
Towards Efficient and Reproducible

Natural Language Processing

Jesse Dodge

CMU-LTI-20-004

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis committee:

Noah A. Smith (Chair), University of Washington
Kevin Jamieson, University of Washington

Barnabás Póczos, Carnegie Mellon University
Pradeep Ravikumar, Carnegie Mellon University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

In Language and Information Technologies
c© Jesse Dodge
May 14, 2020

Contents

1 Introduction 6

1.1 The Green AI Equation . 7

1.2 Structure of this thesis . 10

1.3 Thesis statement . 12

2 Improved Reporting of Hyperparameter Optimization Results 13

2.1 Background . 14

2.2 Expected Validation Performance Given Budget 15

2.2.1 Expected Maximum . 16

2.2.2 Comparison with Bootstrap . 17

2.2.3 Variance of V ∗n . 18

2.3 Case Studies . 18

2.3.1 Experimental Details . 19

2.3.2 Validating Previous Findings . 19

2.3.3 Contextual Representations . 20

2.3.4 Inferring Budgets in Previous Reports . 20

2.4 Recommendations . 21

2.5 Discussion: Reproducibility . 23

2.6 Related Work . 24

2.7 Conclusion . 25

3 Efficient Hyperparameter Optimization 30

3.1 Related Work . 31

3.1.1 Closed Loop Methods . 31

3.1.2 Sampling proportional to the posterior variance of a Gaussian process . . 33

3.1.3 Open Loop Methods . 33

3.2 Measures of spread . 34

3.2.1 Discrepancy . 34

3.2.2 Dispersion . 35

2

3.2.3 Distance to the center and the origin . 37

3.2.4 Comparison of Open Loop Methods . 38

3.3 Method . 38

3.3.1 Sampling from a k-DPP . 39

3.3.2 Sampling k-DPPs defined over arbitrary base sets 40

3.3.3 Constructing L for hyperparameter optimization 41

3.3.4 Tree-structured hyperparameters . 42

3.4 Hyperparameter Optimization Experiments . 42

3.4.1 Simple tree-structured space . 43

3.4.2 Optimizing within ranges known to be good 43

3.4.3 Wall clock time comparison with Spearmint 44

3.5 Conclusions . 45

4 Structured Sparsity for Parameter Efficient Neural Models 46

4.1 Background . 48

4.1.1 Group Lasso Penalty . 48

4.1.2 WFSAs and Rational RNNs . 49

4.2 Method . 50

4.2.1 Rational Recurrent Network . 50

4.2.2 Promoting Sparsity with Group Lasso . 51

4.2.3 d-dimensional Case . 52

4.2.4 Discussion . 52

4.3 Experiments . 52

4.4 Visualization . 57

4.5 Related Work . 59

4.6 Conclusion . 60

5 Weight Initializations, Data Orders, and Early Stopping 61

5.1 Methodology . 63

5.1.1 Data . 63

5.1.2 Fine-tuning . 64

5.2 The large impact of random seeds . 65

5.2.1 Expected validation performance . 65

5.3 Weight initialization and data order . 66

5.3.1 Decoupling . 67

5.3.2 Some random seeds are better than others 68

5.3.3 Globally good initializations . 69

5.4 Early stopping . 70

3

5.5 Related work . 74

5.6 Conclusion . 75

6 Conclusion and Future Work 76

6.1 Summary of contributions . 76

6.2 Future directions . 77

6.2.1 E, Efficient Models . 77

6.2.2 D, Sample Efficiency . 78

6.2.3 H, Efficient Hyperparameter Tuning . 78

A 92

A.1 Hyperparameter Search Spaces for Section 2.3.2 92

A.2 Hyperparameter Search Spaces for Section 2.3.3 94

A.3 Hyperparameter Search Spaces for Section 2.3.4 97

4

Acknowledgements

I’ve been supremely fortunate to be have interacted with some fantastic people throughout my

PhD. In research we all stand on the shoulders of giants; I’ve worked with some directly.

Special thanks to Noah Smith, my advisor, without whom this wouldn’t have been possible.

My committee of Pradeep Ravikumar, Barnabás Póczos, and especially Kevin Jamieson gave

me valuable feedback on the work in this thesis. Thanks to my fellow Noah’s ARK members,

including Maarten Sap, Roy Schwartz, Dani Yogatama, Dallas Card, Sam Thomson, Swabha

Swayamdipta, Ana Marasović, Brendan O’Connor, David Bamman, Waleed Ammar, Yanchuan

Sim, Lingpeng Kong, Jeffrey Flanigan, Sofia Serrano, Nathan Schneider, Ofir Press, Hao Peng,

Phoebe Mulcaire, Lucy Lin, Elizabeth Clark, Emily Gade, Yangfeng Ji, Chenhao Tan, Suchin

Gururangan, and Rohan Ramanath.

I had many stellar colleagues at CMU, including Chris Dyer, Bill McDowell, Naomi Saphra,

Xinlei Chen, Colin White, Kirthevasan Kandasamy, Anthony Platanios, Calvin Murdock, Willie

Neiswanger, Micol Marchetti-Bowick, Nicole Rafidi, and Manaal Faruqui. A callout is deserved

to the various people that sat in UW’s AI lab while it existed between 2011 and 2019, including

Tony Fader, Lydia Chilton, Morgan Dixon, Abe Friesen, Chloé Kiddon, Sam Ainsworth, and

Nelson Liu. UW also brought me Kenton Lee, Luke Zettlemoyer, Justine Sherry Martins,

Dan Garrette, Alan Ritter, Mark Yatskar, Mike Lewis, Nicholas FitzGerald, Eunsol Choi,

Cynthia Matuszek, Marc Deisenroth, Yejin Choi, Yoav Artzi, Gabriel Ilharco, Gabriel Stanovsky,

Mitchell Wortsman, Sarah Pratt, Vivek Ramanujan, Peter Guttorp, and June Morita. Some

other brilliant colleagues I’ve had along the way include David Lopez-Paz, Emily Denton, Felix

Hill, Robert Nishihara, Jason Weston, Antoine Bordes, Mart́ın Arjovsky, Elad Eban, Karl Sratos,

Jacob Andreas, Hal Daume III, Oren Etzioni, and Meg Mitchell.

Most of all, my friends and family have unfailing supported me throughout this journey,

including Clea Hersperger, Clayton Hibbert, Jenny Abrahamson, Alex Ford, Nici Bissonnette,

Liz Wallace, and Craig Rice. Luke and Caitlyn, I coludn’t have done it without you.

This one’s for you, Mom and Dad.

5

Chapter 1

Introduction

Machine learning has reported remarkable progress on a broad range of tasks, including machine

translation, object recognition, and game playing (Shoham et al., 2018). Much of this progress

has been achieved by increasingly large and computationally-intensive deep learning models.

Figure 1.1, reproduced from Amodei and Hernandez (2018), plots training cost increase over

time for state-of-the-art deep learning models starting with AlexNet in 2012 (Krizhevsky et al.,

2012) to AlphaZero in 2017 (Silver et al., 2017a). The chart shows an overall increase of 300,000x,

with training cost doubling every few months. An even sharper trend can be observed in NLP

word embedding approaches by looking at ELMo (Peters et al., 2018) followed by BERT (Devlin

et al., 2019), openGPT-2 (Radford et al., 2019), XLNet (Yang et al., 2019), Megatron-LM

(Shoeybi et al., 2019), and T5 (Raffel et al., 2019).

This trend is driven by the strong focus of the AI community on obtaining state-of-the-

art results, as exemplified by the popularity of leaderboards (Wang et al., 2019b,a) which

typically report performance1 but omit any mention of cost or efficiency. Despite the clear

benefits of improving model performance, the focus on one single metric ignores the economic,

environmental, and social cost of reaching the reported results.

This increase in computational expense has led to some types of research being prohibitively

expensive, raising barriers to participation. In addition, recent research estimates a significant

carbon footprint for NLP experiments (Strubell et al., 2019). This thesis advocates for increasing

research activity in Green AI—AI research that is more efficient, inclusive, and environmentally

friendly. We emphasize that Red AI has been yielding valuable scientific contributions, but it

has been overly dominant in driving the direction of research in the field; we want to shift the

balance towards the Green AI option. Specifically, the work in this thesis makes efficiency a

evaluation criterion alongside accuracy and related measures.

AI research can be computationally expensive in a number of ways, but each provides

1In this thesis “performance” refers to accuracy, precision, and related measures, and not runtime or other
metrics of computational efficiency (for which we use other terms).

6

Figure 1.1: The amount of compute used to train deep learning models has increased 300,000x
in 6 years. Figure taken from Amodei and Hernandez (2018).

opportunities for efficient improvements; for example, plotting performance as a function of

training set size enables future work to compare performance even with small training budgets.

Reporting the computational price tag of developing, training, and running models is a key

Green AI practice. In addition to providing transparency, price tags are baselines that other

researchers could improve on.

Our empirical analysis in Schwartz et al. (2019b) suggests that the AI research community

has paid relatively little attention to computational efficiency. The computational cost of

high-budget research continues to increase at a pace that exceeds Moore’s Law (Moore, 1965).

This holds despite the well-known diminishing returns from increasing the model size (Tan and

Le, 2019) or the amount of data (Mahajan et al., 2018; Sun et al., 2017).

1.1 The Green AI Equation

To better understand the different ways in which AI research can be Red AI, consider an AI

result reported in a scientific paper. This result typically characterizes a model trained on a

training dataset and evaluated on a test dataset, and the process of developing that model often

involves multiple experiments to tune its hyperparameters. We thus consider three dimensions

which capture much of the computational cost of obtaining such a result: the cost of executing

the model on a single (E)xample (either during training or at inference time); the size of the

training (D)ataset, which controls the number of times the model is executed during training,

and the number of (H)yperparameter experiments, which controls how many times the model is

trained during model development. The total cost of producing a (R)esult in machine learning

7

increases linearly with each of these quantities. This cost can be estimated as follows:

Cost(R) ∝ E ·D ·H (1.1)

We call this the Green AI equation, where the cost of an AI (R)esult grows linearly with

the cost of processing a single (E)xample, the size of the training (D)ataset and the number

of (H)yperparameter experiments. This thesis is structured around the factors therein; each

chapter will introduce work which shows performance–efficiency tradeoffs for at least one of these

terms. First, we will consider each factor in turn, outlining its trend in the broader community.

Expensive processing of one example, E: Our focus is on neural models, where it is

common for each training step to require inference, so we discuss training and inference cost

together as “processing” an example. Some works have used increasingly large models in terms

of, e.g., model parameters, and as a result, in these models, performing inference can require

a lot of computation, and training even more so. For instance, Google’s BERT-large (Devlin

et al., 2019) contains roughly 350 million parameters. OpenAI’s openGPT2-XL model (Radford

et al., 2019) contains 1.5 billion parameters. AI2 released Grover (Zellers et al., 2019), also

containing 1.5 billion parameters. NVIDIA recently released Megatron-LM (Shoeybi et al.,

2019), containing over 8 billion parameters. Google’s T5-11B (Raffel et al., 2019) contains 11

billion parameters. Microsoft’s Turing-NLG (Rosset, 2019) has 17 billion parameters. In the

computer vision community, a similar trend is observed (Tan and Le, 2019).

Such large models have high costs for processing each example, which leads to large training

costs. BERT-large was trained on 64 TPU chips for 4 days at an estimated cost of $7,000.

Grover was trained on 256 TPU chips for two weeks, at an estimated cost of $25,000. XLNet had

a similar architecture to BERT-large, but used a more expensive objective function (in addition

to an order of magnitude more data), and was trained on 512 TPU chips for 2.5 days, costing

more than $60,000.2 It is impossible to reproduce the best BERT-large results or XLNet results

using a single GPU,3 and models such as openGPT2 are too large to be used in production.4

Specialized models can have even more extreme costs, such as AlphaGo, the best version of

which required 1,920 CPUs and 280 GPUs to play a single game of Go (Silver et al., 2016), with

an estimated cost to reproduce this experiment of $35,000,000.5,6

When examining variants of a single model (e.g., BERT-small and BERT-large) larger models

can have stronger performance, which is a valuable scientific contribution. However, this implies

the financial and environmental cost of increasingly large AI models will not decrease soon, as

2https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/
3See https://github.com/google-research/bert and https://github.com/zihangdai/xlnet.
4https://towardsdatascience.com/too-big-to-deploy-how-gpt-2-is-breaking-production-63ab29f0897c
5https://www.yuzeh.com/data/agz-cost.html
6Recent versions of AlphaGo are far more efficient (Silver et al., 2017b).

8

the pace of model growth far exceeds the resulting increase in model performance (Howard

et al., 2017). As a result, more and more resources are going to be required to keep improving

AI models by simply making them larger.

In some cases the price of processing one example might be different at training and test

time. For instance, some methods target efficient inference by learning a smaller model based on

the large trained model. These models often do not lead to more efficient training, as the cost

of E is only reduced at inference time. Models used in production typically have computational

costs dominated by inference rather than training, but in research training is typically much

more frequent, so studying methods for efficient processing of one example in both training and

inference is important.

Processing many examples, D: Increased amounts of training data have also contributed

to progress in state-of-the-art performance in AI. BERT-large (Devlin et al., 2019) had top

performance in 2018 across many NLP tasks after training on 3 billion word-pieces. XLNet (Yang

et al., 2019) recently outperformed BERT after training on 32 billion word-pieces, including part

of Common Crawl; openGPT-2-XL (Radford et al., 2019) trained on 40 billion words; FAIR’s

RoBERTa (Liu et al., 2019b) was trained on 160GB of text, roughly 40 billion word-pieces,

requiring around 25,000 GPU hours to train. T5-11B (Raffel et al., 2019) was trained on 1

trillion tokens, 300 times more than BERT-large. In computer vision, researchers from Facebook

(Mahajan et al., 2018) pretrained an image classification model on 3.5 billion images from

Instagram, three orders of magnitude larger than existing labelled image datasets such as Open

Images.7

The use of massive data creates barriers for many researchers to reproducing the results of

these models, and to training their own models on the same setup (especially as training for

multiple epochs is standard). For example, the July 2019 Common Crawl contains 242 TB of

uncompressed data,8 so even storing the data is expensive. Finally, as in the case of model size,

relying on more data to improve performance is notoriously expensive because of the diminishing

returns of adding more data (Sun et al., 2017). For instance, Mahajan et al. (2018) show a

logarithmic relation between the object recognition top-1 accuracy and the number of training

examples.

Massive number of experiments, H: Some projects have poured large amounts of com-

putation into tuning hyperparameters or searching over neural architectures, well beyond the

reach of most researchers. For instance, researchers from Google (Zoph and Le, 2017) trained

over 12,800 neural networks in their neural architecture search to improve performance on

object detection and language modeling. With a fixed architecture, researchers from DeepMind

(Melis et al., 2018) evaluated 1,500 hyperparameter assignments to demonstrate that an LSTM

7https://opensource.google.com/projects/open-images-dataset
8http://commoncrawl.org/2019/07/

9

language model (Hochreiter and Schmidhuber, 1997) can reach state-of-the-art perplexity results.

Despite the value of this result in showing that the performance of an LSTM does not plateau

after only a few hyperparameter trials, fully exploring the potential of other competitive models

for a fair comparison is prohibitively expensive.

The value of massively increasing the number of experiments is not as well studied as the

first two discussed above. In fact, outside of work developing new hyperparameter optimization

methods, the number of experiments performed during model construction is often underreported.

In Chapters 2 and 3 we provide evidence for a logarithmic relation exists here as well.

1.2 Structure of this thesis

The main contents of this thesis are organized around the Green AI equation. The chapters first

address H, the set of experiments that go into getting a result, then E, the cost to process a

single example during training or inference, and finally D, the amount of data. Each chapter

presents performance–efficiency tradeoffs. Much of the experimental work in this thesis is

on language data, though the motivations and conclusions from the results are more broadly

applicable across AI and machine learning.

• Chapter 2 analyzes H, the number of experiments run for hyperparameter optimization.

Here we focus on improved reporting of the results from the optimization procedure,

which are rarely reported. We demonstrate that test-set performance scores alone are

insufficient for drawing accurate conclusions about which model performs best. We argue

for reporting additional details, especially performance on validation data obtained during

model development. We present a novel technique for doing so: expected validation

performance of the best-found model as a function of computation budget (i.e., the number

of hyperparameter search trials or the overall training time). Using our approach, we

find multiple recent model comparisons where authors would have reached a different

conclusion if they had used more (or less) computation. Our approach also allows us to

estimate the amount of computation required to obtain a given accuracy; applying it to

several recently published results yields massive variation across papers, from hours to

weeks. We conclude with a set of best practices for reporting experimental results which

allow for robust future comparisons.

• Chapter 3 continues to analyze H, developing a technique for more efficient hyperparam-

eter optimization. Specifically, here we study open loop hyperparameter optimization

search methods: sequences that are predetermined and can be generated before a single

configuration is evaluated. Examples include grid search, uniform random search, low

discrepancy sequences, and other sampling distributions. In particular, we propose the

use of k-determinantal point processes in hyperparameter optimization via random search.

10

Compared to conventional uniform random search where hyperparameter settings are sam-

pled independently, a k-DPP promotes diversity. We describe an approach that transforms

hyperparameter search spaces for efficient use with a k-DPP. In addition, we introduce a

novel Metropolis-Hastings algorithm which can sample from k-DPPs defined over any space

from which uniform samples can be drawn, including spaces with a mixture of discrete

and continuous dimensions or tree structure. Our experiments show significant benefits in

realistic scenarios with a limited budget for training supervised learners, whether in serial

or parallel.

• Chapter 4 examines E, the computational requirements to process a single example, by

building parameter-efficient neural models. Neural models for NLP typically use large

numbers of parameters to reach state-of-the-art performance, which can lead to excessive

memory usage and increased runtime. We present a structure learning method for learning

sparse, parameter-efficient NLP models. Our method applies group lasso to rational

RNNs (Peng et al., 2018), a family of models that is closely connected to weighted finite-

state automata (WFSAs). We take advantage of rational RNNs’ natural grouping of the

weights, so the group lasso penalty directly removes WFSA states, substantially reducing

the number of parameters in the model. Our experiments on a number of sentiment

analysis datasets, using both GloVe and BERT embeddings, show that our approach learns

neural structures which have fewer parameters without sacrificing performance relative

to parameter-rich baselines. Our method also highlights the interpretable properties of

rational RNNs. We show that sparsifying such models makes them easier to visualize, and

we present models that rely exclusively on as few as three WFSAs after pruning more

than 90% of the weights.

• Chapter 5 discusses D, the amount of data processed during a single experiment, and

includes an example use of an early stopping algorithm. We study fine-tuning pretrained

contextual word embedding models to supervised downstream tasks, which has become

commonplace in natural language processing. This process, however, is often brittle: even

with the same hyperparameter values, distinct random seeds can lead to substantially

different results. To better understand this phenomenon, we experiment with four datasets

from the GLUE benchmark, fine-tuning BERT hundreds of times on each while varying

only the random seeds. We find substantial performance increases compared to previously

reported results, and we quantify how the performance of the best-found model varies as a

function of the number of fine-tuning trials. Further, we examine two factors influenced

by the choice of random seed: weight initialization and training data order. We find that

both contribute comparably to the variance of out-of-sample performance, and that some

weight initializations perform well across all tasks explored. On small datasets, we observe

that many fine-tuning trials diverge part of the way through training, and we offer best

11

practices for practitioners to stop training less promising runs early.

1.3 Thesis statement

In this thesis I advocate for a broad adoption of efficiency as a primary evaluation criterion.

Expensive experiments are driving the direction of AI, and such work is increasingly coming

only from those research labs which have the largest budgets. The budgets used are often not

described in detail; I argue that reproducible conclusions as to which approach performs

best cannot be made without accounting for the computational budget. The first

step to address these issues is to improve reporting of efficiency. Once we have appropriate

measurement tools and measurements themselves, we can then optimize performance–efficiency

tradeoffs.

Through the lens of the Green AI equation, I’ve outlined three areas for improvements.

Together, the cost of processing of a single (E)xample, the amount of (D)ata, and the number of

(H)yperparameter tuning experiments capture most of the increases in computational expense.

This thesis illustrates how describing where research falls on each of these three dimensions

facilitates more fair model comparisons and, thus, scientific advancement in machine learning.

In addition, the work herein provides examples of how improved performance–efficiency tradeoffs

can lead to performance improvements overall while also providing opportunities for lower-budget

comparsions in future research, leading to a more equitable research community.

12

Chapter 2

Improved Reporting of

Hyperparameter Optimization

Results

In machine learning and natural language processing, improved performance on held-out test

data is typically used as an indication of the superiority of one method over others. But,

as the field grows, there is an increasing gap between the large computational budgets used

for some high-profile experiments and the budgets used in most other work (Schwartz et al.,

2019b). When the only reported performance is on test data, the computational budget and

number of experiments is often not reported at all. This hinders meaningful comparison between

experiments, as improvements in performance can, in some cases, be obtained purely through

more intensive hyperparameter tuning (Melis et al., 2018; Lipton and Steinhardt, 2018). The

work in this chapter extends Dodge et al. (2019a), and we publicly release code.1

Recent investigations into “state-of-the-art” claims have found competing methods to only

be comparable, without clear superiority, even against baselines (Reimers and Gurevych, 2017;

Lucic et al., 2018; Li and Talwalkar, 2019); this has exposed the need for reporting more than a

single point estimate of performance. In this chapter, we demonstrate that test-set performance

scores alone are insufficient for drawing accurate conclusions about which model performs best.

We argue for reporting additional details, especially performance on validation data obtained

during model development.

Echoing calls for more rigorous scientific practice in machine learning (Lipton and Steinhardt,

2018; Sculley et al., 2018), we draw attention to the weaknesses in current reporting practices

and propose solutions which would allow for fairer comparisons and improved reproducibility.

Our primary technical contribution in this chapter is the introduction of a tool for reporting

1https://github.com/allenai/show-your-work

13

validation results in an easily interpretable way: expected validation performance of the best

model under a given computational budget (we use the term performance as a general evaluation

measure, e.g., accuracy, F1, etc.). That is, given a budget sufficient for training and evaluating

n models, we calculate the expected performance of the best of these models on validation data.

Note that this differs from the best observed value after n evaluations. Because the expectation

can be estimated from the distribution of N validation performance values, with N ≥ n, and

these are obtained during model development,2 our method does not require additional

computation beyond hyperparameter search or optimization. We encourage researchers to

report expected validation performance as a curve, across values of n ∈ {1, . . . , N}.
As we show in §2.3.3, our approach makes clear that the expected-best performing model is

a function of the computational budget. In §2.3.4 we show how our approach can be used to

estimate the budget that went into obtaining previous results; in one example, we see a too-small

budget for baselines, while in another we estimate a budget of about 18 GPU days was used

(but not reported). Previous work on reporting validation performance used the bootstrap to

approximate the mean and variance of the best performing model (Lucic et al., 2018); in §2.2.2

we show that our approach computes these values with strictly less error than the bootstrap.

Using our approach, we find multiple recent model comparisons where authors would have

reached a different conclusion if they had used more (or less) computation.

We conclude by presenting a set of recommendations for researchers that will improve

scientific reporting over current practice. We emphasize this work is about reporting, not about

running additional experiments (which undoubtedly can improve evidence in comparisons among

models). Our reporting recommendations aim at reproducibility and improved understanding

of sensitivity to hyperparameters and random initializations. Some of our recommendations

may seem obvious; however, our empirical analysis shows that out of fifty EMNLP 2018 papers

chosen at random, none report all items we suggest.

2.1 Background

Reproducibility Reproducibility in machine learning is often defined as the ability to produce

the exact same results as reported by the developers of the model. In this work, we follow

Gundersen and Kjensmo (2018) and use an extended notion of this concept: when comparing

two methods, two research groups with different implementations should follow an experimental

procedure which leads to the same conclusion about which performs better. As illustrated in

Fig. 2.1, this conclusion often depends on the amount of computation applied. Thus, to make a

reproducible claim about which model performs best, we must also take into account the budget

used (e.g., the number of hyperparameter trials).

2We leave forecasting performance with larger budgets n > N to future work.

14

Notation We use the term model family to refer to an approach subject to comparison and to

hyperparameter selection (examples of which include different architectures, but also ablations

of the same architecture. Each model family M requires its own hyperparameter selection,

in terms of a set of k hypermarameters, each of which defines a range of possible values. A

hyperparameter value (denoted h) is a k-tuple of specific values for each hyperparameter. We

call the set of all possible hyperparameter values HM.The hyperparameter value space can

also include the random seed used to initialize the model, and some specifications such as the

size of the hidden layers in a neural network, in addition to commonly tuned values such as

learning rate. Given HM and a computational budget sufficient for training B models, the set

of hyperparameter values is {h1, . . . , hB}, hi ∈ HM. We let mi ∈M denote the model trained

with hyperparameter value hi.

Hyperparameter value selection There are many ways of selecting hyperparameter values,

hi. Grid search and uniform sampling are popular systematic methods; the latter has been

shown to be superior for most search spaces (Bergstra and Bengio, 2012). Adaptive search

strategies such as Bayesian optimization select hi after evaluating h1, . . . , hi−1. While these

strategies may find better results quickly, they are generally less reproducible and harder to

parallelize (Li et al., 2018). Manual search, where practitioners use knowledge derived from

previous experience to adjust hyperparameters after each experiment, is a type of adaptive

search that is the least reproducible, as different practitioners make different decisions. We

have further discussion of different hyperparameter search strategies in Chapter 3, where we

introduce an approach that is fully parallel but has better coverage than uniform sampling.

Regardless of the strategy adopted, we advocate for detailed reporting of the method used for

hyperparmeter value selection and the budget (§2.4). We next introduce a technique to visualize

results of samples which are drawn i.i.d. (e.g., random initializations or uniformly sampled

hyperparameter values).

2.2 Expected Validation Performance Given Budget

After selecting the best hyperparameter values hi∗ from among {h1, . . . , hB} with actual budget

B, NLP researchers typically evaluate the associated model mi∗ on the test set and report its

performance as an estimate of the family M’s ability to generalize to new data. We propose to

make better use of the intermediately-trained models m1, . . . ,mB .

For any set of n hyperparmeter values, denote the validation performance of the best model

as

v∗n = maxh∈{h1,...,hn}A(M, h,DT ,DV), (2.1)

where A denotes an algorithm that returns the performance on validation data DV after training

15

a model from familyM with hyperparameter values h on training data DT .3 We view evaluations

of A as the elementary unit of experimental cost.4

Though not often done in practice, procedure equation 2.1 could be repeated many times

with different hyperparameter values, yielding a distribution of values for random variable V ∗n .

This would allow us to estimate the expected performance, E[V ∗n | n] (given n hyperparameter

configurations). The key insight used below is that, if we use random search for hyperparameter

selection, then the effort that goes into a single round of random search (Eq. 2.1) suffices to

construct a useful estimate of expected validation performance, without requiring any further

experimentation.

Under random search, the n hyperparameter values h1, . . . , hn are drawn uniformly at random

from HM, so the values of A(M, hi,DT ,DV) are i.i.d. As a result, the maximum among these

is itself a random variable. We introduce a diagnostic that captures information about the

computation used to generate a result: the expectation of maximum performance, conditioned

on n, the amount of computation used in the maximization over hyperparameters and random

initializations:

E
[
maxh∈{h1,...,hn}A(M, h,DT ,DV) | n

]
. (2.2)

Reporting this expectation as we vary n ∈ {1, 2, . . . , B} gives more information than the

maximum v∗B (Eq. 2.1 with n = B); future researchers who use this model will know more

about the computation budget required to achieve a given performance. We turn to calculating

this expectation, then we compare it to the bootstrap (§2.2.2), and discuss estimating variance

(§2.2.3).

2.2.1 Expected Maximum

We describe how to estimate the expected maximum validation performance (Eq. 2.2) given a

budget of n hyperparameter values. Conversion to alternate formulations of budget, such as

GPU hours or cloud-machine rental cost in dollars, is straightforward in most cases.

Assume we draw {h1, . . . , hn} uniformly at random from hyperparameter space HM. Each

evaluation of A(M, h,DT ,DV) is therefore an i.i.d. draw of a random variable, denoted Vi, with

observed value vi for hi ∼ HM. Let the maximum among n i.i.d. draws from an unknown

distribution be

V ∗n = maxi∈{1,...,n} Vi (2.3)

3A captures standard parameter estimation, as well as procedures that depend on validation data, like early
stopping.

4Note that researchers do not always report validation, but rather test performance, a point we will return to
in §2.4.

16

We seek the expected value of V ∗n given n:

E[V ∗n | n] =
∑
v v · P (V ∗n = v | n) (2.4)

where P (V ∗n | n) is the probability mass function (PMF) for the max-random variable.5

For discrete random variables,

P (V ∗n = v | n) = P (V ∗n ≤ v | n)− P (V ∗n < v | n), (2.5)

Using the definition of “max”, and the fact that the Vi are drawn i.i.d.,

P (V ∗n ≤ v | n) = P
(
maxi∈{1,...,n} Vi ≤ v | n

)
= P (V1 ≤ v, V2 ≤ v, . . . , Vn ≤ v | n)

=
∏n
i=1 P (Vi ≤ v) = P (V ≤ v)n, (2.6)

and similarly for P (V ∗n < v | n).

P (V ≤ v) and P (V < v) are cumulative distribution functions, which we can estimate using

the empirical distribution, i.e.

P̂ (V ≤ v) = 1
n

∑n
i=1 1[Vi≤v] (2.7)

and similarly for strict inequality.

Thus, our estimate of the expected maximum validation performance is

Ê[V ∗n | n] =
∑
v v · (P̂ (Vi ≤ v)n − P̂ (Vi < v)n). (2.8)

Discussion As we increase the amount of computation for evaluating hyperparameter values

(n), the maximum among the samples will approach the observed maximum v∗B . Hence the curve

of E[V ∗n | n] as a function of n will appear to asymptote. Our focus here is not on estimating

that value, and we do not make any claims about extrapolation of V ∗ beyond B, the number of

hyperparameter values to which A is actually applied.

Two points follow immediately from our derivation. First, at n = 1, E[V ∗1 | n = 1] is the

mean of v1, . . . , vn. Second, for all n, E[V ∗n | n] ≤ v∗n = maxi vi, which means the curve is a

lower bound on the selected model’s validation performance.

2.2.2 Comparison with Bootstrap

Lucic et al. (2018) and Henderson et al. (2018) have advocated for using the bootstrap to

5For a finite validation set DV , most performance measures (e.g., accuracy) only take on a finite number of
possible values, hence the use of a sum instead of an integral in Eq. 2.4.

17

estimate the mean and variance of the best validation performance. The bootstrap (Efron and

Tibshirani, 1994) is a general method which can be used to estimate statistics that do not have

a closed form. The bootstrap process is as follows: draw N i.i.d. samples (in our case, N

model evaluations). From these N points, sample n points (with replacement), and compute

the statistic of interest (e.g., the max). Do this K times (where K is large), and average the

computed statistic. By the law of large numbers, as K → ∞ this average converges to the

sample expected value (Efron and Tibshirani, 1994).

The bootstrap has two sources of error: the error from the finite sample of N points, and the

error introduced by resampling these points K times. Our approach has strictly less error than

using the bootstrap: our calculation of the expected maximum performance in §2.2.1 provides a

closed-form solution, and thus contains none of the resampling error (the finite sample error is

the same).

2.2.3 Variance of V ∗n

Expected performance becomes more useful with an estimate of variation. When using the

bootstrap, standard practice is to report the standard deviation of the estimates from the K

resamples. As K →∞, this standard deviation approximates the sample standard error (Efron

and Tibshirani, 1994). We instead calculate this from the distribution in Eq. 2.5 using the

standard plug-in-estimator.

In most cases, we advocate for reporting a measure of variability such as the standard

deviation or variance; however, in some cases it might cause confusion. For example, when the

variance is large, plotting the expected value plus the variance can go outside of reasonable

bounds, such as accuracy greater than any observed (even greater than 1). In such situations,

we recommend shading only values within the observed range, such as in Fig. 2.4. Additionally,

in situations where the variance is high and variance bands overlap between model families (e.g.,

Fig. 2.1), the mean is still the most informative statistic.

2.3 Case Studies

Here we show two clear use cases of our method. First, we can directly estimate, for a

given budget, which approach has better performance. Second, we can estimate, given our

experimental setup, the budget for which the reported validation performance (V ∗) matches a

desired performance level. We present three examples that demonstrate these use cases. First,

we reproduce previous findings that compared different models for text classification. Second,

we explore the time vs. performance tradeoff of models that use contextual word embeddings

(Peters et al., 2018). Third, from two previously published papers, we examine the budget

required for our expected performance to match their reported performance. We find these

18

budget estimates vary drastically. Consistently, we see that the best model is a function of the

budget. We publicly release the search space and training configurations used for each case

study.6

Note that we do not report test performance in our experiments, as our purpose is not to

establish a benchmark level for a model, but to demonstrate the utility of expected validation

performance for model comparison and reproducibility.

2.3.1 Experimental Details

For each experiment, we document the hyperparameter search space, hardware, average runtime,

number of samples, and links to model implementations. We use public implementations for all

models in our experiments, primarily in AllenNLP (Gardner et al., 2018). We use Tune (Liaw

et al., 2018) to run parallel evaluations of uniformly sampled hyperparameter values.

2.3.2 Validating Previous Findings

We start by applying our technique on a text classification task in order to confirm a well-

established observation (Yogatama and Smith, 2015): logistic regression has reasonable perfor-

mance with minimal hyperparameter tuning, but a well-tuned convolutional neural network

(CNN) can perform better.

We experiment with the fine-grained Stanford Sentiment Treebank text classification dataset

(Socher et al., 2013). For the CNN classifier, we embed the text with 50-dim GloVe vectors (Pen-

nington et al., 2014), feed the vectors to a ConvNet encoder, and feed the output representation

into a softmax classification layer. We use the scikit-learn implementation of logistic regression7

with bag-of-word counts and a linear classification layer. The hyperparameter spaces HCNN

and HLR are detailed in Appendix A.1. For logistic regression we used bounds suggested by

Yogatama and Smith (2015), which include term weighting, n-grams, stopwords, and learning

rate. For the CNN we follow the hyperparameter sensitivity analysis in Zhang and Wallace

(2015).

We run 50 trials of random hyperparameter search for each classifier. Our results (Fig. 2.1)

confirm previous findings (Zhang and Wallace, 2015): under a budget of fewer than 10 hyperpa-

rameter search trials, logistic regression achieves a higher expected validation accuracy than

the CNN. As the budget increases, the CNN gradually improves to a higher overall expected

validation accuracy. For all budgets, logistic regression has lower variance, so may be a more

suitable approach for fast prototyping.

19

2.3.3 Contextual Representations

We next explore how computational budget affects the performance of contextual embedding

models (Peters et al., 2018). Recently, Peters et al. (2019) compared two methods for using

contextual representations for downstream tasks: feature extraction, where features are fixed

after pretraining and passed into a task-specific model, or fine-tuning, where they are updated

during task training. Peters et al. (2019) found that feature extraction is preferable to fine-tuning

ELMo embeddings. Here we set to explore whether this conclusion depends on the experimental

budget.

Closely following their experimental setup, in Fig. 2.2 we show the expected performance

of the biattentive classification network (BCN; McCann et al., 2017) with three embedding

approaches (GloVe only, GloVe + ELMo frozen, and GloVe + ELMo fine-tuned), on the binary

Stanford Sentiment Treebank task. Peters et al. (2019) use a BCN with frozen embeddings and

a BiLSTM BCN for fine-tuning. We conducted experiments with both a BCN and a BiLSTM

with frozen and fine-tuned embeddings, and found our conclusions to be consistent. We report

the full hyperparameter search space, which matched Peters et al. (2019) as closely as their

reporting allowed, in Appendix A.2.

We use time for the budget by scaling the curves by the average observed training duration

for each model. We observe that as the time budget increases, the expected best-performing

model changes. In particular, we find that our experimental setup leads to the same conclusion

as Peters et al. (2019) given a budget between approximately 6 hours and 1 day. For larger

budgets (e.g., 10 days) fine-tuning outperforms feature extraction. Moreover, for smaller budgets

(< 2 hours), using GloVe embeddings is preferable to ELMo (frozen or fine-tuned).

2.3.4 Inferring Budgets in Previous Reports

Our method provides another appealing property: estimating the budget required for the

expected performance to reach a particular level, which we can compare against previously

reported results. We present two case studies, and show that the amount of computation

required to match the reported results varies drastically.

We note that in the two examples that follow, the original papers only reported partial

experimental information; we made sure to tune the hyperparameters they did list in addition

to standard choices (such as the learning rate). In neither case do they report the method used

to tune the hyperparameters, and we suspect they tuned them manually. Our experiments here

are meant give an idea of the budget that would be required to reproduce their results or to

apply their models to other datasets under random hyperparameter value selection.

6https://github.com/allenai/show-your-work
7https://scikit-learn.org

20

SciTail When introducing the SciTail textual entailment dataset, Khot et al. (2018) compared

four models: an n-gram baseline, which measures word-overlap as an indicator of entailment,

ESIM (Chen et al., 2017), a sequence-based entailment model, DAM (Parikh et al., 2016),

a bag-of-words entailment model, and their proposed model, DGEM (Khot et al., 2018), a

graph-based structured entailment model. Their conclusion was that DGEM outperforms the

other models.

We use the same implementations of each of these models each with a hyperparameter search

space detailed in Appendix A.3. The search space bounds we use are large neighborhoods

around the hyperparameter assignments specified in the public implementations of these models.

Note that these curves depend on the specific hyperparameter search space adopted; as the

original paper does not report hyperparameter search or model selection details, we have chosen

what we believe to be reasonable bounds, and acknowledge that different choices could result in

better or worse expected performance. We use a budget based on trials instead of runtime so as

to emphasize how these models behave when given a comparable number of hyperparameter

configurations.

Our results (Fig. 2.3) show that the different models require different budgets to reach

their reported performance in expectation, ranging from 2 (n-gram) to 20 (DGEM). Moreover,

providing a large budget for each approach improves performance substantially over reported

numbers. Finally, under different computation budgets, the top performing model changes

(though the neural models are similar).

SQuAD Next, we turn our attention to SQuAD (Rajpurkar et al., 2016) and report perfor-

mance of the commonly-used BiDAF model (Seo et al., 2017). The set of hyperparameters we

tune covers those mentioned in addition to standard choices (details in Appendix A.3). We

see in Fig. 2.4 that we require a budget of 18 GPU days in order for the expected maximum

validation performance to match the value reported in the original paper. This suggests that

some combination of prior intuition and extensive hyperparameter tuning were used by the

original authors, though neither were reported.

2.4 Recommendations

Experimental results checklist The findings discussed in this chapter and other similar

efforts highlight methodological problems in experimental machine learning and NLP. In this

section we provide a checklist to encourage researchers to report more comprehensive experi-

mentation results. Our list, shown in Text Box 1, builds on the reproducibility checklist that

was introduced for the machine learning community during NeurIPS 2018 (which was required

to be filled out for each NeurIPS 2019 and ICML 2020 submission; Pineau, 2019).

Our focus is on improved reporting of experimental results, thus we include relevant points

21

from their list in addition to our own. Similar to other calls for improved reporting in machine

learning (Mitchell et al., 2019; Gebru et al., 2018), we recommend pairing experimental results

with the information from this checklist in a structured format (see examples provided in

Appendix A.1).

Text Box 1 Experimental results checklist.

X For all reported experimental results

� Description of computing infrastructure

� Average runtime for each approach

� Details of train/validation/test splits

� Corresponding validation performance for each reported test result

� A link to implemented code

X For experiments with hyperparameter search

� Bounds for each hyperparameter

� Hyperparameter configurations for best-performing models

� Number of hyperparameter search trials

� The method of choosing hyperparameter values (e.g., uniform sampling, manual tuning,
etc.) and the criterion used to select among them (e.g., accuracy)

� Expected validation performance, as introduced in §2.2.1, or another measure of the mean
and variance as a function of the number of hyperparameter trials.

EMNLP 2018 checklist coverage. To estimate how commonly this information is reported

in the NLP community, we sample fifty random EMNLP 2018 papers that include experimental

results and evaluate how well they conform to our proposed reporting guidelines. We find that

none of the papers reported all of the items in our checklist. However, every paper reported at

least one item in the checklist, and each item is reported by at least one paper. Of the papers

we analyzed, 74% reported at least some of the best hyperparameter assignments. By contrast,

10% or fewer papers reported hyperparameter search bounds, the number of hyperparameter

evaluation trials, or measures of central tendency and variation. We include the full results of

this analysis in Table 2.1.

Comparisons with different budgets. We have argued that claims about relative model

performance should be qualified by computational expense. With varying amounts of compu-

tation, not all claims about superiority are valid. If two models have similar budgets, we can

claim one outperforms the other (with that budget). Similarly, if a model with a small budget

outperforms a model with a large budget, increasing the small budget will not change this

conclusion. However, if a model with a large budget outperforms a model with a small budget,

the difference might be due to the model or the budget (or both). As a concrete example, Melis

et al. (2018) report the performance of an LSTM on language modeling the Penn Treebank after

1,500 rounds of Bayesian optimization; if we compare to a new M with a smaller budget, we

22

Checklist item Percentage of EMNLP 2018 papers

Reports train/validation/test splits 92%

Reports best hyperparameter assignments 74%

Reports code 30%

Reports dev accuracy 24%

Reports computing infrastructure 18%

Reports empirical runtime 14%

Reports search strategy 14%

Reports score distribution 10%

Reports number of hyperparameter trials 10%

Reports hyperparameter search bounds 8%

Table 2.1: Presence of checklist items from §5 across 50 randomly sampled EMNLP 2018 papers
that involved modeling experiments.

can only draw a conclusion if the new model outperforms the LSTM. 8

In a larger sense, there may be no simple way to make a comparison “fair.” For example,

the two models in Fig. 2.1 have hyperparameter spaces that are different, so fixing the same

number of hyperparameter trials for both models does not imply a fair comparison. In practice,

it is often not possible to measure how much past human experience has contributed to reducing

the hyperparameter bounds for popular models, and there might not be a way to account for

the fact that better understood (or more common) models can have better spaces to optimize

over. Further, the cost of one application of A might be quite different depending on the model

family. Converting to runtime is one possible solution, but implementation effort could still

affect comparisons at a fixed x-value. Because of these considerations, our focus is on reporting

whatever experimental results exist.

2.5 Discussion: Reproducibility

In NLP, the use of standardized test sets and public leaderboards (which limit test evaluations)

has helped to mitigate the so-called “replication crisis” happening in fields such as psychology

and medicine (Ioannidis, 2005; Gelman and Loken, 2014). Unfortunately, leaderboards can

create additional reproducibility issues (Rogers, 2019). First, leaderboards obscure the budget

that was used to tune hyperparameters, and thus the amount of work required to apply a model

to a new dataset. Second, comparing to a model on a leaderboard is difficult if they only report

test scores. For example, on the GLUE benchmark (Wang et al., 2018), the differences in test

set performance between the top performing models can be on the order of a tenth of a percent,

while the difference between test and validation performance might be one percent or larger.

8This is similar to controlling for the amount of training data, which is an established norm in NLP research.

23

Verifying that a new implementation matches established performance requires submitting to

the leaderboard, wasting test evaluations. Thus, we recommend leaderboards report validation

performance for models evaluated on test sets.

As an example, consider Devlin et al. (2019), which introduced BERT and reported state-

of-the-art results on the GLUE benchmark. The authors provide some details about the

experimental setup, but do not report a specific budget. Subsequent work which extended BERT

(Phang et al., 2018) included distributions of validation results, and we highlight this as a positive

example of how to report experimental results. To achieve comparable test performance to

Devlin et al. (2019), the authors report the best of twenty or one hundred random initializations.

Their validation performance reporting not only illuminates the budget required to fine-tune

BERT on such tasks, but also gives other practitioners results against which they can compare

without submitting to the leaderboard.

2.6 Related Work

Lipton and Steinhardt (2018) address a number of problems with the practice of machine

learning, including incorrectly attributing empirical gains to modeling choices when they came

from other sources such as hyperparameter tuning. Sculley et al. (2018) list examples of similar

evaluation issues, and suggest encouraging stronger standards for empirical evaluation. They

recommend detailing experimental results found throughout the research process in a time-

stamped document, as is done in other experimental science fields. Our work formalizes these

issues and provides an actionable set of recommendations to address them.

Reproducibility issues relating to standard data splits (Schwartz et al., 2011; Gorman and

Bedrick, 2019; Recht et al., 2019a,b) have surfaced in a number of areas. Shuffling standard

training, validation, and test set splits led to a drop in performance, and in a number of cases

the inability to reproduce rankings of models. Dror et al. (2017) studied reproducibility in the

context of consistency among multiple comparisons.

Limited community standards exist for documenting datasets and models. To address

this, Gebru et al. (2018) recommend pairing new datasets with a “datasheet” which includes

information such as how the data was collected, how it was cleaned, and the motivation behind

building the dataset. Similarly, Mitchell et al. (2019) advocate for including a “model card” with

trained models which document training data, model assumptions, and intended use, among

other things. Our recommendations in §2.4 are meant to document relevant information for

experimental results.

In Chapter 5 we further examine the stability of contextual language models, and show that

the results claimed in a number of other papers are brittle.

24

2.7 Conclusion

In this chapter we have shown how current practice in experimental NLP fails to support a

simple standard of reproducibility, primarily due to failing to sufficiently report experimental

information. We have shown that the computational budget, and how performance changes

as a function of that budget, is necessary information when drawing reproducible conclusions

about which approach performs best. Our technique for estimating the expected validation

performance of a method as a function of the budget helps address this shortcoming. In addition,

our recommendations for reporting experimental findings through a reproducibility checklist

outline how the community can first measure then improve upon efficient methods in machine

learning and NLP.

25

(Budget, [accuracy])

Budget that
favors LR

Budget that
favors CNN

39.8
32.0
38.8
31.1
39.5

…

LR val. accuracy CNN val. accuracy

38.9
26.1
26.4
40.5
36.1

…

current practice:

max

max

report corresponding test-set accuracies

H
yp

er
pa

ra
m

et
er

as

si
gn

m
en

ts

Figure 2.1: Current practice when comparing NLP models is to train multiple instantiations of
each, choose the best model of each type based on validation performance, and compare their
performance on test data (inner box). Under this setup, (assuming test-set results are similar to
validation), one would conclude from the results above (hyperparameter search for two models
on the 5-way SST classification task) that the CNN outperforms Logistic Regression (LR). In
our proposed evaluation framework, we instead encourage practitioners to consider the expected
validation accuracy (y-axis; shading shows ±1 standard deviation), as a function of budget
(x-axis). Each point on a curve is the expected value of the best validation accuracy obtained (y)
after evaluating x random hyperparameter values. Note that (1) the better performing model
depends on the computational budget; LR has higher expected performance for budgets up to
10 hyperparameter assignments, while the CNN is better for larger budgets. (2) Given a model
and desired accuracy (e.g., 0.395 for CNN), we can estimate the expected budget required to
reach it (16; dotted lines).

26

30min 1h 6h 1d 3d 10d
Training duration

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

E
xp

ec
te

d
va

lid
at

io
n

ac
cu

ra
cy

SST (binary)

GloVe + ELMo (FT)
GloVe + ELMo (FR)
GloVe

Figure 2.2: Expected maximum performance of a BCN classifier on SST. We compare three
embedding approaches (GloVe embeddings, GloVe + frozen ELMo, and GloVe + fine-tuned
ELMo). The x-axis is time, on a log scale. We omit the variance for visual clarity. For each of
the three model families, we sampled 50 hyperparameter values, and plot the expected maximum
performance with the x-axis values scaled by the average training duration. The plot shows
that for each approach (GloVe, ELMo frozen, and ELMo fine-tuned), there exists a budget for
which it is preferable.

27

5 10 50 100
Hyperparameter assignments

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

E
xp

ec
te

d
va

lid
at

io
n

ac
cu

ra
cy

reported DGEM accuracy

reported DAM accuracy

reported ESIM accuracy

reported n-gram baseline accuracy

SciTail

DGEM
DAM
ESIM
n-gram baseline

Figure 2.3: Comparing reported accuracies (dashed lines) on SciTail to expected validation
performance under varying levels of compute (solid lines). The estimated budget required for
expected performance to match the reported result differs substantially across models, and the
relative ordering varies with budget. We omit variance for visual clarity.

28

8h 1d 3d 10d 18d 1mo
Training duration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
xp

ec
te

d
va

lid
at

io
n

E
M

reported BIDAF EM
SQuAD

BIDAF

Figure 2.4: Comparing reported development exact-match score of BIDAF (dashed line) on
SQuAD to expected performance of the best model with varying computational budgets (solid
line). The shaded area represents the expected performance ±1 standard deviation, within the
observed range of values. for the expected performance to match the reported results.

29

Chapter 3

Efficient Hyperparameter

Optimization

Driven by the need for parallelizable hyperparameter optimization methods, this chapter studies

open loop search methods: sequences that are predetermined and can be generated before a

single configuration is evaluated. Efficient hyperparameter search methods can reduce the

computational cost of achieving a certain level of performance, or improve performance for a

given budget. In Chapter 2 we developed a tool for reporting the results of uniform sampling

for hyperparameter optimization, and here we introduce a new hyperparameter optimization

algorithm which is more computationally efficient than uniform sampling. Our experiments

show significant benefits in realistic scenarios with a limited budget for training supervised

learners, whether in serial or parallel. This chapter extends Dodge et al. (2017).

Hyperparameter values—regularization strength, model family choices like depth of a neural

network or which nonlinear functions to use, procedural elements like dropout rates, stochastic

gradient descent step sizes, and data preprocessing choices—can make the difference between

a successful application of machine learning and a wasted effort. To search among many

hyperparameter values requires repeated execution of often-expensive learning algorithms,

creating a major obstacle for practitioners and researchers alike.

In general, on iteration (evaluation) k, a hyperparameter searcher suggests a d-dimensional

hyperparameter configuration xk ∈ X (e.g., X = Rd but could also include discrete dimensions),

a worker trains a model using xk, and returns a validation loss of yk ∈ R computed on a hold

out set. In this work we say a hyperparameter searcher is open loop if xk depends only on

{xi}k−1
i=1 ; examples include choosing xk uniformly at random (Bergstra and Bengio, 2012), or

xk coming from a low-discrepancy sequence (c.f., (Iacò, 2015)). We say a searcher is closed

loop if xk depends on both the past configurations and validation losses {(xi, yi)}k−1
i=1 ; examples

include Bayesian optimization (Snoek et al., 2012) and reinforcement learning methods (Zoph

30

and Le, 2017). Note that open loop methods can draw an infinite sequence of configurations

before training a single model, whereas closed loop methods rely on validation loss feedback in

order to make suggestions.

While sophisticated closed loop selection methods have been shown to empirically identify

good hyperparameter configurations faster (i.e., with fewer iterations) than open loop methods

like random search, two trends have rekindled interest in embarrassingly parallel open

loop methods: 1) modern deep learning model are taking longer to train, sometimes up to

days or weeks, and 2) the rise of cloud resources available to anyone that charge not by the

number of machines, but by the number of CPU-hours used so that 10 machines for 100 hours

costs the same as 1000 machines for 1 hour.

This chapter explores the landscape of open loop methods, identifying tradeoffs that are

rarely considered, if at all acknowledged. While random search is arguably the most popular open

loop method and chooses each xk independently of {xi}k−1
i=1 , it is by no means the only choice.

In many ways uniform random search is the least interesting of the methods we will discuss

because we will advocate for methods where xk depends on {xi}k−1
i=1 to promote diversity. In

particular, we will focus on drawing {xi}ki=1 from a k-determinantal point process (DPP)

(Kulesza et al., 2012). We introduce a sampling algorithm which allows DPPs to support real,

integer, and categorical dimensions, any of which may have a tree structure, and we describe

connections between DPPs and Gaussian processes (GPs).

In synthetic experiments, we find our diversity-promoting open-loop method outperforms

other open loop methods. In practical hyperparameter optimization experiments, we find that it

significantly outperforms other approaches in cases where the hyperparameter values have a large

effect on performance. Finally, we compare against a closed loop Bayesian optimization method,

and find that sequential Bayesian optimization takes, on average, more than ten times as long

to find a good result, for a gain of only 0.15 percent accuracy on a particular hyperparameter

optimization task.

3.1 Related Work

While this work focuses on open loop methods, the vast majority of recent work on hyperparam-

eter tuning has been on closed loop methods, which we briefly review.

3.1.1 Closed Loop Methods

Much attention has been paid to sequential model-based optimization techniques such as

Bayesian optimization (Bergstra et al., 2011; Snoek et al., 2012) which sample hyperparameter

spaces adaptively. These techniques first choose a point in the space of hyperparameters, then

train and evaluate a model with the hyperparameter values represented by that point, then

31

sample another point based on how well previous point(s) performed. When evaluations are

fast, inexpensive, and it’s possible to evaluate a large number of points (e.g. k = Ω(2d) for d

hyperparameters) these approaches can be advantageous, but in the more common scenario

where we have limited time or a limited evaluation budget, the sequential nature of closed

loop methods can be cumbersome. In addition, it has been observed that many Bayesian

optimization methods with a moderate number of hyperparameters, when run for k iterations,

can be outperformed by sampling 2k points uniformly at random (Li et al., 2018), indicating

that even simple open loop methods can be competitive.

Parallelizing Bayesian optimization methods has proven to be nontrivial, though many

agree that it’s vitally important. While many algorithms exist which can sample more than

one point at each iteration (Contal et al., 2013; Desautels et al., 2014; González et al., 2016;

Kandasamy et al., 2018), the sequential nature of Bayesian optimization methods prevent the

full parallelization open loop methods can employ. Even running two iterations (with batches of

size k/2) will take on average twice as long as fully parallelizing the evaluations, as you can do

with open loop methods like grid search, sampling uniformly, or sampling according to a DPP.

One line of research has examined the use of k-DPPs for optimizing hyperparameters in the

context of parallelizing Bayesian optimization (Kathuria et al., 2016; Wang et al., 2017). At

each iteration within one trial of Bayesian optimization, instead of drawing a single new point

to evaluate from the posterior, they define a k-DPP over a relevance region from which they

sample a diverse set of points. They found their approach to beat state-of-the-art performance

on a number of hyperparameter optimization tasks, and they proved that generating batches by

sampling from a k-DPP has better regret bounds than a number of other approaches. They

show that a previous batch sampling approach which selects a batch by sequentially choosing

a point which has the highest posterior variance (Contal et al., 2013) is just approximating

finding the maximum probability set from a k-DPP (an NP-hard problem (Kulesza et al., 2012)),

and they prove that sampling (as opposed to maximization) has better regret bounds for this

optimization task. We use the work of Kathuria et al. (2016) as a foundation for our exploration

of fully-parallel optimization methods, and thus we focus on k-DPP sampling as opposed to

maximization.

So-called configuration evaluation methods have been shown to perform well by adaptively

allocating resources to different hyperparameter settings (Swersky et al., 2014; Li et al., 2018).

They initially choose a set of hyperparameters to evaluate (often uniformly), then partially

train a set of models for these hyperparameters. After some fixed training budget (e.g., time, or

number of training examples observed), they compare the partially trained models against one

another and allocate more resources to those which perform best. Eventually, these algorithms

produce one (or a small number) of fully trained, high-quality models. In some sense, these

approaches are orthogonal to open vs. closed loop methods, as the diversity-promoting approach

we advocate can be used as a drop-in replacement to the method used to choose the initial

32

hyperparameter assignments.

3.1.2 Sampling proportional to the posterior variance of a Gaussian

process

GPs have long been lauded for their expressive power, and have been used extensively in the

hyperparameter optimization literature. Hennig and Garnett (2016) show that drawing a sample

from a k-DPP with kernel K is equivalent to sequentially sampling k times proportional to the

(updated) posterior variance of a GP defined with covariance kernel K. This sequential sampling

is one of the oldest hyperparameter optimization algorithms, though our work is the first to

perform an in-depth analysis. Additionally, this has a nice information theoretic justification:

since the entropy of a Gaussian is proportional to the log determinant of the covariance matrix,

points drawn from a DPP have probability proportional to exp(information gain), and the most

probable set from the DPP is the set which maximizes the information gain. With our MCMC

algorithm presented in Algorithm 2, we can draw samples with these appealing properties from

any space for which we can draw uniform samples. The ability to draw k-DPP samples by

sequentially sampling points proportional to the posterior variance grants us another boon: if

one has a sample of size k and wants a sample of size k + 1, only a single additional point needs

to be drawn, unlike with the sampling algorithms presented in Kulesza et al. (2012). Using this

approach, we can draw samples up to k = 100 in less than a second on a machine with 32 cores.

3.1.3 Open Loop Methods

As discussed above, recent trends have renewed interest in open loop methods. While there

exist many different batch BO algorithms, analyzing these in the open loop regime (when there

are no results from function evaluations) is often rather simple. As there is no information with

which to update the posterior mean, function evaluations are hallucinated using the prior or

points are drawn only using information about the posterior variance. For example, in the open

loop regime, Kandasamy et al. (2018)’s approach without hallucinated observations is equivalent

to uniform sampling, and their approach with hallucinated observations (where they use the

prior mean in place of a function evaluation, then update the posterior mean and variance)

is equivalent to sequentially sampling according to the posterior variance (which is the same

as sampling from a DPP). Similarly, open loop optimization in SMAC (Hutter et al., 2012) is

equivalent to first Latin hypercube sampling to make a large set of diverse candidate points,

then sampling k uniformly among these points.

Recently, uniform sampling was shown to be competitive with sophisticated closed loop

methods for modern hyperparameter optimization tasks like optimizing the hyperparameters of

deep neural networks (Li et al., 2018), inspiring other works to explain the phenomenon (Ahmed

et al., 2016). Bergstra and Bengio (2012) offer one of the most comprehensive studies of open

33

loop methods to date, and focus attention on comparing random search and grid search. A main

takeaway of the paper is that uniform random sampling is generally preferred to grid search1

due to the frequent observation that some hyperparameters have little impact on performance,

and random search promotes more diversity in the dimensions that matter. Essentially, if points

are drawn uniformly at random in d dimensions but only d′ < d dimensions are relevant, those

same points are uniformly distributed (and just as diverse) in d′ dimensions. Grid search, on

the other hand, distributes configurations aligned with the axes so if only d′ < d dimensions are

relevant, many configurations are essentially duplicates.

However, grid search does have one favorable property that is clear in just one dimension. If

k points are distributed on [0, 1] on a grid, the maximum spacing between points is equal to

1
k−1 . But if points are uniformly at random drawn on [0, 1], the expected largest gap between

points scales as 1√
k
. If, by bad luck, the optimum islocated in this largest gap, this difference

could be considerable; we attempt to quantify this idea in the next section.

3.2 Measures of spread

Quantifying the spread of a sequence x = (x1, x2, . . . , xk) (or, similarly, how well x covers a

space) is a well-studied concept. In this section we introduce discrepancy, a quantity used by

previous work, and dispersion, which we argue is more appropriate for optimization problems.

3.2.1 Discrepancy

Perhaps the most popular way to quantify the spread of a sequence is star discrepancy. One

can interpret the star discrepancy as a multidimensional version of the Kolmogorov-Smirnov

statistic between the sequence x and the uniform measure; intuitively, when x contains points

which are spread apart, star discrepancy is small. Star discrepancy is defined as

Dk(x) = sup
u1,...,ud∈[0,1]

∣∣∣∣∣∣Ak(x, uj)−
d∏
j=1

uj

∣∣∣∣∣∣ ,where

Ak(x, uj) =
1

k

k∑
i=1

1
{
xi ∈

∏d
j=1[0, uj)

}
.

It is well-known that a sequence chosen uniformly at random from [0, 1]d has an expected star

discrepancy of at least
√

1
k (and is no greater than

√
d log(d)

k) (Shalev-Shwartz and Ben-David,

2014) whereas sequences are known to exist with star discrepancy less than log(k)d

k (Sobol’,

1967), where both bounds depend on absolute constants.

1Grid search uniformly grids [0, 1]d such that xk = (i1
m
, i2
m
, . . . , id

m
) is a point on the grid for ij = 0, 1, . . . ,m

for all j, with a total number of grid points equal to (m + 1)d.

34

Comparing the star discrepancy of sampling uniformly and Sobol, the bounds suggest that as

d grows large relative to k, Sobol starts to suffer. Indeed, Bardenet and Hardy (2016) notes that

the Sobol rate is not even valid until k = Ω(2d) which motivates them to study a formulation

of a DPP that has a star discrepancy between Sobol and random and holds for all k, small

and large. They primarily approached this problem from a theoretical perspective, and didn’t

include experimental results. Their work, in part, motivates us to look at DPPs as a solution

for hyperparameter optimization.

Star discrepancy plays a prominent role in the numerical integration literature, as it provides

a sharp bound on the numerical integration error through the the Koksma-Hlawka inequality

(given in Section 3.2.1) (Hlawka, 1961). This has led to wide adoption of low discrepancy

sequences, even outside of numerical integration problems. For example, Bergstra and Bengio

(2012) analyzed a number of low discrepancy sequences for some optimization tasks and found

improved optimization performance over uniform sampling and grid search. Additionally, low

discrepancy sequences such as the Sobol sequence2 are used as an initialization procedure for

some Bayesian optimization schemes (Snoek et al., 2012).

Koksma-Hlawka inequality

Let B be the d-dimensional unit cube, and let f have bounded Hardy and Krause variation

V arHK(f) on B. Let x = (x1, x2, . . . , xk) be a set of points in B at which the function f will be

evaluated to approximate an integral. The Koksma-Hlawka inequality bounds the numerical

integration error by the product of the star discrepancy and the variation:

∣∣∣∣∣1k
k∑
i=1

f(xi)−
∫
B
f(u)du

∣∣∣∣∣ ≤ V arHK(f)Dk(x).

We can see that for a given f , finding x with low star discrepancy can improve numerical

integration approximations.

3.2.2 Dispersion

Previous work on open loop hyperparameter optimization focused on low discrepancy sequences

(Bergstra and Bengio, 2012; Bousquet et al., 2017), but optimization performance—how close

a point in our sequence is to the true, fixed optimum—is our goal, not a sequence with low

discrepancy. As discrepancy doesn’t directly bound optimization error, we turn instead to

dispersion

dk(x) = sup
x∈[0,1]d

min
1≤i≤k

ρ(x, xi),

2Bergstra and Bengio (2012) found that the Niederreiter and Halton sequences performed similarly to the
Sobol sequence, and that the Sobol sequence outperformed Latin hypercube sampling. Thus, our experiments
include the Sobol sequence (with the Cranley-Patterson rotation) as a representative low-discrepancy sequence.

35

where ρ is a distance (in our experiments L2 distance). Intuitively, the dispersion of a point set

is the radius of the largest Euclidean ball containing no points; dispersion measures the worst a

point set could be at finding the optimum of a space.

Following (Niederreiter, 1992), we can bound the optimization error as follows. Let f be the

function we are aiming to optimize (maximize) with domain B, m(f) = sup
x∈B

f(x) be the global

optimum of the function, and mk(f ; x) = sup
1≤i≤k

f(xi) be the best-found optimum from the set

x. Assuming f is continuous (at least near the global optimum), the modulus of continuity is

defined as

ω(f ; t) = sup
x,y∈B
ρ(x,y)≤t

|f(x)− f(y)| , for some t ≥ 0.

Theorem 1. (Niederreiter, 1992) For any point set x with dispersion dk(x), the optimization

error is bounded as

m(f)−mk(f ; x) ≤ ω(f ; dk(x)).

Dispersion can be computed (somewhat) efficiently (unlike discrepancy, Dk(x), which is

NP-hard (Zhigljavsky and Zilinskas, 2007)). One algorithm is to find a (bounded) voronoi

diagram over the search space for a point set Xk. Then, for each vertex in the voronoi diagram,

find the closest point in Xk. The dispersion is the max over these distances. This is how it is

computed in this section.

Discrepancy is a global measure which depends on all points, while dispersion only depends

on points near the largest “hole”. Dispersion is at least Ω(k−1/d), and while low discrepancy

implies low dispersion (d−1/2dk(x) ≤ 1
2Dk(x)1/d), the other direction does not hold. Therefore

we know that the low-discrepancy sequences evaluated in previous work are also low-dispersion

sequences in the big-O sense, but as we will see they may behave quite differently. Samples

drawn uniformly are not low dispersion, as they have rate (ln(k)/k)1/d (Zhigljavsky and Zilinskas,

2007).

Optimal dispersion in one dimension is found with an evenly spaced grid, but it’s unknown how

to get an optimal set in higher dimensions.3 Finding a set of points with the optimal dispersion

is as hard as solving the circle packing problem in geometry with k equal-sized circles which are

as large as possible. Dispersion is bounded from below with dk(x) ≥
(
Γ(d/2 + 1)

)1/d
π−1/2k−1/d,

though it is unknown if this bound is sharp.

3In two dimensions a hexagonal tiling finds the optimal dispersion, but this is only valid when k is divisible
by the number of columns and rows in the tiling.

36

3.2.3 Distance to the center and the origin

One natural surrogate of average optimization performance is to define a hyperparameter space

on [0, 1]d and measure the distance from a fixed point, say 1
21 = (1

2 , . . . ,
1
2), to the nearest point

in the length k sequence in the Euclidean norm squared: min
i=1,...,k

||xi − 1
21||22. The Euclidean

norm (squared) is motivated by a quadratic Taylor series approximation around the minimum

of the hypothetical function we wish to minimize. In the first columns of Figure 3.1 we plot

the smallest distance from the center 1
21, as a function of the length of the sequence (in one

dimension) for the Sobol sequence, uniform at random, and a DPP. We observe all methods

appear comparable when it comes to distance to the center.

101 102

Distance to center, with k between 3 and 100

10 2

10 1

Sobol
Uniform
k-DPP-RBF

101 102

Distance to origin, with k between 3 and 100

10 3

10 2

10 1

Sobol
Uniform
k-DPP-RBF

Figure 3.1: Comparison of the Sobol sequence, samples a from k-DPP, and uniform random for
two metrics of interest. These log-log plots show uniform sampling and k-DPP-RBF performs
comparably to the Sobol sequence in terms of distance to the center, but on another (distance
to the origin) k-DPP-RBF samples outperform the Sobol sequence and uniform sampling.

Acknowledging the fact that practitioners define the search space themselves more often

than not, we realize that if the search space bounds are too small, the optimal solution often is

found on the edge, or in a corner of the hypercube (as the true global optima are outside the

space). Thus, in some situations it makes sense to bias the sequence towards the edges and the

corners, the very opposite of what low discrepancy sequences attempt to do. While Sobol and

uniformly random sequences will not bias themselves towards the corners, a DPP does. This

happens because points from a DPP are sampled according to how distant they are from the

existing points; this tends to favor points in the corners. This same behavior of sampling in the

corners is also very common for Bayesian optimization schemes, which is not surprise due to the

known connections between sampling from a DPP and Gaussian processes (see Section 3.1.2).

In the second column of Figure 3.1 we plot the distance to the origin which is just an arbitrarily

chosen corner of hypercube. As expected, we observe that the DPP tends to outperform uniform

37

at random and Sobol in this metric.

3.2.4 Comparison of Open Loop Methods

In Figure 3.2 we plot the dispersion of the Sobol sequence, samples drawn uniformly at random,

and samples drawn from a k-DPP, in one and two dimensions. To generate the k-DPP samples,

we sequentially drew samples proportional to the (updated) posterior variance (using an RBF

kernel, with σ =
√

2/k), as described in Section 3.1.2. When d = 1, the regular structure of

the Sobol sequence causes it to have increasingly large plateaus, as there are many “holes” of

the same size.4 For example, the Sobol sequence has the same dispersion for 42 ≤ k ≤ 61, and

84 ≤ k ≤ 125. Samples drawn from a k-DPP appear to have the same asymptotic rate as the

Sobol sequence, but they don’t suffer from the plateaus. When d = 2, the k-DPP samples have

lower average dispersion and lower variance.

One other natural surrogate of average optimization performance is to measure the distance

from a fixed point, say 1
21 = (1

2 , . . . ,
1
2) or from the origin, to the nearest point in the length k

sequence. Our experiments (in Appendix 3.2.3) on these metrics show the k-DPP samples bias

samples to the corners of the space, which can be beneficial when the practitioner defined the

search space with bounds that are too small.

Note, the low-discrepancy sequences are usually defined only for the [0, 1]d hypecrube, so

for hyperparameter search which involves conditional hyperparameters (i.e. those with tree

structure) they are not appropriate. In what follows, we study the k-DPP in more depth and

how it performs on real-world hyperparameter tuning problems.

3.3 Method

We begin by reviewing DPPs and k-DPPs. Let B be a domain from which we would like to

sample a finite subset. (In our use of DPPs, this is the set of hyperparameter assignments.) In

general, B could be discrete or continuous; here we assume it is discrete with N values, and we

define Y = {1, . . . , N} to be a a set which indexes B (this index set will be particularly useful in

Algorithm 1). In Section 3.3.2 we address when B has continuous dimensions. A DPP defines a

probability distribution over 2Y (all subsets of Y) with the property that two elements of Y are

more (less) likely to both be chosen the more dissimilar (similar) they are. Let random variable

Y range over finite subsets of Y.

There are several ways to define the parameters of a DPP. We focus on L-ensembles, which

define the probability that a specific subset is drawn (i.e., P (Y = A) for some A ⊂ Y) as:

P (Y = A) =
det(LA)

det(L + I)
. (3.1)

4By construction, each individual dimension of the d-dimensional Sobol sequence has these same plateaus.

38

101 102

k, between 3 and 100

10 2

10 1

Sobol
Uniform
k-DPP-RBF

(a) Dispersion, with d = 1.

101 102

k, between 3 and 100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

(b) Dispersion, with d = 2.

Figure 3.2: Dispersion of the Sobol sequence, samples from a k-DPP, and uniform random
samples (lower is better). These log-log plots show when d = 1 that Sobol suffers from regular
plateaus of increasing size, while when d = 2 the k-DPP samples have lower average dispersion
and lower variance.

As shown in (Kulesza et al., 2012), this definition of L admits a decomposition to terms

representing the quality and diversity of the elements of Y. For any yi, yj ∈ Y, let:

Li,j = qiqjK(φi,φj), (3.2)

where qi > 0 is the quality of yi, φi ∈ Rd is a featurized representation of yi, and K : Rd ×Rd →
[0, 1] is a similarity kernel (e.g. cosine distance). (We will discuss how to featurize hyperparameter

settings in Section 3.3.3.)

Here, we fix all qi = 1; in future work, closed loop methods might make use of qi to encode

evidence about the quality of particular hyperparameter settings to adapt the DPP’s distribution

over time.

3.3.1 Sampling from a k-DPP

DPPs have support over all subsets of Y, including ∅ and Y itself. In many practical settings,

one may have a fixed budget that allows running the training algorithm k times, so we require

precisely k elements of Y for evaluation. k-DPPs are distributions over subsets of Y of size k.

Thus,

P (Y = A | |Y | = k) =
det(LA)∑

A′⊂Y,|A′|=k det(LA′)
. (3.3)

Sampling from k-DPPs has been well-studied. When the base set B is a set of discrete items,

39

exact sampling algorithms are known which run in O(Nk3) (Kulesza et al., 2012). When the

base set is a continuous hyperrectangle, a recent exact sampling algorithm was introduced, based

on a connection with Gaussian processes (GPs), which runs in O(dk2 +k3) (Hennig and Garnett,

2016). We are unaware of previous work which allows for sampling from k-DPPs defined over

any other base sets.

3.3.2 Sampling k-DPPs defined over arbitrary base sets

Anari et al. (2016) present a Metropolis-Hastings algorithm (included here as Algorithm 1) which

is a simple and fast alternative to the exact sampling procedures described above. However, it

is restricted to discrete domains. We propose a generalization of the MCMC algorithm which

preserves relevant computations while allowing sampling from any base set from which we can

draw uniform samples, including those with discrete dimensions, continuous dimensions, some

continuous and some discrete dimensions, or even (conditional) tree structures (Algorithm 2).

To the best of our knowledge, this is the first algorithm which allows for sampling from a k-DPP

defined over any space other than strictly continuous or strictly discrete, and thus the first

algorithm to utilize the expressive capabilities of the posterior variance of a GP in these regimes.

Algorithm 1 Drawing a sample from a discrete k-DPP (Anari et al., 2016)

Input: L, a symmetric, N ×N matrix where Li,j = qiqjK(φi,φj) which defines a DPP over a
finite base set of items B, and Y = {1, . . . , N}, where Yi indexes a row or column of L

Output: BY (the points in B indexed by Y)
1: Initialize Y to k elements sampled from Y uniformly
2: while not mixed do
3: uniformly sample u ∈ Y, v ∈ Y \Y
4: set Y′ = Y ∪ {v} \ {u}
5: p← 1

2min(1, det(LY′)
det(LY))

6: with probability p: Y = Y′

7: Return BY

Algorithm 1 proceeds as follows: First, initialize a set Y with k indices of L, drawn uniformly.

Then, at each iteration, sample two indices of L (one within and one outside of the set Y), and

with some probability replace the item in Y with the other.

When we have continuous dimensions in the base set, however, we can’t define the matrix L,

so sampling indices from it is not possible. We propose Algorithm 2, which samples points directly

from the base set B instead (assuming continuous dimensions are bounded), and computes only

the principal minors of L needed for the relevant computations on the fly.

Even in the case where the dimensions of B are discrete, Algorithm 2 requires less computation

and space than Algorithm 1 (assuming the quality and similarity scores are stored once computed,

and retrieved when needed). Previous analyses claimed that Algorithm 1 should mix after

O(N log(N)) steps. There are O(N2) computations required to compute the full matrix L,

and at each iteration we will compute at most O(k) new elements of L, so even in the worst

40

Algorithm 2 Drawing a sample from a k-DPP defined over a space with continuous and discrete
dimensions

Input: A base set B with some continuous and some discrete dimensions, a quality function
Ψ : Yi → qi, a feature function Φ : Yi → φi

Output: β, a set of k points in B
1: Initialize β to k points sampled from B uniformly
2: while not mixed do
3: uniformly sample u ∈ β, v ∈ B \ β
4: set β′ = β ∪ {v} \ {u}
5: compute the quality score for each item, qi = Ψ(βi),∀i, and q′i = Ψ(β′i),∀i
6: construct Lβ = [qiqjK(Φ(βi),Φ(βj))],∀i, j
7: construct Lβ′ = [q′iq

′
jK(Φ(β′i),Φ(β′j))],∀i, j

8: p← 1
2min(1,

det(Lβ′)

det(Lβ))

9: with probability p: β = β′

10: Return β

case we will save space and computation whenever k log(N) < N . In expectation, we will save

significantly more.

3.3.3 Constructing L for hyperparameter optimization

Let φi be a feature vector for yi ∈ Y, a modular encoding of the attribute-value mapping

assigning values to different hyperparameters, in which fixed segments of the vector are assigned

to each hyperparameter attribute (e.g., the dropout rate, the choice of nonlinearity, etc.). For a

hyperparameter that takes a numerical value in range [hmin, hmax], we encode value h using one

dimension (j) of φ and project into the range [0, 1]:

φ[j] =
h− hmin

hmax − hmin
(3.4)

This rescaling prevents hyperparameters with greater dynamic range from dominating the

similarity calculations. A categorical-valued hyperparameter variable that takes m values is

given m elements of φ and a one-hot encoding. Ordinal-valued hyperparameters can be encoded

using a unary encoding. (For example, an ordinal variable which can take three values would be

encoded with [1,0,0], [1,1,0], and [1,1,1].) Additional information about the distance between

the values can be incorporated, if it’s available. In this work, we then compute similarity using

an RBF kernel, K = exp
(
− ||φi−φj ||2

2σ2

)
, and hence label our approach k-DPP-RBF. Values

for σ2 lead to models with different properties; when σ2 is small, points that are spread out

interact little with one another, and when σ2 is large, the increased repulsion between the points

encourages them to be as far apart as possible.

41

3.3.4 Tree-structured hyperparameters

Many real-world hyperparameter search spaces are tree-structured. For example, the number

of layers in a neural network is a hyperparameter, and each additional layer adds at least one

new hyperparameter which ought to be tuned (the number of nodes in that layer). For a binary

hyperparameter like whether or not to use regularization, we use a one-hot encoding. When this

hyperparameter is “on,” we set the associated regularization strength as above, and when it is

“off” we set it to zero. Intuitively, with all other hyperparameter settings equal, this causes the

off-setting to be closest to the least strong regularization. One can also treat higher-level design

decisions as hyperparameters (Komer et al., 2014), such as whether to train a logistic regression

classifier, a convolutional neural network, or a recurrent neural network. In this construction,

the type of model would be a categorical variable (and thus get a one-hot encoding), and all

child hyperparameters for an “off” model setting (such as the convergence tolerance for logistic

regression, when training a recurrent neural network) would be set to zero.

0 3 6 9 12 15 18 21
Iteration

0.55

0.60

0.65

0.70

0.75

0.80

Av
er

ag
e

be
st

-fo
un

d
m

od
el

 a
cc

ur
ac

y

Hard learning rate

k-DPP-RBF
BO-TPE
Uniform

0 3 6 9 12 15 18 21
Iteration

0.55

0.60

0.65

0.70

0.75

0.80

Medium learning rate

k-DPP-RBF
BO-TPE
Uniform

0 3 6 9 12 15 18 21
Iteration

0.55

0.60

0.65

0.70

0.75

0.80

Easy learning rate

k-DPP-RBF
BO-TPE
Uniform

Figure 3.3: Average best-found model accuracy by iteration when training a convolutional neural
network on three hyperparameter search spaces (defined in Section 3.4.1), averaged across 50
trials of hyperparameter optimization, with k = 20.

3.4 Hyperparameter Optimization Experiments

In this section we present our hyperparameter optimization experiments. Our experiments

consider a setting where hyperparameters have a large effect on performance: a convolutional

neural network for text classification (Kim, 2014). The task is binary sentiment analysis on the

Stanford sentiment treebank (Socher et al., 2013). On this balanced dataset, random guessing

leads to 50% accuracy. We use the CNN-non-static model from Kim (2014), with skip-gram

(Mikolov et al., 2013) vectors. The model architecture consists of a convolutional layer, a

max-over-time pooling layer, then a fully connected layer leading to a softmax. All k-DPP

42

samples are drawn using Algorithm 2.

3.4.1 Simple tree-structured space

We begin with a search over three continuous hyperparameters and one binary hyperparameter,

with a simple tree structure: the binary hyperparameter indicates whether or not the model

will use L2 regularization, and one of the continuous hyperparameters is the regularization

strength. We assume a budget of k = 20 evaluations by training the convolutional neural net.

L2 regularization strengths in the range [e−5, e−1] (or no regularization) and dropout rates in

[0.0, 0.7] are considered. We consider three increasingly “easy” ranges for the learning rate:

• Hard: [e−5, e5], where the majority of the range leads to accuracy no better than chance.

• Medium: [e−5, e−1], where half of the range leads to accuracy no better than chance.

• Easy: [e−10, e−3], where the entire range leads to models that beat chance.

Figure 3.3 shows the accuracy (averaged over 50 runs) of the best model found after exploring

1, 2, . . . , k hyperparameter settings. We see that k-DPP-RBF finds better models with fewer

iterations necessary than the other approaches, especially in the most difficult case. Figure 3.3

compares the sampling methods against a Bayesian optimization technique using a tree-structured

Parzen estimator (BO-TPE; Bergstra et al., 2011). This technique evaluates points sequentially,

allowing the model to choose the next point based on how well previous points performed

(a closed loop approach). It is state-of-the-art on tree-structured search spaces (though its

sequential nature limits parallelization). Surprisingly, we find it performs the worst, even though

it takes advantage of additional information. We hypothesize that the exploration/exploitation

tradeoff in BO-TPE causes it to commit to more local search before exploring the space fully,

thus not finding hard-to-reach global optima.

Note that when considering points sampled uniformly or from a DPP, the order of the k

hyperparameter settings in one trial is arbitrary (though this is not the case with BO-TPE as

it is an iterative algorithm). In all cases the variance of the best of the k points is lower than

when sampled uniformly, and the differences in the plots are all significant with p < 0.01.

3.4.2 Optimizing within ranges known to be good

Zhang and Wallace (2015) analyzed the stability of convolutional neural networks for sentence

classification with respect to a large set of hyperparameters, and found a set of six which

they claimed had the largest impact: the number of kernels, the difference in size between the

kernels, the size of each kernel, dropout, regularization strength, and the number of filters. We

optimized over their prescribed “Stable” ranges for three open loop methods and one closed loop

method; average accuracies with 95 percent confidence intervals from 50 trials of hyperparameter

43

k=5 k=10 k=15 k=20

0.820

0.822

0.824

0.826

k-DPP-RBF
TPE
Uniform
Sobol

Figure 3.4: Average best-found model accuracy by iteration when training a convolutional neural
network on the “Stable” search space (defined in Section 3.4.2), averaged across 50 trials of
hyperparameter optimization, with k = 5, 10, 15, 20, with 95 percent confidence intervals. The
k-DPP-RBF outperforms uniform sampling, TPE, and the Sobol sequence.

optimization are shown in Figure 3.4, across k = 5, 10, 15, 20 iterations. We find that even when

optimizing over a space for which all values lead to good models, k-DPP-RBF outperforms the

other methods.

Our experiments reveal that, while the hyperparameters proposed by Zhang and Wallace

(2015), can have an effect, the learning rate, which they do not analyze, is at least as impactful.

3.4.3 Wall clock time comparison with Spearmint

Here we compare our approach against Spearmint (Snoek et al., 2012), perhaps the most popular

Bayesian optimization package. Figure 3.5 shows wall clock time and accuracy for 25 runs on

the “Stable” search space of four hyperparameter optimization approaches: k-DPP-RBF (with

k = 20), batch Spearmint with 2 iterations of batch size 10, batch Spearmint with 10 iterations

of batch size 2, and sequential Spearmint5. Each point in the plot is one hyperparameter

assignment evaluation. The vertical lines represent how long, on average, it takes to find the

best result in one run. We see that all evaluations for k-DPP-RBF finish quickly, while even

the fastest batch method (2 batches of size 10) takes nearly twice as long on average to find

a good result. The final average best-found accuracies are 82.61 for k-DPP-RBF, 82.65 for

Spearmint with 2 batches of size 10, 82.7 for Spearmint with 10 batches of size 2, and 82.76

for sequential Spearmint. Thus, we find it takes on average more than ten times as long for

sequential Spearmint to find its best solution, for a gain of only 0.15 percent accuracy.

5When in the fully parallel, open loop setting, Spearmint simply returns the Sobol sequence.

44

0 5000 10000 15000 20000

0.78

0.80

0.82

0.84

Sequential Spearmint
Spearmint Batch Size 2
Spearmint Batch Size 10
k-DPP-RBF

Figure 3.5: Wall clock time (in seconds, x-axis) for 25 hyperparameter trials of hyperparameter
optimization (each with k = 20) on the “Stable” search space define in Section 3.4.2. The
vertical lines represent the average time it takes too find the best hyperparameter assignment in
a trial.

3.5 Conclusions

This chapter provides an approach for reducing the computational expense of H, hyperparameter

tuning, in the Green AI equation. We explored open loop hyperparameter optimization built

on sampling from a k-DPP. We described how to define a k-DPP over hyperparameter search

spaces, and showed that k-DPPs retain the attractive parallelization capabilities of random

search. In synthetic experiments, we showed k-DPP samples perform well on a number of

important metrics, even for large values of k. In hyperprameter optimization experiments, we see

k-DPP-RBF outperform other open loop methods. Additionally, we see that sequential methods,

even when using more than ten times as much wall clock time, gain less than 0.16 percent

accuracy on a particular hyperparameter optimization problem. An open-source implementation

of our method is available.

45

Chapter 4

Structured Sparsity for

Parameter Efficient Neural

Models

State-of-the-art neural models for NLP are heavily parameterized, requiring hundreds of millions

(Devlin et al., 2019) and even billions (Radford et al., 2019) of parameters. While over-

parameterized models can be easier to train (Livni et al., 2014), they may also introduce memory

problems on small devices, as well as contribute to overfitting. This chapter presents a structure

learning method for learning sparse, parameter-efficient models. Thus, this addresses E in the

Green AI equation, the cost of processing a single (E)xample. This chapter extends Dodge et al.

(2019c).

In feature-based NLP, structured-sparse regularization, in particular the group lasso (Sec-

tion 4.1.1, Yuan and Lin, 2006), has been proposed as a method to reduce model size while

preserving performance (Martins et al., 2011). But, in neural NLP, some of the most widely

used models—LSTMs (Hochreiter and Schmidhuber, 1997) and GRUs (Cho et al., 2014)—do

not have an obvious, intuitive notion of “structure” in their parameters (other than, perhaps,

division into layers), so the use of structured sparsity at first may appear incongruous.

In this chapter we show that group lasso can be successfully applied to neural NLP models.

We focus on a family of neural models for which the hidden state exhibits a natural structure:

rational RNNs (Section 4.1.2; Peng et al., 2018). In a rational RNN, the value of each hidden

dimension is the score of a weighted finite-state automaton (WFSA) on (a prefix of) the input

vector sequence. This property offers a natural grouping of the transition function parameters

for each WFSA. As shown by Schwartz et al. (2018) and Peng et al. (2018), a variety of state-of-

the-art neural architectures are rational (Lei et al., 2017; Bradbury et al., 2017; Foerster et al.,

2017, inter alia), so learning parameter-efficient rational RNNs is of practical value. Rational

46

w
(1)
1 w

(1)
2 w

(1)
3 ŵ

(1)
1 ŵ

(1)
2 ŵ

(1)
3

w
(2)
1 w

(2)
2 w

(2)
3 ŵ

(2)
1 ŵ

(2)
2

(0)

w
(3)
1 w

(3)
2 w

(3)
3

(0) (0) (0)

Base structure Learned structure

Figure 4.1: Our approach learns a sparse structure (right hand side) of a base rational RNN
(left hand side) where each hidden unit corresponds to a WFSA (in this example, three hidden
units, represented by the three rows). Grayed-out, dashed states are removed from the model,
while retained states are marked in bold green.

RNNs also introduce a natural interpretation, in the form of “soft” patterns (Schwartz et al.,

2018), which our method leverages.

We apply a group lasso penalty to the WFSA parameters of rational RNNs during training,

where each group is comprised of the parameters associated with one state in one WFSA

(Figure 4.1; Section 4.2). This penalty pushes the parameters in some groups to zero, effectively

eliminating them, and making the WFSA smaller. When all of the states for a given WFSA

are eliminated, the WFSA is removed entirely, so this approach can be viewed as learning the

number of WFSAs (i.e., the RNN hidden dimension) as well as their size. We then retain the

sparse structure, which results in a much smaller model in terms of parameters.

We experiment with four text classification benchmarks (Section 4.3), using both GloVe

(Pennington et al., 2014) and contextual BERT (Devlin et al., 2019) embeddings. Our results

show that as we vary the regularization strengths, we end up with smaller models. These models

have a better tradeoff between the number of parameters and model performance compared to

setting the number of WFSAs and their lengths by hand or using hyperparameter search. In

almost all cases, our approach results in a model with fewer parameters and similar or better

performance as our baseline models. In contrast to neural architecture search (Jozefowicz et al.,

2015; Zoph and Le, 2017), which can take several GPU years to learn an appropriate neural

architecture, our approach requires only two training runs: one to learn the structure, and the

other to estimate its parameters.

Finally, our approach touches on another appealing property of rational RNNs—their

interpretability. As shown by Schwartz et al. (2018), each WFSA captures a “soft” version of

patterns like “such a great X”, and can be visualized as such. By retaining a smaller number

of WFSAs, our method allows to visualize the entire model succinctly. For example, we show

in Section 4.4 that some of our sentiment analysis models rely exclusively on as few as three

WFSAs (that is, a rational RNN with hidden size 3). We publicly release our implementation at

47

https://github.com/dodgejesse/sparsifying_regularizers_for_RRNNs.

4.1 Background

We aim to learn parameter-efficient models using sparse regularization. Methods that encourage

sparsity like group lasso (Yuan and Lin, 2006) assume that features can be meaningfully grouped.

Such methods were popular when applied to linear models in NLP (Martins et al., 2011), where

handcrafted features were grouped by the templates they instantiated. In neural NLP models,

parameters are typically less interpretable, and hence it is not straightforward how to group

them (Doshi-Velez, 2017).

In this work we apply sparse regularization to rational RNNs, which allows for learning

meaningful sparse structures, by eliminating states or transitions, and even whole WFSAs. The

main contribution of this chapter is applying group lasso to automate choices about which states

or WFSAs to eliminate, thereby learning the neural structure itself. We briefly review group

lasso and rational RNNs.

4.1.1 Group Lasso Penalty

This section reviews `1 regularizer and group lasso. When added to a learner’s loss, the

`1 norm of a parameter vector (i.e., sum of absolute values of its elements) acts as a convex,

subdifferentiable approximation to the `0 penalty, known as the lasso (Tibshirani, 1996). Solving

an `0 regularized problem has been shown to be NP-Hard (Candes and Tao, 2005). Like the

more widely used squared `2 (“ridge”) regularizer, the lasso is used to improve generalization,

usually in linear models. It also induces sparsity, by driving some of the parameters to zero,

which (in the linear setting) is equivalent to eliminating the corresponding features. Thus the

lasso can promote parameter efficiency, and has also been argued to improve interpretability

(Tibshirani, 1996). Like all regularizers, the lasso term is typically scaled by a regularization

strength hyperparameter (denoted by λ), so that the regularized learning problem is:

ŵ = arg min
w

L(w) + λ
∑
i

|wi|, (4.1)

where L is the training loss, and wi is a scalar parameter in the model.

Group lasso (Yuan and Lin, 2006) generalizes the lasso to cases where a grouping of the

parameters exists. Here sparsity works at the group level, driving all the parameters in a group

towards zero. Denote the parameter vector for the gth group by wg (a subvector of w). The

group lasso-regularized learning problem with G groups is then:

ŵ = arg min
w

L(w) + λ

G∑
g=1

√
dim(wg) ‖wg‖2 , (4.2)

48

with dim(·) denoting the dimension of a vector. This weighting of groups, by the square root of

their sizes, is one conventional approach, but others are possible. If every parameter is in its

own group, the original lasso is recovered.

Lasso and group lasso were developed as tools for feature selection in linear models, but have

recently been applied to neural networks (Scardapane et al., 2017; Gordon et al., 2018). They are

both sparsifying regularizers that push parameters to zero, with different inductive biases: lasso

regularizes individual parameters independently, while group lasso jointly regularizes groups of

parameters. In its simplest form, the groups do not overlap; overlapping groups are possible

but require more sophisticated optimization techniques; see Yuan et al. (2011) for a related

discussion. Our groups are non-overlapping. We exploit the structure in rational RNNs for

meaningful parameter grouping (i.e., each group contains parameters associated with a WFSA

state), so that removing a group directly shrinks a WFSA and hence the overall architecture.

4.1.2 WFSAs and Rational RNNs

We define a weighted finite-state automaton (WFSA) as a tuple 〈Σ,Q, q0,F , T 〉. Σ is a finite

alphabet, and the WFSA assigns scores to strings in Σ∗. Q is a finite set of states, q0 ∈ Q a

designated start state, and F ⊆ Q is a set of final states. T is a set of transitions, each a tuple of

source state, target state, symbol from Σ, and weight. Start and final states can also be weighted.

In this work we weight them by constant 1, and suppress the definition of start and final weight

functions, simplifying notations. A path consists of a sequence of transitions, and its score is

computed as the product of the transition weights. The score of an input string summarizes

all the paths deriving it, either by taking the sum of all paths or the maximum-scoring path,

typically calculated using dynamic programming (Baum and Petrie, 1966). For more discussion

about WFSAs, see Kuich and Salomaa (1986).

Recently, Schwartz et al. (2018) and Peng et al. (2018) showed that several recently proposed

recurrent architectures, including SRU (Lei et al., 2017) and quasi-RNN (Bradbury et al., 2017),

are different implementations of specific WFSAs. They named this family of models rational

recurrent neural networks (rational RNNs). 1

Rational RNNs admit straightforward design of neural architectures. For instance, the one

depicted in Figure 4.2 captures 4-gram patterns (Peng et al., 2018). Notably, unlike traditional

WFSA-based models, rational RNNs compute their WFSA scores based on word vectors (rather

than word symbols), and can thus be seen as capturing “soft” patterns (Schwartz et al., 2018).

An important property of rational RNNs is that, each WFSA state is parameterized by a

separate set of parameters. We exploit this by treating a WFSA state’s parameters as a group,

and applying group lasso penalty to it. This results in dropping some states in some WFSAs

(effectively making them smaller); those WFSAs with all of their regularized states dropped

1Rational follows the terminology rational power series (Berstel and Reutenauer, 1988),the mathematical
counterpart of WFSAs.

49

x 7! 1

x 7! u(1)(x) x 7! u(2)(x) x 7! u(3)(x) x 7! u(4)(x)q0

x 7! f (1)(x)

q1

x 7! f (2)(x)

q2

x 7! f (3)(x)

q3

x 7! f (4)(x)

q4

Figure 4.2: A 4-gram WFSA, from which we derive the rational RNN (Section 4.2). The rational
RNN’s hidden states corresponds to a set of WFSAs, each separately parameterized. We apply
group lasso to each WFSA.

are removed entirely (effectively decreasing the RNN hidden dimension). We then extract this

sparse structure, corresponding to a version of the same RNN with far fewer parameters. Our

sentiment analysis experiments show that these thin RNNs perform on par with the original,

parameter-rich RNN.

4.2 Method

We describe the proposed method. At a high level, we follow the standard practice for using `1

regularization for sparsification (Wen et al., 2016):

1. Fit a model on the training data, with the group lasso regularizer added to the loss during

training (the parameters associated with one state comprise one group); see Eq. 4.2.

2. After convergence, eliminate the states whose parameters are zero.

3. Finetune the resulting, smaller model, by minimizing the unregularized loss with respect

to its parameters.

In this work, we assume a single layer rational RNN, but our approach is equally applicable

to multi-layer models. For clarity of the discussion, we start with a one-dimensional rational

RNN (i.e., one based on a single WFSA only). We then generalize to the d-dimensional case

(computing the scores of d WFSAs in parallel).

4.2.1 Rational Recurrent Network

Closely following Peng et al. (2018), we parameterize the transition functions of a 5-state WFSA

with neural networks (Figure 4.2). A path starts at q0; at least four tokens must be consumed to

reach q4, and in this sense it captures 4-gram “soft” patterns (Peng et al., 2018; Schwartz et al.,

2018). In addition to q4, we also use q1, q2, and q3 as final states, allowing for the interpolation

between patterns of different lengths. We found this to be more stable than using only q4.

The self-loop transitions over q1, q2, q3, and q4 aim to allow, but downweight, nonconsecutive

patterns, as the self-loop transition functions are implemented to output values between 0 and 1

(using a sigmoid function).

50

The recurrent function is equivalent to applying the Forward dynamic programming algo-

rithm (Baum and Petrie, 1966). To make the discussion self-contained, we concretely walk

through the derivation below. Given input string x = x1 . . . xn, let c
(i)
t (for any t ≤ n) denote

the sum of scores of all paths ending in state qi after consuming prefix x1 . . . xt. Denoting

u(i)(xt) by u
(i)
t , and f (i)(xt) by f

(i)
t , we have

c
(0)
t = 1 (4.3a)

c
(i)
t = c

(i)
t−1 · f

(i)
t + c

(i−1)
t−1 · u

(i)
t , (4.3b)

for i ∈ {1, 2, 3, 4}.
The functions f (i) (representing self-loops) and u(i) (representing transitions) can be param-

eterized with neural networks. Letting zt denote the embedding vector for token xt,

f
(i)
t = σ

(
w(i)>zt

)
, (4.4a)

u
(i)
t = (1− f (i)

t) · v(i)>zt, (4.4b)

where w(i) and v(i) vectors are learned parameters. In the interest of notational clarity, we

suppress the bias terms in the affine transformations.

ct, the total score of the prefix string x1 . . . xt, is calculated by summing the scores of the

paths ending in each of the final states:

ct =

4∑
i=1

c
(i)
t . (4.5)

For a document of length n, cn is then used in downstream computation, e.g., fed into an MLP

classifier.

4.2.2 Promoting Sparsity with Group Lasso

We now apply group lasso to promote sparsity in a rational RNN, continuing with the same

running example.

From the WFSA perspective, a smaller model is one with fewer states. This can be achieved

by penalizing the parameters associated with a given state, specifically the parameters associated

with entering that state, either by a transition from another state or a self-loop on that state.

The parameters of the WFSA diagrammed in Figure 4.2 are assigned to four nonoverlapping

groups, excluding the word embedding parameters, 〈w(i),v(i)〉, for i ∈ {1, 2, 3, 4}.
During gradient-based training to solve Eq. 4.2, all parameters will be pushed toward zero,

but some will converge very close to zero.There are specialized optimization methods to achieve

“strong” sparsity known as proximal gradient descent methods (Parikh and Boyd, 2013), where

some parameters are exactly set to zero during training. Recent work has shown these approaches

51

can converge in the nonconvex settings (Reddi et al., 2016), but our experiments found them to

be unstable. After convergence, we check the Euclidean norm of each group, and remove those

that fall below ε = 0.1. This threshold was lightly tuned in preliminary experiments and found

to reliably remove those parameters which converged around zero without removing others.

Note that, with our linear-structured WFSA, zeroing out the group associated with a state in

the middle effectively makes later states inaccessible. While our approach offers no guarantee to

remove states from the end first (thus leaving no unreachable states), it always does so in our

experiments.

The resulting smaller model, along with its parameters, is then finetuned by continuing

training on the data without the regularization term, i.e., setting λ = 0.

4.2.3 d-dimensional Case

The discussion so far centers on a one-dimensional model, i.e., a rational RNN with one WFSA.

It is straightforward to construct a d-dimensional model: we stack d one-dimensional models.

Each of them is separately parameterized, and recovers a single dimension of the d recurrent

computation. Such elementwise recurrent computation is not a necessary condition for the model

to be rational. We refer the readers to Section 4.3 of Peng et al. (2018) for related discussion.

Elementwise recurrent updates lead to desirable properties when trained with group lasso.

Let us consider a d-dimensional rational model derived from the WFSA in Figure 4.2. Its

parameters are organized into 4d groups, four for each dimension. Since there is no direct

interaction between different dimensions (e.g., through a affine transformation), group lasso

sparsifies each dimension/WFSA independently. Hence the resulting rational RNN can consist

of WFSAs of different sizes, the number of which could be smaller than d if any of the WFSAs

have all states eliminated.

4.2.4 Discussion

One can treat the numbers and sizes of WFSAs as hyperparameters (Oncina et al., 1993; Ron

et al., 1994; De la Higuera, 2010; Schwartz et al., 2018, inter alia). By eliminating states from

WFSAs with group lasso, we learn the WFSA structure while estimating the models’ parameters,

reducing the number of training cycles by reducing the number of hyperparameters that have to

be tuned.

4.3 Experiments

To evaluate our approach, we conduct experiments on sentiment analysis. We train the rational

RNN models described in Section 4.2 with the group lasso regularizer, using increasingly large

regularization strengths, resulting in increasingly compact models. As the goal of our experiments

52

Training Dev. Test

kitchen 3,298 822 4,118
dvd 14,066 3,514 17,578
books 20,000 5,000 25,000
original mix 20,000 5,000 25,000

Table 4.1: Text classification dataset sizes. Each dataset follows the same training/dev./test
split ratio as the original mix.

is to demonstrate the ability of our approach for reducing the number of parameters, we only

consider rational baselines: the same rational RNNs trained without group lasso. Rational

RNNs have shown strong performance on the dataset we experiment with: a 2-layer rational

model with between 100–300 hidden units obtained 92.7% classification accuracy, substantially

outperforming an LSTM baseline (Peng et al., 2018). The results of our models, which are

single-layered and capped at 24 hidden units, are not directly comparable to these baselines, but

are still within two points of the best result from that paper. We manually tune the number

and sizes of the baselines WFSAs, and then compare the tradeoff curve between model size and

accuracy.

Data

We experiment with the Amazon reviews dataset (Blitzer et al., 2007), which is composed of 22

product categories. We examine the standard dataset (original mix) comprised of a mixture

of data from the different categories (Johnson and Zhang, 2015).2 We also examine three of the

largest individual categories as separate datasets (kitchen, dvd, and books), which we created

following Johnson and Zhang (2015). Note that the three category datasets do not overlap with

each other (though they do with original mix), and are significantly different in sizes, so we

can see how our approach behaves with different amounts of training data. See Table 4.1 for

dataset statistics.

Pre-processing

As preprocessing for the data for each individual category, we tokenize using NLTK word

tokenizer. We threw out reviews with text shorter than 5 tokens.

We binarize the review score using the standard procedure, assigning 1- and 2-star reviews

as negative, and 4- and 5-star reviews as positive (discarding 3-star reviews). Then, if there

were more than 25,000 negative reviews, we downsample to 25,000 (otherwise we keep them

all), and then downsample the positive reviews to be the same number as negative, to have a

balanced dataset. We match the train, development, and test set proportions of 4:1:5 from the

original mixture.

2riejohnson.com/cnn_data.html

53

We generate the BERT embeddings using the sum of the last four hidden layers of the large

uncased BERT model, so our embedding size is 1024. Summing the last four layers was the best

performing approach in the ablation of Devlin et al., 2019 that had fewer than 4096 embedding

size (which was too large to fit in memory). We embed each sentence individually (there can be

multiple sentences within one example).

Implementation details

To classify text, we concatenate the scores computed by each WFSA, then feed this d-dimensional

vector of scores into a linear binary classifier. We use log loss. We experiment with both type-

level word embeddings (GloVe.6B.300d; Pennington et al., 2014) and contextual embeddings

(BERT large; Devlin et al., 2019).3 For GloVe, we train rational models with 24 5-state WFSAs,

each corresponding to a 4-gram soft-pattern (Figure 4.2). For BERT, we train models with

12 WFSAs. BERT embeddings dimension is significantly larger than GloVe (1024 compared

to 300), so to manage the increased computational cost we used a smaller number of WFSAs.

As our results show, the BERT models still substantially outperform the GloVe ones. In both

cases, we keep the embeddings fixed, so the vast majority of the learnable parameters are in the

WFSAs.

Baselines

As baselines, we train five versions of the same rational architecture without group lasso, using

the same number of WFSAs as our regularized models (24 for GloVe, 12 for BERT). Four of the

baselines each use the same number of transitions for all WFSAs (1, 2, 3, and 4, corresponding to

2–5 states, and to 24, 48, 72, and 96 total transitions). The fifth baseline has an equal mix of all

lengths (6 WFSAs of each size for GloVe, leading to 60 total transitions, and 3 WFSAs of each

size for BERT, leading to 30 total transitions). As each transition is independently parameterized,

the total number of transitions linearly controls the number of learnable parameters in the

model. Nonetheless, the total number of parameters in the model relies also on the embedding

layer, see discussion below.

Experimental setup

We evaluate the GloVe models on all datasets. Due to memory constraints we evaluate BERT

only on the smallest dataset (kitchen).

For each model (regularized or baseline), we run random search to select our hyperparameters

(evaluating 20 uniformly sampled hyperparameter configurations). For the hyperparameter

configuration that leads to the best development result, we train the model again 5 times

3https://github.com/huggingface/pytorch-pretrained-BERT

54

with different random seeds, and report the mean and standard deviation of the models’ test

performance. We include hyperparameter search space in Table 4.2.

Type Range

Learning Rate [7 ∗ 10−3, 0.5]
Vertical dropout [0, 0.5]
Recurrent dropout [0, 0.5]
Embedding dropout [0, 0.5]
`2 regularization [0, 0.5]
Weight decay [10−5, 10−7]

Table 4.2: Hyperparameter ranges considered in our experiments.

Parameters

The models are trained with Adam (Kingma and Ba, 2015). During training with group lasso

we turn off the learning rate schedule (so the learning rate stays fixed), similarly to Gordon et al.

(2018). This leads to improved stability in the learned structure for a given hyper-parameter

assignment.

Following Peng et al., 2018 we sample 20 hyperparameters uniformly, for which we train

and evaluate our models. Hyperparameter ranges are presented in Table 4.2. For the BERT

experiments, we reduced both the upper and lower bound on the learning rate by two orders of

magnitude.

Regularization Strength Search

We searched for model structures that were regularized down to close to 20, 40, 60, or 80

transitions (10, 20, 30, and 40 for BERT experiments). For a particular goal size, we uniformly

sample 20 hyperparameter assignments from the ranges in Table 4.2, then sorted the samples

by increasing learning rate. For each hyperparameter assignment, we trained a model with the

current regularization strength. If the resulting learned structure was too large (small), we

doubled (halved) the regularization strength, repeating until we were within 10 transitions of

our goal (5 for BERT experiments). If the regularization strength became larger than 102 or

smaller than 10−9, we threw out the hyperparameter assignment and resampled (this happened

when e.g. the learning rate was too small for any of the weights to actually make it to zero).

Finally, we finetuned the appropriately-sized learned structure by continuing training without

the regularizer, and computed the result on the development set. For the best model on the

development set, we retrained (first with the regularizer to learn a structure, then finetuned)

five times, and plot the mean and variance of the test accuracy and learned structure size.

55

24 48 72 96
Number of Transitions

83

84

85

86

87

88

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

kitchen

24 48 72 96
86

87

88

89

90

dvd

24 48 72 96

87

88

89

90

books

24 48 72 96

88

89

90

91

original_mix

Figure 4.3: Text classification with GloVe embeddings: accuracy (y-axis) vs. number of
transitions (x-axis). Higher and to the left is better. Our method (dashed orange line, varying
regularization strength) provides a better tradeoff than the baseline (solid blue line, directly
varying the number of transitions). Vertical lines encode one standard deviation for accuracy,
while horizontal lines encode one standard deviation in the number of transitions (applicable
only to our method).

12 24 36 48
Number of Transitions

90

91

92

93

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

kitchen BERT

Figure 4.4: Text classification results using BERT embeddings on the kitchen dataset.

Regularization Strength Recommendation

If a practitioner wishes to learn a single small model, we recommend they start with λ such that

the loss L(w) and the regularization term are equal. We found that having equal contribution

led to eliminating approximately half of the states, though this varies with data set size, learning

rate, and gradient clipping, among other variables.

Results

Figure 4.3 shows our test results on all four datasets when trained with GloVe embeddings. The

figure shows the classification accuracy as a function of the total number of WFSA transitions in

the model. The first thing we notice is that as expected, the performance of our unregularized

baselines improves as models are trained with more transitions (i.e., more parameters).

Compared to the baselines, training with group lasso provides a better tradeoff between

performance and number of transitions. In particular, our heavily regularized models perform

substantially better than the unigram baselines, gaining between 1–2% absolute improvements

in three out of four cases. As our regularization strength decreases, we naturally gain less

compared to our baselines, although still similar or better than the best baselines in three out

of four cases.

Turning to BERT embeddings on the kitchen dataset (Figure 4.4), we first see that all

56

accuracies are substantially higher than with GloVe (Figure 4.3, first plot on the left), as expected.

We also see the same gains using our method that we observed with GloVe embeddings: training

with group lasso leads to smaller models that perform on par with the larger baseline models.

In particular, our BERT model with only 14 transitions performs on par with the full baseline

model with 3.4 times more transitions (48).

Discussion

One appealing property of our approach is that it can promote the adoption of state-of-the-art

NLP models on memory-restricted devices such as smart phones. However, it only reduces the

number of learnable RNN parameters, which in our experiments is typically smaller than 100K.

The total number of parameters in our models is dominated by the embedding layer (which is

untuned); the GloVe 300-dimension embedding with vocabulary size of 400K corresponds to

120M parameters; the BERT-large model uses even more parameters (roughly 340M). Thus,

to make our approach applicable to small devices, reducing the number of parameters in the

embedding layer is mandatory. We defer this research direction to future work.

4.4 Visualization

Schwartz et al. (2018) introduced a method for interpreting rational RNNs. They computed

the score of each WFSA in the model’s hidden states on every phrase in the training corpus.

Then the top scoring phrases are selected for each WFSA, providing a prototype-like description

of the captured pattern representing this WFSA. Their approach allows visualizing individual

WFSAs (i.e., an RNN hidden unit). Yet their rational model consists of dozens of different

WFSAs, making it indigestible for practitioners to visualize all WFSAs.

Our approach helps to alleviate this problem. By reducing the number of WFSAs, we are able

visualize every hidden unit. Indeed, when we use a high regularization strength, the resulting

sparse structures often contain only a handful of WFSAs.

Table 4.3 visualizes a sparse rational RNNs trained on original mix. The test performance

of this model is 88%, 0.6 absolute below the average of the five models reported in Figure 4.3.

It contains only three WFSAs, with 8 main-path transitions in total. The table shows the top

five scoring phrases for each WFSAs. As each WFSA score is used as a feature fed to a linear

classifier (Section 4.3), negative scores are also meaningful. Hence we extract the five bottom

scoring phrases as well. While the WFSA scores are the sum of all paths deriving a document

(plus-times semiring), here we search for the max (or min) scoring one. Despite the mismatch, a

WFSA scores every possible path, and thus the max/min scoring path selection is still valid. As

our examples show, many of these extracted paths are meaningful.

The table shows a few interesting trends. First, looking only at the top scores of each WFSA,

two of the patterns respectively capture the phrases “not worth X </s>” and “miserable/returned

57

transition1 transition2 transition3

Patt. 1

Top

not worth the timeSL </s>
not worth the 30SL </s>
not worth itSL </s>
not worth itSL </s>
not worth itSL </s>

Bottom

extremely pleased . . . SL </s>
highly pleased . . . SL </s>
extremely pleased . . . SL </s>
extremely pleased . . . SL </s>
extremely pleased . . . SL </s>

Patt. 2

Top

bad . . . SL ltd . . . SL buyer
bad . . . SL ltd . . . SL buyer
horrible . . . SL hl4040cn . . . SL expensive
left . . . SL ltd . . . SL lens
terrible . . . SL labor . . . SL panasonic

Bottom

favorite . . . SL ltd . . . SL lens
really . . . SL ltd . . . SL buyer
really . . . SL ltd . . . SL buyer
best . . . SL hl4040cn . . . SL expensive
perfect tool . . . SL lens

Patt. 3

Top

miserable </s>
miserable . . . SL </s>
miserable . . . SL </s>
returned </s>
returned </s>

Bottom

superb </s>
superb </s>
superb </s>
superb choiceSL </s>
superb . . . SL </s>

Table 4.3: Visualization of a sparse rational RNN trained on original mix containing only
3 WFSA. For each WFSA (i.e., pattern), we show the 5 top and bottom scoring phrases in
the training corpus with this WFSA. Each column represents one main-path transition, plus
potential self-loops preceding it (marked like thisSL). “. . . SL” marks more than 2 self loops.
“</s>” marks an end-of-document token.

X </s>’ ’. The third one is less coherent, but most examples do contain sentiment-bearing

words such as bad, horrible, or best. This might be the result of the tuning process of the sparse

rational structure (Section 4.2) learning to concentrate on earlier transitions, not making use of

all the remaining transitions. As a result, this WFSA is treated as a unigram pattern rather

than a trigram one.

We observe another interesting trend: two of the three patterns prefer expressions that

appear near the end of the document. This could result from the nature of the datasets (e.g.,

many reviews end with a summary, containing important sentiment information), and/or our

rational models’ recency preference. More specifically, the first self loop has weight 1, and hence

the model is not penalized for taking self loops before the match; in contrast, the weights of

the last self loop take values in (0, 1) due to the sigmoid, forcing a penalty for earlier phrase

matches. Changing this behavior could be easily done by fixing the final self-loop to 1 as well.

Finally, comparing the top scores vs. the bottom scores, we see that each WFSA is learning

(at least) two different patterns: one for phrases with high scores, and the other for ones with

low (negative) scores. Still, given the small number of WFSAs used by the model, we are able

to visualize all learned (soft) pattern in a single table.

Table 4.4 shows the same visualization for another sparse rational RNN containing only four

WFSAs and 11 main-path transitions, trained with BERT embeddings on kitchen. It also shows

58

transition1 transition2 transition3

Patt. 1

Top

are perfect . . . SL [CLS]
definitely recommend . . . SL [CLS]
excellent product . . . SL [CLS]
highly recommend . . . SL [CLS]
great orange . . . SL [CLS]

Bottom

not . . . SL [SEP] . . . SL [CLS]
very disappointing !SL [SEP]SL [CLS]
was defective . . . SL had
would not . . . SL [CLS]
terrible product .SL [SEP]SL [CLS]

Patt. 2

Top

[CLS] mine broke
[CLS] it . . . SL heat
[CLS] thus it
[CLS] itSL does itSL heat
[CLS] . . . SL is . . . SL winter

Bottom

[CLS] perfect . . . SL cold
[CLS] sturdy . . . SL cooks
[CLS] evenly ,SL withstandSL heat
[CLS] it is
[CLS] it works

Patt. 3

Top

‘ pops ’SL ’SL escape
‘ gave out
that had escaped
‘ non -
‘ theySL do theySL not

Bottom

simply does not
[CLS] useless equipmentSL !
unit would not
[CLS] poor toSL no
[CLS] completely worthless

Patt. 4

Top

[CLS] after
[CLS] our
mysteriously jammed
mysteriously jammed
[CLS] we

Bottom

[CLS] i
[CLS] i
[CLS] i
[CLS] we
[CLS] we

Table 4.4: Visualization of a sparse rational RNN containing 4 WFSAs only, trained on kitchen
using BERT.

a few clear patterns (e.g., Patt. 2). Interpretation here is more challenging though, as contextual

embeddings make every token embedding depend on the entire context. Indeed, contextual

embeddings raise problems for interpretation methods that work by targeting individual words,

e.g., attention (Bahdanau et al., 2015), as these embeddings also depend on other words.

Interpretation methods for contextual embeddings are an exciting direction for future work.

A particular example of this is the excessive use of the start token ([CLS]), whose contextual

embedding has been shown to capture the sentiment information at the sentence level (Devlin

et al., 2019).

4.5 Related Work

Several approaches have been proposed for reducing the size of a neural model. Recent advances

in neural architecture search approaches have reduced the computational expense from thousands

of GPU hours (Zoph and Le, 2017) to tens of GPU hours (Pham et al., 2018).

DARTS (Liu et al., 2019a) uses differentiable representations of neural architectures, and

59

choose a compression factor before training. Then during training DARTS only keeps the K

strongest connections/operations, removing the rest. While scaling K is an easy way of changing

the amount of reduction in the model, their neural architecture is not learning to perform well

with a subset of the parameters as ours does, it simply removes the smallest parameters.

Our work is most similar to others which use an `1 regularizer during training to drive

parameters to zero (Gordon et al., 2018; Scardapane et al., 2017; Wen et al., 2016, inter alia),

though these typically just group parameters by layers (or don’t group them at all), while we

take advantage of the connections between rational RNNs and WFSAs to build our groups.

Alternatively, instead of using the magnitude of the parameter itself, some works have estimated

the importance of a neuron with the second derivative and pruned those with small values in

the Hessian (LeCun et al., 1990; Lee et al., 2019).

Bayesian approaches have been used to promote sparsity by using sparsifying priors (Louizos

et al., 2017) or using variational dropout to prune parameters (Molchanov et al., 2017). Stolcke

(1994) took a Bayesian approach to learning the structure of FSAs for modeling natural language

by using the posterior probability of the model itself to balance goodness-of-fit criteria with

model simplicity, thus encouraging simpler models.

Approaches which promote sparsity have a long history throughout machine learning and

NLP. Recent approaches include sparseMAP (Niculae et al., 2018), which allows for sparse

structured inference, and sparsemax (Martins and Astudillo, 2016), which produces sparse

attention mechanisms.

4.6 Conclusion

We presented a method for learning parameter-efficient RNNs. Our method applies group

lasso regularization on rational RNNs, which are strongly connected to weighted finite-state

automata, and thus amenable to learning with structured sparsity. Our experiments on four

text classification datasets, using both GloVe and BERT embeddings, show that our sparse

models provide a better performance/model size tradeoff.

The work in this chapter aims to reduce E from the Green AI equation, the cost of processing

a single example. Inducing structured sparsity using our technique can lead to models which

can process examples faster, with a lower computational requirement.

60

Chapter 5

Weight Initializations, Data

Orders, and Early Stopping

The advent of large-scale self-supervised pretraining has contributed greatly to progress in

natural language processing (Devlin et al., 2019; Liu et al., 2019b; Radford et al., 2019). In

particular, BERT (Devlin et al., 2019) advanced accuracy on natural language understanding

tasks in popular NLP benchmarks such as GLUE (Wang et al., 2019b) and SuperGLUE (Wang

et al., 2019a), and variants of this model have since seen adoption in ever-wider applications

(Schwartz et al., 2019a; Lu et al., 2019). Typically, these models are first pretrained on large

corpora, then fine-tuned on downstream tasks by reusing the model’s parameters as a starting

point, while adding one task-specific layer trained from scratch. Despite its simplicity and

ubiquity in modern NLP, this process has been shown to be brittle (Devlin et al., 2019; Phang

et al., 2018; Zhu et al., 2019; Raffel et al., 2019), where fine-tuning performance can vary

substantially across different training episodes, even with fixed hyperparameter values.

In this work, we investigate this variation by conducting a series of fine-tuning experiments

on four tasks in the GLUE benchmark (Wang et al., 2019b). Changing only training data order

and the weight initialization of the fine-tuning layer—which contains only 0.0006% of the total

number of parameters in the model—we find substantial variance in performance across trials.

This chapter primarily addresses D in the Green AI equation, the data. In addition to providing

an analysis of the impact of random seed which controls the data order, Section 5.4 contains

training curves and a simple early stopping algorithm which builds on them. In addition, this

work shows that the random seed can be an impactful hyperparameter, so also addresses H

in the Green AI equation, the amount of hyperparameter tuning. This chapter extends Dodge

et al. (2019b); we publicly release our code1 and data2.

We explore how validation performance of the best found model varies with the number

1https://github.com/dodgejesse/bert_on_stilts
2http://www.cs.cmu.edu/~jessed/data_hosting/random_seed_data.zip

61

MRPC RTE CoLA SST
BERT (Phang et al., 2018) 90.7 70.0 62.1 92.5
BERT (Liu et al., 2019b) 88.0 70.4 60.6 93.2
BERT (ours) 91.4 77.3 67.6 95.1
STILTs (Phang et al., 2018) 90.9 83.4 62.1 93.2
XLNet (Yang et al., 2019) 89.2 83.8 63.6 95.6
RoBERTa (Liu et al., 2019b) 90.9 86.6 68.0 96.4
ALBERT (Lan et al., 2019) 90.9 89.2 71.4 96.9

Table 5.1: Fine-tuning BERT multiple times while varying only random seeds leads to substantial
improvements over previously published validation results with the same model and experimental
setup (top rows), on four tasks from the GLUE benchmark. On some tasks, BERT even becomes
competitive with more modern models (bottom rows). Best results with standard BERT
fine-tuning regime are indicated in bold, best overall results are underscored.

of fine-tuning experiments, finding that, even after hundreds of trials, performance has not

fully converged. With the best found performance across all the conducted experiments of

fine-tuning BERT, we observe substantial improvements compared to previous published work

with the same model (Table 5.1). On MRPC (Dolan and Brockett, 2005), BERT performs

better than more recent models such as XLNet (Yang et al., 2019), RoBERTa (Liu et al., 2019b)

and ALBERT (Lan et al., 2019). Moreover, on RTE (Wang et al., 2019b) and CoLA (Warstadt

et al., 2019), we observe a 7% (absolute) improvement over previous results with the same model.

It is worth highlighting that in our experiments only random seeds are changed—never the

fine-tuning regime, hyperparameter values, or pretrained weights. These results demonstrate

how model comparisons that only take into account reported performance in a benchmark can

be misleading, and serve as a reminder of the value of more rigorous reporting practices (Dodge

et al., 2019a).

To better understand the high variance across fine-tuning episodes, we separate two factors

that affect it: the weight initialization for the task-specific layer; and the training data order

resulting from random shuffling. The contributions of each of these have previously been

conflated or overlooked, even by works that recognize the importance of multiple trials or random

initialization (Phang et al., 2018). By conducting experiments with multiple combinations of

random seeds that control each of these factors, we quantify their contribution to the variance

across runs. Moreover, we present evidence that some seeds are consistently better than others

in a given dataset for both weight initializations and data orders. Surprisingly, we find that

some weight initializations perform well across all studied tasks.

By frequently evaluating the models through training, we empirically observe that worse

performing models can often be distinguished from better ones early in training, motivating

investigations of early stopping strategies. We show that a simple early stopping algorithm

(described in Section 5.4) is an effective strategy for reducing the computational resources needed

to reach a given validation performance and include practical recommendations for a wide range

of computational budgets.

62

To encourage further research in analyzing training dynamics during fine-tuning, we publicly

release all of our experimental data. This includes, for each of the 2,100 fine-tuning episodes,

the training loss at every weight update, and validation performance on at least 30 points in

training.3

Our main contributions are:

• We show that running multiple trials with different random seeds can lead to substantial

gains in performance on four datasets from the GLUE benchmark. Further, we present

how the performance of the best-found model changes as a function of the number of trials.

• We investigate weight initialization and training data order as two sources of randomness in

fine-tuning by varying random seeds that control them, finding that 1) they are comparable

as sources of variance in performance; 2) in a given dataset, some data orders and weight

initializations are consistently better than others; and 3) some weight initializations

perform well across multiple different tasks.

• We demonstrate how a simple early stopping algorithm can effectively be used to improve

expected performance using a given computational budget.

• We release all of our collected data of 2,100 fine-tuning episodes on four popular datasets

from the GLUE benchmark to incentivize further analyses of fine-tuning dynamics.

5.1 Methodology

Our experiments consist of fine-tuning pretrained BERT to four downstream tasks from the

GLUE benchmark. For a given task, we experiment multiple times with the same model using

the same hyperparameter values, while modifying only the random seeds that control weight

initialization (WI) of the final classification layer and training data order (DO). In this section

we describe in detail the datasets and settings for our experiments.

5.1.1 Data

We examine four datasets from the GLUE benchmark, described below and summarized in

Table 5.2. The data is publicly available and can be download from the repository jiant.4 Three

of our datasets are relatively small (MRPC, RTE, and CoLA), and one relatively large (SST).

Since all datasets are framed as binary classification, the model structure for each is the same,

as only a single classification layer with two output units is appended to the pretrained BERT.

3http://www.cs.cmu.edu/~jessed/data_hosting/random_seed_data.zip
4https://github.com/nyu-mll/jiant

63

Microsoft Research Paraphrase Corpus (MRPC; Dolan and Brockett, 2005) contains

pairs of sentences, labeled as either nearly semantically equivalent, or not. The dataset is

evaluated using the average of F1 and accuracy.

Recognizing Textual Entailment (RTE; Wang et al., 2019b) combines data from a series

of datasets (Dagan et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al.,

2009). Each example in RTE is a pair of sentences, and the task is to predict whether the first

(the premise) entails the second (the hypothesis).

Corpus of Linguistic Acceptability (CoLA; Warstadt et al., 2019) is comprised of English

sentences labeled as either grammatical or ungrammatical. Models are evaluated on Matthews

correlation (MCC; Matthews, 1975), which ranges between –1 and 1, with random guessing

being 0.

Stanford Sentiment Treebank (SST; Socher et al., 2013) consists of sentences annotated as

expressing positive or negative sentiment (we use the binary version of the annotation), collected

from movie reviews.

We describe the number of training samples, the number of validation samples, the majority

baseline, and the evaluation metric in Table 5.2.

MRPC RTE CoLA SST
evaluation metric Acc./F1 Acc. MCC Acc.
majority baseline 0.75 0.53 0.00 0.51
training samples 3.7k 2.5k 8.6k 67k
validation samples 409 277 1,043 873

Table 5.2: The datasets used in this work, which comprise four out of nine of the tasks in the
GLUE benchmark (Wang et al., 2019b)

5.1.2 Fine-tuning

Following standard practice, we fine-tune BERT (BERT-large, uncased) for three epochs (Phang

et al., 2018; Devlin et al., 2019). We fine-tune the entire model (340 million parameters),

of which the vast majority start as pretrained weights and the final layer (2048 parameters)

is randomly initialized. The weights in the final classification layer are initialized using the

standard approach used when fine-tuning pretrained transformers like BERT, RoBERTa, and

ALBERT (Devlin et al., 2019; Liu et al., 2019b; Lan et al., 2019): sampling from a normal

distribution with mean 0 and standard deviation 0.02. All experiments were run on P100 GPUs

with 16 GB of RAM. We train with a batch size of 16, a learning rate of 0.00002, and dropout

64

of 0.1; the open source implementation, pretrained weights, and full hyperparameter values and

experimental details can be found in the HuggingFace transformer library (Wolf et al., 2019).5

Each experiment is repeated N2 times, with all possible combinations of N distinct random

seeds for WI and N for DO.6 For the datasets MRPC, RTE, and CoLA, we run a total of 625

experiments each (N=25). For the larger SST, we run 225 experiments (N=15).

5.2 The large impact of random seeds

Our large set of fine-tuning experiments evidences the sizable variance in performance across

trials varying only random seeds. This effect is especially pronounced on the smaller datasets;

the validation performance of the best-found model from multiple experiments is substantially

higher than the expected performance of a single trial. In particular, in Table 5.1 we report the

performance of the best model from all conducted experiments, which represents substantial

gains compared to previous work that uses the same model and optimization procedure. On

some datasets, we observe numbers competitive with more recent models which have improved

pretraining regimes (Phang et al., 2018; Yang et al., 2019; Liu et al., 2019b; Lan et al., 2019);

compared to BERT, these approaches pretrain on more data, and some utilize more sophisticated

modeling or optimization strategies. We leave it to future work to analyze the variance from

random seeds on these other models, and note that running analogous experiments would likely

also lead to performance improvements.

In light of these overall gains and the computational burden of running a large number of

experiments, we explore how the number of trials influences the expected validation performance.

5.2.1 Expected validation performance

To quantify the improvement found from running more experiments, we turn to expected

validation performance as introduced in Chapter2. The standard machine learning experimental

setup involves a practitioner training x models, evaluating each of them on validation data,

then taking the model which has the best validation performance and evaluating it on test

data. Intuitively, as the number of trained models x increases, the best of those x models will

improve; expected validation performance calculates the expected value of the best validation

performance as a function of x. A full derivation can be found in Section 2.2 of this thesis.

We plot expected validation curves for each dataset in Figure 5.1 with (plus or minus) the

standard deviation shaded. We shade between the observed minimum and maximum. The

leftmost point on each of these curves (x = 1) shows the expected performance for a budget of a

single training run. For all datasets, Figure 5.1 shows, unsurprisingly, that expected validation

5https://github.com/huggingface/transformers
6Although any random numbers would have sufficed, for completeness: we use the numbers {1, . . . , N} as

seeds.

65

100 101 102

Random seed assignments
0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ex
pe

ct
ed

 v
al

.
Ac

c.
/F

1

MRPC

100 101 102

Random seed assignments

0.60

0.65

0.70

0.75

Ex
pe

ct
ed

 v
al

.
Ac

cu
ra

cy

RTE

100 101 102

Random seed assignments

0.50

0.55

0.60

0.65

Ex
pe

ct
ed

 v
al

.
M

CC

CoLA

100 101 102

Random seed assignments
0.930

0.935

0.940

0.945

0.950

Ex
pe

ct
ed

 v
al

.
Ac

cu
ra

cy

SST

eval 10x per epoch
eval 1x per epoch
eval 1x in training

Figure 5.1: Expected validation performance (Dodge et al., 2019a), plus and minus one standard
deviation, as the number of experiments increases. The x-axis represents the budget (e.g., x = 10
indicates a budget large enough to train 10 models). The y-axis is the expected performance
of the best of the x models trained. Each plot shows three evaluation scenarios: in the first,
the model is frequently evaluated on the validation set during training (blue); in the second,
at the end of each epoch (orange); and in the third, only at the end training (green). As we
increase the number of evaluations per run we see higher expected performance and smaller
variances. Further, more frequently evaluating the model on validation data leads to higher
expected validation values.

performance increases as more computational resources are used. This rising trend continues

even up to our largest budget, suggesting even larger budgets could lead to improvements. On

the three smaller datasets (MRPC, RTE, and CoLA) there is significant variance at smaller

budgets, which indicates that individual runs can have widely varying performance.

In the most common setup for fine-tuning on these datasets, models are evaluated on the

validation data after each epoch, or once after training for multiple epochs (Phang et al., 2018;

Devlin et al., 2019). In Figure 5.1 we show expected performance as we vary the number of

evaluations on validation data during training (all models trained for three epochs): once after

training (green), after each of the three epochs (orange), and frequently throughout training

(ten times per epoch, blue). Compared to training, evaluation is typically cheap, since the

validation set is smaller than the training set and evaluation requires only a forward pass (so

batch sizes can be much larger). Moreover, evaluating on the validation data can be done in

parallel to training, and thus does not necessarily slow down training. Considering the benefits

of more frequent evaluations as shown in Figure 5.1, we thus recommend this practice in similar

scenarios.

5.3 Weight initialization and data order

To better understand the high variance in performance across trials, we analyze two source of

randomness: the weight initialization of the final classification layer and the order the training

data is presented to the model. While previous work on fine-tuning pretrained contextual

representation models (Devlin et al., 2019; Phang et al., 2018) has generally used a single

random seed to control these two factors, we analyze them separately.

Our experiments are conducted with every combination of a set of weight initialization seeds

66

MRPC RTE CoLA SST
Agg. over WI .058 .066 .090 .0028
Agg. over DO .059 .067 .095 .0024
Total .061 .069 .101 .0028

Table 5.3: Expected (average) standard deviation in validation performance across runs. The
expected standard deviation of given WI and DO random seeds are close in magnitude, and
only slightly below the overall standard deviation.

(WI) and a set of data order (DO) seeds that control these factors. One data order can be

viewed as one sample from the set of permutations of the training data. Similarly, one weight

initialization can be viewed as a specific set of samples from the normal distribution from which

we draw them.

An overview of the collected data is presented in Figure 5.2, where each colored cell represents

the validation performance for a single experiment. In the plots, each row represents a single

weight initialization and each column represents a single data order. We sort the rows and

columns by their averages; the top row contains experiments with the WI with the highest

average performance, and the rightmost column contains experiments with the DO with the

highest average performance. Each cell represents an independent sample, so the rows and

columns can be reordered.

Data order random seeds

W
ei

gh
t i

ni
tia

liz
at

io
n

ra
nd

om
 se

ed
s

MRPC - Acc./F1

0.75

0.78

0.80

0.83

0.85

0.88

0.90

Data order random seeds

RTE - Accuracy

0.55

0.60

0.65

0.70

0.75

Data order random seeds

CoLA - MCC

0.10

0.20

0.30

0.40

0.50

0.60

Data order random seeds

SST - Accuracy

0.936

0.938

0.940

0.942

0.944

0.946

0.948

0.950

Figure 5.2: A visualization of validation performance for all experiments, where each colored
cell represents the performance of a training run with a specific WI and DO seed. Rows and
columns are sorted by their average, such that the best WI seed corresponds to the top row of
each plot, and the best DO seed correspond to the right-most column. Especially on smaller
datasets a large variance in performance is observed across different seed combinations, and on
MRPC and RTE models frequently diverge, performing close to the majority baselines (listed in
Table 5.2).

For MRPC, RTE, and CoLA, a fraction of the trained models diverge, yielding performance

close to that of predicting the most frequent label (see Table 5.2). This partially explains the

large variance found in the expected validation curves for those three datasets in Figure 5.1.

5.3.1 Decoupling

From Figure 5.2, it is clear that different random seed combinations can lead to substantially

different validation performance. In this section, we investigate the sources of this variance,

decoupling the distribution of performance based on each of the factors that control randomness.

67

For each dataset, we compute for each WI and each DO seed the standard deviation in

validation performance across all trials with that seed. We then compute the expected (average)

standard deviation, aggregated under all WI or all DO seeds, which are shown in Table 5.3.

Although their magnitudes vary significantly between the datasets, the expected standard

deviation from the WI and DO seeds is comparable, and are slightly below the overall standard

deviation inside a given task.

We plot the distribution of standard deviations in final validation performance across multiple

runs, aggregated under a fixed random seed, separately for weight initializations and data orders.

The results are shown in Figure 5.3, indicating that the inter-seed aggregated variances are

comparable in magnitude, considering aggregation over both WI and DO.

0.03 0.04 0.05 0.06 0.07
Acc./F1 (standard dev.)

0

20

40

60

80

100

Ke
rn

el
 D

en
sit

y
Es

tim
at

io
n MRPC

0.04 0.05 0.06 0.07 0.08 0.09
Accuracy (standard dev.)

0

20

40

60

80
RTE

0.00 0.05 0.10 0.15 0.20
MCC (standard dev.)

0

2

4

6

8

10

12

14
CoLA

0.001 0.002 0.003 0.004
Accuracy (standard dev.)

0

200

400

600

800

1000

1200
SST

DO
WI

Figure 5.3: Kernel density estimation of the distribution of standard deviation in validation
performance aggregated under fixed random seeds, either for weight initialization (blue) or data
order (orange). The red dashed line shows the overall standard deviation for each dataset. The
DO and WI curves have expected standard deviation values of similar magnitude, which are
also comparable with the overall standard deviation.

5.3.2 Some random seeds are better than others

To investigate whether some WI or DO seeds are better than their counterparts, Figure 5.4

plots the random seeds with the best and worst average performance. The best and worst seeds

exhibit quite different behavior: compared to the best, the worst seeds have an appreciably

higher density on lower performance ranges, indicating that they are generally inferior. On

MRPC, RTE, and CoLA the performance of the best and worst WIs are more dissimilar than

the best and worst DOs, while on SST the opposite is true. This could be related to the size of

the data; MRPC, RTE, and CoLA are smaller datasets, whereas SST is larger, so SST has more

data to order and more weight updates to move away from the initialization.

Using ANOVA (Fisher, 1935) to test for statistical significance, we examine whether the

performance of the best and worst DOs and WIs have distributions with different means. The

results are shown in Table 5.4. For all datasets, we find the best and worst DOs and WIs are

significantly different in their expected performance (p < 0.05).

ANOVA makes three assumptions: 1) independence of the samples, 2) homoscedasticity

(roughly equal variance across groups), and 3) normally distributed data.

68

0.75 0.80 0.85 0.90
Acc./F1

0

5

10

15

20

25

Ke
rn

el
 D

en
sit

y
Es

tim
at

io
n MRPC

0.5 0.6 0.7 0.8
Accuracy

0

2

4

6

RTE

0.0 0.2 0.4 0.6 0.8
MCC

0

2

4

6

8

10

CoLA

0.93 0.94 0.95
Accuracy

0

20

40

60

80

100

120

SST
best WI
best DO
worst WI
worst DO

Figure 5.4: Some seeds are better then others. Plots show the kernel density estimation of the
distribution of validation performance for best and worst WI and DO seeds. Curves for DO
seeds are shown in dashed lines and for WI in solid lines. MRPC and RTE exhibit pronounced
bimodal shapes, where one of the modes represents divergence; models trained with the worst
WI and DO are more likely to diverge than learn to predict better than random guessing.
Compared to the best seeds, the worst seeds are conspicuously more densely populated in the
lower performing regions, for all datasets.

MRPC RTE CoLA SST

WI 2.0×10−6 2.8×10−4 7.0×10−3 3.3×10−2

DO 8.3×10−3 3.2×10−3 1.1×10−2 1.3×10−5

Table 5.4: p-values from ANOVA indicate that there is evidence to reject the null hypothesis
that the performance of the best and worst WIs and DOs have distributions with the same
means (p < 0.05).

ANOVA is not robust to violations of independence, but each DO and WI is an I.I.D. sample,

and thus independent. ANOVA is generally robust to groups with somewhat differing variance

if the groups are the same size, which is true in our experiments. ANOVA is more robust to

non-normally distributed data for larger sample sizes; our SST experiments are quite close to

normally distributed, and the distribution of performance on the smaller datasets is less like a

normal distribution but we have larger sample sizes.

5.3.3 Globally good initializations

A natural question that follows is whether some random seeds are good across datasets. While

the data order is dataset specific, the same weight initialization can be applied to multiple

classifiers trained with different datasets: since all tasks studied are binary classification, models

for all datasets share the same architecture, including the classification layer that is being

randomly initialized and learned.

We compare the different weight initializations across datasets. We find that some initializa-

tions perform consistently well. For instance, WI seed 12 has the best performance on CoLA and

RTE, the second best on MRPC, and third best on SST. This suggests that, perhaps surprisingly,

some weight initializations perform well across tasks.

Studying the properties of good weight initializations and data orders is an important question

that could lead to significant empirical gains and enhanced understanding of the fine-tuning

process. We defer this question to future work, and release the results of our 2,100 fine-tuning

69

experiments to facilitate further study of this question by the community.

5.4 Early stopping

Our analysis so far indicates a high variance in the fine-tuning performance of BERT when

using different random seeds, where some models fail to converge. This was also observed by

Phang et al. (2018), who showed that their proposed STILTs approach reduced the number of

diverging models. In this section we show that better performance can be achieved with the same

computational resources by using early stopping algorithms that stop the least promising trials

early in training. We also include recommendations for practitioners for setting up experiments

meeting a variety of computational budgets.

Early discovery of failed experiments

Figure 5.5 shows that performance divergence can often be recognized early in training. These

plots show the performance values of 20 randomly chosen models at different times across

training. In many of the curves, continuing training of lower performing models all the way

through can be a waste of computation. In turn, this suggests the potential of early stopping least

promising trials as a viable means of saving computation without large decreases in expected

performance. For instance, after training halfway through the first epoch on CoLA the models

which diverged could be stopped.

0 1 2 3
Epochs

0.2

0.4

0.6

0.8

Va
lid

at
io

n
pe

rfo
rm

an
ce

MRPC

0 1 2 3
Epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75
RTE

0 1 2 3
Epochs

0.0

0.2

0.4

0.6

CoLA

0 1 2 3
Epochs

0.5

0.6

0.7

0.8

0.9

SST

Figure 5.5: Some promising seeds can be distinguished early in training. The plots show training
curves for 20 random WI and DO combinations for each dataset. Models are evaluated every
10th of an epoch (except SST, which was evaluated every 100 steps, equivalent to 42 times per
epoch). For the smaller datasets, training is unstable, and a non-negligible portion of the models
yields poor performance, which can be identified early on.

Correlation between points in training

We examine the correlation of validation performances at different points throughout training,

shown in Figure 5.6. One point in one of these plots represents the Spearman’s rank correlation

between performance at iteration i and iteration j across trials. High rank correlation means

that the ranking of the models is similar between the two evaluation points, and suggests we

70

can stop the worst performing models early, as they would likely continue to underperform.

0 1 2 3
0

1

2

3

MRPC
0 1 2 3

0

1

2

3

RTE
0 1 2 3

0

1

2

3

CoLA
0 1 2 3

0

1

2

3

SST

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.6: The rank of the models early in training is highly correlated with the rank late in
training. Each figure shows the Spearman’s rank correlation between the validation performance
at different points in training; the axes represent epochs. A point at coordinates i and j in
the plots indicates the correlation between the ranking of the models (ranked by validation
performance) after i and after j evaluations. Note that the plots are symmetric.

On MRPC, RTE and CoLA, there exists a high correlation between the models’ performance

early on (part way through the first epoch) and their final performance. On the larger SST

dataset, we see high correlation between the performance after training for two epochs and the

final performance.

In Figure 5.7 we include the Pearson correlation between different points in training, the same

data used for Figure 5.6. This captures relative magnitude of the differences in performance,

instead of just the ranking of the models. One point in one of these plots represents the Pearson’s

correlation between performance at iteration i and iteration j across trials. Here we see a similar

story, corroborating the results found in Figure 5.6. High correlation means that the performance

of the models is similar between the two evaluation points.

0 1 2 3
0

1

2

3

MRPC
0 1 2 3

0

1

2

3

RTE
0 1 2 3

0

1

2

3

CoLA
0 1 2 3

0

1

2

3

SST

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.7: Performance early in training is highly correlated with performance late in training.
Each figure shows the Pearson correlation between the validation performance at different points
in training; the axes represent epochs. A point at coordinates i and j in the plots indicates the
correlation between the best found performances after i and after j evaluations. Note that the
plots are symmetric.

Early stopping

Considering the evidence from the training curves and correlation plots, we analyze a simple

algorithm for early stopping. Our algorithm is inspired by existing approaches to making

hyperparameter search more efficient by stopping some of the least promising experiments early

71

(Jamieson and Talwalkar, 2016; Li et al., 2018). “Early stopping” can also relate to stopping a

single training run if the loss hasn’t decreased for a given number of epochs. Here we refer to

the notion of stopping a subset of multiple trials. Here we apply an early stopping algorithm to

select the best performing random seed. Our approach does not distinguish between DO and WI.

While initial results suggest that this distinction could inspire more sophisticated early-stopping

criteria, we defer this to future work. The algorithm has three parameters: t, f , and p. We start

by training t trials, and partially through training (f , a fraction of the total number of epochs)

evaluate all of them and only continue to fully train the p most promising ones, while discarding

the rest. This algorithm takes a total of (tf + p(1− f))s steps, where s is the number of steps

to fully train a model. In our experiments s = 3 epochs.

Start many, stop early, continue some

As shown earlier, the computational budget of running this algorithm can be computed directly

from an assignment to the parameters t, f , and p. Note that there are different ways to assign

these parameters that lead to the same computational budget, and those can lead to significantly

distinct performance in expectation; to estimate the performance for each configuration we

simulate this algorithm by sampling 50,000 times from from our full set of experiments. In

Figure 5.8 we show the best observed assignment of these parameters for budgets between 3

and 90 total epochs of training, or the equivalent of 1 to 30 complete training trials. There are

some surprisingly consistent trends across datasets and budgets – the number of trials started

should be significantly higher than the number trained fully, and the number of trials to train

fully should be around x/2. On three out of four datasets, stopping least promising trials after

20–30% of training (less than one epoch) yielded the best results—and on the fourth dataset

this is still a strong strategy.

Early stopping works

We compare this algorithm with our baseline of running multiple experiments all the way through

training, without any early stopping (f=1, t=p) and using the same amount of computation.

Specifically, for a given computational budget equivalent to fully training t models, we measure

improvement as the relative error reduction from using early stopping with the best found

settings for that computational budget. Figure 5.9 shows the relative error reduction for each

dataset as the computational budget varies, where we observe small but reasonably consistent

improvements on all tasks.

72

0 5 10 15 20 25 30
0%

14%

29%

43%

57%

71%

86%

100%

0 5 10 15 20 25 30
0%

20%

40%

60%

80%

100%

0 5 10 15 20 25 30
0%

14%

29%

43%

57%

71%

86%

100%

0 5 10 15 20 25 30
0%

17%

33%

50%

67%

83%

100%

0

10

20

30

40

50

60

70
MRPC

0

20

40

60

80

100
RTE

0

20

40

60

80

100

120

140
CoLA

0

10

20

30

40

50

60
SST

E
x
p

e
ri

m
e
n
ts

 s
ta

rt
e
d

E
x
p

e
ri

m
e
n
ts

 f
u
lly

 t
ra

in
e
d

Fr
a
ct

io
n
 o

f
th

e
tr

a
in

in
g

 b
u
d

g
e
t

E
x
p

e
ri

m
e
n
ts

 s
ta

rt
e
d

E
x
p

e
ri

m
e
n
ts

 f
u
lly

 t
ra

in
e
d

Fr
a
ct

io
n
 o

f
th

e
tr

a
in

in
g

 b
u
d

g
e
t

E
x
p

e
ri

m
e
n
ts

 s
ta

rt
e
d

E
x
p

e
ri

m
e
n
ts

 f
u
lly

 t
ra

in
e
d

Fr
a
ct

io
n
 o

f
th

e
tr

a
in

in
g

 b
u
d

g
e
t

E
x
p

e
ri

m
e
n
ts

 s
ta

rt
e
d

E
x
p

e
ri

m
e
n
ts

 f
u
lly

 t
ra

in
e
d

Fr
a
ct

io
n
 o

f
th

e
tr

a
in

in
g

 b
u
d

g
e
t

Exp. started

Exp. trained fully

Fraction of training budget

Computational budget sufficient to fully train X models

Figure 5.8: Best observed early stopping parameters on each dataset. For a given budget
large enough to fully train x models (each trained for 3 epochs), this plot shows the optimal
parameters for early stopping. For instance, in MRPC with a budget large enough for 20 trials,
the best observed performance came by starting 41 trials (blue), then continuing only the 11
most promising trials (orange) after 30% of training (green).

73

0 5 10 15 20 25 30
Computational budget

(number of trials)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
at

iv
e

er
ro

r r
ed

uc
tio

n MRPC
SST
CoLA
RTE

Figure 5.9: Relative error reduction from the early stopping approach in Figure 5.8, compared
to the baseline of training x models on the full training budget. Performance on RTE and SST
is measured using accuracy, on MRPC it is the average of accuracy and F1, and on CoLA it is
MCC. “Error” here refers to one-minus-performance for each of these datasets. As the budget
increases, the absolute performance on all four datasets increases, and the absolute improvement
from early stopping is fairly consistent.

5.5 Related work

Most work on hyperparameter optimization tunes a number of impactful hyperparameters, such

as the learning rate, the width of the layers in the model, and the strength of the regularization

(Li et al., 2018; Bergstra et al., 2011). For modern machine learning models such tuning

has proven to have a large impact on the performance; in this work we only examine two

oft-overlooked choices that can be cast as hyperparameters and still find room for optimization.

Melis et al. (2018) heavily tuned the hyperpamareters of an LSTM language model, for

some experiments running 1,500 rounds of Bayesian optimization (thus, training 1,500 models).

They showed that an LSTM, when given such a large budget for hyperparameter tuning,

can outperform more complicated neural models. While such work informs the community

about the best performance found after expending very large budgets, it is difficult for future

researchers to build on this without some measure of how the performance changes as a function

of computational budget. Our work similarly presents the best-found performance using a large

budget (Table 5.1), but also includes estimates of how performance changes as a function of

budget (Figure 5.1).

A line of research has addressed the distribution from which initializations are drawn. The

Xavier initialization (Glorot and Bengio, 2010) and Kaiming initialization (He et al., 2015)

initialize weights by sampling from a uniform distribution or normal distribution with variance

scaled so as to preserve gradient magnitudes through backpropagation. Similarly, orthogonal

initializations (Saxe et al., 2014) aim to prevent exploding or vanishing gradients. In our work,

we instead examine how different samples from an initialization distribution behave, and we

hope future work which introduces new initialization schemes will provide a similar analysis.

Active learning techniques, which choose a data order using a criterion such as the model’s

74

uncertainty (Lewis and Gale, 1994), have a rich history. Recently, it has even been shown that

that training on mini-batches which are diverse in terms of data or labels (Zhang et al., 2017)

can be more sample efficient. The tools we present here can be used to evaluate different seeds

for a stochastic active learning algorithm, or to compare different active learning algorithms.

5.6 Conclusion

This chapter focuses on improving D in the Green AI equation, data efficiency. We study the

impact of random seeds on fine-tuning contextual embedding models, the currently dominant

paradigm in NLP. We conduct a large set of experiments on four datasets from the GLUE

benchmark and observe significant variance across these trials. Overall, these experiments lead

to substantial performance gains on all tasks. By observing how the expected performance

changes as we allocate more computational resources, we expect that further gains would come

from an even larger set of trials. Moreover, we examine the two sources of variance across

trials, weight initialization and training data order, finding that in expectation, they contribute

comparably to the variance in performance. Perhaps surprisingly, we find that some data orders

and initializations are better than others, and the latter can even be observed even across tasks.

A simple early stopping strategy along with practical recommendations is included to alleviate

the computational costs of running multiple trials. All of our experimental data containing

thousands of fine-tuning episodes is publicly released.

75

Chapter 6

Conclusion and Future Work

6.1 Summary of contributions

As AI and its subfields of machine learning, natural language processing, and computer vision

grow, we are observing a natural stratification of research by the size of the computational

budget used for its supporting experiments. Strong community norms exist for comparing models

which were trained on the same data, and the increased performance (with diminishing returns)

observed with more training data is well-documented, so there is some guidance for models

trained with varying amounts of data. While it is known that increasing model complexity

and the total number of experiments run (for architecture search or other hyperparameter

optimization) can lead to performance improvements, similar community-wide norms don’t exist

here, so new research is not held to a standard of accurately reporting the budget let alone

making comparisons against similar-cost work. Drawing reproducible conclusions about which

approach performs best is challenging when all relevant information is available, and, as we have

shown, all but impossible when it is not.

The research in this thesis exists as examples of how to measure and improve performance

and efficiency in three key areas: E, the computational expense to process a single example, D,

the total number of examples processed, and H, the number of experiments. In Chapter 2 we

introduce a method for reporting the results of a full hyperparameter search instead of reporting

the results of the single best-found model. In Chapter 3 we introduce a novel hyperparameter

optimization method which is more efficient than competing approaches. In Chapter 4 we

introduce techniques for inducing structured sparsity in parameter-rich neural models which can

lead to more efficient inference. In Chapter 5 we analyze training curves, and show the efficacy

of early stopping even when consistent training procedures produce highly inconsistent results.

The experiments in these chapters are primarily on language data, though the motivation and

conclusions drawn from the results are applicable more generally in machine learning.

Producing research which exemplifies the ideals of fair model comparisons conditioned

76

on the computational budget is, unfortunately, not enough to elicit community-wide change.

Towards the broader goal of improving standards for new research this thesis also includes

recommendations to the community for how to draw reproducible conclusions when comparing

approaches against each other. These recommendations are centered around improved reporting

of the budget and experimental information, especially that which is atypically included in

published work. In addition, the applications in this thesis were selected to showcase how such

improved reporting can lead to better performance-efficiency tradeoffs, and how the lack of

reporting of details for even small changes such as varying the random seed can strongly hinder

reproducibility.

This thesis is predicated on the idea that as the landscape of research changes, so to must

the ways in which we evaluate our work. The nature of research is that new methods and

applications are regularly introduced, and so our standards must continue to evolve. Even such

norms as comparing models trained on the same data need to adapt; state-of-the-art results in

natural language processing and computer vision are now driven by pretraining models on large

unlabeled corpora then fine-tuning on labeled data. In this regime, the amount of pretraining

data is not held to the same strict standards as the amount labeled data, so we see comparisons

of models with wildly differing budgets. This example is one of the ample opportunities for

future work outlined by the high-level themes in this thesis of efficiency and reproducibility, and

in the next section highlights several more.

6.2 Future directions

6.2.1 E, Efficient Models

Structured sparsity for BERT

A natural extension of the work in Chapter 4 is to apply a similar technique to a more complicated

class of models, such as transformers. Using structured sparsity would allow us to learn which

parts of the model to remove during training, which will lead to more efficient models which

can be put into production at scale, or run on resource-constrained devices. In addition, by

examining which components are most important (i.e. not removed by the sparsifyer, even at

high levels of sparisty) we can inform the development of new models.

It’s possible that the learned structures will be different for different tasks, in which case we

have evidence that the inductive bias in models is somewhat modular. It’s also possible that the

learned structures are task-agnostic, suggesting that we could then develop more general-purpose

neural architectures.

77

Small models which can be act as prototypes for large models

Progress in research has been driven partly by increasingly large models being trained on massive

amounts of data. An open question is whether or not we could use small versions of these

massive models for fast prototyping, and have the results of that prototyping generalize to the

large-budget setting. Is there some transformation that can be done on a set of large models

(such as uniformly reducing the size of all of the weight matricies or reducing the depth of

the models) which would lead to a set of models that a) use a small amount of computation

for training and inference, and b) have the same ranking, in terms of performance, as the

large models? If BERT-base, RoBERTa-base, and ELECTRA-small have the same ranking as

BERT-large, RoBERTa-large, and ELECTRA-large, this would enable new research to compare

against the small versions of these large models. On the other hand, if the ranking is different,

this would be a surprising result.

6.2.2 D, Sample Efficiency

Better Data Orders for Pretraining BERT

As we show in Chapter 5, the order of the data can have a large impact on performance.

Understanding why some random data orders lead to better performance is still an open

question. It’s likely that the diversity of the examples has a role to play here, where examples

that are diverse in terms of labels or features lead to improved stability and performance,

especially near the start of training. To promote diversity, we can use DPPs, as introduced in

Chapter 3.

How little training is necessary to compare models?

Randomly initialized, untrained models have been shown to be surprisingly good feature

extractors (Ramanujan et al., 2020). It is conjectured that the performance of untrained models

reveals how appropriate the inductive bias within the neural architecture is for a given task. If

we benchmark different neural architectures by training only the final classification layer (leaving

the rest untrained), can we recreate the ranking we would find after fully training the models?

Saxe et al. (2011) showed this was possible with simple, fully-connected networks; it may also

be true with modern, expensive models. If so, this can be used for fast architecture search, only

training the final layer to get a set of promising architectures, which could then be trained fully.

6.2.3 H, Efficient Hyperparameter Tuning

When to stop hyperparameter search

When sampling hyperparameter assignments uniformly at random, when should we stop? If we

have evaluated n uniformly sampled hyperparameter assignments, with validation performance

78

V1, . . . , Vn, and a max of V ∗n = maxi∈{1,...,n} Vi, how much improvement should we expect

to see after evaluating an additional m assignments, V ∗n+m − V ∗n ? Is V ∗n close to the global

max? Here we can turn to the literature on Extreme Value Theory (de Haan, 2005; Coles,

2001). The Fisher–Tippett–Gnedenko theorem states if a normalized maximum converges to

a non-degenerate distribution, then the in the limit the distribution it converges to is in the

Gumbel, Fréchet, or Weibull family.

Extreme Value Theory is used in many places, such as building bridges that can withstand a

once-in-n-years flood, or estimating the effects of climate change on annual global temperatures.

Maximum likelihood techniques are the most commonly used to fit the distributions, with

samples found by either peak-over-threshold method or definiting blocks and using the max

from each block.

New initialization method for pretrained models

Much attention has been paid to randomly initializing all of the learnable parameters in a

neural model, but as we show in Chapter 5, randomly initializing just the classification layer

of a pretrained model can have a large impact on performance. Many initialization schemes

are designed so as to preserve the magnitude of gradients passed through each layer in a neural

network (He et al., 2015). This idea translates to initializing the final layer of a pretrained

model — keeping the pretrained weights fixed, and initializing the final layer so it preserves the

gradients passed through the pretrained parts of the model could lead to more stable training,

and better performance.

79

Bibliography

M. O. Ahmed, B. Shahriari, and M. Schmidt. Do we need “harmless” Bayesian optimization and

“first-order” Bayesian optimization? In Proc. of Advances in Neural Information Processing

Systems (NeurIPS) Bayesian Optimization Workshop, 2016.

D. Amodei and D. Hernandez. AI and compute, 2018. URL https://openai.com/blog/

ai-and-compute/. Blog post.

N. Anari, S. O. Gharan, and A. Rezaei. Monte Carlo Markov chain algorithms for sampling

strongly Rayleigh distributions and determinantal point processes. In Proc. of Conference on

Learning Theory (COLT), 2016.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align

and translate. In Proc. of ICLR, 2015.

R. Bar-Haim, I. Dagan, B. Dolan, L. Ferro, D. Giampiccolo, B. Magnini, and I. Szpektor. The

second pascal recognising textual entailment challenge. In Proc. of the II PASCAL challenge,

2006.

R. Bardenet and A. Hardy. Monte Carlo with determinantal point processes. In arXiv:1605.00361,

2016.

L. E. Baum and T. Petrie. Statistical Inference for Probabilistic Functions of Finite State

Markov Chains. The Annals of Mathematical Statistics, 37(6), 1966. ISSN 0003-4851. doi:

10.1214/aoms/1177699147.

L. Bentivogli, P. Clark, I. Dagan, and D. Giampiccolo. The fifth pascal recognizing textual

entailment challenge. In TAC, 2009.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. In Proc. of

Journal of Machine Learning Research (JMLR), 2012.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization.

In Proc. of NeurIPS, 2011.

80

J. Berstel, Jr. and C. Reutenauer. Rational Series and Their Languages. Springer-Verlag, Berlin,

Heidelberg, 1988.

J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders:

Domain adaptation for sentiment classification. In Proc. of ACL, 2007. URL http://aclweb.

org/anthology/P07-1056.

O. Bousquet, S. Gelly, K. Kurach, O. Teytaud, and D. Vincent. Critical hyper-parameters: No

random, no cry. arXiv preprint arXiv:1706.03200, 2017.

J. Bradbury, S. Merity, C. Xiong, and R. Socher. Quasi-recurrent neural network. In Proc. of

ICLR, 2017.

E. Candes and T. Tao. Decoding by linear programming. In IEEE Transactions on Information

Theory, 2005.

Q. Chen, X.-D. Zhu, Z.-H. Ling, S. Wei, H. Jiang, and D. Inkpen. Enhanced LSTM for natural

language inference. In Proc. of ACL, 2017. URL https://arxiv.org/abs/1609.06038.

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.

Learning phrase representations using RNN encoder-decoder for statistical machine translation.

In Proc. of EMNLP, 2014. URL http://www.aclweb.org/anthology/D14-1179.

S. Coles. An introduction to statistical modeling of extreme values. Springer Series in Statistics,

2001.

E. Contal, D. Buffoni, A. Robicquet, and N. Vayatis. Parallel Gaussian process optimization

with upper confidence bound and pure exploration. In Proc. of Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, 2013.

I. Dagan, O. Glickman, and B. Magnini. The pascal recognising textual entailment challenge.

In Machine Learning Challenges Workshop, 2005.

L. de Haan. Extreme value theory. Springer Series in Operations Research, 2005.

C. De la Higuera. Grammatical inference: learning automata and grammars. Cambridge

University Press, 2010.

T. Desautels, A. Krause, and J. W. Burdick. Parallelizing exploration-exploitation tradeoffs

in gaussian process bandit optimization. In Proc. of Journal of Machine Learning Research

(JMLR), 2014.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional

transformers for language understanding. In Proc. of NAACL, 2019. URL https://arxiv.

org/abs/1810.04805.

81

J. Dodge, K. Jamieson, and N. A. Smith. Open loop hyperparameter optimization and determi-

nantal point processes. In Proc. of AutoML, 2017.

J. Dodge, S. Gururangan, D. Card, R. Schwartz, and N. A. Smith. Show your work: Improved

reporting of experimental results. In Proc. of EMNLP, 2019a.

J. Dodge, G. Ilharco, R. Schwartz, A. Farhadi, H. Hajishirzi, and N. A. Smith. Fine-tuning

pretrained language models: Weight initializations, data orders, and early stopping. ArXiv,

2019b.

J. Dodge, R. Schwartz, H. Peng, and N. A. Smith. Rnn architecture learning with sparse

regularization. In Proc. of EMNLP, 2019c.

B. Dolan and C. Brockett. Automatically constructing a corpus of sentential paraphrases. In

Proc. of IWP, 2005.

B. Doshi-Velez, Finale; Kim. Towards a rigorous science of interpretable machine learning, 2017.

arXiv:1702.08608.

R. Dror, G. Baumer, M. Bogomolov, and R. Reichart. Replicability analysis for natural

language processing: Testing significance with multiple datasets. TACL, 5:471–486, 2017. doi:

10.1162/tacl a 00074. URL https://www.aclweb.org/anthology/Q17-1033.

B. Efron and R. Tibshirani. An Introduction to the Bootstrap. CRC Press, 1994.

R. A. Fisher. Statistical methods for research workers. Oliver & Boyd (Edinburgh), 1935.

J. N. Foerster, J. Gilmer, J. Chorowski, J. Sohl-Dickstein, and D. Sussillo. Intelligible language

modeling with input switched affine networks. In Proc. of ICML, 2017.

M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. F. Liu, M. E. Peters, M. Schmitz,

and L. S. Zettlemoyer. AllenNLP: A deep semantic natural language processing platform. In

Proc. of NLP-OSS, 2018. URL https://arxiv.org/abs/1803.07640.

T. Gebru, J. H. Morgenstern, B. Vecchione, J. W. Vaughan, H. M. Wallach, H. Daumé, and

K. Crawford. Datasheets for datasets, 2018. URL https://arxiv.org/abs/1803.09010.

arXiv:1803.09010.

A. Gelman and E. Loken. The statistical crisis in science. American Scientist, 102:460, 11 2014.

URL https://doi.org/10.1511/2014.111.460.

D. Giampiccolo, B. Magnini, I. Dagan, and B. Dolan. The third pascal recognizing textual

entailment challenge. In Proc. of the ACL-PASCAL workshop on textual entailment and

paraphrasing, 2007.

82

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural

networks. In Proc. of AISTATS, 2010.

J. González, Z. Dai, P. Hennig, and N. Lawrence. Batch Bayesian optimization via local

penalization. In Proc. of Artificial Intelligence and Statistics (AISTATS), 2016.

A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and E. Choi. MorphNet: Fast &

simple resource-constrained structure learning of deep networks. In Proc. of CVPR, 2018.

K. Gorman and S. Bedrick. We need to talk about standard splits. In Proc. of ACL, 2019. URL

https://www.aclweb.org/anthology/P19-1267/.

O. E. Gundersen and S. Kjensmo. State of the art: Reproducibility in artificial intelligence. In

Proc. of AAAI, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/

viewFile/17248/15864.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification. In Proc. of ICCV, 2015.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement

learning that matters. In Proc. of AAAI, 2018. URL https://arxiv.org/abs/1709.06560.

P. Hennig and R. Garnett. Exact sampling from determinantal point processes. In

arxiv:1609.06840, 2016.

E. Hlawka. Funktionen von beschrankter variation in der theorie der gleichverteilung. In Ann.

Math. Pura Appl., 1961.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8), 1997.

doi: 10.1162/neco.1997.9.8.1735.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and

H. Adam. MobileNets: Efficient convolutional neural networks for mobile vision applications,

2017. arXiv:1704.04861.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Exact sampling from determinantal point processes.

In Proc. of the Learning and Intelligent OptimizatioN Conference (LION) 6, 2012.

M. R. Iacò. Low discrepancy sequences: Theory and applications. In arXiv:1502.04897, 2015.

J. P. A. Ioannidis. Why most published research findings are false. PLoS Med, 2(8), 08 2005.

URL https://doi.org/10.1371/journal.pmed.0020124.

K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter

optimization. In Proc. of AISTATS, 2016.

83

R. Johnson and T. Zhang. Effective use of word order for text categorization with convolutional

neural networks. In Proc. of NAACL, 2015. doi: 10.3115/v1/N15-1011.

R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent network

architectures. In Proc. of ICML, 2015. URL http://www.jmlr.org/proceedings/papers/

v37/jozefowicz15.pdf.

K. Kandasamy, A. Krishnamurthy, J. Schneider, and B. Poczos. Parallelised bayesian optimisation

via thompson sampling. In Proc. of International Conference on Artificial Intelligence and

Statistics (AISTATS), 2018.

T. Kathuria, A. Deshpande, and P. Kohli. Batched Gaussian process bandit optimization via

determinantal point processes. In Proc. of Advances in Neural Information Processing Systems

(NeurIPS), 2016.

T. Khot, A. Sabharwal, and P. Clark. SciTaiL: A textual entailment dataset from science

question answering. In Proc. of AAAI, 2018. URL http://ai2-website.s3.amazonaws.

com/publications/scitail-aaai-2018_cameraready.pdf.

Y. Kim. Convolutional neural networks for sentence classification. In Proc. of Empirical Methods

in Natural Language Processing (EMNLP), 2014.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. of ICLR, 2015.

B. Komer, J. Bergstra, and C. Eliasmith. Hyperopt-sklearn: automatic hyperparameter configu-

ration for scikit-learn. In Proc. of International Conference on Machine Learning (ICML)

workshop on AutoML, 2014.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional

neural networks. In Proc. of NeurIPS, 2012.

W. Kuich and A. Salomaa, editors. Semirings, Automata, Languages. Springer-Verlag, 1986.

A. Kulesza, B. Taskar, et al. Determinantal point processes for machine learning. In Proc. of

Foundations and Trends R© in Machine Learning, 2012.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A lite bert for

self-supervised learning of language representations. arXiv:1909.11942, 2019.

Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Proc. of NeurIPS, 1990.

N. Lee, T. Ajanthan, and P. H. Torr. SNIP: Single-shot network pruning based on connection

sensitivity. In Proc. of ICLR, 2019.

T. Lei, Y. Zhang, and Y. Artzi. Training RNNs as fast as CNNs, 2017. arXiv:1709.02755.

84

D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In Proc. of

SIGIR, 1994.

L. Li and A. Talwalkar. Random search and reproducibility for neural architecture search. In

Proc. of UAI, 2019. URL https://arxiv.org/abs/1902.07638.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel

bandit-based approach to hyperparameter optimization. The Journal of Machine Learning

Research (JMLR), 2018.

R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. Tune: A research

platform for distributed model selection and training. In Proc. of the ICML Workshop on

AutoML, 2018. URL https://arxiv.org/abs/1807.05118.

Z. C. Lipton and J. Steinhardt. Troubling trends in machine learning scholarship, 2018. URL

https://arxiv.org/abs/1807.03341. arXiv:1807.03341.

H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. In Proc. of

ICLR, 2019a.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and

V. Stoyanov. RoBERTa: A robustly optimized bert pretraining approach. arXiv:1907.11692,

2019b.

R. Livni, S. Shalev-Shwartz, and O. Shamir. On the computational efficiency of training neural

networks. In Proc. of NeurIPS, 2014.

C. Louizos, K. Ullrich, and M. Welling. Bayesian compression for deep learning. In Proc. of

NeurIPS, 2017.

J. Lu, D. Batra, D. Parikh, and S. Lee. Vilbert: Pretraining task-agnostic visiolinguistic

representations for vision-and-language tasks. In Proc. of NeurIPS, 2019.

M. Lucic, K. Kurach, M. Michalski, O. Bousquet, and S. Gelly. Are GANs created equal? A

large-scale study. In Proc. of NeurIPS, 2018. URL https://arxiv.org/abs/1711.10337.

D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and

L. van der Maaten. Exploring the limits of weakly supervised pretraining, 2018. URL

https://arxiv.org/abs/1805.00932. arXiv:1805.00932.

A. F. T. Martins and R. Astudillo. From softmax to sparsemax: A sparse model of attention

and multi-label classification. In Proc. of ICML, 2016.

A. F. T. Martins, N. A. Smith, M. Figueiredo, and P. Aguiar. Structured sparsity in structured

prediction. In Proc. of EMNLP, 2011. URL http://aclweb.org/anthology/D11-1139.

85

B. W. Matthews. Comparison of the predicted and observed secondary structure of t4 phage

lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1975.

B. McCann, J. Bradbury, C. Xiong, and R. Socher. Learned in translation: Contextualized

word vectors. In Proc. of NeurIPS, 2017. URL https://arxiv.org/abs/1708.00107.

G. Melis, C. Dyer, and P. Blunsom. On the state of the art of evaluation in neural language

models. In Proc. of EMNLP, 2018.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of

words and phrases and their compositionality. In Proc. of Advances in Neural Information

Processing Systems (NeurIPS), 2013.

M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D.

Raji, and T. Gebru. Model cards for model reporting. In Proc. of FAT*, 2019. URL

https://arxiv.org/abs/1810.03993.

D. Molchanov, A. Ashukha, and D. Vetrov. Variational dropout sparsifies deep neural networks.

In Proc. of ICML, 2017.

G. E. Moore. Cramming more components onto integrated circuits, 1965.

V. Niculae, A. F. T. Martins, M. Blondel, and C. Cardie. SparseMAP: Differentiable sparse

structured inference. In Proc. of ICML, 2018.

H. Niederreiter. Random number generation and quasi-Monte Carlo methods, volume 63. Siam,

1992.

J. Oncina, P. Garćıa, and E. Vidal. Learning subsequential transducers for pattern recognition

interpretation tasks. IEEE Trans. Pattern Anal. Mach. Intell., 15:448–458, 1993.

A. P. Parikh, O. Täckström, D. Das, and J. Uszkoreit. A decomposable attention model for natural

language inference. In Proc. of EMNLP, 2016. URL https://arxiv.org/abs/1606.01933.

N. Parikh and S. P. Boyd. Proximal Algorithms. Foundations and Trends in Optimization, 2013.

H. Peng, R. Schwartz, S. Thomson, and N. A. Smith. Rational recurrences. In Proc. of EMNLP,

2018. URL http://aclweb.org/anthology/D18-1152.

J. Pennington, R. Socher, and C. Manning. GloVe: Global vectors for word representation. In

Proc. of EMNLP, 2014.

M. Peters, S. Ruder, and N. A. Smith. To tune or not to tune? Adapting pretrained rep-

resentations to diverse tasks. In Proc. of the RepL4NLP Workshop at ACL, 2019. URL

https://arxiv.org/abs/1903.05987.

86

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. S. Zettlemoyer.

Deep contextualized word representations. In Proc. of NAACL, 2018.

H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. Efficient neural architecture search via

parameter sharing. In Proc. of ICML, 2018.

J. Phang, T. Févry, and S. R. Bowman. Sentence encoders on stilts: Supplementary training on

intermediate labeled-data tasks. arXiv:1811.01088, 2018.

J. Pineau. Machine learning reproducibility checklist. https://www.cs.mcgill.ca/~jpineau/

ReproducibilityChecklist.pdf, 2019. Accessed: 2019-5-14.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are

unsupervised multitask learners. OpenAI Blog, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.

Liu. Exploring the limits of transfer learning with a unified text-to-text transformer, 2019.

arXiv:1910.10683.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ questions for machine

comprehension of text. In Proc. of EMNLP, 2016. doi: 10.18653/v1/D16-1264.

V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Rastegari. What’s hidden in a

randomly weighted neural network? In Proc. of CVPR, 2020.

B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do CIFAR-10 classifiers generalize to

CIFAR-10?, 2019a. URL https://arxiv.org/abs/1806.00451. arXiv:1806.00451.

B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do ImageNet classifiers generalize to

ImageNet? In Proc. of ICML, 2019b. URL https://arxiv.org/abs/1902.10811.

S. J. Reddi, S. Sra, B. Póczos, and A. J. Smola. Proximal stochastic methods for nonsmooth

nonconvex finite-sum optimization. In Proc. of NeurIPS, 2016.

N. Reimers and I. Gurevych. Reporting score distributions makes a difference: Performance

study of LSTM-networks for sequence tagging. In Proc. of EMNLP, 2017. URL https:

//arxiv.org/abs/1707.09861.

A. Rogers. How the transformers broke NLP leaderboards. https://hackingsemantics.xyz/

2019/leaderboards/, 2019. Accessed: 2019-8-29.

D. Ron, Y. Singer, and N. Tishby. Learning probabilistic automata with variable memory length.

In Proc. of COLT, 1994.

C. Rosset. Turing-NLG: A 17-billion-parameter language model by microsoft. Microsoft Blog,

2019.

87

A. M. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Y. Ng. On random weights and

unsupervised feature learning. In Proc. of ICML, 2011.

A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of

learning in deep linear neural networks. In Proc. of ICLR, 2014.

S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini. Group sparse regularization for

deep neural networks. Neurocomputing, 241, 2017.

D. Schwartz, M. Toneva, and L. Wehbe. Inducing brain-relevant bias in natural language

processing models. In Proc. of NeurIPS, 2019a.

R. Schwartz, O. Abend, R. Reichart, and A. Rappoport. Neutralizing linguistically problematic

annotations in unsupervised dependency parsing evaluation. In Proc. of ACL, 2011. URL

http://www.aclweb.org/anthology/P11-1067.

R. Schwartz, S. Thomson, and N. A. Smith. SoPa: Bridging CNNs, RNNs, and weighted finite-

state machines. In Proc. of ACL, 2018. URL http://aclweb.org/anthology/P18-1028.

R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni. Green AI, 2019b. URL https://arxiv.

org/abs/1907.10597. arXiv:1907.10597.

D. Sculley, J. Snoek, A. Rahimi, and A. Wiltschko. Winner’s curse? On pace, progress, and

empirical rigor. In Proc. of ICLR (Workshop Track), 2018. URL https://openreview.net/

references/pdf?id=HyT0zqkwG.

M. J. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirectional attention flow for machine

comprehension. In Proc. of ICLR, 2017. URL https://arxiv.org/abs/1611.01603.

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algorithms.

In Proc. of Cambridge University Press, 2014.

M. Shoeybi, , M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. Megatron-

LM: Training multi-billion parameter language models using GPU model parallelism, 2019.

arXiv:1909.08053.

Y. Shoham, R. Perrault, E. Brynjolfsson, J. Clark, J. Manyika, J. C. Niebles, T. Lyons,

J. Etchemendy, and Z. Bauer. The AI index 2018 annual report. AI Index Steering Committee,

Human-Centered AI Initiative, Stanford University. Available at http: // cdn. aiindex. org/

2018/ AI\ %20Index\ %202018\ %20Annual\ %20Report. pdf , 202018, 2018.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-

brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.

88

Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484,

2016.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,

D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. Mastering chess and

shogi by self-play with a general reinforcement learning algorithm, 2017a. arXiv:1712.01815.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,

M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel,

and D. Hassabis. Mastering the game of Go without human knowledge. Nature, 550(7676):

354, 2017b.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning

algorithms. In Proc. of Advances in Neural Information Processing Systems (NeurIPS), 2012.

I. M. Sobol’. On the distribution of points in a cube and the approximate evaluation of integrals.

In Proc. of Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 1967.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Recursive deep

models for semantic compositionality over a sentiment treebank. In Proceedings of EMNLP,

2013.

A. Stolcke. Bayesian learning of probabilistic language models. PhD thesis, University of

California, Berkeley, 1994.

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning

in NLP. In Proc. of ACL, 2019.

C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of data in

deep learning era. In Proc. of ICCV, 2017.

K. Swersky, J. Snoek, and R. P. Adams. Freeze-thaw Bayesian optimization. In arXiv:1406.3896,

2014.

M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks.

In Proc. of ICML, 2019. URL https://arxiv.org/pdf/1905.11946v3.pdf.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society: Series B (Methodological), 58(1), 1996.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A multi-task

benchmark and analysis platform for natural language understanding. In Proc. of ICLR, 2018.

URL https://arxiv.org/abs/1804.07461.

89

A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. R.

Bowman. Superglue: A stickier benchmark for general-purpose language understanding

systems. In Proc. of NeuRIPS, 2019a.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A multi-task

benchmark and analysis platform for natural language understanding. In Proc. of ICLR,

2019b.

Z. Wang, C. Li, S. Jegelka, and P. Kohli. Batched high-dimensional bayesian optimization via

structural kernel learning. In Proc. of International Conference on Machine Learning (ICML),

2017.

A. Warstadt, A. Singh, and S. R. Bowman. Neural network acceptability judgments. TACL, 7:

625–641, 2019.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural

networks. In Proc. of NeurIPS, 2016.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,

M. Funtowicz, and J. Brew. Huggingface’s transformers: State-of-the-art natural language

processing. ArXiv, abs/1910.03771, 2019.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. Xlnet: Generalized

autoregressive pretraining for language understanding. In Proc. of NeuRIPS, 2019.

D. Yogatama and N. A. Smith. Bayesian optimization of text representations. In Proc. of

EMNLP, 2015. URL https://arxiv.org/abs/1503.00693.

L. Yuan, J. Liu, and J. Ye. Efficient methods for overlapping group lasso. In Proc. of NeurIPS,

2011.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1), 2006.

R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner, and Y. Choi. Defending

against neural fake news, 2019. arXiv:1905.12616.

C. Zhang, H. Kjellström, and S. Mandt. Determinantal point processes for mini-batch diversifi-

cation. In Proc. of UAI, 2017.

Y. Zhang and B. Wallace. A sensitivity analysis of (and practitioners’ guide to) convolutional

neural networks for sentence classification, 2015. URL https://arxiv.org/abs/1510.03820.

arXiv:1510.03820.

A. Zhigljavsky and A. Zilinskas. Stochastic global optimization, volume 9. Springer Science &

Business Media, 2007.

90

C. Zhu, Y. Cheng, Z. Gan, S. Sun, T. Goldstein, and J. Liu. Freelb: Enhanced adversarial

training for language understanding. arXiv:1909.11764, 2019.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In Proc of ICLR,

2017.

91

Appendix A

A.1 Hyperparameter Search Spaces for Section 2.3.2

Computing infrastructure GeForce GTX 1080 GPU

Number of search trials 50

Search strategy uniform sampling

Best validation accuracy 40.5

Training duration 39 sec

Model implementation http://github.com/allenai/show-your-work

Hyperparameter Search space Best assignment
number of epochs 50 50

patience 10 10

batch size 64 64

embedding GloVe (50 dim) GloVe (50 dim)

encoder ConvNet ConvNet

max filter size uniform-integer [3, 6] 4

number of filters uniform-integer [64, 512] 332

dropout uniform-float [0, 0.5] 0.4

learning rate scheduler reduce on plateau reduce on plateau

learning rate scheduler patience 2 epochs 2 epochs

learning rate scheduler reduction factor 0.5 0.5

learning rate optimizer Adam Adam

learning rate loguniform-float [1e-6, 1e-1] 0.0008

Table A.1: SST (fine-grained) CNN classifier search space and best assignments.

92

Computing Infrastructure 3.1 GHz Intel Core i7 CPU

Number of search trials 50

Search strategy uniform sampling

Best validation accuracy 39.8

Training duration 1.56 seconds

Model implementation http://github.com/allenai/show-your-work

Hyperparameter Search space Best assignment

penalty choice[L1, L2] L2

no. of iter 100 100

solver liblinear liblinear

regularization uniform-float [0, 1] 0.13

n-grams choice[(1, 2), (1, 2, 3), (2, 3)] [1, 2]

stopwords choice[True, False] True

weight choice[tf, tf-idf, binary] binary

tolerance loguniform-float [10e-5, 10e-3] 0.00014

Table A.2: SST (fine-grained) logistic regression search space and best assignments.

93

A.2 Hyperparameter Search Spaces for Section 2.3.3

Computing Infrastructure GeForce GTX 1080 GPU

Number of search trials 50

Search strategy uniform sampling

Best validation accuracy 87.6

Training duration 1624 sec

Model implementation http://github.com/allenai/show-your-work

Hyperparameter Search space Best assignment

number of epochs 50 50

patience 10 10

batch size 64 64

gradient norm uniform-float [5, 10] 9.0

embedding dropout uniform-float [0, 0.5] 0.3

number of pre-encode feedforward layers choice[1, 2, 3] 3

number of pre-encode feedforward hidden dims uniform-integer [64, 512] 232

pre-encode feedforward activation choice[relu, tanh] tanh

pre-encode feedforward dropout uniform-float [0, 0.5] 0.0

encoder hidden size uniform-integer [64, 512] 424

number of encoder layers choice[1, 2, 3] 2

integrator hidden size uniform-integer [64, 512] 337

number of integrator layers choice[1, 2, 3] 3

integrator dropout uniform-float [0, 0.5] 0.1

number of output layers choice[1, 2, 3] 3

output hidden size uniform-integer [64, 512] 384

output dropout uniform-float [0, 0.5] 0.2

output pool sizes uniform-integer [3, 7] 6

learning rate optimizer Adam Adam

learning rate loguniform-float [1e-6, 1e-1] 0.0001

learning rate scheduler reduce on plateau reduce on plateau

learning rate scheduler patience 2 epochs 2 epochs

learning rate scheduler reduction factor 0.5 0.5

Table A.3: SST (binary) BCN GloVe search space and best assignments.

94

Computing Infrastructure GeForce GTX 1080 GPU

Number of search trials 50

Search strategy uniform sampling

Best validation accuracy 91.4

Training duration 6815 sec

Model implementation http://github.com/allenai/show-your-work

Hyperparameter Search space Best assignment

number of epochs 50 50

patience 10 10

batch size 64 64

gradient norm uniform-float [5, 10] 9.0

freeze ELMo True True

embedding dropout uniform-float [0, 0.5] 0.3

number of pre-encode feedforward layers choice[1, 2, 3] 3

number of pre-encode feedforward hidden dims uniform-integer [64, 512] 206

pre-encode feedforward activation choice[relu, tanh] relu

pre-encode feedforward dropout uniform-float [0, 0.5] 0.3

encoder hidden size uniform-integer [64, 512] 93

number of encoder layers choice[1, 2, 3] 1

integrator hidden size uniform-integer [64, 512] 159

number of integrator layers choice[1, 2, 3] 3

integrator dropout uniform-float [0, 0.5] 0.4

number of output layers choice[1, 2, 3] 1

output hidden size uniform-integer [64, 512] 399

output dropout uniform-float [0, 0.5] 0.4

output pool sizes uniform-integer [3, 7] 6

learning rate optimizer Adam Adam

learning rate loguniform-float [1e-6, 1e-1] 0.0008

use integrator output ELMo choice[True, False] True

learning rate scheduler reduce on plateau reduce on plateau

learning rate scheduler patience 2 epochs 2 epochs

learning rate scheduler reduction factor 0.5 0.5

Table A.4: SST (binary) BCN GLoVe + ELMo (frozen) search space and best assignments.

95

Computing Infrastructure NVIDIA Titan Xp GPU

Number of search trials 50

Search strategy uniform sampling

Best validation accuracy 92.2

Training duration 16071 sec

Model implementation http://github.com/allenai/show-your-work

Hyperparameter Search space Best assignment

number of epochs 50 50

patience 10 10

batch size 64 64

gradient norm uniform-float [5, 10] 7.0

freeze ELMo False False

embedding dropout uniform-float [0, 0.5] 0.1

number of pre-encode feedforward layers choice[1, 2, 3] 3

number of pre-encode feedforward hidden dims uniform-integer [64, 512] 285

pre-encode feedforward activation choice[relu, tanh] relu

pre-encode feedforward dropout uniform-float [0, 0.5] 0.3

encoder hidden size uniform-integer [64, 512] 368

number of encoder layers choice[1, 2, 3] 2

integrator hidden size uniform-integer [64, 512] 475

number of integrator layers choice[1, 2, 3] 3

integrator dropout uniform-float [0, 0.5] 0.4

number of output layers choice[1, 2, 3] 3

output hidden size uniform-integer [64, 512] 362

output dropout uniform-float [0, 0.5] 0.4

output pool sizes uniform-integer [3, 7] 5

learning rate optimizer Adam Adam

learning rate loguniform-float [1e-6, 1e-1] 2.1e-5

use integrator output ELMo choice[True, False] True

learning rate scheduler reduce on plateau reduce on plateau

learning rate scheduler patience 2 epochs 2 epochs

learning rate scheduler reduction factor 0.5 0.5

Table A.5: SST (binary) BCN GloVe + ELMo (fine-tuned) search space and best assignments.

96

A.3 Hyperparameter Search Spaces for Section 2.3.4

Computing Infrastructure GeForce GTX 1080 GPU

Number of search trials 100

Search strategy uniform sampling

Best validation accuracy 82.7

Training duration 339 sec

Model implementation http://github.com/allenai/show-your-work

Hyperparameter Search space Best assignment

number of epochs 140 140

patience 20 20

batch size 64 64

gradient clip uniform-float [5, 10] 5.28

embedding projection dim uniform-integer [64, 300] 78

number of attend feedforward layers choice[1, 2, 3] 1

attend feedforward hidden dims uniform-integer [64, 512] 336

attend feedforward activation choice[relu, tanh] tanh

attend feedforward dropout uniform-float [0, 0.5] 0.1

number of compare feedforward layers choice[1, 2, 3] 1

compare feedforward hidden dims uniform-integer [64, 512] 370

compare feedforward activation choice[relu, tanh] relu

compare feedforward dropout uniform-float [0, 0.5] 0.2

number of aggregate feedforward layers choice[1, 2, 3] 2

aggregate feedforward hidden dims uniform-integer [64, 512] 370

aggregate feedforward activation choice[relu, tanh] relu

aggregate feedforward dropout uniform-float [0, 0.5] 0.1

learning rate optimizer Adagrad Adagrad

learning rate loguniform-float [1e-6, 1e-1] 0.009

Table A.6: SciTail DAM search space and best assignments.

97

Computing Infrastructure GeForce GTX 1080 GPU

Number of search trials 100

Search strategy uniform sampling

Best validation accuracy 82.8

Training duration 372 sec

Model implementation http://github.com/allenai/show-your-work

Hyperparameter Search space Best assignment

number of epochs 75 75

patience 5 5

batch size 64 64

encoder hidden size uniform-integer [64, 512] 253

dropout uniform-float [0, 0.5] 0.28

number of encoder layers choice[1, 2, 3] 1

number of projection feedforward layers choice[1, 2, 3] 2

projection feedforward hidden dims uniform-integer [64, 512] 85

projection feedforward activation choice[relu, tanh] relu

number of inference encoder layers choice[1, 2, 3] 1

number of output feedforward layers choice[1, 2, 3] 2

output feedforward hidden dims uniform-integer [64, 512] 432

output feedforward activation choice[relu, tanh] tanh

output feedforward dropout uniform-float [0, 0.5] 0.03

gradient norm uniform-float [5, 10] 7.9

learning rate optimizer Adam Adam

learning rate loguniform-float [1e-6, 1e-1] 0.0004

learning rate scheduler reduce on plateau reduce on plateau

learning rate scheduler patience 0 epochs 0 epochs

learning rate scheduler reduction factor 0.5 0.5

learning rate scheduler mode max max

Table A.7: SciTail ESIM search space and best assignments.

98

Computing Infrastructure GeForce GTX 1080 GPU

Number of search trials 100

Search strategy uniform sampling

Best validation accuracy 81.2

Training duration 137 sec

Model implementation http://github.com/allenai/show-your-work

Hyperparameter Search space Best assignment

number of epochs 140 140

patience 20 20

batch size 64 64

dropout uniform-float [0, 0.5] 0.2

hidden size uniform-integer [64, 512] 167

activation choice[relu, tanh] tanh

number of layers choice[1, 2, 3] 3

gradient norm uniform-float [5, 10] 6.8

learning rate optimizer Adam Adam

learning rate loguniform-float [1e-6, 1e-1] 0.01

learning rate scheduler exponential exponential

learning rate scheduler gamma 0.5 0.5

Table A.8: SciTail n-gram baseline search space and best assignments.

99

Computing Infrastructure GeForce GTX 1080 GPU

Number of search trials 100

Search strategy uniform sampling

Best validation accuracy 81.2

Training duration 1015 sec

Model implementation http://github.com/allenai/show-your-work

Hyperparameter Search space Best assignment

number of epochs 140 140

patience 20 20

batch size 16 16

embedding projection dim uniform-integer [64, 300] 100

edge embedding size uniform-integer [64, 512] 204

premise encoder hidden size uniform-integer [64, 512] 234

number of premise encoder layers choice[1, 2, 3] 2

premise encoder is bidirectional choice[True, False] True

number of phrase probability layers choice[1, 2, 3] 2

phrase probability hidden dims uniform-integer [64, 512] 268

phrase probability dropout uniform-float [0, 0.5] 0.2

phrase probability activation choice[tanh, relu] tanh

number of edge probability layers choice[1, 2, 3] 1

edge probability dropout uniform-float [0, 0.5] 0.2

edge probability activation choice[tanh, relu] tanh

gradient norm uniform-float [5, 10] 7.0

learning rate optimizer Adam Adam

learning rate loguniform-float [1e-6, 1e-1] 0.0006

learning rate scheduler exponential exponential

learning rate scheduler gamma 0.5 0.5

Table A.9: SciTail DGEM search space and best assignments.

100

Computing Infrastructure GeForce GTX 1080 GPU

Number of search trials 128

Search strategy uniform sampling

Best validation EM 68.2

Training duration 31617 sec

Model implementation http://github.com/allenai/show-your-work

Hyperparameter Search space Best assignment

number of epochs 20 20

patience 10 10

batch size 16 16

token embedding GloVe (100 dim) GloVe (100 dim)

gradient norm uniform-float [5, 10] 6.5

dropout uniform-float [0, 0.5] 0.46

character embedding dim uniform-integer [16, 64] 43

max character filter size uniform-integer [3, 6] 3

number of character filters uniform-integer [64, 512] 33

character embedding dropout uniform-float [0, 0.5] 0.15

number of highway layers choice[1, 2, 3] 3

phrase layer hidden size uniform-integer [64, 512] 122

number of phrase layers choice[1, 2, 3] 1

phrase layer dropout uniform-float [0, 0.5] 0.46

modeling layer hidden size uniform-integer [64, 512] 423

number of modeling layers choice[1, 2, 3] 3

modeling layer dropout uniform-float [0, 0.5] 0.32

span end encoder hidden size uniform-integer [64, 512] 138

span end encoder number of layers choice[1, 2, 3] 1

span end encoder dropout uniform-float [0, 0.5] 0.03

learning rate optimizer Adam Adam

learning rate loguniform-float [1e-6, 1e-1] 0.00056

Adam β1 uniform-float [0.9, 1.0] 0.95

Adam β2 uniform-float [0.9, 1.0] 0.93

learning rate scheduler reduce on plateau reduce on plateau

learning rate scheduler patience 2 epochs 2 epochs

learning rate scheduler reduction factor 0.5 0.5

learning rate scheduler mode max max

Table A.10: SQuAD BiDAF search space and best assignments.

101

