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Abstract
In recent years, a tremendous amount of multimedia data is being generated

and published on a variety of platforms such as Instagram, Podcast, Clubhouse, and
YouTube. This phenomenon inspires the research works of large-scale multime-
dia analysis, including the foundation of analysis methodology, and some specific
downstream applications (e.g. recognition, retrieval, and information extraction).
Particularly, representation learning of multimedia is one of the most crucial re-
search directions. A good feature representation for a multimedia data instance pro-
vides interpretability and generality, improving the performance and efficiency of
downstream tasks.

It is challenging to obtain a good representation of multimedia content due to its
richness and noisiness. For instance, in the task of speech processing, human speech
utterances contain linguistic information, and other factors such as speaker identity,
speaking style and background noise. In this case, we need a type of representation
that captures the information from all these factors, and recovers the useful factors
for downstream applications. Most of the mainstream techniques exploit a feature
vector to represent each instance in a training dataset, and optimize the feature ex-
tractor by conducting a pretraining task. However, vector based representation is
not enough to preserve the richness and handle of the noisiness of multimedia data.
Also, common pretraining procedures, such as the ImageNet classification task in
computer vision research area, only focus on a single type of discriminative infor-
mation, which might be insufficient for certain applications. Thus, in this thesis, I
explore two research directions addressing these issues.

In the first part of this thesis, I develop two new types of representation: a prob-
ability distribution and a linear subspace, for multimedia content. Compared with
vector based representation, both of them are capable of dealing with the richness
and noisiness of multimedia. To leverage the two types of representation in down-
stream tasks, it is essential to design particular algorithms and training strategies.
In this part of thesis, I introduce methods incorporating distribution and subspace
representations with deep neural network architectures, which can be optimized in
an end-to-end manner. The experiment results on downstream tasks show that two
proposed representations yield better performance comparing to mainstream vector
based methods.

In the second part of this thesis, I investigate style and content disentanglement
techniques, which explicitly preserve different factors within multimedia content
during the representation learning process. The disentangled representation pro-
vides better interpretability, and enables the manipulation of hidden factors in data
synthesis scenarios. Based on this motivation, I propose two methods to effectively
separate the hidden factors in multimedia data. The first method models the relation
between style and content as a simple matrix operation in hidden feature space. The
second method minimizes the mutual information between two hidden factors by



formulating an adversarial training criterion. The advantages of the two proposed
methods are evaluated in qualitative and quantitative experiments of data synthe-
sis/generation tasks. Besides, I further demonstrate the applicability of style and
content disentanglement techniques by constructing a pretraining framework with
generative models. Specifically, the synthetic data produced by the generative mod-
els can support the supervised training process of downstream tasks, such as speech
recognition and person re-id. Also, the disentangled generative process extends the
idea of data augmentation from the raw data space to an interpretable representation
space, allowing us to incorporate more prior knowledge in downstream tasks.
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Chapter 1

Introduction

1.1 Motivation

In recent years, a tremendous amount of multimedia data is being generated everyday. These
data are stored and published on a variety of plate-forms such as Instagram, Podcast, Clubhouse,
and YouTube. This phenomenon motivates the investigation of large-scale multimedia analysis.
Research topics about the foundation of analysis methodology, and some specific downstream
applications (e.g. recognition, retrieval, and information extraction) attract the attention of re-
searchers nowadays. Particularly, representation learning of multimedia is one of the most crucial
research directions, which receive much research attention in recent years. For example, in the
context of large scale multimedia retrieval, previous works [16, 152, 161] rely on hash code as
representation for each data instance. The purpose of using hash code is to enhance the efficiency
of retrieval. In general, a good feature representation for a multimedia data instance provides in-
terpretability and generality, improving the performance and efficiency of downstream tasks.

It is challenging to obtain a suitable representation for multimedia content due to its richness
and noisiness. For instance, in speech processing, human speech utterances contain linguistic
information, and other factors such as speaker identity, speaking style and background noise. On
the other hand, in the view of an image of a video, one can observe not only objects of interest
but also some noisy background. In these cases, we need a type of representation that captures
the information from all these hidden factors, and recovers the useful factors during downstream
applications. In the area of representation learning, most of the main stream techniques exploit a
feature vector to represent each instance in a training dataset, and optimize the feature extractor
by conducting a pretraining task. However, vector based representation is not enough to preserve
the richness and handle of noisiness of multimedia data. Figure 1.1 illustrates the limitation of
vector based representation. Also, common pretraining procedures, such as the ImageNet classi-
fication task, only focus on single type of discriminative information, which might be insufficient
to certain applications. Thus, in this thesis, we explore two research directions addressing these
issues.
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Figure 1.1: The limitation of vector based representation for multimedia content. In a image set
retrieval task (e.g. multi-shot person re-id), we observe that the local representation in hidden
space has multi-mode property. However, mainstream approaches aggregate local hidden repre-
sentation by pooling strategies (e.g. mean/max pooling), which fail to preserve the multi-mode
property.

1.2 Structure of this thesis
In the first part of this thesis, we explore novel types of representation beyond vectors for mul-
timedia content. Specifically, we propose to use a probability distribution (chapter 2) [55, 57]
or a linear subspace (chapter 3) [59] to represent a data instance in a multimedia dataset. Along
with two novel types of representation, we extend the concept of metric learning from vector
space to distribution and subspace, respectively. To leverage the two types of representation
in downstream tasks, it is essential to design particular algorithms and training strategies. In
this part of thesis, we introduce methods incorporating distribution and subspace representations
with deep neural network (DNN) architectures, which can be optimized in an end-to-end man-
ner. For distribution representation, we propose a Statistical Distance Metric Learning (SDML)
framework, which integrates the density estimation and the calculation of statistical distance
between two distributions to a DNN architecture. Similarly, for subspace representation, we es-
tablish a subspace representation learning (SRL) framework, which extracts a subspace in local
CNN feature space for each data instance, and supports meta learning via optimization on Stiefel
manifold. Compared to deep metric learning with vector based representation, both proposed
methods circumvent the need of feature aggregation step and successfully deal with the richness
and noisiness of multimedia. Also, the metric learning techniques with distribution and subspace
don’t introduce additional trainable parameters over that with feature vector, but do increase the
computation requirement. The experiment results on image set retrieval and few-shot image clas-
sification tasks illustrate that two proposed representations yield better performance comparing
to mainstream vector based methods.

The second part of this thesis aims at the extraction of multiple hidden factors in multimedia
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content. A well-known approach to this goal is to discover a unsupervised disentangled represen-
tation for these hidden factors [19, 21, 49, 67]. These approaches optimize their representation
encoders while enforcing the discovered hidden factors to be uncorrelated to one another. How-
ever, a previous work [89] also argues that it is extremely difficult to achieve the disentanglement
without proper inductive bias or supervision. In this part of the thesis, we approach this final
goal via the investigation of style and content disentanglement. This technique explicitly defines
the ”content”, and preserves style and content hidden factors within multimedia data during the
representation learning process. The disentangled representation provides better interpretability,
and enables the manipulation of hidden factors in data synthesis scenario. Based on this motiva-
tion, we propose two methods to effectively separate the hidden factors in multimedia data. The
first method (chapter 4) [56] models the interaction between style and content as a simple matrix
operation in hidden feature space. Based on this idea, the decomposition of style and content
can be interpreted as solving a regression problem in the hidden space. This method is effective
and flexible, applicable to multiple training/testing scenarios. The second method (chapter 5)
[58] explicitly minimizes the mutual information (MI) between two hidden factors. By using a
neural estimator of mutual information [14], the MI minimization can be formulated as an ad-
versarial training criterion. The advantages of two proposed methods are evaluated in qualitative
and quantitative experiments of two data synthesis/generation tasks: pose guided person image
generation and speech synthesis. In addition, we demonstrate the applicability of our style and
content decomposition methods by introducing a pretraining framework with generative models
(chapter 6). Utilizing the methods developed in chapter 4 and 5, we control the hidden factors of
multimedia data, and customize the data generation process. By doing so, one can use synthetic
datasets to train recognizers for different types of downstream multimedia applications. Par-
ticularly, if we want to recognize some attributes (style factors) in multimedia which we don’t
have any annotation, the our framework manipulates the other attributes (content factors) in the
data generation step, and creates a proper synthetic dataset for supervised training techniques.
In chapter 6, we consider speech recognition and low-resource person re-identification as exam-
ples of downstream tasks to illustrate this capability. Furthermore, the pre-training framework
also extends the idea of data augmentation from raw data spaces to interpretable representation
spaces. It helps to incorporate more prior knowledge in the training process, enhancing the ro-
bustness of the trained recognizers.

The list of publications

1.3 Summary of Contribution
The main contribution of this thesis are three folds:

1. We propose two novel types of representation for multimedia content: distribution and
subspace. They result in the extension of distance metric learning concept. Thus, one can
adapt the techniques developed for vector-based distance metric learning to distribution
and subspace. Both of them yield superior performance than vector based representation.
The related papers of this part are

(a) [55] Ting-Yao Hu and Alexander G. Hauptmann, ”Multi-shot person re-identification
through set distance with visual distributional representation,” ICMR 2019
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(b) [57] Ting-Yao Hu and Alexander G. Hauptmann, ”Statistical distance metric learning
for image set retrieval,” ICASSP 2021

(c) [59] Ting-Yao Hu, Zhi-Qi Cheng and Alexander G. Hauptmann ”Subspace represen-
tation learning for few-shot image classification,” arXiv preprint arXiv:2105.00379,
2021

2. We investigate two novel style and content disentanglement methods for multimedia data,
approaching the analysis of multiple hidden factors. These two methods are evaluated
on two data synthesis/generation tasks, controllable text-to-speech (TTS) and keypoint
guided image generation. The results demonstrate the ability of hidden factor control in
the generation process. The corresponding publications of this part are:

(a) [58] Ting-Yao Hu, Ashish Shrivastava, Oncel Tuzel, and Chandra Dhir, ”Unsuper-
vised style and content separation by minimizing mutual information for speech syn-
thesis,” ICASSP 2020.

(b) [56] Ting-Yao Hu and Alexander G. Hauptmann, ”Pose guided person image gener-
ation with hidden p-norm regression,” ICIP 2021

3. We explore the applicability of disentangled representation by introducing a pre-training
framework with generative models. By manipulating the hidden factors of multimedia dur-
ing the generative process, one can synthesize customized data for model training. This
pre-training framework also empowers the data augmentation in interpretable representa-
tion spaces, incorporating additional prior knowledge to improve the downstream tasks.
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Chapter 2

Representation beyond Vector:
Distribution

2.1 Introduction

It is crucial to pick a good content representation for multimedia analysis. Most recent works
choose to represent a data instance as a fixed size feature vector. This design choice is intuitive
and advantageous in certain aspects. For example, in the applications such as recognition and re-
trieval, one needs to measure the similarity between two instances. It can be done by calculating
a distance metric in vector space (e.g. Euclidean distance). Also, with the recent development
of deep metric learning (DML) techniques [48, 50, 54, 98, 103, 134, 166], the extraction of the
feature vector is implemented as a DNN architecture, which enhances the modeling capabil-
ity of vector based representation. However, the extraction of vector representation includes a
step to aggregate all the local information by pooling mechanisms, which might deteriorate the
capability of handling the richness and noisiness of multimedia content.

In this chapter, we utilize the image set retrieval task as a concrete example. Aiming to
search the identity captured by a set of images, image set retrieval has been a crucial problem
in recent years, especially due to the rapid development of camera surveillance systems, and the
availability of multiple images of the same identity. There exist many practical applications for
image set retrieval such as video face recognition [113, 164], multi-shot person re-identification
[52, 174] and gait recognition [18, 160]. Comparing to a single image, a set of images usually
contains richer discriminative information and provides better performance. However, it is also
more challenging to analyze an image set and measure similarity between two sets because of
the large intra-set diversity and noisiness.

Many recent approaches for image set retrieval benefit from DML, which learns a proper
metric space to capture data similarity. To deal with the varied number of images within a set,
these approaches usually extract image-level features to form a feature set, and aggregate them as
a fixed size vector using pooling strategies, such as mean/max pooling and attention mechanism.
However, using DML with feature aggregation has several drawbacks. First, a fixed size vector
is not able to properly summarize all the information observed from an image set. For example,
feature aggregation may wash out the multi-mode property (multiple peaks in the probabilistic

5



Figure 2.1: A good representation for a image set should preserve the matching evidences located
in different elements of the set, so that they can be utilized for retrieval task.

density). Second, matching pieces of evidence captured by single or few images in the whole set
(as shown in Fig. 2.1) may be eliminated by pooling methods.

In this chapter, we propose to use a probability distribution to represent an instance in a mul-
timedia dataset. Specifically, we extract a set of features from the spatial and temporal local
regions of multimedia content, such as patches of an image and frames of a video clip. Then,
these feature vectors are treated as empirical samples drawn from an underlying distribution in
hidden space, which characterizes the original multimedia data instance. Similar to DML, the
modeling capacity of distribution representation can also be enhanced by leveraging the deep
learning architectures in the feature extraction step. To do so, we introduce a statistical distance
metric learning (SDML) framework. The SDML framework exploits a statistical distance be-
tween two distributions to measure the similarity between two data instances, and optimizes the
backbone deep network for feature extraction in an end-to-end manner. Among all types of sta-
tistical distance, we select Wasserstein distance (WD) and Jeffrey’s distance (JD) considering the
efficiency of their empirical estimation. Compared with DML with vector based representation,
SDML can properly describe the diversity and uncertainty of an image or a video clip. Also, all
the techniques developed for DML in vector space can possibly be applied to SDML in proba-
bility measure space. In this chapter, we propose two types of loss functions for SDML, which
are analogous to the triplet loss [151] and center loss [159] in DML.

The proposed SDML framework is designed to model diversity and uncertainty within an
instance of multimedia datasets. It can be leveraged to model the multimedia data with a varied
amount of information, such as speech utterances and videos with different duration and images
of different sizes. In this chapter, we evaluate the SDML framework on two image set retrieval
tasks: multi-shot person re-id and gait recognition. The experiment results show that SDML
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outperforms conventional DML with feature aggregation, and also receives competitive/superior
performance comparing to the previous state-of-the-art methods on the aforementioned tasks.
From a qualitative investigation, we also observe that SDML method captures alignment of
matching evidence, and the multi-mode property of raw data.

In summary, the main contributions in this chapter are three-fold: (1) We propose a distribu-
tion based representation for multimedia, and extend the concept of deep metric learning (DML)
from vector space to probability measure space by proposing SDML. (2) To apply SDML frame-
work to image set retrieval, we exploit empirical WD and JD to measure the similarity between
two image sets, and propose a new statistical-centroid loss to enhance the training process. (3)
Experiment results on two image set retrieval tasks, multi-shot person re-id and gait recogni-
tion, show that the proposed SDML outperforms DML and provides competitive/superior per-
formance comparing to state-of-the-art approaches.

2.2 Related Work
Deep metric learning (DML) methods have been successfully applied to many areas ranging
from image retrieval [98, 103], face recognition [54], person re-id [166], and speaker recognition
[78, 153]. The goal of this technique is to learn a mapping function transforming the raw data
into a feature embedding space. The distance function in this space should preserves the semantic
similarity between raw data samples. Several loss functions have been proposed to measure
the quality of the feature embedding space. Prominent examples include triplet loss [151] and
center loss [159]. Triplet loss forces the distance between the positive pair to be smaller than the
distance between the negative pair with a margin. On the other hand, center loss minimizes the
distance between samples and their corresponding centers to reduce the intra-class variance. In
comparison, our proposed statistical-centroid loss learns an empirical distribution as the template
for each class, which is used to obtain the intra-class variance among image sets.

In order to calculate the distance between two image sets, most of these works aggregate
the features of all the images within a set using pooling functions, and form a fixed size feature
vector. Only a few works tried to avoid feature aggregation. In [90] and [61], authors modeled
a image set as a manifold, or a subspace of the embedding feature space, and compare image
sets by using manifold-manifold distance. Specifically, Lu et al. [90] computed the average
distance from each element to the nearest neighbors of the other set, and Huang et al. [61]
chose the approximation of Grassmannian geodesic distance, which is the Frobenius norm of the
difference between two covariance matrices.

In this work, we choose Wasserstein distance and Jeffrey’s divergence as the statistical dis-
tance, the core component of SDML. Wasserstein distance (WD) has been successfully applied
to many different areas, such as generative adversarial network (GAN) training [8], multi-label
classification [34], representation learning [105], dictionary learning [119], and domain adapta-
tion [127]. Jeffrey’s divergence (JD), also known as symmetric KL divergence, has mostly been
applied to signal processing tasks [93, 94].

The empirical estimation of WD is usually formulated as a linear programming task. Thus,
the training of SDML with WD can be treated as a bi-level optimization problem, which consists
of an outer problem and inner problem The former needs to be solved subject to the optimality
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of the latter. It has been utilized in many tasks of computer vision or machine learning, such
as hyper-parameter optimization [33], multi-task learning [31], image segmentation [112], and
video classification [29]. In order to conduct end-to-end training, most of the methods require
the inner problem to be twice differentiable. Several recent works [39, 102] incorporate a dif-
ferentiable update rule of non-smooth inner problems to solve the whole problem with gradient
based method.

2.3 Statistical Distance Metric Learning

In this section, we introduce the proposed Statistical Distance Metric Learning (SDML). Specif-
ically, we will start from overview of SDML in the context of image set retrieval tasks, then
discuss the three key components: (1) the empirical estimation of statistical distance (2) training
loss functions (3) bi-level optimization (for SDML with Wasserstein distance).

2.3.1 Overview of SDML

Given a dataset D = {(Xi, yi)}, where Xi = {xki |k = 1, 2..., ni} is a set of images, and yi is the
corresponding label of Xi, the proposed method aims to learn a embedding function F to extract
the image-level embedding feature zki = F (xki ). Using this function F , we are able to transform
the original image set to a embedding feature set Zi = {zki |k = 1, 2..., ni}, where ni is the size
of this image/feature set. Following the spirit of deep metric learning, these embedding feature
sets should preserve the label information within the distance measure. That is, the embedding
feature sets of the same class should be pulled together, and the sets from different classes should
be separated from each other. In order to achieve this goal, we treat a set of embedding features
as empirical measure of a probability distribution, and estimate the statistical distance between
two distributions, which is exploited to describe the set-to-set similarity.

Comparing to conventional DML methods for image set, representing an image set as a
distribution preserves the diversity and uncertainty. For instance, if the underlying distribution
of an image set is multi-modal, SDML framework can easily capture this property. Fig. 2.2
illustrates the overall architecture of SDML framework in the context of image set retrieval.

2.3.2 Empirical Estimation of Statistical Distance

The proposed SDML framework requires a statistical distance to measure the similarity between
two distributions, given their empirical sample sets, Zi and Zj , in embedding feature space.
While any types of statistical distance can be integrated with SDML, we explore Wasserstein
distance and Jeffrey’s divergence in this chapter, because of the efficiency of their empirical
estimators.

Wasserstein distance (WD) is the first selected type of statistical distance. The empiri-
cal estimation process of WD starts from a kernel density estimation (KDE) with Dirac delta.
Specifically, given Zi and Zj , the two underline distributions can be represented by: νZi =
1
ni

∑ni
k=1 δ(z

k
i ) and νZj = 1

nj

∑nj
l=1 δ(z

k
j ), the average of ni and nj Dirac delta with mass at
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Figure 2.2: The overall architecture of SDML in the context of a image set retrieval task (multi-
shot person re-id).

positions zki and zlj . Then, the WD between νZi and νZj is expressed as:

DWD(Zi, Zj) = min
P∈Π(ni,nj)

〈
P,M

〉
F

(2.1)

where M is a ni × nj distance matrix and Mkl stores the Euclidean distance between zki and
zlj . Π(ni, nj) = {P ∈ Rnx×ny |P1 = 1

nj
, P T1 = 1

ni
} is the feasible set of joint distributions,

which are also encoded as ni × nj matrices. Please note that eq. 2.1 is a linear programming
problem. Thus, when we apply WD to SDML framework, the overall training process for feature
embedding function becomes a bi-level optimization task. The detail of the bi-level training
procedure will be elaborated in the Sec. 2.3.4

The second choice of statistical distance is Jeffrey’s Divergence (JD), the symmetric version
of KL divergence. Given a set of embedding features, Zi = {zki |k = 1, 2..., ni}, one can estimate
the underlying density function νi using the nearest-neighbor based method developed in [108]:

νi(z) =
Γ(d/2 + 1)

niπd/2r(z, Zi)d
(2.2)

where πd/2/Γ(d/2 + 1) is the volume of a d-dimensional unit-ball, r(z, Zi) is the Euclidean
distance between z and its nearest neighbor in Zi. If z ∈ Zi, the candidate set of nearest neighbor
would become Zi \ z. Based on Eq. (2.2), the empirical JD between Zi and Zj can be expressed
as:

DJD(Zi, Zj) = K̂L(νi||νj) + K̂L(νj||νi)

=
d

ni

ni∑
k=1

log
r(zki , Zj)

r(zki , Zi)
+

d

nj

nj∑
l=1

log
r(zlj, Zi)

r(zlj, Zj)
+ C

(2.3)
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where constant C is independent to Zi and Zj . The estimator described in Eq. (2.3) requires
pair-wise Euclidean distance computation, which can be parallelized easily.

2.3.3 Loss Functions
Similar to DML, the design of training loss function is a crucial step for SDML framework. In
this section, we introduce two types of loss functions: triplet loss and statistical-centroid loss.
The weighted combination of the two loss functions serves as the final training objective for all
the experiments in this chapter.

The first loss function is directly adapted from the popular triplet loss [151]. In the context of
SDML, we assume Γ = {(a, p, n)} being the set of triplets, and Za, Zp, Zn being the embedding
feature sets of anchor, positive, and negative samples, respectively. Anchor and positive samples
belong to the same class, while the negative sample is from a different one. Triplet loss for
SDML can be written as following:

LTriplet =
1

|Γ|
∑

(a,p,n)∈Γ

max(0, D(Za, Zp)−D(Za, Zn) + ∆) (2.4)

where D is statistical distance (DWD or DJD). Minimizing this loss function aims at forcing
the distance between the positive pair (Za, Zp) to be smaller than negative pair (Za, Zn) with a
margin ∆.

The second loss function is the proposed statistical centroid (SC) loss. It is designed based
on center loss [159] in DML methods, which can be represented as:

LCenter =
1

N

∑
i

||zi − cyi || (2.5)

where ck is the center vector of the k − th class, and N is the size of the whole dataset. Com-
paring to the triplet loss, center loss explicitly constraints the intra-class variation to increase the
discriminative power of embedding feature.

In context of SDML, each image set is represented as a empirical distribution. Hence, instead
of a center vector, we use the statistical centroid (barycenter) of a set of distributions [2, 10, 100]
to describe the template of each class. The statistical centroid of the c − th class, µc, is the
minimizer of the following objective function:

fSC(µc) =
1

Nc

∑
i|yi=c

D(Zi, µc) (2.6)

where Nc is the number of image sets belonging to the c− th class. Combining the idea of center
loss, and statistical centroid of distributions, we propose SC loss:

LSC(Z, µ) =
1

N

∑
i

D(Zi, µyi) =
∑
c

Nc

N
fSC(µc) (2.7)

which is equal to the weighted summation of the SC objective functions of each class. Similar
to center loss, SC loss maintains a template µc for each class. In this work, we assume that µc is
also an empirical distribution with a fixed number of supports.
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Combining Eq. (2.4) and (2.7), we formulate the training objective as:

min
F,µ
LTriplet + λLSC (2.8)

where λ controls the balance between two loss functions. Then, the parameters of feature em-
bedding function, F , and the set of template distributions, µ, are jointly learned by minimizing
this objective in an end-to-end manner.

2.3.4 Bi-level Optimization
Since the estimation of Wasserstein distance (WD) is a optimization problem itself, the training
process of SDML framework with WD is treated as a bi-level optimization problem:

min
F,µ
LTriplet + λLSC (2.9)

s.t. DWD(Zi, Zj) = min
P∈Π(ni,nj)

〈
P,M

〉
F

(2.10)

Inspired by previous works [32, 39, 102], we solve the bilevel problem (eq. (2.9)) by exploiting
the automatic differentiation of fix point iteration update, which serves as the solver of the inner
problem (eq. (2.10)). In this work, we choose a recent proposed differentiable update rule,
Inexact Proximal point method for exact Optimal Transport (IPOT) [162] for WD calculation.

IPOT algorithm finds the best transportation plan P in empirical WD estimation (eq. (2.10))
by exploiting generalized proximal point method. The process of IPOT can be summarized as
the following iterative update rule:

P (t+1) = arg min
P

〈
P,M

〉
F

+ β(t)Dh(P, P
(t)) (2.11)

where Dh(P, P
(t)) is the Bregman divergence based on KL divergence. One step of this update

rule also forms an optimization problem, which can be solved by executing Sinkhorn iteration
[132]. Practically, IPOT algorithm does not solve eq. (2.11) exactly in each update, but conducts
a single Sinkhorn iteration. After executing the update rule (eq. (2.11)) L times, we receive
a sequence of transportation plan matrices P 1, P 2, ..., PL, and the approximated WD can be
obtained by:

D̂WD(Zi, Zj) =
〈
P (L+1),M

〉
F

(2.12)

The overall process of IPOT is shown in Algorithm 1. 1n represents an all-one vector with
dimension n. Please note that this algorithm and the original IPOT differ in some aspects. First,
Algorithm 1 assumes that every elements in Z1 and Z2 are uniformly weighted, while the original
IPOT considers different weights for them. Second, Algorithm 1 conducts L times of updates
while original IPOT keeps doing until P (l) converges. Because of the computation constraint,
we set L = 10 in our implementation.

In the previous works considering auto-differentiation, IPOT was not a typical choice. In-
stead, they made use of another type of Wasserstein distance approximation with entropy regu-
larization, which is known as Sinkhorn distance. The reasons why we select IPOT in this work
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Algorithm 1 IPOT Algorithm [162] for eq. (2.10)
Input: Feature sets Z1 and Z2, number of iteration L, β
Output: Estimated Wasserstein distance D̂WD(Z1, Z2)

1: initialize M ∈ Rn1×n2 ,Mi,j = ||z(i)
1 − z

(j)
2 ||

2: b← 1
n2
1n2 , Gi,j ← e

−Mi,j
β , P (1) ← 1n11n2

T

3: for l = 1, 2, .., L do
4: Q← G� P (l)

5: a← 1
n1Qb

, b← 1
n2QT a

6: P (l+1) ← diag(a)Qdiag(b)
7: end for
8: Ŵ (Z1, Z2) =

〈
P (L+1),M

〉
F

are: (1) it converges to the exact WD. (2) it is less sensitive to the weight of proximal regularizer,
β [162].

Algorithm 2 describes the overall training scheme for SDML with WD. This algorithm up-
dates F and µk alternatively by gradient-based method with mini-batch. The estimation of WD
is accomplished by algorithm 1, so that the gradient of L w.r.t F and µk can be easily calculated.
Please note that the learning rates for εF and εµk are different, and usually εµk is much larger.
More details will be elaborated in the experiment section.

Algorithm 2 Bilevel Training for SDML with WD

Input: image sets and labels {X, y}, learning rates εF , εµk
Output: feature embedding function F

1: Initialization F, µk
2: while F, µ not converged do
3: Sample a mini-batch of (Xi, yi), i = 1, 2..., B.
4: Zi = F (Xi), i = 1, 2, ..., B
5: for i=1,2,...,B do
6: Obtain DWD(Zi, µyi) by Algorithm 1
7: for j=1,2,...,B do
8: Obtain DWD(Zi, Zj) by Algorithm 1
9: end for

10: end for
11: Calculate LTriplet and LSC by eq. (2.4), (2.6) and (2.7)
12: L = LTriplet + λLSC
13: Obtain∇FL,∇µL through auto-differentiation
14: F ← F + εF∇FL, µ← µ+ εµk∇µL
15: end while
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Figure 2.3: Examples of three image set retrieval tasks: gait recognition (top), multi-shot person
re-identification (middle), and video face verification (bottom).

2.4 Experiment
The proposed SDML framework is evaluated on two image set retrieval tasks: multi-shot person
re-identification and gait recognition. In Figure 2.3, one can compare the appearance character-
istics between these two tasks.

2.4.1 Multi-shot Person Re-identification
For multi-shot re-identification, we use two large scale datasets: MARS [174] and LPW [135].
The MARS dataset contains 1,261 identities and 20,715 tracklets captured by 6 cameras in dif-
ferent views. The bounding boxes of tracklets are detected and tracked by DPM detector and
GMMCP tracker, respectively. 3,248 distractor tracklets appeare due to false detection or track-
ing. LPW dataset contains 2,731 identities and 7,694 tracklets collected from 11 cameras in-
stalled in 3 different scenes. The bounding boxes and tracklets are generated automatically, and
cleaned up manually. We follow the evaluation protocol of the original works [135, 174], report-
ing Cumulated Matching Characteristics (CMC) on both datasets, and mean average precision
(mAP) on MARS.

Following the suggestion of many previous works [35, 52, 83, 87], we adopt ResNet-50
pretrained on ImageNet as feature embedding function. The spatial average pooling of its last
convolutional layers is extracted, and form a 2048 dimensional feature vector for each image.
In the training phase, the number of tracklets in each minibatch is 32, and 8 images are ran-
domly selected for each tracklet. The margin of Wasserstein triplet loss function is set to 0.3.
The parameters in feature embedding function F and the supports of statistical centroid µk are
optimized using Adaptive Moment Estimation (ADAM) algorithm [70]. The learning rates of F
and µk start at 0.0001 and 0.01, respectively, and decrease by a factor 0.1 every 100 epochs, until
the model finishes training at 400 epochs. For SC loss, the control parameter λ is set to 0.0001
and the number of supports is 3 for both datasets. Most of the previous works notice that cross-
entropy (CE) loss works very well together with triplet loss. Hence, we also incorporate the CE
loss by adding a distance classifier [20] branch in training phase. During the testing phase, all
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the images of a tracklet are used to extract the embedding feature set.
Table 2.1 shows the comparison among recent state-of-the-art approaches, the baseline im-

plementation, and SDML with WD and JD. One can see that our baseline system (Triplet +
Center + CE) is already competitive. SDML frameworks with WD and JD both improve the
performance upon the baseline. SDML with JD receives the best score in mAP, and the sec-
ond best scores in top-k accuracy. A very recent proposed approach, NVAN [87], achieves the
best performance in top-1 accuracy. While their model utilizes non-local blocks to learn the
spatial/temporal relationship within a image set, it may require more data to support training.

In Table 2.2, we report the performance of all methods on LPW dataset. Only a few results
were published on this dataset. In general, the performance reported on LPW are lower than
those on MARS. This set of experiment results indicates that the proposed SDML outperforms
other previous methods by a large margin, and SDML with JD achieves the best performance.

Methods Top-1 Top-5 Top-20 mAP
MARS [174] (2016) 68.3 82.6 89.4 49.3
SeeForest [177] (2017) 70.6 90.0 97.6 50.7
TriNet [47] (2017) 71.8 86.6 93.1 56.5
RQEN [135] (2018) 73.7 84.9 91.6 51.7
DRA [83] (2018) 82.3 - - 65.8
OSM+CAA [154] (2019) 84.7 94.1 97.0 72.4
STA [35] (2019) 86.3 95.7 97.1 80.8
VRSTC [52] (2019) 88.5 96.5 - 82.3
GLTR [80] (2019) 87.0 95.8 98.2 78.5
NVAN [87] (2019) 90.0 - - 82.8
Triplet+Center+CE 87.7 96.0 97.9 81.7
SDML (WD) 88.8 96.3 98.1 83.1
SDML (JD) 89.3 96.4 98.1 83.9

Table 2.1: Comparison with state-of-the-art methods on MARS dataset.

2.4.2 Gait Recognition
For gait recognition, we conduct experiments on CASIA-B dataset [168]. It consists of 124
subjects with 11 different viewing angles. In each view angle, one subject was captured by 10

Methods Top-1 Top-5 Top-20
RQEN [135] (2018) 57.1 66.7 91.5
OSM+CAA [154] (2019) 71.7 89.8 96.6
Triplet + Center+ CE 74.6 92.5 97.1
SDML (WD) 78.8 93.4 97.8
SDML (JD) 79.6 93.9 97.8

Table 2.2: Comparison with state-of-the-art methods on LPW dataset.
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Methods NM BG CL
CNN-LB [160] (2017) - 72.4 54.0
GaitSet [18] (2019) 95.0 87.2 70.4
Triplet + Center 94.8 86.8 69.8
SDML (WD) 95.1 89.0 74.5
SDML (JD) 95.1 89.2 74.6

Table 2.3: Comparison with state-of-the-art methods on CASIA-B dataset. All the numbers are
rank-1 accuracy

sequences of silhouette images under three walking conditions: six sequences are in ”normal”
(NM) state, two sequences in ”wearing coat” (CL) state, and two sequences in ”carrying bag”
(BG) state. The dataset is collected indoors and each sequence lasts about 5 seconds. We emulate
previous works, using the first 74 subjects for training and the rest 50 subjects for testing. During
testing phase, the gallery set is composed of four NM sequences for each identity, while the
remaining six sequences (two for each condition) are in the probe set.

We follow the design from Chao et al. [18] to construct the feature embedding function F ,
which consists of 6 layers of CNN and a Horizontal pyramid pooling (HPP) layer (without the
Multiple Global Pooling (MGP) strategy the authors proposed). In the training phase, F and µ
are optimized using ADAM algorithm [70] with learning rates 0.0001 and 0.01, respectively. For
SC loss, the control parameter λ is set to 0.0005 and the number of support is 3.

Table 2.3 summarizes the performances of our approach and previous state-of-the-arts on
CASIA-B dataset. The probe set is divided into three subsets according to the walking con-
ditions, and the results on these probe subsets are reported separately. While calculating the
performance of a given query, the gallery sequences with the same camera angles are not consid-
ered. Observing this set of results, we first notice that GaitSet [18], the baseline and SDML all
achieve high score (around 95%) in top-1 accuracy for NM probe subset. For BG and CL probe
subsets, SDML surpass GaitSet by 2% and 4%, respectively. SDML frameworks with WD and
JD perform similarly in this task.

2.4.3 Visualization

To understand hidden semantic behind SDML training, we visualize (1) the supports of empir-
ical distributions forming statistical centroids, and (2) the matching pattern between two sets
discovered by WD estimation.

For the visualization of statistical centroids, we conduct SDML training with JD on MARS,
LPW and CASIA-B datasets. The number of supports is set to be 2 for each identity. Once the
training process is finished, the nearest neighbor images of the learned supports are selected from
all the image sets of a identity. Several examples of statsitcal centroid are illustrated in Figure
2.4. The images located in the same rectangular are the nearest neighbor images of the same SC
supports in the embedding feature space. One can see that the centroids of gait recognition data
(CASIA-B) seem to capture the pose of the person. One of the examples from MARS (MARS,
pid:0279) focuses on the human pose as well. The other example from MARS (MARS, pid:0107)
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Figure 2.4: Visualization of statistical centroids. The images located in the same rectangular area
are the nearest neighbor images of the same SC supports in embedding feature space.

pulls noisy images closer to one barycenter. The centroids from LPW example seem to capture
the illumination and resolution, but not as obvious as other datasets.

For the matching pattern from WD, we show a example of temporal alignment between per-
son tracklets in Fig. 2.5. Three person tracklets are picked from the MARS datasets. Among
these three tracklets, two of them belong to the same identity, and the rest one is different. We use
color bounding boxes to mark the image pairs with highest joint probability, which is automati-
cally assigned by the optimal P in eq. 2.1. From Fig. 2.5, one can see that the proposed method
attends to different images of a tracklet while comparing to different candidates. Please note that
the images without color bounding boxes are manually selected to indicate the appearance of the
whole tracklet.

2.5 Conclusion
In this work, we propose Statistical Distance Metric Learning (SDML) framework for image
set retrieval task. This framework represents an image set as empirical distribution in embed-
ding feature space, and measures the statistical distance to describe the dissimilarity between
two sets. By doing so, SDML can effectively capture the diversity and uncertainty within an
image set.Experiment results on two image set retrieval tasks show that SDML outperforms con-
ventional DML methods, and reach competitive/superior performance comparing to previous
state-of-the-art approaches.
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Figure 2.5: Visualization of the alignment automatically discovered by SDML with WD. Image
pairs assigned with highest joint probability are marked by bounding boxes in the same color.
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Chapter 3

Representation beyond Vector: Subspace

3.1 Introduction

In this chapter, we propose a subspace representation learning (SRL), another framework going
beyond vector based representation, for multimedia content. Given a data instance such as an im-
age or a video, the SRL framework represents it as a subspace extracted from its spatial/temporal
local feature set. Then, the similarity between two instances is measured by a subspace-to-
subspace distance. While many strategies [179] have been proposed to compute the distance
between two subspaces, we select the weighted subspace distance (WSD) [79], which considers
the importance of each dimension and reflects the original distribution of local features. Simi-
lar to SDML, the SRL framework supports efficient end-to-end training by customized training
algorithms and a loss function related to distance based classifier [20].

The proposed SRL framework is mainly evaluated by the performance of a few-shot image
classification task [30, 77, 84, 114, 133, 138, 149, 165, 170], which aims at obtaining a reliable
prediction model that can easily be generalized to unseen concepts. The development of few-shot
image classification is inspired by the limitation of Deep neural networks (DNN). Although it
has enabled huge advances in many computer vision tasks, such as image classification [122] and
object detection [116], the astounding success of DNN is conditioned on the availability of large
scale datasets with thorough manual annotation, which is usually too expensive for real-world
applications. In contrast, the human visual system is capable of learning a new visual concept
with only a few annotated examples. This phenomenon motivates the recent research efforts for
few-shot learning.

One of the mainstream approaches to few-shot image classification is based on metric learn-
ing [133, 138, 149, 165]. This type of method focuses on learning a good metric function from
known concepts with sufficient labeled data, and transferring the learned metric to unseen con-
cepts. Specifically, they exploit a Convolutional Neural Network (CNN) to extract a feature
vector for each image, and measure the similarity between two images in hidden feature space
based on distance functions, such as Euclidean and cosine distance. While receiving state-of-the-
art performance, metric learning based methods are still not able to handle some unseen visual
concepts with large intra-class variation and cluttered background [170]. One major reason is
that an image-level feature vector ignores the spatial structure and diversity of an image. In the
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context of few-shot image classification, this problem becomes more severe since there is not
enough supervision signal to guide the network focusing on the correct local regions.

To resolve this issue in few-shot image classification, we apply the proposed SRL framework,
representing an image as a subspace extracted from its local CNN feature set. When multiple ex-
ample images are available for a novel concept, SRL can also be incorporated with meta learning
strategies in testing phase. Specifically, we propose two types of template subspace to aggregate
the information of multiple meta training instances. The first one is to obtain a class-specific sub-
space prototype by calculating the average of subspaces, while the second one is to learn a set of
task-specific discriminative subspaces. The acquisition of these two types of template subspace
is formulated as an optimization problem in a Stiefel manifold.

To evaluate the proposed SRL framework qualitatively and quantitatively, we conduct experi-
ments on three popular benchmarks for few shot image-classification: MiniImageNet, TieredIm-
ageNet and Caltech-UCSD Birds-200-2011 (CUB). Experimental results show that SRL achieves
competitive/superior performance compared to state-of-the-art few-shot learning approaches. In
summary, the main contributions are three fold:

• proposing the idea of subspace representation, another type going beyond vector based
representation.

• applying SRL to few-shot classification task and compare two types of template subspace
to aggregate K-shot information.

• achieving state-of-the-art performance on three public benchmarks.

SDML and SRL both extend the concept of deep metric learning (DML) from vector space to
another domain (sets of distribution and subspace), and captures the local structure of multimedia
content. In this chapter, we also analyze the pros and cons of them by conducting qualitative and
quantitative studies.

3.2 Related Work
Previous approaches to few-shot image classification can be roughly divided into three cate-
gories: (1) Distance metric based methods [133, 138, 149] construct a proper hidden feature
space, whose distance metric is used to determine the image-class or image-image similarity.
The distance metric can be a non-parametric function [133, 149] or a parametric network mod-
ule [138]. (2) Optimization based methods [30, 64, 99] aim at learning a good initialization for
the model so that it can be quickly fine-tuned to a target task with limited amount of data. (3)
Hallucination based methods [44, 69, 86, 155] solve data scarcity by generating more training
samples. The generation process is done in either hidden feature space or raw image space. While
achieving promising performance, these methods adopt a global feature vector to represent an
image.

As an extension of distance metric based methods, some recent works [84, 170] rely on a
local feature set representation to preserve the spatial structure of an image, and define their own
metric to measure the similarity between two feature sets. Li et al. [84] calculates cosine distance
between local feature pairs, and aggregates them by a k-NN classifier. Zhang et al. [170] adopt
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earth mover’s distance (EMD) to discover an optimal matching between local feature sets. In
comparison, our method extracts a subspace representation for each local CNN feature set, and
computes the weighted subspace distance between two sets.

The concept of subspace learning has been utilized to solve few-shot image classification
[130, 167]. However, these works consider the subspace in a global, image-level feature space.
Also, they make use of a subspace projection operation to compute subspace-point distance and
measure class-to-image similarity. In comparison, our method represents an image as a subspace
in local feature space, and calculates subspace-subspace distance.

3.3 Subspace Representation Learning

3.3.1 Problem formulation for few-shot image classification
The goal of few-shot image classification task is to build a prediction model that can be quickly
adapted to unseen classes with limited amount of annotated examples. Most previous works val-
idate their approaches to this task using N -way K-shot classification as testing scenario. Specif-
ically, we are given a support set S = {{(xi,j, yi)}Kj=1}Ni=1 and query set Q = {(xq, yq)}Nqq=1, yq ∈
{yi}Ni=1, where (x, y) is the pair of raw image and class label. The prediction model is trained/adapted
based on S, and evaluated on the classification results of Q.

In this chapter, we propose subspace representation learning (SRL) framework to tackle this
task. The overall architecture is illustrated in Fig. 3.1. Concretely, the proposed method repre-
sents an image as a subspace, which is estimated from the reconstruction of local CNN features
of this image. The dis-similarity between two images can be determined by a weighted subspace
distance (WSD) between two subspaces. In the rest of this section, we will first introduce the
concept of subspace representation. Then, we will elaborate the WSD adopted in SRL frame-
work, and the end-to-end training process in the context of few-shot image classification. Finally,
we will describe two types of template subspace, which can effectively summarize information
about a specific class from K-shot examples.

3.3.2 Subspace Representation
The proposed method exploits a subspace to represent each training/testing image. Given an
image x, we extract the hidden feature map (h × w × d tensor) using a backbone CNN with
parameter Φ, and collect the d-dimensional local feature vectors at all the spatial locations to form
a matrix H ∈ Rd×(h·w). Then, the proposed method finds the best-fit s-dimensional subspace
U ∈ Rd×s, which minimizes the reconstruction error with respect to H:

min
U
||H − UUTH||F

s.t. UTU = I
(3.1)

where || · ||F is the Forbeneous norm of a matrix. This optimization problem can be solved by
singular value decomposition (SVD) of H , and the optimal U is obtained by the top-s right-
singular vectors with the largest singular values.
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Figure 3.1: The overall architecture of proposed subspace representation learning (SRL) frame-
work. The backbone CNN extracts the local feature map (h × w × d) from each query and
support image. After reshaping the feature map into a matrix H ∈ Rd×(h·w), whose columns are
the CNN features at every spatial location, we extract the subspace representation by conducting
SVD. The similarity between two images is determined by a weighted subspace distance (WSD).
The end-to-end training is guided by the loss function of a distance based classifier.

Similar to other works [84, 170] leveraging local CNN features, the SRL framework is able
to capture the spatial structure of an image. However, there are two additional reasons why we
choose to construct a subspace representation. First, a subspace encourages the preservation of
diversity because of the orthonormal constraint in eq. (3.1). Second, using a subspace results in a
compact representation for image, since we can set a small swithout sacrificing the performance.
More analysis of these two properties will be elaborated in the experiment section.

3.3.3 Weighted Subspace Distance
To conduct metric learning in the space of subspace representation, one needs to calculate
subspace-to-subspace distance. While several types of distance have been proposed, the SRL
framework utilizes the weighted subspace distance (WSD) introduced in [79]: Given two sub-
spaces U1 and U2 representing two images x1 and x2, WSD is expressed as:

D(U1, U2) =

√√√√1−
s∑
i=1

s∑
j=1

√
λ′1,iλ

′
2,j(u

T
1,iu2,j)2

λ′1,i =
λ1,i∑s
l=1 λ1,l

, λ′2,j =
λ2,j∑s
l=1 λ2,l

(3.2)

where u1,i(2,j) and λ1,i(2,j) are the i(j)-th column of U1(2), and the corresponding singular value
obtained from SVD operation, respectively. Comparing to other types of subspace distance,
WSD considers the relative importance of each basis component in a subspace, so it can better
capture the distribution of original local feature set.
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(a) Prototypical network [133] (b) Distance-based classifier. [20]

(c) Prototypical subspace (PS). (eq.
(3.4))

(d) Discriminative subspace (DS).
(eq. (3.5))

Figure 3.2: Comparison among different strategies for template vector/subspace (vtemp/Utemp)
extraction from K-shot information. (a) A prototypical network takes mean vector of K-shot
vector representations. (b) A distance based classifier obtains the class template vector whose
Euclidean/Cosine distances to K-shot examples minimize a cross-entropy loss. (c) A prototyp-
ical subspace (PS) is the average subspace of K-shot subspaces. (d) A discriminative subspace
(DS) optimizes a distance based classifier with WSD.

3.3.4 End-to-End Training
The training process of the SRL framework follows the episodic learning mechanism [149],
which mimics the situation of a testing phase. In each training iteration, we sample a pair of
support and query sets (S,Q) from training dataset. Then, we extract the subspace representation
for every image in S and Q, and plug the WSD (eq. (3.2)) between the two subspaces into a
distance based classifier [20]. Thus, the training objective of SRL can be formulated as:

Le2e(Φ) =
∑
q

log

(
exp(−D(Uyq , Uq))∑N
i=1 exp(−D(Uyi , Uq))

)
(3.3)

where Uq is the subspace representation of query. Uyi is the subspace representation of the
supported image of class yi if K = 1. In the case of K > 1, Uyi stands for the template subspace
that summarizes the K-shot information from class yi. The estimation of template subspace will
be discussed in Sec. 3.3.5. By minimizing eq. (3.3), the parameter set Φ of backbone CNN can
be learned in an end-to-end manner.

3.3.5 Template Subspace for K-shot Learning
To cope with the K-shot learning scenario, the SRL framework computes a template subspace
Utemp to aggregate the information from K subspaces for each class. In this work, we propose
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two types of template subspace to represent a class: A prototypical subspace and a discriminative
subspace.

The prototypical subspace (PS) is the ”average” of all K subspaces, following the spirit of
ProtoNet [133] in vector space. Specifically, given K subspaces U1, U2, ..., UK representing K
images of the same class, the prototypical subspace is obtained by the minimizing the summation
of the distances between Utemp and Ui:

Lps(Utemp) =
K∑
j=1

D(Utemp, Uj) (3.4)

On the other hand, the discriminative subspace (DS) can be calculated by training a distance-
based classifier with respect to a support set S of a N -way, K-shot classification task. Given
the set of NK subspaces, {{Ui,j}Kj=1}Ni=1, extracted from S, the set of N template subspaces
Utemp = {U (i)

temp}Ni=1 for N classes would be the minimizer of the following loss function:

Lds(Utemp) =
N∑
i=1

K∑
j=1

log

(
exp(−D(Ui,j, U

(i)
temp))∑N

l=1 exp(−D(Ui,j, U
(l)
temp))

)
(3.5)

Please note that {U (i)
temp}Ni=1 are task-specific, since they are derived jointly from a N -way, K-

shot task. In contrast, PS is class-specific because the optimal Utemp in eq. (3.4) is independent
to other (N − 1)K images in S. Fig. 3.2 compares PS and DS, along with their correspondence
in vector space.

While minimizing Lps and Lds, Utemp is subject to the orthonormal constraint (UTU = I),
which prevents a closed-form solution of both problems. To solve this type of optimization prob-
lem with a SGD-like algorithm, we exploit the Cayley transform [101], projecting the gradient
to the tangent space of a Stiefel manifold. We describe the update rule of estimating PS as an ex-
ample. Let Z = ∂Lps/∂Ut, where Ut is the current estimated Utemp in eq. (3.4). The calculation
of the next Utemp estimation Ut+1 can be expressed as:

W = Ŵ − Ŵ T , Ŵ = ZUT
t −

1

2
Ut(U

T
t ZU

T
t )

Ut+1 = (I − α

2
W )−1(I +

α

2
W )Ut

(3.6)

where α is a hyper-parameter analogous to the learning rate in SGD-like algorithms.

3.4 Experiment

3.4.1 Implementation
For a fair comparison, we select the commonly used ResNet-12 as the backbone network of
our SRL framework. The softmax layer and the spatial average pooling are removed from the
backbone. All the images are resized to 84 × 84 pixels, and become 5 × 5 × 640 tensors after
analyzed by the backbone network. To optimize the parameters of this backbone ResNet-12, we
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MiniImageNet TieredImageNet
Methods 5-way, 1-shot 5-way, 5-shot 5-way, 1-shot 5-way, 5-shot
Baseline++ [20] 53.97 ± 0.79% 75.90 ± 0.61% 61.49 ± 0.51% 82.37 ± 0.67%
ProtoNet∗ [133] 63.56 ± 0.34% 81.08 ± 0.18% 69.53 ± 0.36% 84.02 ± 0.23%
MetaOpt-SVM [77] 62.64 ± 0.82% 78.63 ± 0.46% 65.99 ± 0.72% 81.56 ± 0.53%
MatchNet [149] 63.08 ± 0.80% 75.99 ± 0.60% 68.50 ± 0.92% 80.60 ± 0.71%
DSN-MR [130] 64.60 ± 0.62% 79.51 ± 0.50% 67.39 ± 0.82% 82.85 ± 0.56%
FEAT [165] 66.78 ± 0.20% 82.05 ± 0.15% 70.80 ± 0.23% 84.79 ± 0.16%
Seq-distill [142] 64.80 ± 0.60% 82.14 ± 0.43% 71.52 ± 0.69% 86.03 ± 0.49%
DN4∗† [84] 63.72 ± 0.32% 81.54 ± 0.20% 70.23 ± 0.33% 84.01 ± 0.24%
DeepEMD† [170] 65.91 ± 0.82% 82.43 ± 0.56% 71.16 ± 0.87% 86.03 ± 0.58%
SRL, DS (ours)† 67.00 ± 0.27% 82.68 ± 0.18% 71.88 ± 0.32% 86.24 ± 0.22%

Table 3.1: Results on MiniImageNet and TieredImageNet. All the methods use ResNet-12 as the
backbone network. For SRL, we set subspace basis size, s = 5. *: Our re-implementation. †:
Using local CNN feature.

conduct a two-step training process. In the first step, we pre-train the parameters by minimizing a
cross entropy loss function of a standard classification task using training classes. In the second
step, we perform the episodic training mechanism described in Sec. 3.3.4. We adopt SGD
optimizer for 10k iterations with an initial learning rate 0.002, which decreases by a factor 0.1
for every 2k iteration. No data augmentation methods are applied during the episodic training.

The PS and DS are initialized by the subspaces extracted from the union of K local CNN
feature sets. Then, we update these template subspaces using SGD with Cayley transform for 50
iterations. The learning rate α for PS and DS are 0.1 and 0.01, respectively.

In our experiments, we follow the standard 5-way, 1-shot and 5-shot classification protocols,
and sample 5,000 tasks with 15 query images for each target class. The category of each query
image is predicted independently (inductive scenario). We report the average accuracy with the
95% confidence interval of all the sampled tasks.

3.4.2 Dataset

To evaluate the efficacy of SRL, we conduct experiments on three benchmark datasets: MiniIm-
ageNet [114], TieredImageNet [115] and Caltech-UCSD Birds-200-2011 [150].

MiniImageNet is a subset of ImageNet [122]. It consists of 100 classes of images, and 600
images per class. The 100 classes are divided into 64, 16, 20 for training, validation and testing
sets, respectively.

TieredImageNet contains 608 classes from 34 super-class of ImageNet, and 779,165 images
in total. The set of 608 classes is divided into subsets with 351, 97, and 160 classes for model
training, validation, and testing, respectively, according to their super-class. This arrangement
increases the domain gap between training and evaluation phase.

Caltech-UCSD Birds-200-2011 (CUB) was designed for fine grained image recognition. It
contains 200 classes of bird images, 11,788 images in total. Following the setup in previous
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Methods 5-way, 1-shot 5-way, 5-shot
ProtoNet∗ 72.45±0.34% 85.94±0.23%
MatchNet 71.87±0.85% 85.08±0.57%
Baseline++ 69.55±0.89% 85.17±0.50%
DN4∗† 72.30±0.32% 85.23±0.23%
DeepEMD† 75.65±0.83% 88.69±0.50%
SRL, DS (ours)† 75.32±0.27% 88.81±0.21%

Table 3.2: Results on CUB. All the methods use ResNet-12 as the backbone network. For SRL,
we set subspace basis size, s = 5. *: My re-implementation. †: Using local CNN feature.

(a) Results on 5-way, 1-shot task of MiniIma-
geNet

(b) Results on 5-way, 1-shot task of TieredIma-
geNet

Figure 3.3: Sensitivity analysis with respect to the size of subspace basis. The results show that
the accuracy saturates around s = 6.

works [165, 170], we split the 200 classes into 100, 50, 50, classes for model training, validation
and testing, respectively. Comparing to other two aforementioned datasets, CUB is challenging
because of the subtle difference among bird types.

3.4.3 Analysis for SRL Design
To better understand the property of SRL and validate our design choices, we conduct two quan-
titative studies: (1) sensitivity analysis for basis size of subspace representation (2) validating the
choice of WSD.

In the first study, we adjust subspace basis size s, which is also the number of columns of
U in eq. (3.1), and report the performance of 5-way, 1-shot classification task in MiniImageNet
and TieredImageNet. From the results shown in Fig 3.3, we find that the performance gets better
when s becomes larger, but saturates around s = 6. This observation is expected since the
later included subspace basis components are with smaller singular values, and less important
according to the definition of WSD. The results also suggest that subspace representation with
basis size s = 6 is enough to preserve essential information for few-shot classification task.

In the second study, we compare the adopted WSD with another commonly used subspace
distance measure, projection F-norm [28, 130]:

Dp(U1, U2) = ||U1U
T
1 − U2U

T
2 ||2F = 2s− 2||UT

1 U2||2F (3.7)
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Figure 3.4: Comparison between SRL implementations with two types of subspace distance:
WSD (eq. (3.2)) and projection F-norm (eq. (3.7))

MiniImageNet TieredImageNet
SRL, PS 82.14 ± 0.18% 85.86 ± 0.23%
SRL, DS 82.68 ± 0.18% 86.24 ± 0.22%
Baseline (Union) 80.93 ± 0.20% 83.98 ± 0.23%
Baseline (NN) 80.56 ± 0.23% 83.11 ± 0.26%

Table 3.3: Comparison among K-shot aggregation methods on 5-way, 5-shot task of MiniIma-
geNet and TieredImageNet.

Specifically, we replace WSD with Dp(U1, U2) in SRL, and follow the same training procedure
to optimize the backbone CNN. The performance of SRL with these two subspace distance func-
tions are compared on the 5-way, 1-shot task of MiniImageNet. From the results illustrated in
Fig. 3.4, one can observe that the performance of SRL with projection F-norm (eq. (3.7)) drops
while s increasing, and performs worse than SRL with WSD in general. The potential reason is
that WSD re-weights the importance of each basis component, reflecting the distribution of local
CNN features.

3.4.4 Analysis for Template Subspace

In this experiment, we compare two types of template subspace, PS and DS, along with two
other naive methods, baseline (union) and baseline (NN), in K-shot learning scenario. Baseline
(union) extracts the subspace from the union of all the local CNN features from K-shot images.
It is also adopted as the initialization step of PS and DS. Baseline (NN) computes the subspace-
subspace distance from query image to the nearest neighbor support image in terms of WSD.
All the methods are evaluated on the 5-way, 5-shot classification task of MiniImageNet and
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TieredImageNet.
From the results illustrated in Table 3.3, one can see that both PS and DS can outperform

two naive baselines, and DS receives the best performance. A possible explanation is that DS
is optimized based on task-specific information, while PS is only conditioned on the intra-class
information. Thus, when two confusing unseen concepts appear in the same sampled task, DS
has a better chance to distinguish them.

We also conduct a follow-up study trying to combine PS and DS. To do so, we derive the
template subspace Utemp by optimizing the weighted summation of eq. (3.4) and eq. (3.5):

Utemp = arg min
U
Ldisc(U) + αLproto(U) (3.8)

where α is the hyper-parameter controlling the balance between PS and DS objectives. However,
the result shows that the best accuracy of 5-way, 5-shot task on MiniImageNet only increases
0.1% from SRL with DS. Therefore, while compared with previous state-of-the-art, we choose
DS as the template subspace for class-specific representation.

3.4.5 Comparison with State-of-the-art

We compare the performance of our SRL framework with two approaches using local feature
set, DeepEMD [170] and DN4 [84], as well as other previous state-of-the-art methods. The
experiment results are summarized in Table 3.1 and 3.2. From this set of results, we have the fol-
lowing observations. First, ProtoNet from our implementation receives competitive performance
on three datasets, serving as a strong baseline. Second, for 1-shot, 5-way task, the proposed
SRL performs the best on MiniImageNet and TieredImageNet, and is only slightly worse than
DeepEMD on CUB dataset. Third, SRL outperforms all the other methods on the 5-way, 5-shot
task of all three datasets.

3.4.6 Visualization

To understand the underline information captured by subspace representation, we visualize the
subspace basis components extracted from images of MiniImageNet and CUB datasets. Specifi-
cally, we calculate the cosine similarity between each basis component and the local CNN feature
of each 5× 5 regions. Fig. 3.5 shows the visualization results of the first two basis components.
The brightness of each spatial region is proportional to the cosine similarity between the compo-
nents and the local CNN feature. From the results, we can see that the first component contains
shared information among all the features, while the second focuses on some specific local re-
gions. These local regions reflect the characteristics of the corresponding class, which would
be useful for classification task. However, observing the third and fourth example images from
MiniImageNet, we find that their second basis components are highly correlated to the back-
ground regions It indicates that the proposed SRL sometimes suffers from some dataset bias, and
fails to represent the object.
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3.5 Conclusion
In this chapter, we propose a subspace representation learning (SRL) framework. It represents
an image as a subspace in local CNN feature space, and compares two images by calculating a
weighted subspace distance (WSD). It successfully extends the concept of deep metric learning
(DML) from vector to subspace, and serves as a general tool for modeling the local structure of an
image. It also can be easily applied to end-to-end learning network architectures. We investigate
the applicability of SRL on few-shot image classification task. To leverage the situation whenK-
shot information is available, we propose two types of class template representation for SRL: a
prototypical subspace (PS) and a discriminative subspace (DS). The estimation of PS and DS can
be formulated as an optimization problem in a Stiefel manifold. The experiment results on three
public benchmark datasets show that our SRL framework achieves state-of-the-art performance.
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Figure 3.5: Visualization of subspace representation. Raw images are from MiniImageNet and
CUB dataset. Brighter regions indicate higher cosine similarity between subspace basis compo-
nent and the local CNN feature.
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Chapter 4

Style and Content Disentanglement:
p-Norm Regression in Hidden Space

4.1 Introduction

The purpose of style and content disentanglement is to interpret and manipulate the hidden fac-
tors in multimedia content. A variety of applications, such as artistic style transfer and image
generation with attributes, have been explored in the previous works. In this chapter, we mainly
focus on the investigation of keypoint guided image generation task, which considers the appear-
ance deformation from a source image to target image according to the keypoint pose guidance.
Although Generative Adversarial Network (GAN) [40, 97] allows computers to generate photo-
realistic images, it is still difficult to capture the deformation from source pose to target pose.
This task has attracted the attention of researchers because it provides benefits to multiple appli-
cations, such as video synthesis [88] and data augmentation for person re-identification [111].

Several methods have been proposed to resolve the pose guided person image generation
task [91, 118, 129, 141, 178]. One type of approaches [141, 178] utilizes attention mechanisms
to model the pose-appearance relation. Another type of works [118, 129] relies on the defor-
mation of hidden appearance feature map according to affine transformation. While receiving
promising performance, these methods usually lack flexibility comparing to real-world settings.
Specifically, they are developed based on the following two assumptions: (1) the availability of
identity information of person images, and (2) the generation process is always conditioned on a
single source image. However, the first assumption is invalid if the human annotation resource
is constrained, while the second becomes a limitation if one can collect multiple images of the
same person during the inference phase. Although methods for unsupervised training [136] and
multi-shot generation [76] have been investigated to resolve these two issues, respectively, they
are still designed for a specific training/testing scenario.

In this chapter, the goal is to develop a simple yet effective, flexible approach that is suitable
for different situations: with/without identity information in training, single/multi-shot informa-
tion in inference. Hence, we propose a p-Norm regression (pNR) module, which models the
relation among input appearance and pose feature matrices H,P , and a pose invariant feature set
F for each identity as a simple matrix operation in hidden space: H ≈ PF . Based on this design,
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pNR module estimates F by solving a regression problem, and uses the optimal F and the target
pose feature Pt to reconstruct the target appearance feature matrix Ht, which becomes the input
of an image generator. Then, comparing the generated image with ground truth target image,
one can train the appearance/pose feature extractors, and the image generator in an end-to-end
manner.

The proposed pNR module is also applicable to unsupervised training and multi-shot infer-
ence. In unsupervised training scenario, we use the pNR module to reconstruct the input appear-
ance H from partial observation of H , following the spirit of denoising auto-encoder [148]. In
multi-shot generation, we exploit multi-shot information to estimate pose-invariant feature ma-
trix F by constructing a larger regression problem. These two strategies make our overall frame-
work more flexible. Also, the proposed pNR module can be integrated with any pose/appearance
feature extractor based on CNN, and contains no additional trainable parameters.

The main contributions in this chapter are two fold: (1) proposing p-Norm regression (pNR)
module, which estimates pose-invariant feature and predicts the target appearance feature by
solving a regression problem in hidden space. (2) demonstrating the applicability and efficacy
of pNR module for pose guided person image generation task in supervised, unsupervised and
multi-shot scenarios.

We propose to validate that the proposed pNR module applies to different keypoint guided
generation tasks. This method will also be integrated with the work about learning from synthetic
data.

4.2 Related Work

Pose guided person image generation has been extensively studied recently [118, 129, 141, 178].
A major stream of works utilizes attention mechanism to model the interaction between appear-
ance and pose information. Zhu et. al. [178] used a sequence of attention modules to conduct
pose transfer progressively. Tan et. al. [141] further improved the model capacity by introduc-
ing bidirectional appearance-pose attention. Another type of works [118, 129] relies on defor-
mation of hidden appearance feature map according to an affine transformation, which can be
non-parametric [129] or parametric [118]. Compared to previous works, the proposed approach
focuses on estimating a pose-invariant feature matrix, which can be easily adopted to a wide
range of scenarios.

The proposed pNR module is inspired by the techniques of differentiable optimization as
layers [1, 4, 11]. These methods solve a optimization problem in the hidden space of a deep
network architecture, and use the optimal solution as the input of the later part of forward process.
The differentiability of the solution enables the end-to-end training of the whole network. The
pNR module is a special case of these general approaches, but the solver and back-propagation
of pNR module requires specific development.
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Figure 4.1: Overall architecture of our approach to pose guided person image generation. Our
pNR module estimates a pose-invariant feature F in hidden space, and exploits it to predict target
appearance.
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4.3 Hidden p-Norm Regression
The main purpose of the proposed method is to disentangle the pose information from a raw
image by analyzing the given pairs of a person image and a key-point based representation of hu-
man pose, (I,K). Following previous works, K is a keypoint heatmap of the 18 joints extracted
from I using Human Pose Estimator (HPE) [17]. Specifically, here we focus on the pose guided
image generation task, which aims at producing an image Ig given a 3-tuple of source image,
source pose, and target pose (Is, Ks, Kt). The generated Ig should reflect the pose described by
Kt, and preserve the identity information of Is, simultaneously. The availability of the identity
information is not always the same. For example, when the human annotation resource is con-
strained, one may have no or little identity information in training phase. Also, one may want to
collect more information for a particular identity during inference phase, so the generation pro-
cess would be conditioned on multiple pairs of (Is, Ks). Hence, the ultimate goal is a effective
and flexible approach, that is suitable for supervised/unsupervised training, and single/multi shot
generation. To achieve this goal, we propose a novel p-norm regression (pNR) module, along
with a end-to-end learning framework.

4.3.1 Overall system architecture
The system consists of the proposed pNR module, and three other components: pose and ap-
pearance feature extractors fa, fp, and an image generator G. In the typical single-shot inference
scenario, we are given a 3-tuple (Is, Ks, Kt). The system first extracts the appearance feature
matrix Hs ∈ R(h·w)×D and pose feature matrices Ps, Pt ∈ R(h·w)×d using appearance and pose
feature extractors: Hs = fa(Is), Ps = fp(Ks), Pt = fp(Kt). Each row of H(P ) encodes the
appearance(pose) characteristics at one of the h · w local regions in the raw image. Then, the
proposed pNR module estimates a pose-invariant feature F ∈ Rd×D from (Hs, Ps), and pro-
duces the target appearance feature matrix Ht. Finally, the generator G takes Ht as input and
produces the output image Ig. In unsupervised scenario, identity information is unknown, so we
can only exploit pairs of (Is, Ks) for training. Thus, we solve a binary re-weighted version of
p-norm regression, and leverage the reconstruction of Is as the supervision signal. The overall
architectures for all situations are illustrated in Fig. 4.1.

In the remaining of this section, we introduce the details of the proposed pNR module, and
the strategies for unsupervised training and multi-shot generation. Then, we elaborate the loss
function for training.

4.3.2 p-Norm regression (pNR) module
Given appearance and pose feature matrices H,P in hidden space, we assume that there exists a
pose-invariant feature F , and three of them follows the simple relation: H ≈ PF . The motiva-
tion behind this assumption is that the appearance features at every spatial location share some
common characteristics, which can be expressed by a set of d feature vectors (d� h ·w). Hence,
each appearance feature (row of H) would be a linear combination of rows of F , and the com-
bination weights are encoded in P , Based on this motivation, the proposed p-norm regression
(pNR) module contains two steps: estimation of F and prediction of Ht.
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In the first step, pNR module estimates F from source appearance and pose information,
Hs, Ps. Specifically, the optimal F is the solution of the following p-norm regression problem:

F = arg min
F ′
||Hs − PsF ′||p (4.1)

In this work, we investigate two cases: p = 1 and p = 2. If p = 2, eq. (4.1) would be a least
square error (LSE) minimization problem, and F can be calculated in closed form:

F = (P T
s Ps)

−1P T
s Hs (4.2)

If p = 1, eq. (4.1) would become a least absolute deviation (LAD) problem, which is more robust
to outliers. However, F has no analytic solution. In this case, we adopt iterative re-weighted least
square (IRLS) algorithm [124]. Let Ft be the current estimation of F , the update rule for Ft+1 in
the next iteration can be expressed as:

F
(i)
t+1 = (P T

s W
(i)
t Ps)

−1P T
s W

(i)
t H(i)

s (4.3)

where F (i)
t+1 andH(i)

s are the i-th column of Ft+1 and i-th column ofHs, respectively, i = 1, ..., D.
W

(i)
t is a (h · w) × (h · w) diagonal matrix, whose diagonal elements are from the (h · w)-

dimensional vector, 1/|H(i)
s − PsF

(i)
t |. In my implementation, we use the solution of LSE as

initial F0 and execute this update rule for a fix number of iteration. The result of the last iteration
would be assigned to F . Given F , the second step of pNR module predicts target appearance
based on the same assumption, Ht = PtF .

Since pNR module is treated as an intermediate layer of the whole network architecture, we
need to differentiate through it in order to train the parameters in fa, fp and G with SGD-like
algorithm. In the case of LSE (p = 2), the derivative of F in eq. (4.2) can be obtained easily.
However, when p = 1, the calculation of F is an iterative process, so the precise derivative is
difficult to compute. Considering eq. (4.3) in the last iteration of IRLS update, we calculate
∂F (i)/∂H

(i)
s , ∂F (i)/∂Ps only, and ignore the derivative with respective to the recursive term,

∂F (i)/∂W
(i)
t , during the backward propagation. Although this calculation is an approximation, it

still aims to preserve the robustness of LAD to outliers, and receives good empirical performance.

4.3.3 Unsupervised training and multi-shot generation
The proposed pNR module can be easily adapted to unsupervised training and multi-shot gener-
ation scenarios.

In unsupervised training, pNR module estimates F by solving a binary re-weighted p-norm
regression:

F = arg min
F ′

h·w∑
j=1

vi||Hj
s − P j

sF
′||p (4.4)

where vj ∈ {0, 1} is a binary random variable, which blocks out the information from the j-th
row in Hs (Hj

s ) when vj = 0. In our case, we set p(vi = 0) = p(vi = 1) = 0.5. Then, we predict
the source appearance feature Ĥs = PsF in the second step, and use Ĥs to reconstruct the input
source image.
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In multi-shot generation, we aggregate the information from M pairs of source image and
pose map (Is, Ks). Specifically, we concatenate all the appearance and pose feature matrices,
and construct a larger p-norm regression problem. It can still be expressed by eq. (4.1), but
Hs ∈ R(M ·h·w)×D, Ps ∈ R(M ·h·w)×d. Please note that M can be different in training and inference
phase, and can also be a varied number.

4.3.4 Loss functions
Following the design of previous works [141, 178], the training objective of our system frame-
work contains four components: L1 loss, Perceptual loss, GANI loss, GANK loss.

L1 loss computes the pixel-wise L1 distance between generated image and target image:
LL1 = ||It − Ig||1. Perceptual loss compares two images in the space of pretrained features:
Lper = ||Φρ(It)− Φρ(Ig)||1, where Φ is a VGG19 [131] network pretrained on ImageNet [122],
and ρ is the index of hidden layers (ρ = Conv1 2 in our case). On the other hand, the purpose
of GANI and GANK loss is to align the output of generator to two probability distributions:
p(It|Is) and p(It|Kt), respectively. To do so, we measure the two types of distribution discrep-
ancy by two discriminators,DI andDK , respectively. The former distinguishes generated images
from target images conditioned on source image Is, while the later does so conditioned on the
pose map Kt. Thus, two loss functions are formulated as:

LGANI =E[log(DI(It, Is))] + E[log(1−DI(Ig, Is))]

LGANK =E[log(DK(It, Kt))] + E[log(1−DK(Ig, Kt))]
(4.5)

where the expectation is computed over the distribution of Is, It pairs. The overall training
objective is the weighted combination of the four components, and the training process can be
expressed as:

min
fa,fp,G

max
DI ,DK

λ1LL1 + λ2Lper + λ3LGANI + λ4LGANK (4.6)

In unsupervised training scenario, source and target images are the same, so we replace (It, Kt)
to (Is, Ks) in all the loss functions, and disable LGANI by setting λ3 = 0.

4.4 Experiment

4.4.1 Implementation
Pose and appearance feature extractors, fp and fa both consist of two downsampling CNN layers,
a sequence of N residual blocks proposed in [66] and a reshape operator, while fp has another
linear layer to reduce the dimension to d. Image generatorG contains N residual blocks followed
by two unsampling deconv layers. We set N = 4 and N = 2 in supervised and unsupervised
training, respectively. For the discriminators DI and DK , we exploit the same implementation
as in [178]. For pNR module, we set d = 20, D = 256.

In the training phase, Adam [71] optimizer with learning rate of 0.002, β1 = 0.5, β2 = 0.999
is adopted. For the hyper-parameters of loss function, we set λ1 = λ2 = 5, λ3 = λ4 = 10 for
supervised training, and change λ3 to 0 for unsupervised training.
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Figure 4.2: Qualitative comparison between pNR module and other methods. *: Unsupervised
training.
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IS SSIM mask-IS mask-SSIM
PG2 [91] 3.460 0.253 3.435 0.792
Def-GAN [129] 3.185 0.290 3.502 0.805
PATN [178] 3.323 0.311 3.773 0.811
XingGAN [141] 3.506 0.313 3.872 0.816
pNR (LSE) 3.435 0.298 3.741 0.802
pNR (LAD) 3.631 0.305 3.796 0.807
SPT∗ [136] 3.449 0.203 3.680 0.758
pNR∗ (LSE) 3.688 0.241 3.501 0.783
pNR∗ (LAD) 3.681 0.248 3.610 0.789

Table 4.1: Quantitative results on Market-1501. All the metrics are the higher the better. *:
Unsupervised training.

4.4.2 Dataset and evaluation protocols

We evaluate the proposed pNR module on two tasks: pose guided person image generation, and
landmark guided facial expression generation.

The experiments of pose guided person image generation are conducted on the challenging
Market-1501 [173] dataset, which was designed for person re-identification. Performing pose
guided image generation on this dataset is challenging because of its low resolution (128× 64 in
pixel), and high diversity in pose, background and illumination. Following previous works, we
detect the keypoint-based pose representation by HPE, and remove images in which no human
body can be detected. Consequently, the training and single-shot testing sets consists of 263,632
and 12,000 pairs of images with the same identity. Sets of identities for training and testing
are mutually exclusive. We also use Market-1501 to perform generation with multi-shot source
images. For this purpose, we keep those identities in single-shot testing set with 6 or more
images, and sample 12,000 tuples with 5 source images and 1 target image for testing. In this set
of the experiments, we adopt Structure Similarity (SSIM) [157] and Inception Score (IS) [123]
as the evaluation metrics. SSIM measures correctness of pose transfer by comparing generated
and ground truth images, while IS uses a pretrained image classifier to assess the image quality.
The masked version of both metrics are also utilized to reduce the distraction from irrelevant
background regions.

The experiments of landmark guided facial expression generation are conducted on Radboud
Faces dataset [75]. It contains about 8000 images from 5 camera views and 67 subjects. They
were asked to perform facial expressions according to 8 different emotion: anger, fear, disgust,
sadness, happiness, surprise, neutral and contempt. Following previous work [139], we re-scale
all the images to 256 × 256 × 3, and remove those images in which the human face can’t be
detected by OpenFace [5]. It results in a subset with 7035 images in total. Then, this subset is
further divided into a training (5628 images) and testing set (1407 images). In this set of exper-
iments, we focus the unsupervised training scenario, which assumes that no identity annotation
is available. Also, we adopt PSNR and SSIM to evaluate the generation results quantitatively.
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IS SSIM mask-IS mask-SSIM
[76], M=1 3.251 0.270 3.614 0.771
[76], M=3 3.442 0.291 3.739 0.783
[76], M=5 3.444 0.306 3.814 0.788
pNR, M=1 3.631 0.305 3.796 0.807
pNR, M=3 3.642 0.311 3.804 0.812
pNR, M=5 3.629 0.313 3.804 0.818
pNR*, M=1 3.684 0.248 3.610 0.789
pNR*, M=3 3.640 0.254 3.616 0.801
pNR*, M=5 3.662 0.259 3.614 0.805

Table 4.2: Results of multi-shot generation. All the metrics are the higher the better. *: Unsu-
pervised training

4.4.3 Experiment Results – Pose Guided Person Image Generation

We compare the proposed method with some previous state-of-the-art, including PG2 [91], Def-
GAN [129], PATN [178], XingGAN [141], and SPT [136] (unsupervised). From the results
shown in Table 4.1, we make the following observations. First, pNR with LAD (p = 1) per-
forms better than that with LSE (p = 2) in both supervised and unsupervised training scenarios.
Second, in supervised training, pNR yields competitive performance compared with most recent
state-of-the-art, PATN and XingGAN. Third, in unsupervised training, pNR∗ outperforms the
previous work, SPT, by a large margin on every metrics except mask-IS.

We present a qualitative study for both supervised and unsupervised training scenarios in Fig.
4.2. Compared with other previous works, the proposed method is more capable of capturing
pose and appearance information. We also list the results from pNR∗ (unsupervised training),
which are still in good quality but contain more artifacts than supervised methods.

In Fig. 4.4, we illustrate more results of a qualitative study for unsupervised training sce-
nario, which is better aligned with the assumption of style and content disentanglement. From
the results of this study, we can see that the model successfully disentangles some lower level
characteristics, such as the color/type of cloths, position of arms and legs, etc. However, some
higher level semantic concepts are not preserved by our model. For example, the generated
images in the first and third rows don’t contain the bags carried by the target persons. In the gen-
erated image of the fifth row, one can also see that the upper body and lower body are moving
toward different directions. These examples show that the proposed method should be further
improved for real world applications.

We also demonstrate that the proposed method can effectively integrate information from
multi-shot source images. For model training, we apply LAD (p = 1) in pNR module, and
exploit single-shot (M = 1) training dataset. From the quantitative comparison in Table 4.2,
one can see that the pNR module outperforms previous work [76], and yields better SSIM and
mask-SSIM with larger number of source images in both supervised and unsupervised training
scenarios. Also, the qualitative results in Fig. 4.3 show that pNR module reconstructs more
details in generated images when more source images are available.
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Figure 4.3: Qualitative results of multi-shot generation using pNR module (supervised training,
LAD).

4.4.4 Experiment Results: Facial Expression Generation
We also verify the effectiveness of pNR module on another key-point guided image generation
task. Specifically, we focus on the face expression generation task with Radboud Faces dataset
[75]. It contains about 8000 images from 5 camera views and 67 subjects. They were asked
to perform facial expressions according to 8 different emotion: anger, fear, disgust, sadness,
happiness, surprise, neutral and contempt, and to show three different gaze directions. Following
the previous work [140], we randomly select 66% of images as training data, use the rest for
evaluation.

For the facial expression generation task, we train the generative model with pNR module in
the unsupervised manner (without identity information). The qualitative results are illustrated in
Fig. 4.5 and 4.6. From Fig. 4.5, we observe that the proposed pNR module can disentangled
keypoint and identity information, and generate unseen facial expression given the clue from
keypoint locations. However, from Fig. 4.6, we also notice that the proposed pNR module is
sensitive to the correctness of keypoint locations. If the resource of keypoint locations (e.g. a
detector) is not accurate, the proposed method fails to recover the correct appearance information.

4.5 Conclusion
In this section, we aim at the disentanglement of hidden factors in multimedia content. In the con-
text of pose/keypoint guided image generation, we propose a novel pNR module. It estimates a
pose-invariant feature matrix for each identity and predicts the target appearance feature by solv-
ing a p-norm regression problem in hidden space. Integrated with CNN-based pose/appearance
feature extractors, pNR module serves as a layer of the whole network architecture and sup-
ports end-to-end training. The experiment results demonstrate the efficacy of the pNR module in
a supervised and unsupervised training scenario, as well as generating images from multi-shot
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Figure 4.4: More qualitative results of pNR module with unsupervised training.
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Figure 4.5: Qualitative results of facial expression generation.

person image data.
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Figure 4.6: Qualitative results of facial expression generation (failed examples)
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Chapter 5

Style and Content Disentanglement:
Mutual Information Minimization

5.1 Introduction

In this chapter, I approach to style and content disentanglement by explicitly measuring the de-
gree of disentanglement. Concretely speaking, the goal is to obtain a numerical value to judge
if style and content factors are separated. This concept has been explored in the works of unsu-
pervised disentangled representation learning [19, 21, 49, 67], which utilize total correlation to
evaluate the uncorrelated hidden factors discovered by their algorithms. In some previous works
of style and content disentanglement [74], they considered the predictability, the content classi-
fication performance given style representations. However, it is not applicable when the content
information is not categorical. Thus, I propose to measure the mutual information between style
and content during the representation learning process, and demonstrate that it is suitable for
applications with non-categorical content information such as speech synthesis.

Mainstream neural network based text-to-speech (TTS) methods [7, 68, 82, 96, 117, 126]
are able to produce high quality speech. However, they ignore the other hidden factors within

Figure 5.1: The overall architecture of our method for TTS stylization.
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speech utterances such as speaker identity, the speaking style, prosody, or the environmental
factors. Considering that the conversion from text to speech is actually a one-to-many mapping,
some prior works [53, 65, 92, 156] enhanced these neural TTS models by providing an additional
reference speech signal to control the style, so that the generated speech has the same style
as the reference. In these controllable TTS methods, the reference speech is encoded into an
embedding (called a style vector) that is input with the content features to a speech decoder.
These controllable TTS methods encode the reference speech into a style vector, which is fed
into a speech decoder along with content representation. Most recent works in this direction
generate the style vector with the guidance of speaker identity annotation [53, 65, 92, 145],
which may be hard to extend to the cases where the speaker information is not available (e.g. a
new language, a new environment, or due to privacy reasons). Furthermore, the user information
requires additional annotations to use the unlabeled audio data.

To overcome this limitation, Global Style Token (GST) method [156] learns speaker embed-
dings in an unsupervised manner by jointly training the style encoder network as well as the
encoder-decoder part of the TTS model, while minimizing the reconstruction loss. Specifically,
this method computes style vectors using a set of trainable vectors called style tokens, which
are linearly combined using style coefficients generated from the input reference speech. Style
tokens are trainable parameters that are optimized together with the TTS network parameters. To
compute the style coefficients, it uses an additional style encoder that is trained jointly with the
TTS model. The style coefficients are passed through a Softmax layer (so that they sum to 1)
before computing the style vector with them.

Furthermore, for computational efficiency, we use Transformer TTS [82, 146] for the con-
tent encoder and decoder. This model uses self-attention [146] and does not have any recur-
rent connections, which is significantly faster to train compared to LSTM-based models such
as Tacotron 2 [126]. During training, text is given as the content input and the corresponding
mel-spectrogram is used as reference speech for encoding the style.

However, in the unsupervised training scenario, the target output speech is the same as the
reference input speech for style encoding, which causes some of the content information to leak
into the style vector. This leaked content can be used by the decoder to reconstruct the speech
while ignoring the actual content input. At inference time, when the reference speech has differ-
ent content from the input text, the decoder expects the content from the style vector and ignores
some part of the content text. We refer to this problem as ”content-leakage” which results from
having the same style input as the desired output during training. Ideally, the style vector should
not be able to reconstruct the content vector, i.e., there should be no information about the con-
tent in the style vector. To this end, we bring in the idea of measuring the mutual information
between the underline distributions of style and content representations. While receiving the
empirical samples of both style and content from hidden distributions, we estimate their mu-
tual information by using Mutual Information Neural Estimation (MINE) in [14]. The MINE
algorithm computes a lower bound of the mutual information using a neural network, which is
optimized to maximize this lower bound. We alternate between maximizing the lower bound
(i.e., estimating the mutual information) and minimizing the estimated mutual information and
the reconstruction loss. The maximization problem is solved w.r.t. the MINE network, while the
minimization problem is solved w.r.t. the style encoder, the content encoder, and the decoder.

To summarize the contributions in this chapter, we propose to disentangle the style and con-
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tent information by minimizing the mutual information (MI) between them. The estimation and
minimization steps of MI are jointly formulated as a adversarial training task. In the context
of text-to-speech application, the proposed method helps prevent content leakage issue. The
qualitative and quantitative evaluation results show that the proposed method outperform state-
of-the-art unsupervised controllable TTS methods.

5.2 Related Work
Recent neural TTS methods, such as Tacotron 2 [126], MelNet [145], Deep Voice 3 [109], and
TransformerTTS [82], map input text to speech features (e.g. mel-spectrogram) using a content
encoder and a speech decoder. To recover the original time domain speech signal from the
speech features, one can rely on a conventional vocoder such as Griffin Lim algorithm [42],
or a neural network based vocoder, such as WaveNet [104] and WaveGlow [110]. We choose
TransformerTTS as our neural TTS backbone because of the substantially reduced training time,
and WaveNet [104] as our vocoder.

The concept of style and content disentanglement has been explored in many different ar-
eas, such as artistic image [37], face attribute manipulation [74], handwriting [21], text genera-
tion [60], and neural TTS [92]. The authors in [92] follow the idea of obtaining the style infor-
mation as the gram matrix of feature maps to capture the style in synthesized speech. Compared
to these methods, our approach disentangles the style and the content by explicitly minimizing
the mutual information between their latent representations, not the loss of a discriminator.

Neural controllable TTS models [53, 65, 92, 156] generate speech with the input text content,
where the style is given by an input reference speech signal that may not have the same content
as the input text. These models analyze the reference speech signal and extract style information
using an additional style encoder, which is parallel to the content encoder of a neural TTS sys-
tem. The authors in [65] incorporate external data to train a discriminative speaker encoder, and
transfer the learned encoder to build a multi-speaker TTS system. The authors in [53] adopt a
variational autoencoder to model both the observed and the latent style attributes. Global style
token (GST) method [156] maintains a set of style embedding vectors, and constrain a style em-
bedding of reference speech to be a linear combination of this style embedding set. A recent
work [92] enhances this model by latent attribute reconstruction and GAN training [40]. Most
of the these works require style annotation, such as speaker identity and emotion, in the train-
ing stage. Compared to these methods, our proposed approach is unsupervised, i.e., it does not
require style annotations or speaker embeddings. To the best of our knowledge, the only other
neural TTS based unsupervised style and content separation method is by [156], but this suffers
from content leakage.

5.3 Proposed Method
The proposed method, shown in Figure 5.1, is based on a controllable TTS architecture. We use
a backbone TTS model to pre-train the content encoder, EC To this backbone TTS model, we
add a style encoder, ES , to extract style vector from the reference speech, and the MI estimator
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to measure the mutual information between the style and the content vectors

5.3.1 Content Encoder Pre-training
The first step of MIST is content encoder pre-training, which can be simply treated as a neural
TTS training process. It is important to use a single-style dataset in the pre-training process
because a multi-style dataset usually has same content spoken in different style (e.g. by different
speakers). Given a set of speech and content pairs, {(x, c)}, we jointly train the content encoder,
EC , and speech decoder, D, by minimizing the reconstruction loss,

minEC ,D||D(EC(c))− x||1, (5.1)

where ‖.‖1 is the `1 norm. The trained EC with frozen weights is used in the second stage of our
method, while D is re-initialized with random weights.

5.3.2 Style and content disentanglement
In the second step of our method, we train a speech synthesis model that is capable of disen-
tangling the style from the reference speech and generating speech in this style with the content
of the input text. During training, the input content is the same as the content of the reference
speech. Using only the reconstruction loss to update ES, EC , and D, the model suffers from
content leakage because the content information in the output can also be extracted from the
reference speech. We disentangle the style and content by minimizing the mutual information
(MI) between their hidden representations (ES(x) and EC(c)), so that the style does not contain
information about the content. However, it is not obvious how to compute and minimize the mu-
tual information between two continuous random vectors. First, we briefly describe a recently
proposed method to estimate the mutual information, then we present our novel application to
minimize it jointly with the reconstruction loss.
Mutual information neural estimation (MINE)[14]: The mutual information, I(Y ,Z), of
random variables Y and Z is equivalent to the Kullback–Leibler (KL) divergence [73] between
their joint distribution, PY ,Z , and product of marginals, PY ∗ PZ :

I(Y ,Z) = DKL(PY ,Z ||PY ∗ PZ). (5.2)

Using this fact, MINE[14] method constructs a lower bound of mutual information based on
Donsker-Varadhan representation of KL divergence [26]:

I(Y ,Z) ≥ ÎT (Y ,Z) = sup
T
EPY ,Z

[T ]− log(EPY ∗PZ
[eT ]), (5.3)

where T can be any function that makes the two expectations in the above equation finite. The
authors in [14] propose to use a deep neural network for T , which allows us to estimate the
mutual information between Y and Z by maximizing this lower bound with respect to T through
gradient descent.
Style and content separation with MI minimization: We minimize the the reconstruction loss
along with the estimated mutual information between the style and the content vectors. Since
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the MI is always non-negative, we clip the estimated mutual information to zero if it is negative.
The clipped value is not only a better estimate of the mutual information than the non-clipped
one (because the true MI is always non-negative), it also avoids minimizing a function that is
unbounded from below. In one experiment, we found that by clipping the performance of the
speech recognition on the generated data can be improved by approximately 30%. Thus, the
overall objective function is a min-max problem where we maximize the lower-bound of MI, Î,
w.r.t. T and minimize the MI and the reconstruction loss w.r.t. D and ES ,

min
ES ,D

max
T

{
||D(EC(c), ES(x))− x||1

+ λ ∗max(0, ÎT (EC(c), ES(x)))
}
,

where λ is a hyper-parameter that balances the two losses. In our experiments, we set λ = 0.1
and found the algorithm to be insensitive to different values of λ, as shown later in Section 5.4.1.
Similar to common GAN training, we update the speech synthesis model (ES, D) and the MI
estimator function, T , alternatively in each step of the training. Since EC(ci) is a sequence
of vectors of varying length, we randomly sample one of the content vectors to compute the
mutual information. By optimizing (5.4), we can jointly ensure the quality of speech feature
reconstruction, and make the information extracted from EC and ES independent to each other.
We summarize the training method in Algorithm 3.

Algorithm 3 Pseudocode for the proposed MIST training
Input: Pairs of speech and text (xi, ci).
Output: EC , D,ES.

1: EC , D ← arg minEC ,D
∑

i ||D(EC(ci))− xi||1
2: ES, D, T ← initialization with random weights
3: while ES, D, T not converged do
4: Sample a mini-batch of (xi, ci), i = 1, 2..., b.
5: {yi} ← {EC(ci)|i = 1, 2, ..., b}
6: {ŷi} = random permutation of {yi}
7: {zi} ← {ES(xi)|i = 1, 2, ..., b}
8: LMI = 1

b

∑b
i=1 T (yi, zi)− log(1

b

∑b
i=1 e

T (ŷi,zi))

9: L = 1
b

∑b
i=1 ||D(yi, zi)− xi||1 + λ ∗max(0,LMI)

10: D = D − ε∇DL
11: ES = ES − ε∇ESL
12: T = T + ε∇TLMI

13: end while

We illustrate the network architecture of T in Figure 5.2. Please note that there are approaches
to merge the information from content and style representation. In our preliminary experiments,
we found that a bi-linear function works better than other simple strategies, such as vector con-
catenation and addition. Also, compared with common network architectures of discriminators
in GANs, the architecture of T doesn’t have to be very deep. Specifically, we apply three fully
connected layers after the bi-linear layer.
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Figure 5.2: The model architecture of the function T (y, z) in MINE.

The pre-training for the content encoder is also a crucial step for style and content disen-
tanglement. If the content encoder is not pre-trained, the model could learn to capture part of
the content from style encoder, and still minimize the mutual information between EC(c) and
ES(x).

5.4 Experiment

To evaluate the effectiveness of MIST on preventing content leakage and the quality of the gener-
ated speech, we conduct qualitative and quantitative studies on the VCTK [163] and the LibriTTS
[169] datasets. The VCTK dataset contains 44 hours of clean speech from 109 speakers, and Lib-
riTTS [169] is a large-scale corpus with 585 hours of English speech, which are recorded from
2,456 speakers. For LibriTTS, we use the train-clean-360 set to learn our model. We also use
LJSpeech dataset [62], which consists of 13,100 short audio clips from a single speaker, for pre-
training the content encoder. For fair comparison, our implementations of the baseline methods
also use this pre-trained content encoder.
Baselines: We compare our method with the unsupervised method by [156] that proposed to
use global style tokens (GST). The original GST method uses an LSTM based Tacotron 2 [126]
as the TTS backbone and an LSTM encoder for computing the style coefficients. For training
efficiency and fair comparison, in our implementation of GST, we use Transformer TTS [82] for
the content encoder and the decoder, and replace the LSTM with max-pooling for computing
the style coefficients. We refer to our implementation of this method as GST*. We also com-
pare our method with a recently proposed supervised controllable speech synthesis method [92].
This method uses speaker identities for optimizing the style vectors. Same as for GST method,
our implementation of this method uses Transformer TTS for the TTS backbone. We refer to
our implementation of this method as [92]*. All the baseline methods use pre-trained content
encoder.
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VCTK LibriTTS S / U
[92]* 34.6± 0.9 40.0 S

GST* (50 tokens) 50.3± 4.2 47.7± 1.2 U
GST* (10 tokens) 35.7± 0.5 40.3± 1.7 U
MIST (50 tokens) 29.3± 1.7 44.3± 1.7 U
MIST (10 tokens) 20.3± 1.2 33.3± 1.2 U

Table 5.1: Word error rate (WER) on the synthesized speech for the VCTK and the LibriTTS
datasets. As shown by the smaller WER, the proposed MIST algorithm preserves the content
better than the baselines. The last column shows whether the method is supervised (S) or unsu-
pervised (U).

5.4.1 Quantitative Study
Since the main objective of MIST algorithm is to improve the content quality of the generated
speech, we objectively evaluate the performance by measuring the content quality using an ASR
(automatic speech recognition) algorithm. Following [92], we adopt WaveNet [104] as the
acoustic model in the ASR, and compute word error rate (WER), as a metric for content preser-
vation ability of the model. The Wavenet model is trained on real speech data with Connectionist
Temporal Classification (CTC) loss [41] between the predicted and the ground truth characters.
For the VCTK dataset, this model achieves a WER of 0.08 on the held-out real data. In the test-
ing phase, we prepare 100 pairs of unmatched text content and reference speech (c,x) for both
datasets, and report the performance of ASR as WER. A smaller WER indicates less content
leakage. We present our results in Table 5.1, where the proposed method improves the WER
compared to state-of-the-art methods.
Sensitivity Analysis of the Hyper-parameter λ: To investigate the sensitivity of the hyper-
parameter λ, the combination weight between reconstruction loss and MI minimization, we eval-
uate our model with different values of λ. In this set of experiments, we use 10 tokens in the
style encoder, and measure the WER with the VCTK dataset. For a range of λ values, 0.05−0.5,
the WER was 0.20 − 0.22, which shows that MIST is insensitive to exact value of this hyper-
parameter.
Analysis of the mutual information loss: After training the speech synthesis model, we expect
the mutual information between the style vectors, (ES(x)), and the content vectors, (EC(c)), be
small. To verify this hypothesis, we estimate the mutual information between the two random
variables (i.e. the style vectors and the content vectors) from our trained model (with frozen
weights) using the MINE algorithm, which is shown in Figure 5.3 as function of training epochs.
The MINE algorithm optimizes the MINE neural network, T , according to Equation (5.3) and
keeps all other parts (D,ES, EC) fixed. The MI estimate stays close to 0 for more than 50 epoch
with our model, while it increases immediately with the GST* model.

5.4.2 Qualitative Study
To evaluate the quality of the synthesized speech, we conducted a user study with 6 subjects
performing a total of 150 tests. Each test consists of a reference speech, a text content (not
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Figure 5.3: The MI estimates, for frozen TTS models, shown as a function of the training epochs
of the MINE. Our model has substantially lower mutual information compared to the baseline
GST*.

matching with the content of the reference speech), and two synthesized speech samples from
GST* and MIST, respectively. The order of both speech samples were randomized for each test.
The participants of the study were asked two questions: (1) which synthesized speech preserves
content better, and (2) which is more similar to reference speech in terms of style. There were
three choices for each question: (1) synthesized speech 1 is better, (2) synthesized speech 2 is
better, and (3) both outputs are the same. The results of their ratings are illustrated in Table 5.2.
From these results, we can see that MIST preserves content of the input text better, as supported
by the better ASR results in Table 5.1, and also preserves the style of the reference speech better,
compared to the baseline, GST*, method.

5.5 Conclusion
We proposed an unsupervised mutual information minimization based content and style separa-
tion for speech synthesis. In each training step, we estimated the mutual information between
the style and the content, and minimized it along with the reconstruction loss. We showed that
such training strategy reduces content leakage and results in substantially better WER compared
to the baseline approaches.
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Content Style
Preservation Preservation

Both methods are same 29.3 41.3
Baseline (GST*) is better 26.0 17.3

MIST is better 44.7 41.3

Table 5.2: Qualitative evaluation: The numbers in the first row indicate percentage of time both
the methods are rated the same. The second and third row are the percentage of time the method
in first column is rated better.
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Chapter 6

Style and Content Disentanglement:
Pretraining for Downstream Tasks

In this chapter, we show that style/content disentanglement technique preserves useful informa-
tion in the training dataset, and improves the training process of downstream applications, such
as image retrieval and speech recognition. To verify this idea, we propose a pre-training frame-
work with disentangled generative models. This framework aims to prepare customized synthetic
datasets for the training of downstream applications. We also demonstrate two benefits provided
by the generative model with hidden factor disentanglement in this pre-training framework. First,
it can expand the dataset by generating samples of unseen style/content combination. Second,
it extends the idea of data augmentation to interpretable hidden spaces. Experiment results in
low-resource unsupervised person re-id and speech recognition illustrate the efficacy of these
two strategies.

6.1 Introduction

Many applications of multimedia analysis contain a pre-training stage, which aims to learn a
general and robust representation from a large-scale dataset. Previous works have shown that
the representation obtained from a good pre-trained model can effectively improve the perfor-
mance of a variety of downstream tasks. A non-exclusive list of such pre-trained models include
the image classifier trained on ImageNet [122], the autoregressive language model GPT-3 [15]
trained on web-scale text data, and the ViBERT trained on visual-linguistic data [137]. The pre-
training process can also be done in an semi/self supervised manners. For example, wav2vec
[9, 125] considered the next time step prediction task as the supervision signal, and showed that
the pre-trained representation is beneficial to speech recognition.

However, the current mainstream pre-training strategies still have several potential limita-
tions. For example, the objective function for pre-training usually focuses on one single super-
vised learning task, and the information captured by the pre-trained representation is constrained
by the label space of this task, while the downstream applications of interest might require in-
formation out of the label space. In this case, we fail to make the best use of the large scale
pre-training dataset. Although unsupervised pre-training methods are not dependent on any la-
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Figure 6.1: Style/content permutation produces unseen training samples and increases the varia-
tion of synthetic dataset.

bel information, they usually require a huge amount of data to stabilize the pre-training process.
Thus, our goal is to improve the existing pre-training methods by capturing more information
hidden in the large scale raw dataset.

In this chapter, we treat the generative model with disentangled representation as a new ap-
proach to pre-training. Specifically, in the pre-training stage, we train a generative model by
utilizing all the available data, and apply style and content disentanglement to the generative pro-
cess. During the training phase of the downstream application, a customized synthetic dataset
is produced by the pre-trained generative model, and combined with real data to form a bet-
ter training dataset. The recognition model trained on the combined dataset should yield better
performance compared to the one only trained on real data.

In practice, the synthetic data for downstream task training should be of good quality, and
complementary to the information of the real dataset. The methods introduced in chapter 4
and 5 have demonstrated how to achieve style and content disentanglement, which provides the
controllability in the generative process. In this chapter, we further utilize the controllability, and
enrich the variety of synthetic datasets by two simple yet effective strategies. First, as shown
in Figure 6.1, we can conduct style and content permutation, which aims to generate unseen
training samples or adjusts the data distribution in terms of controllable hidden factors. Second,
we can also perform data augmentation in an interpretable hidden representation space.
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(a) Incorporating disentangeld generative model to content (seen attribute) recognition

(b) Incorporating disentangeld generative model to style (unseen attribute) recognition

A pre-trained generative model with disentangled representation can support the training of
different downstream tasks. Recall that we defined style and content as known and unknown hid-
den factors, respectively. Our generative model can be utilized to prepare datasets for both style
and content recognition tasks, as shown in Figure 6.2a and 6.2b. The preparation for a content
recognition dataset is straightforward, while the dataset generation for style (unknown factor)
recognition requires the following two assumptions: 1. the content (known factor) contribute to
the main data variation other than the target style factor, and 2. precise content manipulation is
achieved. For instance, in the task of unsupervised person re-id, the identity annotation of person
images is not available. With the technique introduced in chapter 4, the person identity and pose
information can be disentangled in the generative process of person images. It means that one
can synthesize images of the same person identity and different poses, which constitute training
samples for person re-id.

We conduct experiments to verify the efficacy of our generative model for pre-training, as
well as two additional strategies to enhance the synthetic data quality. Specifically, we consider
automatic speech recognition (ASR) and low-resource person re-id as the examples of content
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and style recognition tasks, respectively. The experiment results show that the synthetic dataset
produced by our generative model with disentangled representation is beneficial in both style and
content recognition tasks. Also, the two additional strategies, style/content permutation and data
augmentation within interpretable hidden space, can further improve the performance.

6.2 Related work
Pre-training techniques have been widely adopted in many applications of multimedia analysis.
For example, the models pre-trained on image classification task with ImageNet [122] dataset
benefit computer vision tasks such as semantic segmentation [46] and action recognition [144].
Brown et al. pre-trained the large language model GPT-3 [15] using web-scale text data and
applied it to multiple NLP tasks. Su et al. [137] conducted pre-training on visual-linguistic data,
and used the pre-trained model to derive hidden representation in a visual-text joint hidden space.
The pre-training process can also be done in an semi/self supervised manners. For example,
wav2vec [9, 125] considered that next time step prediction task as the supervision signal, and
showed that the pre-trained representation is beneficial to speech recognition. Compared with
previous techniques, our method performs pre-training with a generative model with disentangled
representation, and potentially preserve more information of multiple hidden factors.

The concept of using data synthesis for ML model training has been investigated in multiple
research areas. For the speech recognition tasks, one line of works [12, 13, 45, 51, 143] adopted
TTS and semi/self supervised learning techniques to incorporate unpaired speech and text data in
training process. Another line of works [27, 120, 121] considered data synthesis as an augmen-
tation method to expand the training dataset. For image recognition tasks, data synthesis process
has been utilized to augment the images of unseen classes [6], or provide a balance dataset for
ML fairness [95]. In this chapter, we enhance the data synthesis process by style and content
disentanglement, and incorporate the prior knowledge to augment training data in both style and
content spaces.

Data augmentation aims to generate more training data and increases the robustness of ma-
chine learning models. Many previous works design simple, semantic-preserving transforma-
tions to modify the raw data. For example, in speech recognition task, this type of transforma-
tions include speed perturbation [72], vocal tract length perturbation [63], and time/frequency
masking in log-melspectrogram domain [107]. On the other hand, in computer vision tasks
such as classification and segmentation, researchers have investigated geometric transforma-
tion (rotation, translation, etc.), random erasing [175], and color space transformation [128].
Although most of these transformations can usually improve the model performance indepen-
dently, a combination policy needs to be adopted to use multiple transformations simultaneously.
To alleviate the sub-optimal manual design and hyper-parameter tuning, policy search algorithms
[22, 23, 85, 172] have also been developed to discover the optimal combination of transforma-
tions and their corresponding hyper-parameters. All these data augmentation methods consider
the modification in raw data space. In comparison, the augmentation strategy proposed in this
chapter is capable of perturbing data in raw data, output label, and interpretable hidden spaces.

The idea of data augmentation can be also applied to the hidden feature space of a deep
network architecture. DeVries et al. [25] explored the effectiveness of extrapolation between
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samples in hidden space. Verma et al. [147] extended the original Mixup [171] method to Mani-
fold Mixup, which utilized hidden feature/label interpolation to increase the training robustness.
Compared with these approaches, our method augments the training data in an interpretable
hidden space with a generative process. Another previous work [81] in few-shot learning also
constructed a generative model to hallucinate the hidden features of unseen classes. However,
this approach still lacked of interpretability. In contrast, our generative model with disentangled
representation keeps the interpretability, which allows us to encode inductive bias from different
domains in the model training stage.

6.3 Training recognizers with a disentangled generative model

In this section, we elaborate the proposed strategy: incorporating a pre-trained generative model
with disentangled representation to improve the performance of a downstream task. Generally
speaking, it is accomplished by a three-step process: (1) Given a real dataset with content an-
notation, we first use it to pre-train a generative model that can separate the content information
from other hidden factors. (2) Then, this generative model is utilized to produce synthetic sam-
ples with unseen combination of style and content information. (3) Finally, we train a recognizer
of the downstream task with all the real and synthetic samples. The strategies for generative
model pre-training (step (1)) have been described thoroughly in Chapter 4 and 5. The focus of
this chapter would be step (2) and (3), the preparation of the customized synthetic dataset and
the corresponding training process. Please also note that the implementation for the recogni-
tion of content (hidden factors with annotation) and style (hidden factors without annotation) are
different, which are discussed in Section 6.3.1 and 6.3.2, respectively.

There are several major reasons why our proposed strategy is favorable. First, the disen-
tangled representation empowers the generative model to produce unseen training samples for
a downstream task. In the speech recognition task, a synthetic training sample can be an utter-
ance that a particular person never speakers. In the person re-id task, the person in a synthetic
image can be doing a pose from another source image (as shown in Figure 6.1). These unseen
but realistic synthetic samples increase the variety of training dataset. Second, the disentan-
gled representation allows us to incorporate the inductive bias of different hidden factors to the
downstream task training. For instance, the language prior knowledge is utilized effectively in
the training phase of speech recognition if we can transform the text into audio domain. Based
on this concept, we can also conduct data augmentation in an interpretable representation space
(Section 6.3.3 and 6.3.4).

The most important prerequisites of our proposed strategy are the quality and disentangle-
ment ability of the pre-trained generative model. Specifically, the generative model should be
able to manipulate the content information, analyze the style information from a reference real
data sample, and combine the style and content in its output. To fulfill these prerequisites, in this
chapter, we utilize the generative models introduced in Chapter 4 and 5, which are designed for
person image and speech, respectively.
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6.3.1 Training a content recognizer
Given a pre-trained generative model g with disentangled representation, we can use it to produce
synthetic samples with unseen content and style combination. These synthetic samples enhance
the training dataset of a downstream content recognizer. Recall that the generative model g takes
a pair of raw data sample x and content y as input, and produces an synthetic sample x̂ = g(x, y)
that contains the style of x and the content y. With g and a real dataset {xi, yi}Ni=1, the training
process of the downstream content recognizer can be formulated as:

Θ∗ = arg min
Θ
{
∑
i

lc(fΘ(xi), yi) + βlc(fΘ(g(xj(6=i), yi)), yi)} (6.1)

where the lc is the per-sample training loss function for the content recognition task, and β is the
hyper-parameter describing the relative importance of synthetic data. The first and second terms
of Eq. 6.1 are the total loss values of real and synthetic samples, respectively. And the xj in the
second term is sampled from the real dataset.

6.3.2 Training a style recognizer
The generative model g with disentangled representation can also help the training set preparation
of a style recognizer. Recall that ”style” means a type of hidden attribute whose annotation is
no available. Thus, we are not able to train a recognizer in a supervised learning method. For
example, we have a person image dataset without identity information, but still want to train a
model for person re-id.

To achieve this goal, we use the generative model g to prepare multiple data samples with
the same style but different content information. Repeating the same process for a set of style
reference samples, we receive a synthetic dataset for supervised learning method. Formally, the
training process of a style recognizer with synthetic data is formulated as:

Θ∗ = arg min
Θ

N∑
i=1

M∑
j=1

ls(fΘ(g(xi, yj)), i) (6.2)

where ls is the loss function of the style recognition task, and M is the total number of samples
with the same style in the synthetic dataset.

In the context of person re-id, clustering based methods [36, 38] have also been studied to
solve this task in an unsupervised manner. However, these methods require some prior knowl-
edge of style information, i.e. total number of identity in the training set. Also, if there are few or
no data samples with the same identity in the training set, the clustering would not be applicable.
In contrast, our strategy of synthetic data training doesn’t have these disadvantages.

6.3.3 Data augmentation in representation space: inductive bias
The generative model with disentangled representation extends the idea of data augmentation
from raw data space to interpretable representation space. Conventional data augmentation tech-
niques increase the diversity of training datasets by introducing target-invariant transformations.
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Figure 6.3: ASR data augmentation by n-gram perturbation. Given a sentence in the real training
dataset, we first randomly drop a portion of its tokens, and sample the replacement tokens by a
n-gram language model. The new sentence with sampled tokens then is taken as the input of our
controllable TTS model in order to generate corresponding speech signal.

These transformations are domain specific and designed based on some inductive bias of raw
data space. For example, rotation, flipping and color tone are common target-invariant transfor-
mations in image recognition tasks.

With our generative model, one can transform the data in a representation space, and this
transformation would be reflected in the generated data sample. In the context of speech recog-
nition, we incorporate inductive bias in text domain to the generative process, and produce unseen
but reasonable speech data. In this work, we utilize two types language prior as inductive bias
for augmented training data generation. The first one is the perturbation by a language model.
As shown in Fig. 6.3, given a text sentence, we randomly drop a portion of tokens, and fill these
places by tokens generated from a n-gram language model. The second type of inductive bias
is paraphrasing. Specifically, we use a pre-trained paraphraser to produce a parallel sentence for
the text transcription of each training sample, and synthesize the corresponding speech by our
TTS model. Some paraphrasing examples are shown in Tab. 6.1.

6.3.4 Data augmentation in representation space: Rep-Mixup

In this section, we introduce representation mixup (Rep-Mixup), another type of data augmenta-
tion method enabled by our pre-trained generative model. Rep-Mixup is inspired by the original
Mixup [171], which is an augmentation method operated in the space of image pixel values.
Mixup aims to encourage the model to perform linearly in-between two data points. Specifically,
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original sentence The five thirty train has been in and gone half an hour ago.
paraphrase (generated) The five thirty train left half an hour earlier than expected.
original sentence he never did any work except to play the pipes.
paraphrase (generated) he didn’t do anything other than playing the pipes.
original sentence there i stay until all danger is over.
paraphrase (generated) I stay there until everything is finished.
original sentence It was dark before he came back to his home and his father was still asleep.
paraphrase (generated) when he went back to his home it was dark and his father was still asleep.

Table 6.1: Examples of paraphrasing text. The original sentences are from the text corpus of
LibriSpeech 100h dataset. The paraphrased sentences are generated from the open source para-
phrasing toolkit, Parrot Paraphraser [24].

given two training samples (x1, y1) and (x2, y2), mixup produces a new training sample (x′, y′)
by the following formulation:

x′ = (1− λ)x1 + λx2

y′ = (1− λ)y1 + λy2

(6.3)

where λ ∈ [0, 1] is drawn from a beta distribution Beta(α, α). Previous works reported that
mixup improves the generalization and robustness of the trained model. Inspired by this result,
we propose Rep-Mixup, which imposes the same linear relationship in the interpretable repre-
sentation space, so that the model training process can be more focused on the hidden factors
relevant to the downstream task. Specifically, Rep-mixup incorporates augmented training sam-
ples produced from the interpolation of target related hidden representation.

In the context of low-resource person re-id, the proposed Rep-mixup first obtains an inter-
polated hidden representation in the space of person identity information. Then it generates
the corresponding person image by the pretrained generative model with disentangeld represen-
tation. Considering the generative model introduced in Chapter 4, we can express the person
identity representation F of a person image x as following:

F = arg min
F ′
||H − PF ′||p (6.4)

where H = fa(x) and P = fp(K) are the appearance and pose feature matrices, respectively,
and K is the keypoint-based pose input. Please check Sec. 4.3 for more details. Based on this
generative process and two input person images (x1, y1) and (x2, y2), Rep-mixup produces the
augmented training sample (x′, y′) by the following formulation:

y′ =(1− λ)y1 + λy2

x′ =G(F ′)

F ′ = arg min
F
{(1− λ)||H1 − P1F ||+ λ||H2 − P2F ||}

(6.5)

where G is the mapping function from hidden representation to raw image space. In compari-
son with the original mixup, the proposed Rep-mixup interpolates two training samples in the
representation space instead of raw data space. Hence, Rep-mixup keeps other hidden factors
untouched, and generates more realistic images as shown in Figure 6.4.
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Figure 6.4: Examples of augmented images for low-resource person re-id. Rep-mixup interpo-
lates image 1 and 2 in the space of person identity representation, in contrast to the pixel level
interpolation of Mixup [171]. The pose information of image 1 is adopted in the generation
phase.

6.4 Experiment
To evaluate our proposed pre-training framework with generative model and the correspond-
ing data augmentation methods, we choose two types of downstream tasks, automatic speech
recognition (ASR) and low-resouce person re-id, which serve as the examples of content and
style recognition tasks, respectively. Particularly, the experiment results show that our generative
models with disentangled representation provide useful synthetic training data for both types of
tasks. And the two data augmentation methods in representation space also further improve the
performance.

6.4.1 Experiment setup: ASR
For ASR experiments, we utilize the LibriSpeech dataset [106], which consists of 1,000 hours
of speech from public domain audiobooks. Following the standard protocol, we evaluate our
method on a 100-hour subset, LibriSpeech-100h, which contains only clean speech with US
English accents. To generate synthetic datasets, we adopt the controllable TTS model introduced
in Chapter 5. This model is trained with LibriTTS-100h dataset [169] containing 54 hours of
speech data derived from LibriSpeech-100h. Please note that the main purpose of this setup
is to investigate the benefits of disentangled generative process as a pretraining step. Thus,
we explicitly constrain the training set of generative model to be a subset of the dataset for
downstream recognizer training.
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Baseline ASR model: We use the implementation from ESPNet [158] for an end-to-end
ASR model. The ASR model is composed of a conformer-based encoder [43] and a transformer-
based decoder [146]. We apply SpecAugment [107] to all speech samples to further enhance the
acoustic diversity. The model checkpoint of each epoch is saved, and the final model is produced
by averaging the 10 checkpoints with the best validation accuracy. All ASR models are evaluated
without a language model.

6.4.2 Experiment results: ASR

Pre-training with a generative model and style variation: In the first experiment of ASR, we
show the applicability of the proposed pre-training framework with generative model. Specif-
ically, we utilize the controllable TTS model introduced in Chapter 5 and generate a synthetic
copy of LibriSpeech-100h. This synthetic speech dataset is combined with the original LibriSpeech-
100h to form a new training dataset. Recall that our controllable TTS model requires a ref-
erence utterance for the style information. In this experiment, we prepare multiple combined
(real+synthetic) datasets with different size of style reference set. With a larger size of style
reference set, the synthetic dataset would cover a wider range of speaking styles and background
noise conditions. Then, we evaluate the ASR models trained on the combined datasets by re-
porting the word error rate (WER) on the two standard test sets of LibriSpeech: test-clean and
test-other.

From the results illustrated in Figure 6.5, we observe that adding a synthetic dataset with
enough style variation improves the performance of the trained ASR model. In both test-clean
and test-other, the ASR models trained on additional synthetic datasets with 20k and 28k (full
set of LibriSpeech 100h) style reference utterances outperform the model trained on real data
only. This set of results suggest that generating additional data with different style and content
combination helps the training process of the downstream task, and our proposed pre-training
framework with a generative model enables this procedure.

Data augmentation in the representation space: In the second experiment, we investigate
the performance of two data augmentation methods in the representation space. Both of these
methods, n-gram replacement and paraphrasing, incorporate the language prior knowledge in the
preparation of synthetic dataset. For the n-gram replacement, we set the probability of dropping
a text token to 30%, and the language model for replacement is a 4-gram model trained on the
text transcription of LibriSpeech-100h. For the paraphrasing, we use a pre-trained provided by
the open source toolkit, Parrot Paraphraser [24].

The experiment results on test-clean and test-other are reported in Table 6.2. From the results,
one can see that both data augmentation methods provide improvement in WER on both testing
sets. It demonstrates the additional benefit of our proposed pre-training framework, which is the
usage of inductive bias in the representation space. Please note that the pre-trained paraphrasing
model incorporates additional text information, so the results in the last row of Table 6.2 are not
a fair comparison to the results of other models.
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(a) Results on LibriSpeech Test-clean

(b) Results on LibriSpeech Test-other

Figure 6.5: Experiment on the importance of style variation in the synthetic dataset. The re-
sults show that we should use a synthetic speech dataset with enough style variation in order to
improve the WER.

6.4.3 Experiment setup: low-resource person reid

For low-resource person re-id task, we utilize Market-1501 dataset [173], which contains 32,668
annotated bounding boxes of 1,501 identities. To demonstrate the benefits of our pretraining
framework for unannotated attributes, we extensively constrain the training resource for both
generative models and downstream recognizers. Specifically, we take 1 image for each identity
in the Market-1501 training set, and the total dataset for both pretraining (generative model) and
downstream recognition contains 751 images. Please note that in this low-resource setup, we
don’t have any pair of images with the same person identities. Thus, the clustering-based meth-
ods [36, 38] for unsupervised person re-id are not applicable. To synthesize the person images
of the same identity in different poses, we adopt the generative model developed in Chapter 4. In
the pretraining phase, we need to apply the unsupervised training technique introduced in Sec-
tion 4.3.3. For the downstream person re-id, we prepare 10,000 synthetic person images. The
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Test-clean Test-other
Real 7.7 20.1
Syn 15.6 31.5
Real + Syn 6.9 18.4
Real + Syn, Ngram replacement 6.6 17.2
Real + Syn, Paraphrasing 5.9 17.7

Table 6.2: Evaluation of data augmentation methods in the interpretable hidden space. All the
number are word error rate (%)

person identity information of the synthetic dataset is only from the 751 real images in the real
training set, while the pose information comes from the detected pose skeleton maps of the full
Market-1501 training set. We use the torchreid toolkit [176] to build a standard person re-id
model with resnet-50 as its backbone. The model is trained with cross-entropy minimization,
and the cosine distance between features of the last fully connected layer is considered as the
similarity measure in the inference phase. The results are reported in top-1 accuracy and mean
average precision (mAP).

6.4.4 Experiment results: low-resource person reid
From the results illustrated in Table 6.3, we can make several observations. First, the ImageNet
pretrained model performs the worst (row 1) since it is not finetuned on the domain specific
data. Second, with a very limited amount of real person images and data augmentation in raw
space (e.g. mixup), we can still improve from the ImageNet pre-trained model. Third, the
synthetic person images provide useful training signal for person re-id model (row 3), and the
data augmentation method in the interpretable hidden space (Rep-Mixup, row 5) can further
improve the performance.

Training set Top-1 Acc (%) mAP (%)
None (ImageNet pretrained) 6.8 2.0
751 real images, Mixup 33.4 15.6
751 real + 10k syn images 42.2 20.4
751 real + 10k syn images, Mixup 45.8 23.0
751 real + 10k syn images, Rep-Mixup 46.5 23.2

Table 6.3: Experiment results on low-resouce person re-id.

6.5 Conclusion
In this chapter, we propose a pretraining framework for tasks of multimedia analysis. This frame-
work prepares a generative model with disentangled representation, and utilizes it to produce a
customized synthetic dataset for the downstream task. Because of the controllability of the gen-
erative model, we can generate training samples for the task without any target annotation. This
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framework also enables data augmentation methods in an interpretable representation space, and
further improves the generalization and robustness of downstream task training. The experiment
results on low-resource person reid and ASR show that the generative model successfully pre-
serves information of hidden factors in the pretraining dataset, and provides high quality training
samples to improve downstream tasks with/without target annotation.
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Chapter 7

Conclusion

In this thesis, we focus on the representation learning of multimedia content. Particularly, we
observe the importance of capturing the diversity, uncertainty and multiple hidden attributes in a
dataset to achieve good performance of analysis/recognition tasks. Based on the observation, this
thesis aims to enhance the capability of multimedia representation by the investigation toward
two research directions: representation beyond vectors, and style/content disentanglement in the
generative process.

In this chapter, we summarize the main contribution of this thesis in Sec, 7.1, describe the key
ideas we learned during the investigation in Sec. 7.2, and discuss some future research directions
in Sec. 7.3

7.1 Contributions

The main contribution of this thesis is three-fold:
Representation beyond vectors: In the area of multimedia representation learning, most of

the existing works utilize a feature vector to represent one instance in a dataset. However, the
capability of vector-based representation is not enough to capture the diversity and uncertainty of
multimedia content. For example, a vector fails to preserve the multi-mode property of a video
tracklet. Hence, in this thesis, we propose two novel types of representation beyond a feature
vector: distribution (Chapter 2) and subspace (Chapter 3). We also develop algorithms which
incorporate both types of representation to deep learning architectures, and enable end-to-end
training. In general, deep learning models with distribution or subspace representation yield
better performance, and keep the same number of trainable parameters compared to models with
vectors. This idea has been verified on the retrieval of image sets and video tracklets, as well as
the few-shot learning task.

Generative models with style and content disentanglement: The second part of this thesis
aims to preserve and manipulate the multiple hidden factors in multimedia content. To achieve
this goal, we investigate the idea of style/content disentanglement to capture the unseen (style)
and seen (content) factors in generative models of multimedia data. Furthermore, we propose
two methods to enhance the quality of disentanglement in generative models. Specifically, both
methods enable the unsupervised learning of disentangled style representation. The first method
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(Chapter 4) models the relation between style and content as a simple matrix operation in hid-
den space, while the second method (Chapter 5) explicitly measures and minimizes the mutual
information between style and content hidden features. These two methods have been evaluated
on keypoint based image generation and controllable text-to-speech, respectively.

Pre-training framework with generative models: Finally, we hypothesize that the preser-
vation of hidden factors is beneficial to the pre-training of large-scale multimedia analysis.
To verify this hypothesis, we design a two-step pre-training framework with generative mod-
els (Chapter 6). The first step of this framework is the training of generative models with
style/content disentanglement, while the second step is the preparation of customized synthetic
training datasets for downstream recognition tasks. The disentangled representation also enables
style/content permutation and data augmentation in interpretable hidden spaces, which yields ad-
ditional value of synthetic training datasets (Chapter 6). The efficacy of this pre-training frame-
work has been demonstrated on low-resource unsupervised person re-identification and speech
recognition tasks.

7.2 Key Ideas
There are several key ideas we learned from the investigation of multimedia representation. They
are summarized in this section in order to provide some suggestions for future researchers work-
ing on this direction.

Alleviate the computation requirement of representation beyond vectors by distance
function approximation or efficiency/capacity trade-off: In the first part of the thesis, we ex-
plore two types of representation beyond vectors: distribution and subspace. Compared with
vector-based representation, distribution and subspace representations tend to cost more compu-
tation resources while incorporated into a DNN framework. The two main proposed components,
estimation of distribution/subspace and distance function calculation, both might introduce ad-
ditional computation. While the best approach to improve the efficiency should be designed
specifically for the representation type and application, we describe two strategies adopted in
this thesis. In Chapter 2, we utilize the exact primal form of Wasserstein distance (Eq. 2.1) to
measure the dissimilarity between two empirical distributions. By definition, the calculation of
primal form Wasserstein distance is a linear programming problem, and difficult to parallelize.
To improve this calculation, we incorporate the un-rolled iterative approximation (e.g. IPOT
algorithm [162]) to the forward propagation of the DNN framework. Each step of the iterative
approximation consists of a set of simple matrix/element-wise operations, which can be easily
computed in GPUs. On the other hand, in Chapter 3, the number of basis in a subspace influ-
ence the computation of SVD backward propagation and the learning of template subspace (Eq.
3.6). While increasing the number of basis introduces extra computation, we also observe that
the performance gain saturates at some point. In few-shot image classification tasks, subspace
representation using 6 basis components receives similar accuracy scores as those using more,
serving as a reasonable balance between computation and performance. In summary, to improve
the learning efficiency of representation beyond vectors, one may first consider two possible di-
rections: (1) approximation of distance functions and (2) the trade-off between efficiency and
representation capacity.
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Incorporate domain-specific knowledge into the design of the style encoder architec-
ture: Style encoder is the most crucial component in a disentangled generative model. Normally,
we would expect that a style encoder should take a reference sample as input, mimic the style of
this sample, and get rid of all the information about content. Also, the style encoder should be
trained in an unsupervised manner without any annotation. Thus, it is necessary to incorporate
some prior knowledge of the style information into the style encoder design. In the context of
TTS with style modeling [58, 156], the style encoder maintains a small set of tokens capturing
a few major factors in the style domain, and use a pooling layer to make the style representation
time-invariant. Also, the performance the trained controllable TTS is sensitive to the number
of tokens. We may need to pick a proper number of tokens for the style factor (e.g. emotion,
speaker, etc.) we are trying to model. In the context of keypoint based image generation [56],
the appearance feature extractor is designed to be a CNN, and focuses on local patterns of an
image. Thus, the overall network can learn to reconstruct the style representation by partial,
local observation only. If we choose a network architecture (e.g. transformer) that is aware of
the global context, preliminary experiment results illustrate that the robustness of unsupervised
training would deteriorate significantly. In summary, we believe that the design of style encoder
architecture will play an important role while applying style/content disentanglement to a new
research problem.

Use real/synthetic cross validation to verify the synthetic dataset quality: In Chapter 6,
we utilize customized synthetic dataset to train a recognizer for the downstream application, and
an important prerequisite to receive a high quality synthetic dataset. Ideally, our synthetic dataset
should preserve the correct content information, and provide a good coverage of style space for
the generalization purpose. The quality of a synthetic dataset can be estimated by real/synthetic
cross validation. For example, in Chapter 5, we use synthetic speech to form a testing set,
and evaluate it by a recognizer (ASR) trained with real data. The results of this evaluation
step indicate the content correctness of synthetic data. As another example, in Chapter 6, we
train a recognizer with synthetic data only, and use this recognizer to evaluate real validation
data. The performance illustrates the domain gap between real and synthetic data in general, but
can’t distinguish between the content correctness and style coverage. The real/synthetic cross
validation is a domain-agnostic strategy, while some domain specific knowledge should also be
applicable.

7.3 Future Works
This thesis introduced several new concepts for multimedia representation learning, which enable
a wide range of follow-up research directions. Here, I provide a non-exclusive list of examples.

7.3.1 Representation beyond vectors:
Chapter 2 and 3 of this thesis introduce the concept of representation beyond vectors, and demon-
strated the advantages by developing the representation learning framework for distribution and
subspace. To advance the development of this concept, I elaborate three possible research direc-
tions in the following:
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(1) Representation with sample-dependent capacity: In a multimedia dataset, the richness,
or the total amount of information in a data sample can be varied a lot. For example, the dataset
may contain videos with seconds or minutes. To better model this characteristics, one possible
way is to design representation with sample-dependent capacity. In distribution and subspace
based representation learning frameworks, the capacity is measured by number of supports and
basis components, respectively, and it doesn’t affect the calculation of distance function. E.g. the
distance between empirical distributions with different number of supports is still well-defined.
However, the main challenge might be the online, efficient estimation of sample-dependent ca-
pacity.

(2) Extension of deep metric learning: Based on the techniques proposed in this thesis,
we have extended the concept of deep metric learning (DML) from vector space to distribution
and subspace. Thus, any strategies developed in vector based DML could be applicable. For
instance, one can try to apply loss functions originally designed for vector based representation.
On the other hand, one can also investigate unsupervised learning tasks requiring a metric, such
as anomaly detection and distance based clustering.

(3) New types of representation beyond vectors: Besides distribution and subspace, there
could be other types of basic unit for multimedia representation. For instance, embedded graph
is a potential candidate, since the distance function between two embedded graphs has been
explored [3], and vertex level embedding contains enough representation ability. While inves-
tigating new types of representation beyond vector, one would need to develop algorithms for
end-to-end training, and consider the efficiency of the training process.

7.3.2 Synthetic data for downstream task training:
In Chapter 6, we have shown that synthetic data produced from our generative models can be
used for recognition tasks. Also, the models with disentangled representation (Chapter 4 and 5)
can further increase the dataset variety, and incorporate domain specific knowledge. However,
the potential of synthetic data hasn’t been fully investigated yet, and some possible approaches
can further provide additional value to synthetic data for downstream task training. For example,
the synthetic dataset would be more valuable when the amount of real dataset is limited. Thus,
the synthetic data training framework should be able to resolve the ML problems of unseen
domains/tasks/demographics. Another possible direction would be to conduct data generation
during the downstream task training. In this thesis, synthetic data preparation is always separated
from the training of downstream tasks. However, if the synthetic data could be customized for
the current checkpoint of recognizers, Hence, the training process might become much more
efficient.
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[8] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International conference on machine learning, pages 214–223. PMLR, 2017.
7

[9] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0:
A framework for self-supervised learning of speech representations. Advances in Neural
Information Processing Systems, 33:12449–12460, 2020. 55, 58

[10] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering
with bregman divergences. Journal of machine learning research, 6(Oct):1705–1749,
2005. 10

[11] Shane T Barratt and Stephen P Boyd. Least squares auto-tuning. Engineering Optimiza-
tion, pages 1–22, 2020. 32

[12] Murali Karthick Baskar, Shinji Watanabe, Ramon Astudillo, Takaaki Hori, Lukáš Burget,
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[39] Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with
sinkhorn divergences. In International Conference on Artificial Intelligence and Statis-
tics, pages 1608–1617. PMLR, 2018. 8, 11

[40] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahra-

75



mani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, pages 2672–2680, 2014. 31, 47

[41] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connec-
tionist temporal classification: labelling unsegmented sequence data with recurrent neural
networks. In ICML, 2006. 51

[42] Daniel W. Griffin, Jae, S. Lim, and Senior Member. Signal estimation from modified
short-time fourier transform. IEEE Trans. Acoustics, Speech and Sig. Proc, 1984. 47

[43] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei
Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-
augmented transformer for speech recognition. arXiv preprint arXiv:2005.08100, 2020.
64

[44] Bharath Hariharan and Ross Girshick. Low-shot visual recognition by shrinking and hal-
lucinating features. In Proc. CVPR, pages 3018–3027, 2017. 20

[45] Tomoki Hayashi, Shinji Watanabe, Yu Zhang, Tomoki Toda, Takaaki Hori, Ramon As-
tudillo, and Kazuya Takeda. Back-translation-style data augmentation for end-to-end asr.
In 2018 IEEE Spoken Language Technology Workshop (SLT), pages 426–433. IEEE, 2018.
58

[46] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages 4918–
4927, 2019. 58

[47] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for
person re-identification. arXiv preprint arXiv:1703.07737, 2017. 14

[48] John R Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji Watanabe. Deep clustering:
Discriminative embeddings for segmentation and separation. In 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 31–35. IEEE,
2016. 5

[49] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual
concepts with a constrained variational framework. 2017. 3, 45

[50] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In International
workshop on similarity-based pattern recognition, pages 84–92. Springer, 2015. 5

[51] Takaaki Hori, Ramon Astudillo, Tomoki Hayashi, Yu Zhang, Shinji Watanabe, and
Jonathan Le Roux. Cycle-consistency training for end-to-end speech recognition. In
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 6271–6275. IEEE, 2019. 58

[52] Ruibing Hou, Bingpeng Ma, Hong Chang, Xinqian Gu, Shiguang Shan, and Xilin Chen.
Vrstc: Occlusion-free video person re-identification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7183–7192, 2019. 5, 13,
14

[53] Wei-Ning Hsu, Yu Zhang, Ron J Weiss, Heiga Zen, Yonghui Wu, Yuxuan Wang, Yuan

76



Cao, Ye Jia, Zhifeng Chen, Jonathan Shen, et al. Hierarchical generative modeling for
controllable speech synthesis. ICLR, 2019. 46, 47

[54] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Discriminative deep metric learning for face
verification in the wild. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1875–1882, 2014. 5, 7

[55] Ting-Yao Hu and Alexander G Hauptmann. Multi-shot person re-identification through
set distance with visual distributional representation. In Proceedings of the 2019 on Inter-
national Conference on Multimedia Retrieval, pages 262–270, 2019. 2, 3

[56] Ting-Yao Hu and Alexander G Hauptmann. Pose guided person image generation with
hidden p-norm regression. 2021 IEEE International Conference on Image Processing
(ICIP), 2021. 3, 4, 71

[57] Ting-Yao Hu and Alexander G Hauptmann. Statistical distance metric learning for image
set retrieval. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2021. 2, 4

[58] Ting-Yao Hu, Ashish Shrivastava, Oncel Tuzel, and Chandra Dhir. Unsupervised style and
content separation by minimizing mutual information for speech synthesis. In ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3267–3271. IEEE, 2020. 3, 4, 71

[59] Ting-Yao Hu, Zhi-Qi Cheng, and Alexander G Hauptmann. Subspace representation
learning for few-shot image classification. arXiv preprint arXiv:2105.00379, 2021. 2,
4

[60] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. Toward
controlled generation of text. In International conference on machine learning, pages
1587–1596. PMLR, 2017. 47

[61] Zhiwu Huang, Jiqing Wu, and Luc Van Gool. Building deep networks on grassmann
manifolds. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018. 7

[62] Keith Ito. The lj speech dataset. https://keithito.com/
LJ-Speech-Dataset/, 2017. 50

[63] Navdeep Jaitly and Geoffrey E Hinton. Vocal tract length perturbation (vtlp) improves
speech recognition. In Proc. ICML Workshop on Deep Learning for Audio, Speech and
Language, volume 117, page 21, 2013. 58

[64] Muhammad Abdullah Jamal and Guo-Jun Qi. Task agnostic meta-learning for few-shot
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11719–11727, 2019. 20

[65] Ye Jia, Yu Zhang, Ron Weiss, Quan Wang, Jonathan Shen, Fei Ren, Patrick Nguyen,
Ruoming Pang, Ignacio Lopez Moreno, Yonghui Wu, et al. Transfer learning from speaker
verification to multispeaker text-to-speech synthesis. Advances in neural information pro-
cessing systems, 31, 2018. 46, 47

[66] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style

77

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/


transfer and super-resolution. In European conference on computer vision, pages 694–
711. Springer, 2016. 36

[67] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference
on Machine Learning, pages 2649–2658. PMLR, 2018. 3, 45

[68] Jaehyeon Kim, Sungwon Kim, Jungil Kong, and Sungroh Yoon. Glow-tts: A generative
flow for text-to-speech via monotonic alignment search. Advances in Neural Information
Processing Systems, 33:8067–8077, 2020. 45

[69] Jaekyeom Kim, Hyoungseok Kim, and Gunhee Kim. Model-agnostic boundary-
adversarial sampling for test-time generalization in few-shot learning. In European Con-
ference on Computer Vision, pages 599–617. Springer, 2020. 20

[70] D Kinga and J Ba Adam. A method for stochastic optimization. In ICLR, 2015. 13, 15

[71] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 36

[72] Tom Ko, Vijayaditya Peddinti, Daniel Povey, and Sanjeev Khudanpur. Audio augmenta-
tion for speech recognition. In Sixteenth annual conference of the international speech
communication association, 2015. 58

[73] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist., 1951.
48

[74] Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic Denoyer,
et al. Fader networks: Manipulating images by sliding attributes. In NeurIPS, 2017. 45,
47

[75] Oliver Langner, Ron Dotsch, Gijsbert Bijlstra, Daniel HJ Wigboldus, Skyler T Hawk,
and AD Van Knippenberg. Presentation and validation of the radboud faces database.
Cognition and emotion, 24(8):1377–1388, 2010. 38, 40
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