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Abstract

Since sub-sentential alignment is critically important tothe translation quality of an Example-
Based Machine Translation (EBMT) system, which operates by finding and combining
phrase-level matches against the training examples, we developed a new alignment algo-
rithm for the purpose of improving the EBMT system’s performance. This new Symmetric
Probabilistic Alignment (SPA) algorithm treats the sourceand target languages in a sym-
metric fashion.

We describe our basic algorithm and its primary extensions that enable use of surround-
ing context, and of positional preference information, compare its alignment accuracy with
IBM Model 4, and report on experiments in which either IBM Model4 or SPA alignments
are substituted for the aligner currently built into the EBMTsystem. Both Model 4 and
SPA are significantly better than the internal aligner.

Then we extend SPA to exploit external alignment information from Moses and to
output non-contiguous target phrases. We also alter SPA so that the weights for its feature
scores are tuned using minimum error rate training. Our experiments show that exploiting
external alignment information and non-contiguous alignment are helpful for SPA in the
EBMT system.

Even with these improvements, however, SPA still could not properly deal with sys-
tematic translation for insertion or deletion words between two distant languages. There-
fore, we attempt to alleviate this problem by using syntactic chunks as translation units. To
do so, we developed a new chunk alignment algorithm that exploits word alignment infor-
mation to align chunks. Then we integrated a chunk-based translation component based
on the chunk alignment into the EBMT system that uses SPA for phrasal alignment. We
show that the chunk alignment performs significantly betterthan the baseline system that
aligns two chunks if any word pair of the two chunks has word alignment link. We also
demonstrate that the system with chunk-based translation is significantly better than the
baseline EBMT system with SPA in translation quality.
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Chapter 1

Introduction

1.1 Improvements we achieved

In this thesis work, we achieved substantial improvements according to automated eval-

uation metrics for three different language pairs in the CMU Example-Based Machine

Translation (EBMT) system as shown in Table 1.1. To achieve the improvements, we in-

vestigated a new phrasal alignment algorithm and a different translation unit and intro-

duced Statistical Machine Translation (SMT) techniques inthe EBMT system. The im-

provements were statistically significant and consistent through two different widely used

Machine Translation (MT) metrics BLEU and METEOR.

BLEU METEOR

Korean-English 11.16 % 7.02 %

Chinese-English 27.05 % 10.76 %

French-English 5.38 % 2.26 %

Table 1.1: The improvements we achieved
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1.2 A brief history of Machine Translation

Since Andrew Booth and Warren Weaver’s first attempt to use newly invented computers

for machine translation appeared in 1946 and 1947, many machine translation approaches

have been developed (Hutchins, 2007).

In the early days, researchers studied two main kinds of approaches. The first, known

as “brute-force”, uses empirical trial-and-error approaches and applied statistical methods

targeting immediately working systems. The other, known as“perfectionist”, uses theoret-

ical approaches involving fundamental linguistic research to aim for long term solutions.

Optimism for MT lulled for a decade after the famous Automatic Language Processing

Advisory Committee (ALPAC) report was published in 1966. The report pointed out that

“there is no immediate or predictable prospect of useful machine translation.” Instead of

further investment in MT research, it recommended the development of machine aids for

human translators and continued support of basic research in computational linguistics.

A decade later, however, MT revived with operational and commercial systems such

as Systran. Rule-based models dominated the field until the end of the 1980s. These mod-

els essentially relied on linguistic rules such as rules forsyntactic analysis, lexical trans-

fer, syntactic generation, morphology, lexical rules, etc. During this period, researches at-

tempted to develop advanced transfer systems building uponexperience with earlier in-

terlingua systems as well as to develop new kinds of interlingua. They investigated tech-

niques and approaches from Artificial Intelligence.

The dominance of the rule-based approach waned in the late 1980s with the emergence

of corpus-based approaches, which did not require any syntactic or semantic rules in text

analysis or selection of lexical equivalents.

1.3 Corpus-Based Machine Translation

In 1988, a group of researchers at IBM developed the Candide system that used statis-

tical methods as means of analysis and generation (Brown et al., 1988). They success-

2



fully demonstrated statistical translation by showing acceptable results: almost half the

phrases translated were acceptable. With their successfuldemonstration, Statistical Ma-

chine Translation (SMT) rose to dominance.

Other researchers extended the IBM SMT to Phrase-Based SMT. Marcu and Wong

(2002) studied a phrase-based joint probability model in which they learn translation be-

tween source n-grams and target n-grams. Others applied heuristics on the IBM word

alignment to extract phrase translation pairs (Och and Hey,2004; Koehn, 2004a). Chiang

(2005) extended the IBM SMT to hierarchical phrase translation pair extraction in the HI-

ERO system.

Nagao (1984) introduced another major corpus-based approach called Example-Based

Machine Translation (EBMT) in the early 1980s, although experimentation on the ap-

proach did not begin until the end of 1980s. The underlying hypothesis of EBMT is that

translation can benefit from using previously translated analogous examples. When EBMT

is given an input sentence, it finds similar source sentencesand their translations in an ex-

ample database. After dealing with the differences in the similar examples, it comes up

with hypothesis translations. EBMT systems are categorizedby the forms of meta data

with which they calculate similarity.

Lexical EBMT systems use the surface form of texts directly. Because finding very

similar sentences in the surface form is rare, lexical EBMT systems typically use partial

matches (Brown, 2000a,b; Phillips and Brown, 2009) or phrase unit matches (Veale and

Way, 1997)1. To find hypothesis translations, they collect the translations of the matches

for use in decoding. To increase coverage, lexical EBMT systems optionally perform gen-

eralization on the surface form to find translation templates.

Other EBMT systems use linguistic structures to calculate similarity. Some convert

both source and target sentences in the example database2 into parse trees, and when they

are given an input sentence, they parse it and calculate similarity to the stored example

parse trees. They then select the most similar source parse trees with their correspond-

ing target trees to generate target sentences after properly modifying them by the differ-

1Sato (1992)’s system also uses surface form, but it uses a character-based similarity calculation.
2In this thesis, we use an example database and training set interchangeably.
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ence (Sato and Nagao, 1990; Maruyama and Watanabe, 1992; Sumita and Iida, 1991; Al-

Adhaileh and Tang, 1999; Aramaki and Kurohashi, 2004). Or they find source sub tree

matches with their aligned target sub trees and combine the the target parts to generate

target sentences (Quirk and Menezes, 2006). Others covert only the source side to make

use of parse trees for similarity calculation (Langlais andGotti, 2006; Liu et al., 2006).

Andriamanankasina et al. (1999) converted sentences into Part-Of-Speech tags to measure

similarity between input sentences and examples.

1.4 The CMU Example-Based Machine Translation sys-

tem

In this thesis work, we used the CMU EBMT system which is a lexical EBMT system.

The system is described in detail in Chapter 2.

1.5 Motivation

When we started this thesis work, we were looking for a new phrasal alignment algorithm,

possibly a new translation unit and a way to integrate SMT alignment techniques into the

EBMT system because those aspects had been less studied in theCMU EBMT system. The

goal was to achieve a substantial improvement in the EBMT system by finding problems

in the related components and developing reasonable solutions.

The CMU EBMT has been focusing on increasing the training corpus coverage over

input sentences to be translated by using techniques such asword generalization (Brown,

2000a,b) rather than further developing accurate alignment. At the time, its approach to

alignment was using a correspondence table for a training sentence pair which has a bi-

nary value for a source and target word pair representing alignment. The binary relation-

ship was obtained from an automatically trained dictionaryon the training set. At trans-

lation time, a heuristics-based aligner finds translationsof partial source matches using
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the alignment information in the correspondence table. Forthis reason, the CMU EBMT

system’s alignment related components showed potential for improvement.

Additionally, Statistical Machine Translation (SMT) researchers have focused on find-

ing more correct translations by finding more accurate word alignments (Brown et al.,

1993; Och and Ney, 2000) and extracting a high quality phrasetable from a training cor-

pus.

Therefore, when we decided to improve alignment in the CMU EBMTsystem, SMT’s

word-to-word translation probability in the correspondence table in EBMT was essential

so that EBMT assigns a more accurate probability as a weight toeach corresponding word

pair, leading to better translations.

Although one may suppose that the CMU EBMT system could use the translation

table built by a Phrase-Based SMT system, the approach is not feasible because the CMU

EBMT system needs to find phrasal alignments at translation time because it needs to

find target phrases corresponding to arbitrary source matches. It is not realistic to build

an SMT phrase table for EBMT phrasal alignment because the SMTphrase table that

covers arbitrary source matches would be enormous when the size of training data is very

large. This requirement led us to develop an algorithm that finds the most probable target

phrase for an arbitrarily long input match. This algorithm,called Symmetric Probabilistic

Alignment (SPA), finds the translation with a maximum symmetrized score based on a

mathematical model rather than heuristics.

The initial SPA worked on a correspondence table of word-to-word translation prob-

abilities rather than binary values. This assumed the availability of a probabilistic dictio-

nary but not a reasonably large parallel corpus. For example, Mapadungun which is one of

the indigenous languages in South America, has little parallel data with English. However,

there exists a dictionary between those two languages3. Similarly, there may be languages

between which a comparable corpus exists but not a parallel corpus. In this case, we can

train a probabilistic dictionary but do not have a parallel corpus. However, where there are

widely used language pairs for which a large parallel corpusis available, a probabilistic

3In this case, we need to assign a pseudo probability value to each translation pair. In our experiments,

we simply use a word probability dictionary obtained from anSMT word alignment algorithm.
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word translation dictionary and word alignment information drawn from it is also avail-

able. We extended SPA to use the word alignment information,which was then used in

finding a possible target phrase range or in finding non-contiguous alignment.

Often, we observe that tokens which do not have translational equivalents cause a prob-

lem in translation. When they are in the source side, they insert irrelevant target words in

the translation that were automatically found in a trainingphase. When they are in the tar-

get side, they are typically missing or inserted inconsistently. A very simple example may

be a Korean phrase ‘na neun’ literally meaning ‘I NOMINATIVE’. When it is translated

into English, ‘na’ is translated to ‘I’ and ‘NOMINATIVE’ is translated to an irrelevant to-

ken4. One way to overcome this problem is to consider ‘na neun’ a single translation unit.

By having ‘I’ as the translation of ‘na neun’, we can translateit correctly. We investigate

this problem with linguistically motivated phrases, chunks in our EBMT system.

Analyzing sentences into their chunks instead of SMT style phrases potentially aids a

translation system in a few ways. With fewer translation units per sentence, overall distor-

tion decreases (or rather, the distortion has been reduced to a local and global component,

and the local reordering is accessed by rote). Hence, less noise is to be expected from the

mathematical modeling techniques. For example, when we perform alignment on an En-

glish sentence “I go to the park with my dog .” and its Korean translation “na neun na eui

gae reul derigo gongwon e ganda5.” , we have 9 English words and 11 Korean words to

align and the second English word ‘go’ should be aligned to the 10th Korean word ’ganda’.

But if we chunk them and perform alignment on the chunked sentences “[I] [go] [to the

park] [with my dog] [.]” and “[na neun] [na eui gae reul derigo] [gongwon e] [ganda] [.]”,

we have 5 English chunks and 5 Korean chunks and ‘go’ and ‘ganda’ are just 3 chunks

away. Obviously the chunked sentences are easier for alignment because there is less dis-

tortion and higher correspondence. Another advantage is that we can to some degree sys-

tematically translate untranslatable tokens that exist only on one side. For example, when

we translate an English sentence into Korean, a word-to-word translation systems cannot

produce a nominative case marker in Korean unless rules are given by human experts or

4In our observation, ‘NOMINATIVE’ is often translated to ’the’.
5The Korean tokens corresponds to “I NOMINATIVE I of dog ACCUSATIVE with park to go .”
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the systems “hallucinate” markers and use language modeling to guess whether or not the

case marker should in fact be present. This ability to generate lexical tokens from their

presence in chunks is particularly useful for function words. Otherwise potentially unre-

lated function words in two languages are very often alignedeven if they are not transla-

tional equivalents (Fossum et al., 2008). If this kind of alignment is restricted by chunks,

it helps not only the word alignment but also the phrase alignment derived from the word

alignment.

A phrasal aligner such as SPA may also find the correct chunk translation. It could find

the correct chunk translation answer as the best translation, have it in the top-N list, or

prune it out. In this case, the translation system needs a good mechanism to make sure that

SPA returns the correct target chunk and the decoder picks itcorrectly with the help of a

language model. However, because chunk alignment finds a single target chunk given a

source chunk, it can encourage the system to use the correct chunk translation.

For this reason, we investigated machine translation with chunks as basic units. We

first developed a chunk alignment algorithm and evaluated it. Then we used the aligned

chunk translations in the CMU EBMT system to improve system performance. Finally

we investigated whether we could improve a Phrase-Based SMT system by adding chunk

translation pairs to its phrase table.

1.6 Thesis hypotheses

Through this thesis work, we strive to validate the following hypotheses.

First, Symmetric Probabilistic Alignment (SPA) will improve the CMU EBMT system.

With a more accurate phrase level alignment than the existing heuristic aligner, the EBMT

system will perform better.

Second, using state-of-the-art word alignment information in SPA will help SPA output

better target phrases. The external word alignment will be useful not only for determining

a target range in which SPA finds translation candidates but also for providing its own

phrasing as a good translation candidate.
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Third, non-contiguous SPA will be better for translation than contiguous SPA. With

accurate word alignment, non-contiguous SPA will have higher precision and it will lead

to better translation.

Fourth, our chunk alignment will be better than its baselines: chunk alignment by state-

of-the-art word alignment algorithm that regards chunks asbasic units and chunk align-

ment in which a source chunk and a target chunk are aligned when there is any aligned

word pair between them. Our aligner uses both word and chunk statistics for alignment,

which will lead to higher chunk alignment accuracy.

Fifth, our chunk alignment method will help find high qualitychunk pairs. Adding

these pairs to a Phrase-Based Statistical Machine Translation (PBSMT) phrase table will

improve a PBSMT system.

Sixth, iteratively performing word alignment and chunk alignment will improve both

alignments. By using chunk boundary constraints in word alignment, word alignment qual-

ity will improve and by using improved word alignment, chunkalignment will improve.

Finally, by using chunks as basic translation units with thehelp of a lexical model

and by giving more credit to high-accuracy chunk translations, we can surpass the lexical

model in translation quality.
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Chapter 2

The CMU EBMT System

2.1 The CMU EBMT system in a nutshell

Because our intent is improving the CMU EBMT system, this chapter describes the CMU

EBMT system at the time we began our thesis work. Later chapters will describe changes

to the system, as they were made within the experiment.

Figure 2.1 shows a diagram of the CMU EBMT system. The system is alexical EBMT

system, meaning that it calculates similarity on the surface form of texts (Brown, 1996,

2004). In other words, given an input sentence to be translated, the system finds similar

sentences in the surface form. In the system, the similaritycalculation was implemented

by finding contiguous source word matches in a stored exampledatabase. For each match

in a sentence pair, the system finds its translation phrase using a word-to-word correspon-

dence table, in which all the word-to-word mappings have a binary correspondence value

indicating whether they are translations or not. In the restof this chapter, we describe the

detailed role of each component in Figure 2.1 in training andrun (translation) time.
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Figure 2.1: The CMU EBMT system

2.1.1 Training

During training time, the system transforms the data for efficient matches and builds a

dictionary and correspondence tables to be used in translation.

Pre-processing:The input for the training stage is a parallel corpus which isa list

of translation sentence pairs. Once the system is given a parallel corpus, it performs pre-

processing on both language sides of the data.

• ThePunctuation Splittersplits punctuation marks from words. It can take abbrevia-

tions as input for each language and leave them unchanged.

• TheRegularizertransforms the form of words. For example, “’m” in “I’m” can be

transformed into “am” after detaching it from “I,” so that “I’m” can be matched for

an input “I am”.
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• TheMorphological Analyzermay be used for a morphologically rich language for

better word match and higher word occurrences.

• TheSpell Correctorcan be used to correct misspelled words (if applicable) as de-

scribed by Hogan (1998).

• The Tokenizerdecides whether a series of tokens should be split. For example, it

will attach “AT”, “&” and “T” to have “AT&T” as a unit.

Dictionary Building: Next, adictionary buildercollects co-occurrence statistics for

source and target word pairs. Using a pre-specified threshold for the co-occurrence statis-

tics, it selects co-occurring word pairs and adds them into adictionary.

Correspondence Table Building:The system then builds acorrespondence tablefor

each sentence pair in which every source and target word pairhas a binary relationship. If

a pair is found in the dictionary built in the previous step, it assigns a binary value “1” to

the pair to indicate that they correspond to each other in thesentence pair as translations.

Otherwise, the pair is given “0”. Depending on the similarity of the language pair, the

system may apply pruning to remove out lier correspondents.For example, in a Spanish-

English translation sentence pair, an acceptable target word range of a source word is

determined by finding the earliest and latest word positionsof the first best and the third

best target words and expanding them byN (normally, 2) words on both the left and right

to allow for word-order variations (Brown, 1997)1.

Corpus Indexing: The system assigns each sentence pair a unique ID (sequential in-

tegers were chosen for efficient retrieval), which is then stored.

Word Indexing: As mentioned earlier, the system can find contiguous source matches

of previously unspecified lengths. To support this function, it builds an index database on

the training set so that given an input sentence to be translated, it finds training sentence

pairs whose source side includes a fragment of the input. TheBurrows-Wheeler Transform

(BWT) is used to support efficient lookups in a scalable system (Brown, 2004).

1Note that our dictionary was automatically built based on co-occurrence statistics and may have noisy

translations, which consequently lead to noisy correspondence.
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2.1.2 Translation

During translation time, the system uses the data prepared during the training time.

Pre-processing:When an input sentence for translation arrives, the system performs

the same pre-processing as it did for the source side of the training set.

Matcher: After the input is pre-processed, theMatcherfinds the longest match from

each source word position and its sub strings starting with the same position. For example

if the Matcherfound “word1 word2 word3”, it also finds “word1 word2” and “word1”

Because some n-grams (including unigrams) appear very often, the system can set

a limit on the number sentences to include matches. For example, the English word “I”

appears so frequently that it does not make good sense to retrieve all the “I”s throughout

the entire corpus. Instead, the system will use a subset of the entire matched sentences

using a specified limit on the number of matched sentences2. If this limit is too large, the

speed of the system will decrease. However if the limit is toosmall, the system will only

find a small number of translation candidates from the retrieved sentence pairs.

Aligner: For a source match, the system asks theAligner to find its translation. The

input to theAlignerconsists of the matched source phrase, a sentence pair that includes the

matched source phrase on the source side, and the correspondence table of the sentence

pair. First, theAlignerfinds the shortest and longest contiguous target phrases that include

the correspondent target words from all the matched source phrase words. Next, for each

substring of the longest contiguous target phrase that alsoincludes the shortest one, it

calculates an alignment score based on heuristic functions. Finally, it returns the single

target substring that has the highest alignment score as thebest translation of the source

match.

The system puts bestN target translation of each source match in a lattice with the

alignment score, whereN is a configurable parameter for the maximum number of trans-

lations for each source match.

Decoder:Finally, the system invokes theDecoderto find the best possible translation

2In the experiments performed in this thesis, we set the limitto 2,000.
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hypothesis. TheDecoderuses a beam and can control the size of the beam with a specified

beam size and hypothesis score ratio from the best hypothesis score.

The hypothesis score is calculated from the alignment scoreand other EBMT feature

scores. The EBMT feature scores combined during decoding include:

• Language Model Scoreis the probability of the hypothesis sentence calculated

using a language model

• Arc Weight combines engine-specific weights for each engine that contributes an

identical source/target pair to the lattice plus a bonus formultiple engines contribut-

ing the same pair.

• Score is the engine’s score for the quality of the translation pair, or, if multiple

identical arcs were merged, the average of the scores.

• Verbosity Penaltysets the strength of the penalty for having output that varies from

the expected length.

• Reorder Penalty is the amount used to scale the total number of re-orderings per-

formed on a path through the lattice.

These are combined using the linear interpolation method. The experiments encompassed

by this thesis were conducted using only the features above.Although other features exist,

they were disabled for the experiments in this thesis.

2.1.3 Difference from Phrase-Based Statistical Machine Translation

systems

Like our lexical EBMT system, a typical Phrase-Based SMT (PBSMT) system such as

Moses (Koehn et al., 2007), also finds contiguous partial source matches and their trans-

lations in the pre-built phrase translation table during training time. The difference is that

PBSMTs build a phrase translation table during the training time and use that to find

source phrase matches and their translations. Thus given aninput sentence, they cannot
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find translations for an arbitrary source match. Their source matches are restricted to the

source phrases in the pre-built table.

However the CMU EBMT builds a dynamic phrase table per sentenceduring transla-

tion time. This means that it asks the phrasal aligner to find translation candidates of an

arbitrary source match during the translation time. In thisaspect it is very similar to the

CMU SMT system that uses PESA (Vogel, 2005) phrasal aligner during translation time.

PESA was developed concurrently with SPA.

2.1.4 The problems with the current system

In Figure 2.1, we see room for improvement in the correspondence table and the aligner

(highlighted in Figure 2.2).

In considering improvements to the correspondence table ofword alignments for a

sentence pair, we recognized that the current correspondence table is limited by aligning

words only using only a dictionary and heuristic-based pruning. It also uses binary values

even though word translation probabilities can better represent the strength of relationship

between a source word and a target word.

The aligner uses only heuristic-based functions to calculate the alignment score. Ex-

amples of the heuristic-based functions include the numberof the relationship “1” in the

correspondence table, the target phrase length discrepancy from the expected target length

calculated using the source phrase length and the source andtarget sentence length ratio,

the ratio of the source phrase length in the source sentence,etc.
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Figure 2.2: Components of the CMU EBMT system to be improved.
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Chapter 3

Symmetric Probabilistic Alignment

In this chapter, we describe our basic Symmetric Probabilistic Alignment (SPA) algorithm

and the restrictions we applied to it for improvement.

We performed evaluations to measure phrasal alignment accuracy and translation qual-

ity. For alignment accuracy evaluation experiments, we obtained a small hand-aligned

corpus for English-Chinese and French-English pairs. For translation, we drew a small

amount of data from French-English Canadian Hansards corpusand annotated it with

phrasal alignments using SPA. The annotated corpus was usedas a training set from which

the EBMT system found partial matches and their alignments for input sentences.

3.1 Related work

There has been much work in the field of word alignment becauseit is such an important

task in corpus-based machine translation. Many methods andalgorithms have been devel-

oped by various machine translation groups. Some used heuristic-based methods, others,

pure statistical approaches, and still others, linguisticknowledge in alignment.

Smadja et al. (1996) and Melamed (2000) have used similarityfunctions between two

languages. Variants of the Dice coefficient, Dice (1945), have frequently been used to cal-
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culate similarity by obtaining a matrix that includes association scores between each pair

of a source word and a target word at different positions for each sentence pair. Melamed

(1997) applied a constraint on this score to overcome indirect associations so as to avoid

the association between two words that appear together veryfrequently but do not have a

translation relationship.

At the IBM T.J.Watson Research Center in the early 1990s, Brown etal. (1993) devel-

oped several alignment models for use with the EM algorithm,which are now commonly

called IBM model 1, 2, 3, 4, and 5 and intended to provide increasingly more accurate

models of the translation process. In their noisy channel model, the translation model can

be written as a combination of alignment probability and translation probability:

Pr(f|e) =
∑

a

Pr(f, a|e) (3.1)

=
∑

a

Pr(m|e)
m
∏

j=1

Pr(fj, aj|aj−1
1 , f j−1

1 ,m, e) (3.2)

=
∑

a

Pr(m|e)
m
∏

j=1

Pr(aj|aj−1
1 , f j−1

1 ,m, e)Pr(fj|aj1, f j−1
1 ,m, e) (3.3)

for an English stringe = el1 ≡ e1e2...el, a French stringf = fm
1 ≡ f1f2...fm and their

alignmenta = am1 ≡ a1a2...am
1.

Model 1 assumes that for a source word position, all connections to target word posi-

tions are equally likely (i.e., all the possible alignmentsare equally likely). The alignment

probability is
m
∏

j=1

Pr(aj|aj−1
1 , f j−1

1 ,m, e) = (l + 1)−1 (3.4)

In Model 2, they have a more realistic assumption that the probability of a connection

between a source position and a target position depends on the positions it connects and

on the lengths of the two strings(i.e., a source string and the corresponding target string in

1English and French were the original target and source languages in IBM’s Candide project, but ”e”

and ”f” are now commonly used in SMT regardless of the actual languages. In this thesis, we use the same

notations for source and target languages.
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a parallel corpus) The connection between positions is known as distortion. The alignment

probability in Model 2 is

d(aj|j,m, l) (3.5)

In Model 3, Brown and his colleagues introduce the concept of word fertility. First they

choose the number of French words that are connected to an English word and then follow

the procedure for Model 2. Because they choose the number of French words associated

with a given English word, the direction of the distortion model is reversed this time:

d(j|i,m, l) (3.6)

Model 4 is designed to model the fact that an English string isoften translated into French

as a unit. They define thecenterof an English cept to be the ceiling of the average value of

the positions in the French string of the words. Model 5 is very much like Model 4 except

that it is not deficient. A deficient model can choose the same target position repeatedly for

the target words given different source words and could result in too many empty target

positions. In these models, accurate parameter estimationis the key point for improving the

performance of the models and they used EM algorithms to estimate parameters. Because

EM algorithms converge to local maxima, they use the previous model’s parameters as the

initial parameter values to achieve better performance.

Vogel et al. (1996) have used Hidden Markov Model (HMM) in alignment to take

into account that the previous French word’s alignment restricts the next French word’s

alignment position. They assume that there is a first-order dependence for the alignments

and that the lexicon probability depends only on the word at agiven position.

Pr(fj, aj|aj−1
1 , f j−1

1 ,m, e) = p(fj, aj|aj−1, e) (3.7)

= p(aj|aj−1)p(fj|eaj) (3.8)

Yamada and Knight (2002) use syntactic parse trees on the English side and plain text

on the French side. To model this pair, they use three operations:reordering, insertionof

French words, andtranslationof English words. They raise the prospect of training an

SMT system using syntactic information for both languages.

Many algorithms have been designed to go beyond word-to-word models as well.
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Wu (1997) studied inversion transduction grammar formalism for a parallel corpus.

The goal is to generate a pair of strings in two languages simultaneously using a bilingual

probabilistic context-free grammar. This naturally aligns not only words but also phrases.

Sub trees in a parse tree are word/phrase alignments for the sentence pair.

Marcu and Wong (2002) studied a phrase-based joint probability model that generates

and orders phrases in both languages employing a number of concepts. Their model can

be described by formula

p(e, f) =
∑

C∈C|L(e,f,C)

∏

ci∈C

[t(−→e i,
−→
f i)×

|
−→
f i|
∏

k=1

d(pos(
−→
f k

i ), poscm(
−→e i))] (3.9)

whereL(e, f, C) means that a sentence paire andf are obtained by permuting the phrases
−→e i and

−→
f i that characterize all conceptsci ∈ C, pos(

−→
f k

i ) denotes the position ofkth

word in the phrase
−→
f i andposcm(

−→e i) denotes the position of the center of the phrase
−→e i. They show a significantly better score than IBM Model 4, whichis word-based, but

their training forn-gram phrases translation table is computationally intractable for even

moderate values ofn due to its size.

To overcome the problems of word-to-word alignment, an alignment template by Och

and Hey (2004) and phrase extraction by Koehn (2004a) were studied. They note that

word-to-word alignment is limited by each French word beingaligned to only one English

word in the IBM models. Therefore they train IBM Model 4 forP (e|f) andP (f|e) and

take the intersection of the two alignments to get a high-precision alignment as a starting

point. They then explore the union of the alignments and expand the intersection by adding

an alignment point that aligns a word which currently has no alignment. After building a

matrix of alignments, they extract consistent phrase pairs.

Vogel (2005) and Zhao and Vogel (2005) treat phrasal alignment as a sentence splitting

problem. Using a lexicon, they locate a target phrase where the lexicon probability is

optimal. Then they extend it to use a fertility model to better estimate the target phrase

length.

A hierarchical phrasal alignment was studied by Chiang (2005) and Chiang et al.

(2005). He and his colleagues train a synchronous context-free grammar from a word-
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aligned bilingual corpus to learn global reordering.

Simard et al. (2005) built a phrase-based statistical translation model based on non-

contiguous phrases to better take into account additional linguistic phenomena that con-

tiguous phrase-based model cannot capture. To produce a non-contiguous phrase pair li-

brary, they tested two strategies: combining contiguous phrase pairs occurring in the same

sentence, which were found by theRefined Methoddescribed in Och and Ney (2003) and

combining cepts found by a matrix factorization in Goutte etal. (2004).

A very different tack was taken by Veale and Way (1997) in theGaijin Example-

Based Machine Translation system and its successors. They first find constituent-based

chunks mono-lingually and then attempt to match corresponding chunks between the two

languages. Chunk boundaries are found by applying Green’s Marker Hypothesis (Green,

1979) using hand-written sets of marker words such as determiners and prepositions.

Our own previous work on alignment, Symmetric Probabilistic Alignment (SPA) Kim

et al. (2005), found phrase-to-phrase mappings by bootstrapping word-to-word translation

probabilities to determine the target-language phrase with the best bidirectional alignment

score for an arbitrary source-language phrase. It can find a target phrase for an arbitrary

source phrase. The algorithm is described in Section 3.2 in detail. As previously men-

tioned, alignment is fundamental to data-driven machine translation approaches. In this

chapter, we describe our sub-sentential alignment method that finds target fragments for

an arbitrary source match in our EBMT system.

3.2 Algorithm

3.2.1 Basic algorithm

In sub-sentential alignment, mappings are produced between words or phrases in the

source language sentence and those words or phrases in the target language sentence that

best express their meaning.

An alignment algorithm takes as input a bilingual corpus consisting of corresponding
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sentence pairs and strives to find the best possible alignment in the second for selected n-

grams (sequences of n words) in the first language. The alignments are determined based

on a number of factors, including a bilingual dictionary (preferably a probabilistic one),

the position of the words, punctuation, invariants (such asnumbers), and so forth.

For our baseline algorithm, we make the following simplifying assumptions, each of

which we then relax:

1. A fixed bilingual probabilistic dictionary is available.

2. Contiguous fragments (word sequences) of source languagetext are translated into

contiguous fragments in the target language text.

3. Fragments are translated independently of surrounding context.

Our baseline algorithm is based on maximizing the probability of bi-directional trans-

lations of individual words between a selected n-gram in thesource language and every

possible n-gram in the corresponding paired target language sentence. The reason why we

use the probability of bi-directional translations is thatwe are more convinced when both

side’s fragments agree that the other sides’ fragments are their translations. For example,

given a source fragmentf j
i , assume that the two target fragmentselk andeon are equally

probable ’best’ translations off j
i . If we consider opposite directional translations and find

that elk’s the most probable translation isf j
i andeon’s the most probable translation isf q

p

(i 6= p or j 6= q), we will chooseelk as the translation off j
i .

No positional preference nor length preservation assumptions are made. That is, an n-

gram may translate to an m-gram, for any values of n or m bounded by the source and target

sentence lengths, respectively. Finally, we introduce a small positive ”smoothing value”ǫ

to avoid singularities (i.e. avoiding zero-probabilitiesfor unknown words or words never

before translated in a way consistent with the dictionary).

Suppose that we are given a pair of aligned sentencesF of lengthK andE of length

L where a source sentenceF is

F = f1, ..., fi+1, ..., fi+k, ..., fK (3.10)
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and the corresponding target language sentenceE is

E = e1, ..., ej+1, ..., ej+l, ..., eL (3.11)

and calculating the translation probabilities between a source fragmentf i+k
i+1 and target

fragments in{ej+l
j+1}.

Then the fragment we try to obtain is the target fragmente = elk with the highest

probability of all possible fragments ofE to be a mutual translation with the given source

fragment, or

e = argmaxeScoree (3.12)

= argmaxe(p(f
i+k
i+1 ↔ ej+l

j+1)) (3.13)

= argmaxe(p(fi+1, ..., fi+k ↔ ej+1, ..., ej+l)) (3.14)

= argmaxe((
k
∏

p=1

max(
l

max
q=1

p(ej+q|fi+p), ǫ))
1
k (3.15)

×(
l
∏

q=1

max(
k

max
p=1

p(fi+p|ej+q), ǫ))
1
l ) (3.16)

Here and in the following sections for algorithm description, we usee = ej+l
j+1 for the target

candidate fragmente.

In the above equation, (3.15) shows the unidirectional score calculation from source

to target, and (3.16) shows the unidirectional score calculation from target to source. So,

(3.15) and (3.16) together calculate the symmetric probabilistic alignment score.

In this algorithm, given a source phrase, we checkL×(L+1)
2

fragments whereL is the

target language length because we will checkL 1-word-long fragments,L−1 2-word-long

fragments, and so on.

3.2.2 Untranslated word penalty

In our basic algorithm, we calculated a symmetric probabilistic alignment score but did not

count how many words in the counterpart fragment are actual translations for the given
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fragment words. Instead we prefer an alignment that has moreactual translations in the

counterpart fragment. For example, for a given source fragmentf = f i+k
i+1 = fi+1, ..., fi+k

and a given candidate target fragmente = ej+l
j+1 = ej+1, ..., ej+l, if all source words inf

are translated into a single target word ine, and if all target words ine are translated into

a single source word inf , this alignment is not desirable and should be penalized.

So we will penalize the alignment score according to the ratio of #(translations)
|fragment|

. A

modified formula would be

Scoree = P (f i+k
i+1 ↔ ej+l

j+1) (3.17)

= P (fi+1, ..., fi+k ↔ ej+1, ..., ej+l)

= (
k
∏

p=1

max(
l

max
q=1

p(ej+q|fi+p), ǫ))
1
k × (Re)

α

×(
l
∏

q=1

max(
k

max
p=1

p(fi+p|ej+q), ǫ))
1
l × (Rf )

α

whereRp = # of actual translation words in the fragment p

# of potential translation words in the fragment p
, andα ≥ 1. In this formula, when

Rp is less than 1, it reducesScoree and, as a result, penalizes the score. In the previous

example,Rp = 1
l

and it obviously reducesScoree whenl > 1.

3.2.3 Length penalty

The ratio of target fragment (n-gram) lengths and source fragment (m-gram) lengths should

be comparable to the length ratio of the target sentence and source sentence lengths, though

certainly variation is possible. Therefore, we generate a penalty function to the alignment

probability that increases with the discrepancy between the ratios asn/m is compared to

the target/source sentence length ratioL
K

.

If the length of the source language fragment isk, the length of a target language

fragment under consideration isl, the dynamic sentence length ratio isL
K

given the source

language sentenceF and its corresponding target language sentenceE in Section 3.2.1,

the expected target fragment length is then given byl̂ = k × L
K

. Further defining an
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allowable length differenceLDallowed, our implementation calculates the length penalty

LP as follows:

LDallowed = LDconstant ×
L

|E|average
(3.18)

LP = min((
|l − l̂|

LDallowed

)4, 1) (3.19)

where|E|average meansthe average target sentence length in the training corpus.

We wanted to ignore target candidate fragments that have larger differences thanLDallowed

and to give an increasingly larger penalty to theLDallowed-satisfying target candidate frag-

ments as they have larger differences. For equation (3.19),the 4th power was the one that

gave us the best experimental results among the powers from 2through 6.

The score for a fragment including the penalty function is then:

Scoree ← Scoree × (1− LP ) (3.20)

Note that, as intended, the score is forced to 0 when the length difference|l−l̂| > LDallowed

.

3.2.4 Distance penalty

Closely related languages, such as French and English, tend to have more similar word or-

der than more distantly-related languages such as Korean and English. In the former case,

this results in greater phrase order similarity and, consequently, similar phrase positions.

In such a close language pair, we introduce a distance penalty 2 to increasingly penalize

the alignment score of any candidate target fragment as it moves away from the expected

position range. Our distance penalty follows the same calculation method as in section

3.2.3. First, we calculate the expected centerĈ of the candidate target fragment using the

2Our distance penalty is conceptually different from the distortion penalty in SMT systems because

it assumes that a target fragment in a target sentence shouldbe in a position proportional to the source

fragment position in the source sentence. The distortion penalty in SMT systems is defined by a probability

that a source position and a target position are connected.
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center of the source fragmentCf and the dynamic sentence length ratioL
K

Ĉ = Cf ×
L

K
(3.21)

Then we calculateDDallowed, the dynamic allowed distance difference of the center,

using a constant limit valueDDconstant and the dynamic sentence length ratio L
|E|average

where|E|average is the average target sentence length in the training corpus.

DDallowed = DDconstant ×
L

|E|average
(3.22)

GivenDDallowed, we calculate the distance penaltyDP as follows:

DP = min((
|Ce − Ĉ|
DDallowed

)4, 1) (3.23)

whereCe is the actual center of the target fragmente being processed.

As we did in Section 3.2.3, we want to ignore target candidatefragments which have

larger differences thanDDallowed and to give larger penalties to theDDallowed-satisfying

target candidate fragments as their differences increase.For equation (3.23), as in the

length penalty calculation, the 4th power was the one that gave us the best experimen-

tal results among the powers from 2 through 6.

The score for a fragment including the penalty function is then:

Scoree ← Scoree × (1−DP ) (3.24)

Note that, as intended, the score is forced to 0 when the length difference|Ce − Ĉ| >
DDallowed .

It may in fact be possible to usefully apply the distance penalty to language pairs in

which the language pairs have a very dissimilar word order, provided we can determine or

estimate a positional mapping between the sentences in a pair, and then use the distance

with respect to this mapping.
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3.2.5 Anchor context

If the words adjacent to the source fragment and the candidate target fragment are trans-

lations of each other, we expect that this alignment is more likely to be correct because

adjacent source words are usually aligned to adjacent target words and, in this case, an

alignment of adjacent words adds supporting evidence to thealignment we are consid-

ering. We combineScoree with the anchor context alignment scoreAnchorScoree by a

linear weighted combination in log space,

AnchorScoree = (P (fi ↔ ej) (3.25)

×P (fi+k+1 ↔ ej+l+1)

×P (fi ↔ ej+l+1))

×P (fi+k+1 ↔ ej))
1
4

Scoree ← (Scoree)
λ × (AnchorScoree)

1−λ (3.26)

Empirically, we found this combination gives the best scorewhenλ = 0.8 for both French-

English and English-Chinese and it gives a better result than

Scoree ← λ× Scoree + (1− λ)× AnchorScoree (3.27)

3.3 Evaluation

3.3.1 Alignment evaluation

Data We tested our alignment method on a set of French-English sentences taken from

the Canadian Hansard corpus and on a set of English-Chinese sentences taken from Xinhua

news agency. French and English are chosen as an easy pair because they have very similar

word order while English and Chinese are chosen as a difficult pair because the word order

difference and the sentence length difference are the most evident.

For French-English, we had 91 human word-aligned sentence pairs, and from that, we

generated 12466 3-8 words long contiguous source fragments.
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For English-Chinese, we had 3 sets of 366 human aligned sentence pairs with the same

data but are aligned by different people (The sets are named A, B and C). In addition to

the three sets, we had 20 more human aligned sentence pairs aligned by another person.

So, for the alignment evaluation, we picked one of the three sets - A was picked in this

experiment - and added it to the other 20 sentences to make a 386 human aligned sentence

pair set and 27,286 3-8 words long source fragments. And later we used the 3 sets to see

how reliable human alignments are by evaluating each set against the other two.

For these experiments, we pre-processed the data. We segmented the Chinese data

into words, and expanded the contractions in the French and English data. We separated

the punctuation in the data in all three languages. For Chinese segmentation, we used

lrSegmentor by Zhang.

Evaluation metric For the human-aligned data, we compared the results of our algo-

rithm to the human alignments. Although the latter may not beperfect and are sometimes

non-unique, they provide the only answer key available for repeatable tests. As metrics, we

useprecision, recall andF1 (the harmonic mean of precision and recall). Sinceprecision

andrecall cannot be used alone to measure the performance of the alignment methods, we

useF1 values to measure the performance and to compare the alignment methods. In other

words, we useF1 to measure the performance in both terms of bothprecisionandrecall.

We calculate precision, recall andF1 based on answer position overlaps. Let us sup-

pose that the position sequence of our (machine) answer fragment isp1, p2, ..., pk and the

position sequence of the correct answer (human) fragment ishp1, hp2, ..., hpl. Note that

the correct (human) answer fragment may be non-contiguous,but the combination of SPA

and EBMT to date is only capable of using the bestcontiguoustargetm-gram alignment

it can find. Given thato = count(p0i) andp0i is pi, which is not aligned in the human

answer, we compute the recallR and precisionP as follows:

R =
|{hpi} ∩ {pj}|

l
(3.28)

P =
|{hpi} ∩ {pj}|

k − o
(3.29)

To obtain an average alignment score for evaluation, we
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• generated all the possible source language sentence fragments lengths 3 through 8

from the human-aligned data3;

• aligned those fragments by means of our algorithm; and

• calculated the metrics given above by comparison with the human-aligned answers.

Baselines To better understand the alignment results we obtain for a given language pair

(and corpus), we introduce the following as baselines: “random result,” “positional result,”

and “oracle result.”

The “random result” is a randomly chosen target fragment, regardless of the source

fragment, constrained to be of a length corresponding to thesource fragment normalized

by the length ratio of the source and target sentences.

The “positional result” is a target fragment whose positionin the target language most

closely matches the position of the source fragment. We calculate the target fragment’s

start and end positions using the source fragment’s start and end positions as well as the

length ratio of the source sentence and target sentences. Inparticular, if the source sentence

is of lengthn and the target sentence of lengthm, we expect source positioni to correspond

to target positionj wherej ≃ i× m
n

.

The “oracle result” is the best contiguous target fragment extracted from the human

alignments. To get the oracle result, we first get human alignments for the sentence pairs

that will be used to evaluate our algorithm. Then we choose the fragment that has the

largest harmonic mean value among human alignment fragments and whole fragment.

Notice that the human alignment may not be contiguous, therefore “oracle alignment”

represents the best that our algorithm could possibly perform.

Comparison with the state-of-the-art alignment We also included the IBM Model 4

(“IBM4”) alignment accuracy to evaluate the status of SPA compared to the state-of-the-

3In this experiment, we focused on the performance of systemsfor matches longer than 2 because shorter

ones can be covered by the EBMT dictionary.
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art model4.

Finally we combine the results of SPA and IBM4. We set a threshold score for SPA

and combined SPA and IBM4 results by substituting IBM4 resultswith SPA results that

have higher alignment score than the threshold(“COMB”)5. For the significance test, we

separated the French-English human aligned data into 10 data sets of 9 sentences and the

English-Chinese human aligned data into 10 data sets of 36 sentences and performed a

paired t-test on F1 scores.

3.3.2 EBMT performance

Since our goal is to develop a new alignment method to improvethe CMU EBMT system’s

performance, we evaluated the performance of the CMU EBMT system using SPA, IBM

Model 4, and the original internal aligner of the system.

Data For our EBMT experiments we used a subset of the IBM Hansard corpus available

from the Linguistic Data Consortium. This corpus is divided into files of 10,000 sentence

pairs (with an occasional garbled or missing line which was removed prior to our use), of

which we used only files 000 through 099.

The training data consisted of the first 20,000 sentence pairs – files 000 and 001 – for

EBMT and the first 700,000 English sentences for the language model. The development

test (“Dev”) set used for parameter tuning consisted of the first 100 sentences of file 040

and the evaluation test (“Unseen2”) set consisted of ten segments of 100 sentences drawn

from files 060 and 080. Segmenting the evaluation test set in this manner allowed us to

perform Student’s t-test as a statistical significance test. Another test (“Unseen1”) set con-

sists of 100 source sentences and 200 reference sentences. To see whether the performance

is consistent we asked a person to make another reference setfor the 100 source sentences

such that each source sentence has two reference sentences.The original 100 sentence

pairs are mostly drawn from file 060.

4We used GIZA++ Och and Ney (2000) for IBM Model 4 alignment.
5The score threshold was found empirically by measuring F1 onthe hand aligned set.
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Evaluation methodology To minimize the initial investment of effort for the EBMT

evaluation, we performed a partial exploitation of the SPA and EBMT modules rather than

fully incorporating SPA into the EBMT engine6. In this partial integration, SPA is used

to annotate the training corpus with alignments (both phrasal and word-to-word), and the

annotations in the corpus override the EBMT engine’s internal aligner. Phrasal alignments

are stored as-is, and whenever a partial match against the corpus is exactly equal to the

source half of such an alignment, the target half is output asthe candidate translation.

The word-to-word alignments are used to build a correspondence table (overriding the one

which would have been built in the absence of alignment annotations) and that table is

consulted as usual to perform alignments of matches for which there is no phrasal align-

ment from SPA available.

This yields the following training regimens for the alignment methods. To test the old

algorithm, we

1. built an EBMT dictionary from the corpus; and

2. indexed the training text using that dictionary.

To test performance with IBM Model 4 alignments, we

1. trained GIZA++ Och and Ney (2000) on the training text;

2. annotated the training corpus with phrasal alignment information using Model 4;

and

3. indexed the annotated corpus.

To test performance with SPA, we

1. used GIZA++ to build a dictionary from the training text;

2. ran the SPA aligner on the training text using that dictionary; and

6They are fully integrated in Chapter 4
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3. indexed the phrasal alignment annotated corpus generated by SPA.

The differently-trained translation systems are then eachevaluated on the test set using the

BLEU (Papineni et al., 2002) which is the most widely used automatic evaluation metric.

3.4 Results and analysis

3.4.1 Alignment evaluation

Test/Answer Recall Prec. F1 Len(Test)/Len(Answer)

A/B 0.8588 0.9809 0.9158 0.8755

A/C 0.7427 0.9829 0.8461 0.7556

B/A 0.8968 0.9765 0.9350 0.9184

B/C 0.7834 0.9877 0.8737 0.7931

C/A 0.9590 0.9508 0.9549 1.0086

C/B 0.9686 0.9615 0.9650 1.0074

Table 3.1: Human answer evaluation

As we already mentioned, given a set of parallel sentences, human alignments are not

unique. This problem is related to how accurate our evaluations results are. To roughly

estimate their accuracy, we used our evaluation metrics to evaluate the human answers

by regarding them as machine answers and the machine answersas human answers for

the same data set. Table 3.1 shows the human answer evaluation results. In these tests,

F1 varies from 0.8461 to 0.9650. This may give us a rough idea about what score we can

aim to achieve. Of course, approaching those values does notmean that the automated

aligners are as good as human ones because the errors by the automated aligners might be

linguistically serious while human errors are not. It also shows the average target phrase

length ratio for the same source phrases in the column ofLen(Test)/Len(Answer) 7.

7In English/Chinese hand aligned corpus, A, B and C have about31%, 28% and 3% of unaligned target
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Key Description

random Random results

positional Results in proportional positions

oracle The best possible contiguous results from human answer

SPA-single SPA - unidirectional alignment (source to target)

SPA-basic SPA - basic bi-directional alignment

SPA-anchor SPA - basic + anchor bonus

SPA-len SPA - basic + length penalty

SPA-dist SPA - basic + distance penalty

SPA-x1-x2.. xn can be substituted with a,l,d and u.

a: anchor bonus,

l: length penalty,

d: distance penalty,

u: untranslated word penalty

IBM4-cont IBM4 - considers the words between the smallest

and the largest as the contiguous answer

IBM4-cont-oracle IBM4 - the best possible contiguous results

IBM4 IBM4 - non-contiguous results

COMB combined results of the best SPA and IBM4

Table 3.2: Key to the following alignment evaluation tables

For comparing the alignment accuracy, we chose the positional alignment as the base

line – as this is the best we can do without any information about the words at all – and

the oracle alignment as the goal. Tables 3.3 through 3.6 showthe oracle result obtained

by each alignment method.

Table 3.3 and Table 3.5 show the best performance by each aligner and Table 3.4 and

Table 3.6 show the possibility of improvement for SPA aligners. In Table 3.4 and Table 3.6,

words respectively. And in French-English hand aligned corpus, there are about 5% of unaligned target

words.
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Aligner Recall Prec. F1 Len(M)/Len(H)

random 0.3220 0.3722 0.3453 0.8651

positional 0.5823 0.5762 0.5792 1.0105

oracle 0.9056 0.8614 0.8830 1.0513

SPA-single 0.9426 0.3560 0.5168 2.6480

SPA-basic 0.8699 0.4739 0.6135 1.8357

SPA-anchor 0.7924 0.4722 0.5918 1.6780

SPA-len(7) 0.7867 0.6104 0.6874 1.2889

SPA-dist(10) 0.8779 0.4673 0.6100 1.8784

SPA-l-u 0.7335 0.6939 0.7131 1.0571

SPA-a-l 0.7146 0.5694 0.6338 1.2551

SPA-a-d 0.7981 0.4720 0.5932 1.6910

SPA-l-d 0.7881 0.6036 0.6836 1.3058

SPA-l-d-u 0.7350 0.6841 0.7086 1.0744

SPA-a-l-d 0.7183 0.5687 0.6348 1.2632

SPA-a-l-d-u 0.7034 0.5985 0.6467 1.1754

IBM4-cont 0.8167 0.6043 0.6946 1.3516

IBM4-cont-oracle 0.7271 0.7003 0.7134 1.0383

IBM4 0.7390 0.8075 0.7717 0.9152

COMB 0.7563 0.8042 0.7795 0.9405

Table 3.3: English-Chinese: Best alignment results evaluation

we reported the best of the top 10 results of the SPA. This shows how closely we pulled

the best results toward the top.

Of note, the experiments support the hypothesis that a symmetric method performs

better than a unidirectional method: SPA-basic outperformed SPA-single in both Table 3.3

and Table 3.5. Note that the recall of SPA-single is the highest because there is not a

length restriction on the target phrases. According to the formula of SPA-single, all the

target phrases that include all the maximum probability word translations have the same
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Aligner Recall Prec. F1 Len(M)/Len(H)

SPA-single 0.9865 0.4739 0.6402 2.0817

SPA-basic 0.9405 0.6201 0.7474 1.5167

SPA-anchor 0.8980 0.6747 0.7705 1.3310

SPA-len(7) 0.8889 0.7645 0.8220 1.1627

SPA-dist(10) 0.9473 0.6111 0.7429 1.5501

SPA-l-u 0.8767 0.8112 0.8426 1.0807

SPA-a-l 0.8621 0.7723 0.8147 1.1162

SPA-a-d 0.9036 0.6692 0.7687 1.3502

SPA-l-d 0.8889 0.7557 0.8169 1.1763

SPA-a-l-d 0.8614 0.7677 0.8119 1.1221

SPA-a-l-d-u 0.8579 0.7805 0.8174 1.0992

COMB 0.7639 0.8180 0.7900 0.9338

Table 3.4: English-Chinese: Top 10 alignment results evaluation

alignment score.

Table 3.3 and Table 3.4 show the performance of SPA on English-Chinese data. Here

we observe that only two of the penalties (length and untranslated words) helped individ-

ually, and the highest overall score was obtained when thosetwo are applied together. Be-

cause English and Chinese sentence structures are very different, distance penalty which

assumes the same word orders did not help. However, the length penalty worked as ex-

pected because it is rare that a target phrase is much longer or much shorter than its source

phrase even in a distant language pair. In this language pair, the untranslated word penalty

also helped throwing out irrelevant words from the target phrases. But the anchor context

did not help as expected. It is possible that 1-to-1 word correspondence is low for this

language pair and automatically learned word translation probability is not very discrimi-

native, which consequently leads to less discriminative anchor context scores8.

8Fossum et al. (2008) reported that noisy alignments are morefrequent between function words in

Chinese-English pair.
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Aligner Recall Prec. F1 Len(M)/Len(H)

random 0.1939 0.2384 0.2139 0.8136

positional 0.6688 0.7290 0.6976 0.9175

oracle 0.9805 0.9377 0.9586 1.0456

SPA-single 0.8810 0.2817 0.4269 3.1276

SPA-basic 0.7078 0.7121 0.7099 0.9940

SPA-anchor 0.7798 0.6722 0.7220 1.1602

SPA-len(4) 0.6994 0.7482 0.7230 0.9348

SPA-dist(4) 0.7707 0.7290 0.7493 1.0572

SPA-a-l 0.7522 0.7750 0.7634 0.9705

SPA-a-d 0.8106 0.7096 0.7567 1.1423

SPA-l-d 0.7521 0.7888 0.7700 0.9535

SPA-a-l-d 0.7831 0.7995 0.7912 0.9795

SPA-a-l-d-u 0.7815 0.8014 0.7913 0.9751

IBM4-cont 0.8528 0.8293 0.8409 1.0282

IBM4-cont-oracle 0.8132 0.9146 0.8609 0.8891

IBM4 0.7771 0.9656 0.8611 0.8048

COMB 0.7817 0.9607 0.8620 0.8137

Table 3.5: French-English: Best alignment results evaluation

In Table 3.3, both IBM4 aligners and SPA aligners outperformed the baseline signifi-

cantly. We evaluated the IBM4 results in three ways: regarding the whole part between the

smallest and the largest positions as a contiguous answer fragment (”IBM4-cont”), regard-

ing its best possible contiguous fragment as a contiguous answer fragment (”IBM4-cont-

oracle”) and considering it as it is (”IBM4”). Overall the IBM Model 4 aligner showed

the best performance and SPA-l-u approached to IBM4-cont-oracle. This means, for the

contiguous alignment, IBM4-cont-oracle and SPA-l-u have almost the same performance.

The best SPA in Table 3.4 is better than IBM4 in Table 3.3 which means that it is possible

to improve SPA and after improvement, SPA might outperform IBM4.
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Aligner Recall Prec. F1 Len(M)/Len(H)

SPA-single 0.9680 0.3460 0.5098 2.7977

SPA-basic 0.9038 0.8209 0.8603 1.1010

SPA-anchor 0.9294 0.8432 0.8842 1.1023

SPA-len(4) 0.8822 0.8754 0.8788 1.0078

SPA-dist(4) 0.9382 0.8338 0.8829 1.1252

SPA-a-l 0.9096 0.9026 0.9061 1.0078

SPA-a-d 0.9432 0.8574 0.8983 1.1000

SPA-l-d 0.9159 0.8882 0.9018 1.0312

SPA-a-l-d 0.9231 0.9045 0.9137 1.0205

SPA-a-l-d-u 0.9229 0.9054 0.9141 1.0193

COMB 0.7945 0.9651 0.8715 0.8233

Table 3.6: French-English: Top 10 alignment results evaluation

Test-set-id COMB(en-cn) IBM4(en-cn) COMB(fr-en) IBM4(fr-en)

0 0.6502 0.6223 0.8737 0.8725

1 0.7506 0.7401 0.8696 0.8715

2 0.7413 0.7348 0.8240 0.8182

3 0.7386 0.7332 0.8776 0.8770

4 0.7879 0.7835 0.8995 0.9034

5 0.8363 0.8328 0.8659 0.8635

6 0.7936 0.7869 0.8164 0.8169

7 0.7964 0.7956 0.8201 0.8157

8 0.7686 0.7599 0.8906 0.8953

9 0.8048 0.8012 0.8683 0.8638

P-value 0.01 0.5

Table 3.7: The significance test for COMB and IBM4
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Table 3.5 and Table 3.6 show the performance of SPA on French-English data. Here we

observe that each penalty (length, distance, anchor, and untranslated words) helped SPA

individually, and that, in fact, the highest score was obtained when all the four penalties

were applied together. French and English are very similar languages in their grammatical

structures. The length and distance penalties are helpful because for a pair of translation

phrases, their lengths are comparable, and their positionsare similar in their sentences.

The anchor context supported the target phrase by the surrounding word translation score.

The untranslated word penalty helps throw out irrelevant words from the target phrases.

Interestingly, the “positional” result is very close to “SPA-basic” in F1, and this shows that

the two languages are very close in sentence structure. Because the oracle SPA alignment

gives higher scores than IBM4 in the top 10 as seen in Tables 3.6and 3.5, SPA shows the

potential for improvement and ,with such, might outperformIBM4.

Table 3.7 shows the results of the combined aligner (“COMB”) for both language pairs,

and the COMB outperforms IBM. We usee−11 ande−12 for French-English and English-

Chinese thresholds respectively in probability space (Because we use log space instead of

probability space for efficient computation in our actual implementation, we have these

empirically obtained values as thresholds.). Our significance test shows that for English-

Chinese, the combined version significantly outperforms IBM4while for French-English,

the difference is only slightly significant.

3.4.2 EBMT performance

Because we developed SPA to help the EBMT system generate better translation, so we

also evaluate its effect on EBMT translation quality.

After tuning several key parameters in the EBMT system separately for each alignment

algorithm in use, we obtained the scores shown in Table 3.8.

In Table 3.8, we observe that SPA outperforms EBMT - the old aligner in the CMU

EBMT system by a marked difference. For the Dev, Unseen1, and Unseen2 data set, SPA

has 35%, 20%, and 28% higher BLEU scores than EBMT, respectively, which is a great

improvement.
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Dev Unseen1 Unseen2

EBMT 0.1632 0.2400 0.1346

SPA 0.2214 0.2896 0.1729

IBM4 0.2197 0.2785 0.1755

COMB 0.2240 0.2815 0.1751

Table 3.8: French-English BLEU scores by aligners

We also observe that IBM4 and COMB significantly outperformed the EBMT but the

performance differences among SPA, IBM4, and COMB are very small. For Dev, Un-

seen1, and Unseen2, the winners are different - COMB for Dev, SPA for Unseen1, and

IBM4 for Unseen2.

Our significance test shows that SPA, IBM4, and COMB perform significantly better

than EBMT, but that the differences among SPA, IBM4, and COMB arenot significant

(0.38 ≤ p ≤ 0.45).

In this chapter, we have demonstrated that, with properly chosen constraints, SPA

shows nice performance in both alignment accuracy and translation. However, for each

constraint, we simply combined the feature score one-by-one using linear interpolation.

We need a reasonable framework where the weights of constraints are automatically tuned

together. Furthermore, we did not use word alignment information, which is a by-product

when we build a dictionary using word alignment models9. The word alignment infor-

mation has source/target word mappings per sentence pair, and we think it will be bene-

ficial for SPA, which finds translations from each sentence pair under consideration, be-

cause word translation probabilities in the dictionaries are calculated over the whole train-

ing corpora. SPA also outputs only contiguous target phrases that may include irrelevant

words, but we did not show how it affected both alignment quality and translation quality.

In the next chapter, we investigate a framework in which we combine the constraint fea-

ture scores together, use external word alignment information, and employ non-contiguous

phrasal alignment to exclude irrelevant target words.

9IBM word alignment models in our experiments.
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Chapter 4

SPA enhancements

In Chapter 3, we investigated the improvements SPA made over the baseline EBMT sys-

tem. In spite of these initial improvements, we discussed three points for further improve-

ment at the end of the chapter. First, SPA provides a single final phrasal alignment score

to the translation system by using a heuristic-based function for each constraint feature

and combining them one-by-one in a simple linear interpolation that might be improved

by considering a more sophisticated way of combining feature scores. Secondly, the im-

provements described in Chapter3 did not use word alignment information, a by-product

of building a dictionary using IBM word alignment models. Word translation probabili-

ties in the dictionaries are calculated over the whole training corpus. However, because

the word alignment information has source/target word mappings for each sentence pair,

we think its use will be beneficial for SPA, which finds translations from each sentence

pair under consideration. Finally, the SPA outputs only contiguous target phrases that may

include irrelevant target words. We need to investigate thepossibility of excluding such

irrelevant target words.

In this chapter, we first discuss modifying SPA to return multiple translations with

multiple features and to tune weights for the various features via minimum error rate train-

ing. Then we consider how to employ external alignment information in SPA. Finally, we

investigate non-contiguous alignment.
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4.1 Multiple Translations

We made two immediate modifications to SPA. We first changed SPA to return multiple

feature values instead of a single combined final value. We next made changes on some

feature values. The final SPA feature functions are explained in Section 4.4.3. Note that,

in the feature function list, eachlex function is a uni-directional SPA score ,bonus is

an extended version ofAnchor Context, eachuntrans is a uni-directionalUntranslated

Penalty, p is a modified version ofLength Penalty. penalty was newly introduced, and the

old featureDistance Penaltywas removed because it is language specific.

Second, SPA can return topNSPA candidates for a source match whereNSPA is the

maximum number of alternative translations. Now, in SPA, weare given a source phrase

f = f i+k
i+1 = fi+1, ..., fi+k and a source/target sentence pair (F, E). We first set a range

[rstart, rend] from which we draw potential translation candidates using the position of the

source phrase in the source sentence.

rstart = (i+ 1)× |E||F| (4.1)

rend = (i+ k)× |E||F| (4.2)

These are then modified by applying a pre-defined window sizeW 1.

rstart ← max(1, rstart −W ) (4.3)

rend ← min(L, rend +W ) (4.4)

Next all the possible contiguous target fragments from the range defined byrstart andrend
are assessed as candidate translations of the given source phrase. Now the candidate setC

is:

C = {ck|ck = em, ...en,m <= n,m >= rstart, n <= rend} (4.5)

Figure 4.1 shows an example of a calculated range with a window size of 2.

1We usedW=3 which is empirically obtained.

42



Figure 4.1: Defining a candidate range from external alignments

This approach enables SPA to reduce the search space in finding target candidates. The

basic SPA theoretically assessesL(L+1)
2

candidates when the target sentence isL words

long. However this approach allows SPA to assess at mostL′(L′+1)
2

candidates whereL′ =

rstart − rend + 1. These candidates are then filtered before score calculation so that they

are not too much longer or shorter than the source phrase. To remove unrealistically long

or short target candidates, we apply a predefined length ratio to the source phrase length

and filter out those that are not within the calculated range of length.

C = {ck|ck = em, ...en,m <= n,m >= rstart, n <= rend, (4.6)

n−m+ 1 <= |f | ∗Rmax, n−m+ 1 >= |f | ∗Rmin}
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wheref denotes the source phrase andRmin andRmax denote the acceptable maximum

ratio and minimum ratio respectively2.

For the considered candidates inC, SPA calculates their feature values. Then it multi-

plies twolex values andp(|e|) value to get analignment scorethat will be used in obtain-

ingCsorted which is a sorted set ofC.

Csorted = {cp|0 ≤ p < |C|, AS(cp−1) ≥ AS(cp) where 0 < p < |C|} (4.7)

whereAS(cp) is the alignment scoreof the candidatecp. Finally it returns topNSPA

candidates whose alignment score satisfies a score ratio criterion:

CNSPA
= {cp|AS(cp) ≥ RatioSPA × AS(c0), 0 ≤ p < min(NSPA, |Csorted|)} (4.8)

whereRatioSPA is a ratio value between 0.0 and 1.0. TheNSPA andRatioSPA are con-

figurable parameters in the EBMT system.

TheAS(cp) is passed to the EBMT system along with the SPA feature scores.The

EBMT engine usesAS(cp) when it prunes candidate translations to have onlyNEBMT

translation candidates for each source match. TheNEBMT is a configurable parameter in

the EBMT system to specify the maximum number of translation alternatives for each

source match. TheAS(cp) is also used in decoding like other SPA feature scores.

4.2 Framework for parameter tuning

Decoder

Then we modified our decoder to work in a log-linear model. Fora source sentence

F = fJ
1 = f1, ..., fj , ..., fJ and a possible target sentenceE = eI1 = e1, ..., ei, ..., eI ,

Pr(E|F) = pλM
1
(E|F) (4.9)

=
exp[

∑M

m=1 λmhm(E,F)]
∑

e′Ii
exp[

∑M

m=1 λmhm(e′
I
1,F)]

(4.10)

2We used 3 and 5 forRmin andRmax respectively in our experiments. They were empirically chosen

and worked reasonably well.
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where we have a set ofM feature functionshm(e, f),m = 1, ...,M and for each feature

function, there exists a model parameterλm,m = 1, ...,M .

The decoder uses the feature scores calculated by the EBMT engine itself and the

feature scores returned by SPA. The EBMT feature scores are described in Section 2.1.2

and the SPA feature scores consist of the alignment scoreAS(e) and the feature scores

described in Section 4.4.3.

Parameter Tuning

To optimize the parameter set, we use the Minimum Error Rate Training (MERT)

approach described by Och (2003) usingBLEU as the error criterion. Zhao and Waibel

(2005) used MERT to extract translation phrases independently of a decoder, but we use

it in our decoder so that the feature weights are optimized directly for translation quality.

The approach assumes that the number of errors for a set of sentencesES
1 is obtained

by summing the errors for the individual sentences:E(RS
1 ,E

S
1 ) =

∑S

s=1 E(Rs,Es). The

goal is to obtain a minimal error count for a representative corpusFS
1 with given reference

translationŝES
1 and a set ofK different candidate translationsCs = Es,1, ...,Es,K for each

input sentenceFs.

λ̂M
1 = argminλM

1

S
∑

s=1

E(Rs, Ê(Fs;λ
M
1 )) (4.11)

= argminλM
1

S
∑

s=1

K
∑

k=1

E(Rs,Es,k)δ(Ê(Fs;λ
M
1 ),Es,k) (4.12)

with

Ê(Fs;λ
M
1 ) = argmaxE∈Cs

M
∑

m=1

λmhm(E|Fs) (4.13)

In this work, we use the minimum error rate implementation inthe Moses system by

Koehn et al. (2007).

Figure 4.2 shows the MERT integration into the EBMT system. Once the EBMT sys-

tem builds a dynamic phrase table which is basically a lattice, it stores the table in a file.

The rest of the MERT process is almost the same as the MERT process in the Moses sys-

tem.
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Figure 4.2: Modified components for parameter tuning

1. The EBMT decoder3 loads parameter weights (feature weights) and the table.

2. It finds top-N hypothesis translations.

3. MERT finds new optimized weights for feature scores.

4. The EBMT returns to step 1 if the weights did not converge.

The tuned feature weights are used in future translations.

3The EBMT decoder can run as a stand-alone version taking a lattice as input.
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4.3 Exploiting external word alignment

In Chapter 3, we assumed that we have only bilingual probabilistic translation dictionar-

ies. In general, these dictionaries are trained in two ways.One group calculates translation

likelihood from the number of co-occurrences of word pairs in a comparable corpus. They

count the occurrences of all the possible source and target word pairs in each possible

translation segments. They then accumulate these statistics through the entire corpus and

calculate translation likelihood. For example, when they define translation likelihood con-

ditional probability, they calculate it as:

p(ej|fi) =
count(ei, fj)

∑

k count(fi, ek)
(4.14)

The other group learns word alignment, which is a set of word links 4, or translated

word pairs in a parallel corpus. They then calculate conditional probability based on the

word links from the alignment.

p(ej|fi) =
link count(fi, ej)

∑

k link count(fi, ek)
(4.15)

Among the statistical alignment methods, IBM Model 4 is closeto the state-of-the-

art aligners. Although some researchers using other alignment methods have reported im-

provements over the IBM model, the improvements are not large, and often they use IBM

Model 4 alignments as an important factor as in Taskar et al. (2005)’s work.

For the research discussed in Chapter 3, we had trained dictionaries using IBM Model

4, hence we had high quality word alignment information which we did not use. In this

chapter, we investigate how to use external word alignment information in SPA. We first

use the external alignment information for our contiguous SPA and then investigate non-

contiguous alignment in the next section.

For contiguous SPA, we use external alignment information to find a range from which

we draw target candidates. This is helpful when the proportional range does not include

real alignments. Now, in SPA, we are given a source phrase, a source/target sentence pair,

4We use word links and mappings interchangeably hereafter inthis thesis.
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and word alignments for the pair. From the target words that are aligned from the source

phrase words, we first find the ones with the smallest index andthe largest index and set

rstart andrend with them respectively to define a range[rstart, rend] from which we draw

possible target candidates. The rest of process is the same as the modified contiguous SPA

in Section 4.1. Figure 4.1 shows an example of a calculated range with a window size of

2.

4.4 Non-contiguous alignment

Given a pair of translation sentences and a source phrase, wefind a target translation phrase

that consists of aligned target words from the source words in the source phrase. When all

the target words between the first aligned target word and thelast aligned target word are

aligned from any of the source words in the source phrase, we say that the target phrase is

contiguous. But when there is any unaligned target word, we say that the target phrase is

non-contiguousand call a series of consecutive unaligned target words agap.

For the hand-aligned data we used in Chapter 3, we counted how many times the 3-8

words long source phrases are aligned to non-contiguous target phrases. Depending on

whether we count an unaligned target word by human as a part ofa gap (case 1) or not

(case 2), the portions of non-contiguous alignments are different. The statistics are re-

ported in Table 4.1. For English-Chinese, 41.7% to 63.8% of source phrases are aligned to

non-contiguous target phrases and for French-English, 9.1% to 29.6% of source phrases

are aligned to non-contiguous target phrases. These portions are significant and led us to

study non-contiguous SPA. Another observation is that the close language pair of French-

English has less word order discrepancy which leads to less non-contiguity than the dis-

tance language pair of English-Chinese, and we may benefit more by using non-contiguous

SPA for the distant language pair.

In this section, we describe our basic idea of scoring. Simply, given a source phrase and

a target phrase with a single gap, we can calculate the alignment score for them by boosting

the alignment score when the gap and the outside of the sourcefragment have a translation
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Language Pair English-Chinese French-English

Number of sentence pairs 386 91

Number of source phrases 27,286 12,446

Number of non-contiguous target phrases (case 1) 63.8% 41.7%

Number of non-contiguous target phrases (case 2) 29.6% 9.1%

Table 4.1: Non-contiguous alignment statistics on the hand-aligned corpora

relationship or the outside of the candidate target fragment and the outside of the source

fragment have a translation relationship. On the other hand, we penalize the score when

the candidate target fragment and the outside of the source fragment have a translation

relationship, when the gap and the source fragment have a translation relationship, or when

the outside of the candidate target fragment and the source fragment have a translation

relationship.

Figure 4.3 shows the boosting area and the penalizing area. Areas 3 and 6 represent

non-contiguous alignment for the source and target fragments, areas 1, 2, 4, 5, 7 and 8 are

the boosting areas, and areas A, B, C, D, E, F and G are the areas that are penalized.

One example of the formula for the alignment score could be written as follows:

Scoree ← α× ScoreF (i, i) (4.16)

−β × ScoreF (i, g)

−γ × ScoreF (i, o)

+δ × ScoreF (o, o)

+ǫ× ScoreF (o, g)

−ζ × ScoreF (o, i)

where

ScoreF (i, g) = P (i↔ g) (4.17)

given a target fragmente andα, β, γ, δ, ǫ, andζ are all positive. Here the first argument

of ScoreF () is an area in the source sentence, and the second argument is an area in
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Figure 4.3: Non-contiguous alignment

the target sentence. The area labelsi, o, andg representinside of the fragment, outside

of the fragment in the sentence, and the gap in the fragmentrespectively. Therefore, in

Figure 4.3,ScoreF (i, i) is the score for area 3 and 6,ScoreF (i, g) is the score for area D,

ScoreF (i, o) is the score for area A and G,ScoreF (o, o) is the score for area 1, 2, 7 and

8, ScoreF (o, g) is the score for area 4 and 5,ScoreF (o, i) is the score for area B, C, E

and F. For example, given a candidate target fragmente, ScoreF (i, g) function calculates

the alignment score between the source fragment and the gap in the target fragment.
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4.4.1 A computationally feasible approach

To calculate the score for a target phrase with multiple gaps, we can extend the scoring

approach described in the previous section. We calculate the inside score and outside score

and use them to boost or penalize the score.

However, identifying the gaps in an efficient way is a challenging task. Given a source

phrase in basic SPA, we had
L× (L+ 1)

2
(4.18)

target candidates whereL is the target sentence length. In the non-contiguous alignment,

we have

2L (4.19)

possible candidates because each target word can be included or excluded from a candi-

date. Because Moses implements an accurate and widely-used symmetric word alignment

method, theRefined Method, and the alignment is inherently non-contiguous, we investi-

gate exploiting it for our non-contiguous alignment base.

First, given a source phrase, we start from all of the target words that are aligned to any

of the source phrase words in the Moses word alignment. Secondly, we check all the target

words near the boundaries within a window size ofW 5. If a target word is already aligned

and its outside score is larger than the inside score, the word could potentially be removed

and we say it isremovable. If a target word is not aligned and its inside score is larger

than the outside score, the word could potentially be included and we say it isincludable.

Thirdly, by excluding or including each removable/includable word, we generate target

candidates. So, if we havei includable words andr removable words, we then have

2i+r (4.20)

target candidates. Fori+r <= L, 2i+r <= 2L, but in realityi+r << L and2i+r <<< 2L.

Figure 4.4 illustrates a non-contiguous alignment procedure using Moses alignment

as its basis. Solid black boxes denote non-contiguous external word alignment, or Moses

5We usedW = 1 in our experiments assuming that target words are close to each other.
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Figure 4.4: Non-contiguous alignment extended from Moses alignment with W=1: (a)

Moses alignment, (b) includable words are determined, (c) removable words are deter-

mined.

word alignment output in this case. The striped boxes denoteincludable words, and the

gray boxes denote removable words. Because we have three striped boxes and two gray

boxes, we generate23+2 = 25 = 32 candidate alignments in this case.

We then calculate feature scores, including supporting feature scores and penalizing

feature scores for each candidate, and pass them to the decoder so that they are used in the

translation with their tuned parameters in a separate step.

In this thesis work, we used the decoder in the EBMT system which did not re-

move gaps in non-contiguous alignments by interlocking target phrases. Instead, it sim-

ply dropped gaps from non-contiguous alignments if it givesa better LM score or dis-

carded non-contiguous alignments.
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4.4.2 Pre-processing for unsupervised external alignment

In general, unsupervised alignment is particularly difficult for linguistically distant lan-

guage pairs. For example, some languages are SVO and some areSOV 6. Some have de-

terminers and some do not7. Some have detailed case markers and some do not8. Even

if we have a fairly good amount of data, we have a lot of incorrect word alignments due

to such linguistic differences. Finding these incorrect alignments is as difficult as finding

correct alignments.

We sometimes observe that our external aligner finds very isolated words (out-liers) as

alignments and that most of them are incorrect alignments.

  | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|33|34|35|36|37|38|39|
------------------------------------------------------------------------------------------------------------------------
 1|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
 2|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
 3|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
 4|  |  | 4|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
 5|  |  |  | 5| 5| 5| 5| 5|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5|  | 5|  |  |  |  |  |
 6|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
 7|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
 8|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
 9|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
10|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
11|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
12|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
13|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
14|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
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Figure 4.5: Removing isolated alignment links

Figure 4.5 shows an example of an unlikely isolated alignment for a Chinese-English

6SVO languages include English, French and Chinese and SOV include Korean, Japanese and Turkish.
7For example, English determiner ’the’ does not exist in Korean.
8For example, Korean has subject case markers but English does not.
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sentence pair. The latter parentheses far away from the majority of aligned target words

are incorrect. We want to remove those isolated word alignments that are potentially erro-

neous. Given a source phrasefi, ..., fi+m and a non-contiguous target phraseej, ..., ej+n,

we can improve the alignment by removing the out-lier alignments as follows:

1. We collect all the contiguous target fragmentsC0 = {c1, ..., ck0} and calculate their

average inside score.

2. From the center of source phrase positionssp = (
∑i+m

p=i p)/(m + 1), we calculate

an expected target positiontpexpected = sp × |E|
|F|

. In this approach, we assume that

the source and target sentences have the same word order.

3. If the target fragments are scattered within a range whichis R times the length

of the fragments, we stop. Formally,last word(ckt) − first word(c1) + 1 <=

R×∑cm∈Ct
|cm| whereR >= 1, stop9

4. If the first fragment score is less than that of the last one,we remove the first frag-

ment. Formally,score(c1) < score(ckt), thenCt+1 ← Ct − {c1} and go to step 3.

5. If the last fragment score is less than that of the first one,we remove the last frag-

ment. Formally,score(c1) > score(ckt), thenCt+1 ← Ct − {ckt} and go to step 3.

6. If score(c1) == score(ckt), we remove the more distant fragment fromtpexpected
in Ct to getCt+1 and go to step 3 (Remove a random one if their distances from

tpexpected are the same).

Thescore function we used in this approach calculates average word translation probabil-

ity.

score(ck) = (
∏

e∈ck

max(maxi+m
j=i p(e|fj), ǫ))

1
|ck| (4.21)

We also considered filling gaps in non-contiguous alignment. We wanted to fill gaps that

have reasonably good inside scores compared to their respective outside scores. But in

Moses alignment, which we used as external alignment source, there were so few gaps

which satisfied our criteria that we did not consider it any more.
9We empirically obtainedR = 4.
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4.4.3 Alignment score features

For each target candidate translation for a given source phrase, we calculate multiple fea-

ture scores. To help find the best possible translation, these feature scores are then com-

bined for use in decoding.

We denote the given source phrase byf and outside word sequences in the source

sentence byf c. Likewise, we usee and e
c for the current target candidate phrase and

outside the target phrase in the target sentence respectively. According to our setting,f is

contiguous andf c, e, andec can be either contiguous or non-contiguous.

• lex(e|f)
This feature holds source-to-target lexical translation evidence. A very small proba-

bility value ǫ was used to avoid zero production. We used one tenth of the smallest

translation probability value in the dictionary asǫ.

lex(e|f) = (
∏

ei∈e

max(maxfj∈f tr(ei|fj), ǫ))|e| (4.22)

• lex(f |e)
This feature holds target-to-source lexical translation evidence.

lex(f |e) = (
∏

fi∈f

max(maxej∈etr(fi|ej), ǫ))|f | (4.23)

• bonus(f , e)

This feature holds lexical translation evidence of the outsides of the source and target

phrases.

bonus(f , e) = (
∏

ei∈ec

max(maxfj∈fctr(ei|fj), ǫ))|e
c| (4.24)

×(
∏

fi∈fc

max(maxej∈ectr(fi|ej), ǫ))|f
c|

• penalty(f , e)

This feature holds lexical translation evidence that showsthe current pair is not a
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good translation pair. The lexical translation score is calculated betweeninside and

outside phrases.

penalty(f , e) = (
∏

ei∈ec

max(maxfj∈f tr(ei|fj), ǫ))|e
c| (4.25)

×(
∏

fi∈fc

max(maxej∈etr(fi|ej), ǫ))|f
c|

×(
∏

ei∈e

max(maxfj∈fctr(ei|fj), ǫ))|e|

×(
∏

fi∈f

max(maxej∈ectr(fi|ej), ǫ))|f |

• untrans(f)

This feature counts the number of source words inf that are not translation words

from the target words ine.

untrans(f) =
∑

fi∈f

f(fi, e) (4.26)

wheref(fi, e) is 1 if maxej∈etr(fi|ej) == ǫ, 0 otherwise.

• untrans(e)

This feature counts the number of target words ine that are not translation words

from the source words inf.

untrans(e) =
∑

ei∈e

f(ei, f) (4.27)

wheref(ei, f) is 1 if maxfj∈f tr(ei|fj) == ǫ, 0 otherwise.

• p(|e|)
Given a source phrasef, we assume that the length of its translation is a Gaussian

distribution withµ = |f | andσ = 1.

p(|e|) = 1√
2πσ2

e−
(|e|−|f |)2

2σ2 (4.28)

σ = 1 was chosen empirically.
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4.5 Evaluation

In this evaluation we measured translation performance differences among SPA variants.

The phrasal aligners we compared are:

• cSPA-mX

This is the modifiedcontiguous SPA described in Section 4.1. It returnsX multiple

translation alternatives drawn from a proportionally determined target range.

• cSPA-amX

This is the same ascSPA-mXexcept that this uses external wordalignment infor-

mation to find a target range for translation candidates. This aligner is described in

Section 4.3.

• cSPA-A

This is an SPA aligner that returns a single contiguous target phrase that spans from

the first aligned target word position to the last aligned target word position. The

positions are obtained from the external alignment information.

• cSPA-AmX

This SPA aligner returns multiple target alignment candidates with the contiguous

external alignment phrase at the top. The multiple candidates are obtained from the

range which was set using the external alignment information. To place the external

alignment at the top, we assigned it an alignment score whichis 0.001 times larger

than the best alignment score to all scores not initially placed at the top. This can be

seen as a combination ofcSPA-amXandcSPA-A.

• nSPA-A

This non-contiguous SPA aligner that simply returns the externalalignment as the

answer.

• nSPA-AmX

This is our non-contiguous SPA aligner using external alignment information as
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explained in Section 4.4.1. This returns multiple non-contiguous target candidates

with the external alignment at the top.

• nSPA-AmXr

This is a modifiednSPA-mAthatremoves out-lier alignment links before the external

alignments are used as described in Section 4.4.2.

All of these aligners return the multiple feature scores described in Section 4.4.3 so that

they are combined in the decoder with the learned parameters(weights) in a separate pa-

rameter optimization stage. To get the external alignments, we ran the Moses toolkit on our

training sets and used thegrow-diag-finalrefinement method. We annotated the training

sets with the alignment information so that SPA can use it in the EBMT system.

After that, we measured the translation performance differences between the contigu-

ous SPA and non-contiguous SPA. The metrics we used to measure translation perfor-

mance are BLEU by Papineni et al. (2002) and METEOR by Banerjee and Lavie (2005).

We optimized parameters using Minimum Error Rate Training for BLEU on the develop-

ment sets and measured performance on both BLEU and METEOR forthe test sets. We

set METEOR to do stemming and stemmed synonym matching.

For significance test, we used Paired Bootstrap Resampling by Koehn (2004b) with

n=100010.

4.5.1 Data

We investigated the phrasal aligners with three language pairs: Korean-English, Chinese-

English , and French-English

Our Korean-English training data consists of 28,000 sentence pairs. Because these sen-

tences are from conversations in the travel and business domains, they are much shorter

than the Chinese-English and French-English sentences in sentence length. The develop-

ment setDevconsists of 966 sentences with one reference, and the unseentest setUnseen

has 2,170 sentences with one reference. Both test sets are in-domain.
10This is a paired t-test onn re-sampled data sets.
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To build a Chinese-English training set, we drew sentence pairs with 70 or fewer words

on the source side from the FBIS data. These are 341,636 sentence pairs, and the Chinese

side was segmented using the Stanford Chinese segmenter by Chang et al. (2008). Our

development setDevconsisting of 919 sentences was used as a test set in NIST Machine

Translation Evaluation 2003, and our unseen test setUnseenis the newswire test set with

691 input sentences that was used in NIST Machine Translation Evaluation 2008. Both

sets have 4 reference translations.

For French-English, we drew 300,000 sentence pairs from theEuropal corpus. We used

the dev2006 set as our development setDevand the nc-test2007 as our unseen setUnseen

from WMT 2006 and 2007 respectively. These test sets have one reference translation.

sentences source words target words references

Training set 28,034 248,263 266,583 1

Dev 966 8,591 - 1

Unseen 1,170 10,441 - 1

Table 4.2: Korean-English data

sentences source words target words references

Training set 341,636 9,155,903 11,571,657 1

Dev 919 42,946 - 4

Unseen 691 31,708 - 4

Table 4.3: Chinese-English data

Tables 4.2, 4.3, 4.4 describe the data we used in this evaluation for Korean-English,

Chinese-English, and French-English, respectively.
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sentences source words target words references

Training set 300,000 9,074,621 8,355,970 1

Dev 285 9,174 - 1

Unseen 2,007 58,168 - 1

Table 4.4: French-English data

4.5.2 Results and analysis

Korean-English results

Table 4.5 shows Korean-English results.

cSPA-mXshows that the number of alternatives that SPA returns are important. As the

number of alternativesX increases, the BLEU score forDev increases and it is the highest

whenX is 3. WhenX is 4, the BLEU score is slightly lower. This means that more alter-

natives are helpful in increasing translation performance, but too many alternatives may

include noisy alternatives and make the system confused in discerning good alternatives

for translation with given feature scores.

cSPA-amXshows about 0.5 BLUE score improvements overcSPA-mXfor the same

Xs. BecausecSPA-amXdetermines a target range based on external word alignment,this

shows that we had slight improvements by using external wordalignment in determining

target ranges although the improvements are not statistically significant with0.05 < p <

0.1. This shows that the word order difference in Korean and English sentences should be

taken into account when we determine target ranges becausecSPA-mXcomplete ignores

word order differences.

cSPA-AmXis significantly better thancSPA-mXwith p < 0.0001 and slightly better

thancSPA-amXwith 0.05 < p < 0.1. ThecSPA-AmXis also much better thancSPA-A

looking at their BLEU scores. This means that the contiguous span of the external non-

contiguous alignment is a good translation candidate and using it with the derived multiple

alternative translations can increase the system performance.
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nSPA-AmXis significantly better thannSPA-Aas well withp < 0.0001. In this case,

multiple non-contiguous alignments derived from the external non-contiguous alignment

also increased the system performance. The# SPA alts on Devdenotes the number alter-

natives returned by non-contiguous SPA, which shows that although not many alternatives

were added, they were very helpful because they increased the system performance signif-

icantly withp < 0.0001.

cSPA-AmXis slightly better thannSPA-AmXat their bests (i.e.,cSPA-Am5andnSPA-

Am4), but not significantly (p = 0.146). The system achieved comparable BLUE scores

with nSPA-AmXalthough the number of alternatives is much smaller (i.e., the# SPA alts

on Dev is much smaller). The differences of the best BLEU scores ofcSPA-AmXand

nSPA-AmXare not significant for bothDev and Unseen. Although nSPA-AmXdid not

outperformcSPA-AmX, it is still meaningful because its execution time was much shorter.

We measured the execution times ofnSPA-Am4andcSPA-Am5and they were 566 and

9,691 seconds.

Table 4.6 compares selected phrases fornSPA-Am4andcSPA-Am7. In this table,SPC

denotes Selected Phrase Count,ASPL denotes Average Source Phrase Length,ATPL de-

notes Average Target Phrase Length, andSNTPCdenotes Selected Non-contiguous Target

Phrase Count. Overall the average phrase lengths are similarbecause only 5.9% of non-

contiguous phrases are selected in decoding. The decoder did not interlock non-contiguous

target phrases and this gave lower language model scores to the non-contiguous align-

ments. Note that the number of selected source words are lessin the non-contiguous case.

This is because the decoder did not use non-contiguous alignments that hurt hypothesis

scores.

Analysis of score difference between BLEU and METEOR

In our translation experiments, we provided METEOR scores as well as BLEU scores.

In general, METEOR scores are consistent with BLEU scores where we have significant

improvements and this supports our improvements. For example, when we look atcSPA-

m3 andcSPA-Am3results, we see that for both Dev and Unseen sets, METEOR scores
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increased as BLEU scores increased. However, sometimes METEOR scores drop when

BLEU scores increase. For example, when we look atcSPA-Am4andcSPA-Am5, the ME-

TEOR scores drop when the BLEU score increases. Table 4.7 shows how this happened.

cSPA-Am5generated shorter hypotheses with higher precision and lower recall compared

to cSPA-Am4. In METEOR, recall is weighted 9 times more than precision thuscSPA-Am4

received a higher score thancSPA-Am5. But in BLEU, recall is not taken into account. In-

stead, the brevity penalty penalizes short hypotheses, butit did not affect the score enough

to offset the higher precision ofcSPA-Am5. In the table, the brevity penalty decreased the

BLEU score only from 0.2615 to 0.2468 forcSPA-Am5. We had the same analytical results

when we comparedcSPA-Am5to cSPA-Am6. Another interesting point is the comparison

of cSPA-Am4andcSPA-Am6. cSPA-Am4has higher precision and recall, but it has a lower

BLEU score while it has a higher METEOR score. This is because it was penalized more

by the shorter hypothesis length.

Chinese-English results

Table 4.8 shows Chinese-English translation results.

Firstly, as in the Korean-English translation results,cSPA-m3performed significantly

better thancSPA-m1with p < 0.0001. We also observed a slight BLEU score drop when

X is 4 as in the Korean-English results.

Secondly,cSPA-amXare better thancSPA-mX. The improvement ofcSPA-am4over

cSPA-m3is statistically significant withp = 0.023. This shows that there are significant

word order mismatches between Chinese and English becausecSPA-mXassumes the same

word orders in the language pair.

Thirdly, cSPA-am4is better thancSPA-AandcSPA-Am5is better thancSPA-am4sig-

nificantly with p < 0.0001. This shows that the external alignment itself is a very use-

ful candidate as well as the derived multiple alternative candidates. The combined system

cSPA-AmXoutperforms any of the single systemcSPA-amXandcSPA-A.

Fourthly, we used the external alignment itself asnSPA’s only translation candidate.

This is denotednSPA-Aand performs significantly better thancSPA-A. However it is not
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as good as the best ofcSPA-AmXbecause there is a better contiguous alignment candidate

among the multiple contiguous candidates than the externalnon-contiguous alignment. We

also derived multiplenSPAalternative translations (nSPA-AmX) but it did not outperform

cSPA-Am5either. In fact, it underperformedcSPA-Am5becausenSPAwas not able to gen-

erate many translations. It created less than 1.3 candidates on average which did not give

the translation system chances to outperformcSPA-AmX. Table 4.9 shows selected phrase

statistics from our decoder. In this table,SPCdenotes Selected Phrase Count,ASPL de-

notes Average Source Phrase Length,ATPL denotes Average Target Phrase Length, and

SNTPC denotes Selected Non-contiguous Target Phrase Count. Non-contiguous phrases

are only 1.6% and 7% for the Dev and Unseen sets respectively because the decoder can-

not interlock non-contiguous target phrases which leads tolower language model scores.

Finally we removed outliers from the external alignment andinvestigated translation

results (nSPA-AmXr). This approach did not help onDev, but onUnseen, it slightly helped

overnSPA-AmX. And the improvement was statistically significant withp = 0.05.

French-English results

Table 4.10 shows our French-English translation results. There are three observations we

noticed for this language pair.

Firstly, the scores do not increase as the number of alternatives increases. Because

French and English are very close languages in their structures, the external alignment

may be accurate enough that the additional SPA translation alternatives derived from that

are not helpful for translation.

Secondly, onDev, cSPAandnSPAdo not perform significantly differently in BLEU.

Because the sentence structures of the two languages are similar, not many non-contiguous

alignment are actually selected in decoding. Table 4.11 shows that only 3.5% and 3.2% of

phrasal translations are non-contiguous forDevandUnseenrespectively. In this table,SPC

denotes Selected Phrase Count,ASPL denotes Average Source Phrase Length,ATPL de-

notes Average Target Phrase Length, andSNTPC denotes Selected Non-contiguous Tar-

get Phrase Count.
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Finally, nSPAperforms significantly better onUnseen. Based on the average lengths

of the selected source and target phrases in Table 4.11, we suspect the two data sets are

different enough thatUnseentakes more advantage with shorter phrasal translations by

chance.

Summary

To summarize, firstly, returning multiple translation alternatives from SPA helps the sys-

tem perform significantly better. The system performance increases as the number of al-

ternatives increases up to 3 or 4 and then stays or decreases as more candidates come in to

the search space. Secondly, using the external word alignment in determining target range

is useful when language pairs are different in word order. Inour experiments, we did have

improvements with external word alignment for Korean-English and Chinese-English. But

for French-English, which is a close language pair, we did not see improvements. Thirdly,

in addition to multiple translation alternatives drawn from the target ranges determined

based on external word alignment, we achieved more improvements when we used the ex-

ternal word alignment itself as the best candidate. Finally, non-contiguous alignment did

not help the system performance. For Korean-English and Chinese-English, contiguous

SPA performed better than non-contiguous SPA. However, forthe French-English unseen

set, non-contiguous SPA outperformed contiguous SPA.
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Phrase Aligner
Dev Unseen

# SPA alts on Dev
BLEU METEOR BLEU METEOR

cSPA-m1 0.2231 0.4400 0.2331 0.4271 1

cSPA-m2 0.2306 0.4436 0.2410 0.4438 2

cSPA-m3 0.2346 0.4484 0.2414 0.4364 3

cSPA-m4 0.2336 0.4553 0.2422 0.4417 4

cSPA-am1 0.2284 0.4462 0.2425 0.4406 1

cSPA-am2 0.2350 0.4526 0.2484 0.4469 2

cSPA-am3 0.2393 0.4660 0.2532 0.4593 3

cSPA-am4 0.2415 0.4638 0.2507 0.4528 4

cSPA-am5 0.2396 0.4633 0.2522 0.4575 5

cSPA-A 0.2224 0.4421 0.2377 0.4410 1

cSPA-Am3 0.2412 0.4568 0.2536 0.4571 3

cSPA-Am4 0.2426 0.4722 0.2543 0.4674 4

cSPA-Am5 0.2468 0.4687 0.2552 0.4603 5

cSPA-Am6 0.2435 0.4720 0.2543 0.4638 6

nSPA-A 0.2289 0.4607 0.2452 0.4592 1

nSPA-Am3 0.2419 0.4654 0.2555 0.4656 1.240

nSPA-Am4 0.2430 0.4741 0.2539 0.4678 1.263

nSPA-Am5 0.2422 0.4702 0.2573 0.4693 1.270

Table 4.5: Korean-English results: BLEU/METEOR

Dev Unseen

nSPA-Am4 cSPA-Am5 nSPA-Am4 cSPA-Am5

SPC 4,447 4,502 5,316 5,320

ASPL 1.49 1.49 1.48 1.50

ATPL 1.61 1.64 1.64 1.66

SNTPC 263 0 312 0

Table 4.6: Korean-English selected phrase statistics in decoding
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cSPA-Am4 cSPA-Am5 cSPA-Am6

BLEU 0.2426 0.2468 0.2435

BLEU w/o Brevity Penalty 0.2435 0.2615 0.2435

METEOR 0.4722 0.4687 0.4720

Hyp. Length 6,583 6,153 6,615

Ref. Length 6,932 6,932 6,932

Precision 0.5501 0.5761 0.5459

Recall 0.5224 0.5114 0.5209

Table 4.7: BLEU and METEOR score comparison
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Phrase Aligner
Dev Unseen

# SPA alts on Dev
BLEU METEOR BLEU METEOR

cSPA-m1 0.2000 0.4787 0.1664 0.4484 1

cSPA-m2 0.2247 0.5009 0.1831 0.4662 2

cSPA-m3 0.2307 0.5053 0.1864 0.4646 3

cSPA-m4 0.2279 0.5054 0.1860 0.4674 4

cSPA-am1 0.2075 0.4962 0.1711 0.4655 1

cSPA-am2 0.2247 0.5034 0.1866 0.4695 2

cSPA-am3 0.2314 0.4896 0.1866 0.4385 3

cSPA-am4 0.2355 0.4991 0.1922 0.4520 4

cSPA-am5 0.2351 0.5060 0.1912 0.4621 5

cSPA-A 0.2155 0.4988 0.1714 0.4698 1

cSPA-Am3 0.2346 0.5184 0.1980 0.4775 3

cSPA-Am4 0.2401 0.5177 0.1980 0.4831 4

cSPA-Am5 0.2423 0.5242 0.1996 0.4774 5

cSPA-Am6 0.2396 0.5057 0.1926 0.4594 6

nSPA-A 0.2352 0.5330 0.1785 0.4765 1

nSPA-Am3 0.2356 0.5371 0.1846 0.4932 1.243

nSPA-Am4 0.2377 0.5271 0.1864 0.4848 1.267

nSPA-Am5 0.2377 0.5377 0.1875 0.4945 1.274

nSPA-Am6 0.2356 0.5390 0.1878 0.4980 1.281

nSPA-Am3r 0.2364 0.5294 0.1860 0.4906 1.208

nSPA-Am4r 0.2373 0.5285 0.1903 0.4841 1.224

nSPA-Am5r 0.2358 0.5307 0.1908 0.4847 1.231

Table 4.8: Chinese-English results: BLEU/METEOR
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Dev Unseen

nSPA-Am5 Am5 cSPA-nSPA-Am5 cSPA-Am5

SPC 14,216 14,480 10,170 10,323

ASPL 1.39 1.42 1.44 1.47

ATPL 1.55 1.58 1.57 1.62

SNTPC 240 0 164 0

Table 4.9: Chinese-English selected phrase statistics in decoding

Phrase Aligner
Dev Unseen

# SPA alts on Dev
BLEU METEOR BLEU METEOR

cSPA-m1 0.2378 0.5384 0.1912 0.5382 1

cSPA-m2 0.2385 0.5371 0.1902 0.5380 2

cSPA-m3 0.2354 0.5325 0.1895 0.5300 3

cSPA-m2 0.2335 0.5307 0.1901 0.5373 4

cSPA-am1 0.2359 0.5343 0.1907 0.5374 1

cSPA-am2 0.2320 0.5319 0.1878 0.5364 2

cSPA-am3 0.2360 0.5364 0.1895 0.5401 3

cSPA-am4 0.2365 0.5369 0.1932 0.5381 4

cSPA-A 0.2383 0.5377 0.1914 0.5423 1

cSPA-Am3 0.2407 0.5374 0.1930 0.5367 3

cSPA-Am4 0.2378 0.5377 0.1918 0.5316 4

cSPA-Am5 0.2409 0.5390 0.1924 0.5368 5

cSPA-Am6 0.2362 0.5375 0.1908 0.5346 6

nSPA-A 0.2450 0.5416 0.1874 0.5492 1

nSPA-Am3 0.2419 0.5420 0.2005 0.5444 1.244

nSPA-Am4 0.2416 0.5418 0.2003 0.5468 1.263

nSPA-Am5 0.2423 0.5425 0.2019 0.5489 1.268

nSPA-Am6 0.2412 0.5416 0.2026 0.5493 1.273

Table 4.10: French-English results: BLEU/METEOR
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Dev Unseen

nSPA-Am5 cSPA-Am5 nSPA-Am5 cSPA-Am5

SPC 4,203 3,690 30,377 27,427

ASPL 2.16 2.49 1.85 2.09

ATPL 1.95 2.24 1.67 1.89

SNTPC 147 0 960 0

Table 4.11: French-English selected phrase statistics in decoding
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Chapter 5

Chunk alignment

SPA finds translation phrases based on word translation probabilities. This means that the

boundaries of the target phrases are determined by word translation probabilities. How-

ever, in the real world, we observe that a source phrase and a target phrase are a perfect

translation pair even if they include words that do not have translational equivalents in the

other side. For example, a Korean phrase ‘sa-moo-sil yi’ literally meaning ‘office NOM’

and an English phrase ‘the office’ are a good translation pair. But in word level, ‘yi’ does

not have a translational equivalent in English and ’the’ does not have a translational equiv-

alent in Korean. For this example case, although SPA may havethe correct translation in

the list of multiple alternative translations for the Korean phrase, SPA does not use linguis-

tic knowledge to indicate it as a perfect translation.

However, if we consider each of the source and target phrasesa unit and translate them

as a unit, we can guarantee their correct translation. For this reason we investigate chunks

as our basic translation units. The phrases above are legal chunks and show a nice example

of translation by chunks. In this chapter, we discuss a new chunk alignment algorithm and

methods for finding good chunk translation pairs.
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5.1 High quality chunk

5.1.1 What is a chunk

Chunk is a linguistic concept pioneered by Abney (1991). A chunk is a non-recursive

core of an intra-clausal constituent, extending from the beginning of the constituent to

its head, but not including post-head dependents. A maximalchunk is a chunk that is

contained in no other chunk and in this thesis work, we refer to a maximal chunk when we

mention a chunk. Furthermore, chunks are defined strictly syntactically, not semantically,

functionally, or lexically1. A typical chunk consists of a single content word surrounded

by function words related to it. The order in which chunks occur is much more flexible

than the order of words within chunks. When spoken, a strong stress will fall only once a

chunk and pauses are most likely to fall between chunks.

1 Only a relative handful of such reports was received , the jury said , considering the

widespread interest in the election , the number of voters and the size of this city .

2 Only [a relative handful]of [such reports] [was received], [the jury] [said], [consid-

ering] [the widespread interest]in [the election], [the number]of [voters]and[the

size]of [this city] .

3 [Only] [a relative handful] [of such reports] [was received] [,] [the jury] [said] [,]

[considering] [the widespread interest] [in the election], [the number] [of voters]

[and] [the size] [of this city] [.]

The above example shows how Abney defined chunks and how we modified them

for our machine translation purpose. The first sentence (“1”) shows the original sentence

and the second sentence (“2”) shows chunking performed on the original sentence. Note

1Chunks are contiguous in most languages although there are non-contiguous chunks in some languages.

In some cases, even non-contiguous chunks can be translatedcorrectly. For example, in an English sentence

”The more I read the more tired my eyes get.”, ”the more” are really one disjoint chunk, but translations are

usually fine when treated as two smaller separate chunks.
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that adverbs and punctuation marks are not chunks. Neither are prepositions included in

chunks. We define adverbs and punctuation marks as chunks andinclude prepositions into

the following phrases. The third sentence (“3”) shows modified chunking by our modified

chunk definition.

5.1.2 Advantages of using chunks

To begin, we discuss several advantages of using chunks as basic translation units. First,

to some degree, we can systematically translate untranslatable tokens (words, morphemes)

that exist only on one side of the language pair. These tokenscan be translated properly

using a phrase aligner such as SPA; however, additional efforts are needed to make the

tokens selected in decoding because phrasal aligners may return multiple target candidate

phrases and the correct translation may be one of them. Secondly, as chunks are n-gram

phrases, they convey local reordering and context as well, although this advantage is also

true for n-grams in phrasal translation. In addition, the number of chunks may better match

across languages than the number of words, which may yield better alignment at the chunk

level. Furthermore, because the order of chunks is more flexible than the order of words

within a chunk, using chunks as blocks in translation has more flexibility in re-ordering

than arbitrary n-grams crossing syntactic chunk boundaries. This is an important advantage

when we translate from or into a language with relatively looser word-order than English

or the Romance languages.

5.1.3 Uniqueness of our work

Our chunk-based work is different from previous work in the following ways:

First, our chunking is neither fully automatic nor bilingual. It exploits existing mono-

lingual chunkers that use machine learning techniques to find chunk boundaries trained

on a hand-annotated corpus with chunk boundaries. Most automated chunk detection al-

gorithms heavily depend on human resources such as human dictionaries (Le et al., 2000;

Hwang et al., 2004) and hand-written grammars (Wu, 1997) whereas others depend on
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co-occurrence statistics either bilingually or monolingually (Zhou et al., 2004; Watanabe

et al., 2003). In this work, we use existing chunkers to avoiderrors that can be caused

by automatic chunking or insufficient bilingual resources.However, since we use mono-

lingual chunkers, we do not maximize chunk correspondence between source and target

languages.

Secondly, our work uses a new chunk alignment algorithm thatis tightly combined

with IBM word alignment models. In this chapter, we introducea new chunk alignment

algorithm. The basic idea is to apply the well-known IBM word alignment algorithms to

chunk alignment by treating a chunk as a token and exploitingword translation probability

to boost chunk alignment because a chunk is composed of multiple words. In other words,

to alleviate data sparsity problems caused by using chunks as basic units, we will use word

alignment information between a source chunk and a target chunk when we align them.

Third, in decoding, it combines target chunks as well as target fragments which are not

chunks. Unlike the current EBMT system (Brown, 1996, 2005), this chunk-based system

is a hybrid system that combines a typical string-based EBMT system and a chunk-based

EBMT system. It uses a chunk as the basic translation unit whenthere is a good chunk

level translation, otherwise it falls back to the string-based model.

5.2 Related work

Since translation by chunks can naturally add or remove words that exist only on one side

of a language pair, some researchers have studied exploiting chunks in translation.

Le et al. (2000) used chunk alignment to get better word alignment. Given a dictionary

and chunked English sentences, they made corresponding Chinese sentences chunked via

chunk projection. More specifically, the citation for each word in an English chunk was

found in the dictionary to discern its translation in the corresponding Chinese sentence.

After resolving translation disambiguation using heuristics, the shortest Chinese word se-

quence including all the translation words is recognized asa chunk. The resulting Chinese

chunk then becomes the translation of the English chunk.
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Hwang et al. (2004) used chunk alignment to extract Korean dependency parse trees

given Japanese dependency parse trees and a human dictionary. They first align words con-

sulting a Japanese-Korean dictionary to find chunk boundaries and alignment and then they

align the remaining words. They finally extracted bilingualknowledge from the aligned

chunk pairs.

Zhou et al. (2004) extracted chunk pairs automatically to use in an SMT system. Their

chunk detection is based on the assumption that the most co-occurrent word sequence

may be a potential chunk. After aligning chunks using their co-occurrence similarity, they

extract chunk pairs and report a significant improvement in translation quality.

Ma et al. (2007) studied an adaptable monolingual chunking approach. They learned

word alignment in a parallel corpus and used this alignment information to find chunk

boundaries in both languages.

Wu (1997) studied inversion transduction grammar (ITG) formalism for bilingual pars-

ing for a parallel corpus. In this parse tree pair, the methodnaturally provides bilingual

bracketing and alignment so that we can obtain aligned chunkpairs. However, it remains

difficult to write a broad bilingual ITG grammar to deal with long sentences.

Watanabe et al. (2003) built a chunk-based statistical translation system. They decon-

struct the translation modelP (J |E) =
∑

A P (J,A|E) toP (J |E) =
∑

J

∑

E P (J,J , E|E)

whereJ andE are the chunked sentences forJ andE respectively. Then they decon-

structedP (J,J , E|E) further toP (J,J , E|E) =
∑

A

∑

A P (J,J , A,A, E|E) whereA is

chunk alignment andA is word alignment for each chunk translation.

Koehn and Knight (2002) deconstructed a translation model into sentence level re-

ordering (SLR), chunk mapping (CM)andword translations (W):

p(f |e) = p(SLR|e)×
∏

i

p(CMi|e, SLR)×
∏

j

(Wij|CMi, SLR, e) (5.1)

SLRdefines how source and target chunks are connected andCM defines an alignment

of source to target POSs. FinallyW sets the lexical composition of the target language

sentence. They reported improved performance over IBM Model4 on a short sentence

translation task.
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Our approach uses monolingual chunkers and IBM word alignment models. For chunk

alignment, we develop a new algorithm that uses word alignment information as chunk

alignment evidence. To overcome lower chunk correspondence due to monolingual chunk-

ing, we use theRefined Methodto find consistent chunk translation sequences that Och and

Ney (2003) have used in phrasal translation detection. We explain this approach in more

detail in Section 5.4.3.

5.3 Chunk detection

We first tried to detect chunks in a corpus automatically based on word co-occurrence

statistics. However, due to the quality of our preliminary results and the difficulty of the

task, we decided to use existing monolingual chunkers basedon machine learning tech-

niques that need some hand annotated training data for chunkboundaries.

In the next two subsections we describe the approach that we tried with the possibility

for further investigation in the future. And in the final subsection of this section, we de-

scribe the monolingual chunkers we used.

5.3.1 Methods for deriving chunks and idiom information from cor-

pora

Several methods have been proposed for deducing idiomatic phrases from corpora, both

monolingually and bilingually.

Monolingually, Mutual Information (Cover and Thomas, 1991)is the commonly-used

metric for determining the coherence of word sequences, while bilingually, cooccurrence

counts are typically used.

Melamed (2001) uses (bilingual) Mutual Information (MI) tocompute an objective

function. However his method allows for only two words or compounds to be combined

into a non-compositional compound, which may be insufficient to derive longer idiomatic

phrases.
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Often, the core of the meaning in a phrase (or sentence) is provided by one or more

relatively infrequent – but highly salient – words. The sameis commonly true for phrases

or sentences that are translations of each other, even if, because of idiomatic usage, the

kernel words themselves are not in translational correspondence. For example

Dutch Het regent pijpenstelen

[it] [rains] [pipe stems]

English It is raining cats and dogs

One measure to approximate salience is theInverse Document Frequency(IDF) by Jones

(1972) which is commonly used in the Information Retrieval community:

IDF(w) = log(
N

cw
)

wherew is the word or term under consideration,N is the corpus size (for our purpose,

the number of sentences), andcw is the number of sentences in whichw occurs.

We also useIDF in detecting chunk boundaries and aligning the detected chunks. Our

approach is described in the following:

1. Select words withIDF(w) > θ as salient words, in both the source and the target

languages.

2. Align salient words only.

3. Re-attach function words to salient words based on automatically derived linguistic

rules.

First, we select salient words in a sentence using anIDF threshold. We consider these

salient words the core meaning of each chunk2. Next, we align the salient words to align

chunks. Finally we attach function words to salient words based on automatically derived

linguistic rules to detect chunk boundaries. Our method to derive the rules is explained in

Section 5.3.2.
2When there are consecutive salient words, we regarded them tobe included in a single chunk.
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Figure 5.1: Constituent-to-constituent alignment

Figure 5.1 illustrates this method on an example. It first finds salient words. In this

example, the black Korean words “wind”, “soon”, “stop” and the black English words

“wind”, ”drop”, “soon” are salient words. Next, it aligns them. In this example, there

are 3 salient words in each sentence and they are aligned. Finally, it attaches non-salient

(function) words in gray to a salient word based on automatically derived chunk formation

rules.

The thresholdθ may be trained using any standard optimization algorithm such as

hill climbing or simplex, using alignment accuracy (compared to a gold-standard human

alignment) as an objective function.
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5.3.2 Automatic derivation of chunk formation rules

Instead of assuming linguistic knowledge about each language in the pair (e.g., predomi-

nantly post-position, as in Korean or Japanese, or pre-position, as in English, of function

words), these can be derived statistically from large monolingual corpora, which are read-

ily available for most languages.

Instead of the normal calculation of collocation (Mutual Information with the follow-

ing word, the following content word, or words in the other language), we now focus on

MI between (classes of) high-IDF words and surrounding (classes of) low-IDF words.

High-IDF words predominantly collocated with their right neighbor will by preference

absorb post-positions, whereas those with higher MI with their left neighbor will favor

pre-positions.

From a given corpus, rules can be derived that are either general over the corpus or

specific to certain content words. In addition to Mutual Information, other metrics for

phrasal cohesion can be explored. well.

5.3.3 Monolingual chunkers

We started experiments with the Chinese-English language pair. At the time we started the

experiments, there was no Chinese chunker available to us. And because the data we had

was already parsed, we decided to use the Chinese parse trees generated using Stanford

parser (Klein and Manning, 2003b,a). We wrote a simple program that splits a parse tree

into chunks. We took the same strategy for the English side because English sentences

were also already parsed.

Next, we did experiments with the Korean-English pair. LikeChinese, we could not

find a Korean chunker and wrote a rule-based Korean chunker that makes use of Part-

Of-Speech tags returned by the Korean morphological analyzer we used (Shim and Yang).

For English, instead of asking the Stanford parser to parse sentences and recognize chunks,

we used an existing monolingual chunker. We used SNoW shallow parser (Carlson et al.,

1999) for English.
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When we later began experiments on the French-English language pair, we found

and used TreeTagger (Schmid, 1994, 1995) for French. Becauseit also supported English

chunking, we decided to use it for English chunking n the language pair as well. A simple

program was written to extract chunkers from its hierarchical structures of results.

Note that all three language pairs include English but each used different chunkers. We

hoped that monolingual chunkers developed by the same developer were designed with

the concept of chunk, although we do not prove this assumption in this work.

5.4 Chunk alignment

In general, aligning chunks is a harder task than aligning words on the same training data

set if we use an unsupervised method such as IBM Model 4. The reason is that by using

chunks as a basic unit, we have much less evidential statistics than we do when we use

words as basic units.

For example, “in the office” is a chunk and appears much less than each of the com-

prising words “in”, “the” and “office” in a corpus. The statistical evidence for aligning the

chunk is less obvious than that of aligning the comprising words and this results in poorer

alignment quality for chunks. Hence aligning words and using this alignment information

in chunk alignment is an important idea unless we have a gigantic corpus in which sta-

tistical evidence for chunk alignment is reasonably sufficient. But in reality, it is hard to

build such an enormous corpus. Instead, we investigate a newmethod that induces chunk

alignment from word alignment together with chunk co-occurrence statistics.

5.4.1 The baseline system

Our baseline system is simply the Moses alignment system that regards chunks as basic

translation units and performs bi-directional alignment.For that, we concatenate all the

member words in a chunk and run Moses on word-concatenated chunks. The problem with

this method is that when the data becomes sparser, the systemhas less statistical evidence
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for chunk alignment. For this reason, chunk alignment quality may become poorer than

word alignment quality.

5.4.2 Word-mapping-based chunk alignment

To overcome the data sparseness problem in the baseline system, we first perform word

alignment and align a chunk pair when there is at least one word mapping among the

source and target words in the chunk pair. Formally,

• Let f ande be chunks andf befn
1 = f1f2...fn ande beem1 = e1e2...em.

• f ande are aligned if there exist any word alignment (fi,ej) where1 ≤ i ≤ n and

1 ≤ j ≤ m.

In the first stage, we align words by running GIZA++ on a training corpus bi-directionally

in Moses. And then we find chunk boundaries monolingually. Finally, we align chunks

based on word mappings for the words in a chunk pair. This method compensates for the

data sparseness problem to some degree.

However, this approach only counts word mappings and ignores chunk level statistics

and fertility. Fossum et al. (2008) also pointed out that function words that do not have

translational equivalents can be aligned to function words, which in this case, can produce

erroneous chunk alignments.

5.4.3 Using GIZA++ for chunk alignment

To take advantages of the baseline system and word-mapping-based chunk alignment sys-

tem, we designed a hybrid system. In the hybrid system, we first concatenate all the words

in chunks in a specially designed way (i.e., we can place a special delimiter character in

between words belonging to the same chunk) to use as basic units in GIZA++. Next, we

modify GIZA++ to take the source and target chunks and a statistical word translation dic-

tionary as input. The modified GIZA++ uses the dictionary to re-weight chunk translation

evidence by word translations within chunk pairs.
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• Let f ande be chunks andf befn
1 = f1f2...fn ande beem1 = e1e2...em.

• T (f |e) in IBM models is

T (f |e) = C(f , e)
∑

k C(fk, e)
(5.2)

• We redefine it as,

T (f |e) = C ′(f , e)
∑

k C
′(fk, e)

(5.3)

where

C ′(f , e) = C(f , e)× F (f , e) (5.4)

whereF (f , e) is a weighting function and for this, we usedpower meanswith power

p = 2 3:

F (f , e) =

(

1

m

m
∑

j=1

maxn
i=1(T (fi|ej))p

)
1
p

(5.5)

.

5.4.4 Word alignment boosted by character n-gram

Like word boosting in chunk alignment, we can also use character n-grams in a word to

boost word alignment. This technique is most helpful when dealing with morphologically-

rich languages for which parallel data is insufficient. Frequently, to make parallel data

correspond at the word level, we apply a morphological analyzer. Still, this technique has

its own problems. We may be unable to find a corresponding token in the other side for

a morpheme. It is also difficult to decide which level of analysis is adequate. For exam-

ple, an inflected Korean verb, often, has more than 5 morphemes, but the corresponding

English tokens number only two or three. In this case, using charactern-grams as pseudo

3The power mean is also known as a generalized mean with exponent p. Depending on thep value,

it can be a minimum (p = −infinity), harmonic mean(p = −1), geometric mean(p = 0), arithmetic

mean(p = 1), quadratic mean(p = 2) or maximum(p = infinity) and this variation allows us to efficiently

investigate which mean works the best. We empirically chosep = 2 to maximize our chunk alignment

accuracy.
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morphemes rather than completely splitting Korean morphemes can produce an improve-

ment in word alignment. Of course, the best case will be when we can use real morphemes

instead of charactern-grams.

In this case, the formula will be the same as Equation 5.4, butinstead of using word

translation probability, we use charactern-gram translation probability, which is trained

separately.

We employ this approach in our Korean-English translation experiments. To obtain

charactern-gram translation probability, we replace Korean tokens that are 4 words or

longer with character bi-grams from them and English tokensthat are also 4 words or

longer with character4-grams from them. These were empirically set up by looking at

alignment results.

5.4.5 Iterative refinement

Kim and Vogel (2007) showed that word alignment and phrasal alignment can help each

other. By giving back phrasal alignment information to the word aligner, they built a better

lexicon, and this improvement on word alignment produced a better phrasal alignment in

turn. This is applicable to our chunk alignment since chunksare also phrases (n-grams).

This is particularly beneficial for word alignment improvement because we have strict

chunk boundaries that prevent a word aligner from mapping words crossing chunk bound-

aries.

A simple way to investigate this technique is to iterate the two steps until convergence

is reached. Formally we start with iterationi = 0, performanceQ0 = 0, corpusC0 = C

(the initial corpus), and aligned chunk sequence pairsP0 = φ.

1. i← i+ 1

2. We add aligned chunk sequence pairs to the corpus to updateit: Ci = C0 ∪ Pi−1.

3. We align words inCi and calculate alignment qualityQi.

4. We stop ifQi −Qi−1 < ǫ
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5. We align chunks in the original corpusC0 and extract aligned chunk sequence pairs

Pi.

6. We return to step 1.

In step 5, we used the Moses alignment system that works with the modified GIZA++

for our word-boosted chunk alignment model.

5.5 Evaluation

5.5.1 Metric

In this evaluation, we measure precision, recall andF1 for chunk alignment. When we have

hand-aligned target chunksH = {hj|j = 0, ..., l} and target chunks foundM = {mk|k =

0, ...,m} by a chunk alignment algorithm for each source chunkfi, we calculate precision

P = |H∩M |
|M |

and recallR = |H∩M |
|H|

. Note that, unlike SPA alignment accuracy evaluation,

we did not exclude target chunks that are inM but not aligned in the hand-aligned corpus

We decided to include them this time because they are actually passed to our decoder and

used in translation.

5.5.2 Systems compared

We essentially compared three chunk alignment systems. Allthe systems are trained using

the Moses alignment system.

1 Baseline: This is the pure chunk-based system. We concatenated all the words in a

chunk in the training and test sets.

2 Word-map: This system is the word-mapping-based chunk alignment system. Be-

causeBaselineis very weak due to data sparseness, we consider this system to be

our actual baseline system to which we will compare our new approach.
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3 Word-boost: This is our new approach in which chunk translation probabilities are

weighted by word translations by using our modifiedGIZA++.

For theBaselinesystem, we used thegrow-diag-final (G-D-F)heuristic when we com-

bined both directional alignments. For theWord-mapsystem, we compared different re-

finement heuristics such as thegrow (Grow), grow-diag (G-D), grow-diag-final (G-D-F),

union (Union), andintersect (Intersect). For theWord-boostsystem, we compared differ-

ent refinement heuristic combinations for both word alignment and chunk alignment.

5.5.3 Data

We use French-English and Chinese-English language pairs tocompare the alignment

algorithms in alignment accuracy.

For French-English, we use 300,000 sentence pairs as the training set and 37 sentence

pairs as the hand-aligned set. The training set was drawn from Canadian Hansards and the

hand-aligned corpus was obtained from ACL WMT 2008.

In the training set, the French sentences are an average of 14.3 chunks and 25.7 words

long and the English sentences are an average of 14.3 chunks and 24.5 words long. The

chunks are 1.8 words long and 1.7 words long on average in French and English respec-

tively. Table 5.1 describes the training data we use in this experiment.

sentences chunks words

French 300,000 4,282,828 7,706,060

English 300,000 4,292,017 7,347,401

Table 5.1: Training set for French-English

Table 5.2 shows the French-English hand-aligned set we use.The data is originally

hand-aligned at the word level but we derive a chunk-alignedset by aligning chunk pairs

whenever any word pair in a chunk pair is aligned by human exactly as inWord-map. In

French, the sentences have an average of 10.6 chunks and 19.5words, and the chunks are
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an average of 1.8 words long. The English sentences have an average of 10.9 chunks and

17.9 words and the English chunks are an average of 1.6 words long. One thing to note in

this table is that for French-English, word alignment has relatively high fertility (i.e., the

number4+ link is very large) because the human aligner was not able to come up with

word to word alignment in many cases and just aligned a multi-word phrase to a multi-

word phrase which are then fully aligned at the word level.

sentences unit count 0 link 1 link 2 link 3 link 4+ link

French 37
word 721 43 366 93 34 185

chunk 392 27 218 49 42 56

English 37
word 661 35 296 91 52 187

chunk 403 18 217 79 39 50

Table 5.2: Hand-aligned corpus for French-English

For Chinese-English evaluation, we use the same training setas in Chapter 4 and the

same hand-aligned set as in Chapter 3.

On average, in the training set, the Chinese sentences consist of 26.8 words and 18.1

chunks in which the chunks are composed of 1.5 words. Likewise, the English sentences

consist of an average of 33.9 words and 18 chunks in which the chunks are 1.8 words

long. Table 5.3 describes the Chinese to English training data. Both the French-English

and Chinese-English language pairs show that the chunk levelcorrespondence is higher

than the word level correspondence.

sentences chunks words

Chinese 341,636 6,177,252 9,155,903

English 341,636 6,419,184 11,571,835

Table 5.3: Training set for Chinese-English

Table 5.4 shows the Chinese-English hand-aligned set. The chunk-aligned version is

obtained in the same way as the French-English chunk alignedversion is obtained. In
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Chinese, the sentences have an average of 9.6 chunks and 13.8 words, and the chunks

are an average of 1.4 words long. On average, the English sentences have 9.3 chunks and

16.1 words, and the English chunks are 1.7 words long. Unlikethe French-English hand-

aligned corpus, this corpus does not have as many high fertility words.

sentences unit count 0 link 1 link 2 link 3 link 4+ link

Chinese 386
word 5,337 1,419 3,316 544 55 3

chunk 3,721 1,112 2,095 372 96 46

English 386
word 6,277 2,329 3,393 488 60 7

chunk 3,592 1,155 1,797 459 120 61

Table 5.4: Hand-aligned corpus for Chinese-English

5.5.4 Results and analysis

Chunk alignment

Table 5.5 shows French-English chunk alignment performance. Our secondary baseline

Word-mapperforms much better than the originalBaseline. This difference in performance

can be explained byWord-map’s basis on word alignment, for which we have much bet-

ter statistical evidence for alignment, compared toBaseline’s sole reliance on chunk co-

occurrences. Our approach shows better overall scores thanthe strong baselineWord-map

and is the best withG-D for word alignment andG-D-F for chunk alignment.

Table 5.6 shows Chinese-English chunk alignment performance. The Chinese-English

results show a similar trend to the French-English alignment accuracy results.Word-map

is a much stronger baseline andWord-boostoutperforms it in the best case withG-D &

G-D-F or G-D & Union for word alignment and chunk alignment respectively.

For the following experiments on chunk-based translation,we usedG-D & G-D-F for

word alignment and chunk alignment respectively because this combination gives the best

performances for both language pairs.
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System Word H. Chunk H. Recall Prec. F1 |M |/|H|
Baseline N/A G-D-F 0.4753 0.5599 0.5141 0.8489

Word-map Grow Link 0.4629 0.7125 0.5612 0.6497

Word-map G-D Link 0.5247 0.7461 0.6161 0.7033

Word-map G-D-F Link 0.6085 0.7111 0.6558 0.8558

Word-map Union Link 0.6250 0.6791 0.6509 0.9203

Word-boost G-D G-D 0.5659 0.8158 0.6683 0.6937

Word-boost G-D G-D-F 0.5865 0.8196 0.6837 0.7157

Word-boost G-D Union 0.5934 0.7985 0.6809 0.7431

Word-boost G-D-F G-D-F 0.5852 0.8068 0.6783 0.7253

Word-boost Union G-D-F 0.5852 0.8161 0.6816 0.7170

Word-boost Union Union 0.6003 0.7874 0.6812 0.7624

Table 5.5: Chunk alignment results for French-English

Table 5.7 shows significance test results for French-English and Chinese-English. The

systems compared areWord-map, the word-link based chunk alignment which uses G-D-F

for word alignment (S1) andWord-boost, the chunk alignment system which uses G-D for

word alignment and G-D-F for chunk alignment (S2). We do not compare the baseline

system because it is obviously significantly worse for both language pairs.

For both language pairs, we compareF1 of the alignment results by the two systems

for each source chunk. After removing tied chunks, we calculate pairedt-test and obtained

p of 0.001 and 0.0001 for French-English and Chinese-English,respectively.

Iterative refinement

Table 5.8 shows word and chunk alignment performance with aniterative refinement ap-

proach on French-English. In the second iteration, the results show thatWord-mapand

word alignment (Word-align) improved significantly , which is what we expect when ap-

plying iterative refinement. However, we do not see improvement on chunk alignment.
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System Word H. Chunk H. Recall Prec. F1 |M |/|H|
Baseline N/A G-D-F 0.4519 0.3105 0.3681 1.4552

Word-map G-D Link 0.4993 0.4228 0.4579 1.1807

Word-map G-D-F Link 0.5712 0.4080 0.4760 1.4001

Word-boost Intersect Intersect 0.4022 0.4125 0.4073 0.9748

Word-boost Grow Grow 0.4456 0.4052 0.4244 1.0998

Word-boost G-D G-D 0.5367 0.4577 0.4941 1.1726

Word-boost G-D G-D-F 0.5538 0.4582 0.5015 1.2086

Word-boost G-D Union 0.5625 0.4525 0.5015 1.2430

Word-boost G-D-F G-D-F 0.5514 0.4530 0.4974 1.2173

Word-boost Union Union 0.5835 0.3911 0.4683 1.4918

Table 5.6: Chunk alignment results for Chinese-English

Lang. pair chunks S1> S2 S1= S2 S1< S2 p

French-English 392 37 292 63 0.001

Chinese-English 3,718 164 3,196 358 0.0001

Table 5.7: Significance tests

The score actually decreased slightly, but not significantly. This decrease probably occurs

because the constraints that the chunk aligner gives to the word aligner are stronger than

the constraints that the word aligner gives to the chunk aligner. In other words, the chunk

aligner encourages the word aligner to respect chunk boundaries, but the word aligner en-

courages the chunk aligner to respect word alignment insidealready aligned chunk pairs

in the previous iteration which may not have a great impact.

The fact that we improve word alignment is very noteworthy because we are building

a translation system that uses both chunk alignment and wordalignment. Word alignment

will be utilized in translation when sufficiently good chunkalignments are absent.

Table 5.9 shows iterative word and chunk alignment performance with modified recall
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Iteration System Word H. Chunk H. Recall Prec. F1 |M |/|H|
Chunk alignment

1
Word-map G-D Link 0.5247 0.7461 0.6161 0.7033

Word-map G-D-F Link 0.6085 0.7111 0.6558 0.8558

Word-boost G-D G-D-F 0.5865 0.8196 0.6837 0.7157

2

Word-map G-D Link 0.5508 0.7786 0.6452 0.7074

Word-map G-D-F Link 0.6071 0.7530 0.6722 0.8063

Word-boost G-D G-D-F 0.5865 0.8057 0.6789 0.7280

Word-boost G-D-F G-D-F 0.5838 0.8080 0.6778 0.7225

Word alignment

1

Word-align Grow N/A 0.2479 0.5676 0.3451 0.4368

Word-align G-D N/A 0.2947 0.6547 0.4065 0.4501

Word-align G-D-F N/A 0.3415 0.6934 0.4576 0.4925

Word-align Union N/A 0.3543 0.6632 0.4541 0.5343

2
Word-align G-D N/A 0.3304 0.7127 0.4515 0.4635

Word-align G-D-F N/A 0.3655 0.7412 0.4896 0.4930

Table 5.8: Iterative refinement results for French-English

on French-English alignment. In Table 5.8, we saw that word alignmentF1 scores are

significantly lower than chunk alignmentF1 scores. The lower scores are the result of word

alignment’s much lower recall due to high word fertility in the hand-aligned set, as shown

in Table 5.2. Chunk alignment recall alleviates this problembecause usually consecutive

words are split into fewer chunks. Therefore, to make them more comparable, we modify

our recall calculation for each source unit:R = 1 if |H ∩M | > 0 and 0 otherwise.

Table 5.10 shows word and chunk alignment performance usingan iterative refinement

approach on Chinese-English alignment. As seen in French-English alignment evaluation,

the results from the second iteration show thatWord-mapand word alignment (Word-align)

improved significantly, but chunk alignment does not.
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Iteration System Word H. Chunk H. Recall Prec. F1 |M |/|H|
Chunk alignment

1
Word-map G-D Link 0.8411 0.7461 0.7908 1.4027

Word-map G-D-F Link 0.9342 0.7111 0.8075 1.7068

Word-boost G-D G-D-F 0.9479 0.8196 0.8791 1.4274

2

Word-map G-D Link 0.8849 0.7786 0.8284 1.4110

Word-map G-D-F Link 0.9370 0.7530 0.8350 1.6082

Word-boost G-D G-D-F 0.9370 0.8057 0.8664 1.4521

Word-boost G-D-F G-D-F 0.9370 0.8080 0.8677 1.4411

Word alignment

1

Word-align Grow N/A 0.6077 0.5676 0.5870 1.1563

Word-align G-D N/A 0.7168 0.6547 0.6844 1.1917

Word-align G-D-F N/A 0.8230 0.6934 0.7527 1.3038

Word-align Union N/A 0.8333 0.6632 0.7386 1.4145

2
Word-align G-D N/A 0.7847 0.7127 0.7470 1.2271

Word-align G-D-F N/A 0.8599 0.7412 0.7962 1.3053

Table 5.9: Iterative refinement results with relative recall for French-English

Comparison to SPA

As mentioned in the introduction, SPA can detect chunk translation as well. Given a source

chunk, SPA returns a list of possible translations and the correct target chunk can be in-

cluded in the list.

To see howWord-boostcompares to SPA, we compared their alignment performance

for source chunks. We first categorized the source chunks into three classes.

• Chunk: all the single source chunks.

• C Chunk H: the source chunks that are aligned consistently by humans.An expla-

nation of consistency can be found in Och and Ney (2003) or Section 6.2.1.
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Iteration System Word H. Chunk H. Recall Prec. F1 |M |/|H|
Chunk alignment

1
Word-map G-D Link 0.4993 0.4228 0.4579 1.1807

Word-map G-D-F Link 0.5712 0.4080 0.4760 1.4001

Word-boost G-D G-D-F 0.5538 0.4582 0.5015 1.2086

2

Word-map Grow Link 0.4810 0.4252 0.4514 1.1313

Word-map G-D Link 0.5199 0.4357 0.4741 1.1933

Word-map G-D-F Link 0.5715 0.4321 0.4921 1.3224

Word-boost G-D G-D-F 0.5514 0.4591 0.5010 1.2011

Word-boost G-D-F G-D-F 0.5535 0.4576 0.5010 1.2095

Word alignment

1

Word-align Grow N/A 0.5816 0.7655 0.6610 0.7598

Word-align G-D N/A 0.6417 0.7287 0.6824 0.8806

Word-align G-D-F N/A 0.7105 0.6546 0.6814 1.0855

Word-align Union N/A 0.7289 0.6191 0.6696 1.1773

Word-align Intersect N/A 0.4852 0.8877 0.6275 0.5466

2

Word-align Grow N/A 0.6263 0.7355 0.6765 0.8516

Word-align G-D N/A 0.6767 0.7127 0.6942 0.9496

Word-align G-D-F N/A 0.7320 0.6704 0.6998 1.0918

Table 5.10: Iterative refinement results for Chinese-English

• C Chunk W: the source chunks that are aligned consistently byWord-boost.

And for each of them, we compared word levelF1 of three chunk/phrase alignment

algorithms:SPA, SPA(Top-10)andWord-boost. SPA(Top-10)picks the oracle alignment

(alignment with the bestF1) in the top-10 list from SPA.

Table 5.11 and Table 5.12 show word levelF1 of the three aligners for Chinese-

English, and French-English and Figures 5.2 and Figure 5.3 show them in bar graphs.

For Chunk, SPAandSPA(Top-10)performs much better thanWord-boostfor both lan-

guage pairs. This means thatWord-boosttends to have a lot of non-one-to-one chunk align-
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Chunk type Count Aligner Recall Precision F1 Len(M)/Len(H)

Chunk
3,718

SPA 0.6332 0.6913 0.6610 0.9160

SPA(Top-10) 0.9174 0.8170 0.8643 1.1230

Word-boost 0.8271 0.4622 0.5930 1.7893

C ChunkH
1,752

SPA 0.7243 0.7890 0.7552 0.9108

SPA(Top-10) 0.9584 0.8968 0.9266 0.1069

Word-boost 0.9080 0.6950 0.7874 1.3064

C ChunkW
2,313

SPA 0.7141 0.7631 0.7378 0.9357

SPA(Top-10) 0.9525 0.8532 0.9001 1.1163

Word-Boost 0.8634 0.7286 0.7903 1.1850

Table 5.11: Chinese-English: Word alignment accuracy by SPA, SPA(Top-10) andWord-

boost

ments and returns all the linked target chunks for them. Thiscauses lower precision values

and consequently leads to lowerF1 values. For the same reason, theLen(M)/Len(H)value

for Word-boostis much higher than those of the others.

For consistently aligned source chunksC ChunkH andC ChunkW, Word-boostout-

performsSPA. But it performs worse thanSPA(Top-10)which is an oracle alignment for

the top-10. It performs close toSPA(Top-10)for French-English while the differences are

larger for Chinese-English.

The results show that for consistently aligned source chunks, Word-boostperforms

much better thanSPAalthough it performs worse thanSPA(Top-10). This leads us to use

Word-boostfor consistently aligned source chunks byWord-boostin translation. Note that

C ChunkW is obtainable whileC ChunkH is not.C ChunkH is available only from a

hand-aligned corpus. On the other hand, theCountcolumns in both tables show that the

coverage with the consistently aligned source chunks dropssubstantially. This means that

SPAshould play a very important role in finding translations forthe uncovered chunks.

Note thatSPA(Top-10)is the oracle alignment in the top-10 list and itsF1 is higher

than that ofWord-boost. This implies thatSPA(Top-10)has the potential to outperform
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Figure 5.2: Chinese-English: Word alignment accuracy by SPA, SPA(Top-10) andWord-

boost

Word-boostin translation.

Summary

To summarize, our new methodWord-boostimproves chunk alignment quality signifi-

cantly over our strong baselineWord-map. These improvements are consistent through

the different language pairs, Chinese-English and French-English. Furthermore, when we

use chunk alignment to help word alignment, we find significant improvements on word

alignment. These improvements are also consistent for bothChinese-English and French-

English alignment.

We also comparedWord-boostto SPAand showed that it performs better for the con-

sistently aligned source chunks in alignment accuracy. This guides us to useWord-boost

alignment for consistently aligned source chunk matches intranslation.

In the next chapter, based on our chunk alignment analysis, we investigate a hybrid
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Chunk type Count Aligner Recall Precision F1 Len(M)/Len(H)

Chunk
392

SPA 0.4441 0.6951 0.5420 0.6390

SPA(Top-10) 0.6828 0.8206 0.7454 0.8320

Word-boost 0.4044 0.4114 0.4078 0.9831

C ChunkH
216

SPA 0.8202 0.7820 0.8007 1.0489

SPA(Top-10) 0.9180 0.8946 0.9061 1.0262

Word-boost 0.9511 0.8321 0.8876 1.1431

C ChunkW
242

SPA 0.6107 0.8113 0.6968 0.7527

SPA(Top-10) 0.7746 0.9014 0.8332 0.8593

Word-boost 0.6708 0.9009 0.7690 0.7445

Table 5.12: French-English: Word alignment accuracy by SPA, SPA(Top-10) andWord-

boost

translation system that usesWord-boostfor chunk-based translation and SPA for phrasal

translation.
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Figure 5.3: French-English: Word alignment accuracy by SPA, SPA(Top-10) andWord-

boost
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Chapter 6

Chunk-Based translation

In Chapter 5, we detected chunks and aligned them in a parallelcorpus. In this chapter, we

describe how we use the aligned chunks in translation.

We first explain how we extract consistent chunk sequence translations and assign them

feature scores to be used in translation.

We next investigate chunk fuzzy matching. as an effort to overcome the unknown

chunk problem As mentioned before, we usually have a higher unknown unit rate for

chunks than for words because a chunk is a combination of one or more words. Although

the chunk fuzzy matching helps the unknown chunk problem, westill have a significant

number of unknown chunks because the chunk fuzzy matching isnot sufficient to cover a

significant number of unknown chunks.

For this reason, we will eventually need the word/phrase-based CMU EBMT system

that provides translations for chunks that have very poor translations or for which we

cannot find translations. We finally describe a system that combines SPA with a chunk-

based translation system.
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6.1 Baseline system

By using the SPA phrasal aligner in the CMU EBMT system, we achieved significant

improvements in translation performance. Since then, we have been investigating further

approaches for continued improvement of the EBMT system withSPA. Naturally, we use

our CMU EBMT system with SPA as our baseline system in this work as well.

6.2 Chunk-based system

6.2.1 Consistent chunk alignment

In the previous chapter, we investigated algorithms to align chunks in parallel texts. How-

ever, the source and target sentence chunks we use are not detected in a synchronous way.

Therefore, as in word alignment, we have a lot of one-to-many, many-to-one, and many-

to-many relationships between source chunks and target chunks. For this reason, we need

to find consistently aligned chunk sequence pairs1 as translation pairs using theRefined

Methodthat Och and Ney (2003) used for phrase extraction. We explain this using the

version implemented by Koehn in Moses. We start with the intersection of the two chunk

alignments adding new alignment points that exist in the union of two chunk alignments

and connecting at least one previously unaligned chunk. First, we expand only to align-

ment points that are directly adjacent. We check for potential alignment points starting

from the top right corner of the alignment matrix, checking for alignment points for the

first target chunk, then continuing with alignment points for the second target chunk, and

so on. We iterate this until we find no more alignment points toadd. In the final step, we

add non-adjacent alignment points the same requirements with the exception of adjacency.

We collect all aligned chunk sequence pairs that are consistent with the chunk align-

ment: Only the chunks in a legal chunk sequence pair are aligned to each other, and not

to chunks outside. In our translation, if there is a partial match from the source side of an

1The chunks in a legal chunk sequence pair are only aligned to each other and not to chunks outside.

98



atomic legal chunk sequence pairs2 , we do not use this chunk alignment because chunk

alignment is not consistent in such a case.

Figure 6.1: Chunk translation sequence pair extraction

Figure 6.1 illustrates how theRefined Methodrefines chunk alignment for machine-

detected chunks and how chunk translation sequence pairs are extracted afterwards on a

2An atomic legal chunk sequence pair is a legal chunk sequencepair that does not include a legal chunk

sequence pair.
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Korean and English sentence pair. The transliteration of the Korean sentence is “[jeo] [,]

[aekjeongpaeneol] [joomoon e] [gwanhae] [jeonhwadeuryeotneundaeyo] [.]” which liter-

ally means “[well] [,] [lcd] [order to] [related/about] [amcalling] [.] 3”. The black boxes

denote the intersection of Korean to English alignment and English to Korean alignment.

The gray boxes are the alignment points that are in the union but not in the intersection.

Three of them are added to the final alignment by theRefined Methodmethod. After align-

ment refinement is done, chunk translation sequence pairs are extracted based on the align-

ment. The rectangular areas with thicker lines denote the extracted chunk translation pairs.

The phrase length limit (or the maximum match length in the EBMT system) can control

the extraction of pairs.

6.2.2 Chunk fuzzy matching

Hewavitharana et al. (2005) studied translation by similarsource sentences. By calculating

edit distance, they found similar source sentences. To generate target translation hypothe-

sis, they inserted/replaced/deleted target words that arealigned to the edited source words.

We take a similar approach in our chunk fuzzy matching. Instead of finding similar

sentences, we find similar source chunks for unknown chunks in an input sentence.

Figure 6.2: Chunk pair generation

Figure 6.2 shows an example of how we generate a new chunk pairfrom the chunk

pairs extracted by chunk alignment. Suppose that we alreadylearned the chunk translation

3The Korean sentence is missing a subject. And there is an error in the Korean sentence chunking. [order

to] and [related/about] should be merged into one chunk. However this error was resolved by consistent

chunk translation sequence pair extraction.
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pairs i, ii, iii and now we have a new chunkiv to translate. Although we do not have a

complete match for the source chunk iniv, it is composable using already learned transla-

tion pairs and we can modify the target translation chunk accordingly.

We use this approach when there is any chunk that does not havea match for a given

source sentence to be translated. When an input sentence is given, we first analyze it into

chunks. Then for an unseen input chunku from the input sentence, we find a set of similar

source chunksS and their translations

S = {(fi, ei)|fi ∈ Vc,

fi ≈ u,

p(ei|fi) > 0}

from the training set. These similar source chunksfi, which belong to the chunk vocabulary

Vc of the training set, differ fromu by at mostn words. In our experiments, we usedn = 1

because we wanted to maximize the context similarity. In other words, we prefer source

chunks that are different by one word so that the similar chunk fi and the unknown input

chunku share more contexts.

After collecting a similar chunkfi, we create a template from it by replacing the differ-

ent source word with a variable. The creation of this template is done on the target side as

well by replacing the target word with a variable which is aligned to the different source

word (i.e., in the target chunkei, we replace the translational equivalent of the different

source word with the same variable as the source word variable).

(fi, ei)→ (f ′i , e
′
i)

Next, for the different source word inu, we use a translation word dictionary to find

translational equivalents. With the translation word pairs, we replace the variables in the

chunk translation pair templates to get chunk translation pairs for the unknown chunku.

(f ′i , e
′
i)→ (u, e′′i )

The synthesized source chunks from the source chunk templatesfi are exactly the same as

the original unknown input source chunku. However, the generated target chunkse
′′
i are
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novel, and these may be equally likely or unlikely to appear in the real world. If they are

realistic, we have a chance of acquiring a good translation;if not, we should discard them

because of their potential to lower the translation quality. To filter out unrealistic generated

target chunks, we use a large monolingual language model. Wecalculate a language model

score for each target chunke′′i and normalize it by the chunk length which is the number

of words in the chunk.

In this way, we can virtually expand our corpus and expect more matches from the

corpus at translation time. Furthermore, by generating chunk pairs from existing pairs, we

anticipate exploiting the context and reordering that is contained in the existing pairs as

well.

For better understanding, we explain this process again with an example. For an un-

known source chunk ’객실하나을’ (guest-room one ACCUSATIVE),

• The system first retrieves similar source chunks through substitution and their trans-

lations from the consistently aligned chunk pairs. The bluewords in Korean are dif-

ferent words in similar chunks and the blue words in English are their translations

in the translation chunks.
호텔하나을 choose ahotel

편지하나을 took aletter

카드하나을 acard

방하나을 a room

• Next it generalizes them into templates using word alignment links. It replaces the

different words with the same variable when they are different from the same word

in the unknown chunk.
@1하나을 choose a @1

@1하나을 took a @1

@1하나을 a @1

@1하나을 a @1

• And it looks up the different word in the automatically derived dictionary for word

replacement. The dictionary entries should be above a threshold.

객실 room 0.3125000
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• With translation word pairs (dictionary entries), it replaces the variable and adds the

generated chunk pairs to the lattice if the target phrase LM score is above a threshold.
객실하나을 choose a room

객실하나을 took a room

객실하나을 a room

객실하나을 a room

• The new chunk pairs are given the feature scores of the corresponding similar chunk

pair.

6.2.3 System integration

Figure 6.3 shows how the components are integrated to build achunk-based system. When

an input sentence is given, the system takes following stepsin the given order:

1. It finds chunk boundaries for the input sentence using a monolingual chunker.

2. It performs normal surface form matching over the training set for the input sen-

tence.

3. It recognizes chunk matches among all possible matches byusing the chunk bound-

aries found in step 1 and finds chunk translations for them that are already stored in

its example-base. The system assigns chunk translations feature scores through the

SPA feature scoring functions and an additional feature that indicates these transla-

tion are from chunk alignment. Finally, it puts the pairs into a lattice.

4. For the chunks that do not have matches, it tries fuzzy matching. Successfully gen-

erated chunk translation pairs are added into the lattice.

5. It performs SPA on the remaining matches to find translations of them.

6. The system uses chunk translations and phrase translations in decoding with a word

language model.
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Figure 6.3: System integration

When there is an input sentence, the system first finds chunk boundaries monolin-

gually. We use the same monolingual chunker that is used to find chunk boundaries for the

source side of the training data. This chunk boundary information is then used in recog-

nizing chunk matches later.

Next, the system performs the same general surface form matching over the training

set for the input sentence that the lexical CMU EBMT system does. The matches found in

this include both chunk matches and non-chunk matches.
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For the chunk matches, we look up the chunk translation that was built in the chunk

alignment stage4. Once a chunk translation is found, we put it into a lattice sothat our

decoder can consider its use in the final translation.

For the unknown chunks (i.e., the chunks for which the systemcould not find any

match in the training set), the system tries fuzzy matching against a chunk translation

table which was built during the training time. Then high quality generated chunk pairs

are added to the lattice.

For non-chunk matches or chunk matches with no translations, the system invokes SPA

to find translation candidates for them and put the translations into the lattice.

After adding all the translations of chunk matches and non-chunk matches, the system

loads a chunk label language model and a lexical language model to use in decoding.

In addition to SPA features, we add a feature to the lattice that indicates whether the

translation was found by chunk alignment or not. The EBMT system collects some more

feature values outside the aligner to be used in decoding.

Finally, the translation with the highest score is chosen asthe best translation hypoth-

esis. The score is calculated as a combination of feature values with their weights tuned in

a separate tuning process in a log linear model.

6.3 Evaluation

The chunk-based approach is potentially more beneficial fora distant language pair. If

we have a very similar language pair in terms of sentence structures and word correspon-

dence, we have very accurate alignment, which gives high quality translation. However, if

we have a very distant language pair, it is much harder to align words due to lower sen-

tence structure agreement and word correspondence. Thus the translation quality will be

much poorer. But those disagreements are less important in chunk level alignment because

sentence structures are much simpler at the chunk level, andsource and target chunks have

4The extracted chunk translation pairs are annotated in the example database in our implementation.
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higher correspondence than source and target words. Therefore if we align chunks in a dis-

tant language pair and translate by chunks, we can obtain better translation quality.

To evaluate this chunk-based translation approach, we use Chinese-English and Korean-

English which are relatively distant language pairs and French-English which is a close

language pair.

Although Chinese is classified as an SVO language like English, it is also very different

from English in that it is a topic-prominent language, has aspect and mood particles, and

it requires a classifier in counting nouns. It also lacks a lotof correspondents to English

function words. Therefore if we translate Chinese to Englishby chunks, we are likely to

have benefit by including English function words that do not have translational equivalents

in Chinese in output translations. For example, the translational equivalents of ‘a’, ‘an’

and ‘the’ do not exist in Chinese, and we may expect those to be inserted in translation by

chunks.

Korean is also very different from English. Foremost among these differences, it is an

SOV language where a verb follows an accusative. It also has case markers that are absent

in English, and it lacks some of the English functional words. For example, it does not

have articles. Instead it uses numbers for ‘a/an’ and directives for ‘the’ or omits them. In

translation into English, some Korean case markers should be removed, and some English

articles should be inserted. For example, when we translate‘sa-moo-sil yi’ into English,

which means ‘office NOMINATIVE’, we have to drop ‘yi’ and add an ‘an’ or a ‘the’ in

front of ‘office’ depending on the context. Moreover, when there is a correspondent for a

case marker, their positions are different. In English, a preposition comes before a head

word but its correspondent case marker in Korean follows thehead word. For example, in

the ‘to the office’ and ‘sa-moo-sil lo’ translation pair, ‘to’ is located in front of its head

word ‘office’, but its correspondent ‘lo’ in Korean is located after its head word ‘sa-moo-

sil’. Chunk-based translation can be helpful in this case although it does not fully resolve

the context recognition problem.

Since we think that this approach is most beneficial for linguistically distant language

pairs, we chose the above two languages. However, although they are both distant from

English, there is no significant similarity in their sentence structures. So this choice will
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show not only that our approach is useful for a single distantlanguage pair, but also that it

works for distant language pairs in general.

We compare the chunk-based system with the CMU EBMT system withSPA in this

evaluation. We measured translation performance differences among:

• The best SPA

This is the best of cSPA-AmX and nSPA-AmX from Chapter 4.

• cCHUNK-AmX

This is a chunk-based system which is a combination of chunk alignment and cSPA-

AmX. We added one more feature that indicates whether a phrase translation is by

chunk alignment or not.

• nCHUNK-AmX

This is a chunk-based system which is a combination of chunk alignment and nSPA-

AmX. We added one more feature that indicates whether a phrase translation is by

chunk alignment or not.

We also used Moses to compare with a state-of-the-art system. We use exactly the

same data with the same pre-processing in Moses for both training and testing. Moreover,

to test the usefulness of the aligned chunks, we extract aligned chunk pairs and add them

to a Moses phrase table. We run Moses on both the original phrase table and the chunk-

pair-added phrase table.

To compare their performances, we used BLEU as our evaluationmetric because it is a

widely accepted metric in the machine translation community. We also provide METEOR

scores to see if the improvement is consistent across different metrics. The METEOR was

set to use stemming and stemmed synonyms to evaluate performance beyond exact match.

For significance test, we used Paired Bootstrap Resampling by Koehn (2004b) with

n=1000.
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6.3.1 Data

For all the language pairs, we used the same training sets andtest sets described in the

evaluation in Chapter 4.

Table 6.1 describes Korean-English training data. In Korean, they are an average of

6.5 chunks and 8.9 words long, and in English, they are an average of 6.4 chunks and 9.5

words long. Chunks are 1.4 words and 1.5 words long on average in Korean and English

respectively.

sentences chunks words

Korean 28,034 182,549 248,263

English 28,034 178,540 266,583

Table 6.1: Training set for Korean-English

Table 6.2 shows the test sets for Korean-English. On average, the sentences in the Dev

set are 6.3 chunks and 8.9 words long. The chunks are an average of 1.4 words long. The

Unseen set also has an average of 6.3 chunks and 8.9 words longper sentence with chunks

an average of 1.4 words long.

sentences chunks words number of references

Dev 966 6,071 8,591 1

Unseen 1,170 7,422 10,441 1

Table 6.2: Test sets for Korean-English

Table 6.3 shows the coverage of the training set on the test sets in Korean. We calculate

word, chunk, and multi-word chunk coverages. First, we calculate the word coverage to

determine the percentage of words that can be translated using a typical word/phrase-based

translation system. Second, the chunk coverage is calculated to ascertain what portion can

be translated by chunks. Finally, we measured the multi-word chunk coverage because

we are most likely to reap benefits by translating chunks which are longer than 1 word to

properly deal with word deletion and insertion as previously explained.
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word (%) chunk (%) multi-word chunk (%)

type token type token type token

Dev 82.58 94.53 74.11 86.23 69.80 79.08

Unseen 87.57 96.09 83.12 92.48 81.94 89.26

Table 6.3: Training set coverage for Korean-English

Table 6.4 describes Chinese to English training data. On average, Chinese sentences

are 18.1 chunks and 26.8 words long with chunks composed of 1.5 words. And English

sentences are an average of 18 chunks and 33.9 words long withchunks composed of 1.8

words.

sentences chunks words

Chinese 341,636 6,177,252 9,155,903

English 341,636 6,419,184 11,571,835

Table 6.4: Training set for Chinese-English

Table 6.5 shows Chinese-English test sets. On average, the sentences in the Dev set

are 17.5 chunks and 46.7 words long. The chunks are an averageof 2.67 words long. The

Unseen set also has an average of 17.0 chunks and 45.9 words long per sentence with

chunks an average of 2.67 words long.

sentences chunks words number of references

Dev 919 16,083 42,946 4

Unseen 691 11,786 31,708 4

Table 6.5: Test sets for Chinese-English

Table 6.6 shows the coverage of the training set on the test sets in Chinese. Word,

chunk, and multi-word chunk coverage are reported as in Table 6.3 for Korean. The multi-

word chunk coverage is much lower for Chinese compared to Korean (34.09% vs 69.80%
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on chunk type for the Dev sets). On average the covered chunkshave 2.22 words and

the uncovered chunks have 3.66 words in the Chinese Dev set. This means our Chinese

chunker tends to find long chunks, which leads to low multi-word chunk coverage. This

may be improved by looking at the chunked data to change chunking strategies for finding

shorter chunks.

word (%) chunk (%) multi-word chunk (%)

type token type token type token

Dev 88.00 96.24 59.45 81.83 34.09 38.71

Unseen 89.09 95.88 63.19 82.50 38.70 43.63

Table 6.6: Training set coverage for Chinese-English

Table 6.7 describes French to English training data. On average, French sentences are

17.3 chunks and 30.5 words long with chunks composed of 1.8 words. English sentences

are an average of 16.0 chunks and 28.0 words long with chunks composed of 1.7 words

long on average.

sentences chunks words

French 300,000 9,143,101 5,191,557

English 300,000 4,814,544 8,402,980

Table 6.7: Training set for French-English

Table 6.8 shows French-English test sets. On average, the sentences in the Dev set are

18.6 chunks and 32.2 words long and the chunks are an average of 1.73 words long. The

Unseen set also has an average of 16.7 chunks and 30.0 words per sentence with chunks

an average of 1.74 words long.

Table 6.9 shows the coverage of the training set on the test sets in French. The cover-

ages for the three types are comparable to those in the Koreantest sets.

In addition to the chunk-based system evaluation, we also investigate if the aligned

chunk pairs can help an SMT system for which we chose Moses. Weadd our chunk trans-
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sentences chunks words number of references

Dev 285 5,302 9,174 1

Unseen 2,007 33,482 58,168 1

Table 6.8: Test sets for French-English

word (%) chunk (%) multi-word chunk (%)

type token type token type token

Dev 97.93 99.48 85.00 91.70 79.95 83.16

Unseen 91.38 98.19 69.34 85.74 62.45 73.41

Table 6.9: Training set coverage for French-English

lation pairs to the extracted phrase pairs found by Moses. For that, we first pause the Moses

training process after step 5 and add our chunk translation pairs to the intermediate data

(extracted phrase pairs). Then we resume the training process so that Moses can assign

feature scores to the chunk translation pairs as well. Finally, we execute the Moses de-

coder on the phrase table generated by the above method.

6.3.2 Results and analysis

Phrase Aligner
Dev Unseen

# SPA alts on Dev
BLEU METEOR BLEU METEOR

cSPA-Am5 0.2468 0.4687 0.2552 0.4603 5

cCHUNK-Am7 0.2480 0.4709 0.2565 0.4662 7

nCHUNK-Am3 0.2456 0.4654 0.2561 0.4618 1.234

Moses 0.2203 0.4323 0.2353 0.4362 N/A

Table 6.10: Korean to English translation performance (BLEU/METEOR)

Table 6.10 shows performance comparisons between our baseline system (cSPA-Am5)
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and the new Chunk-Based EBMT, cCHUNK-Am7. For both the development set and

unseen set, cCHUNK-Am7 performs slightly better than the baseline system. Our sig-

nificance test indicates that the improvements are not significant with p = 0.378 and

p = 0.318 respectively.

We also compared the Korean-English results with the performance of the Moses sys-

tem to see how closely the EBMT performs to one of the well knownstate-of-the-art sys-

tems. To make them comparable, we trained the Moses system onthe same data and set

the decoding parameters of both systems comparably. i.e., we used the same values for

the corresponding parameters of the Moses system and the EBMTsystem. For example,

we used the same value for “distortion-limit” in the Moses system and its corresponding

parameter “reorder-window” in the EBMT system. In Table 6.10, the EBMT system out-

performs the Moses system for both Dev and Unseen withp < 0.0001.

Aligner SPC ASPL ATPL SNTPC

cSPA-Am5 Total 4,502 1.49 1.64 0

nSPA-Am4 Total 4,447 1.49 1.61 263

cCHUNK-Am7

Chunk 1616 1.38 1.45 0

Chunk-{P} 922 1.66 1.80 0

Non-chunk 2932 1.53 1.64 0

Total 4548 1.48 1.57 0

nCHUNK-Am3

Chunk 1215 1.45 1.42 0

Chunk-{P} 764 1.72 1.67 0

Non-chunk 2848 1.72 1.74 78

Total 4063 1.64 1.65 78

Table 6.11: Korean-English selected phrase statistics in decoding on Dev

Table 6.11 shows selected phrase statistics in decoding. Inthis table,SPCdenotes Se-

lected Phrase Count,ASPL denotes Average Source Phrase Length,ATPL denotes Av-

erage Target Phrase Length, andSNTPC denotes Selected Non-contiguous Target Phrase

Count.Chunk -{P} denotes that we did not count punctuation translations by chunk align-

112



ment.Chunkdenotes that the translation phrase pairs are from chunk alignment,SPAde-

notes that the translation phrase pairs are from SPA alignment, andTotal denotes all the

translation pairs. Since chunk translations include a lot of punctuation translations5 which

can also be provided by SPA algorithms, we counted chunk translations excluding punctu-

ation translations inChunk -{P}. When we compare cCHUNK-Am7 and nCHUNK-Am3

systems, we note that cCHUNK-Am7 selected more chunk translations than nCHUNK-

Am3, and the number of source words covered by chunk phrases is larger in cCHUNK-

Am7. This shows the use of cSPA leads the combined system to select more chunk trans-

lations and achieve better translation performance with them.

Phrase Aligner
Dev Unseen

# SPA alts on Dev
BLEU METEOR BLEU METEOR

cSPA-Am5 0.2423 0.5242 0.1996 0.4774 5

cCHUNK-Am5 0.2467 0.5196 0.2020 0.4795 5

nCHUNK-Am5 0.2541 0.5302 0.2059 0.4885 1.295

Moses 0.2593 0.5365 0.2070 0.4974 N/A

Table 6.12: Chinese to English translation performance (BLEU/METEOR)

Table 6.12 shows the BLEU/METEOR scores for the Chinese test sets. For both sets,

the chunk-based system, nCHUNK-Am5 demonstrates significant improvements over cSPA-

Am5 with p < 0.0001 andp = 0.027 respectively. Of note, nCHUNK-Am5 is better than

cCHUNK-Am5, which is opposite to what we observed in Chapter 4.In Chapter 4, con-

tiguous SPA was better than non-contiguous SPA, but in this experiment, when combined

with chunk translation, non-contiguous SPA is better than contiguous SPA.

Table 6.13 shows selected phrase statistics in decoding forChinese-English translation.

In this table,SPCdenotes Selected Phrase Count,ASPL denotes Average Source Phrase

Length,ATPL denotes Average Target Phrase Length, andSNTPCdenotes Selected Non-

contiguous Target Phrase Count.Chunk -{P} denotes that we did not count punctuation

5Forms of punctuation are also chunks according to our definition and they are aligned accurately by

the chunk aligner. This alignment information is stored in the example-bases of the EBMT system. For this

reason, when an input sentence has punctuations, they are translated by chunk alignment.
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translations by chunk alignment. When we compare the SPA systems (cSPA-Am5 and

nSPA-Am5) with CHUNK systems(cCHUNK-Am5 and nCHUNK-Am5), we note that the

chunk-based systems selected longer phrases on average. Furthermore, when we compare

cCHUNK-Am5 and nCHUNK-Am5 systems, we note that nCHUNK-Am5 selected more

chunk translations than cCHUNK-Am5 and that the average length of the selected chunk

phrases is much longer in nCHUNK-Am5. This shows the use of nSPA leads the combined

system to select more chunk translations and achieves better translation performance. Also

of interest, the length ratio of target phrases over source phrases is much larger by chunk

translations than by non-chunk translations. For example,in nCHUNK-Am5, the ratios

are 1.23 and 1.09 by chunk translations and non-chunk translations respectively. Because

forms of punctuation were translated by chunk alignment, wecomparedChunk -{P} and

Non-chunk.

For the Dev set, Moses performs the best, but for the Unseen set, nCHUNK-Am5

performs as well as the Moses system.

Aligner SPC ASPL ATPL SNTPC

cSPA-Am5 Total 15,850 1.41 1.57 0

nSPA-Am5 Total 16,005 1.37 1.52 270

cCHUNK-Am5

Chunk 2,763 1.15 1.30 0

Chunk-{P} 1,423 1.29 1.58 0

Non-chunk 12,831 1.50 1.64 0

Total 15,569 1.44 1.58 62

nCHUNK-Am5

Chunk 3,870 1.23 1.44 0

Chunk-{P} 2,455 1.37 1.69 0

Non-chunk 11,752 1.48 1.61 353

Total 15,607 1.42 1.57 353

Table 6.13: Chinese-English selected phrase statistics in decoding on Dev

Table 6.14 shows translation results for French-English. Although both cSPA-Am5 and

nCHUNK-Am4 perform worse than Moses, nCHUNK-Am4 demonstrates improvement
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Phrase Aligner
Dev Unseen

# SPA alts on Dev
BLEU METEOR BLEU METEOR

cSPA-Am5 0.2409 0.5390 0.1924 0.5368 5

cCHUNK-Am5 0.2451 0.5351 0.1925 0.5224 5

nCHUNK-Am4 0.2506 0.5506 0.2040 0.5545 1.303

Moses 0.2516 0.5527 0.2102 0.5511 N/A

Table 6.14: French to English translation performance (BLEU/METEOR)

over cSPA-Am5 on both Dev and Unseen withp = 0.001 andp < 0.0001 respectively.

Aligner SPC ASPL ATPL SNTPC

cSPA-Am5 Total 3,700 2.49 2.24 0

nSPA-Am5 Total 4,214 2.16 1.95 147

cCHUNK-Am5

Chunk 477 1.07 1.00 0

Chunk-{P} 285 1.12 1.00 0

Non-chunk 4,730 1.78 1.58 0

Total 5,201 1.71 1.53 0

nCHUNK-Am4

Chunk 474 2.01 1.87 0

Chunk-{P} 373 2.28 2.11 0

Non-chunk 3,433 2.41 2.15 105

Total 3,903 2.36 2.11 105

Table 6.15: French-English selected phrase statistics in decoding on Dev

Table 6.15 shows selected phrase statistics in decoding forFrench-English translation.

In this table,SPCdenotes Selected Phrase Count,ASPL denotes Average Source Phrase

Length,ATPL denotes Average Target Phrase Length, andSNTPCdenotes Selected Non-

contiguous Target Phrase Count.Chunk -{P} denotes that we did not count punctua-

tion translations by chunk alignment. When we compare the SPAsystems (cSPA-Am5

and nSPA-Am5) with CHUNK systems(cCHUNK-Am5 and nCHUNK-Am5),we note
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that the chunk-based systems selected longer phrases on average. And when we compare

cCHUNK-Am5 and nCHUNK-Am4 systems, forChunk -{P}, we note that nCHUNK-

Am5 selected more chunk translations than cCHUNK-Am5 and that the average length

of the selected chunk phrases is much longer in nCHUNK-Am4. This shows that the use

of nSPA leads the combined system to select more chunk translations and achieves better

translation performance.

Table 6.16 reports the portions of phrasal translations that are chunk translations in

decoding. The portions of chunk translations are about 35.5%, 17.7%, and 9.2% in the

Korean to English, Chinese to English, and French to English the Dev set translation tasks

respectively. We notice that the portion is the highest in Korean to English translation, and

the lowest in French to English translation. We think this isbecause of the ratio of the

words that do not have translational equivalents. In other words, chunk translation is more

critical to Korean to English translation in order to properly deal with the multitude of

words which do not have translational equivalents while chunk translation is less important

in French to English translation due to better word alignment accuracy.

Language Pair Set Phrasal TranslationsChunk Translations %

Kr-En
Dev 4,548 1,616 35.5

Unseen 5,333 1,472 32.7

Cn-En
Dev 15,569 2,763 17.7

Unseen 11,343 2,288 20.2

Fr-En
Dev 5,201 477 9.2

Unseen 32,288 3,641 11.6

Table 6.16: Chunk translations used in decoding

Figure 6.4 shows an excellent actual translation example for which chunk translation

was beneficial. In the baseline system, the Korean nominative case marker was translated

to ‘the’ in English although it should be dropped or translated to ‘I’ together with the

Korean word ‘na’. But in the chunk-based system, the Korean chunk consisting of ‘na’

and the nominative case marker was translated into the English chunk ‘I’ correctly.
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Figure 6.4: Translation example by cCHUNK-Am7

Chunk pair generation

As shown in Tables 6.3, 6.6, and 6.9, there are many unknown multi-word chunks. We

investigate if chunk translation pair generation can help translation.

For the Korean Dev set, we have 830 OOV chunks and 193 chunks out of them con-

sist of three or more words6. From the extracted chunk translation pairs, we find similar

chunks7 for 135 chunks out of the 193 chunks with a phrase (chunk) translation probabil-

ity threshold of 0.1. Sixty-seven in the 135 different wordsout of the 135 chunks are iden-

tified to have a translation word in a word translation dictionary with a threshold of word

6We use the OOV chunks that are at least three words long to maximize context similarity.
7We define a similar chunk to be different by one word from the anOOV chunk.
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translation probability 0.2, which was empirically chosenwith regard to the dictionary.

Finally, by applying a language model probability threshold of 0.0001 for the generated

target side, we filter out the generated chunks that are not likely to appear in the real world

and obtain chunk translation pairs for the OOVs in 21 out of the 966 sentences.

We also assess the approach for Chinese to English translation. We apply the same

threshold values and generate chunk translation pairs for 49 out of 230 sentences.

Table 6.17 records the development scores in BLEU for both language pairs. Although

we cannot claim statistically significant improvements with such a small number of sen-

tences, we think it may be meaningful that we had improvementfor both language pair

cases, particularly because our results indicate a possible improvement in a case where we

have many unknown chunks.

Lang. Piar EBMT(Chunk) EBMT(Chunk) w/ Generation

Korean-English (21 sentences) 0.1696 0.1780

Chinese-English (49 sentences) 0.2755 0.2817

Table 6.17: Chunk translation pair generation results

Chunk translation pairs for Moses

We investigated whether our chunk translation pairs can help a Phrased-Based SMT sys-

tem in Korean-English and Chinese-English translation. We chose Moses as the PBSMT

system since it works on phrase pairs and is considered a state-of-the-art system. To com-

bine chunk translation pairs and Moses phrase pairs, we appended chunk pairs to extracted

Moses phrase pairs before the phrase score calculation stepso that they are assigned Moses

feature scores in the same way. As in Table 6.18, the improvements in Korean-English are

statistically significant for bothDevandUnseensets. In the Chinese-English translation,

the improvement forUnseenis significant although it is difficult to demonstrate the signif-

icance of the improvement forDev.

We added all the chunk translation pairs to Moses in Korean-English, but in Chinese-
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Lang. Pair System
Dev Unseen

BLEU METEOR BLEU METEOR

Kr-En
Moses 0.2203 0.4323 0.2353 0.4362

Moses w/ chunks 0.2282 0.4459 0.2408 0.4455

Cn-En
Moses 0.2593 0.5365 0.1938 0.4930

Moses w/ chunks 0.2605 0.5406 0.2051 0.5048

Table 6.18: Improvements in Moses with chunk translation pairs

English, the results were the best when we added chunk translation pairs with frequency

three and higher.

This means that we should exercise caution when filtering outlow quality chunk trans-

lation pairs depending on the training set size. Table 6.19 shows the phrase table size

changes after we added the chunk translation pairs to the Moses phrase tables. In this table,

#PP denotes number of phrase pairs,#SPdenotes number of unique source phrases and

#WTdenotes number of word types. For both language pairs, the method added new source

phrases and words and the added amount is relatively smallerin the Chinese-English case.

We think this is because the training set is much larger than that of the Korean-English

case. A larger training set led to better word alignments andconsequently helped in build-

ing a better phrase table. In other words, the Korean-English training set was very small

and Moses built a low quality phrase table because word alignments were not accurate.

So, even less accurate chunk translation pairs were helpfulin this case.

Overall, the results show that we can improve Moses by addingcarefully chosen chunk

translation pairs.

Summary

To summarize, firstly, the chunk-based system shows significant improvements over our

baseline EBMT system that uses SPA for phrasal alignments forall of the three language

pairs of Korean-English, Chinese-English and French-English.
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Lang. Pair System
Dev Unseen

#PP #SP # WT # PP #SP # WT

Kr-En
Moses 11,040 4,140 1,683 12,492 4,918 1,926

Moses w/ chunks 12,492 4,598 1,781 15,819 5,392 2,016

Cn-En
Moses 330,951 15,599 4,226 321,083 13,330 3,562

Moses w/ chunks 337,546 15,619 42,33 327,665 13,339 3,563

Table 6.19: Moses phrase table size

Secondly, the chunk translation pair generation helped thesmall amount of input data.

However, because the number of affected sentences is too small, we cannot sufficiently

demonstrate the statistical significance of the improvement. But we suspect the possibility

of potential improvement where we have a significant portionof unknown multi-word

chunks.

Finally, chunk translation pairs identified by our chunk alignment algorithm helped a

statistical machine translation system, Moses in this experiment. By using carefully chosen

additional chunk translation pairs, we were able to improveMoses for Chinese-English

and Korean-English translation.

6.3.3 The effect of ideal chunking

Table 6.20 shows some example sentences chunked by different chunkers8. The Korean

sentence were chunked by a human to show an ideal chunking andare followed by glosses.

The corresponding English sentences were chunked by two different chunkersEA and

EB. When we ran the two English chunkers on the Korean-English training set, 10,741

English sentences were chunked differently by them which isabout 38.3%. Note that this

difference is on short sentences and if we apply them on longer sentences, we will have

8NOM denotes nominative,QUA denotes quantative,ACCU denotes accusative,ASK denotes a ques-

tion case marker andTOPIC denotes a case marker for topic. Numbers in parenthesis in the glosses mean

that the word corresponds to as many words in Korean as the number.

120



even more differently chunked sentences.

Chunking errors : The chunking is different due to mainly wrong chunking by a

chunker. In our examples, the chunkerEA produces more wrong chunks compared to

the chunkerEB. For example, the chunkerEA malfunctioned by combining two chunks

in “at+the+hotel+last+night” and “a+plane+slides” in sentence 98 and 113 respectively,

not combining multiple words into one chunk in “a one-way”, “a sightseeing train” and

“about how much” in sentence 107, 114 and 127 respectively Although the chunkerEB

chunked “to+new york” and “about how+much” wrong in sentence 118 and 127 respec-

tively, it produces fewer errors in our examples. Chunking ontheir corresponding Korean

sentences clearly shows that these errors are not desirablebecause they hurt correspon-

dence9.

Bilingual chunking : In our example, the chunking errors shown above may be over-

come to some degree if they are provided with a good algorithmwhich involves phrase

detection and takes into account good chunking on the other language. For example, “to

new york” and “about how much” can be chunked correctly by looking at the correspond-

ing Korean sentences.

Structural problems: Sentence 123 shows a structural problem in chunking causedby

the structural difference of the two languages. The Korean chunks “delayedor route+ACCU

change+do+may(2)” is only meaningful when it is aligned to the English chunks

“may+be+delayed+or+forced to+re-route”. There is no one to one mapping between those

two parts. In this case, we have to use the Korean chunks as oneunit in translation, but this

in turn causes lower coverage.

In these observations, the chunkerEB gives lower chunking errors and better corre-

spondence to Korean chunks, given that the Korean side is chunked ideally. It may also

be possible that having bilingual chunking adjustments in chunking may reduce chunk-

ing errors. From these examples, it is not difficult for one tosee that erroneous chunk-

9For sentence 107, combining “a one-way” into a chunk hurts local chunk correspondence because the

corresponding Korean words are chunked into two chunks, “one way+ticket” and “1-QUA”. However, be-

cause the English word “a” is not a good translation of the Korean chunk “1-QUA”, splitting “a” and “one-

way” in the English sentence is not good chunking.
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ing hurts correspondence and, consequently, translation.In our experiments for Korean-

English translation, we used the chunkerEA which yields more chunking errors because

we were not aware of the chunkerEB when we started the experiments. It may be possible

that we can achieve better translation performance with thechunkerEB as our English

chunker.
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ID Chunker Chunked sentence pair

98

H 어젯밤+에그+호텔+에불+이났었다 .

last night-in that+hotel+at fire+NOM brokeout .

EA a+fire broke out at+the+hotel+last+night .

EB a+fire broke out at+the+hotel last+night .

107

H 서울편도+표 1+장주세요 .

seoul oneway+ticket 1+QUA giveme please .

EA a one-way to+seoul , please .

EB a+one-way to+seoul , please .

113

H 비행기+이물+위+을활주한다 .

plane+NOM water+over+ACCU slides .

EA a+plane+slides over+the+water .

EB a+plane slides over+the+water .

114

H 관광열차요 ?

sightseeingtrain ASK ?

EA a sightseeing train ?

EB a+sightseeing+train ?

118

H 뉴욕+까지 1+장주십시오 .

new york+to 1+QUA giveme please .

EA a+ticket to+new+york , please .

EB a+ticket to+new york , please .

123

H 여행+은여러+가지+이유+으로지체되거나여정+을바꿔야+할+수도+있다 .

trip+NOM various(2)+reason+for delayedor route+ACCU change+do+may(2) .

EA a+trip may+be+delayed or forced to+re-route for+various+reasons .

EB a+trip may+be+delayed+or+forced to+re-route for+various+reasons .

127

H 그+호텔+까지+는요금+이대략+얼마쯤됩니까 ?

that+hotel+to+TOPIC fare+NOM about+howmuch is ?

EA about how much is the+fare to+the+hotel ?

EB about how+much is the+fare to+the+hotel ?

Table 6.20: Different chunking for Korean-English
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Chapter 7

Conclusions

7.1 Conclusions

This work contributes significantly to the field of corpus-based machine translation.

Firstly, SPA improved the translation quality of the CMU EBMT system. Before this

work, the CMU EBMT system used a heuristic phrasal aligner, which employed binary

correspondence between source words and target words to determine a target translation

phrase given a source phrase. It used all the sub-phrases of the longest possible target

phrase that completely include the shortest possible target phrase as candidates based on

the binary correspondence and returned the one having the highest heuristic score as a

translation. Cognizant of the recent strides in the SMT field,we wanted to use a more so-

phisticated score calculation method instead of the heuristic one. Our new phrasal aligner

SPA gave us statistically significant improvements in translation quality. In our small

French-English translation experiments, it gave us 20∼35% improvements in BLUE score.

Secondly, the state-of-the-art external word alignment helped SPA. In our experiments

we used Moses word alignment as external word alignment and it helped the SPA in two

ways. First, it helped SPA in determining a target range fromwhich SPA draws target

translation candidates. For Korean-English and Chinese-English which are distant lan-

guage pairs, SPA performed better in translation with this target range than a proportion-
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ally determined target range which assumes that the source and target languages have the

same word orders. Secondly, the external word alignment itself was a good translation

candidate. When we made SPA return the external word alignment as the best target can-

didate phrase along with other derived target candidate phrases, the EBMT system per-

formed significantly better for all three language pairs.

Thirdly, non-contiguous SPA (nSPA) did not perform better than SPA (cSPA) except

for the French-English Unseen set. Moreover, for Chinese-English, it performed signif-

icantly worse. The nSPA returned less than 1.5 translation candidates on average which

gave lower coverage. However, nSPA is more than 10 times faster in translation time which

includes both alignment and decoding time because its search space is much smaller by

investigating only includable/removable words. Importantly, when there are a lot of in-

cludable/removable words, the system can become very slow because it investigates2i+r

candidates. This slowing did not occur in our experiments which used a setting of maxi-

mum source phrase length being 7.

Fourthly, chunk alignment was better when it used both chunkpair statistics and word

pair statistics than when it used only one of the two. After investigating SPA we moved

to exploring the benefits of using chunks as basic translation units. To investigate chunk

translation in the EBMT system, we first investigated chunk alignment. We developed

a chunk alignment algorithm that boosts a chunk pair alignment when included source

and target words are aligned (Word-boost). This was better than when we simply aligned

a chunk pair when there is a word alignment link (Word-map) and when we regarded a

chunk as a unit in alignment by concatenating all the words ina chunk and aligned them

(Baseline). Then we recognized consistently aligned chunk sequence pairs to use in trans-

lation. When we restricted alignment evaluation to consistently aligned chunk sequence

pairs,Word-boostwas better than SPA phrasal aligner. However, because this was worse

than the SPA aligner with top-10 candidates (SPA-(Top-10)), SPA can potentially perform

better thanWord-boost.

Fifthly, chunk-based translation improved translation quality when used with SPA.

When we combinedWord-boostwith SPA or non-contiguous SPA, it performed better

than SPA and nSPA. The best performing variants had translation quality improvements
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over the best performing SPA and nSPA. The improvements weresignificant for Chinese-

English and French-English, but slight for Korean-English. Of note, chunk alignment

worked better when it was combined with nSPA than cSPA although nSPA performed

worse than cSPA. Our analysis showed that more longer chunk translations were selected

when we combined it with nSPA, which is not surprising because nSPA is more likely

to return non-contiguous alignment for longer source phrases which have lower language

model scores and thus are hard to be selected by the decoder that does not interlock non-

contiguous target phrases.

Sixthly, chunk alignment can provide useful chunk translation pairs to PBSMT. We

added consistent chunk translation pairs to a Moses phrase table. Moses performed better

when we added the chunk pairs. However, we had to apply a careful filtering mechanism

to discern convincing translation pairs and include only them.

Finally, our goal was to attain a 5% relative improvement andwe almost achieved it.

Table 7.1 shows our achievement. For the baseline system we compare with, we picked

cSPA-m1which is the worst performing SPA variant because we did not have the perfor-

mance results for the original heuristic aligner for the latest test sets we used. Because

cSPA-m1is better than the heuristic aligner, our achievements willbe even higher against

the heuristic aligner. As the best performing chunk-based system (CHUNK), we used

cCHUNK-Am7for Korean-English,nCHUNK-Am5for Chinese-English andnCHUNK-

Am4 for French-English. Our achievements are huge for Korean-English and Chinese-

English with 11.06% and 27.05% improvements in BLEU. Interestingly, the achievement

is larger for BLEU than METEOR. This is because BLEU tends to obtain a higher BLEU

score by having higher precision compared to METEOR which weights 9 times more on

recall.

7.2 Future work

The following topics merit further investigation.

Firstly, more features in SPA can be developed for the possibility of improving the
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Lang. Pair
BLEU METEOR

cSPA-m1 CHUNK Imp. cSPA-m1 CHUNK Imp.

Korean-English 0.2231 0.2480 +11.16% 0.4400 0.4709 +7.02%

Chinese-English 0.2000 0.2541 +27.05% 0.4787 0.5302 +10.76%

French-English 0.2378 0.2506 +5.38% 0.5384 0.5506 +2.26%

Table 7.1: Improvements achieved

system. Specifically we would investigate word collocationscore. For that we would learn

word collocation scores and use them for source phrases and target phrases. Given a source

phrase and a target translation candidate phrase, if their average collocation scores are very

different, they are less likely to be a good translation pair. In this case, we assumed that, in

a good translation pair, average source word relationship and average target word relation-

ship are similar and we can use the word collocation scores tomeasure the relationship.

Orliac and Dillinger (2003) extracted collocations based on rules using grammatical fea-

tures and semantic contexts and Liu et al. (2010) learned collocation scores on word tokens

tweaking IBM models. In our case, we can deploy Liu et al. (2010)s method to learn word

collocations because it does not require additional linguistic information. Given a source

phrasef = f i+k
i+1 = fi+1, ..., fi+k, we can calculate a collocation scoreCL(f) as following:

CL(f) =

∑

(fm,fn)∈P
Collocation score(fm, fn)

|P | (7.1)

whereP = {(fm, fn)|i+ 1 ≤ m < n ≤ i+ k}

Secondly, using word links directly inWord-boostwould also be of interest. In our

work, we calculated word translation probability from the word alignment and used it

in the formula 5.5. This time, in addition to boosting chunk mapping counts by word

translation probability, we could boost chunk mapping count again by the average of word

link score. For example, we can assign a value of 1 to a linked word pair and a value of

0.5 to an unlinked word pair and calculate average word link score in a chunk pair.

Thirdly, detecting/filtering out noisy chunk translation pairs in the EBMT system could

be beneficial. We observed that filtering out noisy/less-convincing pairs is helpful when we
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added chunk translation pairs to the Moses system. For the same reason, we think this will

be helpful for the EBMT system as well.

Fourthly, we have only initial results for fuzzy chunk matching. The data set we used

was very small, and there were not many generated chunks for the set because we used only

substitution in similarity calculation. If we use word insertion/deletion as in Hewavitharana

et al. (2005)’s work, we could generate more chunks. Also by adjusting thresholds for

phrase translation score, word translation probability, and language score, we could see a

different result.

Finally, we could use METEOR as our tuning objective function. As it turned out that

METEOR is a better objective function than BLEU for 1 reference sets for tuning by He

and Way (2009) and our Korean-English and French-English test sets have 1 reference

translation, it will be of interest to tune our parameters for METEOR and see if the im-

provements are consistent.
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Appendix A

Korean to English Translation Examples

In this appendix, we compared some translation examples fromEBMT(SPA)andEBMT(Chunk).

Chunks in the source sentences are wrapped with brackets. Note that there are errors in

this automatic chunking.

In the example of Table A.1, ‘은올여름’ was translated to ‘the sea this summer’ in

EBMT(SPA)while ‘그녀 은’ and ‘올 여름’ were translated to ‘she’ and ‘this summer’.

Note that the Korean chunker split ‘올’ and ‘여름’ mistakenly, the chunk aligner made

them to be translated together.

Source [그녀은] [올] [여름] [유럽을] [여행했다] [.]

Gloss [she NOMINATIVE] [this] [summer] [europe ACCUSATIVE] [traveled] [.]

EBMT(SPA) she traveled through europe . the sea this summer

EBMT(Chunk) she traveled through europe this summer .

Reference she traveled in europe this summer .

Table A.1: Translation Example

In the example of Table A.2, ‘은’ was erroneously translated to ‘they’ byEBMT(SPA)

while ‘그녀은’ was translated to ‘she’ byEBMT(Chunk).

In the example of Table A.3, ‘이’ was translated to ‘been’ byEBMT(SPA)while ‘무슨

일이’ was translated to ‘what’ byEBMT(Chunk).
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Source [그녀은] [어디에] [앉아야] [할지모른다] [.]

Gloss [she NOMINATIVE] [where at] [sit-down] [to do-not-know] [.]

EBMT(SPA) they do not know where to sit down . she

EBMT(Chunk) she does not know where to sit down .

Reference she does not know where to sit down .

Table A.2: Translation Example

Source [왜] [,] [무슨일이] [있었는데] [?]

Gloss [why] [,] [what matter NOMINATIVE] [happened-QUESTION] [?]

EBMT(SPA) why , what happened ? been

EBMT(Chunk) why , what happened ?

Reference why , what happened ?

Table A.3: Translation Example

In the example of Table A.4, ‘은’ was translated to ‘i’ byEBMT(SPA)while ‘그 은’

was translated to ‘he’ byEBMT(Chunk). ‘진지하게’ is an unknown token.

Source [그은] [정말] [진지하게] [편지을] [썼다] [.]

Gloss [he NOMINATIVE] [very] [seriously] [letter ACCUSATIVE] [wrote] [.]

EBMT(SPA) i wrote a letter . he is a real

EBMT(Chunk) he wrote a letter . really

Reference he wrote a letter in all seriousness .

Table A.4: Translation Example

In the example of Table A.5, although the translation byEBMT(SPA)is good and closer

to the reference, the translation byEBMT(Chunk)is also legitimate.

In the example of Table A.6, although both translations sound fluent except the second

‘it’, the translation byEBMT(Chunk)makes more sense.

In the example of Table A.7, although both systems have 0 sentence level BLEU scores,

EBMT(Chunk)has more possibility for improvement by translating ‘수 있어요’ to ‘can

i have’. In this case, chunking for the Korean sentence is notgood but consistent chunk
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Source [이번주말에] [객실하나을] [예약하고] [싶습니다] [.]

Gloss [this weekend on] [room one ACCUSATIVE] [reserve] [want-to] [.]

EBMT(SPA) i ’d like to make a reservation for a room on weekend .

EBMT(Chunk) i ’d like to make a reservation for a single room at the end of this week .

Reference i ’d like to book a room for this weekend please .

Table A.5: Translation Example

Source [집에서] [이곳까지] [오는데] [얼마나] [걸리나요] [?]

Gloss [home from] [this place to] [to-come] [how-long] [take-QUESTION] [?]

EBMT(SPA) how long does it usually take it from here to the house ?

EBMT(Chunk) how long does it usually take it to this place from my home ?

Reference how long does it take to get here from your home ?

Table A.6: Translation Example

alignment overcame it to some degree.

Source [오늘] [나중에] [거기] [갈] [수] [있게] [예약] [좀] [할] [수] [있어요] [?]

Gloss [today] [later at] [there] [go] [to] [to-be-able] [reservation] [please] [make] [to] [be-able-Q

EBMT(SPA) today there later reservation , please ? can you be able to

EBMT(Chunk) be able to get there on today can i have a reservation , please ?

Reference can i make an appointment for later today ?

Table A.7: Translation Example

In the example of Table A.8,EBMT(SPA)has an alignment error to include ‘operating’

while EBMT(Chunk)could not deal with ‘is’ and ‘’m’ properly when ‘he is’ was chosen

as a translation of ‘그은’ by the chunk aligner erroneously.

In the example of Table A.9,EBMT(SPA)erroneously translated ‘은’ to ’the’ while

EBMT(Chunk)took it as a part of ‘나은’ and translated into ‘i’.

In the example of Table A.10, ‘정거장에’ was better translated to ’at the station’ by

EBMT(Chunk).
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Source [그은] [이] [지역] [지리에] [익숙하지] [않아요] [.]

Gloss [he NOMINATIVE] [this] [area] [ways at] [good] [be-not] [.]

EBMT(SPA) he is not used to operating this area .

EBMT(Chunk) he is not ’m used to this area .

Reference he is not familiar with this area .

Table A.8: Translation Example

Source [나은] [여행을] [할] [것이다] [.]

Gloss [i NOMINATIVE] [trip ACCUSATIVE] [do] [to be] [.]

EBMT(SPA) i am going to take a trip . the

EBMT(Chunk) i am going to take a trip .

Reference i ’m going to make a journey .

Table A.9: Translation Example

Source [많은] [친구들이] [정거장에] [마중나왔다] [.]

Gloss [many] [friend PLURAL NOMINATIVE] [station at] [came-to-see] [.]

EBMT(SPA) the station is a lot of friends .

EBMT(Chunk) at the station is a lot of my friends .

Reference many friends came down to see me at the station .

Table A.10: Translation Example
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