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Abstract

Training data acquisition for enabling supervised learning algorithms is an expensive
process. Current Active learning (AL) approaches to limit such costs by selectively
acquiring supervision have been studied only in the context of single-tasks.
Current state-of-art AL strategies proposed for multi-task scenarios myopically
focus on improving each of the concerned tasks in isolation. Leveraging inter-
task relationships to identify training instances that are most beneficial for jointly
learning a set of tasks is an open challenge. In this regard, we present the
first investigation of approaches to combine the strengths of Active learning and
Multi-task learning (MTL) to reduce training data acquisition costs for supervised
learning applications such as multi-labeled classification, hierarchical classification,
adaptive filtering and collaborative filtering. AL and MTL have complementary
strengths. AL attempts to minimize supervision costs by soliciting supervision
on instances which are deemed most useful for training. On the other hand,
MTL attempts to deal with scarce training data by jointly learning several related
tasks. Our approach leverages inter-task relationships to identify a reference task
and corresponding unlabeled instances that should receive supervision to rapidly
improve the overall multi-task system. We develop our ideas in the context of
a special class of MTL frameworks that model inter-task relationships through
shared Bayesian priors. We develop a novel paradigm called Circle of Influence that
estimates the potential impact of an unlabeled instance at several levels of MTL
structure: model of the reference task, the shared model and the models of other
related tasks. We empirically demonstrate the superiority of our approach over
conventional state-of-the-art AL approaches in the context of Multi-Task Adaptive
Filtering.

We further investigate MTAL in the context of heterogeneous tasks, such as jointly
learning classification and regression models, where each kind of task can have
different supervision costs. In this regard, we present a novel topic-modeling based
approach for jointly learning Collaborative filtering and Genre-classification. In the
context of this model, we present Transferable Active Learning, a novel strategy
that compares potential candidates for supervision by estimating their impact on
the underlying topic model. Our experiments on benchmark datasets demonstrate
the superior performance of the proposed strategy over conventional approaches.

We also describe a novel Multi-Task Active Learning strategy for the Hierarchical
Classification problem. We leverage the knowledge about parent-child relation-
ships to identify instances for learning that can potentially lead to predictions
consistent with the given hierarchical structure. We also leverage the parent-child
regularization framework to identify influential nodes. Our Active Learning strategy
preferentially selects more instances for such influential nodes with the expectation
of achieving cascading effects on their descendants. Our experiments on benchmark
hierarchical classification datasets demonstrate the superior performance of our
approach over conventional single-task approaches.

Finally, for some multi-task scenarios, the oracle maybe unable to provide
supervision for certain instance-task pairs. We present a novel strategy to model the
oracle’s expertise in providing per-task supervision to avoid requests for supervision
that the oracle cannot provide. We demonstrate the effectiveness of our approach
in significantly reducing the number of failed Active Learning label requests in the
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context of Collaborative Filtering, while still sustaining better performance over
conventional state-of-the-art approaches.
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1

Introduction

Training data acquisition for supervised machine learning algorithms, such as those

for classification, regression, rank-learning, collaborative filtering and adaptive filtering,

can be very expensive. Consequently, it is crucial to minimize the amount of super-

vision required for learning such tasks, without significantly sacrificing generalization

performance of the learnt models. There can be two ways to address this challenge:

either deal with training data scarcity by cleverly incorporating additional stimuli or

be selective about acquiring supervision on data that is most beneficial for learning.

Some of the popular approaches that take the first route of dealing with data-scarcity

are: Semi-supervised learning approaches such as Co-training [Blum and Mitchell, 1998]

or Transductive learning [Joachims, 1999] additionally utilize the (usually) abundant

unlabeled data; Multi-task learning [Caruana, 1997; Jian Zhang and Yang, 2005]

approaches jointly learn several related tasks and utilize inter-task relationships for

added supervision to each of the tasks with scarce data. Active learning [Settles, 2009]

approaches take the alternate route of being choosy and solicit supervision for a few

selected unlabeled instances that are deemed most beneficial for learning. There is also

active research in combining strengths of some of these approaches: semi-supervised +

multi-task learning [Ando et al., 2005; Liu et al., 2009], or semi-supervised + active
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learning [Muslea et al., 2002; Tur et al., 2005]. However, so far, there has been no

thorough investigation of approaches that combine the strengths of Active learning and

Multi-task learning. It should be noted that the strengths of Active learning and Multi-

task learning are complementary. The former identifies the best instances to learn from

and the latter attempts to use available instances most effectively by leveraging inter-task

relationships. Consequently, there’s a huge opportunity for reducing supervision costs by

actively selecting instances that are most useful for learning several tasks simultaneously

by leveraging inter-task relationships. Through this thesis, we propose to address this

gap.

We motivate the challenges involved in achieving this goal through examples of important

machine learning applications where Multi-task learning approaches have demonstrated

significant success in outperforming approaches that learn such tasks in isolation.

• Multi-labeled classification (MLC): The MLC [Tsoumakas and Katakis, 2007; Yang

and Gopal, 2012] scenario deals with classifying instances that may belong to

several categories simultaneously. There are several open challenges in minimizing

the supervision required for MLC. How to choose instances that are beneficial for

simultaneously improving performance on several categories? To further reduce

supervision costs, which categories should get additional training instances so that

performance on other categories is improved as well? How can we leverage inter-

category relationships to achieve these goals?

• Hierarchical classification (HC): HC [Lewis et al., 2004b] is an extension of MLC

in which the categories are arranged in a pre-defined hierarchy. In addition to

the challenges mentioned above, how to utilize the structural constraints, such as

parent-child and sibling relationships, to select the most useful instances for chosen

categories such that overall HC performance is improved? How to jointly model

such output constrained tasks for enabling further savings?
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• Adaptive Filtering (AF): AF [Robertson and Soboroff, 2002] systems monitor

a stream of items to discard items that are irrelevant to a user’s information

need, e.g. spam or news filtering. Learning is based on user feedback over only

the delivered instances, not the discarded ones. Since several users might have

similar requirements, how to deliver items with a three-fold objective: satisfy the

user’s information need, improve future performance for a user based on feedback

on delivered items, improve future peformance for other similar users based on

feedback received for from one user.

• Collaborative Filtering (CF): CF [Breese et al., 1998] approaches recommend items

to users based on the similarity of their interests with other users. Learning is based

on item ratings provided by the users. By soliciting ratings for a few chosen items,

how to rapidly understand a user’s interests as well as simultaneously improve

recommendations for other users with similar interests? In doing so, it is crucial

to model the user’s propensity of rating a chosen item, as the user may not provide

ratings for items that she doesn’t have experience with.

Most of the current Active learning approaches desgined for these and other multi-task

applications attempt to select instances that will improve a single task in isolation [Esuli

and Sebastiani, 2009]. Other Active learning approaches that do select instances

based on their benefit to several tasks, do so by ignoring the implicit inter-task

relationships [Reichart et al., 2008; Singh et al., 2009; Yang et al., 2009a], leading to

sub-optimal savings. Most of these Active learning approaches also require complete

labelings for the selected instance, i.e. supervision about all the tasks for the chosen

instance. This might lead to redundancy and wastful supervision if several of the tasks

are related and obtaining labels about some of them conveys similar information. A few

Active learning approaches enable partial labeling by choosing the most useful task to

label, but in doing so, they ignore inter-task relationships [Roth and Small, 2006]. When

explicit inter-task constraints are available, for example in hierarchical classification,
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current Active learning approaches do not consider joint learning of the constrained

tasks to enable further savings [Zhang, 2010]. The oracle’s expertise to supervise items

has been studied as part of a recent work in Proactive Learning [Donmez and Carbonell,

2008a], albeit in the single-task setting.

As a solution to these problems, we propose a Multi-Task Active Learning (MTAL)

framework, where we investigate solutions to the following challenges

1. MTAL: How to selectively acquire training data that will potentially benefit

several tasks simultaneously? In Chapter 3, we describe our framework for a class

of Bayesian models that enable Multi-Task learning through shared priors among

underlying tasks. We then apply the framework to the practically important

problem of Multi-Task Adaptive Filtering and present empirical evidence for its

effectiveness on benchmark datasets.

2. MTAL for Heterogeneous Tasks: How to selectively acquire training data that

will potentially benefit diverse types of tasks, such as classification and regression

simultaneously. In Chapter 4, we present our topic-modeling approach for jointly

learning heterogeneous tasks and present a surrogate Active Learning strategy,

called Transferable Active Learning that estimates the impact of acquiring diverse

kinds of supervision on the underlying topic model. We implement our model on

the example problem of jointly learning Genre Classification and Collaborative

Filtering and apply the novel Active Learning strategy for the cold-start problem,

i.e. recommending and classifying new or unrated items.

3. MTAL for Structured Tasks: How to selectively acquire training data by

leveraging known structured relationships among tasks to simultaneously improve

them? In Chapter 5, we present a hierarchically regularized Bayesian framework

for hierarchical classification. Then we describe two strategies for Active Learning

on the proposed Multi-Task learning model. The first strategy chooses to acquire
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supervision over instances that are expected to improve the consistency of the

parent-child predictions. The second strategy provides higher preference in

acquiring supervision at nodes that are deemed to be more influential over their

descendants. Combining these two strategies with the popular uncertainty-based

Active learning strategy leads to superior performance over single-task Active

learning.

4. Oracle-sensitive MTAL: How to model per-task training data accessibility to

avoid soliciting supervision for instance-task pairs that are beyond the oracle’s

area of expertise? In Chapter 6, we present a novel strategy for estimating the

propensity of the oracle to provide supervision for certain instance-task pairs.

Utilizing this score in conjunction with the popular Bayesian Active Learning

approach for Collaborative Filtering, we see remarkable decrease in the amount of

failed active queries, while still sustaining improvement over popular baselines on

benchmark datasets.

In the rest of this chapter, we present the formal problem description and notation used

in this thesis. Later, in Chapter 2, we review the current state of art in Active Learning,

Multi-Task Learning and Multi-Task Active Learning, followed by a brief survey of

the applications relevant to this thesis, namely, Hierarchical Classification, Adaptive

Filtering and Collaborative Filtering. As outlined above, the major contributions of this

thesis form the content of Chapters 3 through 6. Finally, we conclude the dissertation

with a summary of the major contributions, followed by directions for future work.
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2

Background

Multi-Task Active Learning (MTAL), as motivated in Chapter 1, is a novel research

area. Most work in Active Learning has focused on selecting training instances that

will improve a single task, while most work in Multi-Task learning has focused on

learning interdependent task models. To clearly understand MTAL, it is therefore

crucial to understand the strengths and limitations of various approaches in the two

related domains. Here, we review the relevant work in the areas of Active Learning and

Multi-Task Learning. We also provide a general overview of concepts in applications

that we will be using to demonstrate the strengths of using MTAL.

2.1 Active Learning

Active Learning (AL) has been an actively researched field for about two decades [Seung

et al., 1992] 1. The primary goal in AL is to minimize the amount of training instances

required for learning a task by soliciting labels for only those unlabeled instances which

are most beneficial for learning a task. Several approaches have been developed for

achieving this goal. Risk Minimization-based AL approaches choose instances that
1Settles [Settles, 2009] maintains a regularly updated comprehensive survey of important work in

AL
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maximize the expected reduction in future generalization error of the learnt model if

those instances were added to the training set. One of the earliest risk-minimization

approaches [Cohn et al., 1995] re-trains the classifier over all possible labelings of each

instance in the unlabeled set (individually) and compute the expected risk reduction

to select the instance that leads to maximal reduction. Re-training a classifier for each

instance in the unlabeled set can be computationally infeasible for real applications.

Consequently, [Roy and Mccallum, 2001] proposed a Monte Carlo estimation of the

error reduction and suggested an efficient incremental training procedure for Naive Bayes

classifier to overcome the re-training costs. Consequently, the later similar approaches

are also known as Expected Error Reduction approaches. [Donmez and Carbonell, 2008b]

demonstrated the effectiveness of using a sampling estimation of the error reduction to

avoid re-training the model for each instance in the unlabeled pool. Risk-minimization

approaches to AL have been successfully applied to several other different classifiers

such as Gaussian Random Fields [Zhu et al., 2003] and Logistic Regression [Guo and

Greiner, 2007]. Although most work in this area has been developed in the context of

classification, risk minimization approaches can also be defined for other applications

that involve minimizing error in the context of other performance measures such as F1,

Precision, Recall, and Mean Absolute Error (MAE).

Other AL approaches do not try to directly minimize the future expected risk. Instead,

these approaches are based on the idea that instances meeting certain criteria will

probably achieve the goal of rapidly improving the system nevertheless. Uncertainty-

based sampling approaches try to select instances that the current learnt model is most

uncertain about. The uncertainty is usually defined as the inability of the classifier

to confidently classify an instance into a class. One of the first uncertainty-based

approaches [Lewis and Gale, 1994] was applied in the context of Naive Bayes classifiers

to select instances that lie on the decision boundary of the classifer. Similar strategies

have been developed in the context of other classifiers such as Support Vector Machines
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(SVM) [Tong and Koller, 2000] and Decision Trees [Abe and Mamitsuka, 1998; Saar-

tsechansky and Provost, 2004]. In the context of SVMs, it has been shown that selecting

instances close to the decision boundary amounts to selecting instances that lead to

maximal reduction in the version space [Tong and Koller, 2000], i.e. the space of

hypotheses consistent with the available training instances. This is desirable as the

search space for the learnt model is significantly reduced thereby ensuring that the

learnt model is probably one of the best suitable models for the task. There have also

been heterogeneous approaches in which the instances are selected based on uncertainty

on one classifier and added as training data to another kind of classifier after obtaining

the required labels. For example, [Lewis and Catlett, 1994] select instances using a

Naive Bayes classifier and add to the training set of a C4.5 decision tree classifier.

Among these, the earliest approach is the query-by-Committee [Freund et al., 1997;

Seung et al., 1992] approach, where the uncertainty of an instance is measured as the

disagreement among a committee of diverse classifiers. Several approaches have been

studied for ensuring diversity of the committee members [Melville and Mooney, 2004;

Sarawagi and Bhamidipaty, 2002].

[Mccallum and Nigam, 1998] show that uncertainty-based sampling is not robust

against outliers, and there is no guarantee that the trained classifier will lead to

better generalization performance. There have also been attempts at using ensemble

of classifiers to determine the difficulty of classifying an instance and choosing the most

difficult such instances. An alternative is the density-based sampling approach and

its variants. By choosing cluster centroids of the unlabeled data, such approaches try

to make active selection robust against outliers, and also ensure that enough training

instances are available in the most crucial regions of the feature space that are truly

representative of the unseen instances. For example, the approach by [Xu et al., 2003]

selects cluster centroids of instances near the boundary of the classifier. McCallum

and Nigam [Mccallum and Nigam, 1998] take a different approach of Density-weighted
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uncertainty sampling and use the available training set to initialize clusters of unlabeled

examples, and select uncertain examples in regions of higher density. Donmez and

Carbonell [Donmez et al., 2007] demonstrate that uncertainty-based approaches perform

particularly poorly when the available training set is tiny and density-based approaches

are not effective with larger training set sizes. They instead propose a Dual Strategy

for Active Learning (DUAL), a combination stratey which starts with a density-based

approach and switches to an uncertainty-based approach after reaching certain criteria.

[Tong and Koller, 2001a] proposed a Bayesian Active Learning approach for parameter

learning in probabilistic graphical models. Intuitively, this approach tries to identify

instances that when added to the training set will lead the learnt model rapidly towards

the true model (parameters). For comparing the learnt model and the expected true

model, KL-Divergence between the two models is used as a loss function to be minimized.

These basic AL approaches have several application-specific extensions in diverse

domains such as adaptive filtering, collaborative filtering, natural language processing,

sensor network deployment, and rank learning. We will be reviewing relevant important

extensions in the Section 2.4. Additionally, AL approaches have also been developed

for special scenarios such as structured output prediction, for example, sequences and

trees [Settles and Craven, 2008]. Another special scenario, active feature labeling, i.e.

directly soliciting categories to synthetic documents containing single chosen feature and

adding such documents to the training set [Godbole et al., 2004]. Further savings, in

terms of data acquisition costs, is due to Active feature-value acquisition, i.e. soliciting

feature-values for only the most salient features [Melville et al., 2004]. Additionally, there

has been work on active learning with variable annotation costs [Kapoor et al., 2007;

Settles et al., 2008], and taking into account the various characteristics of labeling oracles,

such as noisiness, expertise, reliability, costs and reluctance [Donmez and Carbonell,

2008a; Donmez et al., 2009].
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2.2 Multi-Task Learning

Multi-Task Learning (MTL) has been an active research area in machine learning for

more than a decade [Caruana, 1997]. Several learning tasks are related and MTL

approaches attempt to leverage such inter-task relationships to enable information

sharing among tasks. Such information sharing is particularly useful when each of

the individual tasks have limited training data available. Popular MTL approaches

have empirically demonstrated significant performance improvements by simultaneously

learning related tasks, as compared to learning each in isolation [Jebara, 2004;

Jian Zhang and Yang, 2005; Xue et al., 2007; Yu et al., 2005]. Some approaches have

also theoretically emphasized the effectiveness of MTL [Ando et al., 2005; Baxter, 2000;

Ben-david and Schuller, 2003].

Discovering the relatedness of the tasks, and then utilizing it to share information

is the key goal in MTL. Most MTL approaches differ in their representation of

the task-relationships. The earliest success with MTL was demonstrated in Neural

Networks [Caruana, 1997; Silver and Mercer, 2001; Thrun, 1996] where the multiple

tasks shared hidden layer nodes. Among the frequentist approaches, the earliest

approach applied shrinkage methods to multiple linear regression tasks [Breiman and

Friedman, 1997]. A similar recent approach [Ando et al., 2005] additionally harnesses

unlabeled data for learning predictive structures for multiple tasks jointly. Seeger

et al. [2004] represented task relationships as linear mixtures of Gaussian Processes

for multiple response prediction in classification and regression. Some of the popular

approaches enable information sharing through shared Bayesian priors among tasks.

The intuition here is that related tasks will have somewhat close parameters and a

common prior or regularizer ensures this. Among the first works in applying shared

Bayesian priors to MTL also discovered bounds on the amount of information required

to learn a task when it is learnt simultaneously with other tasks. Since tasks have

10



different levels of relationships among themselves, more flexible alternatives have been

proposed that create hierarchies of common priors. Yu et al. [2005] applied a

hierarchical Bayesian model to Gaussian Processes (GP) where each task is a linear

model. This approach was partly inspired by earlier work on using GP covariance

for representing inter-task relationships [Lawrence and Platt, 2004; Minka and Picard,

1997]. A similar approach using Dirichlet Processes was developed for multiple logistic

regression classifiers [Xue et al., 2007]. A more generic and comprehensive hierarchical

Bayesian approach allows several multi-task scenarios such as independent tasks, noisy

tasks, cluster of tasks, tasks with sparse parameters, duplicated tasks and evolving

tasks [Zhang et al., 2008]. This approach constructs the task-specific parameters as a

linear combination of a shared and local model, with the local model becoming more

dominant as more task-specific evidence is observed for a particular task. The different

variants are generated by suitably modifying a linear mixing matrix that combines shared

and local models. Another set of approaches use shared regularizers to achieve the

same effect as shared Bayesian priors among tasks [Argyriou et al., 2008; Jacob and

Bach, 2008; Micchelli and Pontil, 2004]. One such regularization approach has been

developed for MTL using Kernel methods [Evgeniou et al., 2005]. A newer regularization

approach [Agarwal et al., 2010] for enabling task-relatedness is based on the idea of

manifolds whereby it is assumed that the parameters of related-tasks are drawn from

the same low-dimensional manifold, an idea derived from manifold learning, a non-

linear dimensionality reduction technique. Recently, there has also been interest in

heterogeneous MTL for simultaneously modeling different kinds of tasks [Yang et al.,

2009b].

2.3 Multi-Task Active Learning: A new field

Active learning has been studied in the context of multiple tasks but never when those

tasks are learnt jointly using Multi-task learning approaches outlined in Section 2.2. It is
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unclear how learning the tasks jointly can benefit Active learning algorithms by inferring

and utilizing inter-task relationships. Most of the current Active learning approaches

desgined for scenarios such as multi-labeled classification attempt to select instances

that will improve a single task in isolation [Esuli and Sebastiani, 2009]. Other Active

learning approaches that do select instances based on their benefit to several tasks, do

so by ignoring the implicit inter-task relationships [Reichart et al., 2008; Singh et al.,

2009; Yang et al., 2009a], leading to sub-optimal savings.

As another related direction, there has been recent work Yang et al. [2012] in

understanding the theoretical complexity of Active learning in the Transfer Learning

setting. Their work studies the asymptotics of the number of labeled examples that are

required to learn a sequence of target tasks, to gauge the benefit of transfer learning

in reducing the number of labeled examples required. To explain the label complexity,

they use self-verifying Active learning algorithm, which is a single-task Active learning

strategy that is not specifically formulated for learning from multiple tasks by explicitly

estimating the benefits across several tasks.

Task-selection as an Active learning problem has been studied in recent years. In the

context of linguistic annotations, [Reichart et al., 2008] use a simple strategy of selecting

tasks in a round-robin fashion and then choosing the best instances to improve the

chosen task. The approach by [Roth and Small, 2006] selects the most uncertain task

to improve and does not take into account the benefit of adding supervision to a task

on other similar or related tasks. When explicit inter-task constraints are available, for

example in hierarchical classification, the approach by [Zhang, 2010], scores the instances

for every task in isolation and then combines these scores using the inter-task constraints

to estimate the overall benefit of labeling an instance. Their approach seems to be the

most closest approximation of the Multi-task Active learning setting, however, they do

not use joint-learning of tasks for further reduction in supervision costs.
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The oracle’s expertise to supervise items has been studied as part of a recent work in

Proactive Learning [Donmez and Carbonell, 2008a], albeit in the single-task setting.

2.4 Relevant Applications

We plan to demonstrate the effectiveness of our approaches on several important machine

learning applications. In this section, we describe some of the application-specific

approaches in additional details as groundwork for laying out our ideas in later sections.

We also review the current state-of-art in applying AL approaches to these domains.

2.4.1 Hierarchical Classification

Hierarchical Classification (HC) [Lewis et al., 2004b] applications are manifested in

fields as diverse as large-scale web-page taxonomies and structural protein classification

ontologies. The hierarchical classification scenario is a subset of the multi-class

classification problem where the outputs are constrained according to a pre-defined

explicit hierarchy. In this case, it is wasteful to create all-pairs of one-vs-one or one-vs-

rest classifiers. An instance is now to be classified only among the sibling nodes at a

level of the hierarchy, thereafter, among the children of the selected class, descending

down to a leaf node in this manner.

The popular strategy [Liu et al., 2005a] for HC uses a battery of hierarchically arranged

classifiers such as the Logistic Regression (LR) classifiers in a Hierarchical Divide and

Conquer (HDC) setup. An alternative similar approach [Cesa-bianchi and Zaniboni,

2006] uses a battery of Support Vector Machine (SVM) classifiers. For consistency with

the later discussion, we will focus on the Bayesian Logistic Regression (BLR) model

applied at every node of the hierarchy. Specifically, given a training set Ln at a node n

of the hierarchy, the decision function can be defined as:
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P (yn|x,Ln) =

∫
wn

P (yn|x,wn)P (wn|Ln)dwn (1)

In the above Equation, P (wn|Ln) is a shorthand for P (wn|Ln, µ,Σ), as the parameter

wn is drawn from a prior Gaussian distribution wn ∼ N (µ,Σ) for regularization. And,

P (yn = 1|x,wn) = σ(wT
nx) =

1

1 + e−wT
nx

(2)

After successfully classifying the instance at node n, the instance is passed on to the

descendant classifiers (children) ϕ(n) of node n for further fine-grained classification.

The training set Ln′ for a descendant classifier n′ is a subset of the parent node’s training

set Ln′ ⊆ Ln, with only positive instances from the parent set being passed along and

the negative instances follow alternative trajectories.

2.4.1.1 Active Learning for Hierarchical Classification

Active Learning has been extensively studied for flat-classification tasks but not for

hierarchical classification tasks. As a more relevant work, [Zhang, 2010] demonstrate

an approach that utilizes the inter-task output constraints to better identify instances

that can lead to improvements in several tasks. Specifically, they compute the reward

of labeling an instance for each task in isolation and then combine these task-specific

scores as an expectation over possible paths that the output can take over the constrained

network of outputs. However, they do not jointly learn these tasks and consequently, the

savings might be sub-optimal due to lack of information sharing among learnt models

for the tasks.

An similar alternative simple approach might be devised by extending the popular

uncertainty-based approach by considering the hierarchical constraints. For probabilistic

classifiers, the popular uncertainty-based approach uses the classification entropy as an

AL scoring function. The higher the entropy, the more confusing the instance is for
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the current classifier, and hence the classifier may benefit from obtaining the label

for such an instance. In the case of hierarchical classification, the instance will be

passed through the hierarchical structure to several classifiers. Thus, we can esimate

the expected classification entropy of an instance as follows:

H(x, n) =

 ∑
m∈ϕ(n)

pm log pm

+

 ∑
m∈ϕ(n)

pmH(x,m)

 (3)

where pm = P (y = m|x,wn). Applied recursively, starting at the root of the hierarchy,

Equation 3 will compute the local-classification entropy combined with the expected

entropy for each of the descendants, leading to an overall uncertainty score for the

instance x.

2.4.2 Adaptive Filtering

Adaptive Filtering (AF) [Robertson and Soboroff, 2002] systems monitor a stream of

documents to filter out documents that are relevant to the particular task or user. For

example, a stock analyst would like to filter out all the news about stocks in his portfolio,

while a technology entrepreneur might be interested in news about latest technology

startups. Each of these users can be considered a task from the AF system’s perspective.

AF systems model user interests based on the initial information request (e.g. a query)

presented by the user, and the subsequent relevance feedback provided by the user for

the results presented to the user. For example, one popular AF approach involves the

use of Logistic Regression classifier [Jaakkola and Jordan, 1996] to classify documents

into relevant and non-relevant categories for that particular user. The relevance feedback

received from the user is used to supplement the training data to retrain the classifier

for future predictions.

We briefly describe a popular representative AF approach based on the Logistic

Regression (LR) classifier. The LR classifier estimates relevance of a document using
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the sigmoid function σ(x) = 1
1+e−x as follows:

P (y = 1|x,w) = σ(wTx) =
1

1 + e−wTx
(4)

In the above equation, x is a feature vector representing a document, and w is the weight

vector of regression coefficients. w is usually fit by maximum likelihood estimation on

the available relevant and non-relevant training documents L for the task.

For our purposes, for consistency among approaches, we will be focusing on the Bayesian

Logistic Regression variant. In the Bayesian setting, the parameters w are usually drawn

from a diffuse Gaussian prior distribution w ∼ N (µ,Σ), to ensure regularization. For

a fully Bayesian treatment, instead of using a point estimate of the parameters w, one

may integrate over the posterior distribution of w to obtain a Bayesian estimate of

P (y = 1|x,L)

P (y = 1|x,L) =

∫
w
P (y = 1|x,w)P (w|L)dw (5)

In the Adaptive Filtering setting, the performance of a system is usually measured in

terms of the utility of documents delivered by that system. For example, in the TREC

Filtering track, one popular utility metric in the TREC AF community is T9U = ψ1R+

ψ0N , where R and N are the number of delivered results the user considered relevant

and non-relevant respectively. ψ1 and ψ0 are the benefit achieved and loss incurred,

by the user due to reading the relevant and non-relevant documents respectively. For

TREC-9, ψ1 = 2 and ψ0 = −1.

From the system perspective, the expected utility of delivering a document can be

computed as:

U(x|L) =
∑

y∈{0,1}

ψyP (y|x,L) (6)

Instances with U(x) > t are delivered, where t is the dissemination threshold learnt via

cross-validation or set to 0 [Zhang et al., 2003].
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2.4.2.1 Active Learning for Adaptive Filtering

[Zhang et al., 2003] devised a strategy called exploration and exploitation to perform

Active Adaptive Filtering. The exploitation component is a passive AF strategy that

delivers an item if Um(xm,•|L) > 0. The exploration component is an Active Learning

component based on a metric called Utility Divergence. Utility Divergence computes

the difference between the expected utility of a hypothetical true model Θ∗ and the

model based on expected feedback Θ|(xm,•, ym,•) and instances are scored based on

their potential to reduce the gap between utility of the true model and utility of the

current model.

2.4.3 Collaborative Filtering

Collaborative Filtering(CF) [Breese et al., 1998; Hofmann, 2003; Hofmann and Puzicha,

1999; Si and Jin, 2003] has now become a popular and important technique for

finding user-relevant information, e.g. movies, books and music, based on similarity of

interests between groups of users. CF approaches identify interest groups of users and

recommend movies based on memberships of users to different interest groups. Current

CF approaches can be divided into two major categories, model-based and memory-

based (also known as instance-based or lazy learning). Memory-based techniques

are similar to K-nearest neighbor algorithms as learning is delayed till the prediction

phase. The model-based approaches make the intuitive assumption that users/items

can be grouped based on their interests, and all model-based techniques apply different

techniques to discover these latent or hidden interest-groups. Some of the popular model-

based approaches are Aspect Model [Hofmann, 2003; Hofmann and Puzicha, 1999],

Flexible Mixture Model [Si and Jin, 2003], and the Multiple Cause Vector Quantization

model [Boutilier et al., 2003] and most recently, matrix factorization [Salakhutdinov

and Mnih, 2008a] approaches. Collaborative filtering has also been demonstrated as an

intermediate step for other application, for example for generating personalized search
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results in information retrieval [Harpale et al., 2010].

Aspect Model [Hofmann, 2003; Hofmann and Puzicha, 1999] is a probabilistic latent

semantic model in which users are considered to be a mixture of multiple interests or

aspects. Thus each user m ∈ M has a probabilistic membership in each of the aspects,

z ∈ Z. Furthermore, users in the same interest groups have same movie-rating patterns,

thus, users and items (e.g. movies x ∈ X) are independent from each other given the

latent class variable, z. Each item x can be rated on a finite scale (e.g. Y = {1, 2, . . . , 5}),

with the rating y ∈ Y. Thus the probability of each tuple in the dataset can be computed

as follows:

P (y|x,m) =
∑
z∈Z

p(y|x, z)P (z|m) (7)

Equation 7 consists of two parts, p(y|x, z) and P (z|m). It can be observed that the

first term p(y|x, z) does not depend on the user and represents the group-specific model.

The global-model consists of such group-specific models. The second term P (z|m) is

the user-personalization term. The user-model θm consists of such user-personalization

terms i.e. θm = {θmz : θmz = P (z|m), ∀z ∈ Z}.

The Flexible Mixture Model (FMM) Si and Jin [2003], is a modified version of the

Aspect Model in which there are two layers of latent aspects {zu, zm}, one grouping the

users with similar interests (zm) and one grouping the items with similar patrons (zx).

The probability of a tuple (r, x,m), is factored similar to the Aspect Model:

P (r, x,m) =
∑
zm,zx

P (zm)P (zx)P (u|zm)P (m|zx)P (r|zm, zx) (8)

Both the Aspect Model and the Flexible Mixture Model are probabilistic clustering

models and are fit to the data using Expectation Maximization (EM) [Dempster et al.,

1977; Hofmann, 2003].
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Users generally follow different distributions to rate the items. For example, some users

provide very extreme ratings while some users provide moderate ratings. For learning

models which generalize over such diverse users, the ratings are usually normalized so

that ratings for each user have zero mean and unit variance [Hofmann, 2003].

2.4.3.1 Active Learning for Collaborative Filtering

When new users join a system, although the system already has a strong global-model,

the user-model for new users is very weak, since the system has very few ratings available

from such new users. Thus, the goal of active learning in CF is to obtain ratings for

more items from the new user. Instead of randomly selecting movies for rating from the

user, active learning algorithms minimize the number of such queries required to learn

a stronger user-model.

One of the popular techniques of active learning is to solicit a rating for an item which

will minimize the expected entropy of the user model. In the context of Collaborative

Filtering, this leads to the following equation for a user m, where θmz denotes the

user-group mixing probabilities P (z|m), and θmz |x,y denotes the model posterior after

retraining the user-model based on a newly obtained rating y for movie x from the user

i.e. P (z|x,m, y):

x∗m = arg min
x∈X

−

〈∑
z∈Z

θmz |x,y log θxz |x,y

〉
P (y|x,m)

(9)

Equation 9 denotes the expected entropy of the user-model after being trained over

additional information of rating movie x with rating y. Since the exact rating y is not

known for the unrated movies, the expected value of rating based on the current model

P (y|x,m) is used, as shown in the equation. Minimizing entropy leads to pure interest

groups, in which each user has strict adherence to just one interest group. [Jin and Si,

2004] demonstrate that minimizing entropy is counterproductive for active learning in
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the collaborative filtering domain, since in reality, users can be a mixture of multiple

interests.

As a remedy to this problem, [Jin and Si, 2004] propose a Bayesian Selection (BS)

approach similar to the active learning approach towards parameter estimation in

Bayesian networks [Tong and Koller, 2001b]. This approach identifies item x, such

that the updated model θm|x,r will be accelerated towards the true user model θtruem .

x∗m = arg max
x∈X

〈∑
z∈Z

θtruemz
log

θmz |x,y

θtruemz

〉
P (y|x,m)

(10)

Equation 10 is a negated KL-Divergence equation which is maximized when the

estimated distribution is equal to the true distribution being modeled.

Since the true user model is unknown beforehand, it is estimated as the expectation

over the posterior distribution of the user model. Similar to equation 9, the rating y is

unknown for unrated movies and the expected value is used instead. [Jin and Si, 2004]

provides a computationally efficient way of approximating the posterior distribution.
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3

Multi Task Active Learning for

Homogeneous Tasks

In this chapter, we lay out the fundamental concepts of our approach to Multi-Task

Active Learning (MTAL). We define a general approach to estimating system-wide (over

several tasks) benefit of labeling an instance.

A central theme in Multi-Task Learning (MTL) frameworks is the creation of shared

structure/parameters/regularizers to model inter-task relationships and enable informa-

tion sharing among related tasks. A suitable Active Learning (AL) strategy must work

with such generalized MTL frameworks to estimate the benefit of labeling an instance

on the reference task as well as other tasks. In this chapter, we present one such general

strategy in the context of a simple hierarchical Bayesian MTL model shown in Figure 1.

Consider a set of tasks M = {1, . . . ,M}, each with task-specific parameters wm. The

inter-task relationships are enabled by drawing the task-specific parameters from shared

priors Θ. To be able to infer the inter-task relationships, Θ is not fixed, but rather

drawn from a distribution governed by fixed hyperpriors Φ. The particular distributions

or nature of these priors and hyperpriors is irrelevant to the ensuing discussion and will

not be elaborated here. By filling in such details and with custom modifications, this
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model can be suitably adapted to some of the popular MTL frameworks [Xue et al.,

2007; Zhang et al., 2008].

Figure 1: Graphical model representation of a simple generic hierarchical Bayesian Multi-
task learning approach (several irrelevant details have been left out to maintain the
generic nature)

For such a general Bayesian system, the predictive model for task m ∈ M can be

summarized as follows:

p(ym|xm,Φ,L) =

∫
Θ

∫
wm

P (ym|wm,xm) P (wm|Θ) P (Θ|Φ,L) dwm dΘ (11)

To evaluate the quality of the predictive model, we can define the performance measure

Ψm(L) as the generalized cumulative performance of the task on all possible instances

from the input distribution of that task.

Ψm(L) =

∫
xm

ψm(p(ym|xm,Φ,L)) p(xm) dxm (12)

where ψm(p(ym|xm,Φ,L)) denotes the task’s performance on an instance xm for the

predictive model p(ym|xm,Φ,L).

Based on this chosen model, we now describe a general Multi-Task Active Learning

(MTAL) strategy in the following sections. Although our treatment is presented in the

context of this model, at the conceptual level it should be adaptable to other popular

MTL frameworks, even non-Bayesian models through corresponding mechanisms for

representing inter-task relationships. We will demonstrate a concrete example later in
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Chapter 3.5.

3.1 Local Active Learning

A typical single-task focused AL strategy will select an instance x∗m ∈ Um to label for a

reference task m ∈M such that the chosen instance provides the maximal performance

improvement in that task, as described earlier, which we reproduce here for clarity.

x∗m = arg max
xm∈Um

〈Ψm(L ∪ (xm, ym))〉ym −Ψm(L) (13)

We can ignore the second component of the above equation Ψm(L) as it is equal for all

new instances and just focus on maximal future performance instead. Also, since the

true label ym is unknown during active selection, the first component of Equation 13

is computed as an expectation over values of ym, as indicated by the angled brackets.

Computing the future peformance requires the estimation of the posterior predictive

distribution after addition of the potential instance.

p(y′m|x′m,Φ,L∪(xm, ym)) =

∫
Θ

∫
wm

P (y′m|wm,x
′
m) P (wm|Θ) P (Θ|Φ,L∪(xm, ym)) dwm dΘ

(14)

While such an approach seems reasonable, it leads to several questions about the impact

of the newly added instance into the model. In the Equation 14, we are expecting the

shared parameters Θ to be influenced if the instance (xm, ym) were added to the training

set of task m. But, in making the choice of this instance, we are only focused on the

performance measure of the task m. Is this really reasonable? The global parameters Θ

influence the performance of other tasks in the system. What if this strategy of narrowly

focusing on the performance improvement of the task m leads to degraded performance

of other tasks in the system?
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3.2 Global Active Learning

An alternative is to select an instance that will be evaluated solely on its benefit to

the local task model wm, thereby not allowing the instance to influence the global

parameters Θ, and avoiding the adverse impact it can have on the performance of other

tasks. Simply put, we can compute the posterior only at the local task-level by re-writing

Equation 14 as follows:

p(y′m|x′m,Φ,L∪(xm, ym)) =

∫
Θ

∫
wm

P (y′m|wm,x
′
m) P (wm|Θ,xm, ym) P (Θ|Φ,L) dwm dΘ

(15)

3.3 Benevolent Active Learning

By not allowing the training set from one task to influence the other tasks in the system,

this defeats the purpose of multi-task learning. We propose an alternative strategy that

allows posterior updates to Θ, but instead of restricting performance evaluation to a

particular reference task, we compute the cumulative performance over all tasks in the

system influenced by Θ to avoid negative impact on other tasks.

x∗m = arg max
xm∈Um

ΨM(L ∪ (xm, ym)) = arg max
xm∈Um

∑
m′∈M

Ψm′(L ∪ (xm, ym))) (16)

Here, for the posterior predictive model, we use Equation 14 which considers the influence

of the new instance on shared parameters Θ, and thereby allows us to update the model

parameters for other tasks for estimating the benefit.
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3.4 Discussion

So which of these strategies is better? Is there really one good strategy? In Bayesian

approaches with deeper shared parameter hierarchies, there might be even more options

in choosing the right granularity of instance influence. In our work on Multi-Task

Active Learning, we present this flexible choice of Circle of Influence (CoI) of the

instance. Simply put, CoI is the set of parameters that are expected to benefit from the

supervision obtained on an instance. One may choose to improve only the parameters

of the reference task for the narrowest CoI, or performance improvement over all tasks

which we consider the widest CoI. In MTL scenarios with groupings of related task,

the CoI may be restricted at the group-level, or at different group levels in the case of

hierarchical groupings.

One additional concern would be that of inductive bias caused due to selective sampling

of examples. Especially in the case of Global and Local Active learning, choosing

instances that are beneficial for one tasks can lead to a biased update of the common

parts of the model, i.e. the shared prior over the tasks. This update might be detrimental

to the overall performance of the system. Benevolent Active Learning might not suffer

from such bias, since each chosen example is pre-screened for its beneficial impact on

the other tasks of the system. Consequently, if it is necessary to utilize Local or Global

Active Learning, it is also crucial to downplay the impact of such selectively chosen

instances on the central components of the system. One crude remedy could be that

of ensuring balance in the number of instances sampled per-task, so that each task is

equally represented when updating the common components of the model.

Our recent work in applying AL strategies with varying CoI to Multi-Task Adaptive

Filtering [Harpale and Yang, 2010] shows that there is no single CoI that always

outperforms the rest and the choice is dependent on the various stages of learning.

Instead, we find that a combination strategy using multiple CoI scores performs the
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best. We describe this work in detail in Section 3.5.

3.5 Case Study: Active Multi-Task Adaptive Filtering

Adaptive Filtering (AF) Robertson and Soboroff [2002] systems monitor a stream of

documents to filter out documents that are relevant to the particular task or user. For

example, a stock analyst would like to filter out all the news about stocks in his portfolio,

while a technology entrepreneur might be interested in news about latest technology

startups. Each of these users can be considered a task from the AF system’s perspective.

AF systems model user interests based on the initial information request (e.g. a query)

presented by the user, and the subsequent relevance feedback provided by the user for

the results presented to the user. For example, one popular AF approach involves the

use of Logistic Regression classifier Jaakkola and Jordan [1996] to classify documents

into relevant and non-relevant categories for that particular user. The relevance feedback

received from the user is used to supplement the training data to retrain the classifier

for future predictions.

Most research in AF systems has focused on learning each task independently of other

tasks. In this work, we will refer to such approaches as Single-Task AF (STAF)

approaches. In the initial stages of learning, when the feedback from each user is limited,

these approaches suffer from data sparsity, leading to weaker models, and consequently

poorer performance. Multi-task learning methods have shown significant success in

mitigating this per-task data sparsity problem by sharing information across multiple

tasks. For example, to learn the interest-model of a particular stock analyst, it could be

useful to identify common important features for portfolio tracking based on the feedback

received from other stock analysts. Irrespective of their portfolios, all stock analysts are

usually interested in common news regarding corporate announcements, balance sheets,

government regulations, and day-to-day stock market indicators pertinent to their stocks.
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In this work, we will refer to such approaches, which leverage information from multiple

tasks, as Multi-Task Adaptive Filtering (MTAF) approaches.

The future performance of an AF system relies on the feedback received on delivered

items. If the system myopically focuses on delivering only (perceived) relevant

documents (better immediate performance), the feedback received on these documents

may not lead to the best learnt task models (in the future), thereby limiting the

usefulness of such feedback for future predictions. In this work, we present an Active

Learning (AL) framework for MTAF that additionally takes into account the perceived

benefit of feedback on items before making a delivery. In the MTAF setting, the AL

system has a three-fold objective: 1) Provide relevant documents, 2) Feedback provided

on a delivered document should maximally improve the task-specific performance in

the future, 3) Feedback provided on a delivered document, should maximally improve

the overall system (multiple tasks) in the future. The current AL approaches focuses

only on the second objective, thereby narrowly focusing on task-specific performance

improvements. In this work, for satisfying the goal 1, we chose the Multi-Task Logistic

Regression with Dirichlet Process priors Blei and Jordan [2005]; Xue et al. [2007] for

facilitating information sharing across tasks. For goals 2 and 3, we propose a novel

AL framework based on a new scoring function called Utility Gain. This scoring

function is inspired by the popular empirical risk minimization approaches in Active

Learning Melville and Provost [2005]. However, the current empirical risk minimization

approaches only focus on minimizing the risk of one task, while we develop variants that

selectively focus on one task, global model, or all tasks, as required during the various

phases of learning. Consequently, our framework chooses instances that might lead to

maximal (expected) gain in performance of the system (task-specific or global) for future

predictions.
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Table 1: Important notation used in this chapter

Symbol Description
M Total number of tasks
m ∈ {1, . . . ,M} A task
Nm Total number of instances for task m
d Dimensionality of feature space
xm,n ∈ Rd The n’th data instance for task m
ym,n ∈ {0, 1} The label of instance xm,n

wm ∈ Rd LR parameters for task m
k ∈ {1, . . . ,∞} A group or cluster
w∗k ∈ Rd LR parameters of the k’th group
φm,k ∈ [0, 1] Group k mixing proportion for task m

3.5.1 Our Approach: Multi-Task Adaptive Filtering

Owing to the success of Logistic Regression (LR) classifiers in Adaptive Filtering, we

choose a multi-task approach based on LR classifiers. Our chosen approach is depicted

graphically in Figure 2. Table 1 lists the notation used in this work. This approach

is based on the Mutli-Task classification approach developed by Xue et al. [2007]. A

similar approach, consisting of Support Vector Machines for individual tasks, has been

used for content-enhanced collaborative filtering by Yu et al. [2004]. We summarize the

generative process of the model in Algorithm 1. The approach clusters/groups related

tasks by drawing the parameters for the related tasks from a mixture of Gaussians

(as evident from the line 12 of the Algorithm 1). Intuitively, related tasks will share

information by getting grouped into the same cluster(s). For example, features that are

indicators of interests of a football fanatic (e.g. teams, scoreboards, win/loss decisions)

may be inferred from the relevance judgments available from other sports enthusiasts.

The grouping of related tasks ensures that unrelated tasks (e.g. stock-portfolio tracking

vs sports-news filtering) do not contaminate, as such contamination might lead to poorer

understanding of the individual tasks.

As the optimal number of groups is unknown apriori, a Dirichlet Process model is inferred

over the tasks to discover the optimal number of groups pertinent to the tasks. The
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Figure 2: Graphical model representation of multi-task adaptive filtering based on
Dirichlet Processes.

Dirichlet Process is essentially a mixture model with potentially infininte components.

The actual number of components participating in the formation of the tasks is based

on the parameter α, also known as the innovation parameter. Larger values of α lead

to more participating components and vice-versa. The optimal value of α (and other

parameters) can be inferred from the data using variational inference Xue et al. [2007].

With the knowledge of the inferred parameters for a task m, the decision function for a

new instance xm,• follows the distribution:

P (ym,• = 1|xm,•,wm) =
K∑
k=1

φm,kσ(w∗k
Txm,•) (17)
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Algorithm 1 MTAF Generative Process
1: Fixed diffuse hyperpriors: τ10, τ20, β0, γ10, γ20

2: Draw λj ∼ Gamma(γ10, γ20), ∀j = 1, . . . , d
3: Let Λ be a diagonal matrix with elements λj ,∀j
4: Draw µ ∼ N (0, (β0Λ)−1)
5: Let Σ = Λ−1

6: Draw α ∼ Gamma(τ10, τ20)
7: Draw vk ∼ Beta(1, α), ∀k = 1, . . . ,∞
8: Draw w∗k ∼ N (µ,Σ),∀k = 1, . . . ,∞
9: Let πk = vk

∏k−1
i=1 (1− vi),∀k

10: for m = 1 to M do
11: Draw φm ∼Multinomial(1;π1, . . . , π∞)
12: Let wm =

∑∞
k=1(w∗k)φm,k

13: Draw ym,n ∼ Binomial(1, σ(wT
mxm,n)),∀n = 1, . . . , Nm

14: end for

Again, like in Equation 5, for a fully Bayesian treatment, we integrate over the posterior

distribution of w∗k, instead of using a point estimate:

P (ym,• = 1|xm,•,wm) =

K∑
k=1

φm,k

∫
σ(w∗k

Txm,•)P (w∗k|µ,Σ, D)dw∗k (18)

The above integral does not have an analytical solution. Xue et al. [2007] suggest the use

of an approximate form of the integral based on MacKay [1992]. Combining Equation 18

and Equation 6, one can compute the expected utility U(xm,•) of delivering the document

xm,•. A passive MTAF approach will deliver the document if U(xm,•) > t, where t is a

dissemination threshold, usually set to zero, or maybe learned via cross-validation. We

call this approach passive, because in choosing to deliver xm,•, the system did not foresee

the benefit of getting the feedback on that document. Consequently, the user effort in

providing feedback on this item may go wasted as it may not result in better results (for

the user) in the future. We remedy this situation in the next section by proposing our

Active Learning framework for the MTAF approach.
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3.5.2 Our Approach: Active Learning for Adaptive Filtering

In a classification setting, an AL approach typically selects instances that (if labeled)

are expected to improve the classification performance the most. Along similar lines, in

the MTAF setting, an AL approach could estimate the perceived benefit of delivering

an item in three different ways. Firstly, does the delivered item xm,• lead to improved

performance on that taskm in the future (based on feedback received on xm,•). Secondly,

will the feedback on delivered item xm,• lead to improvements in the global model (e.g.

α, µ,Σ)? Finally, does feedback on the delivered item xm,• lead to improvements in

other tasks in the system? We propose an Active Learning solution for each of these

objectives in the following sections.

3.5.2.1 Local Active Learning

In this section, we discuss an AL approach that scores instances based on the perceived

future benefit of delivering these instances to the current task m. Consequently, we first

define our notion of future benefit LUGm(xm,•) of delivering an instance to the task m.

LUGm(xm,•|D) =

LSPm(D ∪ (xm,•, ym,•))− LSPm(D) (19)

In the above equation, LSPm(D′) denotes the expected system performance on task

m when trained on any data D′. Intuitively, the benefit of delivering an instance xm,•

is estimated as the improvement in the task-specific performance (for task m), if the

feedback of that instance (xm,•, ym,•) was added to the training set D. In Equation 19,

the system doesn’t know the true label ym,• for the instance xm,•. As a result, we
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rephrase the equation as an expectation over the possible labels.

LUGm(xm,•) =
∑

y∈{0,1}

P (y|xm,•, D)LSPm(D ∪ (xm,•, y))

− LSPm(D) (20)

For the case of Adaptive Filtering, we define the system performance in terms of the

expected utility of all potential instances the system will monitor. Consequently, LUGm

is the localized utility gain of task m.

LSPm(D′) =

∫
ΩLUm (xm,◦)

p(xm,◦)LUm(xm,◦|D′)dxm,◦ (21)

In Equation, 21, there are two important points to note. Firstly, the integral sums

over p(xm,◦), i.e. the task-specific population. It should be noted that each task in

the system may have it’s own sample population from which documents are being

monitored/filtered. For example, a stock analyst may subscribe to news feeds from

business magazines, while a sports enthusiast may subscribe to news feeds from sports

magazines, leading to different p(xm,◦) for these two tasks. (Ofcourse, the sports

enthusiast is not interested in all sports news being served, but only those that match

her interests. It is the goal of the AF system to identify those interests and filter the

relevant news from the subscribed feed. Hence the system performance is evaluated over

the sample population of the subscribed feed.). In this Equation, the domain of the

integral is defined as ΩLUm(xm,◦) = {xm,◦ : LUm(xm,◦|D′) > 0}. This means that the

future system performance will only be calculated based on the instances that will be

delivered; undelivered instances will be ignored from the system performance calculation

due to the nature of the T9U utility function.

The second subtle point in Equation 21, is the localized nature of the utility function

LUm(xm,◦|D′). For computing the expected future system performance Sm(D ∪

(xm,•, ym,•)), we compute the utitlity LUm(xm,◦|D ∪ (xm,•, ym,•)) based only on the
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updated local model wm of the task m. This means, we do not consider the effect

of updating the global parameters α, µ,Σ after observing the new training instance

(xm,•, ym,•). If wm is the current (trained on D) local model, we can use the Bayes’

rule to obtain the posterior distribution P (wm|xm,•, ym,•). We use the variational

approximation method suggested by Jaakkola and Jordan [1996] to obtain the posterior.

With the knowledge of the posterior distribution P (wm|xm,•, ym,•), the localized

expected utility can then be defined as:

LUm(xm,◦|D ∪ (xm,•, ym,•)) =∫
wm

∑
y∈{0,1}

ψyP (y|xm,◦,wm)P (wm|xm,•, ym,•)dwm (22)

In the Adaptive Filtering setting, the system will then choose to deliver items that

provide immediate utility Um(xm,•|D), or are potentially beneficial in improving the

system in future iterations, as estimated by expected future utility LUGm(xm,•|D). We

express the joint objective as a linear combination:

LALm(xm,•|D) = Um(xm,•|D) + δLLUGm(xm,•|D) (23)

Here, δL is the weightage given to the AL component of the system. We discuss the

nature of this weight in Section 3.5.2.5. Owing to the localized focus of this approach

on the perceived improvement of the current task, we call this approach Local Active

Learning (LAL). We expect LAL to perform well if the global model, consisting of

α, µ,Σ, is already strong, and thus does not need to be updated. Thus, LAL is expected

to be effective on new tasks that are added to an already well-performing MTAF system.

We deal with the case of the improving the global model in the next section.

3.5.2.2 Global Active Learning

As mentioned in the previous section, LAL does not foresee the updates/improvements

in the global model consisting of Θ = {α, µ,Σ}. Global AL (GAL) fixes this by updating
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the global model for computing the expected utility gain in Equation 20. It should be

noted that, just like LAL, the goal of GAL is still to improve the future performance of

task m (the task to which the system plans to deliver instance xm,•), albeit based on

improvements in the global model. Consequently, we define the estimation of the global

utility function GUm(xm,◦|D ∪ (xm,•, ym,•)). This is a modification of localized utility

LUm(xm,◦|D ∪ (xm,•, ym,•)) in equation 22.

GUm(xm,◦|D ∪ (xm,•, ym,•))

=

∫
Θ

∑
y∈{0,1}

ψyP (y|xm,◦,Θ)

P (Θ|xm,•, ym,•)dΘ

=

∫
Θ

∑
y∈{0,1}

∫
wm

ψyP (y|xm,◦,wm)

P (wm|Θ)(P (Θ|xm,•, ym,•)dwmdΘ (24)

It is important to note that the posterior model global P (Θ|(xm,•, ym,•) has been trained

on additional available feedback from the taskm only. This is because, we are computing

the expected global future utility if the instance is delivered to task m, that is if the

feedback is received from task m. Replacing local utility LU in Equation 21 with

expected future global utility GU , we get the globalized system performance GSPm

of task m.

GSPm(D′) =

∫
ΩGUm (xm,◦)

p(xm,◦)GUm(xm,◦|D′)dxm,◦ (25)

Substituting the globalized system performance GSPm from Equation 25 into Equa-

tion 20, we get the globalized utility gain

GUGm(xm,•) =
∑

y∈{0,1}

P (y|xm,•, D)GSPm(D ∪ (xm,•, y))

− GSPm(D) (26)
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Finally, substituting the globalized utility gain GUGm into Equation 27, we get the

scoring function for the Global Active Learning GAL approach.

GALm(xm,•|D) = Um(xm,•|D) + δGGUGm(xm,•|D) (27)

3.5.2.3 Benevolent Active Learning

So far, LAL and GAL have focused on improved performance of the task m to which

the system plans to deliver the instance xm,•. But it is not clear if the feedback on that

instance will lead to improvements in other tasks. To achieve this goal, we devise another

AL score, called Benevolent AL, as the system tries to deliver instances to task m that

might lead to improvements in other tasks. In this context, we revise the definition of

GSPm to BSPm, which sums over the performance of each task in the system, based

on the feedback received on the instance xm,• delivered to task m.

BSPm(D′) =

M∑
m′=1

∫
ΩGUm (xm′,◦)

p(xm′,◦)GUm(xm′,◦|D′)dxm′,◦ (28)

It is important to note that inside the summation for each taskm′, the instances xm′,◦ are

being sampled from the distribution p(xm′,◦) of incoming documents for that particular

task m′. This stems from the fact that the distribution of incoming instances P (xm)

may be different for different tasks, as discussed earlier. Based on BSPm, for clarity and

completeness, we provide the Equations of the corresponding utility gain BUGm and AL

scores BALm.

BUGm(xm,•) =∑
y∈{0,1}

P (y|xm,•, D)BSPm(D ∪ (xm,•, y))− BSPm(D) (29)

BALm(xm,•|D) = Um(xm,•|D) + δBBUGm(xm,•|D) (30)
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3.5.2.4 Analysis of LAL, GAL, and BAL

In Table 2, we summarize the major ideas from proposed AL approaches. Each approach

focuses on improvements in different parameters of the model, thereby leading to

different consequences. The LAL approach focuses on improving its own task. Such

approach can be expected to perform well when the global model is already strong,

and less susceptible to drastic change based on feedback on a new instance. The GAL

approach restimates the global model, but in the process computes the future utility

only based on the current task. This selfish strategy of modifying the global model

without foreseeing the effect on other tasks in the system can be detrimental to the

overall performance of the model, making this approach undesirable. The BAL approach

updates the global model, but at the same time studies the effect of the update on the

utility gain of other tasks in the system, thereby ensuring that the global model doesn’t

get biased towards a particular task. Consequently, we expect BAL to perform superior

to other methods in the initial stages of AF when global model is weak.

Table 2: A comparative summary of AL approaches. The first column lists the AL score
to decide delivery of instance xm,• to task m. The second column lists the parameters
that will be (potentially) improved (for better future utility) if the system retrains on
the feedback received on the instance delivered based on the corresponding AL score

Delivery criteria Potentially improved parameters
based on feedback

LALm wm

GALm wm, α, µ,Σ

BALm α, µ,Σ,wm′ ,∀m′ ∈ {1, . . . ,M}

3.5.2.5 Combined AL for MTAF

Based on the discussion in the previous section, each of the above methods can be

combined to come up with a meta-AL system for AF that tries to satisfy multiple
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objectives at different phases of learning. We use weighted linear combination of the

individual utility gain scores to come up with the Meta AL score

MALm(xm,•|D) = Um(xm,•|D) + δLLUGm(xm,•|D)

+ δGGUGm(xm,•|D) + δBBUGm(xm,•|D) (31)

The weight parameters δL, δG and δB should vary with the quality of the model, local as

well as global. A stronger global model means lower δG. Similarly, δB should decrease so

that the tasks can then focus on improving locally, thereby maintaining a higher value

of δL. We test these hypotheses empirically in Section 3.5.3.4

3.5.3 Experiments

3.5.3.1 Datasets

We chose to use 2 datasets that are popular in the TREC filtering community, namely,

RCV1 (84 categories, 810,000 documents) Lewis et al. [2004b] and 20 Newsgroups (20

categories, 18,846 documents) Joachims [1997]. For both datasets, we modeled each

category as a task. For experiments on both datasets, we start AF with only one known

relevant document per task. It should be noted that RCV1 is a multi-labeled dataset,

meaning each document belongs to multiple classes/tasks, thereby indicating some

level of overlap/relatedness among tasks (e.g. tasks sharing the same documents). 20

Newsgroups is not multi-labeled and each document belongs to only one class. However,

it is known that the categories can be grouped into 6 groups based on subject matter,

namely, comp.*, rec.*, sci.*, talk.*, misc.* and others. Thus, the relatedness of tasks is

in the feature-space, as documents are not shared among tasks. For example, the feature

computer is a strong indicator of the tasks in comp.* group. We chose this dataset to see

if the MTAF approaches are able to discover these hidden groups of related categories,

even if the documents are not shared among tasks.
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3.5.3.2 Methods

Primarily, we are interested in comparing the four Active Learning approaches LAL,

GAL, BAL and MAL in the MTAF setting to see which approach rapidly improves

utility, and how they perform in the various phases of filtering. We also wish to compare

these 4 approaches to the passive version that decides to deliver an instance without

taking any future utility gain into account. (i.e. delivery criteria is Um(xm,•|D) > 0).

Zhang et al. [2003] devised a strategy called exploration and exploitation to perform

Active Adaptive Filtering, and our AL framework is inspired by their work. The

exploitation component is a passive AF strategy that delivers an item if Um(xm,•|D) > 0.

The exploration component is an Active Learning component based on a metric called

Utility Divergence, similar to the Utility Gain score developed in this work. Utility

Divergence, however, doesn’t compute the actual gain in utility of the system based on

feedback on the instance. It instead computes the difference between the expected utility

of a hypothetical true model Θ∗ and the model based on expected feedback Θ|(xm,•, ym,•)

and instances are scored based on their potential to reduce the gap between utility

of the true model and utility of the current model. In our results, we will refer to

these approaches as STAF-passive (only exploitation), STAF-active-UD (exploitation

and exploration using Utility Divergence score).

3.5.3.3 A note on implementation

The various methods were implemented in MATLAB. For integrating over the posterior

distribution of a variable (e.g. w∗k), we used the Metropolis Hastings algorithm.

Specifically, we draw several (S) samples from the posterior of the corresponding

distribution of the variable, and averaged over the various outputs to obtain a

probabilistic integral, similar to the approach described in Zhang et al. [2003]. For

example, to implement Equation 6, we sample S samples from the posterior distribution
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P (w|D) and the integration was implemented as:

U(x|D) =
1

S

S∑
s=1

∑
y∈{0,1}

ψyP (y|x,w(s)) (32)

In this specific case, the posterior distribution was derived by using the Laplace

approximation method Xue et al. [2007]. Other posterior distributions for the MTAF

case were based on the derivations available in Xue et al. [2007]. For integrating over

P (x), the samples were drawn from the data stream observed so far, consisting of

delivered and undelivered items, to get a non-parametric estimate of P (x).

3.5.3.4 Experimental Results and Discussion

First we compare the MTAF approaches (MTAF-Passive, LAL, GAL, BAL, and MAL)

to test the hypotheses we made in Section 3.5.2.4. Figure 3 shows the trends (in terms

of T9U utility) on the RCV1 dataset. AL approaches are typically most effective in

the initial phases of filtering and so the Figure 3 shows performance upto the filtering

of the first 5000 instances on the RCV1 dataset. The results validate our hypothesis

that the LAL approach performs quite poorly in the initial stages of filtering, when the

global model itself is quite weak. It can also be observed that BAL approach, that tries

to improve the overall utility of all the tasks in the system performs the best initially.

This is because improved utility of all tasks reflects in an stronger global model. LAL

improves at a faster pace once the learnt global model is stronger (due to learning from

more feedback). The GAL approach, that tries to improve the global model, without

foreseeing improvements (or degradation) in other task performs inferior to the LAL

approach. We believe that the GAL approach sometimes makes wrong decisions about

instance selection, by selecting those instances that will lead to improvement in one

task, but mostly degrade other tasks (because the utility gain in tasks is not taken

into account). We found that setting δG = 0 in Equation 31, i.e. ignoring the GUGm

component corresponding to GAL, in the MAL approach led to better performance of
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MAL. Consequently, the MAL approach, which combines the strengths of the LAL and

the BAL approaches, outperforms all the other approaches.

Figure 3: Comparison of the MTAF AL approaches on the RCV1 dataset (similar trends
for 20 Newsgroups)

Next, we compare representative MTAF approaches (MTAF-passive and MTAF-MAL)

to the STAF approaches to study the benefit of using a multi-tasking setup. We

also compare the AL scoring functions: our Utility Gain (UG) criteria and the Utility

Divergence (UD) criteria proposed in Zhang et al. [2003]. We call these variants of the

STAF-active approach STAF-active-UG and STAF-active-UD respectively. In Figure 4,

we observe that the MTAF approaches, active as well as passive, outperform their STAF

counterparts. It can be observed that our best performing approach, MAL (T9U = 423),

has a performance improvement of more than 20 percent over that of STAF-active-UD

(T9U=348). A paired t-test shows strong statistically significant evidence (p-value =

0.0002) for the superiority of our approach over the current state-of-art STAF-active-

UD. We also observe that the starting utility of the MTAF approaches is higher, due
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to information sharing between tasks, to overcome the per-task data sparsity problem

in the STAF approaches. Regarding the AL score, we observe that the performance of

UG and UD is quite similar for STAF-active. Empirically, it seems that the goal of UD

(reduce the gap between the utility of a hypothetical true model and the learnt model)

is quite similar to the goal of UG (increase the future utility of the learnt model the

most).

Figure 4: Comparison of MTAF and STAF approaches on the 20 Newsgroups dataset
(similar trends for RCV1)

3.6 Summary

In this work, we have explored various Active Learning approaches to the Multi-Task

Adaptive Filtering. To score the benefit of delivering an instance, we developed a

new metric called Utility Gain that estimates the improvement in system performance

(in terms of utility) if the system is re-trained on the feedback received for the
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delivered instance. In the MTAF setting, we compare the effect of selfish (local) AL

approaches (that focus on improvements in one task) to a benevolent AL approach

(that evaluates the benefit of labeling an instance across many tasks). Our empirical

analysis demonstrates the superior performance of the benevolent approach in the initial

phase of filtering, when the global model of the MTAF system is weak, while a more

rapid improvement in the performance of the selfish approaches in later stages, when

the global model is strong (i.e. global model may not benefit much from AL). We also

demonstrate that a combined approach, called meta-AL, that combines the strengths of

local and benevolent AL approaches, is superior to the individual approaches.

There are several areas for exploration in the future. The sampling approaches presented

in this work can be infeasible in a large-scale adaptive filtering system with millions of

tasks. In such an environment, it is necessary to first segregate the tasks so that each

of the smaller AF systems can handle their respective tasks. It is also necessary to

derive analytic solutions to the sampling strategies described here to come up with

closed-form/quicker expected future utility evaluation schemes. Another challenge is

the problem of spam. In a practical MTAF system, how does the MTAF system protect

its genuine users/tasks from other malicious users. In a benevolent AL approach the

feedback from the malicious users is potentially harmful to the system, and consequently

to the genuine users. So how does a Benevolent AL approach safeguard againt malicious

use?

42



4

Transferable Active Learning for

Heterogeneous Tasks

Does the MTAL strategy described in Chapter 3 perform equally well in the heterogenous

setting, that is, when the tasks being learnt jointly are of diverse kinds 2. Diverse tasks

require diverse supervision and may involve different supervision costs. Then, the key

question to answer is: How can we formulate the learning cost and benefit of AL across

heterogeneous tasks and different types of training instances. These questions have not

been studied in the MTAL setting and answering these questions is the focus of this

Chapter.

We provide a concrete example to put the concept into perspective. Commercial sites

such as Amazon or Netflix typically learn models to perform two kinds of tasks: Firstly

a classification of items, for example, movies and books, into genres such as Drama,

Comedy, and Horror. This classification is typically useful as a browsing aid for their

users to surf their vast inventory of products. Secondly, such sites also offer item-

recommendation services that learn user-preferences through previous purchase/rating
2In our work, heterogeneity arises in diverse kinds of outputs. For example classification, regression,

ranking are diverse kinds of tasks
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history. These heterogeneous tasks require different kinds of supervision: ratings for

item-recommendation and category labels for classification. From a Multi-Task Learning

perspective, are there benefits to jointly learn these seemingly different tasks? Intuitively,

it seems that there could be significant benefits: Knowledge about the genre of a movie

can help to recommend it to users who are primarily interested in that genre. Also,

ratings for a movie can pin-point the interest group for that movie, which can then be

used to predict the genre for the movie based on the genres that are typically liked by that

interest group. From an AL perspective, how can we acquire supervision that improves

either or both kinds of tasks? For example, can we acquire genre labels that improve the

performance on the recommendation task? Alternatively, which items should be rated

so that the performance of the genre-classification task is improved? Also, the cost of

acquiring each kind of supervision is different. In such a cost-sensitive setting, how can

AL choose to acquire the cheaper supervision with the goal of simultaneously improving

both kinds of tasks?

An additional challenge arises out of scalability. The MTAL strategy described in

Chapter 3 can be generically applied to most Multi-Task scenarios, as long as the impact

of adding labeled instances to one task on other tasks can be estimated. Certain multi-

task scenarios however feature lots of tasks making this estimation computationally

intractable, particularly in the case of Benevolent Active Learning. In such scenarios,

it is important to devise alternative strategies that can potentially benefit several tasks

simultaneously, without explicitly having to compute the impact of each of the tasks.

This is true of the aforementioned collaborative filtering scenario. Explicitly analyzing

the impact of acquiring a genre label for an item on the recommendations to millions of

users of a recommendation service is computationally intractable.
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Figure 5: A simple model for learning heterogeneous tasks

4.1 Modelling heterogeneous tasks

Figure 5 shows a simple graphical model representing the joint learning for heterogeneous

tasks. It should be noted that both the groups of tasks share a common input x for each

of the items N . As a simple example, r could be regression outputs r ∈ R, and ui,∀i ∈ I

are the parameters of the regression tasks I. The y could be categories for classification

tasks, for example y ∈ {0, 1} and w would be the weights of the Logistic Regression

classifiers. Classification and Regression are chosen here for simplicity, but the model is

amenable to other kinds of tasks such as ranking by introducing appropriate complexity.

This simplified model doesn’t allow information flow between the two kinds of tasks.

The classification tasks can benefit from each through a shared prior λg but may not

benefit from the regression tasks as the shared input is always known. Similarly, the

regression tasks can benefit from each other through a shared prior λu, but may not

45



benefit from classification tasks.

This suggests a simple modification of the model using a topic-model approach depicted

in Figure 6. In this model, inspired by topic-modeling, introduces a set of latent topics

between the observables. These latent factors θ are drawn per-item and for each item

the factors form a probability simplex
∑
θn = 1. Consequently, any observable for an

item, r, y, or x, might impact the latent factors and lead to improvements in regression

and classification tasks by enabling information flow between these two kinds of tasks.

Figure 6: A generic joint model for learning heterogeneous tasks

We provide more concrete instantiation of this model in the context of jointly learning

genre-classification and Collaborative Filtering tasks in later in Chapter 4.3.
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4.2 Transferable active learning

Let T = {t1, . . . , tT } denote the set of tasks. Let St denote the potential candidates for

acquiring supervision on the task t. Let ζs denote the cost of acquiring supervision s.

Finally, let the perceived benefit of acquiring supervision s be ∆t(s) for a task t. The

benefit could be estimated in terms of improvement in accuracy (for classification) or,

in terms of reduction in the mean-absolute error (for recommendations). TAL can then

choose to acquire supervision s∗ using the criteria below:

s∗ = arg max
s∈

⋃
t∈T St

〈∑
t∈T ∆t(s)

ζs

〉
s

(33)

In this equation, the angled brackets 〈〉s denote the expectation over the possible values

of s, since the true supervision is unknown. Intuitively, Equation 33 compares the

supervision candidates with respect to their benefit/utility per unit-cost and prefers to

acquire supervision that is most cost-effective. A straightforward implementation of

this strategy will require estimating the posterior model for each possible value of each

supervision candidate to estimate the benefit on each of the tasks collectively. Such a

naive approach will be computationally expensive and will pose additional challenges.

One such challenge is the estimation of the true per-task benefit, which can only be

estimated through cross-validation like approaches, adding to further computational

woes. Instead, we could exploit the commonality among tasks to derive a surrogate

task. The surrogate task may be chosen based on two criteria: Firstly, improvements in

the surrogate task should be indicative of improvements in the original tasks. Secondly,

improvements in the surrogate task should be easily measurable. Subject to these

conditions, surrogate tasks can be expected to achieve the TAL goal in an efficient

manner.
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s∗ = arg max
s∈

⋃
t∈T St

〈
∆surrogate(s)

ζs

〉
s

(34)

4.3 Case Study: Jointly learning Genre Classification and

Collaborative Filtering

In this work, we analyze Transferable Active Learning, in the context of simultaneously

learning to perform genre classification and collaborative filtering. To leverage cross-task

information sharing, we develop a novel joint model for learning genre-classification (GC)

and collaborative filtering (CF) tasks. Specifically, we enhance the Collaborative Topic

Regression (CTR) Wang and Blei [2011] model with a component for simultaneously

learning GC, based on regularized Logistic Regression classifiers. Equipped with this

model, we present improved performance of the genre-enhanced Collaborative Filtering

and ratings-enhanced genre-classification over their conventional vanilla counterparts.

Later, we showcase Transferable Active Learning (TAL), a novel AL strategy for

minimizing supervision costs in the case of heterogeneous tasks. The goal of Transferable

Active Learning (TAL) is to seek information about one kind of task, that is beneficial

for learning another kind of task. In the context of our chosen application, i.e. genre-

enhanced Collaborative Filtering, TAL could choose to obtain genre-information, with

the goal of improving the CF performance. Alternatively, TAL could also choose to

acquire ratings for improving performance of the genre-classification task. TAL could

be an effective strategy to minimize supervision costs for a particular kind of task if

the supervision for other task could be acquired more readily. Finally, the choice

to acquire a particular kind of supervision could be based on the inherent cost of

obtaining genre-labels versus the cost of obtaining ratings from a user, with the goal of

improving the overall model (both kinds of tasks). This is in contrast to conventional

AL approaches that seek supervision for the task that is to be improved. We avoid
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the explicit and exhaustive computation of benefit of acquiring supervision on one

task over other tasks Harpale and Yang [2010] by instead measuring the estimated

impact of the supervision on a surrogate task that can be measured more efficiently. We

evaluate our ideas on the challenge of Active Learning for cold-start recommendation and

classification of new items for which no ratings and genre information is available apriori.

This is in contrast to existing work in Active Learning for CF which has focused on the

user-focused perspective: acquiring ratings with the goal of improving recommendations

for a new user. As the surrogate task, we seek to acquire supervision to minimize the

entropy of the topical distribution of the item in the joint model.

Recent work in Collaborative Filtering has demonstrated significant improvements in the

performance of item recommendation using the item-genre information as an additional

feature in the model Yang et al. [2008]. However, such models typically assume that

the genre is always available as a truth value. In reality though, genre prediction is a

task in itself. To minimize the overall cost of learning such diverse tasks, it is crucial

to ensure that supervision obtained on one kind of task (classification) is also useful for

improving the other kind of task (item-recommendation). It is particularly important for

this example as supervision might be cheaper for the classification task using in-house

domain experts while supervision might be expensive or harder to get for the item-

recommendation task as that depends on the users who might get annoyed with active

queries. In this work, we develop a novel joint learning model for genre-classification

and item recommendation and employ a novel Transferable AL strategy that attempts

to minimize supervision costs by soliciting classification/rating for items with the goal

of improving both the genre-classification and item-recommendation tasks.

The rest of the chapter is organized as follows. In Section 4.3.1, we describe our novel

joint-learning approach and in Section 4.3.3, we present empirical evidence of the success

of the joint model over learning each task in isolation. In Section 4.3.2, we describe

our new Transferable AL strategy for leveraging the joint model to acquire alternate
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supervision for improving a kind of task. We also present the empirical comparison

of our approach to conventional active and passive learning strategies to showcase the

savings in supervision costs made possible by our approach. Finally, in Section 4.4, we

conclude with a discussion on open challenges for further exploration.

4.3.1 Our Approach: Genre Classification and Collaborative Topic

Regression: G+CTR

Figure 7: G+CTR model

Our joint learning model builds upon the successful Collaborative Topic Regression

(CTR) Wang and Blei [2011] model by supplementing it with additional structure for

the genre-classification task. CTR is a topic-modelling approach that simultaneously
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utilizes rating-based and content-based information of an item, with the ultimate goal

of improving CF performance. The rating-based component is based on the Probabilistic

Matrix Factorization Hu et al. [2008]; Salakhutdinov and Mnih [2008b] approaches

that have been demonstrated to be extremely successful for CF. The content-based

component is based on the popular Latent Dirichlet Allocation (LDA) Blei et al. [2003]

approach. For our enhancements, we have included regularized Logistic Regression

classifiers for modeling item-genres. We call our model Genre and Collaborative Topic

Regression (G+CTR). The model is depicted in Figure 7.

The generative process of the G+CTR model is as follows (IK is a K-dimensional identity

matrix):

1. For each user i ∈ {1, . . . , I}, draw a user interest vector ui ∼ N (0, λ−1
u IK)

2. For each genre g ∈ {1, . . . , G}, draw a weight vector wg ∼ N (0, λ−1
g IK)

3. For each item j ∈ {1, . . . , J}

a) Draw topic proportions θj ∼ Dirichlet(α)

b) Draw item latent offset εj ∼ N (0, λ−1
v IK)

c) Set the item latent vector to vj = θj + εj

d) For each word wjn, n ∈ {1, . . . , N}

i. Draw topic assignment zjn ∼ Mult(θj)

ii. Draw word wjn ∼ Mult(βzjn)

4. For each user-item pair (i, j), draw the rating rij ∼ N (uTi vj , c
−1
ij ), where cij is the

precision parameter for the rating rij .

5. For each genre-item pair (g, j), set the genres as: yjg = σ(wg · θj) ≥ 0.5, where

σ(wg · θj) = (1 + exp(−wg · θj))−1

In this generative process, steps 1 and 4 depict the generative process for a Probabilistic

Matrix Factorization model Hu et al. [2008]; Salakhutdinov and Mnih [2008b]. Steps

2 and 5 depict the generative process for a Bayesian Logistic Regression Jaakkola and
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Jordan [1996] classifier. Finally, step 3 describes the generative process of a Latent

Dirichlet Allocation (LDA) Blei et al. [2003] model.

Learning The inference follows along the same lines as for CTR, with appropriate

modifications to take the genre-based supervision into account. Specifically, we maximize

the complete log-likelihood of the joint model to learn the parameters (constants have

been ignored below, and α = 1)

L =
∑
j

∑
n

log

(∑
k

θjkβk,wjn

)

−
∑
i,j

cij
2

(rij − uTi vj)
2

+
∑
j,g

log
(
σ(wgθj)

yjg(1− σ(wgθj)
(1−yjg))

)
−λu

2

∑
i

uTi ui

−λv
2

∑
j

(vj − θj)T (vj − θ)

−λg
2

∑
g

wT
g wg (35)

We adopt the EM-like approach of Wang and Blei [2011]. The derivation for U =

{u1, . . . ,uI}, V = {v1, . . . ,vJ}, and β1:K are unchanged from their CTR and LDA

counterparts as they are independent of the classification component given θ and the

reader is referred to Blei et al. [2003]; Wang and Blei [2011] for details.

Knowing θj , we can optimize for W = {w1, . . . ,wG} of the classification component,

independent of U, V . Specifically, we provide a Stochastic Gradient Descent (SGD)

update rule for learning wgk, with learning rate η, which can be easily derived by setting

the derivative of the elements containing wgk in the log-likelihood to zero.
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wgk ← wgk + η (θjk(yjg − σ(wgθj))− λgwgk)

Given U, V , and W , it is not straightforward to learn θ, due to the complex interaction

with V and W . To overcome this situation, we first separate the terms containing

θj from the likelihood in Equation 35 and apply the Alternating Direction Method of

Multipliers (ADMM) Boyd et al. [2011] approach to solve the resulting optimization

problem. Specifically, we introduce a vector of dummy variables γ and an additional

constraint θj = γ to construct an optimization problem L(θj , γ) with split functions, as

shown below

minimize L(θj) + L(γ) (36)

subject to θj = γ

L(θj) =
λv
2

(vj − θj)T (vj − θj)−
∑
n

log

(∑
k

θjkβk,wjn

)

L(γ) = −
∑
g

log
(
σ(wgγ)yjg(1− σ(wgγ)(1−yjg))

)
The objective function is now separable in θj and γ, and can be minimized by first

forming an augmented Lagrangian Bertsekas [1996] Lρ(θj , γ, ξ), where ξ is a vector

of Lagrange multipliers for the equality constraints, and then applying the following

iterative update rules (to be run till convergence).

θ
(t+1)
j := arg min

θj

L(θj , γ
(t), ξ(t)) (37)

γ(t+1) := arg min
γ

L(θ
(t)
j , γ, ξ(t)) (38)

ξ(t+1) := ξ(t) + ρ(θ
(t)
j − γ

(t)) (39)
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Equation 37 is the optimization problem from CTR (for solving θj) and Equation 38

is the usual Logistic Regression problem (in terms of γ) and both can be solved

independently using the corresponding previously known techniques.

Prediction We have two predictive tasks: Item-recommendation (CF) and Genre-

classification. These two tasks can be performed after inferring the appropriate

parameters as:

rij = uTi vj (40)

ygj = σ(wg, θj) ≥ 0.5 (41)

It can be observed that G+CTR opens up several new possibilities. Ratings can now be

predicted for out-of-matrix items, if the content or genre can be obtained for such items.

Similarly, genre can be predicted for an item, even in the absence of its content, if ratings

are available on that item to learn its topical representation. Such situations commonly

appear in the multimedia classification setting where content-based classification is

infeasible with current state-of-art.

4.3.2 Our Approach: Transferable Active Learning for G+CTR

For the G+CTR model, TAL is expected to be useful in the cold-start scenario: a new

item arrives, and is devoid of any rating and genre information. For this scenario, the

structure of the G+CTR model suggests a potential surrogate task: topic discovery for

an item. Inferring the best θ for an item is a task in itself, albeit hidden. In the absence of

any ratings, content or genre information for an item, the item has an equal probability

of belonging to each of the topics. Consequently, the predictive tasks on that item,

classification and recommendation, are ineffective for lack of topic attribution. Every bit

of new information acquired about an item, including content, ratings or genres, makes

it possible to assign it to more relevant topics and disassociate it from the irrelevant ones.
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This latter scenario has a lesser topical entropy, enabling more informed predictions for

classification and recommendation. Thus, topical entropy minimization can be used

as the chosen surrogate measure of effectiveness for a topic-modelling based approach

to jointly learn diverse tasks. Mathematically, if H(θj |s) denotes the entropy 3 of the

topical distribution after acquiring supervision s, then we can re-write the formulation

in Equation 42 to choose a supervision for an item j can be described as follows:

s∗ = arg min
s∈

⋃
t∈T St

〈
H(θj |s)
ζs

〉
s

(42)

For the G+CTR model, T consists of two kinds of tasks, classification and recommen-

dation. The candidates for supervision (s) include all users from whom we do not have

any ratings for the item, as well as all the genres for whom we do not have membership

information for that item.

It should also be observed that minimizing the topical entropy of an item is akin to

minimizing the uncertainty of the surrogate task on that item. Uncertainty minimization

strategies are popular in the AL literature. TAL, instead of minimizing the uncertainty

over the final tasks, minimizes the uncertainty of the surrogate.

4.3.3 Experiments

4.3.3.1 Dataset

We use the publicly available MovieLens 4 dataset. The dataset consists of 2114 users,

10110 movies (items) and 20 genres. Total user-item-rating triples are 855599 suggesting

a very sparse rating pattern (only 4 percent of all possible user-item pairs have been

rated). On an average, each movie has been rated by approximately 85 users, with

the maximum number of users that have rated a movie being 1670 (for the movie: The

Matrix, a popular movie) and many movies with only a single rater. Each user has
3H(x) = −

∑
px log px

4http://www.grouplens.org/node/462
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provided ratings for at least 20 movies, with an average of 404 movies per user. On an

average each movie belongs to 2 genres, with maximum of 8 genres and minimum 1.

4.3.3.2 Genre-enhanced Collaborative Filtering

For the first experiment, in Figure 8, we compare the performance on the CF task in

the presence/absence of genre-information for each item. For the in-matrix setting, the

results have been averaged over 5 randomized 80/20 percent training/testing split (over

ratings) for each item to evaluate the performance of the CF task on that item. We

present all the known genre-based information for the with-Genre setting and hide all

of it in without-Genre setting. For the out-of-matrix (cold-start) setting, for each of the

splits from the in-matrix setting, we randomly chose 20 percent of the items and hid all

of their ratings reserved for training, thereby simulating new incoming items that no user

has rated. For each item, the evaluation set remains the same as that in the in-matrix

setting. Our evaluation is item-focused: the Mean Absolute Error (MAE) reported here

is the average of the per-item MAE 5 and is defined in Equation 43, where J denotes

the test set of items and |J| the cardinality of that set. Uj denotes the set of users who

have rated an item j, and r, r̂ denote the true and predicted rating for a given user-item

pair.

MAE =
1

|J|
∑
j∈J

 1

|Uj |
∑
u∈Uj

|rj,u − r̂j,u|

 (43)

We can clearly observe significant improvements in the performance of CF when the

model is supplemented with the genre-information. The performance improvement is

particularly more in the case of out-of-matrix predictions (for new items that do not

have any ratings) due to the additional guidance offered by genres to arrive at the

topical distribution of items. This replicates the success of the previous studies that
5Other empirical evaluations have reported user-focused MAE, i.e. averaged over the MAE of each

user, and are not directly comparable
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have looked at the use of genres for improving CF task Yang et al. [2008], but with a

more interpretable approach in the form of topic-modelling.

Figure 8: CF performance comparison

4.3.3.3 Rating-enhanced Genre Classification

As an alternate setting, we estimate the benefit of knowing rating information for the

genre-classification task. Again we use a 80/20 percent training/testing split (over items)

to evaluate the performance on the classification task. We present all known ratings

about an item in the with-CF setting, and hide it all in without-CF setting. Thus,

in the case of without-CF, the classification is only guided by the item’s content 6, a

standard situation in text classification. Maintaining the item-focused nature of this

work, the Macro-Average F1 scores have been averaged over items by averaging over

per-item F1 scores, as described in Equation 44, where Fj denotes the F1 score over

item j.
6In our experiments, content means the plot description of the movie
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F =
1

|J|
∑
j∈J

Fj (44)

Again, in Figure 9, we observe significant improvement in genre-classification perfor-

mance with the availability of rating information.

Figure 9: Performance on the Genre-classification task

4.3.3.4 Experiments:Transferable Active Learning

For these experiments, we first segregate the items into old and new items. All rating

and genre information is known about the old items, and new items are the cold-start

candidates. For the cold-start items, we segregate the known ratings and genres into

two sets, active and test set, using a 80/20 percent split. The active set forms the

candidates available for supervision. For real applications, this set is unknown apriori,

but approaches such as ProActive Learning Donmez and Carbonell [2008a] make it

possible to discover this set. Exploration of this added complexity in the context of
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TAL is left for future work and will not be examined here. In every active iteration,

the TAL criteria in Equation 42 is applied to acquire the most cost-effective supervision

from the active set. Upon including the acquired supervision into the training set of the

item, the required model parameters are re-estimated to perform further predictions, for

both the recommendation and classification task. After each iteration, the predictions

are evaluated using the held-out test set. It should be noted that the TAL criteria

requires the knowledge about the cost of acquiring a particular kind of supervision. In

the absence of any real data about this factor, we have arbitrarily chosen the following

cost structure: Cost of acquiring a rating on an item is the same for all users and cost

of a membership query on an item-genre pair is the same for all genres. Because users

typically provide ratings for free, but genres are manually curated, we assume that the

cost of acquiring a rating is 1/5th the cost of acquiring a genre supervision. We used 1

units cost for rating acquisition and 5 units cost for genre acquisition. For comparison

with the TAL criterion, we use the following baselines

1. Passive: The passive baseline which randomly selects any of the candidates from

the active set to acquire supervision

2. Passive: Ratings only: The passive baseline which randomly selects to acquire

only a rating

3. Passive: Genre only: The passive baseline which randomly selects to acquire a

genre information only

Note that item-focused Active Learning is a new area and consequently, we are unable to

compare TAL to previously published baselines other than variants of our own method.

The variants we compare are cost-agnostic preferential versions of TAL: TAL: Ratings

only selects the most effective ratings and TAL: Genre only selects the most effective

genres according to the TAL score.

59



Figure 10 shows a performance comparison of the approaches on the recommendation

task, in terms of the number of queries performed versus the performance on the task.

Figure 11 shows an alternate comparison that compares the expenditure (cost of all

acquisitions made) to the performance on the task. Clearly, the performance of TAL

baselines is much better than the passive baselines. In terms of the expenditure, the

cost-sensitive TAL approach is much more parsimonious in achieving better performance

as compared to its cost-agnostic counterparts. Figure 12 and Figure 13 show similar

behavior on the classification task.

Several interesting observations can be made in these results. For a given task, in the

absence of a cost function, the most suitable supervision to acquire is task-dependent.

Thus, it can be seen in Figure 10 that for the recommendation task, ratings matter

more than genre information. That means, the performances of Passive: ratings only

and tal: ratings only are better than their genre-only counterparts. Conversely, for the

classification task, in Figure 12, the most suitable supervision to acquire is genres, not

ratings.

However, in the presence of variable costs, the TAL strategy is more cost-effective is

choosing the right kind of supervision to acquire, as shown in Figures 11 and Figure 13.

It can be observed that the seemingly better classification performance of genres-only

over ratings-only approaches comes at a higher cost. As the results indicate, the

TAL approach overcomes this limitation by selectively acquiring the most cost-effective

supervision.

4.4 Summary

We presented a novel scenario for Active Learning: Acquiring supervision over one

kind of task, with the goal of improving performance over another kind of task. To

address this challenge, we presented the Transferable Active Learning strategy as a
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Figure 10: TAL: The effect of supervision acquisition on recommendation performance

mechanism of gauging cross-task benefit of acquiring supervision. We presented our

ideas in the context of the real-world application of genre-based Collaborative Filtering.

Our empirical analysis demonstrated the significant improvements made possible by

learning the two kinds of tasks, Collaborative Filtering and Genre-Classification, jointly.

Using the novel TAL strategy, we demonstrated significant reductions in the amount

of the cross-task supervision required. Heterogeneous tasks are ubiquitous in several

Machine Learning applications and further exploration is required to identify the best

model and the best Transferable Active Learning strategy for improving such tasks with

minimal supervision. On the theoretical front, it is crucial to identify a surrogate task

that is a good indicator of the performance of the original tasks.
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Figure 11: TAL: The effect of expenditure on acquiring supervision on recommendation
performance. The numbers have been arrived at by dividing the percentage improvement
in MAE-score by the corresponding total expenditure in acquiring supervision, using a
particular strategy.
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Figure 12: TAL: The effect of supervision acquisition on classification performance

5

Multi Task Active Learning for

Hierarchical Classification

Hierarchical Classification (HC) Cai and Hofmann [2004]; Chen and Dumais [2000];

Liu et al. [2005b] is an important application of machine learning. HC deals with
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Figure 13: TAL: The effect of expenditure on acquiring supervision on classification
performance. The numbers have been arrived at by dividing the percentage improvement
in F1-score by the corresponding total expenditure in acquiring supervision, using a
particular strategy.

classifying a given instance into one, or several, categories belonging to a pre-defined

taxonomy or ontology. It is widely used for diverse domains such as text Sun and

Lim [2001], proteins/genes/enzymes Zimek et al. [2010], advertisements and user-

interests, chemical databases Rose and Eastman [1997], either as a final goal to facilitate

information management, or as an intermediate task for important applications such

as information retrieval Dumais and Chen [2000], disorder prediction, click-through

prediction, personalization and collaborative filtering.

A popular approach to HC, especially in the large-scale scenario, is the hierarchical

divide-and-conquer (HDC) Cai and Hofmann [2004]; Chen and Dumais [2000]; Liu et al.

[2005b] strategy that associates a binary classifier with each node of the hierarchy.

The classifier at each node acts as a filter which allows the positive instances to pass

through and stems the negative ones. The descendant nodes are only concerned with
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discriminating among the instances deemed positive by the parent node. During training,

each node is trained in a one-vs-rest manner against its siblings, using only the positive

instances of its parent. This simplicity of the approach makes it deployable on a

large-scale using conventional state-of-the-art binary classifiers such as Support Vector

Machines (SVM) Liu et al. [2005b], Naive Bayes (NB) Punera and Ghosh [2008] or

Logistic Regression (LR) Zimek et al. [2010] classifiers as the building blocks at each

node. This divide-and-conquer approach has been shown to significantly outperform

direct one-vs-rest flat classification at the leaf level (which ignores the hierarchy), both

in terms of classification performance as well as computational complexity Liu et al.

[2005b], since each classifier gets trained on a fraction of the overall training instances

as one goes down the hierarchy. A particular failure of the HDC (as well as the flat

classification) approach, is its poor performance on nodes with scarce positive training

instances Liu et al. [2005b]. Such scenarios are unavoidable at the lower-level nodes of

the hierarchy and it is important to address this challenge.

Firstly, our approach implements a Multi-Task HDC (MT-HDC) strategy to leverage

the learnt parameters of a parent node to regularize its children. Intuitively, our strategy

is based on the fact that the parent node has been learnt on more training data, thereby

leading to a more robust parent model. In comparison, a child node might tend to

overfit the limited training data it has access to, and hence might benefit from the

regularized guidance that it receives from the parent node. We derive a Stochastic

Gradient Descent (SGD) based solution for training MT-HDC to make it scalable for

large-scale hierarchiies and also enabling online-learning in scenarios where it is training

instances arrive in a stream.

Secondly, we supplement the model with a novel Active Learning (AL) strategy that

selectively solicits labels for instances that are deemed useful for learning a better HC

model. Conventional AL approaches typically choose instances in a single-task manner,

i.e., to improve the performance of a single classifier/node in isolation. In a hierarchical
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setting, it is particularly important to select instances for labeling that lead to more

cascading improvements, both in terms of the breadth and the depth of the hierarchy.

Our AL approach selects instances taking such widespread improvements into account.

We design this approach as an online scoring function that will select instances for

labeling on the fly, as instances are presented to the classifier. Instead of computing the

overall score of an instance to obtain its terminal label directly, the algorithm selectively

performs membership queries at each node in the hierarchy to limit computational cost.

We first formally define the problem setting. The HC task consists of mapping instances

x ∈ RD to their corresponding labels y ∈ {0, 1}Y , where Y is the total number of

labeling tasks. The labels, y = (y1, . . . , yY ), are hierarchically structured in a way such

that yc = 1 implies yp = 1 if yp is the parent of the node yc in the hierarchy, i.e. if c ∈ Λp,

where Λp denotes the set of direct children of the node p. The inverse relationship is

denoted by p = πc, i.e. p is the parent node of c. Training data arrives in pairs of labeled

instances of the form (x,y).

The popular HC strategy, for performance and computational complexity, is the

Hierarchical Divide-and-Conquer strategy (HDC) that associates a classifier with each

node in the hierarchy. For large-scale deployments, it is crucial to use simple but effective

classifiers at each of the nodes; for example a binary Logistic Regression (LR) classifier

should suffice. Training involves learning the LR weight vector w ∈ RD per node, usually

by Maximum Likelihood Estimation (MLE). For classification, instances arriving a node

i are passed on to their children only if they can overcome the probabilistic membership

threshold, i.e. P (yi = 1|wi,x) > t. For LR, P (y = 1|w,x) = (1 + exp(−w · x))−1,

often denoted as σ(w · x) as the sigmoid function. The threshold t is tuned for the

desired evaluation metric such as accuracy, precision, recall or the composite F-score.

Due to the one-to-one correspondence between a node, the corresponding classifier and

its associated weight vector w, we will use the terms interchangeably.
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5.1 Our approach: Multi-Task HC

We adapt the HDC model using a novel structured regularization scheme that utilizes

the learnt weight vectors of a node as Bayesian regularizers for the parameters of its

children. We present two alternative regularization schemes, that involve the L1 and L2

regularization of the parameters of the child node.

∀c ∈ Λp

∀i ∈ {1, . . . , D}

L1:

wc ∼ Laplace(wp,Σp)

P (wc,i|wp,i, ν
2) =

1

2ν2
exp

(
−|wc,i −wp,i|

ν2

)

L2:

wc ∼ Normal(wp,Σp)

P (wc,i|wp,i, ν
2) =

1√
2πν2

exp

(
−(wc,i −wp,i)

2

2ν2

)

L1 regularization is preferred for learning sparse models, while L2 regularization is

preferred for avoid over-fitting by the virtue of limiting the region of search for the

optimal parameters. In our model, we center the top-level nodes (parent-less nodes)

to zero for getting a sparser(L1)/tighter(L2) model, and rest of the nodes follow the

regularization rule set above. In this work, we use diagonal matrices for Σ and treat

them as hierarchy-wide constants, i.e. Σj = ν2I,∀j ∈ {1, . . . , Y }. Such choices are made
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possible by pre-processing methods such as scaling each of the D input dimensions

to have unit variance and then normalizing each input vector x to unit length (L2

normalization).

Our regularization framework is similar in spirit to the one studied by Shahbaba and

Neal [2007], with subtle differences. They study hierarchical classification in the multi-

class setting, where each instance can belong to exactly one child of a given node. We

study the multi-labeled setting, where each instance can belong to multiple children

of a given node. Consequently, their model is based on multinomial logit classifiers at

each node, while ours is based on binomial logit classifiers, one per node. Secondly, in

their model, the parent-child regularization is achieved through the variance term while

utilizing a zero mean (Normal(0,Σp)), while in our model, its achieved through the mean

term. Furthermore, we develop our model to enable online learning for large datasets,

while theirs may not be scale well to large applications.

We present a Stochastic Gradient Descent (SGD) solution for learning this joint

Multi-task model. SGD, originally the preferred method for learning the perceptron

model Bottou [1991], has now been adopted as the method of choice for speedier

large-scale learning of Support Vector Machines Bottou [2010], Logistic Regression, and

Conditional Random Fields (CRF) Bottou [2010]. The complete derivation is based on

Maximum Likelihood Estimation of the joint model, achieved by setting the derivative

of the complete log-likelihood with respect to a parameter to zero. We present here the

gradient update steps.
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wi,j ← wi,j + η (∆instance + ∆parent + ∆child) (45)

∆instance = xj(yi − σ(wi · x))

∆
(L1)
parent =

1

ν2N
signum(wπi,j − wi,j)

∆
(L2)
parent =

1

ν2N
(wπi,j − wi,j)

∆
(L1)
child =

1

ν2N

∑
c∈Λi

signum(wc,j − wi,j)

∆
(L2)
child =

1

ν2N

∑
c∈Λi

(wc,j − wi,j)

Starting at the root node, upon receiving a training instance, the node’s model is updated

using the above update rules, before being passed over its children. The process cascades

till the instance reaches the leaf nodes. Just like in HDC, a training instance is only

passed on to the children, if it belongs to the node itself. Negative instances of a node

do not make it to the children. In a strictly online setting, an instance is seen only

once, but it is possible to apply this strategy in multiple epochs or iterations over the

training set for better performance. Typically, smaller datasets require several epochs,

while larger datasets, owing to the redundancy of training instances require fewer or

single epoch.

Scalability

HC is usually deployed in large-scale scenarios, and it is crucial to understand the

scalability aspects of the approach used. Our approach, MT-HDC, still permits the

parallelism strategies offered by the original HDC approach. Each individual node can be

learnt in parallel with its siblings. Intra-node communication is limited to simple message

passing to get the parameters of a nodes’ parent and children for use as regularizers.

This message passing can be performed after training on each instance, or lazily after
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processing a batch of instances, or at the end of each epoch depending on the scale and

availability of resources. Message passing does not require sharing the full vectors, but

only the differential (or changed components) since last message. Message passing is an

inherent communication mechanism in massively parallel architectures such as MPI and

even for achieving parallelism on single multi-core desktop machines using OpenMP. It

is straightforward to deploy this algorithm on the Hadoop/Map-Reduce architectures,

the most popular platform for processing data on a large-scale. Training for individual

nodes could be performed during the Map phase (in parallel) and message-passing for

sharing parameters can be achieved in the Reduce steps.

5.2 Our approach: Active Learning for MT-HDC

For our multi-task AL approach, we exploit the desirable properties of the model to

derive the best instances for supplementing the training set. We describe these properties

below.

Property 1. Hierarchical Consistency In a hierarchical setting, consistency among

parent and child classifiers is paramount. Specifically, we are interested in the constraint

given below:

ŷc ≤ ŷp,∀c ∈ Λp (46)

The constraint (Equation 46) is a strict constraint and must be satisfied at all times.

If an instance doesn’t belong to a parent node, then it may not belong to any of its

children either. It is reasonable to expect that a HC model that provides consistent

predictions based on the applicable constraints is a better model than one that does

not. Therefore, from an AL perspective, we are interested in selecting instances that will
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attempt to lead to a more consistent predictive model. The instances which already obey

the consistency rules cannot be expected to provide any additional benefit in improving

the model consistency. Consequently, our AL strategy selects instances that violate the

consistency constraints. Note that the consistency rules are local for each parent-child

relationship and can be checked for an instance at each node to decide on whether to

make a membership query at that node. To choose among a set of instances, all of which

violate the constraints, we develop an AL consistency score for each of the conditions:

Cp(x) = 1−
∑

c∈Λp
max(0, σ(wc · x)− σ(wp · x))

|Λp|

The score Cp is similar to the hinge-loss (used in Support Vector Machines) and only

focuses on the situations where the child score is higher than its parent for an instance.

An instance is consistent if the score is higher, and inconsistent if the score is lower.

This AL strategy can be justified using a Version-Space reduction approach. Version-

Space (VS) in a classification setting is the set of hypotheses that are consistent with

the observed training data. The best classifier is (usually) contained in the VS and

methods such as the max-margin approaches attempt to identify the best classifier using

some heuristic. Naturally, in the absence of any training data, the VS contains all the

models in the hypotheses space, and choosing the best one is difficult. As training set

size increases, the hypotheses that are inconsistent with the data are removed from

consideration (i.e. from VS), making it easier to choose a better classifier from the

remaining ones. Thus, a good AL strategy involves choosing instances that lead to

significant reduction in the VS for faster improvement of the classifier. The popular AL

approach for SVM Tong and Koller [2000], i.e. choosing instances closer to the decision

boundary, is based on this principle, as such instances are expected to reduce VS into

half (the hypotheses that label the instance incorrectly are removed from the VS. For

an instance at the boundary half of the hypotheses label the instance positive and the
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other half negative). The space of all hypotheses of the overall HC model is significantly

large, VSHC =
∏
i={1,...,Y }VSi, where VSi is the size of the VS of node i. Since each

individual component matters, a reduction in the VS of any given node leads to the

reduction in the overall VS of the HC model. Training the model on an inconsistent

instances will remove all the hypotheses that lead to such predictions from the VS. The

faster that we can get rid of inconsistent hypotheses, the faster we can improve the model

performance, making it necessary to choose such instances for labeling. Some previous

approaches have studied the smoothing and regularization of raw classifier scores to

achieve consistency Punera and Ghosh [2008]. We instead use it as a AL selection

strategy, as a means of fixing the hypotheses.

As a side-note, consider that the consistency-based approach to Active learning may not

always be effective in selecting the best instances. This is possible when the child and

parent nodes are very different in their learnt models. Also, inconsistency in predictions

is more likely when a node has fewer training instances. As a node accumulates more

training data, the predictions might become consistent, thereby leading to lesser benefit

of this strategy. But considering that Active learning is used mostly in the former case

(when training data is less), we expect consistency-based approach to work well for

Active learning.

Property 2. Influence In the Multi-Task setting, our primary expectation is that

each of the children are fine-tuned versions of their parent. If the children of a node

are not very different from a parent, then it means that the parent exerts significant

influence on its children. Consequently, allocating additional labeled training instances

to such an influential parent is expected to lead to cascading improvements among its

children. Furthermore, a parent that influences influential children is the right candidate

to receive additional supervision. Mathematically, we can express influence as a simple

recursive function of the parameters of a node and its children as follows:
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Ip =
∑
c∈Λp

e−‖wc−wp‖Ic (47)

Note that influence 7 is independent of the unlabeled instance and can be computed

offline before seeing an instance. This score is to be used in conjunction with other

instance-dependent AL scores to supplement the influential node with a suitable training

instance. Since labeling budget for the overall hierarchy is limited, with the influence

score, we wish to avoid supplementing training data at nodes that have the least impact

on the overall performance of the model, even if some instances might be beneficial at

such places.

Online score for AL We adapt a popular online scoring function Cesa-Bianchi et al.

[2006]; Saha et al. [2010] with the new AL scoring criteria as follows:

ζp(x) =
Ip

Ip + δcCp(x) + δuUp(x)
(48)

Incoming instances x at a node p are sampled for membership queries with probability

ζpx. Ip and Cp(x) are the influence and consistency scores respectively. Up(x) is the

certainty of the prediction on the instance x at that node, and is computed simply as

the distance from the classification boundary Up(x) = |0.5 − σ(wp · x)|: classifier is

certain about instances farther from the boundary and uncertain about those in the

proximity. Uncertainty of classification estimated this way has long been used as an

AL criterion Tong and Koller [2000] for choosing the best instances to query. δc and δu

are the relative weights for the consistency and certainty scores respectively, to provide

weighting strategy 8.
7Our influence function should not be confused with the one popular in Robust Statistics Huber

[1964]. In that context, the influence function estimates the infinitesimal impact of an observation
situated at a point on the value of a functional being studied.

8For simplicity, we have used equal values for δc = 0.5 and δu = 0.5 in our experiments
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Intuitively, higher influence scores lead to more aggressive sampling of instances for a

node, as that term dominates the score. In the absence of significant influence, the

system prefers to acquire supervision for only those instances which lead to uncertain

and inconsistent predictions.

In scenarios with variable supervision costs at different nodes, appropriate modifications

can be made to Equation 48 to give preference to nodes with cheaper supervision.

One example modification could involve normalizing the score at a node with the

corresponding supervision cost to determine the per-unit benefit of acquiring supervision

at that node. Additional modifications can be made by introducing weighing factors for

the three components (influence, uncertainty and consistency) to balance their effects.

In our work, we study the uniform cost scenario with equal weighing of components and

leave the weighted variable cost scenarios for further exploration.

5.3 Experiments

5.3.0.5 Datasets

We use a wide selection of publicly available benchmark collections popular in the HC

community. There’s a large diversity in the scale, type, depth, and label-cardinality of

these datasets. The details are provided in Table 3.

Dataset instances features categories Hierarchy Depth
ImCLEF07D Dimitrovski et al. [2008] 11006 80 46 3.0
ImCLEF07A Dimitrovski et al. [2008] 11006 80 96 3.0
Enron Klimt and Yang [2004] 1648 1001 54 3.0
Reuters Lewis et al. [2004a] 6000 47236 100 4.0

Table 3: Hierarchical Datasets
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5.3.0.6 MT-HDC performance

The results presented here have been averaged over 25 randomized splits of training/test

sets. We evaluate the performance using the popular F-score (harmonic mean of

Precision and Recall) metric, computed as a Macro-Average and Micro-Average. As

a comparative baseline, we compare against vanilla HDC. HDC is the conventional

approach described before in which each node is learnt in isolation with its own

regularizer that is independent of the parent’s parameters. In Figure 14 and Figure 15,

we present the comparison of the 4 configurations: L1/L2 regularization and vanilla

HDC versus Multi-Task HDC (MT-HDC). It can be observed that in all the cases, MT-

HDC outperforms the conventional approach. Although L2 regularization is seemingly

better, there is no clear winner.

Figure 14: Classifier performance when trained on 60% of the available instances:
Micro-Average F1

For further clarity, in Figure 16 and Figure 17, we compare the depth-wise performance

of the various methods. It can be observed that the MT-HDC approach outperforms at
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Figure 15: Classifier performance when trained on 60% of the available instances:
Macro-Average F1

all levels, especially at the lowest levels where there is dearth of training instances.

To evaluate the performance based on skewness or imbalance of training data, we present

a comparison of MT-HDC with HDC as a function of the class imbalance in training

data in Figure 18. It can be observed that MT-HDC handles class-imbalance better

than HDC.

5.3.0.7 Why does Structured Regularization work?

To further analyze the benefit of using structured regularization in MT-HDC, we

study the actual learnt parameters of the model over different phases of learning. In

Figure 5.3.0.7, we present a heatmap of the parameters of a node. Each column in

the heatmap is the weight vector w of the same node at a given time, with the first

column being the initial weight vector after being trained on only one instance and the

last column being the final weight vector when all the training data has been observed
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Figure 16: Depth-wise classifier performance when trained on only 1 positive instance
per-leaf node: Micro-Average F1

by the node. In an ideal setting, to be able to learn from minimal data, the weight

vector should stabilize to its final value as early as possible. In the Figure 5.3.0.7, it

can be observed that the parent node stabilizes much earlier than the child node. This

is primarily because at any given time, the parent node has access to more training

instances than the child node. It can also be observed that the structurally regularized

child becomes more discriminative among features more quickly than the one without

parental guidance. It can be observed that the child is indeed a fine-tuned version of its

parent, slightly different in the parameter space.

5.3.0.8 Experiments: Online Active Learning

For evaluating our novel Multi-Task Active Learning score (henceforth MTAL-HDC), we

use the experimental setting popular in the online Active Learning community Beygelz-

imer et al. [2010]; Saha et al. [2010]. Specifically, we start with only one positive
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Figure 17: Depth-wise classifier performance when trained on only 1 positive instance
per-leaf node: Macro-Average F1

instance per leaf node in the overall training set 9. As a weak baseline, we compare

the online AL strategies to getting all the labels on each unlabeled instance that arrives

at a node. This we call the Full supervision baseline. As a strong baseline, we

use the uncertainty-based sampling approach, using the formulation in Cesa-Bianchi

et al. [2006]. This essentially means the same form as Equation 48, but without the

consistency and influence components. We call this the uncertainty based approach.

For these experiments, we have used only the MT-HDC-L2 model for all the comparative

AL strategies. In Figure 20, we compare the chosen baselines with MTAL-HDC in

terms of the classification performance as unlabeled data is streamed (and queried,

actively) through the system. It can be observed that the MTAL-HDC performance

is approximately upper bounded by the performance of obtaining full supervision, and

is not too less than it. Also, MTAL-HDC performance is superior to the uncertainty-
9By virtue of being multi-labeled, some leaves might get more than one positive instances in our

experiments, but the initial training set is same for all compared approaches
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Figure 18: Training set class imbalance Versus Performance improvement using MT-
HDC over HDC. The horizontal axis denotes the log

(
Number of positive instances
Number of negative instances

)
. Thus

left extreme shows scenarios with scarce positive instances and right extreme shows
scenarios with scarce negative instances. The vertical axis shows the difference in the
performance of the MT-HDC and HDC approach. Positive half indicates MT-HDC is
better than HDC and negative half shows superiority of HDC over MT-HDC on that
class.

based sampling strategy. To further validate the efficacy of our approach, we compare

the actual number of active queries (membership queries) made by our approach to

that of the baselines. (Full supervision always makes all possible queries). It can be

observed in Figure 21 that the MTAL-HDC approach makes significantly lesser number

of queries than the baselines. In conjunction with the earlier experiment in Figure 20,

this would mean that despite the significantly lesser number of queries, there is not much

performance sacrifice using the MT-HDC approach. This exemplifies the significant cost-

reductions made possible by using MTAL-HDC.
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(a) Child: Without Structural
Regularization (HDC-L2)

(b) Parent (c) Child: With Structural Reg-
ularization (MT-HDC-L2)

Figure 19: Comparison of the learnt parameters of a parent and its child when trained
using L2 regularization. The left and right heat-maps are for the same child, but with
and without structural regularization. The colors of the heat-map denote the magnitude
of the learnt weight vector components. The horizontal-axis of the heat-map denotes the
fraction of training instances observed (0 through 1). The vertical-axis of the heat-map
is representative of the components of the weight vector (features).

5.4 Summary

We presented a novel combination of Multi-task Learning and Active Learning for the

important problem of Hierarchical Classification. For Multi-task learning, we regularize

the child nodes with the learnt parameters of the parent node, to appropriately guide the

child parameters. For Active learning, we presented a novel concept based on hierarchical

consistency that leads to further reduction in training instances than conventional active

learning strategies that select instances for each node in isolation. Through experiments,

we demonstrated significant reduction in the overall training data required for HC, with

particular improvements in the performance of the nodes with scarce training data.

There are several direction for further exploration. In the current work, we have focused

on the local parent-child disagreement for choosing instances. It would be interesting to

extend the idea to computing more deeper disagreements, for example over a sub-tree

rooted at a node to select instances that have more deeper impact in the hierarchy.

That would further require novel algorithms for computing sub-tree disagreements more
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Figure 20: Comparison of online active sampling strategies in terms of the performance
improvement as unlabeled data is streamed through the model.

efficiently. As a more convincing argument in favor of the proposed approaches, it

is crucial to develop a theoretical analysis of the label complexities of the proposed

methods.
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Figure 21: Comparison of online active sampling strategies in terms of the number of
membership queries made by the approaches.
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6

Oracle-sensitive MTAL: Active

Collaborative Filtering

Active Learning for Collaborative Filtering is a relatively new concept; here the goal is to

solicit ratings for minimal set of movies from a user to learn about the user’s preference

pattern. This is very essential because when new users join existing models, the system

knows little about their preferences and the system would like to understand the user

preference pattern with the least amount of training examples so as to not annoy the

user with lot of questions.

Previous work on Active Learning applied to Collaborative Filtering Boutilier et al.

[2003]; Jin and Si [2004], have made one common implicit assumption, that users would

be able to provide rating to any item that is requested by the system. This assumption,

in reality, is not true , because, to rate a movie, a person has to first procure the movie,

and watch it. This can be very time consuming, as opposed to, for example, in text

classification where users can quickly label text documents just by skimming through

the snippets. Moreover, users would not like a system which solicits ratings for movies

the user may not even watch and such a dialog can be frustrating. Since Collaborative

Filtering deals with user-personalization, we believe Active Learning should also be
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personalized to solicit ratings about items that a user would usually watch. In this paper,

we provide one such personalization approach for active learning applied to Collaborative

Filtering.

As part of this work, we demonstrate a successful approach to model oracle expertise. In

this setting, each task is an item-recommendation task for a user, and there is a single-

oracle per-task, the user itself. Note that the Proactive Learning approach [Donmez

and Carbonell, 2008a] of clustering instances based on their content may not be directly

applicable to this setting, as no other features are known about the items. Our approach

instead utilizes the similarity among users (or oracles) in rating similar kinds of items.

Previous work on Active Learning applied to Collaborative Filtering [Boutilier et al.,

2003; Jin and Si, 2004], have assumed that users would be able to provide rating to any

item that is requested by the system. In reality, users have experience with very few

items resulting in very few successful active queries.

6.1 Personalized Active Learning

We define probability of obtaining a rating/supervision on item x from user/task m as

P (s|x,m). We estimate this probability by developing a variant of the Probabilistic

Latent Semantic Analysis (PLSA) [Hofmann and Puzicha, 1999] model. We first cluster

users into aspects Z based on their rating profiles and then discover the likelihood of

obtaining supervision over an item in a particular interest group p(s|x, z).

p(s|x,m) =
∑
z∈Z

p(s|x, z)p(z|m) (49)

p(s|x, z) =

∑
m∈M p(z|m)I(m,x)∑

m∈M
∑

x′∈X p(z|m)I(m,x′)
(50)
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I(m,x) =
1, if user m has rated item x

0, otherwise

I(m,x) is an indicator function that indicates whether a user has rated an item x. Thus,

in modelling p(s|x,m), we are not interested in the actual rating provided by a user, but

whether the user provided a rating for an item. We estimate the desired components

using the Expectation Maximization (EM) algorithm [Hofmann, 2003].

The probability p(s|x,m) of obtaining rating for an item x from a particular user m can

be used as a filter to first remove instances that are highly unlikely to receive ratings

from the user. A chosen AL strategy can then choose items, to solicit ratings for, from

the remaining unrated instances for that particular user. We reflect this filtering through

the use of a soft-AND function selecting instances that have a high AL benefit Am(x)

and score higher on oracle expertise p(s|x,m).

x∗m = arg max
x∈Um

Am(x) p(s|x,m) (51)

In the context of Collaborative Filtering, the score Am(x) can be the Bayesian selection

criteria described in Equation 10.

6.2 Experiments

6.2.0.9 Experimental Setup

We use the MovieLens10 and MovieRating11 datasets for the empirical analysis of our

approaches. The detailed characteristics of the two datasets are presented in Table 4.

The datasets were randomly split into training/test sets as shown in Table 5. The

Aspect Model is first trained from training set. This gives the global model p(r|m, z) as
10www.grouplens.org/system/files/ml-data.zip. This dataset is similar to the EachMovie dataset

(prevalent in earlier literature) which is no longer available for usage. www.grouplens.org/node/76
11http://www.cs.usyd.edu.au/̃irena/movie_data.zip
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Table 4: Characteristics of MovieRating and MovieLens datasets

MovieRating MovieLens

Number of users 500 943

Number of movies 1000 1682

Average number of rated movies/user 87.7 106.05

Rating Scale 1-5 1-5

Table 5: Our Experimental Setup

MovieRating MovieLens

Number of Training-set users 200 343

Number of Test-set users 300 600

Number of Initial ratings per test user 3 3

Number of Preserved ratings (evaluation) per test user 20 20

Total number of Preserved ratings (evaluation) over all test users 6000 12000

Number of Active Selection Candidates per test user 977 1659

Number of user-classes 5 10

defined in Equation 7. Active learning involves soliciting ratings from new users. The

test set forms this set of new users. Thus we start with very few initial ratings for each

user, about 3, simulating a new user. The user-model θu is learnt from these ratings.

For each test-user, remaining movies are split into two sets, the active-selection set and

the evaluation set. Active learning algorithms select movies for rating from the set of

active selection candidates. In previous approaches, the active-selection set consisted

only of movies for which ratings are available in the dataset . This is unrealistic, since

a system cannot know beforehand which movies will be rated by the user. This is also

evident from the dataset characteristics reported in Table 4 in which average number

of movies rated by a user is less than 10% of the total number of movies. We use a

more realistic setting, in which the active-selection set for each test-user consists of all

the movies (rated and unrated) which are not included in 1) the initial-ratings and 2)

the evaluation set for that user. This makes active-selection more challenging and the
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setting realistic. The evaluation set is a held-out set of movies for the test-user which is

used for evaluating the performance of the Collaborative Filtering system.

We have set the number of user-classes to 5 and 10 respectively for the MovieRating and

MovieLens datasets as reported in previous empirical studies and Active Collaborative

Filtering literature Jin and Si [2004].

6.2.0.10 Evaluation Metrics

We evaluate the system using two kinds of metrics:

CF performance: This includes the usual CF metrics,i.e. the Mean Absolute Error

(MAE) and Mean Squared Error(MSE). MAE and MSE measure the deviation of the

predicted ratings of the movies in the test set from the actual ratings available in the

dataset. In the equations below, Mue denotes the evaluation set for the user u and

n(Mue) denotes the number of movies in the set.

MAEu =
1

n(Mue)

∑
m∈Mue

|rtruem − rpredictedm | (52)

MSEu =
1

n(Mue)

∑
m∈Mue

(rtruem − rpredictedm )2 (53)

Since we use multiple test-users, the reported MAE (and MSE) is the average over

individual MAE (and MSE) for each test-user as shown in Equation 52, where Ut is the

set of test users and n(Ut) denotes the number of test users.

MAE =
1

n(Ut)

∑
u∈Ut

MAEu (54)

Failures: The system solicits ratings for movies from the user and the user may not

provide ratings for some of them. Such instances are known as failures to obtain rating

from the user. This metric is very essential for comparison of the personalized approach

with previous approaches, since it clearly identifies the number of queries from the active
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learning algorithms that will go unanswered, and thus not useful for the active learning

system. High failure rate also means a system which is likely to annoy the user with

questions for which the user does not have any answer. In our experimental setup, a

failure occurs whenever the system solicits rating that does not occur in the dataset.

The system thus cannot be re-trained and wastes an active-learning cycle and proceeds

to the next iteration.

6.2.0.11 Active CF cycle

User−Query

Active SelectionEvaluation

Training

Figure 22: The Active Learning process

The Active learning cycle is shown in Figure 22. The global model is learnt over all

the training-set users. The active learning cycle starts for each of the test users after

the global model is learnt. The system learns a user-model for a test-user based on

the available intial ratings, or the labeled-set and the system is then evaluated over the

evaluation set. The system then selects a movie for rating from the active-selection set

of the user. If the user provides rating for the movie, the system adds this movie-rating

pair to the labeled-set and retrains the system model. If the user does not provide

rating for the movie, then it is noted as a failure. The system cannot be retrained in

case of a failure. In either case the system is evaluated in terms of MAE and MSE on

the evaluation set of the user. This completes one active-iteration. In the next step the

system asks rating for another movie from the user and the cycle continues.
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6.2.0.12 Aspect Model Implementation

For the Aspect Model, we model P (r|m, z) with gaussian distributions N(r;µm,z, σm,z).

We use a multinomial model for the user-group mixing proportions P (z|u), as proposed

in Hofmann [2003]. Users generally do not follow the same distribution to provide ratings

to items, and so it is common in the collaborative filtering techniques to normalize user-

ratings to have zero mean and unit variance. It should be noted that the normalization

parameters are learnt only over the ratings available to the system, not over the items

in the active-selection candidates and evaluation set.

6.2.0.13 Comparative Baselines

The proposed Personalized Active Learning algorithm is compared against following

approaches towards item selection:

• Random Selection(RS): Items are selected randomly from the set of active-

selection candidates for soliciting ratings from the user.

• Bayesian Selection(BS): We implement the Bayesian approach outlined in

Jin and Si [2004]. This approach has already been compared to other existing

approaches like Model Entropy based Sample Selection, which selects item based

on expected reduction in model entropy, and Prediction based Sample Selection

which selects items based on the uncertainty in prediction. According to Jin and

Si [2004] Bayesian Selection outperforms the other approaches.

We replicate the experiments in Jin and Si [2004] with our implementation of the

baseline in Figure 24. In our comparative evaluation, the baseline performs similar

to Jin and Si [2004] using the experimental setup reported in Jin and Si [2004]. It

should be noted however that Jin and Si [2004] performs active-selection only on the

subset of movies for which ratings are available in the dataset, thereby making the

assumption that user can rate any movie. We call this setup constrained because the
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Figure 23: Constrained Baseline implementation: Active learning trends over 10 active-
iterations for the MovieLens dataset

active-selection set is constrained to rated items. This is unrealistic, since the system will

not know beforehand, which items will be rated by the user. Therefore, for comparison

with personalized Active Learning, we will be using the entire set of movies, not just

the ones for which ratings are available in the dataset. We call this the unconstrained

setup.

For the sake of conciseness, we call our own approach the Personalized Bayesian

Selection (PBS).

6.2.0.14 Empirical Results and Discussion

The results for our experiments are presented in Figure 25, for the first 10 active

iterations of the system.
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Figure 24: Constrained Baseline implementation: Active learning trends over 10 active-
iterations for the MovieRating dataset

It can easily be observed that our approach, Personalized Bayesian Selection outperforms

Bayesian and Random Selection on both datasets using both metrics, MAE and MSE.

Moreover, since Bayesian Selection does not take the probability of getting a rating

into account, it performs even worse as compared to plain Random Selection. This is

expected because Bayesian selection tries to identify items that will provide the most

information about user-model, but in the process often selects items which the user

would not be able to provide a rating for. This is evident from the Table 6 where we

report the mean number of failures, over all active-users for 10 active iterations.

As shown in Table 4, average number of ratings per user is about 87.7 (out of 1000)

and 106.05 (out of 1620) for the MovieRating and MovieLens datasets respectively, each

user has on an average only 1 item rated out of 10. Thus, it is expected that random
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Figure 25: Unconstrained setup: Active Learning trends over 10 active-iterations

Table 6: Mean number of Failures over 10 active iterations (averaged over 300 active-
users for MovieRating and 600 active-users for MovieLens)

MovieRating MovieLens

RS 9.0728 9.3268

BS 9.8398 9.8366

PBS 5.995 5.1267

selection has about 9 failures out of 10 active-iterations. Bayesian Selection has more

failures than Random Selection because most informative items may not be rated by

the user. Personalized Bayesian selection substantially reduces the number of failures

and selects atleast 4 out of 10 items for which the active-user can provide a rating.

It should be noted that active CF systems will solicit ratings for new movies from the user
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till the system has substantial number of ratings from the user. A system with higher

failure rate will tend to ask more questions to obtain comparable number of ratings

from the user. Users typically do not favor systems which ask too many questions.

Thus, a personalized active CF system is more likely to be favored by the user than an

unpersonalized one.

6.2.0.15 Significance Tests

We conducted paired t-tests Yang and Liu [1999] for comparing the performance of the

PBS, BS and RS approaches. Given two systems (say A and B) and a set of n items, the

MAE (or MSE) values were computed for both systems, for each test item, denoted as

ai, bi for i = 1, 2, . . . , n. We used the pairwise difference di = ai− bi to examine the null

hypothesis that expected difference d =
∑

i di
n is zero against the alternative hypothesis

d > 0, meaning system A is better than system B. The p-value is computed using the

t-distribution with the degree of freedom n− 1 for

T ≥ d

s.e.(d)
(55)

Table 7: p-values for the significance tests comparing various active learning approaches

p-value

System A System B MovieRating MovieLens

RS BS 0.04 0.0019

PBS BS 6.2e-05 2.1e-13

PBS RS 0.0040 8.9e-08

Small p-value (≤ 0.01) means statistically significant evidence against the null hypoth-

esis. Table 7 reports the p-values obtained in our tests using the MAE values of each

system after 10 active learning iterations, i.e. after selecting 10 items and adding their

ratings (if rated) to the current training set. It can be observed that our approach

(PBS) significantly outperformed Bayesian Selection (BS) and Random Selection (RS).
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Table 8: Exemplary movie clusters sorted on P (m|z) for the MovieRating dataset

Cluster A
Dante’s Peak

Contact
Scream

Air Force One
Murder at 1600

The Game
Conspiracy Theory

Titanic
I know what you did last summer

The Devil’s own

Cluster B
Star Trek: First Contact

Return of Jedi
Scream

Courage under Fire
Contact

Mission Impossible
The Godfather

Star Trek: The wrath of Khan
The fifth element

Star Trek: Generations

Random Selection performed better than Bayesian Selection with statistically moderate

evidence, i.e., the p-values were less than 0.05 and above 0.01 for these comparisons.

6.2.0.16 Analyzing Personalization

The personalization term P (m|u) in the active-selection Equation 49 consists of two

terms, P (z|x), the user-group mixing probabilities and P (s|z, x), the probability of

getting a rating for a movie m in group z.

In the Table 8, we present lists of movies in two exemplary interest-groups learnt for the

MovieRating dataset. We show top 10 movies in each group sorted in descending order

of P (m|z). It can be observed that cluster A consists of movies which thriller fans will

view and cluster B consists of movies which usually science-fiction fans will view. If a

user has watched some of the movies in a cluster , it is very likely that the user has also

watched other movies in that interest group. Thus it is reasonable to ask the user to rate

the other movies in that cluster to learn a stronger user-model. Unpersonalized methods

do not follow such an approach and movies will be identified for rating from any of the

interest groups, even from those in which the user has never watched any movies. This

is the main reason for the higher failure rate of the unpersonalized approaches.
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6.3 Summary

We have shown that personalization of active learning is essential for getting benefit

from a Bayesian active learning approach to collaborative filtering. Personalization can

be achieved in a relatively simple way: by selecting the most informative items for a

user and estimating the likelihood of the user to rate those items. Our experiments on

benchmark datasets provide strong evidence for theoritical advantage of our approach

over a baseline that is representative for well-established active learning methods without

personalization in collaborative filtering. rate those items.

For future work, we plan to incorporate implicit feedback into the model. Thus, when a

system selected item fails to get a rating, we can use failure as additional information to

update the user-aspect probabilities P (z|u). Google recently demonstrated techniques

for making Aspect Model scalable to the number of news articles for collaborative-

filtering based personalization of its news services Das and Garg [2007]. A similar

scalability study on Active Learning techniques for Collaborative Filtering is required,

in addition to the scalability analysis of our personalized approach.
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7

Conclusion and Future work

7.1 Summary

In this thesis, we addressed the challenging problem of selectively acquiring training

data for simultaneously improving multiple related tasks. Training data acquisition is

expensive, and by choosing to acquire supervision that is beneficial for learning several

tasks, one can mitigate the cost of learning such tasks. We proposed a novel Multi-Task

Active Learning (MTAL) framework and studied it in the context of several practical

scenarios.

In Chapter 3, we provided a general purpose solution to MTAL. This approach is

applicable in general to the commonly used approach to Multi-Task Learning: shared

Bayesian priors over tasks. By propagating the updates of supervision through the

shared priors, it is possible to estimate the impact of acquiring supervision for one task

on other tasks. In this context, we defined the Circle of Influence to allow the selection

of the granularity of impact estimation, leading to several variants, namely, local, global

and benevolent Active Learning.

In Chapter 3.5, we studied the proposed MTAL framework in the context of the

important Adaptive Filtering application. Conventional Adaptive Filtering approaches
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narrowly focus on immediate rewards and present only the relevant instances to the user.

However, by taking a longer term strategy, our proposed active learning strategy also

chooses to present instances that if labeled by the user will lead to future expected gain

in the utility of the AF system. In this particular application, we also demonstrated the

effectiveness of using a multi-pronged strategy of combining local, global and benevolent

models for active learning.

In Chapter 4, we motivated the problem of scalability of MTAL, particularly in

the context of heterogeneous tasks. We addressed the challenge by jointly learning

the diverse tasks through a topic-model approach and then utilizing the topic-model

for defining a surrogate active learning score. This approach, called Transferable

Active Learning (TAL), avoided the exhaustive computation of impact of acquiring a

supervision on all the tasks, while still leading to a performance benefit among all the

tasks.

In Chapter 4.3, we studied the TAL in the context of the practically important problem

of genre-classification and collaborative fitlering. We built joint model by enhancing

the collaborative topic regression model with the genre classification component. The

model lead to significant performance improvements in both the classification and

recommendation tasks. For this particular model, we utilized the entropy of the topic

model as the surrogate active learning score. The TAL approach chose to acquire

supervision that would lead to the maximal decrease in the entropy of the topic model.

We demonstrated the success of these approaches on the benchmark MovieLens dataset.

In Chapter 5, we described a novel MTAL strategy for hierarchical classification. By

leveraging the parent-child relationships, we proposed a novel joint learning model for

hierarchical classification. We also proposed two novel active learning strategies for

leveraging the inter-task relationships. The first strategy, namely consistency, chose to

acquire supervision for instances that could lead to predictions that were consistent with
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the given hierarchy. The second strategy, namely influence, favored the acquisition of

additional supervision for influential nodes, with the expectation that the influential

nodes will lead to further cascading improvements in the influenced nodes.

In Chapter 6, we described a probabilistic model for estimating the possibility of

acquiring supervision for a given task, based on historical data. Such modeling can

potentially avoid the problems associated with failed queries in active learning, i.e. active

learning based queries that the oracle is unable to answer. We studied this in the context

of the Collaborative Filtering problem, using the popular Aspect Model with Bayesian

Active Learning algorithm. Our experiments on benchmark datasets, namely Movielens

and EachMovie, show significant reduction in the amount of failed queries, while still

leading to significant performance improvements in the learnt model.

7.2 Research Contributions

The major research contributions of this thesis are:

• Circle of Influence (CoI): CoI is a flexible strategy for estimating the impact

of acquiring supervision for one task on other tasks. By varying the granularity of

impact-estimation, we are able to develop several variants such as the local, global

and benevolent strategies for Multi-Task Active Learning.

• Benevolent Active Learning: Benevolent Active Learning is a principled and

exhaustive approach to estimate the impact of acquiring supervision for one task on

other tasks being learnt jointly. The effect of supervision on one task is propagated

through the appropriate paths in the Bayesian network.

• Multi-Task Active Learning through surrogate scores: To mitigate the

computational intractability of exhaustively estimating the impact of supervision

on the numerous tasks in the system, we proposed to utilize surrogate scoring

criteria that instead choose to estimate the impact on a suitable central component
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of the system. For example, we chose to minimize the topical entropy of the topic-

model that is central to simultaneously learning numerous heterogeneous tasks.

• Influence-driven Active Learning: In several multi-task scenarios, such as

hierarchical classification, it could be beneficial to selectively acquire supervision

for influential tasks, while expecting resulting improvements in the influenced

tasks. To this end, we presented a novel scoring function for estimating the

influence a parent exerts on a child in a hierarchical Bayesian model for hierarchical

classification.

• Consistency-driven selection for structured tasks: For structured tasks, we

presented a novel strategy of selectively acquiring supervision for instances that

violated the consistency of the given structure. In our experiments on hierarchical

classification, we presented the efficacy of this approach over several benchmark

datasets.

In addition to the aforementioned contributions to the field of Active Learning, as a

consequence of our work, we have also made important contributions in implementing

Multi-Task Learning approaches to several practical application.

• Multi-task Adaptive Filtering: We presented the first model for performing

multi-task Adaptive Filtering. We utilized a Dirichlet-process based classification

model, and chose a suitable filtering score strategy for filtering out irrelevant

instances in the AF setting.

• Genre-driven Collaborative Filtering: We presented a novel topic-model

based approach for jointly learning genre-classification and Collaborative filtering,

using well-known building blocks such as the probabilistic matrix-factorization

based Collaborative Topic Regression model and the Bayesian Logistic Regression

model for genre-classification.

• Bayesian framework for hierarchical classification: Our joint model for
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hierarchical classification leverages parent-child relationships through Bayesian

priors for enhancing the popular hierarchical divide-and-conquer paradigm. By

requiring the children to be fine-tuned versions of their parent, it is now possible

to learn the children with minimal supervision, by leveraging the abundant

supervision at the parent nodes.

7.3 Future work and Extensions

Multi-Task Active Learning is a new research area and there are several directions for

future work.

Exploring Circle of Influence: We presented Circle of Influence as a general purpose

flexibility for analyzing the impact of acquiring supervision on one task on other tasks

and parameters of the model. There are many more possibilities than the local, global

and benevolent CoI studied in this work. For example, in the scenarios with groupings

and clusters of related works, it might be possible to select group-level CoI. Further

exploration is required to study the trade-offs of such approaches.

Scalability and tractability: Multi-Task learning is inherently a challenging problem

in terms of scalability. Jointly learning numerous tasks poses significant challenges in

terms of inference algorithms. For special scenarios such as Hierarchical classification,

previously preferred methods such as Hierarchical Divide and Conquer become signif-

icantly more challenging, in terms of scalability, when learnt as a joint model. As

potential remedies, there has been a lot of interest in devising clever sampling strategies

such as Collapsed Gibbs Sampling and approximation algorithms such as Variational

inference to mitigate the problem of scalability. Nevertheless, performing Active learning

in multi-settings introduces further complexity in terms of scalability. In addition to the

usual challenge of a one-time batch-learning over training data for multiple tasks, we are

now posed with the problem of significant computational expense for first identifying
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instances beneficial for several tasks, and then additional computation is required to

update the model based on the newly acquired supervision. In our work, the benevolent

approach to MTAL is exhaustive and consequently scales poorly to large number of

tasks. The scalability concern typically arises from having to estimate the Bayesian

updates from one task to the other tasks through the shared priors and then estimating

the consequent improvement in other tasks. For the heterogeneous setting, we proposed

an alternative in the form of using surrogate scores for addressing this challenge. We also

studied several intuitive heuristics in the form of consistency-based and influence-based

approaches for Hierarchical classification. Such approaches may or may not work for

other scenarios and identifying alternative approximations could be an important future

research direction.

Theoretical complexity bounds: The work on computing theoretical label complex-

ity bounds for single-task is leading to novel insights into new algorithms and strategies

for Active Learning Balcan et al. [2008]; Beygelzimer et al. [2008]. Naturally, such

complexity analysis for the approaches studied in this work can lead to more insights into

improving and enhancing these approaches. This line of work is particularly challenging

because, in addition to the chosen Active Learning strategy, much of the complexity

analysis will be tied to the underlying joint representation of tasks, further complicating

matters.

Alternative surrogate scoring functions: For our work on Transferable Active

Learning, we chose entropy minimization of the topic model as the criteria for instance

selection. While this approach was effective for our chosen case study of genre-

driven Collaborative Filtering, it may not be equally effective for others. Further

exploration of domain-specific alternative surrogate scoring functions is required in this

regard. Additionally, our joint learning model for heterogeneous tasks was based on a

topic-modeling approach and other alternate representations might be possible. Such

representations and their corresponding Transferable Active learning strategies merit
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further exploration.

CoI for consistency-based Active Learning: In our work on Hierarchical Multi-Task

Active learning, we demonstrated the effectiveness of choosing instances that inconsistent

in the parent-child predictions. This concept can be further extended to encompass a

sub-tree or the entire hierarchy leading to further options in terms of the CoI. This would

be an interesting direction to explore to study the trade-offs in terms of performance

benefit versus scoring time for identifying such instances.

Task-selection: Training data acquisition for each task incurs expense and it is crucial

to minimize this cost by focusing on the right tasks to solicit training instances for.

We presented the influence-based approach to favor selection of instances for tasks

that are more influential towards other tasks. However, several other criteria might be

developed for first performing task-selection. These can be broadly grouped into intrinsic

and extrinsic properties. Intrinsic properties of a task refer to properties that can be

computed in isolation for each task. We can select tasks based on intrinsic factors such

as starvation (task with the least number of training examples), performance (weakest

performing task) and uncertainty (most uncertain task over unlabeled instances). It

is questionable whether selecting a reference task this way might be beneficial for the

improvement of the overall system. Alternatively, we can choose extrinsic properties

such as choosing the most benevolent task, or the most influential task, or the most

representative task in a group of tasks. Exploring these possibilities could be an

interesting research direction.
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