
Towards Multilingual Vision-Language Models

Po-Yao Huang

CMU-LTI-21-011

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lit.cs.cmu.edu

Thesis Committee:
Alexander G. Hauptmann Carnegie Mellon University

Graham Neubig Carnegie Mellon University
Eduard Hovy Carnegie Mellon University

Shih-Fu Chang Columbia University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Language and Information Technologies

Copyright © 2021 Po-Yao Huang



Keywords: multilingual multimodal representation, multimodal machine translation, cross-
modal retrieval, adversarial learning



For my family.



iv



Abstract
With the exploding amount of user-generated multimodal data, learning multi-

modal representations has enabled many novel vision-language applications in recent
years. While there are around 6,500 languages worldwide, most vision-language mod-
els and their datasets are English-based. This constraint, unfortunately, hinders current
models from benefiting the broader non-English community. Therefore, it is urgent
yet rewarding to develop methods that generalize English-based vision-language
models to non-English languages.

My thesis work makes progress on multiple fronts of this challenge via exploring
the emerging trend of learning multilingual multimodal representations that facilitates
modeling and reasoning over heterogeneous content including image, video, and text
in various languages.

In the first part of this thesis, I identify the limitations in existing English-image
representation learning to pave the path towards generalized multilingual multimodal
representation learning. While prior work mainly associates whole images to the
corresponding English captions, I argue such correspondence should be more fine-
grained and even multilingual. The results show that learning attention-based and
object-oriented multilingual multimodal representations effectively improves end
tasks such as cross-modality search and multimodal machine translation.

The second part of this thesis studies cross-lingual generalizations of vision-
language models. I address the scalability challenge in large-scale task-agnostic
multilingual multimodal pre-training and the lack-of-annotation challenge when fine-
tuning on the end task. To learn with noisy million-scale uncurated instructional
videos and their transcriptions in various languages, I analyze the desirable supporting-
set size in multimodal self-supervised learning and propose a reconstruction objective
to alleviate such bottleneck. Additionally, I explore multilingual multimodal pre-
training and construct the Multi-HowTo100M dataset, a collection of 120M video
clips and their transcriptions in 9 languages, to improve zero-shot cross-lingual
transfers of vision-language models. Finally, in task-specific fine-tuning, I exploit
automated visual semantics to learn with sparse English-vision annotations. When
non-English annotations are scarce or unavailable, I investigate visual-pivoting super-
vised and unsupervised multimodal machine translation to translate English-vision
data into non-English-vision for multilingual multimodal fine-tuning.

The combined effort in this thesis leads to notable breakthroughs for enhancing
the cross-lingual generalization capabilities of vision-language models. I believe the
proposed methodologies and the resources released will be a crucial step towards
multilingual vision-language models.
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Chapter 1

Introduction

1.1 Overview

Learning multimodal representations is central to the success of many vision-language tasks,

including cross-modal retrieval (Kiros et al., 2014; Faghri et al., 2018; Wang et al., 2016a;

Vendrov et al., 2015; Nam et al., 2017; Lee et al., 2018; Huang et al., 2019d), image and video

captioning (Rennie et al., 2017; Karpathy and Fei-Fei, 2015; Xu et al., 2016; Dai and Lin, 2017;

Wang et al., 2019), visual question answering (Antol et al., 2015; Goyal et al., 2017; Anderson et al.,

2018), multimodal semantic indexing and information extraction for multimodal content (Huang

et al., 2017a; PI et al., 2018), etc. The common practice behind these vision-language models

is to learn a visual-semantic embedding (VSE) space (Wang et al., 2016a) where the contents

in different modalities (e.g., text queries and images in cross-modal retrieval) are projected and

interact with each other. In such joint embedding space, multimodal contents are mapped closely

if they are semantically correlated (e.g., “cat” and . Or video and its corresponding caption(s))

and are distant if they are irrelevant (e.g., and ).

Although vision-language tasks and models have attracted much research attention in recent

years, there are several challenges prevent current efforts from making an actual impact on the

broader non-English communities in the real world:

(1) Existing vision-language models are English-based. While there are 6,500∼7,000

languages worldwide, most of the current multimodal datasets, such as MS-COCO (Lin et al.,

2014), Flick30K (Young et al., 2014), Visual Genome (Krishna et al., 2017b), are all annotated

in English. Only 7% of the world population are native English speakers. This fact inevitably

hinders the applicability and generalizability of current vision-language models to the non-English
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speakers, which are the majority of the world population1. Therefore, it is urgent yet rewarding

to develop methods that could generalize these English-centered vision-language models to

non-English languages.

(2) Collecting non-English multimodal data is costly. Albeit some recent works have

started investigating multilingual vision-language models (Elliott et al., 2016; Wang et al., 2019),

the resulting multilingual multimodal datasets are typically small (e.g., 30K images and captions

in 4 languages for Multi30K (Elliott et al., 2016), 20K videos and captions in 2 languages in

VATEX (Wang et al., 2019)). As shown in (Huang et al., 2019c), learning robust multimodal

representations relies on the availability of large-scale parallel corpora. The size and language

coverage of existing multilingual multimodal datasets are therefore infeasible for developing

robust multilingual vision-language models. Furthermore, since preparing visual data and hiring

bilingual or multilingual annotators to construct a parallel dataset is very costly2, multilingual

multimodal data and their annotations are typically sparse and limited in size. Consequently,

it will be challenging to develop annotation-efficient methods that learn from un-labeled or

weakly-labeled data.

(3) Challenges in large-scale pre-training. Lastly, the exploding amount of user-generated

multimodal data is left behind in current multilingual vision-language research. In the past two

years, large-scale pre-training has been shown as an important step in the fields of natural language

process (NLP) (Devlin et al., 2019a), computer vision (CV) (Deng et al., 2009), and image-text (Lu

et al., 2019). Recently, large-scale pre-training on the large-scale video-text data (e.g., 138 million

video clips in the HowTo100M dataset (Miech et al., 2020)) has attracted much research attention.

Unlike pre-training on clean data such as ImageNet (Deng et al., 2009) and MS-COCO (Lin

et al., 2014), pre-training with user-generated videos is much more challenging as untrimmed

videos and their transcriptions are inherently lengthy and noisy. Also, a robust model architecture

that better models the additional temporal information in videos is still under-explored. For the

textual part, likely due to its scale and the inherent noise, the multilingual user-generated and

machine-translated transcriptions of large-scale video collections have never been explored until

this thesis work.

1https://en.wikipedia.org/wiki/List of languages by number of native speakers
2In our experience, the average cost of a hiring AWS worker to annotate 1 image-text pair in English is 0.5-1 USD

on average. For a small dataset that contains 10K images, each with 5 captions in 2 languages, the total annotation

cost is estimated to be 50-100K USD. Also, it is more expensive to hire annotators who can translate or annotate in

non-English languages.
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Figure 1.1: Thesis roadmap: Towards cross-lingual generalization of vision-language models.

1.2 Roadmap towards Multilingual Vision-Language Models

My work in this thesis makes progress on multiple fronts of these challenges. The goal of this

thesis is to explore a practical path towards multilingual vision-language models which extends

the scope of English-based vision-language models to cover non-English languages. As an

overview, the roadmap I proposed in this thesis is shown in Fig. 1.1. To introduce multilingualism

into current English-centered vision-language models, my roadmap towards multilingual vision-

languages models broadly consists of two steps: (1) task agnostic multilingual multimodal

pre-training and (2) task-specific multilingual multimodal fine-tuning.

In the first step, inspired by multilingual pre-training (Devlin et al., 2019a) in NLP, I study

English-video and multilingual text-video pre-training in Chapter §6 with multilingual multimodal

Transformers for learning contextual multilingual multimodal representations at a large scale.

The learned representations are general-purpose and cover visual content and textual content in

English and non-English languages. The Transformer encoders then can be fine-tuned for various

vision-language end tasks.

In task-specific fine-tuning of multilingual vision-language models, the simplest approach

is to use in-domain human-annotated non-English data when they are available. Unfortunately,

in most vision-language datasets, there are no non-English annotations. To resolve this critical

challenge in the path towards multilingual vision-language models, I investigate two strategies:

(1) zero-shot and (2) translate-train to transfer and generalize English-centered vision-language

models to non-English languages. For zero-shot cross-lingual transfer, I directly fine-tune the

pre-trained multilingual multimodal Transformers on a task-specific in-domain English-vision

data and apply the fine-tuned model as-is with inputs in a non-English language without any

additional annotated training data in that language. On the other hand, for many languages, an
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off-the-shelf machine translation (MT) or multimodal machine translation model (MMT) (e.g.,

Chapter §7) may be available. The MT or MMT model can be used to obtain additional training

data in the target language by translating the English annotations in the multimodal instances to

the non-English target language. In this thesis, I am specifically interested in the multilingual

setup that concerns multiple non-English languages. I fine-tune the model on the combination of

original English-vision training data and all the translated non-English-vision training data. This

approach is collectively categorized as the translate-train strategy discussed in the cross-lingual

transfer literature in NLP (Conneau et al., 2020).

As introduced in the previous section, there are many challenges in task-specific fine-tuning.

In many cases, the model must learn under limited supervision. In particular, there could be a

shortage in English-vision annotations due to the cost of hiring annotators or the privacy concern

of the data. Also, in most cases, there are no non-English-vision annotations. In Chapter 7, to

address the sparsity issue in English-vision annotations, I introduce an annotation-efficient module

to improve model robustness. Meanwhile, to enable the translate-train strategy for non-English

languages, I build a supervised multimodal MT model to exploit the visual information in vision-

language tasks or datasets. In the real-world scenario, off-the-shelf MT/MMT models or a parallel

corpus used to train these MT models may not be available for many languages. To tackle this

challenge, I further develop an unsupervised multimodal MT model to enable translate-train under

that scenario.

The core of all these modules is multilingual multimodal representation learning. In the

following, I briefly introduce the addressed problems in multilingual multimodal representation

learning and detail the modules in the roadmap.

1.2.1 Multilingual Multimodal Representation Learning

To generalize English-based vision-language models to non-English languages, recent research

efforts seek to collect parallel multilingual multimodal corpora such as Multi30K (Elliott et al.,

2016) and VATEX (Wang et al., 2019). Many researchers have been investigating methods

that learn cross-view representations for multiple languages. For example, Rajendran et al.

(2016) learn K-view representations when parallel data is available only between one pivot view

and the rest of the views. Gella et al. (2017) extend the work of (Calixto et al., 2017) to use

images as the pivoting view for learning multilingual multimodal representations. Kádár et al.

(2018) further confirm the benefits of multilingual training. The typical practice in prior work for

learning (multilingual) multimodal representation is to respectively project paired whole image
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representation to the aggregated sentence representation (e.g., the average word embeddings or

the last hidden state of RNN) in the shared embedding space for alignment.

In Chapter 4 and Chapter 5, I analyze the limitations of existing English-image representation

learning and pave the path towards the generalized multilingual multimodal representation learning.

While prior work mainly associates whole images to the corresponding English captions, I argue

that such correspondence could be more fine-grained based on the observation that there are

typically multiple objects in an image that are described by multiple phrases in the caption.

Additionally, I design models and objectives to incorporate multilingual captions when they

are available to learn multilingual multimodal representations. My results show that learning

attention-based and object-oriented multilingual multimodal representations improve end tasks

such as English-based (Huang et al., 2019d) text-to-image search, multilingual text-to-image

search (Huang et al., 2019b).

1.2.2 Pre-training Multilingual Multimodal Representations at Scale

Existing work on multilingual multimodal representation learning such as Multi30K is inherently

constrained by the dataset size. As a result, these models work only on limited languages

with inferior performance compared to the English-based models. On the other hand, with the

unprecedented amount of user-generated videos and captions on popular social media such as

TikTok, YouTube, and Twitter, large-scale video-text pre-training (e.g., HowTo100M (Miech

et al., 2019)) has demonstrated great potential. Unlike image-text models, video-text models pose

additional challenges. Videos are harder to models with the additional degree of freedom in time.

Also, the transcriptions are noisy with the error from automatic speech recognition (ASR) and the

inevitable misalignment to the visual content (Miech et al., 2020).

In chapter §6, I explore large-scale pre-training of multilingual video-text representations.

I first improve contrastive learning of English-video representations by jointly reconstructing

the caption from a self-excluded supporting set to alleviate the side effects in contrasting shared

semantics between videos. Then I develop a task-agnostic multilingual text-video pre-training

strategy by leveraging 148 million user-uploaded instructional video clips and the multilingual

captions generated by users or automated MT for learning multilingual video-text representations

at scale. The proposed methodology successfully promotes cross-lingual transfers of video-text

models.
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1.2.3 Fine-tuning under Limited Supervision

In most real-world scenarios, parallel multilingual multimodal data for a task is likely to be

rare and domain-dependent. On the one hand, the amount of data available could be scarce due

to privacy concerns (e.g., medical data or forensic data). On the other hand, the cost to hire

bilingual or multilingual professionals could be unacceptable. To this end, in Chapter 7, I develop

methods to alleviate the side-effects from lack of English-vision annotations. Moreover, I leverage

supervised MT and unsupervised models to translate-train and enable cross-lingual learning of

vision-language end tasks.

In particular for lacking English-vision annotations, I propose to leverage the regional seman-

tics from visual objects in an image to synthesize additional data.

When there are no non-English-vision data, I propose to translate English-vision training data

into non-English languages (i.e., translate-train in Fig. 1.1) via text-only MT or multimodal MT

(MMT). When off-the-shelf MT/MMT models are unavailable, I further introduce an unsupervised

multimodal MT module into the roadmap that relies on no parallel corpus. Specifically, I propose

to exploit the multilingual image captioning and multimodal back-translation as the generators to

synthesize pseudo src-img-tgt pairs to weakly supervise the encoder-decoder training in MMT.

In short, this thesis contributes towards enabling multilingual vision-language applications.

The thesis statement is as follows: Through learning visual-pivoting multilingual multimodal

representations, we improve cross-lingual generalization capabilities of vision-language models.

1.3 Thesis Organization

I start by introducing the background (Chapter §2) and tasks (Chapter §3) to set up the scope

of this thesis. In the first part of the thesis (Chapter §4-§5), I then analyze the limitations of

existing English-vision models and improve them via introducing an object-level visual prior and

multilingual multimodal training. In the second part of the thesis (Chapter §6-§7), I focus on

investigating effective approaches for learning multilingual video-text representations at scale

(Chapter §6) and develop robust methods when a sufficient amount of annotation is unavailable

(Chapter §7) The contents of each part are detailed in the following:

In Chapter §2, I first define the notations and terminologies. I then compile the literature

survey for representing multimodal content (image, text, video) and present the preliminaries

of cross-view contrastive learning for learning multimodal and multilingual multimodal repre-

sentations. In Chapter §3, I provide an overview of popular multimodal datasets and introduce
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the vision-language tasks discussed in this thesis and explain how to evaluate the task perfor-

mance. Particularly, my work mainly covers cross-modal retrieval (bi-directional video-to-text

and image-to-text search) and language generation tasks such as (multimodal) machine translation

and captioning.

In the first part of this thesis, Chapter §4 and §5 correspond to the multilingual multimodal

fine-tuning and multilingual multimodal fine-tuning in Fig. 1.1, respectively. In this part, I study

(multilingual) text-image representation learning and applications on the curated multimodal

datasets (Flickr30K, Multi30K, and MS-COCO). In Chapter 4, I present an adversarial probing

methodology to analyze the information captured by image-text models for cross-modal retrieval.

Based on the analysis, I then propose a novel object-oriented attention network (OAN) (Huang

et al., 2019d) for learning visual-semantic embeddings (VSE). In Chapter 5, I demonstrate the

effectiveness of learning multilingual image-text representations for the cross-modal retrieval

and semantic textual similarity task. My model in (Huang et al., 2019b) features diversified

multilingual VSE to improve multilingual image-text matching and grounding.

In the second part of this thesis, I address the practical challenges for building multilingual

vision-language models via cross-lingual generalization of English-centered vision-language

models. Specifically, I focus on: (1) multilingual multimodal pre-training at a large scale and (2)

multilingual multimodal fine-tuning under limited supervision.

My work in Chapter §6 studies scalable pre-training methods on multi-million-scale user-

generated videos and their captions either in English or in other languages. In section §6.2, I

present my method to improve contrastive learning of English-video representations. The success

of task-agnostic contrastive pre-training in NLP and CV does not apply to video-text models

as videos contain rich semantics and an additional degree of freedom in time. For video-text

representation learning, the supporting set to contrast across instances is sub-optimal as many

semantics are shared among videos and could be ill-contrasted (e.g., “man” may appear in many

videos but likely to be ill-contrasted). To this end, I propose a new model in (Patrick et al.,

2021b) to reconstruct captions from a self-excluded supporting-set to alleviate the side effects

in video-text contrasting learning and deliver new state-of-the-art results on the retrieval and

classification end tasks. In section §6.3, I then extend from the English-video scenario to the

non-English-video scenario. I construct the Multi-HowTo100M dataset (Huang et al., 2021)

that contains more than 100M clips and transcriptions in 9 languages. I specifically address the

problem of zero-shot cross-lingual transfer and show that the proposed large-scale multilingual

multimodal pre-training is a crucial step towards multilingual vision-language models.

Chapter §7 studies the lack-of-annotation challenges when fine-tuning multilingual multimodal
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models at end tasks. To alleviate side-effects when learning with a sparsely labeled dataset where

only a small portion of the dataset is with English annotations, in section §7.2, I leverage the

regional visual semantics (i.e., the attributes and the class names of visual objects) to generate

synthetic image-text pairs for learning image-text representations. The domain gaps between

original and synthesized pairs in/between modalities are closed with attention-based domain

alignment with adversarial objectives (Huang et al., 2019c).

A key ingredient that enables and promotes multilingual vision-language models is machine

translation (MT). In most cases, there are no non-English-vision annotations in most vision-

language datasets. To enable multilingual multimodal fine-tuning with English-only annotations,

in this thesis, I propose to leverage additional visual information in vision-language teaks/datasets

and build up multimodal MT models to translate English training data into non-English languages

for multilingual multimodal fine-tuning. For supervised multimodal MT, as one of the earliest

works in this field, I validate that complementary visual information would improve text-only

translation performance (Huang et al., 2016) in section §7.4. However, parallel corpus for

training MT models may be unavailable for some languages. To address this issue, I introduce

an unsupervised multimodal MT module in the roadmap. In section §7.4, I utilize src-img and

tgt-img pairs to learn a multilingual visual-semantic embedding space for associating source and

target text sub-spaces. Specifically, I explore methods of leveraging visual contents (images) as

the “pseudo” pivots (Huang et al., 2020b) and learning captioning models to generate text in the

source and target language for paired translation and back-translation in the absence of parallel

translation annotations.

1.4 Thesis Contributions

The study in this thesis shows that, compared to English-visual representations and text-only

representations, the emerging trend in learning multilingual multimodal representations has the

following advantages:

Robustness Learning multilingual cross-view representations results in more generalized and

robust representations. It improves multiple end tasks such as multilingual video-text (Huang et al.,

2021) (Chapter §6) and image-text (Huang et al., 2019b) (Chapter §5) retrieval and multimodal

MT (Huang et al., 2016, 2020b) (Chapter §7).
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Grounding and Interpretability Introducing multilingualism in multimodal representation

learning provides a new degree of freedom for model grounding and interpretability. For instance,

(Sigurdsson et al., 2020) and my work (Huang et al., 2021) (Chapter §6) uses multilingual

video-text representations to visually ground bilingual word translation. In (Huang et al., 2019b)

(Chapter §5), I use multilingual image-text representations to ground multilingual text-to-image

search with explicit visual object-token alignments.

Complementary Multimodal Information In multimodal MT, various works (Elliott et al.,

2016; Bahdanau et al., 2015; Zhou et al., 2018c) and my work (Huang et al., 2016) (Chapter §7)

shows that visual content provides complementary information that improves text-only MT.

Transferring Linguistic Knowledge via the Visual Space Even though people speak 6,500∼
7000 languages, there is only one shared visual world since all human beings, biologically, share

a similar visual system. With the availability of large-scale visual content, bridging via the visual

space is a promising solution for pivoting and transferring linguistic knowledge. In this thesis I

demonstrate the feasibility for (1) cross-lingual transfer of English-based vision-language models

to non-English languages (Huang et al., 2021) (Chapter §6) and (2) unsupervised multimodal

MT (Huang et al., 2020b) (Chapter §7).

***

In this thesis, I introduce multilingualism into current English-centered vision-language

models via (1) multilingual multimodal pre-training at scale and (2) multilingual multimodal

fine-tuning under limited supervision. In a nutshell, this thesis contributes towards cross-lingual

generalizations of vision-language models. It provides a clear and practical roadmap with proven

modules to tackle various challenges along the way. The journey begins.
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Chapter 2

Background and Preliminaries

In this chapter, I introduce the background of multilingual multimodal representation learning. I

organize this chapter as follows: I start with explaining the terminology and defining the notations

used in this thesis. Then I introduce the typical methods for learning multimodal representations.

This thesis work covers three modalities: text, image, and video. Firstly, I review the widely-used

image, video, and text representations. Then I detail the existing content encoders and their

architectures for each modality. Finally, I provide the formulation and the contrastive objective

for learning multimodal representation (a.k.a, visual-semantic embeddings (VSE)) and introduce

the multilingual scenario.

2.1 Terminologies

Prior works in different communities have very different preferences in the terminology. In this

thesis, I use the term “multimodal representations” and “visual-semantic embeddings (VSE)”

(where the term “semantic” here corresponds to the textual information or linguistic knowledge)

interchangeably. Multimodal representations or VSE both refer to the vectorized representations

of an image/video or a sentence in the visual-textual embedding space. Based on this defini-

tion, “multilingual multimodal representation” is the same as “multilingual VSE” that learns

representations in a multilingual-textual-visual embedding space.

Additionally, I follow the convention in the CV community to use the term “semantics” to

refer to the output of an image/video classification/detection model in Chapter §7, which could be

a one-hot or multi-hot vector. Note that this is not the conventional semantics in NLP.

Also, I use the term (cross-modal) retrieval and search interchangeably to fit the terminology

in the baselines I compare to. Depending on the dataset, the term “multimodal” refers to either
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the image-text or video-text modality.

Moreover, I define the visual part (e.g., image) and the textual part (e.g., caption) as the

different views of an instance. Consequently, self-supervised learning, (multimodal) contrastive

learning, or (multimodal) metric learning implies similar objectives that pull paired content in

different modalities closer while pushing away non-paired ones and resulting in a joint embedding

space that promotes cross-modal alignments. I use contrastive learning in this thesis since I mainly

study the contrastive objectives (e.g., triplet ranking loss or noise contrasitve estimation (NCE)).

Lastly, like other prior works that study cross-lingual transfer in NLP, I use cross-lingual

“transfer” and “generalization” interchangeably to indicate the transfer of English-vision models

to the non-English-vision models. I use the term “multilingual vision-language model” to specify

a vision-language model that handles various languages as inputs or outputs.

2.2 Notations

Unless otherwise specified, the notations in this thesis are defined as the following. In the English-

only scenario, I use w = {w1, . . . , wN} to denote the encoded word tokens where N is the

sequence length. In the multilingual scenario (e.g., translation tasks or multilingual text-image

retrieval), I use x = {x1, . . . , xN} and y = {y1, . . . , yN} to denote the encoded word tokens,

where x and y is the sentences in the source and target language (or English and non-English

languages). For images and videos, I use v = {v1, . . . , vM} as the encoded visual content, where

M is the number of regions in an image or the length of a video.

For a multimodal dataset, I use D = {V , T } = {I1, · · · , I|D|} be an annotated collection of

instances where each instance Ii = (vi, wi) consists of the i-th raw image v and the corresponding

raw natural language description w. For a multilingual multimodal dataset D = {X ,Y ,V}, the

instances available are: (x,vx) ∈ (X ,V), (y,vy) ∈ (Y ,V) (drop index i for clarity), Note that

for the set of images in different languages, there could be overlap under the supervised scenario

{vx}∩{vy} 6= φwhere (xi, yi) could be translation pairs or simply captions in different languages

describing the same image (Chapter §5). On the other hand, under the supervised scenario, there

are no parallel translation pairs available (unsupervised), and the images are mutually exclusive

for different languages, namely, {x} ∩ {y} = φ, {vx} ∩ {vy} = φ (Chapter §7). The high-level

aim of this thesis is to use D to learn multilingual multimodal representations for end tasks.

The multimodal encoders (textual encoder and visual encoder) is denoted as PT(.) and PV(.)
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Notation Meaning Example

w,t raw sentence “Three children in ...”

wi, ti encoded word token “childen”

vj , zj encoded visual token

N max word sequence length N=128

M max object number or target word sequence length M=128

K max object number or frame length K=128

x raw source sentence “Three children ...”

y raw target sentence “Drei Kinder ...”

v, z raw image or video

i index for text

j index for text or visual content

k index for visual content

B mini-batch size

D Multimodal dataset

Ii i-th image-text pair (vi, ti) in D
X source sentences in D
Y target sentences in D
V , Z images or videos in D
t,w encoded sentence

x encoded source sentence

y encoded target sentence

v, z encoded image or video

e encoded multimodal content

h hidden state

c context vector

Q,K,V,W Learnable matrices in Transformer or linear layer

wi attention weight

Pv(.) visual encoder or pooling function

Pt(.) textual encoder or pooling function

p() probability function

g(), h() inferred generator function

S(., .) similarity measure

L(., .), l() loss function

α margin in triplet loss

τ softmax temperature

λ adjustable weights (hyper-parameter)

Table 2.1: Notations used in this thesis.
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respectively1 to select over N encoded text and M encoded visual sequence to generate fixed-

length representation for association in the contrastive learning. In contrastive learning, I use

L(v, t) to denote the loss operates over the text and image instances sampled in a mini-batch. I

use S(., .)2 to denote the similarity measure in contrastive objective such as the triplet ranking

loss or the noise contrastive estimation (NCE).

Table 2.1 summarizes the notations used in this thesis. I further use subscripts to specify the

language-modality type and use the superscript to specify the objective type.

2.3 Multimodal Representation Learning

Much research has addressed learning cross-view representations for multimodal content to

distill knowledge within and across modalities. Learning multimodal representation requires

a mode to capture fine-grained intra-modal discrepancies and inter-modal dependencies. For

instance, the system has to distinguish the phrase “river bank” from “financial bank” (intra-modal

discrepancies) and connect them to the visual objects accordingly (inter-modal dependencies). I

broadly divide it into two steps: Learning modality-dependent (visual and textual) representations

and learning joint (visual-semantic) representations.

2.3.1 Visual and Textual Representations

Image Representation Numerous convolutional neural networks (CNN) have been explored

for representing images. AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and Zisserman,

2014), and ResNet (He et al., 2016b) pre-trained on ImageNet (Krizhevsky et al., 2012) are the

most popular choices for extracting visual features AlexNet is used in (Yan and Mikolajczyk,

2015; Karpathy and Fei-Fei, 2015), VGG is used in (Huang et al., 2017b; Vendrov et al., 2015;

Eisenschtat and Wolf, 2017) and ResNet is used in (Faghri et al., 2018; Zheng et al., 2017; Huang

et al., 2017c). Instead of using global visual features, recent models (Anderson et al., 2018; Lee

et al., 2018; Huang et al., 2019c,d) also explore using regional features from a Faster-RCNN (Ren

et al., 2015) with a ResNet backbone pre-trained on Visual Genome (Krishna et al., 2017b).

Huang et al. (2019d) show that the improvement of visual features (i.e., AlexNet→ VGG→
ResNet) dominates the improvement of most cross-modal retrieval models.

1or with superscript to specify the language type in the case of multilingual training in Chapter §5
2I use cosine similarity S(a,b) = a·b

|a||b| is most work
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Video Representation. In the video-text cross-modal retrieval, a significant change is temporal

information in videos. A natural extension from 2D convolution to 3D convolution is proposed

in (Ji et al., 2012) and (Tran et al., 2015) where a 3D kernel is used. Carreira and Zisserman

(2017) inflate the 2D model to 3D to learn seamless spatio-temporal feature extractors from videos

while leveraging successful ImageNet architecture designs and parameters. Diba et al. (2017)

combine temporal information across variable depth. The R(2+1)D (Tran et al., 2018; Ghadiyaram

et al., 2019) factorizes the 3D convolution filters into separate spatial and temporal components.

However, the most recent works in zero-shot video retrieval still encode 2D frames individually.

For example, the Dual Encoding (He et al., 2016a) uses 2D image CNN to encode frames. Chen et

al. (Chen et al., 2020a) propose a Hierarchical Graph Reasoning (HGR) model which decomposes

video-text matching into global-to-local levels but still encodes frames individually. In Chapter §6,

I use a full 3D network for zero-shot video retrieval, which contains a 3D CNN-based video

encoder to take care of the temporal information in videos.

Text Representation. For representing sentences, the typical approach is to use word embed-

dings (Mikolov et al., 2013; Pennington et al., 2014) to encode indexed word tokens followed

by recurrent neural networks (RNN). Using Fisher vectors (Perronnin and Dance, 2007) of word

embeddings for encoding sentences has been explored in (Frome et al., 2013). Instead of training

from scratch, the 300-dimension Glove (Pennington et al., 2014) word embeddings have been

used in (Zheng et al., 2017; Huang et al., 2019c) and have shown superior performance. Long-

short-term memory network (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent

Units (GRU) (Chung et al., 2014) are two popular RNN choices of text encoders. Note that the

word embedding matrix and RNN are usually trained end-to-end.

2.3.2 Multimodal Encoders

As the number of word tokens varies sentence by sentence, a textual encoder (i.e., as a textual

pooling function) that operates over a variable length of inputs is required for encoding sentence

into a fixed-length representation for associating images or videos to the corresponding text

sentence in multimodal contrastive learning to be explained in the next section. Similarly, a visual

encoder (i.e., as a visual pooling function) is required to handle visual inputs with variable length

(e.g., a video). Let {w1, . . . , wN} and {v1, . . . , vM} be the encoded word tokens and the encoded

visual content of a image-text pair. The textual and visual pooling function (PV(.) and PT(.))
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select over N and M respectively to generate a fixed-length representation:

v = PV(v1, . . . , vM)

t = PT(w1, . . . , wN)
(2.1)

The simplest pooling function is mean-pooling or max-pooing. Alternatively, attention

mechanisms provide a way to focus on certain aspects of the data per task-specific context and

result in promising performance improvements. Several works (Karpathy et al., 2014a; Nam

et al., 2017; Huang et al., 2017b; Lee et al., 2018) exploited different attention mechanisms for

aligning visual objects and textual words. These attention mechanisms can be categorized by

the type of {Query, Key, Value } (Vaswani et al., 2017). For intra-modal attention, {Query, Key,

Value} are within the same modality. In DAN (Nam et al., 2017), the content in each modality

is iteratively attended through multiple steps with intra-modal attention. In SCAN (Lee et al.,

2018), inter-modal attention is performed between regional visual features from Anderson et al.

(2018) and text semantics. The inference time complexity is O(XY ) (for generating X query

representations for a size Y dataset). Intra-modal attention is with a preferred O(X) inference

time complexity compared to inter-modal attention. In this thesis, my work explore using inter-

modality attention (Chapter §4), intra-modality attention (Chapter §4), as well as (intra-modal)

multi-head self-attention (Chapter §5,§7) with a Transformer-based pooling (Chapter §6) to learn

the textual and visual encoders.

2.3.3 Contrastive Learning

After selecting the semantically related contents from images and captions, multimodal contrastive

learning (a type of self-supervised learning) aims at learning a shared embedding space where

paired instances (e.g., image and its caption) are close to each other in that space. Let D =

{I1, · · · , IN} be an annotated collection of instances where each instance Ii = (vi, ti) consists

of the image (encoded and represented as v) and the corresponding natural language description

(encoded and represented as t). For learning a visual-semantic embedding space, most prior

works including (Kiros et al., 2014; Karpathy and Fei-Fei, 2015; Wang et al., 2016b; Huang et al.,

2018b) minimize a hinge-based triplet loss to encourage a similarity margin α between the paired

visual-textual embeddings and the non-paired ones. The hinge-based triplet loss is defined as :

L(v, t) =
∑
v

∑
t−

[
α− S(v, t) + S(v, t−)

]
+

+
∑
t

∑
v−

[
α− S(v, t) + S(v−, t)

]
+ (2.2)

where [.]+ = max(., 0) is the hinge function and S(v, t) measure the similarity between (v, t)

in the joint embedding space. The cosine similarity S(a,b) = a·b
|a||b| is the typical choice for the
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distance/similarity measure. In Eq. 2.2, the second summations are taken over all the non-matching

negative instances in another modality. This summation results in undesirable computational

overhead and confuses gradient update for learning the joint embedding space.

Instead of taking summation over all the non-paired instances in the triplet loss, it is empirically

shown in (Faghri et al., 2018) that taking only the hard negatives is more efficient and robust.

Formally, let (v, t) denotes a paired textual-visual embeddings and v− and t− denote the non-

matching embeddings corresponding to (v, t). The hard (non-paired) negatives can be defined as:

v̂ = argmax
v−

S(v−, t)

t̂ = argmax
t−

S(v, t−)
(2.3)

The triplet loss emphasizing inter-modal hard negative samples can be written as:

L(v, t) =
∑
v

[
α− S(v, t) + S(v, t̂)

]
+

+
∑
t

[
α− S(v, t) + S(v̂, t)

]
+
, (2.4)

In practice I sample (v, t) and construct mini-batches for optimization. Formally, the objective

for learning joint embeddings which promotes cross-modal alignments is defined as:

LV SEv,t = E(v,t)∈D

[
L(v, t)

]
(2.5)

At the inference time, with the trained visual encoder (generates v) and the trained textual

encoder (generates t), the image and textural sentences are therefore be encoded for fine-tuning

in other down-stream tasks or can be directly used for cross-modal retrieval such as image-text

search or matching.

2.4 Multilingual Multimodal Representation Learning

Let (xe,xg, v) ∈ D be a multilingual multimodal dataset where xe and xg are the English and

German sentence, and v is the image respectively (assume English-German-Image). Let me

denote by x and v the encoded sentence and image, image-sentence similarity can be measured

by the average cosine similarity S(x, z) between the visually-attend sentence embeddings and the

visual embeddings. The contrastive triplet loss encouraging image-sentence alignment in the VSE

space can be written as:

Lc(x,v) = max
x̃

[
α− S(x,v) + S(x̃,v)

]
+

+ max
ṽ

[
α− S(x,v) + S(x, ṽ)

]
+
, (2.6)

17



where [.]+ is the hinge function, and x̃ and ṽ are the non-paired (negative) instances for x and

z. Intuitively, when the loss decreases, the matched images and sentences will be drawn closer

down to a margin α than the hardest non-paired ones. If multiple languages present, a straight

forward way of learning multilingual VSE is to align English-Image (xe,vxe) and German-Image

(xg,vxg ) respectively. Formally, the following MLE objective promotes cross-modal alignments

in the two VSE spaces:

LV SExe,xg ,v = E(xe,vxe )

[
Lc(xe,vxe)

]
+ E(xg ,vxg )

[
Lc(xg,vxg)

]
(2.7)

Note that depends on the different setup and the annotation available in a dataset, Eq. 2.7

may have a modified formulation. For example, there are two types of annotations available in

Multi30K (Elliott et al., 2016).

In Chapter 5, I leverage the type II annotation in Multi30K where the descriptions in English

and German are pivoted on the shared image. Therefore, I revised and Eq. 2.7 to:

LV SExe,xg ,v = E(xe,xg ,vxe )

[
Lc(xe,vxe) + Lc(xg,vxg)

]
(2.8)

On the other hand, for multimodal machine translation, the language part of the type I

annotation is the translation pairs, which provides additional supervision signal. Intuitively, by

jointly consider multimodal contrastive learning and machine translation (see Chapter §7 for more

details), the objective can be rewritten as:

LMMT
xe,xg ,v = E(xe,xg ,vxe )

[
Lc(xe,vxe) + Lc(xg,vxg)− log pxe→xg(xg|xe)− log pxg→xe(xe|xg)

]
(2.9)
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Chapter 3

Datasets and Tasks

In this chapter, I introduce the multimodal datasets and the vision-language tasks discussed in this

thesis. In section §3.1, I broadly categorize multimodal datasets into 3 categories: Image-Text,

Video-Text, and Multilingual Multimodal. The statistics of these datasets used are compared in

Table 3.1.

In section §3.2-§3.3, I cover the vision-language tasks and introduce the evaluation metrics

used in this thesis. Particularly, I study cross-modal retrieval tasks and text generation tasks.

In section §3.2, I introduce how to generate visual and textual representations to inference on

cross-modal retrieval tasks and define the corresponding rank-based retrieval metrics. For the

text generation tasks, in section §3.3, I provide the overview and comparison of objectives in

supervised and unsupervised neural machine translation as well as image captioning.

3.1 Datasets

3.1.1 Image-Text Datasets

Flickr30K (Young et al., 2014) is the standard benchmark dataset for many vision-language tasks,

including image search, cross-modal retrieval, image captioning, object detection, and grounding,

etc. . There are 31,783 images and 158,915 image-text pairs in the Flick30K dataset. Five English

descriptions are annotated for each image. The most wildly compared split in research is defined

in (Karpathy and Fei-Fei, 2015) with 29,000 training, 1,000 validation, and 1,000 testing images.

Flickr30k Entities (Plummer et al., 2015) additionally augment the 158k captions from Flickr30k

with 244k co-reference chains, linking mentions of the same entities across different captions for

the same image and associating them with 276k manually annotated bounding boxes.
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Dataset Train Val Test Sent/Img Note

Image-Text

Flickr30K (Young et al., 2014) 29,000 1,113 1,000 5

MS-COCO (Lin et al., 2014) 113,287 5,000 5,000 5

Visual Genome (Krishna et al., 2017b) 108,077 - - > 40

Video-Text

MSR-VTT (Xu et al., 2016) 6,513 497 2,990 20

TGIF (Li et al., 2016) 80,000 10,708 11,360 1-3

YouCook2 (Zhou et al., 2018a) 1,333 457 210 2-16

Youtube2text (Guadarrama et al., 2013) 1,200 100 670 5-10

Multilingual Multimodal

Multi30K (Elliott et al., 2016) 29,000 1,000 1,000 5 de,fr,en,cs

VATEX (Wang et al., 2019) 25,991 3,000 6,000 10 zh,en

Table 3.1: Dataset Statistics.

MS-COCO (Lin et al., 2014) (Microsoft Common Objects in Context) is one of the most widely-

used large-scale image-text datasets. It contains over 300k images and over 2.5m labeled object

instances from 91 pre-defined categories. Specifically, the MS-COCO dataset contains 123,287

images where each image is annotated with five English descriptions. In total, 616,435 image-text

pairs are available. The widely-compared split for image-text matching is defined by Karpathy

and Fei-Fei (2015), which moves the originally left 30,504 validation images to the training set,

resulting in a training set of 113,287 training images and 566,435 image-text pairs. The validation

and testing split contain 5,000 images (25,000 image-text pairs) , respectively. Beyond cross-modal

retrieval, MS-COCO has also been used as one of the stand benchmarks for image-captioning,

object detection, object segmentation.

Visual Genome (Krishna et al., 2017b) dataset (VG) is a large scale visual dataset and consists

of the components of objects, attributes, relationships, question-answer pairs. There are 108,077

images available in Visual Genome (with overlap to MS-COCO). On average, 50 regional

descriptions per image (5.4 million in total). 76,340, 15,626, 47 types of object, attribute, and

relationships are annotated with mapping the Wordnet Synsets. At present, VG has widely applied

to scene graph generation and application for its large number of images, objects, relationships.
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3.1.2 Video-Text Datasets

MSR-VTT (Xu et al., 2016) is originally developed for the video captioning task. It contains 10K

generic web video clips from YouTube. MSR-VTT is collected with 257 popular video queries in

20 categories (e.g.sports, movie, music etc. ). 200k natural sentences are describing the visual

content of the clips. The average number of sentences per clip is 20, all annotated by paid human

workers. In the official split, there are 6,513 clips for training, 497 clips for validation, and the

remaining 2,990 clips for testing.

YouCook2 (Zhou et al., 2018a) is a collection of cooking instructional videos from YouTube. It

contains 2000 long untrimmed videos from 89 cooking recipes; on average, each distinct recipe

has 22 videos. The training, validation, and testing splits contain 1,333, 457, and 210 videos,

respectively. The total video time is 176 hours, with an average length of 5.26 mins for each video.

Each video is further trimmed into short clips as step-by-step instructions in the recipes. There

are in total 14K video clips annotated with third-person view descriptions by human annotators.

HowTo100M (Miech et al., 2019) is a large-scale instructional video collection of 1.2 million

Youtube videos, along with automatic speech recognition (ASR) transcriptions. There are more

than 100 million clips (segmented by ASR) defined in HowTo100M. I use HowTo100M for

video-text pre-training.

ActivityNet Caption (Krishna et al., 2017a) consists of densely annotated temporal segments of

20K YouTube videos. There are 10K videos for training and two validation splits that contains 5K

videos each.

MSVD dataset consists of 80K English descriptions for 1,970 videos from YouTube, with each

video associated with around 40 sentences each. I use the standard split of 1200, 100, and 670

videos for training, validation, and testing (Venugopalan et al., 2015; Xu et al., 2015; Liu et al.,

2019).

3.1.3 Multilingual Multimodal Datasets

Multi30K (Elliott et al., 2016) is the multilingual extension of Flickr30K (Young et al., 2014)

with additional multilingual annotations in German, French, and Czech. The training, validation,

and testing split contain 29,000, 1,014, and 1,000 images, respectively. Two types of annotations

are available in Multi30K: (i) One parallel English-German translation for each image. (ii) Five

independently collected English and five German, French, and Czech descriptions for each image.

Note that the type (ii) annotation, the descriptions are not translations of each other and may

describe an image differently. Multi30K has been used as the standard benchmark dataset for
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multimodal machine translation, multilingual image-text matching, multilingual captioning, etc.

VATEX (Wang et al., 2019) is a collection of web videos with English and Chinese annotations.

The VATEX dataset includes 25,991 videos for training, 3,000 for validation and 6,000 for testing.

There are ten sentences in English and Chinese languages to describe each video. VATEX is

curated for multimodal machine translation, cross-modal retrieval (video search with natural

language description), and also multilingual video description generation.

3.2 Cross-Modal Retrieval Tasks

3.2.1 Text-to-image and Text-to-video Search

Cross-modal retrieval enables the search of visual content (e.g., image and video) with a user-

generated sentence in natural language as the query. Given a text query t, the textual encoder

Φ(t) of the model encodes the query into a fixed length representation t = Φ(t). The model

then computes the similarity (e.g., cosine similarity) between the text representation and the pre-

encoded image or text v = Ψ(v) (where Ψ(v) the visual encoder). Finally, the model generates a

ranked list where the set of top-ranked images or videos are served as the final retrieval output.

Note that the retrieval can be bi-direction, the query can either be natural language descriptions

(i.e., text-to-image retrieval) or the visual content (i.e., image-to-text retrieval).

Multimodal representation learning with contrastive objectives in section §2.3 directly results

in a joint visual-textual embedding space where the distance or similarity can directly be measured

and compared. With the corresponding learned textual and encoder, the text query and the visual

contents (image or video) can be encoded for retrieval.

3.2.2 Inference-time Complexity Analysis

It is important to keep in mind that different encoding methods will result in significantly different

inference time complexity for cross-modal retrieval. For example, for searching with M text

queries on size N image dataset, if all the image representations can be pre-generated and pre-

stored, the inference time complexity is O(M +N). In contrast, if every image representation

depends on the corresponding query, then the inference time complexity will be O(MN).

Recent work with inter-modal attention such as SCAN (Lee et al., 2018) and the Multimodal

Transformers in VilBERT (Lu et al., 2019) fall into the first category and embed O(MN) com-

plexity which could be highly non-scalable to handle real-world query traffic. On the contrary,
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models with intra-modal attention, such as DAN (Nam et al., 2017) and our works in Chapter

§5-§7, fall into the latter category with O(M + N) complexity which is more applicable for

real-world deployment.

3.2.3 Evaluation Metrics

For cross-modal retrieval tasks, I measure rank-based performance by Recall at K (R@k), Median

rank (MedR), and Mean Rank (MnR). In the case of image-text search/matching (cross-modal

retrieval) on the image-text datasets, there is one and only one correct image for a text query. Given

a query, recall at k (R@k) calculates the percentage of test instances for which the correct one

can be found in the top-K retrieved instances. Higher R@k implies better retrieval performance.

I report R@1, R@5, and R@10 following the tradition. The MedR and MnR measure the median

and average rank of correct items in the retrieved ranking list, respectively, where a lower score

indicates a better model. I also take the sum of all R@K as rsum to reflect the overall retrieval

performance.

3.3 Language Generation Tasks

Besides the retrieval tasks, I also focus on the (sequential) classification tasks that generate natural

language. Specifically, I study the case of supervised and unsupervised multimodal neural machine

translation, which is a multimodal extension of convention machine translation (MT). In this

section, I introduce supervised MT, unsupervised MT, and image captioning in a unified view of

their mathematical formulation.

3.3.1 Neural Machine Translation

Neural machine translation (MT) with deep learning has achieved great success with the encoder-

decoder architecture. The sequential nature of sentences can be effectively handled by RNN (Bah-

danau et al., 2015; Sutskever et al., 2014a). Fully convolutional NMT was proposed in (Kaiser

and Bengio, 2016; Kalchbrenner et al., 2016), followed by more advanced architectures such as

Transformers (Vaswani et al., 2017) with self-attention and positional encoding.

Typical MT models are based on the encoder-decoder framework with attention (Bahdanau

et al., 2015). Let x = (x1, · · · , xN) denotes a source sentence and y = (y1, · · · , yM) denotes

a target sentence, where (x,y) ∈ (X ,Y). The encoder-decoder model learns to estimate the
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following likelihood from the source sentence to the target sentence:

px→y(y|x) =
M∏
i=1

p(yi|y<i,x) (3.1)

When a parallel corpus is available, the maximum likelihood estimation (MLE) is usually

adopted to optimize the (source to target language) MT model by minimizing the following loss:

LMT
x→y = E(x,y)∼(X ,Y) [−log px→y(y|x)] (3.2)

Among all encoder-decoder models, the Transformer (Vaswani et al., 2017) architecture

recently achieves state-of-the-art translation quality. Instead of using recurrent or convolutional

operations, it facilitates multi-head self-attention (Lin et al., 2017).

3.3.2 Unsupervised Machine Translation

While conventional MT systems rely on the availability of a large parallel corpus, translation with

zero-resource (unsupervised MT) (Lample et al., 2018a; Artetxe et al., 2018; Lample et al., 2018b)

has drawn increasing research attention. Only monolingual sentences are presented at the training

and validation phase, i.e., only x ∈ X and y ∈ Y are available.

Successful unsupervised MT systems share several common principles. First, they require the

pre-training step to properly initialize the model and establish strong monolingual language model.

For example, XLM (Lample and Alexis, 2019) utilizes the masked language model objective in

BERT (Devlin et al., 2019a). MASS (Song et al., 2019) utilizes a span-based sequence-to-sequence

masking objective for language model pre-training.

Second, these systems transform the unsupervised problem into a weakly or self-supervised

one by automatically generating pseudo sentence pairs via back-translation (Sennrich et al.,

2016a). The idea behind can be analogous to the cycle-consistency objective in CycleGAN (Zhu

et al., 2017) for image-image translation with unpaired data. Specifically, let us denote by

h∗(y) = (x̂1, · · · , x̂N) the sentence in the source language inferred from y ∈ Y such that

h∗(y) = argmax py→x(x|y). Similarly, let us denote by g∗(x) = (ŷ1, · · · , ŷM) the sentence in

the target language inferred from x ∈ X such that g∗(x) = argmax px→y(y|x). Then the “pseudo”

parallel sentences (h∗(y),y) and (x, g∗(x)) can be further used to train two two MT models

(X → Y and Y → X ) by minimizing the following back-translation loss:

LBTx↔y = Ex∼X [−log py→x(x|g∗(x))]

+ Ey∼Y [−log px→y(y|h∗(y))]
(3.3)
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3.3.3 Image Captioning

Image captioning models are akin to machine translation models besides the non-sequential

visual encoder. Formally, an image-to-source captioning model estimates the likelihood as

pv→x(x|v) =
∏N

i=1 p(xi|x<i,v), where v is the encoded image. Essentially, the captioning model

learns to minimize the following loss:

LCAPv→x = E(vx,x) [−log pv→x(x|vx)] (3.4)

3.3.4 Evaluation Metrics

Following the tradition, I adapt the widely used BLEU (Papineni et al., 2002) and METEOR (Denkowski

and Lavie, 2014) as the evaluation metrics for language generation tasks. These metrics claim to

align well with human judgment in language generation tasks such as translation and captioning.

BLEU (bilingual evaluation understudy) is used to evaluate the quality of target text gen-

eration (e.g.machine translation) with source text references. In BLEU, precision and recall

are approximated by modified n-gram precision and best match length, respectively. N-gram

precision measures the proportion of the matched n-grams out of the total number of n-grams in

the evaluated translation then geometrically averaged. For recall, BLEU uses a brevity penalty to

penalizes translations for being “too short”.

METEOR (Metric for Evaluation of Translation with Explicit word Ordering) is designed to

improve correlation with human judgments of machine translation quality at the segment level.

METEOR evaluates a text generation model by computing a score based on explicit word-to-word

matches between the generated sentence and a given reference sentence. Unlike BLEU, there are

free parameters in the METEOR (namely, α, β, and γ) that can be tuned to achieve maximum

correlation with human judgments.
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Chapter 4

Multimodal Representation Learning

4.1 Overview

Learning multimodal representation has contributed to the success of many vision-language

applications such as cross-modal search (Kiros et al., 2014; Faghri et al., 2018; Lee et al., 2018;

Huang et al., 2018b, 2019d), image and video captioning (Rennie et al., 2017; Karpathy and

Fei-Fei, 2015; Dai and Lin, 2017), visual question answering (Goyal et al., 2017; Anderson et al.,

2018), multimodal semantic indexing (Li et al., 2021; Liu et al., 2020), and information extraction

for multimodal content (Huang et al., 2017a; Liang et al., 2017; PI et al., 2018; Huang et al.,

2018a). The embedding model aims at encoding and fusing knowledge of multimodal contents

(e.g., image, video, and text) into a shared embedding space (i.e., visual-semantic embedding

(VSE) space) in which the distance between instances can be measured and compared. Ideally,

the semantically close elements will be embedded closely to each other. To learn VSEs, the

transformation function is typically trained by aligning paired multimodal inputs (e.g., images

and text) in a latent space where the embeddings are close if they are semantically associated or

distant if uncorrelated1.

Although significant progress has been made in image-text representation learning in recent

years, few have explored what those models truly learn and what makes one model superior to

another. In this chapter, I showcase my analysis methodology via adversarial probing image-text

models and present an improved object-oriented image-text representation learning. I organize

this chapter as follows: In Section 4.2, I present an analysis framework by probing the model

trained without a specific type of textual information. In Section 4.3, based on the analysis, I

1Readers may refer Section 2.3 for more details about prior work.
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present an object-oriented network to associate the textual and visual content for joint embedding

space learning in which I achieved state-of-the-art results at that time.

The content in this chapter appears in:

1. Improving What Cross-Modal Retrieval Models Learn through Object-Oriented Inter- and

Intra-Modal Attention Networks,” Po-Yao Huang, Vaibhav, Xiaojun Chang, Alexander

Hauptmann, ACM ICMR 2018

4.2 Adversarial Probing of Image-Text Models

4.2.1 What Do Image-Text Models Learn?

In the past few years, a rich line of research including advanced encoders (Zheng et al., 2017; Lee

et al., 2018), attention mechanisms (Nam et al., 2017; Huang et al., 2017c, 2019d), and structure-

preserving loss functions (Klein et al., 2015; Wang et al., 2016b, 2018b) or multi-tasking (Huang

et al., 2018a) promoted sophisticated approaches to learn improved visual-semantic embeddings.

However, few have systematically explored how those models learn the joint embedding space

and what aspects of data and model are critical. I start by training two state-of-the-art text-to-

image retrieval models with adversarial text inputs, I investigate and quantify the importance of

syntactic structure and lexical information in learning the joint visual-semantic embedding space

for cross-modal retrieval.

To shed light on the black boxes of cross-modal retrieval models and improve them, I present

analyses through adversarial probing inspired by (Jia and Liang, 2017; Cirik et al., 2018). Different

from these works, I jointly leverage adversarial inputs at the training phase and the leave-one-

out technique for cross-validation to probe and quantify the importance of different types of

information. Mostly, I are interested in how the state-of-the-art models utilize textual information

to correlate the visual and textual context. In practice, I conduct experiments where various

aspects of the input sentences are perturbed for training and measure the performance drop in

comparison to the original model to quantify the importance of syntactic structure and lexical

information.

4.2.2 Adversarial Perturbation

In the perturbation experiments, I take the publicly available codes and the features from the two

representative state-of-the-art models: SCAN (Lee et al., 2018) and VSE++ (Faghri et al., 2018).
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I train them from scratch with the best settings available. Both of the models utilize RNN as

the text encoders in the hope that dependencies among the word tokens in a sentence could be

captured and encoded accordingly. SCAN performs fine-grained alignments between encoded

word tokens and visual objects. In contrast, VSE++ utilizes the last hidden state of RNN as the

sentence embeddings. For visual embeddings, SCAN uses pre-extracted regional visual features

from a Faster RCNN in (Anderson et al., 2018) while VSE++ fine-tunes a ResNet (He et al.,

2016b).

I examine the models with the standard training, validation, and testing splits in Flickr30K (Young

et al., 2014). The models are evaluated using Recall at k (R@k) metric in the text-to-image

retrieval task. In the training phase, I deliberately block the model from learning a specific type of

information in the data. In each run, I apply one type of perturbation to all the training sentences.

The perturbation is either random shuffling of word order or dropping one type of part-of-speech

(POS) tagging in the sentences. For example, I trained the model with the sentence “shorts in

dressed a baby blue ...” which is randomly shuffled from “a baby dressed in blue shorts ...”. In the

validation and testing phase, the models are evaluated with original non-perturbed sentences. As a

consequence, the model trained with perturbed inputs will perform worse than the original model.

The performance degradation then provides informative clues for the importance of the type of

information dropped. A significant drop in performance indicates that the blocked information is

critical, whereas a small drop implies irrelevance.

VSE++ (Faghri et al., 2018) R@1 (∆, ∆%) R@5 (∆, ∆%) R@10 (∆, ∆%)

Original model 39.3 (0.0, -0.0%) 68.8 (0.0, -0.0%) 79.0 (0.0, -0.0%)

Random shuffling 37.3 (-2.0, -5.0%) 65.6 (-3.2, -4.6%) 76.5 (-2.5, -3.2%)

Drop Numbers 38.5 (-0.8, -2.1%) 67.4 (-1.4, -2.0%) 77.5 (-1.5, -1.9%)

Drop Prepositions 37.5 (-1.8, -4.6%) 67.0 (-1.8, -2.6%) 76.8 (-2.2, -2.8%)

Drop Verbs 36.2 (-3.1, -7.9%) 65.5 (-3.3, -4.8%) 76.2 (-2.6, -3.3%)

Drop Adjectives 34.0 (-5.3, -13.5%) 63.3 (-5.5, -8.0%) 72.4 (-6.6, -8.4%)

Drop Nouns 9.5 (-29.8, -76%) 25.7 (-43.1, -63%) 34.5 (-44.5, -56%)

Table 4.1: Performance comparison of VSE++ (Faghri et al., 2018) trained with perturbed inputs

in the text-to-image retrieval task on Flickr30K. To understand what do the models learn, in each

experiment, one type of perturbation is applied to the training textual inputs. Validation and

testing inputs are without perturbation.
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SCAN (Lee et al., 2018) R@1 (∆, ∆%) R@5 (∆, ∆%) R@10 (∆, ∆%)

Original model 44.6 (0.0, -0.0%) 74.1 (0.0, -0.0%) 82.5 (0.0, -0.0%)

Random shuffling 42.5 (-2.1, -4.7%) 71.2 (-2.9, -3.9%) 81.3 (-1.2, -1.5%)

Drop Numbers 43.9 (-0.7, -1.6%) 73.5 (-1.0, -1.3%) 81.7 (-0.8, -1.0%)

Drop Prepositions 42.2 (-2.3, -5.2%) 71.0 (-3.1, -4.2%) 80.0 (-2.5, -3.0%)

Drop Verbs 41.3 (-3.3, -7.4%) 70.3 (-3.8, -5.1%) 79.5 (-3.0, -3.6%)

Drop Adjectives 38.6 (-6.0, -13.5%) 67.5 (-6.6, -8.9%) 75.8 (-6.7, -8.1%)

Drop Nouns 9.8 (-34.8, -78%) 28.5 (-45.6, -62%) 37.1 (-45.4, -55%)

Table 4.2: Performance comparison of SCAN (Lee et al., 2018) trained with perturbed inputs in

the text-to-image retrieval task on Flickr30K.

4.2.3 Importance of Syntactic Structure

Word order and syntactic structure in English is vital for humans to understand the meaning of a

sentence correctly. Previous studies have demonstrated that encoders with recurrent architectures

can capture syntactic structures and perform well in multiple text-only tasks such as named

entity recognition (Lample et al., 2016), sentiment analysis (Zhang et al., 2018b), and machine

translation (Bahdanau et al., 2015). In this study, I investigate whether encoding syntactic

structures contribute to learning better visual-semantic embeddings for cross-modal retrieval.

Table 4.1 and Table 4.2 summarizes the impacts of perturbation for the two models of concern.

Comparing the performance drop (∆) and its relative percentage (∆%) between the baseline and

the model trained with randomly shuffled inputs, the drops in all metrics are surprisingly little

(≤ 5% for R@1) for both of the models. The results show that purging the syntactic information

does not bring severe degradation. In other words, even with RNNs, these models only minimally

utilize syntactic information in learning the joint embedding space for aligning sentences and

images.

4.2.4 Importance of Lexical Information

What do cross-modal retrieval models learn if the syntactic structure is unimportant for learning

the joint embedding space? I suspect that the insignificance of syntax may also imply that spatial

relationships (e.g., on, in, at) which are usually described by prepositional words (IN) in the

sentences may also be irrelevant. For verification, I conduct the leave-one-POS-out experiments

to quantify the importance of different types of lexical information. The prior probabilities for a
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lexical type to appear in a sentence are: Cardinal Numbers:21.3%, Prepositions: 92.8%, Verbs:

91.5%, Adjectives/Adverbs: 86.6%, Nouns: 99.9% in Flickr30K. For a fair comparison, the prior

probabilities of different lexical types in Flickr30K are summarized in Table 4.3.

Lexical category Counts In # of sentences Prior (%)

Count 39,611 33,873 21.3

Prep 225,133 147,513 92.8

Verb 284,669 145,347 91.5

Adj 295,647 137,660 86.6

Noun 650,207 158,904 99.9

Table 4.3: Statistics of lexical categories in Flickr30K

From Table 4.1 and Table 4.2, I observe vast differences among the performance drops between

the original model and the model trained with inputs discarding specific types of POS tagging.

Although the prior probability is low, cardinal numbers (CD) may not be learned by the models.

Unsurprisingly, even with a higher prior probability, prepositions (IN) and spatial relationships in

the sentences are ignored by the model. Notably, the verbal information is also not useful. The

models do not fully capture the described action.

In contrast, I observe that adjectives and nouns play essential roles in cross-modal retrieval.

Even with a relatively smaller prior, dropping adjectives results in more than 13% performance

drop in R@1 for both of the models. As expected, the most critical lexical type for cross-modal

retrieval is noun.

Based on the significance of adjectives and nouns, I conclude that those models mainly learn to

leverage noun phrases to bridge across modalities in the joint embedding space. A bridge connects

two shores. At the textual side, noun phrases are the proper units for encoding and linking. At

the visual side, as simple descriptors (e.g., red) and visible objects (e.g., apple) are most often

described by adjectives and nouns; visual objects are likely to be the proper units. The superiority

of SCAN (Lee et al., 2018) over (Faghri et al., 2018) may result from the regional object-level

visual features extracted by Faster RCNN (Ren et al., 2015). Driven by this observation, I argue

that the alignments in the joint embedding space are likely to be object-oriented. I expect a

model promoting object-oriented links would help to learn a better joint embedding space for

cross-modal retrieval.

31



4.3 Learning Object-Oriented Image-Text Representations

The results in Section 4.2 show that the retrieval power mainly comes from localizing and

connecting the visual objects and their cross-modal counter-parts, the textual phrases. Inspired

by this observation, I propose a novel model that employs object-oriented encoders along with

inter- and intra-modal attention networks to improve inter-modal dependencies for cross-modal

retrieval. Besides, I develop a new multimodal structure-preserving objective, which additionally

emphasizes intra-modal hard negative examples to promote intra-modal discrepancies.

As demonstrated in the perturbation experiments, utilizing object-oriented textual and visual

context is crucial for cross-modal retrieval. Following this insight, I propose to jointly use CNN

for encoding textual context and Faster RCNN for visual context. I propose to use inter-modal

attention to refine, compare, and align these regionally-encoded objects. On the other hand,

the global context, which encodes interactions among multiple regional objects, is not well-

captured by RNN in (Faghri et al., 2018) or CNN with max-pooling in (Ma et al., 2015; Zheng

et al., 2017). To address this issue, I propose to employ a multi-head context-aware intra-modal

attention network to distill the crucial global context for alignment. I show that incorporating

both regional and global context with inter- and intra-modal attention will learn better visual-

semantic embeddings. Additionally, I propose a new triplet objective that emphasizes inter and

intra-modal harder negatives to retain both the cross-view and the within-view structure in the

joint embedding space. I term the proposed model object-oriented attention network (OAN). The

overall architecture is illustrated in Fig. 4.1.

4.3.1 Object-Oriented Encoders

For representing textual objects (i.e., noun phrases), instead of using RNNs or recursive neural

network (Niu et al., 2017) to traverse the parsing tree to encode word sequences. However,

I propose to use simple CNN-based encoders that better captures phrases. Given a sentence

S = [t1...tN ], I encode the word through an embedding matrix xi = WW ti, i ∈ {1...N}. Then

for each time step, I feed the word embeddings in the sentence to a set of 1-D convolution kernels

{Kj}, j ∈ {1, 2, 3, 5, 7}. Formally, I have:

Hj = tanh(Kj ∗X + bj) (4.1)

where “*” is the convolution operation and bj is the bias. The j-th convolutional kernels aim to

capture features corresponding to uni-grams (j = 1), bi-grams (j = 2) and so on. In each time

step i, I concatenate the outputs hji into hi = h1i ‖h2i ‖h3i ‖h5i ‖h7i and transform it to the textual
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(a) Object-oriented encoders (b) Inter- & intra-modal attention networks
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Figure 4.1: The proposed object-oriented attention network (OAN) is composed of 3 components:

(a) Object-oriented encoders (§ 4.3.1). (b) Inter- and intra-modal attention networks (§ 4.3.2).

(c) Inter- and intra-modal hard negative mining (§ 4.3.3). Convolution kernels for uni-gram and

bi-gram are colored in red and blue. Visual and textual embeddings are colored in green and blue,

respectively. Attention weights are proportional to the darkness in yellow. Different shapes in (c)

indicate different instances. (Better viewed in color.)

embedding ei ∈ RD via a single-layer perceptron parameterized by WT and bT . The i-th textual

object embedding ei is:

ei = tanh(WThi + bT ) (4.2)

For representing visual objects, I follow the practice in (Anderson et al., 2018) to local-

ize salient objects with Faster RCNN (Ren et al., 2015) and extract regional features with a

ResNet-101 (He et al., 2016b) backbone. For an image U , I use the pre-trained model provided

by (Anderson et al., 2018) to detect M visual objects with top confidence scores and get the

regional features for each object. With U = {u1...uM}, uj ∈ RDV from Faster RCNN, I then

apply a single-layer perceptron parameterized by WV and bV to map them into D-dimensional

embeddings. The j-th visual object embedding vj is:

vj = tanh(WV uj + bV ) (4.3)

4.3.2 Inter-Modal and Intra-Modal Attention

Inter-modal attention is useful to build regional connections between textual and visual objects.

However, those inter-modal connections are not equally important, and the interactions between

objects within the same modality are missing. Intra-modal attention, as firstly introduced by (Nam
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et al., 2017) in the context of cross-modal retrieval with a multi-hop memory network, serves as a

pooling function to pack the regional context with a global view. I propose to jointly leverage

these two types of attention to better aligning objects in the two modalities.

Inter-modal attention: There are two directions in inter-modal attention: textual-to-visual

(T-V) and visual-to-textual (V-T) attention. The goal of applying inter-modal attention is to

transform the embedding of an object in one modality according to its relevance to the objects

from the other modality. By minimizing the distance between the attended embedding and the

original embedding, the model achieves fine-grained alignments between objects in different

modalities in the joint embedding space. The attention networks take the outputs from the

object-oriented encoders: E = {e1, ..., eN}, ei ∈ RD and V = {v1, ..., vM}, vj ∈ RD. Let

sij =
[eTi vj ]+
‖ei‖‖vj‖ denotes the similarity between the i-th textual phrase and the j-th visual object,

where i ∈ {1, ..., N}, j ∈ {1, ...,M} and [.]+ = max(., 0) is the hinge function.

In V-T attention, visually-attended textual embeddings eV are generated as a weighted com-

bination of textual embeddings. The visually-attended weights are calculated by the softmax

function with a temperature parameter λ. Specifically,

wij = softmax(λŝij), (4.4)

eVj =
N∑
i=1

wijei, j ∈ {1...M}, (4.5)

where ŝij = sij/‖si,:‖2. Similarly, for T-V attention, I generate the textually-attended visual

embeddings vTi as a weighted combination of visual embeddings with s̄ij = sij/‖s:,j‖2.
There are two sets of object-wise embeddings in each direction of inter-modal attention

to represent an instance. For the V-T attention network, the instance-wise visual and textual

embeddings are vV T = {v1, ..., vM} and eV T = {eV1 , ..., eVM}. For the T-V attention network, the

instance-wise visual and textual embeddings are vTV = {vT1 , ..., vTN} and eTV = {e1, ..., eN},
respectively.

Intra-modal attention: The intra-modal attention network focuses on certain aspects of data

concerning the intra-modal context. In contrast to (Nam et al., 2017), I leverage a single-hop

multi-head context-aware attention network to capture the interactions between objects with

a global view and to distill informative objects for alignment from individual modalities. Let

cT = 1
N

∑
i ei and cV = 1

M

∑
j vj denote the the textual and visual context respectively. For k-th

head of textual-to-textual attention (T-T), I define the k-th textually attended textual embedding as

a weighted combination of textual embeddings:
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hi = tanh(Wk
ctcT )T tanh(Wk

t ei), (4.6)

wki = softmax(λhi), (4.7)

ekTT =
N∑
i=1

wki ei (4.8)

Similarly, I generate k-th visually attended visual embedding vkV V with visual-to-visual atten-

tion (V-V). The final instance-wise intra-modal attended representations are: eTT = {e1TT , ..., eKTT}
and vV V = {v1V V , ..., vKV V } for the textual and visual part, respectively.

4.3.3 Emphasis on Inter-Modal and Intra-Modal Hard Negatives

To further promote intra-modal discrepancies, I propose to incorporate both the inter-model hard

negative examples and the intra-model hard negative examples. Essentially, given t, I sample the

intra-modal hard negative example t̄ paired to either (1) the original text embedding t or (2) the

text part of the hard visual embedding v̂. These two types of intra-modal hard negative examples

are illustrated in Fig. 4.1-(c). Let t̄ and v̄ denote the visual and textual intra-modal hard negative

examples, I introduce two additional triplet losses α− S(v, v)− S(v, v̄) and α− S(t, t)− S(t, t̄)

weighted by a hyper parameter β. Since S(t, t) = S(v, v) = 1. I propose the following loss

function:

l(v, t) =
∑
v

{[
αinter − S(v, t) + S(v, t̂)

]
+

+ β
[
αintra − S(v, v̄)

]
+

}
+
∑
t

{[
αinter − S(v, t) + S(v̂, t)

]
+

+ β
[
αintra − S(t, t̄)

]
+

} (4.9)

As depicted in Fig. 4.1-(c), I sample t̄ and v̄ as either the hard negative to the original textual

and visual embedding:

v̄ = argmax
v−

S(v−, v), t̄ = argmax
t−

S(t−, t), (4.10)

or the corresponding visual part of the hard negative textual embeddings and the corresponding

textual part of the hard negative visual embeddings:

v̄ = vt̂, t̂ = argmax
t−

S(v, t−),

t̄ = tv̂, v̂ = argmax
v−

S(v−, t)
(4.11)
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R@1 R@5 R@10

Full model (Eq. 4.9 and Eq. 4.10) 53.1 79.9 86.8

Full model (Eq. 4.9 and Eq. 4.11) 53.3 80.1 87.1
No intra-modal hard negatives 52.8 79.6 86.8

No inter-modal attention 48.2 77.5 85.5

No intra-modal attention 47.8 77.0 85.2

No attention 37.2 70.7 76.2

No object-oriented visual encoder 41.2 70.9 80.0

No object-oriented textual encoder 51.0 78.5 85.2

Table 4.4: Ablation studies of the proposed model for text-to-image retrieval in the 1K testing set

of Flickr30K.

4.3.4 Empirical Evaluation

Ablation Studies I perform ablation studies in the text-to-image retrieval task on the Flickr30K

testing set to quantify the contribution of each component, Each time I remove one component and

measure its relative performance drop. More critical the removed component is if there is a more

substantial degradation. On the top two rows, I list the full model with the two sampling strategies

for intra-modal hard negative examples in the proposed objective. For the experiment without

object-oriented textual encoder, I swap text CNN to Bi-directional LSTM. For the experiment

without object-oriented visual encoder, I follow Nam et al. (2017) to resize images to 448× 448

and use ResNet-152 to extract 14 × 14 × 2048 grid-based visual features. In the experiments

without attention, I employ mean pooling over the encoded objects in individual modalities

directly. Table 4.4 summarizes the result.

1. Object-oriented encoders. Textual phrases and visual objects are central to visual-

semantic embeddings. The CNN architecture in the textual encoder captures relevant

linguistic priors such as n-gram structures and noun phrases. On the other hand, the object

detection network (Faster RCNN), which can be analogized to the inherited natural attention

in the human’s cognitive system, helps the model to focus on the salient visual objects.

Empirically the visual encoder plays a more critical role than the textual encoder. Both of

them are crucial to achieving the best performance.

2. Inter- and intra-modal attention mechanisms. Instead of bluntly aligning all the context

in the joint embedding space, the attention mechanisms serve as the fundamental approach
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to pool and connect encoded objects. The model without attention results in the worst per-

formance in the ablation experiments. I note that models with inter-modal and intra-modal

attention yield comparable performance. The two types of attention together contribute to

the top-performing model in a complementary manner.

3. Intra-modal hard negative examples. Preservation of the intra-modal structure achieves

consistent gain, but it is not as significant as other components. The training objective con-

sidering the paired intra-modal content of the sampled inter-modal hard negative (Eq. 4.11)

results in slightly higher performance than the objective considering the hard intra-modal

content (Eq. 4.10).

Text-to-Image Image-to-Text

R@1 R@5 R@10 R@1 R@5 R@10

DCCA (Yan and Mikolajczyk, 2015) (TF-IDF, AlexNet) 12.6 31.0 43.0 16.7 39.3 52.9

DVSA (Karpathy and Fei-Fei, 2015) (RNN, AlexNet) 15.2 37.7 50.5 22.2 48.2 61.4

SM-LSTM (Huang et al., 2017b) (RNN, VGG) 30.2 60.4 72.3 42.5 71.9 81.5

2WayNet (Eisenschtat and Wolf, 2017) (GMM, VGG) 36.0 55.6 - 49.8 67.5 -

VSE++ (Faghri et al., 2018) (RNN, ResNet) 39.6 - 79.5 52.9 - 87.2

DPC (Zheng et al., 2017) (CNN, ResNet) 39.1 69.2 80.9 55.6 81.9 89.0

DAN (Nam et al., 2017) (RNN, ResNet) 39.4 69.2 79.1 55.0 81.8 89.5

SCO (Huang et al., 2017c) (RNN, ResNet) 41.1 70.5 80.1 55.5 82.0 89.3

SCAN (Lee et al., 2018) (RNN, FRCNN-ResNet) 45.8 74.4 83.0 61.8 87.5 93.7

OAN (Ours) (CNN, FRCNN-ResNet) 53.3 80.1 87.1 68.6 93.0 96.0

Table 4.5: Performance comparison on Flickr30K’s 1K testing set. For each baseline, the best

single model with highest R@1 in text-to-image retrieval task is reported and compared. I also

list the backbone encoders (textual encoder, visual encoder).

Main Results
I compare various research from classic models (Yan and Mikolajczyk, 2015; Karpathy and

Fei-Fei, 2015) to recent models with advanced visual features (Wang et al., 2016b, 2018b; Faghri

et al., 2018; Huang et al., 2017b) and attention mechanisms (Nam et al., 2017; Huang et al.,

2017c; Gu et al., 2018; Lee et al., 2018). For reference, I also list their corresponding textual and

visual encoders. I either directly report the scores of the best single model in the original paper or

refer to the summarization made in (Zheng et al., 2017). Note that ensembled models reported in
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Text-to-Image Image-to-Text

R@1 R@5 R@10 R@1 R@5 R@10

Model 1K Testing Images

DVSA (Karpathy and Fei-Fei, 2015) (RNN, AlexNet) 27.4 60.2 74.8 38.4 69.9 80.5

SM-LSTM (Huang et al., 2017b) (RNN, VGG) 30.2 60.4 72.3 42.5 71.9 81.5

Order-embeddings (Vendrov et al., 2015) (RNN, VGG) 37.9 - 85.9 46.7 - 88.9

2WayNet (Eisenschtat and Wolf, 2017) (GMM, VGG) 39.7 63.3 - 55.8 75.2 -

VSE++ (Faghri et al., 2018) (RNN, ResNet) 52.0 - 92.0 64.6 - 95.7

DPC (Zheng et al., 2017) (CNN, ResNet) 47.1 79.9 90.0 65.6 89.8 95.5

GXN (Gu et al., 2018) (RNN, ResNet) 56.6 - 94.5 68.5 - 97.9

SCO (Huang et al., 2017c) (RNN, ResNet) 56.7 87.5 94.8 69.9 92.9 97.5

SCAN (Lee et al., 2018) (RNN, FRCNN-ResNet) 56.4 87.0 93.9 70.9 94.5 97.8

OAN (Ours) (CNN, FRCNN-ResNet) 60.2 88.6 94.5 71.7 96.4 99.3

Model 5K Testing Images

DVSA (Karpathy and Fei-Fei, 2015) (RNN, AlexNet) 10.7 29.6 42.2 16.5 39.2 52.0

Order-embeddings (Vendrov et al., 2015) (RNN, VGG) 31.7 - 74.6 23.3 - 84.7

VSE++ (Faghri et al., 2018) (RNN, ResNet) 30.3 - 72.4 41.3 - 81.2

DPC (Zheng et al., 2017) (CNN, ResNet) 25.3 53.4 66.4 41.2 70.5 81.1

GXN (Gu et al., 2018) (RNN, ResNet) 31.7 - 74.6 42.0 - 84.7

SCO (Huang et al., 2017c) (RNN, ResNet) 33.1 62.9 75.5 42.8 72.3 83.0

SCAN (RNN, FRCNN-ResNet) 34.4 63.7 75.7 46.4 77.4 87.2

OAN (Ours) (CNN, FRCNN-ResNet) 37.0 66.6 78.0 47.8 81.2 90.4

Table 4.6: Performance comparison on MS-COCO’s 1K and 5K testing sets. For each baseline,

the best single model with highest R@1 in text-to-image retrieval task is reported and compared.

original papers are not compared for fairness.

The full model includes object-oriented encoders and inter- and intra-modal attention networks.

As analyzed with the ablation studies, I choose the full model trained with the loss function

emphasizing paired intra-modal hard negative examples (Eq. 4.9 and Eq. 4.11). Table 4.5 shows

the quantitative results on Flickr30K.

Since most models employ RNN as the textual encoder, the trend shows that models with more

advanced visual features generally perform better. Interestingly, there are clear performance gaps
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when swapping the visual backbone from AlexNet (Krizhevsky et al., 2012) to VGG (Simonyan

and Zisserman, 2014) or ResNet (He et al., 2016b). Sharing a similar object-oriented visual

encoder (Faster RCNN) as SCAN (Lee et al., 2018), my model achieves superior performance to

other models. Note that even with only ResNet backbone, my model still achieves comparable or

superior performance to baselines with ResNet backbones, as shown in Table 4.4. With the object-

oriented textual and visual encoders associated with inter- and intra-modal attention networks,

my model achieves new state-of-the-art results on Flickr30K. OAN outperforms the previous

best model (SCAN (Lee et al., 2018)) by 7.5 (16.3%), 5.7 (7.6%), 4.1 (4.9%) and 6.8 (11%), 5.5

(6.2%), 2.3 (2.4%) in R@1, R@5 and R@10 for the text-to-image and the image-to-text retrieval

tasks, respectively.

MS-COCO is roughly four times larger than Flickr30K. Following the protocol in (Karpathy

and Fei-Fei, 2015), I report the evaluation results on the 1K testing images (5-fold) and 5K testing

images. The quantitative results of the two splits on MS-COCO is shown in Table 4.6. On both

testing splits, the proposed model delivers the best cross-modal retrieval performance on most of

the metrics.

4.4 Summary

In this chapter, I introduced an analysis based on adversarial perturbation with random shuffling

and leave-one-POS-out to investigate and quantify what cross-modal retrieval models learn. The

results show that the regional alignments between textual phrases and visual objects play an

essential role in image-text matching while linguistic information such as syntactic structure and

some lexical types was not well-captured even with RNN encoders.

Based on this insight, I proposed a novel model that employs object-oriented encoders along

with inter- and intra-modal attention networks to pool and align visual objects and text phrases

both regionally and globally. A new inter- and intra-modal structure-preserving loss function has

also been introduced to enhance the intra-modal discrepancies further. In the empirical evaluation,

I validated the effectiveness of the proposed model on the Flickr30K dataset and the MS-COCO

dataset with state-of-the-art results at that time.
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Chapter 5

Multilingual Multimodal Representation
Learning

5.1 Overview

In the previous chapter, for English-image embeddings, I have presented my adversarial probing

analysis which sheds insights for learning improved object-oriented embeddings. As most

multimodal datasets are English-centered, it is unclear whether the success of English-vision

models can be transferred to other languages. In this chapter, besides English, I follow the

emerging research trend that attempts to generalize learning visual-semantic embeddings (VSE)

in the multilingual scenario.

Some prior work has been proposed along the line. Rajendran et al. (2016) learn multi-view

representations when parallel data is available only between one pivot view and the rest of the

views. PIVOT (Gella et al., 2017) extends the work from Calixto et al. (2017) to use images as

the pivot view for learning multilingual multimodal representations. Kádár et al. (2018) further

confirms the benefits of multilingual training.

In this chapter, I explore efficient and effective approaches that learn improved multilingual

multimodal representations (i.e., multilingual-VSE). In section §5.2, for multilingual text-image

retrieval, I propose to improve multilingual text-image representations with diverse multi-head

attention, which captures the different types of multilingual multimodal contents. I then evaluate

the learned multilingual-VSE on English and multilingual text-to-image retrieval. My work

improves prior work by (a) introducing a model with multi-head attention to distill only the

important information for end tasks, and (b) utilizing object/entity-level representations compared
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to whole-image and sentence-level embeddings as in prior work, and (c) incorporating a novel

diversity objective to improve the learned representations. In short, I verify the following benefits

of learning multilingual multimodal representations:

1. Multilingual multimodal representations are more robust and generalized as the model

learns visual-linguistic content from various languages.

2. Multilingual multimodal representations reason over word meanings in different languages

with visual evidence. Learning these representations provides a new degree of freedom for

model grounding and promotes interpretability.

The detailed content in this chapter can be found in:

1. “Multi-Head Attention with Diversity for Learning Grounded Multilingual Multimodal

Representations,” Po-Yao Huang, Xiaojun Chang, Alexander Hauptmann, EMNLP 2019

5.2 Diversified Multilingual VSE for Retrieval

5.2.1 Motivation

To promote and understand the multilingual version of image search, I leverage visual object

detection and propose a model with diverse multi-head attention to learn grounded multilingual

multimodal representations. Specifically, our model attends to different types of textual semantics

in two languages and visual objects for fine-grained alignments between sentences and images.

I introduce a new objective function that explicitly encourages attention diversity to learn an

improved visual-semantic embedding space. I evaluate our model in the German-Image and

English-Image matching tasks on the Multi30K dataset, and in the Semantic Textual Similarity task

with the English descriptions of visual content. Results show that our model yields a significant

performance gain over other methods in all of the three tasks.

5.2.2 Prior Work

An emerging trend generalizes learning VSE in the multilingual scenario. Rajendran et al. (2016)

learn multi view representations when pivoted data is available. PIVOT (Gella et al., 2017), one

of the earliest works studying multilingual multimodal representation learning, explores images

as the pivot view. Kádár et al. (2018) further confirms the benefits of multilingual training. These

prior works all focus on whole sentence-level and image-level alignments via average-pooling of
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Figure 5.1: Multi-head attention with diversity for learning grounded multilingual multimodal

representations. (A two-headed example with a part of diversity loss lDθ colored in red.)

feature map (visual part) or word embeddings (textual part), or simply use the last hidden state of

CNN (visual part) or RNN (textual part).

My work is motivated by Gella et al. (2017) but has important differences. First, to disentangle

the alignments in the joint embedding space, I employ visual object detection and multi-head

attention to selectively align salient visual objects with textual phrases, resulting in visually-

grounded multilingual multimodal representations. Second, as multi-head attention Vaswani et al.

(2017) is appealing for its efficiency and ability to jointly attend to information form different

perspectives, we propose to further encourage the diversity among attention heads to learn an

improved visual-semantic embedding space.

5.2.3 Diversified Multi-Head Attention

Figure 5.1 illustrates the overview of the proposed model. Given a set of images as the pivoting

points with the associate English and German1 descriptions or captions, the proposed VSE model

aims to learn a multilingual multimodal embedding space in which the encoded representations

(v, e,g) of a paired instance are closely aligned to each other than non-paired ones.

Encoders: For a sampled pair, I first encode the tokens in the English sentence xe = {xe1, . . . , xeN}
1For clarity in notation, I discuss only two languages. The proposed model can be intuitively generalized to more

languages by summing additional terms in Eq. 5.4 and Eq. 5.6-5.7.
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and the tokens in the German sentence xg = {xg1, . . . , x
g
N} through the word embedding

matrices followed by two bi-directional LSTMs. The outputs of the textual encoders are

e = {e1, . . . , eN}, en ∈ RH for English and g = {g1, . . . , gN}, gn ∈ RH for German, where

N is the max sentence length and H is the dimension of the shared embedding space. For the

image, I leverage a Faster-RCNN (Ren et al., 2015) network with a ResNet (He et al., 2016b)

backbone to detect and encode salient visual objects in the image. With a trainable one-layered

perceptron to transform visual features into the shared embedding space, I encode the image as

v = {v1, . . . , vM}, vm ∈ RH , where M is the maximum amount of visual objects in an image.

Multi-head attention with diversity: I employ K-head attention networks to attend to the visual

objects in an image as well as the textual semantics in a sentence then generate fixed-length

image/sentence representations for alignment. Specifically, the k-th attended German sentence

representation gk is computed by:

aki = softmax(tanh(Wk
cgc

k
g)
>tanh(Wk

ggi)) (5.1)

gk =
N∑
i=1

aki gi, (5.2)

where aki is the attention weight, Wk
g ∈ RH×Hattn ,Wk

cg ∈ RHc×Hattn is the learnable transforma-

tion matrix for German. ckg ∈ RHc is the learnable Hc-dimensional contextual vector for distilling

important semantics from German sentences. The final German sentence representation is the

concatenation of K-head attention outputs g = [g0‖ . . . ‖gK ]. Similar for encoding the English

sentence e = [e0‖ . . . ‖eK ] and the image v = [v0‖ . . . ‖vK ].

With {V,E,G} where v ∈ V, e ∈ E,g ∈ G as the set of attended fixed-length image and

sentence representations in a sampled batch, I use the widely-used hinge-based triplet ranking

loss with hard negative mining (Faghri et al., 2018) to align instances in the visual-semantic

embedding space. Taking Image-English instances {V,E} as an example, I leverage the triplet

correlation loss defined as:

lθ(V,E) =
∑
p

[
α− s(vp, ep) + s(vp, êp)

]
+

+
∑
q

[
α− s(vq, eq) + s(v̂q, eq)

]
+
,

(5.3)

where α is the correlation margin between positive and negative pairs, [.]+ = max(0, .) is the

hinge function, and s(a,b) = aTb
‖a‖‖b‖ is the cosine similarity. p and q are the indexes of the images

and sentences in the batch. êp = argmaxqs(vp, eq 6=p) and v̂q = argmaxps(vp 6=q, eq) are the hard

negatives. When the triplet loss decreases, the paired images and German sentences are drawn
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closer down to a margin α than the hardest non-paired ones. Our model aligns {V,E}, {V,G}
and {E,G} in the joint embedding space for learning multilingual multimodal representations

with the sampled {V,E,G} batch. I formulate the overall triplet loss as:

lθ(V,E,G) = lθ(V,G) + lθ(V,E) + γlθ(G,E). (5.4)

Note that the hyper-parameter γ controls the contribution of lθ(G,E) since (e, g) may not be a

translation pair even though (e, v) and (g, v) are image-caption pairs.

One of the desired properties of multi-head attention is its ability to jointly attend to and

encode different information in the embedding space. However, there is no mechanism to support

that these attention heads indeed capture diverse information. To encourage the diversity among

K attention heads for instances within and across modalities, I propose a new simple, yet effective

margin-based diversity loss. As an example, the multi-head attention diversity loss between the

sampled images and the English sentences (i.e. diversity across-modalities) is defined as:

lDθ (V,E) =
∑
p

∑
k

∑
r

[
αD − s(vkp , ek 6=rp )]+ (5.5)

As illustrated with the red arrows for the update in Figure 5.1, the merit behind this diversity

objective is to increase the distance (up to a diversity margin αD) between attended embeddings

from different attention heads for an instance itself or its cross-modal parallel instances. As a

result, the diversity objective explicitly encourages multi-head attention to concentrate on different

aspects of information sparsely located in the joint embedding space to promote fine-grained

alignments between multilingual textual semantics and visual objects. With the fact that the shared

embedding space is multilingual and multimodal, for improving both intra-modal/lingual and

inter-modal/lingual diversity, I model the overall diversity loss as:

lDθ (V,E,G) = lDθ (V, V ) + lDθ (G,G) + lDθ (E,E)

+ lDθ (V,E) + lDθ (V,G) + lDθ (G,E),
(5.6)

where the first three terms are intra-modal/lingual and the rest are cross-modal/lingual. With

Eq. 5.4 and Eq. 5.6, I formalize the final model loss as:

lAllθ (V,E,G) = lθ(V,E,G) + βlDθ (V,E,G), (5.7)

where β is the weighting parameter which balances the diversity loss and the triple ranking loss. I

train the model by minimizing lAllθ (V,E,G).
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5.2.4 Empirical Evaluation

Experiment Setup

I use the model in Anderson et al. (2018), which is a Faster-RCNN (Ren et al., 2015) network pre-

trained on the MS-COCO (Lin et al., 2014) dataset and fine-tuned on the Visual Genome (Krishna

et al., 2017b) dataset to detect salient visual objects and extract their corresponding features. 1,600

types of objects are detectable. I then pack and represent each image as a 36×2048 feature matrix

where 36 is the maximum amount of salient visual objects in an image, and 2048 is the dimension

of the flattened last pooling layer in the ResNet (He et al., 2016b) backbone of Faster-RCNN.

For the text processing, I lower-case, tokenize, and then truncate the maximum sentence

length to 100. I use 300-dim word embedding matrices initialized either randomly or with pre-

trained multilingual embeddings. (I use the multilingual version of FastText (Mikolov et al.,

2018)). I also experiment incorporating the last layer of contextualized multilingual BERT

embeddings (Devlin et al., 2019a) to replace the word embedding matrices as the textual input

features for the bi-directional LSTMs.

For training, I sample batches of size 128 and train 20 epochs on the training set of Multi30K.

I use the Adam (Kingma and Ba, 2014) optimizer with 2× 10−4 learning rate then 2× 10−5 after

15-th epoch. Models with the best summation of validation R@1,5,10 are selected to generate the

image and sentence embeddings for testing. Weight decay is set to 10−6, and gradients larger than

2.0 are clipped. I use 3-head attention (K = 3) and the embedding dimension H = 512. All the

context vectors share the same dimension in the attention modules. Other hyper-parameters are

set as follows: α = 0.2, αD = 0.1, β = 1.0 and γ = 0.6.

Multilingual Sentence-Image Matching

I evaluate the proposed model in the multilingual sentence-image matching (retrieval) tasks on

Multi30K: (i) Searching images with text queries (Sentence-to-Image). (ii) Ranking descriptions

with image queries (Image-to-Sentence). English and German are considered. Two types of

annotations are available in Multi30K: (i) One parallel English-German translation for each image

and (ii) five independently collected English and five German descriptions/captions for each

image. I use the later. Note that the German and English descriptions are not translations of each

other and may describe an image differently.

Table 5.1 presents the results on the Multi30K testing set. The VSE baselines in the first five

rows are trained with English and German descriptions independently. In contrast, PIVOT (Gella
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Method German to Image Image to German English to Image Image to English

R@1 R@5 R10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R10

VSE†* (Kiros et al., 2014) 20.3 47.2 60.1 29.3 58.1 71.8 23.3 53.6 65.8 31.6 60.4 72.7

OE†* (Vendrov et al., 2015) 21.0 48.5 60.4 26.8 57.5 70.9 25.8 56.5 67.8 34.8 63.7 74.8

DAN* (Nam et al., 2017) 31.0 60.9 71.0 46.5 77.5 83.0 39.4 69.2 69.1 55.0 81.8 89.0

VSE++* (Faghri et al., 2018) 31.3 62.2 70.9 47.5 78.5 84.5 39.6 69.1 79.8 53.1 82.1 87.5

SCAN* (Lee et al., 2018) 35.7 64.9 74.6 52.3 81.8 88.5 45.8 74.4 83.0 61.8 87.5 93.7

Pivot† (Gella et al., 2017) 22.5 49.3 61.7 28.2 61.9 73.4 26.2 56.4 68.4 33.8 62.8 75.2

Ours† (Rand+VGG) 25.8 54.9 65.1 34.1 65.5 76.5 30.1 62.5 71.6 36.4 68.0 80.9

Ours (No Diversity) 36.3 65.3 74.7 53.1 82.3 88.8 46.2 74.7 82.9 63.3 87.0 93.3

Ours (Rand) 39.2 67.5 76.7 55.0 84.7 91.2 48.7 77.2 85.0 66.4 88.3 93.4

Ours (w/ FastText) 40.3 70.1 79.0 60.4 85.4 92.0 50.1 78.1 85.7 68.0 88.8 94.0

Ours (w/ BERT) 40.7 70.5 78.8 56.5 84.6 91.3 48.9 78.3 85.8 66.5 89.1 94.1

Table 5.1: Comparison of multilingual sentence-image retrieval/matching (German-Image)

and (English-Image) results on Multi30K. (Visual encoders:VGG† otherwise ResNet or Faster-

RCNN(ResNet).) (Monolingual models*.)

The person in the striped shirt is mountain climbing .

Zwei personen sitzen auf einem rasen vor einem gebäude .

A man is repelling down a cliff next to a lake .

1 2 3

1 2 3

2 31

Figure 5.2: Qaulitative text-to-image matching results on Multi30K. Correct (colored in green) if

ranked first.
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The man with pierced ears is wearing 
glasses and an orange hat 
Der mann trägt eine orange wollmütze .

Three children in football uniforms of two different 
teams are playing football on a football field .
3 kinder am sportplatz , zwei im blauen dress , einer im
schwarz-weißen mit blauen schutzhelmen rangeln .

A woman midair vaulting over a bar .
Die frau springt über die stange auf 
die matte .

Figure 5.3: t-SNE visualization and grounding of the learned multilingual multimodal embeddings

on Multi30K. Note the sentences are not translation pairs.

et al., 2017) and the proposed model are capable of handling multilingual input queries with a

single model. For a fair comparison with PIVOT, I also report the result of swapping Faster-RCNN

with VGG as the visual feature encoder in our model.

As can be seen, the proposed models successfully obtain state-of-the-art results, outperforming

other baselines by a significant margin. German-Image matching benefits more from the joint

training with English-Image pairs. The models with pre-trained multilingual embeddings and

contextualized embeddings achieve better performance in comparison to randomly initialized

word embeddings, especially for German. One explanation is that the multi-task training alleviates

the degradation from German singletons with English and the pre-trained embeddings. While the

model with BERT performs better in English, FastText is preferred for German-Image matching.
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Qualitative Results and Grounding

In Figure 5.2, I sample some qualitative multilingual text-to-image matching results. In most

cases, our model successfully retrieves the one and only one correct image. Figure 5.3 depicts

the t-SNE visualization of the learned visually grounded multilingual embeddings of the (v, e, g)

pairs pivoted on v in the Multi30K testing set. As evidenced, although the English and German

sentences describe different aspects of the image, our model correctly aligns the shared semantics

(e.g. (“man”, “mann”), (“hat”, “wollmütze”)) in the embedding space. Notably, the embeddings

are visually-grounded as our model associate the multilingual phrases with exact visual objects

(e.g. glasses and ears). I consider learning a grounded multilingual multimodal dictionary as the

promising next step.

As limitations, I notice that actions and small objects are harder to align. Additionally, the

alignments tends to be noun-phrase/object-based whereas spatial relationships (e.g. “on”, “over”)

and quantifiers remain not well-aligned. Resolving these limitations will be our future work.

5.3 Summary

Multilingual multimodal representation learning is challenging yet rewarding in many multilingual

vision-language tasks. In this chapter, I have presented methods of learning multilingual image-

text representations for multilingual cross-modal retrieval.

I presented a novel model that facilitates multi-head attention with diversity to align different

types of textual semantics and visual objects for learning grounded multilingual multimodal

representations. The proposed model obtains state-of-the-art results at that time in the multilingual

sentence-image matching task and the semantic textual similarity task on two benchmark datasets.
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Chapter 6

Multilingual Multimodal Pre-training at
Scale

6.1 Overview

In Chapter §4 and Chapter §5, my work in this thesis has pushed multiple research fronts in

monolingual multimodal and multilingual multimodal representation by leveraging image object

detection, multi-head attention with diversity, and proper neural architectures. Some progress

has been made on small (30∼120K) and well-annotated image-based datasets such as Flick30K,

Multi30K, and MS-COCO. However, there are still many remaining challenges and opportunities,

in particular, pre-training with large-scale noisy user-generated videos, which has attracted much

research attention in recent years. Following this trend, in this chapter, I focus on two important

topics: (1) learning from million-scale noisy user-generated videos and (2) exploiting multilingual

captions for multilingual text-video representation learning.

6.1.1 Challenges in Video-Text Representation Learning

Nowadays, it is feasible to access hundreds of millions of videos and their corresponding captions

in different languages uploaded by the users on popular social media platforms such as YouTube,

Twitter, and TikTok. With the unprecedented amount of multi-million-scale videos, scalable and

efficient learning methods that would cover these multimodal data would be desirable. Although

videos are a popular type of user-generated multimedia content, there are much fewer research

works focus on encoding video and text contents because of the following challenges: First, videos

are harder to process and encode compared to images. For example, a caption may correspond
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to a 10-second video in MSR-VTT that contains 300 frames. In comparison, there is only 1

image (1 frame) in Flick30K or MS-COCO. Second, Video captions are ambiguous as there is

an additional temporal domain to be annotated. As a result, the annotations in most video-text

datasets are usually noisier and more ambiguous as the annotators tend to focus on different

temporal segments and annotate differently. Lastly, The automated subtitles via automated speech

recognition (ASR) in popular video-text datasets are very noisy. For example, only the subtitles

generated by Google ASR are provided for the instructional videos in the HowTo100M dataset

(see Chapter §3 for details). Consequently, besides the misalignment of the speech (instruction)

and the action (demonstration) by the performers in these instructional videos, there is inherent

noise from ASR models.

6.1.2 Towards Multilingual Vision-Language Models

Besides the challenges for modeling videos, the characteristics of video-text data also provide a

unique opportunity for broadening the impact of various vision-language models. Much recent

progress in vision-language applications is driven by the availability of large-scale multimodal

data. However, existing multimodal datasets are mostly English-based, and thus limit their

applicability to generalize to non-English languages. Consequently, developing methods that

could generalize English-based vision-language models to non-English languages would be a

crucial step towards generalizing these models that would have a broader impact on non-English

speakers.

For video-text data in the popular social media platforms mentioned above, in addition to

the English captions, there are many off-the-shelf user-generated captions or machine-translated

in various languages available. Therefore, these multilingual text-video data provide a unique

opportunity for learning multilingual multimodal representations. As in multilingual pre-training

for cross-lingual transfer in NLP applications, I envision that multilingual multimodal pre-training

would facilitate cross-lingual transfer for vision-language models.

6.1.3 Chapter Organization

In this chapter, I firstly investigate and improve self-supervised learning of English-video repre-

sentations from millions of noisy instructional videos and their transcriptions. Then I develop a

task-agnostic multilingual text-video pre-training strategy to leverage multilingual captions for

cross-lingual transfer. This chapter is organized as the following:
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1. Large-scale task-agnostic pre-training for learning English-video representations. (§6.2)

2. Cross-lingual transfer of vision-language models via multilingual text-video pre-training.

(§6.3)

In Section §6.2, I propose a novel method to improve self-supervised learning of video-text

representations at scale. Conventionally, the dominant learning paradigm, noise contrastive

learning, increases the similarity of the representations of pairs of samples that are known to be

related, such as text and video from the same sample, and their artificially-transformed versions. I

posit that this last behavior is too strict, enforcing dissimilar representations even for samples that

are semantically related – for example, visually similar videos or ones that share the same depicted

action. To this end, I propose a natural way to push semantically-related samples together without

any supervision: each sample’s representation must be reconstructed as a weighted combination of

other support samples. Empirically, the proposed method achieves strong state-of-the-art retrieval

results across common video-text benchmark tasks.

Base on the progress above, in Section §6.3, I then address the problem of zero-shot cross-

lingual transfer of vision-language models with the learned multilingual multimodal representa-

tion. To achieve this goal, I extend the instructional video collection of the HowTo100M (Miech

et al., 2019) dataset to collect transcriptions in 9 languages and construct the Multi-HowTo100M

dataset, the largest multilingual text-video dataset (see Appendix for details). I then leverage tai-

lored cross-modal cross-lingual noise contrastive objectives to pre-train multilingual multimodal

embeddings at scale. After English-only task-specific fine-tuning, I evaluate the cross-lingual

transferability of the fine-tuned vision-language model on the target language without using

additional annotation. My key findings suggest that compared to the text-only cross-lingual

transfers of NLP models (Hu et al., 2020), there is a much limited zero-shot transferability for

vision-language models with text-pretrained multilingual Transformers. The results show that

the proposed multilingual multimodal pre-training is the key step to generalize vision-language

models across various languages.

The content in this chapter appears in:

1. “Support-set bottlenecks for video-text representation learning,” Mandela Patrick*, Po-Yao

Huang*, Yuki Asano*, Florian Metze, Alexander Hauptmann, João Henriques, Andrea

Vedaldi, ICLR 2021

2. “Multilingual Multimodal Pre-training for Zero-Shot Cross-Lingual Transfer of Vision-

Language Models,” Po-Yao Huang*, Mandela Patrick*, Junjie Hu, Graham Neubig, Florian

Metze, Alexander Hauptmann, NAACL 2021.
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6.2 Bottlenecks in Video-Text Representation Learning

6.2.1 Motivation

With the exploding amount of user-uploaded videos available, modeling videos and learning joint

video-text representations for end tasks such as text-to-video search, video captioning, and video

question answering have attracted much research attention. For learning video-text representa-

tion, one method which gains increasing popularity is noise contrastive learning (Gutmann and

Hyvärinen, 2010) that learns data representations both for supervised (Khosla et al., 2020) and

unsupervised regimes (Chen et al., 2020b). The idea is to learn a representation that discriminates

any two data samples while being invariant to certain data transformations. For example, one

might learn a representation that identifies a specific image up to arbitrary rotations (Misra and

van der Maaten, 2020). In a multi-modal setting, the transformations can separate different

modalities, for example, by extracting the text and visual signals from a video.

The noise contrastive approach is motivated by the fact that the transformations that are applied

to the data samples leave their ‘meaning’ unchanged. For example, rotating an image does not

change the fact that it contains a cat or not (Gidaris et al., 2018). However, in most cases, I expect

to find many data samples that share the same content without being necessarily related by simple

transformations (i.e., think of any two images of cats). Existing noise contrastive formulations are

unaware of these relationships and still try to assign different representations to these samples (Wu

et al., 2018), despite the fact that they are semantically equivalent. If the representation is learned

for a downstream task such as semantic video retrieval, this might degrade performance.

This suggest that there might be other learning signals that could complement and improve

pure contrastive formulations. In this paper, I explore this idea in the case of learning from two

modalities: videos and text, in the form of video transcripts or captions. Given a state-of-the-art

contrastive formulation that learns from these two modalities, I investigate complementary pretext

objectives to improve it. First, I consider the (instance) captioning task, namely mapping a video

to the corresponding text, casting this as a conditional stochastic text generation problem. I show

that this brings only a modest benefit.

I observe that the captioning task is highly sample-specific, as the goal is to produce a caption

which describes a specific video and not any other video, and thus it suffers from the same

disadvantages (discouraging concept sharing among samples) as contrastive learning. Thus, I

propose to address this issue by switching to a different text generation task. The idea is to modify

the text generator to take as input a learnable mixture of a support-set of videos, which I call
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cross-instance captioning. The mixture weights are generated by comparing the learned video

representations to captions’ representations in an online way over the batch. The limited set

of support samples acts as a bottleneck that encourages extraction of shared semantics. In this

manner, the embeddings can associate videos that share similar captions even if the contrastive

loss tries to push them apart.

I show that, when the captioning task is added in this manner, it brings a sensible improvement

to already very strong video representation learning results, further improving my own state-of-

the-art baseline by a significant margin.

6.2.2 Prior Work

Large-scale Video-Text Representation Learning Large-scale training data has enabled the

more effective pretraining of image (Yalniz et al., 2019; Sun et al., 2017), video (Ghadiyaram

et al., 2019; Thomee et al., 2016) and textual representations (Raffel et al., 2019). The release of

the HowTo100M dataset (Miech et al., 2019), a large-scale instructional video dataset, has spurred

significant interest in leveraging large-scale pre-training to improve video-text representations for

tasks such as video question-answering (Lei et al., 2018), text-video retrieval (Liu et al., 2019) and

video captioning (Zhou et al., 2018b) on smaller datasets such as YouCookII (Zhou et al., 2018a),

MSVD (Venugopalan et al., 2015), MSR-VTT (Xu et al., 2016), LSMDC (Rohrbach et al., 2017),

DiDeMo (Hendricks et al., 2018) and ActivityNet (Krishna et al., 2017a). Although semantically

rich and diverse, instructional videos from the web are super noisy and therefore a few approaches

have been proposed to combat this. A few works (Sun et al., 2019b,a; Zhu and Yang, 2020; Luo

et al., 2020) extend the BERT model to accept both visual and textual tokens to learn high-level

semantic video-text representations. Other works have leveraged the contrastive loss (Miech et al.,

2020) and show that using the raw audio (Rouditchenko et al., 2020; Alayrac et al., 2020) and other

modalities (Gabeur et al., 2020) can be used to better align and improve video-text representations.

While all these approaches rely on a contrastive objective, VidTranslate (Korbar et al., 2020)

shows that a generative objective can also be used to learn joint video-text representations. In

contrast to (Korbar et al., 2020), I show that combining contrastive and generative objectives to

pre-train video-text representations on large-scale data such as HowTo100M is very effective. The

generative objective serves as regularizer to mitigate the strictness of the instance discrimination

task of the constrastive objective, showing benefits similar to approaches such as clustering (Li

et al., 2020; Caron et al., 2020) and feature mixing (Kalantidis et al., 2020) which have been

applied in the image domain.
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Figure 6.1: Cross-modal discrimination and cross-captioning. My model learns from two com-

plementary losses: (a) Cross-modal contrastive learning learns strong joint video-text embeddings,

but every other sample is considered a negative, pushing away even semantically related captions

(orange arrows). (b) I introduce a generative task of cross-captioning, which alleviates this by

learning to reconstruct a sample’s text representation as a weighted combination of a support-set,

composed of video representations from other samples.

6.2.3 Contrastive Learning with Generative Objectives

I consider the problem of learning multimodal representations from a corpus C of video-text pairs

(v, t), where v is a video and t is its corresponding text (caption or transcription). My goal is to

learn a pair of representation maps cv = Ψ(v) and ct = Φ(t), with outputs in a d-dimensional

embedding space cv, ct ∈ Rd, where semantically similar instances are close to each other.

Objective for Learning Multimodal Representations

I consider two learning objectives, also illustrated in Figure 6.1. The first is the contrastive

objective, pushing embeddings ct and cv to be close if text t and video v come from the same

sample and pushing them apart otherwise. This assumes that every sample is its own class and

does not benefit from modelling similiarities across instances. The second objective is generative

captioning. In its most basic variant, it maximizes the probability of generating the text t given the

corresponding video v. However, I suggest that variants that explicitly promote concept sharing

between instances will result in better downstream performance, in tasks such as video retrieval.

These variants, illustrated in Figure 6.2, have in common that the caption t is reconstructed from

a learned weighted combination over other videos v̂. This is a form of attention (Bahdanau

et al., 2015) which encourages the network to learn about which videos share similar semantics,

compensating for the contrastive loss and grouping them implicitly.

In the following, I denote with B ⊂ C a batch of multi-modal samples, i.e. a finite collection

of video-text pairs (t, v) ∈ C. For simplicity, I denote the batch as B = {(ti, vi)}Bi=1}.
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Figure 6.2: (a) My cross-modal framework with the discriminative (contrastive) objective and

the generative objective. The model learns to associate video-text pairs in a common embedding

space with text and video encoders (top). Meanwhile, the text must also be reconstructed as a

weighted combination of video embeddings from a support-set (bottom), selected via attention,

which enforces representation sharing between different samples. (b) Weights matrices (attention

maps) used in each cross-captioning objective (see section 6.2.3).

Contrastive objective To define the contrastive objective, let s(a, b) = a>b
‖a‖‖b‖ be the similarity

measure between vectors a and b. Following (Faghri et al., 2018), I adopt the hinge-based triplet

ranking loss with hard negative mining:

Lcontrast =
1

B

B∑
i=1

[
max
j

[
α− s(cit, civ) + s(cit, c

j
v)
]
+

+ max
j

[
α− s(cit, civ) + s(cjt , c

i
v)
]
+

]
,

(6.1)

where α is the correlation margin between positive and negative pairs and [·]+ = max{0, ·} is the

hinge function. In the experiments, I set α = 0.2.

Cross-captioning objectives In the conventional captioning, the decoder seeks to optimize the

negative log-likelihood of a text sequence t given its corresponding video v:

Lcaption = − 1

B

B∑
i=1

log p(ti|eiv). (6.2)

Here, the log-likelihood is obtained via auto-regressive decoding (Vaswani et al., 2017) from an

intermediate video embedding eiv = Φ′(vi). For the cross-captioning objective, I modify this loss
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to condition the generation process on a weighted average of the embeddings of the other videos

in the batch, which I call the support-set. The weights themselves, which can be interpreted as a

batch-wise attention, are obtained as a softmax distribution with temperature T over batch indices

based on the video embeddings, as follows:

Lcross-captioning = − 1

B

B∑
i=1

log p(ti|ēiv), ēiv =
∑
j∈Si

exp 〈cit, cjv〉/T∑
k∈Si exp 〈cit, ckv〉/T

· ejv. (6.3)

By default, the summation in the softmax is conducted over a support set Si containing all indices

except i. In the experiments, I consider the following attention types for reconstruction. Identity
captioning (Si = {i}) generates the caption from the corresponding video and reduces to the

standard captioning objective, eq. (6.2). Full support (Si = {1, . . . , B}) considers all videos

as possible candidates for captioning. Hybrid captioning sets the weights in eq. (6.3) as the

average of the weights for identity captioning and full support. Cross-captioning (Si = {j 6= i})
considers all but the video that one wishes to caption. This variant forces the network to extract

all information required for captioning from other videos in the batch. Figure 6.2 compares

graphically these attention mechanisms.

Considering both discriminative and generative objectives for learning multimodal representa-

tions, the full objective is L = Lcontrast + λLcross-captioning, where λ balances two objectives. I set

λ = 10 to ensure similar magnitudes for both losses in the experiments. In the training phase, I

use Adam (Kingma and Ba, 2014) to minimize the loss. At inference time, I directly use Φ(t) and

Ψ(v) to encode video and text representations for retrieval.

Model Architecture I now discuss the details of the encoders and decoder components in the

architecture, illustrated in fig. 6.2. For the text decoder p(t|ev) in eqs. (6.2) and (6.3), I use a

pre-trained T-5 decoder (Raffel et al., 2019).

For the video representation cv = Ψ(v) = Ψ′′(Ψ′(v)), I use a video encoder ev = Ψ′(v)

followed by a multi-layer transformer pooling head cv = Ψ′′(ev). The encoder Ψ′(v) concatenates

the output of pretrained ResNet-152 (He et al., 2016b) and R(2+1)D-34 (Tran et al., 2018) networks

applied to individual video frames, resulting in a code ev = [ev1 · · · evM ] whereM is the maximum

duration of a video clip. For the pooling head cv = Ψ′′(ev), I consider a transformer architecture

to attend to important context and summarize it into a fixed-length representation cv. For this, I

follow MMT (Gabeur et al., 2020), but with two important differences. First, while MMT uses

7 expert features that results in 7× the sequence length, I only use a transformer to attend to

early-fused motion and appearance features as the video representation, thus significantly reducing
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the sequence length and computational cost. Second, instead of stacking 6 transformer layers to

encode the visual stream as in MMT, I only use a shallow two-layer transformer architecture with

additional pre-encoders, further increasing model efficiency. As temporal 1D-convolutional neural

networks (CNNs) (LeCun et al., 1998) were shown to effectively capture temporal dependencies

in videos (He et al., 2016a), I integrate CNNs into the transformer pooling heads to better capture

video temporal signals. In more detail, I compute cv = Ψ′′(ev) by chaining two transformer layers,

each of the type:

ψ(e) = BN(FFN(eattn) + eattn), eattn = BN(MHA(f(e)) + f(e)). (6.4)

Here f is a pre-encoder that refines the video representation; I found empirically that a 1D CNN

works well for this purpose. Then, I apply multi-head self-attention (MHA) (Vaswani et al.,

2017; Huang et al., 2019b) followed by a feed-forward network (FNN) with batch normaliza-

tion (BN) (Ioffe and Szegedy, 2015). The architecture maps the input sequence ev to a new

‘contextualized’ sequence of representation vectors; I take the first one as cv.

The text representation decomposes in the same way as ct = Φ(t) = Φ′′(Φ′(t)). The text

encoder et = Φ′(t) uses a pretrained T-5 network resulting in a code et = [et1 · · · etN ], where N

is the maximum length of a sentence. The pooling head ct = Φ′′(et) follows the same design as

the video case, but f is set to a recurrent neural network (RNN) instead of a CNN. Please refer to

Appendix for more details. In practice, for computational reasons, I use eq. (6.3) to finetune the

parameters of all networks except the video encoder Ψ′(v), which is fixed.

6.2.4 Empirical Evaluation

I validate empirically the ability of my method to learn better representations for the downstream

tasks of text-to-video and video-to-text retrieval. First, I ablate various model components on

the MSR-VTT dataset. Then, I show that my best model significantly outperforms state-of-the-

art retrieval systems on three datasets, MSR-VTT, ActivtyNet and VATEX. Finally, I analyse

qualitatively the effect of the attention mechanism used during training.

Experimental Setup

Datasets HowTo100M (Miech et al., 2019) is a large-scale instructional video collection of 1.2

million YouTube videos, along with automatic speech recognition transcripts. There are more than

100 million clips (ASR segments) defined in HowTo100M. I use this dataset for the pre-training

experiments. MSR-VTT (Xu et al., 2016) contains 10,000 videos, where each video is annotated
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R@1↑ R@5↑ MdR↓

None 25.9 53.0 4.0

Identity 26.4 51.9 4.0

Full 25.8 53.9 3.0

Hybrid 26.0 54.8 3.0

Cross 27.2 55.2 3.0

Table 6.1: Effect of learning objectives. Text→Video retrieval on MSR-VTT.

with 20 descriptions. I report results on the 1k-A split (9,000 training, 1,000 testing) as in (Liu

et al., 2019). VATEX (Wang et al., 2019) is a multilingual (Chinese and English) video-text

dataset with 34,911 videos. I use the official training split with 25,991 videos and report on the

validation split as in HGR (Chen et al., 2020a). The ActivityNet Caption (Krishna et al., 2017a)

dataset consists of densely annotated temporal segments of 20K YouTube videos. I use the 10K

training split to train from scratch/ finetune the model and report the performance on the 5K

‘val1’ split. The MSVD (Chen and Dolan, 2011) dataset consists of 80K English descriptions for

1,970 videos from YouTube, with each video associated with around 40 sentences each. I use the

standard split of 1,200, 100, and 670 videos for training, validation, and testing (Venugopalan

et al., 2015; Xu et al., 2015; Liu et al., 2019).

Evaluation Metrics To measure the text-to-video and video-to-text retrieval performance, I

report Recall at K (R@K) where K = 1, 5, 10. R@K is the fraction of queries that retrieve desired

items in the top K candidates, where a higher score denotes a better model. I also report MdR that

measures the median rank of desired items in the retrieved ranking list. These are the common

metrics in the literature of information retrieval.

Ablation Studies

In Table 6.2, I first only ablate the cross-modal retrieval part of the network architecture, while

the generative objectives are analysed in Table 6.1. The ablation results show that:

Video Encoder In Table 6.2a, I show the effect of the choice of visual input features. I find

that for text-to-video retrieval at Recall at 1 and 5 (R@1, R@5), features obtained from a video

R(2+1)D-34 ResNet achieve 2.9% and 7.0% higher performance compared to only image-frame

based features from a ResNet-152. A further 3.5% and 2.0% can be gained by concatenating both

features, yielding the strongest MdR of 3.0%.
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(a) Video Encoder. Stronger features and combi-

nation improves performance.

Feature source R@1 ↑ R@5 ↑ MdR ↓

R-152 20.8 46.2 6.0

R(2+1)D-34 23.7 53.2 4.0

R(2+1)D-34 +R-152 27.2 55.2 3.0

(b) Feature Aggregation. Learning temporal at-

tention yields strong gains over pooling.

Temporal reduction R@1 ↑ R@5 ↑ MdR ↓

Max 21.8 49.5 8.0

Mean 22.5 51.3 6.0

Multi-Head Attn 27.2 55.2 3.0

(c) Text Encoder. Stronger encoding of

text improves retrieval.

Text Encoder R@1 ↑ R@5 ↑ MdR ↓

W2V (GloVe) 22.1 49.8 6.0

T5-Small 24.5 51.2 3.0

T5-Base 27.2 55.2 3.0

(d) Text Decoder. Stronger decoding of text im-

proves retrieval.

Text Encoder Text Decoder R@1 ↑ R@5 ↑ MdR ↓

T5-Base T5-Small 26.2 54.2 3.0

T5-Base T5-Base 27.2 55.2 3.0

(e) Contrastive Loss. Inter-modal Triplet loss yields the best performance.

Contrastive R@1 ↑ R@5 ↑ MdR ↓

InfoNCE (inter+intra) 10.7 28.5 15.0

InfoNCE (inter) 10.8 29.0 14.5

Triplet (inter+intra) 26.8 56.2 3.0

Triplet (inter) 27.2 55.2 3.0

(f) Support-set Size. Retrieval degrades when reconstructing from too small and too large sets.

Batch-size Memory bank

Size 8 16 32 64 128 256 512 2k 8k

R@1/5 18.5/45.6 20.7/49.9 25.2/54.6 27.2/55.2 28.0/56.1 26.9/55.0 25.3/53.5 26.8/54.7 26.2/52.7

Table 6.2: Model Architecture and Training Details Ablation. Text→Video retrieval perfor-

mance on MSR-VTT. Recall@1, 5, and Median Recall are shown.

Feature Aggregation While the features from both video and image-based visual encoders have

reduced spatial extent after a fully-connected layer, the temporal dimension can be reduced in

various ways. In table 6.2b, I find that the multi-head, parameterized attention reduction yields

strong gains over the mean- or max-pooling baselines of over 4% for R@1. This shows that

learning attention over the temporal dimension of fixed feature sets can give strong gains even

without fine-tuning the encoder.
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Text Encoder In Table 6.2c, I find decent gains of 2.7% and 0.4% for R@1,5 for using T5-base,

instead of T5-small. I do not use the T-5-Large model, as in (Korbar et al., 2020), due to the

prohibitively large relative model size increase of +220%.

Text Decoder In Table 6.2d, I find that using a larger text decoder gives a 1% increase in

performance when using the cross-captioning objective.

Contrastive Loss To validate the choice of a triplet loss in eq. (6.1), in table 6.2e, I compare the

results of the InfoNCE contrastive loss (van den Oord et al., 2018) with a triplet loss, with both

the intra and inter-intra modality variants. I find that InfoNCE (van den Oord et al., 2018) loss

does not work well in my case, likely due to the difficulty in tuning this loss to have the right

combination of temperature and batch-size.

Support-Set Size Lastly, in table 6.2f, I show the effect of the size of the support set used for

cross-instance captioning. I find that the reconstruction loss indeed acts as a bottleneck, with both

smaller and very large sizes degrading the performance.

Captioning Objective In table 6.1, I show the effect of the different variants of the learning

objective eq. (6.3). First, I find that the naive addition of a reconstruction objective (“Identity”)

does not improve the contrastive-only baseline (“None”) much. Considering reconstruction from

other videos improves the performance more. In particular, the “Hybrid” variant, which combines

“Identity” and “Full” (section 6.2.3) improves Recall at 1 and 5 from 25.9% and 53.0% to 26.0%

and 54.8%, respectively. However, the best result by far (27.2/55.2%) is obtained forcing captions

to be reconstructed only from other videos, via the proposed cross-instance attention mechanism

(“Cross”). This variant cannot use information contained in a video to generate the corresponding

caption and thus entirely relies on the model to discover meaningful relationship between different

videos. This newly-proposed scheme seems to have the most beneficial effect for semantic

retrieval.

Comparison to State-of-the-Art

In this section, I compare the results of my method to other recent text-to-video and video-to-text

retrieval approaches on various datasets. In tables 6.3 to 6.5, I show the results of my model

applied to text-to-video and video-to-text retrieval on MSR-VTT, VATEX, ActivityNet and MSVD

with and without pre-trainig on HowTo100M. Without pre-training, my method outperforms all

others in all metrics and datasets. In particular, for the VATEX dataset, the retrieval performance

at recall at 1 and 5 is 45.9% and 82.4%, exceeding recent state-of-the-art methods (Chen et al.,

2020a) by a margin of 9%. For ActivityNet, my model outperforms MMT by a margin of 4%
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Table 6.3: Retrieval performance on the MSR-VTT dataset. Models in the second group are

additionally pretrained on HowTo100M.

Text→Video Video→Text

R@1↑R@5↑R@10↑MdR↓ R@1↑R@5↑R@10↑MdR↓

Random Baseline 0.1 0.5 1.0 500.0 0.1 0.5 1.0 500.0

JSFusion (Yu et al., 2018) 10.2 31.2 43.2 13.0 − − − −
HT100M (Miech et al., 2019) 12.1 35.0 48.0 12.0 − − − −
JPoSE (Wray et al., 2019) 14.3 38.1 53.0 9.0 16.4 41.3 54.4 8.7

CE (Liu et al., 2019) 20.9 48.8 62.4 6.0 20.6 50.3 64.0 5.3

MMT (Gabeur et al., 2020) 24.6 54.0 67.1 4.0 24.4 56.0 67.8 4.0

Ours 27.4 56.3 67.7 3.0 26.6 55.1 67.5 3.0

VidTranslate (Korbar et al., 2020) 14.7 − 52.8 − − − − −
HT100M (Miech et al., 2019) 14.9 40.2 52.8 9.0 16.8 41.7 55.1 8.0

NoiseEstimation (Amrani et al., 2020) 17.4 41.6 53.6 8.0 − − − −
UniVL (Luo et al., 2020) 21.2 49.6 63.1 6.0 − − − −
AVLnet (Rouditchenko et al., 2020) 27.1 55.6 66.6 4.0 28.5 54.6 65.2 4.0

MMT (Gabeur et al., 2020) 26.6 57.1 69.6 4.0 27.0 57.5 69.7 3.7

Ours-pretrained 30.1 58.5 69.3 3.0 28.5 58.6 71.6 3.0

at recall at 1. With pre-training on HowTo100M, the performance further increases across the

board. Notably, unlike MMT which uses 7 features, my model uses only 2 features and achieves

state-of-the-art in most metrics.

6.2.5 Discussion

In order to better understand the effect of the learning objective, I visualize the soft attention of

the best-performing cross-instance reconstruction model in fig. 6.3. As I can see in the top-left

square, which shows the pairwise attention between all pairs of videos in the batch, it is highly

focused, with the model mostly attending one or two other instances in the batch.

For the first video’s caption reconstruction (second row), I find that the model solely attends

to another musical performance video that is in the batch, ignoring the others. For the second

video (third row), the model focuses on another sample that shows the sea but differs in most

other aspects since there are no semantically-equivalent clips in the batch. The third video shares

a similar scenario. These examples show that the bottleneck is effective at forcing the model to

avoid memorising the video-caption association of each clip in isolation, and attempt to match
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Table 6.4: Retrieval performance on the VATEX dataset

Text→Video Video→Text

R@1↑R@5↑R@10↑MdR↓ R@1↑R@5↑R@10↑MdR↓

Random Baseline 0.2 0.7 1.05 2000.5 0.02 0.1 1.02 2100.5

VSE (Kiros et al., 2014) 28.0 64.3 76.9 3.0 − − − −
VSE++ (Faghri et al., 2018) 33.7 70.1 81.0 2.0 − − − −
Dual (He et al., 2016a) 31.1 67.4 78.9 3.0 − − − −
HGR (Chen et al., 2020a) 35.1 73.5 83.5 2.0 − − − −
Ours 44.6 81.8 89.5 1.0 58.1 83.8 90.9 1.0

Ours-pretrained 45.9 82.4 90.4 1.0 61.2 85.2 91.8 1.0

Table 6.5: Retrieval performance on ActivityNet

Text→Video Video→Text

R@1↑R@5↑R@50↑MdR↓ R@1↑R@5 ↑R@50↑MdR↓

Random Baseline 0.02 0.1 1.02 2458 0.02 0.1 1.02 2458

FSE(Zhang et al., 2018a) 18.2 44.8 89.1 7.0 16.7 43.1 88.4 7.0

CE (Liu et al., 2019) 18.2 47.7 91.4 6.0 17.7 46.6 90.9 6.0

HSE (Zhang et al., 2018a) 20.5 49.3 − − 18.7 48.1 − −
MMT (Gabeur et al., 2020) 22.7 54.2 93.2 5.0 22.9 54.8 93.1 4.3

Ours 26.8 58.1 93.5 3.0 25.5 57.3 93.5 3.0

MMT-pretrained (Gabeur et al., 2020) 28.7 61.4 94.5 3.3 28.9 61.1 94.3 4.0

Ours-pretrained 29.2 61.6 94.7 3.0 28.7 60.8 94.8 2.0

Table 6.6: Retrieval performance on the MSVD dataset

Text→Video Video→Text

R@1↑R@5↑R@10↑MdR↓ R@1↑R@5↑R@10↑MdR↓

VSE (Kiros et al., 2014) 12.3 30.1 42.3 14.0 − − − −
VSE++ (Faghri et al., 2018) 15.4 39.6 53.0 9.0 − − − −
Multi. Cues (Mithun et al., 2018a) 20.3 47.8 61.1 6.0 − − − −
CE (Liu et al., 2019) 19.8 49.0 63.8 6.0 − − − −
Ours 23.0 52.8 65.8 5.0 27.3 50.7 60.8 5.0

Ours-pretrained 28.4 60.0 72.9 4.0 34.7 59.9 70.0 3.0
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Figure 6.3: Support-set attention map. Attention scores of all pairs in a batch (top-left square)

and a subset of rows/columns (other squares) on VTT.

other clips more broadly, since an exact (or very close) match is not guaranteed.

Summary

In this section, for learning video-text representation at scale, I studied classic contrastive learning

methods such as the triplet loss. I suggested that the contrastive approach might pull apart

videos and captions even when they are semantically equivalent, which may hinder downstream

retrieval performance. To mitigate this effect, I propose to consider a captioning pretext task as an

additional learning objective. In particular, I show that cross-instance captioning can encourage

the representation to pull together videos that share a similar caption, and are thus likely to be

equivalent for retrieval. Leveraging these ideas, my model achieves state-of-the-art performance

on the text-to-video and video-to-text retrieval tasks, on three datasets.

While I demonstrated these ideas in the specific case of text-to-video retrieval, they can

in principle generalize to any setting that utilizes a contrastive loss, including self-supervised

learning, provided that it is possible to learn reasonable conditional generators of a modality or

data stream given another.
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6.3 Cross-Lingual Transfer of Vision-Language Models

6.3.1 Motivation

One of the key challenges at the intersection of computer vision (CV) and natural language

processing (NLP) is building versatile vision-language models that not only work in English, but

in all of the world’s approximately 6,500 languages. Since collecting and annotating task-specific

parallel multimodal data in all languages is impractical, a framework that makes vision-language

models generalize across languages is highly desirable.

One technique that has shown promise to greatly improve the applicability of NLP models to

new languages is zero-shot cross-lingual transfer, where models trained on a source language are

applied as-is to a different language without any additional annotated training data (Täckström

et al., 2012; Klementiev et al., 2012; Cotterell and Heigold, 2017; Chen et al., 2018a; Neubig and

Hu, 2018). In particular, recent techniques for cross-lingual transfer have demonstrated that by

performing unsupervised learning of language or translation models on many languages, followed

by downstream task fine-tuning using only English annotation, models can nonetheless generalize

to a non-English language (Wu and Dredze, 2019; Lample and Conneau, 2019; Huang et al.,

2019a; Artetxe et al., 2020; Hu et al., 2020). This success is attributed to the fact that many

languages share a considerable amount of underlying vocabulary or structure. At the vocabulary

level, languages often have words that stem from the same origin, for instance, “desk” in English

and “Tisch” in German both come from the Latin “discus”. At the structural level, all languages

have a recursive structure, and many share traits of morphology or word order.

For cross-lingual transfer of vision-language models, the visual information is clearly an

essential element. To this end, I make an important yet under-explored step to incorporate visual-

textual relationships for improving multilingual models (Devlin et al., 2019a; Artetxe et al., 2020).

While spoken languages could be different, all humans share similar vision systems, and many

visual concepts can be understood universally (Sigurdsson et al., 2020; Zhang et al., 2020a). For

example, while is termed “cat” for an English speaker and “chat” for a French speaker; they

understand similarly. I leverage this observation to learn to associate sentences in different

languages with visual concepts for promoting cross-lingual transfer of vision-language models.

In this section, I focus on multilingual text-to-video search tasks and propose a Transformer-

based video-text model to learn contextual multilingual multimodal representations. My vanilla

model yields state-of-the-art performance in multilingual text→video search when trained with

multilingual annotations. However, under the zero-shot setting, rather surprisingly, there is a
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significant performance gap between English and non-English queries (see §6.3.6 for details). To

resolve this problem, motivated by recent advances in large-scale language model (Artetxe et al.,

2020) and multimodal pre-training (Lu et al., 2019; Miech et al., 2019; Patrick et al., 2021a), I

propose a multilingual multimodal pre-training (MMP) strategy to exploit the weak supervision

from large-scale multilingual text-video data. I construct the Multilingual-HowTo100M dataset,

that extends the English HowTo100M (Miech et al., 2019) dataset to contain subtitles in 9

languages for 1.2 million instructional videos.

My method has two important benefits. First, compared to pre-training on English-video data

only, pre-training on multilingual text-video data exploits the additional supervision from a variety

of languages, and therefore, enhances the search performance on an individual language. Second,

by exploiting the visual data as an implicit “pivot” at scale, my methods learns better alignments in

the multilingual multimodal embedding space (e.g., “cat”- -“chat”), which leads to improvement

in zero-shot cross-lingual transfer (e.g., from “cat”- to “chat”- ) of vision-language models. I

elaborate the model details in the following sections.

6.3.2 Prior Work

Cross-lingual Transfer Cross-lingual transfer has proven effective in many NLP tasks including

dependency parsing (Schuster et al., 2019), named entity recognition (Rahimi et al., 2019),

sentiment analysis (Barnes et al., 2019), document classification (Schwenk and Li, 2018), and

question answering (Lewis et al., 2020; Artetxe et al., 2020). Recently, XTREME (Hu et al., 2020)

was proposed to evaluate the cross-lingual transfer capabilities of multilingual representations

across a diverse set of NLP tasks and languages. However, a comprehensive evaluation of

multilingual multimodal models on zero-shot cross-lingual transfer capabilities is still missing. To

my best knowledge, my work in this thesis is the first attempt to investigate and improve zero-shot

cross-lingual transfer of vision-language models.

6.3.3 Multilingual Multimodal Transformers

I consider the problem of learning multilingual multimodal representations from a corpus C of

video-text pairs {(xi, vi)}Ci=1, where vi is a video clip and xi is its corresponding text (caption or

transcription) that is written in one of K languages. My goal is to learn a shared multilingual text

encoder cx = Φ(x) and a video encoder cv = Ψ(v), both of which project the input to a shared

D-dimensional embedding space cv, ct ∈ RD, where semantically similar instances (i.e., paired
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Figure 6.4: An overview of my video-text model for learning contextual multilingual multimodal

representations. I utilize intra-modal, inter-modal, and conditional cross-lingual contrastive

objectives to align (x, v, y) where x and y are the captions or transcriptions in different languages

of a video v. TP: Transformer pooling head.

(xi, vi)) are closer to each other than the dissimilar ones (i.e., (xi, vj), i 6= j). In the following, I

denote a batch of multilingual text-video samples as B = {(xi, vi)}Bi=1} where B ⊂ C.

Figure 6.4 gives an overview of the proposed method. My text encoder consists of a multilin-

gual Transformer (e.g. multilingual BERT (Devlin et al., 2019a)) and a text Transformer pooling

head (explained below). Similarly, my video encoder consists of a 3D-CNN (e.g. R(2+1)D

network (Tran et al., 2018)) and a video Transformer pooling head. I use these multilingual

multimodal Transformers to encode text and video for alignment.

Unlike prior multilingual text-image models (Gella et al., 2017; Kim et al., 2020; Huang

et al., 2019b) that utilize word embeddings and RNNs, my multilingual text encoder is built on

a multilingual Transformer that generates contextual multilingual representations ex ∈ RN×D

to encode a sentence x containing N words. I employ an additional 2-layer Transformer which

I will call a “Transformer pooling head (TP)” as it serves as a pooling function to selectively

encode variable-length sentences and aligns them with the corresponding visual content. I use the

first output token of the second Transformer layer as the final sentence representation. Precisely,

I set cx = Trans(2)x (query=key=value=ex)[0] where Trans(2)x is a 2-layer stack of Transform-

ers (Vaswani et al., 2017) with ex as the (query,key,value) in the multi-head attention. Note that I

use the same text encoder to encode sentences in all languages.

For encoding videos, my model uses pre-trained 3D-CNNs that encode spatial-temporal

context in a video. For a M -second video v, I apply R(2+1)D (Tran et al., 2018) and S3D (Miech

et al., 2020) networks to its frames, concatenate network outputs, and apply a linear layer to

encode the visual input, ev ∈ RM×D, to the model. Similarly to the text part, I employ a

two-layer Transformer as the pooling head to encode videos with different lengths into fixed-
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length representations. Formally, I set cv = Trans(2)v (query=key=value=ev)[0]. Since videos

are typically long and have a high frame rate (e.g., 30 fps), it is infeasible to update 3D-CNNs

simultaneously and therefore, I use pre-extracted video features. My model is parameterized by

θ = θmBERT ∪ θTransx ∪ θTransv .

Multilingual Text-Video Alignment For learning multimodal representations, the common

practice is to minimize a contrastive objective to map the associated (video, text) embeddings to

be near to each other in a shared embedding space. The inter-modal max-margin triplet loss has

been widely studied in video-text (Yu et al., 2018; Liu et al., 2019) and image-text (Kim et al.,

2020; Burns et al., 2020; Huang et al., 2019b) research. In this work, I generalize and model all

inter-modal, intra-modal, and cross-lingual instances with a noise contrastive estimation objective

(NCE) (Gutmann and Hyvärinen, 2010; van den Oord et al., 2018; Chen et al., 2020b).

Inter-modal NCE Let X and V denote the subsets of the sampled sentences in multiple languages

and videos in B, respectively. And let s(a, b) = aT b
‖a‖‖b‖ be the cosine similarity measure. I use an

(inter-modal) NCE objective defined as:

L(X ,V) = − 1

B

B∑
i=1

log`NCE(Φ(xi),Ψ(vi)), (6.5)

where

`NCE(cx, cv) =
es(cx,cv)

es(cx,cv) +
∑

(x′,v′)∼N e
s(cx′ ,cv′ )

(6.6)

In inter-modal NCE, Linter = L(X ,V), the noiseN is a set of “negative” video-text pairs sampled

to enforce the similarity of paired ones are high and and those do not are low. Following Miech

et al. (2020), I set the negatives of (xi, vi) as other xj and vj, j 6= i in B.

Intuitively, inter-modal NCE draws paired (semantically similar) instances closer and pushes

apart non-paired (dissimilar) instances. Note that I do not distinguish language types in X and

the sentences in all possible languages will be drawn towards their corresponding videos in the

shared multilingual text-video embedding space.

Intra-modal NCE Beyond cross-modality matching, I leverage the intra-modal contrastive

objective to learn and preserve the underlying structure within the video and text modality. For

example, Corgi should be closer to Husky than Balinese. Prior image-text work (Gella et al.,

2017; Huang et al., 2019c) utilizes a triplet loss to maintain such neighborhood relationships.

Inspired by recent success in self-supervised image and video representation learning (Yalniz

et al., 2019; Ghadiyaram et al., 2019), my model leverages intra-modal NCE that constrains the
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learned representations to be invariant against noise and to maintain the within-modality structure

simultaneously. I minimize the following intra-modal NCE loss:

Lintra = L(X ,Xm) + L(V ,Vm), (6.7)

where Xm and Vm are the noised version of the original sentences and videos. For noising, I

randomly mask 5% of the multilingual text tokens and video clips. I optimize my model by

min
θ
Linter + Lintra (6.8)

When Visually-Pivoted Multilingual Annotations Are Available In many multilingual mul-

timodal datasets, there are sentences in different languages that describe a shared visual context.

For example, 10 English and 10 Chinese descriptions are available for each video in VATEX.

With these visually-pivoted (weakly paralleled) sentences (x, y), I further revise the contrastive

objectives to leverage this additional supervisory signal. Given a visually-pivoted corpus Cp

that contains all possible combination of visually-pivoted pairs {(xi, vi, yi)}Cp

i=0, I sample batches

Bp = {(xi, vi, yi)}B
p

i=1,Bp ⊂ Cp and revise the contrastive objective as:

Linter = L(X ,V) + L(Y ,V) (6.9)

Lintra = L(X ,Xm) + L(Y ,Ym) + L(V ,Vm) (6.10)

Visual-pivoted Cross-lingual NCE Inspired by Translation Language Modeling (TLM) in

XLM (Lample and Conneau, 2019), I propose a multimodal TLM-like contrastive objective

which promotes alignments of descriptions in different languages that describe the same video. I

use the intuition that conditioned on a video, the descriptions (need not to be translation pairs) in

different languages would likely be semantically similar. To this end, I set the cross-lingual NCE

as:

Lcross = L(X|V ,Y|V) (6.11)

For visually-pivoted sentences, as shown in Figure 6.4, I generate their representations

conditioned on the video they describe. I extend the key and value of multihead attention with the

additional visual content ev and generate new cx|v and cy|v for matching. Specifically, my model

employs cx|v = Trans(2)x (query=ex, key=value=ex||ev)[0]. With the access to (visually-pivoted)

multilingual annotations, I optimize my model by

min
θ
Linter + Lintra + Lcross (6.12)
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ya fries ya Kifaransa unaweza pia kuandamana nayo

también la voy a acompañar con un poco de papas fritas
und dann ziehen Sie es so fest wie möglich是什么，它是热风枪，我花了十美元买了

It will also be accompanied with a little of french fries

а затем потяните его как можно плотнееWhat it is, is a heat gun and I got this for ten bucks

00:00:37.160 --> 00:00:48.860

we just made our six-sided coaster so

and then pull it as tight as possible

nous venons de faire notre caboteur à six côtés donc ce que 

00:11:36.380 --> 00:11:44.390

00:08:35.289 --> 00:08:39.300

von Pommes Frites können Sie es auch mit begleiten

khoai tây chiên bạn cũng có thể đi kèm với nó

00:01:16.290 --> 00:01:21.210

Figure 6.5: Video clips and the corresponding multilingual subtitles in Multi-HowTo100M.

At the inference time, I simply apply cx = Φ(x) and cv = Ψ(v) to encode multilingual text

queries and videos. For text-to-video search, I sort videos according to their cosine similarity

scores to the text query.

6.3.4 The Multilingual HowTo100M Dataset

As large-scale pre-training has been shown important in recent NLP and vision-language models,

I construct the Multilingual HowTo100M dataset (Multi-HowTo100M) to facilitate research in

multilingual multimodal learning. The original HowTo100M (Miech et al., 2019) dataset is a

large-scale video collection of 1.2 million instructional videos (around 138 million clips/segments)

on YouTube, along with their automatic speech recognition (ASR) transcriptions as the subtitles.

For each video in HowTo100M, I crawl and collect the multilingual subtitles provided by YouTube,

which either consist of user-generated subtitles or those generated by Google ASR and Translate

in the absence of user-generated ones. Essentially, I collect video subtitles in 9 languages: English

(en), German (de), French (fr), Russian (ru), Spanish (es), Czech (cz), Swahili (sw), Chinese (zh),

Vietnamese (vi).

At the time of dataset collection (May 2020), there are 1.1 million videos available, each with

subtitles in 7-9 languages. The video length ranges from 1 minute to more than 20 minutes. I utilize

Multi-HowTo100M for multilingual multimodal pre-training to exploit the weak supervision from

large-scale multilingual text-video data. In Figure 6.5, I provide a visualization of few instances

sampled in Multi-HowTo100M with the corresponding video frame, timestamp, and transcriptions

in different languages. Please refer to Appendix for more details and dataset statistics.
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6.3.5 Empirical Evaluation

In this section, I first describe my experimental setup (§6.3.5-6.3.5). In §6.3.5, I conduct ablation

studies to validate the effectiveness of proposed multilingual text-video model . With the best

models at hand, I investigate their zero-shot cross-lingual transferability in §6.3.6, where I

showcase that the proposed multilingual multimodal pre-training serves as the key facilitator.

I then verify the superior text→video search performance of the proposed method under the

monolingual, multilingual, and cross-modality settings in §6.3.7.

Evaluation Datasets

MSR-VTT (VTT) (Xu et al., 2016) contains 10K videos, where each video is annotated with 20

captions. Additionally, I created pseudo-multilingual data by translating the English captions into

8 languages with off-the-shelf machine translation models.1 I use the official training set (6.5K

videos) and validation set (497 videos). I follow the protocol in Miech et al. (2019); Liu et al.

(2019) which evaluates on text→video search with the 1K testing set defined by Yu et al. (2018).

VATEX (Wang et al., 2019) is a multilingual (Chinese and English) video-text dataset with 35K

videos. Five (en,zh) translation pairs and five non-paired en and zh descriptions are available for

each video. I use the official training split (26K videos) and follow the testing protocol in Chen

et al. (2020a) to split the validation set equally into 1.5K validation and 1.5K testing videos.

Multi30K (Elliott et al., 2016) is a multilingual extension of Flickr30K (Young et al., 2014). For

each image, there are two types of annotations available: (1) One parallel (English,German,French,Czech)

translation pair and (2) five English and five German descriptions collected independently. The

training, validation, and testing splits contain 29K, 1K, and 1K images respectively.

Implementation Details

For the video backbone, I use a 34-layer, R(2+1)-D (Tran et al., 2018) network pre-trained

on IG65M (Ghadiyaram et al., 2019) and a S3D (Miech et al., 2020) network pre-trained on

HowTo100M. I pre-extract video features and concatenate the two 3D-CNN outputs to form

ex ∈ RM×1024 as a video input.

For the text backbone, I use multilingual BERT (mBERT) (Devlin et al., 2019a) or XLM-

Roberta-large (XLM-R) (Artetxe et al., 2020), where the latter achieves near SoTA zero-shot

cross-lingual transfer performance for NLP tasks. Following Hu et al. (2020), instead of using

1https://marian-nmt.github.io/
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Text-B Video-B R@1↑ R@5↑ R@10↑

XLM-R S3D 19.5 49.0 62.8

XLM-R R(2+1)D 19.0 49.5 63.2

XLM-R R+S 21.0 50.6 63.6
mBERT R+S 19.9 49.8 62.5

Table 6.7: Text and Video (B)ackbone comparison.

the top layer, I output the 12-th layer in XLM-R and mBERT. For vision-language tasks, I freeze

layers below 9 as this setup empirically performs the best.

My model employs a 2-layer Transformer with 4-head attention for the text and video

transformer pooling (TP) modules. The embedding dimension D is set to 1024. I use the

Adam (Kingma and Ba, 2014) optimizer and a 0.0002 learning rate to train my model for 16

(pre-training) and 10 (fine-tuning) epochs. The softmax temperature in all noise contrastive

objectives is set to 0.1.

Experimental Setup

I use Multi-HowTo100M for multilingual multimodal pre-training (MMP). For each video, I

randomly sample the start and end time to construct a video clip. For a video clip, I randomly

sample one language type each time from 9 languages and use the consecutive ASR transcriptions

that are closest in time to compose (text-video) pairs for training. For simplicity and speed

purposes, I follow the training protocol of XLM-R to pre-train on a multilingual corpus wihtout

using translation pairs, i.e., I use multilingual text-video pairs (x, v) but no translation pairs from

Multi-HowTo100M and utilize only inter- and intra-modal NCE (Eq. 6.5-6.7) for MMP.

I fine-tune the model on VTT, VATEX, and Multi30K to evaluate on text→video search tasks.

In the zero-shot cross-lingual transfer experiments, I use only English-video data and fine-tune

with Eq. 6.5-6.7. I then test the model with non-English queries. When annotations in additional

languages are available (by humans in VATEX and Multi30K; by MT models (i.e., translate-train)

in VTT), I utilize all available multilingual annotations (i.e., fully supervised) and iterate over all

possible (x, v, y) pairs to train with Eq. 6.9-6.11 to demonstrate the strong performance target

for evaluating zero-shot cross-lingual transfer on VTT and to compare fairly with other fully-

supervised baselines in multilingual text→video search on VATEX and Multi30K. I report the

standard recall at k (R@k) metrics (higher is better).
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T layers V layers R@1↑ R@5↑ R@10↑

1 1 20.0 50.3 63.2

2 1 20.1 50.5 63.8

2 2 21.0 50.6 63.6

2∗ 2∗ 20.7 50.5 63.3

4 4 20.8 50.4 63.8

Table 6.8: Architecture comparison. Number of multilingual multimodal transformer layers.
*:Weight sharing between video and text transformers.

Objective Inter Intra Cross R@1↑ R@5↑ R@10↑

Triplet X 13.3 36.0 55.2

Triplet X X 20.9 49.3 63.0

NCE X 21.4 49.3 61.1

NCE X X 21.0 50.6 63.6

NCE* X X 21.3 50.7 63.5

NCE* X X X 21.5 51.0 63.8

Table 6.9: Objective comparison. *Training with additional machine translated de-video and

fr-video pairs.

Comparison Experiments and Ablations

In this section, I ablate and compare different text/video encoders, Transformer model architec-

tures, and learning objectives for English→video search on VTT.

Text and Video Encoders. Table 6.7 compares different text and video encoder backbones. For

the visual encoders, while R(2+1)D outperforms S3D, the simple concatenation (i.e., early-fusion)

of their output features provides a 1.5 ∼ 2.0 improvement in R@1. For the text encoder, XLM-R

significantly outperforms mBERT.

Transformer Pooling. Table 6.8 compares various configurations of the proposed Transformer

pooling module. I observe that a simple 2-layer Transformer achieves the best performance.

Weight sharing of the video and text Transformer slightly degrades the performance. Therefore, I

choose to separate them.

Learning Objective. From Table 6.9, the intra-modal contrastive objective is important for both

NCE and Triplet loss. In general, the NCE loss outperforms the Triplet loss. The proposed inter-

modal and intra-modal NCE objective achieves the best performance. When captions in multiple
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Model en de fr cs zh ru vi sw es Avg↑

mBERT 19.9 11.1 11.6 8.2 6.9 7.9 2.7 1.4 12.0 9.1

mBERT-MP 20.6 11.3 11.9 8.0 7.1 7.7 2.5 1.1 12.5 9.2

mBERT-MMP 21.8 15.0 15.8 11.2 8.4 11.0 3.7 3.4 15.1 11.7

XLM-R 21.0 16.3 17.4 16.0 14.9 15.4 7.7 5.7 17.3 14.7

XLM-R-MP 23.3 17.4 18.5 17.1 16.3 17.0 8.1 6.2 18.5 15.8

XLM-R-MMP 23.8 19.4 20.7 19.3 18.2 19.1 8.2 8.4 20.4 17.5

mBERT + translated VTT 19.6 18.2 18.0 16.9 16.2 16.5 8.4 13.0 18.5 16.1

mBERT-MMP + translated VTT 21.5 19.1 19.8 18.3 17.3 18.3 8.9 14.1 20.0 17.4

XLM-R + translated VTT 21.5 19.6 20.1 19.3 18.9 19.1 10.3 12.5 18.9 17.8

XLM-R-MMP + translated VTT 23.1 21.1 21.8 20.7 20.0 20.5 10.9 14.4 21.9 19.4

Table 6.10: Recall@1 of multilingual text→video search on VTT. Upper: Zero-shot cross-

lingual transfer. Lower: Performance with synthesized pseudo-multilingual annotations for

training. MMP: multilingual multimodal pre-training on Multi-HowTo100M. MP: Multimodal

(English-Video) pre-training on HowTo100M.
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Figure 6.6: R@1 trends in languages used for multilingual multimodal pre-training. Left:

English→video search. Right: Zero-shot German→video search.

languages are available, cross-lingual NCE additionally provides a consistent improvement.

6.3.6 Zero-Shot Cross-Lingual Transfer

Table 6.10 shows the multilingual text→video search results on VTT. With the best English-video

models at hand (with either mBERT or XLM-R as the text backbone), I first investigate how well
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Figure 6.7: Qualitative multilingual (en, ru, vi, zh) text→video search results on VTT.

these models transfer to other non-English languages under the zero-shot setting. I then analyze

the benefit of the proposed multilingual multimodal pre-training.

The upper section shows the zero-shot results. Unlike cross-lingual transfer in NLP tasks,

employing multilingual Transformers in vision-language tasks apparently does not generalize

well across languages. For example, there is a significant drop in R@1 (19.9→11.1 (-44%)

with mBERT, 21.0→16.3 (-24%) with XLM-R) when directly applying English-finetuned model

to German→video search. For comparison, there is only a -10% degradation for XLM-R on

en → de cross-lingual transfer in XNLI (Conneau et al., 2018b). Multimodal (English-video)

pre-training (MP) on HowTo100M only improves average R@1 (+0.1 or mBERT and +1.1 for

XLM-R) compared to model-from-scratch. In contrast, the proposed multilingual multimodal

pre-training (MMP) is shown to be the key facilitator for zero-shot cross-lingual transfer. MMP

improves German→Video search (11.1→15.0, +35% for mBERT, and 16.3→19.4, +20% for

XLM-R) and achieves 2.6 ∼ 2.8 improvement in average R@1. I attribute the effectiveness

of MMP to learning improved alignments between multilingual textual and visual context in

the shared embedding space, as relatively balanced improvements between English→video and

non-English→video is observed with fine-tuning.

Figure 6.6 demonstrates the trend of R@1 while incrementally incorporating additional

languages for MMP. For XLM-R, the improvement in R@1 asymptotically converges when pre-

training with more multilingual text-video pairs. On the other hand, for zero-shot German→video

search, pre-training with more languages keeps improving the search performance, even though

the additional language (e.g., French) is different from the target language (i.e., German).

The lower section of Table 6.10 shows the results of models fine-tuned with (synthesized)

pseudo-multilingual annotations. It can be regarded as the translate-train scenario, which serves as

a strong performance target for evaluating zero-shot cross-lingual transfer, as discussed in (Lample

and Conneau, 2019; Hu et al., 2020). Both mBERT and XLM-R yield better performance across

non-English languages with the in-domain translated pseudo-multilingual annotations. However,
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for English→video search, a 0.7 degradation is observed compared to the zero-shot setting. It is

likely due to the noise in the translated captions. Notably, there is still a performance gap between

zero-shot and translate-train settings for models with mBERT. In contrast, the gap is much smaller

for models with XLM-R. In the following sections, I refer Ours-MMP as my best model with

XLM-R as the text backbone and compare it with other state-of-the-art methods.

Qualitative Results

Figure 6.7 shows the multilingual text→video search results with Ours-MMP (VTT:en-only) on

VTT under the zero-shot setup. Note that only one shared English-finetuned model is used for

text→video search in all languages. As demonstrated, the proposed model successfully retrieves

the correct videos with English (en) and Russian (ru) queries. The other top-ranked videos also

share similar visual appearance to the correct one. For zero-shot transferring of the English-

finetuned model to distant languages such as Vietnamese (vi) and Chinese (zh), I observe that there

is still limitation for the zero-shot models to understand abstract concepts (e.g., “space project”)

and associate small objects (e.g., “microphone”) with the text queries in distant languages.

6.3.7 Comparison to Supervised State of the Art

Model R@1↑ R@5↑ R@10↑

JSFusion (Yu et al., 2018) 10.2 31.2 43.2

JPoSE (Wray et al., 2019) 14.3 38.1 53.0

VidTrans† (Korbar et al., 2020) 14.7 − 52.8

HT100M† (Miech et al., 2019) 14.9 40.2 52.8

Noise† (Amrani et al., 2020) 17.4 41.6 53.6

CE2 (Liu et al., 2019) 20.9 48.8 62.4

Ours(VTT:en-only) 21.0 50.6 63.6

Ours-MMP (VTT:en-only) 23.8 52.6 65.0

Table 6.11: English→video search performance on VTT. †: Models with pre-training on

HowTo100M.
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English to Video Chinese to Video

Model R@1↑ R@5↑ R10↑ R@1↑ R@5↑ R@10↑

VSE (Kiros et al., 2014) 28.0 64.3 76.9 - - -

VSE++ (Faghri et al., 2018) 33.7 70.1 81.0 - - -

Dual (He et al., 2016a) 31.1 67.4 78.9 - - -

HGR (Chen et al., 2020a) 35.1 73.5 83.5 - - -

Ours (VATEX:en-only) 43.5 79.8 88.1 23.9 55.1 67.8

Ours-MMP (VATEX:en-only) 44.4 80.5 88.7 29.7 63.2 75.5

Ours-MMP (VATEX:en, zh) 44.3 80.7 88.9 40.5 76.4 85.9

Table 6.12: Multilingual text→video search on VATEX.

English→Video Search on VTT

Table 6.11 shows the comparison of English→video models on VTT. For a fair comparison to

other baselines, my model fine-tunes only with the original English annotations on VTT. The

results show that my model outperforms other baselines by a large margin. Specifically, my model

achieves 8.9 R@1 improvement over the original HowTo100M model (Miech et al., 2019) and

other recent baselines with pre-training on HowTo100M. Using a smaller set of visual features

and training on a smaller (6,513 vs 9,000) training set2, my model also outperforms CE (Liu et al.,

2019) with or without pre-training.

Multilingual Text→Video Search on VATEX

Table 6.12 summarizes English→video and Chinese→video search performance on the VATEX

dataset. As observed, my model generalizes well across distant languages (English and Chinese).

Under the zero-shot setting where I train with only English-video pairs, my model already

outperforms other baselines. However, a clear performance gap between English→video and

Chinese→video search is observed, indicating that cross-lingual transfer to a distant language

remains challenging even with XLM-R. With the proposed MMP, the gap is significantly closed

by 5.8/8.1/7.7 in R@1/5/10. When in-domain human-annotated Chinese captions are available,

the performance of my model can further be improved for both languages and it yields new

state-of-the-art performance.

2CE uses 9,000 videos (VTT training and part of exclusive testing set) for training, while other baselines and my

model in Table 6.11 are trained on the official VTT training set which contains 6,513 videos.
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M30K English to Image German to Image Czech to Image

Model # lang. R@1↑ R@5↑ R10↑ R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑

OE (Vendrov et al., 2015) 2 21.0 48.5 60.4 25.8 56.5 67.8 - - -

VSE++ (Faghri et al., 2018) 2 31.3 62.2 70.9 39.6 69.1 79.8 - - -

Pivot (Gella et al., 2017) 2 22.5 49.3 61.7 26.2 56.4 68.4 - - -

FB-NMT (Huang et al., 2020a) 2 47.3 75.4 83.5 37.0 64.0 73.1 - - -

MULE (Kim et al., 2020) 4 42.2 72.2 81.8 35.1 64.6 75.3 37.5 64.6 74.8

SMALR (Burns et al., 2020) 10 41.8 72.4 82.1 36.9 65.4 75.4 36.7 68.0 78.2

MHA-D (Huang et al., 2019b) 2 50.1 78.1 85.7 40.3 70.1 79.0 - - -

Ours (M30K:en-only) 1 48.4 78.3 85.9 31.4 61.1 72.6 33.2 65.2 76.1

Ours-MMP (M30K:en-only) 1 50.0 79.2 86.8 33.8 63.3 74.7 37.9 68.8 78.2

Ours-MMP (M30K:en, de, cs, fr) 4 51.6 80.1 87.3 45.1 75.6 85.0 46.6 75.9 83.4

Table 6.13: Multilingual text→image search on Multi30K. MMP: Multilingual multimodal

pre-training.

Cross-Modality Transfer to Multi30K: From Video-Text to Image-Text

To extend my study on zero-shot cross-lingual transfer for image-text tasks, I investigate the

feasibility of transferring my video-text model across modalities. I replace the 3D-CNN in the

original video-text model with a 2D-CNN to encode the image. In practice, following MHA-

D (Huang et al., 2019b), I utilize the Faster-RCNN (Ren et al., 2015) pre-trained in Visual

Genome (Krishna et al., 2017b) to extract regional visual features. Essentially, an image is

encoded as ev = RM×H where M = 36 is the maximum number of visual objects in an image.

For models with MMP, I initialize their weights with the model pre-trained on Multi-HowTo100M.

To tackle the feature mismatch between 2D-CNN and 3D-CNN, I leverage a linear layer with a

doubled learning rate to map 2D-CNN features to the same dimension as 3D-CNN features.

Table 6.13 shows the results on Multi30K. For zero-shot cross-lingual transfer, when trained

from scratch (M30K:en-only), my model achieves comparable performance to MHA-D but lags

in German→image search since it only uses English annotations. In Ours-MMP, pre-training

improves all recall metrics even with modality gap. The average R@1 improvement is 3.2. A

larger gain for (relatively) low-resource language such as Czech is observed. Without using any

Czech annotations, my zero-shot model with MMP achieves comparable Czech→image search

performance to SMALR (Burns et al., 2020), which uses 10 languages including Czech. However,

when transferring across modalities and using only English annotations, there are performance

gaps between English→Image and German/Czech→Image search, implying that transferring

models across modalities is feasible but remains challenging. I consider zero-shot cross-modal

79



cross-lingual transfer as the future work.

For a fair comparison with other baselines, when trained with annotations in all 4 languages

provided by Multi30K, my model greatly outperforms all baselines by large margins in multilin-

gual text→image search. Notably, English→image search performance can further be improved

by training with multilingual annotations.

6.4 Summary

In this chapter, I presented methods for large-scale pre-training of multilingual text-video repre-

sentations. I firstly targeted analyzing the bottlenecks of contrastive video-text representation and

provide a generative captioning objective to encourage sharing of video semantics to alleviate

the bottlenecks in contrastive learning that could be too strict for video-text. This simple idea

ensures that representations are not overly specialized to individual samples, are reusable across

the dataset, and results in representations that explicitly encode semantics shared between samples,

unlike noise contrastive learning. The proposed method outperforms others by a large margin on

MSR-VTT, VATEX, ActivityNet, and MSVD for video-to-text and text-to-video retrieval.

I then constructed multilingual multimodal transformers to additionally model videos with mul-

tilingual captions and propose a pre-training strategy on my newly collected Multi-HowTo100M

dataset to learn contextual multilingual multimodal representations and to promote cross-lingual

generalizations of vision-language models. The results have convincingly demonstrated that

multilingual multimodal pre-training is an essential ingredient for zero-shot cross-lingual transfer

of vision-language models.

For future work, there are many remaining challenges, such as resolving the performance gap

between zero-shot and training with in-domain non-English annotations; as well as techniques

to transfer varieties of vision-language models (e.g., VQA (Goyal et al., 2017), TVQA (Lei

et al., 2020)) or visually-enhanced NLP models such as unsupervised multimodal machine

translation (Huang et al., 2020b). I believe the proposed methodology, and the corresponding

resources I released, will spur more research in this direction.
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Chapter 7

Multilingual Multimodal Fine-tuning
under Limited Supervision

7.1 Overview

In the previous Chapter §6, I have presented my methods for task-agnostic pre-training multilin-

gual multimodal representations with large-scale uncurated data (videos and the corresponding

(multilingual) captions) and studied zero-shot cross-lingual transfer of vision-language models. In

this chapter, I address the challenges of multilingual multimodal fine-tuning on the end task. In the

real-world scenario, English annotations in a multimodal dataset may be scarce due to data privacy

or the cost of hiring annotators. Besides, most of the multimodal datasets are English-centered and

not multilingual. Developing robust methods that learn under limited English and non-English

supervision is therefore critical in multilingual multimodal fine-tuning.

As depicted in the roadmap (Fig. 1.1), in this chapter, I firstly develop a method to alleviate

the side-effects of lacking English-vision annotations in cross-modal retrieval (section §7.2).

The proposed adversarial attentive alignment model (A3VSE) leverages visual semantics and

adversarial learning to alleviate the introduced heterogeneous domain gaps. It improves the

robustness when learning under sparse English-vision annotations.

Meanwhile, to enable multilingual multimodal fine-tuning with English-only annotations,

which is the common case for most vision-language datasets, I propose to use multimodal machine

translation (MT) models to translate training data into non-English languages for multilingual

multimodal fine-tuning. As illustrated in the thesis roadmap, I build two types of multimodal MT

models: supervised multimodal MT and unsupervised multimodal MT.
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In section §7.3, I investigate various approaches to incorporate visual content for MT and show

that the visual information, which is available in vision-language tasks and datasets, is crucial

to improve text-only MT. Albeit it could feasible to use off-the-shelf multimodal MT models or

a parallel corpus to train such MT model for translate-train, in the real-world scenario, such a

model or a parallel corpus for training MT models may be unavailable for some languages. To

address this issue, in section §7.4 I introduce my unsupervised multimodal MT module that relies

on No parallel corpora for training the MT model.

The content in this chapter appears in:

1. “Annotation Efficient Cross-Modal Retrieval with Adversarial Attentive Alignment,” Po-

Yao Huang, Guoliang Kang, Wenhe Liu, Xiaojun Chang, Alexander G Hauptmann, ACM

MM 2019.

2. “Attention-based Multimodal Neural Machine Translation,” Po-Yao Huang, Frederick Liu,

Sz-Rung Shiang, Jean Oh, Chris Dyer, WMT 2016.

3. “Unsupervised Multimodal Neural Machine Translation with Pseudo Visual Pivoting,”

Po-Yao Huang, Junjie Hu, Xiaojun Chang, Alexander Hauptmann, ACL 2020.

7.2 Learning Multimodal Representations with Less Labels

7.2.1 Motivation

Recently, deep neural networks have made significant advancements for learning joint visual-

semantic embeddings (VSE) (Karpathy and Fei-Fei, 2015; Zheng et al., 2017; Huang et al., 2019d).

Such success largely attributes to the availability of large-scale, high-quality human-annotated

parallel corpora such as the MS-COCO (Lin et al., 2014) and Flickr30K (Young et al., 2014)

datasets. Necessarily, there are more than 610,000 and 150,000 annotated image-text pairs in

MS-COCO and Flickr30K, respectively. Although models trained with an affluent amount of

well-annotated multimodal pairs can achieve reasonable performance, such assumption does not

apply to the real-world scenario. For instance, forensic or medical image data D’souza Rhett

et al. (2020) are usually very limited and with a strict privacy-control protocol. Also, hiring

professionals to label class or verbally describe these data could be prohibitively costly. To this

end, developing methods that could learn with minimum supervision is critical to ensure the

robustness of these models.

To understand the impact of learning with limited supervision, I analyze cross-modal retrieval
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models and observe that these models struggle when only a limited amount of parallel annotations

are available. As shown in Fig. 7.1, recent VSE models (Vendrov et al., 2015; Faghri et al.,

2018; Nam et al., 2017; Lee et al., 2018) all suffer severe degeneration as the annotations become

sparsely available.

Figure 7.1: Performance degeneration of state-of-the-art cross-modal retrieval models in the

text-to-image retrieval task on Flick30K when learning with limited image-text supervision.

The sparse parallel corpus (Figure 7.2) is a practical scenario where a large collection of

visual data is available but only a small amount of them are annotated with corresponding text

descriptions. As annotations become more sparsely available, most recent VSE model experience

a severe performance degradation (see Fig. 7.1). To this end, I pose a challenging yet rewarding

question: Can I learn satisfactory visual-semantic embedding with a sparse parallel corpus?

Despite some recent progress (Kiros et al., 2014; Mithun et al., 2018b), learning with small a

amount of parallel data is still challenging and to be developed in urgent need.

A straightforward way to deal with a sparse parallel corpus is to utilize the machine-generated

semantics of the images directly. In (Mithun et al., 2018b), Mithun et al. proposed a webly

approach to utilize the global tags of the images. However, without handling the inevitable

domain gap between the natural language description and the machine-generated tags properly,
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?A child in a white and 
green soccer uniform 
kicks a white ball .

A black dog chasing a 
brown one .

white boat on glassy water 
with mountains in the 
background .

Annotated pairs

A Sparsely Annotated Parallel Corpus

Non-paired images

Figure 7.2: A sparsely annotated parallel corpus with abundant un-annotated images and limited

(image, natural language sentence) pairs.

the visual-semantic embedding learning could be negatively affected, which largely limits the

performance.

To circumvent these issues, inspired by the observation in (Anderson et al., 2018) where

bottom-up attention over regional objects aligns well with human’s visual system, I propose

to utilize “regional semantics” which correspond to the regions-of-interest in the un-annotated

images and leverage the textual sequences of them to form “pseudo” image-text pairs as the

additional weak supervision to conquer the sparsity of image-text annotation. Each regional

semantic consists of the category of visual object and its attributes (e.g., white cat) which can be

automatically extracted with object detection modules (Ren et al., 2015; Abdulla, 2017). With the

inferred regional semantics, I develop a novel method to learn the joint visual-semantic embedding

space from both the annotated pairs and the inferred pairs efficiently. To minimize the inherent

domain gaps between the annotated and un-annotated portion of visual and textual domains, I

further impose an attentive alignment with adversarial learning objectives to selectively improve

the correlation of semantically close components.

In the following, I first review the prior research and identify the unique contribution by this

thesis. I then formally define the problem setup and present the proposed adversarial attentive

alignment for learning VSE with synthesis image-text pairs. Finally, I showcase the empirical

evaluation and discuss the results.
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Figure 7.3: The proposed adversarial attentive alignment model (A3VSE) for sparsely annotated

multimodal corpora. My model incorporates pseudo “image-text” pairs (illustrated as the bottom

image-semantic pair) from the sequence of regional semantics of salient visual objects in un-

annotated images. The triplet objectives (colored in red) and adversarial objectives (colored in

blue) attend and align semantically correlated instances in the joint embedding space while closing

the heterogeneous domain gaps between the annotated/un-annotated portion of visual and textual

inputs.

7.2.2 Prior Work

Cross-Modal Retrieval with Limited Supervision. Jiang et al. (2018) propose a coupled dictio-

nary learning method to learn the class prototypes that utilize the discriminative information of

visual space to improve the less discriminative semantic space. Tsai et al. (2017) augment a typical

supervised formulation with unsupervised techniques for learning joint embeddings of visual

and textual data. To the best of my knowledge, the most relevant work to my work are (Gong

et al., 2014), where the authors resource meta data and image tags (i.e., global semantics) to

improve learning of the visual-semantic embedding space. The work in this thesis complements

prior work in two perspectives: First, I explore the feasibility of automatic regional semantics as

they are more similar to natural language descriptions and leverage them for training improved

sequential text encoder. Furthermore, I consider to close the inherent heterogeneous domain gaps

with adversarial attentive alignment.
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7.2.3 Problem Formulation

I consider a typical scenario where annotated image-text pairs are sparsely available, and un-

annotated images are abundant. Let Dl = {I1, · · · , INl
} be an annotated collection of instances

where each instance Ii = (v, t) consists of the image v and the corresponding natural language

description t. Let Du = {vu1 , · · · , vuNu
} denotes the collected but un-annotated images. I name

D = Dl ∪ Du where Nl << Nu, as a sparse parallel corpus. I aim to utilize the un-annotated

data Du, together with the annotated data Dl, to learn better visual-semantic embeddings.

7.2.4 Adversarial Attentive Alignment for Improving VSE

Fig. 7.3 illustrates the proposed adversarial attentive alignment model for learning visual-semantic

embeddings (A3VSE). The proposed model jointly leverages the strong supervision from the

annotated image-text pairs and the weak supervision from the inferred image-semantics pairs.

Furthermore, A3VSE employs attentive adversarial objectives to selectively align entities from

the annotated and un-annotated portion of visual and textual inputs and narrow the domain gaps

in between.

For encoding context in each modality, I apply an attention network that focuses on specific

encoded regions/ tokens of inputs with respect to the global context from the same modality. I

leverage a K-head context-aware attention network to capture the interactions between encoded

entities and select informative ones for cross-modal alignment.

Image and Text Encoders

Let F v and F t denote the visual feature extractor and the textual feature extractor, respectively.

I model F v as a fixed object detection model (e.g., Faster-RCNN), followed by a trainable

fully-connected layer for mapping raw visual features in Faster-RCNN into a H-dimension joint

embedding space. On the other hand, F t encodes the word tokens in a sentence with a word

embedding matrix, followed by a trainable long short-term memory (LSTM) network to model

the sequential text inputs. Note that the encoders F v and F t are shared among Dl and Du.

The visual feature of an image v is encoded as V = F v(v) = [v1, · · · ,vN ] ∈ RH×N , where

N is the maximum number of region-of-interest. Similarly, a sentence t = [t1, · · · , tM ] is encoded

as T = F t(t) = [t1, · · · , tM ] ∈ RH×M , where M is the maximum sentence length. (Vi,Ti)

represents an annotated feature pair.

For vu ∈ Du, I utilize an object detector (Faster RCNN (Ren et al., 2015)) to extract sequences
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of regional semantics (as text tokens, s = [s1, · · · , sM ]) and generate image-semantic pairs

(V u
i ,Si). The regional semantics are the word tokens of attribute and the class name of the objects

detected from an image vu (e.g., “blue car”). The detected textual tokens are sorted by their

object-wise confidence scores. I concatenate the regional semantics into one sentence, and then

encode it as S = [s1, · · · , sM ] ∈ RH×M via the shared F t.

Given the feature representations (i.e., the visual features V or the texture features T ), the

attentive encoder can be written as (I take visual features as an example):

Ev(V ) = [W v
0 V

>,W v
1 V

>, · · · ,W v
K−1V

>] (7.1)

where

W v
ik =

exp (λvα
v
ik)∑

i′ exp (λvαvi′k)
,

αvik = tanh(P v
k

1

M v

∑
i′

vi′)
> tanh(Qv

kvi).

The W v
k ∈ R1×Mv , and P v

k ,Q
v
k ∈ RK′×H , k ∈ {0, 1, · · · , K − 1} are the parameters of the

attentive encoderEv, i.e., θv−attn = {(W v
k ,P

v
k ,Q

v
k)|k ∈ {0, 1, · · · , K−1}}. The λv is a constant

temperature for the softmax function. The attentive encoder for the textural features (denoted

by Et(T )) works the same way but with independent parameters θt−attn = {(W t
k ,P

t
k ,Q

t
k)|k ∈

{0, 1, · · · , K − 1}}. Note that Et and Ev are shared among Dl and Du.

Thus, for an image v or vu, the instance-level feature representation can be extracted and

selectively encoded through Gv = Ev ◦ F v. Correspondingly, for the text description t or s,

the instance-level feature can be achieved by Gt = Et ◦ F t. I use θv = {θv−attn, θv−enc} and

θt = {θt−attn, θt−enc} to denote the trainable parameters of Gv and Gt, respectively.

Triplet Alignment

For learning the joint embedding space, I apply a hinge-based triplet ranking loss with hard

negative mining as in (Faghri et al., 2018) to align instance-wise paired visual-textual representa-

tions. Let (a, b) denotes a sampled image-text or image-semantic pair and S(a, b) is the cosine

similarity. Let b̂ = argmax
b−

S(a, b−) and â = argmax
a−

S(a−, b) denote the hard negatives in the

sampled batch. The triplet objective can be written as:

`p(A,B;α) =
1

L

L∑
i=1

{
[
α− S(ai, bi) + S(ai, b̂)

]
+

+
[
α− S(ai, bi) + S(â, bi)

]
+
}, (7.2)
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`NCE(A,B; θ) = −log
exp(sim(ai,bj)/τ)∑2N

k=1 I[k 6=i]exp(sim(ai,bj)/τ)
(7.3)

where |A| = |B| = L, [.]+ = max(0, .), and α is the margin between the similarity of positive

pair and that of hard-negative pair. Since annotated image-text pairs sampled from Dl are more

reliable than image-semantic pairs sampled from Du, I differentiate the strong supervision by the

former from the later with a hyper-parameter β. I model the triplet alignment objective as:

`tri = β`p(Gv(v), Gv(t);αvt) + (1− β)`p(Gv(vu), Gt(s);αvs) (7.4)

Attentive Domain Alignment

A3VSE takes four different types of data, i.e., V , T , V u, S which are regarded as samples from

four different domains. As shown in Fig. 7.3, I propose using adversarial training to minimize

the domain gaps among them. Specifically, I introduce six domain discriminators which are

parameterized by θvvu , θts, θvt, θvus, θvs, and θvut. On the one hand, they are trained to classify

samples into correct domains. On the other hand, I employ the gradient reversal layer (GRL)

(Ganin and Lempitsky, 2015) to the reverse the gradients propagated from these discriminators to

updateGv andGt to minimize the domain discrepancy. Such an adversarial process can effectively

diminish the discrepancy across different domains. Generally, the adversarial loss for aligning

two domains is

`d(A,B; θ) =
1

|A|

|A|∑
i=1

logDθ(ai) +
1

|B|

|B|∑
j=1

log(1−Dθ(bj)) (7.5)

where Dθ is the domain discriminator parameterized by θ. The A = {ai} and B = {bj} are the

mini-batch data sampled from two domains. The instantiations of a and b can be either two of

{Gv(v), Gv(vu), Gt(t), Gt(s)}. As shown in Fig. 7.3, I perform three types of domain alignments,

i.e., intra-modal alignment, Cross-modal alignment, and Transitive alignment, which are specified

in the following.

Intra-modal Alignment handles the domain gaps between the annotated and un-annotated

images, and annotated text descriptions and sequences of regional semantics. Specifically,

`intra = λvvu`
d(Gv(v), Gv(vu); θvvu)

+ λts`
d(Gt(t), Gt(s); θts) (7.6)
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Cross-modal Alignment aims at aligning the distribution of attended visual and textual features

for annotated image-text pairs and inferred image-semantic pairs. That is,

`cross = λvt`
d(Gv(v), Gt(t); θvt)

+ λvus`
d(Gv(vu), Gt(s); θvus) (7.7)

Transitive Alignment Transitive alignment minimizes the domain gap between annotated images

and sequences of regional semantics, and the domain gap between un-annotated images and

annotated text descriptions:

`trans = λvs`
d(Gv(v), Gt(s); θvs)

+ λvut`
d(Gv(vu), Gt(t); θvut) (7.8)

The overall adversarial objective for the attentive alignment is:

`adv = `intra + `cross + `trans (7.9)

And the final objective can be formalized as

`A3V SE = `adv + `tri (7.10)

Training and Inference. A min-max optimization is performed between the domain discrimina-

tors and attentive encoders:

(θv, θt) = argminθv ,θt`
A3V SE(θ)

(θadv) = argmaxθadv`
A3V SE(θ),

(7.11)

where θadv , (θvt, θvus, θts, θvvu , θvs, θvut). In each iteration, I sample a mini-batch of (v, t) from

Dl and (vu, s) from Du then follow the common practice in (Ganin and Lempitsky, 2015) of

adversarial training with GRL to optimize Eq. 7.10. At the inference stage, I extract the visual

embedding for image v and textual embedding for sentence t through Gv and Gt.

(θv, θt) = argminθv ,θt`
NCE(V ,V) + `NCE(T , T ) + `NCE(V , T )− `ADV (T , T ′)

(θadv) = argminθadv`
ADV (T , T ′),

(7.12)

Discussion. In A3VSE, attentive encoders and adversarial alignment cooperate to learn satisfac-

tory visual-semantic embeddings. On the one hand, attentive encoders emphasize the informative

part of the visual regions or textual entities, which helps adversarial training avoid misalignment

and learn more discriminative features; on the other hand, adversarial alignment contributes to

the improvement of attention mechanism of the attentive encoders in individual modalities which

otherwise may be biased by the less amount of parallel image-text data.
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7.2.5 Empirical Evaluation

I perform extensive experiments to confirm the superiority of the proposed A3VSE model

over competitive baselines with sparsely annotated multimodal corpora. I evaluate the learned

visual-semantic embeddings in cross-modal retrieval tasks on two standard benchmark datasets

(Flickr30K (Young et al., 2014) and MS-COCO (Lin et al., 2014)).I constrain the amount of

image-text annotations available in the training phase as an analogy to real-world scenarios where

annotations are typically sparsely available.

Sparse Flickr30K. For learning with limited parallel pairs on Flickr30K (Young et al., 2014),

I randomly shuffle once and trim the training set into 14,500 (50%), 5,800 (10%), and 2,900

(10%) subset of images. I sample 1, 2, and 5 text descriptions corresponding to those images.

The resulting sparse training set is with size 2,900 (2%) to 72,500 (50%) out of 145,000 (100%)

training image-text pairs in the original training split. The statistics of the new training splits

of sparse Flickr30K can be found in Table 7.1. The standard validation and testing are used for

model selection and testing.

Sparse MS-COCO. For MS-COCO (Lin et al., 2014), I follow the same procedure as performed

in Flickr30K and sample 5,664 (5%), 11,382 (10%), and 22,657 (20%) images along with 1, 2, 5

corresponding text descriptions. The statistics and the number of training pairs can be found in

Table 7.3. I report the testing performance on the whole 5,000 testing set.

Experimental Setup

I focus on the text-to-image retrieval task (searching images with a natural language description

as the query) and the image-to-text retrieval task (searching sentences with a query image) with

the learned visual-semantic embeddings. I train models under different levels of training sparsity.

Model selection and testing are with the full validation and the full testing set, respectively.

For all the baselines, I use their best single model settings and the code from their publicly

available Github repositories. Since there are much less paired training instances in the sparsely

annotated dataset, for fair comparison and in the prevention of under-fitting, I either keep the

number of (mini-batch) training iterations as 50% iterations of the full dataset or extend the

training epoch by 1.2x (for 50% annotations), 2.0x (20% annotations) and 2.5x (10% annotations).

Early stopping and learning rate adjustments in the baselines follow the same adjustment if

feasible.

Unsupervised baseline with image-level semantics: I build an unsupervised cross-modal re-

trieval baseline using NO parallel annotations. Image-level semantics (i.e.,, global semantics) of
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each image are extracted using pre-trained models from the following datasets:

1. Open Image (Kuznetsova et al., 2018): 5,000 semantics trained on 9 million images.

2. ImageNet Shuffle (Mettes et al., 2016), 12,073 classes defined in ImageNet.

3. Place365 (Zhou et al., 2014): 365 visual scene types.

4. Google Sports (Karpathy et al., 2014b): 478 sport-related semantics.

I remove duplicated semantic concepts, normalize the scores, and then merge them into a 16500-

dimension global semantic vector sg for each image. Each dimension can be referred to as a

semantic concept in the original dataset—for example, an “aquarium” in Place365.

For retrieval, I directly match image-level semantics (tags) to text. Specifically, I expand

the tokens in a sentence with the synsets defined in WordNet(Fellbaum, 1998) and construct a

16500-dimension k-hot query vector q, where k is the number of matched concepts. The matching

score is calculated as r = sTg q. This can be viewed as a simple unsupervised baseline using no

parallel annotations.

Implementation Details: For regional semantics in un-annotated images, I use the Faster RCNN

model in (Anderson et al., 2018) fine-tuned on Visual Genome (Krishna et al., 2017b) to extract

English attribute names and class names of the objects detected from an image. Specifically,

for every un-annotated image vuj ∈ Du, I generate sj = [sj1‖sj2 · · · ‖sj|ROI|] where “‖” is

concatenation and sk = [Attributek Classk] (e.g., “blue car”). There are 2,000 detectable objects

and attributes. These regional semantics are then sorted by the confidence scores and concatenated

as a text sequence. I group the image and the sequence and encode them as an image-semantic

pair (V u,S).

In the proposed model, I set the embedding dimension H to 512. All the context vectors share

the same dimension in the attention modules. Similar to (Zheng et al., 2017), I initialize word

embeddings with pre-trained Glove embeddings (Pennington et al., 2014). Other hyper-parameters

are set as follows: K = 3, αvt = 0.2, αvs = 0.3, β = 0.8, and γ = 2/(1 + exp(−ηp)) − 1 as

in (Ganin and Lempitsky, 2015) where η = 10 and p is linearly increased from 0 to 1 in

proportional to the training epoch. The hyper-parameters for the adversarial object is set as:

Intra-modal alignments:λvvu = 0.2, λts = 0.1; Cross-modal alignments:λvt = 0.5, λvus = 0.5;

Transitive alignments:λvut = λvs = 0.3.

Results on Sparse Flickr30K

Table 7.1 shows the testing results with various levels of training sparsity on Flickr30K. Comparing

the performance under the same percentage of annotations, the first interesting observation is
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Sparse Flickr30K Ours (A3VSE) SCAN (Lee et al., 2018) (SOTA)

%

Img

#

Sent

%

Ann

# Ann

Pairs

Text-to-Image Image-to-Text Text-to-Image Image-to-Text

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

10% 1/5 2% 2,900 20.7 46.0 58.5 27.6 56.2 68.1 2.0 7.2 11.7 5.1 16.0 22.9

10% 2/5 4% 5,800 28.1 55.6 66.9 42.0 69.7 79.0 16.1 35.7 46.5 18.9 39.8 53.9

10% 5/5 10% 14,500 32.0 60.1 71.0 46.8 72.8 80.7 24.6 48.1 59.3 25.9 56.3 70.9

20% 1/5 4% 5,800 29.1 56.4 68.1 43.3 71.0 81.8 17.2 37.5 47.5 21.2 44.4 55.0

20% 2/5 8% 11,600 32.6 61.6 72.3 44.8 72.7 82.8 28.4 54.0 64.6 39.0 68.0 78.6

20% 5/5 20% 29,000 34.9 64.4 73.6 48.4 77.0 85.1 29.3 56.9 68.3 42.1 71.8 81.3

50% 1/5 10% 14,500 36.7 65.1 75.9 51.6 78.7 85.7 29.5 56.3 67.3 40.2 72.2 81.4

50% 2/5 20% 29,000 42.9 70.5 80.3 61.4 83.7 89.4 33.9 61.3 71.4 46.8 75.2 84.5

50% 5/5 50% 72,500 44.5 73.8 83.3 60.9 85.7 91.6 39.2 67.5 77.2 52.6 80.3 87.5

Table 7.1: Performance comparison on the 1K testing set of Flickr30K. The models are trained

with the sparsely annotated training data as specified in the left column. % Img stands for the

percentage of training images available compared to original training images in Flickr30K. #

Sent stands for the number of paired text descriptions available for each image. %/# Ann is the

percentage/number of annotations used for training compared to the complete training annotations.

that generally speaking, it is preferred to have diverse images annotated than annotating a small

number of images with more text descriptions. With the same 10% annotations, it is better to

annotate 50% of images with one sentence each than 10% of images with five sentences. These

results suggest that regarding data collection and annotation, visual diversity is likely to be more

critical than textual diversity. Two cases of t-SNE visualization of the learned embedding are

shown in Fig. 7.4a and Fig. 7.4b.

Under all sparse training set settings, the proposed model outperforms the current state-of-the-

art cross-modal retrieval model (Lee et al., 2018) by a significant margin. Namely, 4.2 to 18.7

in R@1, 6.3 to 38.8 in R@5, and 5.3 to 46.8 in R@10 text-to-image retrieval tasks. Notably, a

greater improvement over the current best model is achieved when less pairwise annotations are

available. The improvements converge (but still outperforms) with more annotations available. A

similar trend can be observed for the image-to-text retrieval task. These results demonstrate that

the proposed A3VSE model can judiciously use regional semantics from un-annotated images for

training its encoders and effectively learn the visual-semantic embeddings.

As shown in Table 7.2, in comparison to other recent models DAN (Nam et al., 2017),

DPC (Zheng et al., 2017), and VSE++ (Faghri et al., 2018), the proposed model significantly

outperforms them in all scenarios. In terms of reducing annotation effort, the proposed A3VSE

model achieves competitive performance (with the criteria defined as R@10 ¿ 80.0%) trained on

only 20% annotations (23,200 pairs).
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Text-to-Image Image-to-Text

Model R@1 R@5 R@10 R@1 R@5 R@10

Flickr30K 0% Ann, 0 pairs

sg baseline 10.5 21.5 29.2 12.1 24.0 31.1

Flickr30K 10% Img, 5/5 Sent, 10% Ann, 14,500 pairs

DPC (Zheng et al., 2017) 8.5 26.0 40.9 11.8 45.5 66.0

DAN (Nam et al., 2017) 10.1 25.3 42.8 12.2 41.7 64.5

VSE++ (Faghri et al., 2018) 7.2 27.5 40.5 10.5 40.2 62.8

SCAN (Lee et al., 2018) 24.6 48.1 59.3 25.9 56.3 70.1

Ours (A3VSE) 32.0 60.1 71.0 46.8 73.2 80.7

Flickr30K 50% Img, 2/5 Sent, 20% Ann, 29,000 pairs

DPC (Zheng et al., 2017) 26.4 53.0 63.9 35.8 68.5 79.7

DAN (Nam et al., 2017) 26.9 52.3 64.8 37.2 69.9 78.2

VSE++ (Faghri et al., 2018) 27.3 54.5 66.0 33.5 65.2 78.2

SCAN (Lee et al., 2018) 33.9 61.3 71.4 46.8 75.2 84.5

Ours (A3VSE) 42.9 70.5 80.3 61.4 83.7 89.4

Flickr30K 100% Ann, 145,000 pairs

DPC (Zheng et al., 2017) 39.1 69.2 80.9 55.6 81.9 89.0

DAN (Nam et al., 2017) 39.4 69.2 79.1 55.0 81.8 89.5

VSE++ (Faghri et al., 2018) 39.6 70.1 79.8 53.1 82.1 87.5

SCAN (Lee et al., 2018) 45.8 74.4 83.0 61.8 87.5 93.7

Ours (A3VSE) 49.5 79.5 86.6 65.0 89.2 94.5

Table 7.2: Performance comparison with baselines on two sparse settings in Flickr30K.

(a) 20% Img, 5/5 Sent (b) 10% Img, 5/5 Sent (c) No s in (b)

Figure 7.4: t-SNE visualization of the embedded testing images (blue) and sentences (red) under

sparse Flick30K. Paired ones are expected to be close to each other.
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Sparse MS-COCO Ours (A3VSE) SCAN (Lee et al., 2018) (SOTA)

%

Img

#

Sent

%

Ann

# Ann

Pairs

Text-to-Image Image-to-Text Text-to-Image Image-to-Text

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

5% 1/5 1% 5,664 14.2 35.8 48.9 19.2 44.2 57.4 9.0 24.4 35.0 9.5 27.2 38.9

5% 2/5 2% 11,328 16.1 39.5 52.8 22.2 47.8 61.8 12.7 31.6 42.9 11.9 33.1 46.1

5% 5/5 5% 28,320 19.7 44.4 57.7 27.8 55.9 68.8 16.8 40.0 52.6 21.0 47.3 61.2

10% 1/5 2% 11,328 17.7 41.9 54.8 24.6 51.5 63.7 12.7 31.8 43.2 12.8 34.1 48.2

10% 2/5 4% 22,656 20.3 45.5 58.8 26.5 55.6 68.8 17.3 41.5 54.4 22.4 49.7 62.5

10% 5/5 10% 56,640 23.2 50.5 64.1 30.5 60.4 73.1 19.4 44.3 57.3 25.5 53.8 67.6

20% 1/5 4% 22,657 20.0 45.9 59.5 26.9 54.4 67.9 16.3 37.9 50.3 17.8 43.4 57.0

20% 2/5 8% 45,314 24.5 51.8 64.8 32.4 63.0 75.1 20.3 44.5 57.3 24.2 53.7 67.5

20% 5/5 20% 113,287 27.4 56.0 68.9 38.3 68.1 79.3 21.1 45.2 57.8 24.2 54.8 68.6

Table 7.3: Performance comparison on the 5K testing set of MS-COCO.

It is noteworthy that the unsupervised approach with global semantics which uses NO image-

text pairs cannot deliver satisfactory retrieval performance when queried with natural language,

indicating that there is a clear domain shift between the semantic pool of current image classifica-

tion/ tagging models and the natural language queries. A similar phenomenon is observed in the

ablation studies. Moreover, from the crossover of 10.5 R@1 in Fig. 7.2, the unsupervised global

semantics from external classification datasets is worth as many as 14,000 image-text annotation

pairs for the recent cross-modal retrieval models. Notably, A3VSE achieves 29.1 R@1 even

trained with only 5,800 pairs.

Results on Sparse MS-COCO

Table 7.3 shows the results on the harder 5K testing set of MS-COCO. I sample 5%, 10%, 20% of

images in MS-COCO to keep the number of training pairs more comparable to Flickr30K. The

proposed model delivers the best performance on most metrics under all sparsity settings. For

text-to-image retrieval, it outperforms SCAN (Lee et al., 2018) by 2.9 to 6.3 in R@1, 4.0 to 11.4

in R@5, and 4.4 to 13.9 in R@10. A similar trend can be observed in image-to-text retrieval task.

The comparison with other recently published models is shown in Table 7.4, where the proposed

model achieves the best performance in all sparse corpus scenarios.

Despite using only 20% of image-text annotations, the proposed model still achieves competi-

tive performance (with the criteria defined as R@10 ¿ 70.0%) in the more challenging 5K testing

set in MS-COCO. More than 80% of annotation effort for the image-text pairs could potentially

be relieved. Based on the quantitative results on multiple datasets, I validate the superiority and

the annotation efficiency of the proposed A3VSE model.
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Text-to-Image Image-to-Text

Model R@1 R@5 R@10 R@1 R@5 R@10

MS-COCO 0% Ann, 0 pairs

sg baseline 7.5 16.8 23.2 8.8 15.0 22.8

MS-COCO 10% Img, 1/5 Sent, 2% Ann, 11,328 pairs

DPC (Zheng et al., 2017) 8.1 28.3 38.0 10.5 30.8 41.0

DAN (Nam et al., 2017) 8.8 28.3 37.1 11.1 30.1 42.5

VSE++ (Faghri et al., 2018) 8.5 27.6 36.5 10.7 30.2 44.5

SCAN (Lee et al., 2018) 12.7 31.8 43.2 12.8 34.1 48.2

Ours (A3VSE) 17.7 41.9 54.8 24.6 51.5 63.7

MS-COCO 50% Img, 2/5 Sent, 20% Ann, 113,287 pairs

DPC (Zheng et al., 2017) 19.1 41.0 55.5 20.5 45.1 60.2

DAN (Nam et al., 2017) 19.5 40.8 54.0 20.7 47.7 61.7

VSE++ (Faghri et al., 2018) 19.5 41.2 56.5 21.5 48.5 63.5

SCAN (Lee et al., 2018) 22.3 47.5 60.2 25.5 56.1 70.5

Ours (A3VSE) 28.2 57.9 70.6 38.4 69.5 81.1

MS-COCO 100% Ann, 566,435 pairs

DPC (Zheng et al., 2017) 25.3 53.4 66.4 41.2 70.5 81.1

DAN (Nam et al., 2017) 29.8 58.8 70.0 40.8 70.0 79.8

VSE++ (Faghri et al., 2018) 30.3 56.0 72.4 41.3 69.5 81.2

SCAN (Lee et al., 2018) 34.4 63.7 75.7 46.4 77.4 87.2

Ours (A3VSE) 39.0 68.0 80.1 49.3 81.1 90.2

Table 7.4: Performance comparison with baselines on two sparse settings in MS-COCO.

Ablation Study

To quantify the contribution from individual components, I conduct ablation studies evaluating the

cross-modal retrieval performance with models trained with 10% of images and 5/5 corresponding

text descriptions (10% annotations) in Flickr30K. In each experiment, I remove one or change a

component of concern to quantify its relative importance. A component is more important with

a more substantial drop. For the experiment without semantics (s), I remove all the regional

semantics from the input and show the performance of the vanilla model. Then I swap the

sequence of regional semantics with global semantics sg and encode global semantics (can be

viewed as image-level tags after applying a 0.3 threshold) with the shared word embedding matrix.
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For the internal modules and adversarial objectives, I either remove the attention layer with mean

pooling over encoded visual/textual entities as the final instance-level representation, or I purge

an adversarial objective from Eq. 7.10 during the training phase.

Flickr30K 10% Img 5/5 Sent, 10% Ann, 14,500 pairs

Text-to-Image Image-to-Text

Model R@1 R@5 R@10 R@1 R@5 R@10

No s 23.4 47.9 58.2 26.5 58.1 71.5

Swap s with sg 29.0 56.3 67.2 40.5 67.4 77.6

s, without attention 23.8 50.1 62.7 35.8 64.3 75.1

s, without Ladv 30.9 58.5 69.0 43.8 70.9 79.5

Without `intra 31.8 59.6 71.0 44.8 72.5 80.8
Without `cross 31.3 59.2 70.5 45.2 71.8 80.1

Without `trans 31.5 59.7 70.9 46.1 71.8 80.3

Full model 32.0 60.1 71.0 46.8 72.8 80.7

Table 7.5: Ablation study of the proposed model

Table 7.5 shows the results of the ablation study. I observe that while global semantics boost

model performance from the vanilla model, the regional semantics is the better choice even if they

have a relatively small vocabulary size (1,104 versus 1,576) for the un-annotated images in sparse

Flickr30K. The visualization of learned embeddings in Fig. 7.4b and Fig. 7.4c double confirms

the difference. One possible explanation for this phenomenon is that regional semantics are more

similar to natural language descriptions. I observe that the distribution of vocabulary is closer

(13.1% Intersection over Union (IoU)) between the natural language queries and the regional

semantics than the global semantics (9.8% IoU). For instance, in natural language descriptions,

people tend to describe an image with “frog” or “dog” rather than the detected global semantics

“Amphibian” and “Havanese”.

Additionally, the attentive adversarial learning with domain discriminators plays a vital

role in closing the domain gaps between annotated and un-annotated inputs, delivers improved

performance over models without adversarial objectives. However, I observe small variants among

the best metrics over various configurations, suggesting that careful hyper-parameter tuning may

be required to achieve the optimal performance. I leave the robust automatic tuning for aligning

multiple heterogeneous domains as the future work.
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a group of people is bike riding in the woods .

a man with glasses is wearing a beer can crocheted hat .

1. A young boy wearing a blue cap looking through a telescope 
2. A young African American boy wearing a blue baseball cap 
gazes through a telescope intently while another young boy 
waits behind him . 
3. A young boy wearing a blue hat is looking through a 
telescope while another boy watches . 
4. A child looking through a telescope . 
5. A child is looking through a telescope

(a) 50% Img, 2/5 Sent, 29,000

pairs

Young boy in a white striped shirt holding a tennis racket .

1. A child is wearing a blue knitted hat . 
2. A young boy or girl wearing a red jacket with fur and a blue 
hat is looking down . 
3. A little girl in a sweater is laying down on a couch sleeping . 
4. person in red-checked jacket with fur collar and dark 
stocking cap with head bowed . 
5. A girl dressed up in a red dress and a hat with long brown 
hair 

Three dogs in different shades of brown and white biting each other .

(b) 10% Img, 2/5 Sent, 5,800 pairs

A girl is playing an electric guitar in front of an amplifier .

…

A smiling woman playing the harp .

…

1. A street corner with stores and two men walking the sidewalk 
2. Several Asian people are walking around a busy downtown 
shopping area . 
3. People are busy shopping at a grocery store . 
4. Two men are having a conversation in front of a souvenir shop 
in rome . 
5. A cowboy is bucked off a steer while other men watch from 
the stands .

(c) Failures of (b)

Figure 7.5: Qualitative examples of the proposed A3VSE model in text-to-image retrieval task

(the upper two rows) and image-to-text retrieval task (the bottom row) on Flickr30K.

Qualitative Results

Fig. 7.5 illustrates sampled qualitative testing results in the image-to-text and text-to-image

retrieval tasks on sparse Flickr30K. The top two rows show the top four retrieved images given

the natural language query above. The one and only one correct image is marked in green or red

if rank is greater than 10. The image-to-text retrieval results are depicted in the bottom row. I list

the top five retrieved sentences and the corresponding query image. The correct sentences (up to

five) are colored in green, otherwise red.

In most cases, the proposed model generates satisfactory results. As less parallel image-text

pairs are available for training, I observe performance degeneration. For the failure cases, as

expected, I observe that many failures result from out-of-vocabulary words (e.g., “amplifier” and

“harp”) in the sentences.

Summary

To reduce expensive human annotation cost, I have presented a novel annotation efficient A3VSE

model for learning improved visual-semantic embeddings (VSEs) with sparsely annotated multi-

modal corpora. The proposed model jointly leverages strong supervision from image-text pairs

and weak supervision from image-semantic pairs where the regional semantics are extracted

from the un-annotated image collection. To further unify the heterogeneous inputs in the joint

embedding space, the proposed model employs attention-enhanced adversarial objectives to

model intra-modal, cross-modal, and transitive alignment to selectively align annotated and the

un-annotated portion of visual and textual inputs.
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In sparse Flickr30K and MS-COCO, the proposed model consistently and significantly out-

performs recent competitive baselines. In comparison to global semantic tags, I have shown that

regional semantics are more feasible for learning VSEs under sparsity. Concerning reducing

annotation effort, I have presented insights towards efficient annotation collection and utilization.

I have demonstrated that nearly 80% of the annotations can be reduced with the proposed model

while achieving competitive results to recent models trained with the complete annotations.

7.3 Multimodal Machine Translation

7.3.1 Motivation

Most of the machine translation tasks only focus on textual sentences of the source language and

target language; however, in the real world, the sentences may contain information about what

people see. Beyond the bilingual translation, with additional information from images, I would

further resolve the problem of ambiguity in languages. For example, the word “bank” may refer

to the financial institution or the land of the river’s edge. It would be confusing if I only look at

the language itself. In this task, the image may help to disambiguate the meaning if it shows that

there is a river, and thus the “bank” means “river bank”.

In this work, as one of the earliest work in multimodal machine translation (Elliott et al.,

2016; Huang et al., 2016; Elliott and Kádár, 2017), I explore three approaches to integrating

multimodal information (text and image) into the attention-based encoder-decoder architecture

for learning a joint multilingual-VSE space. I transform and make the visual features as one of

the steps in the encoder as text, and then make it possible to attend to both the text and the image

while decoding. The image features I used are (visual) semantic features extracted from the entire

images (global) as well as the regional bounding boxes proposed by the region-based convolutional

neural networks (Faster RCNN) (Ren et al., 2015). In our empirical evaluation, I verify the benefit

of visual information over text-only machine translation. I also observe the superiority of utilizing

regional semantics from visual objects with proper architecture modifications on the vanilla

encoder-decoder framework.

7.3.2 Prior Work

In fields of machine translation, neural networks attract lots of research attention recently that

the encoder-decoder framework is widely used Sutskever et al. (2014b). Nevertheless, the main
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drawback of this neural machine translation (NMT) framework is that the decoder only depends

on the last state of the encoder, which may deteriorate the performance when the sentence is

long. As a solution, the attention-based encoder-decoder framework as shown in Figure 7.6 is

proposed Bahdanau et al. (2015); Luong et al. (2015a). With the attention model, in each time

step, the decoder depends on both the previous LSTM hidden state and the context vector, which

is the weighted sum of the hidden states in the encoder1.

Multimodal machine translation (MMT) is firstly introduced in (Specia et al., 2016) as a multi-

encoder single-decoder framework with additional image inputs. MMT aim to utilize additional

visual information as the complimentary information source to improve translation quality. My

work Huang et al. (2016) is one of the first research efforts on this task at that time. Instead of

relying on whole-image visual features, I seek to leverage object-level visual information and

study method incorporating multimodal attention in to text-only machine translation.

7.3.3 Multimodal Attention in Machine Translation

In this work, I investigate three methods to incorporate the regional visual feature into the encoder-

decoder framework for multimodal neural machine translation. Based on the encoder-decoder

framework, the attention-based model aims to handle the missing order and source information

problems in the basic encoder-decoder framework. At each time step t in the decoding phase, the

attention-based model attends to subsets of words in the source sentences that can form up the

context, which can help the decoder to predict the next word. This model infers a variable-length

alignment weight vector at based on the current target state ht and all source states hs. The

context feature vector ct = at · hs is the weighted sum of the source states hs according to at,

which is defined as:

at(s) =
escore(ht,hs)∑′
s e

score(ht,h′s)
(7.13)

The scoring function score(ht,hs) can be referred to as a content-based measurement of the

similarity between the currently translating target and the source words. I utilize a transformation

matrix Wa which associates source and target hidden state of learning the general similarity

measure by:

score(ht,hs) = htWahs (7.14)

I produce an attentional hidden state ĥt by learning Wc of a single layer perceptron activated

by tanh. The input is simply the concatenation of the target hidden state ht and the source-side
1Readers may also check Chapter §3 for preliminary regarding attention-based encoder-decoder models in

machine translation.
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context vector ct:

ĥt = tanh(Wc[ct;ht]) (7.15)

Figure 7.6: Attention-based neural machine translation framework using a context vector to focus

on a subset of the encoding hidden states.

After generating the context feature vector and the attentional hidden state, the target word

is predicted through the softmax layer with the attentional hidden state ht vector by p(yt|x) =

softmax(Wsĥt). In the following, I introduce how to incorporate images features based on the

attention models.

Model 1: LSTM with global visual feature Visual features from the convolution neural network

(CNN) may provide additional information to textual features in machine translation with multiple

modalities. As depicted in Figure 7.7, I propose to append visual features at the head/tail to the

original text sequence in the encoding phase. Note that for simplicity, I omit the attention part in

the following figures.

Global (i.e., whole image) visual features are extracted from the last fully connected layer

known as fc7, a 4096-dimensional semantic layer in the 19-layered VGG (Simonyan and Zisser-

man, 2014). With the dimension mismatch and the inherent difference in content between the

visual and textual embedding, a transformation matrix Wimg is proposed to learn the mapping.

The encoder then encodes both textual and visual feature sequences to generate the representation

for decoding. In the decoding phase, the attention model weights all the possible hidden states

in the encoding phase and produce the context vector ct with Eq. 7.13 and Eq. 7.14 for NMT

decoding.

Model 2: LSTM with multiple regional visual features In addition to adding only one global

visual feature, I extend the original NMT model by incorporating multiple regional features in the

hope that those regional visual attributes would assist LSTM to generate better and more accurate

representations. The illustration of the proposed model is depicted in 7.8. I will first explain how

to determine multiple regions from one image and explain how these visual features are extracted

and sorted.
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Figure 7.7: Model 1: Attention-based NMT with single additional global visual feature. Decoder

may attend to both text and image steps of encoding. For clarity, the possible attention path is

hidden here.

Figure 7.8: Model 2: Attention-based NMT with multiple additional regional visual features.

Figure 7.9: Model 3: Parallel LSTM threads with multiple additional regional visual features.

Intuitively, objects in an image are most likely to appear in both source and target sentences.
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Therefore, I utilize the region proposal network (RPN) in the region-based convolutional neural

network (Ren et al., 2015) (R-CNN) to identify objects and their bounding boxes in an image

and then extract visual feature from those regions. In order to integrate these images into the

original sequence in the LSTM model, I design a heuristic approach to sort those visual features.

The regional features are fed in the ascending order of the size of the bounding boxes, followed

by the original global visual feature and the text sequence. Visual features are sequentially fed

in such order since important features are designed to be closer to the encoded representation.

Heuristically, larger objects may be more noticeable and essential in an image described by both

the source and target language contexts.

In the implementation, I choose the top four regional objects plus the whole image and then

extracted their fc7 with VGG-19 to form the visual sequence followed by the text sequence. If

there are less than four objects recognized in the original image, zero vectors are padded instead

of the batch process during training.

Model 3: Parallel LSTM threads To further alleviate the assumption that regional objects share

some pre-defined order, I further propose a parallel structure, as shown in Figure 7.9. The encoder

of NMT is composed of multiple encoding threads where all the LSTM parameters are shared. In

each thread, a (regional) visual feature is followed by the text sequence. This parallel structure

would associate the text to the most relevant objects in the encoding phase and distinguish them

when computing attention during decoding. Intuitively, the text sequence follows a regional object

that would be interpreted as encoding the visual information with the textual description (i.e.,

encoding captions as well as visual features for that object). An encoder hidden state for attention

can be interpreted as the “word” imprinted by the semantics features of some regional object.

The decoder can, therefore, distinctively attend to words that describe different visual objects in

multiple threads.

In the encoding phase, parameters in LSTM are shared over threads. All possible hidden states

over multiple threads are recorded for attention. At the end of the encoding phase, the outputs

of different encoding threads are fused to generate the final embedding of the whole sentence as

well as all the image objects. In the decoding phase, candidates of global attention are all the text

hidden states over multiple threads. For example, at time t, the decoder may choose to attend to

‘bear’ at the second thread (which sees a teddy bear image at the beginning) as well as the ’bear’

in the global image thread. At time t+ 1, the decoder may switch to another thread and focus on

“the man” with the person image.
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7.3.4 Empirical Evaluation

Experimental Setup
I follow the standard split in Multi30K (Elliott et al., 2016). Global visual features (fc7) are

extracted with VGG-19 (Simonyan and Zisserman, 2014). For regional visual features, the region

proposal network in Faster RCNN (Ren et al., 2015) first recognizes bounding boxes of objects in

an image and then I computed 4096-dimensional fc7 features from these regions with VGG-19.

The RPN of Faster RCNN is pre-trained on ImageNet dataset 2 and then fine-tuned on MSCOCO

dataset 3 with 80 object classes.

I use a single-layered LSTM with 256 cells and 128 batch size for training. The dimension

of word embedding is 256. Wimg is a 4096 × 256 matrix transforming visual features into the

same embedding space as words. When training NMT, I follow (Luong et al., 2015b) with similar

settings: (a) I uniformly initialized all parameters between -0.1 and 0.1, (b) I trained the LSTM

for 20 epochs using simple SGD, (c) the learning rate was initialized as 1.0, multiplied by 0.7

after 12 epochs, (d) dropout rate was 0.8. Note that the same dropout mask and NMT parameters

are shared by all LSTM threads in model 3.

BLEU METEOR

Text baseline 34.5 (0.7) 51.8 (0.7)

m1:image at tail 34.8 (0.6) 51.6 (0.7)

m1:image at head 35.1 (0.8) 52.2 (0.7)

m2:5 sequential RCNNs 36.2 (0.8) 53.4 (0.6)

m3:5 parallel RCNNs 36.5 (0.8) 54.1 (0.7)

Table 7.6: BLEU and METEOR of the proposed multimodal NMT

7.3.5 Discussion

The quantitative performance of the proposed models can be seen in Table 7.6. I evaluate BLEU

and METEOR scores with tokenization under the official settings of the WMT 2016 multimodal

machine translation challenge. The text-only baseline is the NMT implementation with global

attention. Adding a single global visual feature from an image at the head of a text sequence

improves BLEU by 0.6% and METEOR by 0.4%, respectively.

2http://image-net.org/
3http://mscoco.org/
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The results show that the additional visual information improves the translations in this dataset.

However, lukewarm improvement is not as significant as I expected. One possible explanation

is that the information required for the multimodal translation task is mostly self-contained

in the source text transcript. Adding global features from whole images do not provide extra

supplementary information and thus results in a subtle improvement.

Detailed regional visual features provide extra attributes and information that may help the

NMT translates better than the text-only baselines. In our experiment, the proposed model2

with multiple regional and one global visual features showed an improvement of 1.7% in BLEU

and 1.6% in METEOR, while model3 showed an improvement of 2.0% in BLEU and 2.3%

in METEOR. The results correspond to our observation that most sentences would describe

important objects which could be identified by R-CNN. The most commonly mentioned object is

“person”. It is likely that the additional attributes provided by the visual features about the person

in an image help to encode a more detailed context and thus benefit NMT decoding. Other high

frequency objects are “car”, “baseball”, “cellphone”, etc.

For the proposed LSTM with multiple regional visual features (model 2), the semantic features

in fc7 of the regions-of-interest in an image provide additional regional visual information to

form a better sentence representation. I also experimented with other sorting methods, including

descending size, random, and categorical order, to generate the visual sequences. However,

ascending-ordered sequences achieve the best result.

For the proposed parallel LSTM architecture with regional visual features (model 3), the

regional visual features further help the NMT decoder to attend more accurately and accordingly

to focus on the right thread where the local visual attributes twiddle the hidden states. The best

result of our models achieve 36.5% in BLEU, and 54.1% in METEOR, which is comparable to

the state-of-the-art Moses results in this challenge.

7.4 Unsupervised Multimodal Machine Translation via Pseudo

Visual Pivoting

7.4.1 Motivation

Neural machine translation (MT) (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014a) has

achieved near human-level performance (Wu et al., 2016). However, its effectiveness strongly

relies on the availability of large-scale parallel corpora. Unfortunately, preparing the parallel data
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remains a challenge as there are more than 6,500 languages in the world, and recruiting translators

with bilingual or multilingual knowledge to cover all those languages is impractical.

As a result, developing methods alleviating the need of well-annotated large parallel corpora

has recently attracted increasing attention in the community. These methods fall into two broad

categories. The first type of methods use a third language as the pivot (Firat et al., 2016; Chen

et al., 2017; Cheng et al., 2017; Johnson et al., 2017) to enable zero-resource translation. Although

the progress is encouraging, pivoting with a third language still demands bilingual knowledge

for collecting large-scale parallel source-pivot and pivot-target corpora. The second type of

methods explore unsupervised approaches (Conneau et al., 2018a; Artetxe et al., 2018; Lample

et al., 2018a) have recently achieved impressive translation quality. These methods rely only on

monolingual data and back-translation (Sennrich et al., 2016a). However, as discussed in (Lample

et al., 2018b), the alignment of source-target sentences is uncertain and highly subject to proper

initialization.

Using visual content for unsupervised MT (Chen et al., 2018b; Su et al., 2019) is a promising

solution for pivoting and alignment based on its availability and feasibility. Abundant multimodal

content in various languages are available online (e.g., Instagram and YouTube). It is also easier

to recruit monolingual annotators to describe an image than to find multilingual translators to

translate sentences. Importantly, visual content is eligible to improve the alignments in the

language latent spaces since the physical visual perception is similar among people speaking

different languages (e.g., similar “blue car” for a German and a French).

Motivated by these insights, I propose a novel unsupervised multimodal MT framework

incorporating images as pseudo pivots promoting latent space alignment. In addition to use features

of visual objects for multimodal back-translation, I align a shared multilingual visual-semantic

embedding (VSE) space via leveraging disjoint image-sentence pairs in different languages. As

illustrated in Fig. 7.11, for sentences approximately pivoted by similar images (src-img-tgt),

drawing embeddings of corresponding image-sentence pairs closer results in better alignments of

semantically equivalent sentences in the language latent spaces. Inspired by back-translation, I

further explore another pseudo pivoting strategy, which approximates multilingual sentence pairs

(src-img-tgt) conditioned on a real image via captioning. Instead of using annotation of images

for pivoting as in (Chen et al., 2018b), I generate sentences in two languages pivoted on the real

image, and then approximately pairing them as weak supervision for training unsupervised MT

system. This approach is analogous to a cross-modal version of back-translation.

In short, my work in this thesis makes the following contributions: (1) Building a unified

view of employing visual content for pseudo pivoting. (2) Improving the alignments in the shared

105



multilingual multimodal embedding space for unsupervised MMT with disjoint image-text pairs in

different languages. (3) The proposed model achieves state of the art on Multi30K and generalizes

well to the text-only scenario.

In the following sections, I first review prior works in unsupervised multimodal MT and

identify the unique contribution of the proposed pseudo visual pivoting method. Then I provide

details of my model which employs multimodal back-translation and features pseudo visual

pivoting for learning a shared multilingual visual-semantic embedding space and incorporating

visually-pivoted captioning as additional weak supervision. Finally, I present the experimental

results on the widely used Multi30K dataset. I show that the proposed model significantly

improves over the state-of-the-art methods and generalizes well when images are not available at

the testing time.

7.4.2 Prior Work

Multimodal Machine Translation. Supervised multimodal machine translation (MMT) is firstly

introduced in (Specia et al., 2016) as a multi-encoder single-decoder framework with additional

image inputs with an insight that the additional visual information would provide complimentary

information to improve translation quality. Huang et al. (2016) encode word sequences with

regional visual objects while Calixto and Liu (2017) leverage global visual feature. While these

methods achieve improvements, their advantage over the text-only models is still minor under the

supervised scenario. As analyzed in (Caglayan et al., 2019), visual content is more critical when

the textual content is limited or uncertain in MMT.

In contrast to the view in conventional supervised MMT which considers visual information

as a complimentary information source, in this thesis I envision that visual information implicitly

better serve as the bridge or “pseudo” pivot for associating the source and target languages when

the source-target translation pairs are limited or even absent (unsupervised MT).

Unsupervised Machine Translation. In conventional unsupervised MT, one of the proven

methods is to use the third pivoting language. Chen et al. (2017) use a teacher-student framework

and assume parallel sentences share a similar likelihood for generating sentences in the third

language while (Cheng et al., 2017) maximize the expected likelihood. In contrast, the proposed

pseudo visual pivoting does not rely on a third language. My work is along the line of research in

Lample et al. (2018a,b); Lample and Alexis (2019), which aims at learning an aligned latent space

between the two languages to translate by reconstruction. Nevertheless, I focus on the multimodal

setup where the visual space is dissimilar to the language spaces with challenging asymmetric
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Encx
a motorcyclist goes down 
a snow-covered hill Decy Ency

ein motorradfahrer fährt
einen schneebedeckten … Decx

a man on a motorcycle 
down a snow hill

Encv Capy Capx
a man on a motorcycleein mann fährt motorrad

Encv

Unsupervised Multimodal MT (Sec 3.2)

Multilingual VSE 
(Sec 3.3) Image Captioning for 

Pseudo Pivoting (Sec 3.4)

Figure 7.10: The proposed model structure (English↔German). I incorporate visual objects for

unsupervised multimodal MT and improve the latent space alignments via pseudo visual pivoting

with designed objectives.

interactions between modalities.

There are three recent unsupervised MMT works. Nakayama and Nishida (2017) learn modal-

agnostic fixed length image/sentence embeddings. In contrast, my model promotes fine-grained

(object-token) varying-length embedding, which better aligns VSE space. Game-MMT (Chen

et al., 2018b) use a captioning and a translation model maximizing the likelihood of translated

captions to original sentences. My model synthesize captions for symmetric back-translation and

considers no ground truth image annotation in the loop. Empirically, it is preferred to separate

real and generated captions. UMMT (Su et al., 2019) uses Transformers, autoencoder loss, and

multimodal back-translation. My model does not rely on autoencoders. Finally, my model

leverages object detection for multimodal back-translation and equips pseudo visual pivoting, a

novel and generalized method that covers all possible scenario that use the visual space as the

implicit pivoting space for aligning language sub-spaces.

7.4.3 Unsupervised Multimodal Machine Translation

As illustrated in Fig. 7.10, my model is composed of seven modules: Two encoder-decoder pairs

for translation, two decoders for captioning, and one shared visual encoder. In the following, I

first define the problem and detail the basic MMT model architecture under the unsupervised

setup. Then I introduce my approaches for pseudo visual pivoting with multilingual VSE and

pivoted captioning.

Multimodal MT

Multimodal machine translation (Specia et al., 2016) (MMT) considers additional images as a

complementary information source for MT. An image z and the description in two languages form
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a triplet (x,y, z) ∈ (X ,Y ,Z). The Transformer encoder reads the source sentence and encodes

it with hierarchical self-attention into hx = {hx1 , · · · ,hxN},hxi ∈ Rd, where d is the dimension

of the embedding space. The visual encoder encodes the image into hz = {hz1, · · · ,hzK},hzi ∈
Rd, Kmax = 36. Most previous work (Chen et al., 2018b; Su et al., 2019) use 2D (K = 14× 14)

feature maps of ImageNet pre-trained ResNet (He et al., 2016b). In contrast, I utilize the regional

features of K salient visual objects in an image extracted by Faster-RCNN (Ren et al., 2015) and

a 1-layer MLP as the encoder to encode visual objects.

Various attention strategies for sequence-to-sequence learning have been addressed in (Li-

bovický and Helcl, 2017). My model employs the hierarchical multi-head multimodal attention for

decoding. For decoding at time stamp i, the textual attention Attn(hyi ,h
x) computes the context

vector ci =
∑

j αjh
x
j via a attention-based alignment αj = Align(hyi , h

x
j ), where

∑
j αj = 1 and

hyi is the decoder state. Essentially, the one-head attention in Transformer is implemented as

ci = softmax(Qi(K
x)>/
√
d)Vx where {Q,Kx,Vx} are the packed d-dimensional Query, Key,

Value vectors, which are the mapped and packed version of {hyi ,hx,hx}. For decoding with

encoded visual and textual inputs, I utilize multimodal attention to compute the context vector ci:

cxi = Attn(hyi−1,h
x) + λvAttn(hyi−1,h

z) (7.16)

In practice I set λv = 1.0. The multimodal decoder models the likelihood to predict the next token

as:

p(yi|y<i,x, z) = softmax(f(ci, yi−1,h
y
i−1), (7.17)

where f(.) denotes the aggregated non-linear feature mapping in Transformer.

Unsupervised Learning

Unsupervised multimodal MT (Nakayama and Nishida, 2017; Chen et al., 2018b; Su et al., 2019)

poses a new yet challenging problem. On both the source and target sides, only non-overlapping

monolingual multimodal data are presented for training and validation. Specifically, the data

available are: (x, zx) ∈ (X ,Z), (y, zy) ∈ (Y ,Z), such that {x} ∩ {y} = φ, {zx} ∩ {zy} = φ.

Note that there are no parallel translation pairs available (unsupervised), and the images are

mutually exclusive for different languages.

For multimodal back-translation, the generated pseudo target sentence conditioned on the

source sentence and image can be re-written as g∗(x, zx) = argmax pxz→y(y|x, zx), where

pxz→y(y|x, z) =
∏M

i=1 p(yi|y<i,x, z). Similar for pyz→x(x|y, z) and h∗(y, zy). For unsupervised
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a dog running in a field

ein hund läuft in einer wiese

a biker with a white helmet is in midair.

ein mann fährt fahrrad

a man ride a bike

ein mann der 
stunts auf einem
fahrrad ausführta man doing stunts on a bike

a little boy is going to throw a ball on the beach

a little toddler is 
throwing a volleyball

ein kleines kleinkind
wirft einen volleyball

Alignment in the Multilingual VSE space Pivoted Captioning for Paired-TranslationPivoted Captioning for Back-Translation

Figure 7.11: Pseudo visual pivoting: (1) multilingual VSE (src-img-tgt, in fact src-img1, tgt-img2),

and (2) pivoted captioning (src-img-tgt). The italic items do not exist and are approximated

(pseudo). (src, img, tgt) is colored in (green, yellow, blue). Solid red and black lines indicate

captioning and translation without updates. Encoder-decoder are updated with dashed lines to

improve the alignments in the multilingual multimodal embedding space.

multimodal MT, the multimodal back-translation objective can be extended as:

LMBT
x↔y = E(x,zx)

[
-log pyz→x (x|g∗(x, zx), zx)

]
+ E(y,zy)

[
-log pxz→y

(
y|h∗(y, zy), zy)

)] (7.18)

I simplify the notation of expectation for clarity.

7.4.4 Visual Pseudo Pivoting

Aligning the latent spaces of the source and target languages without supervision is challenging,

as discussed in (Lample et al., 2018b). However, as people speak different languages biologically

share similar visual systems, I envision that the shared visual space can serve as the pivot for

alignment. Unlike most previous work (Chen et al., 2018b; Su et al., 2019) treating images merely

as a feature, I propose two visual pivoting approaches: (1) Aligning the multilingual VSE space;

(2) Image pseudo pivoting via captioning. As illustrated in Fig. 7.11, for (1), I use images as the

approximate pivots connecting real non-parallel sentences. (src-img-tgt.) In (2), for each pivoting

real image, I generate captions in both languages to construct “pseudo” source-target sentence

pairs. (src-img-tgt), where the italic item is “pseudo”. I collectively term the proposed approach

pseudo visual pivoting.
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Multilingual Visual-Semantic Embedding

I posit that forX ,Y ,Z , the two language spacesX ,Y could be properly associated by respectively

aligning two monolingual VSE spaces X ↔ Z and Y ↔ Z . I leverage the contrastive objective

in cross-modal retrieval (Kiros et al., 2014; Huang et al., 2019c) for aligning multimodal inputs

in the shared VSE space where the embeddings are close if they are semantically associated or

paired.

Specifically, I generalize the fine-grained (object-level and token-level), monolingual textual-

to-visual, and visual-to-textual attention (Lee et al., 2018; Huang et al., 2019d) into the multilingual

setup. For fine-grained image-sentence alignment, let sij = cos(hxi ,h
z
j) denotes the cosine

similarity between the i-th encoded token and the j-th encoded visual object. The image-

sentence similarity can be measured by averaging the cosine similarities between the visually-

attend sentence embeddings and the visual embeddings of the objects. The visually-attended

sentence embeddings hzx are the weighted combination of the encoded tokens hx. Precisely,

I compute hzxj =
∑N

i=1 αijh
x
i , where j = 1 · · ·K and αij = softmaxi(sij). Let us denote by

S(x, z) = 1
2K

∑K
j=1 cos(hzxj ,h

z
j) + 1

2N

∑N
i=1 cos(hxzi ,h

x
i ) as the image-sentence similarity, the

contrastive triplet loss encouraging image-sentence alignment in the VSE space can be written as:

Lc(x, z) = max
x̃

[
γ − S(x, z) + S(x̃, z)

]
+

+ max
z̃

[
γ − S(x, z) + S(x, z̃)

]
+
,

(7.19)

where [.]+ is the hinge function, and x̃ and z̃ are the non-paired (negative) instances for x and z.

Intuitively, when the loss decreases, the matched images and sentences will be drawn closer down

to a margin γ than the hardest non-paired ones. Formally, I minimizing the following objective

for cross-modal alignments in the two VSE spaces:

LV SEx,y,z = E(x,zx)

[
Lc(x, zx)

]
+ E(y,zy)

[
Lc(y, zy)

]
(7.20)

Image Captioning for Pseudo Pivoting

Inspired by back-translation with monolingual corpora, I propose a novel cross-modal approach to

generate automatic weakly supervised pairs to guide unsupervised MMT. Specifically, I leverage

image captioning to synthesize pseudo sentence pairs (pivoted and conditioned on the image) for

back-translation and paired-translation.

Image captioning models are akin to MT models besides the non-sequential visual encoder.

For example, an image-to-source captioning model estimates the likelihood as pz→x(x|z) =
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∏N
i=1 p(xi|x<i, z), where z is the encoded image. Essentially, the captioning model learns to

minimize the following loss:

LCAPz→x = E(zx,x) [−log pz→x(x|zx)] (7.21)

As illustrated in Fig. 7.11, I incorporate two captioning models Z → X and Z → Y
to generate additional “pseudo” parallel sentences pivoted on the image as additional weak

supervision to better align language latent spaces in unsupervised MMT. For example, with

Image→ English and Image→ German, the generated pseudo (English, German) pair is then

pivoted on the Image. Learning captioning models is practical as it is easier to collect large-scale

image-text pairs than translation pairs. I pre-train these captioning models and use them to

generate sentences in two languages depicting the same image, i.e.c∗x(zx) = argmaxpz→x(x|zx)
and c∗y(zx) = argmaxpz→y(y|zx). The pivoted captions then enable the following two objectives:

Pivoted Captioning for Back-Translation I utilize the synthetic multilingual captions (i.e.c∗x(zx),

c∗y(zx) from the source images and c∗x(zy), c∗y(zy) from the target images) to reversely reconstruct

the synthetic captions from their translations in both directions. Formally, I compute the following

caption-based back-translation loss:

LCBTx↔y = Ezx

[
-log pyz→x

(
c∗x(zx)|g∗(c∗x(zx),zx),zx

)
-log pxz→y

(
c∗y(zx)|g∗(c∗y(zx),zx),zx

)]
+Ezy

[
-log pyz→x

(
c∗x(zy)|h∗(c∗x(zy),zy),zy

)
-log pxz→y

(
c∗y(zy)|h∗(c∗y(zy),zy),zy

)]
(7.22)

Pivoted Captioning for Paired-Translation With the synthetic “pseudo” paired (source, target)

captions pivoted on a image (e.g.(c∗y(zx), c
∗
x(zx)), the caption-based paired-translation loss is

defined as:
LCPTx↔y = Ezx

[
-log pxz→y(c∗y(zx)|c∗x(zx), zx)

]
+ Ezy

[
-log pyz→x(c∗x(zy)|c∗y(zy), zy)

] (7.23)

Note that similar to the text back-translation, for LCPTx↔y and LCBTx↔y , I do not back-prop through

the captioning step. For optimization, I sample mini-batches and minimizing the following loss:

L = LMBT
x↔y + LV SEx,y,z + LCBTx↔y + LCPTx↔y (7.24)

Here I drop the weights w of each loss for clarity. In practice, all the weights are set to 1.0

except for wCPT where I employ a decreasing learning scheduler specified in the next section.
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7.4.5 Empirical Evaluation

Dataset and Pre-processing

I conduct experiments on the Multi30K (Elliott et al., 2016) dataset, the benchmark dataset for

multimodal MT. It contains 29K training, 1K validation, and 1K testing images. Each image has

three descriptions in English/German/French, which are translations of each other.

To ensure the model never learn from parallel sentences, I randomly split Multi30K training

and validation sets in half for one language and use the complementary half for the other. The

resulting M30k-half are two corpora with non-overlapping 14,500 training and 507 validation

image-sentence pairs, respectively.

For text pre-processing, I use Moses (Koehn et al., 2007) scripts for tokenization and apply

the Byte Pair Encoding (BPE) (Sennrich et al., 2016b) from XLM. To identify and extract features

of visual objects in images, I use the Faster-RCNN (Ren et al., 2015) model in (Anderson et al.,

2018) to detect up to 36 salient visual objects per image and extract their corresponding 2048-dim

regional features.

Implementation

I use Transformer as the underlying architecture for the translation and captioning modules. Each

encoder/decoder of the translator is with 6-layer stacked Transformer network, 8 heads, 1024

hidden units, and 4096 feed-forward filter size. The captioner is a 6-layer Transformer decoder

with the same configuration. The visual encoder is a 1-layer MLP which maps visual feature to the

shared 1,024-dim embedding space then adds the positional encoding to encode spatial locations

(normalized top-left and bottom-right coordinates) of visual objects. My implementation is based

on the codebase of XLM and MASS.

Experimental Details

I respectively conduct unsupervised MMT experiments on Multi30K-half for two language pairs:

English-French and English-German. The followings are the pre-training, fine-tuning, and model

selection protocols.

Pre-Training Pre-training is a critical step for unsupervised MT. I follow the setup in UMMT (Su

et al., 2019) for a fair comparison. For each language, I create a text-only pre-training set by

combining the shuffled first 10 million sentences of the WMT News Crawl datasets from 2007 to
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2017 with 10 times of M30k-half, resulting in a text-only dataset with 10.145 million unparalleled

sentences in English, French, German respectively.

For text pre-training, I leverage the script and the masked seq-to-seq objective proposed in

MASS, which randomly masks a span in a sentence then encourages the model to decode and

reconstruct the masked sequence as the monolingual language model pre-training. More details

can be found in the original paper. Note that there is no fine-tuning (back-translation) on WMT

for a fair comparison with other baselines.

For multimodal pre-training of the captioning modules, I use the out-of-domain MS-COCO (Lin

et al., 2014) dataset. I randomly split the training set into two disjoint subsets. Each set contains

56,643 images and 283,215 sentences. I use the translate-train strategy as in XNLI (Conneau

et al., 2018b). I leverage Google Translate to translate one set of English sentences into French

and German. I pre-train the captioning modules with Eq. 7.21 and fix them during fine-tuning

to avoid overfitting. Note that the captioning modules are trained on non-parallel sentences with

disjoint image subsets, which implies no overlap between English-German or English-French

sentences.

Fine-tuning on Multi30K-half I fine-tune on the training set of Multi30K-half for 18 epochs.

I train the model with the Adam optimizer (Kingma and Ba, 2014) with a linear warm-up and

a learning rate varying from 10−7 to 10−5. I apply a linearly decreasing weight from 1.0 to 0.1

at 10-th epoch for wCPT as I empirically observe that the generated captions are relatively too

noisy to serve as good pseudo pairs in the later stage of training. The margin γ in VSE is set to

0.1. Other hyper-parameters in Transformer follow the default setting in MASS. I use 4 Titan Xp

GPUs with 1,000 tokens in each mini-batch for training.

Evaluation and Model selection For evaluation, I report BLEU scores by multi-bleu.pl4 in

Moses and METEOR5 scorea on the Multi30K testing set.

For model selection without a parallel validation corpus, I consider the unsupervised criterion

proposed in (Lample et al., 2018a) based on the BLEU scores of “round-trip” translations (source

→ target→ source and target→ source→ target) which have been empirically shown to correlate

well with the testing metrics.

4https://github.com/moses-smt/mosesdecoder/blob/master-/scripts /generic/multi-bleu.perl
5https://github.com/cmu-mtlab/meteor
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en→fr fr→en en→de de→en

Model BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

MUSE† (Conneau et al., 2018a) 8.5 - 16.8 - 15.7 - 5.4 -

UNMT† (Lample et al., 2018a) 32.8 - 32.1 - 22.7 - 26.3 -

XLM† (Lample and Alexis, 2019) 46.3 64.3 42.0 38.1 27.4 48.7 30.7 31.0

MASS† (Song et al., 2019) 49.8 65.8 43.7 38.7 30.2 51.3 32.5 33.4

Game-MMT (Chen et al., 2018b) - - - - 16.6 - 19.6 -

UMMT-T† (Su et al., 2019) 37.2 33.7* 38.5 36.4 21.0 25.4* 25.0 28.4

UMMT-Full (Su et al., 2019) 39.8 35.5* 40.5 37.2 23.5 26.1* 26.4 29.7

Ours-Text only† 49.5 65.7 43.5 38.5 30.1 51.5 32.4 33.0

Ours-Full 52.3 67.6 46.0 39.8 33.9 54.1 36.1 34.7

Table 7.7: Results on unsupervised MT. Comparison with benchmarks on the Multi30K testing

set. The full model is with T+V+VSE+CBT+CPT. The best score is marked bold. † means

text-only. * is the METEOR score shown in the UMMT paper.

Baseline Models I compare recent unsupervised text-only and multimodal MT baselines listed

in the following: (1) MUSE (Conneau et al., 2018a) is a word-to-word MT model with pre-trained

Wikipedia embeddings. (2) UNMT (Lample et al., 2018a) sets the tone of using denoising autoen-

coder and back-translation for unsupervised MT. (3) XLM (Lample and Alexis, 2019) deploys

masked language model from BERT. (4) MASS (Song et al., 2019) uses a masked seq-to-seq

pre-training objective, achieves the current state-of-the-art performance in text-only unsupervised

MT. (5) Game-MMT (Chen et al., 2018b) is a reinforcement learning-based unsupervised MMT.

(6) UMMT (Su et al., 2019) use visual feature for denoising autoencoder and back-translation.

UMMT is the current state of the art in unsupervised MMT. I either use the reported scores in the

original papers or use their best scripts with their pre-trained language models publicly available

for fine-tuning on Multi30K-half.

Main Results: Unsupervised MMT

Comparison with the Baseline Models Table 7.7 presents the benchmark results with other

state-of-the-art unsupervised MT and MMT models on the Multi30K testing set. The first four

rows show the results of the recent text-only MT models. Game-MMT and UMMT are MMT

models using both image and text inputs. My full model (T+V+VSE+CBT+CPT) yields new

state-of-the-art performance in BLEU and METEOR, outperforming the text-only and multimodal
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baseline model by a large margin. Notably, my full model outperforms UMMT by +5.5∼12.5

BLEU scores, sets a new state of the art in unsupervised MMT.

Although pre-training plays a vital role in unsupervised MT, comparing Ours-Text only and

Ours-Full, the results suggest that multimodal content can further boost the performance for

unsupervised MT. Images provide +2.7∼3.7 BLEU score improvement across four tasks. Note

that my model uses different monolingual pre-training corpora to MASS and XLM for the fair

comparison with UMMT. With a similar pre-training objective, the text-only model is worse than

MASS, while Ours-Full outperforms MASS by +2.3∼3.7 in BLEU.

Comparing the multimodal models trained with and without visual content (UMMT-T vs.

UMMT-Full) and (Ours-T vs. Ours-Full), my model achieves +2.5∼3.7 improvements in BLEU

while +1.4∼2.5 for UMMT. The results imply that, even with a higher text-only baseline (e.g.49.5

vs. 37.2 in en→fr), pseudo visual pivoting incorporates visual content more effectively.

Ablation Studies To quantify module-wise contribution in pseudo visual pivoting, I summarize

the ablation studies in Table 7.8. Comparing the performance improvement from text-only to

the model with regional visual features (T+V), the features of salient visual objects contribute

+0.6∼0.9 BLEU score over a much higher text-only baseline compared to UMMT.

In pseudo visual pivoting, +VSE promotes the alignments in the monolingual VSE spaces

and results in an additional +1.3∼2.0 gain in BLEU. This improvement validates my hypothesis

that the visual space can effectively serve as the bridge connecting the source and target language

latent spaces. Also, synthesizing image-pivoted pseudo caption pairs effectively provides weak

supervision for aligning the cross-lingual latent space in unsupervised MMT. I observe that

the pivoted captions for paired translation (CPT) is more effective than treating them as back-

translation pairs (CBT). Utilizing generated image-pivoted captions is shown to be a promising

approach for weakly supervised or unsupervised MMT. The full model which employs VSE, CBT,

and CPT achieves +1.9∼3.1 improvements compared to the multimodal baseline (row two, visual

feature only).

Generalizability How does the proposed unsupervised MMT model generalize when images

are not available at the testing time? Table 7.9 shows the testing results without images. As can

be observed, my model generalizes well. The differences are mostly less than 1.0 in BLEU. As

for my model, when being tested without visual content, still outperforms other unsupervised

text-only or multimodal MT models listed in Table 7.7, the minor drop in BLEU implies that

the improved cross-lingual latent space alignment via pseudo visual pivoting is likely to be more
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Model (Ours) en→fr fr→en en→de de→en

Text only 49.52 43.48 30.10 32.35

T+V 50.43 44.10 31.01 32.95

T+V+VSE 51.72 45.73 32.67 34.94

T+V+CPT 51.64 45.55 33.04 35.02

T+V+CBT 51.23 45.21 32.51 33.87

T+V+VSE+CBT 51.81 45.83 33.01 34.38

T+V+CPT+CBT 51.85 45.65 33.61 35.85

T+V+VSE+CPT 52.19 46.10 33.73 35.60

Full Model 52.29 45.98 33.85 36.07

Table 7.8: Ablation studies. BLEU comparison of different training objectives.

Model en→fr fr→en en→de de→en

UMMT 39.44-0.35 40.30-0.23 23.18-0.34 25.47-0.92

Ours-no VSE 51.60-0.25 45.39-0.26 33.25-0.36 35.15-0.70

Ours-Full 51.64-0.65 45.48-0.50 33.32-0.53 35.04-1.03

Table 7.9: BLEU of testing full model with text-only inputs. Subscripts are the difference to

testing with T+V.

critical than using images as an input feature for decoding. Luckily, such alignment is already

preserved in the training phase with the proposed approach.

An interesting question is: How much does the visual content (as a feature) contribute?

As in leave-one-feature-out cross-validation, I compare the difference of performance between

inferencing with and without images. The larger the difference (the subscripts in Table 7.9) implies

a model better utilizes visual content. Compared with UMMT, my model has better utilization. I

observe that the key to such difference is the VSE objective. The model trained without the VSE

objective results in worse utilization (smaller difference at the testing time), possibly because the

source text-image pairs are distant in the multilingual VSE space.

Real-pivoting & Low-resource Corpora Will my model benefit from “real” pivoting (src-

img1, img1-tgt, overall src-img1-tgt)? I train my models with overlapped images while leaving

sentences in the source and target languages unparalleled (use no translation pairs). From the

first three rows in Table 7.10, the performance is improved when training with the overlapped

images and their corresponding sentences. Comparing the improvement from 0% to 100% of the

116



Img overlap %

(# imgs/sents)
en→fr fr→en en→de de→en

0% (14.5K/14.5K) 52.29 45.98 33.85 36.07

50% (22K/22K) 55.13 47.54 34.61 37.01

100% (29K/29K) 58.34 50.57 35.45 38.55

0% (T only/14.5K) 49.52 43.48 30.10 32.35

100% (T only/29K) 53.35 46.27 31.35 34.06

0% (3.0K/3.0K) 31.48 27.91 23.94 26.60

0% (T only/3.0K) 30.33 26.95 21.65 23.47

Table 7.10: Testing BLEU of the full T+V model and the text-only model trained with overlapped

images or low-resource unpaired corpora.

text-only model and the full model, a larger gain is observed with the proposed pseudo visual

pivoting which aligns and reduces uncertainty in the language latent spaces.

Furthermore, under the low-resource setting (3.0K non-parallel data, row six and seven), a

substantial improvement over the text-only model is still observed. These results suggest that the

proposed pseudo visual pivoting is likely to generalize to the semi-supervised and the low-resource

setting, which I consider as the future work.

Qualitative Results

In Fig. 7.12, I provide some qualitative results on the Multi30K testing set. I observe a consistent

improvement of unsupervised translation quality with the full model to the text-only one. Without

parallel translation pairs as the vital supervision, the proposed pseudo visual pivoting successfully

disambiguates the word semantics in the similar syntactic category and results in improved cross-

lingual word alignment; for instance, “cafe” vs. “soda” machine in the third French example, and

“felsigen” (rocky) vs. “verschneiten” (snowy) in the first German example.

Additional Results: Supervised MMT

Although the proposed pseudo visual pivoting targets unsupervised MMT, I are also interested

in its performance under the fully supervised setup. To gain insights, I conduct supervised

MMT experiments by changing the back-translation objective for unsupervised MT (Eq. 7.18)

to the supervised MT objective (Eq. 3.2) with additional visual inputs. I benchmark with recent

supervised MMT models, including Imagination (Elliott and Kádár, 2017), LIUM-CVC (Caglayan
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T: un jeune garçon se tient sur un chariot de vêtements .

T+V: un jeune garçon s’apos accroche à un poteau de vêtements

GT: un jeune garçon s’apos accroche à un portant .

SRC: a young boy is hanging onto a clothing rack .

T: un chat assis sur le sommet d’apos un magasin de vêtements

T+V: un chat est assis sur un panneau de magasin .

GT: un chat est assis sur une enseigne de magasin .

SRC: a cat sits on top of a store sign .

T: deux garçons en train de faire une machine à café .

T+V: deux garçons devant une machine à soda . 

GT: deux garçons devant une machine à soda .

SRC: two boys in front of a soda machine .

(a) English→French

T: ein mann und eine junge auf einem verschneiten strand .

T+V: ein mann und ein junge auf einem felsigen strand .

GT: ein mann und ein junge auf einem felsigen strand .

SRC: a man and a boy on a rocky beach .

T: mann springt mit einem felsbrocken im hintergrund .

T+V: mann springt vor einer felsformation im hintergrund in die luft

GT: mann springt vor einer felsformation im hintergrund .

SRC
:

man jumping with a rock formation in background .

T: zwei männer spielen gitarre im freien .

T+V: zwei männer spielen gitarre vor einem großen publikum .

GT: zwei männer spielen gitarre vor einem großen publikum .

SRC: two men playing guitar in front of a large audience .

(b) English→German

Figure 7.12: Qualitative results of the proposed model. GT: ground truth. T+V: Full model.

en→fr en→de

Model BLEU METEOR BLEU METEOR

Imagination - - 30.2 51.2

LIUM-CVC 52.7 69.5 30.7 52.2

VAG 53.8 70.3 31.6 52.2

Ours (T) 65.2 79.3 42.0 60.5

Ours (T+V) 65.5 79.1 42.3 60.6

Table 7.11: Supervised MMT results on Multi30K

et al., 2017), and VAG (Zhou et al., 2018c) on Multi30K.

Table 7.11 shows the testing results. My model significantly outperforms other baselines and

achieves state-of-the-art performance. Comparing to the unsupervised model trained with full

Multi30K (Table 7.10,100% (29K/29K)), the direct supervision from parallel translation pairs

results in a +6.5∼7.1 gain in BLEU. Notably, images provide a minor improvement with full

supervision from translation pairs. This result implies that, compared to serving as a complemen-

tary feature, visual information likely contributes more to improving cross-lingual alignment via

pseudo visual pivoting for MMT with limited supervision.

7.5 Summary

In this chapter, I focused on fine-tuning multilingual vision-language models under limited super-

vision. When English-vision annotations are insufficient, I proposed to leverage automatically

extracted regional semantics from un-annotated images as the additional weak supervision. My
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method employs adversarial attentive alignments to alleviate the inherent heterogeneous gaps be-

tween the annotated and un-annotated portions of visual and textual data. The experimental results

show that the proposed model outperforms other models by a significant margin in cross-modal

retrieval tasks on the sparse Flickr30k and MS-COCO datasets. Regarding annotation efficiency,

when the textual annotations are only sparsely available, my model achieves on-par performance

to the recent state-of-the-art models while using up to 80% fewer annotations.

When non-English annotations are insufficient, as shown in the thesis roadmap (Fig. 1.1), it is

feasible to rely on zero-shot cross-lingual transfer as discussed in section §6.3 or exploit text-only

or multimodal MT models to translate-train English training data into non-English languages.

I built two multimodal MT models: supervised multimodal MT and unsupervised multimodal

MT to exploit the additional visual information in vision-language tasks or datasets. For the

supervised multimodal MT introduced in section §7.3, as one of the earliest works in this field, I

successfully incorporated visual content for improving text-only neural machine translation. The

visual content is shown to provide complementary information and the interactions of source-

visual-target content in the multilingual text-image embedding space effectively improve the

translation quality.

Besides the supervised multimodal MT model, I introduced my unsupervised multimodal

MT empowered with a novel pseudo visual pivoting approach. Beyond features, the proposed

method utilize visual content to improve the cross-lingual alignments in the shared latent space.

Precisely, my model utilizes the visual space as the approximate pivot for promoting alignments

in the shared multilingual multimodal embedding space. It synthesizes image-pivoted pseudo

sentences in two languages and pairs them to translate by reconstruction without parallel corpora.

The experiments on Multi30K show that the proposed model generalizes well and yields new

state-of-the-art performance.
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Chapter 8

Conclusion

This chapter summarizes the work presented in the thesis, highlights its major accomplishments,

discusses the lessons learned, and looks forward to the future direction.

8.1 Accomplishments

8.1.1 The Journey and My Recommendation

This thesis facilitates cross-lingual generalization of vision-language models via multilingual

multimodal pre-training at scale and multilingual multimodal fine-tuning under limited supervision.

As depicted in Fig. 8.1, I have identified clear and practical paths towards multilingual vision-

language models under different scenarios. The journey towards multilingual vision-language

models is summarized as below:

Started from adversarial probing the existing image-text models, the work in Chapter §4

confirmed the advantages of leveraging attention-based models to learn object-level representations

that improve text-to-image retrieval on MS-COCO and Flick30K. Extended to the multilingual

scenario, the study in Chapter §5 showcased that incorporating multilingual data and promoting

the diversity in multi-head attention achieved state-of-the-art multilingual text-to-image search

performance on Multi30K at that time and provided multilingual entity-to-object grounding.

Scaled up to pre-train on multi-million instructional videos and their corresponding transcrip-

tions, in Chapter §6, I alleviated the bottleneck of supporting set in contrastive learning and pro-

posed multilingual multimodal Transformers to learn representations at scale. My work achieved

state-of-the-art text-to-video retrieval on 4 datasets. Meanwhile, I constructed Multi-HowTo100M,

a collection of million-scale instructional videos and their transcriptions in 9 languages. The

121



Multilingual 
Multimodal
Pre-training

Learning w/ limited 
En ↔ Vis annotation

Sufficient En ↔ Vis 
Annotations?

Unsupervised MMT

Non-En ↔ Vis
annotations exist ?

Translate-Train?

External MT model/ 
parallel data exist?

Text-only MT/ 
Multimodal MT

Multilingual 
Multimodal
Fine-tuning

Multimodal
Fine-tuning

Zero-shot

Ch 4

Ch 5

Ch 7

Ch 7

Ch 7

Ch 6

Task-agnostic Task-specific

Y

N

Y

N

N N

Y

Translate-train
Y

Figure 8.1: The suggested path for cross-lingual generalization of vision-language models.

Performing multilingual multimodal pre-training is recommended. For an end task, use in-

domain human-annotated non-English annotations when they are available. If they are not, use

supervised/unsupervised multimodal MT to translate-train. As a case study, in Chinese-to-video

search on VATEX, using in-domain human-annotated Chinese captions results in 40.5 R@1.

Using supervised multimodal MT achieves 32.6 R@1. The zero-shot cross-lingual transfer (with

multilingual multimodal pre-training) yields 29.7 R@1.

proposed task-agnostic multilingual multimodal pre-training effectively generalizes English-based

vision-language models to handle non-English inputs without collecting additional in-domain

annotations in the target language. This approach set a milestone for generalizing English-based

vision-language models to multilingual vision-language models.

Finally, Chapter §7 addresses the challenges of multilingual multimodal fine-tuning on the

end task where English-vision and non-English annotation are likely to be insufficient. With

limited English-vision annotations, my work leverages visual semantics to synthesize additional

image-semantic pairs for training where the heterogeneous domain gaps are further alleviated via

adversarial learning.

To enable multilingual multimodal fine-tuning on English-only data, I introduced supervised

and unsupervised multimodal MT that exploits visual information in vision-language tasks to

synthesize non-English-vision data for training. For supervised multimodal MT, my study on

multimodal attention identified feasible ways to incorporate complementary visual information and

improved text-only MT. To further alleviate the need for parallel corpus, I introduced unsupervised

multimodal MT empowered with “pseudo visual pivoting”. Pivoted on the visual space, my model

learns a multilingual text-image embedding space to associate text sub-spaces for aligning between

source and target words. Based on the visual content, it also synthesizes additional source-image-

target pairs for back-translation and paired-translation. This approach significantly improves
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unsupervised multimodal MT on Multi30K.

8.1.2 Advantages of Learning Multilingual Multimodal Representations

Collectively, compared to multimodal representations, this thesis identifies several advantages of

learning multilingual multimodal representations:

Robustness Learning multilingual cross-view representation results in more generalized and

robust representations. It improves multiple end tasks including:

1. Multilingual text-to-video retrieval (Chapter §6)

2. Multilingual text-to-image retrieval (Chapter §5 and §6)

Grounding and Interpretability Adopting multilingualism in multimodal representations en-

ables a new degree-of-freedom for model grounding and model interpretability, examples are:

1. Explaining multilingual image-text search: Providing explicit visual object to multilingual

token alignments. (Chapter §5)

2. Visually-grounded bilingual word translation: Enabling and improving visually grounded

bilingual word translation. (Chapter §5 and Chapter §7)

Complementary Multimodal Information Visual content provides complementary informa-

tion that improves text-only MT in:

1. Supervised multimodal MT (Chapter §7)

2. Unsupervised multimodal MT (Chapter §7)

Transferring Linguistic Knowledge via the Visual Space Bridging via the visual space is a

promising solution for pivoting that transfers linguistic knowledge more effectively. I verity this

idea and demonstrate the feasibility of:

1. Cross-lingual transfer of English-based vision-language models to non-English languages

(Chapter §6)

2. Unsupervised multimodal MT (Chapter §7)
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8.1.3 Contributions

This thesis contributes towards promoting multilingual generalizability of vision-language models

via facilitating learning multilingual multimodal representations at scale and improving the

robustness when annotations are insufficient. In the following, I highlight thesis contributions in

various sub-fields and tasks:

Multilingual Multimodal Representation Learning

1. Model architecture: I show that attention-based models are the desirable architectures to

distill crucial information from varying length multimodal content for contrastive learning.

The multilingual multimodal Transformers achieves current state-of-the-art performance in

the considered end tasks.

2. Learning objective: I develop tailored contrastive objectives to effectively handle image,

video, and text in different languages. Also, I design regularizers that explicitly promote

diversity among multi-head attentions and alleviate heterogeneous domain gaps between

real and synthetic instances.

3. Bottlenecks in contrastive learning: I analyze the ill-contrasted issue due to shared semantics

in video-text representation learning. I further alleviate such side effects by promoting a

self-exclusive reconstruction objective.

Multilingual Cross-Modal Retrieval

1. I develop pure transformer-based multilingual text-video encoders and remove RNN and

CNN used in prior work which are harder to parallelize.

2. I introduce multilingual multimodal pre-training, which is one of the early pre-training

works target on multilingual vision-language models.

3. I explore the practical scenario where annotations are insufficient and utilize visual semantics

to improve the model robustness.

Multimodal Machine Translation

1. For supervised multimodal MT, my work is one of the early works that study methods

to incorporate visual content. I validate the advantages of using visual content as the

complementary information source for MT and outperforms text-only MT.

2. For unsupervised multimodal MT, my work on “pseudo visual pivoting” identifies a new

direction of using visual content as the bridging pivot instead of the complementary infor-

mation source as in supervised multimodal MT. The method also sets a new state of the art

in unsupervised multimodal MT.
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Cross-lingual Generalization of Vision-Language Models

1. I empirically demonstrate that vision-language models, unlike NLP models, have limited

zero-shot cross-lingual transferability.

2. I construct the Multi-HowTo100M dataset, which is currently the largest multilingual

text-video collection, to promote future multilingual multimodal research.

3. My model and multilingual multimodal pre-training set a milestone for generalizing English-

based vision-language models to non-English languages. The suggested roadmap is shown

in Fig. 8.1.

8.2 Lessons Learned

Based on the experience gained along my research journey in large-scale multilingual multimodal

representation learning, in this section, I summarize the lessons learned and provide a guideline

for future endeavors in this direction.

1. The trade-off in computation: There is a trade-off between computation and performance.

Training a model end-to-end from raw image or video as inputs may achieve better perfor-

mance. Also, incorporating longer transcriptions, or longer video clips may also achieve

better performance. However, the computation and memory consumption may greatly slow

down the training, especially for the video part. Understand such trade-offs and make

reasonable decisions (e.g., freeze the video encoder) could be crucial for related multimodal

research.

2. Noise in data: There is inevitable noise in the multimodal datasets even for manually

annotated MS-COCO, VATEX, Multi30K. The situation is even worse for the transcriptions

in video-text datasets such as HowTo100M. It could be tempting to filter out or correct noisy

instances by performing pre-processing such as lemmatization for text or stabilization/color

correction for video/image to clean up the data. However, heavy pre-processing steps may

only provide a marginal gain and in many cases, they are even harmful.

3. Keep complexity in mind: Although it’s tempting to develop large and complicated models

that may achieve better performance. However, the complexity may prevent them from

being useful and deployed. For example, inter-modal attention as analyzed in section §3.2.2

usually performs better than intra-modal attention. However, its complexity is O(MN)

compared to O(M +N) for models with intra-modal attention. In practice, that difference
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is 3 hours vs 5 seconds for searching 1000 images with 1000 text queries.

4. Difference between modalities: Data in different modalities share very different charac-

teristics and require different treatment. Visual embeddings are typically more diverse

textual embeddings (in the visualization, compared to the textual embeddings, the visual

embeddings usually span over the entire space). Additionally, for the contrastive objectives,

triplet loss works better for image-text while NCE works better for video-text in my work.

Although many alternative contrastive objectives have been proposed in recent years, they

highly depend on the setup and dataset and no one prevails universally.

5. Curse of Scaling: The scale of data ambiguities the progress made in the small subset. Also,

a fancy method that works well on clean small data may not apply to large-scale noisy data.

In many cases, simple methods overfit less and work better on large-scale noisy data.

6. Comparing apples to apples: With the rapid development in the CV and NLP communities,

some of the reported results fall short to be the apple-to-apple comparison. For example, in

the field of text-to-video retrieval, different feature sets, training dataset size, and testing

split make it harder to compare fairly. It’s advised to be careful when reproducing the results

and experiment with one’s own model under the same protocol.

In sum, given that the sheer volume of multimodal data, it is advised to start from under-

standing and analyzing the data to be modeled. The spirit is to preserve and utilize the unique

characteristics of data in different modalities and focus on innovating towards versatile models

that embed sufficient capacity and feasible complexity. Although handling large-scale noisy

data is challenging, one should not be discouraged. For task-agnostic multilingual multimodal

pre-training, a small improvement could be translated into improvements in various end tasks.

8.3 To Jump Start

In this section, I provide my suggestion for future researchers who are interested in this important

and challenging research direction to quickly jump start. My recommendations for the dataset,

end task, and the corresponding codebase for pre-training and fine-tuning are as follows.

Regarding pre-training, task-agnostic multilingual multimodal pre-training at scale is shown

to be an important step. One may start with the multi-HowTo100M dataset and the repository

at https://github.com/berniebear/multi-ht100m. I provide the script for extracting

video features, the pre-training script on Multi-HowTo100M, and the fine-tuning script on various

end tasks. One may either use the pre-trained checkpoints and the model provided in the repository
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or re-train on Multi-HowTo100M from scratch with one’s own model. Considering the scale of the

data, it will be more efficient to start with the pre-trained model provided in the repository. Note

that it takes around 8TB to store the instructional videos in Multi-HowTo100M or HowTo100M.

Pre-training on 9 languages takes around one day over an eight-V100 GPU instance for 16 epochs.

Besides video-text data, a possible enhancement is to consider pre-training with additional

image-text data. For large-scale image-English data such as conceptual caption (Sharma et al.,

2018), one may consider using multimodal MT models proposed in this thesis or off-the-shelf text-

only MT models such as https://marian-nmt.github.io/ to translate English captions

into non-English languages for image-text pre-training.

For fine-tuning, the codebase released focuses on multilingual text-video retrieval in VTT1 and

VATEX, as well as multilingual text-image retrieval in Multi30K. As all the model architectures are

based on Transformer, other vision-language tasks such as VQA and vision-language navigation

can also be covered by applying tailored classification heads for the end task. An example can

be found in the codebase provided by (Xu et al., 2021). In all cases, it is desirable to collect a

sufficient amount of in-domain English-vision data for training.

Collecting multilingual training data is a critical step towards multilingual vision-language

models. In general, in-domain human annotations are the most reliable. Alternatively, one

may leverage multimodal or text-only MT models to translate the training data into the target

language(s) and train the model. Supervised multimodal or text-only MT models are more robust

in comparison to the unsupervised ones when a large-scale parallel corpus is available. For high

resource languages where monolingual corpora are available, exploiting unsupervised multimodal

MT will outperform the zero-shot cross-lingual transfer. It’s important to note that training with

multiple language-vision data is typically better than training with monolingual data.

8.4 Looking Forward

For future work, I discussed two directions that have great potential yet are currently under-

explored.

1Note that the evaluation protocols (such as the training and testing splits used in VTT) vary significantly from

one paper to another.
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8.4.1 Multilingual Multimodal Self-Supervised Learning

There are 3 modalities covered in this thesis include image, video, and text in multiple languages.

For each modality, the instances share notable variances. The videos scene and length of MSR-

VTT differ significantly from Multi-HowTo100M. Also, the text types are very different in

MS-COCO (i.e., captions) and instructional videos in HowTo100M (i.e., transcriptions of the

demonstrators’ speech). There are many possible modalities to be included for cross-view self-

supervised learning, such as audio and depth. Looking forward, unifying and covering more

modalities and richer instances types are considered as reasonable next steps.

In the short term, developing approaches that unify information from multiple modalities to

perform multi-dataset training is a reasonable next step. One may additionally introduce audio, or

combine image-text and video-text training by sharing the visual encoder where an additional

temporal pooling layer could be applied to videos. To handle different types of text annotation,

similar to the generative augmentation discussed in Chapter §7, generators or captioning modules

could be pre-trained on each dataset and be applied for synthesizing additional textual data (could

be in different languages) on the visual data of other datasets.

Learning and modeling multimodal human knowledge would be the long-term goal. Current

progress in this thesis is mainly built on large-scale data and self-supervised methods such as

contrastive learning to associate object-level or entity-level knowledge elements in different

modalities. However, human intelligence goes beyond such simple alignments within or across

modalities. For example, relationships between textual and visual objects and hierarchies of

knowledge elements go beyond the scope of this thesis. To this end, investigating capacious

models and effective algorithms that unify various learning paradigms (supervised, self-supervised,

and semi-supervised) and task objectives (discriminative, generative task, and so on) would be the

immediate future research direction.

8.4.2 Towards Multilingual Multimodal Vision-Language Models

The work presented in this thesis has identified a practical path towards generalized multilingual

multimodal vision-language models. The direct next step could be resolving the performance gap

between zero-shot and training with in-domain non-English annotations, to achieve a better cross-

lingual transfer performance on par with the transfer performance in NLP. Beyond improving

system performance, there are remaining two challenges to be resolved: (1) language coverage

and (2) task coverage.

For language coverage, the work in task-agnostic multilingual multimodal pre-training (Chap-

128



ter §6) covers 9 languages, which is only a small portion of the existing 6,500 ∼ 7000 languages.

Also, the user-generated and machine-translated captions are very limited in size. For example,

the MT models utilizing Wikipedia2 corpus, only cover 109 languages. For some low-resource

languages, there are no reliable MT models nor user-annotated captions. Additionally, the underly-

ing “visual pivoting” assumption presented in this thesis may not generalize well to more abstract

concept. People from different countries may have very different social norms that uniquely

shape the way they speak and describe. Also, there are many culture-dependent concepts where

“visual pivoting” may fail. For example, there is no “carnival” in the Chinese culture. To this end,

developing systematic approaches to increase the language coverage in multilingual multimodal

vision-language models, especially in low-resource domains, is an open question.

Instead of pivoting on shared videos, one feasible approach could be exploiting data from

multiple multimodal datasets as discussed before. For example, utilizing both multilingual

image-text (e.g., Multi30K and YJ-captions-26k (Miyazaki and Shimizu, 2016)) and multilingual

video-text datasets (e.g., Multi-HowTo100M and VATEX) to integrate the existing annotation

efforts. The other approach is to jointly model and train translation models and multimodal

contrastive learning under a multi-task setup, which may achieve better performance when

training them separately. Also, as in mBERT, a more sophisticated language type sampling may

improve the multilingual multimodal pre-training in Chapter §6.

For vision-language task coverage, this thesis mainly covers the multilingual cross-modal

retrieval tasks and translation tasks. Developing effective architectures and techniques to transfer

varieties of tasks including (1) discriminative vision-language models (e.g., VQA (Goyal et al.,

2017), TVQA (Lei et al., 2020), V-L Navigation), and (2) generative vision-language models

(e.g., multilingual captioning, multilingual text-to-image synthesis) and (3) visually-enhanced

NLP models (e.g., unsupervised multimodal MT (Huang et al., 2020b)) are the promising future

directions to be explored.

2https://en.wikipedia.org
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Appendix A

Appendix

A.1 Additional details for Multilingual Multimodal Pre-training

In this section I provide additional details for multilingual multimodal pre-training and the Multi-

HowTo100M dataset described in §6.3. This section is organized as follows: First I provide details

about the Multilingual HowTo100M (Multi-HowTo100M) dataset for multilingual multimodal

pre-training (MMP) in §A.1.1. Then I provide additional implementation details and experiment

setup in §A.1.2. Additional ablation studies regarding choices of Transformer architecture are

discussed in §A.1.3. Then I present additional cross-dataset transfer experiments in §A.1.4.

A.1.1 The Multilingual HowTo100M Dataset

In this section I provide the detailed statistics of the Multilingual HowTo100M (Multi-HowTo100M)

dataset. I also provide a comparison to Sigurdsson et al. (2020) that also uses HowTo100M for

unsupervised word translation.

The Multi-HowTo100M dataset is built upon the original English HowTo100M dataset Miech

et al. (2019) that contains 1.2 million instructional videos (138 million clips) on YouTube. I reuse

the raw English subtitles in HowTo100M, where the subtitles in HowTo100M are either automatic

speech recognition (ASR) transcriptions or user generated subtitles.

For Multi-HowTo100M, I use the same video collection as English HowTo100M. At the time

of data collection (May 2020), there were 1.09 million videos accessible. I collect the subtitles

provided by YouTube, which either consist of user-generated subtitles or those generated by

Google ASR and Translate in the absence of user-generated ones. Essentially, I collect video

subtitles in 9 languages: English (en), German (de), French (fr), Russian (ru), Spanish (es), Czech
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Language videos #subtitle #tokens

English 1238911 138429877 1.18B

German 1092947 69317890 1.26B

French 1093070 69399097 1.33B

Czech 1092717 68911940 1.22B

Russian 1092802 69117193 1.25B

Chinese 1092915 68939488 0.94B

Swahili 1092302 68898800 1.22B

Vietnamese 1092603 68887868 1.13B

Spanish 1092649 70143503 1.16B

Table A.1: Multi-HowTo100M statistics

(cz), Swahili (sw), Chinese (zh), Vietnamese (vi). Table A.1 summarizes the dataset statistics for

each language. In most cases there are more than 1 billion tokens a language.

Fig. A.1 further shows the number of tokens per video. There are typically lengthy narrations

that contains several hundreds of tokens available in each instructional video. Fig. A.2 shows the

distribution of number of tokens in a subtitle. For each subtitle segment, which ranges from 0∼20

seconds, there are typically 15∼25 words. The most of the cases, subtitles are well aligned in

time for non-English languages. Fig. 6.5 visualizes a few examples in Multi-HowTo100M.

A similar HowTo100M variant has been recently reported in MUVE (Sigurdsson et al., 2020)

that is created for unsupervised word translation. Our Multi-HowTo100M differs from MUVE

in the following perspectives: First, I collects 9 language for all videos in HowTo100M while

MUVE only has 4 languages available (English, French, Japanese, and Korean) on HowTo100M.

Also, MUVE divided HowTo100M into 4 non-overlapped sections for each language, there are

no parallel pairs for each subtitle. While in Multi-HowTo100M, there are 7-9 languages for

each subtitle. Essentially, There are more than 1 billion tokens in most languages in Multi-

HowTo100M. To our best knowledge, our Multi-HowTo100M dataset is currently the largest

multilingual text-video collection.

Beyond scale, instructional videos in Multi-HowTo100M are feasible pre-training resources

for many downstream vision-language models. Demonstrators in instructional videos typically

perform intentionally and explain the visual object or action explicitly. According to the inspection

by (Miech et al., 2019), for around 51% of clips, at least one object or action mention in the

caption can be visually seen. Prior work has shown that instructional videos are useful for
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Figure A.2: Distribution of #tokens/subtitle in Multi-HowTo100M

event recognition Yu et al. (2014), action localization model Alayrac et al. (2016), cross-modal

alignments Malmaud et al. (2015). I expect the previous success in the intersection of natural

language processing (NLP) and computer vision (CV) could be further translated into more

languages to have a broaden impact.

The are great potentials of using our Multi-HowTo100M dataset in related research field

such as multilingual multimodal representation learning Huang et al. (2019b); Kim et al. (2020);

Burns et al. (2020), multilingual multimodal translation Huang et al. (2020b); Surı́s et al. (2020),

multilingual image/video captioning Miyazaki and Shimizu (2016) ... etc. I expect the release of

Multi-HowTo100M will be a first step towards spurring more research in these directions.

A.1.2 Implementation and Experiment Details

Pre-Processing. For pre-possessing, I truncate the maximum length N of text to 192 for pre-

training on Multi-HowTo100M. The maximum length is set to 96 for fine-tuning VTT Xu et al.

(2016), VATEX Wang et al. (2019) and Multi30K Elliott et al. (2016). The maximum video length

M is set to 128 for pre-training on Multi-HowTo100M and 36 for all fine-tuning tasks.

Model Architecture. For the multilingual Transformers, either multilingual BERT Devlin

et al. (2019b) or XLM-R-large Artetxe et al. (2020), I use the pre-trained version provided by

HuggingFace. 1 and use their corresponding tokenizers for tokenization. Detailed design choices

regarding output layer and frozen layer is discussed in §A.1.3.

1https://github.com/huggingface/transformers
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For the video backbone, I use a 34-layer, R(2+1)-D (Tran et al., 2018) network pre-trained

on IG65M Ghadiyaram et al. (2019) and a S3D Miech et al. (2020) network pre-trained on

HowTo100M Miech et al. (2019). I apply a spatial-temporal average pooling over the last

convolutional layer, resulting in a 512-dimensional vector for each 3D CNN network. I extract

visual features at a rate of 1 feature per second. Since the 3D CNNs employs different size of input

windows (e.g., 8 frames for R(2+1)D and 16 for S3D), I re-sample videos to 30 fps and employs a

window of size 8 or 30 that takes consecutive frames starting from the beginning of every second

for encoding. I simply concatenate the two 3D-CNN outputs and use the 1024-dimension vector as

the visual input stream to our model. Notably, instead of using 9 different types of visual features

as in CE (Liu et al., 2019), I use only the above 2 features and achieve superior performance.

For the Transformer pooling head (TP) modules, I use a 2-layer Transformer with 4-head

attention for each TP. The embedding dimension D is set to 1024. I do not use the positional

embeddings in both text and video TP as I do not find them beneficial in our experiments. The

softmax temperature in all NCE contrastive objectives is set to 0.1 as used in SimCLR Chen et al.

(2020b).

Note that unlike ViLBERT Lu et al. (2019) or OAN Huang et al. (2019d), our models does not

employ cross-modality attention and keep the multi-head self-attention within the same modality.

The main reason is to reduce the inference time complexity. For cross-modality attention, the

complexity is O(TV ) to encode T text queries for V videos in a dataset before retrieval (since

video and query representations depend on each other). It is clearly not scalable when the dataset

contains millions of videos. To this end, our model keep self-attention within the same modality

which results in a O(T + V ) complexity compared O(TV ) in prior work with cross-modality

attention. In our preliminary experiments, I also incorporate cross-modality attention and achieved

0.3∼1.8 R@1 improvement. Considering the trade-off between performance and scalability, I

choose the latter.

Training and Inference Details and Profiling. For the softmax temperature in NCE, I set to

0.1 as used in SimCLR Chen et al. (2020b). I use the Adam (Kingma and Ba, 2014) optimizer

with a initial learning rate 2 · 10−4 and clip gradients greater than 0.2 during the training phase.

Dropout rate is 0.3. Since the video length and token length is longer in the pre-training phase, I

use a 64 batch size for pre-training. For fine-tuning, I use a batch size of 128.

Pre-training on the 1.2 million HowTo100M videos takes around 10 GPU hours (NVIDA

V100) for 16 epochs. I speed up the pre-training process by distributing the workload over 8 GPUs

on a single node of our server. I use 1 GPU for the fine-tuning or training from scratch experiments.
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For the MSR-VTT split, it takes 12 GPU hours to train our model on 180K video-text pairs for 20

epochs. For VATEX, it takes 32 GPU hours to train on 260K video-text pairs for 30 epochs. For

inference, the encoding speed is around 250-300 videos/sec and 200-250 text queries/sec. The

overall text→video search speed on 1,000 video-text pairs (1,000 text queries over 1,000 videos)

is around 6 seconds including video/text encoding and ranking their similarity scores.

Experiment Details. Our experiment consider three types of pre-training: (1) Multilingual

multimodal pre-training (MMP), (2) Multimodal pre-training (MP), and (3) no pre-training (from

scratch). For (1) and (2), I pre-train 16 epochs and use the model weight at 16-th epoch for

fine-tuning experiments.

For multimodal pre-training, I pre-train on the original English HowTo100M dataset. I iterate

over all videos in HowTo100M. For each video, I randomly sample the start and end time to

construct a video clip. For each clip, I locate the nearest consecutive ASR transcriptions in time

and use it as to construct the (video, text) pair for training.

For multilingual multimodal pre-training (MMP), I use Multi-HowTo100M for pre-training.

For each video, I follow the same strategy as MP. For a clip, I sample one language type each time

from 9 languages and use the consecutive ASR transcriptions that are closest in time to compose

(video, text) pairs for training.

After pre-training, I fine-tune our model on VTT and VATEX to evaluate on text→video

search tasks. In the zero-shot cross-lingual transfer experiments, I use only English-video data. I

then directly test the model with non-English queries to report the zero-shot performance. When

annotations in additional languages are available (by humans in VATEX and Multi30K; by MT

models (i.e. translate-train) in VTT), I train our model with all available multilingual annotations

(i.e. fully supervised) to compare fairly with other baselines in multilingual text→video search.

Since pre-trained model has a faster convergence rate, I fine-tune for 10 epochs and use the

model with best validation performance (summation of R@1, R@5, R@10) for testing. For

models without pre-training (i.e., from-scratch), I train for 20 epochs under the same training

protocol.

A.1.3 Additional Ablation Studies

As has been investigated in XTREME Hu et al. (2020), choosing different output layers will affect

the zero-shot transferability of multilingual Transformers in various NLP tasks. For text→video

search tasks, I conduct a series of experiments to identify the desirable choices of hyper-parameters
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Output layer Freeze lower en de

3 0 20.9 3.2

6 0 20.5 3.1

9 0 21.0 4.8

12 0 21.0 13.3

15 0 20.5 12.3

18 0 20.8 12.6

12 6 21.0 15.5

12 9 21.0 16.3
12 12 18.9 14.1

Table A.2: Text→video R@1 of XLM-R output layers and layers to freeze on VTT

Output layer Freeze lower en de

3 0 19.2 2.5

6 0 19.5 2.0

9 0 19.3 5.8

12 0 19.6 8.8

12 6 19.3 10.5

12 9 19.9 11.1
12 12 18.9 9.8

Table A.3: Text→video R@1 of mBERT output layers and layers to freeze on VTT

in the proposed multilingual multimodal Transformer that lead to best performance in English-

to-video and (zero-shot) non-English-to-video search performance. Beyond our ablation studies

in Sec. 5, in this part I highlight our trials in the choice of the output layer and the layers to be

frozen in our multilingual Transformer backbone (i.e., mBERT and XLM-R). There are 24 layers

in XLM-R (large) and 12 layers in mBERT. I perform grid-search on VTT to identify the best

choice of these two hyper-parameters.

Choice of Output Layers Table A.2 and Table A.3 compare different choices of output layer

and layers to freeze in multilingual Transformers. Our results suggest that the best output

layer for mBERT and XLM-R is the 12-th layer. Surprisingly, while output layer does not

affect English→video search significantly, it greatly affects the zero-shot cross-lingual transfer

performance of video-text models. For both XLM-R and mBERT, the performance degrade
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text→video English Non-English

In-domain X X

Out-of-domain X

Table A.4: Coverage of our experiments

significantly if fine-tuning all layers.

Choice of Layers to Freeze Similar to output layers, the choice of frozen layers greatly affects

cross-lingual transferability. For both mBERT and XLM-R, it is desirable to freeze part of

the lower layers and make the top-3 layers trainable for video-text models. I observe that

when freezing all layers (i.e., using the pre-extracted contextual multilingual embeddings) does

not lead to satisfactory results. For mBERT, R@1 drops from 19.9 to 18.9 in English→video

search and 11.1 to 9.8 in German→video search. For XLM-R, R@1 drops from 21.0 to 18.9

in English→video search and 16.3 to 14.1 in German→video search. These results imply that

text-only contextual multilingual embeddings along are likely to be infeasible to be applied to

vision-language tasks without proper fine-tuning.

An important observation is that the best English→video search performance corresponds to

the best German→video performance. This trend implies that for model selection, the configura-

tion for the best English→video model usually translates to the best configuration for (zero-shot)

cross-lingual model. This shared trend justifies the English→video ablation studies in the original

paper. Note that I utilize the best English→video for all (zero-shot) cross-lingual experiment in

our experiment section.

For multilingual text→video search, the best configuration I found in our experiments is to

output the 12-th layer and freeze the layers below 9 for both mBERT and XLM-R.

A.1.4 Additional Experimental Results

The coverage of our text→video search experiments is summarized in Table A.4. Our experiments

cover the following scenarios:

In-domain, English: Table 5 (VTT) and Table 6 (VATEX) in the original paper.

In-domain, non-English: Table 4 (VTT, 9 languages) and Table 6 (VATEX, Chinese).

Out-of-domain, English: Additional (zero-shot) generalization results across datasets are in

§A.1.5.

Out-of-domain, non-English: I consider this as our future work.
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Model R@1 R@5 R@10

VSE (Kiros et al., 2014) 10.1 29.4 41.5

VSE++ (Faghri et al., 2018) 14.4 35.7 46.9

Dual (He et al., 2016a) 13.7 36.1 48.2

HGR (Chen et al., 2020a) 16.4 38.3 49.8

Ours-Full 24.0 50.5 62.1

Table A.5: Zero-shot generalization on YouTube2Text with VTT-finetuned model.

A.1.5 Generalizability across English-Video Datasets

In this section. I provide additional experiment results regarding zero-shot generalization of the

VTT-finetuned model on out-of-domain dataset. Specifically, I test on YouTube2Text Guadarrama

et al. (2013). The aim of this experiment is to test the cross-dataset generalizabilty of our model

without using domain-specific training data.

Table A.5 shows the comparison of English→video search results on the YouTube2Text testing

set. Models in this table are only fine-tuned on VTT and use no YouTube2Text training data.

As can be observed, our model with MMP generalizes well on YouTube2Text, outperforming

HGR Chen et al. (2020a) by 7.6 and DualEncoder He et al. (2016a) by 10.3 in R@1.

A.2 Additional details for Bottlenecks in Multimodal Repre-

sentation Learning

This appendix provides additional details for analyzing bottlenecks in multimodal representation

learning §6.2. First, I provide more details about the model. Then I introduce the datasets and the

experimental setup. Finally, I provide additional qualitative and quantitative experimental results

for text-video retrieval and captioning.

A.2.1 Model Details

Implementation details and hyper parameters. For our text encoder, I use the T5-base model

pre-trained on the “Colossal Clean Crawled Corpus” (C4) (Raffel et al., 2019). I use its corre-

sponding text tokenizer and encode a sentence into a sequence of 1024 dimensional vectors.

For our visual encoder, our model utilizes only the motion and the appearance features.

For the motion feature, I use a 34-layer, R(2+1)-D (Tran et al., 2018) model pre-trained on
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IG65M (Ghadiyaram et al., 2019) and apply a spatial-temporal average pooling over the last

convolutonal layer, resulting in a 512-dimensional vector. For the appearance feature, I use the

2048-dimension flattened pool-5 layer of the standard ResNet152 (He et al., 2016b) pre-trained

on Imagenet (Deng et al., 2009). I extract features at a rate of 1 feature per second and simply

concatenate the two features, resulting in a 2560-dimension visual input stream. Noteworthily,

instead of using 9 and 7 different types of visual features as in CE (Liu et al., 2019) and MMT

(Gabeur et al., 2020), I use only the above 2 features and achieve on par or superior performance.

Also, with early fusion, our model does not suffer from additional computation required for the

extended sequence length in MMT. For the text decoder, I use the T5-base model decoder, also

pre-trained on C4.

Add & Norm

FFN

Add & Norm

MHA

CNN/RNN

Q V

x L

Figure A.3: Transformer pooling head.

As illustrated in Fig. A.3, our transformer pooling head is composed of a pre-encoder, a multi-

head self-attention (MHA), and a feed-forward layer (FFN). For pre-encoders, I use a one-layer

MLP with a d-dimensional output for mapping video features into the common embedding space.

I use 1024-dimension bi-directional GRU as the text pre-encoder. For the 1D-CNN prior, I use

kernels with size [2, 3, 4, 6] as the visual and text pre-encoders. I set the embedding dimension to

1024 and use 4 attention heads in the transformer pooling layers. The hidden dimension of FFN is

2048.

Training and Inference time. Pre-training on 1.2 million HowTo100M videos takes around

160 GPU hours (NVIDIA V100) for 20 epochs. I speed up the pre-training process by distributing

the workload over 8 GPUs. I use 1 GPU for the fine-tuning or training from scratch experiments.

For the MSR-VTT 1k-A split, it takes 12 GPU hours to train our full model on 180K video-text

pairs for 20 epochs. For Vatex, it takes 32 GPU hours to train on 260K video-text pairs for 30

epochs. For ActivityNet, it takes 2.5 GPU hours to train on 10K video-text paris for 28 epochs.
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For inference, the encoding speed is around 250-300 video/sec and 200-250 text query/sec.

The overall text-to-video search speed on 5,000 video-text pairs (5,000 text queries over 5,000

videos) is 30-34 seconds including encoding. The speed of text-to-video retrieval is similar to

video-to-text retrieval.

A.2.2 Experiment Details

The margin α of the max-margin loss is 0.2, and the temperature T is set to 0.1 as used in

SimCLR Chen et al. (2020b). I use the Adam (Kingma and Ba, 2014) optimizer with a initial

learning rate 5 · 10−5 and clip gradients greater than 0.2 during the training phase. Dropout rate is

0.3 for all datasets besides ActivityNet (0.0).

As the average video/text lengths and videos available are quite different across datasets, I

adjust our training scheme accordingly. When training on MSR-VTT, ActivtyNet and Vatex,

batch-size is set to 64. For MSR-VTT training, I sample and truncate videos to 32 seconds, text to

100 tokens and train for 20 epochs. For Vatex, videos are at most 64 seconds and I train for 30

epochs. For ActivtityNet training, videos are at most 512 seconds and 256 tokens for the text part.

I train for 28 epochs on ActivityNet. For fine-tuning HowTo100M pre-trained model, I reduce

training epochs into quarters.

A.2.3 Video Captioning Experiments

To measure captioning/text generation performance, I report BLEU4 (Papineni et al., 2002),

METEOR (Denkowski and Lavie, 2014), Rogue-L (Lin, 2004) and CIDEr (Vedantam et al., 2015)

metrics. I report results on the MSR-VTT, VATEX and ActivityNet datasets.

Table A.6: Captioning performance on the MSR-VTT dataset

Captioning

BLUE4 METEOR Rogue-L CIDEr

VidTranslate (Korbar et al., 2020) 41.7 28.5 − −
POS+VCT (Hou et al., 2019) 42.3 29.7 62.8 49.1

ORG (Zhang et al., 2020b) 43.6 28.8 62.1 50.9

Ours, MSR-VTT only 39.7 28.3 60.5 46.5

Ours, HT100M + MSR-VTT 38.9 28.2 59.8 48.6

140



Table A.7: Captioning performance on the VATEX dataset

Captioning

Blue@4 METEOR Rogue-L CIDEr

Shared Enc-Dec (Wang et al., 2019) 28.4 21.7 47.0 45.1

ORG (Zhang et al., 2020b) 32.1 22.2 48.9 49.7

Ours, VATEX only 32.8 24.4 49.1 51.2
Ours, HT100M + Vatex 32.5 24.1 48.9 50.5

Table A.8: Captioning performance on the ActivtyNet dataset

Captioning

Blue@4 METEOR Rogue-L CIDEr

DENSE (Krishna et al., 2017a) 1.6 8.9 − −
DVC-D-A (Li et al., 2018) 1.7 9.3 − −
Bi-LSTM+TempoAttn (Zhou et al., 2018b) 2.1 10.0 − −
Masked Transformer (Zhou et al., 2018b) 2.8 11.1 − −

Ours, ActivityNet only 1.5 6.9 17.8 3.2

Ours, HT100M + ActivityNet 1.4 6.9 17.5 3.1

A.2.4 Zero-Shot Retrieval Experiments

I also evaluate our model in the zero-shot setting on MSR-VTT, Vatex, ActivityNet and MSVD,

after pre-training on HT100M. While I are able to get reasonable results on MSR-VTT and MSVD,

our results are not great on Vatex and Activity-Net due to significant domain gap.

A.2.5 Action Recognition Experiments

Lastly, I evaluate our model on the video action recognition task on HMDB-51 (Kuehne et al.,

2011) and UCF-101 (Soomro et al., 2012). For this, I use the R(2+1)D-34 (pretrained on IG65M)

model as well as a ResNet-152 model (pretrained on Imagenet), as in our method. I extract

a feature per second per video by concatenating the features from each model (2560-D), and

obtain an average representation per video using either average pooling (2560-D) or our proposed

transformer pooling head (1024-D) pre-trained on HT100M using cross-captioning objective. I

then train a linear classifier for 1500 epochs for HMDB-51 (500 for UCF-101) on these features

using Adam (Kingma and Ba, 2014) optimizer with learning rate of 1e−4 and weight decay 1e−4
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Table A.9: Zero-shot Retrieval performance on VATEX, MSR-VTT, MSVD and Activi-
tyNet.

Text→Video Video→Text

R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓

Zero-Shot
ActivityNet 0.06 0.2 0.5 1907.0 0.0 0.2 0.3 2238.0

VATEX 0.07 0.4 0.7 682.0 0.07 0.4 0.9 697

MSVD 8.9 26.0 37.9 18.0 21.4 46.2 57.7 6.0

MSR-VTT 8.7 23.0 31.1 31.0 12.7 27.5 36.2 24.0

with early stopping. I also drop the learning rate by 10 at epochs 200, 400 for UCF-101 and

1000, 1200 for HMDB-51. In Table A.10, I show the results of training only a linear-layer on

features extracted from our fixed backbone with or without a learned transformer-pooling head. I

find that our transformer temporal pooling head provides significant benefits over the baseline of

simply average pooling the features, demonstrating the effectiveness of building contextualized

representations using our proposed transformer. In particular, I see improvements of over 7%

on HMDB-51 and 34% on UCF-101 by replacing average pooling with our transformer pooling

head to aggregate features. I observe that naive average pooling performs significantly worse than

our transformer pooling under evaluation protocol. This is likely because 1) the average pooling

collapses temporal information, making the linear layer based classification difficult 2) compared

to the transformer pooling, it does not benefit from large-scale pretraining on a wide variety

of action videos of HT100M. I further compare very favorably to the current state-of-the-art

approaches. In particular, I outperform all other approaches, both supervised and self-supervised,

except the recently introduced Omni (Duan et al., 2020) which was finetuned on both UCF-101

and HMDB-51, while I only trained a linear classifier on extracted features. However, it should

be noted that it is very difficult to fairly compare all these different approaches because they

may use different modalities (images, RGB video, optical flow, audio, ASR outputs), pretraining

datasets (Kinetics-400, HT100M, IG65M, Imagenet), architectures (S3D, I3D, R(2+1)D, R3D),

pre-training (supervised, self-supervised) and downstream training (frozen, finetuned) strategies.

A.2.6 Statistical significance

In Table A.11, I show the results of finetuning our pretrained model for 3 times on the VATEX

dataset. I find that the variance is quite low and our model consistently beats the state of the art.
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A.2.7 Additional Qualitative Results

I provide addition qualitative text-to-video retrieval results on MSR-VTT, VATEX, ActivityNet in

Fig. A.4. Given a text query, in most cases, our model successfully retrieves the correct videos

marked in green.
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Table A.10: Action recognition. Results of training only a linear-layer, on features extracted

from our fixed backbone with or without a learned transformer-pooling head. We compare to the

state-of-art supervised and self-supervised pretrainig methods on the HMDB-51 and UCF-101

action recognition task, for different downstream training protocols (“FT?” stands for finetuned).

We report average Top-1 accuracy across all 3 folds. Dataset abbreviations: AudioSet, HMDB51,

HowTo100M, Instagram65M, IMagenet-1000, Kinetics400, OmniSource Images + Videos,

Sports1M, UCF101, YouTube8M. Other abbreviations: Video modality, Flow modality, Image

modality, Audio modality, Transformer pooling, Average pooling

Method Mod Dataset Model FT? H51 U101

Self-Supervised Pre-training

MIL-NCE (Miech et al., 2020) V,T HM S3D-G 7 53.1 82.7

MIL-NCE (Miech et al., 2020) V,T HM S3D-G 3 61.0 91.3

MMV (Alayrac et al., 2020) V,T,A HM+AS TSM-50x2 7 67.1 91.8

ELo (Piergiovanni et al., 2020) V,F,A YT8M R(2+1)D-50x3 3 67.4 93.8

XDC (Alwassel et al., 2020) V,A IG65M R(2+1)D-18 3 68.9 95.5

Supervised Pre-training

P3D (Qiu et al., 2017) V,I S1M+IM P3D 3 − 88.6

TSN (Wang et al., 2018a) V,I IM TSN 3 69.4 94.2

I3D (Carreira and Zisserman, 2017) V,I K400+IM I3D 3 74.8 95.6

R(2+1)D (Tran et al., 2018) V K400 R(2+1)D-34 3 74.5 96.8

S3D-G (Xie et al., 2018) V,I K400+IM S3D-G 3 75.9 96.8

I3D (Carreira and Zisserman, 2017) V,I K400+IM I3D 3 77.1 96.7

R(2+1)D (Tran et al., 2018) V K400 R(2+1)D-34 3 76.4 95.5

R(2+1)D (Tran et al., 2018) V,F K400 R(2+1)D-34x2 3 78.7 97.3

Omni (Duan et al., 2020) V,I K400+OS Slow-8x8-R101 3 79.0 97.3

I3D (Carreira and Zisserman, 2017) V,F,I K400+IM I3Dx2 3 80.7 98.0

Omni (Duan et al., 2020) V,F,I K400+OS Slow-8x8-R101x2 3 83.8 98.6

Ours (Avg-pooling) V,I IG65M+IM R(2+1)D-34+R152 7 73.7 64.3

Ours (T-pooling) V,I HM+IG65M+IM R(2+1)D-34+R152 7 81.3 98.0
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Table A.11: Retrieval performance on the VATEX dataset

Text→Video Video→Text

R@1↑ R@5↑ R@10↑ MdR↓ R@1↑ R@5↑ R@10↑ MdR↓

Random Baseline 0.2 0.7 1.05 2000.5 0.02 0.1 1.02 2100.5

VSE (Kiros et al., 2014) 28.0 64.3 76.9 3.0 − − − −
VSE++ (Faghri et al., 2018) 33.7 70.1 81.0 2.0 − − − −
Dual (He et al., 2016a) 31.1 67.4 78.9 3.0 − − − −
HGR (Chen et al., 2020a) 35.1 73.5 83.5 2.0 − − − −
Ours 44.9±0.2 82.1±0.2 89.7±0.2 1.0 58.4±0.1 84.4±0.2 91.0±0.3 1.0
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(a) MSR-VTT
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(b) VATEX
A woman is seen speaking to the camera while holding an 
accordion and moving her hands around . She 
demonstrates how to play the instrument while still 
speaking to the camera and moving all around

1

2

3

A close up of nails are seen followed by a shot of brushes 
and nail polish . A person is then seen wiping polish onto a 
pad and rubbing the object all over her nails . She then 
puts a coating over the nail and shows it off again

1
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3

(0.74)

(0.73)
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(c) ActivityNet

Figure A.4: Examples of top-3 Text→Video retrieval results and similarities on the MSR-VTT,

VATEX, and ActivityNet testing set. Only one correct video (colored in green) for each text query

on the top.
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Aäron van den Oord, Y. Li, and Oriol Vinyals. Representation learning with contrastive predictive

coding. ArXiv, abs/1807.03748, 2018. 62, 69

166

https://www.aclweb.org/anthology/N12-1052


Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural

Information Processing Systems, pages 5998–6008, 2017. 16, 23, 24, 43, 57, 59, 68

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image

description evaluation. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 4566–4575, 2015. 140

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun. Order-embeddings of images and

language. arXiv preprint arXiv:1511.06361, 2015. 1, 14, 38, 47, 79, 83

Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney, Trevor Darrell, and

Kate Saenko. Sequence to sequence – video to text. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2015. 21, 55, 60

Kaiye Wang, Qiyue Yin, Wei Wang, Shu Wu, and Liang Wang. A comprehensive survey on

cross-modal retrieval. arXiv preprint arXiv:1607.06215, 2016a. 1

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool.

Temporal segment networks for action recognition in videos. IEEE transactions on pattern

analysis and machine intelligence, 41(11):2740–2755, 2018a. 144

Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning deep structure-preserving image-text

embeddings. In Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on,

pages 5005–5013. IEEE, 2016b. 16, 28, 37

Liwei Wang, Yin Li, Jing Huang, and Svetlana Lazebnik. Learning two-branch neural networks for

image-text matching tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2018b. 28, 37

Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang Wang, and William Yang Wang. Vatex:

A large-scale, high-quality multilingual dataset for video-and-language research. In The IEEE

International Conference on Computer Vision (ICCV), October 2019. 1, 2, 4, 20, 22, 60, 72,

133, 141

Michael Wray, Diane Larlus, Gabriela Csurka, and Dima Damen. Fine-grained action retrieval

through multiple parts-of-speech embeddings. In ICCV, 2019. 63, 77

Shijie Wu and Mark Dredze. Beto, bentz, becas: The surprising cross-lingual effectiveness of

bert. arXiv preprint arXiv:1904.09077, 2019. 66

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang

167



Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva

Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,

Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang,

Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Mac-

duff Hughes, and Jeffrey Dean. Google’s neural machine translation system: Bridging

the gap between human and machine translation. CoRR, abs/1609.08144, 2016. URL

http://arxiv.org/abs/1609.08144. 104

Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised feature learning via

non-parametric instance discrimination. In CVPR, 2018. 54

Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking spatiotem-

poral feature learning: Speed-accuracy trade-offs in video classification. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 305–321, 2018. 144

Hu Xu, Gargi Ghosh, Po-Yao Huang, Prahal Arora, Masoumeh Aminzadeh, Christoph Feicht-

enhofer, Florian Metze, and Luke Zettlemoyer. Vlm: Task-agnostic video-language model

pre-training for video understanding, 2021. 127

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. MSR-VTT: A large video description dataset for

bridging video and language. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 5288–5296. IEEE

Computer Society, 2016. doi: 10.1109/CVPR.2016.571. URL https://doi.org/10.1109/

CVPR.2016.571. 1, 20, 21, 55, 59, 72, 133

Ran Xu, Caiming Xiong, Wei Chen, and Jason J. Corso. Jointly modeling deep video and

compositional text to bridge vision and language in a unified framework. In Proceedings of the

Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, page 2346–2352. AAAI

Press, 2015. ISBN 0262511290. 21, 60
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