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Abstract
We believe that Personalized Recommender Systems should not only produce good

recommendations that suit the taste of each user but also provide an explanation that
shows why each recommendation would be interesting or useful to the user, to be more
effective. Explanations serve many different purposes. In general, providing an expla-
nation has been shown to build user’s trust in the recommender system.

Most often, the type of explanation that can be generated is constrained by the type
of the model. In this thesis, we focus on generating recommendations and explanations
using knowledge graphs as well as neural networks.

Knowledge Graphs (KG) show how the content associated with users and items are
interlinked to each other. In the first part of this thesis, we show how recommendation
accuracy can be improved using a logic programming approach on KGs. Additionally,
we propose how explanations could be produced in such a setting by jointly ranking
KG entities and items. KGs however operate in the domain of discrete entities, and are
therefore limited in their ability in dealing with natural language content.

In addition to KGs, free form text such as reviews are another good source of in-
formation about both the user as well as the item. In the second part of this thesis, we
shift our focus to neural models that are more amenable to natural language inputs, and
we show how an oracle-student architecture, called TransNet, can be used to transform
latent representations of user and item into that of their joint review to improve rec-
ommendation performance.

We also show how TransNet can be used to select a candidate review that is most
similar to the joint review. Such a review could possibly serve as an explanation of why
the user would potentially like the item. However, different users are interested in dif-
ferent aspects of the same item. Therefore, most times, it is impossible to find a single
review that would reflect all the interests of a user. Ideally, a user would be shown a
personalized summary of all relevant reviews for that item. In the third part of this the-
sis, we adapt our TransNet model to generate the user’s review for a given item and
compare its performance against the state-of-the-art models extensively using both au-
tomatic and human evaluations.

Although predicting a user’s review for an item provides valuable information, it
is not structured like an explanation. The main difficulty in training models to gener-
ate explanations is the lack of ground truth explanation data. In the final part of this
thesis, we present a new gold standard dataset, the first of its kind, for personalized
explanations that can be used to train neural models to generate detailed personalized
recommendations in natural language.
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Chapter 1

Introduction

Personalized Recommendation Systems are an important aspect of e-commerce and are becoming
increasingly prevalent in all aspects of our daily lives. They have become ubiquitous in a number of
domains. Personalized services enable users to quickly find anything, be it a shopping item, movie,
news or restaurants, that best suits their tastes, from the countless choices.

Personalized Recommendation Systems have garneredmuch attention over the past two decades
and continue to be an important topic of research. Although predicting a user’s rating for an item
has been one of the main research goals, past research on recommender systems have also focused
on a variety of other aspects of the system. For example, recommendations for a user in a particu-
lar context like geo-location, time or day, persons accompanying them, and mood, is very different
from those made outside of that context. Similarly, in certain applications, recommendation for a
session is a research sub-area in itself because a session usually corresponds to a particular user in-
tent. Interactive recommender systems that modify their recommendations in an online fashion as
they consume user’s feedback may use considerably different algorithms from mainstream systems.
In addition to these, the domain of the application also calls for specialized algorithms. For example,
video and music recommendations make use of features extracted from the data which are unavail-
able in other domains to improve their performance.

Although producing good recommendations is the primary goal, it is also desirable that such
systems provide an explanation accompanying the recommendation. Explanations may serve one or
more purposes [154]. Below are some of the important ones:

1. Transparency: Explanations that describe how a recommendation was chosen makes the sys-
tem transparent to the user. Such explanations are called interpretable. Although many users
may not care about the internal workings of a recommender system, transparency is a desir-
able property when the system shows non obvious recommendations.

2. Trust: Explanations that aim to increase users’ confidence in the system fall into this category.
An example is when the system reveals that it is not very confident that the user would like the
recommendation, showing that the system is open and honest.

3. Persuasiveness: This is different from the other categories because the goal is to persuade the
user to act on the recommendation for the benefit of the system. For example, the recommen-
dations provided by an online shopping website may be optimized to increase their revenues
and need not necessarily provide the best choices for the user.

1



4. Effectiveness: Explanations enable users to make good decisions by helping them understand
why they would like or dislike certain aspects of a particular recommendation. We refer to
them as Explainable Recommendations that are Explanatory or, Explanatory Recommendations for
short.

5. Efficiency: Explanations help usersmake decisions quicker, especially structured as a compar-
ison between competing items.

6. Satisfaction: Studies have shown that explanations could also increase the perceived satisfac-
tion of the users with the recommender system.

If employed wisely, an explanation could contribute substantially to the acceptance and success
of a recommender system [48, 154]. Therefore, there is a renewed interest in research concerning
the generation of good explanations.

The focus of this thesis is on generating explanations together with high quality recommenda-
tions that are personalized to each user, and which will enable them to make an informed decision
about the item. The approaches for explanation discussed in this thesis are most in line with ‘Ef-
fectiveness’ in the above list of purposes of providing explanations. Our approaches strive to also
explain why a user may ‘dislike’ an item. i.e. they are not limited to finding only positives or per-
suading the user to buy the item. A prominent use-case for our type of explanations would be as an
explanation module in a virtual assistant like Amazon Alexa, Apple Siri, Google Home, Microsoft
Cortana or CMU InMind SARA [125]. For example, the user maywant to know how they would like
a particular product— i.e. how does it measure in those aspects that the user cares about— andmake
an informed choice. Unless stated otherwise, both the recommendations as well as the explanations
are personalized.

Our underlying hypothesis is that to be able to generate good recommendations and to effectively
explain them, we need to model users’ personal interests and show how these interests are reflected
in the recommended product or item. Most often, the type of explanation that can be generated
is constrained by the type of the underlying recommendation model. In this thesis, we focus on
generating recommendations and explanations using knowledge graphs as well as neural networks.

Knowledge graphs (KG) show how the content associated with users and items are interlinked
to each other. Using KGs have been shown to improve recommender accuracies in the past. In the
first approach discussed in the Chapter 2 of this thesis , we model the interests as entities that are
interlinked via a knowledge graph. Items to be recommended are ranked using a randomwalk based
approach in a logic programming framework. We also propose an approach to generate explanations
in this setting by jointly ranking the entities with the items. This work was published in the 10th and
the 11th ACMConferences on Recommender Systems (RecSys ‘16 & ‘17).

KG based methods have many limitations. For example, links between different entities are not
always known. This is usually the case when deploying the system in a new domain. i.e. a KG is
not always available. Also, since KGs are constructed using discrete entities, they are limited in their
ability in dealing with natural language content such as user reviews. In many applications, user
reviews are available easily. These free form texts describe the user’s experiencewith the item and are
a good source of information about both the user as well as the item. However, KG based approaches
make use only of the entities, and the context and sentiment in the surrounding text is overlooked.

In the second approach that is discussed in the Chapter 3 of this thesis, we use neural mod-
els to leverage reviews written by users. The set of reviews written by a user illustrates his or her
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interests, and can be used to construct a representation for them in a latent vector space. Simi-
larly, reviews written for an item can be used to learn its overall representation. Items to be rec-
ommended are scored using a neural regression model. Our model, called Transformational Neural
Network (TransNet), generates a latent representation not of the entities, but of the user’s predicted
review. In this model, an explanation provided is via the most similar review written for the item,
where the similarity is judged as the proximity in the latent space. This work was published in the
11th ACMConference on Recommender Systems (RecSys ‘17).

Selecting reviews to show as explanation suffers from a number of limitations. Most importantly,
it is almost always impossible to find an existing reviewwritten for the item by other users, that cov-
ers all the aspects of the item that the user at hand cares about. Although usersmay be similar in their
overall opinion about an item, each user’s experience with the item is bound to be different. There-
fore, in Chapter 4, we tackle the research problem of generating user’s reviews for items. We adapt
our previously proposed TransNet model for the purpose of review generation. The explanation in
this setting is the generated review itself, that elucidates the properties of the item that the user cares
about, whether they would like it or not, and why, in natural language text, all personalized to the
user.

While showing to a user what their review would look like if they were to experience an item
is valuable, it still is neither an explanation nor a detailed recommendation — it is a review. The
main difficulty in generating explanations is the absence of gold standard data. While there exists
many datasets containing the user feedback on the actual recommendation itself, the same is not
true when it comes to the explanations. In the last part of this thesis in Chapter 5, we present the
first ever dataset created for personalized explanations and detailed recommendations with human
written text. The dataset was created using Amazon Mechanical Turk1 and contains personalized
recommendations and explanations for 1000 users and 900 businesses.

This thesis is organized as follows: Chapter 2 details techniques to improve recommendation
accuracy and generate explanations using Knowledge Graphs. This is followed by Chapter 3 that
discusses techniques for the same goals, but using neural networks. Subsequently, in Chapter 4, we
delve into techniques for review generation. In Chapter 5, we present a new gold standard dataset
for personalized explanations. Finally, in Chapter 6, we conclude with a discussion about the contri-
butions of this thesis and some interesting directions of future research. Prior work relevant to the
research reported in this thesis is presented in the corresponding chapters.

1https://www.mturk.com
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Chapter 2

Rating Prediction and Explanation using
Knowledge Graphs

In this chapter, we first show how Knowledge Graphs can be leveraged to improve personalized
recommendations, using a general-purpose probabilistic logic system called ProPPR[167]. We for-
mulate the problem as a probabilistic inference and learning task, and present three approaches for
making recommendations. Our formulations build on a path-ranking approach called Heterec_p
proposed by [186]. We show that a number of engineering choices, such as the choice of specific
metapaths and length of metapaths, can be eliminated in our formalism, and that the formalism al-
lows one to easily explore variants of the metapath approach. This work was published in the 10th

ACMConference on Recommender Systems (RecSys ‘16) [23].
In the second part of this chapter, we shift our focus to generating explanations for Knowledge

Graph (KG) -based recommendations. Although a number of explanation schemes have been pro-
posed in the past, at the time this work was proposed, there were no existing approaches that pro-
duced explanations for KG-based recommenders. We present a method to jointly rank items and
entities in the KG such that the entities can serve as an explanation for the recommendation. Our
technique can be run without training, thereby allowing faster deployment in new domains. Once
enough data has been collected, it can then be trained to yield better performance. It can also be used
in a dialog setting, where a user interacts with the system to refine its suggestions. This work was
published in the 11th ACMConference on Recommender Systems (RecSys ‘17) as a Poster [26].

2.1 Background and Concepts: Knowledge Graphs

In this Thesis, we use the term entity as a generic term to denote a word or a phrase that can be
mapped onto a knowledge base (KB) or an ontology. Since the datasets used in this Thesis already
have links into a structured knowledge base, the mapping is straightforward. However, when using
a generic knowledge base likeWikipedia1, Yago [146] or NELL [108], one might require a wikifier or
an entity linker [88]. Entities are typically generated from the content associated with the users and
items. For users, these are typically their demographics. For items like movies, these may include the

1https://en.wikipedia.org
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actors, genre, directors, country of release, etc. and for items like restaurants, these may include the
location, cuisine, formal vs. casual, etc.

A Knowledge Graph (KG) is a graph constructed by representing each item, entity and user as
nodes, and linking those nodes that interact with each other via edges. A related terminology used
in literature is the Heterogenous Information Network (HIN), which is essentially a KG but with
typed entities and links, and where there is more than one type of entity (heterogenous). A HIN is
in contrast to prior works that use graphs or networks of only one type of node, like say, a friend
network; these are called homogeneous. A KG, as referred to in this Thesis, is therefore a relaxed
version of a HINwhere the types of entities and links may or may not be known. We assume that the
nodes are typically heterogenous even if their type information is missing. If the types are unknown,
then only some methods are applicable. However, if the knowledge graph is indeed an HIN, then all
three methods apply.

  

Bob

Schindler's 
List

Liam 
Neeson

actor

Alice Kumar

The Terminal

Good Will
Hunting

Bridge of
Spies

Saving Private
Ryan

Steven 
Spielberg

director
Tom 

Hanks

actor
Matt 

Damon

actor

?

Users

Movies

Knowledge Base

Figure 2.1: Example of Movie Recommendation with a Knowledge Graph

A typical movie recommendation example is depicted in Figure 2.1 where users watch and/or
rate movies, and information about the movies is available in a database. For example, con-
sider tracking three users Bob, Alice and Kumar. From usage records, we know that Alice has
watched Saving Private Ryan and The Terminal, both of which have Steven Spielberg as
the Director and Tom Hanks as an Actor, as specified by the knowledge base. The knowledge
base may also provide additional information like plot keywords, language and country of release,
awardswon etc. Similarly, we also know themovies that werewatched in the past by Bob and Kumar.
In addition to watching, we could also include user’s actions such as “reviewing” or “liking”, if avail-
able. Given the past viewing history of users, we may want to know the likelihood of themwatching
a particular new movie, say Bridge of Spies. This scenario is graphically represented in Figure
2.1. Although in this particular case the movie-entity graph is bipartite, it is also common to have
links between movies themselves like say, Finding Nemo and Finding Dory where the latter is
a sequel to the former, or between entities themselves, for example, Tom Hanks and Best Actor
Academy Award.
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2.2 RelatedWork
We have grouped the related work into two subsections. The first subsection discusses relevant lit-
erature for KG based recommendations and the second, details that for entity based explanations.

2.2.1 Knowledge Graphs for Recommendation

Recommendation systems have been popular for a long time now and are a well researched topic
[124]. However, there has not been much effort directed at using external KGs for improving rec-
ommendations.

A recentmethodHeteRec_p [186], proposed the use ofKGs for improving recommender perfor-
mance. This methodwas the state-of-the-art at the time the work in this chapter was performed. We
detail it in Section 2.2.1.1, since our approacheswere compared against it. [185] is another link-based
method proposed by the same authors but precedes [186]. It learns a global model of recommenda-
tion based on the KG, but does not attempt to personalize the recommendations. A similar method
was proposed in [119], which used paths to find the top-N recommendations in a learning-to-rank
framework. These methods use only the types of the nodes and do not track the actual entities that
appear in the path. For example, their paths could be of the formUser→ Movie→ Actor→ Movie

for movie ranking. The paths in our work contain the actual entities that appear in the data. A few
methods such as [108, 111] rank items using Personalized PageRank. In these methods, the enti-
ties present in the text of an item (e.g. a news article) are first mapped to entities in a knowledge
graph. The ranking process does not involve a training step to learn to walk on the graph, unlike the
methods proposed in this Thesis.

A recent work [164] that appeared after the publication of our methods, studies the problem of
medicine recommendation using a Medical Knowledge Graph. This heterogeneous graph connects
medicines, diseases and patients, and the edges encode relationships such as drug-drug interactions.
Their method first embeds the entities and relationships of the graph into a low dimensional space
using TransR [89] and LINE [150]. The recommendations are scored using their similarity in the
embedded space. There have been other related efforts in the KG space that postdates our work.
For example, [120] and [121] enhance an existing graph embedding method called node2vec, to
account for the different kinds of properties/relations. [178] is a recentwork that usesReinforcement
Learning over KGs to reason over relations. Their method trains a policy-based agent that learns to
choose a relation at every step to extend its current path on the graph. They apply their model to
link and fact prediction tasks. Another method for the same task was proposed in [175], where their
model learned amanifold-based embedding of the graph. Yet another approach proposed in [67] uses
attention over multiple paths connecting two nodes to learn a representation for that entity pair.

Another effort at using multiple sources of information is the HyPER system [75], where the
authors show how to recommend using a Probabilistic Soft Logic framework [12]. They formu-
late rules to simulate collaborative filtering (CF) style recommendation. For instance, in the case of
user-based CF, the rule is of the form, SimilarUsers(u1, u2) ∧ Rating(u1, i) ⇒ Rating(u2, i),
where SimilarUsers indicate if the users u1 and u2 are similar using a k-nearest neighbor algo-
rithm, computed offline using different similarity measures like Cosine, Pearson etc. If the friend-
network of users is available, then they leverage it using the ruleFriends(u1, u2)∧Rating(u1, i)⇒
Rating(u2, i). If other rating prediction algorithms like Matrix Factorization (MF) are available,
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then they induce an ensemble recommender using the rules RatingMF (u, i) ⇒ Rating(u, i) and
¬RatingMF (u, i)⇒ ¬Rating(u, i). Eventually, during the training phase, they learn a weight per
rule using the PSL framework, which is later used for predicting the ratings in the test set. Similar
to HyPER is the approach proposed in [62] that uses Markov Logic Networks, and that proposed in
[39] that uses Bayesian networks to create a hybrid recommender. Like these methods, we also base
our methods on a general-purpose probabilistic reasoning system. However, we differ from these
methods in our focus on using external knowledge in recommendations.

Prior researchhas previously proposedusing various kinds of special purpose or domain–specific
knowledge-graphs. In [65], the authors proposed to use a trust-network connecting the users espe-
cially for making recommendations to the cold-start users. The latter is matched up against the
network to locate their most trusted neighbors, whose ratings are then used to generate the predic-
tions. Another popularly used network is the social network of the users. Prior work like [53, 73, 95]
among various other similar approaches use the social connection information of the users to find
similar users or “friends” in this case, and use their ratings to generate recommendations for the for-
mer. Our approachs use external information about the items in contrast to the link graph of users
employed by these methods. Nodes in our KG are not necessarily of the same type, unlike that of a
social network. In [17], the authors use a graph representation of song playlists and impose a reg-
ularization constraint on NMF such that their similarity in the low dimensional space obtained by
NMF reflects their distance in the graph, but they do not use any PageRank style methods.

2.2.1.1 Heterogeneous Recommender - Personalized (HeteRec_p)

The Heterogeneous Recommender - Personalized (HeteRec_p) method proposed in [186] aims to
find user’s affinity to items that they have not rated using metapaths. Metapaths describe paths in a
graph throughwhich two itemsmay be connected. In the example of Figure 2.1, an examplemetapath
would be User→ Movie→ Actor→ Movie. Given a graph/network schemaGT = (A,R) of a
graphGwhereA is the set of node types andR is the set of relations between the node typesA, then,
metapaths are described in the form of P = A0

R1−→ A1
R2−→ A2 . . .

Rk−→ Ak and represent a path in
GT , which can be interpreted as a new composite relation R1R2 . . . Rk between node-type A0 and
Ak , where Ai ∈ A and Ri ∈ R for i = 0, . . . k, A0 = dom(R1) = dom(P ), Ak = range(Rk) =
range(P ) and Ai = range(Ri) = dom(Ri+1) for i = 1, . . . , k − 1. In the above example, this
path would be of the form P = User

viewed−−−→ Movie
starredIn−1

−−−−−−−→ Actor
starredIn−−−−−→ Movie

For the specific purpose of recommending on user-item graphs, HeteRec_p uses metapaths of
the form user → item → ∗ → item. Given a metapath P , they use a variant of PathSim [148] to
measure the similarity between user i and item j along paths of the type P , a method the authors
refer to as User Preference Diffusion. For each P , they use the user preference diffusion to construct
the diffused user-item matrix R̃P . Let R̃(1), R̃(2), ...R̃(L) be the diffused matrices corresponding to
L different metapaths. Each such R̃(q) is then approximated as Û (q) · V̂ (q) using a low-rank matrix
approximation technique. Then, the global recommendation model is expressed as: r(ui, vj) =∑

q∈L θq Ûi
(q)
· V̂j

(q) where, θq is a learned weight for the path q.
To personalize recommendations, they first cluster the users according to their interests. Then,

the recommendation function is defined as: r∗(ui, vj) =
∑

k∈C sim(Ck, ui)
∑

q∈L θ
(k)
q Ûi

(q)
· V̂j

(q)

where,C represents the user clusters and sim(Ck, ui) gives a similarity score between the kth clus-
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ter center and user i. Note that the θq is now learned for each of the clusters. This formulation of
the rating prediction function is similar to [37]. Although HeteRec_p performed well on the rec-
ommendation tasks, the algorithm needs several hyper-parameters that need to be determined or
tuned, like choosing the specific L metapaths from a potentially infinite number of metapaths, and
the number of clusters. It also requires a rich KB with types for entities and links.

2.2.2 Knowledge Graphs for Explanation

[59] was an early work that assessed different ways of explaining recommendations in a CF-based
recommender system. They reported that using a histogram of ratings by the user’s neighbors as well
as specifying if any of their favorite actors appear in the movie were perceived well by the users. A
recent work [3] proposed to constrainMF such that it favors recommendations that are explainable.
In their work, a recommendation is explainable if it there are enough known examples to reason the
recommendation as “x other people like you have liked this item in the past” (user-based neighbor
style) or “you have liked y other items like this in the past” (item-based neighbor style). A similar
method was proposed by the same authors in [2] for a CF method that uses Restricted Boltzmann
Machines (RBM).

In content-based recommenders, the explanations revolve around the profile or content associ-
ated with the user and the item. The system of [18] simply displayed keyword matches between the
user’s profile and the books being recommended. Similarly, [157] proposed a method called ‘Tags-
planations’, which showed the degree to which a tag is relevant to the item, and the sentiment of the
user towards the tag.

With the advent of social networks, explanations that leverage social connections have also gained
attention. For example, [140] produced explanations that showed whether a good friend of the user
has liked something, where friendship strength was computed from their interactions on Facebook.

More recent research has focused on providing explanations that are extracted from userwritten
reviews for the items. [189] extracted phrases and sentiments expressed in the reviews and used them
to generate explanations. [99] uses topics learned from the reviews as aspects of the item, and uses
the topic distribution in the reviews to find useful or representative reviews.

[155] is a related work on graphs that proposed an algorithm to find a node in the graph that is
connected directly or indirectly to a given input ofQ nodes. Although they have similar elements to
our approach, their method is not intended for recommendations.

Another work [76], which is contemporary with our work, evaluated different ways of showing
explanations for recommendations produced using HyPER [75], a recommender system that uses
Probabilistic Soft Logic (PSL) [12]. PSL is similar to ProPPR since both use probabilistic logic but
unlike PSL, ProPPR uses a “local” grounding procedure, which leads to small inference problems,
even for large databases [167]. The user study in [76] showed that visualizing explanations using
Venn diagrams was preferred by the users over other visualizations like pathways between nodes.
Their system generates explanations that only show why a user would like the item, and not why
they may not like it. Also, the graph used in their method is a friend network and not a Knowledge
Graph that connects users and items using the content associated with them.
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2.3 Proposed Approach for Knowledge Graph based Recom-
mendations

2.3.1 Recommendation as Personalized PageRank
Consider the example in Figure 2.1. Similar to the Topic Sensitive PageRank proposed in [55] and
the weighted association graphwalks proposed in [20], imagine a randomwalker starting at the node
Alice in the graph of Figure 2.1 (ignore the direction of the edges). At every step, the walker either
moves to one of the neighbors of the current node with probability 1 − α or jumps back to the
start node (Alice) with probability α (the reset parameter). If repeated for a sufficient number of
times, this process will eventually give an approximation of the steady-state probability of the walker
being in each of the nodes. However, since we need only the ranking of the movies and not the
other entities like actors and directors, we consider only those nodes corresponding to the movie
nodes being tested, and sort them according to their probability to produce a ranked list of movie
recommendations.

In the above method, there is no control over the walk. The final outcome of the walk is deter-
mined by the link structure and the start node alone. However, recent research has proposedmethods
to learn how to walk. Backstrom et. al in [13] showed how a randomwalker could be trained to walk
on a graph. This is done by learning aweight vectorw, which given a feature vectorφuv for an edge in
the graph u→ v, computes the edge strength as f(w, φuv), a function of the weight and the feature
vectors, that is used in the walk. During the training phase, learning w is posed as an optimization
problem with the constraint that the PageRank computed for the positive example nodes is greater
than that of the negative examples. In our case, the positive examples would be those movies that the
user watched, and negative examples would be those that the user did not watch or give an explicit
negative feedback.

2.3.2 Learning to Recommend using ProPPR
ProPPR [167], which stands for Programming with Personalized PageRank, is a first-order proba-
bilistic logic system which accepts a program similar in structure and semantics to a logic program
[92] and a set of facts, and outputs a ranked list of entities that answers the program with respect to
the facts. ProPPR scores possible answers to a query based on a Personalized PageRank process in
the proof graph (explained below) for the query. Below, we show how it can be used for the task of
learning to recommend.

For the recommendation task, the first step is to find a set of entities that each user is conjectured
to be interested in, from their past behaviors. We call this set the seedset of the user because it will
later seed the random walk for that user. For this, we use the ProPPR program of Figure 2.2. The
first rule states that the entity E belongs to the seedset of user U if U has reviewed Mwhich is linked
to entity X and X is related to E. Further, two entities are defined to be related if they are the same
(Rule 2), or if there is a link between X and another entity Z which is related to E (Rule 3). This last
rule is recursive. The link and the type (isEntity, isItem and isUser) information forms the
knowledge graph in our case. Sample entries from the knowledge graph in the ProPPR format are
shown in Figure 2.3. To find the seed set forAlice, wewould issue the queryQ =seedset(Alice,
E) to ProPPR.
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seedset(U, E)←reviewed(U, M), link(M, X), related(X, E),isEntity(E). (2.1)
related(X, X)←true. (2.2)
related(X, E)←link(X, Z), related(Z, E). (2.3)

Figure 2.2: Seed Set generation

link(Bridge of Spies, Tom Hanks) isEntity(Tom Hanks)

link(Tom Hanks, Saving Private Ryan) isEntity(Matt Damon)

link(Saving Private Ryan, Matt Damon) isItem(Bridge of Spies)

Figure 2.3: Example entries from the knowledge graph

ProPPR performs inference as a graph search. Given a program LP like that of Figure 2.2
and a query Q, ProPPR starts constructing a graph G, called the proof graph. This procedure is
called “grounding”. Each node in G represents a list of conditions that are yet to be proved. The
root vertex v0 represents Q. Then, it recursively adds nodes and edges to G as follows: let u
be a node of the form [R1, R2, ..., Rk] where R∗ are its predicates. If ProPPR can find a fact
in the database that matches R1, then the corresponding variables become bound and R1 is re-
moved from the list. Otherwise, ProPPR looks for a rule in LP of the form S ← S1, S2, ..., Sl,
where S matches R1. If it finds such a rule, it creates a new node with R1 replaced with the
body of S as, v = [S1, S2, ..., Sl, R2, ..., Rk], and links u and v. In the running example, v0 is
seedset(Alice, E)which is then linked to the node v1 = [reviewed(Alice,M), link(M,X),
related(X,E), isEntity(E)] obtained using Rule 1. Then, ProPPRwould use the training (his-
torical) data for reviewed to substitute Saving Private Ryan and The Terminal for M creating
two nodes v2 and v3 as [link(Saving Private Ryan,X), related(X,E), isEntity(E)]
and [ link(The Terminal,X), related(X,E), isEntity(E)] respectively. ProPPR would
proceed by substituting for X from the knowledge graph and related(X,E) using the rules and so
on until it reaches a node whose predicates have all been substituted. These nodes are the answer
nodes because they represent a complete proof of the original query. The variable bindings used to
arrive at these nodes can be used to answer the query. Examples would be:

seedSet(Alice, E = TomHanks)

seedSet(Alice, E = StevenSpielberg)

Note that such a graph construction could be potentially infinite. Therefore, ProPPR uses an ap-
proximate grounding mechanism to construct an approximate graph in time O( 1

αε
), where ε is the

approximation error and α is the reset parameter. Once such a graph has been constructed, ProPPR
runs a Personalized PageRank algorithm with the start node as v0 and ranks the answer nodes ac-
cording to their PageRank scores.

The output of the program of Figure 2.2 is a ranked list of entities for the user U and the firstK
of these will be stored as U’s seed set. Note that the Personalized PageRank scoring will rank higher
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those entities that are reachable from themovies that the user reviewed throughmultiple short paths,
and rank lower entities only reached by fewer, longer paths.

reviewed(U, M)←seedset(U, E), likesEntity(U, E),

related(E, X), link(X, M), isApplicable(U, M). (2.4)
likesEntity(U, E)←{l(U, E)}. (2.5)

Figure 2.4: EntitySim: ProPPR program for finding movies that a user may like using similarity
measured using the graph links

After generating the seed set for each user, the next step in recommendation is to train a model
that uses the seeds for a user to make predictions. As one method, we use the ProPPR program of
Figure 2.4. It states that the user Umay like a movie M if there is an entity E belonging to U’s seed set,
and U likes E, and E is related to another entity X, which appears in themovie M (Rule 4). The predicate
related is defined recursively as before. For the definition of the predicate likesEntity, note the
term {l(U,E)}. This corresponds to a feature that is used to annotate the edge in which that rule
is used. For example, if the rule is invoked with U = Alice and E = Tom Hanks, then the feature
would be l(Alice, Tom Hanks). In the training phase, ProPPR learns the weight of that feature
from the training data. During the prediction phase, ProPPR uses the learned weight of the feature
as the weight of the edge. Note that these learned weights for each user-entity pair are not related to
the ranking obtained from the seed set generation program of Figure 2.2, because these weights are
specific to the prediction function.

  

reviewed(Alice, M)

seedset(Alice, TomHanks),
likesEntity(Alice, TomHanks),

related(TomHanks, X), link(X, M),
isApplicable(Alice, M)

seedset(Alice, SSpielberg),
likesEntity(Alice, SSpielberg),

related(SSpielberg, X), link(X, M),
isApplicable(Alice, M)

link(TomHanks, M),
isApplicable(Alice, M)

link(SSpielberg, M),
isApplicable(Alice, M)

BridgeOfSpies

E = TomHanks E = SSpielberg

wt = l(Alice,TomHanks)
X = TomHanks

wt = l(Alice,SSpielberg)
X = SSpielberg

M = BridgeOfSpies M = BridgeOfSpies

seedset(Alice, E), 
likesEntity(Alice, E),

related(E, X), link(X, M),
isApplicable(Alice, M)

CaptainPhillips

M = CaptainPhillips

Figure 2.5: Sample grounding of the EntitySim ProPPR program

During the training phase, ProPPR grounds the program, similar to the process for the seed set
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generation discussed earlier. A sample grounding for EntitySim is depicted in Figure 2.10, where
Bridge Of Spies and Captain Phillips are in the set of test examples for Alice. We may
have other test examples for Alice, but if they are not provable using the rules (beyond a certain
approximation error), they will not be present in the grounding. ProPPR then follows a procedure
similar to that proposed by Backstrom et. al in [13], to train the random walker. This is done by
learning a weight vector w, which given a feature vector Φuv for an edge in the graph u → v,
computes the edge strength as f(w,Φuv), a function of the weight and the feature vectors. i.e. the
probability of traversing the edge P (v|u) ∝ f(w,Φuv). Our method uses f(w,Φuv) = ew·Φuv .

During the training phase, learning of w is posed as an optimization problem as given below:

−
m∑
k=1

( Im∑
i=1

log p[uk+i ] +
Jm∑
j=1

log(1− p[uk−j ])
)

+ µ‖w‖22 (2.6)

wherep is the PageRank vector computed with the edge weights obtained withw. The optimization
function of Equation 2.6 used by ProPPR is the standard positive-negative log loss function instead
of the pairwise loss function used in [13]. To learn w, we use AdaGrad [43] instead of the quasi-
Newton method used in [13] and SGD used in [167]. The initial learning rate used by AdaGrad and
the regularization parameterµ are set to 1. For a thorough description of ProPPR,we refer the reader
to [167] and [166].

2.3.3 Approach 2: TypeSim
TheEntitySimmethoduses only the knowledge graph links to learn about user’s preferences. How-
ever, recall that we are in fact using a heterogenous information network where in addition to the
link information, we also know the “type” of the entities. For example, we know that New York
City is of type City and Tom Hanks is of type Actor. To leverage this additional type information,
we extend the EntitySimmethod to TypeSimmethod as shown in Figure 2.6.

reviewed(U, R)←seedset(U, E), likesEntity(U, E), popularEntity(E),

related(E, X), link(X, R), isApplicable(U, R). (2.7)
likesEntity(U, E)←{l(U, E)}. (2.8)
popularEntity(E)←entityOfType(E, T), popularType(T){p(E)}. (2.9)

popularType(T)←{p(T)}. (2.10)
typeAssoc(X, Z)←entityOfType(X, S), entityOfType(Z, T),typeSim(S, T). (2.11)

typeSim(S, T)←{t(S, T)}. (2.12)

Figure 2.6: TypeSim method for recommendations

TypeSimmodels the general popularity of each of the node types in Rule 10 by learning the over-
all predictability offered by the type of the entity using p(T). For example, nodes of the type Actor
may offer more insight into users’ preferences than those of type Country. Note that, the learned
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weight is not specific to the user and hence its weight is shared by all the users. Similar to Rule 10,
in Rule 9, the model learns the overall predictability offered by the entity itself, independent of the
user using p(E). For example, it could be that the movies directed by Steven Spielberg are more
popular than those by other lesser known directors. TypeSim also models a general traversal prob-
ability between two types using Rules 11 and 12. For example, Actor→ Movie is generally a more
predictive traversal on the graph compared to Country→ Movie. These weights are incorporated
into the prediction rule of EntitySim as shown in Rule 7.

2.3.4 Approach 3: GraphLF
One of the most successful types of Collaborative Filtering (CF) are Latent Factor (LF) models [74].
They try to uncover hidden dimensions that characterize each of the objects thus mapping users
and items onto the same feature space for an improved recommendation performance. Koren et al.
note in [74] that for movies, latent factors might measure obvious dimensions such as comedy versus
drama, amount of action, or orientation to children, as well as less well-defined dimensions such
as depth of character development, or quirkiness, or even uninterpretable dimensions. For users,
each factor measures how much the user likes movies that score high on the corresponding factor.
Singular Value Decomposition (SVD) is one of the more popular methods of generating LF models
for recommendation. An SVD method assigns users and items with values along each of the hidden
dimensions while minimizing a loss function over the predicted and actual rating matrix.

Themain attraction ofCollaborative Filteringmethods is that they do not require any knowledge
about the users or items and predict solely based on the rating matrix. Similarly, the main attraction
of Latent Factor based CF models is that they develop a general representation of users and items
based on the ratings data that are more generalizable and often indiscernible in the raw data.

reviewed(U, R)←related(U, E), related(E, X), link(X, R), isApplicable(U, R). (2.13)
related(U, E)←seedset(U, E), simLF(U, E). (2.14)
related(X, X)←. (2.15)
related(X, Y)←link(X, Z), simLF(X, Z), related(Z, Y). (2.16)

simLF(X, Y)←isDim(D), val(X, D), val(Y, D). (2.17)
val(X, D)←{v(X, D)}. (2.18)

Figure 2.7: GraphLF method for recommendations

Given that we have access to a KG that connects the items via different entities, the third ap-
proach that we present in this chapter, GraphLF, integrates latent factorization and graph-based
recommendation. The overall ruleset is defined in Figure 2.7. Its principal rule is the definition of
Latent Factor Similarity simLF in Rules (17) and (18). Essentially, simLF of two input entities X and
Y is measured by first picking a dimension D, and then measuring the values of X and Y along D. If
there are many dimensions D along which the values of both X and Y are high, then probabilistically,
their similarity scores will also be high. The value of an entity X along dimension D, val(X,D) is
learned from the data during the training phase, as defined in Rule (18).
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Note how the recursive definition of the relatedness of two entities related(X,Y) in Rule (16)
has now changed to account for their latent factor similarity in addition to the presence of a link
between them. Also, the original prediction rule has changed in Rule (13) to use a new relatedness
score between the user and the entity. Essentially, the definition of related(U,E) in Rule (14)
replaces the earlier predicate likesEntity(U,E) with the latent factor similarity simLF(U,E),
between the user and an entity belonging to their seedset. Therefore, the model no longer learns a
weight for each user-entity pair, and instead learnsweights for the users and entities separately along
each of the dimensions.

It is also important to note that GraphLF is type-agnostic unlike TypeSim and HeteRec_p.
Types are not always available, especially for general-purpose graphs like the Wikipedia. There-
fore, being type-agnostic is a desirable property and increases its applicability to a wide range of
data domains.

2.4 Experiments and Results for Recommendation

2.4.1 Datasets

To test our methods, we use two well known large datasets:
• Yelp2013: This is the 2013 version of the Yelp Dataset Challenge2 released by Yelp3, available
now at Kaggle4. We use this earlier version instead of the latest version from the Yelp Dataset
Challenge for the purposes of comparing with the published results of the HeteRec_p algo-
rithm. Similar to [186], we discard users with only 1 review entry.

• IM100K: This dataset is built from the MovieLens-100K dataset5 unified with the content
— director, actor, studio, country, genre, tag — parsed out from their corresponding IMDb
pages6. We could not obtain the dataset used in [186], which we will refer to as IM100K-UIUC.
Our dataset IM100K* is a close approximation to it, created from the same MovieLens-100K
dataset, but we have recovered the content of 1566 movies of the total 1682 movies compared
to 1360 in [186], and have 4.8% more reviews than [186].

For all the datasets, similar to [186], we sort the reviews in the order of their timestamps, and use the
older 80% of the reviews as training examples and the newer 20% of the reviews as the test examples.
The overall statistics of these datasets, viz. the number of users, the number of items and the total
number of reviews/ratings, are listed in Table 3.3.1.

2.4.2 Experimental Setup

We evaluate the performance using standard metrics, Mean Reciprocal Rank (MRR) and Precision
at 1, 5 and 10 (P@1, P@5 and P@10) [96].

2https://www.yelp.com/dataset_challenge
3http://www.yelp.com/
4https://www.kaggle.com/c/yelp-recsys-2013/data
5http://grouplens.org/datasets/movielens/
6http://www.imdb.com/
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Dataset #Users #Items #Ratings
Yelp 43,873 11,537 229,907
IM100K-UIUC 943 1360 89,626
IM100K* 940 1566 93,948

Table 2.1: Dataset Statistics

In our experiments, we found that any reasonable choice for the seed set sizeworkedwell enough.
A small fixed size serves to constrain the number of parameters learned and hence, the complexity
of the model.

In the following sections, we compare our methods to the state-of-the-art method HeteRec_p
proposed in [186] on the two datasets. We also compare the performance to a Naïve Bayes (NB) base-
line, which represents a recommender system that uses only the content of the item, without the
knowledge graph and link information, to make predictions. Naïve Bayes classifiers have been pre-
viously shown to be as effective as certainmore computationally intensive algorithms [123]. For each
user, the NB system uses the entities of the items in that user’s training set as the features to train the
model. These are the same entities used by our methods. We use the probabilities output by the clas-
sifier to rank the pages. The implementation used is from the Mallet [8] package. Since HeteRec_p
was shown to be better than Popularity (which shows the globally popular items to users), Co-Click
(which uses the co-click probabilities to find similar items), Non–NegativeMatrix Factorization[42]
and Hybrid-SVM (which uses a Ranking SVM[68] on metapaths) in [186], we refrain from repeating
those comparisons again.

2.4.3 Performance Comparison on Yelp

Method P@1 P@5 P@10 MRR Settings
HeteRec_p 0.0213 0.0171 0.0150 0.0513 published results

EntitySim 0.0221 0.0145 0.0216 0.0641 n = 20
TypeSim 0.0444 0.0188

[↑ 10%]
0.0415
[↑ 176%]

0.0973
[↑ 89%]

n = 20

GraphLF 0.0482
[↑ 126%]

0.0186 0.0407 0.0966 n = 20, dim = 10

NB 0 0.0012 0.0013 0.0087

Table 2.2: Performance comparisononYelp: The best score for eachmetric is highlighted in blue and
the lowest score in red. [↑x%] gives the percent increase compared to the corresponding HeteRec_p
score

The performance of the algorithms presented in this chapter as well as the baselines on the
Yelp data are tabulated in Table 2.2. It can be seen from the results that our methods outperform
HeteRec_p by a large margin. For example, GraphLF is 126% better on P@1 and TypeSim is 89%
better on MRR.
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Also, we can note that using the type information (TypeSim) improves the performance drasti-
cally compared to EntitySim. For example, P@1 improves by 118% and MRR by 51%. Similarly,
we can note that discovering the latent factors in the data (GraphLF) also improves the performance
tremendously compared to its simpler counterpart (EntitySim). For example, P@1 improves by
115% and MRR by 37%.

However, there is no clear winner when comparing TypeSim and GraphLF: while the former
scores better on MRR, the latter is better on the precision metrics.

The NB baseline’s performance is poor, but that was expected, since the dataset is extremely
sparse.

2.4.4 Performance Comparison on IM100K

Method P@1 P@5 P@10 MRR Settings
HeteRec_p 0.2121 0.1932 0.1681 0.553 published results
(on IM100K-UIUC)
EntitySim 0.3485 0.1206 0.2124

[↑ 26.3%]
0.501
[↓ −9.4%]

n = 10

TypeSim 0.353
[↑ 66.4%]

0.1207
[↓ −37.5%]

0.2092 0.5053 n = 10

GraphLF 0.3248 0.1207
[↓ −37.5%]

0.1999 0.4852 n = 10, dim = 10

NB 0.312 0.1202 0.1342 0.4069

Table 2.3: Performance comparison on IM100K (IM100K-UIUC& IM100K*): The best score for each
metric is highlighted in blue and the lowest score in red. [↑ x%] gives the percent increase compared
to the corresponding HeteRec_p score and [↓ x%], the percent decrease.

The performance of HeteRec_p on the IM100K-UIUC dataset, and that of the algorithms pre-
sented in this chapter and the Naïve Bayes baseline on the IM100K* dataset, are tabulated in Table
2.3.

As noted in Section 2.4.1, the IM100K-UIUC dataset and the IM100K* dataset are slightly differ-
ent from each other. Therefore, we cannot compare the performance of the methods directly; the
most that can be said is that the methods appear to be comparable.

A more interesting and surprising result is that the simplest of the methods, NB and EntitySim,
perform as well or better than the more complex TypeSim and GraphMF. In fact, NB outperforms
HeteRec_p on the P@1 metric. This leads us to speculate that when there are enough training ex-
amples per user and enough signals per item, simple methods suffice. We explore this conjecture
more fully below.
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2.4.5 Effect of Dataset Density on Performance
In the previous two sections, we saw how on the Yelp dataset TypeSim and GraphLF performed
extremely well in comparison to the EntitySimmethod, whereas on the IM100K dataset, the latter
was as good as or better than the former two. In this section, we explore this phenomenon further.

An important difference between the two datasets is that Yelp is a complete real world dataset
with review frequencies exhibiting a power law distribution, while IM100K is a filtered version of
a real world dataset counterpart, as noted by the authors of [186]: in IM100K dataset, each user has
rated at least 20 movies.

To quantitatively compare their differences, we define the Density of a dataset as #reviews

#users×#items
,

which is the ratio of filled entries in the rating matrix to its size. Using this definition, the density of
Yelp was found to be only 0.00077 whereas that of IM100K* was 0.06382.
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Figure 2.8: Performance of different methods with varying graph densities on Yelp

To study this further, we created 4 additional datasets from Yelp by filtering out users and busi-
nesses that have less than k reviews, where k =10, 25, 50 and 100. The MRR scores of our methods
and the NB baseline with varying k is plotted in Figure 2.8 (with the left y axis). These are with a
seedset of size 20. The graph densities at the different k are also plotted in the same Figure 2.8 (in
green with the right y axis). Note that the density increases to 0.11537 at k = 100, which is 148
times higher than the density at k = 2.

From the figure, we can see that when the dataset is the least dense (k = 2), the more complex
methods TypeSim and GraphLF perform much better than the simple EntitySim. However, as
the density increases with larger k, we can observe that EntitySim eventually equals TypeSim and
comes within 1% of that of GraphLF, at k = 100. Therefore, we can deduce that, when we have
enough training examples and a dense graph connecting them, a simple method like EntitySim
that predicts based on just the links in the graph can give good results.

Another observation from Figure 2.8 is that the NB recommender, whose performance is poor at

18



low graph densities— 633%worse than EntitySim—slowly improves with increasing k to eventu-
ally better all the KG basedmethods at k = 100 (14% better than GraphLF). From this, we conjecture
that when there are enough training examples per user, we can produce accurate predictions using a
simple classifier based recommender like NB. However, at slightly lower densities, like at k = 50, the
knowledge graph is a valuable source of information for making recommendations, as can be seen
from the figure, where NB is 92% below EntitySim at k = 50.

2.5 Proposed Approach for Entity-based Explanations
In this section, we shift our focus to generating entity-based explanations in a KG based recom-
mender system. Our technique proceeds in two main steps. First, it uses ProPPR to jointly rank
items and entities for a user. Second, it consolidates the results into recommendations and explana-
tions.

To use ProPPR to rank items and entities, we reuse the notion of similarity between graph nodes
defined in Equations 2.2 and 2.3, earlier in this chapter. The model has two sets of rules for ranking:
one set for joint ranking of movies that the user would like, together with the most likely reason
(Figure 2.9), and a similar set for movies that the user would not like. In Figure 2.9, Rule 1 states
that a user U will like an entity E and a movie M if the user likes the entity, and the entity is related
(sim) to the movie. The clause isMovie ensures that the variable M is bound to a movie, since sim
admits all types of entities. Rule 1 invokes the predicate likes(U,E), which holds for an entity E if
the user has explicitly stated that they like it (Rule 2), or if they have provided positive feedback (e.g.
clicked, thumbs up, high star rating) for a movie M containing (via link(M,E)) the entity (Rule 3).
The method for finding movies and entities that the user will dislike is similar to the above, except
‘like’ is replaced with ‘dislike’.

willLike(U, E, M)←likes(U, E), sim(E, M), isMovie(M). (Rule 1)
likes(U, E)←likesEntity(U, E). (Rule 2)
likes(U, E)←likesMovie(U, M), link(M, E). (Rule 3)

Figure 2.9: Predicting likes

To jointly rank the items and entities, we use ProPPR to query the willLike(U,E,M) predicate
with the user specified and the other two variables free. Then, the ProPPR engine will ground the
query into a proof graph by replacing each variable recursivelywith literals that satisfy the rules from
the KG as discussed in Section 2.3.2. A sample grounding when queried for a user alice who likes
tom_hanks and the movie da_vinci_code is shown in Figure 2.10.

After constructing the proof graph, ProPPR runs a Personalized PageRank algorithm
with willLike(alice, E, M) as the start node. In this simple example, we will let the
scores for (tom_hanks, bridge_of_spies), (tom_hanks, inferno), (drama_thriller,
bridge_of_spies), and (drama_thriller, snowden), be 0.4, 0.4, 0.3 and 0.3 respectively.

Now, let us suppose that alice has also specified that she dislikes crimemovies. If we follow the
grounding procedure for dislikes and rank the answers, we may obtain (crime, inferno) with
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Figure 2.10: Sample grounding for predicting likes

score 0.2. Our system then proceeds to consolidate the recommendations and the explanations by
grouping by movie names, adding together their ‘like’ scores and deducting their ‘dislike’ scores. For
eachmovie, the entities can be ranked according to their joint score. The end result is a list of reasons
which can be shown to the user:

1. bridge_of_spies, score = 0.4 + 0.3 = 0.7, reasons = { tom_hanks, drama_thriller }
2. snowden, score = 0.3, reasons = { drama_thriller }
3. inferno, score = 0.4 - 0.2 = 0.2, reasons = { tom_hanks, (-ve) crime }

2.6 Real World Deployment and Evaluation of Explanations

The technique presented in this Chapter is currently being used as the backend of a personal agent
running on mobile devices for recommending movies [9] undergoing Beta testing. The knowledge
graph for recommendations is constructed from the weekly dump files released by imdb.com. The
personal agent uses a dialog model of interaction with the user. In this setting, users are actively
involved in refining the recommendations depending on what their mood might be. For example,
for a fun night out with friends, a user may want to watch an action movie, whereas when spending
time with her significant other, the same user may be in the mood for a romantic comedy.

Qualitative feedback is being collected from the users of the Beta testing, where they are re-
quested to answer the following questions on a Likert-type scale:

1. Did you like that the app explained why a recommendation was made?
2. Did you think that the explanation was reasonable?
However, the users are not required to give a feedback about the explanations after every inter-

action due to concerns that it might reduce the usability of the app.
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2.7 Contributions
In this chapter, we presented three methods for performing knowledge graph based recommenda-
tions using a general-purpose probabilistic logic system called ProPPR. Our methods use the link
structure of the knowledge graph as well as type information about the entities to improve predic-
tions. The more complex of the models discussed in this chapter combined the strengths of latent
factorizationwith graphs, and is type agnostic. By comparing ourmethods to the published results of
the state-of-the-artmethod that uses knowledge-graphs in generating recommendations, we showed
that our methods were able to achieve a large improvement in performance.

We also studied the behavior of the methods with changing dataset densities and showed that
at higher densities, just the graph link structure sufficed to make accurate recommendations and
the type information was redundant. In addition, we showed that in sparse datasets, the knowledge
graph is a valuable source of information, but its utility diminishes when there are enough training
examples per user.

Knowledge graphs have been shown to improve recommender system accuracy in the past. How-
ever, generating explanations to help users make an informed choice in KG-based systems has not
been attempted before. In this chapter, we also presented amethod to produce a ranked list of entities
as explanations by jointly ranking them with the corresponding movies.
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Chapter 3

Rating Prediction and Review Selection
using TransNets

Using review text for predicting ratings has been shown to greatly improve the performance of rec-
ommender systems [15, 90, 100], compared to Collaborative Filtering (CF) techniques that use only
past ratings [74, 136]. Recent advances inDeep Learning research havemade it possible to useNeural
Networks in amultitude of domains including recommender systems, with impressive results. Most
neural recommender models [14, 44, 69, 84, 162] have focussed on the content associated with the
user and the item, which is used to construct their latent representations. Content associated with
a user could include their demographic information, socioeconomic characteristics, their product
preferences and the like. Content linked to an item could include their price, appearance, usability
and similar attributes in the case of products, food quality, ambience, service and wait times in the
case of restaurants, or actors, director, genre, and similar metadata in the case of movies.

Since review text describes a user’s reaction to an item, it is not a property of only the user or only
the item; it is a property associated with their joint interaction. In that sense, it is a context [4] feature.
Only a fewneural netmodels [6, 138, 194] have been proposed to date that use review text for predict-
ing the rating. Of these, one recentmodel,Deep Cooperative Neural Networks (DeepCoNN) [194], uses
neural nets to learn a latent representation for the user from the text of all reviewswritten by her and
a second latent representation for the item from the text of all reviews that were written for it, and
then combines these two representations in a regression layer to obtain state-of-the-art performance
on rating prediction. However, as we will show, much of the predictive value of review text comes
from reviews of the target user for the target item, which is not available at test time. We introduce a
way in which this information can be used in training the recommender system, such that when the
target user’s review for the target item is not available at the time of prediction, an approximation for
it is generated, which is then used for predicting the rating. Ourmodel, called Transformational Neu-
ral Networks (TransNets), extends the DeepCoNN model by introducing an additional latent layer
representing an approximation of the review corresponding to the target user-target item pair. We
then regularize this layer, at training time, to be similar to the latent representation of the actual re-
view written by the target user for the target item. Our experiments illustrate that TransNets and its
extensions give substantial improvements in rating prediction.

This work was published in the 11th ACM Conference on Recommender Systems (RecSys ‘17)
[24].
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3.1 RelatedWork: Recommendation using Reviews

3.1.1 Non-Neural Models

The Hidden Factors as Topics (HFT) model [100] aims to find topics in the review text that are corre-
lated with the latent parameters of users. They propose a transformation function which converts
user’s latent factors to the topic distribution of the review, and since the former exactly defines the
latter, only one of them is learned. A modified version of HFT is the TopicMF model [15], where the
goal is tomatch the latent factors learned for the users and items usingMFwith the topics learned on
their joint reviews using a Non-NegativeMatrix Factorization, which is then jointly optimized with
the rating prediction. In their transformation function, the proportion of a particular topic in the
review is a linear combination of its proportion in the latent factors of the user and the item, which
is then converted into a probability distribution over all topics in that review. Unlike these twomod-
els, TransNet computes each factor in the transformed review from a non-linear combination of any
number of factors from the latent representations of either the user or the item or both. Another
extension to HFT is the Rating Meets Reviews (RMR) model [90] where the rating is sampled from a
Gaussian mixture. A recent model [31] that postdates our work uses topic modeling and attention
mechanism to model user’s preferences over aspects of items.

The Collaborative Topic Regression (CTR) model proposed in [161] is a content based approach,
as opposed to a context / review based approach. It uses LDA [19] to model the text of documents
(scientific articles), and a combination of MF and content based model for recommendation. The
Rating-boosted Latent Topics (RBLT) model of [149] uses a simple technique of repeating a review r
times in the corpus if it was rated r, so that features in higher rated reviews will dominate the topics.
The Explicit Factor Models (EFM) proposed in [190] aims to generate explainable recommendations
by extracting explicit product features (aspects) and users’ sentiments towards these aspects using
phrase-level sentiment analysis. Such explanations are discrete entity based ones like those discussed
in Chapter 2 and not in fully constructed natural language sentences.

3.1.2 Neural Net Models

One recent model to successfully employ neural networks at scale for rating prediction is the Deep
CooperativeNeural Networks (DeepCoNN) [194], whichwill be discussed in detail in Section 3.2. Prior
to that work, [6] proposed two models: Bag-of-Words regularized Latent Factor model (BoWLF) and
LanguageModel regularized Latent Factormodel (LMLF), whereMFwas used to learn the latent factors
of users and items, and likelihood of the review text, represented either as a bag-of-words or an
LSTM embedding [61], was computed using the item factors. In [138], contemporary to our work,
the authors proposed a CNNbasedmodel identical to DeepCoNN, but with attentionmechanism to
construct the latent representations, the inner product of which gave the predicted ratings. Similar
to DeepCoNN, it trains its regression layer directly unlike TransNet, which uses an intermediate
layer that is trained to mimic another network. Another recent model, [63] that postdates our work,
uses cross-domain information transfer to improve rating prediction. The rating prediction results
reported in this chapter were also independently verified by some of the later publications such as
[173] and [153].

Prior research has used deep neural nets for learning latent factors from ratings alone, i.e., with-
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out using any content or review. The Collaborative De-noising Auto-Encoder model (CDAE) [174]
learns to reconstruct user’s feedback from a corrupted version of the same. In [152], the authors
propose a TransE like framework for the user-item (non-graph) data, where the goal is to learn to
generate a relation r that would translate the user embedding u to that of the item embedding i by
minimizing ||u+ r − i||≈ 0.

Someof the other past research use neural networks in aCF settingwith content, but not reviews.
The Collaborative Deep Learning (CDL) model [162] uses a Stacked De-noising Auto Encoder (SDAE)
[158] to learn robust latent representations of items from their content, which is then fed into a CTR
model [161] for predicting the ratings. A very similar approach to CDL is the Deep Collaborative Fil-
tering (DCF) method [84] which uses Marginalized De-noising Auto-Encoder (mDA) [28] instead.
The Convolutional Matrix Factorization (ConvMF) model [69] uses a CNN to process the description
associated with the item and feed the resulting latent vectors into a PMFmodel for rating prediction.
TheMulti-View Deep Neural Net (MV-DNN) model [44] represents users using their search queries
and clicked urls, and items (news articles) using their title, named entities in the text and categories.
These features are then processed using a deep neural net to map into a shared latent space such that
their similarity in that space is maximized. [118] proposed to generate the latent factors of items –
music in this case— from the content, audio signals. The predicted latent factors of the item were
then used in a CF style with the latent factors of the user. [14] also proposed a similar technique but
adapted to recommending scientific-articles. [34] used a deep neural net to learn a latent represen-
tation from video content which is then fed into a deep ranking network. [57] is an extension toMF
with additional non-linear layers instead of the the dot product.

3.1.3 Comparison to Related Architectures and Tasks

3.1.3.1 Student-Teacher Models

The model proposed in this chapter resembles a Student-Teacher model in certain aspects. Student-
Teachermodels [21, 60] also have two networks; A TeacherNetwork (similar to theOracle Network in
our model), which is large and complex, and typically an ensemble of different models, and a much
simpler Student Network (similar to the Student Network in our model), which learns to emulate the
output of the Teacher Network.

However, there are substantial differences between Student-Teacher models and TransNets in
how they are structured. Firstly, in Student-Teacher models, the input to both the student and the
teacher models are the same. For example, in the case of digit recognition, both networks input the
same image of the digit. However, in TransNets, the inputs to the two networks are different. In the
Oracle, there is only one input – the review by userA for an itemB designated as revAB . But, in the
Student, there are two inputs: all the reviewswritten byuserA sans revAB and all the reviewswritten
for itemB sans revAB . Secondly, in Student-Teachermodels, the Teacher is considerablymore com-
plex in terms of width and depth, and the Student is more light-weight, trying to mimic the Teacher.
In TransNets, the complexities are reversed. The Oracle is lean while the Student is heavy-weight,
often processing large pieces of text using twice the number of parameters as the Oracle. Thirdly, in
Student-Teacher models, the Teacher is pre-trained whereas in TransNets, the Oracle is trained si-
multaneously with the Student. A recently proposed Student-Teacher model in [64] does train both
the Student and the Teacher simultaneously. Also, in Student-Teacher models, the emphasis is on
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Figure 3.1: DeepCoNNmodel for predicting rating

learning a simpler and easier model that can achieve similar results as a very complex model. But
in TransNets, the objective is to learn how to transform a source representation to a target repre-
sentation. Recently, Student-Teacher models where shown to work on sequence-level tasks as well
[70].

3.1.3.2 Sentiment Analysis

Part of the model proposed in this chapter, referred to as the Oracle Network, resembles a sentiment
analyzer because it inputs a user’s review for an item and predicts that user’s rating for that item. In
[141], the authors proposed a Recursive Neural Tensor Network that could achieve high accuracy
levels for sentence and phrase level sentiment prediction. [77] proposed a tree-structured deep NN
for predicting sentiment from the discourse structure. [170] uses a character-level CNN for Twitter
sentiment analysis whereas [127] uses an LSTMon utterances in a video to compute its sentiment. In
[187], the authors also consider other inputs such as a user’s facial expressions or tone of voice along
with the sentences to predict the sentiment. [10] computes an aspect-level sentiment using an aspect
graph and a rhetorical structure tree. Compared to the abovemodels, only one of the subnetworks of
TransNet resembles a sentiment analyzer. The other subnetwork performs rating prediction from
user and item representations, which is a different task.

3.2 The TransNet Method

In this section, we describe our model called TransNet. But, before we delve into its details, we first
discuss the state-of-the-art method at the time, DeepCoNN, and its limitations.
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3.2.1 DeepCoNNmodel
To compute the rating rAB that userA would assign to itemB , the DeepCoNN model of [194] uses
two text processing modules, ΓA and ΓB side by side as shown in Figure 3.1. These modules, called
CNN Text Processors, are described in the next subsection. The first one processes the text labeled
textA, which consists of a concatenation of all the reviews that userA has written and produces a
representation, xA. Similarly, the second processes the text called textB , which consists of a con-
catenation of all the reviews that have been written about itemB and produces a representation, yB .
Both outputs are passed through a dropout layer [144]. Dropout is a function δ : Rn → Rn, that
suppresses the output of some of the neurons randomly and is a popular technique for regularizing
a network. We let x̄A = δ(xA) and ȳB = δ(yB) denote the output of the dropout layer applied on
xA and yB .

The model then concatenates the two representations as z = [x̄A, ȳB] and passes it through a
regression layer consisting of a FactorizationMachine (FM) [133]. The FM computes the second order
interactions between the elements of the input vector as:

r̂AB = w0 +

|z|∑
i=1

wizi +

|z|∑
i=1

|z|∑
j=i+1

〈vi,vj〉zizj

where w0 ∈ R is the global bias, w ∈ R2n weights each dimension of the input, and V ∈ R2n×k

assigns a k dimensional vector to each dimension of the input so that the pair-wise interaction be-
tween two dimensions i and j can be weighted using the inner product of the corresponding vectors
vi and vj . Note that the FM factorizes the pair-wise interaction, and therefore requires onlyO(nk)
parameters instead ofO(n2) parameters whichwould have been required otherwise, where k is usu-
ally chosen such that k � n. This has been shown to give better parameter estimates under sparsity
[133] (sparsity means that in the user-item rating matrix, most cells are empty or unknown). FMs
have been used successfully in large scale recommendation services like online news[183].

FMs can be trained using different kinds of loss functions including least squared error (L2),
least absolute deviation (L1), hinge loss and logit loss. In our experiments, L1 loss gave a slightly
better performance thanL2. DeepCoNN [194] also usesL1 loss. Therefore, in this work, all FMs are
trained using L1 loss, defined as:

loss =
∑

(uA,iB ,rAB)∈D

|rAB − r̂AB|

3.2.2 CNNs to process text
We process text using the same approach as our competitive baseline for rating prediction, Deep-
CoNN [194]. The basic building block, referred to as a CNN Text Processor in the rest of this
chapter, is a Convolutional Neural Network (CNN) [81] that inputs a sequence of words and out-
puts a n-dimensional vector representation for the input, i.e., the CNN Text Processor is a function
Γ : [w1, w2, ..., wT ] → Rn. Figure 3.2 gives the architecture of the CNN Text Processor. In the first
layer, a word embedding function f : M → Rd maps each word in the review that are also in its
M-sized vocabulary into a d dimensional vector. The embedding can be any pre-trained embedding
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Figure 3.2: The CNN Text Processor architecture

like those trained on the GoogleNews corpus using word2vec1[107], or on Wikipedia using GloVe2
[126]. These word vectors are held fixed throughout the training process.

Following the embedding layer is the Convolutional Layer, adapted to text processing [32]. It
consists ofm neurons each associated with a filterK ∈ Rt×d, where t is a window size, typically 2
– 5. The filter processes t-length windows of d-dimensional vectors to produce features. Let V1:T
be the embedded matrix corresponding to the T -length input text. Then, jth neuron produces its
features as:

zj = α(V1:T ∗Kj + bj)

where, bj is its bias, ∗ is the convolution operation and α is a non-linearity like Rectified Linear Unit
(ReLU) [112] or tanh.

Let z1j , z2j , ...z
(T−t+1)
j be the features produced by the jth neuron on the sliding windows over

the embedded text. Then, the final feature corresponding to this neuron is computed using a max-
pooling operation, defined as:

oj = max{z1j , z2j , ...z
(T−t+1)
j }

The max-pooling operation provides location invariance to the neuron, i.e., the neuron is able to
detect the features in the text regardless of where it appears.

The final output of the Convolutional Layer is the concatenation of the output from itsm neu-
rons, denoted by:

O = [o1, o2, ...om]

This output is then passed to a fully connected layer consisting of a weight matrixW ∈ Rm×n

and a bias g ∈ Rn, which computes the final representation of the input text as:

x = α(W ×O + g)
1https://code.google.com/archive/p/word2vec
2https://nlp.stanford.edu/projects/glove
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3.2.3 Limitations of DeepCoNN

DeepCoNN model has achieved impressive performance surpassing that of the previous state-of-
the-art models that use review texts, like the Hidden Factors as Topics (HFT) model [100], Collab-
orative Topic Regression (CTR) [161] and Collaborative Deep Learning (CDL) [162], as well as Col-
laborative Filtering techniques that use only the rating information like Matrix Factorization (MF)
[74] and Probabilistic Matrix Factorization (PMF) [136].

However, it was observed in our experiments that DeepCoNN achieves its best performance
only when the text of the review written by the target user for the target item is available at test
time. In real world recommendation settings, an item is always recommended to a user before they
have experienced it. Therefore, it would be unreasonable to assume that the target review would be
available at the time of testing. This issue is discussed in more detail below.

Let revAB denote the review written by userA for an itemB . At training time, the text corre-
sponding to userA, denoted as textA, consists of a concatenation of all reviews written by her in the
training set. Similarly, the text for itemB , denoted by textB , is a concatenation of all reviewswritten
for that item in the training set. Both textA and textB includes revAB for all (userA, itemB) pairs
in the training set. At test time, there are two options for constructing the test inputs. For a test pair
(userP , itemQ), their pairwise review, revPQ in the test set, could be included in the texts corre-
sponding to the user, textP , and the item, textQ, or could be omitted. In one of our datasets, the
MSE obtained by DeepCoNN if revPQ is included in the test inputs is only 1.21. However, if revPQ
is omitted, then the performance degrades severely to 1.89. This is lower than Matrix Factorization
applied to the same dataset, which has an MSE of 1.86. If we train DeepCoNN in the setting that
mimics the test setup, by omitting revAB in the texts of all (userA, itemB) pairs in the training set,
the performance is better at 1.70, but still much higher than when revAB is available in both training
and testing.

In the setting used in this work, reviews in the validation and the test set are never accessed at any
time, i.e., assumed to be unavailable — both during training and testing — simulating a real world
situation.

3.2.4 TransNets

As we saw in the case of DeepCoNN, learning using the target review revAB at train time inadver-
tently makes the model dependent on the presence of such reviews at test time, which is unrealistic.
However, as shown by the experiment above, revAB gives an insight into what userA thought about
their experience with itemB , and can be an important predictor of the rating rAB . Although un-
available at test time, revAB is available during training. Our model, TransNet, exploits revAB by
using it to regularize a model that uses only data available at test time.

TransNet consists of two networks, as shown in the architecture diagramof Figure 3.3. AnOracle
Network that processes the target review revAB and a Student Network that processes the texts of the
(userA, itemB) pair that excludes the joint review, revAB . Given a review text revAB , the Oracle
Network uses a CNN Text Processor, ΓO , and a Factorization Machine, FMO , to predict the rating
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as:

xO = ΓO(revAB)

x̄O = δ(xO)

r̂O = FMO(x̄O)

Since theOracleNetwork uses the actual review, its task is similar to sentiment analysis [79, 141].
The Student Network is like the DeepCoNNmodel with two CNNText Processors (ΓA for user

text, textA− revAB , and ΓB for item text, textB− revAB), and a FactorizationMachine, FMS , but
with an additional Transform layer. The goal of the Transform layer is to transform the user and
the item texts into an approximation of revAB , denoted by ˆrevAB , which is then used for predicting
the rating. The Student Network predicts the rating as given below.

First, it converts the input texts into their latent form as:

xA = ΓA(textA − revAB)

xB = ΓB(textB − revAB)

z0 = [xAxB]

The last step above is a concatenation of the two latent representations. z0 is then input to the Trans-
form sub-network, which is a L-layer deep non-linear transformational network. Each layer l in
Transform has a weight matrixGl ∈ Rn×n and bias gl ∈ Rn, and transforms its input zl−1 as:

zl = σ(zl−1Gl + gl)
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where σ is a non-linear activation function. In our experiments, we set σ to tanh. Since the input to
the first layer, z0, is a concatenation of two vectors each of n dimensions, the first layer of Transform
uses a weight matrixG1 ∈ R2n×n.

The output of the Lth layer of Transform, zL, is the approximation constructed by the TransNet
for revAB , denoted by ˆrevAB . Note that we do not have to generate the surface form of revAB ;
it suffices to approximate ΓO(revAB), the latent representation of the target review. The Student
Network then uses this representation to predict the rating as:

z̄L = δ(zL)

r̂S = FMS(z̄L)

During training, we will force the Student Network’s representation zL to be similar to the encoding
of revAB produced by the Oracle Network, as we discuss below.

3.2.5 Training TransNets
TransNet is trained using three sub-steps as shown in Algorithm 1. In the first sub-step, for each
training example (or a batch of such examples), the parameters of the Oracle Network, denoted by
θO , which includes those of ΓO and FMO , are updated to minimize aL1 loss computed between the
actual rating rAB and the rating r̂O predicted from the actual review text revAB .

To teach the Student Network how to generate an approximation of the latent representation of
the original review revAB generated by the Oracle Network, in the second sub-step, its parameters,
denoted by θtrans, are updated to minimize a L2 loss computed between the transformed represen-
tation, z̄L, of the texts of the user and the item, and the representation xO of the actual review. θtrans
includes the parameters of ΓA and ΓB , as well as the weightsWl and biases gl in each of the trans-
formation layers. θtrans does not include the parameters of FMS .

In the final sub-step, the remaining parameters of the Student Network, θS , which consists of
the parameters of the FMS are updated to minimize a L1 loss computed between the actual rating
rAB and the rating r̂S predicted from the transformed representation, z̄L. Note that each sub-step
is repeated for each training example (or a batch of such examples), and not trained to convergence
independently. The training method is detailed in Algorithm 1.

At test time, TransNet uses only the Student Network to make the prediction as shown in Algo-
rithm 3.

3.2.6 Design Decisions and Other Architectural Choices
In this section, we describe some of the choices we havemade in designing the TransNet architecture
and why alternatives did not give good results in our preliminary experiments.

1. Training with sub-steps vs. jointly: While training TransNets using Algorithm 1, in each
iteration (or batch), we could choose to jointly minimize a total loss, losstotal = lossO +
losstrans + lossS . We observed in our experiments that the joint training gave a lower
performance. This is probably because joint training will result in parameter updates to the
Oracle network, ΓO , resulting from losstrans, in addition to those from lossO , i.e., the Oracle
Networkwill get penalized for producing a representation that is different from that produced
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Algorithm 1 Training TransNet
1: procedure Train(Dtrain)
2: while not converged do
3: for (textA, textB, revAB, rAB) ∈ Dtrain do
4: #Step 1: Train Oracle Network on the actual review
5: xO = ΓO(revAB)
6: r̂O = FMO(δ(xO))
7: lossO = |rAB − r̂O|
8: update θO to minimize lossO
9: #Step 2: Learn to Transform
10: xA = ΓA(textA)
11: xB = ΓB(textB)
12: z0 = [xAxB]
13: zL = Transform(z0)
14: z̄L = δ(zL)
15: losstrans = ||z̄L − xO||2
16: update θtrans to minimize losstrans
17: #Step 3: Train a predictor on the transformed input
18: r̂S = FMS(z̄L)
19: lossS = |rAB − r̂S|
20: update θS to minimize lossS
21: return θtrans, θS

Algorithm 2 Transform the input
1: procedure Transform(z0)
2: for layer l ∈ L do
3: zl = σ(zl−1Gl + gl)

4: return zL

Algorithm 3 Testing using TransNet
1: procedure Test(Dtest)
2: for (textP , textQ) ∈ Dtest do
3: #Step 1: Transform the input
4: xP = ΓA(textP )
5: xQ = ΓB(textQ)
6: z0 = [xPxQ]
7: zL = Transform(z0)
8: z̄L = δ(zL)
9: #Step 2: Predict using the transformed input
10: r̂PQ = FMS(z̄L)
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by the Student Network. This results in both networks learning to produce sub-optimal rep-
resentations and converging to a lower performance in our experiments. Therefore, it was
important to separate the Oracle Network’s parameter updates so that it learns to produce the
best representation which will enable it to make the most accurate rating predictions from the
review text.

2. Training the Oracle Network to convergence independently: We could choose to first
train the Oracle Network to convergence and then train the Student Network to emulate the
trained Oracle Network. However, note that the Oracle Network’s input is the actual review,
which is unavailable for testing its performance, i.e., we donot knowwhen theOracleNetwork
has convergedwith good generalization vs. when it is overfitting. The onlyway tomeasure the
performance at test time is to check the output of the Student Network. Therefore, we let the
Student and the Oracle Networks learn simultaneously and stop when the Student Network’s
test performance is good.

3. Using the same convolutional model to process text in both the Student and Oracle
networks:We could choose to use theΓO that was trained in the Oracle Network to generate
features from the user and the item text in the Student Network, instead of learning separate
ΓA andΓB . After all, we are learning to transform the latter’s output into the former. However,
in that case, TransNet would be constrained to generate generic features similar to topics. By
providing it with separate feature generators, it can possibly learn to transform the occurrence
of different features in the user text and the item text of the StudentNetwork to another feature
in the Oracle Network. For example, it could learn to transform the occurrence of features
corresponding to say, ‘love indian cuisine’ & ‘dislike long wait’ in the user profile, and ‘lousy
service’ & ‘terrible chicken curry’ in the item (restaurant) profile, to a feature corresponding
to say, ‘disappointed’ in the Oracle review, and subsequently predict a lower rating. Having
separate feature generators in the Student Network gives TransNets more expressive power
and gave a better performance compared to an architecture that reuses the Oracle Network’s
feature generator.

4. Training the Transformwithout the dropout:We could choose to match the output zL of
Transform with xO instead of its dropped out version z̄L in Step 2 of Algorithm 1. However,
this makes the Transform layer unregularized, leading it to overfit, thus giving poor perfor-
mance.

3.2.7 Extended TransNets

TransNet uses only the text of the reviews and is user/item identity-agnostic, i.e., the user and the
item are fully represented using the review texts, and their identities are not used in themodel. How-
ever, inmost real world settings, the identities of the users and items are known to the recommender
system. In such a scenario, it is beneficial to learn a latent representation of the users and items, sim-
ilar to Matrix Factorization methods. The Extended TransNet (TransNet-Ext) model achieves that by
extending the architecture of TransNet as shown in Figure 3.4.

The Student Network now has two embedding matrices ΩA for users and ΩB for items, which
are functions of the form,Ω : id→ Rn. Thesemap the string representing the identity of userA and
itemB into a n-dimensional representation. These latent representations are then passed through
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a dropout layer and concatenated with the output of the Transform layer before being passed to the
FM regression layer. Therefore, given userA and itemB , TransNet-Ext computes the rating as:

ωA = Ω(userA)

ωB = Ω(itemB)

z̄ = [δ(ωA) δ(ωB) z̄L]

r̂SE = FMSE(z̄)

Computation of the loss in Step 3 ofAlgorithm1, lossSE is same as earlier: lossSE = |rAB−r̂SE|.
But the parameter θS updated at the end now contains the embedding matrices ΩA and ΩB .

3.3 Experiments and Results

3.3.1 Datasets
We evaluate the performance of our approach on four large datasets. The first one, Yelp17, is from
the latest Yelp dataset challenge3, containing about 4M reviews and ratings of businesses by about
1M users. The rest are three of the larger datasets in the latest release of Amazon reviews4 [102, 103]
containing reviews and ratings given by users for products purchased on amazon.com, over the
period of May 1996 - July 2014. We use the aggressively de-duplicated version of the dataset and
also discard entries where the review text is empty. The statistics of the datasets are given in Table
3.3.1. The original size of the dataset before discarding empty reviews is given in paranthesis when
applicable.

3.3.2 Evaluation Procedure and Settings
Each dataset is split randomly into train, validation and test sets in the ratio 80 : 10 : 10. After train-
ing on every 1000 batches of 500 training examples each, MSE is calculated on the validation and

3https://www.yelp.com/dataset_challenge
4http://jmcauley.ucsd.edu/data/amazon
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Dataset Category #Users #Items #Ratings & Reviews
Yelp17 1,029,432 144,072 4,153,150
AZ-Elec Electronics 4,200,520 475,910 7,820,765 (7,824,482)
AZ-CSJ Clothing, Shoes and Jewelry 3,116,944 1,135,948 5,748,260 (5,748,920)
AZ-Mov Movies and TV 2,088,428 200,915 4,606,671 (4,607,047)

Table 3.1: Dataset Statistics

the test datasets. We report the MSE obtained on the test dataset when the MSE on the validation
dataset was the lowest, similar to [100]. All algorithms, including the competitive baselines, were
implemented in Python using TensorFlow5, an open source software library for numerical compu-
tation, and were trained/tested on NVIDIA GeForce GTX TITAN X GPUs. Training TransNet on
Yelp17 takes approximately 40 minutes for 1 epoch (∼6600 batches) on 1 GPU, and gives the best
performance in about 2–3 epochs.

Below are the details of the text processing and the parameter settings used in the experiments:
1. Text Pre-Processing and Embedding: All reviews are first passed through a Stanford Core

NLP Tokenizer [97] to obtain the tokens, which are then lowercased. Stopwords (the, and,
is etc.) as well as punctuations are considered as separate tokens and are retained. A 64-
dimensional word2vec6 [107] embedding using the Skip-gram model is pre-trained on the
50,000 most frequent tokens in each of the training corpora.

2. CNNText Processor:We reusemost of the hyper-parameter settings reported by the authors
ofDeepCoNN [194] since varying themdid not give any perceivable improvement. In all of the
CNN Text Processors ΓA,ΓB and ΓO , the number of neurons,m, in the convolutional layer
is 100, the window size t is 3, and n, the dimension of the output of the CNN Text Processor,
is 50. The maximum length of the input text, T , is set to 1000. If there are many reviews, they
are randomly sorted and concatenated, and the first T tokens of the concatenated version are
used. In our experiments, the word embedding dimension, d, is 64, and the vocabulary size,
|M | is 50,000. Also, the non-linearity, σ, is tanh.

3. Dropout Layer and Factorization Machines: All dropout layers have a keep probability of
0.5. In all of the factorization machines, FMO, FMS and FMSE , the pair-wise interaction
is factorized using a k = 8 dimensional matrix, V . Since FMO processes a n-dimensional
input, its parameters are wO ∈ Rn and VO ∈ Rn×k. Similarly, since FMSE processes a 3n-
dimensional input, its parameters are wSE ∈ R3n and VSE ∈ R3n×k. All w’s are initialized
to 0.001, and all V’s are initialized from a truncated normal distribution with 0.0 mean and
0.001 standard deviation. All FMs are trained to minimize an L1 loss.

4. Transform: The default setting for the number of layers,L, is 2. We show the performance for
different values of L in Section 3.3.5. All weight matrices Gl are initialized from a truncated
normal distribution with 0.0 mean and 0.1 standard deviation, and all biases gl are initialized
to 0.1. The non-linearity, σ, is tanh.

5https://www.tensorflow.org
6https://www.tensorflow.org/tutorials/word2vec#the_skip-gram_model
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5. TransNet-Ext: The user (item) embedding matrices, Ω, are initialized from a random uni-
form distribution (-1.0, 1.0), and map users (items) that appear in the training set to a n = 50
dimensional space. New users (items) in the validation and test sets are mapped to a random
vector.

6. Training: All optimizations are learned using Adam [71], a stochastic gradient-based opti-
mizer with adaptive estimates, at a learning rate set to 0.002. All gradients are computed by
automatic differentiation in TensorFlow.

3.3.3 Competitive Baselines
We compare our method against the previous state-of-the-art, DeepCoNN [194]. DeepCoNN was
previously evaluated against the then state-of-the-art models like Hidden Factors as Topics (HFT)
model [100], Collaborative Topic Regression (CTR) [161], Collaborative Deep Learning (CDL) [162]
and Probabilistic Matrix Factorization (PMF) [136], and shown to surpass their performance by a
wide margin. We also consider some variations of DeepCoNN.

Our competitive baselines are:
1. DeepCoNN: The model proposed in [194]. During training, textA and textB corresponding

to the userA-itemB pair contains their joint review revAB , along with reviews that userA
wrote for other items and what other users wrote for itemB in the training set. During test-
ing, for a userP -itemQ pair, textP and textQ are constructed from only the training set and
therefore, does not contain their joint review revPQ.

2. DeepCoNN-revAB: The sameDeepCoNNmodel (1) above, but trained in a setting thatmim-
ics the test setup, i.e., during training, textA and textB corresponding to the userA-itemB

pair does not contain their joint review revAB , but only the reviews that userA wrote for
other items and what other users wrote for itemB in the training set. The testing procedure
is the same as above: for a userP -itemQ pair, textP and textQ are constructed from only the
training set and therefore, does not contain their joint review revPQ which is present in the
test set.

3. MF: A neural net implementation of Matrix Factorization with n = 50 latent dimensions.
We also provide the performance numbers of DeepCoNN in the setting where the test reviews

are available at the time of testing. i.e. the same DeepCoNNmodel (1) above, but with the exception
that at test time, for a userP -itemQ pair, textP and textQ are constructed from the training set as
well as the test set, and therefore, contains their joint review revPQ from the test set. This is denoted
asDeepCoNN + Test Reviews, and its performance is provided for the sole purpose of illustrating
how much better the algorithm could perform, had it been given access to the test reviews.

3.3.4 Evaluation on Rating Prediction
Like prior work, we use the Mean Square Error (MSE) metric to evaluate the performance of the
algorithms. LetN be the total number of datapoints being tested. Then MSE is defined as:

MSE =
1

N

N∑
i=1

(ri − r̂i)2
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Figure 3.5: Variation in MSE with different Layers: TransNets on Yelp dataset

where, ri is the ground truth rating and r̂i is the predicted rating for the ith datapoint. Lower MSE
indicates better performance.

TheMSE values of the various competitive baselines are given in Table 3.2. For each dataset, the
best score is highlighted in blue .

As can be seen from the Table, it is clear that TransNet and its variant TransNet-Ext perform
better at rating prediction compared to the competitive baselines on all the datasets (p-value≤ 0.05).
It can also be seen that learning a user and item embedding using only the ratings in addition to the
text helps TransNet-Ext improve the performance over the vanilla TransNet (p-value≤ 0.1), except
in the case of one dataset (AZ-CSJ).

It is also interesting to note that training DeepCoNN mimicking the test setup (DeepCoNN-
revAB) gives a large improvement in the case of Yelp, but does not help in the case of the AZ datasets.

Table 3.2: Performance comparison using MSE metric
Dataset DeepCoNN

+ Test Re-
views

MF DeepCoNN DeepCoNN-revAB TransNet TransNet-Ext

Yelp17 1.2106 1.8661 1.8984 1.7045 1.6387 1.5913
AZ-Elec 0.9791 1.8898 1.9704 2.0774 1.8380 1.7781
AZ-CSJ 0.7747 1.5212 1.5487 1.7044 1.4487 1.4780
AZ-Mov 0.9392 1.4324 1.3611 1.5276 1.3599 1.2691

3.3.5 Number of Transform layers
The Transform network uses L fully connected layers, where L is a hyperparamter. In Figure 3.5,
we plot the MSE of TransNet on the Yelp17 dataset when varying L from 1 to 10. It can be seen
from the figure that TransNets are quite robust to the choice of L, fluctuating only narrowly in its
performance. Using only one layer gives the highest MSE, most probably because it doesn’t have
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enough parameters to learn how to transform the input. Using 10 layers also gives a high MSE,
probably because it overfits or because it has too many parameters to learn. From the figure, using
2 or 5 layers gives the best MSE for this particular setting of TransNets. It is known that a 2 layer
non-linear neural network is sufficient to represent all the logic gates including the XOR [49]. So,
using 2 layers seems like a reasonable choice.

3.4 Explanation as Selection of the Most Similar Reviews
Our primary evaluation of TransNet is quantitative, using MSE of predicted ratings. We would also
like to investigate whether the learned representation is qualitatively useful—i.e., does it capture in-
teresting high-level properties of the user’s review. One possible use of the learning representation
would be to give the user information about her predicted reaction to the item that is more detailed
than a rating. In this section, we show howTransNets could be used to find themost similar reviews,
personalized to each user. For example, the most similar review for a user who is more concerned
about the quality of service and wait times would be different from the most similar review for an-
other user who is sensitive to the price. For a test userP − itemQ pair, we run the Source Network
with the text of their reviews from the training set to construct zL, which is an approximation for
the representation of their actual joint review. Candidate reviews are all the reviews revCQ in the
training set written for itemQ by other users. We pass each of them separately through the Target
Network to obtain their latent representation xCQ = ΓO(revCQ). If revCQ had been most similar
to what userP would write for itemQ, then xCQ would be most similar to zL. Therefore, to find the
most similar review, we simply choose the revCQ whose xCQ is closest to zL in Euclidean distance.

Some examples of such predicted most similar reviews on the Yelp17 dataset are listed in Table
3.4. Here, the column Original Review is the actual review that userP wrote for itemQ, and the
column Predicted Review gives the most similar of the candidate reviews predicted by TransNet.
The examples show how the predicted reviews talk about particulars that the original reviews also
emphasize. These are highlighted in the Table (highlighting was done manually).

Our model of explanation seeks to show why a user might like an item in terms of what aspects
of that item the user would like as well as dislike. Reviews are examples of explanations of this sort
– they discuss why a particular rating was given. So, it makes sense that the latent representation
for the review would have information relevant to the explanation. One of the ways to test if the
approximate latent representation computed by TransNet contains the relevant information is by
checking if reviews with similar latent representations offer similar explanations. We also evaluate
TransNet’s selection of reviews quantitatively, with the help of human judges (turkers) on Amazon
Mechanical Turk7. We use a pairwise setup that is described in detail in Section 4.7.4, where human
judges are shown two test reviews side-by-side along with the original review written by a user for
an item. After tagging liked (disliked) aspects in each of the reviews as well as any reason that the
user has provided for their sentiment towards that particular aspect, the turkers were asked to select
the test review that was most similar to the original review based on their tags.

We compare the TransNet method of review selection to a Matrix Factorization (MF) baseline as
well as a randomreview selector baseline (Random). TheMFbaseline is the same competitive baseline
used earlier in Section 3.3.3 to compare the rating prediction performance. We first calculate latent

7https://www.mturk.com
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Dataset TransNet > Random TransNet > MF
Yelp17 likes 38.30 %† 33.33 %†

dislikes 44.83 % 43.47 %

Table 3.3: Human Evaluation of Review Selection († denotes results that are statistically significant
with p-value < 0.05)

representations of users using a neural implementation of matrix factorization. Subsequently, we
find k neighbors of each of the users according to the cosine similarity computed on their latent
representations. k is set to 40 in our experiments. For a test user-item pair, we find the most similar
neighbor of the test user who has also written a review for that item. The selected review for a test
user is that neighbor’s review for that item. Even with 40 neighbors per user, only 2.7% of the test
entries had any neighbor who rated the same item. For our comparison, we used only the valid test
entries of MF. The Random baseline simply selects a random review for that item from the training
set. Table 3.3 gives the percentage of instances where TransNet’s review selection was judged to be
strictly better than the corresponding baseline in those cases, where one of the competing methods
was chosen. Statistical Significance is calculated using McNemar’s Chi-Square test [105].

Contrary to the qualitative analysis and the rating prediction performance measured earlier,
compared to the MF and Random selector baselines, TransNet’s selection of reviews was found to
be matching the original review better only in approximately 30% to 45% of the cases.

3.5 Contributions
Using reviews for improving recommender systems is an important task and is gaining a lot of atten-
tion in the recent years. A recent neural net model, DeepCoNN, uses the text of the reviews written
by the user and for the item to learn their latent representations, which are then fed into a regression
layer for rating prediction. However, its performance is dependent on having access to the user-item
pairwise review, which is unavailable in real-world settings.

We presented a newmodel called TransNetswhich extendsDeepCoNN with an additional Trans-
form layer. This additional layer learns to transform the latent representations of user and item into
that of their pair-wise review so that at test time, an approximate representation of the target review
can be generated and used for making the predictions. We also showed how TransNets can be ex-
tended to learn user and item representations from ratings only which can be used in addition to the
generated review representation. Our experiments showed that TransNets and its extended version
can improve the state-of-the-art substantially. In addition, we showed how TransNets can be used
to select reviews that are similar to the target user’s review for the target item. Such reviews could
be shown as an explanation for recommendations shown to the user.
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Original Review Predicted Review

my laptop flat lined and i did n’t knowwhy , just one day it
did n’t turn on . i cam here based on the yelp reviews and
happy i did . although my laptop could n’t be revived due
to the fried motherboard , they did give me a full expla-
nation about what they found and my best options . i was
grateful they did n’t charge me for looking into the prob-
lem , other places would have . i will definitely be coming
back if needed . .

my hard drive crashed and i had to buy a new computer .
the store where i bought my computer could n’t get data
off my old hard drive . neither could a tech friend of mine
. works could ! they did n’t charge for the diagnosis and
only charged $ 100 for the transfer . very happy .

this is my favorite place to eat in south charlotte . great
cajun food . my favorite is the fried oysterswith cuke salad
and their awesome mac ’n’ cheese ( their mac ’n’ cheese is
not out of a box ) . their sweet teawouldmakemy southern
grandma proud . to avoid crowds , for lunch i recommend
arriving before 11:30 a.m. or after 1 p.m. and for dinner
try to get there before 6 p.m. is not open on sundays .

always !! too small location so wait line can be long . been
going to for 13 years .

this place is so cool . the outdoor area is n’t as big as the
fillmore location , but they make up for it with live music
. i really like the atmosphere and the food is pretty spot on
. the sweet potato fry dip is really something special . the
vig was highly recommended to me , and i ’m passing that
recommendation on to all who read this .

like going on monday ’s . happy hour for drinks and apps
then at 6pm their burger special . sundays are cool too ,
when they have live music on their patio .

i have attempted at coming here before but i have never
been able to make it in because it ’s always so packed with
people wanting to eat . i finally came here at a good time
around 6ish ... and not packed but by the time i left , it was
packed ! the miso ramen was delicious . you can choose
from add on ’s on your soup but they charge you , i dont
think they should , they should just treat them as condi-
ments . at other ramen places that i have been too i get the
egg , bamboo shoot , fire ball add on ’s free . so i am not
sure what their deal is .

hands down top three ramen spots on thewest coast , right
up there with , and the line can be just as long .

this place can be a zoo !! however , with the produce they
have , at the prices they sell it at , it is worth the hassle .
be prepared to be pushed and shoved . this is much the
same as in asia . my wife ( from vietnam ) says that the
markets in asia are even more crowded . i agree as i have
seen vietnam with my own eyes .

i enjoy going to this market on main street when i am
ready to can ... the prices are great esp for onions . . broc-
coli and bell peppers ... a few times they have had bananas
for $ 3.00 for a huge box like 30 lbs ... you can freeze them
or cover in ... or make banana bread if they begin to go
dark ... and ripe . the employees will talk if you say hello
first ...

great spot for outdoor seating in the summer since it ’s
sheltered early from the sun . good service but americanos
sometimes are not made right

this ismy “ go to ” starbucks due to the location being close
to where i live . i normally go through the drive-thru ,
which more likely than not , has a long line . . but does n’t
every starbucks ? i have always received great customer
service at this location ! there has been a couple times that
my order was n’t correct - which is frustrating when you
are short on time & depend on your morning coffee ! but
overall you should have a good experience whether you
drive-thru or dine in !

Table 3.4: Example of predicted similar reviews
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Original Review Predicted Review

excellent quality korean restaurant . it ’s a tiny place
but never too busy , and quite possibly the best korean
dumplings i ’ve had to date .

for those who live near by islington station you must visit
this new korean restaurant that just opened up . the food
too good to explain . i will just say i havent had a chance to
take picture since the food was too grat .

very overpriced food , very substandard food . wait staff
is a joke . if you like being ignored in the front room of a
one story house and being charged for it , by all means .
otherwise , go to freaking mcdonald ’s .

i want this place to be good but it fails me every time . i
brought my parents here for dinner and was totally embar-
rassed withmy dining choice . i tried it twomore times after
that and continue to be disappointed . theirmenu looks great
but what is delivered is a total let down . to top it off , the ser-
vice is painfully slow . the only thing this place has going for
it is the dog friendly patio and craft beers . i hope someone
reads these reviews as the poor service piece continues to be
brought up as an issue .

ok the first time i came here , i was very disappointed in the
selection of items , especially after reading previous review
. but , then i realized that i went at a bad time , it was the end
of the day and they sold out of everything ! i recently went
back at the store opening time and a lot happier with the
market . they sell freshly made bentos , made in house , and
they are perfect for microwaving at home or in the market
for a cheap and satisfyingmeal . the key is to get there early ,
bc they are limited and run out quick , but they have a good
variety of bentos . one draw back is that it is smaller than
expected , so if you come from a place like socal , where
japanese markets were like large grocery stores with mini
stores and restaurants located inside , youmight not be too
happy .

themain reason i go here is for the bento boxes ( see example
pic ) . made fresh every day , and when they ’re gone , they
’re gone . on my way home fromwork it ’s a toss up whether
there will be any left when i get there at 5:30 . i would by no
means call them spectacular , but they ’re good enough that
i stop in every weeks i like to pick up some of the nori maki
as well ( see pic ) one thing i wish they had more often is the
spam and egg onigiri ( see pic ) . very cool . i ’m told you can
order them in advance , so may have to do that

holeymoley - these bagels are delicious ! i ’m a bit of a bagel
connoisseur . ( note : the bagels at dave ’s grocery in ohio
city are currently my favs ) . these bagels had me floored
. thankfully , cleveland bagel pops up at festivals and flea
markets so there are plenty of opportunities to put them in
your mouth ( though rising star coffee is a regular option )
. their are also amazing ! though they are n’t the cheapest
bagels in the world , you can taste the love that goes into
them . they ’re perfectly crisp , yet doughy in the middle .
the add an added flavor - honestly , it ’s a bagel experience .

i had heard from a colleague at work about cleveland bagel
company ’s bagels and how they were , “ better than new
york city bagels . ” naturally , i laughed at this colleague and
thought he was a for even thinking such a thing . so , a few
weeks later i happened to be up early on a saturday morn-
ing andmade the trek up to their storefront -( located across
from the harp . ) when i arrived was around 8:15 am ; upon
walking in i found most bagel bins to be empty and only a
few poppyseed bagels left . i do n’t like poppyseed bagels so
i asked themwhat was going on with the rest and when they
’d have more . to my surprise i found out that they only stay
open as long as they have bagels to sell . once they sell out ,
they close up shop and get going for the next day . i ordered
a poppyseed bagel even though i do n’t like them as i was cu-
rious as to what was up with these bagels and can tell you
that they are in fact better than new york city bagels . i ca n’t
even believe i ’m saying that , but it ’s true . you all need to do
what you can to get over there to get some of these bagels .
they ’re unbelievable . i ca n’t explainwithwords exactly why
they ’re so amazing , but trust me , you will love yourself for
eating these bagels . coffee is n’t that great , but it does n’t
matter . get these bagels ?!

Table 3.5: Example of predicted similar reviews (continued from previous page)
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Chapter 4

User Review Generation

Personalized Recommender Systems need to not only produce good recommendations that suit the
taste of each user but also provide an explanation that shows why a recommendation would be in-
teresting or useful to the user, to be more effective [154]. Such explanations would need to show
the aspects of the item being recommended that the user would like or dislike, as well as a reason
why they may or may not like it. The reason is consequential because different people perceive the
same aspect differently according to their personal preferences and beliefs. For example, one user is
happy that a restaurant is cheap and affordable, and therefore will like it, whereas another user is un-
happy that it is cheap, worrying that it’s of lower quality, and therefore does not like it. Many times,
users also care about certain aspects of an item without having any explicit sentiment. For example,
it would be good for a user to know beforehand if the parking is limited or if a movie theatre has
an attached food court. These are usually purely for informational purposes and do not necessarily
affect their sentiment towards the item itself. Such aspects, which we will refer to as ‘neutral aspects’,
of the item are also important because it helps the user plan ahead. For example, they could plan to
arrive early. Neutral aspects also need to be personalized because not everyone cares about parking
especially if one regularly uses public transport. User’s preferences are undeniably evident in the
reviews that they have written in the past. This is true for aspects that are liked and disliked as well
as neutral. If a user has mentioned about parking in many reviews in the past, it is obvious that they
would like to know about the parking situation at a place that they are planning to visit.

Providing explanations is important for recommendations and is gaining popularity in the rec-
ommendation community [154]. The main obstacle in training a model to generate explanations is
the lack of availability of training data. There is no public dataset available thus far that provides a
ground-truth explanation that would be acceptable to a user for recommending an item. However,
users’ reviews for items are available in abundance. Using such review data, it is possible to train
models that can predict or generate a review for a given user-item pair. Showing a user what their
review would look like for an item if they were to try it is an important step towards providing a de-
tailed personalized explanation. The predicted review can be shown to the userwhile recommending
an item, in place of an explanation. To motivate this argument, consider an example scenario where
we know that Alice wrote the following review after watching the movie, Inferno: “I enjoyed the In-
ferno film for the most part as you are very fond of Tom Hanks as Robert Langdon. While it was obviously
impractical to include an involved literary discussion of Dante’s Inferno in the film, it’s a shame that it was
barely touched on at all as to me, it was one of the most interesting aspects of the entire story. Like many,
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I was also disappointed by the changed ending. The book’s solution was challenging but elegant; the film is
clunky and predictable.” If we knew that Alice would be writing this review, then in hindsight, a good
explanation for why Alice may or may not like Inferno could be constructed from the review, like
so: “You will most likely enjoy the Inferno film for the most part as I’m very fond of Tom Hanks as Robert
Langdon. You will most likely be disappointed by the changed ending. The book’s solution was challenging
but elegant; the film is clunky and predictable.” To construct such an explanation, we changed the first
person past tense of some of the sentences in the original review to second person future tense. i.e.
showing a user what they may think about an item if they were to use or experience it could serve
as a type of explanation. In Chapter 5, we construct such a dataset of detailed explainable recom-
mendations by formulating it as a review-rewriting task on Amazon Mechanical Turk. In the task,
turkers are shown the original reviewwritten by a user for an item and asked to rewrite it in the form
of a detailed recommendation by changing the first person past tense of the sentences into a second
person future tense.

In the past, user reviews have been constructed by extractive techniques that select sentences
from other reviews and concatenate them together. Some of those techniques are personalized to
the user and others are standard extractive summarization techniques that are not specific to the
user. A discussion of such methods is in the Related Works Section 4.1. One of the main limitations
of extractive methods is that the resulting review does not sound natural. This is expected because
stitching together sentences from different reviews takes them out of their contexts and therefore,
does not jell well.

Another set ofmethods proposed in the past attempt to provide explanations by selecting reviews
written by other users for the same item. This was also the case in the method proposed in the
previous chapter. By selecting the whole review, the review sounds natural and does not suffer from
the problems exhibited by the extractive approaches. However, there are obvious drawbacks to this
approach. Almost always, each user’s overall experience with an item is bound to be unique even
if they share common opinions about certain aspects of the item with other users. For example,
consider the set of reviews for themovie ‘Inferno’ by users Alice and Kumar in Figure 4.1. Alice, who
likes the actor TomHanks and goodmovie plots, talks about those aspects in her review. That review
echoes some part of other user’s reviews for the samemovie, like that by Bob, who disapproves of the
plot and that by Charlie, who is all praise for the Hanks’ character. But Alice’s review is not exactly
the same as any one of these other reviews, but a combination of different aspects from multiple
reviews. Similar is the case of Kumar who loves action sequences and film scores. His review has
elements from Dave’s review, but also additional aspects not mentioned by the latter.

The above example is a typical scenario where different users care about different aspects of the
same item. Explanation by review selection suffers from the disadvantage that it is almost always
impossible to find one review that would discuss all aspects of the item that the user at hand would
like to know about. An ideal explanation of why they would like or dislike the item typically cannot
be extracted from any one review, but needs to be synthesized from multiple reviews.

In this chapter, our goal is to generate reviews using abstractive methods. Recurrent Neural
Networks (RNN)s have been shown to be very good at modeling language [188]. Once trained, they
can generate samples from the language model. Controlling the content that is generated is usually
achieved by providing a context vector to theRNN.A recentwork calledCollaborative Filteringwith
Generative ConcatenativeNetworks (CF-GCN) [116] proposed to concatenate latent embeddings of
a user-item pair to the input in each timestep of the RNN in an effort to force it to generate their joint

44



the	best	part	of	the	book,	
the	glorious	and	great	
finale	that	made	Dan	
Brown	a	genius	was	
changed	to	the	most	
common,	stupid	ending	
of	a	silly	Hollywood	
mystery/thriller	movie.

Bob

I	enjoyed	the	Inferno	film	for	the	most	
part	as	I'm	very	fond	of	Tom	Hanks	as	
Robert	Langdon.	While	it	was	obviously	
impractical	to	include	an	involved	
literary	discussion	of	Dante's	Inferno	in	
the	film,	it's	a	shame	that	it	was	barely	
touched	on	at	all	as	to	me,	it	was	one	of	
the	most	interesting	aspects	of	the	
entire	story.	Like	many,	I	was	also	
surprised	and	disappointed	by	the	
changed	ending.	The	book's	solution	
was	challenging	but	elegant;	the	film…
clunky	and	predictable.

The	largest	positive	for	this	
movie	is	Tom	Hanks.	He	was	
excellent	again	as	Robert	
Langdon.	Aside	from	Hanks,	
the	story	was	muddled	but	
chase-movie	action	and	
constant	changes	of	
beautiful	scenery	makes	this	
entertaining	if	forgettable.

Charlie

This	movie	starts	off	strong	with	a	chase	
sequence	and	the	explanation	of	the	villain's	
motives.	Then	we	get	to	the	usual	Dan	Brown-
esque	puzzle	solving.	One	thing	i	would	say	
though	is	the	climax	of	the	movie	was	done	even	
better	than	i	expected.	Also	the	soundtrack,	
Hans	Zimmer's	score	for	this	film	was	a	little	bit	
weaker	than	the	previous	two	but	still	
absolutely	fantastic.	Only	thing	i	would	say	is	a	
bit	sub	par	was	the	lack	of	puzzle	solving	and	
Christian	mythologies	which	i	loved	in	the	
previous	movies	but	still,	to	me	this	movie	was	a	
9/10	without	a	doubt.

Honestly,	I	am	not	sure	where	all	of	
the	criticism	is	coming	from.	It's	a	
thoroughly	enjoyable	thriller,	with	
constant	plot	twists	riddled	
through	it.	The	reviews	are	overly	
harsh,	and	many	people	find	the	
historical	fiction	and	puzzle-
solving	dull,	which	if	you	do,	would	
make	the	film	unbearable.	If	you	
don't	hate	those	aspects,	then	the	
film	is	the	cherry	on	top	for	this	
trilogy.

Dave

Alice Kumar

Figure 4.1: Sample Movie Reviews

review. Albeit a simple strategy, the authors showed that by providing the user-item information to
the RNN at each step, they could achieve very low perplexity scores. Yet another recent work [169]
proposed a review generator model that uses a Memory Network to refine and customize an item’s
representation before using it to produce the rating and generate a review. A discussion of other
review generation methods is in the Related Works Section 4.1. An important consideration for
neural models that generate natural language text is the availability of copious amounts of training
data. In this chapter, we show how the Transformational Neural Network (TransNet) architecture
that was proposed in the previous Chapter 3 for the task of rating prediction can be used for review
generation. By introducing an additional latent layer that represents the review of a user for an item,
which at training time is regularized to be similar to the actual review’s latent representation, we
showed that it could improve the rating prediction performance substantially. In this chapter, we
show that by using such an intermediate step and training a review generator indirectly, we are able
to train a model that is especially good at generating reviews when the training data is scarce, and
insufficient to train the state-of-the-art review generators that train their models directly.

The rest of this chapter is organized as follows. In Section 4.1, we discuss the past research that
is relevant to explanation using reviews. In Section 4.2, we describe how the TransNet architec-
ture could be adapted for review generation. In addition to this standard version, there are various
choices for modifying the TransNet architecture for text generation, some of which are known to be
better choices in other text generation settings. Therefore, it is imaginable that such choices should
lead to a better model. After introducing the datasets, evaluation metrics, and experiment settings in
Sections 4.3, 4.4 and 4.5 respectively, in Section 4.6, we describe different variations to the standard
TransNet model and study their effect on the performance empirically. In Section 4.7 we perform
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extensive experiments to compare the performance of TransNet to state-of-the-art methods for re-
view generation. In addition to automatic evaluation, we also use human judgements on Amazon
Mechanical Turk to test their performance. A preliminary version of this work was published in the
6th International Conference on Learning Representations (ICLR ‘18) Workshop [25].

4.1 RelatedWork: Explanation using Reviews

4.1.1 Non-Personalized Summarization

Amultitude of models have been proposed in the past that can create a generic summary of reviews.
[135] is a recent method for abstractive text summarization using a neural language model with a
beam-search decoder. However, the task is limited to generating a headline from the first sentence
of a news article, compared to reviews that typically include multiple long sentences. A similar work
is the [163], which uses an attention based neural network to generate one-sentence summaries from
multiple opinions. In [52], the authors incorporate a copymechanism into aseq2seq learningmodel
to improve text summarization task. [47] is an abstractive graph-based technique that constructs
summaries from highly redundant opinions.

[117] is an extractive method that selects sentences from multiple reviews using measures of in-
formativeness and readability, to construct a summary review. There has been a number of recent
work that proposed how neural models could be used for extractive summarization. For example,
[114] uses side information to construct news headlines from the text of the article. [30] is another
model for the same task, but uses a hierarchical reader and a sentence level attention extractor for se-
lecting informative sentences. [142] is a recently proposed extractive method that uses the principles
of sparse-coding and Maximal Marginal relevance (MMR) to select the sentences to be included in
the summary. The RNN-based method proposed in [113] has been shown to be comparable or bet-
ter than the state-of-the-art algorithms for extractive summarization. [182] is a graph based neural
model for the same task.

[16] learns an LSTM model that can generate spurious reviews for restaurants. This character
level model only generates review-like text and has no notion of user or item nor is it summarizing
anything. An almost identical method was also proposed in [181]. The reviews generated by both
these models were evaluated by human judges and found to be indistinguishable from authentic re-
views.

4.1.2 Extractive / Non-Neural Models for Personalized Review Generation

[128] proposed an extractive review generation by selecting sentences that are most similar to the
user’s profile but diverse from the already selected sentences. This greedy approach is same as the
MMR criteria proposed for search engines [22]. [190] proposed an Explicit Factor Model for gen-
erating explanations using phrases extracted from reviews. They identify the sentiment that each
user has about the aspects of the item and use them to provide discrete (not in fully formed natural
language sentences) explanations. [56] is anothermethod that ranks aspects for each user on a tripar-
tite graph consisting of the users, items and aspects. In [172], the authors proposed a joint Bayesian
model for rating and review prediction. Although they learn a generative model for the review text,
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they evaluate it using only perplexity and do not explicitly generate the text. Similarly, in [41], the
authors proposed a user specific aspect sentiment model to predict ratings where they evaluated the
reviews using only perplexity. Although [101] models the sentiment associated with each of the as-
pects of the item from the reviews, they do not provide any explanations to the user while predicting
ratings for new items. [110] jointly models reviews and ratings using a Hidden Markov Model –
Latent Dirichlet Allocation (HMM–LDA) to provide interpretable explanations using words from
latent word clusters that would explain important aspects of the item.

4.1.3 Abstractive / Neural Models for Personalized Review Generation

[116] proposed a character-levelmodel calledCollaborative FilteringwithGenerativeConcatenative
Net (CF-GCN), which is a regular character-level LSTM with additional information concatenated
to its input. The additional information includes that of the user, item and the category of the item.
It is one of the most recent state-of-the-art models for review generation. Since it is one of our com-
petitive baselines, we describe it in detail later in Section 4.7.1. [33] is a minor extension to [116],
where ratings of individual aspects of the item are also concatenated to the auxiliary information.
[151] is a similar work that produces the text of the review from the item id and sentiment/rating
as input. [169] applies Dynamic Memory Networks (DMN) to generate a personalized latent rep-
resentation of the joint review. First, it uses LSTMs to separately process reviews for the product
and those written by the user for other products to generate latent representations for the product
and the user. Then, the product representation is iteratively refined using a DMN with the user
representation driving the attention model, to construct a representation of the product that is per-
sonalized to the user. That is then passed through an LSTM to generate the words of the review. The
authors showed that the method is capable of producing reviews with better ROUGE scores than
competitive summarization algorithms. This method is yet another recent state-of-the-art model
and is one of our competitive baselines. We describe it in detail later in Section 4.7.2. [83] is another
recent model that generates tips instead of explanations. Their model jointly optimizes prediction
of ratings along with the generation of a short one sentence suggestion like for example “You need to
reserve a table in advance”. The tip generation process is quite similar to the Student network of the
model proposed in this chapter. In [195], the authors proposed generating user reviews by using an
attention mechanism over the attributes (metadata) of items as well as the user rating for that item.
In our setting, ratings are not assumed to be known beforehand. Having access to attributes would
certainly improve the performance of most methods considered in this thesis.

4.1.4 Comparison to Related Tasks

Sections of the model proposed in this chapter bare resemblance to models that have been proposed
for different but related tasks such as text generation from structured inputs and caption generation.

4.1.4.1 Text Generation from Structured Data

In [80], the authors proposed a model for generating one-sentence biographies from data structured
in the formof tables like the Infobox ofWikipedia. Themain improvement compared to earliermod-
els was to produce an identifier corresponding to the location of the desired data in the table, which
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could then be copied into the generated text. [139] proposed an improvement of this model which
also considers the order of facts in the table. [5] is another method for a similar task which combines
information from a knowledge graph of facts with a neural language model while generating text.
[54] is a simpler model which poses this as a seq2seq problem by flattening the table to a sequence
of words. The model proposed in [106], is similar, except they introduce an additional aligning step
before the decoding stage.

4.1.4.2 Caption Generation

In the model proposed in this chapter, the input to the decoder that generated the natural language
text could be from a CNN, in which case, the sequence information present in the input text will not
be preserved. This setting is similar to the popular task of caption generation for images. [159, 160]
embed the image using a deep vision CNN which is input to a language RNN that produces the
caption. This was extended with attention to improve the text generation in [179]. This is further
improved by using a sentinel for non-visual words in [93]. In [91], the authors train the model to
explicitly learn attention maps from alignment information. In [180], there is an additional review
network that inputs the output of an encoder to produce multiple thought vectors using attention.
These are then passed as input to the decoder.

4.1.4.3 Autoencoders

In one of the networks of the proposed model, the input and the output are the same, making it
an Autoencoder. In [82], the authors proposed a hierarchical LSTM that could encode and decode
a long paragraph showing that the model could preserve syntactic, semantic and discourse coher-
ence. A recent work [45] proposed a similar model which encodes using a CNN and decodes using
a hierarchical LSTM. An earlier model proposed in [36] auto-encoded sentences.

4.2 TransNets for Review Generation
In this Section, we show how the Oracle-Student architecture called Transformational Neural
Network (TransNet) that we proposed in Chapter 3 for the task of rating prediction can be used
for review generation as well. By introducing an additional latent layer that represents the review
of a user for an item, which at training time is regularized to be similar to the actual review’s latent
representation, it could improve the rating prediction performance substantially. Such an interme-
diate step dramatically reduces the training time of the review generator for large datasets and the
improves its performance especially at low data settings.

In our architecture for review generation, there are two networks as shown in Figure 4.2. AnOr-
acle Network processes the text ofuserA’s review for itemB , denoted as revAB , using a text processor
ΓO , which embeds the words and extracts sentence or phrase level features, to construct a latent rep-
resentation for the review. This latent vector is then concatenated to each step of a decoder LSTM
to reconstruct revAB . Since the input and the output of the Oracle network are the same, it is an
autoencoder. By training the Oracle in this manner, it learns to generate a good encoding of the text
to minimize the reconstruction error. Also, this network achieves a low perplexity without much
difficulty because it is working with the actual review.
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Figure 4.2: TransNet Architecture adapted for Review Generation

The proposed architecture has a second network called Student Network that first embeds userA
and itemB using embedding operations, ΩA andΩB , and subsequently, learns how to transform the
two latent representations into that of their joint review, revAB . The embedding operation could be
as simple as a matrix lookup, or it could be the process of constructing the user/item representation
from their historical reviews as described in Section 3.2. Learning to transform is achieved by using
a Transform layer, which is a L-layer deep non-linear fully connected feed forward network. During
training, wewill force this layer to produce a representation that approximates theOracleNetwork’s
encoding for revAB , by minimizing the L2 loss computed between the two latent representations.
The intuition behind the transformation step is that, while information about the user and the item
for which the review is being generated is important, the information about the outcome of their
interaction would be more informative. If we knew the aspects of itemB that userA liked and those
that they disliked, we could produce a review that userA would write for itemB , with high fidelity.
The transformed representation is also used by a regression layer to predictuserA’s rating for itemB .

There are two obvious architectural variants for the Student’s decoder network: Either it has a
decoder of its own as shown in Figure 4.2 that is trained alongside the rest of the Student network,
or, it reuses the Oracle’s decoder network by plugging in the approximate representation that it con-
structed for the user’s review for the item. The first option of training a separate decoder is useful
if the Student wants to decode using a different input than that used by the Oracle. However, if the
inputs are logically the same, i.e. they represent the joint interaction, it does not warrant a sepa-
rate decoder, and the Student can simply reuse the Oracle’s decoder. We experimented with both
approaches.
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Figure 4.4: TransNet Decoder Contexts

At test time, for a test user-item pair, userP and itemQ, the Student Network is used to con-
struct an approximate representation of their joint interaction, which is fed as a context vector to
the decoder LSTM that was trained by the Oracle Network, to generate their joint review.

4.2.1 Encoder
The Oracle network uses an encoder to convert the text of a review to its latent representation.
Ideally, this process should be able to capture the overall sentiment expressed by the reviewer about
the item, specific aspects of the item that the user mentioned, sentiments expressed for those aspects
along with reasons if any, word and phrase usages characteristic of the reviewer etc., and be able to
represent them in a distributed vector representation. This context vector is the only information
available to the decoder while re-generating the review. Such a constraint is needed because while
it is possible to let the Oracle’s decoder attend to the actual text of the review when decoding, there
is no text to attend to when decoding with Student’s context — the latter is created from user’s and
item’s latent vectors.

For the standard version of TransNet for review generation, wewill use the CNN-based encoder
described in Section 3.2.2. However, there are other types of encoders that could be used in the
Oracle’s network. Performance comparison of different encoders and a discussion is in Section 4.6.2.

4.2.2 Decoder with Context
A review is an outcome of a user’s interaction with an item. Therefore, it is influenced by both the
user and the item. Review generation is a type of controlled text generation task, where the generated
text is pertinent to the item being reviewed and matches the idiosyncrasies of the user.
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Recurrent Neural Networks (RNNs) have been shown to be very good at modeling language
[188]. Once trained, they can generate samples from the language model. Controlling the text that
is generated can be achieved by providing a context vector to the RNN [116]. Figure 4.3 shows
an example of such an unrolled LSTM network. The context vector C controls the overall content
while the word generated at each step is influenced by the word generated at its prior step. C could
be provided as an input to the first hidden state of the LSTM or it could be concatenated to the input
at each step. As noted in [116], by concatenating the context with the input at each step, the context
signal is preserved through hundreds of steps, allowing long and coherent sequences to be generated,
whereas, treating the context as input to the hidden cell, the signal will quickly vanish or explode.
Therefore, all decoders used in this Thesis concatenate the context to the input at each step.

The input at the first step to the decoder is a special start symbol <START>. The network is
unrolled until it encounters an end-of-sequence symbol <EOS>, or reaches the maximum number
of steps. In the case of TransNet, there are two kinds of context vectors — one that is created by
the Oracle from the text of the actual review revAB , and the other created by the Student using the
Transform operation on the latent representations of userA and itemB . This scenario is depicted in
Figure 4.4. The decoder network of Figure 4.3 is fairly independent from the rest of the TransNet
modules — it can be thought of as a black box language generator that produces text relevant to the
supplied context vector. In the rest of this Thesis, unless specified otherwise, the Student network
reuses Oracle network’s decoder for generating the review, by providing its own context vector.

4.3 Datasets

We will evaluate the performance of the models on seven large datasets and their variants. The
first two, Yelp17 and Yelp18, are from the Yelp dataset challenges1 released in the years 2017
and 2018 respectively, containing 4M to 5M reviews and ratings of businesses by more than 1M
users. The next three, AZ-Books, AZ-Elec and AZ-CSJ contain reviews and ratings given by users
for products purchased on amazon.com, specifically, books, electronics, and clothing, shoes and
jewelry respectively. These datasets are some of the larger ones in the latest release of the Stan-
ford SNAP dataset collection2 [102, 103]. The next two, which are also from the SNAP collection
[101, 104], BeerAdv and RateBeer, are beer rating datasets constructed from online beer reviewing
websites beeradvocate.com and ratebeer.com respectively. Following [116], for each user, one
rating/review each are randomly chosen for the validation and test sets, and all other ratings/reviews
are used for training (leave-one-out evaluation).

For some of these datasets, we also constructed variants as follows:
1. AllUsers: An AllUsers version of a dataset includes all the users of the original dataset.

Therefore, it is essentially the full dataset. Users who have written less than 3 reviews are
included only in the training set, i.e. by extension, all users in the validation and test have
appeared at least once in train.

2. 100K: A 100K version of a dataset is a random sample of 100,000 user-item pairs from the
dataset that is then split into train, validation and test datasets according to the leave-one-out

1https://www.yelp.com/dataset_challenge
2http://jmcauley.ucsd.edu/data/amazon
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Dataset #Users #Items #Ratings
& Reviews

train validation
& test

Yelp17 1,029,432 144,072 4,153,150
Yelp17 AllUsers 1,029,432 144,072 4,153,150 3,512,186 320,482
Yelp17 100K 77,427 43,272 100,000 91, 666 4,167
Yelp18 1,326,101 174,567 5,261,669
Yelp18 25-core 11,796 9,904 652,746 629,154 11,796
Yelp18 40-core 1,002 978 72,469 70,465 1,002

Table 4.1: Yelp Dataset Statistics

Dataset Category #Users #Items #Ratings & Reviews
AZ-Books Books 8,025,457 2,329,957 22,504,600
AZ-Books 25-core 19,803 22,084 1,273,564
AZ-Elec Electronics 4,200,520 475,910 7,824,482
AZ-Elec 15-core 842 846 22,649
AZ-CSJ Clothing, Shoes 3,116,944 1,135,948 5,748,920
AZ-CSJ 5-core and Jewelry 39,357 23,014 278,457

Table 4.2: Amazon Dataset Statistics

procedure described above. However, like the AllUsers version, users who have written less
than 3 reviews are included only in the training set.

3. k-core: A k-core version of a dataset is its subset such that each user in the subset haswritten
reviews of at least k items in that subset and each item in the subset has reviews of it written by
at least k users in the subset. If the original dataset is long-tailed or sparse, its k-core version
is necessarily denser. For some of the datasets like Yelp18 and AZ-*, the largest possible k is
in the low 20s to 50s, whereas for the beer datasets, it is easy to get a large k of 150 or above.

4. k-core-n: A k-core-n version of a dataset is a subset of a k-core version of that dataset
such that for each user in the training set, exactly n ratings/reviews are randomly chosen from
their training reviews (k≥ n).

Each of the above versions serve a different purpose— they help us understand the performance
of various methods under different conditions. For example, the 100K version is quite small com-
pared to the original and the AllUsers version, and equally or more sparse. Therefore, it helps us
study the performance of the algorithms in low and sparse data settings. In comparison, the k-core
versions are quite dense compared to the original dataset. That helps us test the performance in
dense settings. The k-core-n for small n, in comparison, could be tiny. The statistics of the datasets
are given in Tables 4.1, 4.2 and 4.3.

The reviews in BeerAdv and RateBeer are relatively well formed in the sense that the reviews
show more structure. Since the reviews focus entirely on specific aspects of the beer, the chance for
variance is reduced. For example, in BeerAdv, most reviews discuss the following aspects of the beer
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Dataset #Users #Items #Ratings
& Reviews

train validation test

BeerAdv 33,387 66,051 1,586,259
BeerAdv AllUsers 33,387 66,051 1,586,259 1,548,498 18,884 18,883
BeerAdv 100K 12,383 18,868 101,769 90, 524 5,618 5,627
BeerAdv 150-core 1,601 1,615 542,078 538,824 1,626 1,628
BeerAdv 150-core-50 1,601 1,615 84,410 81,164 1,623 1,623
BeerAdv 150-core-25 1,601 1,615 43,844 40,609 1,618 1,617
BeerAdv 150-core-5 1,601 1,615 11,347 8,101 1,622 1,624
RateBeer 40,213 110,419 2,924,127
RateBeer 150-core 2,335 3,111 1,272,371 1,267,621 2,369 2,381

Table 4.3: Beer Dataset Statistics

in order: appearance, smell, taste, mouthfeel and drinkability, although each user has their own way
of describing the beer [116]. A sample review is below:

Poured from 12oz bottle into half-liter Pilsner Urquell branded pilsner glass. Appearance: Pours a cloudy
golden-orange color with a small, quickly dissipating white head that leaves a bit of lace behind. Smell: Smells
HEAVILY of citrus. By heavily, I mean that this smells like kitchen cleaner with added wheat. Taste: Tastes
heavily of citrus- lemon, lime, and orange with a hint of wheat at the end. Mouthfeel: Thin, with a bit too
much carbonation. Refreshing. Drinkability: If I wanted lemonade, then I would have bought that.

The markers “Appearance”, “Smell”, etc. are not always used. Some users abbreviate it as “A”, “S”,
etc. and others omit them entirely. In these two datasets, the users also provide separate ratings for
these aspects along with their overall rating.

Compared to the beer reviews, reviews in Yelp18 are completely free form text as users describe
their unique experience with the item. The reviews do not always focus on only the aspects of the
item, but also the circumstances leading to the user trying the item andmany of them tend to ramble
on. For example, a sample review is given below:

I had heard from a colleague at work about Cleveland bagel company’s bagels and how they were, “better
than new york city bagels.” Naturally, i laughed at this colleague and thought he was a ** for even thinking
such a thing. So, a few weeks later I happened to be up early on a saturday morning and made the trek up
to their storefront -( located across from the harp.) When i arrived was around 8:15 am; upon walking in
I found most bagel bins to be empty and only a few poppyseed bagels left. i don’t like poppyseed bagels so i
asked them what was going on with the rest and when they’d have more. To my surprise I found out that they
only stay open as long as they have bagels to sell. Once they sell out, they close up shop and get going for the
next day. I ordered a poppyseed bagel even though I don’t like them as I was curious as to what was up with
these bagels and can tell you that they are in fact better than new york city bagels. I can’t even believe I’m
saying that, but it’s true. You all need to do what you can to get over there to get some of these bagels. They’re
unbelievable. I can’t explain with words exactly why they ’re so amazing, but trust me, you will love yourself
for eating these bagels. Coffee isn’t that great, but it doesn’t matter. Get these bagels ?!

The Amazon reviews are similar to the Yelp reviews, with no regular structure. Therefore, we
expect most of the models to be better at generating the beer reviews than those from the Yelp and
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Amazon datasets.

4.4 EvaluationMetrics
Tomeasure the performance of the models, we will use the metrics given below. Two of the metrics,
Word-Level Perplexity and Mean Squared Error do not require the models to generate any review
texts. Also, for these two metrics, lower values usually indicate better models. These metrics are
popular in the text generation community for measuring the progress of model training as well as
comparing different models [116, 188]. Next three metrics are evaluated on the generated text com-
pared to the original review written by the target user for the target item. These metrics are more
popular for measuring the performance of translation and summarization techniques [40, 87, 122].
For these three metrics, higher values are better. We observed in our experiments that the above
automatic evaluation metrics could be misleading in some cases. At times, the best generative model
according to these metrics can produce the same or extremely similar reviews for all user-item pairs.
Unless manually checked, such occurrences could go unnoticed. To quantify this observation, in ad-
dition to the above five metrics, we introduce an additional metric, called Input Sensitivity (IS), that
measures the responsiveness of a model towards its inputs i.e. the user and the item information.

1. Word-Level Perplexity (WP): The negative log likelihood of the ground-truth review text. It
measures how likely the text is under the trained model.

2. Mean Squared Error (MSE) as described in Section 3.3.4.
3. BiLingual Evaluation Understudy (BLEU) [122] is a metric used for evaluating the quality of

machine-translated text. It uses a modified form of precision computed between the system
generated text and the reference.

4. Metric for Evaluation of Translation with Explicit ORdering (METEOR) [40] was proposed to
overcome some of the limitations of BLEU. It uses a harmonic mean of precision and recall to
calculate the score, and was found to correlate highly with human judgements.

5. Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [87] is a recall oriented metric
for evaluating automatically generated summaries with human generated ones and was used
by some of the previouswork to evaluate their approaches. The commonly used version of this
metric is the ROUGE-N, which computes N-gram overlap between the system and reference
summaries. N is typically 1,2 or 3. This will help us determine how closely the generated text
resembles the original.

6. Input Sensitivity (IS) is a new metric for measuring the capacity of a model for generating a
variety of reviews as its inputs are varied. It is computed as nrev

nin
%, where, nrev is the total

number of unique reviews produced by the model during testing and nin is the total number
of unique user-item pairs tested.

4.5 Experimental Settings
All algorithms, including the variants and competitive baselines, were implemented in Python using
TensorFlow[1], an open source software library for numerical computation, and were trained/tested
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on NVIDIA GeForce GTX TITAN X GPUs. After each epoch of training (one pass over the training
data), the performance of the models are tested on the validation and the test data. If either the
MSE or the Word Perplexity has improved on the validation data compared to the previous epoch,
the model parameters are saved. Even if there is no improvement, the training is still continued
up to a maximum number of training epochs. The reported values are the test scores where the
corresponding validation scores are the best.

The implementation of the standard version of TransNet uses the same CNN encoder for the
Oracle as the one used earlier for rating prediction as described in Section 3.3.2. The vocabulary is
obtained by selecting the most frequent 20,000 words in the training set. The words are not lower-
cased or stemmed. Stopwords and punctuations are not filtered out. The words are embedded into
a 650D space using an embedding matrix, which is learned directly during the training phase. The
encoder produces a 100D representation for the review text.

In the Student network, both users and items are embedded into a 50D latent space using an
embedding matrix, which is learned during the training phase. The Transform module is 2 levels
deep, and transforms the user and items embeddings into a 100D latent space, to correspond to the
output of the Oracle’s encoder. The Factorization Machine regression layer uses the same settings
as the one used earlier for rating prediction as described in Section 3.3.2.

The base language model (decoder) is TensorFlow’s benchmark implementation3 of LSTMs reg-
ularized using dropout [188], which was shown to achieve very good results for language modeling
tasks. Unless stated otherwise, we use their recommended medium configuration: 2 layers of stacked
LSTMs with 650 hidden units. However, since we attach the transformed user and item represen-
tations to each step, the number of hidden units are increased by 100 units to a total of 750. We use
100 timesteps instead of their 35, and a mini-batch size of 256. The full network is trained with a
learning rate of 1.0 for 6 epochs followed by a decay of 0.8 for a total of 40 epochs. The full network
is regularized using dropouts with a 0.5 keep probability.

Some experiments also use a small configuration, which corresponds to a simpler decoder. The
hidden size is only 150 units and the words are embedded into a 50D latent space. The rest of the
settings are the same as the medium configuration above.

4.6 TransNet Variants

The standard version of TransNet introduced in Section 4.2 can be enhanced in a number of ways.
For example, the CNN encoder could be replaced with an RNN encoder like a Bi-LSTM network.
The latter is known to substantially improve the performance of models in various natural language
related tasks. Similarly, Adversarial training is known to improve the output of image generation
models. In this Section, we will discuss different variations to the standard TransNet architecture
that modifies the Oracle-Student architecture wholly or partly, and how such changes affect the per-
formance. The modifications are inspired by their success in other related tasks.
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Figure 4.5: Student’s performance with different Oracles

4.6.1 Oracle’s Encoder: CNN vs. BiLSTM
In this Subsection, we will consider various encoders for the Oracle and study how that affects the
performance of the Student. Note that when the Oracle network is modeling the output, its input is
the original review text. Therefore, the Oracle’s performance corresponds to the best case scenario
for predicting the output. Since the Student network is trying to mimic the Oracle, its performance
is upper bound on what the Oracle can achieve.

The standard version of TransNet uses a CNN encoder to convert the review text to its latent
representation. However, there have been many results in the past that showed that a sequential
encoder like LSTM or GRU is usually better at encoding natural language text. Therefore, in this
Subsection, we test the performance of a variant of TransNet that uses a Bidirectional LSTM (BiL-
STM) [51] encoder for the actual review text used by the Oracle Network.

We plot theWord Level Perplexity of the standard TransNetwith a CNNencoder alongwith that
of a variant that uses a BiLSTM encoder in Figure 4.5. The dataset is BeerAdv 150-core. In the
Figure, the blue line is the test score of the CNN Oracle, which gives a best score of 18.633. That is
worse than that of the BiLSTMOracle, plotted in green, which gives a best score of 4.761. Therefore,
it is evident that encoding with a BiLSTM network preserves significantly more information than
encoding with a CNN network, a result that is as expected.

However, an Oracle is only as good as the performance of the Student that it can help train. In
the Figure, the CNNOracle’s Student, plotted in cyan, is able to achieve a perplexity score of 29.131,
closely mimicking that of the Oracle very early on. However, the BiLSTMOracle’s Student, plotted
in red, which has the same architecture as the CNN Oracle’s Student — specifically, both have 2
layers in Transform — is unable to learn how to produce the encoding constructed by the Oracle
network. The perplexity first diverges to a very large value before improving slightly after the 5th
epoch, only to diverge once again. It does not converge at all in the 40 epochs that we trained and
tested its performance.

3https://github.com/tensorflow/models/tree/master/tutorials/rnn/ptb
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In the Figure, we also plot the test performance of two more Student networks, one with 3 and
the other with 5 Transform layers, that learn from a BiLSTM Oracle. The Student with 3 layers,
plotted in yellow, diverges initially like the one with 2 layers above, only to converge after the 5th
epoch. It shows that a Student network with 3 layers of transformation can learn to construct the
encoding that is independently constructed by a BiLSTM encoder to some extent. However, its best
test perplexity is 36.653, which is much worse compared to its Oracle. It is also not better than the
CNN Oracle’s Student. The Student with 5 transform layers is plotted in magenta. As can be seen
from the Figure, its training diverges immediately to very large values.

The above experiment shows that aCNNOracle, althoughnot as competent as a BiLSTMOracle,
is able to help train a Student network that achieves a better performance than that trained by the
latter. It could be because of the specific architecture of the Transform module that we use for the
Student, which is probably more capable of imitating the selection and pooling operations done by
the Oracle’s CNN encoder, but not the sequential operations performed by a BiLSTM encoder. It is
possible that there are other Transform architectures that could construct a BiLSTM text encoding
from user and item representations.

4.6.2 Joint Training of BiLSTMOracle and Student

Figure 4.6: Performance with joint training of Oracle and Student

In the previous Subsection, we saw that an Oracle with a BiLSTM encoder is able to regenerate
user’s reviews with high fidelity that far exceeds the performance of a CNN encoder based Oracle.
However, the BiLSTMOracle’s Student is unable to recreate its encoded representation. Therefore,
in this Subsection, we will train both the Oracle and the Student jointly in an effort to coerce the
Oracle to produce an encoding that the Student would be able to imitate. i.e. instead of training
in two sub-steps, we will have only one step — the loss that is minimized is the sum of the losses
incurred by the Oracle and the Student. Therefore, the parameter updates to the Oracle will involve
an additional delta that is due to the difference in the encodings produced by the Oracle and the

57



Dataset CNN Student with
Depth = 2

Joint BiLSTM Student
with Depth = 2

Joint BiLSTM Student
with Depth = 3

BeerAdv 150-core 40.382 46.666 48.888
BeerAdv 100K 53.121 56.992 59.470
Yelp17 AllUsers 26.084 28.405 26.183
Yelp17 100K 61.606 65.113 69.931

Table 4.4: Word Perplexity with joint training of Oracle and Student

Student. By doing so, the Oracle is penalized additionally for producing an encoding that deviates
substantially from that constructed by the Student.

In Figure 4.6, we plot the Word Perplexity of joint training BiLSTM Oracles with Students of 2
and 3 Transform layers on BeerAdv 150-core with a small configuration. As can be seen from
the figure, the joint training has forced the Oracles and the Students to work together. The Student
with 2 layers plotted in red closely mimics its Oracle plotted in green until about 15 epochs after
which, the Oracle slightly improves its performance while the Student plateaus. A similar behavior
is seen in the case of the Student with 3 layers plotted in magenta. It is close to its Oracle plotted in
yellow till about 15 epochs. However, it is interesting to see that in the case of joint training, a 2 layer
Student is better than a 3 layer Student, whereas in disjoint training, the opposite was true.

For comparison, in the Figure, we also plot a standard TransNet with a CNN Oracle in blue
and its Student in cyan. They are not trained jointly. As can be seen from the Figure, the CNN
Oracle-Student pair performs substantially better than the jointly trained BiLSTM Oracle-Student
pairs. Also, it is interesting to note that the BiLSTMOracle is no longer able to outperform the CNN
Oracle because it is constrained by its Student when trained jointly.

In the Table 4.4, we compare the performance of these algorithms on three other datasets in
addition to BeerAdv 150-core that was studied in Figure 4.6. The configuration is small as be-
fore. The best scores are highlighted in blue. As we can see from the Table, the Student that was not
jointly trained with the CNN Oracle consistently outperforms both the Students that were jointly
trainedwith a BiLSTMOracle, on all the datasets. Another interesting observation is that, more data
— i.e. in the case of the 150-core and AllUsers versions — does help close the gap between the
joint training and the CNN Student compared to their performances with the corresponding 100K
dataset versions. With large data as in the case of Yelp17 AllUsers that has about 3.5M training
examples, we also see that the joint BiLSTMStudentwith a transformdepth of 3 is able to surpass the
performance of the joint BiLSTMStudent with a depth of 2, andmatch the performance of the CNN
Student. From the above results, we can infer that when only moderate amount of training data is
available, a CNNOracle-Student pair performs substantially better than a BiLSTMOracle-Student
pair trained jointly. As more training data becomes available, a BiLSTMOracle can help train a Stu-
dent with increasingly larger number of parameters, that could possibly surpass the performance of
the standard CNN TransNet model.
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Dataset Student with standard
CNNOracle

Student with 2 layer en-
coder CNNOracle

BeerAdv 150-core 40.382 43.446
BeerAdv AllUsers 45.358 45.248
Yelp17 AllUsers 26.084 25.713

Table 4.5: Word Perplexity with an Oracle that has a larger encoder

4.6.3 Enhancing the CNNOracle

The standard version of TransNet that we used in the previous Subsections had a CNNOracle with
one layer of convolutions. In Figure 4.6, we saw that the Student is able to produce the encoding
produced by the Oracle to a very close degree, and therefore, it is able to closely mimic the Oracle.
The only limit to Student’s performance is that of the Oracle. i.e. if we could improve the Oracle’s
performance further, it may be possible to further improve the Student as long as it is able to mimic
the Oracle.

In this Subsection, we will add an additional layer of convolutions to the Oracle’s encoder, effec-
tively increasing the number of parameters in the encoder. Table 4.5 shows the word perplexity ob-
tained by the standard and the enhanced versions on different datasets using small configuration.
From the table, it can be seen that the standard CNN TransNet performs better on the BeerAdv
150-core. However, on the AllUsers versions of BeerAdv and Yelp17, which are about 5 times
and 7 times larger than the 150-core version respectively, the Student that learns from the Oracle
with a 2 layer CNN encoder begins to surpass the performance of the Student trained in a standard
setting. Therefore, we infer that with considerably larger amounts of training data, to the tune of a
million or more, we can gradually increase the complexity of the Oracle for performance gains.

4.6.4 Extended TransNets for Review Generation

In Section 3.2.7, we proposed using the user’s and item’s identities alongwith the approximate review
representation for predicting their joint rating. Inmost real world settings, the identities of the users
and the items are known to the system. Therefore, it is a reasonable input data to use in predicting
their ratings as well as reviews. This version of TransNet was called Extended TransNet (TransNet-
Ext). It was shown in Section 3.3.4 that TransNet-Ext could outperform standard TransNet in most
cases.

In this Subsection, we will study the performance of TransNet-Ext in generating reviews. The
Student’s architecture is changed to the extended version as in Figure 3.4. We also train a separate 2
layer LSTMDecoder for the Student instead of reusing the Oracle’s decoder. The Student’s decoder
is larger than the Oracle’s to accommodate the additional inputs.

In Figure 4.7, we plot the word level perplexity of TransNet-Ext on BeerAdv 150-core with
small configuration. The performance of the standardTransNet is also plotted for comparison. The
Oracles in both versions have the same architecture and parameter settings. As can be seen from the
figure, although the TransNet-Ext Student initially starts at a worse performance, it does gradually
improve its performance and begin to converge after about 20 epochs to come close to the standard
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Figure 4.7: Performance of Extended TransNet

TransNet’s performance. However, despite having more parameters and more inputs, TransNet-
Ext is unable to beat the performance of standard TransNet. We hypothesize that this behavior is
because the approximate review representation is constructed from the latent representations of the
user and the item, and therefore, there is no new information in the additional inputs passed to the
decoder. However, if we had instead constructed the approximate representations from historical
reviews as was done earlier in Section 3.2.7, the user and item representations learned via matrix
factorization would have carried additional information, and perhaps improved the performance.
This experiment also shows that it is possible for the Student to train its own decoder if necessary
instead of reusing the Oracle’s decoder.

4.6.5 GAN style training

Generative Adversarial Networks (GAN) [50, 131] are comparatively a recent development in deep
learning for training generative models, by an adversarial process. A GAN framework has two sub
networks – a generative network that is responsible for generating the output, and an adversarial
network which tries to differentiate if a sample is an original one from the training data or a syn-
thetic one from the generative network. The generative network is trained to maximize the chances
of the adversarial network making a mistake. Such a framework has been shown to give good per-
formance gains in the computer vision community [29, 50, 137]. A recent work, [86], used it for
visual paragraph generation. To improve the quality of the generated paragraph, [86] employs two
discriminators – one for measuring the plausibility of each of the sentences, and the other for mea-
suring the smoothness of transition of topic between the sentences. They produce sentences that are
semantically relevant and grammatically correct, even though they do not use a beam search decoder.

To enable GAN training, we insert an adversarial network that takes as input, either the output of
theOracle’s encoder or the output of the Student’s transform layer, and predictswhich output is from

60



userA

ΩA

itemB

revAB	

TRANSFORM

L2	loss

Oracle	NetworkStudent	Network

ΩB

ΓO

LSTM	Decoder

Reconstructed	revAB	
Generated	revAB	

Target	LSTM	Decoder

rAB	

Regression

Adversary

Discriminator	
Network

Sigmoid

0															1

Figure 4.8: TransNet with GAN training: Architecture

which network. The true or real data is the output from the Oracle and the fake data is that from the
Student. The adversary has lA fully connected feed forward layers with tanh non linearity. The last
layer is a sigmoid that gives the probability of the input being real or fake. In our experiments, we
set lA to 2. This modified architecture of TransNet is shown in Figure 4.8. The Student’s transform
network incurs a cost every time the adversary classifies its output as fake. This cost can be specified
as lossGANtrans = −log(A(zS)), where zS is the Student’s transform output andA(.) is the adversarial
function producing an output in the range (0, 1).

We experiment with two types of GAN training. In the first setting, the Student’s transform
network is updated solely based on lossGANtrans. In the second setting, it is updated based on lossGANtrans

as well as theL2 loss. The performance of the Student on BeerAdv 150-corewith the two training
approaches is plotted in Figure 4.9. For comparison, we also plot the standard TransNet setting that
uses only theL2 loss to update the Transform parameters. The configuration used in this experiment
is medium. As can be seen from the figure, by using only the GAN loss for training (plotted in red),
although we are able to train the Student, its performance converges to an unsatisfactory score. But
adding in the additional L2 loss term, we are able to substantially improve the performance. This
setting is plotted in magenta. An adversarial training is known to be beneficial if we want to match
the ground truth data’s and the generated data’s distributions. However, the way our training is set
up, for each output produced by the Student, we know exactly what its true output should have been
by accessing the Oracle’s network. Therefore, instead of matching only the distributions, we can
require the network to actuallymatch the exact output. i.e. L2 is a more assertive loss term that helps
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push the Student network further towards Oracle’s performance. From the figure, it is also clear that
using only the L2 loss (plotted in cyan) gives the best performance. Hence, we can infer that, in the
context of L2 training, additional GAN-style training is redundant, and could also adversely affect
the performance.

Figure 4.9: Student’s performance with different Transform training approaches

4.6.6 Discussion
In the above subsections, we discussed five variations to the standard TransNet architecture. These
changes were motivated by their success in other related tasks. However, contrary to expectations,
for the task of review generation given user-item pair, the standard TransNet architecture performs
the best in most cases or is on par with the alternate architecture in others. With large amounts of
training data, certain variants may be able to achieve better performance.

4.7 Comparison to State-of-the-art Methods
In this Section, we will compare the performance of our TransNet architecture to two other recently
proposed approaches for review generation. First, we discuss the architecture of the two approaches
in the Subsections below, before delving into comparisons in the later Subsections.

4.7.1 Collaborative Filtering with Generative Concatenative Networks
In [116], the authors proposed a straightforward approach calledCollaborative FilteringwithGener-
ative Concatenative Networks (CF-GCN) to train a review generator for a user-item pair. The users
and the items are mapped to their latent representation using embedding matrices, ΩA and ΩB , that
are learned during the training phase. For a user-item pair, their latent vectors are concatenated and
passed as the context vector to a LSTM decoder. The context vector is concatenated to the input at
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each step of the decoder. That way, the user-item information/signal is preserved through hundreds
of steps. The decoder is trained to generate the review, revAB , directly from userA’s and itemB ’s
representations as the inputs. The context vector is also used by a regression module to predict the
rating, rAB . CF-GCN’s architecture is depicted in Figure 4.10. Its context vector is constructed as
shown in Figure 4.11.

We use an implementation of CF-GCN that is comparable to that of TransNet. Specifically, we
make the following changes: CF-GCN as described in [116] is a character-level model. We use a
word-level model with the same vocabulary as TransNet. Originally, CF-GCN predicts a boolean
output of whether the user rates the item or not. Our implementation uses a Factorization Machine
regression layer similar to TransNet for predicting the actual rating.

4.7.2 Opinion Recommendation Using A Neural Model

In [169], the authors proposed a review generator model that uses a Memory Network to refine and
customize an item’s representation before using it to produce the rating and generate a review. This
model, which we call MemNet for short, has three subnetworks – a user model, an item model, and
a neighborhood model. The architecture of their proposed approach is shown in Figure 4.12.

The user model converts a user into their latent representation using an embedding operation,
ΩA. This embedding operation could be as simple as a matrix lookup or may use the user’s historical
reviews. Next is the neighborhoodmodel. Prior to training theMemNetmodel, the authors compute
a matrix factorization on the rating matrix, and use that to find the most similar users, who they call
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as neighbors, for each of the users. In the neighborhood model, for userA, retrieve their m pre-
computed neighbors, n1

A, n
2
A, ...n

m
A , and embed them using the embedding operation ΩA as earlier.

The final output of this subnetwork is the average of the neighbor’s embeddings.
The item model first converts the item into its latent representation using an embedding opera-

tion, ΩB that is similar to ΩA used for users. However, different from TransNet and CF-GCN, the
MemNet model uses the user and neighborhood representations to transform the item representa-
tion into a customized item representation that suits the tastes of the user. For this purpose, they
implemented an adaptation of Dynamic Memory Networks [147, 177], which constructed increas-
ingly abstract representations of the item by injecting the user and neighborhood information. The
memory layer consists of h computational layers, also called hops, that modifies the item represen-
tation like so:

vjB = tanh(WBv
j−1
B +WUvA +WNvN + b) (4.1)

where, vjB is the item’s refined representation at hop j, vA and vN are the user’s and their neighbor-
hood’s representations,W• are the correspondingweights and b, a bias vector. The output of the final
hop, vhB is the context vector for a LSTM decoder as shown in Figure 4.13, which is concatenated to
the input at each step. The same output is also passed through a regression layer to predict the user’s
rating for the item.

We use an implementation of MemNet that is comparable to that of TransNet and CF-GCN.
Specifically, wemake the following changes: MemNet as described in [169] uses reviews to construct
user and item representations. We use an embedding matrix to embed users and items, which is
learned during the training phase. MemNet’s regression layer computes a weighted average of all
ratings for that item and a single-layer feedforward regression on the refined item representation.
Our implementation uses a Factorization Machine regression on the refined item representation
similar to TransNet for predicting the actual rating.

4.7.3 Automatic Evaluation Using Different Metrics
In the above two subsections, we described our competitive baselines. In this subsection, we will
study their performance compared to TransNet on multiple datasets using the metrics described in
Section 4.4. We have ensured that the models are comparable — the parameter settings and dimen-
sions are the same whenever they serve equivalent purposes in the models.

4.7.3.1 Mean Squared Error

First, we compare the performance of the models according to their rating prediction error com-
puted using the Mean Squared Error (MSE) metric defined in Section 4.4. Recall that TransNet’s
regression layer is not jointly trained with the rest of the model, whereas CF-GCN’s and MemNet’s
regression layers are jointly trained. The MSE values achieved by the three models on different
datasets are charted in Table 4.6. The best scores are highlighted in blue. From the table, it is clear
that CF-GCN, the simpler of the three models that trains its regression layer directly, is better at
predicting the ratings. Although, it appears to contradict the result that was presented earlier in
Chapter 3, note that the two TransNet models have different Oracles. In the rating prediction case
discussed in Chapter 3, the Oracle was taking the target review as input and predicting the rating.
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Dataset TransNet CF-GCN MemNet
Yelp18 40-core 1.18 1.06 1.16
Yelp18 25-core 1.29 1.19 1.29
AZ-Elec 15-core 0.87 0.82 0.86
AZ-CSJ 5-core 1.25 1.25 1.25
AZ-Books 25-core 1.08 0.94 0.97
BeerAdv 150-core 0.41 0.34 0.41
RateBeer 150-core 10.08 4.44 10.30

Table 4.6: Mean Squared Error comparison

Figure 4.14: Performance of different models under low data settings

Therefore, its internal representation and by induction, that of the Student, were geared towards
rating prediction. However, in the setting discussed in this chapter, the Oracle’s aim is to regenerate
the review. Therefore, neither the Oracle nor the Student is making an effort to adapt their internal
representations towards predicting the rating.

4.7.3.2 Word Level Perplexity

In this section, we first compare the models’ Word Level Perplexity under low data settings. This ex-
periment is designed to show how the behavior of themodels changewhen the training data is scarce
to when it is sufficient. The datasets used for this experiment are variants of BeerAdv 150-core
constructed using the k-core-n procedure described in Section 4.3. The values of n used are 5, 25,
50 and 150. In these variants, for example, when n = 5, each user in the BeerAdv 150-core-5
datasetwill have exactly 5 reviews in the training set. The number of users are the same as the original
BeerAdv 150-core dataset. The parameter configuration used for this experiment is small.

Figure 4.14 plots theWord Level Perplexity of TransNet and the two competitive baselines under
low data settings. As can be observed from the figure, at the lowest data setting (n = 5), TransNet

66



Dataset TransNet CF-GCN MemNet
Yelp18 40-core 57.678 49.654 175.006
Yelp18 25-core 35.817 25.285 33.456
AZ-Elec 15-core 66.974 69.219 110.359
AZ-CSJ 5-core 10.393 6.924 7.57
AZ-Books 25-core 29.71 22.274 24.005
BeerAdv 150-core 29.167 22.33 27.704
RateBeer 150-core 8.833 5.899 6.85

Table 4.7: Word Level Perplexity Comparison

achieves a substantially lower perplexity compared to the baselines. As the amount of data is in-
creased, all models improve their performances. At n = 50, CF-GCN is on par with TransNet, and
with more data, it is able to surpass TransNet marginally. MemNet’s performance, however, con-
trasts that of CF-GCN. At very low data settings, its perplexity is extremely large. With more data,
it does improve its performance, but is not comparable to that of TransNet or CF-GCN. MemNet
is a much larger model with considerably more number of parameters. With sparse training data,
it is conceivable that it might be overfitting. This experiment shows that TransNet is a much better
model in low data settings, which is an important property in real world scenarios where the training
data available is meagre.

In the second set of experiments, we compare the performance of the models on larger datasets.
The parameter configuration used for this experiment is medium. The scores achieved by themodels
are tabulated inTable 4.7. The best scores are highlighted in blue. It is obvious from the table that CF-
GCN achieves the lowest perplexity in all cases except for one, compared to TransNet andMemNet.
AZ-Elec 15-core, where TransNet betters CF-GCN’s score is the smallest of the datasets, showing
that TransNet does better at low data settings. This is consistent with the observations made in the
first set of experiments, plotted in Figure 4.14.

However, there are certain cases in the above experiments where the perplexity numbers are
misleading. AZ-CSJ 5-core is one such case. Inspecting the review generated by CF-GCN, we see
that, it only ever outputs the text, “i love this shirt . it is very comfortable and fits well . i am 5 ’ 4 " and it
fits me perfectly . i am 5 ’ 4 " and it fits me perfectly . i am 5 ’ 4 " and it hits me below my knee . i am 5 ’ 7
" and it hits me below my knee . i am 5 ’ 7 " and it hits me below my knee . i am 5 ’ 7 " and it hits me below
my knee . i ’m 5 ’ 7 "”, regardless of the user - item pair. Similarly, MemNet generates the following
review for all user - item pairs: “i love this shirt . it is very comfortable and fits well . i am 5 ’ 4 " and it fits
me perfectly . i am 5 ’ 4 " and it ’s a little long on me . i ’m 5 ’ 4 " and it ’s a little long on me . i ’m 5 ’ 4 " and
it ’s a little long on me . i ’m 5 ’ 4 " and it ’s a little long . i ’m 5 ’ 4 " and it ’s a little long . i ’m 5 ’”. The items
in the dataset include jewelry, shoes, dress, bags, and other types of clothing items etc. besides shirts.
Although, according to perplexity numbers, TransNet ranks the lowest on this dataset, on inspecting
its output, we see that it is able to generate a variety of reviews such as, (a) “i have a few of these tops
in different colors . i am a size 14 and i ordered a large . it fits perfectly , and the material is so soft and
comfortable . i have a few of the tops and i am so glad i did . it ’s a beautiful dress , and i am a huge fan of the
colors . i am a fan of the colors and the colors are vibrant and the fabric is very soft and comfortable” and (b)

67



“i am a size 16 and i ordered a large . i have a large chest and the top of the shirt is not tight . i am not sure
how long that will last . i will be returning this item .”

Similarly, in the case of Yelp18 25-core, although MemNet achieves a lower perplexity than
TransNet, it only ever outputs the following review: “I love this place. I love the atmosphere and the
service is always great. The food is always fresh and the service is always great. I love the atmosphere and
the service is always great.”, regardless of the user - item pair. The Yelp reviews have businesses like
casinos, stage shows, grocery stores etc. in addition to restaurants. Both TransNet and CF-GCN
output a variety of reviews depending on the item.

AZ-Books 25-core is the other dataset where a similar phenomenon is observed. According
to the perplexity numbers, both CF-GCN andMemNet are better models than TransNet. However,
CF-GCN alternates between the following two reviews for all user-item pairs: (a) “i loved this book .
i loved the characters and the story line . i loved the characters and the story line . i loved the characters and
the story line . i loved the characters and the story line . i loved the characters and the story line . i loved the
characters and the story line . i loved the characters and the story line . i loved the characters and the story
line . i loved the characters and the story line . i loved the characters and the story line . i loved the characters”
and (b) “i really enjoyed this book . i loved the characters and the story line . i loved the characters and the
story line . i loved the characters and the story line . i would recommend this book to anyone who enjoys a
good romance . ” Similarly, MemNet produces, “i loved this book . i loved the characters and the story line
. i loved the characters and the story line . i loved the characters and the story line . i loved the characters
and the story line .”, for all user-item pairs. In contrast, TransNet produces a variety of reviews. For
example, (a) “i have read all of the books in this trilogy and have read them all . this one is a great read . the
author has a way of making the reader feel like you know them . the author has a way of making you feel like
you ’re right in the middle of the world . i loved the way she was able to make the reader feel like you know
them . the author has a way of making you feel like you ’re right in the middle of the story .”, (b) “i loved this
book . i loved the way the author wrote the whole thing . i loved the way the author developed the emotions
.” and (c) “i have been a fan of the author for a long time . she has a way of writing that draws you in and
keeps you turning the pages . she is a master of the craft and the ability to create a world that is not only a
world of magic , but also a great deal of the world . the book is a great read , and i will be reading the next
one . i have read all of her books and have been waiting for it to come out .”

Therefore, we must note that while Word Level Perplexity is an important metric for measuring
the competence of a model, there are real world scenarios where a low perplexity model is not nec-
essarily useful at generating good natural language text. Such a discrepancy is most likely because
perplexity is measured as the probability of the model generating the next word of the ground truth
data given the previous word of the ground truth data. This process is different from the actual
text generation itself because in the latter setting, the model is fed its own output from the previous
step. i.e. it does not have access to any guiding mechanism when generating the text. In real world
settings, at the time of generating the text, we cannot assume that the model will have access to the
ground truth because inmost cases, no such true data exists. Therefore, although perplexity is a good
metric for measuring the progress of model training, practitioners must be aware of the pitfalls of
relying solely on perplexity and would need to manually check and confirm that the model is indeed
generating reasonable text.
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Dataset TransNet CF-GCN MemNet
Yelp18 40-core 72.36 % 61.08 % 0.20 %
Yelp18 25-core 70.13 % 13.31 % 0.06 %
AZ-Elec 15-core 72.92 % 30.88 % 11.52 %
AZ-CSJ 5-core 81.42 % 0.02 % 0.005 %
AZ-Books 25-core 13.38 % 0.12 % 0.010 %
BeerAdv 150-core 97.30 % 98.34 % 83.97 %
RateBeer 150-core 63.00 % 97.10 % 70.77 %

Table 4.8: Input Sensitivity comparison

4.7.3.3 Input Sensitivity (IS)

To quantify the observations about repetitive reviews produced by generative models that was dis-
cussed in the previous subsection, we propose a new metric, which we call Input Sensitivity (IS). It
measures a distinct aspect of language generating models that is not covered by the other popular
metrics. Computed as the proportion of unique reviews generated, it measures the sensitivity of the
model to its inputs. Unlike other metrics that refer to the ground truth for their computation, IS
only considers the output of the model itself. Therefore, it is not a be-all and end-all of metrics for
comparing language generatingmodels; rather, it gives an important insight into themodels’ perfor-
mance that is not otherwise measured by other metrics and hence, needs to be used in conjunction
with other metrics.

The Input Sensitivity scores of TransNet and the competing baselines for various datasets are
shown in Table 4.8. Best scores are highlighted in blue. It is obvious from the table that TransNet
is, in general, producing a diverse set of reviews when compared to the baselines. Specifically, the
observations about repetitive texts from earlier sections are quantified by these scores. In the case of
Yelp18 25-core, AZ-Elec 15-core and AZ-CSJ 5-core, we can see that TransNet is substan-
tially better than the baselines. It also performs better in the case of Yelp18 40-core andAZ-Books
25-core, although the difference is comparatively smaller.

It is also clear from the table that all algorithms perform their best with the beer datasets, and
CF-GCN is the better of the three models in generating beer reviews. However, CF-GCN tends to
generate the same set of texts in a large proportion of the examples in all the other datasets, except
Yelp18 40-core.

An interesting observation is the performance of MemNet — although it achieves good scores
with other metrics, as we can see from the table, its Input Sensitivity is abysmal in all datasets except
beer. It is comparable to TransNet and CF-GCN in the case of BeerAdv 150-core, and surpasses
the performance of TransNet in the case of RateBeer 150-core.

4.7.3.4 BiLingual Evaluation Understudy (BLEU)

Given the issues with perplexity scores noted earlier, in this section, we will compare the perfor-
mance of the three models using the BLEU [122] metric. BLEU is typically used to compare trans-
lations with reference sentences. BLEU 1, 2, 3 and 4 are the individual scores for 1-gram, 2-gram,
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3-gram and 4-gramphrases. BLEUOverall is the cumulative scores obtained from the n-gram scores
by calculating their weighted geometric mean. We use the implementation of BLEU in the Python
Natural Language ToolKit (NLTK) library. The BLEU scores of the models are tabulated in Tables
4.9, 4.10 and 4.11. The best scores are highlighted in blue. In the tables, we also include the Input
Sensitivity scores for easy reference. IS values of 25% or below are highlighted in red and those
between 25–50% are highlighted in yellow — these are the unsatisfactory cases.

From Yelp dataset scores in Table 4.9, it can be seen that althoughMemNet performs better than
TransNet according to the BLEUOverall scores as well as BLEU 2, BLEU 3 and BLEU 4 scores, its IS
scores are terribly low. Similarly, in the case of Yelp18 25-core dataset, although CF-GCN is the
best scoring system according to the BLEUmetrics, its IS score is only 13% compared to TransNet’s
70%.

In the case of Amazon datasets, from Table 4.10, it can be seen that CF-GCN achieves the best
BLEU Overall, BLEU 2 and BLEU 3 scores while TransNet gets the best BLEU 1 scores in all the
datasets. However, from the IS scores, we see that CF-GCN’s reviews are mostly the same for all
user-item pairs, especially in the case of AZ-CSJ 5-core dataset, examples of which were discussed
earlier in the experiments with Perplexity scores.

All methods do well on Beer datasets as can be seen in the Table 4.11. TransNet achieves the
best Overall BLEU score in the case of BeerAdv 150-core dataset, and MemNet in RateBeer
150-core dataset. For the latter, note that MemNet’s IS is only 71% compared to CF-GCN’s 97%.

Although, BLEU is a widely used metric to measure the similarity of pairs of natural language
texts, it is known to have limitations. Since it uses a modified form of precision to compute the
score, it only checks if the words in the candidate text have a match in reference text, but not the
other way round. i.e. it does not penalize the candidate if it misses to produce parts of the reference
text. Another of the key components of the metric is a brevity penalty that penalizes very short
text. However, it overlooks cases where the text is repetitive. i.e. the candidate text is not short
in length thereby sidestepping the brevity penalty, but is low in content. Therefore, similar to the
contradictory observations in the Word Level Perplexity measurements earlier, there are cases in
the BLEU measurements as well where the relative scores do not follow the actual observations.

4.7.3.5 Metric for Evaluation of Translation with Explicit ORdering (METEOR)

METEOR [40], proposed to overcome the limitations of BLEU, uses a harmonic mean of precision
and recall along with a fragmentation penalty to compute the score. It has been shown to obtain
higher correlation with human judgements than BLEU for evaluating translations. We use the ref-
erence implementation provided by the authors of the metric. The METEOR scores of the three
models on various datasets are tabulated in Tables 4.12, 4.13 and 4.14.

In the case of Yelp datasets, it can be seen fromTable 4.12 that TransNet is the bestmodel accord-
ing to METEOR, which is also in accordance with the corresponding IS scores. From Table 4.14, it
is clear that CF-GCN performs the best on Beer datasets, correlating well with the corresponding IS
scores. However, in the case of Amazon datasets, although METEOR ranks TransNet the highest in
two of the datasets, on AZ-CSJ 5-core dataset, it ranks MemNet the highest. However, as we dis-
cussed earlier, this is one of the datasets where MemNet produces the same text for every user-item
pair, which is also evident from its extremely low IS score. Therefore, although METEOR is able to
rectify the relative scoring provided by BLEU and Word Perplexity in most of the anomalous cases,
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Dataset TransNet CF-GCN MemNet
Yelp18 40-core BLEU overall 16.09 19.69 19.656

BLEU 1 12.83 10.62 10.396
BLEU 2 12.49 22.79 21.370
BLEU 3 43.72 49.31 53.895
BLEU 4 52.88 56.12 58.997
IS 72.36 % 61.08 % 0.20 %

Yelp18 25-core BLEU overall 15.41 19.57 17.73
BLEU 1 8.58 9.12 6.63
BLEU 2 16.97 24.66 24.79
BLEU 3 33.59 43.10 35.60
BLEU 4 37.81 48.19 37.78
IS 70.13 % 13.31 % 0.06 %

Table 4.9: BLEU comparison on the Yelp datasets

Dataset TransNet CF-GCN MemNet
AZ-Elec 15-core BLEU overall 10.77 12.52 12.07

BLEU 1 12.91 9.71 11.70
BLEU 2 4.57 9.03 7.16
BLEU 3 27.63 34.09 31.59
BLEU 4 40.63 41.95 42.05
IS 72.92 % 30.88 % 11.52 %

AZ-CSJ 5-core BLEU overall 24.80 26.24 24.00
BLEU 1 13.76 12.13 11.92
BLEU 2 25.36 29.22 25.65
BLEU 3 52.26 67.07 64.55
BLEU 4 57.14 76.89 77.01
IS 81.42 % 0.02 % 0.005 %

AZ-Books 25-core BLEU overall 12.64 14.72 11.56
BLEU 1 11.33 9.71 7.56
BLEU 2 8.55 12.64 10.42
BLEU 3 28.31 39.96 25.20
BLEU 4 35.82 47.77 29.21
IS 13.38 % 0.12 % 0.010 %

Table 4.10: BLEU comparison on the Amazon datasets
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Dataset TransNet CF-GCN MemNet
BeerAdv 150-core BLEU overall 14.63 12.76 13.72

BLEU 1 19.87 21.95 16.44
BLEU 2 7.61 8.10 6.63
BLEU 3 29.68 20.98 31.00
BLEU 4 51.13 42.04 47.31
IS 97.30 % 98.34 % 83.97 %

RateBeer 150-core BLEU overall 14.68 22.61 24.92
BLEU 1 9.35 21.08 15.81
BLEU 2 14.94 21.87 25.99
BLEU 3 28.14 42.17 53.02
BLEU 4 32.74 55.62 63.47
IS 63.00 % 97.10 % 70.77 %

Table 4.11: BLEU comparison on the Beer datasets

Dataset TransNet CF-GCN MemNet
Yelp18 40-core METEOR 6.71 5.34 5.81

Precision 32.27 24.72 26.37
Recall 16.58 13.53 14.81
IS 72.36 % 61.08 % 0.20 %

Yelp18 25-core METEOR 5.18 4.81 3.76
Precision 34.11 25.49 27.79
Recall 11.96 11.88 9.10
IS 70.13 % 13.31 % 0.06 %

Table 4.12: METEOR comparison on the Yelp datasets

there exists datasets where METEOR is unable to detect the phenomenon.

4.7.3.6 Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

[87] proposed a recall oriented metric called ROUGE to overcome many of the limitations observed
in the BLEU scoring mechanism. It uses both precision and recall numbers, but gives higher impor-
tance to the latter. In addition to measuring n-gram overlaps (ROUGE-1, ROUGE-2, ROUGE-3), it
can also measure the length of the longest common subsequence overlap (ROUGE-L). Another use-
ful type of ROUGE score is the Skip-gram match. It measures matches of subsequences of 2, 3 or 4
words that are in order, but not necessarily consecutive (ROUGE-S2, ROUGE-S3, ROUGE-S4). We
use the Java implementation provided by [46]. The ROUGE scores of the three models on various
datasets are tabulated in Table 4.15, Table 4.16 and Table 4.17.

From the comparison on theYelp datasets shown inTable 4.15, it can be seen that TransNet is able
to obtain the best scores in all ROUGE types except ROUGE-L. However, as we can see, ROUGE-L
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Dataset TransNet CF-GCN MemNet
AZ-Elec 15-core METEOR 6.77 5.19 6.26

Precision 41.84 32.89 39.51
Recall 15.20 11.96 14.40
IS 72.92 % 30.88 % 11.52 %

AZ-CSJ 5-core METEOR 7.13 6.75 7.43
Precision 27.90 16.18 15.80
Recall 16.31 16.43 18.63
IS 81.42 % 0.02 % 0.005 %

AZ-Books 25-core METEOR 6.17 5.24 3.91
Precision 42.52 30.69 44.10
Recall 13.96 11.85 8.18
IS 13.38 % 0.12 % 0.010 %

Table 4.13: METEOR comparison on the Amazon datasets

Dataset TransNet CF-GCN MemNet
BeerAdv 150-core METEOR 10.77 13.22 9.44

Precision 35.55 40.14 34.46
Recall 21.96 24.12 18.87
IS 97.30 % 98.34 % 83.97 %

RateBeer 150-core METEOR 7.15 14.05 9.84
Precision 31.42 32.67 26.21
Recall 12.91 23.85 18.37
IS 63.00 % 97.10 % 70.77 %

Table 4.14: METEOR comparison on the Beer datasets
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scores CF-GCN higher in Yelp18 25-core dataset although its IS score is very low. Also, in the
case of Yelp datasets, CF-GCN consistently scores better than MemNet.

Similarly, in the case of Amazon datasets given in Table 4.16, TransNet is the best in almost all
ROUGE computations. However, in contrast to Yelp, MemNet achieves better ROUGE scores in
most cases than CF-GCN, although from their IS scores, we know that both models are generating
the same or very similar reviews for all user-item pairs. For AZ-CSJ 5-core dataset, some of the
ROUGE scores, for example, ROUGE 2 and ROUGE 3 score MemNet higher although its IS score
is appallingly low.

In the case of beer reviews, it can be seen from Table 4.17 that CF-GCN is the best model in
generating user reviews. TransNet is better than MemNet on the BeerAdv 150-core dataset, but
not on the RateBeer 150-core dataset, which is similar to the METEOR results.

4.7.3.7 Discussion

From our experiments discussed above, we observed that all methods perform substantially better
on the beer datasets, with CF-GCN being the best model. However, as we know, the beer datasets
are comparatively cleaner (reviews almost always focus entirely on the beer being reviewed and not
on unrelated details), denser (each user and each item has at least 150 reviews and therefore, the
rating matrix has a larger number of filled cells), larger (more number of training examples) and
better structured (most reviews discuss a specific set of five aspects of beers and mostly in a fixed
order) than the other datasets. We observed that when the amount of training data is less or sparse,
TransNet performs better than other models.

Among the automatic scoring metrics, Word Perplexity and BLEU scores can be misleading in
certain cases, where the best method according to the metric may not be able to generate any useful
reviews. METEOR and ROUGE are able to rectify the relative scoring provided byWord Perplexity
and BLEU in most of the anomalous cases, but there exists datasets where not all METEOR and
ROUGE scores correspond to the actual observations. Therefore, evaluation by human judges is
desirable in such cases.

4.7.4 Human Evaluation on AmazonMechanical Turk
Our goal in this section is to assess the goodness of the generated reviews by human judges. We used
Amazon Mechanical Turk4 to recruit participants (referred to as turkers). Amazon Mechanical Turk
(MTurk) is an online marketplace for work that requires human intelligence. The turkers choose
from the large number of tasks posted on the website called Human Intelligence Tasks (HIT) to work
on, in an on-demand basis and get paid for their services. We used MTurk’s Requester website5 to
set up our tasks.

To helpmake their judgements in the review comparison task as objective as possible, we devised
an aspect and reason tagging scheme, detailed below. Also, in order to reduce confusion between
liked and disliked aspects, we separated the two aspects and the turkers were asked to tag them in
different sessions. This study was approved by CMU’s Institutional Review Board (IRB) as STUDY
2018 00000130.

4https://www.mturk.com
5https://requester.mturk.com
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Dataset TransNet CF-GCN MemNet
Yelp18 40-core ROUGE-1 23.78 19.16 18.92

ROUGE-2 3.07 2.05 1.70
ROUGE-3 0.44 0.33 0.16
ROUGE-L 4.91 5.32 5.16
ROUGE-S2 3.12 1.96 1.73
ROUGE-S3 3.58 2.23 2.23
ROUGE-S4 3.93 2.49 2.35
IS 72.36 % 61.08 % 0.20 %

Yelp18 25-core ROUGE-1 19.59 18.95 16.84
ROUGE-2 2.53 2.03 1.57
ROUGE-3 0.37 0.35 0.24
ROUGE-L 6.20 6.81 6.62
ROUGE-S2 2.49 2.00 1.68
ROUGE-S3 2.71 2.26 1.93
ROUGE-S4 3.00 2.43 2.11
IS 70.13 % 13.31 % 0.06 %

Table 4.15: ROUGE comparison on the Yelp datasets

4.7.4.1 Instructions for the Study

Below are the instructions given to the turkers for judging aspects that were liked by a user:

Task: In this study, you will be shown 3 reviews for an item: The first review is the original review
(true data) that a user wrote for that item. The next two, referred to as Test Reviews, are the outputs
of two algorithms being tested. Your task is to determine which one of the two test reviews is most
similar to the original review with regard to aspects liked by the user.
Criteria: Your answers will bemanually and/or programmatically inspected to check if you adhered
to the instructions given below.
To successfully judge the Test Reviews, please follow the instructions below:

1. The reviews shown to you can be about movies, restaurants, electronic products, clothing
items, beers etc. We will refer to them as items.

• The first review is the original review (true data) that the user wrote for that item.
• The next two, referred to as Test Reviews, are the outputs of two algorithms being tested.

2. You need to read the reviews and tag (copy-paste or type) aspects of the item mentioned in
each of the reviews that the user LIKED, in the corresponding text boxes - ‘Aspect LIKED’.

• An aspect of an item is anything associated with the item - like features and characteris-
tics. For a movie, it could be specific actors, directors, choreography, etc. For a restau-
rant, it could be the price, ambience, parking, specific foods, service etc.

• Use words or phrases from the review shown to you when possible.
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Dataset TransNet CF-GCN MemNet
AZ-Elec 15-core ROUGE-1 21.81 16.85 20.41

ROUGE-2 3.00 1.52 2.25
ROUGE-3 0.42 0.22 0.28
ROUGE-L 4.93 4.81 4.82
ROUGE-S2 2.86 1.46 2.24
ROUGE-S3 3.18 1.55 2.59
ROUGE-S4 3.49 1.84 2.99
IS 72.92 % 30.88 % 11.52 %

AZ-CSJ 5-core ROUGE-1 18.15 14.04 14.65
ROUGE-2 1.85 1.87 2.06
ROUGE-3 0.24 0.29 0.32
ROUGE-L 8.89 8.62 8.23
ROUGE-S2 1.78 1.62 1.74
ROUGE-S3 1.97 1.72 1.87
ROUGE-S4 2.19 1.82 1.94
IS 81.42 % 0.02 % 0.005 %

AZ-Books 25-core ROUGE-1 19.99 15.48 14.89
ROUGE-2 2.88 1.81 2.03
ROUGE-3 0.39 0.27 0.30
ROUGE-L 6.25 6.63 6.51
ROUGE-S2 2.80 1.62 1.83
ROUGE-S3 3.00 1.85 2.11
ROUGE-S4 3.23 2.11 2.40
IS 13.38 % 0.12 % 0.010 %

Table 4.16: ROUGE comparison on the Amazon datasets
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Dataset TransNet CF-GCN MemNet
BeerAdv 150-core ROUGE-1 31.91 35.44 29.83

ROUGE-2 7.05 9.89 6.55
ROUGE-3 1.66 3.25 1.48
ROUGE-L 6.85 7.11 5.88
ROUGE-S2 6.17 8.81 5.67
ROUGE-S3 6.32 8.86 5.78
ROUGE-S4 6.75 9.21 6.15
IS 97.30 % 98.34 % 83.97 %

RateBeer 150-core ROUGE-1 19.79 32.65 25.64
ROUGE-2 3.82 10.16 5.95
ROUGE-3 0.73 3.96 1.53
ROUGE-L 11.43 15.06 11.46
ROUGE-S2 3.19 9.16 5.13
ROUGE-S3 3.34 9.29 5.24
ROUGE-S4 3.64 9.66 5.70
IS 63.00 % 97.10 % 70.77 %

Table 4.17: ROUGE comparison on the Beer datasets

• You need to include all LIKED aspects, up to a maximum of 6 per review, and not omit
anything.

• Include only aspects applicable to the item being reviewed. If the user talks about other
items and their aspects, don’t include them.

• Ignore aspects that the user disliked - those will be tagged in a separate task later.
3. For each of the LIKED aspects, you need to also copy-paste the phrase(s) and/or sentence(s)

from the review that show why the user liked that aspect, in the corresponding text boxes for
the reviews under ‘Reason’. If there are multiple sentences or phrases describing why they
liked an aspect, include all of them separated by semicolon.

4. If the usermentions two ormore experiences in the same review about an aspect, use the latest
to check if they liked that aspect or not.

5. If there are aspects that the user mentioned but did not particularly like or dislike it (neutral
sentiment), you need to also tag (copy-paste or type) them in the corresponding text boxes for
the reviews under ‘Aspect Neutral’.

• You need to include all neutral aspects, up to a maximum of 6 per review, and not omit
anything.

• Include only aspects applicable to the item being reviewed. If the user talks about other
items and their aspects, don’t include them.

6. For each of the neutral aspects, you need to also copy-paste the phrase or sentence that the user
used to describe them in the corresponding text boxes for the reviews under ‘Description’.
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• If there are multiple sentences or phrases describing the neutral aspect, include all of
them separated by semicolon.

• If a sentence describing a neutral aspect also contains other aspects, you do not need to
edit it out.

7. If the user did not like anything about the item, enter ‘None’ in the corresponding ‘Aspect
LIKED’ text box.

8. If the user did not describe any aspect with neutral sentiment, enter ‘None’ in the correspond-
ing ‘Aspect Neutral’ text box.

9. You need to tag all three reviews. Even if the Original Review or any of the Test Reviews do
not have any aspects liked by the user, you still need to tag the other two reviews.

10. Based on your tagging of aspects and reason/description, you need to then choose the Test
Review that is most similar to the Original Review in terms of the number of aspects and
reasons/descriptions matched.

• When you are trying to match the aspects between a test review and the original review,
you must take synonyms into consideration. E.g. ‘smell’ and ‘aroma’, ‘price’ and ‘afford-
ability’ etc.

• In the case of beer, where the reviews contain a number of aspects, you will be also asked
to compute a score for each of the test reviews. To compute a score for a test review, add
2 points for each aspect and reason/description matched with the Original Review, and
1 point if only the aspect is matched, but not the reason/description.

11. If a Test Review is discussing an item that is obviously different from that reviewed in the
Original, then there is no match.

• For example, if theOriginal Review is about a bag and theTest Review is about an earring,
don’t count aspect matches.

• However, if both reviews are about bags, but Test Review’s color doesn’t match that of
the Original, you need to count the aspect matches because in this case, both items are
bags, only aspects are different.

12. Note that the algorithms generating the Test Reviews are shuffled in random order. So, your
answers won’t be all ‘A’s or all ‘B’s always.

An example of the screen displayed to the turkers for comparing liked aspects is shown in Figure
4.15. It also depicts the scoring question. A similar task for comparing reviews based on disliked
aspects was also setup. An example of that screen is shown in Figure 4.16. The turkers were asked to
tag neutral aspects as well, to cover the cases where the reviews did not specifically like or dislike that
aspect, but thought it important to mention. We also allowed counting matches between neutral and
liked (disliked) aspects to include those cases where one review discusses it as a fact associated with
the item and the other review specifically likes (dislikes) it. However, in that case, only the aspect term
is matched, not the reason / description. For example, if a user cares about parking space in general,
then it is important to mention about the parking situation at the particular business establishment
being reviewed. In addition to the above instructions, they were also supplied with sample filled out
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examples from each of the datasets. Moreover, their queries and comments were incorporated into
a Frequently Asked Questions section and a Notes section as the study progressed.

4.7.4.2 Specifics of the Study

HITs for pair-wise comparisons of each dataset and each combination of competitive algorithms
were released as one batch. Each HIT was worked on by only one turker. Once all the HITs in
a batch are complete, the MTurk website provides a detailed comma-separated file containing all
attributes of the HITs and their responses, that can be downloaded. We implemented a Python script
that processes the comma separated file and flags suspicious cases. The Python script specifically
looks for cases where there are no tags, tagged words or phrases that cannot be found in the review
text, reason and description sentences that are missing, the number of tagged aspects less than a
particular number chosen according to the dataset, or missing scores in those cases where they were
asked to compute them. The flagged cases were manually checked to verify the turker’s response.
Responses that were not flagged were automatically approved.

Throughout the study, we used a tally system of warn and reject counts. If a turker’s answer
to a HIT was almost correct, but not fully correct, it would count towards their warn tally. These
include cases where they tagged some aspects, but not all the applicable ones, they forgot to include
the reason or description sentences for the tags, or they forgot to compute scores. If a turker chose
the wrong test review, that would also count towards their warn tally. These cases are harder to
flag with the Python script. However, in certain datasets where we know that one of the algorithm’s
outputs are always the same, we manually checked those HITs where the turker chose the repetitive
review as the best matching one. If a turker did not tag anything for a HIT, it would count towards
their reject tally. The turkerwas paid for thoseHITs assessed as warn at the same rate as the correct
ones, but was not paid for those assessed as reject. After each batch is evaluated, their tallies were
updated. To continue in the study, a turker would need to maintain their reject count under 5 and
their warn count under 10, which also served as an incentive for the turkers to answer correctly.

Before the turkers could work on the main task, they were required to pass a qualification test.
The qualifier was structured identical to the main task, except that it was unpaid and their responses
were approved on theMTurk website regardless of whether they got it correct or not. Therefore, by
participating in the qualification test, they would not accrue rejects and consequently, their overall
approval rating onMTurkwould not be affected. The turkers were required to work on 5HITs from
the qualifier task and had to get at least 4 of them correct to pass the test. We limited the participation
to only those turkers who had previously worked on another of our studies ( discussed in Chapter
5 ) and had consistently performed well in that study. If throughout that study, their number of
rejected answers was at most 5 and their number of answers assessed as ’warn’ was at most 10, they
were assigned a ‘qualification’ called ‘Passed Level 3 of CMU_STUDY2018_00000337’. That
qualification was used as a prerequisite to be eligible to participate in the qualifier test for the review
comparison study. 75 turkers were eligible to take the qualifier test, which was live for 5 days. Only
37 turkers participated in the qualification test. Their responses to the qualifier HITs were checked
manually and all of the participants got all their responses correct. The manual checking of the
qualifier HITs was helpful in refining the Python script that was later used in the main study.

Due to restrictions enforced because of GDPR6 being adopted in certain countries, CMU’s IRB
6https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
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Figure 4.15: SampleMechanical Turk Screen for Review Comparison with a scoring mechanism for
Liked Aspects
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Figure 4.16: Sample Mechanical Turk Screen for Review Comparison for Disliked Aspects
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required us to select only participants located in the USA. This was enforced using the Location
attribute of the turkers as provided by MTurk. To determine the pay rate, we timed ourselves while
manually tagging a fewHITs from each of the datasets and aimed at a pay of approximatelyUS $10.00
per hour, which is higher than the prevailing US Federal Minimum Wage of $7.25.7 The pay per
HIT was set to a lower value for certain datasets like AZ-CSJ that has shorter reviews and lesser
number of aspects to be tagged per review and therefore took shorter time to tag, while it was set to
a higher value for the BeerAdv 150-core dataset and the review selection (not review generation)
comparison on the Yelp17 dataset, which have detailed reviews with 5 or more tags per review, and
consequently took longer to tag. The pay per HIT ranged from US $0.80 to $1.30. However, the pay
per hour is comparable across datasets and worked out to US $11.50 on average. There was also an
additional 20% fee to be paid to Amazon. During the study, it was also brought to our attention that
many turkers hoardedHITs using automatic tools. Such toolswould accept a specific number ofHITs
simultaneously on that turker’s behalf, thereby ensuring that the turker would have that many HITs
to work on before they were all claimed by other turkers. However, we noticed that when turkers
were holding on to multiple HITs simultaneously, unfortunately, it increased the average time per
HIT reported byMTurk because it is computed as the time of accept to time of submission, which is
larger if that HIT was accepted, but not worked on right away. The increase in the average time was
observed in real time on the MTurk website. We also noticed that the number of warns issued also
increased for the HITs submitted later because the turkers were under time pressure to submit them
before the allotted time ran out. To discourage this behavior, we reduced the allotted time per HIT
to 15 minutes from the earlier 30 minutes and also requested the workers to accept the HITs only
when they were ready to work on them, not before. The average pay per hour reported above is for
the setting after making this change.

To reduce the cognitive load on the workers, we filtered out reviews that had more than 250
words. To ensure that the variance in workload for the HITs of the same batch was not large, we
filtered out reviews that had less than 100 words, but if there were not enough HITs for a batch, then
that number was lowered to 75 words and if required, to 50 words. Each batch typically has 100
HITs and each turker got to work through only about 3 to 5 HITs before all HITs of that batch were
exhausted. To reduce fatigue, we also spaced out the batches by at least a couple of hours when there
was more than one batch released on the same day.

4.7.4.3 Results of the Study

We compare the TransNet model pairwise to CF-GCN as well as a random review generator
(Random). The random generator in this case is not supplied with the user or the item information.
Otherwise, it is architecturally similar to CF-GCN. Its parameter settings and training procedure
are same as that of CF-GCN and TransNet. The turkers were asked to evaluate 100 samples each for
both pairs of comparisons from three datasets. For evaluating the performance on liked aspects, we
chose original reviews with ratings of 4 and 5, and the outputs of the test algorithms for the corre-
sponding user-item pairs. For disliked aspects, we chose those with ratings of 1 and 2. The absolute
counts for the number of times turkers chose TransNet, the competitive baseline, ‘Both Test Review
A and Test Review B’, and ‘Neither of the Test Reviews’ from the options are tabulated in Table 4.18.

7https://www.dol.gov/general/topic/wages/minimumwage
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Dataset Setting TransNet Baseline Both Neither
AZ-CSJ 5-core TransNet vs. Random likes 26 6 1 67

dislikes 10 0 0 85
TransNet vs. CF-GCN likes 23 6 3 68

dislikes 8 2 0 85
BeerAdv 150-core TransNet vs. Random likes 37 39 20 4

dislikes 10 0 0 85
TransNet vs. CF-GCN likes 20 47 28 5

dislikes 6 39 3 52
Yelp18 25-core TransNet vs. Random likes 12 27 14 47

dislikes 9 5 6 80
TransNet vs. CF-GCN likes 17 36 5 35

dislikes 7 5 5 83

Table 4.18: Human Evaluation of Reviews - Absolute Numbers

Dataset TransNet > Random TransNet > CF-GCN
AZ-CSJ 5-core likes 81.25%‡ 79.31%‡

dislikes 100%‡ 80%†

BeerAdv 150-core likes 48.68% 29.85%‡
dislikes 100%‡ 13.33%‡

Yelp18 25-core likes 30.77%† 32.08%‡
dislikes 64.29% 58.33%

Table 4.19: Human Evaluation of Reviews - Relative Performance (‡ and † denote results that are
statistically significant with p-value < 0.01 and p-value < 0.05 respectively)

The identities of the competing algorithms were not revealed to the turkers and their order was ran-
domly shuffled. Therefore, the turkers would need to choose solely based on the content of the test
reviews.

Tomeasure the performance of TransNet in this paired test, we compute the percentage of times
it was strictly better than the competing baseline in those cases where one of the methods was cho-
sen to be better. Therefore, it excludes cases where the answer chosen was ‘Both Test Review A and
Test Review B’ or ‘Neither of the Test Reviews’. The relative performances in different settings ac-
cording to the human evaluation are shown in Table 4.19. Results where TransNet is better than the
corresponding baseline is colored in blue and those where it is significantly worse is colored in red.
The statistical significance is calculated usingMcNemar’s Chi-Square test [105], which is specifically
suited for paired nominal data. It is applied to 2× 2 contingency tables for a dichotomous property
andwithmatched pairs of subjects. If b and c are the number of data points where one of themethods
was chosen over the other and vice versa, then McNemar’s test statistic is computed as χ2 = (b−c)2

b+c
.
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As can be seen from the table, in the case of AZ-CSJ 5-core dataset, TransNet is significantly
better than CF-GCN and the random review generator. In contrast to the automatic scoringmecha-
nisms that do not consider whether the original and the test reviews are assessing the same or similar
items, human judges were able to discern the difference and choose accordingly. Therefore, refer-
ences to color, fit, length, quality etc., which are quite common in this dataset and are otherwise
accurate word matches to the text of the ground truth data, are no longer important if they do not
describe the same item.

In the case of BeerAdv 150-core dataset, it is clear from the table that CF-GCN is a much
bettermodel thanTransNetwith regard to both liked and disliked aspects. The random review in this
case is a detailed positive review for a generic beer. Therefore, TransNet is better than the random
generator in the case of disliked aspects.

In the case of Yelp18 25-core dataset, TransNet appears to be better at getting the negative
aspects right, although that result is not statistically significant. The random review in this case turns
out to be a very generic review that mentions atmosphere, food and service, and therefore, matches
a number of positive reviews for most of the businesses reviewed in this dataset.

From the absolute numbers reported in Table 4.18, we note that, in general, the number of times
neither test reviews matched the original review is higher when evaluating disliked aspects as op-
posed to liked aspects. This disparity is clearly visible in the case of the BeerAdv 150-core dataset,
where for likes, it was a mere 5% but for dislikes, it is about 50% or more. Therefore, it appears that
generating disliked aspects and reasons is harder for all the models when compared to generating
liked aspects. It might also be reflective of the characteristics of reviews in general. For example,
consumers may be more willing to dwell on the details of a number of aspects when they have a
positive experience. However, for a negative experience, even though they might elaborate on the
details of what caused that specific experience, it is possible that they may not express their opinion
on other aspects out of frustration.

From the absolute numbers reported for AZ-CSJ 5-core dataset in Table 4.18, neither test re-
views matched the original review in about 65–85% of test cases across liked and disliked aspects.
Therefore, in this case, the competing methods are pushing the performance boundary from be-
low and there is a lot of room for improvement. However, in the case of the BeerAdv 150-core
dataset, for liked aspects, the Neither option was chosen less than 5% of the times. i.e. the methods
are very competitive in generating positive beer reviews and the bar is already very high. However,
there is more work to be done in terms of generating negative reviews. Performance on the Yelp18
25-core dataset lies somewhat in between these two extreme cases.

4.7.4.4 Discussion

The task of review comparison has a relatively higher cognitive load when compared to another
of our MTurk studies that we discuss in Chapter 5. While it is manageable in the case of AZ-CSJ
5-core and Yelp18 25-core datasets, it is substantially higher in the case of BeerAdv 150-core
dataset. For the latter, perhaps tagging neutral aspects in a separate task from the liked and disliked
aspects could possibly reduce the load. Another design for the same task could have been to tag
aspects in one task, and subsequently tag the reason in another task where the aspect is pre-tagged.
A third task would show the tags and reasons, and ask the turker to choose the test review that best
matches the original review. Although it would have made the task slightly simpler, it would lead to
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duplication of efforts because each time the turker has to still read the full text of the reviews and/or
the tags and reasons.

Although there appears to be a lot of work to be done in this task, it can in fact be completed in
quite a straightforwardmanner. The turkers read each sentence of the review anddeterminewhether
it is relevant to the item being reviewed or not. If it is, then they determine the aspect(s) discussed
in that sentence and the user’s sentiment associated with it. If it is of the required sentiment (liked,
disliked or neutral), they fill the aspect in the corresponding field and the sentence in its adjacent
field. If that aspect has been tagged before and the sentiments match, then they simply append that
sentence to the existing reason / description sentence. If the sentiments do notmatch, then they need
to determinewhich of the sentiments is themost recent or final one, and retain only that. They repeat
this for all sentences in each of the three reviews. This process was also independently suggested to
us by turkers after they worked on a few HITs. We included this in the FAQ after we got feedback
from turkers requesting us to check if this process was acceptable. Turkers also improved their speed
once they got accustomed to the task.

It is possible that some of the results of the pair-wise comparison for the BeerAdv 150-core
dataset may have a higher variance in reality due to its substantially higher cognitive load.

4.8 Contributions
In this chapter, we showed how ourOracle-Student architecture called TransNet can be used to gen-
erate users’ reviews for items. We discussed how the components of the architecture can be modi-
fied to create variants of the basic model and empirically evaluated their effect on the performance.
Finally, we compared the performance of TransNet against two state-of-the-art baselines using au-
tomatic as well as human evaluations. The results showed that theTransNet architecture that trains
a review generator indirectly is substantially better than the baselines that train their generator di-
rectly, in a number of datasets and is able to produce diverse reviews.
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Chapter 5

From Reviews to Explainable
Recommendations: A New Benchmark
Dataset

A grand vision for the future of Artificial Intelligence (AI) is to build systems that are autonomous
[7, 78], cognitive [35, 38], collaborative [134] and instructable [145], as well as capable of learning
by observation [85], exhibiting a personality [11, 115], and building rapport [98, 125], besides being
intelligent in a worldly sense. Recent advances in AI algorithms and computing power by means
of general-purpose Graphics Processing Units (GPU) and special-purpose Tensor Processing Units
(TPU) have provided the impetus for research towards enabling that grand vision. One of the AI
fields witnessing rapid development is that of virtual assistants. A number of commercial systems
launched in the recent past like Apple Siri, AmazonAlexa, GoogleHome andMicrosoft Cortana have
become mainstream. Ideas in the works such as Google Duplex1 serve to advance the capabilities of
such agents in an effort to better assist people in their everyday lives.

Our vision for the next generation of recommender systems is that of a good friend — someone
who understands a user’s likes, dislikes, preferences and concerns — who is naturally also knowl-
edgeable about the items to be recommended. Such a system’s recommendations are not simple
words or phrases, but rather a detailed recommendation that resembles what would have beenmade
by a good friend who personally knows the user. We call them, Explainable Recommendations. Such
recommendations should:

1. be able to provide detailed suggestions or directions to the user for a good experience with the
item, taking into consideration, their personal preferences.

2. keep the best interests of the user in mind by pointing out causes for concern if they were to
proceed with the recommendation.

3. include factual information about the item that are of interest to the user.
4. be able to elucidate not only what aspects of the item a user may like or dislike, but also why.
5. be structured in natural language.
6. be personalized in its style of prose as much as it is in the contents.
1https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
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The main difficulty in training systems that can produce such recommendations is the lack of
availability of ground truth data. In this chapter, we present a benchmark dataset, which we call,
CMU Dataset of Explainable Recommendations, the first of its kind to be created. It was authored by
human participants (turkers) on Amazon’sMechanical Turk2 platform, and therefore, all recommen-
dations sound natural. The turkers were shown the actual reviews written by users for items and
asked to rewrite them in the form of detailed recommendations. Most importantly, since the recom-
mendation data is created from the original review, it maintains parity with the users’ experience of
the item, and hence, can be considered as the ground truth recommendation for that user-item pair.

Though related, our goal is different from a chatbot-style setup for dialog [191, 192, 193]. The
primary objective of chatbots is to sustain a conversation with a user whereas our objective is to
help a user make decisions about items. It would be good to have a system that could do both si-
multaneously, but at this time, our goal does not include conversations with the user. This dataset
is better suited for building backend modules that can provide detailed recommendations satisfying
user’s queries and preferences, which could be relayed back to the user via a text, voice, visual or 3D
interface.

We believe this dataset would constitute the first step towards designing and developing systems
that can generate explainable recommendations as well as add to the driving force towards realizing
the grand vision for AI.

This chapter is organized as follows. We discuss past research relevant to explainable recom-
mendations in Section 5.1. Section 5.2 describes our setup for data collection on Amazon Mechan-
ical Turk. The dataset itself is detailed in Section 5.3. Finally, we report the results of preliminary
experiments in Section 5.4.

5.1 RelatedWork: Explainable Recommendations
In the past , there have been numerous attempts at generating explainable recommendations. Many
of the explanations tend to show how the system arrived at that particular recommendation and does
not attempt to explain to the user why they would like or dislike that item. i.e. their goal is the inter-
pretability of the algorithm’s decisions. For example, [176] proposes a joint model of matrix factor-
ization and latent topic analysis, and describes how the rationale behind the predicted ratings could
be made interpretable by utilizing content features. [58] offers textually and visually interpretable
recommendations by identifying overlapping co-clusters of users and items. [130] models each user
and item using concept vectors where, each dimension of the concept vector is a Wikipedia article
or a Wikipedia category name, making the vector representation readily interpretable. [168] pro-
poses amodel named Tree-enhanced EmbeddingMethod that combines the strengths of embedding
based neural models and decision tree-basedmodels. Their model has an easy-to-interpret attention
network, making the recommendation process fully transparent and interpretable. Although such
approaches help the system earn users’ trust, it does not particularly assist users inmaking decisions.

Many other techniques proposed in the past sought to construct a summary or generate user
reviews. Our approach proposed in Chapter 4 is one such method. A detailed discussion of past re-
search on personalized review generationwas discussed earlier in Section 4.1. In the absence of other
mechanisms, showing a user what they may write about an item if they were to use it, is beneficial.

2https://www.mturk.com
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Past embodiments of explainable recommendations have mainly been structured as discrete
words and phrases. For example, [190] extracts explicit product features (aspects) and users’ sen-
timents towards these aspects using phrase-level sentiment analysis. [132] proposes a social collabo-
rative viewpoint regression (sCVR) method, for predicting item ratings based on user opinions and
social relations. They use viewpoints, represented as tuples of a concept, topic and a sentiment label
extracted from user reviews and trusted social relations, as explanations. [56] is a related method
that ranks aspects for each user on a tripartite graph consisting of the users, items and aspects. [110]
jointly models reviews and ratings using a Hidden Markov Model to provide explanations using
words from latent word clusters that would explain important aspects of the item. [165] develops a
multi-task approach, where two tasks that perform user preference modeling for recommendation
and opinionated content modeling for explanation are integrated via a joint tensor factorization.
Their method predicts aspects of an item that may be of interest to a user and displays them using
simple manually created sentence templates. [27] proposes Attention-driven Factor Model (AFM)
that uses an attentionmechanism to estimate users’ attention distributions on different item features.
Such distributions serve as explanations for the recommendations produced by their model. [143]
uses a probabilistic relational learning framework to generate the rules that can provide explanations
of the form, “users who liked X also liked Y”. They specifically studied cross-domain preferences of
users.

All methods proposed in the past use data that consists of user and item content / meta-
information, rating and reviews, and therefore, are limited in their abilities in generating truly ex-
plainable recommendations. There exists no dataset that provides explicit detailed natural language
recommendations.

A related task that has been researched in the past is that of converting structured data into natu-
ral language text. For example, in [171], the authors introduce a dataset consisting of basketball game
statistics and the corresponding game descriptions. They show that neural models can be trained to
convert the statistics into fluent natural language text. Another example is the case of biography
sentence generation from Wikipedia fact boxes proposed in [80] and [54]. In [72], the authors pro-
pose models for generating natural language text from database records. These datasets, although in
natural language, are not suited for generating recommendations.

5.2 AmazonMechanical Turk Setup for Data Collection
Amazon Mechanical Turk (MTurk), like we discussed in Chapter 4, is a convenient framework for
collecting data requiring human intelligence, at scale. The explanation collection was structured
as a review rewriting task on the MTurk’s Requester website. This study was approved by CMU’s
Institutional Review Board (IRB) as STUDY 2018 00000337.

5.2.1 Instructions for the Study

Below are the instructions given to the turkers for rewriting reviews as detailed recommendations
with explanations:

Task: You will be shown a review written by a user for an item. Your task is to read the review and
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rewrite it in a form that would resemble a suggestion or recommendation that someone would have
given to the user before he or she experienced that item. For example, suppose that Alice wrote, “I
loved the chicken wings at American Wings ! They were creamy and tangy.” If we knew that Alice
would be writing this review if she were to visit the AmericanWings restaurant, an ideal recommen-
dation/suggestion toAlice before she decided to visit theAmericanWings restaurantwould probably
be of the form, “You will love the chicken wings at American Wings. They are creamy and tangy.”
Criteria: Your answers will bemanually and/or programmatically inspected to check if you adhered
to the instructions given below.
To successfully rewrite, please follow the instructions given below:

1. You must adhere to the information given in the review shown to you.
2. You must not add new information, which you may know already about that item.
3. Youmust include all information relevant to that item as described in the review and not omit

anything relevant to the item.
4. You can and should exclude information from the review that is about that user’s experience

with anything not relevant to the item. E.g. “I was talking to Katie fromwork” can be excluded.
5. You will need to change the first person past tense of sentences in the input review to second

person future tense in your rewritten form. E.g.1. “I liked it” would become “You will like it”.
E.g.2. “I ordered the pesto pasta. It was tasty.” could be rewritten as, “You could order the pesto
pasta. It is tasty.”

6. When you read the review, try to understand what things or aspects this user cares about
according to the review. E.g. one user cares about price whereas another user cares about
quality.

7. From the review, also try to understand how those things or aspects are provided by the item,
and whether it is to the user’s liking or not. E.g. one user is happy that the restaurant is cheap
and affordable, and therefore likes it, while another user is unhappy that it is cheap, worrying
that it’s of lower quality, and therefore does not like it.

8. Fromyour understanding of the user’s preferences andhow it is reflected in the item, construct
your recommendation, assuming that the user is yet to use the item or go to the restaurant.

9. If the user likes some aspects of the item but not other aspects according to the review, you
must preserve that information in your rewritten form. E.g.1. a user liked the ambience but
thought themenuwas overpriced, your recommendationwould be, “Youwill like the ambience
but the menu is overpriced”. E.g.2. a user wrote, “I won’t be visiting FooBar anymore. It is a
total waste of money”, your recommendation could be, “Don’t visit FooBar. It is a total waste
of money”, or “FooBar is a total waste of money”.

10. Use grammatically correct sentences and punctuations.
11. Stick to the user’s word choices. E.g. one user said, “The place is beautiful”, while another user

said, “The place is fantastic”, use the words from the review when you rewrite (‘beautiful’ for
the first user and ‘fantastic’ for the second).

12. Stick to the user’s sentence ordering where applicable. E.g. one user wrote about price first
and then ambience, while another user wrote about ambience first and price later. Use the
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Figure 5.1: Sample Mechanical Turk Screen for the Review Rewriting task

sentence order from the review when you rewrite.
13. Include all factual information about the item/restaurant that is available in the review. E.g.

“Beers on draft are around $4”, “There is ample parking space”, “This place gets crowded and
noisy in the evenings”, “The beef steak is juicy and tender”, etc. must be included if the user
wrote it in their review.

14. If the name of the item/restaurant is missing, you could describe it in a third person point of
view. E.g. “They have music on patio”. Don’t include the anonymized id of the item.

15. Never use first person (e.g. I, we, us, my, our) point of view in your rewritten version. E.g.1.
Don’t write, “I think you will like...”. Instead write, “You will like...”. E.g.2. Don’t write, “We or-
dered the brussels sprouts. It was mushy and terrible.” Instead write, “Don’t order the brussels
sprouts. It is mushy and terrible.”

16. Your rewritten text must look like a recommendation and not like a prophecy. For exam-
ple, don’t write, “You will order ramen”, “You will go to Wild Wings this Sunday with a Yelp
coupon”. Instead, make it sound like a suggestion. E.g. “You could try the ramen”. Or, you
could write in passive voice. E.g. “Yelp coupons are accepted at Wild Wings”.

17. Put yourself in the shoes of Amazon Alexa, Apple Siri, Google Home or any other of your
favorite virtual assistants, and check if your answer sounds okay if the virtual assistant were
to read it out to the user. E.g. Don’t own the item/place by writing, “Visit our restaurant, you
will like the ambience”. Instead write, “You will like the ambience at this restaurant”.

An example of the screen displayed to the turkers for rewriting reviews is shown in Figure 5.1. In
addition to the above instructions, they were also supplied with sample rewritten reviews. Their
queries and comments were incorporated into a Frequently Asked Questions section and a Notes
section as the study progressed.
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5.2.2 Specifics of the Study

HITs for the review rewriting task were released as batches of approximately 500 HITs each. Each
HITwasworked on by only one turker. Once all theHITs in a batch are complete, theMTurkwebsite
provides a detailed comma-separated file containing all attributes of the HITs and their responses,
which can be downloaded. We implemented a Python script that processes the comma separated file
and flags suspicious cases. The Python script specifically looks for cases where first person pronouns
are used in the rewritten recommendation. It also looks for occurrences of specific verbs in their past
tense that are typically associated with a first person point of view in this domain. Examples include
‘ate’, ‘ordered’, ‘waited’, ‘sat’, ‘went’, ‘lacked’ etc. This list was updated throughout the study to improve
the accuracy of the script. The flagged cases were manually checked to verify the turker’s response.
Although technically, one could look for any verb in its past tense to improve recall, it comes at the
expense of precision. The script also flags caseswhere the rewritten text has less than half of theword
count of the original text. Responses that were not flagged were automatically approved, although
in each batch, we randomly sampled a few of the approved responses to ensure the integrity of our
checking mechanism.

We also implemented a neural model that takes as input, the original and the rewritten reviews,
and predicted whether it was correct or not. The neural model used word2vec to learn an embed-
ding for the words and subsequently, produced two latent representations for each of the texts —
one, using a BiLSTM and the other, using a CNN. A Factorization Machine regressor took these la-
tent representations as input and predicted the probability of the rewritten recommendation being
an acceptable answer for the original review. However, since it was tested during the early phases
of this study, there were not enough training examples, and therefore, it failed to make any useful
predictions.

Throughout the study, we used a tally systemof warn andreject counts. If a turker’s answer to a
HITwas almost correct, but not fully correct, it would count towards their warn tally. These include
cases where there are two to four first person pronouns, or words and phrases in their first person
past tense form. It also includes cases where the turker forgot to include in their rewritten text, two
to four key aspects and/or their reasons and descriptionsmentioned in the original review. Anything
more than the abovewould count towards their reject tally. Copy-pasting the input review as their
answer is also a reject, unless the original review itself was in the form of a recommendation. The
turker was paid for those HITs assessed as warn at the same rate as the correct ones, but was not paid
for those assessed as reject. After each batch is evaluated, their tallies were updated. To continue in
the study, a turker would need to maintain their reject count under 5 and their warn count under
10, which also served as an incentive for the turkers to answer correctly.

Before the turkers could work on the main task, they were required to pass a qualification test.
The qualifier was structured identical to the main task, but was paid at a slightly lower rate. The
turkers were required to work on 5 HITs from the qualifier task and had to get at least 3 of them
correct to pass the test. If they attempted more than 5 HITs, they were required to obtain a success
rate of at least 60%. The criteria for rejection was relaxed to include only verbatim copy-paste of the
original review as their answer, to minimize the impact on their overall approval rating on MTurk.
However, on hindsight, the qualifier should have been unpaid and the turkers should have been re-
stricted to attempting at most 5 HITs to reduce spamming. There were large number of participants
who attempted substantially more than the required 5 HITs in the qualifiers and got paid for most of
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them even though their answers did not make the cut. In one instance, that number was as high as
94. This behavior was partly because we were rejecting only extreme cases and counting the others
towards their warn, which were subsequently paid out.

Due to restrictions enforced because of GDPR3 being adopted in certain countries, CMU’s IRB
required us to select only participants located in the USA. This was enforced using the Location
attribute of the turkers as provided byMTurk. Otherwise, the participation was open to turkers who
had an overall MTurk approval rating of at least 70%. 534 turkers took the qualifier test, which was
live for 4 days. Their responses to the qualifierHITswere checkedmanually andonly 232participants
passed the test. The manual checking of the qualifier HITs was helpful in refining the Python script
that was later used in the main study.

To determine the pay rate, we timed ourselves while manually rewriting 10 reviews and aimed
at a pay of approximately US $10.00 per hour, which is higher than the prevailing US Federal Min-
imum Wage of $7.25.4 The pay per HIT was set to US $0.70 for the qualifiers and US $0.80 for the
main study. The pay per hour for the main study worked out to US $11.87 on average. There was
also an additional 20% fee to be paid to Amazon. As an additional reward to turkers who had con-
sistently performed well and maintained their warn and reject tallies below the required counts,
the last few batches totaling to about 2800 HITs were paid at a rate of US $0.90 per HIT. Therefore,
the hourly pay for those HITs are higher than the average figure reported above. During the study, it
was also brought to our attention that many turkers hoarded HITs using automatic tools. Such tools
would accept a specific number of HITs simultaneously on that turker’s behalf, thereby ensuring that
the turker would have those many HITs to work on before they were all claimed by other turkers.
However, we noticed that when turkers were holding on to multiple HITs simultaneously, unfortu-
nately, it increased the average time per HIT reported by the MTurk website because it is computed
as the time of accept to time of submission, which is larger if that HIT was accepted, but not worked
on right away. The increase in the average time was observed in real time on theMTurk website. We
also noticed that the number of warns issued also increased for the HITs submitted later because the
turkers were under time pressure to submit them before the allotted time ran out. To discourage this
behavior, we reduced the allotted time per HIT to 10 minutes from the earlier 30 minutes and also
requested the workers to accept the HITs only when they were ready to work on them, not before.
The average pay per hour reported above is for the setting after making this change.

Some of the reviews are substantially long. A couple of batches into the study, we received feed-
back about the length of the reviews, and subsequently posted only reviews whose word count was
between 100 to 250. But if there were not enough reviews for a particular user in the dataset, that
number was lowered to 75 words and if required, to 50 words.

As the study progressed, the number of eligible participants according to the tally systemdropped
from 232 to 151 and further down to 75 towards the end of the study. Each batch typically has 500
HITs and each turker got to work through only about 2 (when there were a large number of partic-
ipants) to 10 (towards the later part of the study) HITs before all HITs of that batch were exhausted.
To reduce fatigue, we also spaced out the batches by at least a couple of hours when there was more
than one batch released on the same day. The schedule for each day was also announced beforehand
to the turkers using a mailing list (signing up for the list was optional). The full study was completed

3https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
4https://www.dol.gov/general/topic/wages/minimumwage
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in a span of 12 days.
Although this task appears at first to be of high cognitive load, it is in fact quite straightforward.

The turkers read each sentence of the review and determine whether it is relevant to the item being
reviewed or not. If it is, then they change it from its first person point of view to its second person
point of view taking care that it still looks like a suggestion, a recommendation or a factual informa-
tion. They repeat this for all sentences in the review in the order in which they appear. This process
was also independently suggested to us by turkers after they worked on a fewHITs. The turkers may
also optionally move sentences around so that the whole text looks more natural, although we did
not require them to do that nor did we specifically check for that. Since this task does not involve
them to summarize the information, it is actually easier that it appears to be. Turkers also improved
their speed once they got accustomed to the task.

5.3 CMUDataset of Explainable Recommendations
Our source data is the Yelp challenge5 dataset released in 2018, containing 5M reviews and ratings
of businesses by more than 1M users. We first constructed a 40-core subset of that dataset, referred
to as Yelp18 40-core, that was also used for experiments in Chapter 4. Of the 1,002 users and
978 businesses in that subset, we randomly sampled 1,000 users and 900 businesses. That yielded
66,886 reviews written by the shortlisted users for the shortlisted items. We constructed a subset
of 10,000 reviews for the MTurk review rewriting task by randomly sampling 10 reviews from this
subset for each of the shortlisted users. We inspected the rewritten reviews manually and program-
matically, and discarded the ones that do not adhere to our requirements. That gave us 9,773 detailed
recommendations.

Sample recommendations from the collected data are given in Table 5.2 and Table 5.3. As can
be observed from the tables, the recommendations are realistic and maintain parity with the actual
experience of the user with that item. They also exhibit the characteristics of explainable recom-
mendations that we delineated in the introduction of this chapter. By adhering to the users’ choice
of words and phrases, these recommendations are also personalized to the user in its style of delivery
as much as it is in content. In addition to providing training data for learning to generate detailed
recommendations automatically, this dataset also offers a parallel corpus for review to explainable
recommendation. A neural translation model with a copy mechanism [66, 94] can be easily trained
using this parallel corpus and subsequently applied on reviews from other datasets to obtain training
data for generating explainable recommendations in those domains.

5.4 Preliminary Experiments
For our preliminary experimentswith the explainable recommendation dataset, we ran theTransNet
model that was discussed in Chapter 4 as well as CF-GCN [116] using the medium configuration
described in Section 4.5, and evaluated their performance usingmetrics that were detailed in Section
4.4. Instead of feeding reviews as input, we fed the recommendations as input. The results of these
experiments are shown in Table 5.1.

5https://www.yelp.com/dataset_challenge
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Metric TransNet CF-GCN
Word Level Perplexity 39.38 36.49
BLEU overall 12.78 6.67
BLEU 1 15.82 8.49
BLEU 2 8.99 4.57
BLEU 3 27.28 11.85
BLEU 4 43.41 18.22
METEOR 9.01 7.00
Precision 36.42 50.66
Recall 19.69 13.60
ROUGE-1 22.42 21.59
ROUGE-2 3.54 4.12
ROUGE-3 0.76 0.97
ROUGE-L 6.96 7.26
ROUGE-S2 3.16 4.02
ROUGE-S3 3.33 4.31
ROUGE-S4 3.65 4.49
Input Sensitivity 54.92 % 48.85 %

Table 5.1: Preliminary results on generating explainable recommendations

As can be observed from the table, although CF-GCN achieves a lower perplexity, TransNet’s
output is rated the best according to BLEU, METEOR and IS scores. TransNet’s performance is
higher for ROUGE-1, but CF-GCNperforms better on all the other ROUGE types. There is a switch
in the relative performance of the two models on ROUGE scores, when compared to their perfor-
mance on the Yelp18 40-core dataset of reviews. In the former, CF-GCN has better ROUGE
scores while in the latter, TransNets was better. This change could be because the explanations
dataset is less noisy and more clean than its review counterpart — when turkers rewrote reviews,
they were asked to ignore details irrelevant to the item being discussed. Also, the overall language
used in the former is slightly more standardized than that in the latter because turkers rewrote them
in a certain way and corrected grammatical errors, uncommon word usage and typographical mis-
takes.

5.5 Contributions
In this chapter, we presented a new dataset called “CMUDataset of Explainable Recommendations”
that provides close to 10K real world ground truth recommendations for 1,000 users and 900 busi-
nesses. Thesewerewritten byhumanparticipants onAmazonMechanical turk and therefore, resem-
ble natural recommendations and explanations that people provide to each other. Most importantly,
since these were constructed from the original reviews written by the users, the recommendations
are faithful to their actual experience with the item. After describing the procedure for constructing
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the dataset, we also discussed our preliminary experiments and results obtained on the dataset. We
hope that this dataset will pave the way for future research in generating explainable recommenda-
tions.
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Original Review Recommendation

Japanese Restaurant located inside of Town Square. The
restaurant has a dining area, sushi bar, and sake bar. The
menu had some good signature cocktails like a sake mule
and sake sangria. The sushi rolls were fresh and delicious.
I particularly liked the scallop roll. Service was friendly.

If you’re in Town Square and in the mood for Japanese
food, then you must try this place out. They have very
friendly service in their restaurant area, sushi bar, and
sake bar. The drink menu has good signature cocktails
like a sakemule and sake sangria. Try the sushi rolls there.
They are not only fresh but delicious aswell, especially the
scallop rolls!

Now that was a show! Was I a fan of the Jabbawockeez
during their quick rise to fame on the show ABDC? No. I
cannot get into that show, so don’t think it’s a necessity to
enjoy this show. Am I a big hip hop fan? Yes, but still...not
a necessity. Do I like getting my money’s worth? Hell yes!
That’s what this show is. SO worth it! Entertaining from
top to bottom. The music selection was varied, and to my
surprise, was much more than just hip hop. The Jabba-
wockeez are true performers and masters of their craft in
that they can dance to just about anything, and dance they
did.

Now, this is a show. You will get your money’s worth, that
is what this show is. So worth it! Entertaining from top
to bottom. Themusic selection is varied, muchmore than
just hip hop. The Jabbawockeez are true performers and
masters of their craft, they can dance to just about any-
thing, and they will.

***Grand Lux Cafe is conveniently located on the casino
floor at The Venetian/Palazzo; their brunch menu is
priced similarly to Las Vegas 24-hour cafes; I did a build-
your-own omelette, which consisted of bacon, cheddar
cheese, onion, and assorted peppers (you have the option
to add up to 4 ingredients); the omelette was good (nicely
cooked and all of the ingredients worked well together);
the omelette came with crispy shredded hash browns and
good and hearty wheat toast (a toasted English muffin is
available as an alternative to the toast); the brunchwas de-
cent and filling; you can get a more upscale and more de-
licious brunch at Bouchon (also located at this hotel), but
that restaurant is harder to get to, not as filling and more
expensive*** Like almost all of the major resort hotels on
The Strip, The Venetian and Palazzo offer complimentary
self and valet parking.

Grand Lux Cafe is conveniently located on the casino
floor at The Venetian/Palazzo. Their brunch menu is
priced similarly to Las Vegas 24-hour cafes. You canmake
a build-your-own omelette with up to four ingredients.
The omelettes are good (nicely cooked and the ingredi-
ents work well together). The omelette comes with crispy
shredded hash browns and good, hearty wheat toast or
toasted English muffin. The brunch is decent and filling.
You can get a more upscale and more delicious brunch at
Bouchon, also located at this hotel, but that restaurant is
harder to get to, not as filling andmore expensive. Like al-
most all of themajor resort hotels onThe Strip, The Vene-
tian and Palazzo offer complimentary self and valet park-
ing.

Gorgeous new casino that’s located far off the strip. It’s
clean, it’s modern, it’s full of great employees. We didn’t
stay at this hotel, but came for the buffet. If you’re looking
for a good value for your money, but don’t want to sac-
rifice on style, this is the place to stay. The air isn’t filled
with smoke (not yet anyway) and the casino itself isn’t jam
packed to the brim. If you don’t mind a 15 minute drive
to the strip, or if you actually want to stay away from the
strip, this is a must for you.

This gorgeous new casino is located far off the strip. It
is clean, modern and full of great employees. If you are
looking for a good value for your money, but don’t want
to sacrifice on style, this is the place to stay. The air is not
filled with smoke and the casino itself is not jam packed to
the brim. If you don’t mind a 15 minute drive to the strip,
or if you actually want to stay away from the strip, this is
a must for you.

Table 5.2: Sample reviews rewritten as recommendations
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Original Review Recommendation

I let my non-Yelping brother-in-law select where we
would have dinner on his final night in Las Vegas, and
his choice, Sushi Roku, did not disappoint. He doesn’t eat
sushi but his lady and I both love it, and we all left Sushi
Roku very happy with our meals. Sushi Roku is located
on the third floor of The Forum Shops at Caesars Palace,
almost directly above the valet (so really easy to find). The
space is sleek and sexy, andwehad a great viewof the Strip
from our booth. Service was excellent all night; patient
(we are a chatty group and I think our waiter must have
come back to take our order 5 times before we decided on
anything) accommodating to special requests and able to
answer the plethora of questions we had about the menu.
Highlights from ourmeal would be: Brussel Sprout Chips
with truffle oil - addictively delicious Spicy Pork Belly
Fried Rice - My brother in law was so in love with this
dish he had the waiter bring out another order before he
was even halfway finished. He was kind enough to share
the pork belly which was absolutely divine. American
Wagyu Beef Skewer - The pork belly stole the spotlight,
but this skewer was a close second. Melt-in-your-mouth
deliciousness. Albacore Sashimi - Super fresh and served
with a nice, light ponzu sauce I didn’t see the check so I
can not tell you what our meal set us back, but based on
how happily my brother-in-law paid it, our meal was ob-
viously worth every penny to him and that’s all that really
matters to me. I will absolutely return to Sushi Roku in
the future!

Sushi Roku does not disappoint, youwill leave happywith
the meal. Located on the third floor of the forum shops
at Caesers Palace, almost directly above the valet and re-
ally easy to find. Sleek and sexy with a great view of the
strip. Service is excellent, patient and accommodating to
special requests. They are also able to answer questions
about the menu. Highlights are brussels sprout chips with
truffle oil, addictively delicious. Spicy pork belly fried rice
is absolutely divine, you will be in love with the dish. You
can opt for the AmericanWagyu Beef skewer but the pork
belly steals the spotlight with the skewer a close second.
Melt in your mouth deliciousness. May be you want the
Albacore Sashimi, super fresh and servedwith a nice, light
ponzu sauce. Worth every penny.

I haven’t been back to Pho Thanh Huong since I moved
to the southwest area 5 years ago. Since I was in the
mood for Pho and couldn’t find any goodPho in the china-
town/west part of town. I yelped and saw a couple posting
about PTH. Anyway, a bunch of my family members came
back over the week and tried different things and here
what we found: - Pho is similar to other places I found
on the west side of town. The broth is below average and
tasted just like someone dipped a pho flavor bag into hot
water. It has no natural sweetness at all. - Bun thit nuong
(grill pork vermicelli (not sure if this is correct spelling
but too lazy now to look it up) was good. - Except soda
that came in a can, all their specially made drinks weren’t
good. - The best thing I found at this place is their grill
pork sandwich. Itwas very very good. Iwould drive all the
way here just for this sandwich. By the way, some yelpers
mentioned about the weird smell of this place, which I ex-
periencedwhile Iwas there. It has that stale cigarette smell
that you normally experience when visit really old casino.

You may not be impressed with the Pho at Pho Thanh
Huong. The broth is below average and tastes just like
someone dipped a pho flavor bag into hot water. It has
no natural sweetness at all. Try the Bun thit nuong (grilled
pork vermicelli) it is good. The soda comes in a can. Don’t
order the specially made drinks, they are not good. The
best thing you can find is the grilled pork sandwich. It is
very very good. You’ll be willing to drive here just for the
sandwich. You might think the place has a weird smell, it
has that stale cigarette smell that you normally experience
when you visit a really old casino.

Table 5.3: Sample reviews rewritten as recommendations
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Chapter 6

Conclusions and FutureWork

Our vision for the next generation of Recommender Systems is that of a good friend — one who
understands the user’s likes, dislikes, preferences and concerns, and at the same time, knowledgeable
about the items being recommended. Such a system’s recommendations are not simple words or
phrases, but rather a detailed recommendation akin to that given by close friends. We call them,
Explainable Recommendations that are Explanatory, or Explanatory Recommendations for short.

Although providing explanations for recommendations have been shown in the past to serve
multiple purposes, almost none of the recommender systems show them in practice. In designing
and building such systems, the main challenges we encountered were that the type of explanations
that can be generated is limited by two aspects — first, the type of the underlying model, and second,
the type of available training data.

In this thesis, we experimented with two classes of models: Knowledge Graph (KG) based and
Neural models. In both cases, we proposed approaches to produce a recommendation as well as
generate an explanation, both of whichwere personalized to the user. Inmoving fromKG to a neural
setting, our input data changed from discrete content in the form of metadata and entities, to free
form text in the form of reviews. Accordingly, our explanations also changed from discrete entities
to detailed natural language texts.

We proposed an oracle-student architecture, called Transformational Neural Network—TransNet
for short — that learned how to transform latent representations of users and items into that of their
joint review. We showed that such a network architecture could be used to not only predict the rat-
ings but also generate user’s reviews for items. We explored different variants of that architecture
by replacing one or more of its components with those that are known to be more successful in re-
lated tasks. However, contrary to our expectations, the standard setting of TransNet was empirically
observed to be better than or at par with all the variants. Some settings did produce slightly better
results but only with substantially more training data. The number of possible variants are practi-
cally countless and it is highly probable that there exist variants that are more efficient and better at
generating reviews than the standard TransNet. However, we leave that for future research.

We compared the performance of our TransNet model to that of the state-of-the-art models
extensively using both automatic and human evaluations. We demonstrated that TransNet is the
better model when the amount of training data is less or sparse. Part of the story was also about the
pitfalls of relying solely on automatic evaluationmetrics inmeasuring the performance of generative
models. Metrics such as Word Perplexity and BLEU, although very popular in the text generation
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and translation communities, can be terribly misleading in certain settings. We observed that in
many cases, the best models according to these metrics were not able to produce any useful text.
Two other metrics, METEOR and ROUGE, that are also popular in translation and summarization
communities, seemed to be more correlated to our observations about the generated reviews. While
they were able to correct many of the relative rankings provided by Word Perplexity and BLEU,
there exists datasets where not all of the relative ordering provided by them corresponded to the
actual observations. As a simple sanity check, we also proposed a metric called Input Sensitivity,
that measures an aspect of generative models which is not otherwise measured by these metrics. By
using it in conjunction with the other automatic metrics, we will be able to discern these anomalous
situations and take actions such as using human judges for evaluating the performance.

Tomeasure the goodness of generated reviews using human judges onAmazonMechanical Turk,
we devised an aspect-reason tagging scheme. We also separated liked and disliked aspects to reduce
the cognitive load on the turkers (human judges). In addition to the overall performance of the mod-
els, we also gained new insights into their behaviors that were not immediately apparent from our
automatic evaluations. For example, thesemodels appeared to be better at generating positive aspects
about items than their negative aspects, whichmay also be a reflection of the underlying training data
used. It was surprising that the such a disparity existed even in the case of the beer dataset, which
is one of the best datasets available for this task in terms of being clean, detailed, structured and
dense. Also, it became clear that there was plenty of room for improvement in developing models
for generating reviews especially when the training data is less and sparse.

In our quest for explanatory recommendations, we progressed from selecting the most likely re-
view to generating user’s review and to finally generating detailed suggestions personalized to the
user. To accomplish the latter, we created a new benchmark dataset, called CMU Dataset of Explain-
able Recommendations, the first of its kind for personalized explanations, written by human authors
on the Amazon Mechanical Turk platform. The turkers were shown the original review written by
a user for an item and were asked to rewrite it in the form of a detailed recommendation. There-
fore, by design, the rewritten recommendation maintains parity with the user’s actual experience
with the item. We hope that the availability of this dataset will galvanize existing researchers in this
area as well as new researchers to work towards generating explainable recommendations that are
explanatory.

There are a number of interesting directions of future research that stem from the studies and re-
sults reported in this thesis. Themost important of all is furthering our understanding of explanatory
recommendations. Unlike explainable recommendations that are interpretable and those that serve
other purposes, explainable recommendations that are explanatory have not been studied asmuch. It
is imaginable that not too far in the future, we would be interacting and collaborating with AI agents
in various disciplines. In such a setting, explanations that are explanatory would be required of these
agents, not just desirable.

In this thesis, we moved from KG-based models that operate on discrete entities to neural mod-
els that operate on natural language text. However, there is a middle ground that we did not explore
due to time constraints— an amalgamation of the two types ofmodels. There have been some recent
research that attempts a graph convolutional approach to image recommendation [184], matrix com-
pletion [109] and influence prediction on social networks [129]. However, using reviews, which is a
joint feature of the user and the item, remains largely unexplored. In our experiments, we observed
that neural models typically require large amounts of training data and when there is not enough

100



data or if the available data is too sparse, their behavior can become unpredictable. We also observed
that KGs are most valuable when there is only a limited amount of training data and their utility
diminished when there is enough training data. i.e. each architecture is stronger in settings where
the other is weaker. Therefore, we believe that a joint architecture that plays to the strengths of both
KGs and neural models would be better than each of them individually.

It was evident from our experiments that automatic evaluation metrics have limitations, some
more so than others. However, getting human judgements for every evaluation is cumbersome, time
consuming and expensive. It is also not suitable formeasuring incremental improvements during the
intermediate stages of model development. Therefore, it is important to develop metrics for mea-
suring the performance of (conditional) natural language generativemodels that take into considera-
tion, their specific failuremodes such as generating text without regard to their input and generating
repetitive text. These are special cases that have not been carefully considered when defining the ex-
isting metrics. It is also not clear when an automatic metric can be trusted as a proxy for human
evaluations. There is definitely a need for a new metric that is specifically designed for evaluating
generative models.

By creating a newdataset for explanatory recommendations, we have facilitated the development
of models that can generate detailed suggestions in that specific domain. We believe that its utility is
beyond that one domain. This dataset provides parallel data that can be used to develop models for
style transfer such as [156], that convert reviews to detailed recommendations, thereby mimicking
the process we achieved using turkers.

When one imagines all that is possible in the near future with the rate at which the field of AI
in general and Deep Learning in particular have been accelerating, one realizes that this thesis has
only scratched the surface of a tiny subfield contained within those broader fields. However, we
will be content knowing that our humble efforts today have the potential to inspire bigger changes
tomorrow for a better future for all of humanity.
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