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Abstract

This thesis focuses on robust analysis of natural language semantics. A primary bottle-
neck for semantic processing of text lies in the scarcity of high-quality and large amounts
of annotated data that provide complete information about the semantic structure of
natural language expressions. In this dissertation, we study statistical models tailored
to solve problems in computational semantics, with a focus on modeling structure that
is not visible in annotated text data.

We first investigate supervised methods for modeling two kinds of semantic phenom-
ena in language. First, we focus on the problem of paraphrase identification, which
attempts to recognize whether two sentences convey the same meaning. Second, we
concentrate on shallow semantic parsing, adopting the theory of frame semantics (Fill-
more, 1982). Frame semantics offers deep linguistic analysis that exploits the use of
lexical semantic properties and relationships among semantic frames and roles. Unfor-
tunately, the datasets used to train our paraphrase and frame-semantic parsing models
are too small to lead to robust performance. Therefore, a common trait in our methods is
the hypothesis of hidden structure in the data. To this end, we employ conditional log-
linear models over structures, that are firstly capable of incorporating a wide variety of
features gathered from the data as well as various lexica, and secondly use latent vari-
ables to model missing information in annotated data. Our approaches towards solving
these two problems achieve state-of-the-art accuracy on standard corpora.

For the frame-semantic parsing problem, we present fast inference techniques for
jointly modeling the semantic roles of a given predicate. We experiment with linear pro-
gram formulations, and use a commercial solver as well as an exact dual decomposition
technique that breaks the role labeling problem into several overlapping components.
Continuing with the theme of hypothesizing hidden structure in data for modeling nat-
ural language semantics, we present methods to leverage large volumes of unlabeled
data to improve upon the shallow semantic parsing task. We work within the frame-
work of graph-based semi-supervised learning, a powerful method that associates sim-
ilar natural language types, and helps propagate supervised annotations to unlabeled
data. We use this framework to improve frame-semantic parsing performance on un-
known predicates that are absent in annotated data. We also present a family of novel
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objective functions for graph-based learning that result in sparse probability measures
over graph vertices, a desirable property for natural language types. Not only are these
objectives easier to numerically optimize, but also they result in smoothed distributions
over predicates that are smaller in size.

The experiments presented in this dissertation empirically demonstrates that
missing information in text corpora contain considerable semantic information that can
be incorporated into structured models for semantics, to significant benefit over the
current state of the art. The methods in this thesis were originally presented by Das and
Smith (2009, 2011, 2012), and Das et al. (2010, 2012). The thesis gives a more thorough
exposition, relating and comparing the methods, and also presents several extensions
of the aforementioned papers.
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Chapter 1

Introduction

Wide-coverage semantic analysis of text is currently an obstacle for robust natural lan-
guage understanding. Broadly, semantic analysis of text thus far has considered the con-
version of text into deep structures such as logical forms using training corpora belong-
ing to a narrow domain (Ge and Mooney, 2005; Zettlemoyer and Collins, 2005; Liang
et al., 2011), or semantic role labeling that investigates predicate-argument structures of
verbs and nominal items producing shallow symbolic output (Palmer et al., 2005). While
the former suffers from the lack of coverage because the supervised training methods
are limited to very small corpora, the latter assumes a small inventory of argument la-
bels to gather sufficient amount of training data, resulting in inconsistency among the
meaning of the labels across different semantic frames (Yi et al., 2007). Word sense dis-
ambiguation is another popular task (Brown et al., 1991; Yarowsky, 1995) whose goal
is to identify the correct meaning of a word given its context. However, disambiguat-
ing word meaning does not result in predicate argument structures, which are useful
semantic representations.

Among various other attempts to model natural language semantics, one major goal
has been to discover semantic relationships between sentence-pairs, mostly investi-
gated via the problem of recognizing textual entailment (Dagan et al., 2005; Bar-Haim
et al., 2006; Giampiccolo et al., 2007). Most research in this area has either resorted to the
use of shallow bag-of-words based classifiers that leads to robustness but fails to model
structural correspondences between sentence pairs that govern a semantic relationship
(Corley and Mihalcea, 2005; Glickman et al., 2005), or have modeled these sentential
relationships using brittle forms of logical inference that do not generalize to varied
domains of text (Bos and Markert, 2005; MacCartney and Manning, 2007) primarily be-
cause these models are trained on corpora from restricted domains.

In this dissertation, we investigate structured models for natural language seman-
tics: specifically we focus on recognizing the paraphrase relationship between two sen-
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2 CHAPTER 1. INTRODUCTION

tences and semantic analysis of text in the form of frame-semantic parsing. We hypoth-
esize that the semantic analysis of a natural language utterance is closely related to its
syntax, and exploit useful syntactic representations to this end. We also leverage lexical
resources in our models, to incorporate expert knowledge in our methods. In most of
our models, we apply a probabilistic framework as it suits our needs with respect to
model combination and the ease of building feature-rich models. A common trait in our
work is the joint modeling of substructures, often using fast inference techniques that
obviates naı̈ve independence assumptions present in prior work.

A common bottleneck across all semantic analysis tasks is the absence of richly anno-
tated corpora. To cite a few examples, lexical resources used to assist semantic analysis
are often scarce, word aligned corpora for sentence-pair relationships are few, and large
corpora of sentences annotated with semantic structures are limited. To sidestep the
dearth of annotated data, we model latent structure in data for both the tasks in con-
sideration. Finally, we use large volumes of unlabeled data to generalize our models
to unknown lexical items and perform semi-supervised learning to demonstrate that
useful semantic information for analysis can be extracted from raw text. Before delving
into the details of our methods in the following chapters, we will provide a brief back-
ground on statistical modeling of natural language semantics and motivate the necessity
of semantic analysis of text.

1.1 Statistical Methods in NLP

The past two decades have witnessed an empirical revolution in natural language pro-
cessing (NLP). The area has increasingly been influenced by machine learning tech-
niques and statistical modeling of natural language phenomena has evolved to be the
well-accepted norm. The availability of the Penn Treebank (Marcus et al., 1993) led to
statistical models of natural language syntax in the form of probabilistic context free
grammar variants, the more famous manifestations being the Charniak and the Collins
parsers (Charniak, 2000; Collins, 2003). Since then, treebanks for several other lan-
guages have been built, resulting in robust syntactic parsers, both for phrase-structure
and dependency grammars. Data-driven methods for other NLP tasks like text chunk-
ing (Tjong Kim Sang and Buchholz, 2000), named-entity recognition (Tjong Kim Sang,
2002), coreference resolution (Grishman and Sundheim, 1995) and machine translation
(Brown et al., 1993), have motivated the ubiquitous use of empirical methods in natural
language analysis.

Among various empirical methods, probabilistic modeling of language structure has
been a popular form, because the probabilistic genre allows a flexible framework with
several advantages. These models facilitate the combination of simpler models, promote
the use of overlapping features (in log-linear models), and can accommodate latent vari-
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ables to model unseen structure. Semi-supervised extensions of supervised probabilistic
models are intuitive and have commonly been used in NLP. In recent times, probabilis-
tic models have been widely used in syntactic parsing (Petrov et al., 2006; Smith and
Smith, 2007; Petrov and Klein, 2008), sequence labeling tasks (Finkel et al., 2005), gram-
mar induction (Smith, 2006) and machine translation (Koehn et al., 2007).

Probabilistic modeling for natural language semantics has also been popular. For ex-
ample, significant amount of work on modeling lexical semantics exists, and has been
popular: a vast proportion of research on word sense disambiguation (Brown et al., 1991;
Bruce and Wiebe, 1994; Yarowsky, 1995) and creation of lexical resources (Snow et al.,
2006; Haghighi et al., 2008) have made use of such models. Recent research on shallow
semantic parsing in the form of semantic role labeling (SRL) has largely exploited prob-
abilistic modeling (Gildea and Jurafsky, 2002; Cohn and Blunsom, 2005). Several lines of
work on natural language inference or textual entailment have made use of probabilis-
tic models to determine whether semantic relationships between sentence pairs exist
(Glickman et al., 2005; Glickman and Dagan, 2005).

In this work, we will widely employ probabilistic methods for tasks in computa-
tional semantics. We will observe why probabilistic methods suit the tasks at hand,
how these methods assist in modeling structures unobserved in supervised data, and
how unlabeled text can be brought into probabilistic modeling with the hope of extract-
ing useful semantic information from text.

1.2 Why Computational Semantics?

Semantics deals with the literal representation of meaning in natural language utter-
ances. Computational modeling of semantics is essential for deeper understanding of
natural language, and in this section, we motivate the necessity of automatic semantic
analysis of text.

1.2.1 Deep Natural Language Understanding

To fully automate natural language understanding, representations beyond popular for-
malisms such as dependency and phrase-structure grammars that model syntax are nec-
essary. Consider the sentence in Example 1.1:

(1.1) Marco Polo wrote an account of Asian society during the 13th century.

Figure 1.1(a) shows an example phrase-structure parse that uses Penn Treebank (Marcus
et al., 1993) conventions, while Figure 1.2 shows an example dependency syntax tree for
the same sentence. The dependency tree is labeled in that the head-modifier relations
are marked by a handful of syntactic relations. State-of-the art parsers like the Collins
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Marco     Polo        wrote     an    account            of    Asian    society    during    the   13th    century .

NNP NNP VBD DT NN IN JJ NN IN DT JJ NN .

NP NP NP
NP

PP

NP

PP

NP

VP

S

Figure 1.1: A Penn Treebank style phrase-structure syntax tree for Example 1.1.

(2003) and the Charniak (2000) parsers produce parses similar to Figure 1.1 while parsers
such as the MST parser (McDonald et al., 2005), the Malt parser (Nivre et al., 2004), or
stacked dependency parsers (Martins et al., 2008) or would produce an analysis such as
Figure 1.2.

Although such syntactic representations have proved to be very useful for several
applications such as machine translation (Zollmann and Venugopal, 2006), question an-
swering (Wang et al., 2007) and relation extraction (Culotta and Sorensen, 2004), phe-
nomena such as sense ambiguity or semantic frames of lexical items in a sentence are
not analyzed by plain syntax. For example, consider the word “account” in Example 1.1.
From the parses shown in Figures 1.1 and 1.2, it is unclear to a computer system whether
the word means “a description of facts, conditions, or events” or “a statement of trans-
actions during a fiscal period and the resulting balance.”1

Figure 1.3 on the other hand portrays a semantic analysis of the same sentence, fol-
lowing the paradigm of frame semantics (Fillmore, 1982). We will go into the details

1See http://www.merriam-webster.com/dictionary/account for more dictionary definitions
of the word “account.”

http://www.merriam-webster.com/dictionary/account
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Marco     Polo    wrote    an      account    of    Asian    society    during    the   13th    century     .

sub
nmod
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prd
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nmod

pmod
nmod

nmod

Figure 1.2: A labeled dependency syntax tree for Example 1.1.

Figure 1.3: A frame-semantic parse for Example 1.1.

of frame semantics in Chapter 5, but essentially the frame-semantic parse of a sentence
results in a collection of semantic frames evoked by words or phrases in a sentence,
and for each frame, a set of semantic roles are also predicted. In the parse shown in
Figure 1.3, only one semantic frame is evoked, by the capitalized word “account”. The
semantic frame in this case is TEXT. It has three semantic roles Author, Text, and Topic as
marked under token spans in the figure. Unlike a syntactic parse of a sentence, this anal-
ysis clearly portrays the fact that the word “account” is a form of text that has an author
and a particular topic, and not a record of transactions. In fact, these word senses can be
derived from a lexical resource like FrameNet (Fillmore et al., 2003), that lists words and
phrases with various semantic frames they can evoke, along with each frame’s possible
set of semantic roles.

1.2.2 Semantics in NLP Problems

What applications can benefit from this type of semantic analysis? One can cite several;
however, let us choose the popular task of machine translation. To test the efficacy of
a state-of-the-art machine translation system for a low-resource language pair, we pro-
vided the sentence in Example 1.1 to the English to Hindi translation engine of Google.2

Unfortunately, the Hindi translation of the sentence produced by this system is the fol-

2See http://translate.google.com/.

http://translate.google.com/
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lowing:

(1.2)

mAko polo 13 bF\ sdF k� dOrAn
Marco Polo 13 th century of during

eEfyAi smAj k� ek KAt� m�\ ElKA TA ।
Asian society of one record of transactions in wrote had .

In this Hindi sentence with English glosses, the literal translation of the underlined
word KAt� is “a record of transactions,” which indeed is another meaning of the word
“account,” however not in the context of Example 1.1. Moreoever, an extraneous post-
position m�\ after KAt� is introduced, which changes the core meaning of the translation,
resulting in the following literal translation:

(1.3) Marco Polo wrote in the Asian society’s record of transactions during the 13th
century.

It is easy to point out that the correct Hindi word for “account” was not used by the
translation system, which possibly did not encounter the desired word sense of “ac-
count” in its training data. To exemplify the necessity of semantic analysis of text, we
next presented the following sentence to the same translation system:

(1.4) Marco Polo wrote a chronicle of Asian society during the 13th century.

This sentence is a straightforward modification of Example 1.1, with “an account” re-
placed by “a chronicle”. The replacement roughly retains the meaning of the sentence,
and like “account”, the word “chronicle” belongs to the same semantic frame TEXT ac-
cording to the FrameNet lexicon. Example 1.5 is the Hindi translation produced by
the system, which translates “chronicle” to the underlined word iEthAs, meaning “his-
tory”, resulting in the desired meaning. The possessive marker introduced in Exam-
ple 1.2 is also absent, making it an acceptable translation.

(1.5)

mAko polo 13 bF\ sdF k� dOrAn
Marco Polo 13 th century of during

eEfyAi smAj kA iEthAs ElKA TA ।
Asian society of history wrote had .

Semantic analysis of the English side could possibly have avoided the scenario pre-
sented above. A frame-semantic parse as in Figure 1.3 of the sentence in Example 1.1
would tag the word “account” with the semantic frame TEXT, which would have pro-
vided a signal to the translation system indicating that the desired sense of the word in
the target side should conform to the same semantic frame.
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Previous researchers have incorporated semantic analysis of text into various appli-
cations and have reported success. Bilotti et al. (2007) used semantic roles to improve
question answering. Their conclusions suggest that semantic processing of web doc-
uments can produce results more relevant to input questions. They used PropBank
(Kingsbury and Palmer, 2002) semantic role labeling to preprocess web data used for re-
trieval, followed by clever indexing. A blend of syntax and lexical semantics was used
for question answering by Wang et al. (2007), where lexical similarity in the form of
WordNet (Fellbaum, 1998) lookups were leveraged to rank candidate answers to ques-
tions. Shen and Lapata (2007) used FrameNet semantic structures to improve question
answering; their approach treated the answer selection problem as graph matching,
where the graphs incorporated semantic information. Qiu et al. (2006) used semantic
roles to improve paraphrase identification. Predicate-argument tuples were matched
between candidate sentence pairs to detect a paraphrase relationship. Das et al. (2008)
have leveraged semantic roles for template creation for abstractive summarization in
closed domains. Their technique involved clustering of human written summaries us-
ing a similarity metric based on semantic roles. In recent work, semantic roles have been
used in statistical machine translation by Wu and Fung (2009). They used a two pass
model where the first pass was a typical phrase-based approach, while the second pass
was used to develop a re-ordering strategy using semantic role annotations. Their pre-
liminary experiments resulted in improvements in translation quality measured by the
BLEU score (Papineni et al., 2001). Recently, features extracted from a PropBank seman-
tic role labeler have been used in a tree-to-string transducer model to improve fluency
of automatic translation (Liu and Gildea, 2010).

A separate line of work in computational semantics has looked at relationships be-
tween pairs of sentences. A vast body of research has been performed in recognizing
textual entailment (RTE), where the goal is to identify whether a hypothesis is entailed
by a premise.

(1.6) In 1998, the General Assembly of the Nippon Sei Ko Kai (Anglican Church in
Japan) voted to accept female priests.

(1.7) The Anglican Church in Japan approved the ordination of women.

Examples 1.6 and 1.7 constitute a sentence pair where the second sentence is entailed
by the first. Determining whether the meaning of one sentence is implied by another
has been compared to the Turing test (Bos and Markert, 2005), as it may require deep
semantic understanding of language. This is exemplified by the pair of sentences pre-
sented above. For example, the fact that “ordination” and “accepting female priests”
are embodiments of the same meaning requires deep semantic analysis of text. Other
examples of such relationships include equivalence or paraphrase (Dolan and Brockett,
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2005, two sentences conveying the same information), and contradiction (de Marneffe
et al., 2008, the pair providing contrasting information).

Modeling semantic relationships between pairs of sentences is relevant for various
NLP applications like multi- document summarization, large news clustering systems
that need to better understand standpoints of different news sources,3 improved ques-
tion answering (Harabagiu and Hickl, 2006) or automatic grading of student responses
given reference answers. These systems use methods for finding an entailment rela-
tionship to model answers to a given question and a collection of text. Modeling of
phrasal paraphrases have led to improvements in statistical machine translation for
low-resource scenarios (Callison-Burch et al., 2006; Marton et al., 2009). Very recently,
Padó et al. (2009) have used features motivated by textual entailment to produce bet-
ter machine translation evaluation metrics, in comparison to traditional and popular
bag-of-words metrics like BLEU (Papineni et al., 2001).

Semantic processing of text is essential from two standpoints. First, wide-coverage
and robust natural language understanding can be furthered only through better seman-
tic processing of text, in the forms of lexical semantics, parsing or through the modeling
of relationships between sentences. Second, a variety of NLP applications still need im-
provement, and better semantic understanding of text will directly help towards that
goal.

1.3 Contributions of the Thesis

As described at the onset of this chapter, we investigate statistical models for two seman-
tic analysis tasks: paraphrase identification and frame-semantic parsing. Although
these problems have been addressed by the NLP community before, the described re-
search departs from previous work in several dimensions. Our major contributions are:

1. We model complex semantic phenomena using structured statistical models, in-
stead of relying on a collection of naı̈ve classifiers. Joint modeling of substructures
relevant to a problem is done by efficient, and at times approximate inference tech-
niques. To this end, whenever possible, we make use of distributed computing to
facilitate fast parameter estimation and inference.

2. Large quantities of data containing rich semantic annotations do not exist. We
attempt to model unseen structure in the data by employing latent variables in our
probabilistic models. While unseen during the estimation and the testing phases,
meaningful latent structure can be uncovered as a by-product of MAP inference.
In these scenarios, we make use of a probabilistic framework for elegant modeling
of latent variables.

3See http://www.ark.cs.cmu.edu/RAVINE

http://www.ark.cs.cmu.edu/RAVINE
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3. Our models for the two semantic analysis problems result in state-of-the-art per-
formance on standard corpora. Additionally, we have publicly released our frame-
semantic parser for the NLP community to use as an open-source project.4

4. We use large amounts of unlabeled data for improving the coverage of our frame-
semantic parser. The supervised version of our parser is not able to accurately
handle predicates previously unknown in supervised data. We use a graph-based
semi-supervised learning framework to improve the parser’s coverage on unseen
predicates.

5. Finally, we present a family of graph-based learning algorithms that are easy to
optimize and produces sparse distributions over labels on the graph vertices. This
desirable property, which is suitable to language processing problems, not only
results in better results than the state of the art, but also results in sparser distribu-
tions that require less storage space.

1.4 Organization of the Thesis

The thesis is organized as follows.

• Chapter 2 focuses on relevant scientific work on semantic relationships between
sentence pairs, with a focus on modeling paraphrase. Next, it describes rele-
vant work on shallow semantic parsing, especially frame-semantic analysis of text.
Herein, we contrast our techniques with previous work and other forms of seman-
tic parsing tasks and methods.

• Chapter 3 describes a set of tools used in this thesis. Examples of these tools
are syntactic representations, probabilistic log-linear models and parallelization
schemes useful for numerical optimization techniques that are widely used in this
thesis.

• Chapter 4 investigates our model for recognizing a paraphrase relationship be-
tween two sentences. We describe our probabilistic technique that we design for
the problem, and the experiments and the results achieved on a popular corpus.
We also compare and analyze our results in comparison to related approaches.
The material presented in this chapter is an exposition of Das and Smith (2009).

• Chapter 5 describes in detail the model used for frame-semantic parsing. It de-
scribes the task in detail, the lexicon used to derive expert knowledge, the struc-
tured model that solves the task, and various fast inference techniques used for

4See http://www.ark.cs.cmu.edu/SEMAFOR.

http://www.ark.cs.cmu.edu/SEMAFOR
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parsing raw text. We present results on a standard benchmark dataset for compar-
ison with previous work, and also present results on a more recent larger dataset.
This chapter is an extension of Das et al. (2010, 2012).

• Chapter 6 consists of a semi-supervised extension of the frame-semantic parser;
in this chapter, we describe a method of extending the coverage of the frame-
semantic parser on predicates unseen in annotated data. To this end, we use a
graph-based semi-supervised learning approach to model unseen predicates. We
also present alternative graph-based learning algorithms that result in sparser dis-
tributions over graph vertices, are easy to optimize and result in models that are
significantly smaller in size. This chapter is based on Das and Smith (2011, 2012).

• Finally, Chapter 7 concludes the findings of this dissertation and provides future
directions of research.



Chapter 2

Literature Review

This chapter reviews previous scientific work on computational semantics relevant to
the two broad problems that we investigate. §2.1 looks at techniques used in model-
ing semantic relationships between a sentence pair, and focuses on the recognition of
sentential paraphrases. §2.2 reviews relevant research on shallow semantic parsing, es-
pecially focusing on analysis based on frame semantics (Fillmore, 1982).

2.1 Models of Sentence-sentence Relationships

In recent years, modeling semantic relationships between sentence pairs has generated
considerable interest in the NLP community. In this section, we will review relevant
previous work in textual entailment, and paraphrase identification.

2.1.1 Recognizing Textual Entailment

Among various relationships like entailment, paraphrase and contradiction, the first
has been of specific interest to a large fraction of the community. Dagan et al. (2005),
Bar-Haim et al. (2006) and Giampiccolo et al. (2007) organized the first three Recogniz-
ing Textual Entailment (RTE) shared tasks where several participants built models for
textual inference. In recent years, the Text Analysis Conference (TAC)1 has continued
to organize the RTE challenges. As mentioned in Chapter 1, the RTE task essentially
asks whether there exists an entailment relationship between a premise and a hypoth-
esis. A popular version of the task is a binary classification problem, where a system
needs to predict whether there exists an entailment relationship or not. Another version
presents a three-way classification task where the relationships can be either entailment,
non-entailment or “unknown”.

1See http://www.nist.gov/tac/.

11

http://www.nist.gov/tac/
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Example 2.1 and 2.2 is a premise-hypothesis pair taken from the RTE3 challenge, and
is one where the entailment relationship holds.

(2.1) “The Extra Girl” (1923) is a story of a small-town girl, Sue Graham (played by
Mabel Normand) who comes to Hollywood to be in the pictures. This Mabel
Normand vehicle, produced by Mack Sennett, followed earlier films about the
film industry and also paved the way for later films about Hollywood, such as
King Vidor’s ”Show People” (1928).

(2.2) ”The Extra Girl” was produced by Sennett.

It is noticeable that the premise often is quite long, containing multiple sentences, and
the hypothesis is short. The contents of the hypothesis sentence in this example can be
inferred from the premise by first preprocessing it with tools like named-entity recog-
nition and coreference resolution systems, aligning relevant phrases across the two ut-
terances, and finally using an inference step. Identification of textual inference thus
becomes non-trivial. The following is another pair taken from the same dataset:

(2.3) Take consumer products giant Procter and Gamble. Even with a $1.8 billion
Research and Development budget, it still manages 500 active partnerships each
year, many of them with small companies.

(2.4) 500 small companies are partners of Procter and Gamble.

Clearly this pair is one where the premise does not imply the contents of the hypothesis,
and getting to this decision for a state-of-the-art NLP system is hard because it needs
semantic analysis and logical inference stages.

Broadly, two kinds of approaches have been used to model RTE. First, simple bag-
of-words classifiers have been employed to predict the classes. Glickman and Dagan
(2005), Jijkoun and de Rijke (2005) and MacCartney et al. (2006) describe bag-of-words
models employing lexical and semantic overlap between the two sentences to predict
the entailment relationship. These approaches do not model any form of structural
correspondence between the premise and the hypothesis, but are robust and generally
work well for a considerable proportion of sentence pairs. However, complex effects of
antonymy, variation of predicate-argument structure and negation are not captured by
these models. Another line of work has looked at deep analysis of the sentences to result
in logical forms. Bos and Markert (2005) used deep semantic analysis to produce logical
forms for the premise and the hypothesis and applied a theorem prover to find textual
entailment. This method resulted in high precision, but suffered from poor coverage on
the RTE1 test set. In a more recent approach, MacCartney and Manning (2007) used a
less strict formalism called Natural Logic, where lexical items in the premise and the
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hypothesis were first aligned, and then local entailment decisions were taken using a
classifier that incorporated several lexical, syntactic and semantic features. The local de-
cisions were joined using compositional rules, to result in a global entailment decision.
This system had very high precision and a combination with a simpler overlap based
model resulted in good performance on the RTE datasets.

Recently, in another line of work, there have been efforts to model wide coverage
subsentential entailment rules that could be potentially used in an entailment system;
Berant et al. (2011) provide an example of this line of research. In this work, the authors
attempt to learn many entailment rules globally, using a graph structure. The graph con-
tains predicates, and the edges correspond to entailment relationships. Using the graph
structure, new entailment rules are induced, that have high recall over unrestricted text

2.1.2 Paraphrase Identification

In our work, we are interested in a different but related sentence-pair relationship, that
of paraphrase. The paraphrase relationship between two sentences can be thought of
bidirectional entailment. Modeling the paraphrase relationship between sentences is not
new. To our knowledge, the first work in this area was presented by McKeown (1979),
who described a system that paraphrased user queries to a natural language computer
interface to ensure that the system understood the user correctly. Since then, there
has been a large body of work on automatic generation or extraction of paraphrases.
Ravichandran and Hovy (2002), Barzilay and Lee (2003) and Dolan and Brockett (2005)
have presented data-driven techniques for finding sentential paraphrases. In summary,
these approaches looked at large amounts of raw text and used surface level similarity
to extract similar meaning sentences.

At finer granularity levels, finding synonyms of words and paraphrases of phrases
has been investigated by another section of the community. Distributional similarity-
based methods have been investigated by Pereira et al. (1993) and Lin and Pantel (2001)
where monolingual corpora were processed to gather syntactic contexts of words, and
common contextual information was used to cluster similar meaning words. A series
of work has followed, with a recent one attempting to cluster phrases from a web-
scale text corpus (Lin and Wu, 2009). Other approaches to find semantically equiva-
lent phrases have attempted to harvest multiple translations of the same foreign source
(Barzilay and McKeown, 2001). Using large volumes of multilingual corpora to extract
phrasal paraphrases has been the most recent and attractive avenue of research. Ban-
nard and Callison-Burch (2005) presented a probabilistic method of finding paraphrases
from bilingual parallel corpora. From a given sentence pair in the parallel corpora, they
chose a phrase in the source language, and found its translation phrase in the target
language. This phrase in the target language was fixed as a pivot. Next they scanned
for this pivot phrase in the other sentence pairs in the corpora, and found several trans-
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lations in the source language. These translations were deemed to be potential para-
phrases of the original source phrase. This approach worked quite well, and recent
extensions Callison-Burch (2008); Kok and Brockett (2010) have further improved para-
phrasing quality.

In our work, rather than the generation or extraction of paraphrases from free text,
we are concerned with the problem of recognizing the paraphrase relationship in a sen-
tence pair. Examples 2.5 and 2.6 belong to a pair that essentially talk about the failing
revenue of a company, and is a paraphrase pair:

(2.5) Revenue in the first quarter of the year dropped 15 percent from the same period
a year earlier.

(2.6) With the scandal hanging over Stewart’s company, revenue in the first quarter of
the year dropped 15 percent from the same period a year earlier.

Above, the second sentence has an extra clause in the beginning which is absent in
the first sentence; however, since the salient semantic content lies in the remainder of
the sentence and this content is essentially the same as the first sentence, the pair was
judged as paraphrase. From this example, it is noticeable that the annotators took liberty
in their decision making in that they did not label pairs that strictly contain the same
information as the sole positive examples. In context of our benchmark corpus, this
loose definition makes the paraphrase identification task hard.

Another pair that has similar lexical content, but are not equivalent in meaning is
cited below. The first sentence in the pair contains some information about the police
searching for traps, which is absent in the second sentence; the annotators considered
the extra content of the first sentence to be important, making the pair a non-paraphrase
example.

(2.7) Security lights have also been installed and police have swept the grounds for
booby traps.

(2.8) Security lights have also been installed on a barn near the front gate.

The paraphrase identification task is a binary classification problem where a given
pair of sentences need to be labeled as paraphrase or not. Data-driven techniques for this
task has mostly leveraged the Microsoft Research Paraphrase Corpus (Dolan et al., 2004;
Quirk et al., 2004, MSRPC) to build models of paraphrase. Like the textual entailment
task, this task also has witnessed two major genres of modeling approaches: using bag-
of-words feature based classification, and methods involving deep lexical, syntactic and
semantic processing of the individual sentences in the pair.

Among the first category of work on paraphrase identification, Zhang and Patrick
(2005) used text canonicalization to transform each sentence in the pair into a simplified
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form, e.g. by changing passive voice to active voice and by changing complex future
tense phrases to simpler ones. Next, they used a classifier trained on lexical match be-
tween the canonicalized sentences to predict the paraphrase relationship. Corley and
Mihalcea (2005) used word-to-word lexical similarity to measure the similarity of two
sentences in a given pair. Another line of work used several surface level features like
lexical overlap, overlap of syntactic dependencies in the two sentences, the BLEU score
between the two sentences and the difference in sentence lengths to train a discrimina-
tive classifier for the paraphrase relationship (Finch et al., 2005; Wan et al., 2006; Malaka-
siotis, 2009). Wan et al. (2006) specifically used a Support Vector Machine (Vapnik, 1995,
SVM henceforth) to train their model, and we use their system as a strong baseline for
comparison. Qiu et al. (2006) used semantic role labeling to find dissimilarity between
sentences, and used an SVM to classify whether two sentences are paraphrases of each
other.

In contrast to all the aforementioned work on recognizing paraphrases, we model
the problem as a monolingual translation scenario, where we assume that one sentence
in the pair has been transformed into the other using a loose syntactic generative pro-
cess, defined by a quasi-synchronous grammar (Smith and Eisner, 2006). This process,
which is probabilistic, gives us a posterior probability that indicates whether the pair is
a paraphrase or not. We combine dependency syntax and lexical semantics as WordNet
lookups in a single model. Word alignments are also modeled in our method, and are
treated as latent variables and are marginalized out.

Recently, Chang et al. (2010) have presented a generic discriminative technique for
modeling relationships between sequences with constrained latent representations. As a
specific application of their model, they modeled the paraphrase identification problem
and also used latent alignments as intermediate structures that they jointly model with
the binary decision problem. Their model, trained using a margin-based online learning
algorithm, namely “Learning over Constrained Latent Representations” performs well
across several applications; however the setup is not probabilistic, and does not present
an analogy with monolingual translation, which forms the basis of our model. Heilman
and Smith (2010) use a variant of tree edits to transform a syntax tree of one sentence to
another, and incorporate the edit operations as features in a logistic regression model.
This work comes very close to our method, but does not model word alignments explic-
itly. Most related to our approach, Wu (2005) used inversion transduction grammars—a
synchronous context-free formalism (Wu, 1997)—for this task. Wu’s model can be un-
derstood as a strict hierarchical maximum-alignment method. In contrast, our align-
ments are soft (we sum over them), and we do not require strictly isomorphic syntac-
tic structures. Most importantly, our approach is founded on a stochastic generative
process and estimated discriminatively for this task from data, while Wu presented a
rule-based system, whose robustness on a variety of sentence pairs is questionable; we
outperform Wu’s approach on the MSR paraphrase corpus by a significant margin.
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Finally, Socher et al. (2011) present a powerful neural network model for learning
the paraphrase relationship. They use a large unlabeled corpus to learn embeddings of
words and also represent the nodes in parse trees of a sentence in a vector space; this
information is used in detecting the binary paraphrase relationship between sentence
pairs. Various aspects of this work is similar to our work where relationships between
parse subtrees are modeled. On the same dataset on which we measure performance,
this approach outperforms our grammar based method by a small margin.

2.2 Techniques in Shallow Semantic Parsing

In this subsection, we will focus on previous scientific work relevant to the problem
of frame-semantic parsing. First, we will briefly discuss work done on PropBank-style
semantic role labeling, following which we will concentrate on the more relevant prob-
lem of labeling frame-semantic roles. Next, we review previous work that has used
semi-supervised learning for shallow semantic parsing. Finally, we compare the frame-
semantic parse representation with deeper semantic parsing formalisms, which has
been a popular research focus within the computational linguistics community.

2.2.1 Semantic Role Labeling

Since Gildea and Jurafsky (2002) pioneered statistical semantic role labeling, there has
been a great deal of computational work using predicate-argument structures for se-
mantics. The development of PropBank (Kingsbury and Palmer, 2002), followed by
CoNLL shared tasks on semantic role labeling (Carreras and Màrquez, 2004; Carreras
and Màrquez, 2005) boosted research in this area.

Figure 2.1 shows a sentence annotated with semantic roles, taken from PropBank.
PropBank annotations are closely tied with syntax, because the dataset is essentially the
phrase-structure syntax trees from the Wall Street Journal section of the Penn Treebank
(Marcus et al., 1993) annotated with predicate-argument structures for verbs. In Fig-
ure 2.1, the syntax tree for the sentence is marked with various semantic roles. The two
verbs in the sentence “created” and “pushed” are the predicates. For the former, the
constituent “more than 1.2 million jobs” serves as the semantic role ARG1 and the con-
stituent “In that time” serves as the role ARG-TMP. Similarly for the latter verb, roles
ARG1, ARG2, ARGM-DIR and ARGM-TMP are shown in the figure. PropBank defines
roles ARG0 to ARG5 which behave in a specific manner for a given verb, and addition-
ally defines auxiliary roles ARGM-*, examples of which are ARGM-TMP and ARGM-DIR
as shown in Figure 2.1. Therefore the total number of tags in PropBank is few, and the
training dataset has ∼40,000 sentences, thus making the semantic role labeling task an
attractive one from the perspective of machine learning.
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In    that    time   more   than   1.2   million  jobs   have   been   created   and   the   official   jobless   rate     has  been   pushed    below    17   %   from   21   %       .
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Figure 2.1: A phrase-structure tree taken from the Penn Treebank (Marcus et al., 1993), and annotated with
predicates and corresponding semantic roles in the PropBank (Kingsbury and Palmer, 2002). There are two
verbs marked in rounded rectangles- “created” and “pushed” that serve as the predicates in this sentence. The
corresponding semantic roles marked within shaded brackets are connected to the verbs using dotted arrows.
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Figure 2.2: A partial depiction of frame-semantic structures for the same sentence as in Figure 2.1. The words in
bold correspond to targets, which evoke semantic frames that are denoted in capital letters. Above each target is
shown the corresponding lexical unit, which is a lemma appended by a coarse part-of-speech tag. Every frame is
shown in a distinct color; each frame’s arguments are annotated with the same color, and are marked below the
sentence, at different levels. For the CARDINAL NUMBERS frame, “M” denotes the role Multiplier and “E” denotes
the role Entity.
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There are many instances of influential work on semantic role labeling using
PropBank conventions. Pradhan et al. (2004) present a system that uses SVMs to iden-
tify the arguments in a syntax tree, which can serve as semantic roles, followed by the
classification of the identified arguments into role labels. The used several binary SVMs
and used them to choose the best role. Punyakanok et al. (2004) describe a semantic
role labeler that uses integer linear programming for inference and uses several global
constraints to find the best suited predicate-argument structures. Joint modeling for se-
mantic role labeling using discriminative log-linear models is presented by Toutanova
et al. (2005), where the authors used global features looking at all arguments of a partic-
ular verb together in a dynamic programming and reranking framework. The Computa-
tional Linguistics special issue on semantic role labeling (Màrquez et al., 2008) includes
other interesting papers on the topic, leveraging the PropBank conventions for labeling
shallow semantic structures. Recently, there have been initiatives to predict syntactic
dependencies as well as PropBank-style predicate-argument structures together using
one joint model (Hajič et al., 2009).

In our work, we focus on the related topic of frame-semantic parsing. Note that
from the annotated semantic roles for the two verbs in the sentence of Figure 2.1, it is
unclear what the core roles ARG1 or ARG2 represent linguistically. To better understand
the roles’ meaning for a given verb, one has to refer to a verb specific file provided
along with the PropBank corpus. Although collapsing these verb specific core roles
into tags ARG0-ARG5 leads to a small set of classes to be learned from a reasonable
sized corpus, analysis shows that the roles ARG2-ARG5 serve as many different roles
for different verbs. Yi et al. (2007) point out that these four roles are highly overloaded
and inconsistent, and they mapped them to VerbNet (Schuler, 2005) thematic roles to get
improvements on the SRL task. Instead of working with PropBank, we focus on shallow
semantic parsing of sentences in the paradigm of frame semantics (Fillmore, 1982). We
discuss related work on frame-semantic parsing below.

2.2.2 Frame-Semantic Parsing

The FrameNet lexicon (Fillmore et al., 2003) contains rich linguistic information about
lexical items and predicate-argument structures. A semantic frame present in this lex-
icon has associated words and phrases that can potentially evoke it in a natural lan-
guage utterance. Each frame has associated roles, which are also enumerated in the
lexicon. Figure 2.2 shows frame-semantic annotations for the same sentence shown
in Figure 2.1. Note that the verbs “created” and “pushed” evoke the semantic frames
INTENTIONALLY CREATE and CAUSE CHANGE POSITION ON A SCALE respectively. The
corresponding lexical units, create.V and push.V (See §5.3.1 for a detailed description of
lexical units.) from the FrameNet lexicon are also shown in the figure right above the
semantic frames. The PropBank analysis in Figure 2.1 also had predicate-argument an-
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notations for these two verbs. While PropBank labeled the roles of these verbs with its
limited set of tags, the frame-semantic parse labels the frames’ arguments with specific
roles shown in the figure, making it immediately clear what those arguments mean. For
example, for the INTENTIONALLY CREATE frame, “more than 1.2 million jobs” is the Cre-
ated entity, and “In that time” is the Time when the jobs were created. FrameNet also al-
lows non-verbal words and phrases to evoke semantic frames. As an example, the nom-
inal “million” in the sentence evokes the frame CARDINAL NUMBERS, and uses “jobs” as
the Entity role, that is enumerated by the cardinal number, “1.2” serves as the argument
filling the Multiplier role and “more than” satisfies the Precision role. FrameNet goes be-
yond other annotation projects like NomBank (Meyers et al., 2004) that focus on nouns
in that it even allows adjectives, adverbs and prepositions to evoke frames. Finally, sim-
ilar words and phrases are grouped together under a semantic frame in this lexicon and
both frames and roles are organized in a hierarchy to provide itself a structure unlike
PropBank, which does not relate words or phrases.

Most of early work on frame-semantic parsing has made use of the exemplar sen-
tences in the FrameNet corpus (see §5.1.1), each of which is annotated for a single frame
and its arguments. Gildea and Jurafsky (2002) presented a discriminative model for
arguments given the frame; Thompson et al. (2003) used a generative model for both
the frame and its arguments; and Fleischman et al. (2003) first used maximum entropy
models to find and label arguments given the frame. Shi and Mihalcea (2004) devel-
oped a rule-based system to predict frames and their arguments in text, and Erk and
Padó (2006) introduced the Shalmaneser tool, which employs Naı̈ve Bayes classifiers to
do the same. Other FrameNet SRL systems (Giuglea and Moschitti, 2006, for instance)
have used SVMs. Most of this work was done on an older, smaller version of FrameNet,
containing around 300 frames and less than 500 unique semantic roles. Unlike this body
of work, we experimented with the larger SemEval 2007 shared task dataset, and also
the newer FrameNet v. 1.5,2 which lists 877 frames and 1068 role types, thus handling
many more labels, and resulting in richer frame-semantic parses.

Recent work in frame-semantic parsing—in which sentences may contain multiple
frames which need to be recognized along with their arguments—has been first un-
dertaken during the SemEval’07 task 19 of frame-semantic structure extraction (Baker
et al., 2007), and is a focus of this thesis. This task leveraged FrameNet v. 1.3, and also
released a small corpus containing a little more than 2000 sentences with full text anno-
tations. The LTH system of Johansson and Nugues (2007), which we use as our baseline
(§5.1.4), had the best performance in the SemEval’07 task in terms of full frame-semantic
parsing. Johansson and Nugues (2007) broke down the task as identifying targets that
could evoke frames in a sentence, identifying the correct semantic frame for a target,
and finally determining the arguments that fill the semantic roles of a frame. They used

2Available at http://framenet.icsi.berkeley.edu as of May 18, 2012.
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a series of SVMs to classify the frames for a given target, associating unseen lexical items
to frames and identifying and classifying token spans as various semantic roles. Both
the full text annotation corpus as well as the FrameNet exemplar sentences were used
to train their models. Unlike Johansson and Nugues, we use only the full text anno-
tated sentences as training data and model the whole problem with only two statistical
models. Our system results in significantly better overall parsing scores. We also model
the argument identification problem (or semantic role labeling) using a joint structure
prediction model; furthermore semi-supervised learning is used to improve predicate
coverage. We also present experiments on recently released FrameNet 1.5 data.

Among other work based on FrameNet, Matsubayashi et al. (2009) investigated var-
ious uses of relations in the FrameNet taxonomy for learning generalizations over roles;
they trained a log-linear model on the SemEval’07 data to evaluate features for the sub-
task of argument identification. Another line of work has sought to extend the cover-
age of FrameNet by exploiting VerbNet and WordNet (Shi and Mihalcea, 2005; Giuglea
and Moschitti, 2006; Pennacchiotti et al., 2008), and projecting entries and annotations
within and across languages (Boas, 2002; Fung and Chen, 2004; Padó and Lapata, 2005b;
Fürstenau and Lapata, 2009b). Others have explored the application of frame-semantic
structures to tasks such as information extraction (Moschitti et al., 2003; Surdeanu et al.,
2003), textual entailment (Burchardt, 2006; Burchardt et al., 2009), question answering
(Narayanan and Harabagiu, 2004; Shen and Lapata, 2007), and paraphrase recognition
(Padó and Erk, 2005).

2.2.3 Semi-Supervised Methods

Although there has been a significant amount of work in supervised shallow seman-
tic parsing using both PropBank- and FrameNet-style representations, improvements
over vanilla supervised methods by using unlabeled data have not been very common.
Fürstenau and Lapata (2009b) present a method of projecting predicate-argument struc-
tures from some seed examples to unlabeled sentences, and use a linear program for-
mulation to find the best alignment explaining the projection. Next, the projected infor-
mation as well as the seeds are used to train statistical model(s) for SRL. The authors
ran experiments using a set of randomly chosen verbs from the exemplar sentences of
FrameNet and found improvements over supervised methods. In an extension to this
work, Fürstenau and Lapata (2009a) present a method for finding examples for unseen
verbs using a graph alignment method; this method represents sentences and their syn-
tactic analysis as graphs and graph alignment is used to project annotations from seed
examples to unlabeled sentences. This alignment problem is again modeled as a linear
program. Although this line of work presents a novel direction in the area of SRL, the
work does not deal with non-verbal predicates, and does not evaluate the presented
methods on the full-text annotations of the FrameNet release. Hence, it is difficult to
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measure its efficacy over state-of-the-art systems, such as the ones participating in the
SemEval 2007 shared task.

Deschacht and Moens (2009) present a technique of incorporating additional infor-
mation from unlabeled data by using a latent words language model. Latent variables
are used to model the underlying representation of words, and parameters of this model
are estimated using standard unsupervised methods. Next, the latent information is
used as features for an SRL model. Improvements over supervised SRL techniques are
observed with the augmentation of these extra features. The authors also compare their
method with the aforementioned two methods of Fürstenau and Lapata (2009a,b) and
show relative improvements. Experiments are performed on the CoNLL 2008 shared
task dataset (Surdeanu et al., 2008), which follows the PropBank conventions and only
labels verbal and nominal predicates in contrast to our work, where we focus on most
syntactic categories. A similar approach is presented by Weston et al. (2008) who use
neural embeddings of words, which are eventually used for SRL; improvements over
state-of-the-art PropBank style SRL systems are observed.

In our work, we depart from the aforementioned related work in that we strive to
improve the performance of our supervised frame-semantic parser on unseen predi-
cates. We achieve this goal by using a graph-based semi-supervised learning approach
that learns distributions over semantic frames potentially evoked by unknown predi-
cates. These distributions are next used as constraints during inference; the statistical
model used for inference is trained only on supervised data. We evaluate our model
on standard FrameNet full text annotations, using all syntactic categories to which the
FrameNet lexical units belong.

2.2.4 Comparison with Deep Semantic Parsing

In this subsection, we compare the formalism for shallow semantic analysis that we
have adopted in this thesis with deeper semantic parsing formalisms. Automatically
mapping natural language sentences to typed lambda calculus encodings has attracted
interest in the NLP community (Zettlemoyer and Collins, 2005). Combinatory categori-
cal grammar (Steedman, 1996, 2000) has been used in this work as the grammar formal-
ism as it combines both syntax and semantics making use of a compositional semantics
based on lambda calculus. Sophisticated learning techniques result in parsing models
that are used to answer database queries in restricted domains. Zettlemoyer and Collins
(2007) present an extension to this work, where a better learning strategy is adopted, and
the queries are evaluated on a diverse dataset. Recent work in this strain of semantic
parsing research has focused on learning factored lexicons by learning lexemes that pair
words with logical constants and lexical templates, that map lexemes to full lexical items
(Kwiatkowski et al., 2011). This sort of factored learning is intuitive and is analogous to
semantic frames that appear commonly in the SRL literature.
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A parallel line of work has focused on techniques that have not relied on lambda
calculus expressions but dealt with other meaning representations such as CLANG,
which is a formal language used for the RoboCup competitions.3 Another example
is the Geoquery formal language which resembles Prolog but also consists of meta-level
predicates (Zelle and Mooney, 1996). Kate et al. (2005) present a method for inducing
tranformation rules to transform natural language sentences to such logical forms. Ge
and Mooney (2005) present a technique to use phrase-structure syntax trees and asso-
ciate them with meaning representations, which are learned automatically. Statistical
machine translation techniques have also been used to find logical forms for natural
language sentences by using synchronous grammars and alignment techniques popu-
lar in the MT community (Wong and Mooney, 2006, 2007).

Very recently, there has been a focus on the learning logical forms using indirect
supervision. Most often, the indirect set of supervision comes in the form of natural
language questions or queries to a database, and the corresponding answer. Examples
of this line of work are (Clarke et al., 2010) and (Liang et al., 2011). The latter provides
a new dependency based semantic representation which is never explicitly presented
to the system but is learned using indirect supervision in the form of answers gathered
from relational databases. Liang et al. (2011) present experiments with best results on
a question-answering task which previous work has dealt with; however, previous sys-
tems were trained using direct supervision in the form of logical structures paired with
natural language sentences.

There are several advantages of the deep logical structures that the aforementioned
work models. One of the more important advantages is the fact that these representa-
tions provide a global structure over a sentence which models the compositionality of
the individual lexical items’ meanings. Second, they also model logical operators like
negation and quantification, which are essential for natural language inference. Shal-
lower representations such as frame-semantic parses or PropBank-style predicate argu-
ment structures are unable to handle such operators; neither do they provide a global
structure modeling every word of a sentence. However, most of the work involving
deep semantics has focused on extremely narrow domains from which these structures
are learned. These narrow domains lack syntactic and lexical-semantic diversity which
is rampant in unrestricted text such as news, which other NLP applications focus on.
Hence, learning robust deep semantic parsers that work out of the box still remains
a big challenge. The line of work that relies on indirect supervision, e.g. the use of
feedback from a relational database, works under the assumption that such databases
are readily available for a domain, which is usually not the case. Although this research
presents great promise, we are yet to see deep semantic parsers that can be used in other
NLP applications.

3See http://www.robocup.com.

http://www.robocup.com
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Although shallower in comparison to logical forms, frame-semantic parses produce
richer structures than PropBank semantic roles, and model a larger set of predicates.
In our work, we also provide semi-supervised extensions for the handling of unseen
predicates, for further robust coverage. Several NLP applications have started using
such predicate-argument structures because of their wide coverage, a recent example
being modern question-answering systems (Ferrucci et al., 2008) that leverage automatic
semantic role annotations for constraining information retrieval mechanisms that form
these systems’ core (Bilotti et al., 2007).



Chapter 3

Modeling Tools

Here, we describe a set of tools used across the two problems in computational seman-
tics that we address in this thesis. These tools are general, and have been used in a wide
variety of problems in natural language processing. Since they do not integrate into the
two major semantic processing tasks we consider and because these tools appear fre-
quently in the following few chapters, we carve out their description as subsections in
this chapter. §3.1 describes briefly the formalism of dependency grammar, and provides
the notation used for dependency trees in this work. §3.2 explains the basics of log-linear
moels, mentions the use of latent-variables, and optimization methods used for training
them. §3.3 focuses on how MapReduce, a distributed framework for computing, can be
used for data and computation intensive tasks relating to these tools. §3.4 briefly looks
at WordNet and how it is used for our problems.

3.1 Dependency Trees

A dependency tree is a lightweight syntactic representation. Given a sentence, a depen-
dency tree assigns each word a syntactic parent, resulting in a graph with the words
as its nodes, and the syntactic relationships as directed edges. An additional constraint
ensures that the graph is a tree. In Chapter 1, we have already seen a dependency tree
in Figure 1.2.

Figures 3.1 and 3.2 show two more dependency trees. The former is a projective
dependency tree, where arcs cannot cross when they are depicted on one side of the
sentence, while the latter is a non-projective tree where this constraint is not imposed.
We have included a dummy root symbol “$” which serves as the parent to the main
verb of a sentence. Since English is mostly projective, in all our experiments, we use
an implementation of the Eisner algorithm (Eisner, 1996) available in the MST parser

25
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$       Mr.    Thomas    ate    the    cake    with    relish           .

root

Figure 3.1: A projective dependency parse.

$      A    hearing      is      scheduled      on     the     issue    today    .

root

nmod sub
nmod

p

nmod

pmod
vc

vmod

Figure 3.2: A non-projective dependency parse.

(McDonald et al., 2005). However, the publicly available version of the MST parser1

performs parsing and the labeling of arcs jointly. We modified this to perform unlabeled
parsing first, followed by the labeling of arcs using a log-linear classifier (Martins et al.,
2008), which results in better labeled dependency accuracy. We trained it on sections 2–
21 of the WSJ portion of the Penn Treebank, transformed to dependency trees following
Yamada and Matsumoto (2003).

In the following chapters, we denote a dependency graph on a sentence x =
〈x1, ..., xk〉 as τx. Because of the tree constraint, cycles are not allowed in this graph,
and x0 is taken to be the dummy “wall” symbol $, whose only child is the root word of
the sentence (normally the main verb). The tree consists of two mappings. The first is a
mapping of word indices to indices of syntactic parents, τp : {1, ..., k} → {0, ..., k}. The
second is a mapping of indices of words to dependency relation types in L , the possible
set of labels in the dependency grammar. It is defined as τl : {1, ..., k} → L . The set of

1See http://sourceforge.net/projects/mstparser.

http://sourceforge.net/projects/mstparser
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indices of xi’s children to its left is denoted by λx(i) = {j : τx(j) = i, j < i}, and simi-
larly the set of indices of children to its right is denoted by ρx(i) = {j : τx(j) = i, j > i}.
xi has a single parent, denoted by xτp(i). The label for xi is denoted by τl(i). Finally, the
subtree rooted at the ith word by τx,i.

3.2 Log-linear Models

Log-linear models (Berger, 1996) have been commonly used in natural language pro-
cessing during the past two decades across a wide range of problems. A log-linear
model defines a probability distribution over observation/label pairs (x, y) ∈ X × Y as
follows:

pθ(x, y) =
expθ>f(x, y)∑

x′,y′

expθ>f(x′, y′)
(3.1)

Equation 3.1 defines a joint distribution over the observations x and the labels y. Often,
we prefer a conditional distribution, where we assume the observations as given, and
we model the probability the labels:

pθ(y | x) =
expθ>f(x, y)∑

y′

expθ>f(x, y′)
(3.2)

The denominator in each of the two equations above is called the partition function. In
the equations, f : X×Y → Rd denotes a feature vector, and θ ∈ Rd are model parameters
estimated from data.

Given training data
〈
〈x(i), y(i)〉

〉N
i=1

, parameter estimation of a conditional model as
in Equation 3.2 is frequently done using maximum a posteriori (MAP) estimation:

θ∗ = max
θ

L(θ)− C‖θ‖22 (3.3)

where,

L(θ) =

N∑

i=1

log pθ(y(i) | x(i)) (3.4)

In Equation 3.3, the term C‖θ‖22, denotes a regularization term that prevents overfitting
on the training data, and equates to a Gaussian prior distribution over the parameter
space. This specific case is referred to as L2 regularization as it takes the L2 norm of the
parameters, and other forms of regularization can be performed to get certain desired
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model properties. The hyperparameterC is often tuned over a development set or cross-
validation is performed to get an optimal value.

In our work, the maximization procedure in Equation 3.3, is done using gradient-
based methods. We employ a numerical batch optimization technique called L-BFGS
(Liu and Nocedal, 1989) for a few problems, as well as a stochastic minibatch algorithm
called stochastic gradient descent (Bottou, 2003). Both require us to compute the gra-
dient of L(θ) with respect to the parameter vector. For the model expressed in Equa-
tion 3.2, the partial derivative of L(θ) with respect to one dimension θm of θ is:

∂L

∂θm
=

N∑

i=1

(
fm(x(i), y(i))− Epθ(Y |x(i))[fm(x(i), Y ]

)
(3.5)

In other words, it is the difference of themth feature’s value in the data and the expected
value of the same feature for all possible labels given an observation, under the condi-
tional distribution. This kind of model estimation is also referred to as discriminative
training.

Log-linear models are elegant probabilistic models in that they are capable of mod-
eling overlapping features. Straightforward models like Equation 3.2 are also amenable
to extensions with latent variables. For example, if we want to model unobserved latent
variables z in our model, it can be expressed as:

pθ(y | x) =
∑

z

pθ(y, z | x)

=

∑

z

expθ>f(x, y, z)

∑

y′,z′

expθ>f(x, y′, z′)
(3.6)

Here, we are marginalizing out the unobserved latent variables z. Latent variable mod-
eling is useful in many NLP problems. To cite an example, if x denotes a sentence, and
we want to model the a phrase-structure tree y from the Penn Treebank, we may assume
that there is a finer latent variable syntactic tree z, which is unobserved but can explain
the sentence better. Petrov and Klein (2008) presented such a framework that resulted
in better scores for the phrase-structure parsing task. While inference, such a model can
be used to produce Viterbi labeling as a by-product to show interesting latent structure.
This can be done as:

〈ŷ, ẑ〉 = argmax
y,z

pθ(y, z | x) (3.7)

We will investigate two probabilistic models in the following chapters that use latent
variables to model unobserved phenomenon in supervised data. Notice that the pa-
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rameter estimation procedure for a latent-variable log-linear model changes from Equa-
tion 3.3:

θ∗ = max
θ

N∑

i=1

log
∑

z

pθ(y(i), z | x(i))
︸ ︷︷ ︸

L′(θ)

−C‖θ‖22 (3.8)

The summation inside the log makes this function non-convex; in our work, irrespective
of the possibility of settling on local minima, we use L-BFGS to train our latent-variable
models. Previous work in natural language processing have used the same technique
to train latent-variable models with success (Wang et al., 2007; Petrov and Klein, 2008).
For this objective, The partial derivative form expressed in Equation 3.5 changes to:

∂L′

∂θm
=

N∑

i=1

(
Epθ(y(i),Z|x(i))[fm(x(i), yi, Z]− Epθ(Y,Z|x(i))[fm(x(i), Y, Z]

)
(3.9)

Thus the derivative now is a difference of two expectation terms. Under the conditional
distribution of y, z given x, the first term is the expected value of the mth feature among
all latent variables with the correct training label, and the second term is the expected
value of the same feature among all latent variables and all labels.

3.3 Distributed Computing for Parameter Estimation

Often, gathering statistics such as derivatives for gradient based optimization or ex-
pected counts for algorithms such as Expectation-Maximization is a computationally
expensive operation. In other cases, the total number of training examples is so large
that gathering statistics for the entire dataset becomes expensive. Moreover, such op-
timization techniques are iterative and are run till convergence or a large number of
iterations. Experimentation with different sets of features often becomes prohibitively
slow for such large models. In our experiments, whenever we encounter either data-
intensive or computation-intensive training tasks, we resort to parallelizing the opti-
mization procedure using a large-scale computing framework called MapReduce (Dean
and Ghemawat, 2008).

MapReduce has a very straightforward architecture. Data is provided to a MapRe-
duce job in the form of key-value pairs. These key-value pairs are divided across a
number of machines. Each map task receives a chunk of key-value pairs, and iterates
over each one of them. Every key-value pair in one map task is processed to result in
another form of key-value pair(s). These output key-value pairs from the map tasks are
sorted and grouped on the basis of the keys. Next, these are divided among a number of
reduce tasks. Each reduce task receives several keys, with each key associated with all
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its values. The reduce task then iterates over each key, and performs an operation with
its values. This operation results in a final key-value pair. At the end of the pipeline, a
set of unique keys with corresponding values are produced as output.

Every iteration of an optimization procedure can be easily parallelized using a
MapReduce task. Figure 3.3 shows a prototypical example of how this can be done:

1. The set of training examples
〈
〈x(i), y(i)〉

〉N
i=1

is divided among M map tasks, each
getting a chunk of training examples, and the parameter vector θ.

2. Map task m processes the mth chunk, and produces key-value pairs of the form〈
〈d, ∂md 〉

〉D
d=1

, where d is a dimension of the parameter vector, and ∂md is a partial

derivative of the log-likelihood of this data chunk, with respect to the dth param-
eter. This partial can be substituted with expected counts if the procedure is the
EM algorithm.

3. The partitioner/sorter sorts, groups and partitions these key-value pairs such that
they are divided amongst R reducers, each getting a bunch of keys along with

associated values of the form
〈
〈d, {∂1d , . . . ∂Md }〉

〉r2
d=r1

.

4. Each reducer next sums up these partial derivatives and outputs the total partial

derivative for the entire training set, of the form
〈
〈d, ∂d〉

〉r2
d=r1

. This summation

can be substituted by the M-step for the EM algorithm.

5. A concatenation of the outputs from the reducers produces ∇θL, which is the
derivative of the training set log-likelihood.

The above procedure can speed up training by several orders of magnitude, ease
the experimentation process and enable swift feature engineering. We make use of the
Hadoop architecture (White, 2009) as well as the MPI architecture (Gropp et al., 1994) to
implement the above procedure for our experiments. Note that the MPI implementation
does not use Step 3, the partitioning/sorting step for standard MapReduce implemen-
tations like Hadoop.2

To run L-BFGS (Liu and Nocedal, 1989) on such a parallel architecture (either
Hadoop or MPI), we compute the partial derivatives as well as the objective func-
tion’s value using the five steps enumerated above using several worker processes in
a MapReduce fashion.3 Once the objective and the partial derivatives are computed,

2See http://hadoop.apache.org/.
3Note that the objective function can be computed in a very straightforward fashion along with the

partial derivatives, by using an extra key, with its value being the objective function’s magnitude for a
single chunk.

http://hadoop.apache.org/
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an L-BFGS step is taken in a master node and the new parameter values are computed.
These new parameters are then used to compute the objective and the partial derivatives
again in a distributed fashion. This iterative procedure continues until convergence or
a fixed number of iterations.

3.4 WordNet

In our models, WordNet (Fellbaum, 1998) has been used as a lexical resource. We use the
WordNet lexical database for the sole purpose of finding possible lexical and semantic
relationships between two words, without considering their part-of-speech information.
These relationships, often asymmetric, are enumerated below and are used as features
in log-linear models:

1. IDENTICAL WORD: This relationship is self explanatory. It holds only when two
words are identical.

2. SYNONYM: This relationship holds when two words are synonyms of each other
according to the WordNet database. Example WordNet synonyms of each other
are “death” and “demise.”

3. ANTONYM: This relationship holds when two words convey opposite meanings,
e.g. “death” and “birth.”

4. HYPERNYM: A word’s hypernym is one which is more generic. For example, a
hypernym of “clatter” is “noise.”

5. HYPONYM: Hyponym is the exact opposite of hypernym. A hyponym of “die” is
“asphyxiate,” because to asphyxiate is more specific than to die.

6. DERIVED FORM: A derived form is a lexical relationship between two words and
it holds if the second word is the lexical root of the first. For example, “probably”
is a derived form of “probable.”

7. MORPHOLOGICAL VARIATION: A set of morphological variants of a verb consists
of inflected forms of it, e.g. “passed” is a morphological variation of ”pass.”

8. VERB GROUP: The verb group relation is a symmetric relationship between two
semantically related verbs. An example pair is “collaborate” and “cooperate.”

9. ENTAILMENT: The entailment relationship holds between two words if the first
word implies the second word. For example, “snore” implies “sleep.”
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10. SEE ALSO: This a semantic relationship between adjectives, which connects similar
adjectives, but not exactly interchangeable ones, e.g. “different” and “incompati-
ble.”

11. CAUSAL RELATION: This is a relationship between two words when the second is
caused by the first, e.g. “age” and “mature.”

The tools presented in this chapter have been used pervasively in the following chap-
ters. We use dependency trees produced by our implementation of the MST parser
(McDonald et al., 2005; Martins et al., 2008) in the paraphrase identification problem
(see §4.2.2) and for sentence preprocessing for the frame-semantic parsing problem (see
§5.1.2) for deriving syntactic features. Log-linear models are used in the paraphrase
problem (see §4.2.4) and for supervised modeling of the frame-semantic parsing prob-
lem (see §5.3.2 and §5.4.1). WordNet is also used in both problems – for the paraphrase
problem, it is used to derive features for a lexical semantic transformation log-linear
model (see §4.2.4) and in features for frame identification (see §5.3.2). Finally, paral-
lel computation of statistics for training our models have been used in all our learning
scenarios (see §4.2.6, §5.3.3, §5.4.2 and §6.2).
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Figure 3.3: Parallelizing one iteration of gradient-based optimization.



Chapter 4

Paraphrase Identification

In this chapter, we focus on the task of paraphrase identification, and present a novel
method for recognizing paraphrases. The described work has been originally presented
in Das and Smith (2009). The problem of modeling paraphrase relationships between
natural language utterances has recently attracted interest. For computational linguists,
solving this problem may shed light on how best to model the semantics of sentences.
For natural language engineers, the problem bears on information management systems
like abstractive summarizers that must measure semantic overlap between sentences
(Barzilay and Lee, 2003), question answering modules (Marsi and Krahmer, 2005) and
machine translation (Callison-Burch et al., 2006).

The paraphrase identification problem asks whether two sentences have essentially
the same meaning. Although paraphrase identification is defined in semantic terms, it
is usually solved using statistical classifiers based on shallow lexical, n-gram, and syn-
tactic “overlap” features. Such overlap features give the best-published classification
accuracy for the paraphrase identification task (Zhang and Patrick, 2005; Finch et al.,
2005; Wan et al., 2006; Corley and Mihalcea, 2005, inter alia, see Chapter 2 for more de-
tails), but do not explicitly model correspondence structure (or “alignment”) between
the parts of two sentences. In our work, we adopt a model that posits correspondence
between the words in the two sentences, defining it in loose syntactic terms: if two sen-
tences are paraphrases, we expect their dependency trees to align closely, though some
divergences are also expected, with some more likely than others. Following Smith and
Eisner (2006), we adopt the view that the syntactic structure of sentences paraphrasing
some sentence s should be “inspired” by the structure of s.

Because dependency syntax is still only a crude approximation to semantic structure,
we augment the model with a lexical semantics component, based on WordNet, that
models how words are probabilistically altered in generating a paraphrase. This combi-
nation of loose syntax and lexical semantics is similar to the “Jeopardy” model of Wang

34
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et al. (2007).
This syntactic framework represents a major departure from useful and popular sur-

face similarity features, and the latter are difficult to incorporate into our probabilistic
model. Therefore, we use a product of experts (Hinton, 2002) to bring together a lo-
gistic regression classifier built from n-gram overlap features and our syntactic model.
This combined model leverages complementary strengths of the two approaches, out-
performing a strong state-of-the-art baseline (Wan et al., 2006). We also compare our
results with recently published work by Chang et al. (2010) and Socher et al. (2011) who
model the same task and outperform our method by small margins.

The following sections are organized as follows. We introduce our probabilistic
model in §4.1. The model makes use of three quasi-synchronous grammar models
(Smith and Eisner, 2006, QG hereafter) as components (one modeling paraphrase, one
modeling not-paraphrase, and one a base grammar); these are detailed, along with
latent-variable inference and discriminative training algorithms, in §4.2. We discuss the
Microsoft Research Paraphrase Corpus, upon which we conduct experiments, in §4.3.
In §4.4, we present experiments on paraphrase identification with our model and make
comparisons with the existing state-of-the-art. We describe the product of experts and
our lexical overlap model, and discuss the results achieved in §4.5. Finally, we conclude
with a discussion in §4.6.

4.1 Probabilistic Model

Since our task is a classification problem, we require our model to provide an estimate of
the posterior probability of the relationship (i.e., “paraphrase,” denoted p, or “not para-
phrase,” denoted n), given the pair of sentences.1 Here, pQ denotes model probabilities,
c is a relationship class (p or n), and s1 and s2 are the two sentences. We choose the class
according to:

ĉ ← argmax
c∈{p,n}

pQ(c | s1, s2)

Using Bayes’ rule, this can be written as:

ĉ ← argmax
c∈{p,n}

pQ(c)× pQ(s1, s2 | c) (4.1)

We define the class-conditional probabilities of the two sentences using the following
generative story. First, grammar G0 generates a sentence s. Then a class c is chosen,
corresponding to a class-specific probabilistic quasi-synchronous grammar Gc. (We will

1Although we do not explore the idea here, the model could be adapted for other sentence-pair relation-
ships like entailment or contradiction.
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discuss QG in detail in §4.2. For the present, consider it a specially-defined probabilistic
model that generates sentences with a specific property, like “paraphrases s,” when
c = p.) Given s, Gc generates the other sentence in the pair, s′.

When we observe a pair of sentences s1 and s2 we do not presume to know which
came first (i.e., which was s and which was s′). Both orderings are assumed to be equally
probable. For class c,

pQ(s1, s2 | c) = 0.5× pQ(s1 | G0)× pQ(s2 | Gc(s1)) +

0.5× pQ(s2 | G0)× pQ(s1 | Gc(s2)) (4.2)

where c can be p or n; Gp(s) is the QG that generates paraphrases for sentence s, while
Gn(s) is the QG that generates sentences that are not paraphrases of sentence s. This
latter model may seem counter-intuitive: since the vast majority of possible sentences
are not paraphrases of s, why is a special grammar required? Our use of a Gn follows
from the properties of the corpus currently used for learning, in which the negative
examples were selected to have high lexical overlap. We return to this point in §4.3.

4.2 QG for Paraphrase Modeling

Here, we turn to the models Gp and Gn in detail.

4.2.1 Background

Smith and Eisner (2006) introduced the quasi-synchronous grammar formalism. Here,
we describe some of its salient aspects. The model arose out of the empirical observation
that translated sentences have some isomorphic syntactic structure, but divergences are
possible. Therefore, rather than an isomorphic structure over a pair of source and target
sentences, the syntactic tree over a target sentence is modeled by a source sentence-
specific grammar “inspired” by the source sentence’s tree. This is implemented by as-
sociating with each node in the target tree a subset of the nodes in the source tree. Since
it loosely links the two sentences’ syntactic structures, QG is well suited for problems
like word alignment (Smith and Eisner, 2006), flexible translation models (Gimpel and
Smith, 2009, 2011), parser projection (Smith and Eisner, 2009), and question answering
(Wang et al., 2007).

Consider a very simple quasi-synchronous context-free dependency grammar that
generates one dependent per production rule.2 Let s = 〈s1, ..., sm〉 be the source sen-

2Our actual model is more complicated; see §4.2.2.
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tence. The grammar rules will take one of the two forms:

〈t, l〉 → 〈t, l〉〈t′, k〉 or
〈t, l〉 → 〈t′, k〉〈t, l〉

where t and t′ range over the vocabulary of the target language, and l and k ∈ {0, ...,m}
are indices in the source sentence, with 0 denoting the null word $.3

Hard or soft constraints can be applied between l and k in a rule. These constraints
imply permissible “configurations.” For example, requiring l 6= 0 and, if k 6= 0 then sk
must be a child of sl in the source tree, we can implement a synchronous dependency
grammar similar to that of Melamed (2004).

Smith and Eisner (2006) used a quasi-synchronous grammar to discover the corre-
spondence between words implied by the correspondence between the trees. We follow
Wang et al. (2007) in treating the correspondences as latent variables, and in using a
WordNet-based lexical semantics model to generate the target words.

4.2.2 Detailed Model

We describe here how our novel approach models pQ(t | Gp(s)) and pQ(t | Gn(s)) for
source and target sentences s and t (appearing in Equation 4.2 alternately as s1 and s2).

Consider two sentences: let the source sentence s contain m words and the target
sentence t contain n words. Let the correspondence a : {1, ..., n} → {0, ...,m} be a
mapping from indices of words in t to indices of words in s. (We require each target
word to map to at most one source word, though multiple target words can map to the
same source word, i.e., a(i) = a(j) while i 6= j.) When a(i) = 0, the ith target word maps
to the wall symbol $. Each of our QGs Gp and Gn generates the alignments a, the target
dependency tree τ t, and the sentence t. Both Gp and Gn are structured in the same way,
differing only in their parameters; henceforth we discuss Gp; Gn is similar.

We assume that the dependency parse trees of s and t are known.4 Therefore our
model defines:

pQ(t | Gp(s)) = p(τ t | Gp(τ s))

=
∑

a p(τ
t, a | Gp(τ s)) (4.3)

Because the QG is essentially a context-free dependency grammar, we can factor it into

3A more general QG could allow one-to-many alignments, replacing l and k with sets of indices.
4In our experiments, we use the MST parser as described in §3.1 to produce dependencies. Though this

assumption of treating the parses as observed leads to a partial “pipeline” approximation of the posterior
probability p(c | s, t), we believe that the relatively high quality of English dependency parsing makes this
approximation reasonable.
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recursive steps as follows (let i be an arbitrary index in {1, ..., n}):

P (τ t,i | ti, a(i), τ s) = pval (|λt(i)|, |ρt(i)| | ti)

×
∏

j∈λt(i)∪ρt(i)

m∑

a(j)=0

P (τ t,j | tj , a(j), τ s)× pkid (tj , τ
t
l (j), a(j) | ti, a(i), τ s)

(4.4)

where pval and pkid are valence and child-production probabilities parameterized as dis-
cussed in §4.2.4. Note the recursion in the second-to-last line.

We next describe a dynamic programming solution for calculating p(τ t | Gp(τ s)). In
§4.2.4 we discuss the parameterization of the model.

4.2.3 Dynamic Programming

Let C(i, l) refer to the probability of τ t,i, assuming that the parent of ti, tτtp(i), is aligned
to sl. For leaves of τ t, the base case is:

C(i, l) = pval (0, 0 | ti)×
m∑

k=0

pkid (ti, τ
t
l (i), k | tτtp(i), l, τ

s)

where k ranges over possible values of a(i), the source-tree node to which ti is aligned.
The recursive case is:

C(i, l) = pval (|λt(i)|, |ρt(i)| | ti)×
m∑

k=0

pkid (ti, τ
t
l (i), k | tτtp(i), l, τ

s)×
∏

j∈λt(i)∪ρt(i)

C(j, k)

(4.5)

We assume that the wall symbols t0 and s0 are aligned, so p(τ t | Gp(τ s)) = C(r, 0),
where r is the index of the root word of the target tree τ t. It is straightforward to show
that this algorithm requires O(m2n) runtime and O(mn) space.

4.2.4 Parameterization

The valency distribution pval in Equation 4.4 is estimated in our model using the depen-
dency trees converted from the phrase-structure trees of the Penn Treebank, following
Yamada and Matsumoto (2003). For unobserved cases, the conditional probability is
estimated by backing off to the parent POS tag and child direction.

We discuss next how to parameterize the probability pkid that appears in Equa-
tions 4.4, 4.5, and 4.5. This conditional distribution forms the core of our QGs, and
we deviate from earlier research using QGs in defining pkid in a fully generative way.
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In addition to assuming that dependency parse trees for s and t are observable, we
also assume each word wi comes with POS and named entity tags. In our experiments
these were obtained automatically using MXPOST (Ratnaparkhi, 1996) and BBN’s Iden-
tifinder (Bikel et al., 1999).

For clarity, let j = τ tp(i) and let l = a(j).

pkid(ti, τ
t
l (i), a(i) | tj , l, τ s) =

pconfig(config(ti, tj , sa(i), sl) | tj , l, τ s) (4.6)
×punif (a(i) | config(ti, tj , sa(i), sl)) (4.7)

×plab(τ tl (i) | config(ti, tj , sa(i), sl)) (4.8)
×ppos(pos(ti) | pos(sa(i))) (4.9)
×pne(ne(ti) | ne(sa(i))) (4.10)
×plsrel (lsrel(ti) | sa(i)) (4.11)
×pword (ti | lsrel(ti), sa(i)) (4.12)

We consider each of the factors above in turn.

Configuration In QG, “configurations” refer to the tree relationship among source-tree
nodes (above, sl and sa(i)) aligned to a pair of parent-child target-tree nodes (above, tj
and ti). In deriving τ t,j , the model first chooses the configuration that will hold among
ti, tj , sa(i) (which has yet to be chosen), and sl (line 4.6). This is defined for configuration
c log-linearly by:5

pconfig(c | tj , l, τ s) =
αc∑

c′:∃sk,config(ti,tj ,sk,sl)=c′

αc′
(4.13)

Permissible configurations in our model are shown in Table 4.1. These are identical to
prior work (Smith and Eisner, 2006; Wang et al., 2007), except that we add a “root” con-
figuration that aligns the target parent-child pair to null and the head word of the source
sentence, respectively. Using many permissible configurations helps remove negative
effects from noisy parses, which our learner treats as evidence. Figure 4.1 shows some
examples of major configurations that Gp discovers in the data.

Source tree alignment After choosing the configuration, the specific node in τ s that ti
will align to, sa(i) is drawn uniformly (line 4.7) from among those in the configuration

5We use log-linear models three times: for the configuration, the lexical semantics class, and the word.
Each time, we are essentially assigning one weight per outcome and renormalizing among the subset of
outcomes that are possible given what has been derived so far.
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selected.

Dependency label, POS, and named entity class The newly generated target word’s
dependency label, POS, and named entity class are drawn from multinomial distribu-
tions plab , ppos , and pne that condition, respectively, on the configuration and the POS
and named entity class of the aligned source-tree word sa(i) (lines 4.8–4.10).

WordNet relation(s) The model next chooses a lexical semantics relation between sa(i)
and the yet-to-be-chosen word ti (line 4.11). Following Wang et al. (2007),6 we employ a
13-feature log-linear model over all logically possible combinations of the 11 WordNet
relations described in §3.4 as well as two more additional relations: whether the two
words are same and is a number, and no relation. Similarly to Equation 4.13, we nor-
malize this log-linear model based on the set of relations that are non-empty in WordNet
for the word sa(i).

Word Finally, the target word is randomly chosen from among the set of words that
bear the lexical semantic relationship just chosen (line 4.12). This distribution is, again,
defined log-linearly:

pword (ti | lsrel(ti) = R, sa(i)) =
αti∑

w′:sa(i)Rw′ αw′
(4.14)

Here αw is the Good-Turing unigram probability estimate of a word w from the Giga-
word corpus (Graff, 2003).

4.2.5 Base Grammar G0

In addition to the QG that generates a second sentence bearing the desired relationship
(paraphrase or not) to the first sentence s, our model in §4.1 also requires a base grammar
G0 over s.

We view this grammar as a trivial special case of the same QG model already de-
scribed. G0 assumes the empty source sentence consists only of a single wall node.
Thus every word generated under G0 aligns to null, and we can simplify the dynamic
programming algorithm that scores a tree τ s under G0:

C ′(i) = pval (|λt(i)|, |ρt(i)| | si)
×plab(τ tl (i))× ppos(pos(ti))× pne(ne(ti))

×pword(ti)×
∏
j:τt(j)=iC

′(j) (4.15)

6Note that Wang et al. (2007) designed pkid as an interpolation between a log-linear lexical semantics
model and a word model. Our approach is more fully generative.
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Configuration Description
parent-child τ sp (a(i)) = a(j), appended with τ sl (a(i))

child-parent a(i) = τ sp (a(j)), appended with τ sl (a(j))

grandparent-
grandchild

τ sp (τ sp (a(i))) = a(j), appended with τ sl (a(i))

siblings τ sp (a(i)) = τ sp (a(j)), a(i) 6= a(j)

same-node a(i) = a(j)

c-command the parent of one source-side word is an ancestor of the other
source-side word

root a(j) = 0, a(i) is the root of s

child-null a(i) = 0

parent-null a(j) = 0, a(i) is something other than root of s

other catch-all for all other types of configurations, which are per-
mitted

Table 4.1: Permissible configurations. i is an index in t whose configuration is to be
chosen; j = τ tp(i) is i’s parent.

where the final product is 1 when ti has no children. It should be clear that p(s | G0) =
C ′(0).

We estimate the distributions over dependency labels, POS tags, and named entity
classes using the transformed treebank (footnote 4). The distribution over words is taken
from the Gigaword corpus (as in §4.2.4).

It is important to note that G0 is designed to give a smoothed estimate of the proba-
bility of a particular parsed, named entity-tagged sentence. It is never used for parsing
or for generation; it is only used as a component in the generative probability model
presented in §4.1 (Equation 4.2).

4.2.6 Discriminative Training

Given training data
〈
〈s(i)1 , s

(i)
2 , c(i)〉

〉N
i=1

, we train the model discriminatively by maxi-
mizing regularized conditional likelihood (see §3.2). Let θ represent the set of model
parameters to be learned. θ includes the class priors, the conditional distributions of
the dependency labels given the various configurations, the POS tags given POS tags,
the NE tags given NE tags appearing in expressions 4.8–4.10, the configuration weights
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Figure 4.1: Some example configurations from Table 4.1 that Gp discovers in the
dev. data. Directed arrows show head-modifier relationships, while undirected lines
show alignments.

appearing in Equation 4.13, and the weights of the various features in the log-linear
model for the lexical-semantics model. As noted, the distributions pval , the word uni-
gram weights in Equation 4.14, and the parameters of the base grammar are fixed using
the treebank (see §4.2.4) and the Gigaword corpus.

Let the conditional probability of each training example’s class, given the two sen-



4.3. DATA AND TASK 43

About 120 potential jurors were being asked to complete a lengthy questionnaire . 

The jurors were taken into the courtroom in groups of 40 and asked to fill out a questionnaire .

Figure 4.2: Discovered alignment of Example 5.13 produced by Gp. Observe that the
model aligns identical words and also “complete” and “fill” in this specific case. This
kind of alignment provides an edge over a simple lexical overlap model.

tences be expressed by pQ(c(i) | s
(i)
1 , s

(i)
2 ,θ). Note that Equation 4.2 relates this condi-

tional probability to G0, Gp and Gn. The discriminative training criterion maximizes the
following criterion:

max
θ

N∑

i=1

log pQ(c(i) | s(i)1 , s
(i)
2 ,θ)− C‖θ‖22 (4.16)

Since there is a hidden variable (a), the objective function is non-convex (see §3.2). We
locally optimize using the L-BFGS quasi-Newton method. Because many of our param-
eters are multinomial probabilities that are constrained to sum to one and L-BFGS is not
designed to handle constraints, we treat these parameters as unnormalized weights that
get renormalized (using a softmax function) before calculating the objective. Training is
performed using MapReduce on 20 CPUs (see §3.3 for more details).

4.3 Data and Task

In our experiments, we have used the Microsoft Research Paraphrase Corpus (Dolan
et al., 2004; Quirk et al., 2004). The corpus contains 5,801 pairs of sentences that have
been marked as “equivalent” or “not equivalent.” It was constructed from thousands of
news sources on the web. Dolan and Brockett (2005) remark that this corpus was cre-
ated semi-automatically by first training an SVM classifier on a disjoint annotated 10,000
sentence pair dataset and then applying the SVM on an unseen 49,375 sentence pair cor-
pus, with its output scores skewed towards over-identification, i.e., towards generating
some false paraphrases. 5,801 out of these 49,375 pairs were randomly selected and pre-
sented to human judges for refinement into true and false paraphrases. 3,900 of the pairs
were marked as having “mostly bidirectional entailment,” a standard definition of the
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paraphrase relation. Each sentence was labeled first by two judges, who averaged 83%
agreement, and a third judge resolved conflicts. Note that this agreement percentage
accounts for both true and false paraphrases.

We use the standard data split into 4,076 (2,753 paraphrase, 1,323 not) training and
1,725 (1147 paraphrase, 578 not) test pairs. We reserved a randomly selected 1,075 train-
ing pairs for tuning. We cite some examples from the training set here:

(4.17) Revenue in the first quarter of the year dropped 15 percent from the same period
a year earlier.
With the scandal hanging over Stewart’s company, revenue in the first quarter of
the year dropped 15 percent from the same period a year earlier.

(4.18) About 120 potential jurors were being asked to complete a lengthy
questionnaire.
The jurors were taken into the courtroom in groups of 40 and asked to fill out a
questionnaire.

Example 4.17 is a true paraphrase pair. Notice the high lexical overlap between the two
sentences (unigram overlap of 100% in one direction and 72% in the other). Example 4.18
is another true paraphrase pair with much lower lexical overlap (unigram overlap of
50% in one direction and 30% in the other). Notice the use of similar-meaning phrases
and irrelevant modifiers that retain the same meaning in both sentences, which a lexical
overlap model cannot capture easily, but a model like a QG might. Also, in both pairs,
the relationship cannot be called total bidirectional equivalence because there is some
extra information in one sentence which cannot be inferred from the other.

Example 4 was labeled “not paraphrase”:

(4.19) “There were a number of bureaucratic and administrative missed signals -
there’s not one person who’s responsible here,” Gehman said.
In turning down the NIMA offer, Gehman said, “there were a number of
bureaucratic and administrative missed signals here.

There is significant content overlap (unigram overlap of 65% in one direction and 100%
in the other), making a decision difficult for a naı̈ve lexical overlap classifier. (In fact,
our model pQ labels this example n while the lexical overlap models label it p.)

The fact that negative examples in this corpus were selected because of their high
lexical overlap is important. It means that any discriminative model is expected to learn
to distinguish mere overlap from paraphrase. This seems appropriate, but it does mean
that the “not paraphrase” relation ought to be denoted “not paraphrase but deceptively
similar on the surface.” It is for this reason that we use a special QG for the n relation.
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4.4 Experimental Evaluation

Here we present our experimental evaluation using pQ. We trained on the training set
(3,001 pairs) and tuned model metaparameters (C in Equation 4.16) and the effect of
different feature sets on the development set (1,075 pairs). We report accuracy on the
official MSRPC test dataset. If the posterior probability pQ(p | s1, s2) is greater than 0.5,
the pair is labeled “paraphrase” (as in Equation 4.1).

4.4.1 Comparison with Other Models

For comparison with other methods that have attempted to model the same task, first,
we replicated a state-of-the-art baseline model for comparison. Wan et al. (2006) re-
port a high accuracy model using a support vector machine. Thus, our baseline is a
reimplementation of (Wan et al., 2006), using features calculated directly from s1 and s2
without recourse to any hidden structure: proportion of word unigram matches, pro-
portion of lemmatized unigram matches, BLEU score (Papineni et al., 2001), BLEU score
on lemmatized tokens, F measure (Turian et al., 2003), difference of sentence length,
and proportion of dependency relation overlap. The SVM was trained to classify pos-
itive and negative examples of paraphrase using SVMlight (Joachims, 1999).7 Metapa-
rameters, tuned on the development data, were the regularization constant and the de-
gree of the polynomial kernel (chosen in [10−5, 102] and 1–5 respectively.). Our repli-
cation of the Wan et al. model is approximate, because we used different preprocessing
tools: MXPOST for POS tagging (Ratnaparkhi, 1996), MST parser for parsing (McDon-
ald et al., 2005, See §3.1), and Dan Bikel’s interface (See http://www.cis.upenn.
edu/˜dbikel/software.html#wn) to WordNet (Fellbaum, 1998) for lemmatization
information. Tuning led to C = 17 and polynomial degree 4.

It is unsurprising that the SVM performs very well on the MSRPC because of the
corpus creation process (see Sec. 4.3) where an SVM was applied as well, with very
similar features and a skewed decision process (Dolan and Brockett, 2005).

We also compare our results with the model of Chang et al. (2010), named as learn-
ing constrained latent representations (LCLR), who presented a method for paraphrase
identification and also model latent alignments. Our final comparison is with the recur-
sive auto-encoders (RAE) method of Socher et al. (2011). For both these methods, we
make direct comparison with respective authors’ reported results.

7http://svmlight.joachims.org

http://www.cis.upenn.edu/~dbikel/software.html#wn
http://www.cis.upenn.edu/~dbikel/software.html#wn
http://svmlight.joachims.org
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Model Accuracy Precision Recall

other models
all p 66.49 66.49 100.00
Wan et al. (2006) – reported 75.63 77.00 90.00
Wan et al. (2006) – replication 75.42 76.88 90.14
Chang et al. (2010) – reported 76.41 - -
Socher et al. (2011) – reported 76.80 - -

pQ

lexical semantics features removed 68.64 68.84 96.51
all features 73.33 74.48 91.10
c-command disallowed (best; see text) 73.86 74.89 91.28

§4.5
pL 75.36 78.12 87.44
product of experts 76.06 79.57 86.05

oracles
Wan et al. SVM and pL 80.17 100.00 92.07
Wan et al. SVM and pQ 83.42 100.00 96.60
pQ and pL 83.19 100.00 95.29

Table 4.2: Accuracy, p-class precision, and p-class recall on the test set (N = 1,725). See text for differences in
implementation between Wan et al. and our replication; their reported score does not include the full test set.
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4.4.2 Results

Table 4.2 shows performance achieved by the baseline SVM and variations on pQ on
the test set. We performed a few feature ablation studies, evaluating on the develop-
ment data. We removed the lexical semantics component of the QG,8 and disallowed
the syntactic configurations one by one, to investigate which components of pQ con-
tributes to system performance. The lexical semantics component is critical, as seen by
the drop in accuracy from the table (without this component, pQ behaves almost like the
“all p” baseline). We found that the most important configurations are “parent-child,”
and “child-parent” while damage from ablating other configurations is relatively small.
Most interestingly, disallowing the “c-command” configuration resulted in the best ab-
solute accuracy, giving us the best version of pQ. The c-command configuration allows
more distant nodes in a source sentence to align to parent-child pairs in a target (see
Figure 4.1d). Allowing this configuration guides the model in the wrong direction,
thus reducing test accuracy. We tried disallowing more than one configuration at a
time, without getting improvements on development data. We also tried ablating the
WordNet relations, and observed that the “identical-word” feature hurt the model the
most. Ablating the rest of the features did not produce considerable changes in accuracy.

The development data-selected pQ achieves higher recall by 1 point than Wan et al.’s
SVM, but has precision 2 points worse. We also come close to the LCLR method which
does not model the problem as a monolingual translation scenario, but models hidden
alignments using a constrained discriminative model.

4.4.3 Discussion

It is quite promising that a linguistically-motivated probabilistic model comes so close
to a string-similarity baseline, without incorporating string-local phrases. We see sev-
eral reasons to prefer the more intricate QG to the straightforward SVM. First, the QG
discovers hidden alignments between words. Alignments have been leveraged in re-
lated tasks such as textual entailment (MacCartney and Manning, 2007, inter alia); they
make the model more interpretable in analyzing system output (e.g., Figure 4.2). Sec-
ond, the paraphrases of a sentence can be considered to be monolingual translations.
We model the paraphrase problem using a direct machine translation model, thus pro-
viding a translation interpretation of the problem. This framework could be extended
to permit paraphrase generation, or to exploit other linguistic annotations, such as repre-
sentations of semantics (see, e.g., Qiu et al., 2006).

Nonetheless, the usefulness of surface overlap features is difficult to ignore. The

8This is accomplished by eliminating lines 4.11 and 4.12 from the definition of pkid and redefining pword

to be the unigram word distribution estimated from the Gigaword corpus, as in G0, without the help of
WordNet.
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RAE model of Socher et al. (2011) model (which achieves the best accuracy scores as
shown in Table 4.2) both syntax and lexical overlap between the two given sentences in
neural network model, and find benefits in terms of identification accuracy. Since our
QG-based model cannot model lexical overlap directly, we next provide an efficient way
to combine a surface model with pQ.

4.5 Product of Experts

Incorporating structural alignment and surface overlap features inside a single model
can make exact inference infeasible. As an example, consider features like n-gram over-
lap percentages that provide cues of content overlap between two sentences. One in-
tuitive way of including these features in a QG could be including these only at the
root of the target tree, i.e. while calculating C(r, 0). These features have to be included
in estimating pkid, which has log-linear component models (Equation 4.6- 4.12). For
these bigram or trigram overlap features, a similar log-linear model has to be normal-
ized with a partition function, which considers the (unnormalized) scores of all possible
target sentences, given the source sentence.

We therefore combine pQ with a lexical overlap model that gives another posterior
probability estimate pL(c | s1, s2) through a product of experts (PoE; Hinton, 2002):

pJ(c | s1, s2) =
pQ(c | s1, s2)× pL(c | s1, s2)∑

c′∈{p,n}

pQ(c′ | s1, s2)× pL(c′ | s1, s2)
(4.20)

Equation 4.20 takes the product of the two models’ posterior probabilities, then normal-
izes it to sum to one. PoE models are used to efficiently combine several expert models
that individually constrain different dimensions in high-dimensional data, the product
therefore constraining all of the dimensions. Combining models in this way grants to
each expert component model the ability to “veto” a class by giving it low probability;
the most probable class is the one that is least objectionable to all experts.

Probabilistic Lexical Overlap Model. We devised a logistic regression (LR) model in-
corporating 18 simple features, computed directly from s1 and s2, without modeling
any hidden correspondence. LR provides a probability distribution (like the QG), but
uses surface features (like the SVM). The features are of the form precisionn (number of
n-gram matches divided by the number of n-grams in s1), recalln (number of n-gram
matches divided by the number of n-grams in s2) and Fn (harmonic mean of the pre-
vious two features), where 1 ≤ n ≤ 3. We also used lemmatized versions of these
features. This model gives the posterior probability pL(c | s1, s2), where c ∈ {p, n}. We
estimated the model parameters analogously to Equation 4.16. Performance is reported
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in Table 4.2; this model is on par with the SVM, though trading recall in favor of preci-
sion. We view it as a probabilistic simulation of the SVM more suitable for combination
with the QG.

Training the PoE Various ways of training a PoE exist. We first trained pQ and pL sepa-
rately as described, then initialized the PoE with those parameters. We then continued
training the parameters of both models jointly, maximizing (unregularized) conditional
likelihood.

Experiment We used pQ with the “c-command” configuration excluded, and the LR
model in the product of experts. Table 4.2 includes the final results achieved by the
PoE. The PoE model outperforms all the other models except the numbers reported by
Chang et al. (2010) and Socher et al. (2011), achieving an accuracy of 76.06%.9 The PoE is
conservative, labeling a pair as p only if the LR and the QG give it strong p probabilities.
This leads to high precision, at the expense of recall.

Oracle Ensembles Table 4.2 shows the results of three different oracle ensemble systems
that correctly classify a pair if either of the two individual systems in the combination
is correct. Note that the combinations involving pQ achieve 83%, the human agreement
level for the MSRPC. The LR and SVM are highly similar, and their oracle combination
does not perform as well.

4.6 Conclusion

We have presented a probabilistic model of paraphrase incorporating syntax, lexical se-
mantics, and hidden loose alignments between two sentences’ trees. Though it fully
defines a generative process for both sentences and their relationship, the model is dis-
criminatively trained to maximize conditional likelihood. We showed that this model is
competitive for determining whether there exists a semantic relationship between them,
and can be improved by principled combination with a lexical overlap approach. Along
with providing a posterior distribution over the class given two sentences, the quasi-
synchronous grammars trained using our method can produce word level alignments
between two sentences, if Viterbi inference is performed to obtain the latent correspon-
dences. Figure 4.1 shows some example configurations discovered by the positive class
QG Gp. Figure 4.2 shows a sentence pair with the Viterbi alignments decoded using the
same QG.

9This accuracy is significant over pQ under a paired t-test (p < 0.04), but is not significant over the SVM.



Chapter 5

Frame-Semantic Parsing

FrameNet (Fillmore et al., 2003) is a linguistic resource storing considerable information
about lexical and predicate-argument semantics in English. Grounded in the theory of
frame semantics (Fillmore, 1982), it suggests—but does not formally define—a semantic
representation that blends word-sense disambiguation and semantic role labeling.

In this chapter, we present a computational and statistical model for frame-semantic
parsing, the problem of extracting from text semantic predicate-argument structures
such as those shown in Figure 5.1. We aim to predict a frame-semantic representation
as a structure, not as a pipeline of classifiers. We use a probabilistic framework that
cleanly integrates the FrameNet lexicon and limited available training data. Although
our models often involve strong independence assumptions, the probabilistic frame-
work we adopt is highly amenable to future extension through new features, relaxed
independence assumptions, and semi-supervised learning (as we observe in Chapter 6).
Some novel aspects of our current approach include a latent-variable model that permits
disambiguation of words not in the FrameNet lexicon, a unified model for finding and
labeling arguments that diverges from prior work in semantic role labeling, and finally
an exact dual decomposition algorithm that collectively predicts all the arguments of a
frame together.

Our parser, named SEMAFOR1 achieves the best published results to date on the
SemEval’07 FrameNet task (Baker et al., 2007), and has been originally presented by
Das et al. (2010). Herein, we present extensions of the aforementioned paper, pertaining
to the set of features used, statistics of the datasets, and more error analysis. We also
present results on newly released data with FrameNet 1.5, the newest edition of the
lexicon, and a novel collective argument identification technique that makes use of an
exact dual decomposition algorithm, earlier presented by Das et al. (2012).

1Semantic Analyzer of Frame Representations: http://www.ark.cs.cmu.edu/SEMAFOR

50
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Figure 5.1: An example sentence from the annotations released as part of FrameNet 1.5 with three targets marked
in bold. Note that this annotation is partial because all potential targets have not been annotated with predicate-
argument structures. Each target has its evoked semantic frame marked above it, in a distinct color. For each
frame, its semantic roles are shown in the same color, and the spans fulfilling the roles are connected to the
latter using dotted lines. For example, manner evokes the CONDUCT frame, and has the Agent and Manner roles
fulfilled by “Austria” and “most un-Viennese” respectively.
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hiss.v, ring.v, yodel.v, ...
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impact.n, impact.v, ...
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occur.v, take place.v, ...

Inheritance relation Causative_of relation
Excludes relation

Purpose

Figure 5.2: Partial illustration of frames, roles, and LUs related to the CAUSE TO MAKE NOISE frame, from the
FrameNet lexicon. “Core” roles are filled ovals. Non-core roles (such as Place and Time) as unfilled ovals. No
particular significance is ascribed to the ordering of a frame’s roles in its lexicon entry (the selection and ordering
of roles above is for illustrative convenience). CAUSE TO MAKE NOISE defines a total of 14 roles, many of them
not shown here.
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This chapter includes work done with Desai Chen and Nathan Schneider, who imple-
mented parts of SEMAFOR in 2010, and André Martins, who implemented a general-
purpose dual decomposition library that we apply for argument identification; the chap-
ter is organized as follows. §5.1 describes in detail the task and the resources we used to
solve it. §5.2 describes target identification, a heuristic technique to find salient targets
in a sentence, §5.3 focuses on an automatic semantic frame disambiguation model, and
§5.4 details the final subtask of argument identification; these are the three subproblems
that constitute the full problem of frame-semantic parsing. In these sections, we also
present the experiments and the results achieved on the SemEval’07 shared task for the
individual components as well as the whole task, with comparisons with previous state
of the art. §5.5, the penultimate section in this chapter, describes an alternate strategy of
performing argument identification in comparison with §5.4 using a joint inference tech-
nique that incorporates several interesting linguistic constraints in a principled fashion;
this section presents results achieved on the argument identification subtask on a newer
version of the FrameNet data. Finally, §5.6 concludes this chapter with a discussion.

5.1 Resources and Task

Here, we consider frame-semantic parsing resources including datasets, evaluation
strategies and previous baselines.

5.1.1 FrameNet Lexicon

The FrameNet lexicon is a taxonomy of manually identified general-purpose frames for
English.2 Listed in the lexicon with each frame are a set of lemmas (with parts of speech)
that can denote the frame or some aspect of it—these are called lexical units (LUs). In
a sentence, word or phrase tokens that evoke a frame are known as targets. The set of
LUs listed for a frame in FrameNet may not be exhaustive; we may see a target in new
data that does not correspond to an LU for the frame it evokes. Each frame definition
also includes a set of frame elements, or roles, corresponding to different aspects of the
concept represented by the frame, such as participants, props, and attributes. We use the
term argument to refer to a sequence of word tokens annotated as filling a frame role.
Figure 5.1 shows an example sentence from the training data with annotated targets,
LUs, frames, and role-argument pairs. The FrameNet lexicon also provides informa-
tion about relations between frames and between roles (e.g., INHERITANCE). Figure 5.2
shows a subset of the relations between three frames and their roles.

2Like the SemEval’07 participants, we used FrameNet v. 1.3 and also the newer version of the lexicon,
namely FrameNet v. 1.5 (http://framenet.icsi.berkeley.edu).

http://framenet.icsi.berkeley.edu


54 CHAPTER 5. FRAME-SEMANTIC PARSING

SemEval’07 Data FrameNet 1.5 Release
count count

Number of exemplar sentences 139,439 154,607
Number of frame labels (types) 665 877
Number of role labels (types) 720 1,068
Number of sentences in training data 2,198 3,256
Number of targets in training data 11,195 19,582
Number of sentences in test data 120 2,420
Number of targets in test data 1,059 4,458

Table 5.1: Salient statistics of the datasets used in our experiments. There is a strong
overlap between the two datasets.

Accompanying most frame definitions in the FrameNet lexicon is a set of lexico-
graphic exemplar sentences (primarily from the British National Corpus) annotated for
that frame. Typically chosen to illustrate variation in argument realization patterns for
the frame in question, these sentences only contain annotations for a single frame.

In preliminary experiments, we found that using exemplar sentences directly to train
our models hurt performance as evaluated on SemEval’07 data, which formed a bench-
mark for comparison with previous state of the art. This was a noteworthy observation,
given that the number of exemplar sentences is an order of magnitude larger than the
number of sentences in training data that we consider in our experiments (§5.1.2). This
is presumably because the exemplars are neither representative as a sample nor similar
to the test data. Instead, we make use of these exemplars in features (§5.3.2).

5.1.2 Data

In our experiments on frame-semantic parsing, we use two sets of data:

1. SemEval’07 data: In benchmark experiments for comparison with previous state
of the art, we use a dataset that was released as part of the SemEval 2007 shared
task on frame-semantic structure extraction. This dataset consisted of a few thou-
sand sentences containing multiple targets, each annotated with a frame and their
corresponding roles. The then current version of the lexicon, called Framenet 1.3
was part of the shared task, and it provided with a list of frames, roles, and lexical
units that could evoke a frame, along with rich ontological information such as
the relationship between roles and frames, such as the ones shown in Figure 5.2.
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TARGETS AND ARGUMENTS BY PART OF SPEECH

targets arguments
count % count %

Noun 5155 52 Noun 9439 55

Verb 2785 28 Preposition or
complementizerAdjective 1411 14 2553 15

Preposition 296 3 Adjective 1744 10

Adverb 103 1 Verb 1156 7

Number 63 1 Pronoun 736 4

Conjunction 8 Adverb 373 2

Article 3 Other 1047 6

9824 17048

Table 5.2: Breakdown of targets and arguments in the SemEval’07 training set in terms of
part of speech. The target POS is based on the LU annotation for the frame instance. For
arguments, this reflects the part of speech of the head word (estimated from automatic
dependency parse); the percentage is out of all overt arguments.

The lexicon also contained 139,439 exemplar sentences containing one target each.
The second column of Table 5.1 shows the statistics of the SemEval’07 data. The
total number of frames, 665, indicate the frames we observed in the exemplars and
the training portion of the data. The same holds for the number of role labels. We
used the same training and test split as the SemEval’07 shared task; however, we
took out four documents from the training set3 for development. Table 5.2 shows
some additional information about the SemEval dataset, indicating the syntactic
categories of the targets and arguments in the data; the noticeable fact is the vari-
ety of syntactic categories that serve as targets, in contrast with the PropBank-style
SRL task.

2. Framenet 1.5 release: A more recent version of the FrameNet lexicon was released
in 2010.4 We also test our statistical models (only frame identification and argu-
ment identification) on this dataset to get an estimate of how much improvement
additional data can result in. Details of this dataset are shown in the third col-
umn of Table 5.1. We created a training and test split of the full text annotations

3StephanopoulousCrimes, Iran Biological, NorthKorea Introduction, and WMDNews 042106.
4Released on September 15, 2010, and downloadable from http://framenet.icsi.berkeley.edu

as of May 18, 2012. In our experiments, we used a version downloaded on September 22, 2010.

http://framenet.icsi.berkeley.edu
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released as part of FrameNet 1.5 ourselves; out of the 78 annotated documents re-
leased, we selected 55 for training containing 19,582 targets, while the remaining
23 containing 4,458 targets were set aside for testing. The number of target annota-
tions per sentence in the test set were fewer than the training set for this dataset.5

Appendix A gives the names of the test documents for fair replication of our work.
We also randomly selected 4,462 targets from the training data for development,
for the argument identification model (§5.4.1).

Preprocessing. We preprocess sentences in our dataset with a standard set of anno-
tations: POS tags from MXPOST (Ratnaparkhi, 1996) and dependency parses from the
MST parser as described in §3.1 since manual syntactic parses are not available for most
of the FrameNet-annotated documents. We used WordNet (Fellbaum, 1998) for lemma-
tization. Our models treat these pieces of information as observations. We also labeled
each verb in the data as having ACTIVE or PASSIVE voice, using code from the SRL sys-
tem described by Johansson and Nugues (2008).

5.1.3 Task and Evaluation

Automatic annotations of frame-semantic structure can be broken into three parts: (1)
targets, the words or phrases that evoke frames; (2) the frame type, defined in the lexicon,
evoked by each target; and (3) the arguments, or spans of words that serve to fill roles de-
fined by each evoked frame. These correspond to the three subtasks in our parser, each
described and evaluated in turn: target identification (§5.2), frame identification (§5.3,
not unlike word-sense disambiguation), and argument identification (§5.4, not unlike
semantic role labeling).

The standard evaluation script from the SemEval’07 shared task calculates precision,
recall, and F1-measure for frames and arguments; it also provides a score that gives par-
tial credit for hypothesizing a frame related to the correct one. We present precision, re-
call, and F1-measure microaveraged across the test documents, report labels-only match-
ing scores (spans must match exactly), and do not use named entity labels. More details
can be found in the task description paper from SemEval 2007 (Baker et al., 2007) For
our experiments, statistical significance is measured using a reimplementation of Dan
Bikel’s randomized parsing evaluation comparator,6 a stratified shuffling test whose

5For creating the splits, we first included the documents that had incomplete annotations as mentioned
in the initial FrameNet 1.5 data release in the test set; since we do not evaluate target identification for this
version of data, the small number of targets per sentence does not matter. After these documents were
put into the test set, we randomly selected 55 remaining documents for training, and picked the rest for
additional testing. The final test set contains a total of 23 documents. As and when more annotations for
the incomplete documents will be available, only testing needs to change, without any modification to
training.

6See http://www.cis.upenn.edu/˜dbikel/software.html#comparator.

http://www.cis.upenn.edu/~dbikel/software.html#comparator
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original implementation is accompanied by the following description:

The null hypothesis is that the two models that produced the observed re-
sults are the same, such that for each test instance [here, a set of predicate-
argument structures for a sentence], the two observed scores are equally
likely. This null hypothesis is tested by randomly shuffling individual sen-
tences’ scores between the two models and then re-computing the evaluation
metrics [precision, recall or F1 score in our case]. If the difference in a partic-
ular metric after a shuffling is equal to or greater than the original observed
difference in that metric, then a counter for that metric is incremented. Ide-
ally, one would perform all 2n shuffles, where n is the number of test cases
(sentences), but given that this is often prohibitively expensive, the default
number of iterations is 10,000 [we use independently sampled 10,000 shuf-
fles]. After all iterations, the likelihood of incorrectly rejecting the null [hy-
pothesis, i.e., the p-value] is simply (nc+1)/(nt+1), where nc is the number
of random differences greater than the original observed difference, and nt
is the total number of iterations.

Above, we quote the description from the aforementioned URL verbatim, with our ex-
planations in square braces.

5.1.4 Baseline

A strong baseline for frame-semantic parsing is the system presented by (Johansson and
Nugues, 2007, hereafter J&N’07), the best system in the SemEval’07 shared task. That
system is based on a collection of SVMs. For frame identification, they used an SVM
classifier to disambiguate frames for known frame-evoking words. They used WordNet
synsets to extend the vocabulary of frame-evoking words to cover unknown words,
and then used a collection of separate SVM classifiers—one for each frame—to predict
a single evoked frame for each occurrence of a word in the extended set.

J&N’07 modeled the argument identification problem by dividing it into two tasks:
first, they classified candidate spans as to whether they were arguments or not; then
they assigned roles to those that were identified as arguments. Both phases used SVMs.
Thus, their formulation of the problem involves a multitude of classifiers—whereas
ours uses two log-linear models, each with a single set of weights, to find a full frame-
semantic parse.

We compare our models with J&N’07 using the benchmark dataset from SemEval’07.
However, since we are not aware of any other work using the FrameNet 1.5 fulltext an-
notations, we report our results on that dataset without comparison to any other system.
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TARGET IDENTIFICATION P R F1

Our technique (§5.2) 89.92 70.79 79.21
Baseline: J&N’07 87.87 67.11 76.10

Table 5.3: Target identification results for our system and the baseline on the SemEval’07
dataset. Scores in bold denote significant improvements over the baseline (p < 0.05).

5.2 Target Identification

Target identification is the problem of deciding which word tokens (or word token se-
quences) evoke frames in a given sentence. In other semantic role labeling schemes (e.g.,
PropBank), simple part-of-speech criteria typically distinguish targets from non-targets.
But in frame semantics, verbs, nouns, adjectives, and even prepositions can evoke
frames under certain conditions. One complication is that semantically-impoverished
support predicates (such as make in make a request) do not evoke frames in the context of
a frame-evoking, syntactically-dependent noun (request). Furthermore, only temporal,
locative, and directional senses of prepositions evoke frames.

Preliminary experiments using a statistical method for target identification gave us
unsatisfactory results; instead, we followed J&N’07 in using a small set of rules to iden-
tify targets. First, we created a master list of all the morphological variants of targets
that appear in the exemplar sentences and a given training set. For a sentence in new
data, we considered only those substrings as candidate targets that appear in this mas-
ter list. We also did not attempt to capture discontinuous frame targets: e.g. we treat
there would have been as a single span even though the corresponding LU is there be.V.7

Next, we pruned the candidate target set by applying a series of rules identical to the
ones described by (Johansson and Nugues, 2007, §3.1.1), with two exceptions. First, they
identified locative, temporal, and directional prepositions using a dependency parser so
as to retain them as valid LUs. In contrast, we pruned all types of prepositions because
we found them to hurt our performance on the development set due to errors in syntac-
tic parsing. In a second departure from their target extraction rules, we did not remove
the candidate targets that had been tagged as support verbs for some other target.

Note that we used a conservative white list which filters out targets whose morpho-
logical variants were not seen either in the lexicon or the training data. Therefore, with
this conservative process of automatically identifying targets, our full parser loses the
capability to predict frames for completely unseen LUs, despite the fact that our our
powerful frame identification model (§5.3) can accurately label frames for new LUs.

7There are 629 multiword LUs in the FrameNet 1.3 lexicon, corresponding to 4.8% of the targets in the
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Results. Table 5.3 shows results on target identification tested on the SemEval’07 test
set; our system gains 3 F1 points over the baseline. This is statistically significant with
p < 0.01. Our results are also significant in terms of precision (p < 0.05) and recall (p <
0.01). There are 85 distinct LUs for which the baseline fails to identify the correct target
while our system succeeds. A considerable proportion of these units have more than
one token (e.g. chemical and biological weapon.N, ballistic missile.N, etc.), which J&N’07 do
not model. The baseline also does not label variants of there be.V, e.g. there are and there
has been, which we correctly label as targets. Some examples of other single token LUs
that the baseline fails to identify are names of months, LUs that belong to the ORIGIN

frame (e.g. iranian.A) and directions, e.g., north.A or north-south.A.8

5.3 Frame Identification

Given targets, the parser next identifies their frames.

5.3.1 Lexical units

FrameNet specifies a great deal of structural information both within and among frames.
For frame identification we make use of frame-evoking lexical units, the (lemmatized
and POS-tagged) words and phrases listed in the lexicon as referring to specific frames.
For example, listed with the BRAGGING frame are 10 LUs, including boast.N, boast.V,
boastful.A, brag.V, and braggart.N. Of course, due to polysemy and homonymy, the same
LU may be associated with multiple frames; for example, gobble.V is listed under both
the INGESTION and MAKE NOISE frames. We thus term gobble.V an ambiguous LU.9 All
targets in the exemplar sentences, and most in our training and test data, correspond to
known LUs.

To incorporate frame-evoking expressions found in the training data but not the
lexicon—and to avoid the possibility of lemmatization errors—our frame identification
model will incorporate, via a latent variable, features based directly on exemplar and
training targets rather than LUs. Let L be the set of (unlemmatized and automatically
POS-tagged) targets found in the exemplar sentences of the lexicon and/or the sentences

SemEval 2007 training set; among them are screw up.V, shoot the breeze.V, and weapon of mass destruction.N.
In the SemEval’07 training data, there are just 99 discontinuous multiword targets (1% of all targets).

8 We do not evaluate the target identification module on the FrameNet 1.5 dataset; we just ran controlled
experiments on that data to measure performance of the statistical frame identification and argument iden-
tification subtasks, assuming that the targets are given. Moreover the target annotations on the FrameNet
1.5 test set were fewer in number in comparison to the training set, resulting in a mismatch of target distri-
butions between train and test settings.

9In our terminology an LU may be shared by multiple frames (LUs may be defined elsewhere as frame-
specific).
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• the POS of the parent of the head word of ti
• the set of syntactic dependencies of the head word11 of ti
• if the head word of ti is a verb, then the set of dependency labels of its children
• the dependency label on the edge connecting the head of ti and its parent
• the sequence of words in the prototype, w`

• the lemmatized sequence of words in the prototype
• the lemmatized sequence of words in the prototype and their part-of-speech tags
π`
•WordNet relation12 ρ holds between ` and ti
•WordNet relation12 ρ holds between ` and ti, and the prototype is `
•WordNet relation12 ρ holds between ` and ti, the POS tag sequence of ` is π`, and

the POS tag sequence of ti is πt

Table 5.4: Features used for frame identification. All also incorporate f , the frame being
scored. ` = 〈w`,π`〉 consists of the words and POS tags13 of a target seen in an exemplar
or training sentence as evoking f .

in our training set. Let Lf ⊆ L be the subset of these targets annotated as evoking
a particular frame f .10 Let Ll and Llf denote the lemmatized versions of L and Lf ,
respectively. Then, we write boasted.VBD ∈ LBRAGGING and boast.VBD ∈ LlBRAGGING to
indicate that this inflected verb boasted and its lemma boast have been seen to evoke
the BRAGGING frame. Significantly, however, another target, such as toot your own horn,
might be used in other data to evoke this frame. We thus face the additional hurdle of
predicting frames for unknown words.

The FrameNet annotators created new frames not present in the lexicon when they
annotated the full text annotations, both for the SemEval’07 dataset as well as the
FrameNet 1.5 release. We considered the union of the frames present in the exemplars
(only the lexicon frames) and the frames in the training portions of our datasets; for
SemEval’07, we observed 665 such frames and for the FrameNet 1.5 dataset, there were
877 frames. Automatically predicting new frames is a challenge not yet attempted to our
knowledge (including here). Note that the scoring metric (§5.1.3) gives partial credit for
related frames (e.g., a more general frame from the lexicon).

10For example, on average, there are 34 targets per frame in the SemEval’07 dataset; the average frame
ambiguity of each target in L is 1.17.

11If the target is not a subtree in the parse, we consider the words that have parents outside the span, and
apply three heuristic rules to select the head: 1) choose the first word if it is a verb; 2) choose the last word
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5.3.2 Model

For a given sentence x with frame-evoking targets t, let ti denote the ith target (a word
sequence).14 Let tli denote its lemma. We seek a list f = 〈f1, . . . , fm〉 of frames, one per
target. In our model, the set of candidate frames for ti is defined to include every frame
f such that tli ∈ Llf—or if tli 6∈ Ll, then every known frame (the latter condition applies
for 4.7% of the gold targets in the SemEval 2007 development set). In both cases, we let
Fi be the set of candidate frames for the ith target in x. Also, let us denote the entire set
of frames in the lexicon as F .

To allow frame identification for targets whose lemmas were seen in neither the ex-
emplars nor the training data, our model includes an additional variable, `i. This vari-
able ranges over the seen targets in Lfi , which can be thought of as prototypes for the
expression of the frame. Importantly, frames are predicted, but prototypes are summed
over via the latent variable. The prediction rule requires a probabilistic model over
frames for a target:

fi ← argmax
f∈Fi

∑

`∈Lf

pθ(f, ` | ti,x) (5.1)

We model the probability of a frame f and the prototype unit `, given the target and the
sentence x as:

pθ(f, ` | ti,x) =
expθ>g(f, `, ti,x)∑

f ′∈F

∑

`′∈Lf ′

expθ>g(f ′, `′, ti,x)
(5.2)

The above is a conditional log-linear model: for f ∈ Fi and ` ∈ Lf , where θ are the
model weights, and g is a vector-valued feature function. This discriminative formu-
lation is very flexible, allowing for a variety of (possibly overlapping) features; e.g., a
feature might relate a frame type to a prototype, represent a lexical-semantic relation-
ship between a prototype and a target, or encode part of the syntax of the sentence.

Previous work has exploited WordNet for better coverage during frame identifica-
tion (Johansson and Nugues, 2007; Burchardt et al., 2005, e.g., by expanding the set of
targets using synsets), and others have sought to extend the lexicon itself (see §2.2). We
differ in our use of a latent variable to incorporate lexical-semantic features in a discrim-
inative model, relating known lexical units to unknown words that may evoke frames.

if the first word is an adjective; 3) if the target contains the word of, and the first word is a noun, we choose
it. If none of these hold, choose the last word with an external parent to be the head.

12These are the 11 WordNet relations enumerated in §3.4 as well as NO RELATION.
13POS tags are found automatically during preprocessing.
14Each ti is a word sequence 〈xu, . . . , xv〉, 1 ≤ u ≤ v ≤ n, though in principle targets can be noncontigu-

ous.
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Here we are able to take advantage of the large inventory of partially-annotated exem-
plar sentences.

Note that this model makes a strong independence assumption: each frame is pre-
dicted independently of all others in the document. In this way the model is similar to
J&N’07. However, ours is a single conditional model that shares features and weights
across all targets, frames, and prototypes, whereas the approach of J&N’07 consists of
many separately trained models. Moreover, our model is unique in that it uses a latent
variable to smooth over frames for unknown or ambiguous LUs.

Frame identification features depend on the preprocessed sentence x, the prototype `
and its WordNet lexical-semantic relationship with the target ti, and of course the frame
f . Our model uses binary features, which are detailed in Table 5.4.

5.3.3 Training

Given a training dataset (either SemEval’07 dataset or the FrameNet 1.5 full-text an-
notations), which is of the form

〈
〈x(j), t(j), f (j),A(j)〉

〉N
j=1

, we discriminatively train the
frame identification model by maximizing the following log-likelihood:15

max
θ

N∑

j=1

mj∑

i=1

log
∑

`∈L
f
(j)
i

pθ(f
(j)
i , ` | t(j)i ,x(j)) (5.3)

Note that the training problem is non-convex because of the summed-out prototype la-
tent variable ` for each frame. To calculate the objective function, we need to cope with
a sum over frames and prototypes for each target (see Equation 5.2), often an expensive
operation. We locally optimize the function using a distributed implementation of L-
BFGS; although this learning algorithm cannot avoid local minima, prior work (Petrov
and Klein, 2008, inter alia) have used this gradient-based method to optimize conditional
log-likelihood of latent-variable models resulting in accurate systems. Our paraphrase
identification model described in Chapter 4 had local minima as well, and we used
L-BFGS to optimize the corresponding objective function. This is the most expensive
model that we train: with 100 computers parallelized using the Hadoop implementa-
tion of MapReduce (see §3.3), training takes several hours. (Decoding takes only a few
minutes on one CPU for the test set.) Each CPU of this cluster had 2 quad-core 1.86GHz
CPUs with a total of 6GB of RAM each.16

15We found no benefit on either development dataset from using an L2 regularizer (zero-mean Gaussian
prior).

16We also used another implementation with 128 parallel cores in a multi-core MPI setup (Gropp et al.,
1994). We resorted to this platform when the Hadoop cluster was no longer available to us. Each core of
this setup had a clock rate of 2.27GHz and 8GB of RAM.
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FRAME IDENTIFICATION (§5.3.2) exact frame matching partial frame matching
targets P R F1 P R F1

SemEval’07 Data

Frame identification (oracle targets) gold 60.21 60.21 60.21 74.21 74.21 74.21
Frame identification (predicted targets) auto §5.2 69.75 54.91 61.44 77.51 61.03 68.29
Frame identification (J&N’07 targets) auto 65.34 49.91 56.59 74.30 56.74 64.34
Baseline: J&N’07 auto 66.22 50.57 57.34 73.86 56.41 63.97

FrameNet 1.5 Release Frame identification (oracle targets) gold 82.97 82.97 82.97 90.51 90.51 90.51

Table 5.5: Frame identification results on both the SemEval’07 dataset and the FrameNet 1.5 release. Precision,
recall, and F1 were evaluated under exact and partial frame matching; see §5.1.3. Bold indicates statistically
significant results with respect to the baseline (p < 0.05).
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5.3.4 Results

SemEval’07 Data. On the SemEval’07 dataset, We evaluate the performance of our
frame identification model given gold-standard targets and automatically identified
targets (§5.2); see Table 5.5. Given gold-standard targets, our model is able to predict
frames for lemmas not seen in training, of which there are 210. The partial-match eval-
uation gives our model some credit for 190 of these, 4 of which are exactly correct. The
hidden variable model, then, is finding related (but rarely exact) frames for unknown
target words. The net effect of our conservative target identifier on F1 is actually posi-
tive: the frame identifier is far more precise for targets seen explicitly in training.

Together, our target and frame identification outperform the baseline by 4 F1 points.
To compare the frame identification stage in isolation with that of J&N’07, we ran our
frame identification model with the targets identified by their system as input. With
partial matching, our model achieves a relative improvement of 0.6% F1 over J&N’07,
as shown in the third row of Table 5.5 (though this is not significant).

While our frame identification model thus performs on par with the current state
of the art for this task, it improves upon J&N’s formulation of the problem because it
requires only a single model, learns lexical-semantic features as part of that model rather
than requiring a preprocessing step to expand the vocabulary of frame-evoking words,
and is probabilistic, which can facilitate global reasoning.

In the SemEval’07 dataset, for gold-standard targets, 210 out of 1058 lemmas were
not present in the white list that we used for target identification (see §5.2). Our model
correctly identifies the frames for 4 of these 210 lemmas. For 44 of these lemmas, the
evaluation script assigns a score of 0.5 or more, suggesting that our model predicts a
closely related frame. Finally, for 190 of the 210 lemmas, a positive score is assigned by
the evaluation script. This suggests that the hidden variable model helps in identifying
related (but rarely exact) frames for unseen targets, and explains why under exact—but
not partial—frame matching, the F1 score using automatic targets is commensurate with
the score for oracle targets.17

For automatically identified targets, the F1 score falls below 70 points because the
model fails to predict frames for unseen lemmas. However, our model outperforms
J&N’07 by 4 F1 points. We measured statistical significance with respect the baseline for
results with the partial frame matching criterion. The F1 score of our model represents a
significant improvement over the baseline (p < 0.01). The precision and recall measures
are significant as well (p < 0.05 and p < 0.01, respectively). However, because targets

17J&N’07 did not report frame identification results for oracle targets; thus directly comparing the frame
identification models is difficult. Considering only the predicted arguments for the frames they predicted
correctly, we can estimate that their argument identification model given oracle targets and frames would
have achieved 0.58 precision, 0.48 recall, and 0.53 F1—though we caution that these are not directly com-
parable with our oracle results.
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identified by J&N’07 and frames classified by our frame identification model resulted
in scores on par with the baseline, we note that the significant results follow due to
better target identification. Note from the results that the automatic target identification
model show an increase in precision, at the expense of recall. This is because of the fact
that the white list for target identification restricts the model to predict frames only for
known LUs, leading to a more precise model.

FrameNet 1.5 Release. The last row of Table 5.5 shows results on the full text annotation
test set of the FrameNet 1.5 release. Since the number of annotations nearly doubled,
we see large improvements in frame identification accuracy. Note that we only evaluate
the set up where gold targets were presented to the frame identifier. (As mentioned in
§5.1.2, some documents in the test set has less number of targets per sentence, and auto
target identification would overpredict targets for those sentences.)

Further experiments on this dataset were conducted to test the importance of the
latent variable in our frame identification model. Recall that the decoding objective to
choose the best frame f marginalizes over a latent variable `, whose values range over
targets known to be associated with f (see Equations 5.1–5.2). An alternative to having
` as a latent variable is to simply let it be equal to the target in consideration, without
any marginalization, regardless of the frame under consideration; therefore, the features
relating the prototype variable ` (see Table 5.4) are extracted for all 4,194 unique targets
that were observed in training. Because each of these features needs to be associated
with all 877 frames in the partition function, the result is an eighty-fold blowup of the
feature space (the latent variable model had 465,317 features).

As this expansive feature set was beyond the scope of our engineering framework,
we established a comparison excluding from the model all unsupported features, i.e. those
features which would fire only in the partition function (never in the numerator). The
model without a latent variable then becomes tractable, as it has 72,058 supported fea-
tures. When trained and tested on the FrameNet 1.5 dataset, this model achieves an
exact matching accuracy of 75.54% and a partial matching accuracy of 85.92%. If un-
supported features are similarly excluded from the latent variable model, 165,200 fea-
tures remain, and this model obtains an exact matching accuracy of 80.30% and a partial
matching accuracy of 88.91%. Though slightly worse than the full latent variable model,
this result is well above the comparable model without the latent variable. This estab-
lishes that the latent variable in our frame identification model helps in terms of accu-
racy, and lets us use a moderately sized feature set incorporating helpful unsupported
features.

Finally, in our test set, we found that 144 out of the 4,458 annotated targets were
unseen, and our full frame identification model only got 23.1% of the frames correct
for those unseen targets; in terms of partial match accuracy, the model got a score of
46.6%. This, along with the results on the SemEval 2007 unseen targets, shows that
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there is substantial opportunity for improvement when unseen targets are presented to
the system. We address this issue in Chapter 6.

5.4 Argument Identification

Given a sentence x = 〈x1, . . . , xn〉, the set of targets t = 〈t1, . . . , tm〉, and a list of evoked
frames f = 〈f1, . . . , fm〉 corresponding to each target, argument identification is the task
of choosing which of each fi’s roles are filled, and by which parts of x. This task is most
similar to the problem of semantic role labeling, but uses frame-specific labels that are
richer than the PropBank annotations.

5.4.1 Model

LetRfi = {r1, . . . , r|Rfi
|} denote frame fi’s roles (named frame element types) observed

in an exemplar sentence and/or our training set. A subset of each frame’s roles are
marked as core roles; these roles are conceptually and/or syntactically necessary for any
given use of the frame, though they need not be overt in every sentence involving the
frame. These are roughly analogous to the core arguments ARG0–ARG5 in PropBank.
Non-core roles—analogous to the various ARGM-* in PropBank—loosely correspond to
syntactic adjuncts, and carry broadly-applicable information such as the time, place, or
purpose of an event. The lexicon imposes some additional structure on roles, including
relations to other roles in the same or related frames, and semantic types with respect to
a small ontology (marking, for instance, that the entity filling the protagonist role must
be sentient for frames of cognition). Figure 5.2 illustrates some of the structural elements
comprising the frame lexicon by considering the CAUSE TO MAKE NOISE frame.

We identify a set S of spans that are candidates for filling any role r ∈ Rfi . In
principle, S could contain any subsequence of x, but in this work we only consider the
set of contiguous spans that (a) contain a single word or (b) comprise a valid subtree of
a word and all its descendants in the dependency parse produced by the MST parser.
This covers approximately 80% of arguments in the development data for both datasets.

The empty span, denoted ∅, is also included in S, since some roles are not explicitly
filled; in the SemEval 2007 development data, the average number of roles an evoked
frame defines is 6.7, but the average number of overt arguments is only 1.7.18 In training,
if a labeled argument is not a subtree of the dependency parse, we add its span to S.

18In the annotated data, each core role is filled with one of three types of null instantiations indicating
how the role is conveyed implicitly. For instance, the imperative construction implicitly designates a role
as filled by the addressee, and the corresponding filler is thus CNI (constructional null instantiation). In this
work we do not distinguish different types of null instantiation. The interested reader may refer to Chen
et al. (2010), who handle the different types of null instantions during argument identification.
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Let Ai denote the mapping of roles inRfi to spans in S . Our model makes a predic-
tion for each Ai(rk) (for all roles rk ∈ Rfi) using:

Ai(rk)← argmax
s∈S

pψ(s | rk, fi, ti,x) (5.4)

We use a conditional log-linear model over spans for each role of each evoked frame:

pψ(Ai(rk) = s | fi, ti,x) =
expψ>h(s, rk, fi, ti,x)∑

s′∈S
expψ>h(s′, rk, fi, ti,x)

(5.5)

Note that our model chooses the span for each role separately from the other roles and
ignores all frames except the frame the role belongs to. Our model departs from the
traditional SRL literature by modeling the argument identification problem in a single
stage, rather than first classifying token spans as arguments and then labeling them. A
constraint implicit in our formulation restricts each role to have at most one overt argu-
ment, which is consistent with 96.5% of the role instances in the SemEval 2007 training
data and 96.4% of the role instances in the FrameNet 1.5 full text annotations.

Out of the overt argument spans in the training data, 12% are duplicates, having
been used by some previous frame in the sentence (supposing some arbitrary ordering
of frames). Our role-filling model, unlike a sentence-global argument detection-and-
classification approach,19 permits this sort of argument sharing among frames. Word
tokens belong to an average of 1.6 argument spans, including the quarter of words that
do not belong to any argument. Appending these local inference decisions together
gives us the best mapping Ât for target t. Features for our log-linear model (Equa-
tion 5.5) depend on the preprocessed sentence x; the target t; a role r of frame f ; and a
candidate argument span s ∈ S.20 For features using the head word of the target t or a
candidate argument span s, we use the heuristic described in footnote 11 for selecting
the head of non-subtree spans.

Tables 5.6-5.7 lists the feature templates used in our model. Every feature template
has a version which does not take into account the role being filled (so as to incorporate
overall biases). The G# symbol indicates that the feature template also has a variant
which is conjoined with r, the name of the role being filled; and  indicates that the
feature template additionally has a variant which is conjoined with both r and f , the
name of the frame.21 The role name–only variants provide for smoothing over frames
for common types of roles such as Time and Place; see Matsubayashi et al. (2009) for

19J&N’07, like us, identify arguments for each target.
20In this section we use t, f , and r without subscripts since the features only consider a single role of a

single target’s frame.
21I.e., the  symbol subsumes G#, which in turn subsumes #.
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Features with both null and non-null variants: These features come in
two flavors: if the argument is null, then one version fires; if it is overt
(non-null), then another version fires.
 some word in t has lemma λ  some word in t has POS π
G# some word in t has lemma λ, and

the sentence uses PASSIVE voice
G# some word in t has lemma λ, and

the sentence uses ACTIVE voice
G# the head of t has subcategorization

sequence τ = 〈τ1, τ2, . . . 〉
G# some syntactic dependent of the

head of t has dependency type τ
 the head of t has c syntactic depen-

dents
 bias feature (always fires)

Span content features: apply to overt argument candidates.
# POS tag π occurs for some word in
s

# the head word of s has POS π  |s|, the number of words in the can-
didate argument

# the first word of s has POS π, pro-
vided |s| > 0

# the head word of s has syntactic de-
pendency type τ

# the last word of s has POS π, pro-
vided |s| > 0

 the syntactic dependency type τs1
of the first word with respect to its
head the first word of s: ws1 , and its POS

tag πs1 , if πs1 is a closed-class POS  τs2 , provided that |s| ≥ 2
 ws2 and its closed-class POS tag
πs2 , provided that |s| ≥ 2

 τs|s| , provided that |s| ≥ 3

# the first word of s has lemma λ,
provided |s| > 0

 the last word of s: ws|s| , and its
closed-class POS tag πs|s| , provided
that |s| ≥ 3

# the head word of s has lemma λ
# the last word of s has lemma λ, pro-

vided |s| > 0
G# lemma λ is realized in some word

in s
G# lemma λ is realized in some word

in s, the voice denoted in the span,
s’s position with respect to t
(BEFORE, AFTER, or OVERLAPPING)

G# lemma λ is realized in some word
in s, the voice denoted in the span
(ACTIVE or PASSIVE)

Table 5.6: A basic set of argument identification features used in null and non-null
spans and features looking at the content of a potential span. Section 5.4.1 describes the
meanings of the different circles attached to each feature.
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Syntactic features: apply to overt argument candidates.
# dependency path: sequence of la-

beled, directed edges from the head
word of s to the head word of t

# length of the dependency path

Span context POS features: for overt candidates, up to 6 of these fea-
tures will be active.
# a word with POS π occurs up to 3

words before the first word of s
# a word with POS π occurs up to 3

words after the last word of s
Ordering features: apply to overt argument candidates.
 the position of s with respect to to

the span of t: BEFORE, AFTER, or
OVERLAPPING (i.e. there is at least
one word shared by s and t)

# target-argument crossing: there is
at least one word shared by s and
t, at least one word in s that is not
in t, and at least one word in t that
is not in s

# linear word distance between the
nearest word of s and the nearest
word of t, provided s and t do not
overlap

# linear word distance between the
middle word of s and the middle
word of t, provided s and t do not
overlap

Table 5.7: A second set of features used for argument identification. Section 5.4.1 de-
scribes the meanings of the different circles attached to each feature.

a detailed analysis of the effects of using role features at varying levels of granularity.
Certain features in our model rely on closed-class POS tags, which are defined to be
all Penn Treebank tags except for CD and tags that start with V, N, J, or R. Finally, the
features that encode a count or a number are binned into groups: (−∞,−20], [−19,−10],
[−9,−5], −4, −3, −2, −1, 0, 1, 2, 3, 4, [5, 9], [10, 19], [20,∞).

5.4.2 Training

We train the argument identification model by:

max
ψ

N∑

j=1

mj∑

i=1

|R
f
(j)
i

|
∑

k=1

log pψ(A(j)
i (rk) | f (j)i , t

(j)
i ,x(j))− C ‖ψ‖22 (5.6)

The above objective function is concave. For experiments with the SemEval’07 data,
we trained the model using stochastic gradient ascent (Bottou, 2003) with no Gaussian
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Algorithm 1 Joint decoding of frame fi’s arguments. topk(S, pψ, rj) extracts the k most
probable spans from S, under pψ, for role rj . extend(D0:(j−1),S ′) extends each span
vector in D0:(j−1) with the most probable non-overlapping span from S ′, resulting in k
best extensions overall.
Input: k > 0,Rfi , S, the distribution pψ from Equation 5.5 for each role rj ∈ Rfi
Output: Âi, a high-scoring mapping of roles of fi to spans with no token overlap among

the spans
1: Calculate Ai according to Equation 5.4
2: ∀r ∈ Rfi such that Ai(r) = ∅, let Âi(r)← ∅
3: R+

fi
← {r : r ∈ Rfi ,Ai(r) 6= ∅}

4: n← |R+
fi
|

5: Arbitrarily orderR+
fi

as {r1, r2, . . . rn}
6: Let D0:j = 〈D0:j

1 , . . . , D0:j
k 〉 refer to the k-best list of vectors of compatible filler spans

for roles r1 through rj
7: Initialize D0:0 to be empty
8: for j = 1 to n do
9: D0:j ← extend(D0:(j−1), topk(S, pψ, rj))

10: end for
11: ∀j ∈ {1, . . . , n}, Âi(rj)← D0:n

1 [j]
12: return Âi

regularization (C = 0).22 Early stopping was done by tuning on the development set,
and the best results were obtained with a batch size of 2 and 23 passes through the data.

On the FrameNet 1.5 release, we trained this model using L-BFGS (Liu and Nocedal,
1989) and ran it for 1000 iterations. C was tuned on the development data, and we
obtained best results for C = 1.0. We did not use stochastic gradient descent for this
dataset as the number of training samples increased and parallelization of L-BFGS on a
multicore setup implementing MPI (Gropp et al., 1994) gave us faster training speeds.

5.4.3 Decoding with Beam Search

Naı̈ve prediction of roles using Equation 5.4 may result in overlap among arguments
filling different roles of a frame, since the argument identification model fills each role
independently of the others. We want to enforce the constraint that two roles of a sin-

22This was the setting used by Das et al. (2010) and we kept it unchanged.
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gle frame cannot be filled by overlapping spans.23 Toutanova et al. (2005) presented a
dynamic programming algorithm to prevent overlapping arguments for semantic role
labeling; however, their approach used an orthogonal view to the argument identifica-
tion stage, wherein they labeled phrase-structure tree constituents with semantic roles.
This view helped them to adopt a dynamic programming approach, which does not suit
our model because we find the best possible argument span for each role.

To eliminate illegal overlap, we adopt the beam search technique detailed in Algo-
rithm 1. The algorithm produces a set of k-best hypotheses for a frame instance’s full
set of role-span pairs, but uses an approximation in order to avoid scoring an exponen-
tial number of hypotheses. After determining which roles are most likely not explicitly
filled, it considers each of the other roles in turn: in each iteration, hypotheses incorpo-
rating a subset of roles are extended with high-scoring spans for the next role, always
maintaining k alternatives. We set k = 10000 as beam width.24

5.4.4 Results

Performance of the argument identification model is presented in Table 5.8 for both
datasets in consideration. We analyze them below.
SemEval’07 Data: For the dataset released for the SemEval shared task, the table shows
how performance varies given different types of perfect input: both correct targets and
correct frames, correct targets but automatically identified frames, and ultimately, no
oracle input (the full frame parsing scenario). The first two rows of results isolate the
argument identification task from the frame identification task. Given gold targets and
frames, our argument identification model (without beam search) gets an F1 score of
68.09%; when beam search is applied, this increases to 68.46%, with a noticeable increase
in precision. Note that an estimated 19% of correct arguments are excluded because they
are neither single words nor complete subtrees (see §5.4.1) of the automatic dependency
parses.25 Qualitatively, the problem of candidate span recall seems to be largely due to
syntactic parse errors.26 Although our upper bound performance is limited by errors
when using the syntactic parse to determine candidate spans, our performance could

23On rare occasions a frame annotation may include a secondary frame element layer, allowing arguments
to be shared among multiple roles in the frame; see Ruppenhofer et al. (2006) for details. The evaluation
for this task only considers the primary layer, which is guaranteed to have disjoint arguments.

24We show the effect of varying beam widths in Table 5.9.
25Using all constituents from the 10-best syntactic parses would improve oracle recall of spans in the de-

velopment set by just a couple of percentage points, at the computational cost of a larger pool of candidate
arguments per role.

26Note that, because of our labels-only evaluation scheme (§5.1.3), arguments missing a word or contain-
ing an extra word receive no credit. In fact, of the frame roles correctly predicted as having an overt span,
the correct span was predicted 66% of the time, while 10% of the time the predicted starting and ending
boundaries of the span were off by a total of 1 or 2 words.
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still improve; this suggests that the model has trouble discriminating between good and
bad arguments, and that additional feature engineering or jointly decoding arguments
of a sentence’s frames may be beneficial.

The third and fourth rows show the effect of automatic frame identification on
overall frame parsing performance. There is a 22% decrease in F1 (18% when partial
credit is given for related frames), suggesting that improved frame identification or
joint prediction of frames and arguments is likely to have a sizeable impact on overall
performance. The final two rows of the SemEval 2007 section of the table compare
our full model (target, frame, and argument identification) with the baseline, showing
significant improvement of more than 4.4 F1 points for both exact and partial frame
matching. As with frame identification, we compared the argument identification stage
with that of J&N’07 in isolation, using the automatically identified targets and frames
from the latter as input to our model. As shown in the 5th row of the table, with partial
frame matching, this gave us an F1 score of 48.1% on the test set—significantly better
(p < 0.05) than 45.6%, the full parsing result from J&N’07 (6th row in Table 5.8). This
indicates that our argument identification model—which uses a single discriminative
model with a large number of features for role filling (rather than argument labeling)—
is more accurate than the previous state of the art.

FrameNet 1.5 Release: The last three rows show results on the newer dataset, which is
part of the FrameNet 1.5 release. Like in the frame identification results of Table 5.5, we
do not show results using predicted targets, as we only test the performance of the sta-
tistical models. First, we observe, that for results with gold frames, the F1 score is 79.08%
with naı̈ve decoding, which is significantly higher in comparison with the SemEval
counterpart. This indicates that with increased data, performance on the task gets much
better. We also observe that beam search improves precision by nearly 2%, while getting
rid of overlapping arguments. Finally, when both model frames and model arguments
are used, we get an F1 score of 68.45%, which is encouraging in comparison to the best
results we achieved on the SemEval 2007 dataset.

5.5 Collective Argument Identification

The argument identification strategy described in the previous section does not capture
some facets of semantic knowledge represented declaratively in FrameNet. Here, we
present an approach that exploits such knowledge in a principled, unified, and intuitive
way. In prior research using FrameNet, these interactions have been largely ignored,
though they have the potential to improve the quality and consistency of semantic anal-
ysis. The beam search technique (Algorithm 1) handles constraints in the form of avoid-
ing argument overlaps, but is greedy and cannot handle other forms of constraints.
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ARGUMENT IDENTIFICATION exact frame matching partial frame matching
targets frames decoding P R F1 P R F1

SemEval’07 Data

Argument
identification (full)

gold gold naı̈ve 77.43 60.76 68.09
gold gold beam 78.71 60.57 68.46

Parsing (oracle targets) gold model beam 49.68 42.82 46.00 57.85 49.86 53.56
Parsing (full) auto model beam 58.08 38.76 46.49 62.76 41.89 50.24
Parsing (J&N’07
targets and frames)

auto model beam 56.26 36.63 44.37 60.98 39.70 48.09

Baseline: J&N’07 auto model N/A 51.59 35.44 42.01 56.01 38.48 45.62

FrameNet 1.5 Release Argument
identification (full)

gold gold naı̈ve 82.00 76.36 79.08
gold gold beam 83.83 76.28 79.88

Parsing (oracle targets) gold model beam 67.81 60.68 64.05 72.47 64.85 68.45

Table 5.8: Argument identification results on both the SemEval’07 data as well as the full text annotations of
FrameNet 1.5. For decoding, “beam” and “naı̈ve” indicate whether the approximate joint decoding algorithm
has been used or local independent decisions have been made for argument identification, respectively. For full
parsing, bolded scores indicate significant improvements relative to the baseline (p < 0.05).
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Here, we present an algorithm that identifies the full collection of arguments of a tar-
get given its semantic frame. Although we work within the conventions of FrameNet,
our approach is generalizable to other semantic role labeling (SRL) frameworks. We
model argument identification as constrained optimization, where the constraints come
from expert knowledge encoded in FrameNet. Following prior work on PropBank-
style SRL (Kingsbury and Palmer, 2002) that dealt with similar constrained problems
(Punyakanok et al., 2004; Roth and Yih, 2004, inter alia), we incorporate this declarative
knowledge in an integer linear program (ILP).

Because general-purpose ILP solvers are proprietary and do not fully exploit the
structure of the problem, we turn to a class of optimization techniques called dual de-
composition (Komodakis et al., 2007; Rush et al., 2010; Martins et al., 2011a). We derive
a modular, extensible, parallelizable approach in which semantic constraints map not
just to declarative components in the algorithm, but also to procedural ones, in the form
of “workers.” While dual decomposition algorithms only solve a relaxation of the orig-
inal problem, we make our approach exact by wrapping the algorithm in a branch-and-
bound search procedure.

We experimentally find that our algorithm achieves accuracy comparable to a state-
of-the-art system, while respecting all imposed linguistic constraints. In comparison
to beam search that violates many of these constraints, the presented exact decoder
is slower, but it decodes nine times faster than CPLEX, a state-of-the-art, proprietary,
general-purpose exact ILP solver.

5.5.1 Background

Most accurate SRL systems that use conventions from PropBank (Kingsbury and
Palmer, 2002) and NomBank (Meyers et al., 2004) employ joint inference for semantic
role labeling (Màrquez et al., 2008). To our knowledge, the separate line of work in-
vestigating frame-semantic parsing has not dealt with non-local information until this
work. A common trait in prior work, both in PropBank and FrameNet conventions, has
been the use of a two-stage model that identifies arguments first, then labels them, often
using joint inference techniques like dynamic programming or integer linear programs.
As mentioned before, we treat both problems together here.

Solving inference in NLP problems using LP relaxations is becoming increasingly
popular. While early work has focused on declarative formulations tackled with off-
the-shelf solvers (Martins et al., 2009, 2010), Rush et al. (2010) proposed subgradient-
based dual decomposition (also called Lagrangian relaxation) as a way of exploiting the
structure of the problem and reusing existing combinatorial algorithms. The method
allows the combination of models which are tractable individually, but not jointly, by
solving a relaxation of the original problem. Since then, dual decomposition has been
used to build more accurate models for dependency parsing (Koo et al., 2010), CCG
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supertagging and parsing (Auli and Lopez, 2011) and machine translation (DeNero and
Macherey, 2011; Rush and Collins, 2011; Chang and Collins, 2011).

Recently, Martins et al. (2011b) showed that the success of subgradient-based dual
decomposition strongly relies on breaking down the original problem into a “good” de-
composition, i.e., one with few overlapping components. This leaves out many declara-
tive constrained problems, for which such a good decomposition is not readily available.
For those, Martins et al. (2011b) proposed the AD3 algorithm, which retains the modu-
larity of previous methods, but can handle thousands of small overlapping components.
We adopt that algorithm as it perfectly suits the problem of argument identification, as
we observe in the following sections.

We also contribute an exact branch-and-bound technique wrapped around AD3. A
related line of research is that of Rush and Collins (2011), who proposed a tightening
procedure for dual decomposition, which can be seen as a cutting plane method (an-
other popular approach in combinatorial optimization). That procedure would involve
constructing larger factors, hence is not a good match for AD3, which works best with
smaller factors/constraints as found in our problem.

5.5.2 Joint Inference

Here, we take a declarative approach to modeling argument identification using an ILP
and relate our formulation to prior work in shallow semantic parsing. We show how
knowledge specified in a linguistic resource (which is FrameNet in our case) can be used
to derive the constraints used in our ILP. Finally, we draw connections of our specifica-
tion to graphical models, a popular formalism in AI, and describe how the constraints
can be treated as factors in a factor graph.

Declarative Specification

Let us simplify notation by considering a given target t and not consider its index in a
sentence x; let the semantic frame it evokes be f . To solely evaluate argument identi-
fication, we assume that the semantic frame f is given, which is traditionally the case
in controlled experiments used to evaluate SRL systems (Màrquez et al., 2008). Let the
set of roles associated with the frame f be Rf . In sentence x, the set of candidate spans
of words that might fill each role is enumerated, usually following an overgenerating
heuristic, which is described in §5.4.1; as before, we call this set of spans S. This set
also includes the null span ∅; connecting it to a role r ∈ Rf denotes that the role is not
overt. Our approach assumes a scoring function that gives a strength of association be-
tween roles and candidate spans. For each role r ∈ Rf and span s ∈ S, this score is
parameterized as:

c(r, s) = ψ>h(s, r, f, t,x), (5.7)
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where ψ are model weights and h is a feature function that looks at the target t, the
evoked frame f , sentence x, and its syntactic analysis, along with r and s. This scoring
function is identical in form to the numerator’s exponent in the log-linear model de-
scribed in Equation 5.5. The SRL literature provides many feature functions of this form
and many ways to use machine learning to acquire ψ. Our presented method does not
make any assumptions about the score except that it has the form in Equation 5.7.

We define a vector z of binary variables zr,s ∈ {0, 1} for every role and span pair. We
have that: z ∈ {0, 1}d, where d = |Rf | × |S|. zr,s = 1 means that role r is filled by span s.
Given the binary z vector, it is straightforward to recover the collection of arguments by
checking which components zr,s have an assignment of 1; we use this strategy to find
arguments, as described in §5.5.4 (strategies 4 and 6). The joint argument identification
task can be represented as a constrained optimization problem:

maximize
∑

r∈Rf

∑

s∈S
c(r, s)× zr,s

with respect to z ∈ {0, 1}d
such that Az ≤ b. (5.8)

The last line imposes constraints on the mapping between roles and spans; these are
motivated on linguistic grounds and are described next.27

1. Uniqueness: Each role r is filled by at most one span in S. This constraint can be
expressed by:

∀r ∈ Rf ,
∑

s∈S
zr,s = 1. (5.9)

There are O(|Rf |) such constraints. Note that since S contains the null span ∅,
non-overt roles are also captured using the above constraints. Such a constraint is
used extensively in prior literature (Punyakanok et al., 2004, §4.1).

2. Overlap: SRL systems commonly constrain roles to be filled by non-overlapping
spans. For example, Toutanova et al. (2005) used dynamic programming over a
phrase structure tree to prevent overlaps between arguments, and Punyakanok
et al. (2004) used constraints in an ILP to respect this requirement. Inspired by the
latter, we require that each input sentence position of x be covered by at most one
argument. For each role r ∈ Rf , we define:

Gr(i) = {s | s ∈ S, s covers position i in x}. (5.10)

27Note that equality constraints a · z = b can be transformed into double-side inequalities a · z ≤ b and
−a · z ≤ −b.
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We can define our overlap constraints in terms of Gr as follows, for every sentence
position i:

∀i ∈ {1, . . . , |x|},
∑

r∈Rf

∑

s∈Gr(i)

zr,s ≤ 1, (5.11)

This gives us O(|x|) constraints.

3. Pairwise “Exclusions”: For many target classes, there are pairs of roles forbidden
to appear together in the analysis of a single target token. Consider the following
two sentences:

A blackberry
Entity 1

resembles a loganberry
Entity 2

. (5.12)

Most berries
Entities

resemble each other. (5.13)

Consider the uninflected target resemble in both sentences, evoking the same
meaning. In example 5.12, two roles, which we call Entity 1 and Entity 2 describe
two entities that are similar to each other. In the second sentence, a phrase fulfills
a third role, called Entities, that collectively denotes some objects that are similar.
It is clear that the roles Entity 1 and Entities cannot be overt for the same target
at once, because the latter already captures the function of the former; a similar
argument holds for the Entity 2 and Entities roles. We call this phenomenon the
“excludes” relationship. Let us define a set of pairs from Rf that have this rela-
tionship:

Exclf = {(ri, rj) | ri and rj exclude each other}
Using the above set, we define the constraint:

∀(ri, rj) ∈ Exclf , zri,∅ + zrj ,∅ ≥ 1 (5.14)

In English: if both roles are overt in a parse, this constraint will be violated, and we
will not respect the “excludes” relationship between the pair. If neither or only one
of the roles is overt, the constraint is satisfied. The total number of such constraints
is O(|Exclf |), which is the number of pairwise “excludes” relationships of a given
frame.

4. Pairwise “Requirements”: The sentence in example 5.12 illustrates another kind
of constraint. The target resemble cannot have only one of Entity 1 and Entity 2 as
roles in text. For example,
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* A blackberry
Entity 1

resembles. (5.15)

Enforcing the overtness of two roles sharing this “requires” relationship is
straightforward. We define the following set for a frame f :

Reqf = {(ri, rj) | ri and rj require each other}
This leads to constraints of the form

∀(ri, rj) ∈ Reqf , zri,∅ − zrj ,∅ = 0 (5.16)

If one role is overt (or absent), so must the other be. A related constraint has
been used previously in the SRL literature, enforcing joint overtness relationships
between core arguments and referential arguments (Punyakanok et al., 2004, §4.1),
which are formally similar to the example above.28

Integer Linear Program and Relaxation

Plugging the constraints in Eqs. 5.9, 5.11, 5.14 and 5.16 into the last line of Equation 5.8,
we have the argument identification problem expressed as an ILP, since the indicator
variables z are binary. Here, apart from the ILP formulation, we will consider the fol-
lowing relaxation of Equation 5.8, which replaces the binary constraint z ∈ {0, 1}d by a
unit interval constraint z ∈ [0, 1]d, yielding a linear program:

maximize
∑

r∈Rf

∑

s∈S
c(r, s)× zr,s

with respect to z ∈ [0, 1]d

such that Az ≤ b. (5.17)

There are several LP and ILP solvers available, and a great deal of effort has been
spent by the optimization community to devise efficient generic solvers. An example
is CPLEX, a state-of-the-art solver for mixed integer programming that we employ as
a baseline to solve the ILP in Equation 5.8 as well as its LP relaxation in Equation 5.17.
Like many of the best implementations, CPLEX is proprietary.

28 We noticed in the annotated data, in some cases, the “requires” constraint is violated by the FrameNet
annotators. This happens mostly when one of the required roles is absent in the sentence containing the tar-
get, but is rather instantiated in an earlier sentence (Gerber and Chai, 2010). We apply the hard constraint in
Equation 5.16, though extending our algorithm to seek arguments outside the sentence is straightforward.
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Linguistic Constraints from FrameNet

Although enforcing the four different sets of constraints above is intuitive from a general
linguistic perspective, we ground their use in definitive linguistic information present in
the FrameNet lexicon. From the annotated data in the FrameNet 1.5 release, we gathered
that only 3.6% of the time is a role instantiated multiple times by different spans in a
sentence. This justifies the uniqueness constraint enforced by Equation 5.9. Use of such
a constraint is also consistent with prior work in frame-semantic parsing (Johansson and
Nugues, 2007). Similarly, we found that in the annotations, no arguments overlapped
with each other for a given target. Hence, the overlap constraints in Equation 5.11 are
also justified.

Our third and fourth sets of constraints, presented in Eqs. 5.14 and 5.16, come from
FrameNet, too. Examples 5.12–5.13 are instances where the target resemble evokes the
SIMILARITY frame, which is defined in FrameNet as:

Two or more distinct entities, which may be concrete or abstract objects or
types, are characterized as being similar to each other. Depending on fig-
ure/ground relations, the entities may be expressed in two distinct frame
elements and constituents, Entity 1 and Entity 2, or jointly as a single frame
element and constituent, Entities.

For this frame, the lexicon lists several roles other than the three roles we have al-
ready observed, such as Dimension (the dimension along which the entities are similar),
Differentiating fact (a fact that reveals how the concerned entities are similar or differ-
ent), and so forth. Along with the roles, FrameNet also declares the “excludes” and
“requires” relationships noted in our discussion in Section 5.5.2. The case of the SIMI-
LARITY frame is not unique; in Fig. 5.1, the frame COLLABORATION, evoked by the target
partners, also has two roles Partner 1 and Partner 2 that share the “requires” relation-
ship. In fact, out of 877 frames in FrameNet 1.5, 204 frames have at least a pair of roles
for which the “excludes” relationship holds, and 54 list at least a pair of roles that share
the “requires” relationship.

Constraints as Factors in a Graphical Model

The LP in Equation 5.17 can be represented as a maximum a posteriori (MAP) infer-
ence problem in an undirected graphical model. In the factor graph, each component
of z corresponds to a binary variable, and each instantiation of a constraint in Equa-
tions 5.9, 5.11, 5.14 and 5.16 corresponds to a factor. Smith and Eisner (2008) and Martins
et al. (2010) used such a representation to impose constraints in a dependency parsing
problem; the latter discussed the equivalence of linear programs and factor graphs for
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representing discrete optimization problems. Each of our constraints take standard fac-
tor forms we can describe using the terminology of Smith and Eisner (2008) and Mar-
tins et al. (2010). The uniqueness constraint in Equation 5.9 corresponds to an XOR

factor, while the overlap constraint in Equation 5.11 corresponds to an ATMOSTONE

factor. The constraints in Equation 5.14 enforcing the “excludes” relationship can be
represented with an OR factor. Finally, each “requires” constraints in Equation 5.16 is
equivalent to an XORWITHOUTPUT factor.

In the following section, we describe how we arrive at solutions for the LP in Equa-
tion 5.17 using dual decomposition, and how we adapt it to efficiently recover the exact
solution of the ILP (Equation 5.8), without the need of an off-the-shelf ILP solver.

5.5.3 “Augmented” Dual Decomposition

Dual decomposition methods address complex optimization problems in the dual, by
dividing them into simple worker problems, which are repeatedly solved until a con-
sensus is reached. The most simple technique relies on the subgradient algorithm (Ko-
modakis et al., 2007; Rush et al., 2010); as an alternative, an augmented Lagrangian
technique was proposed by Martins et al. (2011a,b), which is more suitable when there
are many small components—commonly the case in declarative constrained problems,
such as the one at hand. Here, we present a brief overview of the latter, which is called
Alternating Direction Dual Decomposition (AD3).

Let us start by establishing some notation. Let m ∈ {1, . . . ,M} index a factor, and
denote by i(m) the vector of indices of variables linked to that factor. (Recall that each
factor represents the instantiation of a constraint.) We introduce a new set of variables,
u ∈ Rd, called the “witness” vector. We split the vector z into M overlapping pieces
z1, . . . , zM , where each zm ∈ [0, 1]|i(m)|, and add M constraints zm = ui(m) to impose
that all the pieces must agree with the witness (and therefore with each other). Each
of the M constraints described in §5.5.2 can be encoded with its own matrix Am and
vector bm (which jointly define A and b in Equation 5.17). For convenience, we denote
by c ∈ Rd the score vector, whose components are c(r, s), for each r ∈ Rf and s ∈ S
(Equation 5.7), and define the following scores for the mth subproblem:

cm(r, s) = δ(r, s)−1c(r, s), ∀(r, s) ∈ i(m), (5.18)

where δ(r, s) is the number of constraints that involve role r and span s. Note that
according to this definition, c ·z =

∑M
m=1 cm ·zm. We can rewrite the LP in Equation 5.17
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in the following equivalent form:

maximize
M∑

m=1

cm · zm

with respect to u ∈ Rd, zm ∈ [0, 1]i(m), ∀m
such that Amzm ≤ bm, ∀m

zm = ui(m), ∀m. (5.19)

We next augment the objective with a quadratic penalty term ρ
2

∑M
m=1 ‖zm−ui(m)‖2 (for

some ρ > 0). This does not affect the solution of the problem, since the equality con-
straints in the last line force this penalty to vanish. However, as we will see, this penalty
will influence the workers and will lead to faster consensus. Next, we introduce La-
grange multipliers λm for those equality constraints, so that the augmented Lagrangian
function becomes:

Lρ(z,u,λ) =
M∑

m=1

(cm + λm) · zm − λm · ui(m)

−ρ
2
‖zm − ui(m)‖2. (5.20)

The AD3 algorithm seeks a saddle point of Lρ by performing alternating maximization
with respect to z and u, followed by a gradient update of λ. The result is shown as
Algorithm 2. Like dual decomposition approaches, it repeatedly performs a broadcast
operation (the zm-updates, which can be done in parallel, one constraint per “worker”)
and a gather operation (the u- and λ-updates). Each u-operation can be seen as an aver-
aged voting which takes into consideration each worker’s results.

Like in the subgradient method, the λ-updates can be regarded as price adjustments,
which will affect the next round of zm-updates. The only difference with respect to
the subgradient method (Rush et al., 2010) is that each subproblem involved in a zm-
update also has a quadratic penalty that penalizes deviations from the previous average
voting; it is this term that accelerates consensus and therefore convergence. Martins
et al. (2011b) also provide stopping criteria for the iterative updates using primal and
dual residuals that measure convergence; we refer the reader to that paper for details.

A key attraction of this algorithm is all the components of the declarative specifi-
cation remain intact in the procedural form. Each worker corresponds exactly to one
constraint in the ILP, which corresponds to one linguistic constraint. There is no need to
work out when, during the procedure, each constraint might have an effect, as in beam
search.
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Algorithm 2 AD3 for Argument Identification

1: input:

• role-span matching scores c := 〈c(r, s)〉r,s,

• structural constraints 〈Am,bm〉Mm=1,

• penalty ρ > 0

2: initialize t← 1
3: initialize u1 uniformly (i.e., u(r, s) = 0.5, ∀r, s)
4: initialize each λ1

m = 0, ∀m ∈ {1, . . . ,M}
5: repeat
6: for each m = 1, . . . ,M do
7: make a zm-update by finding the best scoring analysis for the mth constraint,

with penalties for deviating from the consensus u:

z(t+1)
m ← argmax

Amztm≤bm

(cm + λtm) · zm −
ρ

2
‖zm − uti(m)‖2 (5.21)

8: end for
9: make a u-update by updating the consensus solution, averaging z1, . . . , zm:

u(t+1)(r, s)← 1

δ(r, s)

∑

m:(r,s)∈i(m)

z(t+1)
m (r, s)

10: make a λ-update:

λ(t+1)
m ← λtm − ρ(z(t+1)

m − u
(t+1)
i(m) ), ∀m

11: t← t+ 1
12: until convergence.
13: output: relaxed primal solution u∗ and dual solution λ∗. If u∗ is integer, it will

encode an assignment of spans to roles. Otherwise, it will provide an upper bound
of the true optimum.

Solving the subproblems

Here, we consider the procedures used to solve the subproblems, corresponding to each
zm-update, as shown in Equation 5.21. These subproblems can be solved efficiently for
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Algorithm 3 Projection onto the simplex

1: input: 〈a1, a2, . . . , an〉
2: Sort 〈a1, a2, . . . , an〉 into 〈b1, b2, . . . , bn〉: b1 ≥ b2 · · · ≥ bn

3: Find α = max

{
j ∈ [n] | bj − 1

j

( j∑

k=1

bk − 1
)
> 0

}

4: Define τ = 1
α (
∑α

k=1 bk − 1)
5: output: 〈z1, z2, . . . , zn〉with zi = max{ai − τ, 0}.

several cases that arises in language processing tasks, and here we consider the four
specific zm-subproblems associated with the XOR, XORWITHOUTPUT, OR and ATMO-
STONE factors. Following Martins et al. (2011b), we transform Equation 5.21 to the
following generic procedure for each of the above types of subproblems:

minimize
1

2
‖zm − ai(m)‖22

with respect to zm ∈ [0, 1]i(m)

such that Amzm ≤ bm. (5.22)

In the above equation, we ignore timestep t in the superscript to simplify notation. ai(m)

in the above equation is defined as:

ai(m) = ui(m) + ρ−1(cm + λm) (5.23)

We consider the four different factors relevant to our problem at a time as follows.

1. XOR Factor (the “uniqueness” constraints): The first factor, which employs the
uniqueness or the XOR constraint, can be specified as:

minimize
1

2
‖zm − ai(m)‖22

with respect to zm ∈ [0, 1]i(m)

such that ‖zm‖1 = 1. (5.24)

The above problem can be solved by computing a projection onto the probability
simplex as denoted by Algorithm 3 (Duchi et al., 2008). Given the dimensionality
|i(m)| of zm, this projection operation is just a sort which takes O(|i(m)| log |i(m)|)
time.
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2. XORWITHOUTPUT Factor (the “requires” constraints): This factor can be ex-
pressed as the procedure:

minimize
1

2
‖zm − ai(m)‖22

with respect to zm ∈ [0, 1]i(m)

such that
|i(m)|∑

k=1,k 6=j
zm,k = zm,j . (5.25)

The above can be solved by using the procedure above by using the XOR proce-
dure itself but using the following twist:

(a) Set a
′
m,j = 1− am,j , where am,j is the component of ai(m) that corresponds to

zm,j in Equation 5.25. Set a
′
m,k = am,k, ∀k, k 6= j.

(b) Obtain 〈z′
m,1, z

′
m,2, . . . , z

′

m,|i(m)|〉 by using Algorithm 3 with

〈a′
m,1, a

′
m,2, . . . , a

′

m,|i(m)|〉 input.

(c) Set zm,j = 1− z′
m,j and ∀k 6= j, zm,j = z

′
m,j .

3. OR Factor (the “excludes” constraints): The OR factor can be expressed as:

minimize
1

2
‖zm − ai(m)‖22

with respect to zm ∈ [0, 1]i(m)

such that ‖zm‖1 ≥ 1. (5.26)

This factor can be computed as:

(a) Set ∀k ∈ i(m), zm,k = min{max{am,k, 0}, 1}.
(b) If ‖zm‖1 ≥ 1, return 〈zm,1, . . . , zm,|i(m)|〉. Else, project 〈am,1, . . . , am,|i(m)|〉 to

the simplex.

The runtime of the above procedure is also O(|i(m)| log |i(m)|). A proof of correct-
ness can be found in Appendix B of Martins et al. (2011b).

4. ATMOSTONE Factor (the “overlap” constraints): This factor can be represented as:

minimize
1

2
‖zm − ai(m)‖22

with respect to zm ∈ [0, 1]i(m)

such that ‖zm‖1 ≤ 1. (5.27)

It can be computed in a similar fashion as the OR factor:
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(a) Set ∀k ∈ i(m), zm,k = min{max{am,k, 0}, 1}.
(b) If ‖zm‖1 ≤ 1, return 〈zm,1, . . . , zm,|i(m)|〉. Else, project 〈am,1, . . . , am,|i(m)|〉 to

the simplex.

The runtime of this procedure is also the same as the OR factor, and the proof of
this procedure’s correctness follows from the proof in Appendix B of Martins et al.
(2011b).

Caching

As mentioned by Martins et al. (2011b), as the algorithm comes close to convergence,
many subproblems become unchanged and their solutions can be cached. By caching
the subproblems, we managed to reduce runtime by about 60%.

Exact decoding

It is worth recalling that AD3, like other dual decomposition algorithms, solves a re-
laxation of the actual problem. Although we have observed that the relaxation is often
tight—cf. §5.5.4—this is not always the case. Specifically, a fractional solution may be
obtained, which is not interpretable as an argument, and therefore it is desirable to have
a strategy to recover the exact solution. Two observations are noteworthy. First, the
optimal value of the relaxed problem (Equation 5.17) provides an upper bound to the
original problem (Equation 5.8). This is because Equation 5.8 has the additional inte-
ger constraint on the variables. In particular, any feasible dual point provides an upper
bound to the original problem’s optimal value. Second, during execution of the AD3 al-
gorithm, we always keep track of a sequence of feasible dual points. Therefore, each
iteration constructs tighter and tighter upper bounds. With this machinery, we have
all that is necessary for implementing a branch-and-bound search that finds the exact
solution of the ILP. The procedure works recursively as follows:

1. Initialize L = −∞ (our best value so far).

2. Run Algorithm 2. If the solution u∗ is integer, return u∗ and set L to the objec-
tive value. If along the execution we obtain an upper bound less than L, then
Algorithm 2 can be safely stopped and return “infeasible”—this is the bound part.
Otherwise (if u∗ is fractional) go to step 3.

3. Find the “most fractional” component of u∗ (call it u∗j ) and branch: constrain uj = 0
and go to step 2, eventually obtaining an integer solution u∗0 or infeasibility; and
then constrain uj = 1 and do the same, obtaining u∗1. Return the u∗ ∈ {u∗0,u∗1} that
yields the largest objective value.
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Although this procedure may have worst-case exponential runtime, we found it empir-
ically to obtain the exact solution in all test cases.

5.5.4 Results with Collective Argument Identification

We present experiments only on argument identification in this section, as our goal is
to exhibit the importance of incorporating the various linguistic constraints during our
inference procedure. We present results on the full text annotations of FrameNet 1.5, and
do not experiment on the SemEval 2007 benchmark, as we have already observed that
constraint-agnostic models are superior than prior work. We trained the model weight
ψ used in the scoring function c, in the same way as in §5.4.1, i.e. by training a logistic
regression model using maximum conditional log-likelihood. The AD3 parameter ρwas
initialized to 0.1, we followed Martins et al. (2011b) in dynamically adjusting it to keep
a balance between the primal and dual residuals.

We compare the following algorithms to demonstrate the efficacy of our collective
argument identification approach:

1. Local: this is a naı̈ve argument identification strategy that selects the best span for
each role r, according to the score function c(r, s). The idea is exactly similar to
Equation 5.4 as described in §5.4.1. It ignores all constraints except “uniqueness.”
This also corresponds to the results seen in the 7th row of Table 5.8.

2. Beam: this strategy employs greedy beam search to eliminate overlaps between
predicted arguments, as described in Algorithm 1. Note that it does not try to re-
spect the “excludes” and “requires” constraints between pairs of roles. The default
size of the beam in §1 was a safe 10,000; this resulted in extremely slow decoding
times. For time comparison, we tried beam sizes of 100 and 2 (the latter being the
smallest size that achieves the same F1 score on the FrameNet 1.5 dev set.) This,
with beam size 10,000 corresponds to the 8th row of Table 5.8.

3. CPLEX, LP: this uses CPLEX to solve the relaxed LP in Equation 5.17. To han-
dle fractional z, for each role r, we choose the best span s∗, such that s∗ =
argmaxs∈Sr zr,s, solving ties arbitrarily.

4. CPLEX, exact: this tackles the actual ILP (Equation 5.8) with CPLEX.

5. AD3, LP: this the counterpart of the LP version of CPLEX, where the relaxed prob-
lem is solved using AD3. We choose the spans for each role in the same way as in
strategy 3.

6. AD3, exact: this couples AD3 with branch-and-bound search to get the exact inte-
ger solution.
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Table 5.9 shows performance of the different decoding strategies on the test set. We
report precision, recall, and F1 scores. For these experiments too, we use the evaluation
script from SemEval 2007 shared task. Since these scores do not penalize structural vi-
olations, we also report the number of overlap, “excludes,” and “requires” constraints
that were violated in the test set. Finally, we tabulate each setting’s decoding time in
seconds on the whole test set averaged over 5 runs. We used a 64-bit machine with 2
2.6GHz dual-core CPUs (i.e., 4 processors in all) with a total of 8GB of RAM. The work-
ers in AD3 were not parallelized, while CPLEX automatically parallelized execution.
The Local model is very fast but suffers degradation in precision and violates one con-
straint roughly per nine targets. The decoding strategy of §5.4.1 used a default beam
size of 10,000, which is extremely slow; a faster version of beam size 100 results in the
same precision and recall values, but is 15 times faster on our test set. Beam size 2 re-
sults in a bit worse precision and recall values, but is even faster. All of these, however,
result in many constraint violations. Strategies involving CPLEX and AD3 perform sim-
ilarly to each other and to beam search on precision and recall, but eliminate most or all
of the constraint violations. With respect to precision and recall, exact AD3 and beam
search with width 10000 were found to be statistically indistinguishable (p > 0.01). The
decoding strategy with beam size 2 is 11–16 times faster than the CPLEX strategies, but
is only twice as fast as AD3, and results in significantly more structural violations. The
exact algorithms are slower than the LP versions, but compared to CPLEX, AD3 is sig-
nificantly faster and has a narrower gap between its exact and LP versions. We found
that relaxation was tight 99.8% of the time on the test examples.

The example in Fig. 5.1 is taken from our test set, and shows an instance where two
roles, Partner 1 and Partner 2 share the “requires” relationship; for this example, the
beam search decoder misses the Partner 2 role, which is a violation, while our AD3 de-
coder identifies both arguments correctly. Note that beam search makes plenty of lin-
guistic violations, but has precision and recall values that are marginally better than
AD3. We found that beam search, when violating many “requires” constraints, often
finds one role in the pair, which increases its recall. AD3 is sometimes more conser-
vative in such cases, predicting neither role. Figure 5.3 shows such an example where
beam search finds one role (Entity 1) while AD3 is more conservative and predicts no
roles. Figure 5.4 shows another example contrasting the output of beam search and
AD3 where the former predicts two roles sharing an “excludes” relationship; AD3 does
not violate this constraint and tries to predict a more consistent argument set. A second
issue, as noted in footnote 28, is that the annotations sometimes violate these constraints.
Figure 5.5 shows two examples where the FrameNet annotators do not respect the “re-
quires” constraint; in figure 5.5(b), we observe a case where one role in a required pair
appears in a previous sentence. Overall, we found it interesting that imposing the con-
straints did not have much effect on standard measures of accuracy.
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ARGUMENT IDENTIFICATION Violations
Method P R F1 Overlap Requires Excludes Time in Secs.

Local 82.00 76.36 79.08 441 45 15 1.26 ± 0.01

beam = 2 83.68 76.22 79.78 0 49 0 2.74 ± 0.10
beam = 100 83.83 76.28 79.88 0 50 1 29.0 ± 0.25
beam = 10000 83.83 76.28 79.88 0 50 1 440.67 ± 5.53

CPLEX, LP 83.80 76.16 79.80 0 1 0 32.67 ± 1.29
CPLEX, exact 83.78 76.17 79.79 0 0 0 43.12 ± 1.26

AD3, LP 83.77 76.17 79.79 2 2 0 4.17 ± 0.01
AD3, exact 83.78 76.17 79.79 0 0 0 4.78 ± 0.04

Table 5.9: Comparison of decoding strategies in §5.5.4 on the dataset released with the FrameNet 1.5 Release,
given gold frames. We evaluate in terms of precision, recall and F1 score on our test set containing 4,458 targets.
We also compute the number of structural violations each model makes: number of overlapping arguments
and violations of the “requires” and “excludes” constraints of §5.5.2. Finally decoding time (without feature
computation steps) on the whole test set is shown in the last column averaged over 5 runs.
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5.6 Discussion

In this chapter, we have provided a supervised model for rich frame-semantic parsing,
based on a combination of knowledge from FrameNet, two probabilistic models trained
on full-text annotations released along with the FrameNet lexicon, and expedient heuris-
tics. One of the models employs latent variables to model unseen lexical units in either
the FrameNet lexicon or training data, and our results show that quite often, this model
is able to find a closely related frame to the gold standard. The second model for ar-
gument identification, trained using maximum conditional log-likelihood, conjoins the
two traditional steps of finding the potential arguments in a sentence and then labeling
them as a role into one stage. Our system achieves improvements over the state of the
art at each stage of processing and collectively. We compare our performance with the
the state of the art on the SemEval 2007 benchmark dataset.

To further improve argument identification, we use a novel method for collectively
predicting all arguments of a given target by incorporating declarative linguistic knowl-
edge as constraints. It outperforms the naı̈ve local decoding scheme that is oblivious to
the constraints. Furthermore, it is significantly faster than a decoder employing a state-
of-the-art proprietary solver; it is slower than beam search (our chosen decoding method
for comparison with the state of the art), which is inexact and does not respect all lin-
guistic constraints. Our method is easily amenable to the inclusion of more constraints,
which would require minimal programming effort. Certain straightforward extensions
of the parser, which we do not consider in this thesis are:

1. Addition of various other linguistic constraints based on information present in
FrameNet, e.g. the semantic type of roles and constraints over frame disambigua-
tion across targets in a document.

2. We observe, as in Figure 5.5, that there are instances where the annotators do not
respect the “requires” constraint. We treat this constraint as a hard factor in our in-
ference scheme; an extension would convert this factor into one that incorporates
a “soft” constraint, to be learned from annotated data.

3. We note that syntactic parse errors lead to poor selection of potential arguments;
domain adaptation of a syntactic parser, using strategies presented by Hall et al.
(2011) could potentially serve as a better preprocessor for frame-semantic parsing.

There are a few long term future directions that one could take. Here, we presented
a joint model for finding all the arguments collectively, given the disambiguated frame
for a chosen predicate. An extension would be to perform frame and argument identifi-
cation within a joint inference scheme, without solving these two subtasks in a pipeline.
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We made a naı̈ve attempt at jointly disambiguating frames and their corresponding ar-
guments with separately trained frame and argument identification models, without
any scaling strategy that would treat the contribution of these two models differently.29

Results with this joint inference scheme were statistically indistinguishable from the
results presented in this chapter for both frame identification and full frame-semantic
parsing; however, inference was much slower than the pipeline. We leave thorough
exploration of joint frame and argument identification learning and inference to future
work.

Another extension of our frame-semantic parsing model would be the inclusion of
more linguistically motivated features and constraints. Although the current set of fea-
tures in the argument identification model looks at the subcategorization frame of the
target in question, it could be improved. For example, we could impose constraints on
the set of arguments that a target could take; an example constraint for a verbal tar-
get that is ditransitive would be the requirement of two arguments whose grammatical
functions are two objects in the syntactic parse. Such constraints, if available, can be
easily placed using the ILP framework we presented in §5.5.2. The VerbNet lexicon
(Schuler, 2005) contains such information regarding verbs; future work could relate the
information in VerbNet and map them to the FrameNet lexicon and use it to impose
further constraints on argument identification inference.

In the next chapter, we observe how distributional similarity can be used as to im-
prove the coverage of the frame-semantic parser, by probabilistically expanding our lex-
icon. To this end, we use graph-based semi-supervised learning to learn possible seman-
tic frames on targets unseen in FrameNet or any supervised data. The parser described
in this chapter is available for download at http://www.ark.cs.cmu.edu/SEMAFOR.

29Related research in shallow semantic parsing have explored ideas with scaling strategies that treat
the contribution of various separately trained systems differently; for an example, see Srikumar and Roth
(2011).

http://www.ark.cs.cmu.edu/SEMAFOR
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(a) Gold annotation.

(b) Beam search output.

Figure 5.3: An example from the test set where (a) exhibits the gold annotation for a tar-
get that evokes the COLLABORATION frame, with the Partners role fulfilled by the span
“international”. (b) shows the prediction made by the beam search decoding scheme
(beam = 10000), where it marks “international” with the Partners 1 role, which violates
the “requires” constraint; FrameNet notes that this role should be present with the Part-
ners 2 role. AD3 proves to be conservative and predicts no role – it is penalized by the
evaluation script, but does not produce output that violates linguistic constraints.
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(a) Gold annotation.

(b) Beam search output.

(c) AD3 output.

Figure 5.4: An example from the test set where (a) exhibits the gold annotation for a
target that evokes the DISCUSSION frame, with the Interlocutor 1 role fulfilled by the
span “neighbors.” (b) shows the prediction made by the beam search decoding scheme
(beam = 10000), where it marks “The next morning his households and neighbors” with
the Interlocutors role, which violates the “excludes” constraint with respect to the Inter-
locutor 2 role. In (c), AD3 marks the wrong span as the Interlocutor 1 role, but it does
not violate the constraint. Both beam and AD3 inference miss the Topic role.
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(a) Gold annotation.

(b) Gold annotation.

Figure 5.5: In (a), the annotators only annotate the Alter role, while the lexicon mentions that this role, if present
warrants the presence of the Ego role. (b) shows three sentences, with the last sentence showing an instance of
the SIMILARITY frame. In this example, only Entity 1 is marked by the annotators, because the other required role
Entity 2 is absent in the current sentence, but can be traced back to a previous sentence.



Chapter 6

Semi-Supervised Lexicon Expansion

In this chapter, we will investigate a generic semi-supervised learning approach towards
expanding natural language type lexicons. Type lexicons are widely used in various
tasks in language processing. These lexicons contain natural language types that appear
as token instances in free text, containing the potential set of labels that they associate
with. Within the context of this thesis, the set of lexical unit types along with the po-
tential set of semantic frames they evoke is an example of a type lexicon (Chapter 5).
Another example is the collection of words in a language, with each word paired with
the potential set of POS tags that they can associate with. POS lexicons have been used
in unsupervised POS tagging experiments (Merialdo, 1994; Smith and Eisner, 2005; Das
and Petrov, 2011). A gazetteer used for named-entity recognition is another example.

Here, we will focus on some generic techniques that expand a seed lexicon into a
noisier, but much larger set of types with a probability distribution over labels on each
of them. We will also observe how such an expanded lexicon can be used to constrain
inference, especially keeping in mind the frame-semantic parsing task at hand. The
research described in this chapter has been presented earlier in two conference papers
(Das and Smith, 2011, 2012).

Semi-supervised learning is attractive for the learning of complex phenomena, for
example, linguistic structure, where data annotation is expensive. Natural language
processing applications have benefited from various SSL techniques, such as distribu-
tional word representations (Huang and Yates, 2009; Turian et al., 2010; Dhillon et al.,
2011), self-training (McClosky et al., 2006), and entropy regularization (Jiao et al., 2006;
Smith and Eisner, 2007). Here, we focus on semi-supervised learning that uses a graph
constructed from labeled and unlabeled data. This framework, graph-based SSL—see
Bengio et al. (2006) and Zhu (2008) for introductory material on this topic—has been
widely used and has been shown to perform better than several other semi-supervised
algorithms on benchmark datasets (Chapelle et al., 2006, ch. 21). The method constructs

94
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a graph where a small portion of vertices correspond to labeled instances, and the rest
are unlabeled. Pairs of vertices are connected by weighted edges denoting the similarity
between the pair. Traditionally, Markov random walks (Szummer and Jaakkola, 2001;
Baluja et al., 2008) or optimization of a loss function based on smoothness properties of
the graph (Corduneanu and Jaakkola, 2003; Zhu et al., 2003; Subramanya and Bilmes,
2008, inter alia) are performed to propagate labels from the labeled vertices to the unla-
beled ones.

In this work, we are interested in multi-class generalizations of graph-propagation
algorithms, where each graph vertex can assume one or more out of many possible labels
(Talukdar and Crammer, 2009; Subramanya and Bilmes, 2008, 2009). For us, graph ver-
tices correspond to natural language types (not tokens) and undirected edges between
them are weighted using a similarity metric. Recently, this setup has been used to learn
soft labels on natural language types (say, word n-grams or syntactically disambiguated
predicates) to constrain structured prediction models. Applications have ranged from
domain adaptation of part-of-speech (POS) taggers (Subramanya et al., 2010) to unsu-
pervised learning of POS taggers by using bilingual graph-based projections (Das and
Petrov, 2011). However, none of these approaches captured the empirical fact that only
a few categories are actually possible for a given type (vertex). Take the case of POS
tagging: Subramanya et al. (2010) construct a graph over trigram types as vertices, with
45 possible tags for the middle word of a trigram as the label set for each vertex. It is em-
pirically observed that contextualized word types usually assume very few (most often,
one) POS tags. However, along with graph smoothness terms, they apply a penalty that
encourages distributions to be close to uniform, the premise being that it would maxi-
mize the entropy of the distribution for a vertex that is far away or disconnected from
a labeled vertex (Subramanya et al., 2010, see Equation 2). To prefer maximum entropy
solutions in low confidence regions of graphs, a similar entropic penalty is applied by
(Subramanya and Bilmes, 2008, 2009).

Here, we make two major algorithmic contributions. First, we relax the assumption
made by most previous work (Baluja et al., 2008; Das and Petrov, 2011; Subramanya
and Bilmes, 2008, 2009; Subramanya et al., 2010; Zhu and Ghahramani, 2002) that the `1
norm of the scores assigned to the labels for a given vertex must be 1. In other words,
in our framework, the label distribution at each vertex is unnormalized—the only con-
straint we put on the vertices’ vectors is that they must be nonnegative. Moreover, we
also assume the edge weights in a given graph are unconstrained, consistent with prior
work on graph-based SSL (Das and Petrov, 2011; Subramanya and Bilmes, 2008, 2009;
Subramanya et al., 2010; Zhu and Ghahramani, 2002). This relaxation lets us experi-
ment with complex graph smoothness terms, including one that uses the symmetric
entropic Jensen-Shannon divergence (Burbea and Rao, 1982; Lin, 1991), and also lets us
use penalties that prefer vertex-level sparsity.

Second, we replace the penalties that prefer maximum entropy, used in prior work,
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with penalties that aim to identify sparse unnormalized measures at each graph vertex.
We achieve this goal by penalizing the graph propagation objective with the `1 norm
or the mixed `1,2 norm (Kowalski and Torrésani, 2009) of the measures at each vertex,
aiming for global and vertex-level sparsity, respectively.

The combination of the above two properties of our framework retains several attrac-
tive properties of prior work. Most importantly, the proposed graph objective functions
are convex, so we avoid degenerate solutions and local minima. Moreover, the only
set of linear constraints applied on the objectives require that the mass assigned to each
label for each vertex be nonnegative. The relaxation of simplex constraints present in
prior work lets us use a generic straightforward quasi-Newton method for optimization
(Zhu et al., 1997).

In this chapter, we present experiments on two lexicon expansion problems in a
semi-supervised setting:

1. Inducing distributions of POS tags over n-gram types in the Wall Street Journal
section of the Penn Treebank corpus (Marcus et al., 1993); this set of experiments
diverges from the dissertation’s theme of learning for natural language semantics,
but it shows the general efficacy of using our family of graph objectives.

2. Inducing distributions of semantic frames over lexical units unseen in annotated
data.

Our methods produce sparse measures at graph vertices resulting in compact lex-
icons, and also result in better predictive performance with respect to the multi-class
generalization of label propagation using Gaussian penalties (Zhu and Ghahramani,
2002) and entropic measure propagation (Subramanya and Bilmes, 2009), two state-of-
the-art graph propagation algorithms. The chapter is organized as follows. §6.1 presents
the statistical model we use for graph-based SSL. We present a family of graph objec-
tives that make optimization easier than prior work and also employs sparse penalties.
§6.2 presents a short discussion on how we optimize our objective functions, followed
by two sections that focuses on the experiments conducted and the results achieved
(§6.3-6.4). Finally, we conclude this chapter in §6.5.

6.1 Model

6.1.1 Graph-Based SSL as Inference in a Markov Network

Let Dl = {(xj , q̂j)}lj=1 denote l annotated data types;1 xj ’s empirical label distribution
is q̂j . Let the unlabeled data types be denoted by Du = {xi}mi=l+1. Usually, l � m.

1As it will become clearer with further exposition in §6.3-6.4, these types are entities like n-grams or
individual lexical units, not tokens in running text.
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X1

X4 X3

X2

Figure 6.1: An example factor graph for the graph-based SSL problem. See text for the
significance of the shaded and dotted factors, and the shaded variables.

Thus, the entire dataset can be called D , {Dl,Du}. Traditionally, the graph-based SSL
problem has been set up as follows. Let G = (V,E) correspond to an undirected graph
with vertices V and edges E. G is constructed by transforming each data type xi ∈ D
to a vertex; thus V = {1, 2, . . . ,m}, and E ⊆ V × V . Let Vl (Vu) denote the labeled
(unlabeled) vertices. Moreover, we assume a symmetric weight matrix W that defines
the similarity between a pair of vertices i, k ∈ V . We first define a component of this
matrix as wij , [W]ik = sim(xi,xk). We also fix wii = 0 and set wik = wki = 0 if
k 6∈ N (i) and i 6∈ N (k), where N (j) denotes the K-nearest neighbors of vertex j. The
last modification makes the graph sparse.2 We next define an unnormalized measure
qi for every vertex i ∈ V . As mentioned before, we have q̂j , a probability distribution
estimated from annotated data for a labeled vertex j ∈ Vl. qi and q̂j are |Y |-dimensional
measures, where Y is the possible set of labels; while q̂j lies within the |Y |-dimensional
probability simplex, qi are unnormalized with each component qi(y) ≥ 0. For some
applications, q̂j are expected to be sparse, usually with only one or two components
active, the rest being zero.

Graph-based SSL aims at finding the best q = {qi : 1 ≤ i ≤ m} given the supervised
empirical distributions q̂j , and the weight matrix W, which provides the geometry of
all the vertices. We represent this problem using a pairwise Markov network (MN). For
every vertex (including labeled ones) i ∈ V , we create a variable Xi. Additionally, for
labeled vertices j ∈ Vl, we create variables X̂j . All variables in the MN are defined
to be vector-valued; specifically, variables Xi, ∀i ∈ V , take value qi, and variables X̂j

corresponding to the labeled vertices in G are observed with values q̂j . An example

2This is not the same kind of sparsity that our novel approach seeks.
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factor graph for this MN, with only four vertices, is shown in Figure 6.1. In the figure,
the variables indexed by 1 and 4 correspond to labeled vertices. Factor φj with scope
{Xj , X̂j} encourages qj to be close to q̂j . For every edge i−k ∈ E, factor ϕi−k encourages
similarity between qi and qk, making use of the weight matrix W (i.e., when wik is
larger, the two measures are more strongly encouraged to be close). These factors are
white squares with solid boundaries in the figure. Finally, we define unary factors on all
variables Xi, i ∈ V , named ψi(Xi), that can incorporate prior information. In Figure 6.1,
these factors are represented by white squares with dashed boundaries.

According to the factor graph, the joint probability for all the measures qi, ∀i ∈ V
that we want to induce, is defined as:

P (X; Φ) =
1

Z

l∏

j=1

φj(Xj , X̂j) ·
∏

i−k∈E
ϕi−k(Xi, Xk) ·

m∏

i=1

ψi(Xi)

where Φ is the set of all factors in the factor graph, and Z is a partition function that
normalizes the factor products for a given configuration of q. Since the graph-based
SSL problem aims at finding the best q, we optimize lnP (X; Φ); equivalently,

argmax
q s.t q≥0

l∑

j=1

lnφj(Xj , X̂j) +
∑

i−k∈E
lnϕi−k(Xi, Xk) +

m∑

i=1

lnψi(Xi) (6.1)

The above is an optimization problem with only non-negativity constraints. It equates
to maximum a posteriori (MAP) inference; hence, the partition function Z can be ignored.
We next discuss the nature of the three different factors in Equation 6.1.

6.1.2 Log-Factors as Penalties

The nature of the three types of factors in Equation 6.1 governs the behavior of a graph-
based SSL algorithm. Hence, the equation specifies a family of graph-based methods
that generalize prior research. We desire the following properties to be satisfied in the
factors:

1. Convexity of Equation 6.1.

2. Amenability to high-performance optimization algorithms without extra hyper-
parameters and with the option of parallelization.

3. Sparse solutions as expected in natural language lexicons.
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Pairwise factors

In our work, for the pairwise factors φj(Xj , X̂j) and ϕi−k(Xi, Xk), we examine two types
of distances that attempt to capture inconsistencies between neighboring vertices: the
squared `2 norm and the Jensen-Shannon (JS) divergence (Burbea and Rao, 1982; Lin,
1991), which is a symmetrized generalization of the Kullback-Leibler (KL) divergence
(Kullback and Leibler, 1951; Cover and Thomas, 1991). These two divergences are sym-
metric and are inspired by previous work; however, the use of the JS divergence is novel
and extends the work of Subramanya and Bilmes (2008), who used the asymmetric KL
divergence (with the simplex constraints on each vertex) as pairwise penalties due to
the ease of optimization. Specifically, the factors look like:

lnφj(Xj , X̂j) = −δ(qj , q̂j) (6.2)
lnϕi−k(Xi, Xk) = −2 · µ · wik · δ(qi, qk) (6.3)

where µ is a hyperparameter whose choice we discuss in §6.3-6.4. The function δ(u, v)
for two vectors u and v are defined in two ways:

δ(u, v)
Gaussian

= ‖u− v‖22 (6.4)

δ(u, v)
Entropic

=
1

2

∑

y∈Y

(
u(y) · ln 2 · u(y)

u(y) + v(y)
+ v(y) · ln 2 · v(y)

u(y) + v(y)

)
(6.5)

We call the version of δ(u, v) that uses the squared `2 distance (Equation 6.4) Gaussian, as
it equates to label propagation via Gaussian fields proposed by Zhu et al. (2003). A mi-
nor difference lies in the fact that we include variablesXj , j ∈ Vl for labeled vertices too,
and allow them to change, but penalize them if they go too far away from the observed
labeled distributions q̂j . The other δ(u, v) shown in Equation 6.5 uses the generalized
JS-divergence defined in terms of the generalized KL-divergence over unnormalized
measures (O’Sullivan, 1998):

DKL(u‖v) =
∑

y

(
u(y) ln

u(y)

v(y)
− u(y) + v(y)

)
(6.6)

Using the definition of the generalized KL divergence in Equation 6.6, we get the gener-
alized version of the JS-divergence as:
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DJS(u ‖ v) =
1

2
DKL

(
u ‖ u+ v

2

)
+

1

2
DKL

(
v ‖ u+ v

2

)

=
1

2

∑

y∈Y

(
u(y) · ln 2 · u(y)

u(y) + v(y)
− u(y) +

1

2

(
u(y) + v(y)

)

+v(y) · ln 2 · v(y)

u(y) + v(y)
− v(y) +

1

2

(
u(y) + v(y)

))

=
1

2

∑

y∈Y

(
u(y) · ln 2 · u(y)

u(y) + v(y)
+ v(y) · ln 2 · v(y)

u(y) + v(y)

)
(6.7)

This form for the generalized JS-divergence ends up looking exactly similar to the
traditional version using normalized probability distributions. Equation 6.5 improves
prior work by replacing the asymmetric KL-divergence used to bring the distributions at
labeled vertices close to the corresponding observed distributions, as well as replacing
the KL-based graph smoothness term with the symmetric JS-divergence (Subramanya
and Bilmes, 2008, see first two terms in Equation 1). Empirical evidence shows that
entropic divergences help in multiclass problems where a vertex can assume multiple
labels, and may perform better than objectives with quadratic penalties (Subramanya
and Bilmes, 2008, 2009).

A major departure from prior work is the use of unnormalized measures in Equa-
tion 6.4-6.5, which simplifies optimization even with the complex JS-divergence in the
objective function (see §6.2), and, we will see, produces comparable and often better
results than baselines using normalized distributions (see §6.3-6.4).

Unary factors

The unary factors in our factor graph ψi(Xi) can incorporate prior information specific
to a particular vertex xi embodied by the variableXi. Herein, we examine three straight-
forward penalties, which can be thought of as penalties that encourage either uniformity
or sparsity:

Uniform squared `2: lnψi(Xi) = −λ ·
∥∥∥qi − 1

|Y |

∥∥∥
2

2
(6.8)

Sparse `1: lnψi(Xi) = −λ · ‖qi‖1 (6.9)
Sparse `1,2: lnψi(Xi) = −λ · ‖qi‖21 (6.10)

where λ is a hyperparameter whose choice we discuss in §6.3-6.4. The first penalty ex-
pressed in Equation 6.8 penalizes qi if it is far away from the uniform distribution. This
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penalty has been used previously (Das and Petrov, 2011; Subramanya et al., 2010), and
is similar to the maximum entropy penalty of (Subramanya and Bilmes, 2008, 2009). The
intuition behind its use is that for low confidence or disconnected regions, one would
prefer to have a uniform measure on a graph vertex. The penalties in equations 6.9–6.10,
on the other hand, encourage sparsity in the measure qi; these are related to regularizers
for generalized linear models: the lasso (Tibshirani, 1996) and the elitist lasso (Kowal-
ski and Torrésani, 2009). The former encourages global sparsity, the latter sparsity per
vertex.3 The `1,2 penalty is calculated as:

‖qi‖21 = (
∑

y∈Y
|qi(y)|1)2 (6.11)

The `1,2 penalty aims at sparsity per vertex because the `1 norm of its components
prefers sparsity within the vertex; next, once we take the squared `2 norm of the `1
norms spanning all vertices in the graph, it promotes density across the `1 norms.

The latter two sparsity inducing penalties are desirable for natural language type
learning. For natural language applications of graph-based SSL, especially in low-
resource scenarios with very few labeled datapoints, one would like to enforce the fact
that unlabeled datapoints can have very few labels. Talukdar (2010) enforced label spar-
sity for information extraction by discarding labels with low scores during graph prop-
agation updates, but did not use a principled mechanism to arrive at sparse measures
at graph vertices. Unlike the uniform penalty (equation 6.8), sparsity corresponds to the
idea of entropy minimization (Grandvalet and Bengio, 2004). Since we use unnormal-
ized measures at each variable Xi, for low confidence graph regions or disconnected
vertices, sparse penalties will result in all zero components in qi, which conveys that the
graph propagation algorithm is not confident on any potential label, a condition that is
perfectly acceptable.

Model variants

We compare six objective functions: we combine factor representations from each of
equations 6.4–6.5 with those from each of equations 6.8–6.10, replacing them in the
generic graph objective function of Equation 6.1. The nature of these six models is suc-
cinctly summarized in Table 6.1. We note their corresponding objective functions below:

3One could additionally experiment with a non-sparse penalty based on the squared `2 norm with zero
mean: lnψi(Xi) = −λ · ‖qi‖22. We experimented with this unary penalty (along with the pairwise Gaussian
penalty for binary factors) for the semantic frame lexicon expansion problem, and found that it performs
exactly at par with the squared `2 penalty with uniform mean. To limit the number of non-sparse graph
objectives, we omit additional experiments with this unary penalty.
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Abbrev.
Factors

Pairwise Unary
UGF-`2 Gaussian Uniform squared `2
UGF-`1 Gaussian Sparse `1
UGF-`1,2 Gaussian Sparse `1,2
UJSF-`2 Entropic Uniform squared `2
UJSF-`1 Entropic Sparse `1
UJSF-`1,2 Entropic Sparse `1,2

Table 6.1: Six variants of graph objective functions novel to this work. These vari-
ants combine the pairwise factor representations from equations 6.4–6.5 with unary fac-
tor representations from each of equations 6.8–6.10 (which either encourage uniform or
sparse measures), to be used in the graph objective function expressed in Equation 6.1.

1. Unnormalized Gaussian fields with a squared `2 penalty (UGF-`2):

arg min
q, s.t. q≥0

l∑

j=1

‖qj − q̂j‖22 +

m∑

i=1


µ

∑

k∈N (i)

wik ‖qi − qk‖22 + λ
∥∥∥qi − 1

|Y |

∥∥∥
2

2


 (6.12)

2. Unnormalized Gaussian fields with an `1 penalty (UGF-`1):

arg min
q, s.t. q≥0

l∑

j=1

‖qj − q̂j‖22 +
m∑

i=1


µ

∑

k∈N (i)

wik ‖qi − qk‖22 + λ ‖qi‖1


 (6.13)

3. Unnormalized Gaussian fields with an `1,2 penalty (UGF-`1,2):

arg min
q, s.t. q≥0

l∑

j=1

‖qj − q̂j‖22 +

m∑

i=1


µ

∑

k∈N (i)

wik ‖qi − qk‖22 + λ ‖qi‖21


 (6.14)

4. Unnormalized Jensen-Shannon fields with a squared `2 penalty (UJSF-`2):

arg min
q, s.t. q≥0

l∑

j=1

DJS(qj ‖ q̂j) +
m∑

i=1


µ

∑

k∈N (i)

wikDJS(qi ‖ qk) + λ
∥∥∥qi − 1

|Y |

∥∥∥
2

2


 (6.15)
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5. Unnormalized Jensen-Shannon fields with an `1 penalty (UJSF-`1):

arg min
q, s.t. q≥0

l∑

j=1

DJS(qj ‖ q̂j) +

m∑

i=1


µ

∑

k∈N (i)

wikDJS(qi ‖ qk) + λ ‖qi‖1


 (6.16)

6. Unnormalized Jensen-Shannon fields with an `1,2 penalty (UJSF-`1,2):

arg min
q, s.t. q≥0

l∑

j=1

DJS(qj ‖ q̂j) +

m∑

i=1


µ

∑

k∈N (i)

wikDJS(qi ‖ qk) + λ ‖qi‖21


 (6.17)

For each model, we find the best set of measures q that minimize the corresponding
graph objective functions, such that q ≥ 0. Note that in each of the graph objectives, we
have two hyperparameters µ and λ that control the influence of the second and the third
terms of Equation 6.1 respectively. We discuss how these hyperparameters are chosen
in §6.3-6.4.

Baseline Models

We compare the performance of the six graph objectives of Table 6.1 with two strong
baselines that have been used in previous work. These two models use the following
two objective functions, and find q s.t. q ≥ 0 and ∀i ∈ V,

∑
y∈Y qi(y) = 1. The first

is a normalized Gaussian field with a squared uniform `2 penalty as the unary factor
(NGF-`2):

arg min
q, s.t. q≥0,
∀i∈V,‖qi‖1=1

l∑

j=1

‖qj − q̂j‖22 +
m∑

i=1

(
µ
∑

k∈N (i)

wik ‖qi − qk‖22 + λ
∥∥∥qi − 1

|Y |

∥∥∥
2

2

)
(6.18)

The second is a normalized KL field with an entropy penalty as the unary factor (NKLF-
ME):

arg min
q, s.t. q≥0,
∀i∈V,‖qi‖1=1

l∑

j=1

DKL(q̂j ‖ qj) +
m∑

i=1

(
µ
∑

k∈N (i)

wikDKL(qi ‖ qk)− λ ·H(qi)
)

(6.19)

where H(qi) denotes the Shannon entropy of the distribution qi. Both these objectives
are constrained by the fact that every qi must be within the |Y |-dimensional probability
simplex. The objective function in 6.18 has been used previously (Subramanya et al.,
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2010) and serves as a generalization of Zhu et al. (2003). The entropic objective func-
tion in 6.19, originally called measure propagation, performed better at multiclass prob-
lems when compared to graph objectives using the quadratic criterion (Subramanya and
Bilmes, 2008).

6.2 Optimization

The six variants of Equation 6.1 in Table 6.1 (corresponding to Equations 6.12-6.17) are
convex. This is because the `1, squared `2 and the `1,2 penalties are convex. Moreover,
the generalized JS-divergence term, which is a sum of two KL-divergence terms, is con-
vex (Cover and Thomas, 1991). Since we choose µ, λ and wik to be nonnegative, these
terms’ sums are also convex in qi, i ∈ V . The graph objectives of the two baselines noted
in expressions 6.18–6.19 are also convex because negative entropy in expression 6.19 is
convex, and rest of the penalties are the same as our six objectives.

In our work, to optimize the objectives of Table 6.1, we use a generic quasi-Newton
gradient-based optimizer that can handle bound-inequality constraints, called L-BFGS-
B (Zhu et al., 1997). Partial derivatives of the graph objectives are computed with respect
to each parameter ∀i, y, qi(y) of q and passed on to the optimizer which updates them
such that the objective function of Equation 6.1 is maximized. Note that since the `1
and `1,2 penalties are non-differentiable at 0, special techniques are usually used to com-
pute updates for unconstrained parameters (Andrew and Gao, 2007). However, since
q ≥ 0, their absolute value can be assumed to be right-continuous, making the function
differentiable. Thus,

∂

∂qi(y)
‖qi‖1 = 1

∂

∂qi(y)
‖qi‖21 = 2 · ‖qi‖1

We omit the form of the derivatives of the other penalties, as they are straightforward to
calculate. There are several advantages to taking this route towards optimization. The
`2 and the JS-divergence penalties for the pairwise terms can be replaced with more in-
teresting convex divergences if required, and still optimization will be straightforward.
Moreover, the nonnegative constraints make optimization with sparsity inducing penal-
ties easy. Finally, computing the objective function and the partial derivatives is easily
parallelizable on multi-core (Gropp et al., 1994) or cluster (Dean and Ghemawat, 2008)
architectures, by dividing up the computation across graph vertices, using MapReduce
(see §3.3), a route that we adopt in this work. In comparison, constrained problems
such as the one in Equation 6.19 require a specialized alternating minimization tech-
nique (Subramanya and Bilmes, 2008, 2009), that performs two passes through the graph
vertices during one iteration of updates, introduces an auxiliary set of probability dis-
tributions at each graph vertex (thus, increasing memory requirements) and another
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hyperparameter that is used to transform the weight matrix W to be suitable for the
alternating minimization procedure. To optimize the baseline objectives, we borrow the
gradient-free iterative updates described by Subramanya and Bilmes (2009) and Subra-
manya et al. (2010). These updates do not require the computation of derivatives, but
if one makes changes to the different penalties in the graph objective (say, changing the
KL-based terms in Equation 6.19 to JS divergences), they require modifications to the
alternating minimization techniques, and are not straightforward to derive.

In the following two sections, we compare the six graph objective functions in Ta-
ble 6.1 with the two baseline objectives. We first examine a part-of-speech lexicon
expansion problem as a benchmark scenario, followed by extensive examination of a
FrameNet predicate lexicon expansion problem. For the latter, we investigate whether
semi-supervised lexicons can improve frame-semantic parsing.

6.3 Experiments: POS Lexicon Expansion

We expand a POS lexicon for word types with a context word on each side, using distri-
butional similarity in an unlabeled corpus and few labeled trigrams. This lexicon con-
tains trigrams with POS tags for the middle word of the trigram, each assigned a score
indicating how strongly a POS tag associates with the middle word, given its left and
right context. Experiments in this section do not relate to the semantic analysis problems
of our interest, but it exhibits the efficacy of the generic graph-based SSL techniques we
have presented this is chapter.

6.3.1 Data and task

We constructed a graph over word trigram types as vertices, using co-occurrence statis-
tics. Following Das and Petrov (2011) and Subramanya et al. (2010), similarity between
two trigram types was computed by measuring the cosine distance between their empir-
ical sentential context (pointwise mutual information) statistics. We define a symmetric
similarity function sim(u, v) over two vertices in the trigram graph, where u and v cor-
respond to different trigrams. This function is computed using co-occurrence statistics
of the nine feature concepts given in Table 6.2.

Each feature concept is akin to a random variable and its occurrence in the text cor-
responds to a particular instantiation of that random variable. For each trigram type
x2 x3 x4 in a sequence x1 x2 x3 x4 x5, we count how many times that trigram type co-
occurs with the different instantiations of each concept, and compute the point-wise
mutual information (PMI) between the each trigram type and its possible feature instan-
tiations.4 The similarity between two trigram types is given by summing over the PMI

4Note that many combinations are impossible giving a PMI value of 0; e.g., when the trigram type and
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Description Feature
Trigram + Context x1 x2 x3 x4 x5

Trigram x2 x3 x4
Left Context x1 x2

Right Context x4 x5
Center Word x3

Trigram − Center Word x2 x4
Left Word + Right Context x2 x4 x5
Left Context + Right Word x1 x2 x4

Suffix HasSuffix(x3)

Table 6.2: Various features used for computing edge weights between trigram types. A
trigram x is denoted by x2 x3 x4.

values over feature instantiations that they have in common. This is similar to stacking
the different feature instantiations into long (sparse) vectors and computing the cosine
similarity between them.

This similarity score resulted in the symmetric weight matrix W, defining edge
weights between pairs of graph vertices. W is thresholded so that only the K near-
est neighbors for each vertex have similarity greater than zero, giving a sparse graph.
We set K = 8 as it resulted in the sparsest graph which was fully connected.5 For this
task, Y is the set of 45 POS tags defined in the Penn Treebank (Marcus et al., 1993), and
the measure qi for vertex i (for trigram type xi) corresponds to the set of tags that the
middle word of xi can evoke. The trigram representation, as in earlier work, helps re-
duce the ambiguity of POS tags for the middle word, and helps in graph construction.
The graph was constructed over all trigram types appearing in Sections 00–21 (union of
the training and development sets used for POS tagging experiments in prior work) of
the WSJ section of the Penn Treebank, but co-occurrence statistics for graph construc-
tion were gathered from a million sentences drawn from the English Gigaword corpus
(Graff, 2003). This graph contained 690,705 vertices. Figure 6.2 shows an excerpt from
this graph.

the feature instantiation don’t have words in common.
5Our proposed methods can deal with graphs containing disconnected components perfectly well. Run-

time is asymptotically linear in K for all objectives considered here.
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Figure 6.2: An excerpt from the graph constructed using trigram types taken from Sections 00-21 of the Wall
Street Journal section of the Penn treebank. The top left portion of the figure shows trigrams whose middle word
take the NN tag while the bottom left portion shows trigrams middle words of which take the JJ tag. The section
on the right shows trigrams that take the VB tag of the Penn treebank. The green trigram types indicate trigrams
extracted from labeled data (the transduction set containing 24,000 labeled vertices) while the black ones denote
types on which we desire to induce tag distributions. Weights on the graph edges are not shown to simplify the
figure.
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Given a graph G with m vertices, we assume that the tag distributions q̂ for l labeled
vertices are also provided. Our goal is to find the best set of measures q over the 45
tags for all vertices in the graph. Das and Petrov (2011) and Subramanya et al. (2010)
used a similar lexicon for POS domain adaptation and POS induction for resource-poor
languages; such applications of a POS lexicon are out of scope here; we consider only
the lexicon expansion problem and do an intrinsic evaluation at a type-level to compare
the different graph objectives.

6.3.2 Experimental details

To evaluate, we randomly chose 6,000 out of the 690,705 types for development. From
the remaining types, we randomly chose 588,705 vertices for testing. These vertices
were chosen after graph construction over the entire set of trigram types in our dataset.
This left us with 96,000 types from which we created sets of different sizes containing
3,000, 6,000, 12,000, 24,000, 48,000 and 96,000 labeled types, creating 6 increasingly easy
transduction settings. The development and the test types were kept constant for direct
performance comparison across the six settings and our eight models.

After running inference for a hyperparameter setting, the measure qi at vertex i was
normalized to 1. Next, for all thresholds ranging from 0 to 1, with steps of 0.001, we
measured the average POS tag precision and recall on the development data – this gave
us the area under the precision-recall curve (prAUC), which is often used to measure
performance on retrieval tasks.

Given a transduction setting and the final q∗ for an objective, hyperparameters µ
and λ were tuned on the development set by performing a grid search, using prAUC.
For the objectives using the uniform `2 and the maximum entropy penalties, namely
UGF-`2, UJSF-`2, NGF-`2 and NKLF-ME, we chose λ from {0, 10−6, 10−4, 0.1}. For the
rest of the models using sparsity inducing penalties, we chose λ from {10−6, 10−4, 0.1}.

This suggests that for the former type of objectives with uniform penalties, we al-
lowed a zero unary penalty if that setting resulted in the best development performance,
while for the latter type of models, we enforced a positive unary penalty. In other words,
we examined whether the tuning procedure prefers λ = 0 for the non-sparse objectives,
which would exhibit that uniform penalties hurt performance. In fact, λ = 0 was chosen
in several cases for the graph objectives with uniform penalties indicating that unifor-
mity hurts performance. We chose µ from {0.1, 0.5, 1.0}. We ran 100 rounds of iterative
updates for all 8 graph objectives.

6.3.3 Type-level evaluation

To measure the quality of the lexicons, we perform type-level evaluation using area
under the precision-recall curve (prAUC). The same measure (on development data)



6.3. EXPERIMENTS: POS LEXICON EXPANSION 109

|Dl|: 3K 6K 12K 24K 48K 96K
NGF-`2 0.208 0.219 0.272 0.335 0.430 0.544
NKLF-ME 0.223 0.227 0.276 0.338 0.411 0.506

UGF-`2 0.223 0.257 0.314 0.406 0.483 0.564
UGF-`1 0.223 0.257 0.309 0.406 0.483 0.556
UGF-`1,2 0.223 0.256 0.313 0.403 0.478 0.557
UJSF-`2 0.271 0.250 0.310 0.364 0.409 0.481
UJSF-`1 0.227 0.257 0.317 0.369 0.410 0.481
UJSF-`1,2 0.227 0.258 0.309 0.369 0.409 0.479

Table 6.3: Area under the precision recall curve for the two baseline objectives and our
methods for POS tag lexicon induction. This is a measure of how well the type lexicon
(for some types unlabeled during training) is recovered by each method. The test set
contains 588,705 types. Bold indicates best results for a particular column.

was used to tune the two hyperparameters. Table 6.3 shows the results measured on
588,705 test vertices (the same test set was used for all the transduction settings). The
general pattern we observe is that our unnormalized approaches almost always perform
better than the normalized baselines. (The exception is the 3,000 labeled example case,
where most unnormalized models are on par with the better baseline.) In scenarios
with fewer labeled types, pairwise entropic penalties perform better than Gaussian ones,
and the pattern reverses as more labeled types come available. This trend is the same
when we compare only the two baselines. In four out of the six transduction settings,
one of the sparsity-inducing graph objectives achieves the best performance in terms of
prAUC, which is encouraging given that they generally produce smaller models than
the baselines.

Overall, though, using sparsity-inducing unary factors seems to have a weak neg-
ative effect on performance. Their practical advantage is apparent when we consider
the size of the model. After the induction of the set of measures q for all transduction
settings and all graph objectives, we noticed that our numerical optimizer (LBFGS-B)
often fails to assign 0 mass to several components, rather assigning extremely low pos-
itive values. This problem can be attributed to several artifacts, including not running
all optimization procedures until convergence, but choosing 100 as a fixed number of
maximum iterations. Hence, we use a global threshold of 10−6, and treat any real value
below this threshold to be zero. Figure 6.3 shows the number of non-zero components
in q (or, the lexicon size) for the graph objectives that achieve sparsity (baselines NGF-
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Figure 6.3: The number of non-zero components in q for five graph objective functions
proposed in this work, plotted against various numbers of labeled datapoints. Note that
NGF-`2, NKLF-ME and UGF-`2 produce non-zero components for virtually all q, and
are therefore not shown (the dotted line marks the maximally non-sparse solution, with
31,081,725 components). All of these five objectives result in sparsity. On average, the
objectives employing entropic pairwise penalties with sparse unary penalties UJSF-`1
and UJSF-`1,2 produce very sparse lexicons. Although UGF-`2 produces no sparsity at
all, its entropic counterpart UJSF-`2 produces considerable sparsity, which we attribute
to the quality of JS-divergence, which is used as a pairwise penalty.

`2 and NKLF-ME, plus our UGF-`2 are not expected to, and do not, achieve sparsity;
surprisingly UJSF-`2 does and is shown). Even though the hyperparameters µ and λ
in the graph objective functions were not tuned towards sparsity, we see that sparsity-
inducing factors are able to achieve far more compact lexicons. Sparsity is desirable in
settings where labeled development data for tuning thresholds is unavailable (e.g., Das
and Petrov, 2011).
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6.4 Experiments: Expansion of a Semantic Frame Lexicon

In a second set of experiments, we focus on expanding a lexicon that associates lexical
units with semantic frames as labels. More concretely, each vertex in the graph corre-
sponds to a lemmatized word type with its coarse part of speech, and the labels are
frames from the FrameNet lexicon (Fillmore et al., 2003). We detail the lexicon expan-
sion problem for this task in the following subsections. Specifically, we examine the
problem of finding the possible set of frames for an unknown LU, and using that set for
better frame identification for LUs unseen in supervised FrameNet data (see §5.3 for the
details of our frame identification model).6

6.4.1 Graph Construction

We construct a graph with lexical units as vertices. For us, each LU corresponds to a
lemmatized word or phrase appended with a coarse POS tag (identical to the represen-
tation in Chapter 5). We use two resources for graph construction. First, we take all the
words and phrases present in a dependency-based thesaurus constructed using syntac-
tic cooccurrence statistics (Lin, 1998).7 To construct this resource, a corpus containing 64
million words was parsed with a fast dependency parser (Lin, 1993, 1994), and syntactic
contexts were used to find similar lexical items for a given word or phrase. Lin sep-
arately treated nouns, verbs and adjectives/adverbs and the thesaurus contains three
parts for each of these categories. For each item in the thesaurus, 200 nearest neigh-
bors are listed with a symmetric similarity score between 0 and 1. We processed this
thesaurus in two ways: first, we lowercased and lemmatized each word/phrase and
merged entries which shared the same lemma; second, we separated the adjectives and
adverbs into two lists from Lin’s original list by scanning a POS-tagged version of the
Gigaword corpus (Graff, 2003) and categorizing each item into an adjective or an ad-
verb depending on which category the item associated with more often in the data. The
second step was necessary because FrameNet treats adjectives and adverbs separately.
At the end of this processing step, we were left with 61,702 units—approximately six
times more than the LUs found in FrameNet annotations—each labeled with one of 4
coarse tags. We considered only the 20 most similar LUs for each LU, and noted Lin’s
similarity between two LUs v and u, which we call simDL(v, u).

6It worth mentioning that we performed a preliminary set of experiments for improving frame iden-
tification by considering some extra features in our model (see §5.3.2) that look at semi-supervised word
representations; in particular, we used Brown clusters (Brown et al., 1992) as additional features in our
model without extensive tuning of cluster granularity. However, we did not see any improvements over
our supervised model and resorted to the use of graph-based SSL techniques, which have shown promise
in other natural language problems.

7Available at http://webdocs.cs.ualberta.ca/˜lindek/Downloads/sim.tgz

http://webdocs.cs.ualberta.ca/~lindek/Downloads/sim.tgz
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The second component of graph construction comes from FrameNet itself. We
scanned the exemplar sentences in FrameNet 1.5 and the training section of the full-
text annotations that we use to train the probabilistic frame-semantic parser (see §5.1.2),
and gathered a distribution over frames for each LU. For a pair of LUs v and u, we mea-
sured the Euclidean distance8 between their frame distributions. This distance was next
converted to a similarity score, namely, simFN (v, u) between 0 and 1 by subtracting each
one from the maximum distance found in the whole data, followed by normalization.
Like simDL(v, u), this score is symmetric. This resulted in 9,263 LUs, and again for each,
we considered the 20 most similar LU. Finally, the overall similarity between two given
LUs v and u was computed as:

sim(v, u) = α · simFN (v, u) + (1− α) · simDL(v, u)

Note that this score is symmetric because its two components are symmetric. The
intuition behind taking a linear combination of the two types of similarity functions is
as follows. We hope that distributionally similar LUs would have the same semantic
frames because lexical units evoking the same set of frames appear in similar syntactic
contexts. We would also like to involve the annotated data in graph construction so
that it can eliminate some noise in the automatically constructed thesaurus. Let K(v)
denote the K most similar LUs to LU v, under the score sim. Let the graph vertices
corresponding to the LUs v and u be i and k respectively. Let the weight on the edge
connecting i and k be wik, defined as:

wik =

{
sim(v, u) if v ∈ K(u) or u ∈ K(v)

0 otherwise
(6.20)

The hyperparameter αwas tuned by cross-validation andK was fixed to 10 (§6.4.3). The
constructed graph contains 64,480 vertices, each corresponding to a LU, out of which
9,263 were drawn from the labeled data. The possible set of labels Y is the set of 877
frames defined in FrameNet. In this application, the measure qi corresponds to the set
of frames that the LU v (corresponding to vertex i) can evoke. The LUs drawn from
FrameNet annotated data (l = 9,263) have frame distributions q̂i with which the graph
objectives are seeded. As mentioned earlier, we used the training section of the full text
annotations part of FrameNet 1.5 to derive the seed LUs (see §5.1.2).

8This could have been replaced by an entropic divergence like KL- or JS-divergence, but we leave that
exploration to future work.
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Figure 6.4: Excerpt from a graph over lexical units. Green LUs are observed in the FrameNet 1.5 data.
Above/below them are shown the most frequently observed frame that they evoke. The black LUs are unob-
served and graph propagation produces a distribution over most likely frames that they could evoke.
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6.4.2 Constrained Frame Identification

Although (partial) frame identification accuracy on the FrameNet 1.5 dataset is 90.51%
(Table 5.5), we found that the performance on portion of the test set containing only un-
seen LUs is only 46.62%. The latent variable frame identification model (see §5.3.2) that
employs lexical-semantic features derived from WordNet strives to generalize perfor-
mance on unknown LUs; however, this poor performance shows that a resource larger
than WordNet is essential to improve coverage on unknown LUs. To this end, we use
automatically induced frame distributions over unknown LUs using semi-supervised
learning to constrain our frame identification model.

Equation 5.1 describes the inference rule for frame identification. We repeat the rule
below:

fi ← argmax
f∈Fi

∑

`∈Lf

pθ(f, ` | ti,x) (6.21)

Above, ti is the ith target in a sentence x, and fi is the corresponding evoked frame. In
our constrained version, we use the above rule exactly, but with a minor twist. Recall
from Section 5.3.2 that for targets with known lemmatized forms, Fi was defined to be
the set of frames that associate with lemma tli in the supervised data. For unknown
lemmas, Fi was defined to be all the frames in the lexicon. If the LU corresponding to
ti is present in the graph, let it be the vertex i. For such targets ti covered by the graph,
we redefine Fi as:

Fi = {f : f ∈M -best frames under q∗i } (6.22)

Above, q∗i is the final measure induced by a graph propagation algorithm for the LU
corresponding to ti. For targets ti whose LUs are not present in the graph as well as in
supervised data, we reinstate Fi to be the set of all frames. M is treated as a hyperpa-
rameter and is tuned using cross validation.

6.4.3 Experiments and Results

In this subsection, we describe the experiments conducted using the graph-based SSL
techniques presented in the previous sections on the frame-semantic parsing task.

Experimental Setup

We measure frame disambiguation accuracy and frame-semantic parsing performance
given gold targets, on the portion of the FrameNet 1.5 full text annotation test set that
contains targets unseen in the FrameNet annotated data. We also present results on the
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whole test set. There are 144 unknown targets in the test data (see the details of the test
data in §5.1.2).

Note that given the measure qi over frames induced using graph-based SSL for ver-
tex i, we truncate it to keep at most the top M frames that get the highest mass under qi,
only retaining those with non-zero values. If all components of qi are zero, we remove
vertex i from the lexicon, which is often the case in the sparsity-inducing graph objec-
tives. A separate probabilistic model then disambiguates among the M filtered frames
observing the sentential context of the LU’s target instance (Equation 6.21). This can
be thought of as combining type- and token-level information for inference. Argument
identification follows in the same way as in §5.4 without any modification. We fixed
K, the number of nearest neighbors for each vertex, to be 10. For each graph objective,
µ, λ and M were chosen by five-fold cross-validation. Cross-validation was performed
by dividing the supervised training set of FrameNet 1.5 into five folds. For each fold,
accuracy on the unseen part of the fold’s test portion was measured for hyperparameter
tuning. We chose µ from {0.01, 0.1, 0.3, 0.5, 1.0}; λ was chosen from the same sets as
the POS problem. The best α, the graph-construction parameter was tuned only for the
NGF-`2 objective to limit the number of experiments. It was chosen as 0.2 and was fixed
for rest of the experiments. M was automatically selected to be 2 for all graph objectives
from {2, 3, 5, 10}.

Self-training Baseline

In our experiments, we consider a semi-supervised self-trained system for comparison
with the graph-constrained models. For this system, we used the supervised frame
identification system to label 70,000 sentences from the English Gigaword corpus with
frame-semantic parses. For finding targets in a raw sentence, we used a relaxed target
identification scheme, where we marked every target seen in the lexicon and all other
words which were not prepositions, particles, proper nouns, foreign words and Wh-
words as potential frame evoking units. This was done so as to find unseen targets and
get automatic frame annotations on them. We appended these automatic annotations to
the training data, resulting in 711,401 frame annotations, more than 36 times the anno-
tated data. These data were next used to train a frame identification model.9 This setup
is very similar to Bejan (2009) who used self-training to improve frame identification.

9Note that we only self-train the frame identification model and not the argument identification model,
which is fixed throughout. We ran self-training with smaller amounts of data, but found no significant
difference with the results achieved with 711,401 frame annotations. As we observe in Table 6.4, in our
case, self-training performs worse than the supervised model, and we do not hope to improve with even
more data.
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Results

Table 6.4 shows frame identification accuracy, both using exact match as well as partial
match that assigns partial credit when a related frame is predicted. Performance on
both unknown as well as all targets are shown. The final column presents lexicon size in
terms of the set of truncated frame distributions (filtered according to the top M frames
in qi) for all the LUs in a graph. Firstly, note that for unknown targets the graph-based
objectives outperform both the supervised model as well as the self-training baseline by
a margin of ∼ 20% accuracy points. The best model is UJSF-`1,2, and its performance is
significantly better than the supervised model (p < 0.01).

It also produces the smallest lexicon, using the sparsity inducing penalty. The im-
provements of the graph-based objectives are modest for the whole test set, but the
best model still has statistically significant improvements over the supervised model
(p < 0.01). For our objectives using pairwise Gaussian fields with sparse unary penal-
ties, the accuracies are equal or better NGF-`2; however, the lexicon sizes are reduced by
a few hundred to a few thousand entries. Massive reduction in lexicon sizes (as in the
part-of-speech problem in §6.3) is not visible for these objectives because we throw out
most of the components of the entire set of distributions q and keep only at most the top
M (which is automatically chosen to be 2 for all objectives) frames per LU. Although
a significant number of components in the whole distribution q are zeroed out, the M
components for a LU tend to be non-zero for a majority of the lexical units.

Better results are observed for the graph objectives using entropic pairwise penalties
in general; the objective UJSF-`1,2 gives us the best absolute result by outperforming the
baselines by strong margins, and also resulting in a tiny lexicon, less than half the size
of the baseline lexicons. The tiny size can be attributed to the removal of LUs for which
all frame components were zero (qi = 0). Note that the UJSF-`1,2 model outperforms
NGF-`2 by a margin of 2.9% using partial frame matching, which is encouraging, but
the difference is not quite significant (p < 0.1).10

The improvements of the graph-based models over the supervised system carry over
to the full frame-semantic parsing performance (given gold targets). We show those
results in Table 6.5. The trends are very similar to the frame identification results, and
the best graph-based model UJSF-`2 produces statistically significant results over the
supervised baseline for precision, recall and F1 score for both unknown targets and the
whole test set (p < 0.001).

10We also ran an experiment where we trained a frame identification model without the latent variable
(see §5.3.4 for details) and used the frame distributions over unknown predicates from the UJSF-`1,2 objec-
tive to constrain frame identification inference. This model gave us an exact match accuracy of 76.55% and
a partial match accuracy of 86.78%, which are better than the vanilla supervised no latent-variable model
(compare with the accuracy figures in §5.3.4). However, these accuracies fall short of the numbers reported
in Table 6.4, exhibiting the fact that the latent-variable frame identification model along with the graph
constraints perform the best on this task.
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UNKNOWN TARGETS ALL TARGETS

exact partial exact partial
frame matching frame matching frame matching frame matching Lexicon Size

Supervised 23.08 46.62 82.97 90.51 -
Self-training 18.88 42.67 82.27 90.02 -
NGF-`2 39.86 62.35 83.51 91.02 128,960
NKLF-ME 36.36 60.07 83.40 90.95 128,960

UGF-`2 37.76 60.81 83.44 90.97 128,960
UGF-`1 39.86 62.85 83.51 91.04 122,799
UGF-`1,2 39.86 62.85 83.51 91.04 128,732
UJSF-`2 40.56 62.81 83.53 91.04 128,232
UJSF-`1 39.16 62.43 83.49 91.02 128,771
UJSF-`1,2 42.67 65.29 83.60 91.12 45,544

Table 6.4: Exact and partial frame identification accuracy with the size of lexicon (in terms of non-zero frame
components) used for frame identification. The portion of the test set with unknown targets contains 144 targets
unseen in supervised data. Bold indicates best results. The UJSF-`1,2 model produces statistically significant
results (p < 0.001) for all metrics with respect to the supervised baseline for both the unseen targets as well as
the whole test set. However, it is only weakly significant (p < 0.1) with respect to the NGF-`2 model for the
unseen portion of the test set, when partial frame matching is used for evaluation. For rest of the settings, these
two models are statistically indistinguishable. However, it is noteworthy that the UJSF-`1,2 objective produces a
much smaller lexicon in comparison to all the other graph objectives.
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UNKNOWN TARGETS ALL TARGETS

exact partial exact partial
frame matching frame matching frame matching frame matching
P R F1 P R F1 P R F1 P R F1

Supervised 18.99 14.90 16.70 33.21 26.05 29.20 67.74 60.60 63.97 72.39 64.76 68.37
Self-training 14.60 11.41 12.81 29.09 22.73 25.52 67.07 60.01 63.43 71.83 64.27 67.84
NGF-`2 34.76 27.10 30.45 48.75 38.01 42.71 68.15 60.95 64.35 72.80 65.11 68.74
NKLF-ME 32.72 25.52 28.67 47.26 36.85 41.41 68.10 60.91 64.30 72.77 65.08 68.71

UGF-`2 33.20 26.15 29.26 47.63 37.51 41.97 68.10 60.93 64.32 72.77 65.10 68.72
UGF-`1 34.28 26.78 30.07 48.54 37.92 42.58 68.14 60.94 64.34 72.98 65.11 68.74
UGF-`1,2 34.28 26.78 30.07 48.54 37.92 42.58 68.14 60.94 64.34 72.98 65.11 68.74
UJSF-`2 36.72 28.05 31.81 50.69 38.72 43.91 68.22 60.98 64.40 72.87 65.13 68.78
UJSF-`1 34.01 26.47 29.77 48.32 37.60 42.29 68.14 60.94 64.33 72.79 65.10 68.73
UJSF-`1,2 39.15 30.59 34.34 53.29 41.64 46.75 68.26 61.06 64.46 72.92 65.22 68.86

Table 6.5: Frame-semantic parsing results using different graph-based SSL objectives. Note that we use gold tar-
gets for these experiments and evaluate frame identification and argument identification together. Bold indicates
best results. In terms of precision, recall and F1 score, the UJSF-`1,2 model is statistically significant compared to
the supervised baseline using both exact and partial frame matching, for both the unseen targets and the full test
set (p < 0.001). For both the unseen targets and the whole test set, in terms of precision and F1 score measured
with partial frame matching, the UJSF-`1,2 model is statistically significant over the NGF-`2 model (p < 0.05).
For recall with partial frame matching, and for all the three metrics with exact frame matching, these two graph
objectives are statistically indistinguishable, although the UJSF-`1,2 produces a much smaller lexicon.
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LU= discrepancy.N LU= contribution.N LU= print.V LU= mislead.V
∗SIMILARITY ∗GIVING ∗TEXT CREATION EXPERIENCER OBJ

NATURAL FEATURES MONEY SENDING ∗PREVARICATION

PREVARICATION COMMITMENT DISPERSAL MANIPULATE INTO DOING

QUARRELING ASSISTANCE READING COMPLIANCE

DUPLICATION EARNINGS AND LOSSES STATEMENT EVIDENCE

LU= abused.A LU= maker.N LU= inspire.V LU= failed.A
OFFENSES COMMERCE SCENARIO CAUSE TO START SUCCESS OR FAILURE

KILLING ∗MANUFACTURING EXPERIENCER OBJ ∗SUCCESSFUL ACTION

COMPLIANCE BUSINESSES ∗SUBJECTIVE INFLUENCE UNATTRIBUTED INFORMATION

DIFFERENTIATION BEHIND THE SCENES EVOKING PIRACY

COMMITTING CRIME SUPPLY ATTEMPT SUASION WANT SUSPECT

Table 6.6: Top 5 frames according to the graph posterior distributions q∗ with the graph objective NGF-`2 for
eight LUs: discrepancy.N, contribution.N, print.V, mislead.V, abused.A, maker.N, inspire.V and failed.A. None of these
LUs were present in the supervised FrameNet data. ∗ marks the correct frame, according to the target instances
in test data (each of these LUs appear only once in test data as targets). For the LU abused.A, the correct frame is
not present in the top 5 frames under the distribution. Moreover, for the LU inspire.V, the correct frame is listed
at position 3, which is unavailable to the frame identifier due to the selected hyperparameter M = 2.
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LU= discrepancy.N LU= contribution.N LU= print.V LU= mislead.V
∗SIMILARITY ∗GIVING ∗TEXT CREATION ∗PREVARICATION

NON-COMMUTATIVE STATEMENT COMMERCE PAY STATE OF ENTITY EXPERIENCER OBJ

NATURAL FEATURES COMMITMENT DISPERSAL MANIPULATE INTO DOING

ASSISTANCE CONTACTING REASSURING

EARNINGS AND LOSSES READING EVIDENCE

LU= abused.A LU= maker.N LU= inspire.V LU= failed.A
∗MANUFACTURING CAUSE TO START ∗SUCCESSFUL ACTION

BUSINESSES ∗SUBJECTIVE INFLUENCE SUCCESSFULLY COMMUNICATE MESSAGE

COMMERCE SCENARIO OBJECTIVE INFLUENCE

SUPPLY EXPERIENCER OBJ

BEING ACTIVE SETTING FIRE

Table 6.7: Top 5 frames (if there are ≥ 5 frames with mass greater than zero) according to the final graph
posterior measures q∗ with the graph objective UJSF-`1,2 for the same LUs as Table 6.6. Note that for the first
LU discrepancy.N only three frames get non-zero mass after optimizing the graph objective. Similarly, for the LU
failed.A, only two frames get non-zero mass. For the LU abused.A, all frames get zeroed out because the model is
not confident about any frames resulting in the removal of this LU from the lexicon; this is in contrast to the result
in Table 6.6, where the correct frame is not present in the top five frames shown. Finally, it is noteworthy that this
objective ranks the correct frame higher in the frame list for most LUs in comparison to the NGF-`2 objective.
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In Tables 6.6 and 6.7 we show the top frames under the final induced set of measures
q∗ for eight unseen LUs for the NGF-`2 and the UJSF-`1,2 graph objectives respectively.
The latter objective often ranks the correct frames higher than the former. For the dis-
crepancy.N LU, note that the latter objective assigns non-zero mass to only three frames.
For several such LUs, this objective function assigns non-zero mass to a few frames
only, thus leading to sparsity. In Figure 6.5, we plot the frame identification accuracy
for the NGF-`2 objective function against the hyperparameter M , which is the number
of top frames that are scored by the frame identification model. We notice that the ac-
curacy peaks at M = 2 and then falls off; this is the value that is automatically selected
with cross-validation for all objective functions. Figure 6.6 shows an example where the
graph-based model UJSF-`1,2 corrects an error made by the supervised model for the
unseen LU discrepancy.N, both for frame identification and full frame-semantic parsing.

Note about Self-Training

For the frame identification task, Bejan (2009) found self-training to improve overall
frame identification performance. Why does self-training not work in our setup? We
conjecture that this may happen because of several reasons. First, Bejan (2009) evaluated
using five-fold cross-validation, used an smaller dataset, and reported a micro-averaged
accuracy measure. Hence, there is a mismatch between our experimental setup and
his. However, let us compare absolute frame identification accuracy values despite the
differences in datasets used for model training. The best result reported in Bejan (2009)
is 84.73%, which corresponds to self-training. This is an improvement over a supervised
model, which is 76.1% accurate. Our purely supervised model achieves an accuracy of
90.51%, while the graph-based systems do even better. Hence, our baseline supervised
model is very powerful in comparison to the supervised counterpart of Bejan; therefore
it is unclear whether self-training can improve over that powerful baseline. Second, our
self-training model is different from Bejan’s in one fundamental aspect. Our goal is to
improve the coverage of our frame-semantic parser. Hence, we used a relaxed strategy
to identify targets in unlabeled data, and then used the original supervised labels along
with the automatic labels to self-train another model. However, Bejan only considers
polysemous targets from annotated data, which he finds in unlabeled data, labels them
with his supervised model, and uses them for self-training. Thus, we cannot directly
compare our self-training setup to his. Third, finally, our self-trained model does poorly
on known targets, which the graph-based models never do, because they do not alter
the prediction of the supervised system for such targets. We conjecture that this happens
because its mistakes on even known targets during self-training introduce further noise,
bringing about a kind of “semantic drift.”
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Figure 6.5: This graph shows the variation of frame identification accuracy using partial
matching of frames for the constrained model using the NGF-`2 graph objective, with
M , the top frames that are most heavily weighted under the set of frame distributions
induced by the SSL algorithm. This is measured on our test set. Note, that there is a
rise in accuracy for M = 2, which is the value chosen by cross-validation for all graph
objectives. This also conforms with the average frame ambiguity of 1.20 for a LU type
in supervised data.

6.5 Discussion

In this chapter, we have made novel contributions from two perspectives. First, on the
machine learning side, we presented models that contribute the following:

1. A family of graph-based SSL objective functions that incorporate penalties encour-
aging sparse measures at each graph vertex, leading to noisily constructed lexicons
of small size.

2. Our methods relax the oft-used assumption that the measures at each vertex form
a normalized probability distribution, making optimization and the use of com-
plex penalties easier than in prior work.

3. Optimization is also easy when there are additional terms in a graph objective
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Figure 6.6: (a) Output of the supervised frame-semantic parsing model (Chapter 5) on
the target corresponding to the LU discrepancy.N. The output is incorrect. (b) Output us-
ing the constrained frame identification model that takes into account the graph-based
frame distributions over unknown targets. In this particular example, the UJSF-`1,2
graph objective is used. This output matches the gold annotation. The LU discrepancy.N
is unseen in supervised FrameNet data.

suited to a specific problem; our generic optimizer would simply require the com-
putation of new partial derivatives, unlike prior work that required specialized
techniques for a novel objective function, for example using custom update rules
in an alternating minimization procedure (see Subramanya and Bilmes (2009)).

Second, we presented experiments on two natural language lexicon learning prob-
lems, which show that our methods produce comparable and often better performance
with respect to state-of-the-art graph-based SSL methods, and also result in much
smaller lexicons, which are easy to store and use in downstream applications. In partic-
ular, we have observed the following:

1. We presented experiments on a benchmark lexicon learning problem for POS tag-
ging, where we observed that our novel objectives result in comparable or better
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performance in terms of the prAUC metric with respect to established graph-based
SSL objectives (Zhu et al., 2003; Subramanya and Bilmes, 2009).

2. On a more realistic task of frame-semantic parsing, a problem in which we are
particularly interested in this dissertation, we show that not only does standard
graph-based SSL techniques result in improvements over a supervised model on
out-of-domain targets, our novel graph-based SSL objectives result in even better
performance, also resulting in smaller lexicons.

The improved frame-semantic parser with graph-based constraints that help generalize
the parser to unseen and out-of-domain targets is part of the SEMAFOR 2.1 package,
available at http://www.ark.cs.cmu.edu/SEMAFOR.

http://www.ark.cs.cmu.edu/SEMAFOR


Chapter 7

Conclusion and Future Work

In this chapter, we summarize the contributions of this thesis, and concentrate on the
various possible future directions, given the research material presented in the previous
chapters.

7.1 Novel Contributions of the Thesis

In this dissertation, we have looked at two semantic analysis problems: paraphrase
identification and frame-semantic parsing. A major focus has been on the latter, it being
a natural language understanding task which has the potential of having considerable
impact on NLP applications; this research has resulted in a tool that the human lan-
guage technologies community is using both for further study and in applications. We
summarize our contributions:

1. We use a monolingual translation model, called a quasi-synchronous grammar to
model the problem of paraphrase identification. The model employs loose syn-
tactic and lexical-semantic transformations from one sentence to another, to rec-
ognize a paraphrase. Our work resulted in state-of-the-art results on a benchmark
dataset. The model uses latent variables to capture alignments between words of
a potential sentence pair; analysis of these latent variables at inference time gives
interpretable explanation of the transformation process. Improvements over our
model have led to even better results on this benchmark (Chang et al., 2010; Socher
et al., 2011).

2. We present supervised models for the problem of shallow semantic parsing using
the theory of frame semantics. We present two statistical models, trained proba-
bilistically, that model the semantic frame disambiguation problem and the argu-
ment identification problem. Compared to prior work, we use fewer classifiers to

125
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solve the problem, and also use latent variables to increase coverage of the parser.
In comparison to the general semantic role labeling literature, our argument iden-
tification relies on only one model, while the norm has been the use of two models
for filtering potential arguments, and then labeling them. Our results are the state
of the art, evaluated on the SemEval 2007 benchmark dataset; we have also pre-
sented results on newer data released as part of the FrameNet 1.5 lexicon.

3. We augment our supervised models with a collective argument identification
strategy that relies on an exact dual decomposition algorithm. This algorithm re-
spects various linguistic constraints on the output of the frame-semantic parser,
such as relationships between pairs of semantic roles. Our algorithm is able to
respect these constraints during parsing, and maintains parsing speeds that are
significantly faster than proprietary integer linear program solvers.

4. Finally, we present semi-supervised lexicon expansion techniques that are exten-
sions of popular graph-based semi-supervised learning algorithms. When applied
to frame-semantic parsing, these techniques are able to expand the predicate lexi-
con of FrameNet to lexical items absent in supervised data. This results in signif-
icantly better frame-semantic parsing performance on unseen, out-of-domain lex-
ical units. Moreover, our novel graph-based semi-supervised learning algorithms
produce lexicons that are much smaller in size in comparison to state-of-the-art
techniques, but result in comparable, and often better results in NLP tasks.

7.2 Future Work

Here, we concentrate on a few promising future directions of research that can be ex-
tensions of the work presented in this dissertation. First, we focus on a possible mod-
eling improvement for paraphrase identification, and then consider future avenues of
research that relate to the frame-semantic parsing models presented in the prior chap-
ters.

7.2.1 Frame-Semantic Representations for Paraphrase Identification

In our paraphrase model, we leverage syntactic parses in the form of dependency trees,
latent alignments between the nodes of the trees of a sentence pair, and lexical-semantic
relationships between words that are aligned; these lexical-semantic relationships are
drawn from WordNet, which has significant coverage for English, the language at hand.
However, we believe that semantic structures beyond just lexical-semantic relationships
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Figure 7.1: A true paraphrase pair from the Microsoft Research Paraphrase Corpus (Dolan and Brockett, 2005).
We also show partial, manually annotated frame-semantic parses on each sentence. Note that the PLACING frame
is evoked in both sentences with the core roles Theme and Goal being instantiated in both.
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can benefit the paraphrase identification task. Prior work has attempted to use logical
form structures for textual entailment (Bos and Markert, 2005) with limited success.

Qiu et al. (2006) used PropBank-style semantic role labeling to improve paraphrase
identification, in a shallow feature-based classifier. Although our presented paraphrase
model outperforms this work in terms of accuracy, it exhibits the benefits of features
derived from shallow semantic parses. We conjecture that frame-semantic analysis of
individual sentences in a candidate paraphrase pair could provide valuable signals for
true paraphrase recognition. In Figure 7.1, we show a true paraphrase sentence pair
from the Microsoft Research Paraphrase Corpus. We also show partial frame-semantic
parses of both sentences. Note that the frame PLACING is evoked in both sentences by
the targets corresponding to the LU place.V. Moreover, the core roles Theme and Goal
also appear in both sentences. While the arguments for Goal are identical in both sen-
tences, the head words of the spans filling up the Theme role are synonyms of each
other. The non-core role Depictive also appears in both sentences, with spans with iden-
tical head words. Other than this closely aligning predicate-argument structure, the
frame ATTRIBUTED INFORMATION is evoked in the first sentence and the STATEMENT is
evoked in the second. This also is indicative of similar meaning across sentences be-
cause the frame ATTRIBUTED INFORMATION uses the STATEMENT frame, according to the
creators of the FrameNet. The uses relationship, which is a valid inter-frame relationship
defined within FrameNet, demonstrates that a frame refers to the meaning of a parent
frame.

It is straightforward to incorporate frame-semantic structures into the paraphrase
model we presented in Chapter 4. One way would be to use the frame and role labels
as features at each head word of a subtree of the sentence pair’s dependency parses
and use our current model with these additional features at alignment sites. Another
way would be to use both syntactic and frame-semantic information on each sentence
to create a graph structure, and model quasi-synchronous transformation between the
two.

7.2.2 Training Frame-Semantic Parsers for Multiple Languages

As part of this dissertation, we have released the software necessary to train and test
the presented frame-semantic parsing models. However, our experiments have focused
only on English, as benchmarks and strong baselines exist for English. However, a
straightforward extension of the current work would be training and testing models
in various languages for which the corresponding FrameNet lexicon and full-text anno-
tations exist. There exists such corpora for several languages. German is an example,
for which the SALSA project has annotated a large frame-based lexicon and has frame-
semantic annotations on free text (Burchardt et al., 2006). The annotations which are
being carried out as part of the SALSA project are being done on the TIGER depen-
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Figure 7.2: A factoid question and a sample answer with corresponding manually an-
notated frame-semantic parses. The pair has nearly isomorphic parses, with the answer
having one extra non-core argument that fills up the Description role.

dency treebank (Brants et al., 2002), which provides gold syntactic trees; this has the
potential of resulting in better quality frame-semantic parses than in English.

Brazilian Portuguese also boasts a FrameNet-style lexical database (Salomão, 2009)
that has been developed in collaboration with the FrameNet team at ICSI, University of
California, Berkeley. Although limited in size, this dataset is an ongoing effort in creat-
ing a language-specific FrameNet-style lexicon. A similar lexicon, much larger in size,
also exists for Spanish (Subirats, 2004). A dataset containing several thousand annotated
sentences is also available as part of this Spanish dataset, thus enabling the possibility
of developing a Spanish frame-semantic parser. Finally, a moderately-sized lexicon for
Japanese is also available (Ohara, 2011) with full-text annotations which could be used
for the development of automatic frame-semantic parser for Japanese.

7.2.3 Multilinguality and Frame-Semantic Parsing

Although the universality of semantic frames are roles are controversial, there has been
effort in projecting the information present in FrameNet, including the knowledge of
lexical units into other languages. Padó and Lapata (2005a) present a model for the
projection of the English FrameNet lexicon into German data and evaluate the projec-
tion method against gold standard annotations present in the SALSA corpus (Burchardt
et al., 2006). More recently, Annesi and Basili (2010) present a similar method and eval-
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বাংলার      �কা�       খােদ�র    ভা�ার    কেম     �ন�    হেয়    �গল  | 
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Figure 7.3: (Manually) aligned sentence pair in English and Bengali with a partial frame-
semantic parse. Note that the exact frame-semantic parse for the lexical unit stock.N is
reflected in the Bengali translation. The glosses for the Bengali sentence is shown below
every Bengali word.

uate projection performance in Italian. A wider variety of languages can be considered
and via parallel data, and automatic lexicons that resemble English FrameNet can be
constructed. Following Das and Petrov (2011), who demonstrated a technique of lexicon
projection from English to several other languages for POS tagging, one might construct
semantic lexicons in other languages.

Machine translation is another multilingual NLP application that might benefit from
frame-semantic parsing. Figure 7.3 shows a Bengali translation of an English sentence
that we have considered before. Partial frame-semantic parses on both sides of the sen-
tence pair show that frame-semantic structures are preserved. Alignments show that
the arguments filling up identical semantic roles have direct correspondence. Frame-
semantic parses can be used as features in a translation model. It is impractical to as-
sume that frame-semantic parses are possible to extract for any language – however,
for language pairs with English on one side could benefit from English frame-semantic
features.

Finally, multilingual information extraction is possible only through English frame-
semantic parses and translations of English sentences into multiple languages. This is
especially possible for related news stories and other multilingual web data pertaining
to related information. Via word alignments, semantic arguments in non-English sen-
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tences can be extracted through frame-semantic parse projection from English.

7.2.4 Frame-Semantic Parsing for NLP Applications

In our introduction (§1) we discussed briefly several possible applications of frame-
semantic parsing in language technologies. Question answering is one such application
into which frame-semantic parses can be incorporated as part of the preprocessing steps
normally undertaken. Frame-semantic information can be useful either as features or
constraints. Bilotti et al. (2007) used PropBank-style semantic role information to enable
structured information retrieval for question answering. A straightforward extension of
that work could as well incorporate information that looks at semantic frames and roles
retrieved from frame-semantic parses, that label more types of syntactic categories as
predicates than only verbs or nouns, and also use explicit role labels unlike PropBank
semantic roles.

Figure 7.2 shows a factoid question and a candidate sentence that contains the true
answer. Note that despite lexical variation at the surface, the two lexical units reserve.N
and stock.N have the same frame STORE. The Wh-word in the question fulfills the Pos-
sessor role, which may indicate that one must look for similar roles in the passages
containing the answer. Indeed, the phrase “Bengal ’s” fulfills the Possessor role in the
candidate sentence, and gives us the answer. Although in this question-answer pair, the
predicate-argument structures are nearly isomorphic, structural correspondences may
be loose, and it is possible to treat frame-semantic information as features, instead of
treating it as a source of hard constraints.

Frame-semantic parsing can might be used for information extraction. Here are
some example sentences containing targets that evoke the STORE frame and instanti-
ate several semantic roles, stating facts about the world:

1. Bengal’s
Possessor

massiveDescriptor

STORE

stock
stock.N

of foodResource was reduced to nothing.

2. In 1997, France’sPossessor

STORE

stock
stock.N

of unirradiated civil plutonium
Resource

in-

creased to 72 tons.

3. In 2004, there was also ample discussion concerning South Africa’sPossessor

dwindling
Descriptor

coalResource
STORE

reserves
reserve.N

and its need for additional nuclear

power generation.

These predicate-argument structures can be used for information extraction, treating
each frame as a relational database (say, STORE) with each role corresponding to a col-
umn in the database. Hence, from the example sentences above, the Possessor column
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of the database would contain the entities Bengal, France and South Africa. Confidence
estimates from the frame-semantic parser can be used to create weighted entries in the
database. Open information extraction systems, for example the “Never Ending Lan-
guage Learner” (Carlson et al., 2010) can also benefit from a frame-semantic parser by
using the n-ary relationships between phrases that fulfill different roles of annotated
frame-semantic structures, to bootstrap and find similar sets of phrases.

Overall, the presented work shows promise from the perspective of future research –
the models presented in this work are amenable to extensions that might result in better
performance on the tasks’ benchmarks, and also might be useful in several other natural
language processing applications. The presented techniques, especially the modeling
of latent structure and the generic semi-supervised learning methods might be used
in other interesting problems in computational semantics, and other natural language
understanding problems to significant benefit.
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Carreras, X. and Màrquez, L. (2004). Introduction to the CoNLL-2004 shared task: Se-
mantic role labeling. In Proceedings of CoNLL. [16]
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Padó, S. and Lapata, M. (2005b). Cross-linguistic projection of role-semantic informa-
tion. In Proceedings of HLT-EMNLP. [21]

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The Proposition bank: An annotated
corpus of semantic roles. Computational Linguistics, 31(1). [1]

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2001). BLEU: a method for automatic



144 BIBLIOGRAPHY

evaluation of machine translation. In Proceedings of ACL. [7, 8, 45]

Pennacchiotti, M., Cao, D. D., Basili, R., Croce, D., and Roth, M. (2008). Automatic
induction of FrameNet lexical units. In Proceedings of EMNLP. [21]

Pereira, F., Tishby, N., and Lee, L. (1993). Distributional clustering of English words. In
Proceedings of ACL. [13]

Petrov, S., Barrett, L., Thibaux, R., and Klein, D. (2006). Learning accurate, compact, and
interpretable tree annotation. In Proceedings of COLING/ACL. [3]

Petrov, S. and Klein, D. (2008). Sparse multi-scale grammars for discriminative latent
variable parsing. In Proceedings of EMNLP. [3, 28, 29, 62]

Pradhan, S. S., Ward, W. H., Hacioglu, K., Martin, J. H., and Jurafsky, D. (2004). Shallow
semantic parsing using support vector machines. In Proceedings of HLT-NAACL. [19]

Punyakanok, V., Roth, D., W.-T. Yih, and Zimak, D. (2004). Semantic role labeling via
integer linear programming inference. In Proceedings of COLING. [19, 74, 76, 78]

Qiu, L., Kan, M.-Y., and Chua, T.-S. (2006). Paraphrase recognition via dissimilarity
significance classification. In Proceedings of EMNLP. [7, 15, 128]

Quirk, C., Brockett, C., and Dolan, W. B. (2004). Monolingual machine translation for
paraphrase generation. In Proceedings of EMNLP. [14, 43]

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In Pro-
ceedings of EMNLP. [39, 45, 56]

Ravichandran, D. and Hovy, E. (2002). Learning surface text patterns for a question
answering system. In Proceedings of ACL. [13]

Roth, D. and Yih, W. (2004). A linear programming formulation for global inference in
natural language tasks. In Proceedings of CoNLL. [74]

Ruppenhofer, J., Ellsworth, M., Petruck, M. R. L., Johnson, C. R., and Scheffczyk, J.
(2006). FrameNet II: extended theory and practice. [71]

Rush, A. M. and Collins, M. (2011). Exact decoding of syntactic translation models
through Lagrangian relaxation. In Proceedings of ACL. [75]

Rush, A. M., Sontag, D., Collins, M., and Jaakkola, T. (2010). On dual decomposition
and linear programming relaxations for natural language processing. In Proceedings
of EMNLP. [74, 80, 81]



BIBLIOGRAPHY 145

Salomão, M. M. (2009). Framenet brasil: um trabalho em progresso. Calidoscṕpio, 7(3).
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Appendix A

Test Set for FrameNet 1.5 Release

Name
ANC 110CYL067
ANC 110CYL069
ANC 112C-L013
ANC IntroHongKong
ANC StephanopoulosCrimes
ANC WhereToHongKong
KBEval atm
KBEval Brandeis
KBEval cycorp
KBEval parc
KBEval Stanford
KBEval utd-icsi
LUCorpus-v0.3 20000410 nyt-NEW
LUCorpus-v0.3 AFGP-2002-602187-Trans
LUCorpus-v0.3 enron-thread-159550
LUCorpus-v0.3 IZ-060316-01-Trans-1
LUCorpus-v0.3 SNO-525
LUCorpus-v0.3 sw2025-ms98-a-trans.ascii-1-NEW
Miscellaneous Hound-Ch14
Miscellaneous SadatAssassination
NTI NorthKorea Introduction
NTI Syria NuclearOverview
PropBank AetnaLifeAndCasualty

Table A.1: Names of the documents in our test set, taken from the full-text section of
the FrameNet 1.5 release.
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We include the names of the test documents in Table A.1 to facilitate fair replication of
our work. The test set contains a mix of several sources from which these documents
were drawn. The FrameNet 1.5 release, whose description is given in §5.1.2 contained
78 documents. We chose the 23 documents mentioned in the table for testing the perfor-
mance of our statistical models. These contained a total of 4,458 annotated targets.
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