E2E Systems 9

3 CTC Hybrid Systems 11
3.1 Connectionist Temporal Classification . 11
3.2 CTC Hybrid Systems . 13
3.3 Resource Pooling across languages through decomposition 14
3.4 Introduction . 15
3.5 Related Work and Babel Dataset . 16
3.6 Multilingual CTC Model . 17
3.7 Experiments and Observations . 18
3.8 Conclusion . 23

4 Modular Encoder-Decoder Systems 25
4.1 LegoNN: Building Modular Encoder-Decoder Models 25
4.2 Introduction . 26
4.3 Background . 28
4.4 LegoNN for Modular Encoder-Decoder Models 29
4.5 Experimental Setup . 37
4.6 Results . 39
4.7 Related work . 43
4.8 Conclusion . 44

ix

5 Joint CTC/Attn Models for Non-Monotonic Sequence Tasks 45
5.1 Joint CTC/Attention for Speech and Machine Translation 45
5.2 Introduction . 46
5.3 Background and Motivation . 47
5.4 Proposed Joint CTC/Attn for MT/ST . 50
5.5 Experimental Setup . 55
5.6 Results and Analyses . 55
5.7 Discussion and Relation to Prior Work . 58
5.8 Conclusion . 59

II Compositional E2E Systems with Searchable Hidden Intermediates 61

6 Searchable Intermediates Framework 63
6.1 End-to-End Models of Decomposable Sequence Tasks 63
6.2 Introduction . 64
6.3 Background and Motivation . 65
6.4 Proposed Framework . 67
6.5 Baseline Encoder-Decoder Model . 70
6.6 Data and Experimental Setup . 70
6.7 Results . 72
6.8 Discussion and Relation to Prior Work . 77
6.9 Conclusion . 79

7 Compositional E2E SLU Models 81
7.1 Compositional E2E SLU using Searchable Intermediates 81
7.2 Introduction . 82
7.3 Sequence Labeling (SL) . 83
7.4 Sequence Labeling in SLU . 84
7.5 Compositional End-to-End SLU . 85
7.6 Spoken Named Entity Recognition . 86
7.7 Conclusion . 90

III Evaluation of E2E models 91

8 Practical Considerations for Evaluating End-to-End Systems 93
8.1 Rethinking End-to-End Evaluation of Decomposable Tasks 93
8.2 Introduction . 94
8.3 Motivation . 95

x

8.4 Methodology . 96
8.5 Experiments . 98
8.6 Conclusions . 102

9 Conclusion 105
9.1 Summary of Key Contributions . 105
9.2 Future Directions . 106

Appendix 111

A Supplemental Material for Chapter 4 111
A.1 Experimental and Data Setup for transfer of LegoNN experiments 111
A.2 Detokenized BLEU performance of our LegoNN MT models 113
A.3 BLEU performance on individual years for our LegoNN MT models 114
A.4 Interpretable Interface in LegoNN models . 114
A.5 Importance of encoder grounding using CTC for reusability 114
A.6 Transfer of LegoNN modules to low-resource conditions 115
A.7 Relation to Incorporating Text-only Resources 115

B Supplemental Material for Chapter 5 119
B.1 Reproducibility . 119
B.2 Qualitative . 120
B.3 Quantitative . 121

C Supplemental Material for Chapter 6 125
C.1 Training and Inference hyperparameters . 125
C.2 MuST-C Data Setup and Model Details . 126

D Supplemental Material for Chapter 7 129
D.1 SLURP and SLUE Dataset Description . 129
D.2 Experimental Setup . 130

Bibliography 135

xi

xii

Chapter 1

Introduction

Compositionality is the principle behind building complex systems by composing together sim-
pler sub-systems using only the high-level understanding of each sub-system. It is studied and
applied extensively in the building of various complex systems, from physical machinery (Levis
et al., 1994) to software systems (Baldwin and Clark, 1999). Compositionality takes a hierar-
chical approach towards building systems by reasoning about the problem recursively. First, a
complex task is broken down into a pipeline of simpler, more straightforward tasks. Once systems
are built for the simpler tasks, intricate details are abstracted away and components are pipelined
together to reason about the overall task. The knowledge and resources spent building the sys-
tems for the sub-task can be reused in the construction of other complex systems (Zwiers, 1989).
A clear interface or understanding of the high-level functionality of each component makes it
possible to reuse them and also upgrade them in a modular fashion (Baldwin and Clark, 1999).
For example, if a more efficient or a better performing component is developed, all systems us-
ing this component can simply upgrade provided the interface remains the same. Furthermore,
the breakdown into simpler tasks allows leveraging additional domain knowledge, expertise, and
other resources, if available, for each component (Levis et al., 1994). Overall, this divide-and-
conquer approach of compositionality promotes the overall practicality of system building, going
from creating stand-alone systems to their large-scale development.

While maintaining the holistic view, compositionality takes many forms in each field. A lan-
guage is compositional if the meaning of every complex expression E in that system depends
on, and depends only on, the syntactic structure of E and the meanings of the simple parts of E
(Johnson, 2020). Compositionality plays an essential role in understanding languages; for exam-
ple, paragraph coherence and discourse analysis rely on decomposition into sentences (Johnson,
1992; Kuo, 1995) and sentence-level semantics relies on decomposition into lexical units (Liu
et al., 2020c). In sequence modeling, a class of machine learning tasks that work on structured
sequences such as speech and text, the models broke down the combinatorial space of sentences
by decomposing them into words or other linguistic units such as phonemes or characters, or

1

byte-pair encoding, aiding in generalization to new sentences while capturing meaning both in
the form of representations (Mikolov et al., 2013) and during sentence prediction (Mohri et al.,
2002).

The application of compositionality in sequence models does not end there; traditional ap-
proaches relied heavily on the principle of compositionality in order to tackle these sequence
processing tasks. Cascade models carefully decomposed a complex sequence task into a pipeline
of systems that individually solve sub-tasks required to solve the overall problem. For example,
speech translation systems that seek to process speech in one language and output text in another
language were built by pipelining together speech recognition (ASR) and machine translation
(MT) systems. Such chaining of sub-systems is used extensively to build practical systems for
various sequence tasks such as hybrid ASR (Hinton et al., 2012), phrase-based MT (Koehn et al.,
2007), and cascaded ASR-MT systems for speech translation (ST) (Pham et al., 2019).

With the recent explosion in computing power, fully differentiable end-to-end approaches,
such as encoder-decoder models, have become popular and effective for sequence tasks. They
have played a critical role in advancing the state-of-the-art in a wide range of sequence tasks, such
as ASR (Park et al., 2019) and MT (Vaswani et al., 2017). However, these end-to-end models are
constructed and trained as an atomic unit, where all components are tightly coupled to each other,
preventing a clear understanding of the function of each part (Dalmia et al., 2019b). Thereby,
they fail to satisfy even the basic requirement for compositionality, i.e. having a clear interface
between components. This incapability to follow the principles of compositionality limits the
practicality of these systems in several ways. Specifically, such models are unable to:

1. Measure the quality of the individual components of the end-to-end model - This pre-
vents diagnosis of individual components, causing practitioners to invest more time and
compute resources in selecting hyperparameters, discovering bugs and reasoning about the
architecture of the model.

2. Reuse/transfer components across different tasks - This leads to practitioners building
individual stand-alone systems for each new task they would like to support, wasting com-
pute on components that share logical functions with components from an already trained
model for a different task.

3. Perform search and retrieval over the components for each sub-task - This prevents
practitioners from adapting individual components to other domains using external models.
For example, while adapting an end-to-end speech translation model on a different speech
domain but the same translation style.

4. Utilize additional resources for training individual components - There is still a signif-
icant lack of datasets for complex sequence tasks, as needed by end-to-end models, repre-
senting real-world scenarios that require a comprehensive coverage of different domains
and languages. Practitioners would benefit from having the ability to make use of the more

2

comprehensive datasets available for simpler tasks to mitigate this issue.
Therefore, despite the advantages of end-to-end approaches in simplicity (Bahdanau et al., 2015;
Chan et al., 2016) and effectiveness (Vaswani et al., 2017; Park et al., 2019), traditional cascade
models, which followed the principles of compositionality, are still a more popular choice for
practical deployment among practitioners. It is important to consider how to incorporate compo-
sitional properties into the next generation of end-to-end models.

In this thesis, we identify four characteristics of compositionality, which facilitate the practical
deployment of end-to-end models: component or sub-task level (1) Performance Monitoring,
(2) Search and Retrieval, (3) Resource Pooling, and (4) Reusability. We present three models
that have the above characteristics, which exhibit different levels of reusability behavior, from
direct plug-and-play ability to the ability for further fine-tuning towards the end task. Our first
model is the CTC Hybrid model, which creates a hybrid of models by decomposing a sequence
task into alignment using a CTC model and language generation using a language model. For
a fully differentiable alternative, we present LegoNN modular encoder-decoder models, which
build reusable encoder and decoder modules across various sequence tasks, with the ability for
further fine-tuning. Lastly, we present our Compositional E2E model with searchable hidden
intermediates that allows using the sub-task formulations to build an end-to-end task model. It
also allows reusing pre-trained sub-task models for retrieving better intermediate representations
in the fully-differentiable model.

To round out the thesis, we discuss practical implications on the evaluation of end-to-end
models, where we show how to make their evaluation more reliable and informative by testing
their generalizability towards each sub-task in a complex sequence task.

1.1 Thesis Outline and Contributions

A more detailed outline of this thesis is as follows:
1. Chapter 2 discusses the past, present, and our intentions for the future of sequence models.

This chapter would provide a background on sequence models, covering both the tradi-
tional sequence models that exploited compositionality and the current state of end-to-end
models. We then discuss the practical implications that we would like to consider for the
next generation of end-to-end models.

2. Chapter 3 discusses the CTC Hybrid Models. These models create a hybrid system by
decomposing a sequence task into alignment using a CTC model and language generation
using a language model. For the speech recognition task, we show that by decomposing
words into language-independent phone sequences we can pool resources from other lan-
guages to learn better CTC models (Dalmia et al., 2018). This work has also been the
basis for our larger efforts on pooling resources across languages to build multilingual

3

speech recognition models (Li et al., 2019, 2020b) and language models (Dalmia et al.,
2019a). This work was applied to our DARPA LORELEI 2018 and 2019 speech challenge
submissions for bootstrapping speech recognition systems under extremely low-resource
conditions (Chaudhary et al., 2019).

3. Chapter 4 discusses our LegoNN framework for building modular encoder-decoder mod-
els (Dalmia et al., 2022). These are fully-differentiable end-to-end encoder-decoder models
that have a defined interface between the encoder and the decoder components. Without
any fine-tuning, the decoder from one task, say MT, can be used towards another like ASR.
LegoNN models composed from multiple tasks and domains can also be extended to have
more than two modular components by further decomposing the task. We also studied the
effectiveness of enforcing modularity in ASR systems in (Dalmia et al., 2019b).

4. Chapter 5 builds upon the LegoNN encoder systems to extend the CTC formulation to non-
monotonic sequence tasks such as machine and speech translation and shows its efficacy
towards joint CTC and Attention modeling (Yan et al., 2022a). We also discuss two tech-
niques of decoding models that are jointly modeling both the CTC and Attention based
formulations for sequence tasks. This work intends to strengthen Chapter 3 by showing
how the CTC monotonic and length assumptions can be relaxed by performing reordering
and length-adjustment in the encoder, making it ideal for non-monotonic sequence tasks.
It also strengthens Chapter 4 by allowing a more advanced one-pass beam search that con-
siders both the CTC and Attention distributions.

5. Chapter 6 and Chapter 7 discusses our Compositional E2E model with searchable hidden
intermediates. We present an end-to-end framework that exploits compositionality to learn
searchable hidden representations at intermediate stages of a sequence model using decom-
posed sub-tasks. These hidden intermediates can be improved using beam search to en-
hance overall performance and can also incorporate external models at intermediate stages
of the network to search for better representations. We present two instances of our Compo-
sitional E2E model, (1) Speech Translation (Dalmia et al., 2021) and (2) Spoken Language
Understanding (Arora et al., 2022) that extracts hidden intermediates from a speech recog-
nition sub-task. This work was crucial in our submissions to IWSLT 2021 (Inaguma et al.,
2021b) and IWSLT 2022 (Yan et al., 2022b). We also show its effectiveness in translating
endangered languages such as Nahutl (Shi et al., 2021).

6. Chapter 8 discusses practical implications for the evaluation of end-to-end sequence mod-
els. We show that as sequence tasks become complex testing their generalizability on input
variations are not enough and it is important to test generalizability towards each sub-task
of the overall task. Given a dataset for a decomposable task, like Spoken Language Under-
standing, our method optimally creates a test set for each sub-task to individually assess
sub-components of the end-to-end model (Arora et al., 2021).

4

Chapter 2

Sequence Modeling Systems: Past, Current
and Future

2.1 Past: Cascade Systems

Our work takes inspiration from the traditional cascaded systems (Koehn et al., 2007; Povey et al.,
2011; Pham et al., 2019), which use several sub-components that are trained separately. These
systems successfully exploited search capabilities of the cascaded systems to compose the final
task output from individual system predictions using beam-search (Inaguma et al., 2020b; Pham
et al., 2019) and more sophisticated lattice based search (Koehn et al., 2007; Povey et al., 2011;
Zhang et al., 2019; Beck et al., 2019). They have the ability to incorporate external models to re-
score each individual system (Och and Ney, 2002; Huang and Chiang, 2007), the ability to easily
adapt individual components towards out-of-domain data (Koehn and Schroeder, 2007; Peddinti
et al., 2015), and finally the ability to monitor performance of the individual systems towards the
decomposed sub-task (Tillmann and Ney, 2003; Meyer et al., 2016).

2.2 Current: E2E Encoder-Decoder Systems

Recently, there has been a growing interest in training a single end-to-end (E2E) system to per-
form these sequence-to-sequence tasks using methods such as the encoder-decoder models (Bah-
danau et al., 2015; Chan et al., 2015; Vaswani et al., 2017), the non-autoregressive models (Gu
et al., 2018; Chan et al., 2020; Saharia et al., 2020) and the tranducer based models (Graves, 2012;
Zhang et al., 2020). These end-to-end approaches are attractive in part due to their simplistic de-
sign and the reduced need for hand-crafted features; however, studies have shown mixed results
compared to cascaded systems particularly for complex sequence tasks like like speech transla-
tion (Inaguma et al., 2020b) and spoken language understanding (Coucke et al., 2018). Among
these, we are particularly interested in popular end-to-end encoder-decoder models (Bahdanau

5

Table 2.1: Encoder swap of the attention based encoder-decoder model trained with a different
random seed tested on two different sequence tasks, ASR, measured in % word error rate (%
WER (↓)), and MT, measured in BLEU (↑).

Sequence Model Eval 2000 (↓) newstest2014 (↑)
SWB CH En→ De

Original Attention Based Enc-Dec 8.5 17.7 29.7

After Encoder Swap Attention Based Enc-Dec 569.0 892.0 0.2

et al., 2015; Chan et al., 2016; Vaswani et al., 2017) that have played a critical role in a wide
range of NLP and speech tasks.

Conditioned on previously generated output tokens and the full input sequence, encoder-
decoder models (Sutskever et al., 2014) factorize the joint target sequence probability into a prod-
uct of individual time steps. They are trained by minimizing the token-level cross-entropy (CE)
loss between the true and the decoder predicted distributions. Input sequence information is en-
coded into the decoder output through an attention mechanism (Bahdanau et al., 2015) which is
conditioned on current decoder states, and run over the encoder output representations.

The problem of tight coupling of the encoder and decoder components in the end-to-end se-
quence model is highlighted in Table 2.1. The decoder cross-attention over the encoder hidden
representation makes it not only conditioned on the encoder outputs but also dependent on the
encoder architectural decisions and internal hidden representations. The whole ASR or MT sys-
tem fall apart under a simple test of re-usability, i.e. switching an encoder with another similar
one that is only different in its initial random seed, which brings our point about the lack of
compositionality in encoder-decoder models.

2.3 Future of E2E Systems

In this thesis, we would like to bridge the practical considerations of the cascaded systems along
with the strong modeling capabilities of the end-to-end models. We envision a future of end-to-
end models that have the practical considerations that go towards building cascaded systems. By
exploiting the principles of compositionality, we believe that we can build end-to-end systems
that are practical for real-world scenarios while avoiding the issues of pipelining systems, like
error propagation. The practical considerations that we consider in our thesis is growing interest
and are being studied individually (Andreas et al., 2016; Raunak et al., 2019; Lake, 2019), how-
ever a holistic view with a unified end-to-end framework for such practical considerations is still
missing. We will now introduce the properties of compositionality that we would like to bring to
end-to-end systems and present some related works.

6

2.3.1 Performance Monitoring

Wewould like to have the ability to monitor the performances of the individual components of an
end-to-end model. This would allow practitioners to diagnose and reason on which components
of the end-to-end model is working better or worse. Such capabilities were used extensively in
cascaded approaches (Tillmann and Ney, 2003; Meyer et al., 2016), where the community would
question the quality of individual components of the neural network along with the quality of
doing the overall task. In the current state of end-to-end models, it is possible to only evaluate
the model towards the performance of the end-task and the decoders components for encoder-
decoder models in terms of perplexity (Bahdanau et al., 2015). There has been somework on post-
hoc analysis the representations learned by the encoders by evaluating them on an auxiliary task
(Palaskar et al., 2019), however these task does not necessarily tests the quality with respect to the
overall task and an improvement in these auxiliary task may not translate towards improvement
towards the performance on the final task.

2.3.2 Reusability

We would like to have end-to-end models that have reusable components. Where a component
trained on one task can be re-used towards a component for another task or domain. For example,
components that share the same functionality across tasks should be reusable. Cascaded systems
(Sperber and Paulik, 2020) have used this elegant property to reduce wastage of compute and
time spend in building these systems by re-using systems that share a common functionality, like
ASR and MT systems being re-used for building speech translation systems or language models
being reused for both ASR andMT systems. In the end-to-end research previous works have con-
sidered pre-training using trained components (Zheng et al., 2021; Inaguma et al., 2020b). There
have been many also proposals for inducing a modular structure on the space of learned concepts
either through hierarchically gating information flow or via high-level concept blueprints (An-
dreas et al., 2016; Devin et al., 2017; Purushwalkam et al., 2019) to enable zero- and few-shot
transfer learning (Andreas et al., 2017; Socher et al., 2013; Gupta et al., 2020; Pathak et al., 2019).

2.3.3 Search and Retrieval

We would like to have the ability of cascaded systems to compose a final output by using the pre-
diction from individual components of an end-to-end model with sophisticated search techniques
like beam search (Inaguma et al., 2020b; Pham et al., 2019) or lattice based search (Koehn et al.,
2007; Povey et al., 2011; Zhang et al., 2019; Beck et al., 2019). In an end-to-end model, the
input sequence undergoes many transformations from representations in one modality to repre-
sentations in another. For instance, an end-to-end build for spoken language understanding task
(Lugosch et al., 2019) first learns a sequence of speech representations which is then transformed

7

into a sequence of word representations, which is followed by learning a sentence representation
before the final task of predicting intents. The ability for search and retrieval would allow prac-
titioners to adapt individual components of the neural network towards new domains and style
intended for each modality transformation leading to the final task.

2.3.4 Resource Pooling

We would like the ability to be able to pool resources from the decomposed tasks to build an end-
to-end system towards the complex task. Traditional cascade models are conveniently exploiting
this benefit by training individual systems on the decomposed task (Sperber and Paulik, 2020).
With the advancement in pre-training and multi-task learning this aspect of compositionality is
gaining interest among the end-to-end sequence modeling community. Due to the limited avail-
ability of the end-to-end datasets, recent works have considered using self-supervised techniques
to learn better representation models in both speech (Baevski et al., 2020) and language (Devlin
et al., 2019). We consider this work to be complimentary to our work, as the representation learn-
ing framework is task agnostic and requires adaptation towards the task at hand. There has also
been many works to pool resources across languages for a variety of sequence tasks like machine
translation (Liu et al., 2020a), speech recognition (Dalmia et al., 2018, 2019a; Conneau et al.,
2020) and speech translation (Li et al., 2020a)

8

Part I

CTC Hybrid and LegoNN Modular E2E Systems

9

Chapter 3

CTC Hybrid Systems

The following Chapters 3, 4 and 5 introduces the building blocks for our CTC Hybrid Systems
and LegoNNModular Encoder-Decoder Systems. Chapter 3 gives a background on CTC Hybrid
Systems built for speech recognition (Miao et al., 2015) and presents our work that utilizes the
task decomposition in CTC Hybrid Systems to pool resources across languages to build strong
ASR systems for low resource speech recognition. Chapter 4 then discusses how to build our end-
to-end Modular Encoder-Decoder Systems using the LegoNN framework. In this work, we also
propose building modality agnostic CTC encoders showing how we can extend the CTC Hybrid
Systems to non-monotonic sequence prediction tasks. Chapter 5 shows how we can build joint
CTC/Attn models (Kim et al., 2017) for non-monotonic sequence tasks like speech and machine
translation. Although the joint model does not have the properties of our intended future for
sequence models §2.3, this work is motivated through principles of task compositionality and
further strengthens our work on CTC encoders for non-monotonic sequence task. These CTC
encoders built for speech and machine translation can then be used to build CTC Hybrid Systems
as it was shown in Chapter 3 for building ASR systems.

3.1 Connectionist Temporal Classification

The Connectionist Temporal Classification (CTC) algorithm is an alignment-free sequence pre-
diction approach which marginalizes over the likelihoods of all possible alignments of an input
X of length T and an output Y of length L, where L ≤ T (Graves et al., 2006). CTC resolves
the input-output length mismatch by introducing a blank token ∅ to represent a null emission,
defining an output vocabulary of V +∅ where V is the original vocabulary of Y. Now a possible
output alignment A = [a1, ..., aT] for at ∈ {V +∅} can be produced with the same length as X.
With the set of all possible alignments AX,Y, the overall likelihood of an output Y is:

11

p(Y|X) =
∑

A∈AX,Y

T∏
t=1

pt(at|X) (3.1)

log p(Y|X) = LogSumExp
A∈AX,Y

(T∑
t=1

log pt(at|X)
)

(3.2)

=
T∑
t=1

LogSumExp
A∈AX,Y

(
log pt(at|X)

)
(3.3)

Note that due to the conditional independence assumption in CTC, we can write Equation (3.3)
where the summand corresponds to the combined probability densities from all possible align-
ments for emitting tokens V +∅ at a particular time-step t.

In a non-autoregressive CTC network an Encoder models a sequence of hidden representa-
tions h = [hi, ..., hT], where ht ∈ Rd. The output emission log-probabilities is given by the affine
projection of h followed by the log-softmax function, denoted as SoftmaxOut. These emission
log-probabilities are equivalently represented as aweighted finite-state transducer (WFST) E with
T states, where each state t in E is connected to state t + 1 by |V + ∅| arcs whose weights are
defined as the emission log-probabilities at t, SoftmaxOut(ht).

h = Encoder(X) (3.4)
Et→t+1 = SoftmaxOut(ht) (3.5)

During training, we seek to maximize the overall log-likelihood of AX,Ŷ for the target se-
quence Ŷ by constructing the target-constrained emissions WFST, CX,Ŷ, which is the intersection
of the log-probabilistic emission graph E with an unweighted target graph Y . Y is constructed
with the possible representations of Ŷ under the CTC rules for blank tokens and repeated tokens.

Rather than producing a soft alignment between the input and target sequences, the CTC
loss (Graves et al., 2006) maximizes the log conditional likelihood of the output, by integrating
over all possible monotonic alignments between both sequences. During training, the forward-
backward algorithm is used for efficient computation of the marginalization sum. For inference,
only one forward pass through the encoder-only model is needed to generate output probability
distributions over the full target sequence in a non-autoregressive fashion.

3.1.1 Results using Transformer Encoders and SpecAugment

Since the introduction of CTC based models, there has been great strides towards improving
encoders using Transformers (Vaswani et al., 2017) and stabilizing training using SpecAugmen-

12

Table 3.1: Results, measured in %WER (↓), presenting the CTCmodel trained using transformer
encoder blocks (Vaswani et al., 2017) and SpecAugmentation (Park et al., 2019). We provide an
LSTM CTC model trained using a similar sized BPE units presented in (Sanabria and Metze,
2018) for comparision.

Model SWBD (↓) CallHome (↓)

LSTM-CTC (Sanabria and Metze, 2018) 20.6 33.5

Transformer-CTC 11.5 24.1

tation (Park et al., 2019). They have enabled training larger models and also towards target units
that are larger than character or phoneme level. To compare with the LSTM-CTC based mod-
els like in (Sanabria and Metze, 2018) we trained a Trasnformer-CTC based model on the 300h
Switchboard Conversational data and tested them on the eval2000 test sets. Table 3.1 shows that
we can build stronger CTC based models with transformer based encoders and SpecAugmenta-
tion. Details about the model and the dataset preparations are provided in §4.5.1.

3.2 CTC Hybrid Systems

Context independent models trained using the CTC loss can be elegantly combined with a lan-
guage model to generate output sequences that are conditioned on the context. Thereby, behaving
like a decoder from an encoder-decoder model while retaining the traditional separation of cas-
caded systems. In the context of speech recognition, the CTC model behaves like an acoustic
model and the separation from language model allows for domain independence and adaptation
or re-use of individual components. Having this hybrid approach also allows training of the lan-
guage model on larger amounts of text data available (Zenkel et al., 2017). The ability to modify
individual components also allow practitioners to modify the decoding strategies based on the
scenario, like a WFST based decoding (Miao et al., 2015) allows for a stronger search capability
but have a fixed vocabulary decoding. On the other hand, an RNN-LM based decoding (Zenkel
et al., 2017; Dalmia et al., 2019a) allows for modelling longer contexts and open vocabulary
decoding but are limited to left-to-right beam search based re-scoring.

Table 3.2 presents the state-of-the-art CTC Hybrid ASRmodel that we developed using trans-
former encoders (Vaswani et al., 2017) and SpecAugmentation (Park et al., 2019) on the 300
hour Switchboard dataset. These models are comparable to the current encoder decoder base-
lines while maintaining the flexibility that we desire from a sequence system. Additional details
on the model and the dataset preparation is provided in §4.5.1. We use the WFST based decoding
(Miao et al., 2015) with a trigram language model and the vocabulary from the training data. We
do not use any additional data for a fair comparision with the encoder-decoder baseline. How-
ever, unlike encoder-decoder models, this performance can be improved further by simply adding

13

Table 3.2: Results, measured in % WER (↓), presenting the CTC Hybrid models for the speech
recognition task. The models are trained on the 300h Switchboard corpora and tested on the
eval2000 test sets. We provide a baseline encoder-decoder model for comparision.

Model SWBD (↓) CallHome (↓)

Baseline Enc-Dec 8.5 18.0

Transformer-CTC 11.5 24.1
+ WFST Decoding 9.1 19.4

more in-domain text to train the language model (Sanabria and Metze, 2018).
Such hybrid models with non-autoregressive CTC encoders and LM based decoding are be-

coming increasingly popular as self-supervised models are improving (Baevski et al., 2020) as the
CTC models allow for easy tuning of the self-supervised models. Additionally, with the adapta-
tion of CTC models for other non-monotonic sequence tasks (Saharia et al., 2020; Libovický and
Helcl, 2018; Inaguma et al., 2020a) we expect that these hybrid models would start to re-appear
as the future of sequence modeling.

3.3 Resource Pooling across languages through decomposi-
tion:
Multilingual Low Resource Speech Recognition

Techniques for multilingual and crosslingual speech recognition can help in low resource sce-
narios, to bootstrap systems and enable analysis of new languages and domains. End-to-end
approaches, in particular sequence-based techniques, are attractive because of their simplicity
and elegance. While it is possible to integrate traditional multilingual bottleneck feature extrac-
tors as front-ends, we show that end-to-end multilingual training of sequence models is effective
on context independent models trained using Connectionist Temporal Classification (CTC) loss.
We show that our model improves performance on Babel languages by over 6% absolute in terms
of word/phoneme error rate when compared to monolingual systems built in the same setting for
these languages. We also show that the trained model can be adapted crosslingually to an unseen
language using just 25% of the target data. We show that training on multiple languages is impor-
tant for very low resource crosslingual target scenarios, but not for multilingual testing scenarios.
Here, it appears beneficial to include large well prepared datasets.

14

3.4 Introduction

State-of-the-art speech recognition systems with human-like performance (Saon et al., 2017;
Xiong et al., 2016) are trained on hundreds of hours of well-annotated speech. Since annotation
is an expensive and time-consuming task, similar performance is typically unattainable on low
resource languages. Multilingual or crosslingual techniques allow transfer of models or features
from well-trained scenarios to those where large amounts of training data may not be available,
cannot be transcribed, or are otherwise hard to come by (Stolcke et al., 2006; Grézl et al., 2016).

The standard approach is to train a context dependent Hidden Markov Model based Deep
Neural Network acoustic model with a “bottleneck” layer using a frame based criterion on a
large multilingual corpus (Veselỳ et al., 2012; Knill et al., 2013; Vu et al., 2012). The network up
to the bottleneck layer can be used as a language-independent feature extractor while adapting to
a new language. Generating such a model requires the preparation of frame level segmentation in
each language, which is usually achieved by training separate monolingual systems first. This is
a cumbersome multi-step process. Moreover, if the speaking style, acoustic quality, or linguistic
properties of the recordings are very different across a set of languages, the segmentations may
be inconsistent across languages and thus sub-optimal for generating features in a new language.

Figure 3.1: Multilingual CTC model following the “shared hidden layer” approach.

On the other hand, end-to-end training approaches which directly model context independent
phones are elegant, and greatly facilitate speech recognition training. Most do not require an

15

explicit alignment of transcriptions with the training data, and there are typically fewer hyper-
parameters to tune. We show that sequence training in multilingual settings can create feature
extractors, which can directly be ported to new languages using a linear transformation (on very
limited data), or re-trained on more data, opening a door to end-to-end language universal speech
recognition.

3.5 Related Work and Babel Dataset

Some of the early works in multilingual and crosslingual speech recognition involved the use
of language independent features like articulatory features (Stuker et al., 2003) to train HMM
based systems. Authors in (Burget et al., 2010) used subspace Gaussian mixture model to map
phonemes of different languages together. Authors in (Schultz and Waibel, 2001) introduce the
use of a shared phone set to build HMM based language independent acoustic models and show
the adaptation of pre-existing models towards a new language.
With the on-set of deep learning the focus of the models shifted to learning features across lan-
guages which can be mapped to the same space (Stolcke et al., 2006; Ghoshal et al., 2013). Au-
thors in (Swietojanski et al., 2012) looked at unsupervised pretraining on different languages for
a cross lingual recognition. The dominant architecture for multilingual or crosslingual speech
recognition has been the so-called “shared hidden layer” model, in which data is passed through
a series of shared feed-forward layers, before being separated into multiple language-specific
softmax layers, which are trained using cross-entropy (Scanzio et al., 2008; Veselỳ et al., 2012;
Heigold et al., 2013). This architecture can also be used as a “bottleneck” feature extractor, from
which “language independent” features are extracted, on top of which a target-language acous-
tic model can be built. Authors in (Grézl et al., 2014) showed that these multilingual models
can be adapted to the specific language to improve performance further. The work by (Veselỳ
et al., 2012; Grézl et al., 2011) presented bottleneck features for multilingual systems where they
showed feature porting is possible and gave competitive results when compared to systems with
monolingual features. Other approaches (Tong et al., 2017; Vu et al., 2014) constructed a shared
language independent phone set, which could then also be adapted to the target language. Our
proposed model is inspired by the former approach which tries to learn latent features by sharing
hidden layers across languages.

Connectionist Temporal Classification (CTC, (Graves et al., 2006)) lends itself to low-
resource multilingual experiments, because systems built on CTC tend to be significantly
easier to train than those that have been trained using hidden Markov models (Miao et al.,

1This work used releases IARPA-babel105b-v0.4, IARPA-babel201b-v0.2b, IARPA-babel401b-v2.0b, IARPA-
babel302b-v1.0a (these 4 languages will be called the “MLing” set), and IARPA-babel106b-v0.2g, IARPA-
babel307b-v1.0b, IARPA-babel204b-v1.1b, IARPA-babel104b-v0.4bY (these 4 languages will be called the
“BAB300” set), and IARPA-babel202b-v1.0d and IARPA-babel205b-v1.0 for testing.

16

2015, 2016). Müller et al. (2017) shows that multilingual CTC systems with shared phones can
improve performance in a limited data setting. As per our knowledge there has not been any
prior work that have looked into learning “bottleneck” like features for a CTC based model and
seen how it performs multilingually and crosslingually with adaptation.

For this work we use several languages from IARPA’s Babel1 project to test our model. These
are mostly telephony (8kHz) conversational speech data in a low resource language. These were
accompanied by a lexicon and dictionary in Extended Speech Assessment Methods Phonetic
Alphabet (X-SAMPA) format. Table 3.3 summarizes the amount of training data in hours along
with the number of phonemes (including the CTC blank symbol) present for the languages we
used in our experiments on the “Full Language Pack” (FLP) condition.

Table 3.3: Overview of the FLP Babel Corpora used in this work.

Subset Language # Phones + ∅ Training Data
Turkish 50 79 hrs

MLing Haitian 40 67 hrs
Kazakh 70 39 hrs
Mongolian 61 46 hrs
Amharic 67 43 hrs

Bab300 Tamil 41 69 hrs
Tagalog 48 85 hrs
Pashto 54 78 hrs

For Kurmanji 45 42 hrs
testing Swahili 40 44 hrs

Table 3.4: Word (% WER) and phoneme error rate (% PER) for each of the test languages, on
the Babel conversational development test sets.

Model Kazakh Turkish Haitian Mongolian
WER PER WER PER WER PER WER PER

Monolingual 55.9 40.9 53.1 36.2 49.0 36.9 58.2 45.2
Multilingual (MLing) 53.2 36.5 52.8 34.4 47.8 34.9 55.9 41.1

MLing & FineTuning (FT) 50.6 35.1 49.0 32.2 46.6 33.2 53.4 39.6
MLing + SWBD 52.3 36.6 51.3 33.0 45.8 33.9 54.5 40.2

MLing + SWBD & FT 48.2 33.5 48.7 31.9 44.3 31.9 51.5 37.8

3.6 Multilingual CTC Model

A model trained with CTC loss is a sequence based model which automatically learns alignment
between input and output by introducing an additional label called the blank symbol (∅), which

17

corresponds to ‘no output’ prediction. Given a sequence of acoustic features X = (x1, . . . , xn)
with the label sequence z = (z1, . . . , zu), the model tries to maximize the likelihood of all possible
CTC paths p = (p1, . . . , pn)which lead to the correct label sequence z after reduction. A reduced
CTC path is obtained by grouping the duplicates and removing the ∅ (e.g. B(AA∅AABBC) =

AABC).

P (z|X) =
∑

p∈CTC_Path(z)

P (p|X)

Like in (Miao et al., 2015) we use this loss along with stacked Bidirectional LSTM layers to
encode the acoustic information and make frame-wise predictions.
In our CTC multilingual model, we share the bidirectional LSTM encoding layer till the final
layer and project the learned embedding layer to the phones of the respective target languages.
The intuition behind this model is that training on more than one language will help in better
regularization of weights and learning a better representation of features, as it will be trained
on more data. We hypothesize that the final phoneme discrimination can be learned in a linear
projection of the last layer. Figure 3.1 shows the schematic diagram of our multilingual model.
Mathematically this can be written as,

X = {XL1 ∪ XL2 ∪ XL3 . . .XLn} XLi = (x1
Li, . . . , x

n
Li)

e = EncoderBiLSTM(X) e ∈ Rn×2∗hdim

P (p|X) =


softmax(WL1e+ bL1) if X ∈ XL1

softmax(WL2e+ bL2) if X ∈ XL2

. . .

softmax(WLne+ bLn) if X ∈ XLn

Unlike (Veselỳ et al., 2012), we do not have any bottleneck layer, and the whole model is
sequence trained based on CTC loss.

3.7 Experiments and Observations

3.7.1 Multilingual CTC model

To align with project goals, we chose to perform experiments on a set of four languages which
are the closest/ have maximum phone overlap with Kurmanji – Kazakh, Turkish, Mongolian
and Haitian. We used a 6-layer bidirectional LSTM network with 360 cells in each direction,

18

which performed best on average across the majority of Babel languages in a systematic search
experiment. Table 3.4 shows the results. For consistency, we used absolutely identical settings
across all languages, and did not perform any language-specific tuning, other than choosing the
lowest perplexity language model between 3-gram and 4-grammodels forWFST-based decoding.
Techniques such as blank scaling and applying a softmax temperature can often improve results
significantly, but we did not apply any of them here for consistency.

In our multilingual experiments, we use the same 6-layer Bi-LSTM network with 360 cells
(per direction) in each layer as our shared encoded representation2. Again, this setup performed
best on average on a larger set of languages. Multilingual training on the “MLing” set (the four
languages shown in Table 3.4) improves WER by 1.7% (absolute) on average, while keeping
the LSTM layers shared across all languages. If we fine-tune the entire model towards each
language specifically, performance improves further, by 4.4% on average over the baseline. If
we roughly double the amount of training data by adding the Switchboard 300h training set to the
“MLing” training data, performance improves yet again, for both the universal (MLing+SBWD)
and language-specific (MLing+SWBD & FT) case. Overall, WER and PER improve by about
6% absolute (>10% relative), which is in line with other results reported on comparable tasks
discussed in section 3.5.

As expected, reductions in the error rates tend to be higher for the lower resource languages,
like Kazakh and Mongolian.

3.7.2 Data Selection

Given that adding a seemingly unrelated, but high resource language improved the performance of
the model on four low resource languages, we further studied the impact of varying the source(s)
of the extra data. Specifically, we replaced the 300 h Switchboard corpus with fourmore unrelated
Babel languages, “BAB300” composed of Tamil, Amharic, Pashto, and Tagalog. The results on
the test data are summarized in Table 3.5. We can see that adding Switchboard data outperforms
adding more unrelated Babel languages.

Table 3.5: Word error rate (% WER) on the test languages when switching the SWBD data with
300 hrs equivalent of Babel.

Model Kazakh Turkish Haitian Mongolian
MLing + BAB300 57.5 52.0 47.8 56.7
MLing + SWBD 52.3 51.3 45.8 54.5

While our main goal here has been the creation of a multilingual recognizer, we verified
that models that have been trained on a single Babel language plus 300 h of Switchboard do

2The code to train the multilingual model is released as part of EESEN (Miao et al., 2015).

19

not outperform the fine-tuned MLing+SWBD system, while there is no clear pattern on other
languages. This indicates that it is generally beneficial to train (sequence-based) multilingual
systems on closely related languages, and/or on large amounts of well-prepared but unrelated
monolingual data, but that adding a large number of languages may in fact prevent the model
from training well.

3.7.3 Representation Learning

In order to study to what extent the CTC sequence models have learned useful bottleneck like
discriminatory audio features that are independent of the input language, we attempt to port a
model to an unseen language. We aim to use the trained model as a language-independent fea-
ture extractor that can linearly separate any language into a phoneme sequence. To do this, we
replace the softmax layer (or “layers” in the multilingual case) of a “donor” CTC model with
a single softmax, which we then train with varying amounts of data from the target language,
Kurmanji in our case. Figure 3.2 shows how different “donor” models behave in this situation.
In the crosslingual case, it becomes beneficial to train the LSTM layers with as many different
languages as possible (“MLing+BAB300” outperforms “MLing+SWBD” and “MLing”), while
a single related language (Turkish) outperforms adaptation on a larger amount of data from an
unrelated language (SWBD). There is a large gap between monolingual systems and multilingual
systems. Improvements become smaller once training is performed on 4 h (10%) of data or more,
but even then the re-estimation of the softmax layer (with ca. 32k parameters) benefits frommore
data.

Figure 3.2: Crosslingual training of CTC softmax layer only on top of different “donor” models.

It thus seems that multilingual systems do indeed learn a portable, language independent
representation, which is useful when porting to a new language, while the sheer amount of data
is less beneficial.

20

(a) Adaptation of softmax layer only for Kur-
manji and Swahili targets. Kurmanji performs
well, because the language is similar to some
training languages.

(b) Adaptation of entire network (re-training)
to target languages. This outperforms softmax
adaptation (on the left) as soon as 2-4 h of data
become available.

Figure 3.3: Crosslingual training of Kurmanji and Swahili systems.

3.7.4 Crosslingual Explorations

Figure 3.4 shows that for both related and unrelated languages, a multilingual system surpasses
the monolingual baseline once about 25% of the original data has been seen. The behavior of
retraining (“full network adaptation”) seems independent of the original trained languages.

To further investigate how multilingual models can be used in crosslingual settings, and with
varying amounts of training data, we compare “softmax” adaptation and full network adaptation
(retraining) on Kurmanji and Swahili, two languages which we did not see in training. We use
the (MLing + SWBD) and (MLing + BAB300) “donor” models. Figure 3.3 shows that for small
amounts of adaptation data, and a target language that is related to the pre-trained languages
(Kurmanji), “softmax adaptation” is competitive, and an initialization with many languages is
beneficial.

When the entire network can be retrained (“full network adaptation”, shown on the right side
of Figure 3.3), there is very little difference between the “donor” systems’ performance.

3.7.5 Extending this approach with transformer based CTC models

The above study was done in 2018 and since then there have been many advances in the com-
munity which help make better speech recognition models. In particular, Transformers (Vaswani
et al., 2017) and SpecAugment (Park et al., 2019) have led to better encoders and training stability
respectively. In this section, we apply the above approach, but replacing LSTMs with Transform-
ers and applying SpecAugmentation during training. We also added more languages and build a
bigger model. The results are presented in Table 3.6.

21

Figure 3.4: PER on different amounts of crosslingual data using a full network end-to-end adap-
tation (retraining).

Table 3.6: Results presenting the techniques developed in this chapter with the more recent Trans-
former encoders and SpecAugmentation. The table shows the phoneme error rate (% PER) for
each of the test languages, on the Babel conversational development test sets. We have added the
monolingual CTC phoneme error rates for comparison.

Phoneme Error Rate %

Model Type Model Name Eng Tur Tgl Vie Kaz Amh Jav Total

LSTM-CTC Monolingual-CTC (Mortensen et al., 2018) - 34.4 32.0 - 37.8 33.3 42.1 35.9

Transformer-CTC Multilingual-CTC (Dalmia et al., 2018) 25.3 27.7 28.5 31.9 31.5 28.6 35.2 29.8

We use the English LDC Switchboard Dataset (Godfrey and Holliman, 1993; Consortium,
2002a,b) and 6 languages from the IARPA BABEL Program: Turkish, Tagalog, Vietnamese,
Kazakh, Amharic and Javanese.3 These datasets contain 8kHz recordings of conversational
speech each containing around 50 to 80 hours of training data, with an exception of around 300
hours for English.

The model was trained using the ESPnet toolkit (Watanabe et al., 2018). To prepare our
speech input features we first upsample the audio to 16kHz, augment it by applying a speed per-
turbation of 0.9 and 1.1, and then extract global mean-variance normalized 83 log-mel filterbank
and pitch features. Input frames are processed by an audio encoder with convolutional blocks
to subsample by 4 (Watanabe et al., 2018) before feeding to 12 transformer-encoder blocks with
a feed-forward dim of 2048, attention dim of 256, and 4 attention heads. We augment our data
with the Switchboard Strong (SS) augmentation policy of SpecAugment (Park et al., 2019) and
apply a dropout of 0.1 for the entire network. We use the Adam optimizer to train 100 epochs

3We use the Full Language Packs (FLP) released by the IARPA Babel Research Program (IARPA-
BAA-11-02): IARPA-babel105b-v0.4, IARPA-babel106-v0.2g, IARPA-babel107b-v0.7, IARPAbabel302b-v1.0a,
IARPAbabel307b-v1.0b, IARPAbabel402b-v1.0b

22

with an inverse square root decay schedule, a transformer-lr scale (Watanabe et al., 2018) of 5,
25k warmup steps, and an effective batchsize of 768.

3.8 Conclusion

In this chapter, we present the CTC hybrid models which decompose a sequence task into align-
ment using the CTC loss and language generation using a language model. In order to show the
resource pooling aspects for the CTC component of the hybrid model, we demonstrate that it
is possible to train multilingual and crosslingual acoustic models by decomposing words from
different languages into universal phone sequences. In multilingual settings, it seems beneficial
to train on related languages only, or on large amounts of clean data; there is no benefit simply
from training on many languages. It is thus possible to combine e.g. Switchboard and Babel data.
In very low resource crosslingual scenarios, it is possible to adapt a model to a previously unseen
language by re-training the softmax layer only. CTC models can learn a language independent
representation at the input to the softmax layer. We find that training the models trained on related
languages help, as does training on many languages, rather than large amounts of data. As more
and more data is available, and the whole network can be retrained, and the effect of the choice
of language for the multilingual training disappears.

23

24

Chapter 4

Modular Encoder-Decoder Systems

In Chapter 3, we build sequence prediction models using CTC Hybrid Systems that decompose
the overall task into alignment using the CTC encoder and language generation using a language
model. These systems exhibit all the properties of compositionality but suffer from the inability
to tune the model on end task data.

This chapter aims to build an end-to-end alternative based on the encoder-decoder architecture
(Bahdanau et al., 2015; Chan et al., 2016) that is also compositional in nature. We present LegoNN
a framework for building modular encoder-decoder models that defines a clear interface between
the encoder and decoder modules and allows re-using decoder modules trained from different
seeds, architectures, or even different tasks into an encoder module that is trained separately.
These models also have the ability to further fine-tune the model on end-to-end task data.

4.1 LegoNN: Building Modular Encoder-Decoder Models

State-of-the-art encoder-decoder models (e.g. for machine translation (MT) or speech recognition
(ASR)) are constructed and trained end-to-end as an atomic unit. No component of the model can
be (re-)used without the others. We describe LegoNN, a procedure for building encoder-decoder
architectures with decoder modules that can be reused across various MT and ASR tasks, with-
out the need for any fine-tuning. To achieve reusability, the interface between each encoder and
decoder modules is grounded to a sequence of marginal distributions over a discrete vocabulary
pre-defined by the model designer. We present two approaches for ingesting these marginals;
one is differentiable, allowing the flow of gradients across the entire network, and the other is
gradient-isolating. To enable portability of decoder modules between MT tasks for different
source languages and across other tasks like ASR, we introduce a modality agnostic encoder
which consists of a length control mechanism to dynamically adapt encoders’ output lengths in
order to match the expected input length range of pre-trained decoders. We present several ex-
periments to demonstrate the effectiveness of LegoNN models: a trained language generation

25

Practitioner’s Need

De→En MT
Ro→En MT
English ASR

Model Inventory

Fewer GPU hours
LegoNN Benefits

Utilize decoders from high resourced tasks

Promote Reusability

Ability for further end-to-end fine-tuning

Encoder Decoder

Encoder

Only train new
Encoders!

Reuse Decoder

(No fine-tuning!)

Figure 4.1: LegoNN Framework: Building encoder-decoder models in the LegoNN framework,
allows practitioners to reuse components like decoder modules for various sequence prediction
tasks. For example, in this figure an English predicting decoder from German-English machine
translation system can be re-used for both Romanian-English machine translation and English
speech recognition without any fine-tuning steps. This saves overall compute resources, pro-
motes re-usability, allows practitioners to utilize decoders from high-resourced tasks for under-
resourced ones. The composed model is end-to-end differentiable leaving room for further im-
provements through fine-tuning.

LegoNN decoder module from German-English (De-En) MT task can be reused with no fine-
tuning for the Europarl English ASR and the Romanian-English (Ro-En) MT tasks to match or
beat respective baseline models. When fine-tuned towards the target task for few thousand up-
dates, our LegoNN models improved the Ro-En MT task by 1.5 BLEU points, and achieved
12.5% relative WER reduction for the Europarl ASR task. Furthermore, to show its extensibility,
we compose a LegoNN ASR model from three modules – each has been learned within different
end-to-end trained models on three different datasets – boosting the WER reduction to 19.5%.

4.2 Introduction

Training end-to-end models for machine translation (MT) or automatic speech recognition (ASR)
requires the learning of multiple implicit functions (Bahdanau et al., 2015; Sutskever et al., 2014;
Vaswani et al., 2017; Chan et al., 2016; Bahdanau et al., 2016). AnMTmodel implicitly does both
word translation and language generation, while an ASR model combines phoneme recognition,
pronunciation modeling, and language generation. These fully differentiable models are concep-
tually simple and work well in practice. However, they forgo opportunities to share common
logical functions between different tasks, such as their decoders. This leads to wasted compute
during training and less interpretable architectures overall.

26

Motivated bymodularity principles in software design (Baldwin and Clark, 1999) wheremod-
ules have interpretable interfaces and are reusable within other programs, we introduce LegoNN,
a procedure for constructing encoder-decoder models with decoder modules that can be reused
across various sequence generation tasks such as MT, ASR, or Optical Character Recognition
(OCR). As summarized in Figure 4.1, for AI models, enforcing modularity helps save computing
resources by reusing components and helps build systems for under-resourced tasks by utilizing
shareable components from higher-resourced tasks. Additionally, having interpretable interfaces
enables monitoring the performance of individual encoder or decoder modules and their contri-
butions to the overall end-to-end performance.

More concretely, in our LegoNN encoder-decoder framework, encoders have an interpretable
interface by outputing a sequence of distributions over a discrete vocabulary, derived from the
final output labels (e.g. phonemes or sub-words). During training, we add an additional Connec-
tionist Temporal Classification (CTC) loss (Graves et al., 2006) to the encoder output to enforce
this modularity (§4.4.1). Our decoder modules are extended with Ingestor layers (ING) that ac-
cept these distributions as input (§4.4.4). We experiment with two types of ingestor layer: a
differentiable Weighted Embedding (WEmb) ingestor allowing gradient flow across the entire
network and a gradient-isolating Beam Convolution (BeamConv) one. Given that LegoNN de-
coder modules can be trained for oneMT task and then reused for anotherMT task with a different
source language or for a sequence generation task with the same target language such as ASR or
OCR, we propose a modality agnostic encoder for a sequence prediction task that uses an output
length controller (OLC) unit to adapt any input modality to a sequence of encoder representations
that matches the expected input length of another (§4.4.3). LegoNNs, as also demonstrated in our
experiments, enable the sharing of trained decoders 1 and intermediate modules between different
tasks and domains without jointly training for both tasks and no fine-tuning steps. The composed
LegoNN model preserves end-to-end differentiability of each individual system, allowing room
for further improvements through fine-tuning.

Our experiments show that we can achieve modularity without sacrificing performance. On
the standard large-scale En-DeWMT and Switchboard ASR benchmarks, LegoNNmodels reach
levels of performance competitive with non-modular architectures (§4.6.1), while still passing
our stress tests for testing modularity (§4.6.2). We show the value of modularity by seamlessly
composing a decoder module trained within a German-English (De-En) WMT system with other
pre-trained encoder modules from different MT and ASR systems, without any joint training or
fine-tuning, to match or beat generation performance for the Europarl English ASR task and the
Romanian-English (Ro-En) WMT task (§4.6.3). When such composed LegoNN models are fine-
tuned for few thousand steps towards the target domain, they improve the Ro-En MT task by 1.5
BLEU points and improve the Europarl ASR task by 12.5%WER relative to the baseline system

1Our work on LegoNNs are orthogonal to the recent work on sharing pre-trained encoders, e.g BERT (Devlin
et al., 2019). Combining the benefits of these two complementary approaches is left for future work.

27

(§4.6.4). To demonstrate the flexibility of reusing LegoNNmodules, we construct an ASR system
which is composed of modules that have been trained independently on three different tasks,
without performing any fine-tuning and with almost no performance degradation. Modules are:
(1) a phoneme recognizer from the Europarl ASR model, (2) a pronunciation model from the
TED-LIUM ASR model, and (3) a language generation decoder from the WMT model (§4.6.3).
With a few end-to-end fine-tuning steps, the composed model beats the Europarl ASR baseline
model by 19.5% relative WER, also improving over the previously composed LegoNN model
for this task (§4.6.4).

4.3 Background

4.3.1 Cross-Entropy Loss in Encoder-Decoder Models

Given an input sequence X1:T , encoder-decoder models (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Bahdanau et al., 2015) compute an output sequence L1:N by factorizing
the probability of the joint target sequence into a product of auto-regressively generated outputs
conditioned on previously generated tokens and the input sequence. They are trained by min-
imizing the token-level cross-entropy (FCE) loss between the true tokens (L) and the predicted
distributions of the decoder (PYAttn) over the set of output tokens YAttn, where Ln ∈ YAttn:

hE1:T = encoder(X1:T) (4.1)
PYAttn
n = softmax(decoder(hE1:T , L1:n91)) (4.2)

FCE(L1:N ,PYAttn
1:N) = − log

(
N∏

n=1

PYAttn
n,Ln

)
(4.3)

where the encoder processes the input sequence (X1:T) and communicates it to the decoder
through an attention mechanism (Bahdanau et al., 2015; Chan et al., 2016; Luong et al., 2015),
which is conditioned on the decoder state. The encoder-decoder model thereby models the
likelihood for next token prediction given the previous output tokens and the input sequence:

PYAttn
n = P (yAttnn | X1:T , L1:n91) (4.4)

where PYAttn
n is the distribution of the random variable yAttnn for position n, PYAttn

n , over the output
vocabulary space.

28

4.3.2 Connectionist Temporal Classification Loss

Rather than producing a soft alignment between the input and target sequences, the CTC loss
(Graves et al., 2006) maximizes the log conditional likelihood of the output, by integrating over
all possible monotonic alignments between both sequences:

PYCTC
1:T = softmax (encoder(X1:T) ∗Wo) (4.5)

FCTC(L1:N ,PYCTC
1:T) = − log

∑
z∈Z(L,T)

(
T∏
t=1

PYCTC
t,zt

)
(4.6)

Wo ∈ Rd×|YCTC| projects the encoder representations into the output vocabulary space of YCTC.
Z(L, T) ∈ {(t, l)|t ∈ {1 : T}, l ∈ YCTC} is the space of all possible monotonic alignments of
L into T time steps, and the probability of an alignment z is the product of locally normalized
output probabilities per time step PYCTC

1:T ∈ RT×|YCTC|. We omit the extra CTC blank symbol in
the equation above for clarity of presentation; see (Graves et al., 2006) for more details. The
marginalization sum is efficiently computed during training using dynamic programming.

4.4 LegoNN for Modular Encoder-Decoder Models

We propose decomposing encoder-decoder models into one (or more) encoder modules followed
by an auto-regressive decoder module, which can be reused for other tasks and domain, without
sacrificing its end-to-end differentiability. Each module produces a sequence of marginal distri-
butions over a pre-defined discrete vocabulary, which is consumed by an ingestor component in
the subsequent module. LegoNN modules trained either jointly or independently can be reused
for new tasks without the need of any fine-tuning. The LegoNN procedure introduces three op-
erations:

4.4.1 Designer-defined module interface

We look at encoder-decoder models as full software programs that execute the specific function
of mapping one sequence of input symbols or vectors to another. Although some components of
software programs, i.e. libraries, may be reused for numerous future programs, trained decoder
components of the traditional encoder-decoder models (Sutskever et al., 2014; Bahdanau et al.,
2015) are not designed to be reused independently with other models or tasks. A well-defined
and abstract input/output interfaces are prerequisites for developing reusable software libraries;
however, encoder-decoder models fall short in this respect. To convert decoders into reusable
modules, the interface connecting them to encoders must: (1) be interpretable, and (2) use a
vocabulary abstraction that generalizes to future tasks.

29

Figure 4.2: LegoNN Encoder-Decoder Model: This figure presents the schematics and the
information flow in our LegoNN encoder-decoder model. LegoNN decomposes encoder-decoder
models into reusable modules by: (1) grounding module output into an interpretable vocabulary;
(2) adding an ingestor (ING) to process input marginal distributions; and (3) an output length
controller (OLC) to match the input length of subsequent modules. Blocks with lighter colors in
the figure show reused modules between the MT and ASR tasks without gradient updates.

4.4.1.1 Interpretable interfaces between encoders and decoders

Encoders communicate with decoders through a sequence of continuous hidden representations
that are by-products of the end-to-end model optimization process. These hidden vectors are
uninterpretable and have a completely different meaning for different random seeds and training
hyper-parameters even when the same task, model, and training data are used. As we see from
Equation 4.2, although the decoder is conditioned on encoder states (hE1:T) the encoder-decoder
still directly models the conditional next word prediction over the input (Equation 4.4) as these
encoder states have no physical meaning.

To enable reusability between different tasks and models, LegoNN grounds encoder outputs
into a discrete vocabulary that is pre-defined by the model designer. For applications such as ASR
and MT, such intermediate discrete vocabulary can be defined over phonemes, or some byte-pair
encoding (BPE) dictionary (Sennrich et al., 2016; Kudo and Richardson, 2018) driven from the
task labels. The chosen intermediate vocabulary is not necessarily the same as the model’s output
dictionary.

To enforce the desired encoder vocabulary during learning, the decoder token-level cross-
entropy loss is combined with the supervised CTC loss which is applied to the encoder position-
wise, locally-normalized output distributions. Having the CTC loss at the encoder output doesn’t
prevent the flow of gradients between the decoder and encoder modules. We chose the CTC
loss because of its suitability for sequence prediction tasks, which are the focus of the proposed
LegoNN procedure. Following the notation introduced in §4.3, a LegoNN encoder-decoder

30

model effectively models the likelihood for next token prediction given the previous output to-
kens (L1:n91) and the encoder states (PYCTC

1:T):

PYAttn
n = P (yAttnn | PYCTC

1:T , L1:n91) (4.7)

Note how the conditional is different from Equation 4.4. Here, the encoder states (PYCTC
1:T) are not

simply transformations of the input (X1:T), but are distributions being modeled by the CTC loss
given the input:

PYCTC
1:T = P (yCTC1:T | X1:T) (4.8)

This modeling framework allows the decoder module to accept any encoder that produces the
same distribution, PYCTC

1:T , as the decoder was trained toward and hence building an interpretable
interface to enforce modularity between the encoder-decoder modules. The above modeling also
gives the encoder and decoder modules in the LegoNN modular framework specific functional-
ities towards the target task. For example, an MT encoder module is not expected to solve the
overall translation task but rather acts as a word/phrase translation component or an ASR en-
coder module acts as a phoneme/sub-word recognizer whose outputs are later refined using an
auto-regressive decoder.

A LegoNN model is not restricted to contain only two modules; an encoder and a decoder.
Theremay be a sequence of encoder modules, each designed to perform a certain function through
their respective pre-defined output vocabulary. The ASR system is one example whose encoder
can be divided into two modules, a phoneme recognizer and a pronunciation model, followed by
the auto-regressive language generating module. In this case, the CTC loss is applied more than
once. During learning, LegoNN models optimize a joint loss over each module:

Fobj = FCE(LYM

,PYM
Attn) +

M−1∑
i=1

FCTC(LYi

,PYi
CTC) (4.9)

WhereM is the total number of modules in the LegoNN system, PYi is the prediction in module i,
L is the target sequence andY i is the pre-defined vocabulary forL at the interface of module i. All
modules in the LegoNN systems have a CTC loss at their output except the final auto-regressive
decoder module with a token-level CE loss.

Furthermore, applying a supervised loss at the output of each module brings two extra bene-
fits: (a) It extends our ability to evaluate and diagnose the performance on multiple points across
the model. This can guide modeling decisions, e.g. adding more modeling capacity to one mod-
ule over the other. (b) An encoder module may be trained in conjunction with its decoder or
independently by itself. For an ASR task, this may be useful when getting access to more au-
dio training data or adapting the system to new acoustic condition where re-training the decoder
would be wasteful.

31

4.4.1.2 Defining vocabularies that generalize across tasks

As with software libraries, designing a module interface with the right level of generality is chal-
lenging, but enables greater reuse of modules across tasks and domains. To reuse a decoder mod-
ule from anMTLegoNNmodel to an ASR task, the output vocabulary of the speech encoder must
be compatible with the input vocabulary of the translation decoder. This is true even within a sin-
gle task – for example, in ASR, a vocabulary of phonemes developed for a phoneme recognizer
module in a read speech dataset, e.g. audio books, may not be the best one for spontaneous con-
versational situations, which is full of hesitations and false starts. We propose designing a shared
vocabulary by combining target units of multiple potential future tasks and finding a vocabulary
at their intersection.

4.4.2 LegoNN Encoder-Decoder model

Figure 4.2 provides the schematics of our proposed LegoNN Encoder-Decoder model, which
follows the modeling framework described in the section above. The model is designed to work
for various sequence prediction tasks with various input modalities such as speech or text. The
designed LegoNN modules take into account reusing LegoNN decoder modules across different
tasks such as MT and ASR. For this purpose, we designed a modality agnostic encoder with an
output length controller unit (§4.4.3), which we call the LegoNN encoder as shown in the left
side of Figure 4.2. The LegoNN decoder, as shown on the right side of Figure 4.2, is modified
with an added ingestor component (§4.4.4) that would consume the distributions produced by the
LegoNN encoder. We have detailed the individual modules in the following sections.

4.4.3 LegoNN Encoder

For an input X1:T , which can either be filter banks for speech frames or embeddings for text
tokens, the LegoNN encoder consists of two sets of repeating blocks. The first set of repeat-
ing blocks, like the transformer encoder blocks (Vaswani et al., 2017) simply encodes the input
context through repeating blocks of multi-head self-attention, MHA(x, x, x), and position-wise
feedforward layers, FFN(x).

X̃ = LayerNorm(X); X = X +MHA(X̃, X̃, X̃) (4.10)
X1:T = X + FFN(LayerNorm(X)) (4.11)

These blocks are followed by a final LayerNorm(X) that returns an input context-aware represen-
tations of length T . Since these lengths can be quite different for different modalities like speech
and text, we add a second set of repeating blocks called the output length controller unit.

32

4.4.3.1 Ouput Length Controller (OLC) unit

One of the challenges of using modules across sequential tasks, where inputs and outputs have
different lengths, is adapting the output length of an encoder module trained on one task to match
the expected input length of another. For example, encoder modules from an ASR task encode
inputs in more time steps compared to an MT encoder. Naive up- or down-sampling approaches,
e.g., pooling or replicating time-steps (Libovický and Helcl, 2018), cover only integer length
ratios, which is either aggressively down-sampling or unnecessarily up-sampling output sequence
lengths. To solve this problem, we introduce an Output Length Controller (OLC) component in
LegoNN encoders to enable working with fractional length ratios between inputs and outputs of
the same module.

OLC is a novel application of cross-attention (Bahdanau et al., 2015) between two groups
of transformer layers in a multi-layer module. Let a layer l be the last one to process an input
sequence of length T , X1:T , which we want to convert intoK length. The OLC first initializes a
sequence of positional embeddingsK, hPE1:K ,

hPE1:K = SinusoidalPE(1 : K) + LearnablePE(1 : K) (4.12)

where LearnablePE and SinusoidalPE are learnable and sinusoidal positional embeddings respec-
tively (Gehring et al., 2017; Vaswani et al., 2017).

The hPE1:K representations then pass through the second set of repeating transformer blocks,
which applies cross attention to the learned representations from the first set of transformer blocks,
X1:T . These repeating blocks consist of multihead self-attention, MHA(y, y, y), multiheaded
cross-attention, MHA(y, x, x), and position-wise feedforward layers, FFN(y).

h̃PE = LayerNorm(hPE) (4.13)
hPE = hPE +MHA(h̃PE, h̃PE, h̃PE) (4.14)
hPE = hPE +MHA(LayerNorm(hPE), X,X) (4.15)
hPE1:K = hPE + FFN(LayerNorm(hPE)) (4.16)

These blocks are followed by a final LayerNorm(hPE), which now returns a sequence ofK repre-
sentations encoding the input representations of length T . TheseK can be either up-sampling or
down-sampling depending on the input modality. Here we set K as a factor for the input length
that tries to match the length of the output length of the MT and ASR encoder.

4.4.3.2 CTC Interface

Finally the encoder representations, hPE1:K is transformed into the encoder vocabulary size followed
by a softmax operation, as shown in Equation 4.5, to produce a distribution (PYCTC

1:K) over the

33

encoder vocabularies. These distributions are passed to the LegoNN decoder and to the CTC loss
computation.

4.4.4 LegoNN Decoder with Ingestor of probability distributions

The LegoNN Decoder is the standard transformer decoder (Vaswani et al., 2017) with an added
Ingestor (ING) component to consume input marginal distributions from preceding encoder mod-
ules. We propose two ingestor architectures; one that is differentiable, allowing for commu-
nicating gradients between modules, and another discrete one that communicates a ranked list
of hypotheses while keeping the modules gradient-isolated. These ingestor components can be
added on top of any module that accepts a distribution, so in a multi-module system (Equation
4.9) these can be part of a legoNN Encoder.

4.4.4.1 A Weighted Embedding Ingestor (WEmb)

The weighted embedding ingestor (WEmb) computes an expected embedding vector (h) of the
encoder distributions (PYCTC

1:K) per output time-step. Since these embedding vectors are formed
out of a local normalized conditionally independent CTC distributions, we need to re-encode the
positional information in these embeddings. We combine the expected embedding vector (h) with
sinusoidal positional embedding (PE) before applying a few layers of self-attention transformer
encoder blocks (Vaswani et al., 2017) (Equation 4.10-4.11) to aggregate information across time-
steps.

h = PYi−1
CTC

1:K ∗WEmb; h = h+ PE(h) (4.17)
h = TransformerEncoder(h) (4.18)

where PYi−1
CTC

1:K is the output distribution of the previous module i−1,WEmb ∈ R|Yi−1
CTC |×d and d is the

input dimension of the current module i, where a module denotes the modularity point as shown
in Equation 4.9.

The first operation, to compute the expected embedding, is equivalent to a 1-D convolution
operation with a receptive field RF=1. When extended to larger receptive fields, WEmb offers
the opportunity to learn local confusion patterns of the previous module: h = Conv1D(PYi−1

CTC
1:K);

with RF ≥ 1.

4.4.4.2 A Beam Convolution Ingestor (BeamConv)

Rather than using the full output probability values PYi−1
CTC

1:K , the beam convolution ingestor (Beam-
Conv) uses only the token indices of the top-p, per-position hypotheses, from the output of the
preceding module. This creates an information bottleneck (Tishby et al., 1999) in the model

34

En

En

En

En

Ro

De

ASR Task 2

ASR Task 1

MT Task 2

MT Task 1

Tradit ional Encoder-Decoder Training Framework

En

En

En

En

Ro

De

ASR Task 2

ASR Task 1

MT Task 2

MT Task 1

LegoNN Modular Training Framework

Encoder Decoder

Encoder Decoder

Encoder Decoder

Encoder Decoder

Hidden Vector Representat ion Distribut ion over Interpretable Vocabulary

Phrase Translat ion Language Generat ion

OLC

Phrase Translat ion Language Generat ion
REUSE

Language
Generat ion

Language
Generat ion

Phoneme
Recognit ion

Phoneme
Recognit ion

ING

OLC

Pronunciat ion
Model

Pronunciat ion
Model

ING

INGING

OLC

OLC

OLC

ING

ING

OLC
REUSE

Figure 4.3: Benefits of LegoNN: Given a scenario where practioners have an De-En MT sys-
tem and want to build additional ASR and MT systems, with the LegoNN framework, they only
need to build new encoder systems and can directly re-use decoder modules from their inventory.
For example, re-using De-En MT decoder for Ro-En MT task and English ASR task. Addition-
ally, when building an ASR system on a different domain they can re-use components from both
ASR and MT systems like the pronunciation module from the previous ASR system and decoder
module from De-En MT system.

where gradients cannot be communicated.

top-p(PYi−1
CTC

k) = argmax
A⊂P

Yi−1
CTC

k ,|A|=p

∑
a∈A

a (4.19)

where PYi−1
CTC

k is the output distribution at position k for module i−1. The top-p indices are embed-
ded into d dimensional table, and, similar to the WEmb ingestor, we apply positional embedding
and self-attention transformer encoder blocks. Furthermore, we can also use the 2-D convolution
to aggregate local information.

r = Embedding
(
top-p(PYi−1

CTC
1:K)

)
; h = Conv1D(r) (4.20)

h = h+ PE(h); h = TransformerEncoder(h) (4.21)

where r ∈ RT×k×d when beam size =k and RF ≥ 1 for input of T time steps.

35

4.4.5 LegoNN: Modularity Tests and Benefits of Modularity

To present the efficacy of LegoNN, we subject the LegoNN models to a variety of experiments.
These tests are designed to show that LegoNNs do not compromise on performance, are modular,
and flexible across tasks.

4.4.5.1 Performance Tests

We show that we can build strong LegoNN models that are comparable to the baseline encoder
decoder models across benchmark datasets for both speech recognition (ASR) and machine trans-
lation (MT).

4.4.5.2 Modularity Tests

To show that LegoNN models are indeed modular, we subject LegoNN and the baseline encoder-
decoder to various stress tests that check the modularity of these models. Similar to (Naik et al.,
2018), these tests are designed to check if an encoder-decoder system is modular or not. We
consider three basic tests:

1. Random-Seed Swap - Encoder or Decoder modules trained from a different random seed
should have the same functionality and hence swappable.

2. Architecture Swap - Encoders or Decoders modules trained with different architectures
should have the same functionality and hence swappable.

3. Decoder Plug - Encoders trained in isolation should be able to plug-in to Decoders from
previously trained LegoNN models that have the same interface.

4.4.5.3 Benefits of Modularity

In order to present the benefits of modularity, we consider a practical scenario where practitioners
need to build multiple ASR and MT tasks, as shown in Figure 4.3. In a situation where practi-
tioners have a high resourced De-En machine translation model in their inventory, we show that
with LegoNN models they can save compute resources and leverage the well trained De-En De-
coder by applying Decoder Plug to build systems for other MT and ASR tasks. In particular, we
consider three scenarios:

1. Romanian-English (Ro-En) MT - In order to build a machine translation system for an
under-resourced task such as Romanian-English MT. Practitioners using the LegoNN
framework only need to build the Ro-En LegoNN encoder and re-use the De-En Decoder.
They can also benefit the Ro-En MT task by using the De-En Decoder module trained on
larger corpora.

2. English ASR - Practitioners can also use LegoNN decoders from an MT task for a different

36

task on a different modality. The OLC ensures that the expected encoder length for both
MT and ASR task matches, thereby making the De-En Decoder re-usable.

3. Different Domain English ASR -We show that LegoNNmodularity points are not limited to
be between Encoder and Decoders. While building an English ASR system on a different
domain, practitioners can re-use components from both the English ASR and De-En MT
system.

All the composed LegoNN models are end-to-end differentiable allowing further fine-tuning to
improve performance if the practitioner has additional compute resources available.

4.5 Experimental Setup

All our encoder-decoder models use the transformer architecture (Vaswani et al., 2017) imple-
mented in the fairseq library (Ott et al., 2019) and run on DGX-1 nodes with 8 NVIDIA V100
GPUs. For both tasks, we apply LayerNorm (Ba et al., 2016) before every residual connection
and a final one at the end of all the transformer blocks. We use Adam optimizer (Kingma and
Ba, 2014) with eps = 1e−9, betas = (0.9, 0.999), label smoothing=0.1, and a gradient clip norm
= 5.0. More details are provided regarding the data setup and a detailed model description is
provided in Appendix A.1.1, A.1.2 and A.7.1.

4.5.1 Speech recognition task

Data: For our speech recognition experiments, we follow the standard 300 hours Switch-
board (LDC97S62 (Godfrey and Holliman, 1993)) setup, and the Switchboard (SWB) and
CallHome (CH) subsets of the HUB5 Eval2000 set (LDC2002S09 (Consortium, 2002b),
LDC2002T43 (Consortium, 2002a)) for testing. We follow the data preparation setup of
ESPNET (Watanabe et al., 2018), where we have 100 and 2000 target SentencePiece (Kudo and
Richardson, 2018) units trained on the 300h text. We follow the same recipe for processing
the TED-LIUM (Rousseau et al., 2014) and Europarl (Iranzo-Sánchez et al., 2020) data, with
phonemes generated using (Park and Kim, 2019), detailed in Appendix A.1.2. We use the last
model for inference with a beam size of 20 and length penalty of 1.0. We do not use an external
LM or joint decoding over the encoder and decoder output (Watanabe et al., 2018). [0.05in]
Model architecture: Input features are processed using two 2-D convolution blocks with 3× 3

kernels, 64 and 128 feature maps respectively, 2 × 2 maxpooling, and ReLU non-linearity. The
baseline model uses transformers (Vaswani et al., 2017) with 16 encoder blocks and 6 decoder
blocks, each with 1024 dimensions, 16 heads, 4096 feed-forward units, and Sinusoidal positional
embeddings are added to the output of the convolutional context layers (Mohamed et al., 2019).
For the LegoNN encoder-only model trained using the CTC loss, we use the same architecture
as the encoder of the baseline model along with a length control unit which reduces the length of

37

the input by a factor of 1.5 with a maximum allowable length of 230 time-steps. These positional
embeddings are then passed through 6 layers of transformer layers with cross-attention as
described in §4.4.3. The LegoNN decoder uses the same architecture as the baseline decoder.
All Ingestor components (§4.4.4) use RF=1, 3 layers of transformers with 1024 dimensions, 16
heads and 4096 feed-forward layer. The BeamConv ingestor uses K=10, and embedding size=
100.

Training: We use an average batch-size=300 utterances, weight decay=1e−6, and lr=1e−3

with 35k warm-up steps then exponentially decay to 5e−6 over 44k steps. We follow the SS
augmentation policy of SpecAugment (Park et al., 2019) without time-warping.

4.5.2 Machine translation task

Data: We train our models on the standard 4.5M dataset from WMT En-De task, as used by
(Vaswani et al., 2017; Ott et al., 2018). We filter the training data to have a length ratio of 1.5
with 250 as max tokens. We test them on the newstest2011-2016 sets excluding the newstest2013
for the validation set. We use the shared 32K BPE vocabulary (Sennrich et al., 2016) provided
by (Vaswani et al., 2017). We average a moving window of 10 checkpoints, and pick the one
with the best validation BLEU score. A beam of 5 and length penalty of 0.6 are used for de-
coding. Models are evaluated on case-sensitive tokenized BLEU with compound-splitting using
multi-bleu.pl (Moses-SMT, 2018). For De-En decoder models, we use the WMT19 data and
prepare it as needed for the transfer task, detailed in Appendix A.1.1 and A.1.2. For the WMT16
Ro-En task, we use the data prepared by (Lee et al., 2018).

Model architecture: The baseline model uses transformers (Vaswani et al., 2017) with 12 en-
coder blocks and 6 decoder blocks, each with 1024 dimensions, 16 heads, 4096 feed-forward
units, and sinusoidal positional embeddings. All embedding tables are shared across the model.
To control for the extra parameters in the proposed LegoNN models, we added 6 additional en-
coder blocks which improved the baseline model. Other strategies for using these parameters
in the baseline model yielded inferior performance. The LegoNN encoder model uses 12 trans-
former blocks with 1024 dimensions, 8 heads, and 2048 feed-forward units, with OLC, upsam-
pling the input length by a factor of 2, applied to the second half of the encoder. The LegoNN
decoder use the same architecture as the baseline decoder. All Ingestor components (§4.4.4) use
RF 1, 3 layers of transformers with 1024 dimensions, 16 heads and 4096 feed-forward units. The
BeamConv ingestor uses K=200 and embedding size=300. Input embedding tables are shared
with encoder, ingestor, and decoder tables where applicable.

Training: We use an average batch-size=4000 sentences, weight decay=0.1, and lr=1e−3 with
35k warm-up steps then inverse square root decay for 45k steps.

38

LegoNN
WEmb

LegoNN
BeamConv

Traditional
Enc-Dec

ASR
MT

99.7 98.294.796.4

Reference Performance 100 %

0.0 0.0

LegoNN
WEmb

LegoNN
BeamConv

Traditional
Enc-Dec

ASR
MT

Reference Performance 100 %
100 100 10099.3

0.0 0.0

Wemb→
B.Conv

B.Conv→
WEmb

Wemb↔
Wemb(2)

B.Conv↔
B.Conv(2)

Traditional
Enc-Dec

ASR
MT

Dec:
Enc:

96.3 97.8 100 100 99.3 99.6104 101

0.0 0.0

Reference Performance 100 %

Figure 4.4: With reference performance of LegoNN models of Tables 4.1 and 4.2 (normaliza-
tion to 100% enables us to plot ASR and MT performances in the same graph), we show the
interchangeability of LegoNN models compared to traditional enc-dec models under three condi-
tions: swapping encoder and decoder modules of two models trained with different random seeds
(left), swapping modules between LegoNN models with different architectures and trained with
different ingestor types (middle), and matching arbitrary decoder modules with LegoNN encoder
modules trained in-isolation (right).

4.6 Results

The objective of our experiments is to demonstrate the feasibility of reusing LegoNN modules
between ASR and MT tasks, as presented in the four scenarios on the right side of Figure 4.3.

4.6.1 Performance of LegoNN models

First, we show the performance of LegoNN models on their original tasks, without sharing any
modules. Table 4.1 and 4.2 show the performance ofmodels trained 2with the LegoNNprocedure:
A CTC loss over an intermediate vocabulary at the encoder output with the proposed output
length controller (OLC) and ingestor (ING) components for both ASR and MT benchmarks. For
the WMT task, our best LegoNN model with the WEmb ingestor is only 0.8 BLEU behind our
strong baseline encoder-decoder model (better than the publicly available reference model by
(Ott et al., 2018)3) while being composed of modular reusable pieces (as we show in §4.6.2 and
§4.6.3). For the ASR task, our LegoNN models reach the same level of performance as the
baseline encoder-decoder model. The good ASR performance of the gradient-isolated case of
the BeamConv ingestor shows that the ASR task is amenable to decomposition of linguistic unit
recognition and language generation components. 4

2Table 4.1 and 4.2 report averaged scores over three random seeds.
3We downloaded the public model by (Ott et al., 2018) to score the newstest2011-2016 test sets which weren’t

reported in their original paper.
4Using CTC models with language models is common for ASR (Miao et al., 2015; Amodei et al., 2016) and

there can be some confusion regarding the relation of LegoNNs with them. We discuss this in the Appendix A.7.

39

Table 4.1: BLEU Scores (↑) on WMT for LegoNN and baseline enc-dec MT models.

MT Task Loss Criterion WMT En→De
CTC CE dev(↑) test(↑)

Scaling NMT (Ott et al., 2018) 7 3 27.3 28.03

Baseline Models (Our Implementation)
Baseline Enc-Dec 7 3 27.6 28.3

LegoNN Models
Encoder Only 3 7 19.1 18.5
Encoder + BeamConv Decoder 3 3 26.7 26.9
Encoder + WEmb Decoder 3 3 27.2 27.5

Table 4.2: % WER (↓) on SWBD 300h (no LM) for LegoNN and baseline enc-dec ASR models.

ASR Task Loss Criterion Eval 2000
CTC CE SWB(↓) CH(↓)

LAS + SpecAugment (Park et al., 2019) 7 3 7.3% 14.4%
IBM SWBD 300h (Tüske et al., 2020) 7 3 7.6% 14.6%
ESPNET (Karita et al., 2019) 3 3 9.0% 18.1%
Kaldi Hybrid system (Povey et al., 2016) LF-MMI 8.8% 18.1%

Baseline Models (Our Implementation)
Baseline Enc-Dec 7 3 8.5% 18.0%

LegoNN Models
Encoder Only 3 7 11.5% 24.1%
Encoder + BeamConv Decoder 3 3 8.5% 18.2%
Encoder + WEmb Decoder 3 3 8.4% 18.2%

4.6.2 Modularity of LegoNN models

Figure 4.4 shows that LegoNN are modular; the decoder modules can be reused with encoders
from other models for the same task 5(section §4.6.3 presents cross-task performance). The 100%
reference level refers to the respective performance of the LegoNN and encoder-decoder models
from Table 4.1 and 4.2. Normalizing the scores with respect to their reference performance al-
lows us to plot ASR and MT systems in the same figure. For both ASR and MT tasks, with no
fine-tuning, the performance barely changes when modules are swapped between two different
models trained with different random seeds or completely different architectures, even though
these two models have different learning dynamics due to the use of different ingestor types (Fig-

5All statistics computed in Figure 4.4 report averaged scores across all possible combinations of mixing three
random seeds from each module.

40

Table 4.3: BLEU scores (↑) on Ro-En MT task using a LegoNN model composed of a decoder
from a De-En MT model and an encoder-only module trained on Ro-En data.

MT Task Ro→En BLEU (↑) GPU Hours (↓)

Baseline Ro-En Enc-Dec 34.0 144

LegoNN Encoder only 30.7 1206
+ De-En WMT LegoNN Modules
BeamConv Decoder 33.0 07
WEmb Decoder 35.0 07

ure 4.4, left and middle). The right side of Figure 4.4 presents the case where a LegoNN encoder
module is trained in isolation of any decoder module using a CTC loss, for either ASR orMT, then
matched with an arbitrary decoder module at inference time. This is the most challenging condi-
tion, especially for the MT task. Relying entirely on the indices of top-p hypotheses, rather than
their floating point marginal probabilities, the BeamConv ingestor shows more robustness when
reused within the same task as compared to the WEmb ingestor. The traditional encoder-decoder
models, which is built without reusability in mind, fail completely under all these conditions
(shown on the right side of the three sub-figures).

4.6.3 Transfer of LegoNN modules across tasks

LegoNNmodules can be reused across tasks with no fine-tuning and with almost no performance
degradation. Table 4.3 shows the improved MT performance by 1.0 BLEU point when a Ro-
En LegoNN encoder module is composed with a LegoNN decoder module that is trained on
the De-En data (the second LegoNN scenario in Figure 4.3). Table 4.4 takes this a step further
by mixing an MT trained decoder (De-En data) with an ASR trained encoder on the Europarl
speech dataset (the third LegoNN scenario in Figure 4.3). The BeamConv ingestor depends on
a fixed beam size k, which cannot be changed after initial training of the decoder module. This
explains the inferior performance for the BeamConv as compared to the WEmb ingestor (which
uses the full marginal distribution) when reused in a new task. To demonstrate the flexibility
in building sequence-to-sequence models with LegoNN, Table 4.5 shows the fourth LegoNN
scenario in Figure 4.3. A pronunciation modeling module trained on the TED-LIUM dataset is
used in conjunction with a phoneme recognition module trained on the Europarl dataset. Then, a
decoder trained on the De-EnWMT task is added to the ASR model to bring the final WER, with
no fine-tuning updates, just 0.6% from the baseline encoder-decoder model. The TED-LIUM
dataset is used in this experiment because it is closer in speaking style to Europarl. Both the
public TED talks and the Parliament speeches exhibit similarities in speaking style and are not
as spontaneous as the Switchboard data. However, there is a clear domain mismatch which is
apparent in the 26.7% WER of the initial TED-LIUM system when evaluated on the Europarl

41

Table 4.4: % WER (↓) on Europarl ASR task using a LegoNN model composed of a decoder
from a De-En MT model and an encoder-only module trained on Europarl ASR data.

ASR Task Europarl % WER (↓) GPU Hours (↓)

Baseline Europarl Enc-Dec 18.4% 22

LegoNN Encoder only 19.5% 136
+ De-En WMT LegoNN Modules
BeamConv Decoder 22.8% 07
WEmb Decoder 18.4% 07

Table 4.5: % WER on the Europarl test with ASR encoder decomposed into two modules. Mod-
ules trained on the TED-LIUM dataset are combined with ones trained on Europarl and WMT
to bring the overall WER of the LegoNN ASR system just 0.6% from the baseline with no fine-
tuning.

ASR Task Europarl % WER (↓)

Baseline Europarl Enc-Dec 18.4%

TED. Phoneme Recognizer + TED. Pronunciation Model 26.7%
Europarl Phoneme Recognizer + TED. Pronunciation Model 20.5%
Europarl Phoneme Recognizer + TED. Pronunciation Model + De-En WMT Decoder 19.0%

test set. Utilizing LegoNN to develop models for new tasks benefits from the data-efficiency
of encoder-only modules (Additional experiments regarding the data-efficiency of encoder-only
models is shown in Appendix A.6) and overall shorter development time, e.g., 13 vs 22 gpu-hours
on Europarl ASR and 120 vs 144 gpu-hours on Ro-En WMT. 6 7

4.6.4 Fine-tuning of LegoNN models

So far, we showed matching or better results for LegoNN models composed of pre-trained mod-
ules with no fine-tuning. Given that LegoNN decoders with the WEmb ingestor preserve full dif-
ferentiability, such LegoNN models composed of pre-trained modules can be fine-tuned towards
the target task. Table 4.6 shows that fine-tuning the De-En decoder with the Ro-En encoder
achieves another 0.5 BLEU point, leading to an improvement of 1.5 points over the baseline
model. Although the non-fine-tuned two-module LegoNN model is better than the three-module
one for the Europarl English ASR task, fine-tuning LegoNNmodels composed of two pre-trained
modules achieved 12.5% WER reduction, compared to a 19.5% reduction for the three-module
one. Fine-tuning the three-modules helped reduce the domain mismatch while preserving the

6GPU hours for encoder training can be improved further by using CuDNN based CTC implementation (nvidia,
2022)

7Composing LegoNN decoders with the LegoNN encoders, is a simple plug and play and doesn’t require any
fine-tuning steps. So no additional gpu hours is used for the decoder.

42

Table 4.6: BLEU (↑) on Ro-En WMT and %WER (↓) on Europarl ASR task for the LegoNN
models before and after end-to-end fine-tuning of the model composed of modules from different
tasks in Table 4.3, Table 4.4 and Table 4.5.

Composed LegoNN Model No fine-tuning With fine-tuning Metric

Table 4.3: Ro-En WMT Encoder + De-En WMT Decoder 35.0 35.5 BLEU (↑)
Table 4.4: Europarl ASR Encoder + De-En WMT Decoder 18.4 16.1 %WER (↓)
Table 4.5: Europarl Phoneme Recognizer + TED. Pronun. Model + De-En WMT Decoder 19.0 14.8 %WER (↓)

benefits of the TED-LIUM data.

4.7 Related work

This work is related to the large body of work on probabilistic modeling for ASR and MT (Je-
linek, 1997; Brown et al., 1990) where predictors produce normalized probabilities to be easily
combined. However, probabilistic models only combine output scores as opposed to chaining
modules while preserving their full differentiability as in LegoNN models. Hierarchical mixture
of experts (Jordan and Jacobs, 1994) and Graph transformer networks (Bottou et al., 1997) mo-
tivated this work, however, the first doesn’t ground intermediate representations and the second
communicates them in the form of directed graphs.

The proposed LegoNN procedure builds upon several research efforts for sequence to se-
quence learning. Encoder-decoder models for machine translation (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Bahdanau et al., 2015; Vaswani et al., 2017) and speech recogni-
tion (Chan et al., 2016; Bahdanau et al., 2016) form the basis of this work. Although the CTC
loss (Graves et al., 2006) has first been applied to speech recognition (Graves et al., 2013; Sak
et al., 2014; Hannun et al., 2014a; Chan et al., 2020), more recently it was shown effective for
machine translation as well (Libovický and Helcl, 2018; Saharia et al., 2020). This encourages
us to utilize the CTC loss for enforcing the intermediate vocabulary in LegoNN. Other non-
autoregressive sequence to sequence mapping methods (Gu et al., 2018; Ghazvininejad et al.,
2019, 2020a; Chen et al., 2019) are potential alternatives. The CTC loss has been combined with
the cross-entropy loss in encoder-decoder speech recognition systems to encourage monotonic
alignment between input and output sequences (Kim et al., 2017; Karita et al., 2019). Different
from LegoNN, their decoder attends over the encoder hidden output representations, maintaining
their tight coupling.

There have been many proposals for inducing a modular structure on the space of learned
concepts either through hierarchically gating information flow or via high-level concept
blueprints (Andreas et al., 2016; Devin et al., 2017; Purushwalkam et al., 2019) to enable zero-
and few-shot transfer learning (Andreas et al., 2017; Socher et al., 2013; Gupta et al., 2020;
Pathak et al., 2019).

43

4.8 Conclusion

In this chapter, we presented the LegoNN procedure for constructing encoder-decoder models
that are composed of reusable modules. LegoNN models preforms competitively to the best
encoder-decoder ASR and MT models on large scale benchmarks. A key to reusable modules is
a pre-defined vocabulary that is shared between many tasks across which modules can be reused.
Without any fine-tuning steps, a LegoNN decoder trained for the De-EnWMT task can replace an
ASR decoder module without any impact on performance, and provide better generation quality
for a Ro-En WMT task. When fine-tuned for few thousand steps, LegoNN models composed
from multiple tasks and domains improve Ro-En WMT baseline model by 1.5 BLEU points and
provide up to 19.5% WER reductions to the Europarl English ASR task.

44

Chapter 5

Joint CTC/Attn Models for
Non-Monotonic Sequence Tasks

This chapter builds upon Chapter 4 and (Kim et al., 2017) to build joint CTC/AttnModels for non-
monotonic tasks like speech and machine translation. Inspired by the principles of task composi-
tionality we build Hierarchical encoders that perform reordering and length-adjustment thereby
validating the length and monotonicity assumptions for CTC. We also present two joint decod-
ing strategies for models that jointly model both CTC and Attention based models. They further
strengthen our proposed systems as these strategies can be directly applied to the legoNNmodels
shown in Chapter 4. Additionally, the techniques introduced in this chapter for building CTC
encoders can be used to extend the CTC Hybrid Systems (Chapter 3) towards non-monotonic
tasks like speech and machine translation.

5.1 Joint CTC/Attention for Speech andMachine Translation

Connectionist Temporal Classification (CTC) is a widely used approach for speech recognition
that performs conditionally independent monotonic alignment. At first sight, this may seem very
different than the standard attentional approaches to machine translation. However, we show that
the distinct properties of these approaches are actually complementary in joint CTC/attention
based translation when effectively coerced into a single network. We first propose to jointly train
encoders with an initial length-adjustment stage followed by a target-oriented re-ordering stage.
Encoding inputs in this hierarchical manner produces representations that are monotonic with
respect to the output, easing the alignment burden of the attentional decoder. We then propose
to jointly decode by synchronizing likelihood estimation along hypothesis expansion via step-
wise input consumption or output production. Since CTC does not model dependencies between
outputs and determines output lengths using hard alignment information, it complements the
autoregressive generation of attentional decoders which are prone to exposure, label, and length

45

biases. Our joint models outperform pure-attention baselines across six benchmark text-to-text
(MT) and speech-to-text (ST) tasks.

5.2 Introduction

Connectionist Temporal Classification (CTC) (Graves et al., 2006), a non-autoregressive se-
quence transduction framework, has seen a recent surge in machine (MT) and speech translation
(ST) (Xiao et al., 2022). Originally proposed for automatic speech recognition (ASR), CTC
predicts monotonic alignments of output units to input frames of speech with a conditional
independence assumption that each frame-level prediction can be made independently. At first
glance, the aforementioned properties seem to make CTC poorly fit for translation. Unlike ASR,
translation contains non-monotonic input-to-output mappings due to word-order differences
(Bahdanau et al., 2015; Ghazvininejad et al., 2020a) and expansion where outputs may be longer
than inputs (Haviv et al., 2021). Additionally, context is often required to coherently and faith-
fully translate original meanings (Qian et al., 2021a; Yin et al., 2021). ST is further complicated
by the compositional nature of the task as it requires both recognizing and translating the input
(Dalmia et al., 2021; Bahar et al., 2021).

Still, CTC’s promise of fast, parallelized, and streaming compatible inference has enticed
the non-autoregressive translation community (Saharia et al., 2020; Kasai et al., 2021). Various
up-sampling techniques (Libovický and Helcl, 2018; Dalmia et al., 2022) have been proposed to
overcome CTC’s assumption that the input length is at least as long as the output. Further, self-
attention has been shown to be effective for handling non-monotonic mappings (Chuang et al.,
2021) and hierarchical multi-tasking has been shown to be effective for task composition (Deng
et al., 2022; Yan et al., 2022b). Despite these cumulative efforts, purely CTC-based methods in
MT and ST currently lag behind their autoregressive counterparts and have not reached the same
prevalence as they have in ASR (Gu and Kong, 2021; Inaguma et al., 2021a).

Inspired by the success of Hybrid CTC/Attention in ASR (Watanabe et al., 2017), we in-
vestigate jointly modeling CTC with an autoregressive attentional encoder-decoder for transla-
tion. Our conjecture is that the monotonic alignment and conditional independence properties of
CTC, which weaken purely CTC-based translation, actually strengthen the joint modeling sce-
nario through three mechanisms: (1) by encouraging input representations to be re-ordered such
that they are monotonic with respect to the output, thereby simplifying the task of the attentional
decoder, (2) by augmenting autoregressive likelihood estimation with conditionally independent
likelihoods that do not model dependence between outputs, easing exposure/label biases that
inhibit generalization towards unseen scenarios and (3) by incorporating the hard input-output
alignments into the decoding process, thereby making it easier for the decoder to generate sen-
tences that are the correct length compared to standard autoregressive models

We first propose a hierarchical encoding scheme for effective joint training of CTC and atten-

46

tional decoders with a shared encoder. By decomposing input-to-output alignment into an initial
length-adjustment stage followed by a re-ordering stage, we resolve the critical incompatibility
between CTC’s monotonic alignment property and the functional demands of MT/ST. We fur-
ther propose a generic one-pass beam search algorithm for efficient joint decoding of CTC and
attentional likelihoods which can synchronize hypothesis expansion along either the output or
input axes. Output-synchronous one-pass beam search proposes candidates at each step using
autoregressive decoder output posteriors and augments likelihood estimations of the resulting hy-
potheses using CTC prefix scoring. The Input-synchronous variant proposes candidates using
conditionally independent CTC input-to-output alignment posteriors and augments likelihood es-
timations using the decoder.

We show the efficacy of joint CTC-Attention for MT and ST on multiple language-pairs and
in multilingual settings; both joint training and joint decoding yield improvements over attention-
only baselines (§5.6). We demonstrate conjecture (1) by examining the monotonicity of decoder
source attention in our proposed models (§5.6.2). This monotonicity alleviates the burden of
variableword-ordering across languages, allowingmultilingual decoders tomore efficiently share
source attention parameters across languages (§5.6.2). We demonstrate conjecture (2) by showing
superior performance of our joint models when tested towards out-of-domain scenarios (§5.6.3).
We demonstrate conjecture (3) by examining the stability of length prediction in joint decoding.
We find that output lengths can be smoothly controlled in joint models while purely autoregressive
models degenerate for long output lengths (§5.6.3). Finally, we present the choice of input vs.
output-synchronous one-pass beam search as proposition of speed vs. accuracy (§5.6.4).

5.3 Background and Motivation

This section first provides a general formulation of seq2seq transduction before showing how
CTC and attentional decoder models function under this formulation in §5.3.1 and §5.3.2 respec-
tively. We also discuss the previously proposed Hybrid CTC/Attention architecture for ASR
(Watanabe et al., 2017) in §5.3.3. We form conjectures regarding the key mechanisms behind the
empirical findings of this prior work, motivating our approach in §5.4.

Seq2seq transduction is a mapping of a T -length input sequence, X = {xt ∈ Ssrc|t =

1, ..., T}, to an L-length output sequence, Y = {yl ∈ V tgt|l = 1, ..., L}.1 Using Bayesian de-
cision theory, we seek output, Ŷ , from all possible sequences, V tgt∗:

Ŷ = argmax
Y ∈V tgt∗

P (Y |X) (5.1)

where P (Y |X) is the posterior distribution. CTC and attentional decoders both follow this frame-
1In ASR, MT, and ST, the output sequences consist of discrete vocabulary units while the input sequence may

be real or discrete depending on whether the source is speech or text.

47

work, but do so with different modeling properties.

5.3.1 CTC Models

CTC (Graves et al., 2006) is from a family of alignment-based networks (Hinton et al., 2012;
Graves, 2012) which find warping paths between sequences of different lengths such that each
unit in the input is mapped to a unit in the output. Input-to-output alignment is an important
property of CTC, but requires several modeling assumptions.

First, CTC makes a length assumption that the T -length inputs are at least as long as the L-
length outputs.2 This allows for the introduction of alignment sequences which are of identical
length to the input, Z = {zt ∈ V tgt ∪ {∅}|t = 1 . . . T}, where ∅ denotes a null emission.
Instead of producing output posteriors, P (Y |X), CTC produces alignment posteriors, P (Z|X).
Every alignment sequence, Z, maps deterministically to an output sequence, Y , using CTC’s
repeat and blank removal operations.3 Note that this Z → Y operation compresses Z without
any possibility of re-ordering where if zi → yj , zi′ → yj′ , and i < i′ then it must be true that
j < j′. Therefore CTC requires a monotonicity assumption that the input-to-output warping path
can be modeled by one-to-one input-to-alignment mapping (via P (Z|X) posterior) followed by
monotonic alignment-to-output compression (via blank/repeat rules).

Since there may be a number of Z which map to the same Y , CTC estimates the output
posterior during training, P (Y |X), by marginalizing over alignment posteriors, P (Z|X), for
the set of all alignments that map to the output, Z(X,Y). Further, CTC makes a conditional
independence assumption, yielding an estimation of Eq. (5.1):

P (Y |X) ≈
∑

Z∈Z(X,Y)

T∏
t=1

P (zt|X,���z1:t−1)︸ ︷︷ ︸
∆
=PCTC(Z|X)

(5.2)

Critically, this conditional independence assumption grants the Markov property for efficiently
computing Eq. (5.2) via dynamic programming during inference. Conditional independence
also allows CTC to eschew exposure and label biases (Hannun, 2019) that are apparent in their
autoregressive counterparts (Bottou et al., 1997; Ranzato et al., 2016).

5.3.2 Attentional Decoder Models

While CTC approximates the Bayesian formulation in Eq. (5.1), the attentional decoder exactly
models the likelihood of output units, P (yl|y1:l−1, X), conditioned on the input, X , and the pre-

2L ≤ T holds true for most cases in ASR and ST, it does not in MT. We address this limitation in §5.4.1.1.
3If Z = [a,∅, a, b, b], repeat removal first yields Z ′ = [a,∅, a, b] before blank removal yields Y = [a, a, b].

48

viously generated output sequence, y1:l−1, as follows:

PAttn(Y |X)
∆
=

L∏
l=1

P (yl|y1:l−1, X) (5.3)

Compared to the conditionally independent CTC, the autoregressive attentional decoders enable
contextualization. However, the local normalization for P (yl|y1:l−1, X) engenders exposure and
label biases (Bottou et al., 1997; Ranzato et al., 2016).

Since the attention mechanism performs soft-alignment of input-to-output (Bahdanau et al.,
2015), there is also no monotonicity assumption as in CTC. This allows for flexible mappings,
which are fit for translation tasks with large amounts of re-ordering, but prior works have shown
that too much flexibility can destabilize optimization (Kim et al., 2017). Lastly, output lengths are
not aligned with input lengths as in CTC. Instead, the attentional decoder is as an autoregressive
generator where generation is stopped by introducing a special stop token, <eos>, to the output
vocabulary, yl ∈ V tgt ∪ {<eos>}. Since these models need to predict P (yl = <eos>|y1:l−1, X),
label bias with respect to the stop token, <eos>, manifests as a brevity problem (Murray and
Chiang, 2018).

5.3.3 Joint CTC/Attention Modeling for ASR

As previously shown by (Kim et al., 2017; Watanabe et al., 2017), jointly modeling CTC and
an attentional decoder is highly effective in ASR. Not only was overall performance improved
over CTC-only and attention-only approaches, joint modeling was showed faster and more robust
convergence during training. Per conjecture (1), the mechanism behind these improvements is
the enrichment of encoder representations with target-oriented alignment information, which
reduces the input-to-output alignment burden on the attentional decoder.

The foundation of this architecture is a shared encoder, Enc, which feeds into both CTC,
PCTC(·), and attentional decoder, PAttn(·), posteriors:

h = Enc(X) (5.4)
PCTC(zt|X) = CTC(ht) (5.5)

PAttn(yl|X, y1:l−1) = Dec(h, y1:l−1) (5.6)

whereCTC(·) denotes a projection to the CTC output vocabulary, V tgt∪{∅} followed by softmax,
and Dec(·) denotes autoregressive decoder layers followed by a projection to the decoder output
vocabulary, V tgt ∪ {<eos>}, and softmax. The joint network is optimized via a multi-tasked
objective, LASR = LASRCTC + λLASRAttn , where λ interpolates the CTC loss and the cross-entropy loss
of the decoder.

49

Watanabe et al. (2017) propose to jointly decode with a one-pass beam search approximating:

Ŷ = argmax
Y ∈V tgt∗

{(∑
Z∈Z

PCTC(·)
)
× PAttn(·)λ

}
(5.7)

where Ŷ represents the most likely output from all possible outputs, V tgt∗. Watanabe et al. (2017)
found that joint decoding improves over attention-only decoding and stabilizes the hypothesis
lengths. Per conjecture (2), the mechanism behind the former effect is the conditional indepen-
dence of CTC likelihood estimations, which eases the exposure and label biases of the attentional
decoder. Per conjecture (3), the mechanism behind the latter effect is the output length informa-
tion inherent in CTC’s input-to-output alignment likelihoods, which eases the length problem of
the attentional decoder.

5.4 Proposed Joint CTC/Attn for MT/ST

In training, our objective is to apply joint CTC/Attention modeling in translation to enrich a
shared encoder with target-oriented alignment information. The joint CTC/Attention construc-
tion with a monolithic encoder (§5.3.3) has several key limitations when applied to translation.
Firstly, we need to relax the monotonicity assumption (§5.3.1) of CTC to fit the MT/ST tasks.
Further, for MT we seek to account for the length assumption of CTC, and for ST we seek to rec-
ognize before translating the input. We therefore propose to use a hierachical encoding scheme
(§5.4.1) which first aligns inputs to length-adjusted source-oriented encodings before aligning to
re-ordered target-oriented encodings.

In decoding, our objective is to improve generalization and end detection by augmenting
autoregressive likelihoods with conditionally independent CTC alignment likelihoods. Our pro-
posed joint decoding method is a synchronous one-pass beam search (§5.4.2) which can perform
either output or input-synchronous hypothesis expansion (§5.4.2.1). We theorize that while both
variants are valid approximations of the joint decoding objective, input-synchronous is expected
to be faster while output synchronous to be more accurate (§5.4.2.2).

5.4.1 Hierachical Encoding for MT/ST

In order to build target-oriented encodings for translation, we decompose the process into two
functions: length-adjustment and re-ordering. For MT, we up-sample the lengths of the source-
oriented encodings in order to satisfy the length assumption of CTC (§5.3.1). For ST, we down-
sample the lengths of the source-oriented encodings to coerce a discrete textual representation
of the real-valued speech input. We enforce source-orientations using CTC criteria that seek to
align intermediate encoder representations towards source text sequences.

50

x1 … xT

p1 … pnT…

hsrc1
… hsrcnT…

x1 … xT…

h1
… hT/n

…

N1 *

N2 *

N3 *

N2 *

N3 *

Transformer Layers

LegoNN OLC Layers

LegoNN OLC Layers

Convolution LayersN1 *

Conformer Layers

Conformer Layers

…htgt1
… htgtnT

…

p1 … pnT…
hsrc1 hsrcT/n

htgt1 htgtT/n

SrcCTC

Decoder

Sr
cE

nc

Sr
cE

nc

SrcCTC

TgtCTC

Tg
tE

nc

TgtCTC

Tg
tE

nc

Decoder

(a) Hierarchical MT Encoder (b) Hierarchical ST Encoder

M
T

M
T

ST
ST

Figure 5.1: Hierarchical MT/ST encoders where representations are first up/down-sampled by
SrcEncMT/ST and then re-ordered by TgtEncMT/ST.

We then obtain target-oriented encodings with hierarchical encoder layers, where re-ordering
is enforced using CTC criteria that seek to align final representations towards target text se-
quences. This style of hierarchical encoding via intermediate CTC supervision has been ap-
plied successfully for various multi-objective scenarios (Sanabria andMetze, 2018; Higuchi et al.,
2022; Deng et al., 2022; Yan et al., 2022b). For our purposes, the intermediate supervision to-
wards source text allows for the compartmentalization of length-adjustment to the initial encoder
layers, leaving only the task of re-ordering of text-to-text for latter encoder layers.

5.4.1.1 MT/ST Encoder Architectures

As shown in Figure 5.1, our MT and ST hierarchical encoders consist of the following compo-
nents:

hSrc = SrcEncMT/ST(X) (5.8)
PCTC(z

Src
t |X) = SrcCTCMT/ST(hSrc

t) (5.9)
hTgt = TgtEncMT/ST(hSrc) (5.10)

PCTC(z
Tgt
t |X) = TgtCTCMT/ST(hTgt

t) (5.11)

where SrcEncMT(·) is realized by N1 Transformer (Vaswani et al., 2017) layers followed by
N2 up-sampling LegoNN Output Length Controller (OLC) layers (Dalmia et al., 2022), while
TgtEncMT(·) is realized byN3 non-up-sampling LegoNN OLC layers. We chose LegoNN based
on its previously demonstrated effectiveness for up-sampling textual representations.

SrcEncST(·) is realized byN1 convolutional blocks for downsampling (Dong et al., 2018) fol-

51

Algorithm 1 General One-Pass Beam Search: lines 10/11 invoke output/input-synchronous vari-
ants.
1: procedure Search(X , N , Step, b, p)
2: topPrtHs = {<sos> : 1.0}; allEndHs = {}
3: for i ∈ N do
4: prtHs, endHs = Step(topPrtHs, X, i, p,N)
5: topPrtHs = top-k(prtHs, k = b)
6: allEndHs = allEndHs∪ endHs
7: end for
8: return top-1(allEndHs)
9: end procedure

10: Search(X,maxL,OutputStep, b, p) ▷ output-sync
11: Search(X,T, InputStep, b, p) ▷ input-sync

lowed byN2 Conformer (Gulati et al., 2020), while TgtEncST(·) is realized byN3 Conformer lay-
ers. We chose Conformer based on its previously demonstrated effectiveness for modeling local
and global dependencies in speech signals. The hierarchical encoders are jointly optimized with
an attentional decoder using a multi-tasked objective, L = LSrcCTC+λ1LTgtCTC+λ2LAttn, where
λ’s interpolate between source-oriented CTC, target-oriented CTC, and decoder cross-entropy.

5.4.2 One-Pass Synchronous Joint Decoding

In order to make the joint decoding in Eq. (5.7) computationally tractable, we need to estimate
CTC and attentional decoder likelihoods on a subset of all possible output sequences, V ′ ⊆ V tgt∗.
There are a family of two-pass decoding algorithms (Watanabe et al., 2017; Sainath et al., 2019),
which accomplish this by first estimating the likelihoods of V ′ with one module and then re-
scoring the estimates with the other module. In these approaches, the subset V ′ is determined
asynchronously, meaning the joint likelihood is not considered until the re-scoring step. If the
attentional decoder is used to determine V ′, then V ′ would suffer from exposure/label bias and the
length problem (§5.3.3). On the other hand, if CTC is used to determine V ′, the lack of contextual
modeling in CTC leads to poor estimates of V ′ – particularly for translation.

Instead, we synchronize the two likelihood estimators along the hypothesis expansion step of
beam search. This way the selection ofV ′ considers the joint likelihood in a one-pass synchronous
beam search, removing the problematic first-pass of the two-pass approaches. Watanabe et al.
(2017) achieve one-pass joint decoding by synchronizing hypothesis expansion along with the
step-wise production of output units by the attentional decoder. We consider this to be an output-
synchronous one-pass beam search. It is also possible to perform an input-synchronous one-pass
beam search, where hypotheses are expanded along with the step-wise consumption of input units

4Input-synchronization was previously applied for decoding CTC/LM (Hannun et al., 2014b) and RNN-T (Saon
et al., 2020), but not for jointly decoding CTC/Attentional decoder.

52

coder consists of the following components:342

hSRC = SRCENCST(X) (14)343

pCTC(zSRC
t |X) = SRCCTCST(hSRC

t) (15)344

hTGT = TGTENCST(hSRC) (16)345

pCTC(zTGT
t |X) = TGTCTCST(hTGT

t) (17)346

where SRCENCST(·) is realized by N1 convolu-347

tional blocks for downsampling () followed by N2348

Conformer [cite –BY], while TGTENCST(·) is re-349

alized by N3 Conformer layers. We chose Con-350

former based on its previously demonstrated effec-351

tiveness for modeling local and global dependen-352

cies in speech signals [cite –BY].353

The hierarchical encoders are optimized along354

with an attentional decoder as follows:355

L = LSRCCTC + �1LTGTCTC + �2LATTN (18)356

where �’s interpolate between three objectives:357

source-oriented CTC, LSRCCTC, target-oriented358

CTC, LTGTCTC, and decoder cross-entropy, LATTN.359

3.2 One-Pass Synchronous Joint Decoding360

Algorithm 1 General One-Pass Beam Search
1: procedure SEARCH(X , N , STEP, b, p)
2: topPrtHs = {<sos> : 1.0}; allEndHs = {}
3: for i 2 N do
4: prtHs, endHs = STEP(topPrtHs, X, i, p, N)

5: topPrtHs = top-k(prtHs, k = b)
6: allEndHs = allEndHs [endHs

7: end for
8: return top-1(allEndHs)

9: end procedure

10: SEARCH(X, maxL, OUTPUTSTEP, b, p) . output sync
11: SEARCH(X, T, INPUTSTEP, b, p) . input sync

As shown in [sec 2.1 and 2.2 –BY] CTC makes pre-361

dictions at every input step, whereas the Attention362

Decoder makes a new prediction at every output363

step. This allows us to build two forms of one-364

pass beam search algorithms (1) that functions over365

the output steps, which we call output-synchronous366

beam-search, (2) that functions over the input steps,367

which we call input-synchronous beam-search. In368

the following sections we will discuss each of them369

in detail.370

3.2.1 Output-Synchronous371

3.2.2 Input-Synchronous372

3.2.3 Speed vs. Accuracy373

4 Data and Experimental Setup374

Data: We use standard benchmark datasets for375

evaluating our speech translation and machine376

Algorithm 2 Output-Synchronous Step Function:
attentional decoder proposes candidates to expand
hypotheses which are all of l-length at step l.
1: procedure OUTPUTSTEP(prtHs, X, l, p, maxL)
2: newPrtHs = {}; endHs = {}
3: for y1:l�1 2 prtHs do
4: attnCnds = top-k(PAttn(yl|X, y1:l�1), k = p)

5: for c 2 attnCnds do

6: y1:l = y1:l�1 � c

7: ↵CTC = CTCScore(y1:l, X1:T)

8: ↵Attn = AttnScore(y1:l, X1:T)

9: � = LengthPen(y1:l)

10: PBeam(y1:l|X) = ↵CTC + ↵Attn + �
11: if (c is <eos>) or (l is maxL) then
12: endHs[y1:l] = PBeam(·)
13: else
14: newPrtHs[y1:l] = PBeam(·)
15: end if
16: end for
17: end for
18: return newPrtHs, endHs

19: end procedure

Algorithm 3 Input-Synchronous Step Function:
CTC proposes candidates to expand hypotheses
which are all produced from t input units at step t.
1: procedure INPUTSTEP(prtHs, X, t, p, T)
2: newPrtHs = {}; endHs = {}
3: CTCCnds = top-k(PCTC(zt|X), k = p)

4: for y 2 prtHs do
5: for c 2 CTCCnds do
6: if (c is ?) or (c is y[91]) then
7: ỹ = y
8: else
9: ỹ = y � c

10: end if
11: ↵CTC = CTCScore(ỹ, X1:t)

12: ↵Attn = AttnScore(ỹ, X1:T)

13: � = LengthPen(ỹ)

14: PBeam(ỹ|X) = ↵CTC + ↵ATTN + �
15: if t is T then
16: endHs[ỹ] = PBeam(·)
17: else
18: newPrtHs[ỹ] = PBeam(·)
19: end if
20: end for
21: end for
22: return newPrtHs, endHs

23: end procedure

translation models. For speech translation, we eval- 377

uate our models on MuST-Cv2 [cite –BY] English 378

to German (En-De) and English to Japanese (En- 379

Ja) datasets. These are 16kHz recordings of TED 380

talks in English with text translations in various 381

target languages. The En-De training set consists 382

of around 250k utterances, totalling to around 450h 383

of training speech data. The En-Ja training set con- 384

5

coder consists of the following components:342

hSRC = SRCENCST(X) (14)343

pCTC(zSRC
t |X) = SRCCTCST(hSRC

t) (15)344

hTGT = TGTENCST(hSRC) (16)345

pCTC(zTGT
t |X) = TGTCTCST(hTGT

t) (17)346

where SRCENCST(·) is realized by N1 convolu-347

tional blocks for downsampling () followed by N2348

Conformer [cite –BY], while TGTENCST(·) is re-349

alized by N3 Conformer layers. We chose Con-350

former based on its previously demonstrated effec-351

tiveness for modeling local and global dependen-352

cies in speech signals [cite –BY].353

The hierarchical encoders are optimized along354

with an attentional decoder as follows:355

L = LSRCCTC + �1LTGTCTC + �2LATTN (18)356

where �’s interpolate between three objectives:357

source-oriented CTC, LSRCCTC, target-oriented358

CTC, LTGTCTC, and decoder cross-entropy, LATTN.359

3.2 One-Pass Synchronous Joint Decoding360

Algorithm 1 General One-Pass Beam Search
1: procedure SEARCH(X , N , STEP, b, p)
2: topPrtHs = {<sos> : 1.0}; allEndHs = {}
3: for i 2 N do
4: prtHs, endHs = STEP(topPrtHs, X, i, p, N)

5: topPrtHs = top-k(prtHs, k = b)
6: allEndHs = allEndHs [endHs

7: end for
8: return top-1(allEndHs)

9: end procedure

10: SEARCH(X, maxL, OUTPUTSTEP, b, p) . output sync
11: SEARCH(X, T, INPUTSTEP, b, p) . input sync

As shown in [sec 2.1 and 2.2 –BY] CTC makes pre-361

dictions at every input step, whereas the Attention362

Decoder makes a new prediction at every output363

step. This allows us to build two forms of one-364

pass beam search algorithms (1) that functions over365

the output steps, which we call output-synchronous366

beam-search, (2) that functions over the input steps,367

which we call input-synchronous beam-search. In368

the following sections we will discuss each of them369

in detail.370

3.2.1 Output-Synchronous371

3.2.2 Input-Synchronous372

3.2.3 Speed vs. Accuracy373

4 Data and Experimental Setup374

Data: We use standard benchmark datasets for375

evaluating our speech translation and machine376

Algorithm 2 Output-Synchronous Step Function:
attentional decoder proposes candidates to expand
hypotheses which are all of l-length at step l.
1: procedure OUTPUTSTEP(prtHs, X, l, p, maxL)
2: newPrtHs = {}; endHs = {}
3: for y1:l�1 2 prtHs do
4: attnCnds = top-k(PAttn(yl|X, y1:l�1), k = p)

5: for c 2 attnCnds do

6: y1:l = y1:l�1 � c

7: ↵CTC = CTCScore(y1:l, X1:T)

8: ↵Attn = AttnScore(y1:l, X1:T)

9: � = LengthPen(y1:l)

10: PBeam(y1:l|X) = ↵CTC + ↵Attn + �
11: if (c is <eos>) or (l is maxL) then
12: endHs[y1:l] = PBeam(·)
13: else
14: newPrtHs[y1:l] = PBeam(·)
15: end if
16: end for
17: end for
18: return newPrtHs, endHs

19: end procedure

Algorithm 3 Input-Synchronous Step Function:
CTC proposes candidates to expand hypotheses
which are all produced from t input units at step t.
1: procedure INPUTSTEP(prtHs, X, t, p, T)
2: newPrtHs = {}; endHs = {}
3: CTCCnds = top-k(PCTC(zt|X), k = p)

4: for y 2 prtHs do
5: for c 2 CTCCnds do
6: if (c is ?) or (c is y[91]) then
7: ỹ = y
8: else
9: ỹ = y � c

10: end if
11: ↵CTC = CTCScore(ỹ, X1:t)

12: ↵Attn = AttnScore(ỹ, X1:T)

13: � = LengthPen(ỹ)

14: PBeam(ỹ|X) = ↵CTC + ↵ATTN + �
15: if t is T then
16: endHs[ỹ] = PBeam(·)
17: else
18: newPrtHs[ỹ] = PBeam(·)
19: end if
20: end for
21: end for
22: return newPrtHs, endHs

23: end procedure

translation models. For speech translation, we eval- 377

uate our models on MuST-Cv2 [cite –BY] English 378

to German (En-De) and English to Japanese (En- 379

Ja) datasets. These are 16kHz recordings of TED 380

talks in English with text translations in various 381

target languages. The En-De training set consists 382

of around 250k utterances, totalling to around 450h 383

of training speech data. The En-Ja training set con- 384

5

Hypothesis
Expansion

Joint
Scoring

End
Detection

(and production of input-to-output alignment units) by CTC.4 In fact, both variants can be unified
under a general one-pass beam search algorithm as shown in Algorithm 1. The two variants are
distinguished only by the iteration range, N , and beam step function, Step.

5.4.2.1 Input/Output-Synchronous Beam Steps

As shown in Algorithms 2 and 3, both beam step functions consist of the same operational blocks:
hypothesis expansion, joint scoring, and end detection. However, the inner-workings differ.

The OutputStep performs hypothesis expansion by computing the attentional decoder’s out-
put posterior at label step l, PAttn(yl|X, y1:l−1) for each partial hypothesis, y1:l−1. A pre-beam size,
p, is used to select the top candidate output units (Seki et al., 2019), attnCnds, which are used to
expand the partial hypotheses via concatenation, denoted by⊕. The InputStep performs hypoth-
esis expansion by computing CTC’s alignment posterior at time step t, PCTC(zt|X). The same
pre-beam size, p, is used to select top candidate alignment units, CTCCnds, but partial hypotheses
are only expanded for non-blank and non-repeat candidates.

In the joint scoring block, the attentional decoder likelihood, AttnScore(·), and length
penalty/reward, LengthPen(·), are applied similarly in both variants (He et al., 2016). However,
CTC likelihood, CTCScore(·), is applied over the full input, X1:T , in OutputStep and over the
partial input, X1:t, in InputStep. This critical difference creates a speed vs. accuracy trade-off
(§5.4.2.2).

Finally in end detection, OutputStep must check for the stop token, <eos>, which may be
proposed by attnCnds. On the other hand, InputStep simply knows the end when all input units

53

Model Type MT ST

Joint Joint Decoding IWSLT14 IWSLT14 MTedX MuST-C-v2 MuST-C-v2 MTedX
Model Name Train? Decode? Method De-En Es-En All-En En-De En-Ja All-En

Pure-Attn (Prior) 7 7 Attn O-sync (32.15)† (38.95)† -♢ 21.0‡ 11.6‡ -♢
Pure-Attn (Ours) 7 7 Attn O-sync 32.8 (33.73) 39.0 (39.86) 25.6 27.8 14.3 22.7

Joint CTC/Attn 3 7 CTC I-sync 27.3 33.8 22.4 24.4 10.2 21.4
Joint CTC/Attn 3 7 Attn O-sync 33.6 39.5 28.0 28.3 14.2 23.7

Joint CTC/Attn 3 3 Joint I-sync 33.7 39.7 27.8 29.2 15.1 25.1
Joint CTC/Attn 3 3 Joint O-sync 34.1 39.9 28.1 29.2 15.3 25.1

Table 5.1: Test set performances, as measured by BLEU (↑), of our proposed joint CTC/Attention
models compared to pure-attention baselines. Joint CTC/Attention models are always jointly
trained, but can be either jointly decoded using input/output synchronony or decoded using only
their CTC or attention branches. For IWSLT14, we mention (tokenized BLEU) for comparison
with prior works. †Raunak et al. (2020) and ‡Fukuda et al. (2022) are based on fairseq (Ott et al.,
2019). ♢Prior MTedX works show only All-All or pair-wise settings.

have been consumed (t = T). Note that the stop token is only in the decoder’s vocabulary (§5.3.2)
and is thus never proposed by CTCCnds.

5.4.2.2 Theoretical Speed vs. Accuracy

By comparing the CTC likelihood estimation in InputStep vs. in OuptputStep, it can be seen
that there is a trade-off between speed and accuracy. First, note that the step-wise estimate in
OutputStep, CTCScore(y1:l, X1:T), is a marginalization over the likelihoods of all possible align-
ments of the partial hypothesis, y1:l, as follows:

∑
Z∈Z P (Z|X). Since the partial hypotheses in

each step are single unit increments on the previous step, y1:l−1, a dynamic programming imple-
mentation computes the likelihood with O(bpT) log-additions (Watanabe et al., 2017).

Next, consider that the complexity of the step-wise estimate in InputStep, CTCScore(ỹ, X1:t),
is only O(bp) as a dynamic programming implementation only needs to increment the score of
the previous step with the alignment posterior information of the current t-th step (Hannun et al.,
2014b). Although this makes the InputStep faster, the estimation only yields a marginalization
over the likelihoods of a pruned set of partial alignments of the partial hypothesis, ỹ, as follows:∑

Z′ P (Z|X1:t). Even at step T , the estimation is not equivalent to the full marginalization overZ
as beam pruning yields only a subset Z ′ ⊆ Z which can be considered.5 Therefore, the speed-up
of the time-synchronous variant comes at the cost of accuracy — and this trade-off is a function
of beam size.

5Consider that with b=1, t=2, and prtHs={[<sos>, a]}, CTCScore([<sos>, a], X1:2) will not consider
PCTC(Z1:2 = [∅, a]|X1:2) since the hypothesis [<sos>] was pruned t=1.

54

5.5 Experimental Setup

Data: We examine the efficacy of our proposed approaches on two language pairs for each
of the MT and ST tasks. For MT, we use German-to-English (De-En) and Spanish-to-English
(Es-En) from IWSLT14 (Cettolo et al., 2012). For ST, we use English-to-German (En-De) and
English-to-Japanese (En-Ja) from MuST-C-v2 (Di Gangi et al., 2019). We also examine the
multilingual setting of 6 European languages to English (All-En) from MTedX (Salesky et al.,
2021) for both tasks. Full dataset descriptions for reproducibility are in §B.1.

Modeling: We compare our joint CTC/Attention models to purely attentional encoder-decoder
baselines. All proposed and baseline models were tuned separately, using validation sets only,
within the same hyperparameter search spaces for training and for decoding to ensure fair com-
parison. All experiments were conducted using ESPnet (Watanabe et al., 2018). Full descriptions
of model sizes, hyperparameters, and pre-processing are in §B.1.

Evaluation: Unless otherwise indicated, we measure performance with detokenized case-
sensitive BLEU (Post, 2018) on punctuated 1-references.

5.6 Results and Analyses

We first present main results on 6 benchmark MT and ST tasks in §5.6.1. We then examine the
effect of hierarchical encoding (§5.4.1) on the decoder’s source attention and present evidence
towards conjecture (1) in §5.6.2. We also examine the effect of synchronous decoding (§5.4.2) on
the generalization and length stability of beam search hypotheses, presenting evidence towards
conjecture (2) and (3) respectively in §5.6.3. Finally in §5.6.4, we experimentally validate the
theoretical speed vs. accuracy trade-offs of input and output-synchrony (§5.4.2.2).

5.6.1 Main Results

As shown in Table 5.1, joint CTC/Attention outperforms pure-attention across 3 MT tasks
(IWSLT14 De-En + Es-En and MtedX All-En) and 3 ST tasks (MuST-C-v2 En-De + En-Ja and
MTedX All-En). In the second horizontal partition, we show that joint training of hierarchical
encoders with output-synchronous decoding of only the attention branch outperforms the
pure-attention models without any joint training. In the last horizontal partition, we show that
both joint input and output-synchronous decoding yield further improvements.

55

Figure 5.2: Layer-wise monotonicity of the source-attention patterns produced by MT/ST de-
coders.

5.6.2 Benefits of Hierarchical Encoding

We examine the regularization effect that CTC joint training has on the attentional decoder, per
conjecture (1), by first quantifying the monotonicity, m of a (L, T) shaped source attention pat-
tern, A:

m =
(∑

2<l≤L

[argmax
t∈T

Al ≥ argmax
t∈T

Al−1]
)
/L

where [·] denotes the Iverson bracket. We compute m over all examples in our validation sets
for De-En MT and En-De ST and show the layer-wise averages over all examples and attention
heads in Figure 5.2. It can be seen that the decoder source attention patterns are more monotonic
when using jointly trained hierarchical encoders.

We further examine the source attention parameters in our All-En models to understand the
impact that the aforementioned regularization has on multilingual parameter sharing. To do so,
we extract sparse subnets for each language pair following the Lottery Ticket Sparse Fine-Tuning
proposed by Ansell et al. (2022) and compute the pair-wise sharing across the 6 source languages,
as measured by the count of overlapping parameters between subnets. In Figure 5.3, we show
the relative change (∆%) in multilingual sharing when using hierachical encoding compared to
the baseline. The broad increases suggest that the target-orientation of our encoder reduced the
decoder’s burden of soft-aligning target English outputs to source languages with varying word-
orders, allowing for more efficient allocation of modeling capacity.

56

Dec Src Attn Subnet Sharing Improvements

Figure 5.3: Improvement of multilingual sharing in MT/ST decoder source attention parameters
when using joint CTC/Attention vs. attention-only training, as measured by pair-wise ∆% in
sparse subnet overlap.

5.6.3 Benefits of Synchronous Decoding

We examine the generalization effect that augmenting autoregressive likelihoods with condition-
ally independent likelihoods has during inference, per conjecture (2), by evaluating De-En MT
and En-De ST models on out-of-domain EuroParl test sets (Iranzo-Sánchez et al., 2020). As
shown in Table 5.2, joint CTC/Attention models outperform pure-attention baselines with consis-
tency across in-domain (In-D) and out-of-domain (Out-D) settings. Further, synchronous joint
decoding methods outperform their two-pass re-scoring counterparts (§5.4.2), suggesting that
joint selection of the hypothesis set is necessary for easing the respective weaknesses of autore-
gressive and conditionally independent likelihood estimation.

We also examine the smoothing effect that CTC’s alignment information has on length control
of hypothesis generation, per conjecture (3), by sliding length penalty. As shown in Figure 5.4,
pure-attention MT/ST baselines rapidly degenerate when forced to produce hypotheses that are
longer than references which exhibits the label bias with respect to the stop token (§5.3.2). On
the other hand, synchronous joint decoding produces gradually longer outputs, suggesting that
the output length information inherent in CTC alignments (§5.3.1) eases the decoder’s brevity
problem.

57

Type MT (De-En) ST (En-De)

Decoding IWSLT14 EuroParl MuST-C-v2 EuroParl
Model Method (In-D) (Out-D) (In-D) (Out-D)

Pure-Attn Attn O-Sync 32.8 15.8 27.8 20.5

Joint C/A Attn O-Sync 33.6 17.1 28.3 21.0
+CTC Rescore 33.6 17.1 28.3 21.0

Joint C/A Joint O-Sync 34.1 17.6 29.2 21.7

Joint C/A CTC I-Sync 27.3 13.1 24.4 16.5
+Attn Rescore 29.5 13.9 26.2 17.8

Joint C/A Joint I-Sync 33.7 17.4 29.2 21.1

Table 5.2: In/out domain test performances of joint CTC/attention models with various decoding
methods.

Table 5.3: Speed vs. accuracy for joint input/output-sync decoding of En-De ST val. set as a fxn.
of beam size.

5.6.4 Experimental Speed vs. Accuracy

Finally, we perform an experimental validation of our theoretical understanding of the speed vs.
accuracy trade-off (§5.4.2.2) between the two synchronous joint decoding variants. To quantify
speed, we compute the real-time factor (RTF) as the ratio of decoding time over the duration
of input speech. To quantify accuracy beyond the BLEU metric, we compute the search error
rate (Meister et al., 2020) by counting the sequences for which the hypothesis has higher exact
likelihood (5.7) than the reference. For the same beam size, output is slower but more accurate
than input-synchronous.

5.7 Discussion and Relation to Prior Work

There is a line of prior work seeking to enhance attentional encoder-decoder MT models with
lexical (Alkhouli et al., 2016; Song et al., 2020), syntactical (Wang et al., 2019; Bugliarello and
Okazaki, 2020; Deguchi et al., 2021), and phrasal (Watanabe, 2021; Zhang et al., 2021) alignment
information derived from external discrete or latent knowledge bases. Our method of hierarchi-
cal encoding to enhance the attentional decoder with CTC alignment properties is related, but
conceptually different in that we do not incorporate external information.

There is also a line of prior work based on hard alignment frameworks in statisical (Jelinek,
1997; Koehn et al., 2003) and sequence aligning (Graves, 2012; Ghazvininejad et al., 2020a; Sa-

58

Figure 5.4: Elasticity of BLEU and length ratios (|hyp|/|ref|) w.r.t length penalty in validation
sets.

haria et al., 2020) approaches ASR andMTwhich can be considered to be input-synchronous dur-
ing their decodings. There are efforts towards integrating neural (Hannun et al., 2014b; Zhou et al.,
2022) or n-gram language models (Devlin et al., 2014; Miao et al., 2015) into input-synchronous
decoding of these hard alignment models. Our method of joint decoding is a new direction in
which we seek to integrate a conditional language model (the attentional decoder) without break-
ing input-synchrony.

5.8 Conclusion

In this chapter, we propose to jointly train and decode CTC/Attention models for translation. Our
hierarchical encoding method regularizes source attention patterns with monotonicity, allowing
for more efficient allocation of attention parameters. Our synchronous decoding method reduces
exposure, label, and length biases persistent in autoregressive likelihood estimation, allowing
for more generalized and controllable inference. This chapter helps to strengthen the previous
chapters 3 and 4. It strengthens Chapter 3 by proposing techniques to build strong CTC encoders
for non-monotonic sequence tasks. It also discusses the joint decoding of sequence models that
model both CTC and attention distributions, such as the LegoNN models in Chapter 4.

59

60

Part II

Compositional E2E Systems with
Searchable Hidden Intermediates

61

Chapter 6

Searchable Intermediates Framework

The following two chapters aims to build compositional E2E models for complex sequence tasks
that can be decomposed into a pipeline of simpler sequence tasks. We show that using our search-
able hidden intermediates framework allows composing the simpler sequence tasks into an end-to-
end framework to solve the overall complex sequence task. In this chapter, we first introduce the
searchable hidden intermediates framework for building compositional E2E systems and apply
them towards tasks like speech translation and speech recognition. In the next chapter, we apply
our framework to spoken language understanding where we show how this framework enables
end-to-end sequence labeling spoken utterances using the token level tagging formulation.

6.1 Searchable Hidden Intermediates for
End-to-End Models of Decomposable Sequence Tasks

End-to-end approaches for sequence tasks are becoming increasingly popular. Yet for complex
sequence tasks, like speech translation, systems that cascade several models trained on sub-tasks
have shown to be superior, suggesting that the compositionality of cascaded systems simplifies
learning and enables sophisticated search capabilities. In this chapter, we present an end-to-end
framework that exploits compositionality to learn searchable hidden representations at interme-
diate stages of a sequence model using decomposed sub-tasks. These hidden intermediates can
be improved using beam search to enhance the overall performance and can also incorporate ex-
ternal models at intermediate stages of the network to re-score or adapt towards out-of-domain
data. One instance of the proposed framework is a Multi-Decoder model for speech translation
that extracts the searchable hidden intermediates from a speech recognition sub-task. The model
demonstrates the aforementioned benefits and outperforms the previous state-of-the-art by around
+6 and +3 BLEU on the two test sets of Fisher-CallHome and by around +3 and +4 BLEU on the

1All code and models are released as part of the ESPnet toolkit: https://github.com/espnet/espnet.

63

https://github.com/espnet/espnet

English-German and English-French test sets of MuST-C.1

6.2 Introduction

The principle of compositionality loosely states that a complex whole is composed of its parts and
the rules by which those parts are combined (Lake and Baroni, 2018). This principle is present
in engineering, where task decomposition of a complex system is required to assess and optimize
task allocations (Levis et al., 1994), and in natural language, where paragraph coherence and
discourse analysis rely on decomposition into sentences (Johnson, 1992; Kuo, 1995) and sentence
level semantics relies on decomposition into lexical units (Liu et al., 2020c).

Similarly, many sequence-to-sequence tasks that convert one sequence into another
(Sutskever et al., 2014) can be decomposed to simpler sequence sub-tasks in order to reduce the
overall complexity. For example, speech translation systems, which seek to process speech in
one language and output text in another language, can be naturally decomposed into the tran-
scription of source language audio through automatic speech recognition (ASR) and translation
into the target language through machine translation (MT). Such cascaded approaches have been
widely used to build practical systems for a variety of sequence tasks like hybrid ASR (Hinton
et al., 2012), phrase-based MT (Koehn et al., 2007), and cascaded ASR-MT systems for speech
translation (ST) (Pham et al., 2019).

End-to-end sequence models like encoder-decoder models (Bahdanau et al., 2015; Vaswani
et al., 2017), are attractive in part due to their simplistic design and the reduced need for hand-
crafted features. However, studies have shown mixed results compared to cascaded models par-
ticularly for complex sequence tasks like speech translation (Inaguma et al., 2020b) and spoken
language understanding (Coucke et al., 2018). Although direct target sequence prediction avoids
the issue of error propagation from one system to another in cascaded approaches (Tzoukermann
andMiller, 2018), there are many attractive properties of cascaded systems, missing in end-to-end
approaches, that are useful in complex sequence tasks.

In particular, we are interested in (1) the strong search capabilities of the cascaded systems
that compose the final task output from individual system predictions (Mohri et al., 2002; Kumar
et al., 2006; Beck et al., 2019), (2) the ability to incorporate external models to re-score each
individual system (Och and Ney, 2002; Huang and Chiang, 2007), (3) the ability to easily adapt
individual components towards out-of-domain data (Koehn and Schroeder, 2007; Peddinti et al.,
2015), and finally (4) the ability to monitor performance of the individual systems towards the
decomposed sub-task (Tillmann and Ney, 2003; Meyer et al., 2016).

In this chapter, we seek to incorporate these properties of cascaded systems into end-to-end
sequence models. We first propose a generic framework to learn searchable hidden intermediates
using an auto-regressive encoder-decoder model for any decomposable sequence task (§6.4). We
then apply this approach to speech translation, where the intermediate stage is the output of ASR,

64

(a)	Multi-Decoder	ST	Model (b)	Multi-Sequence	Attention

Figure 6.1: The left side present the schematics and the information flow of our proposed frame-
work applied to ST, in a model we call the Multi-Decoder. Our model decomposes ST into ASR
and MT sub-nets, each of which consist of an encoder and decoder. The right side displays a
Multi-Sequence Attention variant of the decoderst that is conditioned on both speech informa-
tion via the encoderasr and transcription information via the encoderst.

by passing continuous hidden representations of discrete transcript sequences from the ASR sub-
net decoder to the MT sub-net encoder. By doing so, we gain the ability to use beam search with
optional external model re-scoring on the hidden intermediates, while maintaining end-to-end
differentiability. Next, we suggest mitigation strategies for the error propagation issues inherited
from decomposition.

We show the efficacy of searchable intermediate representations in our proposed model,
called the Multi-Decoder, on speech translation with a 5.4 and 2.8 BLEU score improvement
over the previous state-of-the-arts for Fisher and CallHome test sets respectively (§6.7). We ex-
tend these improvements by an average of 0.5 BLEU score through the aforementioned benefit
of re-scoring the intermediate search with external models trained on the same dataset. We also
show a method for monitoring sub-net performance using oracle intermediates that are void of
search errors (§6.7.1). Finally, we show how these models can adapt to out-of-domain speech
translation datasets, how our approach can be generalized to other sequence tasks like speech
recognition, and how the benefits of decomposition persist even for larger corpora like MuST-C
(§6.7.2).

6.3 Background and Motivation

6.3.1 Compositionality in Sequences Models

The probabilistic space of a sequence is combinatorial in nature, such that a sentence of L words
from a fixed vocabulary V would have an output space S of size |V|L. In order to deal with
this combinatorial output space, an output sentence is decomposed into labeled target tokens,

65

y = (y1, y2, . . . , yL), where yl ∈ V .

P (y | x) =
L∏
i=1

P (yi | x, y1:i91)

An auto-regressive encoder-decoder model uses the above probabilistic decomposition in
sequence-to-sequence tasks to learn next word prediction, which outputs a distribution over the
next target token yl given the previous tokens y1:l91 and the input sequence x = (x1, xt, . . . , xT),
where T is the input sequence length. In the next sub-section we detail the training and inference
of these models.

6.3.2 Auto-regressive Encoder-Decoder Models

Training: In an auto-regressive encoder-decoder model, the Encoder maps the input sequence
x to a sequence of continuous hidden representations hE = (hE1 ,hEt , . . . , hET), where hEt ∈ Rd.
The Decoder then auto-regressively maps hE and the preceding ground-truth output tokens,
ŷ1:l91, to hDl , where hDl ∈ Rd. The sequence of decoder hidden representations form hD =

(hD1 ,hDl , . . . , hDL) and the likelihood of each output token yl is given by SoftmaxOut, which
denotes an affine projection of hDl to V followed by a softmax function.

hE = Encoder(x)
ĥDl = Decoder(hE, ŷ1:l91) (6.1)

P (yl | ŷ1:l91,hE) = SoftmaxOut(ĥDl) (6.2)

During training, the Decoder performs token classification for next word prediction by consider-
ing only the ground truth sequences for previous tokens ŷ. We refer to this ĥD as oracle decoder
representations, which will be discussed later.
Inference: During inference, we can maximize the likelihood of the entire sequence from the
output space S by composing the conditional probabilities of each step for the L tokens in the
sequence.

hDl = Decoder(hE, y1:l91) (6.3)
P (yl | x, y1:l91) = SoftmaxOut(hDl)

~y = argmax
y∈S

L∏
i=1

P (yi | x, y1:i91) (6.4)

This is an intractable search problem and it can be approximated by either greedily choosing
argmax at each step or using a search algorithm like beam search to approximate ~y. Beam search

66

(Reddy, 1988) generates candidates at each step and prunes the search space to a tractable beam
size of B most likely sequences. As B → ∞, the beam search result would be equivalent to
equation 6.4.

GreedySearch := argmax
yl

P (yl | x, y1:l91)

BeamSearch := Beam(P (yl | x, y1:l91))

In approximate search for auto-regressive models, like beam search, the Decoder receives al-
ternate candidates of previous tokens to find candidates with a higher likelihood as an overall
sequence. This also allows for the use of external models like Language Models (LM) or Con-
nectionist Temporal Classification Models (CTC) for re-scoring candidates (Hori et al., 2017).

6.4 Proposed Framework

In this section, we present a general framework to exploit natural decompositions in sequence
tasks which seek to predict some output C from an input sequence A. If there is an intermediate
sequence B for whichA → B sequence transduction followed by B → C prediction achieves the
original task, then the original A → C task is decomposable.

In other words, if we can learn P (B | A) then we can learn the overall task of P (C | A)
through maxB(P (C | A, B)P (B | A)), approximated using Viterbi search. We define a first
encoder-decoder SubA→BNet to map an input sequenceA to a sequence of decoder hidden states,
hDB . Then we define a subsequent SubB→CNet to map hDB to the final probabilistic output space
of C. Therefore, we call hDB hidden intermediates. The following equations shows the two sub-
networks of our framework, SubA→BNet and SubB→CNet, which can be trained end-to-endwhile
also exploiting compositionality in sequence tasks. 2

SubA→BNet:

hE = EncoderA(A)
ĥDB
l = DecoderB(hE, ŷB1:l91)

P (yBl | ŷB1:l91,hE) = SoftmaxOut(ĥDB
l) (6.5)

SubB→CNet:
P (C | ĥDB

l) = SubB→CNet(ĥDB
l) (6.6)

2Note that this framework does not use locally-normalized softmax distributions but rather the hidden represen-
tations, thereby avoiding label bias issues when combining multiple sub-systems (Bottou et al., 1997; Wiseman and
Rush, 2016).

67

Note that the final prediction, given by equation 6.6, does not need to be a sequence and can be a
categorical class like in spoken language understanding tasks. Next we will show how the hidden
intermediates become searchable during inference.

6.4.1 Searchable Hidden Intermediates

As stated in section §6.3.2, approximate search algorithms maximize the likelihood, P (y | x), of
the entire sequence by considering different candidates yl at each step. Candidate-based search,
particularly in auto-regressive encoder-decoder models, also affects the decoder hidden repre-
sentation, hD, as these are directly dependent on the previous candidate (refer to equations 6.1
and 6.3). This implies that by searching for better approximations of the previous predicted to-
kens, yl91 = (ybeam)l91, we also improve the decoder hidden representations for the next token,
hDl = (hDbeam)l. As ybeam → ŷ, the decoder hidden representations tend to the oracle decoder
representations that have only errors from next word prediction, hDbeam → ĥD. A perfect search
is analogous to choosing the ground truth ŷ at each step, which would yield ĥD.

We apply this beam search of hidden intermediates, thereby approximating ĥDB with hDB
beam.

This process is illustrated in algorithm 2, which shows beam search for hDB
beam that are subsequently

passed to the SubB→CNet.3 In line 7, we show how an external model like an LM or a CTCmodel
can be used to generate an alternate sequence likelihood, Pext(yBl), which can be combined with
the SubA→BNet likelihood, PB(yBl | x) , with a tunable parameter λ.
We can monitor the performance of the SubA→BNet by comparing the decoded intermediate
sequence yBbeam to the ground truth ŷB. We can also monitor the SubB→CNet performance by
using the aforementioned oracle representations of the intermediates, ĥDB , which can be obtained
by feeding the ground truth ŷB to DecoderB. By passing ĥDB to SubB→CNet, we can observe its
performance in a vacuum, i.e. void of search errors in the hidden intermediates.

6.4.2 Multi-Decoder Model

In order to show the applicability of our end-to-end framework we propose our Multi-Decoder
model for speech translation. This model predicts a sequence of text translations yst from an input
sequence of speech x and uses a sequence of text transcriptions yasr as an intermediate. In this
case, the SubA→BNet in equation 6.5 is specified as the ASR sub-net and the SubB→CNet in equa-
tion 6.6 is specified as the MT sub-net. Since the MT sub-net is also a sequence prediction task,
both sub-nets are encoder-decoder models in our architecture (Bahdanau et al., 2015; Vaswani
et al., 2017). In Figure 6.1 we illustrate the schematics of our transformer based Multi-Decoder

3The algorithm shown only considers a single top approximation of the search; however, with added time-
complexity, the final task prediction improves with the n-best hDB

beam for selecting the best resultant C.

68

Algorithm 2 Beam Search for Hidden Intermediates: We perform beam search to approximate
the most likely sequence for the sub-task A → B, yBbeam, while collecting the corresponding
DecoderB hidden representations, hDB

beam. The output hDB
beam, is passed to the final sub-network to

predict final output C and yBbeam is used for monitoring performance on predicting B.
1: Initialize: beam← {sos}; k← beam size;
2: hEA ← EncoderA(x)
3: for l=1 to maxsteps do
4: for yBl91 ∈ beam do
5: hDB

l ← DecoderB(hEA , yBl91)
6: for yBl ∈ yBl91 + {V} do
7: sl ← PA→B(yBl | x)19λPext(yBl)λ
8: H ← (sl, yBl , h

DB
l)

9: end for
10: end for
11: beam← argkmax(H)
12: end for
13: (sB, yBbeam,hDB

beam)← argmax(beam)
14: Return yBbeam → SubA→BNet Monitoring
15: Return hDB

beam → Final SubB→CNet

ST model which can also be summarized as follows:

hEasr = Encoderasr(x) (6.7)
ĥDasr
l = Decoderasr(hEasr , ŷasr

1:l91) (6.8)
hEst = Encoderst(ĥDasr) (6.9)
ĥDst
l = Decoderst(hEst , ŷst

1:l91) (6.10)

As we can see from Equations 6.9 and 6.10, the MT sub-network attends only to the decoder
representations, ĥDasr , of the ASR sub-network, which could lead to the error propagation issues
from the ASR sub-network to the MT sub-network similar to the cascade systems, as mentioned
in §6.2. To alleviate this problem, we modify equation 6.10 such that Decoderst attends to both
hEst and hEasr:

ĥD
sa
st

l = Decodersa
st(hEst ,hEasr , ŷst

1:l91) (6.11)

We use the multi-sequence cross-attention discussed by Helcl et al. (2018), shown on the right
side of Figure 6.1, to condition the final outputs generated by ĥDst

l on both speech and transcript
information in an attempt to allow our network to recover from intermediate mistakes during
inference. We call this model the Multi-Decoder w/ Speech-Attention.

69

6.5 Baseline Encoder-Decoder Model

For our baseline model, we use an end-to-end encoder-decoder (Enc-Dec) ST model with ASR
joint training (Inaguma et al., 2020b) as an auxiliarly loss to the speech encoder. In other words,
themodel consumes speech input using theEncoderASR, to produce hEasr , which is used for cross-
attention by DecoderASR and the DecoderST. Using the decomposed ASR task as an auxiliary
loss also helps the baseline Enc-Dec model and provide strong baseline performance, as we will
see in Section 6.7.

6.6 Data and Experimental Setup

Data: We demonstrate the efficacy of our proposed approach on ST in the Fisher-CallHome
corpus (Post et al., 2013) which contains 170 hours of Spanish conversational telephone speech,
transcriptions, and English translations. All punctuations except apostrophes were removed and
results are reported in terms of detokenized case-insensitive BLEU (Papineni et al., 2002; Post,
2018). We compute BLEU using the 4 references in Fisher (dev, dev2, and test) and the single
reference in CallHome (dev and test) (Post et al., 2013; Kumar et al., 2014; Weiss et al., 2017).
We use a joint source and target vocabulary of 1K byte pair encoding (BPE) units (Kudo and
Richardson, 2018).

We prepare the corpus using the ESPnet library and we follow the standard data preparation,
where inputs are globally mean-variance normalized log-mel filterbank and pitch features from
up-sampled 16kHz audio (Watanabe et al., 2018). We also apply speed perturbations of 0.9 and
1.1 and the SS SpecAugment policy (Park et al., 2019).

Baseline Configuration: All of our models are implemented using the ESPnet library and
trained on 3 NVIDIA Titan 2080Ti GPUs for≈12 hours. For the Baseline Enc-Dec baseline, dis-
cussed in §6.5, we use an Encoderasr consisting of a convolutional sub-sampling by a factor of
4 (Watanabe et al., 2018) and 12 transformer encoder blocks with 2048 feed-forward dimension,
256 attention dimension, and 4 attention heads. The Decoderasr and Decoderst both consist
of 6 transformer decoder blocks with the same configuration as Encoderasr. There are 37.9M
trainable parameters. We apply dropout of 0.1 for all components, detailed in the Appendix (C.1).

We train our models using an effective batch-size of 384 utterances and use the Adam op-
timizer (Kingma and Ba, 2014) with inverse square root decay learning rate schedule. We set
learning rate to 12.5, warmup steps to 25K, and epochs to 50. We use joint training with hybrid
CTC/attention ASR (Watanabe et al., 2017) by setting mtl-alpha to 0.3 and asr-weight to 0.5 as
defined by Watanabe et al. (2018). During inference, we perform beam search (Seki et al., 2019)
on the ST sequences, using a beam size of 10, length penalty of 0.2, max length ratio of 0.3
(Watanabe et al., 2018).

70

Uses Speech Fisher CallHome

Model Type Model Name Transcripts dev(↑) dev2(↑) test(↑) dev(↑) test(↑)

Cascade Inaguma et al. (2020b) 3 41.5 43.5 42.2 19.6 19.8
Cascade ESPnet ASR+MT 2018 3 50.4 51.2 50.7 19.6 19.2

Enc-Dec Weiss et al. (2017) ♢ 7 46.5 47.3 47.3 16.4 16.6
Enc-Dec Weiss et al. (2017) ♢ 3 48.3 49.1 48.7 16.8 17.4
Enc-Dec Inaguma et al. (2020b) 3 46.6 47.6 46.5 16.8 16.8
Enc-Dec Guo et al. (2020) 3 48.7 49.6 47.0 18.5 18.6
Enc-Dec Our Implementation 3 49.6 50.9 49.5 19.1 18.2

Multi-Decoder Our Proposed Model 3 52.7 53.3 52.6 20.5 20.1
Multi-Decoder +ASR Re-scoring 3 53.3 54.2 53.7 21.1 20.8
Multi-Decoder +Speech-Attention 3 54.6 54.6 54.1 21.7 21.4
Multi-Decoder +ASR Re-scoring 3 55.2 55.2 55.0 21.7 21.5

Table 6.1: Results presenting the overall performance (BLEU) of our proposed multi-decoder
model. Cascade and Enc-Dec results from previous papers and our own implementation of the
Enc-Dec are shown for comparison. The best performingmodels are highlighted. ♢Implemented
with LSTM, while all others are Transformer-based.

Multi-DecoderConfiguration: For theMulti-Decoder STmodel, discussed in §6.4, we use the
same transformer configuration as the baseline for the Encoderasr, Decoderasr, and Decoderst.
Additionally, the Multi-Decoder has an Encoderst consisting of 2 transformer encoder blocks
with the same configuration as Encoderasr, giving a total of 40.5M trainable parameters. The
training configuration is also the same as for the baseline. For the Multi-Decoder w/ Speech-
Attention model (42.1M trainable parameters), we increase the attention dropout of the ST de-
coder to 0.4 and dropout on all other components of the ST decoder to 0.2 while keeping dropout
on the remaining components at 0.1. We verified that increasing the dropout does not help the
vanilla multi-decoder ST model.

During inference, we perform beam search on both the ASR and ST output sequences, as
discussed in §6.4. The ST beam search is identical to that of the baseline. For the intermediate
ASR beam search, we use a beam size of 16, length penalty of 0.2, max length ratio of 0.3. In
some of our experiments, we also include fusion of a source language LM with a 0.2 weight and
CTC with a 0.3 weight to re-score the intermediate ASR beam search (Watanabe et al., 2017).
For the Speech-Attention variant, we increase LM weight to 0.4.

Note that the ST beam search configuration remains constant across our baseline and Multi-
Decoder experiments as our focus is on improving overall performance through searchable inter-
mediate representations. Thus, the various re-scoring techniques applied to the ASR beam search
are options newly enabled by our proposed architecture and are not used in the ST beam search.

71

Overall Sub-Net Sub-Net
Model ST(↑) ASR(↓) MT(↑)

Multi-Decoder 52.7 22.6 64.9
+Speech-Attention 54.6 22.4 66.6

Table 6.2: Results presenting the overall ST performance (BLEU) of our Multi-Decoder models,
along with their sub-net ASR (% WER) and MT (BLEU) performances. All results are from the
Fisher dev set.

6.7 Results

Table 6.1 presents the overall ST performance (BLEU) of our proposed Multi-Decoder model.
Our model improves by +2.9/+0.3 (Fisher/CallHome) over the best cascaded baseline and by
+5.6/+1.5 BLEU over the best published end-to-end baselines. With Speech-Attention, our model
improves by +3.4/+1.6 BLEU over the cascaded baselines and +7.1/+2.8 BLEU over encoder-
decoder baselines. Both the Multi-Decoder and Multi-Decoder w/ Speech-Attention on average
are further improved by +0.9/+0.4 BLEU through ASR re-scoring.4

Table 6.1 also includes our implementation of the Baseline Enc-Dec model discussed in §6.5.
In this way, we are able tomake a fair comparisonwith our framework as we control themodel and
inference configurations to be analagous. For instance, we keep the same search parameters for
the final output in the baseline and the Multi-Decoder to demonstrate impact of the intermediate
beam search.

6.7.1 Benefits

6.7.1.1 Sub-network performance monitoring

An added benefit of our proposed approach over the Baseline Enc-Dec is the ability to monitor the
individual performances of the ASR (BLEU) and MT (% WER) sub-nets as shown in Table 6.2.
TheMulti-Decoder w/ Speech-Attention shows a greater MT sub-net performance than theMulti-
Decoder as well as a slight improvement of the ASR sub-net, suggesting that ST can potentially
help ASR.

6.7.1.2 Beam search for better intermediates

The overall ST performance improves when a higher beam size is used in the intermediate ASR
search, and this increase can be attributed to the improved ASR sub-net performance. Figure 2
shows this trend across ASR beam sizes of 1, 4, 8, 10, 16 while fixing the ST decoding beam size

4We also evaluate our models using other MT metrics to supplement these results, as shown in the Appendix
(C.1.1).

72

1 4 8 10 16

51.6

51.8

52

52.2

52.4

52.6

ASR Beam Size

ST
B
LE

U
Sc
or
e
(↑
)

22.6

22.8

23

23.2

23.4

23.6

23.8

A
SR

%
W
ER

(↓
)Multi-Decoder

BLEU
%WER

Figure 6.2: Results studying the effect of the different ASR beam sizes in the intermediate rep-
resentation search on the overall ST performance (BLEU) and the ASR sub-net performance
(% WER) for our multi-decoder model. Beam of 1 is same as greedy search.

to 10. A beam size of 1, which is a greedy search, results in lower ASR sub-net and overall ST
performances. As beam sizes become larger, gains taper off as can be seen between beam sizes
of 10 and 16.

6.7.1.3 External models for better search

External models like CTC acoustic models and language models are commonly used for re-
scoring encoder-decoder models (Hori et al., 2017), due to the difference in their modeling ca-
pabilities. CTC directly models transcripts while being conditionally independent on the other
outputs given the input, and LMs predict the next token in a sequence.

Both variants of theMulti-Decoder improve due to improved ASR sub-net performance using
external CTC and LM models for re-scoring, as shown in Table 6.3. We use a recurrent neural
network LM trained on the Fisher-CallHome Spanish transcripts with a dev perplexity of 18.8
and the CTC model from joint loss applied during training. Neither external model incorporates
additional data. Although the impact of the LM-only re-scoring is not shown in the ASR%WER,
it reduces substitution and deletion rates in the ASR and this is observed to help the overall ST
performance.

6.7.1.4 Error propagation avoidance

As discussed in §6.4, our Multi-Decoder model inherits the error propagation issue as can be seen
in Figure 6.3. For the easiest bucket of utterances with < 40% WER in Multi-Decoder’s ASR
sub-net, our model’s ST performance, as measured by the corpus BLEU of the bucket, exceeds

73

Overall Sub-Net
Model ST(↑) ASR(↓)

Multi-Decoder 52.7 22.6
+ASR Rescoring w/ LM 53.2 22.6
+ASR Rescoring w/ CTC 52.8 22.1
+ASR Rescoring w/ LM 53.3 21.7

Multi-Decoder w/ Speech-Attn. 54.6 22.4
+ASR Rescoring w/ LM 55.1 22.4
+ASR Rescoring w/ CTC 54.7 22.0
+ASR Rescoring w/ LM 55.2 21.9

Table 6.3: Results presenting the overall ST performance (BLEU) and the sub-net ASR (%WER)
of our Multi-Decoder models with external CTC and LM re-scoring in the ASR intermediate
representation search. All results are from the Fisher dev set.

that of the Baseline Enc-Dec. The inverse is true for the more difficult bucket of [40, 80)%,
showing that error propagation is limiting the performance of our model; however, we show that
multi-sequence attention can alleviate this issue. For extremely difficult utterances in the≥ 80%
bucket, ST performance for all three approaches is suppressed.

6.7.1.5 Qualitative Examples of Error Propagation Avoidance

To supplement our qualitative analysis of the error propagation avoidance of the Multi-Decoder
with Speech-Attention model in §6.7.1.4, we also show four qualitative examples in Table 6.4.
In the first three examples, the Multi-Decoder and Multi-Decoder with Speech-Attention models
both make the same mistakes in the ASR portion of Spanish-English translation, but the model
with Speech-Attention recovers by producing correct English translations despite mistakes in
the Spanish transcription. On the other hand, the model without Speech-Attention propagates
the Spanish transcription errors into English translation errors. In the fourth example only the
Multi-Decoder w/ Speech-Attention makes a mistake in Spanish transcription, but the English
translation still recovers.

6.7.2 Generalizability

In this section, we discuss the generalizability of our framework towards out-of-domain data. We
also extend our Multi-Decoder model to other sequence tasks like speech recognition. Finally,
we apply our ST models to a larger corpus with more language pairs and a different domain of
speech.

74

< 40% [40, 80)% ≥ 80%

10

20

30

40

29.9

20.1

5.4

32.1

19.1

5.8

33.2

21.2

5.6

ASR %WER (↓)

ST
B
LE

U
Sc
or
e
(↑
)

Baseline Enc-Dec
Multi-Decoder
Multi-Decoder w/ SA

Figure 6.3: Results comparing the ST performances (BLEU) of our Baseline Enc-Dec, Multi-
Decoder, and Multi-Decoder w/ Speech-Attention across different ASR difficulties measured
using % WER on the Fisher dev set (1-ref). The buckets on the x-axis are determined using the
utterance level % WER using the Multi-Decoder ASR sub-net performance.

6.7.2.1 Robustness through Decomposition

Like cascaded systems, searchable intermediates provide ourmodel adaptability in individual sub-
systems towards out-of-domain data using external in-domain language model, thereby giving
access to more in-domain data. Specifically for speech translation systems, this means we can
use in-domain language models in both source and target languages. We test the robustness of our
Multi-Decoder model trained on Fisher-CallHome conversational speech dataset on read speech
CoVost-2 dataset (Wang et al., 2020b). In Table 6.5 we show that re-scoring the ASR sub-net
with an in-domain LM improves ASR with around 10.0% lower WER, improving the overall ST
performance by around +2.5 BLEU. Compared to an in-domain ST baseline (Wang et al., 2020a),
our out-of-domain Multi-Decoder with in-domain ASR re-scoring demonstrates the robustness
of our approach.

6.7.2.2 Decomposing Speech Transcripts

We apply our generic framework to another decomposable sequence task, speech recognition, and
show the results of various levels of decomposition in Table 6.6. We show that with phoneme,
character, or byte-pair encoding (BPE) sequences as intermediates, the Multi-Decoder presents
strong results on both Fisher and CallHome test sets. We also observe that the BPE intermediates
perform better than phoneme/character variants, which could be attributed to the reduced search

75

Model / Source ASR Output ST Output

Ground-Truth … porque tengo a mis dos hijos acá … because i have my two children here
Multi-Decoder … porque tengo mis dos hijos acá … because i have two kids here
+Speech-Attention … porque tengo mis dos hijos acá … because i have my two children here

Ground-Truth puedes ayudar para que se haga justicia más rápido you can help so that justice is served quickly
Multi-Decoder puedes ayudar para que sea justicia más rápido you can help so it’s faster
+Speech-Attention puedes ayudar para que sea justicia más rápido you can help so that it’s faster justice

Ground-Truth pero tiene muchas cosas muy bonitas but there are many beautiful things
Multi-Decoder pero tienen muchas cosas muy bonitas but they have a lot of nice things
+Speech-Attention pero tienen muchas cosas muy bonitas but there are many very beautiful things

Ground-Truth acampar ir a pescar y ir a las montañas a esquiar camping and fishing and going to the mountains to ski
Multi-Decoder acampar y a pescar y y de las montañas esquiar camping and fishing and and the mountains skiing
+Speech-Attention a campar y ir a pescar y ir a las montañas a esquiar camping and go fishing and go to the mountains to ski

Table 6.4: Examples where the Multi-Decoder and Multi-Decoder w/ Speech-Attention mod-
els make errors in the ASR portion of Spanish-English ST. In these cases the Speech-Attention
component alleviates ASR error propagation, producing correct translations despite mistakes in
transcription. Words that are transcribed/translated correctly are highlighted in green and those
that are incorrect are in pink .

capabilities of encoder-decoder models using beam search on longer sequences (Sountsov and
Sarawagi, 2016) like in phoneme/character sequences.

6.7.2.3 Extending to MuST-C Language Pairs

In addition to our results using the 170 hours of the Spanish-English Fisher-CallHome corpus, in
Table 6.7 we show that our decompositional framework is also effective on larger ST corpora. In
particular, we use 400 hours of English-German and 500 hours of English-French ST from the
MuST-C corpus (Di Gangi et al., 2019). Our Multi-Decoder model improves by +2.7 and +1.5
BLEU, in German and French respectively, over end-to-end baselines from prior works that do
not use additional training data. We show that ASR re-scoring gives an additional +0.1 and +0.4
BLEU improvement. 5

By extending our Multi-Decoder models to this MuST-C study, we show the generalizability
of our approach across several dimensions of ST tasks. First, our approach consistently improves
over baselines across multiple language-pairs. Second, our approach is robust to the distinct
domains of telephone conversations from Fisher-CallHome and the TED-Talks from MuST-C.
Finally, by scaling from 170 hours of Fisher-CallHome data to 500 hours of MuST-C data, we
show that the benefits of decomposing sequence tasks with searchable hidden intermediates per-
sist even with more data.

Furthermore, the performance of our Multi-Decoder models trained with only English-
German or English-French ST data from MuST-C is comparable to other methods which

5Details of the MuST-C data preparation and model parameters are detailed in Appendix (C.2).

76

Overall Sub-Net
Model ST(↑) ASR(↓)

In-domain ST Model
Baseline (Wang et al., 2020b) 12.0 -
+ASR Pretrain (Wang et al., 2020b) ♢ 23.0 16.0

Out-of-domain ST Model
Multi-Decoder 11.8 46.8
+ASR Rescoring w/ in-domain LM 14.4 36.7
Multi-Decoder w/ Speech-Attention 12.6 46.5
+ASR Rescoring w/ in-domain LM 15.0 36.7

Table 6.5: Results presenting the overall ST performance (BLEU) and the sub-net ASR (%WER)
of our Multi-Decoder models when tested on out-of-domain data. All models were trained on the
Fisher-CallHome Es→En corpus and tested on CoVost2 Es→En corpus. ♢Pretrained with 364
hours of in-domain ASR data.

Fisher CallHome
Model Intermediate ASR(↓) ASR(↓)

Enc-Dec ♢ - 23.2 45.3

Multi-Decoder Phoneme 20.7 40.0
Multi-Decoder Character 20.4 39.9
Multi-Decoder BPE100 19.7 38.9

Table 6.6: Results presenting the%WERASRperformancewhen using theMulti-Decodermodel
on decomposed ASR task with phoneme, character, and BPE100 as intermediates. All results are
from the Fisher-CallHome Spanish corpus. ♢(Weiss et al., 2017)

incorporate larger external ASR and MT data in various ways. For instance, Zheng et al. (2021)
use 4700 hours of ASR data and 2M sentences of MT data for pretraining and multi-task learning.
Similarly, Bahar et al. (2021) use 2300 hours of ASR data and 27M sentences of MT data for
pretraining. Our competitive performance without the use of any additional data highlights
the data-efficient nature of our proposed end-to-end framework as opposed to the baseline
encoder-decoder model, as pointed out by Sperber and Paulik (2020).

6.8 Discussion and Relation to Prior Work

Compositionality: A number of recent works have constructed composable neural network
modules for tasks such as visual question answering (Andreas et al., 2016), neural MT (Rau-
nak et al., 2019), and synthetic sequence-to-sequence tasks (Lake, 2019). Modules that are first
trained separately can subsequently be tightly integrated into a single end-to-end trainable model

77

En→De En→Fr
Model ST(↑) ST(↑)

NeurST (Zhao et al., 2020) 22.9 33.3
Fairseq S2T (Wang et al., 2020a) 22.7 32.9
ESPnet-ST (Inaguma et al., 2020b) 22.9 32.7
Dual-Decoder (Le et al., 2020) 23.6 33.5

Multi-Decoder w/ Speech-Attn. 26.3 37.0
+ASR Re-scoring 26.4 37.4

Table 6.7: Results presenting the overall ST performance (BLEU) of our Multi-Decoder w/
Speech-Attention models with ASR re-scoring across two language-pairs, English-German
(En→De) and English-French (En→Fr). All results are from the MuST-C tst-COMMON sets.
All models use speech transcripts.

by passing differentiable soft decisions instead of discrete decisions in the intermediate stage
(Bahar et al., 2021). Further, even a single encoder-decoder model can be decomposed into mod-
ular components where the encoder and decoder modules have explicit functions (Dalmia et al.,
2019b).

Joint Training with Sub-Tasks: End-to-end sequence models been shown to benefit from in-
troducing joint training with sub-tasks as auxiliary loss functions for a variety of tasks like ASR
(Kim et al., 2017), ST (Salesky et al., 2019; Liu et al., 2020b; Dong et al., 2020; Le et al., 2020),
SLU (Haghani et al., 2018). They have been shown to induce structure (Belinkov et al., 2020)
and improve the model performance (Toshniwal et al., 2017), but this joint training may reduce
data efficiency if some sub-nets are not included in the final end-to-end model (Sperber et al.,
2019; Wang et al., 2020c). Our framework avoids this sub-net waste at the cost of computational
load during inference.

Speech Translation Decoders: Prior works have used ASR/MT decoding to improve the over-
all ST decoding through synchronous decoding (Liu et al., 2020b), dual decoding (Le et al., 2020),
and successive decoding (Dong et al., 2020). These works partially or fully decode ASR tran-
scripts and use discrete intermediates to assist MT decoding. Tu et al. (2017) and Anastasopou-
los and Chiang (2018) are closest to our multi-decoder ST model, however the benefits of our
proposed framework are not entirely explored in these works.

Two-Pass Decoding: Two-pass decoding involves first predicting with one decoder and then
re-evaluating with another decoder (Geng et al., 10; Sainath et al., 2019; Hu et al., 2020; Rijhwani
et al., 2020). The two decoders iterate on the same sequence, so there is no decomposition into
sub-tasks in this method. On the other hand, our approach provides the subsequent decoder with

78

a more structured representation than the input by decomposing the complexity of the overall
task. Like two-pass decoding, our approach provides a sense of the future to the second decoder
which allows it to correct mistakes from the previous first decoder.

Auto-Regressive Decoding: As auto-regressive decoders inherently learn a language model
along with the task at hand, they tend to be domain specific (Samarakoon et al., 2018;Müller et al.,
2020). This can cause generalizability issues during inference (Murray and Chiang, 2018; Yang
et al., 10), impacting the performance of both the task at hand and any downstream tasks. Our
approach alleviates these problems through intermediate search, external models for intermediate
re-scoring, and multi-sequence attention.

6.9 Conclusion

In this chapter, we present searchable hidden intermediates for end-to-end models of decompos-
able sequence tasks. We show the efficacy of our Multi-Decoder model on the Fisher-CallHome
Es→En and MuST-C En→De and En→Fr speech translation corpora, achieving state-of-the-art
results. We present various benefits in our framework, including sub-net performancemonitoring,
beam search for better hidden intermediates, external models for better search, and error propaga-
tion avoidance. Further, we demonstrate the flexibility of our framework towards out-of-domain
tasks with the ability to adapt our sequence model at intermediate stages of decomposition. Fi-
nally, we show generalizability by training Multi-Decoder models for the speech recognition task
at various levels of decomposition.

79

80

Chapter 7

Compositional E2E SLU Models

In Chapter 6 we presented the searchable intermediates framework that exploits the task com-
positionality for complex sequence tasks to build E2E systems using their simpler sub-task for-
mulations. In this chapter we apply the searchable intermediates framework to spoken language
understanding. We show how this framework enables end-to-end sequence labeling spoken ut-
terances using the token level tagging formulation.

7.1 Token-level Sequence Labeling for Spoken Language Un-
derstanding using Compositional End-to-End Models

End-to-end spoken language understanding (SLU) systems are gaining popularity over cascaded
approaches due to their simplicity and ability to avoid error propagation. However, these sys-
tems model sequence labeling as a sequence prediction task causing a divergence from its well-
established token-level tagging formulation. We build compositional end-to-end SLU systems
that explicitly separate the added complexity of recognizing spoken mentions in SLU from the
NLU task of sequence labeling. By relying on intermediate decoders trained for ASR, our end-
to-end systems transform the input modality from speech to token-level representations that can
be used in the traditional sequence labeling framework. This composition of ASR and NLU for-
mulations in our end-to-end SLU system offers direct compatibility with pre-trained ASR and
NLU systems, allows performance monitoring of individual components and enables the use of
globally normalized losses like CRF, making them attractive in practical scenarios. Our mod-
els outperform both cascaded and direct end-to-end models on a labeling task of named entity
recognition across SLU benchmarks.

81

7.2 Introduction

Sequence labeling (SL) is a class of natural language understanding (NLU) tasks. These systems
tag each word in a sentence to provide insights into the sentence structure and meaning (Jurafsky
and Martin, 2000). An SL system that processes unstructured text, first encodes the context and
relationships of words in the sentence using an encoder and then labels each token (Lample et al.,
2016; Dozat et al., 2017; Akbik et al., 2018). However, when dealing with spoken utterances,
sequence labeling introduces an additional complexity of also recognizing the mentions of the
labels (Kubala et al., 1998; Zhai et al., 2004).

SL in spoken language understanding (SLU) has been approached by two schools of thought,
(1) that seek to recognize the spoken words using an ASR engine and then tag the mentions using
an NLU engine in a cascaded manner (Palmer and Ostendorf, 2001; Horlock and King, 2003;
Béchet et al., 2004), and (2) that seek to recognize and tag the mentions directly from speech in
an end-to-end (E2E) framework (Arora et al., 2019; Ghannay et al., 2018). Prior work has shown
that cascaded systems suffer due to error propagation (Tran et al., 2018) from the ASR into the
NLU engine, which can be overcome in an E2E framework. However, unlike cascaded models,
E2E systems cannot utilize the vast abundance of NLU research (Shon et al., 2022) as they re-
define the SL problem as a complex sequence prediction problem where the sequence contains
both the tags and its mentions.

Inspired by the principles of task compositionality in SL for SLU, we seek to bring both
schools of thought together. Our conjecture is that we can build compositional E2E systems that
first convert the spoken utterance to a sequence of token representations (Dalmia et al., 2021),
which can then be used to train token-wise classification systems as per the NLU formulation.
By also conditioning our token-wise classification on speech, our compositional E2E system
allows recovery from errors made while creating token representations. We instantiate our for-
mulation on a popular SL task of named entity recognition (NER) and (1) present the efficacy of
our compositional E2E NER-SLU system on benchmark SLU datasets (Bastianelli et al., 2020;
Shon et al., 2022) surpassing both the cascaded and direct E2E systems §7.6.1. (2) Our com-
positional model consists of ASR and NLU components compatible with pre-trained ASR and
NER-NLUmodels §7.6.2. (3) Our E2E systems exhibit transparency towards categorizing errors
by enabling the evaluation of individual components of our model in isolation §7.6.3.

The remaining sections first describe the traditional SL formulation (§7.3), and discuss short-
comings in current SLU formulations (§7.4). Section §7.5 presents our compositional E2Emodel
that can overcome these shortcomings. We then evaluate these approaches towards the SL task
of NER (§7.6).

82

7.3 Sequence Labeling (SL)

SL systems tag each word, wi, of a text sequence, S = {wi ∈ V|i = 1, . . . , N} of length N and
vocabulary V , with a label from a label setL, {wi → yi |yi ∈ L}. This produces a label sequence,
Y = {yi ∈ L|i = 1, . . . , N} of the same length N . Using decision theory, sequence labeling
models seek to output Ŷ from a set of all possible tag sequence LN ,

Ŷ = argmax
Y ∈LN

P (Y |S) (7.1)

where P (Y |S) is the posterior distribution. This posterior can be modeled using various tech-
niques like the traditional HMM (Morwal et al., 2012) and MEMM (McCallum et al., 2000)
based modeling and more recently CRF (Ma and Hovy, 2016) and token classification (Devlin
et al., 2019) based approaches. We discuss the latter two in detail:

Conditional Random Field: Lafferty et al. (2001) aims to directly compute the posterior of
the entire label sequence Y given the sentence S:

P (Y |S) = eF (Y,S)∑
Y ′∈LN eF (Y ′,S)

(7.2)

where F (Y, S) is global score of the tag sequence Y given S. This is modeled using a linear
chain CRF which computes the global score as a sum of local scores f(.) for each position in Y
as follows

F (Y, S) =
N∑
l=1

f(yl−1, yl, S) (7.3)

Lample et al. (2016) and Yan et al. (2019) use contextualized neural encoders like LSTMs and
transformers to model context of the entire sequence S for every word wl. This allows for ef-
fective modeling of f(.) by using encoder representations for each word as the emissions, and
maintaining a separate transition score tyl−1→yl to give F (Y, S):

h1:N = encoder(w1:N) (7.4)
tyl−1→yl = transitionScores(|L|, |L|) (7.5)

F (Y, S) =
N∑
l=1

(hl,yl + tyl−1→yl) (7.6)

TokenClassificationModel: Since the advent of strong contextual modeling using transformer
based models, sequence labeling can also be treated as token classification (Devlin et al., 2019),
a simplification over MEMM estimations (McCallum et al., 2000), with the assumption that the

83

current tag is conditionally independent to previous tag.

P (Y |S) =
N∏
l=1

P (yl|hl) (7.7)

These models are still effective as hl is able to model the full context S for every word wl.
In cases like NER, where an entity can span multiple words, these problems are modeled

using BIO tags (Ramshaw and Marcus, 1999), where begin (B), inside (I) tags are added for
entities and an outside (O) tag for non-entity words, extending the tag set vocabulary from L to
L′ = {lB ⊕ lI |l ∈ L}∪{O}.When modeled using sub-word tokens the tags can be aligned to the
first sub-word token of the word and the remaining ones can be marked with a special token ∅
giving L′′ = L′ ∪ {∅}.

7.4 Sequence Labeling in SLU

Sequence Labeling in SLU introduces an added complexity of recognizing mentions on top of
text-based SL tasks (§7.3). Given a sequence of d dimensional speech feature of length T frames,
X = {xt ∈ Rd|t = 1, . . . , T}, these systems seek to estimate the label sequence Ŷ from

Ŷ = argmax
Y ∈L∗

P (Y |X) (7.8)

where P (Y |X) have been modeled as:

Cascaded SLU (Béchet et al., 2004; Parada et al., 2011; Zhou et al., 2015) models P (Y |X)

from P (Y |S) using an NLU framework (§7.3) and P (S|X) using an ASR model (Povey et al.,
2011; Chan et al., 2016; Graves, 2012), assuming conditional independence of Y |S from X ,

P (Y |X) =
∑
S

P (Y |S,��X)P (S|X) (7.9)

≈ max
S

P (Y |S)P (S|X) (7.10)

≈ P (Y |Ŝ)max
S

P (S|X) (7.11)

Ŝ = argmax
S∈V∗

P (S|X) (7.12)

Once Ŝ is estimated, Ŷ can be estimated using Eq 7.1. Although this enables realizing Ŷ using
two well studied frameworks, the independence assumption doesn’t allow recovery from errors
in estimating Ŝ.

84

Direct End-to-End SLU (Arora et al., 2019; Shon et al., 2022) systems avoid cascading errors
by directly modeling P (Y |X) in a single monolithic model. To achieve this while being able to
recognize the spoken mentions, these systems enrich Y with transcripts S, Y e = {yei ∈ V∪L|i =
1, . . . , N ′}, where N ′ is the length of Y e. This can be modeled using an autoregressive decoder
as:

P (Y |X) =
N ′∏
i=1

P (yei |ye1:i−1, X) (7.13)

However this new formulation cannot utilize the well studied sequence labeling framework §7.3.
Additionally, this applies an extra burden of labeling along with alignment on the decoder and
makes understanding the errors made by these systems particularly difficult. For example, Eq
7.13 gives non-zero likelihood to a corrupt sequence with only labels and no words as ye ∈
{V ∪ L}.

7.5 Compositional End-to-End SLU

We propose to bring the two paradigms together in a compositional end-to-end system, by extend-
ing over the cascaded SLU formulation using searchable intermediate framework (Dalmia et al.,
2021):

P (Y |X) =
∑
S

P (Y |S,X)P (S|X) (7.14)

≈ max
S

P (Y |S,X)︸ ︷︷ ︸
SubNLUNet

P (S|X)︸ ︷︷ ︸
SubASRNet

(7.15)

This system can be realized with two sub-networks

SubASRNet: Modeling P (S|X),

hE = encoderASR(X1:T) (7.16)
hASRl = decoderASR(hE, w1:l−1) (7.17)
P (wl|X,w1:l−1) = softmaxOut(hASRl) (7.18)

P (S|X) =
N∏
l=1

P (wl|X,w1:l−1) (7.19)

85

SubNLUNet: Modeling P (Y |S,X),

hNLU1:N = encoderNLU(hASR1:N ,hE1:T) (7.20)
P (Y |S,X) = CRF(hNLU1:N) OR (7.21)
P (Y |S,X) = TokenClassification(hNLU1:N) (7.22)

Where the end-to-end differentiability is maintained by using hASR1:N in Eq 7.20. During inference,
we approximate the viterbi max of S using beam search to give ĥASR1:N . Then Ŷ can be found using
viterbi search with no approximation as the output length is known and the solution is tractable.

This composition allows incorporating the ASR modeling and text-based sequence labeling
framework §7.3. It also brings transparency to end-to-end modeling as we can also monitor
performance of individual sub-nets in isolation. Further, encoderNLU can attend to speech repre-
sentations hE1:T using cross attention (Dalmia et al., 2021) enabling the direct use of speech cues
for NLU.

7.6 Spoken Named Entity Recognition

To show the effectiveness of our compositional E2E SLU model we build spoken NER systems
on two publically available SLU datasets, SLUE (Shon et al., 2022) and SLURP (Bastianelli et al.,
2020) (dataset and preparation details in §D.1). We compare our compositional E2E system with
cascaded and direct E2E systems. We also compare with another compositional E2E system that
we develop using the labeling formulation of direct E2E systems (§7.4). We build all our systems
using ESPnet-SLU (Arora et al., 2019). All models were tuned separately using validation sets
with the same hyperparameter search space. Full descriptions of model and training parameters
are in §D.2.

SLURP is evaluated using SLU-F1 (Bastianelli et al., 2020) which weighs the entity labels
with the word and character error rate of the predicted mentions and SLUE using F1 (Shon et al.,
2022) which evaluates getting both the mention and the entity label exactly right. We also com-
pute Label-F1 for both datasets which considers only the entity label. We report micro-averaged
F1 for all results.

7.6.1 Performance of Compositional E2E SLU

Table 7.1 shows that our proposed compositional E2E models with the token-level NLU formu-
lation outperform both cascaded and direct E2E models on all benchmarks using both CRF and
Token Classification. In order to understand gains of our proposed model, we examine the perfor-
mance of our compositional system with direct E2E formulation (§7.4). While being comparable
to direct E2Emodels, they still lag behind our proposed models showing the efficacy of modeling

86

SLURP SLUE

Model SLU F1 Label F1 F1 Label F1

Direct E2E SLU (Arora et al.) 71.9 - 54.7 67.6

Casacaded SLU (Ours) 73.3 80.9 48.6 63.9
Direct E2E SLU (Ours) 77.1 84.0 54.7 67.6

Compositional E2E SLU
w/ Direct E2E formulation (§7.4) 77.2 84.6 50.0 68.0
w/ Proposed NLU formulation (§7.5)

CRF w/ Speech Attention (SA) 77.7 85.2 59.4 73.6
Token Classification w/ SA 78.0 85.3 60.3 73.7

w/o Speech Attention 77.7 84.9 59.0 73.6

Table 7.1: Results presenting the micro F1 performance of our proposed compositional E2E mod-
els using CRF and Token Classification modeling. Cascaded, direct E2E and our compositional
E2E with direct E2E formulation are shown for comparison. We also provide an ablation of our
model with and without Speech Attention (SA).

SL tasks as a token-level tagging (§7.3) in an E2E SLU framework.
We further analyze our compositional systems that don’t attend to speech representations.

We observe a performance drop as these models are not able to recover from errors made while
“recognising” entity mentions. For example, in an utterance that says “change the bedroom lights
to green”, though the ASR component incorrectly predicts the transcript as “change the color
of lights to green”, the NLU component w/ Speech Attention is able to recover the entity type
House_Place.

7.6.2 Utilizing External Sub-Net models

Components of our compositional E2E SLU model have functions similar to an ASR and NLU
model (Eq 7.16-7.22). This allows fine-tuning our models using sub-systems, pre-trained on
large amounts of available sub-task data. Table 7.2 shows that our compositional model has
better compatibility with ASR and NLU fine-tuning over direct E2E systems, thereby increasing
their performance gap, particularly for SLUE, an under-resourced SLU dataset.

Further our models have the ability to use transcripts from a strong external model (Sext)
directly during inference, by instantiating our models with these transcripts to produce hASR and
then evaluate P (Y |Sext, X). Table 7.2 shows using transcripts from an external ASR with no
fine-tuning steps can achieve similar performance to ASR fine-tuning.

87

SLURP SLUE

Model SLU F1 Label F1 F1 Label F1

Direct E2E SLU 77.1 84.0 54.7 67.6
w/ NLU fine-tuning Incompatible
w/ ASR fine-tuning 73.5 81.2 64.0 80.6

Compositional E2E SLU (w/ SA) 78.0 85.3 60.3 73.7
w/ NLU finetuning (w/o SA) 77.7 84.9 62.4 76.4
w/ ASR finetuning (w/ SA) 81.4 88.8 71.6 85.2

Compositional E2E SLU (w/ SA) 78.0 85.3 60.3 73.7
w/ External ASR Transcripts (Sext) 81.0 88.1 70.1 81.2

Table 7.2: Results presenting the compatibility of our models with pre-trained ASR and NLU
systems by (1) finetuning pre-trained components and (2) directly utilizing transcripts from an
external ASR model.

SLURP SLUE

ASR NLU ASR NLU
(%WER ↓) (SLU-F1 ↑) (%WER ↓) (F1 ↑)

Pure ASR & NLU models 16.1 82.4 30.4 58.1

Compostional E2E SLU
CRF w/ Speech Attention (SA) 16.3 88.3 27.4 75.6
Token Classification w/o SA 16.0 87.9 27.6 74.1
Token Classification w/ SA 16.1 88.7 27.5 75.6

Table 7.3: Results showcasing the transparency of our compositional E2E models by evaluating
the individual sub-networks ASR (%WER) and NLU (F1) in isolation.

7.6.3 Transparency in Compositional E2E SLU

Following Eq 7.15, we can estimate ASR performance by calculating Ŝ using beam search and
NLU performance by estimating Ŷ from P (Y |Sgt, X), where Sgt is the ground truth transcripts.
Table 7.3 shows the performances of individual components of our model along with perfor-
mances of ASR andNLUonlymodels suggesting that we can effectivelymonitor the performance
of these components, helping practitioners analyze and debug them. For instance, while our mod-
els with and without speech attention have comparable performance on ASR, using speech atten-
tion improves NLU power. Further the one-to-one alignment of transcripts and sequence labels
can provide further categorization of errors, as shown in §7.6.4.

88

Entity Correct Entity Incorrect

Model # Examples Model # Examples

ASR Correct w/ SA 8520 w/ SA 465
w/o SA 8501 w/o SA 474

ASR Incorrect w/ SA 1568 w/ SA 1343
w/o SA 1585 w/o SA 1336

Table 7.4: Number of examples per error category of our compositional E2E SLU with/without
Speech Attention on SLURP test set. There are four categories depending on whether mistakes
are made by ASR or NLU component. Note that the first quadrant lists # of correct exam-
ples, while the rest list incorrect ones. Direct E2E systems cannot offer such categorizations
particularly for incorrect entities as there is no alignment between ASR and NLU outputs.

7.6.4 Error Categorization

The predictions made by our compositional E2E SLU model can be categorized into different
buckets on the basis of the errors by ASR or NER component. Table 7.4 demonstrates this behav-
ior by categorizing the errors of our compositional E2E model trained with and without speech
attention. Most of the performance differences between compositional E2E SLU model w/ and
w/o speech attention are caused by the kinds of errors where the ASR predictions are inaccurate,
but the NLUmodule is nevertheless able to recover the correct entity type from the utterance. This
confirms our intuition that cross attention on speech representations can help the NLU module to
recover from mistakes made during “recognizing” spoken mentions. We also present anecdotes
for each of these error categories in Figure 7.1. This further emphasizes the transparency in our
compositional E2E SLU models. Due to the lack of one-to-one alignment between ASR and Se-
quence Labeling, such analysis is not possible in direct E2E SLU systems, making it particularly
difficult to categorize errors when the entity prediction is wrong.

7.6.5 CRF vs Token Classification

For practical SLU the likelihoods of our compositional model P (Y |S,X), should be correlated
with errors in label sequence Y . We found that in SLURP our compositional E2E SLU, while
using locally normalized token classification shows no correlation (Corr=0.13,p=0), using CRF
exhibits moderate correlation (Corr=0.43, p=0). This makes globally normalized models attrac-
tive for real-world scenarios like automated data auditing and human in-the-loop ML (Mitchell
et al., 2018) despite their marginal addition in computation cost.

89

Hypothesis Reference

ASR Correct

Entity Correct event reminder mona tuesday event reminder mona tuesday

ASR Correct

Entity Incorrect is there anything happening on jazz scene around edinburgh is there anything happening on jazz scene around edinburgh

ASR Incorrect

Entity Correct create meeting with paul for tomorrow at ten am put meeting with pawel for tomorrow ten am

ASR Incorrect

Entity Incorrect set a birthday event for ninety set a birthday event for martin

event date event date

movie type News topic place name movie type

event name person date time event name person date time

event name date event name person

Figure 7.1: Qualitative examples of our compositional E2E SLU model for various error cate-
gories. We can observe that in the first case, the model is correctly able to predict both entity
types and mentions even when the name “mona” is not a common name for an event. In the sec-
ond case, even though it predicts the correct ASR transcript, it mislabels “Edinburgh” as a news
topic since the phrase “is there anything happening” usually occurs with news topics. In the third
case, even though it makes a mistake in the person name, the model correctly tags it as a person.
Finally, the model incorrectly generates the word “ninety,” and this error gets propagated to the
NLU component through token representations which then predicts entity type “date”. This anal-
ysis shows that the alignment between ASR and NLU outputs can help us gain better insights
into model performance.

7.7 Conclusion

In this chapter, we propose to combine text based sequence labeling framework into the speech
recognition framework to build a compositional end-to-end model for SLU. These models not
only show superior performance over cascaded and direct end-to-end SLU systems, but also bring
the power of both these systems in a single framework. These models exhibit transparency of
cascaded systems, while avoiding error propagation like direct end-to-end systems.

With our compositional end-to-end SLU model, we strive to bring the research from the text
based sequence labeling directly into speech based spoken language understanding. Our aim is
to avoid re-invention of the wheel, but rather come up with innovative ways to build end-to-end
models by converting a complex problem into simpler ones that have seen substantial research
in the past. Additionally we believe the increased capacity for error analysis in our composi-
tional end-to-end system can help towards building better practical systems during deployment.
Our compositional end-to-end systems can effectively utilize pre-trained ASR and NLU systems,
thereby avoiding the need for collecting large labeled datasets for SLU. This framework also saves
compute by utilizing pre-trained ASR systems directly during inference to improve downstream
performances with no fine-tuning.

90

Part III

Evaluation of E2E models

91

Chapter 8

Practical Considerations for Evaluating
End-to-End Systems

End-to-end systems are gaining popularity, and are being used to solve many complex sequence
tasks (Arora et al., 2019; Devlin et al., 2019). These systems aims to perform many sub-tasks
functions in a single monolithic design to solve the overall task. Our conjecture is that in order
to use end-to-end models to build practical systems, it is critical to evaluate their generalizability
towards variations in each sub-task that comprises the complex sequence task rather than test-
ing generalizability to the input. In this chapter, we discuss this problem in detail and suggest
techniques for building more comprehensive test sets.

8.1 Rethinking End-to-End Evaluation of Decomposable
Tasks: A Case Study on Spoken Language Understanding

Decomposable tasks are complex and comprise of an hierarchy of sub-tasks. Spoken intent pre-
diction, for example, combines automatic speech recognition and natural language understanding.
Existing benchmarks, however, typically hold out examples for only the surface-level sub-task.
As a result, models with similar performance on these benchmarks may have unobserved perfor-
mance differences on the other sub-tasks. To allow insightful comparisons between competitive
end-to-end architectures, we propose a framework to construct robust test sets using coordinate
ascent over sub-task specific utility functions. Given a dataset for a decomposable task, our
method optimally creates a test set for each sub-task to individually assess sub-components of
the end-to-end model. Using spoken language understanding as a case study, we generate new
splits for the Fluent Speech Commands and Snips SmartLights datasets. Each split has two test
sets: one with held-out utterances assessing natural language understanding abilities, and one
with held-out speakers to test speech processing skills. Our splits identify performance gaps up

93

to 10% between end-to-end systems that were within 1% of each other on the original test sets.
These performance gaps allowmore realistic and actionable comparisons between different archi-
tectures, driving future model development. We release our splits and tools for the community.1

8.2 Introduction

Complex, real-world tasks, such as the spoken language understanding (SLU) tasks of spoken
intent prediction and spoken language translation, comprise of hierarchies of simpler sub-tasks.
Spoken intent prediction combines automatic speech recognition (ASR) to process audio, fol-
lowed by natural language understanding (NLU) to classify an utterance to a particular intent
(intent prediction) (Gorin et al., 1997). Similarly, speech translation involves an ASR task fol-
lowed by machine translation (MT) to translate a transcription of the input audio (Weiss et al.,
2017).

Deep, end-to-end models (Qian et al., 2021b; Lugosch et al., 2019; Huang et al., 2020; Kuo
et al., 2020; Chen et al., 2021c; Dinarelli et al., 2020) are adopted for these complicated tasks due
to advancements in model architectures and computing capabilities. End-to-end architectures typ-
ically outperform traditional, modular architectures without requiring domain expertise or feature
engineering (Agrawal et al., 2020). Moreover, end-to-end models avoid the error propagation
arising from traditional approaches (Sperber and Paulik, 2020). However, traditional modular or
cascade architectures, naturally structured into sub-components that each address a specific sub-
task, are more straightforward to evaluate. End-to-end models cannot quantify performance of
decomposed sub-tasks (Dalmia et al., 2021), blurring the lines between the individual sub-tasks.
Using pre-trained systems for some sub-tasks further reduces the chance of errors propagating to
the downstream sub-tasks (Bansal et al., 2019; Erhan et al., 2010; Wang and Zheng, 2015). Thus,
it is important to explicitly evaluate each sub-component of an end-to-end network.

Prior datasets for decomposable problems, however, often test only the top-level subtask. For
example, the Fluent Speech Commands (FSC) (Lugosch et al., 2019) and Air Travel Information
System (ATIS) (Hemphill et al., 1990) SLU benchmarks are open-speaker but not open-utterance,
and thus, only effectively test speaker generalizability. Moreover, train-test overlap is a problem
in modern question answering datasets (Lewis et al., 2020). In paradigms like encoder-decoder
modeling or speech translation (Dalmia et al., 2021; Kano et al., 2020; Jia et al., 2019;Weller et al.,
2021), neural network components each solve different logical functions which combine to solve
the final task. Therefore, standard benchmarks may effectively test a particular sub-network of a
given system, masking any weaknesses of other model sub-components and providing an inflated
estimates of model performance.

To address this, we present a dataset-agnostic framework for evaluating end-to-end model

1https://github.com/robustEval/robustEvalSLU

94

https://github.com/robustEval/robustEvalSLU

on decomposable tasks. Using spoken intent prediction as a case study, we focus on two popu-
lar benchmarks, FSC (Lugosch et al., 2019) and Snips SmartLights (Snips) (Saade et al., 2019;
Coucke et al., 2018) datasets. We provide evidence that the original test splits do not fairly eval-
uate the ASR and NLU subtasks of spoken intent prediction. Using our framework, we propose
robust Unseen and Challenge splits that each contain two test sets: one test set with held-out
speakers, and one with held-out utterances. For the Challenge set, we use coordinate ascent
with speaker- and transcript-specific utility metrics to explicitly test for generalization to diverse
speakers and varied phrasings of intents. Our experiments show the new test splits can amplify
accuracy differences by up to 10% between sub-components of several state-of-the art models
for spoken intent prediction, offering more in-depth analyses of strengths and weaknesses of var-
ious end-to-end modeling approaches. These splits have the potential to drive future modeling
innovation, not only for this task, but for any similarly decomposable task.

8.3 Motivation

In the following section, we introduce the spoken intent prediction task and discuss limitations
of existing SLU benchmarks.

8.3.1 Task Definition

Spoken intent prediction maps a spoken command (e.g. “Turn on the lights in the kitchen”) and to
a discrete, actionable set of slots (Action: “Activate”), (Object: “Lights”), (Location: “Kitchen”).
This task challenges a model’s speech recognition and semantic processing abilities: a good SLU
model must generalize to new speakers and to new phrasings of similar intents.

The FSC dataset (Lugosch et al., 2019) tests a model’s ability to predict intents from com-
mands used with a home voice assistant. Following traditional speech processing paradigms,
the FSC test set consists of audio from speakers unseen during training. Although this test split
measures generalization to new speakers, the test set fails to explicitly test generalization to new
utterances. As Table 8.2 illustrates, the training set provides 100% coverage of the transcripts
seen during test time. This issue with transcript coverage is also seen in the popular ATIS bench-
mark (Hemphill et al., 1990) for slot filling from air travel commands. Snips, which is similar in
content to FSC, does not release official splits, but typical split creation approaches (Coucke et al.,
2018; Qin et al., 2019; Agrawal et al., 2020) do not explicitly consider testing generalizability for
each sub-task independently. This can mask performance gaps in the ASR or NLU sub-tasks.

In the real world, we expect systems to understand the same commands spoken in different
ways by speakers of diverse backgrounds. Thus, it is important to hold out new utterances to
more robustly assess a model’s semantic processing ability (McKenna et al., 2020). Moreover,
open-speaker test sets should assess model generalizability to diverse demographics. In FSC, for

95

Table 8.1: % WER values for Google ASR model (Google, 2021) on speakers with first lan-
guage English and non English. (S, I, and D refers to substitution, insertion and deletion errors,
respectively)

First Language Spoken % S % I % D %WER

English 2.0 0.7 2.4 10.8
Non English 6.3 2.2 7.7 27.8

example, all held-out speakers are native English speakers, while accented speakers are seen only
during training time. To understand how this affects spoken language understanding evaluation,
we used Google’s ASR system (Google, 2021) to generate transcripts from audio files in the
dataset and computed Word Error Rates using the gold transcripts. Table 8.1 illustrates that the
ASR model’s WER on audio from speakers whose first language is not English is twice as high
as the WER on audio from native English speakers. To develop technologies that are inclusive
to different speaker demographics, it is important to create benchmarks that are representative of
these diverse backgrounds.

Table 8.2: Comparing data statistics and different models compared on original and proposed
splits for the Fluent Speech Commands dataset. Speaker and Utterance Coverage refer to the per-
centages of test set speakers and utterances, respectively, observed in the training set. “Speaker
KL” is the symmetrised Kullback-Leibler divergence of speaker demographic distributions be-
tween training and test sets. We ensure that our proposed splits have roughly the same # of
examples in each test set as in the split proposed in (Lugosch et al., 2019). We also construct
different variants of the Unseen split by changing the random seed of our algorithm and report
the standard deviation.

Dataset Statistics E2E SLU Model (Lugosch et al., 2019) Test Accuracy

Fluent Speech Speaker Utterance Speaker Test No w/ Pretrained ASR Finetune Word + Finetune
Command Test Set Coverage Coverage KL Size Pretraining (Frozen) Intent Layers All Layers

Original Split 0% 100% 0.88 3793 96.8 98.5 99.1 97.2
Random Split 100% 100% <0.01 3793 94.6 96.2 97.2 95.8

Unseen Split (Spk.) 0% 100% 0.01 3366 92.0 (±0.4) 92.9 (±0.2) 94.2 (±0.3) 93.9(±0.4)
Unseen Split (Utt.) 100% 0% <0.01 3971 78.1 (±1.3) 86.0 (±0.7) 88.2 (±0.9) 88.3(±2.0)

Challenge Split (Spk.) 0% 100% 0.01 3349 87.2 90.9 92.3 91.1
Challenge Split (Utt.) 100% 0% <0.01 4204 68.2 73.4 78.3 74.1

8.4 Methodology

We discuss our approach for creating the open-utterance and open-speaker test sets for theUnseen
and Challenge splits. The Challenge split uses additional constraints to make both test sets more
difficult and realistic.

96

8.4.1 Dataset Optimization

We construct test splits using coordinate ascent (Wright, 2015; Metzler and Bruce Croft, 2007)
over sub-task driven utility functions. Each coordinate direction corresponds to the test set assign-
ment (either the open-speaker or open-utterance test sets) of a block of datapoints in the dataset.
We first select an open-speaker test set, then choose the open-utterance test set. Finally, we ran-
domly distribute the remaining instances into training and validation sets, preserving the original
size ratio and intent distributions of these sets (Lugosch et al., 2019).

8.4.2 Unseen Split

We use the two functions to generate unseen-speaker and unseen-utterance splits with desirable
qualities.
Unseen Speaker Set The FSC dataset contains speakers of various ages, native languages, En-
glish fluency levels, and genders, but the original, open-speaker test set is not representative of
these groups. To ensure we are testing on speakers of diverse backgrounds, we minimize the sym-
metrised Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) between the discrete
distributions of speaker demographics in the training and test sets.
Unseen Utterance SetWhen selecting unique utterances to hold out from training, we minimize
the symmetrised KL divergence of the discrete intent label distributions between training and test
sets. Utterances with the same intent are semantically similar, ensuring the semantic distributions
of training and test sets match. We also minimize the KL divergence of the discrete distributions
of transcript lengths between training and test sets.

8.4.3 Challenge Split

In addition to the constraints defined in the previous section, we define speaker-specific and
transcript-specific utility functions to quantify the “hardness” for each subtask. When optimized,
these functions create more challenging, realistic held-out sets. Notably, these test sets may cap-
ture dataset outliers due to noisy recordings, labeling errors, or poorly aligned data. Thus, we
recommend using them in addition to the Unseen splits. The proposed utility functions are spe-
cific to spoken language tasks, but could be replaced with arbitrary task-specific objectives.
Challenge Speaker SetWe compute the Word Error Rate, measured by insertion, deletion, and
substitution errors, of Google’s ASR model (Google, 2021) to identify particularly challenging
utterances. However, high WER is not always indicative of a reasonably hard example. Accord-
ing to previous work (Gaur et al., 2016), substitution errors reflect confusions in ASR systems.
Alignment errors, indicated by an increase in insertion and deletion errors and a large deviation
between these quantities, are a sign of poor data quality. To produce a challenging speaker set

97

without compromising data quality, we use the following utility function, UWER:

UWER = S − α |I −D| − β I − γ D

where S, I and D refer to substitution, insertion, and deletion rates, respectively, such that we
maximize S while minimizing I ,D and their deviation, |I−D|. α, β and γ are hyperparameters.
We empirically observeα = 0.05, β = 0.05 and γ = 0.4workwell for the FSC dataset, producing
a challenging split without compromising on test-set data quality.
Challenge Utterance SetAdataset with many unique n-gramsmakes the SLU taskmore difficult
(McKenna et al., 2020). Thus, we create splits that minimize the n-gram overlap between our train
and test set. We choose the Sentence BLEU (Papineni et al., 2002) score as a proxy for n-gram
overlap and use it in the following utility function:

UBLEU = −BP ∗ exp(
4∑

i=1

αi log(pi))

where pi is themodified precision (Papineni et al., 2002) for each n-gram, αiweighs the respective
importance of the ith-gram overlap, andBP is the brevity penalty (Papineni et al., 2002) penalizing
shorter sentences. Transcripts in the FSC dataset are 3-5 words in length, thus, considering only
1-gram and 2-gram overlap (i.e. α1 = 0.5, α2 = 0.5, α3 = 0.0, α4 = 0.0) worked well for
holding out unique n-grams not seen during training.

Finally, to ensure both Unseen and Challenge speaker sets test generalization only to new
speakers (and not utterances), we maximize the n-gram overlap with each split’s respective train-
ing utterances. As Table 8.2 shows, our constructed speaker test sets have 100% n-gram overlap
with their respective training sets. Unlike the original splits, in which test speakers are less de-
mographically diverse than training set speakers, our new splits effectively minimize this distri-
butional gap, as shown by the “Speaker KL” column. Each new test set has similar size to the
original test set, and its distribution of utterance lengths is kept close to that of the training set to
limit distribution shift.

8.5 Experiments

8.5.1 Comparing end-to-end SLU systems

We compare four different models from (Lugosch et al., 2019) on the Original, Unseen, and
Challenge splits, as well as a stratified Random split (stratified over all intent labels). The four
models are based on a three-stage neural architecture consisting of a phoneme layer, word layer,
and intent layer. Each model uses different pretraining and finetuning schemes: using no pre-
training, using a frozen pretrained ASR model (i.e. finetuning only the intent layers), finetuning

98

only word and intent layers, or finetuning all layers. When pretraining, the phoneme and word
modules are pretrained on the LibriSpeech dataset (Panayotov et al., 2015). Using the Original
test split, we successfully reproduced the results (Lugosch et al., 2019) for each of these freezing
and unfreezing schedules.

Using the speaker and utterance test sets we create, we can highlight sub-task-level perfor-
mance differences across the four models. As Table 8.2 illustrates, our Unseen and Challenge
splits reveal that all models are better at generalizing to new speakers than to new utterances.
However, all models achieve at least 3% lower accuracy on the Unseen and Challenge speaker
sets compared with the Original held-out speaker set, indicating that current SLU models still
do not generalize well to diverse speaker demographics. The results on the Challenge utterance
set indicate that all models are significantly worse at generalizing to unique phrases of the same
intent, suggesting an opportunity for enhancing semantic processing abilities of SLU models.

Our splits are also useful for comparing configurations of the same model. Intuitively, pre-
training phoneme layers to detect phonetic patterns should help generalize to unseen speakers and
utterances. However, Table 8.2 shows that on the Original and Random splits, there are small per-
formance gaps between pretrained and non-pretrained models (1-2%, or ∼50 test set examples),
suggesting pretraining offers limited value, considering the resources it requires. In contrast, the
performance gap becomes significant in the Unseen utterance set and both the speaker and ut-
terance Challenge splits. The model without pretraining performs 10.1% worse than the best
pre-trained model (pretraining with finetuned word and intent layers) in both the Unseen and
Challenge utterance sets, corresponding to ≈460 more mistakes. The gaps are smaller in the
speaker Challenge set, suggesting a non-pretrained ASR model generalizes better to new speak-
ers than to new words or phonemes. These results corroborate previous findings (McKenna et al.,
2020) that finetuning models to the dataset’s distinct acoustic and linguistic patterns improves
generalization to new phrasings. Finally, we change the random seeds used to create the Unseen
split to test the robustness of our methods. The relatively low standard deviations in performance,
as seen in Table 8.2, illustrate that our method is stable.

8.5.2 Gap between SLU and NLU

Using the utterance test sets of the Unseen and Challenge splits, we identified that SLU systems
struggle to effectively capture lexical and semantic information. As an ablation study, we used
gold transcripts to train and test the intent prediction component of the end-to-endmodel (Lugosch
et al., 2019) in isolation (keeping all word and phoneme layers frozen). As a baseline, we train a
text-based intent classificationmodel initialized with randomword embeddings that are finetuned
during training. To incorporate semantic information into the word representations, we extract
two types of word embeddings: (1) pretrained FastText (Mikolov et al., 2018) embeddings and (2)
contextual BERT embeddings (Devlin et al., 2019). In Figure 8.1, we compare the baseline and

99

Original Set Unseen Split Challenge Split

75

80

85

90

95

100

97.2

88.3

74.1

98.1

90.3

78.8

98.1

89.8

83.7

98.1

90.4

86.1

Te
st
A
cc
ur
ac
y
(→

)

E2E SLU Model (Lugosch et al., 2019)
Text-NLU Model
Text-NLU w/ FastText Pretraining
Text-NLU w/ BERT Pretraining

Figure 8.1: Comparing text-based NLU models with the “Finetune All Layers SLU” baseline
on the original and proposed utterance test sets. “Text-NLU Model” refers to a text-based NLU
system using randomly initialized word embeddings.

semantically-enhanced text NLUmodels with the “Finetune All Layers” SLUmodel of (Lugosch
et al., 2019). Figure 8.1 illustrates that BERT pretraining can boost the accuracy of the intent
subcomponent by 12% on the Challenge utterance set. These differences are not so apparent in the
Unseen split, which is not as semantically challenging because it does not explicitly minimize n-
gram overlap (McKenna et al., 2020). There is still a 2% gap between the SLU and NLUmodels’
performance on the Unseen utterance split, suggesting that pretraining embeddings helps enhance
semantic understanding.

Based on the results of our ablation study, we extend the frozen pretrained ASR model, the
best reported SLU model from (Lugosch et al., 2019), with FastText embeddings. At each audio
frame, the ASR module predicts a distribution over words; we use this compute a weighted aver-
age FastText word embedding (Bojanowski et al., 2017) and pass it to the intent layer. Table 8.3
illustrates that enriching the ASR outputs with semantic information gives very minor improve-
ments on the original test set, but provides >2% improvement to the unseen-utterance sets of
both Unseen and Challenge splits, consistent with the experiments in the previous section.

100

Table 8.3: Adding semantic word embeddings to the SLU system has only a minor effect (<1%)
on the the Original split and proposed unseen-speaker splits. On the unseen-utterance splits, we
see a magnified performance gap (>2%), in bold.

Unseen Challenge
E2E SLU Model (Lugosch et al., 2019) Original Spk. Utt. Spk. Utt.

Pretrained ASR (Frozen) 98.5 92.9 86.0 90.9 73.4
+ FastText Pretraining 98.7 92.7 88.3 90.0 75.5

Table 8.4: %WER values of the Google ASR system (Google, 2021) on the original and proposed
speaker test sets, and the corresponding accuracy of the Pretrained ASR (Frozen) model. (S, I,
and D refers to substitution, insertion, and deletion, respectively.)

Test Split % S % I % D %WER SLU Acc.

Original 1.0 0.5 0.6 6.5 98.5
Unseen Speaker 2.1 1.0 2.5 12.1 92.9
Challenge Speaker 3.2 1.2 2.6 13.9 90.9

8.5.3 Analyzing proposed utility functions

In Section 8.5.1, we illustrated how our optimized splits can distinguish model performance. We
now verify our utility functions can effectively quantify the complexity of each subtask.
Word Error Rate As in Section 8.3.1, we use WER of Google’s ASR system (Google, 2021)
to quantify the difficulty of our splits. Table 8.4 illustrates that WER is twice as high on the
proposed speaker-diverse splits as on the original splits. Substitution errors are most prominent
in Challenge set, indicating that we create a hard test set without necessarily compromising on
data quality.
N-gram overlap For each proposed split, we compute the average BLEU score for the test set
relative to the training set. Table 8.5 highlights that our test splits have much lower n-gram
overlap with their training sets. Minimizing n-gram overlap while preserving intent distributions
of training and test sets further tests a model’s generalization to new phrasings of the same intents.

8.5.4 Extending to the Snips SmartLights dataset

To illustrate our methodology is dataset agnostic, we extend our approach to Snips SmartLights,
a popular SLU dataset (Lugosch et al., 2020; Bhosale et al., 2019).

Snips SmartLights dataset is unseen-utterance by design because all utterances are unique.
Thus, we create a single Unseen test set that holds out speakers and utterances. We optimize
both speaker and utterance utilities defined in Section 8.4.2 to create the split. Using the WER
and n-gram based utilities defined in Section 8.4.3, we create separate speaker and utterance

101

Table 8.5: BLEU score values for unigram, bigram, trigram and 4-gram for Original and proposed
(utterance) test sets. Utterances shorter than order of a given n-gram were removed.

N-gram overlap SLU

Test Split 1 2 3 4 Acc.

Original 100.0 100.0 100.0 100.0 98.5
Unseen Utterance 98.0 87.4 73.4 71.7 86.0
Challenge Utterance 91.0 69.9 66.4 66.6 73.4

Table 8.6: Evaluating models on original and proposed splits for the Snips SmartLights dataset.
Snips does not provide default splits, so we compare against a random split.

Rand. (Agrawal et al., 2020) Unseen Challenge Split
E2E SLU Model (Lugosch et al., 2019) Split Split (Spk.) (Utt.)

No Pretraining 60.4 27.3 37.8 45.2
w/ Pretrained ASR (Frozen) 83.2 78.5 73.2 67.4
Finetune Word + Intent Layers 88.0 80.9 82.6 75.3
Finetune All Layers 85.0 75.0 74.8 78.5

Challenge test sets. Following the Challenge test setup of FSC, we increase the speaker test set’s
n-gram overlap set with its train set to match that of the random split. We do not control for
n-gram overlap in the Unseen split since it holds out both speakers and utterances. As a result,
our Challenge speaker set may be easier than the Unseen split for SLU models. Moreover, Snips
is a smaller dataset, so the Snips Challenge set’s train, valid, speaker test, utterance test ratios are
75:10:7.5:7.5 as compared to 80:10:10 in the baseline random split (Agrawal et al., 2020).

Using the same models as Section 8.5.1, we compare the performance on our proposed splits
against a random split (Agrawal et al., 2020) in Table 8.6 (Snips does not release official splits).
We observe similar results as in the FSC setting. Pretraining ASR models improves speaker test
set performance by nearly 40-50% for the Unseen and Challenge splits. Moreover, finetuning
improves performance for all splits, especially on the Challenge utterance set, on which both
finetuned models achieve nearly 12% gains in performance. Thus, we illustrate that we can
easily extend our approach to another SLU benchmark, and see effects consistent with those on
the FSC dataset. From our experiments, we believe this approach has potential to apply to other
benchmarks for decomposable tasks across diverse research domains.

8.6 Conclusions

We present a novel, dataset-agnostic methodology for constructing splits for decomposable tasks,
casting the construction of splits as an optimization problem over dataset-level utility functions.

102

We release Unseen and Challenge splits for the FSC and Snips datasets to the community, and
show evidence that these splits can amplify performance differences between sub-components of
models. We recommend the use of the Unseen splits for testing in-domain performance and the
Challenge splits for more extreme out-of-domain generalization scenarios. As our methodology
is task-agnostic, we encourage the extension of our re-splitting method to other decomposable
tasks, such as speech translation or visual question answering.

103

104

Chapter 9

Conclusion

The software industry has made great strides in building independent reusable libraries that can
be developed once and reused in a wide range of applications. This thesis takes one step towards
bringing sequence to sequence neural models closer to computer programs with reusable compo-
nents. This line of research can provide a way for the research community and industry to build
complex neural systems while preventing an explosion in computational training costs.

In this thesis, we first define the principles of compositionality towards and identify its bene-
fits towards building complex systems. We take inspiration from the works of traditional cascade
systems and attempt to bring their benefits into the future of end-to-end modeling. We propose
three models with the desired characteristics, which have various levels of reusability and mod-
ularity, which practitioners could use depending on their need and available resources. We also
study the considerations for evaluating end-to-end sequence models which would increase their
practicality towards their deployment on real-world scenarios.

9.1 Summary of Key Contributions

This thesis makes the following key contributions:
1. Chapter 3 shows the resource pooling capabilities of CTCHybrid Systems by buildingASR

systems for low resourced languages. These systems exploit compositionality in the ASR
task by pooling resources across languages to build strong CTC acoustic models, which
are decoded with an WFST decoder.

2. Chapter 4 builds modular encoder-decoder systems by defining a clear interface between
encoder and decoder modules using CTC frame level distributions. These systems, while
being end-to-end, exhibit modular behavior like traditional HMM based systems. Mod-
ules from a trained LegoNN model can be reused for other sequence tasks without any
fine-tuning, while still having the capability end-to-end fine-tuning for practioners with
available resources.

105

3. Chapter 5 builds CTC encoders for non-monotonic sequence tasks like speech and machine
translation, thereby opening the CTC Hybrid Systems (Chapter 3) for sequence tasks be-
yond speech recognition. This work also presents two strategies for a one-pass beam search
that considers both the CTC and Attention distributions, thus strengthening the capabilities
of LegoNN Systems (Chapter 4).

4. Chapter 6 builds compositional E2E systems for complex sequence tasks using searchable
hidden intermediates. These systems rely on intermediate decoders to build cascade-like
end-to-end systems. These systems do not suffer from error propagation while still exhibit-
ing search capabilities.

5. Chapter 7 applies the searchable intermediate framework for the spoken language under-
standing task. Our compositional E2E SLU systems can utilize the traditional token-level
sequence labeling formulation for natural language understanding in end-to-end spoken
language understanding. This work also builds globally normalized CRF based model for
end-to-end SLU.

6. Chapter 8 presents an approach for a more comprehensive evaluation of end-to-end se-
quence models. We show that it is important to build test sets that test generalizability on
all sub-tasks that compromise the overall task. We present an approach to construct these
test sets by optimizing through difficulties in sub-tasks using co-ordinate ascent.

9.2 Future Directions

This thesis is centered on building sequence models that use principles of task compositionality
in their design. Going forward we believe these models will play an important role towards the
practical use of these systems. In this section, we provide possible extensions to our work, which
we believe can enhance the experience of practitioners while building complex sequence systems
for real-world scenarios.

9.2.1 Composition Inspired Transformer Architectures

With the advent of attention based modeling (Vaswani et al., 2017) there has been growing in-
terest in coming up with innovative ways to model relationships in sequences; for example,
Conformer (Gulati et al., 2020) uses convolutions to model local relationships along with self-
attention for global relations. We recently proposed Branchformer (Peng et al., 2022) that uses
separate branches to model different levels of relationships in sequences; this allows for flexible
inference where slower branches can be shut off to give faster inference at some cost of perfor-
mance without any retraining. This level of flexibility can play a crucial role in the deployment of
these models, especially when building real-time systems. One possible extension could be build-

106

ing architectures that can also function with a subset of the trained model parameters, providing
free compression for edge devices.

9.2.2 Flexible Tokenization for Easy Composition of Systems

As we enter the world of multimodal machine learning, systems built to handle one modality
need to interact with systems of another modality; for example, a speech recognition system in-
teracts with a text-based natural language understanding system in voice assistants to understand
commands and take appropriate action. However, different systems have different optimal to-
kenizations, for example, a speech recognition system cares about recognizing sounds, which
makes their modeling stronger at a smaller unit than a word (Watanabe et al., 2018), while un-
derstanding systems require large word-like units to model the semantics (Devlin et al., 2019).
Due to such discrepancies, their composition forgoes crucial information regarding the entropy
of these predictions by converting them into surface level outputs before feeding them into the
next system (Ravichander et al., 2021). With finite-state transducers (FSTs), we can go from
distributions in one tokenization level to another. Furthermore, these transducers can be made
end-to-end differentiable using differentiable weighted FSTs (Hannun et al., 2020), giving rise
to another class of compositional end-to-end systems. This direction of work can also strengthen
our LegoNN systems (Dalmia et al., 2022) by placing these between modules to allow flexible
interfacing.

9.2.3 Zero-shot LegoNN systems

One limitation of the LegoNN systems (Dalmia et al., 2022) is that decoder modules cannot be
trained in isolation, which means that they cannot utilize the vast text-only data to train their de-
coder module. In order to be able to do this, we suggest investigating a one-hot-to-distribution
model. This model would mimic the CTC distributions of a LegoNN encoder by first corrupt-
ing the input sequence and then trying to predict the same input sequence using the CTC loss,
such as BART (Lewis et al., 2019). These systems will allow for building encoder-decoder sys-
tems with little to no parallel data; for example, a LegoNN encoder system that models phoneme
distributions from speech can be used with a LegoNN decoder built on text only data to build
speech recognition systems for an unseen language. Additionally, these systems can also be used
to build end-to-end cascaded systems in which independently trained ASR LegoNN and MT
LegoNN models (trained with the one-hot-to-distribution component) can be combined later to
build zero-shot speech translation systems.

107

9.2.4 Trained Sequence Module API using LegoNNs

Just like Pytorch (Paszke et al., 2019) provides APIs for trainable modules, and inspired by the
success of HuggingFace (Wolf et al., 2019) and AdapterHub (Pfeiffer et al., 2020), we believe
that with LegoNNs, we can provide APIs for trained modules that practitioners can utilize to
enhance their system building. For example, providing trained LegoNN decoder modules can
save computation as practitioners would only have to train encoder modules. They would also
help researchers build systems on low-resourced datasets as the LegoNN APIs will be usable
without any fine-tuning. In addition, the end-to-end capabilities of LegoNN systems will allow
further fine-tuning for those with available compute.

9.2.5 Joint CTC Encoder and Masked Conditional Decoder Models

The current encoder-decoder models rely on left-to-right decoding to produce the predicted sen-
tence, as the length of the output prediction is unknown and depends on when the decoder predicts
<eos>. This limits the decoder’s capability to model the sentence structure only using the past
context (Peters et al., 2018). As shown in Chapter 5, we can build input synchronous decoding
models that do not require <eos> prediction. This paves the way for a new set of encoder-decoder
models in which the decoder is not an autoregressive conditional prediction model, but rather a
masked conditional decoder similar to BERT (Devlin et al., 2019). These systems can be de-
coded by creating a CTC lattice composed with masked conditional decoder scores similar to
CTC with n-gram LM decoding using WFSTs (Miao et al., 2015), thus combining the best of
probabilistic modeling and neural networks. These systems can also be useful for efficient dis-
criminative training (McDermott, 1997), as obtaining the denominator score would not require
any auto-regressive decoding.

9.2.6 Streaming Compositional E2E Models

One current limitation of the compositional systems in Chapters 6 and 7 is that they require an
intermediate beam search step before evaluating the second sub-network. Our follow-up work
allowed us to use non-autoregressive CTC predictions to obtain intermediate representations in
a single parallel step (Inaguma et al., 2021a). However, the CTC outputs can be sub-optimal
when used to produce the best intermediate representations due to their conditional independence
assumption. We believe that a wait-k policy (Zheng et al., 2019; Ren et al., 2020) between the
intermediate and final predictions can allow simultaneous decoding of the final output while the
intermediate decoder performs a beam search. Extending this line of work would play a crucial
role in the use of these models for real-time prediction.

108

Appendix

109

Appendix A

Supplemental Material for Chapter 4

A.1 Experimental and Data Setup for transfer of LegoNN ex-
periments

A.1.1 Setup for the Ro-En transfer experiment

Data: For our Ro-En transfer experiment, we used the WMT16 Ro-En and WMT19 De-En
datasets. For WMT16 Ro-En, we used the data prepared by (Lee et al., 2018) which is already
tokenized and lowercased. For De-En, we excluded ParaCrawl from the standard WMT19 raw
training set to obtain 7.4M parallel translation pairs. We applied the same processing as for the
Ro-En dataset by lowercasing and tokenizing the De-En set. We prepared a single joint dictionary
of 41000 BPE units by combining the training text from both datasets. We filtered the training
data to have a length ratio of 1.5 and 80 as the max token length (Lee et al., 2018). Following
(Lee et al., 2018; Ghazvininejad et al., 2020a), we report tokenized BLEU scores on this dataset.

Training: As the Ro-En dataset contains only 610K pairs, to achieve the best baseline perfor-
mance, we reduce the size of the baseline model to avoid overfitting following (Ghazvininejad
et al., 2020b). We use 6 encoder and decoder layers with 512 dimensions, 8 heads and 2048 feed-
forward units. We modify the Ro-En encoder-only LegoNN model accordingly by using trans-
former blocks with 512 dimensions, 16 heads and 4096 feed-forward units. For De-En LegoNN
models along with the architecture described in §4.5.2 we also experimented with larger models
where the transformer encoder block has 16 heads, and 4096 feed-forward units. We found that
the larger BeamConv model performs better for this cross-lingual modular experiments.

Fine-tuning: To finetune the composed LegoNN Ro-En WMT model we modify the learning
rate to lr= 5e−6 and warm-up steps to 15k. We run the training for around 4k steps to get the best
validation perplexity.

111

A.1.2 Setup for the ASR-MT transfer experiment

Data: For Table 4.4 demonstrating the third LegoNN scenario in Figure 4.3, we use the Europarl
speech data to train our ASR task. We followed the data preparation for the ASRmodels described
in (Iranzo-Sánchez et al., 2020) by lowercasing, tokenizing and stripping the punctuations from
the text. We followed the same recipe when training models for theWMT19 De-En dataset, using
the raw text from Appendix A.1.1. To prepare the BPE target units, we trained a BPE model with
vocab size 2000 on the Europarl train text and applied the prepared dictionary on the other sets
of the Europarl speech data and the De-En WMT data. We had an OOV rate of 0.096% in the
De-En WMT train data.

For Table 4.5, demonstrating the fourth LegoNN scenario in Figure 4.3, we used the TED-
LIUM dataset (Rousseau et al., 2014) for training the pronunciation model module. We processed
the transcripts in the same way by lowercasing, tokenizing, and stripping the punctuation from
the text data. We trained the 2000 BPE target units on Europarl and TED-LIUM train text and
applied the prepared dictionary on the other sets of Europarl, TED and De-En WMT data. We
had an OOV rate of 0.090% in the De-En WMT train data.

We use the grapheme-to-phoneme library described in (Park and Kim, 2019) to get the target
phonemes for the speech data used in both the experiments. We report final WER on the lower-
cased set to follow the standard ASR data setups.

Training: As the Europarl dataset contains only 70 hours, we reduced the size of the baseline
model to avoid overfitting. We use transformers (Vaswani et al., 2017) with 12 encoder blocks
and 6 decoder blocks, each with 512 dimensions, 8 heads, 2048 feed-forward units.

For the LegoNN phoneme+pronunciation encoder-only model trained using the CTC loss, we
use a length control unit (for phonemes) which reduces the length of the input by a factor of 1.2
with a maximum allowable length of 365 time-steps. It outputs a marginal distribution over the
phonemes which is then passed to an Ingestor component (Wemb RF=5) followed by 6 layers of
encoder and another output length control unit (for BPE output tokens) reducing the speech input
by a factor 3.5 with a maximum allowable length of 130 time-steps. For the De-En MT model
we use the same architecture as Appendix A.1.1 but with non-shared dictionary between source
and target.

Fine-tuning: To finetune the composed LegoNN Europarl ASR model we modify the peak
learning rate to lr= 1e−4 and warm-up to a 1k steps. We run the training for 20k steps to get
the best validation perplexity.

1We downloaded the public model of (Ott et al., 2018) to score the newstest2011-2016 test sets which weren’t
reported in their original paper.

2https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.
perl

112

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl

Table A.1: SacreBLEU Scores (↑) on WMT for LegoNN and baseline enc-dec MT models.

MT Task Loss Criterion WMT En→De
CTC CE dev(↑) test(↑)

Scaling NMT (Ott et al., 2018) 7 3 26.8 28.2 1

Baseline Models (Our Implementation)
Baseline Enc-Dec 7 3 27.2 28.3

LegoNN Models
Encoder Only 3 7 19.0 18.2
Encoder + BeamConv Decoder 3 3 26.3 26.7
Encoder + WEmb Decoder 3 3 26.8 27.3

Table A.2: Individual year tokenized (tok.) and detokenized (detok.) BLEU Scores (↑) on WMT
for LegoNN and baseline enc-dec MT models.

MT Task WMT En→De (↑)
newstest11 newstest12 newstest13 newstest14 newstest15 newstest16
tok. detok. tok. detok. tok. detok. tok. detok. tok. detok. tok. detok.

Scaling NMT (Ott et al., 2018) 1 22.7 22.3 23.1 23.0 27.3 26.8 29.8 29.2 32.2 31.8 35.0 34.8
Baseline Models (Our Implementation)

Baseline Enc-Dec 23.3 22.8 23.3 23.1 27.6 27.2 29.8 29.0 31.9 31.5 35.6 35.1
LegoNN Models

Encoder Only 16.0 15.8 15.7 15.7 19.1 19.0 18.0 17.8 20.3 20.2 21.6 21.7
Encoder + BeamConv Decoder 22.4 21.9 22.4 22.3 26.7 26.3 27.3 26.6 29.8 29.5 33.4 33.0
Encoder + WEmb Decoder 22.7 22.3 22.8 22.6 27.2 26.8 28.3 27.6 30.3 30.0 34.3 33.9

A.2 Detokenized BLEU performance of our LegoNN MT
models

Table A.1 shows the detokenized BLEU performance of the MT models used in Table 4.11. We
used the detokenizer from mosesdecoder 2 to detokenize the model output and SacreBLEU (Post,
2018) 3 to calculate the BLEU score with the following hash -
BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.{wmt11|wmt12|wmt13
|wmt14/full|wmt15|wmt16}+tok.13a+version.1.2.9

3https://github.com/mjpost/sacrebleu

113

https://github.com/mjpost/sacrebleu

A.3 BLEU performance on individual years for our LegoNN
MT models

Table A.2 shows the BLEU performance (tokenized and detokenized BLEU) from individual
years (newstest11-16) for the MT models used in Table 4.1.

A.4 Interpretable Interface in LegoNN models

Each LegoNN module has a task, clear performance metric, and defined interpretable interface
allowing one to asses the quality of individual modules. This gives a sense of the contribution
from each module towards the overall performance of the task and help in better debugging of the
end-to-end systems. In Table A.3, we show the loss and performance of the encoder modules of
the LegoNNmodels that were presented in the table 4.1 and 4.2. The performance of the encoder
module was calculated using greedy decoding of the encoder marginal distributions without using
an external language model.

Table A.3: BLEU Scores (↑) and % WER (↓) at the output of encoder modules of the trained
LegoNN systems presented in Table 4.1 and 4.2.

ASR Task CTC Enc. WER (↓)
Loss SWB CH

WEmb LegoNN 0.60 11.6% 24.2%
BeamConv LegoNN 0.65 11.4% 24.4%

MT Task CTC Enc. BLEU (↑)
Loss dev test

WEmb LegoNN 2.51 18.9 18.4
BeamConv LegoNN 2.56 18.2 17.8

A.5 Importance of encoder grounding using CTC for reusabil-
ity

Table A.4 shows the results of training WEmb LegoNN MT models without an OLC unit nor a
CTC loss at the encoder output. The initial system works fine but its components fails completely
when used with another independently trained module.

114

Table A.4: Importance of CTC encoder grounding for modularity

En→ De (↑)
LegoNN Models newstest14

WEmb Ingestor 29.2
w/ Enc. Swap 28.7

No CTC Loss at encoder output 29.2
w/ Enc. Swap 0.0

Table A.5: Effect of %WER (↓) of transferring a fully trained ASR LegoNN decoder module on
encoder-only module trained on different amounts of data.

10% Data 30% Data
ASR Task SWB(↓) CH(↓) SWB(↓) CH(↓)

Baseline Enc-Dec 129.7% 136.6% 20.4% 37.1%

LegoNN Encoder Module 70.5% 80.5% 25.4% 43.8%
+ SWBD 300h LegoNN Modules
BeamConv Decoder 40.7% 59.6% 17.5% 34.5%
WEmb Decoder 42.2% 63.4% 18.5% 34.7%

A.6 Transfer of LegoNN modules to low-resource conditions

Table A.5 shows the improvements observed when using LegoNN decoder modules with en-
coders trained with 10% and 30% of the switchboard ASR training data. Applying a decoder
trained on the full data provided more than 50% and 10% relative improvement on average com-
pared to the baseline encoder-decoder models, and 30% and 25% compared to a LegoNN encoder
module, when trained on the 10% and 30% low resource conditions respectively. Given that this
experiment shows module transfer between models trained on the same dataset, encoders are
trained without the output length control unit because the their output length distribution matches
that of the decoder input.

A.7 Relation to Incorporating Text-only Resources

There are other ways to incorporate text-only resources in both ASR and MT tasks, e.g., back-
translation (Sennrich et al., 2016) and decoding with a languagemodel (Miao et al., 2015; Amodei
et al., 2016). However, the LegoNN approach offers a novel way for sharing pre-trained compo-
nents across tasks and languages (Table 4.3 and Table 4.4), with benefits going beyond competing
with the text-only LM decoding. For example, we can further fine-tune the composed LegoNN
model (Table 4.6) or through the modular design of LegoNNs, components from an ASR and

115

MT system would allow building zero-shot speech translation systems, which we have as future
work. Additionally, integrating an LM during decoding would also benefit the LegoNN models
and encoder-decoder in general when added via shallow-fusion during the beam-search (Watan-
abe et al., 2018).

For completeness we found that when we apply our LegoNN ASR encoder with a with an
external language model using a WFST decoder, the performance is inferior to our LegoNN
performance in Table 4.2, achieving 9.1% and 19.4% WER in the SWB and CH test sets aver-
aged across 3 seeds. Since, the gap in the LegoNN encoder performance of MT from the full
encoder-decoder is quite large we expect the language model decoding will see a larger degrada-
tion compared to the LegoNN encoder-decoder model.

A.7.1 Training hyperparameters for ASR and MT task

Table A.6 and Table A.7 contain the training parameter details for the LegoNN model.

Table A.6: Hyperparameters for training LegoNN model ASR task.

Hyperparameter Value

Hidden Dropout 0.15
Attention dropout 0.15
Activation dropout 0.15
Ingestor attention dropout 0.15
Batch size 300 utt.
LR schedule tristage (Park et al., 2019)
Start learning rate 1e−6

Max learning rate 1e−3

End learning rate 5e−6

Number of steps 80K
Warmup steps 35K
Hold steps 1K
Adam eps 1e−9

Adam betas (0.9, 0.999)
Weight decay 1e−6

116

Table A.7: Hyperparameters for training LegoNN model MT task.

Hyperparameter Value

Hidden Dropout 0.3
Attention dropout 0.3
Activation dropout 0.3
Ingestor attention dropout 0.1
Batch size 4K sent.
LR schedule inv. sqrt. (Ott et al., 2018)
Start learning rate 1e−6

Max learning rate 1e−3

Number of steps 150K
Warmup steps 35K
Adam eps 1e−9

Adam betas (0.9, 0.999)
Weight decay 0.1

117

118

Appendix B

Supplemental Material for Chapter 5

B.1 Reproducibility

B.1.1 Dataset Descriptions

See Table B.1 for dataset descriptions. Data preparation was done using ESPnet recipes:
IWSLT141, MuST-C2, MTedX3.

B.1.2 Model Architectures

See Table B.2 for model architectures.

B.1.3 Training/Decoding Hyperparameters

See Table B.3 for MT training, Table B.4 for ST training, Table B.5 for MT decoding, and Ta-
ble B.6 for ST decoding hyperpameters.

B.1.4 Metrics

Sacrebleu signature for all non-Japanese:
BLEU+case.mixed+numrefs.1 +smooth.exp+tok.13a+version.1.5.1

Sacrebleu signature for Japanese:
BLEU+case.mixed+lang.en-ja+numrefs.1 +smooth.exp+tok.ja-mecab-0.996-IPA

+version.1.5.1
1https://github.com/espnet/espnet/tree/master/egs2/iwslt14/mt1
2https://github.com/espnet/espnet/tree/master/egs/must_c/st1
3https://github.com/espnet/espnet/tree/master/egs/mtedx/st1

119

https://github.com/espnet/espnet/tree/master/egs2/iwslt14/mt1
https://github.com/espnet/espnet/tree/master/egs/must_c/st1
https://github.com/espnet/espnet/tree/master/egs/mtedx/st1

Dataset Task Source Lang(s) Target Lang(s) Domain # Train/Valid/Test Utts # Speech Train Hours

IWSLT17 (Cettolo et al., 2012) MT De En TED Talk 160k/7k/7k -
IWSLT17 (Cettolo et al., 2012) MT De Es TED Talk 160k/7k/7k -

MuST-C-v2 (Di Gangi et al., 2019) ASR/ST En De TED Talk 250k/1k/3k 450h
MuST-C-v2 (Di Gangi et al., 2019) ASR/ST En Ja TED Talk 330k/1k/3k 540h

MTedX (Salesky et al., 2021) MT Es, Fr, Pt, It, Ru, El En TED Talk 130k/6k/6k -
MTedX (Salesky et al., 2021) ASR Es, Fr, Pt, It, Ru, El En TED Talk 400k/6k/6k 730h
MTedX (Salesky et al., 2021) ST Es, Fr, Pt, It, Ru, El En TED Talk 130k/6k/6k 250h

EuroParl (Iranzo-Sánchez et al., 2020) MT De En Parliament Speech - /-/2k -
EuroParl (Iranzo-Sánchez et al., 2020) ST En De Parliament Speech -/-/1k -

Table B.1: MT/ST/ASR dataset descriptions. Utterance counts are rounded to the nearest
thousand. Language codes: De=German, En=English, Es=Spanish, Ja=Japanese, Fr=French,
Pt=Portuguese, It=Italian, Ru=Russian, El=Greek

Model Task # Encoder Layers [S] # Decoder Layers SrcCTC Layer Up/Down-Sample Pre-Train Init Src BPE Size Tgt BPE Size # Params

Pure-Attn MT 12 [6,12,18] 6 - - - 10k (joint) 54M
Joint CTC/Attn MT 18 [6,12,18] 6 6 3x - 10k (joint) 95M

Pure-Attn ST 18 [12, 18] 6 - 1/4x Enc lyr 1-12 from ASR 4k 4k 74M
Joint CTC/Attn ST 18 [12, 18] 6 12 1/4x Enc lyr 1-12 from ASR 4k 4k 72M

Pure-Attn ASR 12 6 - - - 4k 4k 46M

Table B.2: MT/ST/ASR model descriptions. The best MT/ST Encoder layers settings were se-
lected over a search space indicated by S. Parameter counts are rounded to the nearest million.

For tokenized BLEU in the IWSLT MT datasets we used mutibleu.perl (Moses-SMT,
2018)

B.1.5 Computing

ST models were trained on 2 x V100 for 2 days. MT models were trained on 1 x A6000 for 1
day.

B.1.6 Valid Set performances

Table B.7 presents the validation performances for our ST and MT models.

B.2 Qualitative

B.2.1 View of Regularized Attention

See Figure B.1 for a qualitative example of monotonic source attention patterns (supplementary
to the quantitative monotonicity in Table 5.2).

120

Table B.3: Training Hyperparameters for MT Models.

Hyperparameter Value

Hidden Dropout 0.3
Attention dropout 0.3
Activation dropout 0.3
LR schedule inv. sqrt. (Vaswani et al., 2017)
Max learning rate best of [1e-3, 3e-3]
Warmup steps 10000
Number of steps 200 epoch
Adam eps 1e-9
Adam betas (0.9, 0.98)
Weight decay 1e-4

Table B.4: Training Hyperparameters for ST Models.

Hyperparameter Value

Hidden Dropout 0.1
Attention dropout 0.1
Activation dropout 0.1
LR schedule inv. sqrt. (Vaswani et al., 2017)
Max learning rate 0.002
Warmup steps 25000
Number of steps 40 epoch
Adam eps 1e-9
Adam betas (0.9, 0.98)
Weight decay 0.0001

B.3 Quantitative

B.3.1 compare_mt. py Analysis Report

As shown in Figure B.2 and Figure B.3, both joint synchronous decodings are more robust than
pure-attention for long output lengths. Input-synchrony appears most robust in generation of very
long outputs for ST.

121

Table B.5: Decoding Search Space MT Models.

Decoding Type Hyperparameter Value

Pure Attn Max Length Ratio [1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3]
Penalty [0, 0.2, 0.4, 0.6, 0.8, 1.0]
Beam Size 5

Joint O-Sync
Max Length Ratio 1
Penalty [0, 0.2, 0.4, 0.6, 0.8, 1.0]
CTC Weight 0.3
Beam Size 5

Joint I-Sync

Max Length Ratio 1
Penalty [0, 0.2, 0.4, 0.6, 0.8, 1.0]
Blank Penalty [0.5, 0.75, 1.0]
CTC Weight [0.3, 0.5]
Beam Size [10, 30]

Table B.6: Decoding Search Space ST Models.

Decoding Type Hyperparameter Value

Pure Attn Max Length Ratio 1
Penalty [0,0.2,0.4,0.6,0.8,1.0]
Beam Size [10, 30, 50]

Joint O-Sync
Max Length Ratio 1
Penalty [0,0.2,0.4,0.6,0.8,1.0]
CTC Weight [0.3, 0.5]
Beam Size [10, 30, 50]

Joint I-Sync

Max Length Ratio 1
Penalty [0,0.2,0.4,0.6,0.8,1.0]
Blank Penalty 1
CTC Weight [0.3, 0.5]
Beam Size [10, 30, 50]

122

Model Type MT ST

Joint Joint Decoding IWSLT14 IWSLT14 MuST-C-v2 MuST-C-v2
Model Name Train? Decode? Method De-En Es-En En-De En-Ja

Pure-Attn (Ours) 7 7 Attn O-sync 34.1 41.2 28.5 11.3

Joint CTC/Attn 3 3 Joint I-sync 34.6 42.0 29.0 12.4
Joint CTC/Attn 3 3 Joint O-sync 35.0 42.3 29.2 12.4

Table B.7: Valid set performances, as measured by BLEU (↑), of our proposed joint
CTC/Attention models compared to pure-attention baselines. Joint CTC/Attention models are
always jointly trained, but can be either jointly decoded using input/output synchronony or de-
coded using only their CTC or attention branches.

Head 1 Head 2 Head 3 Head 4

Ba
se
lin
e

Jo
in
tC

TC
/A

tt
en
tio

n

Figure B.1: Visualization of source attention patterns produced by pure-attention baseline (top) vs.
joint CTC/attention (bottom) ST models. Qualitative example extracted from the final decoder
layer.

123

<1
0

[1
0,

20
)

[2
0,

30
)

[3
0,

40
)

[4
0,

50
)

[5
0,

60
)

>=
60

length

0

5

10

15

20

BL
EU

sys1
sys2
sys3

Figure B.2: Compare-mt (Neubig et al., 2019) output sentence length to BLEU for joint decoding
vs pure-attention ST models. Model codes: sys1 = Joint Input-Sync, sys2 = Joint Output-Sync,
sys3 = Pure-Attn

<1
0

[1
0,

20
)

[2
0,

30
)

[3
0,

40
)

[4
0,

50
)

[5
0,

60
)

>=
60

length

0

5

10

15

20

25

30

BL
EU

sys1
sys2
sys3

Figure B.3: Compare-mt (Neubig et al., 2019) output sentence length to BLEU for joint decoding
vs pure-attention MT models. Model codes: sys1 = Joint Input-Sync, sys2 = Joint Output-Sync,
sys3 = Pure-Attn

124

Appendix C

Supplemental Material for Chapter 6

C.1 Training and Inference hyperparameters

We tune training and inference hyperparameters using only the dev sets. We first determined the
best hyperparameters for our baseline Enc-Dec implementation and fixed all settings not pertain-
ing to the unique searchable hidden intermediates of our Multi-Decoder. Then, we find the best
hyperparameters for our proposed models under these constraints to demonstrate a true compar-
ison against the baseline. For our Speech-Attention variant, we found that increasing attention
dropout in the ST sub-net decoder to 0.4 improved performance, which we verified was not true
for the vanilla Multi-Decoder model. For our external model re-scoring, we found that a CTC
weight of 0.3 is best for all Multi-Decoder and Multi-Decoder w/ Speech-Attention. The best
LM weight for the Multi-Decoder was 0.2, while the best LM weight for the Multi-Decoder w/
Speech-Attention was 0.4. For both of these re-scoring hyperparameters, we tried [0.2, 0.3, 0.4].
For deciding the beam size, we use the experiment demonstrated in Figure 6.2 which uses beam
sizes of [1, 4, 8, 10, 16].

C.1.1 Multi-Decoder ST Performance across other automatic MTMetrics

To supplement our overall ST results on the Fisher/CallHome corpus in Table 6.1, which shows
BLEU scores, we also evaluated the same Multi-Decoder and Baseline Enc-Dec (Our Implemen-
tation) models on two additional metrics: METEOR (Banerjee and Lavie, 2005) and Translation
Edit Rate (TER) (Snover et al., 2006). Performance across all three metrics show consistent
trends, with the Multi-Decoder outperforming the Baseline Enc-Dec model on all metrics. We
see that both the Multi-Decoder and Multi-Decoder w/ Speech-Attention models are improved
through ASR Re-scoring. Further, the models with Speech-Attention perform better than those
without.

125

Fisher test CallHome test

Model BLEU (↑) METEOR(↑) TER(↓) BLEU (↑) METEOR(↑) TER(↓)

Baseline Enc-Dec 49.5 37.9 42.7 18.2 22.9 68.7

Multi-Decoder 52.6 39.7 40.5 20.1 24.6 66.5
+ASR Re-scoring 53.7 40.0 39.6 20.8 24.9 65.3
+Speech-Attention 54.1 40.2 39.2 21.4 25.2 65.3
+ASR Re-scoring 55.0 40.4 38.5 21.5 25.4 64.2

Table C.1: Results presenting the performance of our Baseline Enc-Dec implementation and our
Multi-Decoder models as evaluated by three metrics: BLEU, METEOR, and Translation Edit
Rate (TER). These are the same models as in Table 6.1, which uses BLEU. All results are from
the Fisher-CallHome Spanish-English test corpus.

C.2 MuST-C Data Setup and Model Details

Data: We extend our approach to other language pairs from the MuST-C speech translation
corpus (Di Gangi et al., 2019). These are recordings of TED talks in English with translations
in various target languages. In our experiments we show results on two language pairs, namely,
English-German and English-French. We use the provided dev set for deciding the training and in-
ference hyperparameters, as mentioned in Appendix (C.1). We report detokenized case-sensitive
BLEU (Post, 2018) on the tst-COMMON set. We apply the same text processing as done in (In-
aguma et al., 2020b) and use a joint source and target vocabulary of 8K byte pair encoding (BPE)
units (Kudo and Richardson, 2018). Similar to §6.6, we use the ESPnet library to prepare the
corpus, and apply the same data preparation and augmentations.

Multi-Decoder Configuration: For theMuST-C experiments, we scaled ourMulti-Decoder w/
Speech-Attention config from the Fisher-CallHome experiments by increasing the Encoderst to
contain 4 transformer encoder blocks. We increased the attention dim and attention heads of the
Encoderasr and Decoderasr to 512 dimension and 8 heads respectively, while only increasing
the attention dimension to 512 for Encoderst and Decoderst. This increased the total trainable
parameters to 135M, which we trained on 4 NVIDIA V-100 GPUs for ≈3 days. We also found
that increasing the attention dropout of ASR decoder to 0.2 helped with the increased parameters.
We kept the remaining dropout parameters the same as our previous experiments. We also keep
the remaining training configurations the same like the effective batch-size, learning rate and
warmup steps, loss weighting and SpecAugment policy.

During inference, we use the same beam sizes from our Fisher-CallHome experiments and
we perform a search across the length penalty and max length ratio settings using the MuST-C
dev sets. In the intermediate ASR beam search we use a length penalty of 0.1 and 0.2 for English-
German and English-French respectively. In the ST beam search we use a max length ratio of 0.3

126

and length penalties of 0.6 and 0.5 for English-German and English-French respectively. For our
experiments with ASR re-scoring, we use a LM weight of 0.1 and a CTC weight of 0.1. In these
re-scoring experiments we also set the ASR length penalty to 0.6 and the ST length penalty to
0.5, while increasing the ST max length ratio to 0.5. The LMs used were trained on the English
transcripts of the MuST-C English-German and English-French corpora, with dev perplexities of
32.7 and 23.2 respectively.

127

128

Appendix D

Supplemental Material for Chapter 7

D.1 SLURP and SLUE Dataset Description

We evaluated our proposed approach on publicly available SLU datasets, namely SLUE (Shon
et al., 2022) and SLURP (Bastianelli et al., 2020) datasets on the task of Named Entity Recogni-
tion (NER) from naturally available speech. SLURP is a linguistically diverse and challenging
spoken language understanding benchmark that consists of single-turn user conversation with a
home assistant, annotated with both intent and entities. Similar to the approach followed in our
prior work (Bastianelli et al., 2020; Arora et al., 2019), we bootstrap our train set with 43 hours
of synthetic data for all our experiments. We evaluate our approach using SLU-F1 (Bastianelli
et al., 2020), a metric for spoken entity prediction, and Label F1, which considers only entity-tag
predictions.

SLUE is a recently released SLU benchmark that focuses on Spoken LanguageUnderstanding
from limited labeled training data. Specifically, it consists of SLUE VoxPopuli dataset that can
be used for building systems for ASR and NER. Similar to (Shon et al., 2022), we evaluate our
systems using two micro-averaged F1 scores, the first score that evaluates both named entity and
tag pairs is referred to as F1, and the second that evaluates only entity-tag phrases is referred to
as Label-F1. Note that the released test sets are blind without ground truth labels, and hence we
compare different methods using the development set.

The dataset download and evaluation links for SLURP can be found here - https:
//github.com/pswietojanski/slurp and for SLUE here - https://github.com/
asappresearch/slue-toolkit. The datasets have been processed and prepared using ESPnet,
SLURP - https://github.com/espnet/espnet/tree/master/egs2/slurp_entity and
SLUE - https://github.com/espnet/espnet/tree/master/egs2/slue-voxpopuli

129

https://github.com/pswietojanski/slurp
https://github.com/pswietojanski/slurp
https://github.com/asappresearch/slue-toolkit
https://github.com/asappresearch/slue-toolkit
https://github.com/espnet/espnet/tree/master/egs2/slurp_entity
https://github.com/espnet/espnet/tree/master/egs2/slue-voxpopuli

Table D.1: Overview of the two publicly available SLU datasets (Shon et al., 2022; Bastianelli
et al., 2020) used for our experiments.

Dataset Size (utterances / hours)

Train Dev Test

SLURP 11,514 / 40.2 2,033 / 6.9 2,974 /10.3
SLUE-VoxPopuli 5,000 / 14.5 1,753 / 5.0 1,842 / 4.9

D.2 Experimental Setup

Our models are implemented in PyTorch (Paszke et al., 2019), and the experiments are conducted
using the ESPnet-SLU toolkit (Arora et al., 2019; Watanabe et al., 2018).

D.2.1 Speech Preprocessing

Speech inputs are globally mean-variance normalized 80 dimensional logmel filterbanks using a
16kHz sampling and window of 512 frames and a 128 hop length. We apply speed perturbation
for the under-resourced dataset of SLUE of 0.9 and 1.1 to increase the samples. We also apply
specaugmentation (Park et al., 2019) on both datasets. We also remove all examples smaller than
0.1 seconds and larger than 20 seconds from the training data.

D.2.2 Text Processing

For the cascaded system, we processed ASR transcripts S using bpe tokenisation (Kudo and
Richardson, 2018) and trained ASR models to generate bpe subtokens. We use bpe size of 500
for SLURP and 1000 for SLUE dataset. For the direct E2E models, we predicted the enriched
label sequence Y e using the same bpe size as the ASR models in cascaded sequence. Similarly,
compositional models also used the same bpe size to generate the ASR transcripts.

For creating the BIO tags we modified the data preparation such that we take the entities for
each utterance and create a “label utterance”. This consists of one-to-one mapping of the label
tags with the words with Begin (B), Inside (I) and Outside (O) marked for each label. After
performing BPE tokenization we add ∅ for every subtoken of the word. We have attached the
data preparation code.

D.2.3 Model and Training Hyperparameters

We run parameter search for both direct end-to-end and our compositional end-to-end systems
using the same model search space (Table D.2). For the cascaded systems we build systems that
have the same size as that of our ASR and NLU sub-networks. In this section we will describe

130

our best architecture for both direct and compositional E2E systems.

Direct E2E SLU systems We use encoder decoder based architecture for our baseline E2E
system. We use Conformer encoder blocks (Gulati et al., 2020) and Transformer decoder blocks
(Vaswani et al., 2017) with CTC multi-tasking (Arora et al., 2019). After our searching through
the hyperparameter space we found 12-layer Conformer (Gulati et al., 2020) with 8 attention
heads and decoder is a 6-layer Transformer (Vaswani et al., 2017) with 8 attention heads for the
SLURP dataset. We use a dropout of 0.1, output dim of 512 and feedforward dim of 2048. This
gives a total parameter size of 109.3 M.

For SLUE dataset, we found 12-layer Conformer (Gulati et al., 2020) with 4 attention heads
and decoder is a 6-layer Transformer (Vaswani et al., 2017) with 4 attention heads. We use
a dropout of 0.1, output dim of 256 and feedforward dim of 1024 in encoder and 2048 in the
decoder, giving a total parameter size of 31.2 M.

Compositional E2E SLU systems Our Compositional model which uses Direct E2E SLU for-
mulation consists of 12-layer conformer block for encoder, 6-layer transformer block for decoder
in it’s ASR component and 4-layer transformer encoder and 6-layer transformer decoder in it’s
NLU component. Each of these attention blocks consist of 8 attention heads, dropout of 0.1, out-
put dim of 512, feedforward dim of 2048, giving a total of 153.9M parameters in SLURP dataset.
For SLUE dataset, each of these attention blocks of 4 attention heads, dropout of 0.1, output dim
of 256, feedforward dimension of 1024 in encoder and 2048 in decoder, giving a total parameter
size of 46.8M.

Our Composition model with Proposed NLU formulation replaces NLU component in Direct
E2E formulation with 8-layer transformer encoder followed by linear layer. All these attention
blocks consist of 8 attention heads, dropout of 0.1, output dim of 512, feedforward dim of 2048,
giving a total of 142.9M parameters in SLURP dataset. For SLUE dataset, each of these attention
blocks of 4 attention heads, dropout of 0.1, output dim of 256, feedforward dimension of 1024 in
encoder and 2048 in decoder, giving a total parameter size of 43.8M. Our NLU component can
further attend to speech representations using cross attention (Dalmia et al., 2021). We further
implement CRF loss using publicly available python library 1.

The loss from the ASR (Lasr) and NLU (Lnlu) subnet are combined combined as follows

L = Lasr + αLnlu

We search alpha values over [0.3, 0.4, 0.5, 0.6] and found 0.6 to be best for SLURP and 0.3 for
SLUE.

1https://pytorch-crf.readthedocs.io/en/stable/index.html

131

https://pytorch-crf.readthedocs.io/en/stable/index.html

Hyperparameter Value

Output Size [256, 512]
Attention Heads [4, 8]
Number of blocks [4, 6, 8, 12]
Hidden Dropout [0.1, 0.2]
Attention dropout [0.1, 0.2]
Position dropout [0.1, 0.2]
Activation dropout [0.1, 0.2]
Src Activation dropout [0.1, 0.2]
Batch size [50, 64]
LR schedule [inv. sqrt., exp. lr.]
Max learning rate [0.001, 0.002, 0.003]
Warmup steps [5000, 15000, 25000]
Number of steps [50, 70, 100]
Adam eps 1e-9
Adam betas (0.9, 0.98)
Weight decay 0.000001

Table D.2: Model and Training Search for SLU Models.

D.2.4 Decoding Hyperparameters

We keep the same decoding parameter of beam size and penalty as that of Arora et al. (2019).
For direct E2E systems and our models CTC weight of 0.1 worked best. We searched over CTC
weight of [0, 0.1, 0.3, 0.5].

D.2.5 Development Results

We use F1 scores on the validation data to select the best hyperparameters. Table D.3 presents
the validation performances for our models.

D.2.6 Compute Infrastructure

Our models were trained using mixed precision training on either a100, v100 or A6000 on our
compute infrastructure depending on their availability. Depending on the GPU and the file i/o
latency, the training time ranged from 4-7 hours for SLUE, while for SLURP the training time
ranged from 12-18 hours.

2https://zenodo.org/record/4630406

132

https://zenodo.org/record/4630406

SLURP SLUE

Model SLU F1 Label F1 F1 Label F1

Casacaded SLU (Ours) 76.9 83.9 48.6 63.9
Direct E2E SLU (Ours) 79.2 85.4 54.7 67.6

Compositional E2E SLU
w/ Direct E2E formulation (§7.4) 79.3 86.6 50.0 68.0
w/ Proposed NLU formulation (§7.5)

CRF w/ Speech Attention (SA) 79.9 87.0 59.4 73.6
Token Classification w/ SA 79.8 86.9 60.3 73.7

w/o Speech Attention 79.7 87.0 59.0 73.6

Table D.3: Results presenting the micro F1 performance for all models using CRF and Token
Classification modeling on development set for SLURP and SLUE

D.2.7 External ASR and NLU components

For the experiments in Table 7.2, we used ASR and NLU models trained on external data. For
the ASR fine-tuning we used an ESPnet model 2 trained on the GigaSpeech dataset (Chen et al.,
2021a). This model has the same architecture as the baseline direct E2E model on SLURP. We
initialize both the encoder and decoder for direct E2E SLU and the ASR sub-net for the compo-
sitional E2E SLU model. For NLU fine-tuning we used Canine (Clark et al., 2021), a character
based BERT language model, which exhibits strong performance on named entity recognition
while being able to model token sizes comparable to our SLU systems. 3 We initialize our NLU
sub-network without speech attention with Canine and keep the model parameters fixed during
training. For finding the best parameters we only tuned the learning rate and LR schedule from
Table D.2 and report the best numbers among CRF and Token Classification loss.

For using External ASR Transcripts, we trained an ASR system on SLURP and SLUE we
trained an ASR system initialized using GigaSpeech and WavLM (Chen et al., 2021b) respec-
tively. They were then fine-tuned on the respective datasets. These systems achieve 10.0%WER
and 9.2% WER on SLURP and SLUE respectively.

3https://huggingface.co/google/canine-s

133

https://huggingface.co/google/canine-s

134

Bibliography

Bhuvan Agrawal, M. Müller, Martin Radfar, Samridhi Choudhary, A. Mouchtaris, and S. Kunz-
mann. Tie your embeddings down: Cross-modal latent spaces for end-to-end spoken language
understanding. ArXiv, abs/2011.09044, 2020. 94, 95, 102

Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International Conference on Computational Linguistics,
pages 1638–1649, Santa Fe, NewMexico, USA, August 2018. Association for Computational
Linguistics. URL https://aclanthology.org/C18-1139. 82

Tamer Alkhouli, Gabriel Bretschner, Jan-Thorsten Peter, Mohammed Hethnawi, Andreas Guta,
and Hermann Ney. Alignment-based neural machine translation. In Proceedings of the First
Conference on Machine Translation: Volume 1, Research Papers, pages 54–65, 2016. 58

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg,
Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, et al. Deep speech 2: End-to-end
speech recognition in english and mandarin. In International conference on machine learning,
pages 173–182. PMLR, 2016. 39, 115

AntoniosAnastasopoulos andDavid Chiang. Tiedmultitask learning for neural speech translation.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages
82–91, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1008. 78

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 39–
48, 2016. 6, 7, 43, 77

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In ICML17, 2017. 7, 43

Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan Vulić. Composable sparse fine-tuning
for cross-lingual transfer. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1778–1796, 2022. 56

Siddhant Arora, Siddharth Dalmia, Pavel Denisov, Xuankai Chang, Yushi Ueda, Yifan Peng,

135

https://aclanthology.org/C18-1139

Yuekai Zhang, Sujay Kumar, Karthik Ganesan, Brian Yan, et al. ESPnet-SLU: Advancing
spoken language understanding through espnet. In Proc. Interspeech, 2019. 82, 85, 86, 87, 93,
129, 130, 131, 132

Siddhant Arora, Alissa Ostapenko, Vijay Viswanathan, Siddharth Dalmia, Florian Metze, Shinji
Watanabe, and Alan W. Black. Rethinking end-to-end evaluation of decomposable tasks: A
case study on spoken language understanding. In Interspeech 2021, pages 1264–1268. ISCA,
2021. URL https://doi.org/10.21437/Interspeech.2021-1537. 4

Siddhant Arora, Siddharth Dalmia, Florian Metze, Alan W Black, and Shinji Watanabe. Token-
level sequence labeling for spoken language understanding using compositional end-to-end
models. In Submission to the Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2022. 4

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. 37

Alexei Baevski, Yuhao Zhou, AbdelrahmanMohamed, andMichael Auli. wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. Advances in Neural Information
Processing Systems, 33, 2020. 8, 14

Parnia Bahar, Tobias Bieschke, Ralf Schlüter, and Hermann Ney. Tight integrated end-to-end
training for cascaded speech translation. In 2021 IEEE Spoken Language TechnologyWorkshop
(SLT), pages 950–957. IEEE, 2021. URL https://doi.org/10.1109/SLT48900.2021.
9383462. 46, 77, 78

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015. 3, 5, 6, 7, 25, 26, 28, 29, 33, 43, 46, 49, 64, 68

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, PhilemonBrakel, andYoshua Bengio. End-
to-end attention-based large vocabulary speech recognition. In ICASSP15, 2016. 26, 43

Carliss Y. Baldwin and Kim B. Clark. Design Rules: The Power of Modularity Volume 1. MIT
Press, 1999. 1, 27

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Proceedings of the ACLWorkshop on Intrinsic
and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, pages 65–
72, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/W05-0909. 125

Sameer Bansal, Herman Kamper, Karen Livescu, Adam Lopez, and Sharon Goldwater. Pre-
training on high-resource speech recognition improves low-resource speech-to-text translation.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL), 2019. doi: 10.18653/v1/N19-1006. 94

136

https://doi.org/10.21437/Interspeech.2021-1537
https://doi.org/10.1109/SLT48900.2021.9383462
https://doi.org/10.1109/SLT48900.2021.9383462
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909

Emanuele Bastianelli, Andrea Vanzo, Pawel Swietojanski, and Verena Rieser. SLURP: A spoken
language understanding resource package. In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.588.
URL https://doi.org/10.18653/v1/2020.emnlp-main.588. 82, 86, 129, 130

Daniel Beck, Trevor Cohn, and Gholamreza Haffari. Neural speech translation using lattice
transformations and graph networks. In Proceedings of the Thirteenth Workshop on Graph-
Based Methods for Natural Language Processing (TextGraphs-13), pages 26–31, Hong Kong,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-5304. 5,
7, 64

Yonatan Belinkov, Nadir Durrani, FahimDalvi, Hassan Sajjad, and James Glass. On the linguistic
representational power of neural machine translation models. Computational Linguistics, 46
(1):1–52, 2020. 78

Swapnil Bhosale, Imran A. Sheikh, Sri Harsha Dumpala, and Sunil Kumar Kopparapu. End-to-
end spoken language understanding: Bootstrapping in low resource scenarios. In Interspeech
2019, 20th Annual Conference of the International Speech Communication Association, 2019.
101

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors
with subword information. Transactions of the Association for Computational Linguistics,
2017. 100

Léon Bottou, Yoshua Bengio, and Yann Le Cun. Global training of document processing systems
using graph transformer networks. In Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 489–494. IEEE, 1997. 43, 48, 49, 67

Peter F Brown, John Cocke, Stephen A Della Pietra, Vincent J Della Pietra, Frederick Jelinek,
John Lafferty, Robert L Mercer, and Paul S Roossin. A statistical approach to machine trans-
lation. Computational linguistics, 16(2), 1990. 43

Emanuele Bugliarello and Naoaki Okazaki. Enhancing machine translation with dependency-
aware self-attention. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 1618–1627, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.147. URL https://aclanthology.org/2020.
acl-main.147. 58

Lukáš Burget, Petr Schwarz, Mohit Agarwal, Pinar Akyazi, Kai Feng, Arnab Ghoshal, Ondřej
Glembek, Nagendra Goel, Martin Karafiát, Daniel Povey, et al. Multilingual acoustic model-
ing for speech recognition based on subspace Gaussian mixture models. In Acoustics Speech
and Signal Processing (ICASSP), 2010 IEEE International Conference On, pages 4334–4337.
IEEE, 2010. 16

137

https://doi.org/10.18653/v1/2020.emnlp-main.588
https://aclanthology.org/2020.acl-main.147
https://aclanthology.org/2020.acl-main.147

Frédéric Béchet, Allen L Gorin, Jeremy H Wright, and Dilek Hakkani Tür. Detecting and ex-
tracting named entities from spontaneous speech in a mixed-initiative spoken dialogue context:
How may i help you?sm,tm. Speech Communication, 42(2):207–225, 2004. ISSN 0167-6393.
doi: https://doi.org/10.1016/j.specom.2003.07.003. URL https://www.sciencedirect.
com/science/article/pii/S016763930300116X. 82, 84

Mauro Cettolo, Christian Girardi, and Marcello Federico. Wit3: Web inventory of transcribed
and translated talks. In Conference of european association for machine translation, pages
261–268, 2012. 55

William Chan, Navdeep Jaitly, Quoc V Le, and Oriol Vinyals. Listen, attend and spell. arXiv
preprint arXiv:1508.01211, 2015. 5

William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, Attend and Spell: A neural
network for large vocabulary conversational speech recognition. In ICASSP16, 2016. 3, 6, 25,
26, 28, 43, 84

William Chan, Chitwan Saharia, Geoffrey Hinton, Mohammad Norouzi, and Navdeep Jaitly. Im-
puter: Sequence modelling via imputation and dynamic programming. In ICML20, 2020. 5,
43

Aditi Chaudhary, Siddharth Dalmia, Junjie Hu, Xinjian Li, AustinMatthews, Aldrian ObajaMuis,
Naoki Otani, Shruti Rijhwani, Zaid Sheikh, Nidhi Vyas, et al. The ariel-cmu systems for
lorehlt18. arXiv preprint arXiv:1902.08899, 2019. 4

Guoguo Chen et al. GigaSpeech: An evolving, multi-domain ASR corpus with 10,000 hours of
transcribed audio. arXiv preprint arXiv:2106.06909, 2021a. 133

Nanxin Chen, Shinji Watanabe, Jesús Villalba, and Najim Dehak. Non-autoregressive trans-
former automatic speech recognition. arXiv preprint arXiv:1911.04908, 2019. 43

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li,
Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin
Qian, Yao Qian, Jian Wu, Michael Zeng, and Furu Wei. Wavlm: Large-scale self-supervised
pre-training for full stack speech processing. CoRR, abs/2110.13900, 2021b. URL https:
//arxiv.org/abs/2110.13900. 133

Yixin Chen, Weiyi Lu, Alejandro Mottini, Erran Li, Jasha Droppo, Zheng Du, and Belinda Zeng.
Top-down attention in end-to-end spoken language understanding. In ICASSP 2021, 2021c. 94

Shun-Po Chuang, Yung-Sung Chuang, Chih-Chiang Chang, and Hung-yi Lee. Investigating
the reordering capability in CTC-based non-autoregressive end-to-end speech translation. In
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1068–
1077, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.findings-acl.92. URL https://aclanthology.org/2021.findings-acl.92. 46

138

https://www.sciencedirect.com/science/article/pii/S016763930300116X
https://www.sciencedirect.com/science/article/pii/S016763930300116X
https://arxiv.org/abs/2110.13900
https://arxiv.org/abs/2110.13900
https://aclanthology.org/2021.findings-acl.92

Jonathan H. Clark, Dan Garrette, Iulia Turc, and JohnWieting. CANINE: pre-training an efficient
tokenization-free encoder for language representation. CoRR, abs/2103.06874, 2021. URL
https://arxiv.org/abs/2103.06874. 133

Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, and Michael Auli.
Unsupervised cross-lingual representation learning for speech recognition. arXiv preprint
arXiv:2006.13979, 2020. 8

Linguistic Data Consortium. 2000 HUB5 english evaluation transcripts LDC2002T43. Web
Download. Philadelphia: Linguistic Data Consortium, 2002a. 22, 37

Linguistic Data Consortium. 2000 HUB5 english evaluation speech LDC2002S09. Web Down-
load. Philadelphia: Linguistic Data Consortium, 2002b. 22, 37

Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier, David Leroy, Clé-
ment Doumouro, Thibault Gisselbrecht, Francesco Caltagirone, Thibaut Lavril, et al. Snips
voice platform: an embedded spoken language understanding system for private-by-design
voice interfaces. In Privacy in Machine Learning and Artificial Intelligence workshop, ICML,
2018. 5, 64, 95

Siddharth Dalmia, Ramon Sanabria, Florian Metze, and Alan W. Black. Sequence-Based
Multi-Lingual Low Resource Speech Recognition. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 4909–4913, April 2018. doi:
10.1109/ICASSP.2018.8461802. 3, 8, 22

Siddharth Dalmia, Xinjian Li, Alan W Black, and Florian Metze. Phoneme Level Language
Models for Sequence Based Low Resource ASR. In ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6091–6095, May
2019a. doi: 10.1109/ICASSP.2019.8683225. 4, 8, 13

Siddharth Dalmia, Abdelrahman Mohamed, Mike Lewis, Florian Metze, and Luke Zettlemoyer.
Enforcing Encoder-Decoder Modularity in Sequence-to-Sequence Models. arXiv:1911.03782
[cs], November 2019b. 2, 4, 78

Siddharth Dalmia, Brian Yan, Vikas Raunak, Florian Metze, and Shinji Watanabe. Searchable
hidden intermediates for end-to-end models of decomposable sequence tasks. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL), 2021. 4, 46, 82, 85, 86, 94, 131

Siddharth Dalmia, Dmytro Okhonko, Mike Lewis, Sergey Edunov, Shinji Watanabe, Florian
Metze, Luke Zettlemoyer, and Abdelrahman Mohamed. Legonn: Building modular encoder
decoder models. In Submission to the 2022 Transactions of Audio, Speech and Language
Processing (TASLP), 2022. 4, 46, 51, 107

Hiroyuki Deguchi, Akihiro Tamura, and Takashi Ninomiya. Synchronous syntactic attention
for transformer neural machine translation. In Proceedings of the 59th Annual Meeting of

139

https://arxiv.org/abs/2103.06874

the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing: Student Research Workshop, pages 348–355, Online, August
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-srw.36. URL
https://aclanthology.org/2021.acl-srw.36. 58

Keqi Deng, Shinji Watanabe, Jiatong Shi, and Siddhant Arora. Blockwise streaming trans-
former for spoken language understanding and simultaneous speech translation. arXiv preprint
arXiv:2204.08920, 2022. 46, 51

Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning mod-
ular neural network policies for multi-task andmulti-robot transfer. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017. 7, 43

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John
Makhoul. Fast and robust neural network joint models for statistical machine translation. In
proceedings of the 52nd annual meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1370–1380, 2014. 59

JacobDevlin, Ming-Wei Chang, Kenton Lee, andKristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics (NAACL),
2019. 8, 27, 83, 93, 99, 107, 108

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli, Matteo Negri, and Marco Turchi. MuST-
C: a Multilingual Speech Translation Corpus. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 2012–2017, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1202. URL https://www.aclweb.org/
anthology/N19-1202. 55, 76, 126

Marco Dinarelli, Nikita Kapoor, Bassam Jabaian, and Laurent Besacier. A data efficient end-to-
end spoken language understanding architecture. In ICASSP 2020, Barcelona, Spain, May 4-8,
2020, pages 8519–8523. IEEE, 2020. 94

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: a no-recurrence sequence-to-
sequence model for speech recognition. In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5884–5888. IEEE, 2018. 51

Qianqian Dong, Mingxuan Wang, Hao Zhou, Shuang Xu, Bo Xu, and Lei Li. SDST: Successive
decoding for speech-to-text translation. arXiv preprint arXiv:2009.09737, 2020. 78

Timothy Dozat, Peng Qi, and Christopher D. Manning. Stanford’s graph-based neural depen-
dency parser at the CoNLL 2017 shared task. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 20–30, Van-
couver, Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/

140

https://aclanthology.org/2021.acl-srw.36
https://www.aclweb.org/anthology/N19-1202
https://www.aclweb.org/anthology/N19-1202

v1/K17-3002. URL https://aclanthology.org/K17-3002. 82

Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. Why does unsupervised
pre-training help deep learning? In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics (AISTATS), 2010. 94

Ryo Fukuda, Yuka Ko, Yasumasa Kano, Kosuke Doi, Hirotaka Tokuyama, Sakriani Sakti, Kat-
suhito Sudoh, and Satoshi Nakamura. NAIST simultaneous speech-to-text translation sys-
tem for IWSLT 2022. In Proceedings of the 19th International Conference on Spoken Lan-
guage Translation (IWSLT 2022), pages 286–292, Dublin, Ireland (in-person and online), May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.iwslt-1.25. URL
https://aclanthology.org/2022.iwslt-1.25. 54

Yashesh Gaur, Walter S. Lasecki, Florian Metze, and Jeffrey P. Bigham. The effects of auto-
matic speech recognition quality on human transcription latency. In Proceedings of the 13th
International Web for All Conference, W4A ’16, 2016. ISBN 9781450341387. 97

JonasGehring,Michael Auli, DavidGrangier, Denis Yarats, andYannN.Dauphin. Convolutional
sequence to sequence learning. In ICML17, 2017. 33

Xinwei Geng, Xiaocheng Feng, Bing Qin, and Ting Liu. Adaptive multi-pass decoder for neural
machine translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 523–532, Brussels, Belgium, 10. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1048. 78

S. Ghannay, A. Caubrière, Y. Estève, N. Camelin, E. Simonnet, A. Laurent, and E. Morin. End-
to-end named entity and semantic concept extraction from speech. In 2018 IEEE Spoken Lan-
guage Technology Workshop (SLT), pages 692–699, 2018. doi: 10.1109/SLT.2018.8639513.
82

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), 2019. 43

Marjan Ghazvininejad, Vladimir Karpukhin, Luke Zettlemoyer, and Omer Levy. Aligned cross
entropy for non-autoregressive machine translation. In International Conference on Machine
Learning, pages 3515–3523. PMLR, 2020a. 43, 46, 58, 111

Marjan Ghazvininejad, Vladimir Karpukhin, Luke Zettlemoyer, and Omer Levy. Aligned cross
entropy for non-autoregressive machine translation. In ICML20, 2020b. 111

Arnab Ghoshal, Pawel Swietojanski, and Steve Renals. Multilingual training of deep neural
networks. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference On, pages 7319–7323. IEEE, 2013. 16

141

https://aclanthology.org/K17-3002
https://aclanthology.org/2022.iwslt-1.25

John Godfrey and Edward Holliman. Switchboard-1 release 2 LDC97S62. Web Download.
Philadelphia: Linguistic Data Consortium, 1993. 22, 37

Google. Google speech to text api. https://cloud.google.com/speech-to-text, 2021.
Accessed: 2021-03-15. 96, 97, 101

Allen L Gorin, Giuseppe Riccardi, and Jeremy H Wright. How may i help you? Speech commu-
nication, 23(1-2):113–127, 1997. 94

Alex Graves. Sequence transduction with recurrent neural networks. arXiv preprint
arXiv:1211.3711, 2012. 5, 48, 58, 84

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist
temporal classification: Labelling unsegmented sequence data with recurrent neural networks.
In Proceedings of the 23rd International Conference on Machine Learning, pages 369–376.
ACM, 2006. 11, 12, 16, 27, 29, 43, 46, 48

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In Acoustics, Speech and Signal Processing (Icassp), 2013 Ieee
International Conference On, pages 6645–6649. IEEE, 2013. 43

František Grézl, Martin Karafiat, andMiloš Janda. Study of probabilistic and bottle-neck features
in multilingual environment. In Automatic Speech Recognition and Understanding (ASRU),
2011 IEEE Workshop On, pages 359–364. IEEE, 2011. 16

Frantisek Grézl, Martin Karafiát, and Karel Vesely. Adaptation of multilingual stacked bottle-
neck neural network structure for new language. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference On, pages 7654–7658. IEEE, 2014. 16

František Grézl, Ekaterina Egorova, and Martin Karafiát. Study of large data resources for mul-
tilingual training and system porting. Procedia Computer Science, 81:15–22, 2016. 15

Jiatao Gu and Xiang Kong. Fully non-autoregressive neural machine translation: Tricks of the
trade. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages
120–133, 2021. 46

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K. Li, and Richard Socher. Non-
autoregressive neural machine translation. In ICLR18, 2018. 5, 43

Anmol Gulati et al. Conformer: Convolution-augmented transformer for speech recognition. In
Proc. Interspeech, pages 5036–5040, 2020. 52, 106, 131

Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi
Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, et al. Recent devel-
opments on ESPnet toolkit boosted by conformer. arXiv preprint arXiv:2010.13956, 2020.

Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh, and Matt Gardner. Neural module networks
for reasoning over text. In ICLR20, 2020. 7, 43

142

https://cloud.google.com/speech-to-text

Parisa Haghani, Arun Narayanan, Michiel Bacchiani, Galen Chuang, Neeraj Gaur, PedroMoreno,
Rohit Prabhavalkar, Zhongdi Qu, and Austin Waters. From audio to semantics: Approaches
to end-to-end spoken language understanding. In 2018 IEEE Spoken Language Technology
Workshop (SLT), pages 720–726. IEEE, 2018. 78

Awni Hannun. The Label Bias Problem. https://awni.github.io/label-bias, 2019. 48

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan
Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling
up end-to-end speech recognition. arXiv preprint arXiv:1412.5567, 2014a. 43

AwniHannun, Vineel Pratap, JacobKahn, andWei-NingHsu. Differentiable weighted finite-state
transducers. arXiv preprint arXiv:2010.01003, 2020. 107

Awni Y Hannun, Andrew L Maas, Daniel Jurafsky, and Andrew Y Ng. First-pass large vo-
cabulary continuous speech recognition using bi-directional recurrent dnns. arXiv preprint
arXiv:1408.2873, 2014b. 52, 54, 59

Adi Haviv, Lior Vassertail, and Omer Levy. Can latent alignments improve autoregressive ma-
chine translation? In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 2637–
2641, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.209. URL https://aclanthology.org/2021.naacl-main.209. 46

Wei He, Zhongjun He, Hua Wu, and Haifeng Wang. Improved neural machine translation with
smt features. In Thirtieth AAAI conference on artificial intelligence, 2016. 53

Georg Heigold, Vincent Vanhoucke, Alan Senior, Patrick Nguyen, M Ranzato, Matthieu Devin,
and Jeffrey Dean. Multilingual acoustic models using distributed deep neural networks. In
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference On,
pages 8619–8623. IEEE, 2013. 16

Jindřich Helcl, Jindřich Libovický, and Dušan Variš. CUNI system for the WMT18 multimodal
translation task. In Proceedings of the Third Conference on Machine Translation: Shared
Task Papers, pages 616–623, Belgium, Brussels, October 2018. Association for Computational
Linguistics. doi: 10.18653/v1/W18-6441. 69

Charles T Hemphill, John J Godfrey, and George R Doddington. The atis spoken language sys-
tems pilot corpus. In Speech and Natural Language: Proceedings of a Workshop Held at
Hidden Valley, Pennsylvania, June 24-27, 1990, 1990. 94, 95

Yosuke Higuchi, Keita Karube, Tetsuji Ogawa, and Tetsunori Kobayashi. Hierarchical condi-
tional end-to-end asr with ctc and multi-granular subword units. In ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7797–
7801. IEEE, 2022. 51

143

https://awni.github.io/label-bias
https://aclanthology.org/2021.naacl-main.209

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural net-
works for acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal processing magazine, 29(6):82–97, 2012. doi: 10.1109/MSP.2012.2205597. 2,
48, 64

Takaaki Hori, Shinji Watanabe, Yu Zhang, and William Chan. Advances in joint CTC-Attention
based end-to-end speech recognition with a deep CNN encoder and RNN-LM. In Proc. Inter-
speech 2017, pages 949–953, 2017. doi: 10.21437/Interspeech.2017-1296. 67, 73

James Horlock and Simon King. Discriminative methods for improving named entity extraction
on speech data. In INTERSPEECH, 2003. 82

Ke Hu, Tara N Sainath, Ruoming Pang, and Rohit Prabhavalkar. Deliberation model based two-
pass end-to-end speech recognition. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 7799–7803. IEEE, 2020. 78

Liang Huang and David Chiang. Forest rescoring: Faster decoding with integrated language
models. In Proceedings of the 45th Annual Meeting of the Association of Computational Lin-
guistics, pages 144–151, Prague, Czech Republic, June 2007. Association for Computational
Linguistics. 5, 64

Y. Huang, H. K. Kuo, S. Thomas, Z. Kons, K. Audhkhasi, B. Kingsbury, R. Hoory, and
M. Picheny. Leveraging unpaired text data for training end-to-end speech-to-intent systems.
In ICASSP 2020, 2020. 94

Hirofumi Inaguma, Yosuke Higuchi, Kevin Duh, Tatsuya Kawahara, and Shinji Watanabe. Or-
thros: Non-autoregressive end-to-end speech translation with dual-decoder. arXiv preprint
arXiv:2010.13047, 2020a. 14

Hirofumi Inaguma, ShunKiyono, KevinDuh, Shigeki Karita, NelsonYalta, Tomoki Hayashi, and
Shinji Watanabe. ESPnet-ST: All-in-one speech translation toolkit. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
pages 302–311, Online, July 2020b. Association for Computational Linguistics. doi: 10.18653/
v1/2020.acl-demos.34. 5, 7, 64, 70, 126

Hirofumi Inaguma, Siddharth Dalmia, Brian Yan, and Shinji Watanabe. Fast-md: Fast multi-
decoder end-to-end speech translation with non-autoregressive hidden intermediates. In 2021
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pages 922–929.
IEEE, 2021a. 46, 108

Hirofumi Inaguma, Brian Yan, Siddharth Dalmia, Pengcheng Guo, Jiatong Shi, Kevin Duh, and
Shinji Watanabe. Espnet-st iwslt 2021 offline speech translation system. In Proceedings of
the 18th International Conference on Spoken Language Translation (IWSLT 2021), pages 100–
109, 2021b. 4

144

Javier Iranzo-Sánchez, Joan Albert Silvestre-Cerdà, Javier Jorge, Nahuel Roselló, Adrià
Giménez, Albert Sanchis, Jorge Civera, and Alfons Juan. Europarl-ST: A multilingual cor-
pus for speech translation of parliamentary debates. In ICASSP20, 2020. 37, 57, 112

Frederick Jelinek. Statistical Methods for Speech Recognition. MIT press, 1997. 43, 58

Ye Jia, Ron J. Weiss, Fadi Biadsy, Wolfgang Macherey, Melvin Johnson, Zhifeng Chen, and
Yonghui Wu. Direct speech-to-speech translation with a sequence-to-sequence model. In
Gernot Kubin and Zdravko Kacic, editors, Interspeech 2019, 20th Annual Conference of the
International Speech Communication Association. ISCA, 2019. 94

Michael Johnson. Compositionality. The Wiley Blackwell Companion to Semantics, pages 1–27,
2020. 1

Patricia Johnson. Cohesion and coherence in compositions in malay and english. RELC Journal,
23(2):1–17, 1992. doi: 10.1177/003368829202300201. 1, 64

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural computation, 6(2), 1994. 43

Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice
Hall PTR, USA, 1st edition, 2000. ISBN 0130950696. 82

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In EMNLP13,
2013. 28, 43

Takatomo Kano, Sakriani Sakti, and Satoshi Nakamura. End-to-end speech translation with
transcoding by multi-task learning for distant language pairs. IEEE ACM Trans. Audio Speech
Lang. Process., 28:1342–1355, 2020. 94

Shigeki Karita, Nanxin Chen, Tomoki Hayashi, and other. A comparative study on transformer
vs RNN in speech applications. In ASRU19, 2019. 43

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah A Smith. Deep encoder, shal-
low decoder: Reevaluating non-autoregressive machine translation. In ICLR, 2021. 46

Suyoun Kim, Takaaki Hori, and Shinji Watanabe. Joint CTC-attention based end-to-end speech
recognition using multi-task learning. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4835–4839. IEEE, 2017. 11, 43, 45, 49, 78

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In ICLR14,
2014. 37, 70

KM Knill, Mark JF Gales, Shakti P Rath, Philip C Woodland, Chao Zhang, and S-X Zhang.
Investigation of multilingual deep neural networks for spoken term detection. In Automatic
Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop On, pages 138–143.
IEEE, 2013. 15

145

Philipp Koehn and Josh Schroeder. Experiments in domain adaptation for statistical machine
translation. In Proceedings of the Second Workshop on Statistical Machine Translation, pages
224–227, 2007. 5, 64

Philipp Koehn, Franz J. Och, and Daniel Marcu. Statistical phrase-based translation. In Pro-
ceedings of the 2003 Human Language Technology Conference of the North American Chap-
ter of the Association for Computational Linguistics, pages 127–133, 2003. URL https:
//aclanthology.org/N03-1017. 58

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej Bo-
jar, Alexandra Constantin, and EvanHerbst. Moses: Open source toolkit for statistical machine
translation. In Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages 177–180,
Prague, Czech Republic, June 2007. Association for Computational Linguistics. 2, 5, 7, 64

Francis Kubala, Richard Schwartz, Rebecca Stone, and Ralph Weischedel. Named entity extrac-
tion from speech. In Proceedings of DARPA Broadcast News Transcription and Understanding
Workshop, pages 287–292. Citeseer, 1998. 82

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing: SystemDemonstrations, pages 66–71,
2018. 30, 37, 70, 126, 130

S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical
Statistics, 22(1), 1951. 97

G. Kumar, M. Post, D. Povey, and S. Khudanpur. Some insights from translating conversational
telephone speech. In 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3231–3235, 2014. doi: 10.1109/ICASSP.2014.6854197. 70

Shankar Kumar, Yonggang Deng, and William Byrne. A weighted finite state transducer transla-
tion template model for statistical machine translation. Natural Language Engineering, 12(1):
35–76, 2006. 64

Chih-HuaKuo. Cohesion and coherence in academicwriting: From lexical choice to organization.
RELC Journal, 26(1):47–62, 1995. doi: 10.1177/003368829502600103. 1, 64

Hong-Kwang J. Kuo, Zoltán Tüske, Samuel Thomas, Yinghui Huang, Kartik Audhkhasi, Brian
Kingsbury, Gakuto Kurata, Zvi Kons, Ron Hoory, and Luis Lastras. End-to-End Spoken Lan-
guage Understanding Without Full Transcripts. In Interspeech 2020, 21th Annual Conference
of the International Speech Communication Association. ISCA, 2020. 94

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of the Eigh-

146

https://aclanthology.org/N03-1017
https://aclanthology.org/N03-1017

teenth International Conference on Machine Learning, ICML ’01, page 282–289, San Fran-
cisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558607781. 83

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In International Conference on Machine
Learning, pages 2873–2882, 2018. 64

Brenden M Lake. Compositional generalization through meta sequence-to-sequence learning. In
Advances in Neural Information Processing Systems, pages 9791–9801, 2019. 6, 77

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris
Dyer. Neural architectures for named entity recognition. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 260–270, San Diego, California, June 2016. Association
for Computational Linguistics. doi: 10.18653/v1/N16-1030. URL https://aclanthology.
org/N16-1030. 82, 83

Hang Le, Juan Pino, Changhan Wang, Jiatao Gu, Didier Schwab, and Laurent Besacier. Dual-
decoder transformer for joint automatic speech recognition and multilingual speech translation.
arXiv preprint arXiv:2011.00747, 2020. 78

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural
sequence modeling by iterative refinement. In EMNLP18, 2018. 38, 111

Alexander H. Levis, Neville Moray, and Baosheng Hu. Task decomposition and allocation prob-
lems and discrete event systems. Automatica, 30(2):203–216, 1994. ISSN 0005-1098. doi:
10.1016/0005-1098(94)90025-6. 1, 64

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019. 107

Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel. Question and answer test-train overlap
in open-domain question answering datasets. arXiv preprint arXiv:2008.02637, 2020. 94

Xian Li, ChanghanWang, Yun Tang, Chau Tran, Yuqing Tang, Juan Pino, Alexei Baevski, Alexis
Conneau, and Michael Auli. Multilingual speech translation with efficient finetuning of pre-
trained models. arXiv e-prints, pages arXiv–2010, 2020a. 8

Xinjian Li, Siddharth Dalmia, Alan W. Black, and Florian Metze. Multilingual Speech Recog-
nition with Corpus Relatedness Sampling. In Interspeech 2019, pages 2120–2124. ISCA,
September 2019. doi: 10.21437/Interspeech.2019-3052. 4

Xinjian Li, Siddharth Dalmia, Juncheng Li, Matthew Lee, Patrick Littell, Jiali Yao, Antonios
Anastasopoulos, David R Mortensen, Graham Neubig, Alan W Black, et al. Universal phone

147

https://aclanthology.org/N16-1030
https://aclanthology.org/N16-1030

recognition with a multilingual allophone system. In ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8249–8253. IEEE,
2020b. 4

Jindřich Libovický and Jindřich Helcl. End-to-end non-autoregressive neural machine translation
with connectionist temporal classification. In EMNLP18, 2018. 14, 33, 43, 46

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike
Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine transla-
tion. Transactions of the Association for Computational Linguistics, 8:726–742, 2020a. 8

Yuchen Liu, Jiajun Zhang, Hao Xiong, Long Zhou, Zhongjun He, Hua Wu, Haifeng Wang, and
Chengqing Zong. Synchronous speech recognition and speech-to-text translation with interac-
tive decoding. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
pages 8417–8424, 2020b. 78

Zhiyuan Liu, Yankai Lin, and Maosong Sun. Compositional semantics. In Representation Learn-
ing for Natural Language Processing, pages 43–57. Springer Singapore, Singapore, 2020c.
ISBN 978-981-15-5573-2. doi: 10.1007/978-981-15-5573-2�. 1, 64

Loren Lugosch, Mirco Ravanelli, Patrick Ignoto, Vikrant Singh Tomar, and Yoshua Bengio.
Speech Model Pre-Training for End-to-End Spoken Language Understanding. In Interspeech
2019, 20th Annual Conference of the International Speech Communication Association, 2019.
7, 94, 95, 96, 97, 98, 99, 100, 101, 102

Loren Lugosch, B. Meyer, Derek Nowrouzezahrai, and M. Ravanelli. Using speech synthesis to
train end-to-end spoken language understanding models. ICASSP 2020, 2020. 101

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. In EMNLP15, 2015. 28

Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1064–1074, Berlin, Germany, August 2016. Association
for Computational Linguistics. doi: 10.18653/v1/P16-1101. URL https://aclanthology.
org/P16-1101. 83

Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Maximum entropy markov
models for information extraction and segmentation. In Proceedings of the Seventeenth In-
ternational Conference on Machine Learning, ICML ’00, page 591–598, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers Inc. ISBN 1558607072. 83

Erik McDermott. Discriminative training for speech recognition. PhD thesis, Citeseer, 1997.
108

Joseph P. McKenna, Samridhi Choudhary, Michael Saxon, Grant P. Strimel, and Athanasios

148

https://aclanthology.org/P16-1101
https://aclanthology.org/P16-1101

Mouchtaris. Semantic complexity in end-to-end spoken language understanding. In Inter-
speech 2020, 21st Annual Conference of the International Speech Communication Association,
2020. 95, 98, 99, 100

Clara Meister, Tim Vieira, and Ryan Cotterell. Best-first beam search. Transactions of the Asso-
ciation for Computational Linguistics, 2020. 58

Donald Metzler and W. Bruce Croft. Linear feature-based models for information retrieval. Inf.
Retr., 2007. 97

Bernd TMeyer, Sri HarishMallidi, AngelMario CastroMartinez, Guillermo Payá-Vayá, Hendrik
Kayser, and Hynek Hermansky. Performance monitoring for automatic speech recognition in
noisy multi-channel environments. In 2016 IEEE Spoken Language Technology Workshop
(SLT), pages 50–56. IEEE, 2016. 5, 7, 64

Yajie Miao, Mohammad Gowayyed, and Florian Metze. EESEN: End-to-end speech recognition
using deep RNN models and WFST-based decoding. In Automatic Speech Recognition and
Understanding (ASRU), 2015 IEEE Workshop On, pages 167–174. IEEE, 2015. 11, 13, 16, 18,
19, 39, 59, 108, 115

Yajie Miao, Mohammad Gowayyed, Xingyu Na, Tom Ko, Florian Metze, and Alexander Waibel.
An empirical exploration of CTC acoustic models. In Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference On, pages 2623–2627. IEEE, 2016. 17

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed repre-
sentations of words and phrases and their compositionality. arXiv preprint arXiv:1310.4546,
2013. 2

Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand Joulin. Ad-
vances in pre-training distributed word representations. In LREC 2018, 2018. 99

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge, A. Carlson, B. Dalvi,
M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole,
E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. Never-ending learning. Commun. ACM, 61(5):103–
115, apr 2018. ISSN 0001-0782. doi: 10.1145/3191513. URL https://doi.org/10.1145/
3191513. 89

Abdelrahman Mohamed, Dmytro Okhonko, and Luke Zettlemoyer. Transformers with convolu-
tional context for ASR. In arXiv Preprint arXiv:1904.11660, 2019. 37

MehryarMohri, Fernando Pereira, andMichael Riley. Weighted finite-state transducers in speech
recognition. Computer Speech & Language, 16(1):69–88, 2002. 2, 64

David R. Mortensen, Siddharth Dalmia, and Patrick Littell. Epitran: Precision G2P for Many
Languages. In Proceedings of the Eleventh International Conference on Language Resources

149

https://doi.org/10.1145/3191513
https://doi.org/10.1145/3191513

and Evaluation (LREC 2018), Miyazaki, Japan, May 2018. European Language Resources
Association (ELRA). 22

SudhaMorwal, Nusrat Jahan, and Deepti Chopra. Named entity recognition using hiddenmarkov
model (hmm). International Journal on Natural Language Computing, 1:15–23, 12 2012. doi:
10.5121/ijnlc.2012.1402. 83

Moses-SMT. multi-bleu.perl. GitHub repository, 2018. 38, 120

Markus Müller, Sebastian Stüker, and AlexWaibel. Language adaptive multilingual CTC speech
recognition. In Proc. SPECOM, Hatfield, UK, 2017. 17

Mathias Müller, Annette Rios, and Rico Sennrich. Domain robustness in neural machine transla-
tion. In Proceedings of the 14th Conference of the Association for Machine Translation in the
Americas (Volume 1: Research Track), pages 151–164, Virtual, October 2020. Association for
Machine Translation in the Americas. 79

Kenton Murray and David Chiang. Correcting length bias in neural machine translation. In
Proceedings of the Third Conference on Machine Translation: Research Papers, pages 212–
223, Brussels, Belgium, October 2018. Association for Computational Linguistics. doi: 10.
18653/v1/W18-6322. URL https://aclanthology.org/W18-6322. 49, 79

Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and Graham Neubig.
Stress test evaluation for natural language inference. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 2340–2353, 2018. 36

Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel, Danish Pruthi, Xinyi Wang, and John Wi-
eting. compare-mt: A tool for holistic comparison of language generation systems. CoRR,
abs/1903.07926, 2019. URL http://arxiv.org/abs/1903.07926. 124

nvidia. cuDNN CTC loss. https://docs.nvidia.com/deeplearning/cudnn/api/index.
html#cudnnCTCLoss_v8, 2022. 42

Franz Josef Och and Hermann Ney. Discriminative training and maximum entropy models for
statistical machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pages 295–302, 2002. 5, 64

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation.
In WMT18, 2018. 38, 39, 112, 117

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. Fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics (EMNLP): Demonstrations, 2019. 37, 54

Shruti Palaskar, Vikas Raunak, and Florian Metze. Learned in speech recognition: Contextual
acoustic word embeddings. In ICASSP 2019-2019 IEEE International Conference on Acous-

150

https://aclanthology.org/W18-6322
http://arxiv.org/abs/1903.07926
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnCTCLoss_v8
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnCTCLoss_v8

tics, Speech and Signal Processing (ICASSP), pages 6530–6534. IEEE, 2019. 7

David D. Palmer and Mari Ostendorf. Improving information extraction by modeling errors in
speech recognizer output. In Proceedings of the First International Conference on Human
Language Technology Research, 2001. URL https://aclanthology.org/H01-1034. 82

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. Librispeech: An asr corpus based on public
domain audio books. In ICASSP 2015, 2015. 99

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July
2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. 70, 98

Carolina Parada, Mark Dredze, and Frederick Jelinek. Oov sensitive named-entity recognition in
speech. In Twelfth Annual Conference of the International Speech Communication Association,
2011. 84

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and
Quoc V Le. SpecAugment: A simple data augmentation method for automatic speech recog-
nition. Proc. Interspeech 2019, pages 2613–2617, 2019. 2, 3, 13, 21, 22, 38, 70, 116, 130

Kyubyong Park and Jongseok Kim. g2pE. GitHub repository, 2019. 37, 112

Adam Paszke et al. PyTorch: An imperative style, high-performance deep learning library. Proc.
NeurIPS, 2019. 108, 130

Deepak Pathak, Christopher Lu, Trevor Darrell, Phillip Isola, and Alexei A Efros. Learning to
control self-assembling morphologies: A study of generalization via modularity. In NIPS19,
2019. 7, 43

Vijayaditya Peddinti, Guoguo Chen, Vimal Manohar, Tom Ko, Daniel Povey, and Sanjeev Khu-
danpur. JHU ASpIRE system: Robust LVCSR with TDNNS, iVector adaptation and RNN-
LMS. In 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU),
pages 539–546. IEEE, 2015. 5, 64

Yifan Peng, Siddharth Dalmia, Ian Lane, and Shinji Watanabe. Branchformer: Parallel MLP-
Attention Architectures to Capture Local and Global Context for Speech Recognition and
Understanding. In Proceedings of the 39th International Conference on Machine Learning
(ICML), 2022. 106

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word representations. In NAACL, 2018. 108

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing

151

https://aclanthology.org/H01-1034

(EMNLP 2020): Systems Demonstrations, pages 46–54, Online, 2020. Association for Compu-
tational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.7.
108

N. Pham, Thai-Son Nguyen, Thanh-Le Ha, J. Hussain, Felix Schneider, J. Niehues, Sebastian
Stüker, and A. Waibel. The IWSLT 2019 KIT speech translation system. In International
Workshop on Spoken Language Translation (IWSLT), 2019. 2, 5, 7, 64

Matt Post. A call for clarity in reporting BLEU scores. InWMT18, 2018. 55, 70, 113, 126

Matt Post, Gaurav Kumar, Adam Lopez, Damianos Karakos, Chris Callison-Burch, and Sanjeev
Khudanpur. Improved speech-to-text translation with the fisher and callhome Spanish–English
speech translation corpus. In International Workshop on Spoken Language Translation (IWSLT
2013), 2013. 70

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel,
Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, et al. The Kaldi speech recog-
nition toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition and Understanding.
IEEE Signal Processing Society, 2011. 5, 7, 84

Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah Ghahremani, Vimal Manohar, Xingyu
Na, YimingWang, and Sanjeev Khudanpur. Purely sequence-trained neural networks for ASR
based on lattice-free MMI. In InterSpeech16, 2016.

Senthil Purushwalkam, Maximilian Nickel, Abhinav Gupta, and Marc’Aurelio Ranzato. Task-
driven modular networks for zero-shot compositional learning. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2019. 7, 43

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu, and Lei
Li. Glancing transformer for non-autoregressive neural machine translation. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 1993–2003, Online, August 2021a. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.155. URL https://aclanthology.org/2021.acl-long.155.
46

Yao Qian, Ximo Bian, Yu Shi, Naoyuki Kanda, Leo Shen, Zhen Xiao, and Michael Zeng.
Speech-language pre-training for end-to-end spoken language understanding. arXiv preprint
arXiv:2102.06283, 2021b. 94

Libo Qin, Wanxiang Che, Yangming Li, HaoyangWen, and Ting Liu. A stack-propagation frame-
work with token-level intent detection for spoken language understanding. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019. 95

Lance A Ramshaw and Mitchell P Marcus. Text chunking using transformation-based learning.

152

https://www.aclweb.org/anthology/2020.emnlp-demos.7
https://aclanthology.org/2021.acl-long.155

In Natural language processing using very large corpora, pages 157–176. Springer, 1999. 84

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level
training with recurrent neural networks. In 4th International Conference on Learning Repre-
sentations, ICLR 2016, 2016. 48, 49

Vikas Raunak, Vaibhav Kumar, and Florian Metze. On compositionality in neural machine trans-
lation. NeurIPS Workshop, Context and Compositionality in Biological and Artificial Neural
Systems, 2019. URL https://arxiv.org/abs/1911.01497. 6, 77

Vikas Raunak, Siddharth Dalmia, Vivek Gupta, and Florian Metze. On long-tailed phenomena
in neural machine translation. In EMNLP (Findings), 2020. 54

Abhilasha Ravichander, Siddharth Dalmia, Maria Ryskina, Florian Metze, Eduard Hovy, and
Alan W Black. NoiseQA: Challenge Set Evaluation for User-Centric Question Answering. In
Conference of the European Chapter of the Association for Computational Linguistics (EACL),
Online, April 2021. URL https://arxiv.org/abs/2102.08345. 107

Raj Reddy. Foundations and grand challenges of artificial intelligence: AAAI presidential ad-
dress. AI Magazine, 9(4):9–9, 1988. 67

Yi Ren, Jinglin Liu, Xu Tan, Chen Zhang, Tao Qin, Zhou Zhao, and Tie-Yan Liu. Simul-
Speech: End-to-end simultaneous speech to text translation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, pages 3787–3796, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.350. URL
https://aclanthology.org/2020.acl-main.350. 108

Shruti Rijhwani, Antonios Anastasopoulos, and Graham Neubig. OCR Post Correction for En-
dangered Language Texts. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 5931–5942, Online, November 2020. Associ-
ation for Computational Linguistics. 78

Anthony Rousseau, Paul Deléglise, and Yannick Estève. Enhancing the TED-LIUM corpus with
selected data for language modeling and more TED talks. In LREC14, 2014. 37, 112

A. Saade, A. Coucke, A. Caulier, J. Dureau, Adrien Ball, Théodore Bluche, D. Leroy, Clément
Doumouro, Thibault Gisselbrecht, F. Caltagirone, Thibaut Lavril, and Maël Primet. Spoken
language understanding on the edge. In Energy Efficient Machine Learning and Cognitive
Computing workshop, NeurIPS, 2019. 95

Chitwan Saharia, William Chan, Saurabh Saxena, and Mohammad Norouzi. Non-autoregressive
machine translation with latent alignments. arXiv preprint arXiv:2004.07437, 2020. 5, 14, 43,
46, 58

Tara N Sainath, Ruoming Pang, David Rybach, Yanzhang He, Rohit Prabhavalkar, Wei Li, Mirkó
Visontai, Qiao Liang, Trevor Strohman, YonghuiWu, et al. Two-pass end-to-end speech recog-

153

https://arxiv.org/abs/1911.01497
https://arxiv.org/abs/2102.08345
https://aclanthology.org/2020.acl-main.350

nition. Proc. Interspeech 2019, pages 2773–2777, 2019. 52, 78

Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory based recur-
rent neural network architectures for large vocabulary speech recognition. arXiv preprint
arXiv:1402.1128, 2014. 43

Elizabeth Salesky, Matthias Sperber, and Alan W Black. Exploring Phoneme-Level Speech
Representations for End-to-End Speech Translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 1835–1841, Florence, Italy,
July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1179. URL
https://www.aclweb.org/anthology/P19-1179. 78

Elizabeth Salesky, Matthew Wiesner, Jacob Bremerman, Roldano Cattoni, Matteo Negri, Marco
Turchi, Douglas W Oard, and Matt Post. The multilingual tedx corpus for speech recognition
and translation. arXiv preprint arXiv:2102.01757, 2021. 55

Lahiru Samarakoon, Brian Mak, and Albert YS Lam. Domain adaptation of end-to-end speech
recognition in low-resource settings. In 2018 IEEE Spoken Language Technology Workshop
(SLT), pages 382–388. IEEE, 2018. 79

Ramon Sanabria and Florian Metze. Hierarchical multitask learning with ctc. In 2018 IEEE
Spoken Language Technology Workshop (SLT), pages 485–490. IEEE, 2018. 13, 14, 51

George Saon, Gakuto Kurata, Tom Sercu, Kartik Audhkhasi, Samuel Thomas, Dimitrios Dim-
itriadis, Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny, Lynn-Li Lim, et al. En-
glish conversational telephone speech recognition by humans and machines. arXiv preprint
arXiv:1703.02136, 2017. 15

George Saon, Zoltán Tüske, and Kartik Audhkhasi. Alignment-length synchronous decoding for
rnn transducer. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 7804–7808. IEEE, 2020. 52

Stefano Scanzio, Pietro Laface, Luciano Fissore, Roberto Gemello, and Franco Mana. On the
use of a multilingual neural network front-end. In Ninth annual conference of the international
speech communication association (InterSpeech). ISCA, 2008. 16

Tanja Schultz and AlexWaibel. Language-independent and language-adaptive acoustic modeling
for speech recognition. Speech Communication, 35(1):31–51, 2001. 16

Hiroshi Seki, Takaaki Hori, Shinji Watanabe, Niko Moritz, and Jonathan Le Roux. Vectorized
beam search for CTC-Attention-Based speech recognition. In Proc. Interspeech 2019, pages
3825–3829, 2019. doi: 10.21437/Interspeech.2019-2860. 53, 70

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words
with subword units. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany, August

154

https://www.aclweb.org/anthology/P19-1179

2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. 30, 38, 115

Jiatong Shi, Jonathan D. Amith, Xuankai Chang, Siddharth Dalmia, Brian Yan, and Shinji Watan-
abe. Highland puebla nahuatl–spanish speech translation corpus for endangered language
documentation. In The First Workshop on NLP for Indigenous Languages of the Americas
(AmericasNLP), 2021. 4

Suwon Shon, Ankita Pasad, Felix Wu, Pablo Brusco, Yoav Artzi, Karen Livescu, and Kyu J. Han.
SLUE: New benchmark tasks for spoken language understanding evaluation on natural speech.
In ICASSP, 2022. 82, 85, 86, 129, 130

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A study
of translation edit rate with targeted human annotation. In Proceedings of Association for
Machine Translation in the Americas, 2006. URL http://www.cs.umd.edu/~snover/pub/
amta06/ter_amta.pdf. 125

Richard Socher, Milind Ganjoo, Christopher D Manning, and Andrew Ng. Zero-shot learning
through cross-modal transfer. In NIPS13, 2013. 7, 43

Kai Song, Kun Wang, Heng Yu, Yue Zhang, Zhongqiang Huang, Weihua Luo, Xiangyu Duan,
and Min Zhang. Alignment-enhanced transformer for constraining nmt with pre-specified
translations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 8886–8893, 2020. 58

Pavel Sountsov and Sunita Sarawagi. Length bias in encoder decoder models and a case for
global conditioning. In Proceedings of the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1516–1525, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1158. 76

Matthias Sperber and Matthias Paulik. Speech translation and the end-to-end promise: Taking
stock of where we are. In Association for Computational Linguistic (ACL), Seattle, USA, 2020.
7, 8, 77, 94

Matthias Sperber, GrahamNeubig, J. Niehues, and Alexander H.Waibel. Attention-passing mod-
els for robust and data-efficient end-to-end speech translation. Transactions of the Association
for Computational Linguistics, 7:313–325, 2019. 78

Andreas Stolcke, Frantisek Grezl, Mei-Yuh Hwang, Xin Lei, Nelson Morgan, and Dimitra Ver-
gyri. Cross-domain and cross-language portability of acoustic features estimated by multilayer
perceptrons. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings.
2006 IEEE International Conference On, volume 1, pages I–I. IEEE, 2006. 15, 16

Sebastian Stuker, Florian Metze, Tanja Schultz, and Alex Waibel. Integrating multilingual artic-
ulatory features into speech recognition. In Eighth European Conference on Speech Commu-
nication and Technology, 2003. 16

155

http://www.cs.umd.edu/~snover/pub/amta06/ter_amta.pdf
http://www.cs.umd.edu/~snover/pub/amta06/ter_amta.pdf

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural net-
works. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014. 6, 26,
28, 29, 43, 64

Pawel Swietojanski, Arnab Ghoshal, and Steve Renals. Unsupervised cross-lingual knowledge
transfer in DNN-based LVCSR. In Spoken Language Technology Workshop (SLT), 2012 IEEE,
pages 246–251. IEEE, 2012. 16

Christoph Tillmann and Hermann Ney. Word reordering and a dynamic programming beam
search algorithm for statistical machine translation. Computational linguistics, 29(1):97–133,
2003. 5, 7, 64

Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method. In
Proceedings of 37th Annual Allerton Conference on Communication, Control and Computing
(Alletron), 1999. 34

Sibo Tong, Philip N Garner, and Hervé Bourlard. An investigation of deep neural networks for
multilingual speech recognition training and adaptation. In Proc. of INTERSPEECH, 2017. 16

Shubham Toshniwal, Hao Tang, Liang Lu, and Karen Livescu. Multitask learning with low-level
auxiliary tasks for encoder-decoder based speech recognition. InProc. Interspeech 2017, pages
3532–3536, 2017. doi: 10.21437/Interspeech.2017-1118. 78

Trang Tran, Shubham Toshniwal, Mohit Bansal, Kevin Gimpel, Karen Livescu, and Mari Os-
tendorf. Parsing speech: a neural approach to integrating lexical and acoustic-prosodic infor-
mation. In Marilyn A. Walker, Heng Ji, and Amanda Stent, editors, Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6,
2018, Volume 1 (Long Papers), pages 69–81. Association for Computational Linguistics, 2018.
doi: 10.18653/v1/n18-1007. URL https://doi.org/10.18653/v1/n18-1007. 82

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu, and Hang Li. Neural machine translation
with reconstruction. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence, pages 3097–3103, 2017. 78

Zoltán Tüske, George Saon, Kartik Audhkhasi, and Brian Kingsbury. Single headed attention
based sequence-to-sequence model for state-of-the-art results on Switchboard-300. arXiv
preprint arXiv:2001.07263, 2020.

Evelyne Tzoukermann and Corey Miller. Evaluating automatic speech recognition in transla-
tion. In Proceedings of the 13th Conference of the Association for Machine Translation in the
Americas (Volume 2: User Track), pages 294–302, Boston, MA, March 2018. Association for
Machine Translation in the Americas. 64

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-

156

https://doi.org/10.18653/v1/n18-1007

mation Processing Systems, pages 5998–6008, 2017. 2, 3, 5, 6, 12, 13, 21, 26, 32, 33, 34, 37,
38, 43, 51, 64, 68, 106, 112, 121, 131

Karel Veselỳ, Martin Karafiát, František Grézl, Miloš Janda, and Ekaterina Egorova. The
language-independent bottleneck features. In Spoken Language Technology Workshop (SLT),
2012 IEEE, pages 336–341. IEEE, 2012. 15, 16, 18

Ngoc Thang Vu, Florian Metze, and Tanja Schultz. Multilingual bottle-neck features and its
application for under-resourced languages. In Proc. 3rd Workshop on Spoken Language Tech-
nologies for under-Resourced Languages, Cape Town; S. Africa, May 2012. MICA. 15

Ngoc Thang Vu, David Imseng, Daniel Povey, Petr Motlicek, Tanja Schultz, and Hervé Bourlard.
Multilingual deep neural network based acoustic modeling for rapid language adaptation. In
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference On,
pages 7639–7643. IEEE, 2014. 16

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, and Juan Pino. Fairseq S2T:
Fast speech-to-text modeling with fairseq. In Proceedings of the 2020 Conference of the Asian
Chapter of the Association for Computational Linguistics (AACL): System Demonstrations,
2020a. 75

Changhan Wang, Anne Wu, and Juan Pino. Covost 2: A massively multilingual speech-to-text
translation corpus. arXiv preprint arXiv:2007.10310, 2020b. 75

Chengyi Wang, Shuangzhi Wu, and Shujie Liu. Source dependency-aware transformer with
supervised self-attention. arXiv preprint arXiv:1909.02273, 2019. 58

ChengyiWang, YuWu, Shujie Liu, Zhenglu Yang, andMing Zhou. Bridging the gap between pre-
training and fine-tuning for end-to-end speech translation. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(05):9161–9168, April 2020c. doi: 10.1609/aaai.v34i05.6452. 78

Dong Wang and Thomas Fang Zheng. Transfer learning for speech and language processing. In
2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Confer-
ence, 2015. 94

S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi. Hybrid CTC/Attention architecture
for end-to-end speech recognition. IEEE Journal of Selected Topics in Signal Processing, 11
(8):1240–1253, 2017. doi: 10.1109/JSTSP.2017.2763455. 46, 47, 49, 50, 52, 54, 70, 71

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba, Yuya Unno,
Nelson Enrique Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin Chen, Adithya Ren-
duchintala, and Tsubasa Ochiai. ESPnet: End-to-end speech processing toolkit. In Proc. Inter-
speech 2018, pages 2207–2211, 2018. doi: 10.21437/Interspeech.2018-1456. 22, 23, 37, 55,
70, 107, 116, 130

Shintaro Harada Taro Watanabe. Neural machine translation with synchronous latent phrase

157

structure. ACL-IJCNLP 2021, page 321, 2021. 58

Ron J. Weiss, J. Chorowski, Navdeep Jaitly, Y. Wu, and Z. Chen. Sequence-to-sequence models
can directly translate foreign speech. In Interspeech 2017, 18st Annual Conference of the
International Speech Communication Association, 2017. 70, 77, 94

Orion Weller, Matthias Sperber, Christian Gollan, and Joris Kluivers. Streaming Models for
Joint Speech Recognition and Translation. In European Chapter of the Association for Com-
putational Linguistic (EACL), 2021. 94

Sam Wiseman and Alexander M. Rush. Sequence-to-sequence learning as beam-search opti-
mization. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 1296–1306, Austin, Texas, November 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1137. 67

ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, AnthonyMoi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019. 108

Stephen J. Wright. Coordinate descent algorithms. Mathematical Programming, 151:3–34, 2015.
97

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min Zhang, Tao Qin, and Tie-yan Liu. A
survey on non-autoregressive generation for neural machine translation and beyond. arXiv
preprint arXiv:2204.09269, 2022. 46

WayneXiong, JashaDroppo, XuedongHuang, Frank Seide, Mike Seltzer, Andreas Stolcke, Dong
Yu, and Geoffrey Zweig. Achieving human parity in conversational speech recognition. arXiv
preprint arXiv:1610.05256, 2016. 15

Brian Yan, Siddharth Dalmia, Yosuke Higuchi, Graham Neubig, Florian Metze, Alan W Black,
and Shinji Watanabe. Joint ctc/attention for speech and machine translation. In Submission to
the Proceedings of the 2022 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), 2022a. 4

Brian Yan, Patrick Fernandes, Siddharth Dalmia, Jiatong Shi, Yifan Peng, Dan Berrebbi, Xinyi
Wang, Graham Neubig, and Shinji Watanabe. CMU’s IWSLT 2022 dialect speech translation
system. In Proceedings of the 19th International Conference on Spoken Language Transla-
tion (IWSLT 2022), pages 298–307, Dublin, Ireland (in-person and online), May 2022b. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.iwslt-1.27. URL https:
//aclanthology.org/2022.iwslt-1.27. 4, 46, 51

Hang Yan, Bocao Deng, Xiaonan Li, and Xipeng Qiu. Tener: adapting transformer encoder for
named entity recognition. arXiv preprint arXiv:1911.04474, 2019. URL https://arxiv.
org/abs/1911.04474. 83

158

https://aclanthology.org/2022.iwslt-1.27
https://aclanthology.org/2022.iwslt-1.27
https://arxiv.org/abs/1911.04474
https://arxiv.org/abs/1911.04474

Yilin Yang, Liang Huang, and Mingbo Ma. Breaking the beam search curse: A study of (re-
)scoring methods and stopping criteria for neural machine translation. In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3054–
3059, Brussels, Belgium, 10. Association for Computational Linguistics. doi: 10.18653/v1/
D18-1342. 79

Kayo Yin, Patrick Fernandes, Danish Pruthi, Aditi Chaudhary, André FT Martins, and Graham
Neubig. Do context-aware translation models pay the right attention? In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
788–801, 2021. 46

Thomas Zenkel, Ramon Sanabria, Florian Metze, Jan Niehues, Matthias Sperber, Sebastian
Stüker, and Alex Waibel. Comparison of decoding strategies for ctc acoustic models. In
Proc. Interspeech 2017, pages 513–517, 2017. doi: 10.21437/Interspeech.2017-1683. URL
http://dx.doi.org/10.21437/Interspeech.2017-1683. 13

Lufeng Zhai, Pascale Fung, Richard Schwartz, Marine Carpuat, and Dekai Wu. Using n-best
lists for named entity recognition from chinese speech. In Proceedings of HLT-NAACL 2004:
Short Papers, pages 37–40, 2004. 82

Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei Zhai, Jingfang Xu, and Yang Liu. Neural
machine translation with explicit phrase alignment. IEEE/ACMTransactions on Audio, Speech,
and Language Processing, 29:1001–1010, 2021. 58

Pei Zhang, Niyu Ge, Boxing Chen, and Kai Fan. Lattice transformer for speech translation.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 6475–6484, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1649. 5, 7

Qian Zhang, Han Lu, Hasim Sak, Anshuman Tripathi, Erik McDermott, Stephen Koo, and
Shankar Kumar. Transformer transducer: A streamable speech recognition model with trans-
former encoders and rnn-t loss. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 7829–7833. IEEE, 2020. 5

Chengqi Zhao, Mingxuan Wang, and Lei Li. NeurST: Neural speech translation toolkit. arXiv
preprint arXiv:2012.10018, 2020. URL https://arxiv.org/pdf/2012.10018.pdf.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang Huang. Simpler and faster learning of
adaptive policies for simultaneous translation. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 1349–1354, 2019. 108

Renjie Zheng, Junkun Chen, Mingbo Ma, and Liang Huang. Fused acoustic and text encoding
for multimodal bilingual pretraining and speech translation. arXiv preprint arXiv:2102.05766,

159

http://dx.doi.org/10.21437/Interspeech.2017-1683
https://arxiv.org/pdf/2012.10018.pdf

2021. URL https://arxiv.org/pdf/2102.05766.pdf. 7, 77

Liyuan Zhou, Hanna Suominen, and Leif Hanlen. Evaluation data and benchmarks for cascaded
speech recognition and entity extraction. In Proceedings of the Third Edition Workshop on
Speech, Language & Audio in Multimedia, SLAM ’15, page 15–18, New York, NY, USA,
2015. Association for Computing Machinery. ISBN 9781450337496. doi: 10.1145/2802558.
2814646. URL https://doi.org/10.1145/2802558.2814646. 84

Wei Zhou, Zuoyun Zheng, Ralf Schlüter, and Hermann Ney. On language model integration for
rnn transducer based speech recognition. In ICASSP 2022-2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pages 8407–8411. IEEE, 2022.
59

Job Zwiers. Compositionality, concurrency, and partial correctness: proof theories for networks
of processes, and their relationship, volume 321. Springer Science & Business Media, 1989.
1

160

https://arxiv.org/pdf/2102.05766.pdf
https://doi.org/10.1145/2802558.2814646

	1 Introduction
	1.1 Thesis Outline and Contributions

	2 Sequence Modeling Systems: Past, Current and Future
	2.1 Past: Cascade Systems
	2.2 Current: E2E Encoder-Decoder Systems
	2.3 Future of E2E Systems

	I CTC Hybrid and LegoNN Modular E2E Systems
	3 CTC Hybrid Systems
	3.1 Connectionist Temporal Classification
	3.2 CTC Hybrid Systems
	3.3 Resource Pooling across languages through decomposition
	3.4 Introduction
	3.5 Related Work and Babel Dataset
	3.6 Multilingual CTC Model
	3.7 Experiments and Observations
	3.8 Conclusion

	4 Modular Encoder-Decoder Systems
	4.1 LegoNN: Building Modular Encoder-Decoder Models
	4.2 Introduction
	4.3 Background
	4.4 LegoNN for Modular Encoder-Decoder Models
	4.5 Experimental Setup
	4.6 Results
	4.7 Related work
	4.8 Conclusion

	5 Joint CTC/Attn Models for Non-Monotonic Sequence Tasks
	5.1 Joint CTC/Attention for Speech and Machine Translation
	5.2 Introduction
	5.3 Background and Motivation
	5.4 Proposed Joint CTC/Attn for MT/ST
	5.5 Experimental Setup
	5.6 Results and Analyses
	5.7 Discussion and Relation to Prior Work
	5.8 Conclusion

	II Compositional E2E Systems with Searchable Hidden Intermediates
	6 Searchable Intermediates Framework
	6.1 End-to-End Models of Decomposable Sequence Tasks
	6.2 Introduction
	6.3 Background and Motivation
	6.4 Proposed Framework
	6.5 Baseline Encoder-Decoder Model
	6.6 Data and Experimental Setup
	6.7 Results
	6.8 Discussion and Relation to Prior Work
	6.9 Conclusion

	7 Compositional E2E SLU Models
	7.1 Compositional E2E SLU using Searchable Intermediates
	7.2 Introduction
	7.3 Sequence Labeling (SL)
	7.4 Sequence Labeling in SLU
	7.5 Compositional End-to-End SLU
	7.6 Spoken Named Entity Recognition
	7.7 Conclusion

	III Evaluation of E2E models
	8 Practical Considerations for Evaluating End-to-End Systems
	8.1 Rethinking End-to-End Evaluation of Decomposable Tasks
	8.2 Introduction
	8.3 Motivation
	8.4 Methodology
	8.5 Experiments
	8.6 Conclusions

	9 Conclusion
	9.1 Summary of Key Contributions
	9.2 Future Directions

	Appendix
	A Supplemental Material for Chapter 4
	A.1 Experimental and Data Setup for transfer of LegoNN experiments
	A.2 Detokenized BLEU performance of our LegoNN MT models
	A.3 BLEU performance on individual years for our LegoNN MT models
	A.4 Interpretable Interface in LegoNN models
	A.5 Importance of encoder grounding using CTC for reusability
	A.6 Transfer of LegoNN modules to low-resource conditions
	A.7 Relation to Incorporating Text-only Resources

	B Supplemental Material for Chapter 5
	B.1 Reproducibility
	B.2 Qualitative
	B.3 Quantitative

	C Supplemental Material for Chapter 6
	C.1 Training and Inference hyperparameters
	C.2 MuST-C Data Setup and Model Details

	D Supplemental Material for Chapter 7
	D.1 SLURP and SLUE Dataset Description
	D.2 Experimental Setup

	Bibliography

