
Towards Efficient Neural Machine Translation

Xiang Kong

CMU-LTI-22-010

May 2022

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
Eduard Hovy (Chair) Carnegie Mellon University

Emma Strubell Carnegie Mellon University
Alon Lavie Carnegie Mellon University

Alexander Rush Cornell University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

In Language and Information Technologies

Copyright © 2022 Xiang Kong

Keywords: Neural Machine Translation, Efficiency, Multilingual Neural Machine Transla-
tion, Non-autoregressive Translation

Acknowledgments

I would like to express my deepest gratitude to my advisor Eduard Hovy (Ed). I
am grateful to meet him during my PhD journey. Ed is an expert in natural language
processing (NLP) and more importantly, he is a superb advisor. It is he who guides
me to study the essential aspects of NLP research from our first meeting. I can
always learn so many new things and insightful ideas which motivate me to pay
attention to research that goes beyond just having higher numbers. Furthermore, he
encourages me to explore various topics which I am interested in. Therefore, during
my PhD study, I explored many different directions and tasks under Ed’s guidance,
in which I built the skillsets to quickly adapt to a new domain. Besides my academic
achievements, he also cares about my long-term successes and gives me invaluable
suggestions to my career and life. I am very grateful to have Ed as my advisor in my
PhD journey.

I would like to thank my committee members, Emma Strubell, Alon Lavie and
Alexander Rush, for providing enlightening feedback and suggestions. Their com-
ments have made this thesis much more complete and led to many potential research
projects. In particular, Emma Strubell helps me to refine the definition of efficiency
in this thesis, making the contribution clear. Alon Lavie is an expert in machine
translation evaluation who helps to compare proposed NMT systems thoroughly.
Alexander Rush is an expert on structure prediction, text generation, etc, who helps
me to make the model description accurate.

I would also like to thank people in Edvisees group. It is such an open environ-
ment where we can discuss many research projects from several perspectives and
life. These discussions inspire me to conduct a lot of interesting research. We of-
ten go for dinner together. Thanks to past and present members of Edvisees group
for making this such a great environment: Zhengzhong Liu, Xuezhe Ma, Qizhe Xie,
Pradeep Dasigi, Diyi Yang, Nicolas Fauceglia, Yiu-Chang Lin, Jun Araki, Dongyeop
Kang, Varun Gangal, Jiarui Xu, Xianyang Chen, Zhisong Zhang and Steven Feng.

I also want to thank the staff at LTI especially Kate Schaich and Stacey Young
who endeavour to students feel at home. I always get prompt and useful answers
from them to my questions regrading course registration, immigration, etc. They are
always friendly to all students and deeply care about students’ well-being.

Collaboration is a big lesson that I learned, and also a fun part of graduate
school. I would also like to express my gratitude to many amazing people at CMU
who I had the pleasure to be friend with, work with or learn interesting ideas from:
Qizhe Xie, Xuezhe Ma, Jiatao Gu, Zhisong Zhang, Varun Gangal, Xianyang Chen,
Zhengzhong Liu, Liangke Gui, Guokun Lai, JingZhou Liu, Xin Qian, Yuexin Wu,

iv

Bohan Li, Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav
Chaudhary, Jiatao Gu, Angela Fan, Mengzhou Xia, Xiang Kong, Antonios Anasta-
sopoulos, Graham Neubig, Shanghang Zhang, Zhaopeng Tu, Shuming Shi, Tong
Zhang, Asa Cooper Stickland, Sinong Wang, Chunting Zhou, Jonathan May, Hao
Ma, Luke Zettlemoyer, Xuesong Yang, Mark Hasegawa-Johnson, Jeung-Yoon Choi,
Stefanie Shattuck-Hufnagel, Yanlu Xie, Jaime G Carbonell, Hans Chalupsky, Ana-
tole Gershman, Alex Hauptmann, Florian Metze, Teruko Mitamura, Zaid Sheikh,
Ankit Dangi, Aditi Chaudhary, Xianyang Chen, Bernie Huang, Salvador Medina,
Hector Liu, Xuezhe Ma, Maria Ryskina, Ramon Sanabria.

I have the deepest appreciation for my parents and my grandparents for uncon-
ditional love, guidance and freedom they gave me. I dedicate this thesis to you, in
love and appreciation.

Finally, I want to thank my dear wife, Jialu Zhao. Thank you for sharing my
happiness and difficulties along the way. Thank you for your unconditional love and
support all time. I couldn’t have done this thesis without you. Let us start a new
chapter of our life to explore the beautiful in this world together.

v

vi

Abstract

Machine translation (MT), the use of machines to automatically translate from
one language to others, aims to overcome language barriers among people from dif-
ferent cultures. Recently, neural networks-based machine translation (NMT) models
significantly narrow the gap between machine and human translations in terms of
translation accuracy. However, some new challenges [90] are also introduced and
efficiency is one of the most important issues. Specifically, with a complex deep
network structure, NMT models generally have high space and computational costs,
hindering their deployment in real-time applications with strict latency requirements
or devices with limited memory resources. In this thesis, we aim to improve the de-
coding efficiency of NMT from three aspects, (1) computational efficiency: NMT,
similar to other deep learning models, employs a deep network structure with a large
number of parameters and high model complexity, resulting in high memory usage
and a relatively slow decoding process; (2) decoding parallelizability efficiency:
another main reason of the low-speed inference process for NMT is the autoregres-
sive property of its decoder that only generates one token at a time and can not be
parallelizable; (3) efficiency in multilingual NMT: to better support translations
between multiple languages, a popular strategy is to employ a deeper encoder and
decoder structure with the increased model capacity to handle multiple languages.
However, the extra latency and memory costs introduced by this approach make it
unacceptable for efficiency-constrained applications.

This thesis consists of three parts to tackle these challenges respectively. First,
to improve the computational efficiency, we focus on some modules of NMT and
develop novel structures and learning algorithms including (1) investigating word
encoding mechanisms to significantly reduce the time and space consumption of
the embedding and softmax layers; (2) developing a linear unified nested attention
mechanism that approximates regular attention, yielding only linear (as opposed to
quadratic) time and space complexity. Then we relieve the autoregressive property in
the conventional NMT decoding algorithm to speed up the decoding process, which
includes (1) designing a semi-autoregressive decoding algorithm which keeps the
autoregressive property locally but avoids it globally; (2) developing a fully non-
autoregressive translation system in which all tokens are generated in parallel. Fi-
nally, we investigate the decoding efficiency in the multilingual translation scenario
which consists of (1) studying the speed-accuracy trade-off for multilingual transla-
tion; (2) improving the decoding speed through the model capacity allocations from
different granularity while maintaining superior translation quality.

viii

Contents

1 Introduction 1
1.1 Research Objective . 2
1.2 Thesis Outline . 3

2 Background 5
2.1 Modeling . 5
2.2 Training . 7
2.3 Inference . 8
2.4 Related Work . 9

I Computation-efficient Neural Machine Translation 13

3 Fast and Simple Mixture of Softmaxes with BPE and Hybrid-LightRNN for Lan-
guage Generation 15
3.1 Introduction . 15
3.2 Background: Mixture of Softmaxes . 16
3.3 Efficient Word Encoding . 18
3.4 Related Work . 20
3.5 Experiments . 20
3.6 Summary . 26

4 Luna: Linear Unified Nested Attention 27
4.1 Introduction . 27
4.2 Background . 29
4.3 Linear Unified Nested Attention (Luna) . 30
4.4 Experiments . 35
4.5 Related Work . 42
4.6 Summary . 44

ix

4.7 Appendix . 44

II Neural Machine Translation with High Decoding Parallelizability 45

5 Semi-autoregressive Neural Machine Translation with Local Translation Mecha-
nism 47
5.1 Introduction . 47
5.2 NMT with Local Autoregressive Translation (LAT) 49
5.3 Experiments . 53
5.4 Summary . 56
5.5 Appendix . 56

6 Fully Non-autoregressive Neural Machine Translation: Tricks of the Trade 59
6.1 Introduction . 59
6.2 Motivation . 60
6.3 Methods . 61
6.4 Experiments . 64
6.5 Summary . 73
6.6 Appendix . 74

III Capacity Allocation in Multilingual Neural Machine Translation 77

7 Multilingual Neural Machine Translation with Deep Encoder and Multiple Shallow
Decoders 79
7.1 Introduction . 79
7.2 Deep encoder and shallow decoder (DESD) for multilingual NMT 81
7.3 Deep Encoder and Multiple Shallow Decoders (DEMSD) 83
7.4 Experiments . 85
7.5 Analysis and Discussion . 90
7.6 Summary . 91
7.7 Appendix . 91

8 Deep encoder, Shallow Decoder with Language-level Mixture-of-Experts 95
8.1 Introduction . 95
8.2 Background and Related Work . 97
8.3 Improving the Capacity of the Shallow Decoder via Mixture-of-Experts 98

x

8.4 Experiments . 100
8.5 Revisit Capacity Bottleneck of the Shallow Decoder 103
8.6 Summary . 107
8.7 Appendix . 107

9 Conclusion and Future Directions 109

Bibliography 113

xi

xii

List of Figures

3.1 An sample of the LightRNN word table [108]. 18

3.2 BPE-MoS’s average performance over multiple runs on IWSLT DE-EN with
various numbers of mixture components. 25

4.1 Trade-off between performance (y axis), speed (x axis) and memory (circle ra-
dius) on LRA benchmark [173]. 28

4.2 Illustration of the architecture of one Transformer encoder layer (left) versus one
Luna encoder layer (right). 32

4.3 Decoding speed and peak memory consumption during inference on WMT’14
EN-FR test set with respect to the number of tokens in the source sequence.
We also report the BLEU scores of various systems with respect to the source
sentence lengths. All models are tested on the same GPU. 42

4.4 An example of the sentence duplicate task, The w is < 3, 9, 121 > which is of
length 3 . 42

5.1 An example of the LAT mechanism. For each decoding position, a short se-
quence of tokens is generated in an autoregressive way. Short sequences at dis-
tinct translation positions are generated in parallel. 〈sop〉 is the special start-of-
piece symbol. ‘pos*’ denotes the hidden state from the decoder at that position. . 48

5.2 An example of merging two pieces of tokens. 50

5.3 The BLEU scores of various systems with respect to the reference sentence
lengths on WMT’14 EN-DE testset. 55

6.1 The translation quality v.s. inference speed-up of the proposed model with the
AT (transformer) and existing popular iterative NAT models varying decoding
iterations on WMT’14 En→De test set. The upper right corner achieves the best
trade-off. 60

6.2 The overall framework of our fully NAT model. 62

xiii

6.3 Quality v.s. Latency (the upper left corner achieves the best trade-off) for fully
NAT models with other translation models (AT base and base 12-1 [73], CMLM [48]
and LevT [56]) on WMT’14 EN→DE. We evaluate latency in three setups (from
left to right: LGPU

1 , LCPU
1 , LGPU

max) and show them in Logarithmic scale for better
visualization. 69

6.4 Principle component explained variance ratios of latent variables on WMT’14
EN→DE test set. 72

6.5 Decoding Speed Comparison of various machine translation models. SMT-16
denotes phrase-based statistical machine translation decoding with 16 CPU threads. 73

6.6 Alignments between source sentences and their different translations. 76

7.1 Speed and accuracy trade-off of various layer allocations for O2M and M2O
translations on OPUS-100, TED8-Related and TED8-Diverse corpora. X-Y de-
notes X and Y layers in the encoder and decoder respectively. Best viewed in
color. 81

7.2 The BLEU score difference between models 10-2-EACH and 10-2 on TED8-
Related (BLEU10-2-EACH − BLEU10-2). (Left four languages are low-resourced
and the right four are high-resourced.) . 87

7.3 The BLEU score difference between models 10-2-FAM and 10-2-EACH on TED8-
Related (BLEU10-2-FAM−BLEU10-2-EACH). (Left four languages are low-resourced
and the right four are high-resourced.) . 88

7.4 Multiple decoders with various layer allocations of Transformer on TED8 datasets.
X-Y denotes X and Y layers in the encoder and decoder respectively. ’BASE’
denotes the shared decoder model. 90

8.1 MoEs with various routing strategies. Each expert is a feed-forward network
block in transformer. 99

8.2 Translation quality of models with various number of experts in each language
family group. ’0’ denotes no MoEs and all languages share the same feed-
forward network. 103

8.3 Transformer decoder block. 104
8.4 Increasing the capacity of various combinations of components in a transformer

decoder block. Layer normalization and the residual connection are ignored for
simplicity. SA, CA and FFN denote the self-attention, cross attention and feed-
forward networks respectively. 105

xiv

List of Tables

3.1 Overall performance comparisons on IWSLT’14 DE-EN. HLR denotes Hybrid-
LightRNN. For all BLEU, METEOR, Fmean, the higher, the better. 21

3.2 Overall performance comparisons on MSCOCO. 22

3.3 Experiment results on the WMT 2014 English-German (EN-DE) and English-
French (EN-FR) where Transformer-MoS denotes the Transformer model with
MoS and BPE-based vocabulary. MoS-based models are significantly better than
their corresponding baselines (p<0.05). 22

3.4 Memory and time efficiency comparisons on IWSLT DE-EN when using the
same number of Softmaxes. Bold faces highlight the best in the corresponding
category. The shown memory is in GB and the speed is in # update_steps/s. For
all BLEU, METEOR and Fmean, the higher the better. 23

3.5 Unigram accuracy of words with various frequencies on IWSLT DE-EN. HLR
denotes Hybrid-LightRNN. 23

3.6 Some OOV words which can be translated correctly by the BPE-based model. . . 24

3.7 Average validation BLEU on IWSLT of Hybrid-LightRNN using different map-
ping tables. 24

3.8 Example mapping table where the row denotes the first code and the column
denotes the second code. Numbers and places are grouped together in row 45,
91. Syntactically similar words are also grouped together in row 48, 54 and 93. . 26

4.1 Experimental results on the long range arena (LRA) benchmark. For Luna, we
explore three projected dimensions: 16, 128 and 256. ‘Avg. (w/o rtl)’ denotes
the averaged accuracy over all tasks excluding Retrieval. The performance of
previous works except RFA are from Tay et al. [173]. RFA scores are from Peng
et al. [136]. 36

4.2 Training speed and peak memory consumption comparison of different models
on byte-level text classification with various input lengths (1K, 2K, 3K and 4K).
The best model is in boldface. 37

xv

4.3 Decoding speed and peak memory consumption comparison of different models
on byte-level text classification with various input lengths (1K, 2K, 3K and 4K).
The best model is in boldface. 37

4.4 Performance comparison of two sentence representation methods on LRA bench-
mark. 38

4.5 Performance of various models on development set of benchmark natural lan-
guage understanding tasks. Bold face indicates best performance. 39

4.6 Performance comparison on WMT14 EN→DE and WMT14 EN→FR. 40

4.7 Performance comparison on WMT14 EN→DE and WMT14 EN→FR. 41

4.8 Performance of Luna with various project lengths on the sequence duplication task. 43

4.9 Hyperparameters of models in LRA tasks. LR and Attn-Dropout denote the
learning, batch size and attention dropout. 44

5.1 The comparisons (on BLEU/METEOR and decoding latency) of CMLM, LAT
and AT models. CMLM denotes the Mask Predict model [47]. 53

5.2 The performance of LAT models with respect to the number of local translation
steps on IWSLT’14 DE-EN test set. 54

5.3 N-gram repeat rates of various models on WMT’14 EN-DE test set. ‘AT’ here is
a transformer base translation model. 55

5.4 Pre-processing details of various translation benchmarks. Vocab. size denotes
vocabulary size. 57

5.5 Number of Parameters of different models. 57

6.1 Comparison between the proposed techniques for improving fully NAT models. . 62

6.2 Comparison between our models and existing methods. The speed-up is mea-
sured on WMT’14 En→De test set. Iter. denotes the number of iterations at
inference time, Adv. means adaptive, ∗ denotes models trained with distillation
from a big Transformer. 66

6.3 Comparison between our models and autoregressive models in terms of ME-
TEOR [32]. 67

6.4 Performance comparison between fully NAT and AT models on WMT’20 JA→EN.
Translation latency on both the GPU and CPUs are reported over the test set. The
brevity penalty (BP) is also shown for reference. 68

6.5 Ablation on WMT’14 EN→DE test set with different combinations of tech-
niques. The default setup shows a plain NAT model [55] directly trained on
raw targets with the cross entropy (CE) loss. 71

xvi

6.6 Performance comparison between AT and NAT models on the test set of WMT’14
EN→DE. The latency is measured one sentence per batch and compared with the
Transformer base. For NAT model, we adopt CTC+VAE as the basic configura-
tion. 72

6.7 Performance comparison of different upsample ratios (λ) for CTC-based models
on WMT’14 EN→DE test set. All models are trained on distilled data. 75

7.1 Language families in the TED8-Related corpus. 84

7.2 Performance comparison over various models on OPUS-100. High and Low
denote high-resource language (>= 1 million training sentence pairs) and low-
resource language (< 1 million training sample pairs). BS shows the BERTScore [201].
TP and DP indicate the number of parameters loaded in the memory at training
and decoding time. For all COMET, BLEU and BERTScore, the higher the better. 86

7.3 Translation speed and accuracy trade-off on TED8-Related and TED8-Diverse
corpora. BS shows the BERTScore [201]. TP and DP indicate the number of pa-
rameters at training and decoding time. For all COMET, BLEU and BERTScore,
the higher the better. 87

7.4 Language families in the TED8-Diverse corpus. 92

7.5 Language families in the OPUS-100 corpus. 93

7.6 Language embedding-based language assignment result on the TED8-Diverse
corpus. 93

8.1 Language families in the TED8-Related corpus. 100

8.2 Performance comparison over various models on TED8-Related and TED8-Diverse
datasets. BS (BERTScore), TP (# Training Parameters), DP (# Decoding Pa-
rameters) show the BERTScore scores and number of parameters loaded in the
memory during training and inference time respectively. For all COMET, BLEU
and BERTScore, the higher the better. 101

8.3 Performance comparison over various models on OPUS-100. High and Low
denote high-resource language (>= 1 million training sentence pairs) and low-
resource language (< 1 million training sample pairs). For all COMET, BLEU
and BERTScore, the higher the better. 102

8.4 Comparison between models with various capacity increase methods on TED8-
Related. BS denotes BERTScore. For all COMET, BLEU and BERTScore, the
higher the better. 106

xvii

8.5 Comparison between models with various capacity increase methods on TED8-
Diverse. BS denotes BERTScore. For all COMET, BLEU and BERTScore, the
higher the better. 106

8.6 Comparison between models with various capacity increase methods on OPUS-
100. BS denotes BERTScore. For all COMET, BLEU and BERTScore, the
higher the better. 108

xviii

Chapter 1

Introduction

Building automatic translation systems to overcome language barriers and build bridges be-
tween people from different cultures has a long history. A robust machine translation (MT)
engine which is capable of accurately and rapidly translating one language to another can ben-
efit people across the globe. Since 1950s, scientists have been devoted to proposing various
practical systems such as rule-based MT [42, 176], example-based MT [126, 162] and statistical
MT [13, 89, 91].

In recent years, as a new paradigm, neural networks-based machine translation (NMT) mod-
els [7, 22, 168, 178] have achieved state-of-the-art translation performance and significantly nar-
rowed the gap between machine and human translations in terms of translation quality between
some languages [59, 190]. Several open-source NMT frameworks [69, 87, 132, 153] also facil-
itate the research and development in this field. In contrast to the statistical machine translation
model which consists of various separate designed sub-components, NMT employs a single neu-
ral network to directly learn the mapping between source sentences and their translations through
an end-to-end training process. Concretely, the goal of NMT models is learning a conditional
language model, i.e., the probability of the target sentence given the source sentence. The great
success of NMT is mainly due to its strong ability to auto-decompose and represent millions of
translation combinations. To achieve this, NMT tends to employ a deep neural network struc-
ture with high complexity computations and a massive number of parameters. For example, a
standard transformer-base [178] model with a vocabulary of 40,000 tokens contains around 64
million parameters.

Despite the impressive progress in translation quality brought by the power of NMT, new
challenges are also introduced [90]. An important one among them is efficiency which includes
several aspects such as data efficiency, training efficiency and inference efficiency. Specifically,
in this thesis, we mainly focus on the inference efficiency from several scenarios and aspects.

1

1.1 Research Objective

The complicated structure and the large capacity of deep neural networks are the main reasons
for NMT to surpass other machine translation models. Nonetheless, this architecture also renders
the NMT model computation-expensive and memory-intensive. As a result, during the inference
process, compared to the conventional MT models such as phrased-based statistical machine
translation, generating sentences by NMT is much slower. Also, the large number of parameters
and high computational complexity bring high memory usage. This low inference efficiency
profoundly affects the smoothness of the communication and the real-time application with strict
latency or memory requirements. Therefore, in this thesis, we specifically investigate methods
to ameliorate the decoding speed or memory consumption of NMT from three aspects:

Computational Complexity: The NMT model consists of several modules with various op-
erations. For instance, the softmax function at the final layer of NMT is employed to compute
scores for each candidate word and normalize them to probabilities. Its computation involves
a matrix multiplication proportional to the size of the output vocabulary V . Since NMT mod-
els typically have tens of thousands of words, this module becomes a bottleneck in terms of
speed and memory. Another module we investigate in this thesis is the attention mechanism,
the core function in transformer [178], which is to model pairwise interactions between tokens.
While attention is powerful, its quadratic time and space complexity w.r.t. the length of the
input sequence, prohibitively restricts their potential application to tasks requiring longer input
sequences.

Decoding Parallelizability: Besides ameliorating the computational complexity of some mod-
ules in NMT, another aspect to speed up the decoding process is to mitigate the low paralleliz-
ability of its standard decoding algorithm. At inference time, standard autoregressive translation
(AT) models only generate one token at a time conditioning on the target sequence produced
so far and the whole source sentence. This decoding process can not be parallelizable, and, in
the case of NMT models, it becomes slow because a computationally intensive neural network
is used to generate each token. Therefore, this autoregressive decoding process is still the main
bottleneck of inference speed and it is meaningful to make this process as parallelizable as pos-
sible.

Capacity Allocation in Multilingual Translation Besides improving the parallelism of the
NMT decoding process, another method is to exploit the parallelization difference between trans-
former encoder and decoder at inference time. Specifically, due to the autoregressive property,
the decoder needs to generate tokens one by one. However, the computation in the encoder is

2

still parallelized over the source sentence. Therefore, the main latency of the transformer at in-
ference time happens in the decoder, especially translating long sentences. Recently, Kasai et al.
[73] find that on bilingual machine translation tasks, putting more capacity of the transformer
model to the encoder from the decoder substantially reduces the decoding time and maintains
performance at the same time. Therefore, we aim to understand the effect of layer allocations on
the multilingual neural machine translation task.

Overall, in this thesis, we seek to tackle the aforementioned challenges to improve the latency
and memory usage of the NMT model while maintaining its superior translation quality at the
same time.

1.2 Thesis Outline

In Chapter 2, we briefly review the background of this thesis including the architecture, training
and inference of neural machine translation models.

Following the inference efficiency-related challenges discussed above, this thesis is com-
posed of three main parts.

In Part I, we endeavor to improve the computational efficiency issue by optimizing various
modules in NMT.

In Chapter 3, we focus on the vocabulary representation. We observe that due to the large
vocabulary size in language generation models, the embedding layer occupies the majority of the
model parameters. Besides, it makes the softmax layer computation-expensive. To reduce the
number of parameters for word representations in NMT models, we investigate two improved
word coding methods, i.e., LightRNN [108] and Byte Pair Encoding (BPE) [154], which ef-
fectively relieves the memory and computation burden. Furthermore, BPE achieves the best
performance due to its strong ability to handle rare and out-of-vocabulary words. In Chapter 4,
we aim to reduce the time and space complexity of the standard attention mechanism in trans-
former [178] and introduce Luna which uses two nested attention functions to approximate the
standard attention. Specifically, with the first attention function, Luna packs the input sequence
into a packed sequence. Then, the packed sequence is unpacked using the second attention
function. Importantly, we model this packed sequence as an extra input sequence which can
adequately encode the contextual information of the real input sequence.

In Part II, we work on improving the low parallelizability of the standard autoregressive
decoding algorithm in which sentences are generated token by token.

In Chapter 5, we introduce a semi-autoregressive neural machine translation model with
a novel local autoregressive translation (LAT) mechanism which captures local dependencies
among target outputs. With LAT, we first generate a bunch of short sequences in parallel and

3

each sequence is generated autoregressively, then an efficient merging algorithm is designed to
align and merge the output pieces into the final translation. In Chapter 6, we aim to develop a
competitive fully non-autoregressive neural machine translation (NAT) system which generates
tokens in parallel. We find that the key to successfully training a fully NAT model is to reduce
the target dependency as much as possible. Therefore, several target dependency reduction tech-
niques are applied to minimize the performance gap between fully NAT and AT models while
significantly improving the decoding speed.

In Part III, we strive to improve the inference efficiency in the multilingual neural machine
translation (MNMT) scenario through capacity allocations of the transformer.

In Chapter 7, we extensively study the speed-accuracy trade-off of MNMT models through
model capacity allocations. We further design a deep encoder, multiple shallow decoders (DEMSD)
model to accelerate the decoding speed compared to a standard MNMT model with competitive
translation quality on the one-to-many translation task. In Chapter 8, inference-efficient mixture-
of-experts (MoEs) are applied to boost the performance of the shallow decoder-based models on
one-to-many translation tasks. Moreover, we examine the capacity bottleneck of the shallow
decoder on the one-to-many translation task through an empirical study.

4

Chapter 2

Background

In this chapter, we briefly review some aspects of the standard neural machine translation (NMT)
model, including its modeling, training and inference. This chapter also briefly surveys previous
works related to inference-efficient neural machine translation.

2.1 Modeling

Neural Language Modeling

Prior to introducing the neural machine translation system, as the basis of many natural lan-
guage tasks, we first review the language modeling using various kinds of neural networks,
i.e., neural network language modeling (NNLM). For instance, Bengio et al. [11] introduce
the first NNLM which employs feed-forward neural networks to predict tokens given words
in a fixed-size window. Formally, given a vocabulary of all possible words, V , for a sentence
s = (w1, ..., wi, ..., wn), NNLM can assign the probability p(s; θ) = p(w1, ..., wi, ..., wn; θ) to
it with parameters θ. However, it is difficult to model the probability of the entire sentence di-
rectly so approximate methods are necessary. The most popular and widely used approximation
method is to model NNLM in an autoregressive way, where the probability of the current word
conditions on its previous words. Therefore, the probability of the given sentence is reformulated
to: p(w1, ..., wi, ..., wn; θ) =

∏n
i=1 p(wi|w1 : wi−1; θ).

Conditional Neural Language Modeling

With neural language modeling, sentences can be generated from scratch and given a sentence,
we can also know how likely it is in that language. In practice, there is also a need for generating
meaningful sentences conditioning on the context. For example, machine translation models

5

need to take the source sentence into account. In dialogue generation, the generated response
needs to be coherent with its prompts. Therefore, the conditional autoregressive neural language
modeling is introduced through the sequence to sequence (seq2seq) learning schema [169] where
the input sequence is mapped to a fixed-size vector and each token in the target sequence will be
decoded from this vector. Formally, given the input sequence x and the target sequence y, the
probability of y given x from a model with parameters θ is: p(y|x) =

∏n
i=1 p(yi|y<i;x; θ).

Neural Machine Translation and Attention Mechanism

Almost all neural machine translation models are built based on the sequence to sequence learn-
ing schema through various kinds of networks, e.g., recurrent neural networks (RNNs) [23, 169],
convolutional neural networks (CNNs) [45] and the transformer model [178]. All of them can
be regarded as conditional neural language modeling. Specifically, the input sentence from a
source language is converted to a fixed-size vector through a neural network, a.k.a. encoder, then
another network called decoder will generate output in an autoregressive way conditioning on
the partial translation and the context vector.

One main bottleneck of this vanilla seq2seq model is the need for the encoder network to be
able to compress all information in the source sentence into a fixed-size context vector especially
for long sentences. Inspired by the alignment between words in source and target sequences in
statistical machine translation [88], [7] propose the attention mechanism to explicitly (soft-)align
input and output sequences. Rather than predicting target words by a single fixed vector, the
attention mechanism outputs specific context vectors dynamically for each output time step. In-
tuitively, with the attention mechanism, the model concentrates on different parts of the source
sentences when generating target tokens at various time steps. Furthermore, the attention mech-
anism is a valuable breakthrough in deep learning research, which not only helps neural machine
translation models to achieve state-of-the-art performance, but spawns the rise of many important
models recently such as the transformer [178] and BERT [33] as well.

Multilingual Neural Machine Translation (MNMT)

After obtaining impressive performance on bilingual translation tasks [7, 23, 169], neural ma-
chine translation has been naturally extended to the multilingual machine translation scenario. To
support many language pairs within a single model, [68] prepend a token to the source sentence
to specify the target language.

There are several advantages to developing one NMT model for translation between many
languages. For example, training models with data from multiple language pairs enable the
knowledge transfer between them which can boost the performance of low-resource languages.

6

Another one is that the MNMT model is capable of translating between unseen language pairs
during training, a.k.a. zero-shot translation.

Despite these potential benefits, MNMT generally performs worse than its corresponding
bilingual NMT models and this performance gap will become larger as the number of language
pairs increases [1, 4, 68]. Suspecting that poor performance is due to the limited model capacity,
many prior works adopt deeper encoder and decoder to overcome this capacity bottleneck [182,
198, 199]. Nonetheless, the increased model capacity leads to a high latency decoding process
with large memory consumption.

2.2 Training

Vocabulary Encoding

Typically, neural machine translation operates with a fixed word-level vocabulary and a spe-
cial symbol, <UNK>, is introduced to represent unseen tokens. However, machine translation
is an open-vocabulary problem and it is necessary to make the NMT model capable of open-
vocabulary translation. One popular method to handle this open-vocabulary issue is to learn
subword units by Byte Pair Encoding (BPE) [44, 95, 154]. Specifically, each word in the training
corpus will be split into several subword components and NMT models will be operated on this
subword-level vocabulary. Furthermore, there are also some works [79, 101] directly learn NMT
models on a character-level vocabulary.

Objective Function

Neural Machine Translation (NMT) is an end-to-end structure which could directly model the
translation probability between a source sentence x = x1, x2, . . . , xJ and a target sentence y =

y1, y2, . . . , yI token by token:

p(y|x) =
I∏
i=1

p(yi|y<i, x; θ) (2.1)

where y<i = {y1, y2, . . . , yi−1} is the partial translation before decoding step i and θ represents
NMT’s parameters. The probability of generating the i-th word p(yi|y<i, x; θ) is calculated by

p(yi|y<i, x; θ) ∝ exp {f(yi−1, si, ci; θ)} (2.2)

where si is the i-th hidden state of the decoder and f(·) is a non-linear activation function of the
decoder state. ci is a distinct source representation for time i, calculated as a weighted sum of

7

the source annotations: ci =
∑J

j=1 αi,j · hj , where hj is the annotation of xj from an encoder,
and its weight αi,j is computed by

αi,j =
exp(ei,j)∑J
j′=1 exp(ei,j′)

with ei,j = a(si−1, hj) (2.3)

where a(·) is an attention model that scores how well yi and hj (i.e., xj) match, and αi,j is the
normalized alignment probability of xj being aligned to yi.

Finally, the parameters of NMT θ are trained to maximize the likelihood of training instances
{[xn, yn]}Nn=1:

L(θ) = arg max
θ

N∑
n=1

logP (yn|xn; θ) (2.4)

2.3 Inference

It is vital to design inference algorithms to accurately and rapidly generate high-quality transla-
tions given input sequences. In general, NMT models attempt to produce the most likely trans-
lation given an input sequence, i.e.,

ŷ = arg max
y

p(y|x; θ) = arg max
y1,...,yI

I∏
i=1

p(yi|y<i;x; θ) (2.5)

The most likely translation given the current model could be obtained by computing all possible
sequences, which, however, is computationally intractable as the number of possible candidates
grows exponentially with respect to the sequence length. Therefore, some approximate decoding
algorithms such as greedy and beam search methods are applied in practice.

Greedy Inference

In the greedy decoding method, at each time step, we simply choose the token with the highest
conditional probability as the final translation and use it to predict the following tokens. The
translated word at each time step t will be formulated as:

ŷt = arg max
y

p(yt|ŷ<t;x; θ) (2.6)

The greedy decoding process is fast and straightforward but it is generally error-propagated and
sub-optimal.

8

Beam Search Inference

To balance the translation accuracy and computational complexity, the beam search decoding
method is designed to generate high-quality sentences with tractable computation. During the
decoding process, k possible candidates are maintained. At each time step, all successors of k
states are generated and the k best successors are selected for the following inference.

Thanks to the larger searching space, the beam search inference method generally performs
better than the greedy decoding algorithm. However, the computational complexity grows lin-
early with the size of beam and [90] show that beam search decoding only improves translation
quality for narrow beams and deteriorates when exposed to the larger search space.

2.4 Related Work

Breaking the Autoregressive Property of the Decoding Process

One main advantage of transformer [178] over recurrent neural networks is its higher compu-
tation parallelism during training time. However, the standard transformer-based NMT model
generates sequences autoregressively at inference time. Therefore, one line of research towards
inference-efficient NMT is to break the autoregressive property and enable the decoding process-
ing as parallel as possible.

Non-autoregressive translation models aim to generate sequences in parallel. Gu et al. [55]
introduce a set of latent variables to model the fertilities of source words to tackle the multi-
modality problem in non-autoregressive translation and they find that it is effective to train NAT
models on distilled data using sequence-level knowledge distillation [78]. Several works find that
the standard cross entropy loss is too strict for NAT models. In order to make the loss function
more compatible with NAT models, several works [49, 110, 150] use the CTC loss or aligned
cross entropy to introduce latent alignments between generated and golden sequences. Shao
et al. [156] use the bag-of-2grams loss to mitigate the overcorrection effect of the cross entropy
loss. Wang et al. [185] incorporate two auxiliary regularization terms in the training process of
NAT models to mitigate the incomplete and repeated translation issues. Sun et al. [167] aim to
directly model the multimodal issue in the target token spaces of NAT and design an efficient
approximation for CRF and a dynamic transition method to handle positional contexts. Several
works find that giving partial golden translations to the NAT decoder can help the NAT training
process and Qian et al. [138] optimize the number of glancing targets to NAT models according
to the quality of generated sentences to reduce the mismatch between training and inference.

Another popular solution to improve the translation accuracy of NAT models is to sacri-
fice the speed-up by incorporating an iterative refinement process. Lee et al. [102] propose a

9

non-autoregressive sequence model based on an iterative refinement process. The model can
be viewed as both a latent variable model and a conditional denoising autoencoder and it is
optimized by the hybrid of lower bound maximization and reconstruction error minimization.
Stern et al. [163] introduce a blockwise parallel decoding scheme in which predictions for mul-
tiple time steps are made in parallel then back off to the longest prefix validated by a scoring
model. Kaiser et al. [70] use latent variables to make the decoding process more parallel. They
encode the target sentence into a shorter sequence of discrete latent variables. The final target
sequence will be decoded from this latent sequence in parallel. Note that during inference time,
this sequence of latent variables is generated autoregressively. Insertion Transformer [165] ac-
commodates arbitrary orderings by allowing for tokens to be inserted anywhere in the sequence
during decoding instead of relying on a fixed, left-to-right ordering of outputs. During inference,
output tokens could be generated in a sequential manner for autoregressive decoding or in a
semi-autoregressive style with parallel decoding through inserting multiple positions simultane-
ously. Similarly, Chan et al. [15] also introduce a simple insertion-based approach to generative
modeling for sequences and sequence pairs. Inspired by BERT [33], Ghazvininejad et al. [46]
propose a conditional masked language modelling and design an interactive mask predict decod-
ing algorithm. In one translation iteration, all tokens are generated in parallel and tokens with
lower confidence scores will be masked again for re-prediction. Ma et al. [117] build an iterative
NAT with latent variables, the conditional density of which is modelled by normalizing flows.
Tu et al. [177] train a non-autoregressive machine translation model to minimize the energy de-
fined by a pretrained autoregressive model. Gu et al. [56] design a sequence generation model
consisting of insertion and deletion operations. Tokens are generated in parallel in each of these
stages. Shu et al. [160] propose a continuous latent variables-based NAT model to improve the
performance with a deterministic inference algorithm. Latent variables are iteratively refined to
generate higher-quality sequences. Saharia et al. [150] adopt Imputer [16] to translation prob-
lems and demonstrate the effectiveness of latent alignments in Imputer with iterative decoding
methods. Noting that conditional random fields with bounded context can be decoded in paral-
lel, Deng and Rush [30] introduce the Markov transformer and an efficient cascaded decoding
approach.

Optimizing autoregressive NMT

Prior work has suggested various ways to optimize autoregressive transformer-based NMT for
fast inference and reduced memory consumption.

Due to the quadratic time complexity of the self-attention mechanism, several works propose
various methods to reduce its complexity. Zhang et al. [197] design an average attention network
to speed up the attention computation. Wu et al. [189] argue that a lightweight conv layer which

10

has linear time complexity is able to achieve comparable results with self-attention. Xiao et al.
[193] propose a fast and lightweight attention model which shares attention weights between
adjacent layers and enables the efficient re-use of hidden states in a vertical manner. Raganato
et al. [142], You et al. [196] find that attention heads in the multi-head attention mechanism
mostly focus on local windows so they employ non-learned, fixed attention weights to replace the
traditional learned attention heads. Competitive translation accuracy especially on low-resource
languages is obtained via hard-coded attention heads with just one learned head. Peng et al. [135]
use random feature methods to approximate the softmax function, and apply them to machine
translation tasks to improve the decoding speed.

Shi and Knight [159] accelerate the decoding process through reducing the vocabulary size
by word alignments. Wang et al. [181] replace the transformer decoder with a LSTM-based
decoder while keeping the transformer encoder. They find that this hybrid architecture is able to
achieve competitive results with a 2 times speed-up. Kasai et al. [73] employ a shallow decoder
to speed up the inference processing on CPUs or GPUs. They also find that shallow decoder NAT
significantly degrades accuracy. Deng and Rush [31] replace the decoder in NAT model with a
search lattice. They first construct a candidate lattice using efficient lookup operations, generate
lattice scores from a deep encoder, and finally find the best path using dynamic programming.

Several general techniques such as knowledge distillation [64, 78], model pruning, quantiza-
tion, etc, are also applied to reduce the model size and memory consumption. See et al. [152]
investigate magnitude-based pruning schemes to compress NMT models, namely class-blind,
class-uniform, and class-distribution, which differ in terms of how pruning thresholds are com-
puted for the different classes of weights in the NMT architecture. Michel et al. [120] find that
a large proportion of attention heads can be removed at test time without significantly impacting
performance, and at some layers the number of attention heads can even be reduced to a single
head. Fan et al. [38] design a structure dropout, i.e., LayerDrop, which has a regularization effect
during training and allows for efficient pruning at inference time. Kim et al. [80] apply several
techniques to improve the decoding speed, such as pre-packed 8-bit matrix products, improved
batched decoding, cache-friendly student architectures with parameter sharing and light-weight
RNN-based decoder architectures. Junczys-Dowmunt et al. [69] build an efficient NMT written
in pure C++ with minimal dependencies. A lot of works apply knowledge distillation to transfer
knowledge from large teacher models to compact, efficient student models [60].

11

12

Part I

Computation-efficient Neural Machine
Translation

13

Chapter 3

Fast and Simple Mixture of Softmaxes with
BPE and Hybrid-LightRNN for Language
Generation

3.1 Introduction

The Sequence-to-Sequence model (seq2seq) [6, 168, 178] has led to significant research progress
on conditional language generation such as neural machine translation over the last few years.
Traditionally, seq2seq models apply one-hot representations (whose dimension is equal to the
size of the vocabulary V) for each token in V and map this one-hot vector to a continuous
vector through an embedding layer. At the prediction layer, the hidden state is projected by
an output matrix followed by a softmax function to output a probability distribution over all
words in V . Therefore, the computational complexity of the softmax function is proportional
to the vocabulary size. With a large vocabulary which is typically the case for building natural
language generation systems, the softmax layer becomes a computational bottleneck since it
needs to access every token to obtain the normalization factor and finally compute the probability
distribution over all words in the vocabulary. Besides the high computational complexity in the
softmax layer, a large vocabulary also causes a memory issue. For instance, in a NMT model
with a vocabulary of 50k, the size of embedding layers accounts for around 50% of the total
number of model parameters in a transformer-base [178] model.

To address the aforementioned drawbacks, a natural idea is to apply efficient vocabulary
construction methods. On a high level, we aim at an encoding mechanism of the vocabulary
so that each word can be represented as a code sequence and distinct words may share some
of these codes. With this sharing mechanism, we will have a smaller candidate set, resulting in
fewer model parameters and reduced time and memory consumption for the softmax layer.

15

Therefore, in this work, we investigate two word encoding algorithms for these purposes:
the first one is called LightRNN, which learns an encoding mechanism from the data based
on the language modeling objective. The other one is Byte Pair Encoding (BPE) [44, 155],
which is originally proposed to help with translating rare words. When evaluated on machine
translation (MT) and image captioning, both of these approaches can effectively reduce the time
and memory consumption with similar or better performance. Furthermore, comparing these two
methods, BPE-based models have significantly better performance because of its strong ability
to handle rare and unknown words. Moreover, we apply mixture of softmax (MoS) [194] on
these vocabulary representation methods to further improve the performance.

Our contribution is two-fold. Firstly, we propose to use Hybrid-LightRNN and BPE to create
time- and memory-efficient vocabulary representations for two language generation tasks. Sec-
ondly, we demonstrate the empirical effectiveness of MoS on sentence generation by improved
results on machine translation and image captioning.

3.2 Background: Mixture of Softmaxes

Mixture of Softmaxes (MoS) [194] is introduced to address the expressiveness limitations of
softmax-based models. In this section, we briefly review the motivation and the formulation of
MoS.

With the autoregressive factorization, a generation model estimates the distribution of the
next token x given the context c. In language modeling, the context is composed of previous
words of x. In conditional generation tasks such as MT or image captioning, the context also
contains the source sentence or the image. Let P ∗(X | ci) denote the ground-truth distribution
of the next token given context c. Then the standard softmax function computes the probability
distribution Pθ(x | c) as

Pθ(x | c) =
exp h>c wx∑
x′ exp h>c wx′

where hc is the context vector and wx is the word embedding.

Softmax Bottleneck Yang et al. [194] show the expressiveness limitation of the softmax func-
tion from a matrix factorization perspective. Specifically, suppose that the number of valid con-
texts is finite. We list all contexts as c1, c2, · · · , cN . Let A ∈ RN×V ,W ∈ RV×d,H ∈ RN×d

denote the log probability of the ground-truth distribution, the word embedding matrix and the
context representation matrix respectively, where N is the number of contexts, V is the vocab-
ulary size and d is the dimensionality of the embedding vector and the context vector. In other
words, Ai,j = logP ∗(xj | ci),Wj = wxj ,Hi = hci .

16

Let F (A) denote all matrices obtained by applying row-wise shifting to A. Since all matrices
in F (A) result in the same probability distribution due to the normalization term in the softmax,
the softmax function can output the ground-truth distribution P ∗ if and only if the factorization
HW> approximate any matrix in F (A).

However, in language generation tasks, matrices in F (A) cannot be approximated by HW>

because of the differences in their matrix ranks. More specifically, the rank of HW> is limited
by the embedding vector dimensionality d. In comparison, as shown in Yang et al. [194], A
and any other matrices within F (A) have similar high ranks since different contexts result in
highly different probability distributions of the next token. Consequently, the ground-truth dis-
tribution P ∗ cannot be approximated by the softmax distribution Pθ, which results in the softmax
Bottleneck.

MoS To tackle the softmax bottleneck problem, MoS formulate the distribution as the weighted
average of K softmax components:

Pθ(x | c) =
K∑
k=1

πc,k
exp h>c,kwx∑
x′ exp h>c,kwx′

(3.1)

where πc,k is the mixture weight of the k-th softmax component and hc,k is the k-th context
vector. On language modeling, it has been shown empirically that such a formulation leads to
a high rank matrix. Note that since all softmaxes share the same word embedding matrix, the
number of parameters do not increase rapidly with more mixtures, preventing overfitting.

The mixture weight and the context vectors are computed as

πc,k =
exp g>w

(π)
k∑K

k′=1 exp g>w
(π)
k′

hc,k = tanh(W
(h)
k g)

(3.2)

where g denotes a vector representation of the context c. w(π) and W(h) denote the parameters
of the mixture weight and the parameters of the context vector with a slight abuse of notation.

Time and Memory Cost As shown in Equation. 3.1, MoS computes K softmaxes and output
the weighted average of the K probability distributions. Though MoS effectively increases the
expressiveness of a generation model, it also incurs a large time and memory cost since it needs
to perform K softmax operations on the whole vocabulary. The time and memory costs not
only hinder rapid algorithm developments but also limit the mixture number when resources are
limited, restricting the power of MoS.

17

3.3 Efficient Word Encoding

In this section, we introduce two word encoding algorithms to reduce the memory and time
consumption of the softmax layer and the model parameter size. We aim to obtain a word en-
coding mechanism where the number of potential codes is much smaller than the number of
word types. Therefore, in this chapter, we investigate two methods to obtain this goal which are
LightRNN [108] and Byte Pair Encoding (BPE) [44, 155].

LightRNN

Li et al. [108] propose to use 2-Component (2C) shared embedding for word representations.
Specifically, all words in the vocabulary are allocated into a 2d table and words in the same row
or column will share a row or column embedding vector respectively. Each word in this table can
be represented by its corresponding row and column vectors. An example of this table is shown
in Figure 3.1. For a square word table, the length of its side is

√
|V | where |V | is the vocabulary

Figure 3.1: An sample of the LightRNN word table [108].

size. Therefore, only 2
√
|V | vectors in total are needed to represent all words in a vocabulary

with |V | words, and thus greatly reduce the parameter size to represent V as compared to the
standard approach (O(

√
|V | ∗d) vs. O(|V | ∗d)) where d is the embedding dimension. Similarly,

LightRNN is also capable of circumventing the linear dependency on the vocabulary size for the
computational time and memory of the softmax layer.

Based on the above idea, the key part is how to appropriately generate this table, i.e., allocat-
ing words into columns and rows. Specifically, Li et al. [108] introduce a bootstrap algorithm to
iteratively refine locations of words in the table.

1. Initialize the word table by randomly putting words into the table.

2. Train a language model based on the current table allocation until convergence or reaching
an exit criterion.

3. Fix the column and row vectors obtained from the above step and refine the allocation in
the table through the minimum cost maximum flow (MCMF) algorithm [2].

18

After several rounds, Li et al. [108] show that LightRNN is able to group semantic or syntactical
similar words together and we can encode the original word in the vocabulary based on the final
word table.

Hybrid-LightRNN Although the LightRNN algorithm can significantly reduce the memory
and time consumption with large vocabularies, if we only use O(

√
|V |) number of codes to

model all words in the vocabulary, the capacity of the model is hurt significantly, since each
word is forced to share embeddings with 2 ×

√
|V | − 1 words which share the first (row) code

or the second (column) code with it.
Therefore, we propose a Hybrid-LightRNN (HLR) mechanism which assigns exclusive em-

bedding vectors to important words. Since frequent words have a large impact on the overall
performance, in HLR, embeddings of the most frequent K words are not shared with other
words. That is, high frequent words have exclusive embedding vectors and all other words will
adopt the LightRNN style to share column and row embeddings.

Intuitively, the word table for HLR can be represented as below:

A =

[
D UNK

UNK L

]

where the matrixD is a sparse diagonal matrix to which frequent words are assigned. L ∈ Zd1×d2

is a dense matrix learned through LightRNN learning algorithm. To fit V words into the table,
the dimensions of D and L should satisfy K + d1 × d2 ≥ |V |. Following LightRNN [108], we
set d1 = d2 in this work so that L is a square matrix.

Byte Pair Encoding (BPE)

Byte Pair Encoding (BPE) [44, 155] is introduced to address the difficulties of translating rare
and out-of-vocabulary words in machine translation. BPE is of interest here since it can reduce
the vocabulary size effectively so as to speed up the softmax computation.

In the encoding learned by the BPE, each code is a subword. Formally, BPE learns the code
dictionary S as follows: we initialize the code dictionary as the set of all possible characters and
break all words into sequences of codes. Then we iteratively run the following steps to add new
codes to the dictionary:

1. Count the frequency of all code pairs within training data. Find out the most frequent
pair/bigram of codes A and B.

2. Add the new code AB to the dictionary. Replace all occurrence of pair (A,B) with AB.

3. End the iteration if the dictionary size reaches a threshold. Otherwise go to step 1.

19

BPE is an algorithm based on heuristics. However, similar to our Hybrid-LightRNN method,
the strong inductive bias of BPE always gives more capacity to frequent words since the more
frequent words will be segmented into fewer parts, which will lead to more exclusive embed-
dings. For many languages with concatenative morphology, words end up largely segmented
into common morphemes which allows their effective encoding based on shared semantics. Even
"unseen" words are likely to be segmented into seen morphemes with meaningful embeddings.

3.4 Related Work

Apart from the previously mentioned related works, mixture of softmaxes is closely related to
works that mix representation vectors [37, 157]. Yang et al. [194] show that this approach does
not solve the softmax bottleneck problem. Hierarchical Softmax [125] is an extensively studied
technique to improve the efficiency of softmaxes. Morin and Bengio [125] use the synsets in the
WordNet to build the hierarchical tree. Mnih and Hinton [123] propose to learn the hierarchical
tree with a clustering algorithm. Although hierarchical Softmax can reduce the time and memory
consumption during training, it still requires computing the softmax over the whole vocabulary
during testing. The idea of separately modeling frequent words is also explored in Adaptive Soft-
max [51]. Noise Contrastive Estimation [57, 124] and Negative Sampling [122] can also speed
up softmax during training. Instead of optimizing the softmax computation process directly, in
this Chapter, we mainly focus on efficient vocabulary representation methods.

3.5 Experiments

In this section, we describe our experiments on machine translation and image captioning and
study our models quantitatively and qualitatively.

Experiment Settings

Machine Translation We first evaluate our models on the IWSLT 2014 German to English (DE-
EN) dataset [14]. Following [27], we set the word-level vocabulary size as 30k for both English
and German. For Hybrid-LightRNN, we set K (number of words having exclusive embedding
vectors) to 9, 652 and set d1 and d2 to 174 to represent a total of 30k words. For a fair compari-
son, we learn a subword-level vocabulary with 10k merging operations for English and German
separately. As model performances exhibit small variances on IWSLT, we run each experiment
for five times with different random seeds and report the average performance and the standard
deviation. We also test our best model on the standard WMT 2014 English-to-German (EN-DE)

20

and English-to-French (EN-FR) benchmarks, consisting of 4.5M and 36M sentence pairs respec-
tively. We follow the preprocessing steps mentioned in Luong et al. [116]. We employ BPE with
32k merge operations for both tasks. The transformer model [178] is employed as our baseline.
Our configuration largely follows the configuration of Vaswani et al. [178], except that we multi-
ply the original learning rate by 0.8 for the transformer equipped with MoS. Specifically, we test
the transformer base configuration, which has embedding of dimension 512, the dimension of
the inner layer 2048 and the number of attention heads 8. We use the Adam optimizer [81] with
β1 = 0.9, β2 = 0.98, and ε = 10−9. We set the mixture number to 9. We use the BLEU [133],
METEOR1 [32] and unigram Fmean2 [100] to assess the translation quality. Our transformer
training code is based on an open source toolkit THUMT [200]. All models are decoded with
the beam search algorithm of beam size 4.

Image Captioning We conduct experiments on the MSCOCO dataset [111] and follow the
same preprocessing procedure and the train/validation/test split as used in Karpathy and Fei-Fei
[71]. We use the Neural Image Caption (NIC) model [180] as the baseline model. Following
Dai et al. [27], we employ a pretrained 101-layer ResNet [62] instead of a GoogLeNet to extract
a feature vector from an input image. Following previous works [19, 27], we employ an LSTM
of size 512 as the decoder and report BLEU-4, METEOR and CIDERr scores using the scripts
provided by Chen et al. [19].

Machine Translation (IWSLT)
Model # Softmaxes BLEU METEOR Fmean (%)

Baseline 1 29.86 ± 0.22 26.99 ± 0.07 64.83 ± 0.07
HLR-MoS 9 30.93 ± 0.38 27.79 ± 0.07 65.69 ± 0.12
BPE-MoS 9 33.74 ± 0.18 29.67 ± 0.13 67.62 ± 0.06

Table 3.1: Overall performance comparisons on IWSLT’14 DE-EN. HLR denotes Hybrid-
LightRNN. For all BLEU, METEOR, Fmean, the higher, the better.

Main Results

In our experiments, we denote Hybrid-LightRNN-MoS and BPE-MoS as the seq2seq models
with MoS which employ Hybrid-LightRNN and BPE respectively. The baseline seq2seq model
with word-level vocabulary is denoted as Baseline.

1https://www.cs.cmu.edu/~alavie/METEOR/README.html
2Lavie et al. [100] show compared to unigram F1, Fmean has better correlation with human judgements.

21

https://www.cs.cmu.edu/~alavie/METEOR/README.html

Image Captioning (MSCOCO)
Model # Softmaxes BLEU-4 METEOR CIDEr

Baseline 1 29.64 ± 0.20 23.60 ± 0.12 88.50 ± 0.47
Hybrid-LightRNN-MoS 9 30.02 ± 0.16 23.87 ± 0.18 88.96 ± 0.21

BPE-MoS 9 30.06 ± 0.10 24.00 ± 0.24 89.26 ± 0.11

Table 3.2: Overall performance comparisons on MSCOCO.

Overall Performances on IWSLT and MSCOCO We show the comparison between a word-
level vocabulary seq2seq model with the Hybrid-LightRNN-MoS and BPE-MoS in Tables 3.1
and 3.2. Hybrid-LightRNN-MoS and BPE-MoS both outperform the baseline on both tasks.
Specifically, on machine translation, BPE-MoS can significantly outperform the baseline and
Hybrid-LightRNN. We will further analyze this finding in the following section.

Model
WMT’14 EN-DE WMT’14 EN-FR

BLEU METEOR Fmean BLEU METEOR Fmean

Our Transformer 27.4 48.2 60.4 39.0 58.1 65.6
Transformer-MoS 28.1 48.7 60.8 39.8 58.7 66.1

Table 3.3: Experiment results on the WMT 2014 English-German (EN-DE) and English-French
(EN-FR) where Transformer-MoS denotes the Transformer model with MoS and BPE-based vo-
cabulary. MoS-based models are significantly better than their corresponding baselines (p<0.05).

Performances on WMT 14 EN-DE and EN-FR Since BPE is significantly better than Hybrid-
LightRNN and Baseline, we only test BPE-MoS on WMT. As shown in Table 3.3, we achieve
28.1 and 39.8 BLEU scores respectively on WMT 14 EN-DE and EN-FR, improving the trans-
former model by 0.7 and 0.8 BLEU scores.

Memory and Time Efficiency We study the memory consumption and efficiency of Hybrid-
LightRNN-MoS and BPE-MoS. As shown in Table 3.4, when applying to the Baseline model
and the MoS model, BPE and Hybrid-LightRNN can reduce the time and memory usage with no
performance losses. When there are more mixtures, the efficiency improvements will continue
to grow since computing softmaxes take a larger proportion of time.

Comparisons between BPE and Hybrid-LightRNN We see that BPE is significantly better
over all metrics with the similar training speed and memory on the machine translation task.

22

Softmaxes Model
Machine Translation (IWSLT)

Memory↓ Speed ↑ BLEU METEOR Fmean (%)

1
Baseline 8.32 8.69 29.86 ± 0.22 26.99 ± 0.07 64.83 ± 0.07

HLR 4.12 9.34 29.89 ± 0.20 26.87 ± 0.04 64.74 ± 0.08
BPE 4.01 9.21 32.81 ± 0.22 29.24 ± 0.11 67.13 ± 0.19

3
MoS 22.7 5.51 30.74 ± 0.17 27.47 ± 0.06 65.24 ± 0.10

HLR-MoS 8.03 8.34 30.63 ± 0.24 27.54 ± 0.08 65.37 ± 0.14
BPE-MoS 7.91 8.14 33.42 ± 0.14 29.52 ± 0.10 67.46 ± 0.12

Table 3.4: Memory and time efficiency comparisons on IWSLT DE-EN when using the same
number of Softmaxes. Bold faces highlight the best in the corresponding category. The shown
memory is in GB and the speed is in # update_steps/s. For all BLEU, METEOR and Fmean, the
higher the better.

Softmaxes Model High (7269 word types) Rare (1223) OOV (991)

1
HLR 46.01 ± 0.06 1.32 ± 0.15 0.0
BPE 48.17 ± 0.43 18.53 ± 0.98 12.60 ± 0.85

3
HLR-MoS 47.56 ± 0.37 2.26 ± 0.24 0.0
BPE-MoS 49.01 ± 0.26 18.18 ± 0.53 16.99 ± 0.69

Table 3.5: Unigram accuracy of words with various frequencies on IWSLT DE-EN. HLR denotes
Hybrid-LightRNN.

To understand it, we show the unigram accuracy with respect to the word frequency. More
specifically, we split words in IWSLT test set into three categories, high frequency words (words
occur more than 5 times in the training set), rare words (words occur less than or equal to 5 times
in the training data) and Out-of-Vocabulary words (words not in the training set but test set).

The result is shown in Table 3.5. We see that Hybrid-LightRNN and BPE can achieve similar
unigram Fmean scores for high frequency words. However, when coming to rare and OOV
words, the advantage of BPE becomes clear. Therefore, subword-based vocabulary is able to
mitigate the open-vocabulary issue of the word-level vocabulary but Hybrid-LightRNN is not
capable of handling rare or OOV words.

We further check OOV words which can be translated correctly by BPE and show some words
in Table 3.6. These words are compounding words, numbers, names, etc. Although these words
do not occur in the training set, their subwords do and BPE is able to translate these subwords to
compose the correct word.

23

Word BPE

non-image non-@@ image
580,000 5@@ 8@@ 0,000
50-letter 50-@@ letter
imploded imp@@ lo@@ ded

neuromarketing neuro@@ marketing

Table 3.6: Some OOV words which can be translated correctly by the BPE-based model.

Analysis

In this section, we perform extensive studies to better understand our models.

Number of Softmaxes Since a larger mixture number would lead to a higher rank log proba-
bility matrix, we verify whether a larger mixture number leads to better performance. We vary
the number of softmaxes in the BPE-MoS model and compare their performances on MT. As
shown in Figure 3.2, more softmax components clearly lead to better performances. However,
the improvement margin exhibits a diminishing return effect, which means that several softmaxes
are enough to learn a high-rank matrix.

Mapping Table Table Size Learned Table BLEU

Hybrid-LightRNN 10k

Yes
30.07

Hybrid-LightRNN 5k 29.69
Hybrid-LightRNN 1k 28.73

LightRNN 0.2k Yes 27.39

Frequency table 0.2k
No

25.84
Random table 0.2k 24.98

Table 3.7: Average validation BLEU on IWSLT of Hybrid-LightRNN using different mapping
tables.

Hybrid-LightRNN Ablation Study We further study the importance of the learned table and
the importance of the model’s capacity in Hybrid-LightRNN. Firstly, we vary the dictionary size
to investigate whether it is necessary to give enough capacity to frequent words.

As shown in Table 3.7, larger dictionary sizes consistently lead to better performances. Sec-
ondly, when compared with LightRNN, Hybrid-LightRNN achieves an improvement of 2.68

24

1 3 6 9 15
Softmax Components

32.8

33.0

33.2

33.4

33.6

33.8

BL
EU

Figure 3.2: BPE-MoS’s average performance over multiple runs on IWSLT DE-EN with various
numbers of mixture components.

BLEU score, which shows that it is necessary to employ extra capacities for frequent words.
Thirdly, as a sanity check of whether the table learning is necessary, we compare the table learned
by LightRNN with the table obtained by simply sorting words based on their frequency and the
table with random word allocations. The table learned by LightRNN outperforms models with
the random table or the frequency-based table by BLEU scores of 2.41 and 1.55 respectively,
which means that optimizing a language modeling objective learns an effective encoding func-
tion.

Mapping Table Qualitative Study In Hybrid-LightRNN, words in the same column/row share
the same column/row embedding vector. Intuitively, it is important to group semantically-similar
or syntactically-similar words into the same column/row. We examine whether the learned ta-
ble has this property in Table 3.8. We find that most words within the same row are either
semantically-similar or syntactically-similar to each other.

25

row words

45 700 3.3 28 19 7 86 35 ...
48 around between by into down for off ...
54 mined imaged advised pickled outfitted filled withheld ...
91 bristol chinatown rochester kingston guangdong guangzhou chongqing ...
93 pursuing posing proposing reacting replacing blogging pointing ...

Table 3.8: Example mapping table where the row denotes the first code and the column denotes
the second code. Numbers and places are grouped together in row 45, 91. Syntactically similar
words are also grouped together in row 48, 54 and 93.

3.6 Summary

In this work, we investigate two algorithms, i.e., Byte Pair Encoding and Hybrid-LightRNN, to
efficiently encode words so as to improve the memory- and time-efficiency of language gener-
ation models. BPE-based models achieve the best performance-efficiency trade-off due to its
strong ability to handle rare and OOV words. Further, We demonstrate the effectiveness of
Mixture of Softmaxes by improved performances on machine translation and image caption-
ing. Since BPE is a heuristic-based word encoding mechanism which may be sub-optimal, it is
meaningful to explore refine BPE in the future.

26

Chapter 4

Luna: Linear Unified Nested Attention

In this chapter, we will focus on the attention mechanism in transformer [178]. The quadratic
computational and memory complexities of the transformer’s attention mechanism have limited
its scalability for modeling long sequences. To mitigate this issue, we propose Luna, a linear
unified nested attention mechanism that approximates softmax attention with two nested linear
attention functions, yielding only linear (as opposed to quadratic) time and space complexity.
Specifically, with the first attention function, Luna packs the input sequence into a sequence of
fixed length. Then, the packed sequence is unpacked using the second attention function. As
compared to a more traditional attention mechanism, Luna introduces an additional sequence
with a fixed length as input and an additional corresponding output, which allows Luna to per-
form the attention operation linearly, while also storing adequate contextual information. We
perform extensive evaluations on three benchmarks of sequence modeling tasks: long-context
sequence modeling, neural machine translation and masked language modeling for large-scale
pretraining. Competitive or even better experimental results demonstrate both the effectiveness
and efficiency of Luna compared to a variety of strong baseline methods including the full-rank
attention and other efficient sparse and dense attention methods.

4.1 Introduction

Transformers [178] are surprisingly versatile models that perform well on a wide range of lan-
guage and vision tasks, including machine translation [131, 178], language understanding [33],
image recognition [35] and bioinformatics [119]. Attention [8] provides the key mechanism that
captures contextual information from the entire sequence by modeling pairwise interactions be-
tween the inputs at every timestep. However, a common weakness of transformer is its quadratic
time and memory complexity within the attention mechanism w.r.t. the length of the input se-
quence, which prohibitively restricts their potential application to tasks requiring longer input

27

0 1 2 3 4 5 6 7 8
Relative Speed Comparision

45

47

49

51

53

55

57

59

Av
g.

 L
RA

 S
co

re
 (w

/o
 R

et
rie

va
l) Transformer

Local Attention

Linformer
Reformer

Sinkhorn

Synthesizer

BigBird

Linear Transformer

Performer

Luna-16Luna-128Luna-256

Figure 4.1: Trade-off between performance (y axis), speed (x axis) and memory (circle radius)
on LRA benchmark [173].

sequences.

To mitigate this issue, a number of techniques have been recently introduced to improve the
time and memory efficiency of transformer models (‘xformers’) [172, 173]. One popular tech-
nique is using sparsity to restrict the attention field range, such as local attention [134], blockwise
attention [139], strided attention patterns [10, 21], compressed attention [114], and attention with
learnable patterns [86, 149, 171]. Another emerging approach is to improve efficiency by lever-
aging low-rank approximations of the attention matrix. Linformer [183], for example, projects
the length dimension of key and value matrices to a fixed-dimensional representation by assum-
ing low-rank structure in the full-rank attention matrix. Recently, some kernel-based methods,
such as Linear Transformer [76], Performer [24] and Random Feature Attention [136], attempt

28

to efficiently approximate regular (softmax) full-rank attention through kernelization. Although
these models demonstrate better asymptotic complexity for long sequences, their performance
remains behind the standard transformer with regular attention. Some of them do not support
causal autoregressive decoding, which is required for neural machine translation. More discus-
sions are mentioned in Tay et al. [172].

In this chapter, we propose a linear unified nested attention (Luna) mechanism, which
uses two nested attention functions to approximate the regular softmax attention in transformer.
Specifically, with the first attention function, Luna packs the input sequence into a sequence
of fixed length. Then, the packed sequence is unpacked using the second attention function.
As compared to a more traditional attention mechanism, Luna introduces additional sequence
with a fixed length as input and an additional corresponding output. Importantly, the extra in-
put allows Luna to perform attention operation linearly as efficiently as Linformer [183], while
also storing adequate contextual information. Unlike Linformer, Luna is capable of modeling
variable-length sequences and autoregressive (causal) attention. We perform extensive exper-
iments on three sequence modeling tasks, including long-context sequence modeling, neural
machine translation, and masked language modeling for large-scale pretraining and downstream
task finetuning. Compared to a variety of strong baseline models, Luna achieves competitive or
even better performance, while acquiring prominent gains of efficiency in both speed and mem-
ory (see Figure 4.1). More importantly, Luna manages to obtain superior performance with small
projection lengths such as 16.

4.2 Background

This section provides an overview of the regular attention mechanism [178].

Attention

The traditional attention mechanism is a function:

Y = Attn(X,C) = ω

(
XWQ(CWK)T√

d

)
CWV (4.1)

where the attention function Attn : Rn×d × Rm×d → Rn×d takes as inputs two sequences: the
query sequence X ∈ Rn×d with length n and the context sequence C ∈ Rm×d with length m,
and output one sequence Y ∈ Rn×d with the same length n as the query X . d is the embedding
dimension, and WQ, WK , WV ∈ Rd×d are three learnable parameters that project the input
sequences into the space of query, key and value matrices: Q = XWQ, K = CWK , V =

CWV . ω is an activation function, e.g. the softmax function in regular attention. Note that the

29

formulation in (4.1) is applicable to both cross-attention where C and X are the representations
from transformer encoder and decoder, respectively, and self-attention where X and C are the
same sequence (X = C). In practice, the multi-head variant of attention [178], which performs
the attention function h times in parallel, is commonly used. Throughout this paper, we omit h
for simplicity.

In particular, the matrix A = ω(QK
T

√
dk

) ∈ Rn×m in (4.1) is called the attention matrix which
specifies the alignment scores between every pair of tokens in sequences of queries X and con-
texts C. Calculating A takes O(nm) time and space, which is quadratic with respect to the
sequence length and becomes a significant bottleneck when processing long sequences.

Transformer Layers

The other three key components of transformer, besides attention, are position-wise feed-forward
networks (FFN), layer normalization [5] and the residual connection [61]. Technically, the
position-wise feed-forward layer operates on each position independently and layer normaliza-
tion and the residual connection play a crucial role in stabilizing the training process. Each
transformer layer can be expressed as:

XA = LayerNorm(Attn(X,C) +X)

X ′ = LayerNorm(FFN(XA) +XA)
(4.2)

where X and C are the two input sequences and X ′ is the output of the transformer layer.
The transformer layer in Equation 4.2 adopts the original post-layer normalization architec-
ture [33, 178] that places layer normalization after residual connection, rather than pre-layer
normalization [179, 182].

4.3 Linear Unified Nested Attention (Luna)

Our goal is to design an efficient attention mechanism to solve the quadratic complexity problem
of full attention. We first introduce the proposed linear unified nested attention mechanism,
named Luna attention, and the architecture of each Luna layer. Then, we present the variant
of Luna for causal attention, named Luna causal attention. Finally, we discuss the differences
between Luna and two closely related models: Linformer [182], Set Transformer [103] and
kernels-based attentions [24, 136].

30

Pack and Unpack Attention

The key idea behind Luna is to decouple the regular attention function in Equation 4.1 into
two nested attention operations, both of which have linear efficiency. To achieve this, besides the
original query and context input sequences, Luna introduces an extra input that is a sequence with
a fixed (constant) length. With this extra input as the query sequence, Luna uses its first attention,
named pack attention, to pack the context sequence into a fixed-length sequence. Formally, let
P ∈ Rl×d denote the extra input sequence with the fixed length l. The pack attention first packs
C to YP with P as the query sequence:

YP = Attn(P,C) (4.3)

where Attn(·, ·) is the regular attention function in Equation 4.1, C ∈ Rm×d is the context
sequence, and YP ∈ Rl×d is the output of the pack attention, which is named the packed context.
Since the length of P is a constant l, the complexity of pack attention is O(lm), which is linear
with respect to m.

To unpack the sequence back to the length of the original query sequence X , Luna leverages
its second attention, named unpack attention:

YX = Attn(X, YP) (4.4)

where X ∈ Rn×d is the original query sequence. Similar to pack attention, the complexity of
unpack attention is O(ln), which is also linear with respect to n.

Encoding Contextual Information in P . The next question is where the extra input sequence
P comes from. One straightforward choice is to format P as a learnable parameter of each
Luna layer. One obvious drawback of this method, however, is that P would not capture any
contextual information. To enhance the capacity of the Luna model, we propose to formulate
YP as an additional output of each Luna layer, corresponding to P . Formally, the Luna attention
function LunaAttn(·, ·, ·) takes three sequences as input and generates two sequence as output:

YX , YP = LunaAttn(X,P,C) (4.5)

where the computation of YP and YX is in Equation 4.3 and Equation 4.4. By stacking multi-
ple layers of Luna attention, the output YP from the previous layer, which captures contextual
information of C, is employed as the input P of the next layer. For the first layer of Luna, we
formulate P as learnable positional embeddings1 [178].

1We also experimented with sinusoidal positional embeddings, and obtained similar results.

31

Figure 4.2: Illustration of the architecture of one Transformer encoder layer (left) versus one
Luna encoder layer (right).

Reducing the Number of Parameters. Due to the two nested attention operations, there are
two sets of parameters (WQ, WK , WV) in a single Luna attention function. There are several
techniques to reduce the number of parameters, such as parameter sharing [191]. In this work,
we follow Wang et al. [183] to share WK and WV in each layer, and conduct experiments to
analyze performance decline against Luna with full sets of parameters.

Luna Layers

The Luna attention is used as a drop-in-replacement for the regular attention. We incorporate the
position-wise feed-forward network and layer normalization into Luna layers. Concretely, layer
normalization is applied to both YX and YP , while FFN only to YX :

YX , YP = LunaAttn(X,P,C)

XA, PA = LayerNorm(YX +X), LayerNorm(YP + P)

X ′, P ′ = LayerNorm(FFN(XA) +XA), PA

(4.6)

where X ′ and P ′ are the two outputs of the Luna layer. The graphical specification of one Luna
layer is illustrated in Figure 4.2.

32

Luna Causal Attention

As discussed in Tay et al. [172], the ability to support causal autoregressive decoding, i.e. at-
tending solely to the past and current tokens, is required when designing efficient self-attention
mechanisms. However, due to the pack attention that packs the long sequence X into a fixed
(shorter) length, it is not straight-forward to support causal attention in Luna.

To design causal attention in Luna, we need to assume that the input P will not leak any
future information of X to the history. Before we describe the Luna causal attention mechanism,
we first define a causal function f : Rn×d1 × Rn×d1 × Rn×d2 → Rn×d2:

F , f(X, Y, Z), where Ft =
1

t
Xt

t∑
j=1

Y T
j Zj (4.7)

where F ∈ Rn×d2 and Ft denotes the t-th row of F . From the definition of f in Equation 4.7, we
see that Ft can only access the information of the past and present row of X , Y and Z.

To perform Luna causal attention, we first compute the attention matrix of the pack attention:
Apack = ω(PXT/

√
d). For simplicity, we omit the learnable parameters, e.g. WQ, WK , WV in

Equation 4.1. Note that forApack, we cannot use the softmax function for ω, as the normalization
term in softmax leaks future information of X to the history. Inspired by the causal attention
mechanism in Linear Transformer [76], we use an activation function based on the exponential
linear unit [25]: ω(·) = elu(·) + 1. With the causal function f in Equation 4.7, we compute the
attention matrix of the unpack attention: Aunpack = ω(f(X,X,ATpack)). Unlike Apack, we can
use ω(·) = softmax(·) for Aunpack, because the normalization is along the l-dimension rather
than the n-dimension of X . Finally, the output Y is computed by Y = f(Aunpack, A

T
pack, X).

The complexity of the causal attention in Luna is still linear: O(ln). One drawback of Luna
causal attention, similar to the causal attention in Random Feature Attention (RFA) [136] and
Linear Transformer [76], is its sequential computation for each timestep t. During inference
time, our model will cache the current causal state to facilitate the decoding process.

Discussion

Relation to Linformer. One previous work closely related to Luna is Linformer [182]. Lin-
former linearly projects the context sequence C ∈ Rm×d into a sequence with a fixed length l:
C ′ = EC, where C ′ ∈ Rl×d is the projected context sequence and E ∈ Rl×m is the learnable
projection matrix of each layer. Then, the attention operation is applied on the query X and the
projected context C ′. The pack attention in Luna is a generalization of the linear projection in
Linformer. There are two main advantages to Luna over Linformer: i) with pack attention as
the projection method, Luna is able to model sequences with various lengths. In contrast, Lin-
former requires the length of all input sequences to be the same m, due to the projection matrix

33

E, whose shape depends on m. ii) Luna achieves better expressiveness than Linear, not only due
to the general projection method but also by encoding adequate contextual information into the
projection via P (see Section 4.3). Experimental improvements over non-contextual projection
demonstrate the effectiveness of Luna (see Section 4.4).

Relation to Set Transformer. The additional input P in Luna can be regarded as a side mem-
ory module that can access the entire sequence to gather contextual information. From this view
of point, Luna is also closely related to Set Transformer [103], an early model to integrate a side
memory module in Transformers. The major difference between Luna and Set Transformer is
two-fold:

• Similar to the projection matrix in Linformer, the inducing points in Set Transformer
are learnable parameters. Thus, these inducing points might be formulated as the non-
contextual version of P in Luna. Experimental improvements over non-contextual projec-
tion demonstrate the effectiveness of Luna (see Section 4.4).

• Set Transformer is specifically designed for set-input problems which are permutation in-
variant. Therefore, they remove the positional encoding layer. However, in this work,
the order information of tasks we are focusing on is important. For example, in the
ListOps [127] task of the LRA dataset [173], the answer to the ‘[MAX 2 9 [MIN[4 7]]‘ is
9 but if we swap the 9 and 7, the answer will become 7. We argue that it is straightforward
for Luna to model set-input problems through dropping the positional encoding layer.

Relation to kernel-based attention mechanisms. Another popular method to improve the
efficiency of the attention mechanism is through kernelization [75, 136]. In the standard atten-
tion mechanism, the query and key inputs are multiplied together and passed through a softmax
operation to form an attention matrix, which stores the similarity scores. Instead of explicitly
computing this matrix, they decompose it back to a product of random nonlinear functions [143]
of the original queries and keys. Furthermore, after decomposing the attention matrix, they can
rearrange matrix multiplications to approximate the result of the regular attention mechanism,
without explicitly constructing the quadratic-sized attention matrix. Since kernels are a form of
approximation of the attention matrix, they can be also viewed as a type of low-rank approach.
Their goal is to approximate the original attention matrix as much as possible by sampling ran-
dom features. In Peng et al. [136], they find that random features sampling methods are crucial
to the performance on various tasks showing the importance of a properly-chosen feature map.
Instead of trying to approximate the attention matrix, we keep the original (softmax) attention
mechanism in our two nested attention functions. Our goal is to first compress the contextual
information into a compact contextual memory (P) via the pack attention from which we can

34

obtain the final output through the unpack attention. The attention matrices in these two nested
attentions are explicitly computed and no information will be lost. However, some contextual
information may lose if we have a short P .

4.4 Experiments

Long-Context Sequence Modeling

We evaluate the effectiveness and efficiency of Luna on the Long Range Arena (LRA) benchmark
recently introduced by Tay et al. [173], which is designed for the purpose of evaluating efficient
transformer models under the long-context scenario. They collect five tasks in this benchmark
which are ListOps [127], byte-level text classification (Text; 118), byte-level document retrieval
(Retrieval; 140), image classification on sequences of pixels (Image; 93) and Pathfinder [112].
These tasks consist of input sequences ranging from 1K to 8K tokens and span across a variety
of data types and modalities.

To ensure fair comparisons, for all tasks except for the task Retrieval, we closely follow the
model configurations in Tay et al. [173] such as data preprocessing, data split, model architecture,
etc. For the task of Retrieval, we find that models are not fully converged when being trained
for 5K steps as stated in Tay et al. [173]. Therefore, we train models for 20K steps for this task
and obtain much better results. For a direct comparison, besides the average performance of
models across all tasks, we also report the average accuracy on tasks excluding Retrieval. We
run each experiment five times with different random seeds and report the average accuracy with
the standard deviation.

Results. The results of various models on the LRA benchmark are presented in Table 4.1. For
our proposed method, we report results from models of three different projected dimensions (16,
128 and 256). First, we note that Luna achieves good results on all tasks consistently compared
to the transformer model and significantly outperforms all the other baseline methods in terms of
the average accuracy. By taking a closer look at the accuracy for each individual task, Luna wins
over baseline models on three out of five tasks and performs comparably with the best performed
model on the other two tasks, i.e. ListOps and byte-level text classification. Notably, Luna
improves over the transformer model on image classification and pathfinder by a large margin.
Second, we observe that although Luna achieves the best average performance with a projection
dimension of 256, it also performs considerably well with smaller projection dimensions (16 and
128). This demonstrates the effectiveness of Luna even with small projected dimensions.

35

Models ListOps Text Retrieval Image Pathfinder Avg. Avg. (w/o rtl)

Transformer 36.37 64.27 57.46 42.44 71.40 54.39 53.62
Transformer (re-impl) 37.11±0.2% 65.21±0.6% 79.14±0.4% 42.94±0.2% 71.83±0.6% 59.24 54.27

Local Attention 15.82 52.98 53.39 41.46 66.63 46.06 44.22
Sparse Trans. 17.07 63.58 59.59 44.24 71.71 51.24 49.15
Longformer 35.63 62.85 56.89 42.22 69.71 53.46 52.60
Linformer 35.70 53.94 52.27 38.56 76.34 51.36 51.14
Reformer 37.27 56.10 53.40 38.07 68.50 50.67 49.99
Sinkhorn Trans. 33.67 61.20 53.83 41.23 67.45 51.39 50.89
Synthesizer 36.99 61.68 54.67 41.61 69.45 52.88 52.43
BigBird 36.05 64.02 59.29 40.83 74.87 55.01 53.94
Linear Trans. 16.13 65.90 53.09 42.34 75.30 50.55 49.92
Performer 18.01 65.40 53.82 42.77 77.05 51.41 50.81
RFA 36.8 66.0 56.1 - - - -

Luna-16 37.06±0.3% 66.00±0.1% 79.38±0.6% 46.39±0.3% 78.36±0.2% 61.44 56.95
Luna-128 37.34±0.4% 65.98±0.1% 79.55±0.4% 47.47±0.6% 78.89±0.5% 61.85 57.42
Luna-256 37.45±0.5% 66.11±0.2% 79.56±0.7% 47.86±0.6% 78.55±0.4% 61.91 57.49

Table 4.1: Experimental results on the long range arena (LRA) benchmark. For Luna, we explore
three projected dimensions: 16, 128 and 256. ‘Avg. (w/o rtl)’ denotes the averaged accuracy over
all tasks excluding Retrieval. The performance of previous works except RFA are from Tay et al.
[173]. RFA scores are from Peng et al. [136].

Memory and Speed Efficiency. Luna employs two nested linear attention functions to reduce
the time and memory complexity compared to the vanilla transformer attention. Here, we exam-
ine the speed and memory footprint of various models with varying input lengths (1K, 2K, 3K
and 4K). Following Tay et al. [173], all models are evaluated on the byte-level classification task
with the same batch size (32). The result is shown in Table 4.2.

Considering the memory efficiency, Luna with a projected dimension of 16 is highly memory-
efficient, which is only 10% of the vanilla transformer at 4K input sequence length. With larger
projected dimensions, i.e. 128 and 256, Luna requires more memory but is still competitive com-
pared to other efficient transformer models. In terms of time efficiency, Luna-16 speeds up over
the standard transformer by 1.2-5.5 times, varying by the sequence length. Compared to other
efficient transformers, Luna-16 performs comparably with the fastest models, i.e. Performer and
Linformer. Overall, our models achieve competitive advantages both in time- and memory-
efficiency over other models, while attaining the best performance on the LRA benchmark (see
Figure 4.1).

In addition, we plot the trade-off among memory, time and averaged LRA scores without task
Retrieval in Figure 4.1. Models such as Linformer and Performer, have faster speed and small
memory requirements with the sacrifice of performance. However, besides competitive time-
and memory-efficiency, Luna models retain superior performance even with a small projected

36

Steps per Second ↑ Peak Memory Usage (GB) ↓
Model 1K 2K 3K 4K 1K 2K 3K 4K

Transformer 1.0 1.0 1.0 1.0 1.00 1.00 1.00 1.00

Local Attention 1.1 1.7 3.2 5.3 0.49 0.29 0.19 0.14
Linformer 1.2 1.9 3.7 5.5 0.44 0.21 0.18 0.10
Reformer 0.5 0.4 0.7 0.8 0.56 0.37 0.28 0.24
Sinkhorn Trans 1.1 1.6 2.9 3.8 0.55 0.31 0.21 0.16
Synthesizer 1.1 1.2 2.9 1.4 0.76 0.75 0.74 0.74
BigBird 0.9 0.8 1.2 1.1 0.91 0.56 0.40 0.30
Linear Trans. 1.1 1.9 3.7 5.6 0.44 0.22 0.15 0.11
Performer 1.2 1.9 3.8 5.7 0.44 0.22 0.15 0.11

Luna-16 1.2 1.8 3.7 5.5 0.44 0.23 0.17 0.10
Luna-128 1.1 1.7 3.4 5.1 0.49 0.28 0.21 0.14
Luna-256 1.1 1.7 3.3 4.9 0.60 0.33 0.23 0.16

Table 4.2: Training speed and peak memory consumption comparison of different models on
byte-level text classification with various input lengths (1K, 2K, 3K and 4K). The best model is
in boldface.

dimension (l=16). Besides the training efficiency, decoding efficiency is reported in Table 4.3.

Batch per Second ↑ Peak Memory Usage (GB) ↓
Model 1K 2K 3K 4K 1K 2K 3K 4K

Transformer 1.0 1.0 1.0 1.0 1.00 1.00 1.00 1.00

Linformer-128 1.7 2.6 3.8 5.1 0.66 0.38 0.22 0.14

Luna-16 1.9 3.1 4.0 5.7 0.65 0.36 0.20 0.13
Luna-128 1.6 2.6 3.5 4.9 0.67 0.38 0.22 0.14
Luna-256 1.3 2.2 2.9 4.0 0.68 0.39 0.24 0.14

Table 4.3: Decoding speed and peak memory consumption comparison of different models on
byte-level text classification with various input lengths (1K, 2K, 3K and 4K). The best model is
in boldface.

All models are tested on a single GPU with batch size 16. Our Luna-16 model achieves the
best efficiency performance. Linformer [183] with the projected length 128 has slightly better

37

efficiency scores compared to Luna with the same projected length (Luna-128). This is because
Linformer just have one project function but Luna has two nestedd attention functions. However,
as discussed above, our Luna model has superior performance and is capable of modelling causal
attention.

Models Method ListOps Text Retrieval Avg.

Luna-16
[CLS] 36.96 64.25 78.93 60.05
YP 37.31 64.30 79.22 60.27

Luna-128
[CLS] 37.13 64.38 79.15 60.22
YP 37.42 64.60 79.61 60.54

Luna-256
[CLS] 37.25 64.57 79.29 60.37
YP 37.63 64.54 79.74 60.64

Table 4.4: Performance comparison of two sentence representation methods on LRA benchmark.

Contextual information in P of Luna. Recently, a popular method to model the classification
task using transformer-based models is to prepend a special symbol, [CLS], to every input ex-
ample. The last hidden state of this symbol is regarded as the aggregate sequence representation.
In Luna, we introduce an extra model input P which not only allows us to efficiently compute
the attention mechanism but learn contextual information as well. Theoretically, the output of P ,
Yp, is capable of learning the representation of the input sequence. To validate this, we extract
the output of P , YP at the last layer and employ the mean pooling strategy over positions to
obtain the final feature for classification. We test its performance on three long-text modeling
tasks in LRA [173], i.e., ListOps, Text and Retrieval and report results in Table 4.4. We find that
YP -based methods obtain better scores across all tasks against the [CLS]-based one, validating
the powerful ability of p to encode contextual information of the input sequence.

Masked Language Modeling for Large-Scale Pretraining2

One popular application of transformer is to pretrain a large-scale language model on a large
amount of data which can then be fine-tuned on a wide range of downstream tasks, such as
BERT [33], RoBERTa [115], etc. Therefore, following Devlin et al. [33], we pretrain a Luna-
128-based language model with BERT-base configuration on BookCorpus [203] and English
Wikipedia as our pretraining set (3300M tokens in total) with the masked-language-modeling

2The pretraining experiment is done by Sinong at Facebook AI Research and finetuning part is done by Xiang.

38

(MLM) objective, on 64 Tesla V100 GPUs with 250K updates. We compare our models with
RoBERTa-base, BERT-base and Linformer which are trained on the same training data.

Finetuning Luna After obtaining the pretrained Luna-based language model, we finetune it
on various natural language processing tasks, including sentiment classification (SST-2; 161),
natural language inference (QNLI; 144), textual similarity (QQP; 20 and question answering
(RACE [98] and CommonsenseQA (CSQA; 170). For GLUE tasks, following Liu et al. [115],
we consider a limited hyperparameter sweep for each task, with batch sizes ∈ {16, 32} and
learning rate ∈ {5e−6, 1e−5, 2e−5}, with a linear warmup for the first 6% of steps followed by a
linear decay to 0. Finetuning is performed for 10 epochs with early stopping based on each task’s
evaluation metric on the dev set. For QA tasks, we concatenate each candidate answer with the
corresponding question and passage. We then encode every candidate and pass the [CLS] output
at the last layer through a fully-connected layer, which is used to predict the correct answer. We
truncate question-answer pairs that are longer than 128 tokens and, if needed, the passage so that
the total length is at most 512 tokens. Following Liu et al. [115], we try a small range of possible
values for hyperparameters, i.e., batch size ∈ {16, 32}, learning rate ∈ {1e−5, 2e−5, 3e−5} and
dropout ∈ {0.1, 0.2, 0.3}.

GLUE QA
Model SST-2 QNLI QQP RACE CSQA

BERT-base [33] 92.7 88.4 89.6 64.2 53.3
RoBERTa-base [115] 93.1 90.9 90.9 65.6 -
Linformer [183] 92.4 90.4 90.2 - -

Luna-128 (Ours) 93.1 91.2 90.8 65.2 53.1

Table 4.5: Performance of various models on development set of benchmark natural language
understanding tasks. Bold face indicates best performance.

The result is reported in Table 4.5. We observe that our Luna model has similar or slightly
better downstream results compared to other pretrained language models. On QNLI and SST-
2, Luna models obtain the best performance among all models, reaffirming the effectiveness of
Luna in pre-training. This demonstrates the strong ability of Luna for language representations.

Machine translation

To evaluate Luna on sequence-to-sequence modeling, we conduct experiments on two standard
machine translation benchmarks, i.e. WMT14 English-German (EN→DE) (4.5M sentence pairs)

39

Model
WMT14 EN-DE WMT14 EN-FR

BLEU COMET METEOR BLEU COMET METEOR

Transformer-base 27.4 43.7 0.48 39.0 58.2 0.58
RFA [135] 27.0 43.1 0.48 38.6 56.2 0.57
Linear Transformer [76] 22.3 31.4 0.33 34.3 52.6 0.43

Luna (l = 8) 25.8 40.3 0.42 37.3 49.6 0.56
Luna (l = 16) 27.0 43.5 0.48 38.8 56.5 0.58
Luna (l = 32) 27.2 43.4 0.48 39.1 57.3 0.58

Table 4.6: Performance comparison on WMT14 EN→DE and WMT14 EN→FR.

and WMT14 English-French (EN→FR) (36M sentence pairs). The data split and preprocessing
steps follow those of Vaswani et al. [178], using the scripts from Fairseq [132]. The Luna models
closely follow the architecture of transformer-base: 6 encoder and decoder layers with 8 attention
heads and dmodel/dhidden = 512/2048. We train the transformer-base model with Adam [83]. We
closely follow the training configurations mentioned in Vaswani et al. [178]. The translation
quality is evaluated by BLEU [133] and METEOR3 [32]. The checkpoint with the best validation
loss is chosen as the final model. During inference, we use beam search with a beam size of 4
and length penalty α = 0.6 [190] for all models.

Results Table 4.6 presents the results of Luna along with standard transformer-base, Random
Feature Attention (RFA) [136] and Linear Transformer [76] models. The number of features in
RFA is 256. We also compare our model with Linear Transformer which uses a feature map
based on the exponential linear unit activation [25]. For Luna, we report performance of models
with three different projected lengths, i.e., 8, 16, 32. Luna with a small projected length (16 or
32) obtains similar performance to RFA with k = 256 feature maps. We see that Luna models
with project lengths 16 and 32 achieve competitive results as the transformer-base model and
no significant difference has been found via statistical significance test [91]. All these models
outperform Linear Transformer which is consistent with findings in Peng et al. [136]. However,
the Luna model with the projected length 8 has a clear performance drop compared to others.
We attribute it to the lack of ability to pack contextual information for a shorter P .

Effect of Encoding Contextual Information into P . As discussed above, one advantage of
Luna against Linformer is to incorporate contextual P by formulating it as an extra input. To

3https://www.cs.cmu.edu/~alavie/METEOR/README.html

40

https://www.cs.cmu.edu/~alavie/METEOR/README.html

Model
WMT’14 EN-DE WMT’14 EN-FR

BLEU METEOR BLEU METEOR

Non-Contextual 24.8 44.6 37.1 56.4
Contextual 27.0 47.7 38.8 58.0

Table 4.7: Performance comparison on WMT14 EN→DE and WMT14 EN→FR.

investigate the importance of this design, we conduct experiments on WMT’14 EN-DE and
EN-FR to compare Luna with the baseline model where P is formulated as a non-contextual
learnable parameter of each layer. For both the contextual and non-contextual models, we use
l = 16. Table 4.7 lists the BLEU and METEOR scores on the development and test sets. Luna
with contextual P significantly outperforms the baseline with non-contextual P , demonstrating
the effectiveness of this design in Luna.

Inference Efficiency To verify that Luna has advantages over the standard transformer in terms
of memory and latency during inference, we examine the speed and memory footprint of various
models on WMT’14 EN-FR test set with respect to the number of tokens in the source sentence.
All models are tested on a single GPU with batch size 1. The result is shown in Figure 4.3. In
terms of memory consumption, we see that the memory consumption of the standard transformer
increases quickly on longer sentences. However, the memory of Luna-based model is stable and
the increasing ratio is smaller. If we aim to translate a sequence of length 80, the standard
transformer requires around 50% extra memory than Luna models. Considering decoding speed,
when translating shorter sentences, standard transformer achieves similar latency compared to
Luna models. However, when sentences become longer, the speed advantage of Luna over the
standard attention is clear. This observation is consistent with the goal of Luna, achieving better
memory and speed efficiency when modelling long sequences. We also report BLEU scores of
these models with respect to the length of source sentences on WMT’14 EN-FR test set. We find
that these systems can achieve similar translation accuracy on various length buckets.

Contextual Information Compression in P

The packing attention aims to pack the context sequence into a fixed-length sequence, P . Typ-
ically, the length of the fixed-length sequence is much shorter than that of the input sequence.
In this study, we would like to explore the effect of P with various lengths to encode the con-
textual information. Following [85], we conduct experiments on a synthetic task: duplicate a
sequence of symbols. In this task, each training and testing example has the form 0w0w where

41

Source Tokens

M
em

or
y

(M
B

)

200

300

400

500

600

20 40 60 80

Standard Luna-16 Luna-32

Source Tokens

Sp
ee

d
 (m

s/
se

nt
en

ce
)

0

10

20

30

20 40 60 80

Standard Luna-16 Luna-32

length

B
LE

U

0

10

20

30

40

50

10 20 30 40 50 60

luna-16 luna-32 Standard

Figure 4.3: Decoding speed and peak memory consumption during inference on WMT’14 EN-
FR test set with respect to the number of tokens in the source sequence. We also report the BLEU
scores of various systems with respect to the source sentence lengths. All models are tested on
the same GPU.

w ∈ {1, ..., N}∗ is a sequence of symbols ranging from 1 to N (N = 127). We show an example
with the word w of length 3 here.

0 3 9 121 0 3 9 121

Figure 4.4: An example of the sentence duplicate task, The w is < 3, 9, 121 > which is of length
3

In our experiment, each w is of length 511 (so the whole input sequence is of length 1024).
The task is to train a language model, the goal of which is to predict the digit at the current
position given all previous ones. Since each w is randomly generated, we just ask the model to
predict the second half of the input (the second w).

This task can be done easily by the standard 2-layer transformer since the standard attention
have access to all tokens and it is trivial for it to the position mapping. We employ a 2-layer Luna
with model dimensions 256 and 4 attention heads with various projection lengths (32, 64, 128
and 256). All models are trained with 150k steps. The accuracy of these models is presented in
Table 4.8.

This demonstrates that with large-enough projection lengths, Luna is able to pack the global
context of the input sequence without loss of information. However, the large compression ratio
(32) will cause severe contextual information loss.

4.5 Related Work

There has been significant prior work on improving the efficiency of Transformers, besides the
two closely related works discussed in Section 4.3. The common techniques include, but are not

42

Input Length Projected Length Compression Ratio Accuracy (%)

1024 32 32 55.2
1024 64 16 97.1
1024 128 8 99.9
1024 256 4 100

Table 4.8: Performance of Luna with various project lengths on the sequence duplication task.

limited to, weight sharing [29], quantization [39, 158], sparse attention [86, 134], and low-rank
or compressed context [3, 103, 182]. In this section, we briefly review some recently proposed
methods. For a detailed overview we refer the readers to Tay et al. [172].

Kernel Methods. A recently popular method to improve the efficiency of Transformers is
to avoid explicitly computing the m × n attention matrix A in Section 4.1 by re-writing it with
kernels. Typical models leveraging kernelization are Linear Transformer [76], Performer [24]
and Random Feature Attention [136]. Since kernels are a form of approximation of the attention
matrix, they can be also viewed as a form of low-rank method that compresses the context to a
shorter length, such as Linformer [182] and the proposed Luna model.

Recurrence. The simplest technique to reduce the complexity of Transformer is to chunk input
sequences into fixed blocks, with the obvious disadvantage of losing contextual information
from past chunks. Transformer-XL [28] proposed a natural extension to the blockwise method
to connect these blocks via a recurrence mechanism. Compressive Transformer [141] further
extends Transformer-XL by maintaining a fine-grained memory of past chunk activations, which
are discarded in Transformer-XL. Technically, Luna can be adapted to a recurrence method, by
simply using P as an inherent memory module to maintain the recurrence across segments.

Alternative Architectures A considerable amount of effort has gone into designing Trans-
former alternatives such as MLP Mixers [175], G-MLP [113] and Flash [65]. Recently, Struc-
tured State Spaces [54]-based models achieve better very promising tasks on various tasks and
surpass our proposed model. We recommend Tay et al. [172] to keep pace with the rate of
innovation.

43

4.6 Summary

We have introduced Luna, a simple, efficient and effective linear attention mechanism used as
a drop-in substitute for regular attention in transformer. By introducing an extra input with
the fixed length, Luna is capable of capturing adequate contextual information while perform-
ing attention operations linearly. On three sequence modeling tasks, i.e., long-context sequence
modeling, neural machine translation, and large-scale pretraining and finetuning, Luna achieves
comparable or even better performance than a variety of strong baselines, while acquiring promi-
nent gains of efficiency in both speed and memory. In future work, we are interested in combining
Luna with recurrence methods where P can be used as a running memory across segments of
inputs. Besides tasks explored in this chapter such as sentiment analysis, retrieval, machine trans-
lation and image classification, thanks to the strong ability of encoding contextual representation,
it is easy to adopt Luna to other tasks such as summarization, image generation, etc.

4.7 Appendix

Long-Context Sequence Modelling

Tasks LR Dropout Attn-Dropout

ListOps 1e-4 0.1 0.1
Text 5e-5 0.3 0.3
Retrieval 5e-5 0.1 0.1
Image 5e-3 0.1 0.3
Pathfinder 1e-3 0.2 0.1

Table 4.9: Hyperparameters of models in LRA tasks. LR and Attn-Dropout denote the learning,
batch size and attention dropout.

For all tasks except Retrieval, we closely follow the model configurations in Tay et al. [173]
such as data preprocessing, data split, model architecture, batch size etc. To guarantee conver-
gence, we train models for the Retrieval task with 20k steps instead of the 5k steps prescribed
inTay et al. [173]. The hyperparameters of models in these tasks are listed in Table 4.9. We
mainly tune three hyperparameters: learning rate, dropout and attention dropout. For the other
main hyperparametrs such as batch size, number of layers and number of warmup steps, we
follow the guidance of Tay et al. [173].

44

Part II

Neural Machine Translation with High
Decoding Parallelizability

45

Chapter 5

Semi-autoregressive Neural Machine
Translation with Local Translation
Mechanism

In this chapter, we start to focus on improving the inference latency via breaking the autoregres-
sive property of NMT’s traditional decoding method. A novel mechanism which is called Local
Autoregressive Translation (LAT) is proposed to take the local dependency into account. Dur-
ing decoding time, LAT generates a short sequence autoregressively at each position. In global,
these short sequences at all translation positions are generated in parallel so as to accelerate the
whole translation process and improve the decoding parallelism. After obtaining a list of these
short sequences, we further design a simple and effective merging algorithm to obtain the final
translation output.

5.1 Introduction

Traditional neural machine translation (NMT) models [6, 22, 45, 168, 178] commonly make pre-
dictions in an incremental token-by-token way, which is called autoregressive translation (AT).
Although this strategy can capture the full translation history, it has relatively high decoding
latency due to the sequential property of its decoding algorithm. To make the decoding more ef-
ficient, non-autoregressive translation (NAT) [55] is introduced which generates multiple tokens
in parallel instead of one-by-one. Although the decoding speed has been improved greatly, the
translation quality encounters much decrease due to the conditional independence assumption.

In this chapter, we propose a semi-autoregressive NMT model with sub-linear parallel time
generation. Specifically, we introduce a novel mechanism, i.e., local autoregressive translation
(LAT), to take local target dependencies into consideration. At inference time, for a decoding

47

position, instead of generating one token, we predict a short sequence of tokens (which we call
a translation piece) for the current and next few positions in an autoregressive way. Globally,
the short sequence at each decoding position is generated in parallel. Therefore, our model can
effectively improve the parallelism of the conventional decoding algorithm.

Figure 5.1: An example of the LAT mechanism. For each decoding position, a short sequence of
tokens is generated in an autoregressive way. Short sequences at distinct translation positions are
generated in parallel. 〈sop〉 is the special start-of-piece symbol. ‘pos*’ denotes the hidden state
from the decoder at that position.

A simple example is shown in Figure 5.1. From it, we can find that with this mechanism,
there can be overlapping tokens between nearby translation pieces. We take advantage of these
redundancies, and apply a simple algorithm to align and merge all these pieces to obtain the
full translation output. Specifically, our algorithm builds the output by incrementally aligning
and merging adjacent pieces, based on the hypothesis that each local piece is fluent and there
are overlapping tokens between adjacent pieces as aligning points. Moreover, the final output
sequence is dynamically decided through the merging algorithm, which makes the decoding
process more flexible. This process is non-neural which is highly efficient.

Inspired by BERT [33] and CMLM [47], we train our proposed semi-autoregressive NMT
using the conditional masked language model framework, and similarly adopt iterative decoding,
where tokens with low confidence scores are masked for re-prediction in more iterations. With
evaluations on five translation tasks, i.e., WMT’14 EN↔DE, WMT’16 EN↔RO and IWSLT’14

48

DE→EN, we show that our method could achieve similar or better performance compared with
strong iterative NAT and standard NMT models while gaining nearly 2.5 and 7 times speedups,
respectively. Experimental analysis shows that compared to the NAT model, our method is ca-
pable of effectively reducing repeated translations and performing better on longer sentences.

5.2 NMT with Local Autoregressive Translation (LAT)

Model

Our LAT-based semi-autoregressive NMT model is built upon bidirectional transformer encoder
and decoder [33, 47] and a local translator. We adopt a lightweight LSTM-based sequential
decoder as the local translator upon the transformer decoder outputs. For a target position i,
the bidirectional transformer decoder produces a hidden vector posi, based on which the local
translator predicts a short sequence of tokens in an autoregressive way, i.e., t1i , t

2
i , ..., t

K
i . Here

K is the number of location translation steps, which is set to 3 in our main experiments to avoid
affecting the speed much.

Training

Our model is trained under the conditional masked language modelling framework, which ob-
tains the full target sequence through predicting the masked target tokens based on the source and
unmasked target sequences. Given a pair of source and target sequences S and T , we first sample
a masking size from a uniform distribution from [1, N], where N is the target length. Then this
size of tokens is randomly picked from the target sequence and replaced with the 〈mask〉 symbol.
We refer to the set of masked tokens as Tmask. Then for each target position, we adopt a teacher-
forcing styled training scheme to collect the cross-entropy loss for predicting the corresponding
ground-truth local sequences, the size of which is K = 3.

Assume that we are at position i, we simply setup the ground-truth local sequence t1i , t
2
i , ..., t

K
i

as Ti, Ti+1, ..., Ti+K−1, where Ti denotes the i-th token in the full target ground-truth sequence.
Different from BERT [33] and CMLM [47] where they just focus on the masked token, we
include all tokens in our final loss, but adopt different weights for the masked tokens that do not
appear in the inputs. Therefore, our token prediction loss function is:

L =−
N∑
i=1

K∑
j=1

1
{
tji ∈ Tmask

}
log(p(tji))

−
N∑
i=1

K∑
j=1

1
{
tji /∈ Tmask

}
α log(p(tji))

49

going to study here will study in the
s1 s2

going to study here

will study in the

LCS:

-0.42

-0.54

-0.32

-0.17

going to study in the

Resolve
Conflicts:

Figure 5.2: An example of merging two pieces of tokens.

Here, we adopt a weight α for the tokens that are not masked in the target input, which
is set as 0.1 so that the model could be trained more on the unseen tokens. Lastly, since we
need to determine how many translation positions beforehand at the decoding time, following
CMLM [47], we add a target length predictor based on the source input representations which is
trained with the translation objective together.

Decoding

During inference, a special token, 〈sop〉 (start of piece) is fed into the local translator to generate
a short sequence based on the posi which is the hidden state from the bidirectional transformer
decoder output at ith position. All short sequences have a fixed length which is consistent with
our training process and allows for efficient parallel implementation. After generating the local
pieces for all target positions in parallel, we adopt a simple algorithm to merge them into a full
output sequence. This merging algorithm is described in detail in the next section. To refine the
translation quality, we also perform iterative decoding following the same Mask-Predict strategy
[33, 46]. In each iteration, we take the output sequence from the last iteration and mask a subset
of tokens with low confidence scores by a special 〈mask〉 symbol. Then the masked sequence is
fed together with the source sequence to the decoder for the next decoding iteration.

Following Ghazvininejad et al. [46], a special token LENGTH is added to the encoder, which
is utilized to predict the initial target sequence length. Nevertheless, our algorithm can dynami-
cally adjust the final output sequence during the merging process.

50

Algorithm 1: Merging two pieces.
Input: Two pieces of tokens: s1, s2.
Output: A merged sequence s′.
// Call Longest Common Subsequence

1 MatchedPairs = LCS(s1, s2);
2 if MatchedPairs.size() == 0 then
3 return s1+s2 ; // Simple concat

4 else
5 s′ = [] ; // Initialize

6 p1, p2 = -1, -1 ; // Previous idxes

// Add sentinel indexes.

7 MatchedPairs += [(∞,∞)];
8 foreach i1, i2 in MatchedPairs do
9 span1 = s1[p1+1:i1];

10 span2 = s2[p2+1:i2];
// Solve conflicts by scores.

11 if score(span1) ≥ score(span2) then
12 s′ += span1;

13 else
14 s′ += span2;

// Align the matched ones.

15 if i1 6=∞ then
16 s′ += [align(s1[i1], s2[i2])];

17 p1, p2 = i1, i2;

18 return s′;

Merging Algorithm

During decoding, the model generates local translation pieces for all decoding positions. We
adopt a simple algorithm that incrementally builds the output through a piece-by-piece merging
process. Our hypothesis is that if the local autoregressive translator is well-trained, then 1) the
token sequence inside each piece is fluent and well-translated, 2) there are overlaps between
nearby pieces, acting as aligning points for merging.

We first illustrate the core operation of merging two consecutive pieces of tokens. Algorithm
1 describes this procedure and Figure 5.2 provides an example. Given two token pieces s1 and
s2, we first use the Longest Common Subsequence (LCS) algorithm to find matched tokens (Line

51

1). If there is nothing that can be matched, then we simply do concatenation (Line 3), otherwise
we solve the conflicts of the alternative spans by comparing their confidence scores (Line 9-14).
Finally we can arrive at the merged output after resolving all conflicted spans.

In the above procedure, we need to specify the score of a span. Through preliminary exper-
iments, we find a simple but effective scheme. From the translation model, each token gets a
model score of its log probability. For the score of a span, we average the scores of all the to-
kens inside. For aligned tokens, we choose the highest scores among them for the later merging
process (Line 16).

With this core merging operation, we apply a left-to-right scan to merge all the pieces in a
piece-by-piece fashion. For each merging operation, we only take the last K tokens of s1 and
the first K tokens of s2, while other tokens are directly copied. This ensures that the merging
process will only be local and mitigate the risk of wrongly aligned tokens. Here, K is again the
local translation step size.

Although our merging algorithm is actually autoregressive, it does not include any neural
network computations and thus can run efficiently. In addition to efficiency, our method also
makes the decoding more flexible, since the final output is dynamically created through the
merging algorithm. More details can be found in Appendix.

Comparing to Cascaded Text Generation [30] In their decoding process, the translation pro-
cess is viewed as a conditional random field (CRF) [97] over a sequence of tokens. Given a m-th
order CRF model, instead of employing traditional beam search, they propose an alternative cas-
caded decoding approach. Specifically, this algorithm is mainly based on iteratively computing
max-marginals [187] for progressively higher-order models (from 0 to m-1) while filtering out
unlikely spans based on the score of the “best” sequence with a given n-gram. Through this pro-
cess, they can obtain high-fidelity translations. In our decoding process, we first directly generate
m-gram (m here is the local translation steps) at each position, then merge them to a translated
sequence. Our method to refine translation quality is to mask some tokens with lower confidence
scores and re-predict them through the same local translation + merging processes. However, the
refinement process in cascaded text generation happens in pruning unlikely candidates from low
to high order models directly.

52

Model Iterations
WMT’14 WMT’16 IWSLT’14

latency
EN-DE DE-EN EN-RO RO-EN DE-EN

1 AT N 27.5/48.2 31.4/34.9 33.7/46.2 34.1/35.9 34.2/36.2 1.0×

2 CMLM
1

17.8/36.7 21.6/28.7 27.3/40.6 28.2/32.4 28.1/31.4 18.0×
3 LAT 25.2/46.1 29.9/33.8 30.7/42.6 31.2/33.8 31.9/33.7 15.7×

4 CMLM
4

25.5/46.8 29.5/34.9 32.5/45.7 33.2/35.5 32.9/34.6 6.8×
5 LAT 27.4/48.0 32.0/35.2 33.3/46.1 32.9/34.9 34.1/36.4 6.7×

6 CMLM 10 26.6/47.9 30.1/34.3 33.1/45.5 33.3/35.2 33.4/35.8 1.7×

Table 5.1: The comparisons (on BLEU/METEOR and decoding latency) of CMLM, LAT and
AT models. CMLM denotes the Mask Predict model [47].

5.3 Experiments

Experimental Setup

Following previous works [47, 102], we evaluate our proposed method on five translation tasks,
i.e., WMT’14 EN↔DE, WMT’16 EN↔RO and IWSLT’14 DE→EN. Knowledge distillation [55,
64, 77, 202] is used to train our models. We follow most of the hyperparameters for the transformer-
base [178] configuration, i.e., 6 layers for encoder and decoder, 8 attention heads, 512 embedding
dimensions and 2048 hidden dimensions. The LAT is an LSTM-based neural network of size
512. The number of the location translation step is set as 3, i.e., generating three tokens at every
position. Finally, we average 5 best checkpoints according to the validation loss as our final
model. During decoding, for AT models, we use beam search with a beam size of 4 and length
penalty α = 0.6. Please refer to the Appendix for more details of the settings.

The average decoding time per sentence with batch size 1, is employed to measure the in-
ference speed. All models’ decoding speed is measured on a single GPU. The BLEU [133] and
METEOR 1 [32] are used to evaluate the translation quality.

Main results

The main results are shown in Table 5.1. Compared to the AT model, our proposed semi-
autoregressive NMT with 4 translation iterations achieves competitive results and 7× speedup.
We further use the compare-mt to conduct the statistical significance test and no significant

1https://www.cs.cmu.edu/~alavie/METEOR/README.html

53

https://www.cs.cmu.edu/~alavie/METEOR/README.html

difference is found on all translation tasks except the WMT’16 RO-EN task. On this task, we find
that our translations are generally shorter than golden sequences (BP < 0.95) and we attribute it
to the inaccurate predicted length from our length predictor.

Compared to a non-autoregressive model, CMLM [47], with the same number of decoding
iterations (row 2 vs. 3 and row 4 vs. 5), LAT performs much better in terms of the translation
accuracy with a small extra speed cost, especially when the iteration number is 1. Note that
since our method is not sensitive to predicted length, we only take one length candidate from
our length predictor instead of 5 as in CMLM. Furthermore, LAT with 4 iterations could achieve
similar or better results than CMLM with 10 iterations (row 5 vs. 6) on all translation tasks but
have a nearly 4× decoding speedup.

Analysis

local translation steps (K)
2 3 4 5 6

BLEU 32.9 33.8 34.4 34.5 34.2
latency (ms) 69 72 76 77 79

Table 5.2: The performance of LAT models with respect to the number of local translation steps
on IWSLT’14 DE-EN test set.

On local translation step. We also explore the effect of the number of local translation steps
(K) on the IWSLT’14 DE-EN dataset. The results are shown in Table 5.2. Generally, with
more local translation steps, there can be certain improvements on BLEU but with an extra cost
at inference time. This improvement becomes smaller when increasing the number of local
translation steps.

To understand why our proposed model has superior translation accuracy compared to the
NAT model with the same number of decoding iterations, we also conduct two ablation studies.

On repeated translation. We compute the n-gram repeat rate (nrr, what percentage of n-grams
are repeated by certain nearby n-grams) of different systems on WMT’14 EN-DE test set and
the result is shown in Table 5.3. The nrr of CMLM with one iteration is much higher than
other systems, showing that it suffers from a severe repeated translation problem. Conversely,
LAT can mitigate this problem thanks to the merging algorithm and the introduction of the local
dependency.

54

Model Iteration ngram repeat rate (%)
1 2 3 4

CMLM
1

20.85 3.78 1.06 0.37
LAT 4.89 0.42 0.05 0.00

CMLM
4

3.97 0.14 0.03 0.02
LAT 3.32 0.08 0.00 0.00

CMLM 10 3.56 0.08 0.02 0.02

AT N 3.27 0.05 0.00 0.00
Reference - 2.49 0.03 0.00 0.00

Table 5.3: N-gram repeat rates of various models on WMT’14 EN-DE test set. ‘AT’ here is a
transformer base translation model.

Figure 5.3: The BLEU scores of various systems with respect to the reference sentence lengths
on WMT’14 EN-DE testset.

On sentence length. We explore how various systems perform on sentences with various
lengths. The WMT’14 EN-DE test set is split into 5 length buckets by the source length. Fig-

55

ure 5.3 shows that our proposed semi-autoregressive NMT performs better than CMLM on longer
sentences, which indicates the effectiveness of our methods at capturing certain target dependen-
cies. For the non-autoregressive translation model with just 1 iteration, it performs poorly on
translating long sentences. With LAT mechanism, 1 iteration-translation is able to obtain reason-
able translations for those long sentences.

5.4 Summary

In this chapter, we design a semi-autoregressive NMT model with a novel mechanism called
local autoregressive translation which can take the local dependency into consideration. Overall,
our decoding method has the autoregressive attribute locally but non-autoregressive property in
global. Specifically, short sequences are generated in parallel at all translation positions, then
a simple algorithm is further designed to align and merge these short sequences. Experimental
results show that our proposed model achieves competitive translation accuracy compared to the
standard AT model with 7× speedup. In contrast to the non-autoregressive model, our model can
effectively boost the translation quality with a small extra inference speed cost. Furthermore,
given the similar performance, our model can achieve up to 4× speedup as compared to an
iterative NAT model. In this chapter, all short sequences have a fixed length which is consistent
with our training process and allows for efficient parallel implementation. For the purpose of
higher decoding speed, our merging algorithm is deterministic but heuristic which maybe sub-
optimal. In the future, we would like to explore short sequences with dynamic lengths and more
advanced merging algorithm.

5.5 Appendix

Preprocessing

We follow the standard pre-processing procedure in prior works [102, 178]. All datasets are
segmented into subwords through byte pair encoding (BPE) [155]. The BPE code is learnt from
the combination of source and target data for WMT datasets. For IWSLT, the bpe code is learned
from the source and target data separately. Table 5.4 lists some details.

Optimization

We sample weights from N (0, 0.02), initialize biases to zero, and set layer normalization pa-
rameters to β = 0, γ = 1. For regularization, we use 0.3 dropout, 0.01 L2 weight decay, and

56

Dataset Vocab. Size Data size

IWSLT 10k 150k
WMT14 EN↔DE 32k 4.5M
WMT16 EN↔RO 40k 600k

Table 5.4: Pre-processing details of various translation benchmarks. Vocab. size denotes vocab-
ulary size.

smoothed cross-entropy loss with ε = 0.1. We train batches of 128k tokens using Adam [82] with
β = (0.9, 0.999) and ε = 10−6. The learning rate warms up to a peak of 5× 10−4 within 10,000
steps, and then decays with the inverse square-root schedule. We train our models for 300k steps
with batch size 128k [46] for WMT datasets. For the IWSLT dataset, we train our models for
50k steps with batch size 32k.

Model Parameter Size

The averaged size of parameters for all models are shown in Table 5.5. These three kinds of
models have similar number of parameters. LAT models have the most number of parameters
due to the LSTM-based local translator.

Model Parameter size

AT 60M
CMLM 62M

LAT 64M

Table 5.5: Number of Parameters of different models.

Length Adjustment for Intermediate Iterations

Since our merging algorithm produces the output dynamically, the output length is usually not the
same as the number of input pieces. In iterative decoding, we find it helpful to adjust the output
sequence’s length to the input length in intermediate iterations. This is achieved by adding or
deleting the special 〈mask〉 symbols. Notice that for the final iteration, we do not apply any
adjustments and keep the merged output sequence as it is.

For the length adjustment in the intermediate iterations, our goal is to adjust the output length
of the merger (Lout) to be close to the input target length (Lin). If these two lengths are already

57

equal or their relative difference is within a certain range (which is empirically set to 5%), we will
do nothing. Otherwise, there can be two cases: 1) when Lin is larger than Lout, we further insert
Lin − Lout 〈mask〉 tokens into the sequence; 2) otherwise, we try to delete Lout − Lin 〈mask〉
tokens. Notice that the addition or deletion operations happen after the masking procedure for
the next iteration.

Here, we describe the addition case in detail. Suppose we need to further insert M masks
into the output sequence, we decide the insertion places according to the position gaps. We adopt
a simple position scheme for all the tokens. For each original token tji (the j-th token in the i-th
piece) in the input translation pieces, we set i + j as its position. For each token in the output
sequence after merging, since it can originate from multiple input tokens through aligning, we
take the averaged value of all its source input tokens’ positions. We calculate the position gap
between each pair of nearby unmasked tokens in the output sequence and maintain a priority
queue for all these gaps. Then we insert M masks once at a time. For each time, we select
the current maximal gap, insert a 〈mask〉 to that position, and subtract that gap by 1. The case
for deletion would be similar but in the opposite direction: select the minimal gap, delete one
〈mask〉 if there are any, and increase that gap by 1. We will delete nothing if there are no masked
tokens in the selected gap.

58

Chapter 6

Fully Non-autoregressive Neural Machine
Translation: Tricks of the Trade

In chapter 5, we introduce a semi-autoregressive NMT system with a local autoregressive trans-
lation mechanism, which can improve the parallelism of the traditional NMT decoding process.
In this chapter, we aim for a full parallelism decoding process while maintaining superior trans-
lation accuracy at the same time.

6.1 Introduction

Non-autoregressive neural machine translation models [NAT, 55] attempt to generate output se-
quences in parallel to speed up the decoding process. The incorrect independence assumption
nevertheless prevents NAT models from properly learning the dependency between target tokens
in real data distribution, resulting in degraded performance compared to autoregressive (AT)
models. One popular solution to improve the NAT translation accuracy is to sacrifice the speed-
up by incorporating an iterative refinement process, through which the model explicitly learns
the conditional distribution over partially observed reference tokens [48, 56]. However, recent
studies [73] indicate that iterative NAT models seem to lose the speed advantage compared to AT
models with careful tuning of the layer allocation. For instance, an AT model with the deep en-
coder and shallow decoder architecture obtains similar latency as iterative NAT models without
hurting the translation accuracy.

Therefore, how to build a competitive fully NAT model without iterative refinements calls
for more exploration. Several works [49, 138, 150] have recently been proposed to improve the
translation quality of NAT, though the performance gap compared to the iterative ones remains.
In this chapter, we first argue that the key to successfully training a fully NAT model is to perform
dependency reduction in the learning space of output tokens (Section 6.2) from several aspects.

59

0 2 4 6 8 10 12 14 16 18
Speed-up (×)

16

18

20

22

24

26

28

BL
EU

Ours6-6
12-1

Vanilia (2017)
CMLM (2019)
LevT (2019)
LaNMT (2020)
DisCo (2020)
Transformer

Figure 6.1: The translation quality v.s. inference speed-up of the proposed model with the AT
(transformer) and existing popular iterative NAT models varying decoding iterations on WMT’14
En→De test set. The upper right corner achieves the best trade-off.

With this guidance, we revisit various methods which are able to reduce the dependencies among
target tokens as much as possible including four different perspectives, i.e., training corpus,
model architecture, training objective and learning strategy. The performance gap can not be
near closed unless we combine these techniques’ advantages.

We validate the proposed fully NAT model on standard translation benchmarks including
5 translation directions where our system achieves new state-of-the-art results for fully NAT
models on all directions. We also demonstrate the quality-speed trade-off comparing with AT and
recent iterative NAT models in Figure 6.1. Moreover, compared to the transformer baseline, our
model achieves 16.5× inference speed-up under the same software/hardware conditions while
maintaining comparable translation quality.

6.2 Motivation

Given an input sequence x = x1 . . . xT ′ , an autoregressive model [6, 178] predicts the tar-
get y = y1 . . . yT sequentially based on the conditional distribution p(yt|y<t, x1:T ′ ; θ), which
tends to suffer from high latency in generation especially for long sequences. In contrast, non-
autoregressive machine translation [NAT, 55], proposed for speeding-up the inference by gen-

60

erating all the tokens in parallel, has recently been on trend due to its parallelizable nature on
devices such as GPUs and TPUs. A typical NAT system assumes a conditional independence in
the output token space, that is

log pθ(y|x) =
T∑
t=1

log pθ(yt|x1:T ′) (6.1)

where θ is the parameters of the model. Typically, NAT models are modeled with Transformer
without causal attention map in the decoder side. As noted in Gu et al. [55], the independence
assumption, however, generally does not hold in real data distribution for sequence generation
tasks such as machine translation [148], where the failure of capturing such dependency between
target tokens leads to a serious performance degradation in NAT. As shown in Figure 6.1, despite
the inference speed-up, the vanilla NAT leads to a quality drop over 10 BLEU points.

To ease the modeling difficulty, recent state-of-the-art NAT systems [48, 56, 72, 102, 150,
160, 164] trade accuracy with latency by incorporating iterative refinement in non-autoregressive
prediction. For instance, Gu et al. [56] learns to translate by editing (deletion, insertion) on
previously generated sequence iteratively. Although iterative NAT models have already achieved
comparable or even better performance than the autoregressive counterpart, Kasai et al. [73]
shows that AT models with a deep encoder and a shallow decoder can readily outperform strong
iterative models with similar latency, indicating that the latency advantage of iterative NAT has
been overestimated.

By contrast, while maintaining a clear speed advantage, a fully NAT system – model makes
parallel predictions with a single neural network forward – still lags behind in translation quality
and has not been fully explored in literature [49, 109, 110, 117, 167]. This motivates us in this
work to investigate various approaches to push the limits of learning a fully NAT model towards
autoregressive models regardless of the architecture choices [73].

6.3 Methods

In this section, we discuss several essential ingredients to train a fully NAT model. As discussed
in Section 6.2, we argue that the guiding principle of designing any NAT models is to perform
dependency reduction as much as possible in the output space so that it can be captured by the
NAT model. For example, iterative-based models [48] explicitly reduce the dependencies be-
tween output tokens by learning the conditional distribution over the observed reference tokens.
The overall framework of training our fully NAT system is presented in Figure 6.2. We also
summarize the pros/cons for each proposed method in Table 6.1 for reference.

61

Transformer
Encoder

Transformer
Decoder

Thanks a lot

Vielen Dank
z1 z2 z3

Latent variables

Vielen Vielen Vielen _ Dank Dank

CTC Loss

Sample & Glance
Target Tokens

Vielen _

Latent
alignments

Transformer
Decoder

Transformer
Encoder

Thanks a lotVielen Dank

q(z|x,y)

p(z|x)

Encoder-Decoder
Attention

SoftCopy &
Upsample

Figure 6.2: The overall framework of our fully NAT model.

Methods Distillation Latent Variables Latent Alignments Glancing Targets

What it can do? simplifying the
training data

model any types of
dependency in the-
ory

handling token
shifts in the output
space

ease the difficulty
of learning hard
examples

What it cannot? uncertainty
exists in the
teacher model

constrained by the
modeling power
of the used latent
variables

unable to model
non-monotonic
dependency, e.g.
reordering

training / testing
phase mismatch

Potential issues sub-optimal due
to the teacher’s
capacity

difficult to train;
posterior collapse

decoder inputs must
be longer than tar-
gets

difficult to find the
optimal masking
ratio

Table 6.1: Comparison between the proposed techniques for improving fully NAT models.

Data: Knowledge Distillation

The most effective dependency reduction technique is knowledge distillation (KD) [64, 78]
which is firstly proposed to improve NAT in Gu et al. [55] and has been widely employed for
all subsequent NAT models. The original target samples are replaced with sentences generated
from a pre-trained autoregressive model. As analyzed in Zhou et al. [202], KD is able to simplify
the training data where the generated targets have less noise and are aligned to the inputs more
deterministically. Also, it shows that the capacity of the teacher model should be constrained to
match the desired NAT model to avoid further degradation, especially for weak NAT students
without iterative refinement.

62

Model: Latent Variables

Different from iterative NAT, dependency reduction can be done with (nearly) zero additional
cost at inference by adding latent variables to the model. In such case, output tokens y1:T are
modeled conditionally independent over the latent variables z which are predicted from the prior
distribution:

log pθ(y|x) = log

∫
z

pθ(z|x)pθ(y|z,x)dz (6.2)

z can be either extracted by a fixed external library (e.g. fertility in Gu et al. [55]), or jointly
optimized with the NAT model using variational auto-encoders (VAEs) [70, 160] or normalizing
flows [117].

In this work, we follow the formulation proposed in Shu et al. [160] where continuous latent
variables z ∈ RT ′×D are modeled as spherical Gaussian at the encoder output of each position.
Like typical VAEs [84], the model is trained by maximizing the evidence lower-bound (ELBO)
with a posterior network qφ:

E
z∼qφ

[log pθ(y|z,x)]︸ ︷︷ ︸
likelihood

−DKL(qφ(z|x,y)‖pθ(z|x)) (6.3)

where DKL is the Kullback–Leibler divergence between the prior and posterior. In this work, we
use a transformer to encode qφ(z|x,y). Only the embedding layers are shared between θ and φ

Loss Function: Latent Alignments

Standard NMT models are trained with the cross entropy (CE) loss which compares the model’s
output with target tokens at each corresponded position. However, as NAT ignores the depen-
dency in the output space, it is almost impossible for such models to model token offset accu-
rately. For instance, while with little effect to the meaning, simply changing “Vielen Dank !” to
“, Vielen Dank” causes a huge penalty for fully NAT models.

To ease such limitation, recent works propose to consider the latent alignments between the
target positions, and optimize [49], or marginalize all alignments [110, 150]. As a special form of
latent variables in loss computation, latent alignments can be easily computed through dynamic
programming. In this work, we put our primary focus on Connectionist Temporal Classification
(CTC) [52] as the latent alignments, considering its superior performance and the flexibility of
variable length prediction. CTC is capable of efficiently finding all valid aligned sequences a
which the target y can be recovered from, and marginalize log-likelihood:

log pθ(y|x) = log
∑
a∈Γ(y)

pθ(a|x) (6.4)

63

where Γ−1(a) is the collapse function that recovers the target sequence by collapsing consecutive
repeated tokens, and then removing all blank tokens. Also, it is straightforward to apply the same
CTC loss into the VAE models (Section 6.3) by replacing the likelihood term in Equation (6.3)
with the CTC loss. Because of the strong assumptions of monotonic alignment, it is impossible
to reduce all dependencies between target tokens in the real distribution.

Learning: Glancing Targets

Ghazvininejad et al. [48] show that it improves test time performance by glancing the reference
tokens when training NAT models. That is, instead of log pθ(y|x), we optimize log pθ(y|m �
y,x),m ∼ γ(l,y), l ∼ U|y|, where m is the mask, and γ is the sampling function given the
number of masked tokens l. As mentioned earlier, we suspect such explicit modeling of the
distribution conditional to unmasked tokens assists the dependency reduction in the output space.

Naively applying random masks for every training example may cause a severe mismatch
between training and testing. To mitigate this, Qian et al. [138] propose GLAT – a curriculum
learning strategy, in which the ratio of glanced target tokens is proportional to the translation
error of the fully NAT model. More precisely, instead of sampling uniformly, we sample l by:

l ∼ g(fratio · D(ŷ,y)) (6.5)

where ŷ = arg maxy log pθ(y|x), D is the discrepancy between the model prediction and the
target sequence, e.g. Levenshtein distance [105], and fratio is a hyperparameter to adjust the
mask ratio. The original formulation [138] utilized a deterministic mapping (g), while we use
a Poisson distribution to sample a wider range of lengths including “no glancing”. Intuitively,
a poorly trained model will glance at many target tokens. When the model becomes better and
generates higher quality sequences, the number of masked words will be larger, which helps the
model gradually learn generating the whole sentence.

The original GLAT [138] assumes to work with the golden length so that it can glance at the
target by placing the target word embedding to the corresponded inputs, which is incompatible
with CTC as we always require the inputs longer than the targets. To enable GLAT training, we
glance at target tokens from the viterbi aligned tokens a∗ = arg maxa∈Γ(y) log pθ(a|x) which
has the same length as the decoder inputs.

6.4 Experiments

We perform extensive experiments on three challenging translation datasets by combining all
mentioned techniques to check (1) whether the proposed aspects for dependency reduction are

64

complementary; (2) how much we can minimize the gap between a fully non-autoregressive
model with the autoregressive counterpart.

Experimental Setup

Dataset and Preprocessing We validate our proposed models on three standard translation
benchmarks with variant sizes, i.e., WMT14 English (EN)↔German (DE) (4.0M pairs), WMT16
English (EN)↔ Romanian (RO) (610k pairs) and WMT20 Japanese (JA)→ English (EN) (13M
pairs after filtering). For EN↔DE and EN↔RO, we apply the same prepossessing steps and
learn sub-words as mentioned in prior work (EN↔DE: 202, EN↔RO: 102). For JA→EN, the
original data (16M pairs) is first filtered with Bicleaner [151] 1 and we apply SentencePiece [94]
to generate 32k subwords.

Knowledge Distillation Following previous efforts, we also train the NAT models on distilled
data generated from pre-trained transformer models (base for WMT14 EN↔DE and WMT16
EN↔RO and big for WMT20 JA→EN) using beam search with a beam size 5 and length penalty
1.0.

Decoding At inference time, the most straightforward way is to generate the sequence with
the highest probability at each position. The outputs from the CTC-based NAT models require
an additional collapse process Γ−1 which can be done instantly. A relatively more accurate
method is to decode multiple sequences, and rescore them to obtain the best candidate in parallel,
i.e. noisy parallel decoding [NPD, 55]. Furthermore, CTC-based models are also capable of
decoding sequences using beam-search [110], and optionally combined with n-gram language
models [63, 74]. More precisely, we search in a beam to approximately find the optimal y∗ that
maximizes:

log pθ(y|x) + α · log pLM(y) + β log |y| (6.6)

where α and β are hyperparameters for language model scores and word insertion bonus. In
principle, it is no longer non-autoregressive as beam-search is a sequential process by nature.
However, it does not contain any neural network computations and can be implemented effi-
ciently in C++ 2.

Baselines We adopt transformer (AT) and existing NAT approaches (see Table 6.2) for com-
parison. For AT, except for the standard base and big architectures [178], we also compare with a

1https://github.com/bitextor/bicleaner
2https://github.com/parlance/ctcdecode

65

https://github.com/bitextor/bicleaner
https://github.com/parlance/ctcdecode

Models Iter. Speed
WMT’14 WMT’16

EN-DE DE-EN EN-RO RO-EN

AT
Transformer base (teacher) N 1.0× 27.48 31.39 33.70 34.05
Transformer base (12-1) N 2.4× 26.21 30.80 33.17 33.21

+ KD N 2.5× 27.34 30.95 33.52 34.01

Iterative NAT

iNAT [102] 10 1.5× 21.61 25.48 29.32 30.19
Blockwise [163] ≈ N/5 3.0× 27.40 - - -
InsT [164] ≈ logN 4.8× 27.41 - -
CMLM [48]∗ 10 1.7× 27.03 30.53 33.08 33.31
LevT [56] Adv. 4.0× 27.27 - - 33.26
KERMIT [15] ≈ logN - 27.80 30.70 - -
LaNMT [160] 4 5.7× 26.30 - - 29.10
SMART [50]∗ 10 1.7× 27.65 31.27 - -
DisCO [72]∗ Adv. 3.5× 27.34 31.31 33.22 33.25
Imputer [150]∗ 8 3.9× 28.20 31.80 34.40 34.10

Fully NAT

Vanilla-NAT [55] 1 15.6× 17.69 21.47 27.29 29.06
LT [70] 1 3.4× 19.80 - - -
CTC [110] 1 - 16.56 18.64 19.54 24.67
NAT-REG [185] 1 - 20.65 24.77 - -
Bag-of-ngrams [156] 1 10.0× 20.90 24.60 28.30 29.30
Hint-NAT [109] 1 - 21.11 25.24 - -
DCRF [167] 1 10.4× 23.44 27.22 - -
Flowseq [117] 1 1.1 × 23.72 28.39 29.73 30.72
ReorderNAT [146] 1 16.1× 22.79 27.28 29.30 29.50
AXE [49]∗ 1 15.3× 23.53 27.90 30.75 31.54
EM+ODD [166] 1 16.4× 24.54 27.93 - -
GLAT [138] 1 15.3× 25.21 29.84 31.19 32.04
Imputer [150]∗ 1 18.6× 25.80 28.40 32.30 31.70

Ours (Fully NAT) 1 17.6× 11.40 16.47 24.52 24.79
+ KD 1 17.6× 19.50 24.95 29.91 30.25
+ KD + CTC 1 16.8× 26.51 30.46 33.41 34.07
+ KD + CTC + VAE 1 16.5× 27.49 31.10 33.79 33.87
+ KD + CTC + GLAT 1 16.8× 27.20 31.39 33.71 34.16

Table 6.2: Comparison between our models and existing methods. The speed-up is measured on
WMT’14 En→De test set. Iter. denotes the number of iterations at inference time, Adv. means
adaptive, ∗ denotes models trained with distillation from a big Transformer.

66

Models
WMT’14 WMT’16

EN-DE DE-EN EN-RO RO-EN

Transformer base (teacher) 46.2 34.9 46.4 39.9
Transformer base (12-1) 44.7 33.4 45.3 38.4

+ KD 45.6 34.6 45.8 38.6
Ours (Fully NAT)
KD + CTC + VAE 45.9 35.0 46.1 42.2
KD + CTC + GLAT 45.8 35.3 45.9 40.6

Table 6.3: Comparison between our models and autoregressive models in terms of ME-
TEOR [32].

deep encoder, shallow decoder transformer suggested in Kasai et al. [73] that follows the model
dimensions of base with 12 encoder layers and 1 decoder layer (i.e. base (12-1) for short).

Evaluation BLEU [133] is used to evaluate the translation performance for all models. Fol-
lowing prior works, we compute tokenized BLEUs for EN↔DE and EN↔RO, while using
SacreBLEU [137] for JA→EN. We also test our models by METEOR [32]3. In this chapter,
following Kasai et al. [73], we use three measures to fully investigate the translation latency of
all the models:
• LGPU

1 : translation latency by running the model with one sentence/batch on single GPU, align-
ing applications like instantaneous translation.

• LCPU
1 : the same as LGPU

1 while running the model without GPU speed-up. Compared to LGPU
1 ,

it is less friendly to NAT models that make use of parallelism, however, closer to real scenarios.

• LGPU
max: the same as LGPU

1 on GPU while running the model in a batch with as many sentences
as possible. In this case, the hardware memory bandwidth is taken into account.

We measure the wall-clock time for translating the whole test set, and report the averaged time
over sentences as the latency measure. For more implementation details, please refer to Ap-
pendix 6.6.

Results

WMT’14 EN↔DE & WMT’16 EN↔RO We report the performance of our fully NAT model
comparing with AT and existing NAT approaches (including both iterative and fully NAT models)
in Table 6.2. Iterative NAT models with enough number of iterations generally outperform fully
NAT baselines by a certain margin as they are able to recover the generation errors by explicitly

3https://www.cs.cmu.edu/~alavie/METEOR/README.html

67

https://www.cs.cmu.edu/~alavie/METEOR/README.html

Configuration BLEU (∆) BP LGPU
1 (Speed-up) LCPU

1 (Speed-up)

AT
big (teacher) 21.07 0.920 345 ms 1.0 × 923 ms 1.0 ×
base 18.91 0.908 342 ms 1.0 × 653 ms 1.4 ×
base (12-1) 15.47 0.806 152 ms 2.3 × 226 ms 4.0 ×
base (12-1) + KD 18.76 0.887 145 ms 2.4 × 254 ms 3.6 ×

NAT

KD + CTC 16.93 (+0.00) 0.828 17.3 ms 19.9 × 84 ms 11.0 ×
KD + CTC + VAE 18.73 (+1.80) 0.862 16.4 ms 21.0 × 83 ms 11.1 ×

w. BS20 19.80 (+2.87) 0.958 28.5 ms 12.1 × 99 ms 9.3 ×
w. BS20 + LM 21.41 (+4.48) 0.954 31.5 ms 11.0 × 106 ms 8.7 ×
w. NPD5 18.88 (+1.95) 0.866 34.9 ms 9.9 × 313 ms 2.9 ×
w. NPD5 + BS20 + LM 21.84 (+4.91) 0.962 57.6 ms 6.0 × 284 ms 3.2 ×

Table 6.4: Performance comparison between fully NAT and AT models on WMT’20 JA→EN.
Translation latency on both the GPU and CPUs are reported over the test set. The brevity penalty
(BP) is also shown for reference.

modeling dependencies between (partially) generated tokens. However, the speed advantage is
relatively small compared to AT base (12-1) which also achieves 2.5 times faster than the AT
baseline.

Conversely, our fully NAT models are able to readily achieve over 16 times speed-up on
EN→DE by restricting translation within a single iteration. Surprisingly, merely training NAT
with KD and CTC loss already beats the state-of-the-art for single iteration NAT models across
all four directions. Moreover, combining with either latent variables (VAE) or glancing targets
(GLAT) further closes the performance gap. No significant difference has been found between
transformer-base and our best models via compare-mt [128]. We also employ METEOR [32]
to evaluate our best models and results are shown in Table 6.3. We see that our model can achieve
similar performance compared to the transformer-base model.

Table 6.2 also indicates the difficulties of learning NAT on each dataset. For instance,
EN↔RO is relatively easier as “KD + CTC” is enough to close the performance gap. By con-
trast, applying VAE or GLAT helps to capture non-monotonic dependencies and improve by
0.5 ∼ 1 BLEU points on EN↔ED. For both datasets, we ONLY need a single greedy generation
to achieve similar translation quality as AT beam-search results (beam size 4).

WMT’20 JA→EN In Table 6.4, we also present results for training the fully NAT model on a
more challenging benchmark – WMT’20 JA→EN which is much larger (13M pairs) and nois-
ier. In addition, JA is linguistically distinct from EN which makes it harder to learn mappings

68

101 102

Latency (ms) / GPU
16

18

20

22

24

26

28

BL
EU

AT base
AT base (12-1)
CMLM
LevT

NAT
NAT CTC
NAT CTC+VAE
NAT CTC+GLAT

102

Latency (ms) / CPU
16

18

20

22

24

26

28

BL
EU

AT base
AT base (12-1)
CMLM
LevT

NAT
NAT CTC
NAT CTC+VAE
NAT CTC+GLAT

100 2 × 100 3 × 100 4 × 100

Latency (ms) / GPU (MAX)
16

18

20

22

24

26

28

BL
EU

AT base
AT base (12-1)
CMLM
LevT

NAT
NAT CTC
NAT CTC+VAE
NAT CTC+GLAT

Figure 6.3: Quality v.s. Latency (the upper left corner achieves the best trade-off) for fully NAT
models with other translation models (AT base and base 12-1 [73], CMLM [48] and LevT [56])
on WMT’14 EN→DE. We evaluate latency in three setups (from left to right: LGPU

1 , LCPU
1 , LGPU

max)
and show them in Logarithmic scale for better visualization.

between them. Consequently, both AT (12-1) and our fully NAT models become less confident
and tend to generate shorter translations (BP < 0.9), which in turn underperform the AT teacher
even trained with KD.

Beam search & NPD The proposed NAT can be further boosted by allowing beam-search or
re-ranking (NPD) after prediction. For CTC beam search, we use a fixed beam-size 20 while grid-
search α, β (Equation(6.6)) based on the performance on the validation set. The language model 4

is trained directly on the distilled target sentences to avoid introducing additional information.
For noisy parallel decoding (NPD), we draw multiple z from the learned prior distribution with
temperature 0.1, and use the teacher model to rerank the best z with the corresponded translation.

As shown in Table 6.4, with similar GPU latency (LGPU
1), beam search is much more effective

than NPD with re-ranking, especially combined with a 4-gram LM where we achieve a BLEU
score of 21.41, beating the teacher model with 11× speed-up. More importantly, by contributing
the insertion bonus (3rd term in Equation 6.6) with β in beam search, we have the explicit control
to improve BP and output longer translations. Also, we gain another half point by combining
NPD and beam search. To have a fair comparison, we also report latency on CPUs where it is
limited to leverage parallelism of the device. The speed advantage drops rapidly for NAT models,
especially for NAT with NPD, however, we still maintain around 100 ms latency via beam search
– over 2× faster than the lightweight AT (12-1) systems with higher translation quality.

Quality v.s. Latency We perform a full investigation for the trade-off between translation
quality and latency under three measures defined in Section 6.4. The results are plotted in Fig-
ure 6.3. For fully NAT models, no beam search or NPD is considered. In all three setups, our
fully NAT models obtain superior trade-off compared with AT and iterative NAT models. Itera-

4https://github.com/kpu/kenlm

69

https://github.com/kpu/kenlm

tive NAT models (LevT and CMLM) require multiple iterations to achieve reliable performance
with the sacrifice of latency, especially under LCPU

1 and LGPU
max where iterative NAT performs sim-

ilarly or even worse than AT base (12-1), leaving fully NAT models a more suitable position in
quality-latency trade-off.

Figure 6.3 also shows the speed advantage of fully NAT models shrinks in the setup of LCPU
1

and LGPU
max where parallelism is constrained. Moreover, NAT models particularly those with CTC

consume more computation and memory compared to AT models with a shallow decoder. For
instance when calculating LGPU

max , we notice that the maximum allowed batch is 120K tokens for
AT base (12-1), while we can only compute 15K tokens at a time for NAT with CTC due to the
up-sampling step, even though the NAT models still win the wall-clock time. We mark it as one
limitation for future research.

Ablation Study

Impact of various techniques Our fully NAT models benefit from dependency reduction tech-
niques in four aspects (data, model, loss function and learning), and we analyze their effects on
translation accuracy through various combinations in Table 6.5. First of all, the combinations
without KD have a clear performance drop compared to those with KD, showing its vital im-
portance in NAT training. For the loss function, although both AXE [48] and CTC consider the
latent alignments, the CTC-based model obtains much better accuracy due to its flexibility of
output length. In all cases, incorporating latent variables also effectively improves the accuracy,
especially for CTC without KD (∼ 5 BLEU improvement). Because of the capability to reduce
the mismatch between training and inference time, the model with GLAT is superior to those
with randomly (RND) sampled masks. To conclude, we find that KD and CTC are necessary
components for a robust fully NAT model. Adding either VAE or GLAT to them achieves similar
improvements.

Distillation corpus We report the performance of models trained on real data and distilled data
generated from AT base and big models in Table 6.6. For base models, both AT (12-1) and NAT
achieve better accuracy with distillation, while AT benefits more by moving from base to big
distilled data. On the contrary, the NAT model improves marginally indicating that in terms of
the modeling capacity, our fully NAT model is still worse than AT model even with 1 decoder
layer. It is not possible to further boost the NAT performance by simply switching the target to
a better distillation corpus, which aligns with the finding in Zhou et al. [202]. Nonetheless, we
can increase the NAT capacity by learning in big size. As shown in Table 6.6, we can achieve
superior accuracy compared to AT (12-1) with little effect on the translation latency (LGPU

1).

70

KD AXE CTC VAE RND GLAT BLEU

11.40
X 19.50

X 16.59
X X 21.66

X 18.18
X X 26.51

X X 23.58
X X X 22.19
X X X 27.49

X X X 22.74
X X X 24.67
X X X 26.16

X X 21.81
X X X 27.20

X X X X 27.21

Table 6.5: Ablation on WMT’14 EN→DE test set with different combinations of techniques.
The default setup shows a plain NAT model [55] directly trained on raw targets with the cross
entropy (CE) loss.

Effective Latent Dimensionality of Latent Variables To confirm the necessity of combining
VAEs with CTC, We apply principal component analysis (PCA) [188] on the learned latent
variables. More precisely, we extract the latent variables from the posterior of various models
(see Table 6.5) on WMT’14 EN→DE test set. These main components’ explained variance
ratios, the percentage of variance that is attributed by each of the components, are shown in
Figure 6.4.

First, we find that the number of effective latent dimensionality (capturing at least 95% of the
total variance) is much lower than the number of latent dimensions (8 in our experiments), which
indicates simply increasing the number of latent dimensions does not lead to better representa-
tions, and the ability to capture dependencies is limited. Therefore, VAEs need to be combined
with other techniques e.g. KD, CTC to take effect. Also, compared to the AXE, the effective
dimensionality of latent variables in CTC loss-based models is higher. We include more analysis
with qualitative examples in Appendix 6.6.

71

Models
Distillation

BLEU Speed-up
base big

AT

base 27.43 1.0×
big 28.14 0.9×

base 26.12 2.4×

(12-1) X 27.34 2.5×
X 27.83 2.4×

NAT
base

23.58 16.5×
X 27.49 16.5×

X 27.56 16.5×
big X 27.89 15.8×

Table 6.6: Performance comparison between AT and NAT models on the test set of WMT’14
EN→DE. The latency is measured one sentence per batch and compared with the Transformer
base. For NAT model, we adopt CTC+VAE as the basic configuration.

1 2 3 4 5 6 7 8
Principle Component Index

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

ai
ne

d
Va

ria
nc

e
Ra

tio

KD+CTC+VAE
Real+CTC+VAE
KD+AXE+VAE

Figure 6.4: Principle component explained variance ratios of latent variables on WMT’14
EN→DE test set.

72

SM
T-1

SM
T-4

SM
T-1

6
AT-C

PU

AT-G
PU

NAT-C
PU

 (o
urs

)

NAT-G
PU

 (o
urs

)
0

25

50

75

100

125

150

175

200

Se

nt
en

ce
s/

Se
c

Figure 6.5: Decoding Speed Comparison of various machine translation models. SMT-16 de-
notes phrase-based statistical machine translation decoding with 16 CPU threads.

Comparison with Non-Neural MT Here we compare the decoding speed of various machine
translation systems. We train a standard phrase-based statistic machine translation [91] by Niu-
Trans [192]. We test all models on the WMT’14 DE-EN testset with batch size 1 and the result
is shown in Figure 6.5. NAT models decoding on GPU can surpass the SMT with a single CPU
thread but is still much slower as compared to SMT multi-threads decoding. How to close this
decoding speed gap is worthwhile to be explored in the future. Some widely-adopted techniques
such as knowledge distillation [77] and model pruning may be helpful.

6.5 Summary

In this chapter, we aim to minimize the performance gap between fully NAT and AT models. We
investigate dependency reduction methods from four perspectives and carefully unite them with
necessary revisions. Experiments on three translation benchmarks demonstrate that the proposed
fully NAT models achieve the SoTA performance. For future work, it is worth exploring simpler

73

but more effective diagrams for learning NAT models. For instance, with the combination of CTC
and more powerful latent variable models, it is possible to remove the necessity of knowledge
distillation. In the future, one interesting direction to apply these techniques to pre-train a non-
autoregressive LM on a large-scale data.

6.6 Appendix

Implementation Details

Architecture We design our fully NAT model with the hyperparameters of the base Trans-
former: 8-512-2048 [178]. For EN→DE experiments, we also implement the NAT model in big
size: 8-1024-4096 for comparison.

VAEs For experiments using variational autoencoders (VAE), we use the last layer encoder
hidden states to predict the mean and variance of the prior distribution. The latent dimension
D is set to 8, and the predicted z are linearly projected and added on the encoder outputs. Fol-
lowing Shu et al. [160], we use a 3 layer encoder-decoder as the posterior network, and apply
freebits annealing [18] to avoid posterior collapse.

CTC By default, we upsample the length of decoder inputs 3× as long as the source for CTC,
while using the golden length for other objectives (CE and AXE). We also train an additional
length predictor when CTC is not used. For both cases, we use SoftCopy [186] which interpolated
the encoder outputs as the decoder inputs based on the relative distance of source and target
positions.

GLAT The mask ratio, fratio, is 0.5 for GLAT training. The original GLAT [138] assumes
to work with the golden length so that it can glance at the target by placing the target word
embedding to a clear corresponded inputs. It is incompatible with CTC loss where we always
need longer inputs than the targets. To enable GLAT learning, we glance at target tokens from
the viterbi aligned tokens (α = arg maxα∈β(y) p(α|x)) which has the same length as the decoder
inputs.

Training For both AT and NAT models, we set the dropout rate as 0.3 for EN↔DE and
EN↔RO, and 0.1 for JA→EN. We apply weight decay 0.01 as well as label smoothing ε = 0.01.
All models are trained for 300K updates using Nvidia V100 GPUs with a batch size of approx-
imately 128K tokens. We measure the validation BLEU scores for every 1000 updates, and
average the last 5 checkpoints to obtain the final model.

74

Inference We measure the GPU latency by running the model on a single Nvidia V100 GPU,
and CPU latency on Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz with 80 cores. All models
are implemented on fairseq [132].

More ablation study

λ BLEU LGPU
1 LGPU

max LCPU
1

1.5 26.16 17.9 ms 0.95 ms 66.6 ms
2.0 26.39 17.5 ms 1.03 ms 71.6 ms
2.5 26.54 17.6 ms 1.16 ms 76.9 ms
3.0 26.51 17.0 ms 1.32 ms 81.8 ms

Table 6.7: Performance comparison of different upsample ratios (λ) for CTC-based models on
WMT’14 EN→DE test set. All models are trained on distilled data.

Upsampling Ratio (λ) for CTC Loss To meet the length requirements in CTC loss, we up-
sample the encoder output by a factor of 3 in our experiments. We also explore other possible
values and report the performance in Table 6.7. The higher upsampling ratio provides a larger
alignment space, leading to better accuracy. Nevertheless, with a large enough sampling ratio, a
further increase will not lead to the performance increase. Because of the high degree of paral-
lelism, LGPU

1 speed is similar among these ratios. However, the model with a larger ratio has a
clear latency drop on CPU or GPU with large batches.

Representation reordering in the latent space In our main experiments, VAEs has been
proven to effectively improve the performance of NAT models. Here, we perform a qualitative
study to show how VAEs helps NAT models.

Ott et al. [130] collected additional reference translations for each source sentence in the
WMT’14 En→De test set. We first choose three source sentences and show the alignments be-
tween them and two of their different translations in Figure 6.6. In each sample, it is clear to find
that the word order of the first pair is more similar to the second one (e.g., in the second sample,
the verb ’light’ in the source sentence is translated to the end of the second reference sentence).
However, given the monotonic alignment assumption, CTC is difficult to align sentence pairs
with different word orders. Then, for each sample, we extract latent variables of both sentence
pairs and align them by first computing the Euclidean distance between every position and then
employing the linear sum assignment algorithm (LAP).

75

Figure 6.6: Alignments between source sentences and their different translations.

Regarding the first pair as the baseline, we find that the latent variable is able to adjust the
word order according to the input sentence pair. For example, the alignment between latent
variables of the second sample is shown as: 0-0, 1-1, 2-2, 3-3, 4-9, 5-5, 6-6,7-7, 8-8, 9-4, which
shows that the latent representation of the 9th position in the second pair is aligned to the 5th
position of the second pair. In another word, the latent representation of the word ’lights’ is
reordered to the last position in the second pair’s latent variable, which corresponds to the word
order difference in the second pair. Therefore, given various reference information, the latent
variable makes the alignment between the source and target representation more monotonic.
CTC can consequently benefit from it to learn a better NAT model.

76

Part III

Capacity Allocation in Multilingual Neural
Machine Translation

77

Chapter 7

Multilingual Neural Machine Translation
with Deep Encoder and Multiple Shallow
Decoders

In the decoding process of the standard transformer-based NMT model, the representation of
the source sequence is obtained by the bidirectional transformer encoder with high parallelism.
However, at the decoder side, because translations are predicted one-by-one conditioned on all
previous words, the decoder will be called many times in a sequential order. Consequently, the
latency is highly correlated with the computational complexity of the decoder. Besides improv-
ing the parallelizability of the decoder, recently, Kasai et al. [73] show that given a fixed capacity
budget, as measured by the number of layers, models with a deep encoder and a shallow de-
coder (DESD) are faster at inference time when compared to standard models while maintaining
translation quality.

From this chapter, we extend this capacity allocation idea to multilingual neural machine
translation (MNMT) which is capable of handling multiple language pairs in a single model.
In this chapter, we first explore the speed-accuracy trade-off of MNMT through model capacity
allocations. According to our observations, we propose a deep encoder, (multiple) shallow de-
coder(s) architecture to achieve a superior speed-accuracy trade-off for one-to-many and many-
to-one translation tasks.

7.1 Introduction

Encoder-decoder based neural machine translation (NMT) systems have achieved great success
on bilingual translation tasks [6, 22, 45, 168, 178]. Recently, multilingual neural machine trans-
lation (MNMT) has also attracted much attention because of its ease of deployment, knowledge

79

transfer among languages and the potential to enable zero-shot translation [4, 34, 41, 58, 68, 199].
While MNMT can support translations in several directions, not all of them have better perfor-
mance when compared to their corresponding bilingual models. Suspecting that poor perfor-
mance in some directions is due to the limited model capacity, many prior works adopt deeper
encoder and decoder [182, 198, 199]. However, increasing the number of layers, especially
in the decoder, deteriorates the latency of translation and memory costs. Recently, Kasai et al.
[73] show that given a fixed capacity budget, as measured by the number of layers, models with
a deep encoder, shallow decoder (DESD) architecture are faster at inference time when com-
pared to standard models with an equal number of encoder and decoder layers while maintaining
translation quality.

Inspired by findings from Kasai et al. [73], in this chapter, we explore the speed-accuracy
trade-off in multilingual machine translation systems. Given the same model capacity budget,
we experiment various layer allocation strategies and analyze multilingual models in the one-to-
many (O2M) and many-to-one (M2O) settings. In the one-to-many setting, there are numerous
target languages from a single source language (limited to English in this study); and in the
many-to-one setting, several possible source languages are translated into a single target language
(again, English in this study).

In the many-to-one scenario, we find that allocating more capacity to the encoder reduces
the latency while achieving comparable performance. We hypothesize that a deeper encoder
helps the model accommodate multiple source languages, while a shallow decoder is sufficient
to support a single target language [73].

However, in the one-to-many translation setting, speed-accuracy trade-off is complicated. We
observe a performance drop as the decoder depth is reduced. We hypothesize that the shallow
decoder can no longer model several different target languages adequately. With the goal of
obtaining low latency while maintaining translation quality, we propose using multiple shallow
decoders where each decoder is responsible for a subset of the target languages. Clearly, the
introduction of multiple shallow decoders increases the size of our model. However, at inference
time, given a specific target language, only one shallow decoder will be used, thus not adding
latency or memory costs. With multiple target languages and decoders, one natural question is
how to assign each target language to one of these decoders. We investigate several methods
to assign each target language to one of these shallow decoders. More details are in the Sec-
tion 7.3. Experimental results on three multilingual translation corpora show the effectiveness of
our method to improve translation accuracy with lower latency at the same time.

80

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3
Speed-up

22

23

24

25

26

27

28

BL
EU

6-6 7-5
8-4 9-3 10-2

11-1

6-6 7-5
8-4

9-3

10-2

11-1
O2M
M2O

(a) OPUS-100

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3
Speed-up

14
15
16
17
18
19
20
21
22
23
24
25

B
LE

U

6-6 7-5 8-4 9-3 10-2
11-1

6-6 7-5 8-4 9-3

10-2

11-1
O2M

M2O

(b) TED8-Related

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7
Speed-up

17

18

19

20

21

22

23

24

25

26

27

B
LE

U

6-6 7-5 8-4 9-3 10-2
11-1

6-6 7-5 8-4
9-3

10-2

11-1O2M

M2O

(c) TED8-Diverse

Figure 7.1: Speed and accuracy trade-off of various layer allocations for O2M and M2O transla-
tions on OPUS-100, TED8-Related and TED8-Diverse corpora. X-Y denotes X and Y layers in
the encoder and decoder respectively. Best viewed in color.

7.2 Deep encoder and shallow decoder (DESD) for multilin-
gual NMT

Background The transformer-based NMT model [178] achieves state-of-the-art performance
on many translation tasks. It consists of an encoder and a decoder, each of which contains
several stacked layers. Since the transformer relies entirely on the attention mechanism, it allows
more parallelization compared to recurrent neural networks. Specifically, at training time, the
computation can be parallelized both in the encoder and decoder. At inference time, due to
the auto-regressive property, the decoder needs to generate tokens one by one. However, the
computation in the encoder is still parallelized given the source sentence. Therefore, the main
latency of the transformer at inference time happens in the decoder, especially translating long
sentences. Recently, Kasai et al. [73] find that on bilingual machine translation tasks, putting
more capacity of the transformer model to the encoder substantially reduces the decoding time
and maintains the performance at the same time.

Because this deep encoder and shallow decoder model achieves a superior speed-accuracy
trade-off on bilingual translation tasks, in this section, we try to understand the layer allocations
of transformer on the multilingual neural machine translation task given the same capacity budget
which is measured by the number of layers in the encoder and decoder. We first experiment with
three multilingual translation corpora.

• OPUS-100 is a massively multilingual dataset collected from OPUS [174], including 100
languages in total with 99 languages to-and-from English. It consists of 55 million training
sentence pairs with up to 1M samples per language pair, and covers 94 dev/test language
pairs, each with 2000 samples at most.

81

• TED8-Related [184]: 4 low resource languages (Azerbaijani: az, Belarusian: be, Glacian:
gl, Slovak: sk) and 4 relevant high resource languages (Turkish: tr, Russian: ru, Por-
tuguese: pt, Czech: cs)

• TED8-Diverse [184]: 8 languages without consideration for relatedness (Bosnian: bs,
Marathi: hr, Hindi: hi, Macedonian: mk, Greek: el, Bulgarian: bg, French: fr, Korean:
ko)

Instead of just trying the shallowest possible decoder (1-layer), we train models with vari-
ous configurations on these three corpora. Other than the layer allocation, all the other hyper-
parameters and model configurations are the same among these models and the same training
procedure is applied to these models (model and training details are listed in Appendix 7.7.). To
understand the speed and accuracy trade-off of the layer allocation, two metrics are reported:

• BLEU: the average BLEU score [133] over all directions.

• DS: the decoding speed. It is measured by the number of tokens per second the system
translates given one sentence at a time on a single GPU.

The results are shown in Figure 7.1. Generally, we see that models with fewer decoder layers
obtain higher decoding speed.

Many-to-one (M2O) translation

In the M2O translation, there is no significant performance difference among these layer alloca-
tions. We hypothesize that this is because the deeper encoder learns better representations from a
large number of source languages while on the decoder side only one language needs to be mod-
eled. Therefore, given a more robust representation of source languages, the shallow decoder is
able to generate high-quality translations. For example, the model with 10 encoder layers and 2
decoder layers obtains slightly better performance and a 1.8× speedup at the same time.

One-to-many (O2M) translation

However, in the O2M translation setting, although models with the shallower decoder have lower
latency compared to the standard transformer (6-6), there is a clear performance drop in terms of
translation accuracy, especially for models with just 1 or 2 decoder layers. We attribute this to
the shallow decoder not having enough capacity to model a large number of target languages.

82

7.3 Deep Encoder and Multiple Shallow Decoders (DEMSD)

We have seen that in one-to-many translation, DESD models have a performance drop compared
to the standard transformer. In order to preserve translation quality and low latency at the same
time, we propose a model with a shared deep encoder and multiple shallow decoders (DEMSD),
each of which is used to decode a subset of target languages. Although this will introduce more
parameters, at inference time only one shallow decoder is needed for a given translation (since
the output language is fixed) thus the model incurs no extra latency or memory costs. One natural
question that arises when using this multiple-decoder approach is how to assign output languages
to each of the decoders. In this section, we explore several language assignment methods to
assign each target language (or language group) to one of these multiple decoders. As a result,
each decoder only needs to handle a disjoint subset of target languages.

One language per decoder (EACH)

The simplest way is to use a separate decoder for each output language. As a result, we will have
as many decoders as the number of target languages and each decoder only needs to model one
language.

Random language set per decoder (RAND)

In this method, we assign a random set of languages to a single decoder. As the performance of
the model will vary significantly based on the random assignment, we repeat this scheme with
three different random assignments and report the average results. Instead of completely random
grouping languages, we let each decoder handle the same number of languages but languages in
one decoder are randomly grouped.

One language family per decoder (FAM)

Another intuitive way for language assignment is to use linguistic features [26, 36, 106], such
as language family, typology, etc. In this method, we are guided by the intuition that languages
from the same linguistic family share similar features which might be captured by a single de-
coder resulting in better performance. Thus, we group languages into several sets based on their
linguistic families, and assign a family of languages to each decoder. As a result, we will have as
many decoders as the number of language families in the target languages. We expect that in the
same decoder, a better knowledge transfer will happen among languages in the same language
family. For example, in the TED8-Related corpus, 8 target languages are split into 4 languages
families which are TURKIC, SLAVIC, ROMANCE and CZECH–SLOVAK. The details are shown

83

Language Family Languages

TURKIC az, tr
SLAVIC be, ru

ROMANCE gl, pt
CZECH–SLOVAK sk, cs

Table 7.1: Language families in the TED8-Related corpus.

in Table 7.1. The language family-based assignment results on other corpora are shown in Ap-
pendix 7.7.

Pre-trained language embedding based assignment (EMB)

From Johnson et al. [68], a common way to indicate the target language is prepending a target
language token to the source sentence. With the goal of capturing the information of languages
they represent, their embeddings are trained end-to-end with source-target sentence pairs. We
call these embeddings as the language embeddings here. According to Johnson et al. [68], these
language embeddings are able to capture target language features. Therefore, we first extract
them from a well-trained model and group target languages according to them. Finally, each
group is assigned to one of these decoders.

Self-taught assignment (ST)

One disadvantage of the pre-trained language embedding based grouping method is the need
of a pre-trained machine translation model. It would be better if the model assigns each target
language to one of these multiple shallow decoders during the training automatically. We expect
that given a fixed number of decoders and target languages, the model is capable of choosing the
most appropriate decoders for each language.

Specifically, our model consists of a shared encoder, E, and N multiple decoders, D =

[D1, D2, ..., DN]. Given a language L, the model will choose a decoder,Di for training and trans-
lation so that the log probability of output sequence y given the input sequence x is log p(y|x,E,Di)

where i=arg maxj p(j|Le) and p(·|Le) is the probability of each decoder being chosen given the
language L and its language embedding vector Le. Intuitively, our model will learn the dis-
tribution of each decoder being chosen given a language and choose the one with the highest
probability. However, the arg max operation here is non-differentiable thus during training we
consider the Gumbel-Softmax [67], a differentiable approximation of the arg max operation.

In Gumbel-Softmax, it models the p(j|Le) as:

84

p(j|Le) =
exp(lj + gj)/τ∑N
k=1 exp(lk + gk)/τ

(7.1)

where l is the logit and g=− log(− log(u)) and u ∼ U(0, 1). In the forward pass, the differ-
entiable approximation of the arg max operation is used to choose the decoder for the input
language and during the backward, the true gradient of the Straight-Through Gumbel-Softmax
outputs is used. In our experiments, the temperature τ is linearly reduced from 5 to 0.5. Finally,
during training, the probability of the target sequence y given the source sentence x and multiple
decoders D is:

p(y|x) =
N∑
n=1

p(n|Le)pn(y|x) (7.2)

where pn(y|x) is the probability of y given x in the n-th decoder and p(n|Le) is the probability of
the n-th decoder being sampled given the embedding of the language L. During inference, only
the decoder with the highest probability will be used to decode the input sentences.

7.4 Experiments

Experimental setup

We conduct experiments on TED8-Related, TED8-Diverse and OPUS-100 multilingual machine
translation corpora. We mainly follow the data preprocessing settings in previous works [184,
199].

Hyperparameters On OPUS-100, we follow most of the standard hyperparameters in the
transformer-base [178]: 8 attention heads per layer, 512 model dimensions, 2048 hidden di-
mensions and 0.1 dropout. We train batches of 128k tokens using Adam [81] with β = (0.9, 0.98)
and ε = 10−6 and 0.1 label smoothing. Following [199], the learning rate goes to 4e−4 within
4,000 steps, and then decays with the inverse square-root schedule. All models are trained with
300,000 steps. Furthermore, to mitigate the training data imbalance issue, the temperature sam-
pling method is adopted [4] which is set as 5 in all experiments.

On TED8 corpora, following Wang et al. [184], a smaller transformer model with 512 model
dimensions, 1024 hidden dimensions and 0.3 dropout is adopted. All models are trained for 40k
steps with batches of 16k tokens and a smaller learning rate 2e−4. The other training procedure
is the same as the OPUS-100.

Evaluation metrics For all models, we evaluate on the checkpoint with the best validation
loss and use beam size 4 and length penalty 0.6 in decoding. Besides reporting the average

85

translation accuracy over all languages, on OPUS-100, we predefine high (≥ 1M) and low (<
1M) resource languages according to their training data sizes and average scores on each of them
are also computed. To assess the translation accuracy, we employ BLEU [133], BERTScore [201]
and COMET (wmt20-comet-da) [147] scores. Furthermore, we employ comet-compare to
compare various models to get statistical significance [88] when necessary. For the evaluation
speed, DS, it is measured by the number of tokens the system translates per second given one
sentence at a time on a single GPU.

ID Model
All Low High

TP DP Speed BLEU COMET BS BLEU COMET BS BLEU COMET BS

1 6-6 77 77 1.0× 23.2 0.186 83.1 25.7 0.265 84.6 21.1 0.117 81.8

2 11-1 72 72 2.2× 21.1 0.060 82.5 23.2 0.168 84.0 19.3 -0.033 81.1
3 11-1-EACH 489 72 2.2× 21.2 0.077 82.4 21.7 0.081 83.2 20.8 0.074 81.7
4 11-1-RAND 127 72 2.2× 21.4 0.116 82.5 23.5 0.190 84.1 19.6 0.052 81.2
5 11-1-FAM 127 72 2.2× 22.2 0.134 82.9 24.5 0.211 84.3 20.3 0.067 81.6
6 11-1-EMB 127 72 2.2× 22.0 0.127 82.8 24.2 0.202 84.4 19.8 0.062 81.4
7 11-1-ST 127 72 2.2× 21.8 0.128 82.5 24.0 0.205 84.2 19.9 0.061 81.0

8 10-2 73 73 1.8× 22.3 0.153 83.0 24.3 0.244 84.4 20.5 0.074 81.7
9 10-2-EACH 905 73 1.8× 22.9 0.151 82.6 22.3 0.084 83.4 23.5 0.208 81.9

10 10-2-RAND 183 73 1.8× 23.5 0.162 83.0 25.8 0.240 84.3 21.6 0.094 81.8
11 10-2-FAM 183 73 1.8× 24.8 0.234 83.4 27.0 0.277 84.8 22.9 0.197 82.3
12 10-2-EMB 183 73 1.8× 24.1 0.186 83.2 26.4 0.270 84.6 22.1 0.112 82.1
13 10-2-ST 183 73 1.8× 24.1 0.190 83.1 26.6 0.273 84.3 22.0 0.118 82.0

Table 7.2: Performance comparison over various models on OPUS-100. High and Low denote
high-resource language (>= 1 million training sentence pairs) and low-resource language (< 1
million training sample pairs). BS shows the BERTScore [201]. TP and DP indicate the number
of parameters loaded in the memory at training and decoding time. For all COMET, BLEU and
BERTScore, the higher the better.

Results

From Figure 7.1, we find that for O2M translation, models with 1- or 2-layer decoders have a
clear performance drop compared to the standard transformer (6-6). Therefore, our main exper-
iments adopt multiple shallow decoders with 1 and 2 decoder layers. Results on OPUS-100 and
TED8 corpora are shown in Table 7.2 and 7.3 respectively.

One language per decoder (EACH) With this assignment method, models obtain superior
performance on high resource languages but poor results on low resource languages. On OPUS-
100, if each language has its own decoder, we find that it achieves great results on high resource

86

Model
Related Diverse

#TP #DP DS BLEU COMET BS #TP #DP DS BLEU COMET BS

1 6-6 64 64 1.0× 16.7 -0.063 79.9 66 66 1.0× 18.0 -0.054 81.9

2 11-1 58 58 2.3× 14.6 -0.330 78.1 61 61 2.6× 15.6 -0.322 80.2
3 11-1-EACH 80 58 2.3× 14.8 -0.312 78.2 83 61 2.6× 16.3 -0.294 80.5
4 11-1-RAND 58 58 2.3× 14.7 -0.304 78.1 74 61 2.6× 15.9 -0.307 80.1
5 11-1-FAM 68 58 2.3× 15.2 -0.262 78.6 74 61 2.6× 16.5 -0.256 80.6
6 11-1-EMB 68 58 2.3× 15.2 -0.262 78.6 74 61 2.6× 16.2 -0.263 80.5
7 11-1-ST 65 58 2.3× 15.0 -0.276 78.3 74 61 2.6× 16.3 -0.272 80.5

8 10-2 59 59 1.9× 15.6 -0.229 78.9 62 62 1.9× 16.9 -0.207 81.0
9 10-2-EACH 104 59 1.9× 16.1 -0.174 79.2 106 62 1.9× 17.2 -0.157 81.1
10 10-2-RAND 78 59 1.9× 16.0 -0.186 79.1 87 62 1.9× 17.3 -0.144 81.6
11 10-2-FAM 78 59 1.9× 16.5 -0.109 79.7 87 62 1.9× 17.7 -0.120 81.5
12 10-2-EMB 78 59 1.9× 16.5 -0.109 79.7 87 62 1.9× 17.2 -0.138 81.5
13 10-2-ST 78 59 1.9× 16.4 -0.123 79.6 87 62 1.9× 17.4 -0.132 81.4

Table 7.3: Translation speed and accuracy trade-off on TED8-Related and TED8-Diverse cor-
pora. BS shows the BERTScore [201]. TP and DP indicate the number of parameters at training
and decoding time. For all COMET, BLEU and BERTScore, the higher the better.

languages

B
LE

U
 S

co
re

 D
iff

er
en

ce

-2

-1

0

1

2

az be gl sk cs pt ru tr

Figure 7.2: The BLEU score difference between models 10-2-EACH and 10-2 on TED8-Related
(BLEU10-2-EACH−BLEU10-2). (Left four languages are low-resourced and the right four are high-
resourced.)

languages (rows 2 vs. 3 and 8 vs. 9 in Table 7.2). We think that given enough training data, the
shallow decoder has enough ability to model one language. However, it performs worse on the
low resource languages compared with the baseline (rows 2 vs. 3 and 8 vs. 9 in Table 7.2). To

87

further understand this assignment method, we also show the BLEU score improvement of model
10-2-EACH over 10-2 on TED8-Related in Figure 7.2. The left three languages are relatively
low resourced and their performance is lower than the baseline model in which all languages
share one decoder1. This also demonstrates that their decoders are not able to learn robust rep-
resentations given a limited amount of training data. And decoders trained with high resource
languages generate higher quality translations and we attribute this to enough training data and
no negative transfer effect when trained without other languages [4].

languages

B
LE

U
 S

co
re

 D
iff

er
en

ce

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

az be gl sk cs pt ru tr

Figure 7.3: The BLEU score difference between models 10-2-FAM and 10-2-EACH on TED8-
Related (BLEU10-2-FAM − BLEU10-2-EACH). (Left four languages are low-resourced and the right
four are high-resourced.)

Random language set assignment (RAND) We find that the random language set assignment
method slightly improves the performance over the baseline due to the sub-optimal knowledge
transfer among languages in the same decoder. If each decoder handles a similar number of
languages, it also slightly improves the performance compared to the model with one shared
decoder (rows 2 vs. 4 and 8 vs. 10 in Tables 7.2 and 7.3). We attribute this to that the shallow
decoder performs better given fewer languages. This also demonstrates that one shallow decoder
does not have enough capacity to model a large number of languages. However, compared to

1Note that although sk is defined as a low resourced language in this dataset, the reason why language sk still
have slightly better result is that sk has 61.5k training data but the other three low resource languages (az, be, gl)
have less than 10k training sentence pairs.

88

language family and embedding assignment methods, the random language set method has lower
translation quality, showing that how to assign target languages into these decoders is also crucial.

One language family per decoder (FAM) We group all languages into several groups accord-
ing to their language families and assign each family to one shallow decoder. As a result, we have
14, 4 and 5 language families in OPUS-100, TED8-Related and TED8-Diverse corpora respec-
tively. From the comparison between rows 2 vs. 5 and 8 vs 11 in Tables 7.2 and 7.3. It is clear
to find that language family-based decoders achieve better accuracy and maintains low latency
at the same time. Furthermore, models with multiple 2-layer decoders on OPUS-100 achieve
better performance than the model 6-6 and obtain around a 1.8 times speedup at inference time.
We think the improvement is mainly coming from the better knowledge transfer among similar
languages (in one language family) and enough capacity for each decoder to handle a subset of
languages.

In order to understand this further, we plot the BLEU score difference between models 10-
2-EACH and 10-2-FAM on TED8-Related in Figure 7.3. We find that the major improvement
of model 10-2-FAM over 10-2-EACH is from the low resource languages which means the high
resource languages help their relevant low resource languages effectively.

Language embedding-based assignment (EMB) For a fair comparison, languages are also
grouped into the same number of language families according to language embeddings from
the well-trained baseline model 6-6. Grouping results are listed in the Appendix 7.7. We first
find that the language embedding-based grouping method is able to group similar languages
together, showing the ability of language embeddings to effectively capture language character-
istics during training. For example, on TED8-Related, the language embedding achieve the same
grouping result as the language family-based one shown in Table 7.1. The language embedding-
based assignment method achieves similar results compared to the language family-based one
and effectively improves the performance of the baseline model.

Self-taught language assignment (ST) In this method, the model tries to assign target lan-
guages to multiple decoders automatically and there is no need to have any prior knowledge
(linguistic families) or well-trained models (language embeddings). From the rows 7 vs. 2 and
13 vs. 8 in Tables 7.2 and 7.3, our self-taught method significantly better than the corresponding
baseline. It also achieves similar results compared with the language family (embedding)-based
language assignment methods, demonstrating the effectiveness of this method.

Statistic Significant Test Finally, we try to compare our DEMSD-FAM model with the stan-
dard transformer model (6-6). We employ comet-compare to get statistical significance with

89

Paired T-Test and bootstrap resampling [88]. On OPUS-100, our 10-2 DEMSD model with lan-
guage family assignment method manages to surpass the transformer model. However, on TED8
corpora, our DEMSD still underperforms the 6-6 model. We hypothesize that with more lan-
guages, the capacity issue of the shallow decoder is more severe so that the improvement of our
DEMSD model on OPUS-100 is more outstanding. In this next chapter, we will seek to close
this performance gap.

7.5 Analysis and Discussion

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5
Speed-up

14

15

16

17

18

19

B
LE

U

6-6
7-5 8-4

9-3

10-2

11-1BASE

EACH

FAM (EMB)

RAND

ST

(a) TED8-Related

0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7
Speed-up

17

18

19

20

21

22

B
LE

U

6-6
7-5 8-4

9-3

10-2

11-1
BASE

EACH

FAM

EMB

RAND

ST

(b) TED8-Diverse

Figure 7.4: Multiple decoders with various layer allocations of Transformer on TED8 datasets.
X-Y denotes X and Y layers in the encoder and decoder respectively. ’BASE’ denotes the shared
decoder model.

Multiple decoders for various layer allocations

In our main experiments, we use multiple very shallow decoders (i.e., 1 and 2-layer decoders)
because there is a clear performance drop when using a single decoder with this configuration for
one-to-many translation compared with the standard transformer (6-6), and compared to deeper
decoders, employing multiple 1- or 2-layer decoders keeps the number of parameters manageable
at training time. Nevertheless, it will be meaningful to explore the effect of multiple decoders on
various layer allocations. Considering the model size and tractable training time, we only conduct
experiments on TED8 corpora and the results are shown in Figure 7.4. On each line (the same
language assignment method), the deeper decoders achieve better performance and the shallower

90

decoder has lower latency. Moreover, if we compare language family-based assignment and
the baseline models, given the same decoding speed at inference time, the former consistently
improves the performance with the same decoding speed at inference time. And with similar
performance, e.g., 10-2-FAM and 6-6, our best multiple shallow decoder models have much
lower latency.

Speed-accuracy trade-off in multilingual machine translation

From the above experiments and findings, in the one-to-many translation, the DESD framework
obtains a superior speed-accuracy trade-off. For example, the model with 10 encoder layers and
2 decoder layers obtains better translation quality and a 1.8× speedup.

Under the one-to-many setting, multiple shallow decoders are needed to mitigate the perfor-
mance drop of the DESD model. And the crucial part is to group languages with similar features
to one decoder to obtain better knowledge transfer among languages (our FAM, EMB and ST
methods). With this, our DEMSD model with multiple 2-layer decoders is capable of achieving
similar performance and a 1.8× speedup compared to the standard transformer.

7.6 Summary

In this chapter, we study speed-accuracy trade-offs using various layer configurations for multi-
lingual neural machine translation. We find that for many-to-one translation, deep encoder and
shallow decoder (DESD) models improve decoding speed while maintaining translation qual-
ity with the same model capacity. However, for one-to-many translation we observe a drop in
quality when the decoder depth is reduced. To mitigate the performance drop of DESD models
in one-to-many translation, we propose using a shared encoder and multiple shallow decoders
(DEMSD). Our best DEMSD models with 2-layer decoders are capable of speeding up decoding
by 1.8 times while achieving the competitive quality compared to a standard transformer.

7.7 Appendix

Training details of DESD model

In order to explore how DESD models work on multilingual machine translation, we train
transformer-based models with various layer allocations on three multilingual machine transla-
tion corpora, OPUS-100, TED8-Related and TED8-Diverse. For a fair comparison, the training
process is the same across all models.

91

Language Family Languages

INDO-IRANIAN hi, hr
SLAVIC mk, bs, bg

KOREAN ko
HELLENIC el
ROMANCE fr

Table 7.4: Language families in the TED8-Diverse corpus.

On OPUS-100, we employ the standard transformer-base model: 8 attention heads per layer,
512 model dimensions, 2048 hidden dimensions and 0.1 dropout. All models are trained for
100,000 with batches of 64k tokens using Adam and 0.1 label smoothing. The learning rate goes
to 4e−4 within 4,000 steps,and then decays with the inverse square-root schedule.

On TED8 corpora, following [184], a smaller transformer model is adopted, i.e., 4 attention
heads per layer, 512 model dimensions, 1024 hidden dimensions and 0.3 dropout. All models are
trained for 40,000 with batches of 16k tokens using Adam and 0.1 label smoothing. The learning
rate goes to 2e−4 within 4,000 steps, and then decays with the inverse square-root schedule.

Language family assignment results

In Table 7.4, we show the language family-based assignment result on TED8-Diverse. Since this
corpus is collected without considering relatedness, some groups just have one language. But its
multiple decoders model improves the accuracy, showing the effectiveness of this method.

The language families in OPUS-100 is shown in Table 7.5.

Language embedding assignment results

On TED8-Related, we obtain the same language assignment results as the language family-
based one. On TED8-Diverse, the result of the language embedding assignment method is pretty
similar to the language family assignment result (Table 7.6. The only difference is that language
bg is grouped with language mk. We think this is because the language embedding not only
contains the linguistic feature but the data feature as well.

92

Language Family Languages

AFRO-ASIATIC am, ar, ha, he, mt
AUSTROASIATIC km, vi, ld, mg, ms

CELTIC br, cy, ga, gd
DRAVIDIAN kn, ml, ta, te
GERMANIC af, de, fy, is, li, nb, nl, nn, no, sv, yi

INDO-ARYAN as, bn, da, gu, hi, mr, ne, pa, si, ur
IRANIAN fa, ku, or, ps, tg

NIGER–CONGO ig, rw, xh, zu
OTHER el, eo, eu, ja, ka, ko, my, sq, th, zh

ROMANCE ca, es, fr, gl, it, oc, pt, ro, wa
SLAVIC mk, pl, ru, sh, sk, sl, sr, uk
TURKIC az, kk, ky, tk, tr, tt, ug, uz
URALIC et, fi, hu, se

Table 7.5: Language families in the OPUS-100 corpus.

Group Id Languages

0 hi, ko
1 mk, bg
2 ko, bs
3 el
4 fr

Table 7.6: Language embedding-based language assignment result on the TED8-Diverse corpus.

93

94

Chapter 8

Deep encoder, Shallow Decoder with
Language-level Mixture-of-Experts

In the previous chapter, we propose a deep encoder, multiple shallow decoders (DEMSD) archi-
tecture to mitigate the capacity bottleneck and successfully boost the performance of the vanilla
deep encoder, shallow decoder (DESD) model while maintaining its high decoding speed on the
one-to-many translation task. In this chapter, we investigate mixture-of-experts (MoEs), a suc-
cessful technique to scale transformer models, to increase the shallow decoder’s capacity. We
further explore routing strategies from various granularity to enjoy the benefit of sparsely acti-
vated sub-networks at inference time for memory efficiency. Experimental results show that our
best model surpasses the DEMSD model under the same capacity budget. An empirical study
is conducted to show that increasing the capacity of the feed-forward network layer is more
effective to improve the translation quality than other components in a shallow decoder block.
Furthermore, our best model achieves comparable or better translation accuracy compared to the
standard transformer model with a 1.8× speed-up at inference time.

8.1 Introduction

The deep encoder, shallow decoder (DESD) architecture successfully accelerates the decoding
process without sacrificing the superior performance compared to the standard transformer model
on bilingual and many-to-one translation tasks [73, 92]. However, in our previous chapter, we
find that although shallow decoder-based models have higher decoding speed, there is an ap-
parent performance drop compared to the standard transformer model since the shallow decoder
does not have enough capacity to model several different target languages adequately. With the
goal of obtaining low latency while maintaining translation quality, in Chapter 7, we propose
using a deep encoder, multiple shallow decoders (DEMSD) architecture where each decoder is

95

responsible for a subset of target languages. Several language assignment methods are explored
to assign each target language (or language group) to one of these multiple decoders. Our best
DEMSD model successfully boosts the performance of the vanilla DESD architecture. However,
our DEMSD model still underperforms the standard transformer model (on TED8-Related and
Diverse). Therefore, in this chapter, we aim to close this performance gap while maintaining
the latency advantage. Recently, sparse mixture-of-experts (MoEs) [40, 104, 157] has been a
successful technique for scaling transformers without a proportional increase in training compu-
tation. In this chapter, we study the effect of MoEs on the shallow decoder.

Different from previous works [40, 104, 157] which aim to increase the capacity of the whole
model (both encoder and decoder), we mainly focus on the decoder side because we already
have a deep encoder. Additionally, in the conventional MoEs, each token in the input sequence
chooses a (distinct) subset of experts independently so that the computational cost is just pro-
portional to the size of the selected experts. However, this routing strategy may harm inference
efficiency in terms of memory consumption. More specifically, since each token will be routed
to a subset of experts independently, a long sequence consisting of lots of tokens will expand a
wide range of experts. In practice, we have to load all experts into the memory during inference
which may surpass the memory limitations and become prohibitive for inference. Therefore, in
this chapter, we explore alternative routing methods which are trained to leverage information
from different granularity (language and language family) to direct all tokens in a language to the
same subset of experts. Consequently, during inference time, given a specific target language,
only a fixed subset of experts corresponding to this language is needed to load. Experimental
results on three multilingual translation benchmarks show the effectiveness of our methods to
improve translation accuracy over the DESD model and successfully close the performance gap
with the standard transformer model while maintaining the high decoding speed.

Furthermore, when comparing to DEMSD models, with the same capacity budget, MoEs-
based models perform better and we find that the major difference between them is that MoEs-
based models allocate more capacity to feed-forward network layers instead of all components
simultaneously. To understand this finding, we revisit the capacity bottleneck issue of the shal-
low decoder on the one-to-many translation task through an empirical analysis. Specifically, we
focus on three main components in a transformer decoder block (Figure 8.3), i.e., self-attention,
cross-attention (encoder-decoder attention) and feed-forward network. Through improving the
capacity of all possible combinations of these three components and comparing the translation
quality, we find that the feed-forward network layer is the key to mitigating the capacity bottle-
neck and merely increasing its capacity can largely boost the performance.

96

8.2 Background and Related Work

Mixture of Experts (MoEs)

MoEs is first proposed in Jacobs et al. [66] as an ensemble method of multiple individual models
and formulated as:

y =
N∑
i=1

g(x)ifi(x) (8.1)

where
∑N

i=1 g(x)i = 1. g(x)i indicates the probability of expert fi(x) and N is the number of
expert networks. g(·) is also called the gating network which produces a distribution over the N
experts based on the input and the final output y is the weighted sum of outputs from all experts.

Shazeer et al. [157] use MoEs as a basic component of the neural network so that it can
accept the output of the previous layer as input and output to the following layers, in an end-
to-end training style. When applying MoEs to transformer [40, 104], each expert is a two-
layer neural network with a ReLU activation function. Moreover, for each input example, the
model is able to select only k experts with top-k probability scores to save computations by
the gating network conditioned on the input. This can be regarded as a form of conditional
computation [12]. Therefore, the advantage of sparse MoEs is to increase model capacity without
a proportional increase in computational costs.

The gating network is vital in the routing process which is modeled by a softmax activation
function to indicate the weights of each expert in processing incoming tokens. However, it is
common to have a loading imbalance issue [104]: the majority of tokens will be guided to just
a small subset of experts. This would result in a capacity overflow for only a few experts and
under-utilization for the remaining ones, leading to a suboptimal solution. In Lepikhin et al.
[104], Shazeer et al. [157], they design an auxiliary loss to give a penalty on this issue. More
details and discussions could be found in Lepikhin et al. [104], Shazeer et al. [157].

Besides works mentioned above, recent work has implemented sparse routing via k-means
clustering [53], linear assignment to maximize token-expert affinities [107], tasking specific rout-
ing [96] or hashing [107].

In this chapter, we mainly employ MoEs to add the shallow decoder’s capacity and make use
of multilingual characteristics to explore various routing strategies.

97

8.3 Improving the Capacity of the Shallow Decoder via Mixture-
of-Experts

Sparsely-gated Mixture-of-Experts (MoEs)

Although MoEs has been applied to multilingual machine translation [104, 157], its goal is to
scale up the capacity of the feed-forward network layer in both the encoder and decoder and a
large number of experts, such as 2048, are used which will incur a huge number of parameters.
Different from them, in this chapter, we solely employ MoEs to improve the capacity of the FFN
layer in the shallow decoder. More importantly, as discussed above, the conventional routing
approach treats tokens in the input sequence independently, which may fail the memory require-
ment during inference. Therefore, in the chapter, we investigate several routing strategies from
different granularity (token, language, language-family), which are described below.

Token-level MoEs (T-MoEs): It is the default routing strategy for MoEs in which input tokens
will go through the gating network independently and choose (various) subsets of experts. From
the practical standpoint, the model becomes prohibitive large at decoding time because we need
to load all experts into the memory which may be beyond the memory requirement. To enjoy the
benefit of sparsely activated sub-networks at inference time, i.e., extracting out a sub-network to
decode for a particular target language, two routing strategies are discussed below.

Language-level MoEs (L-MoEs): Given an input sequence belonging to a target language l,
the input to the gating network g(·) is the embedding of the language l and the gating network
dispatches this language to a subset of experts, hence, all tokens in the same language will be
routed to the same subset of experts. As a result, during decoding time, given a specific target
language, the model only needs to pre-load experts which are selected by this language to avoid
large memory consumption. However, we find that this strategy suffers from the loading imbal-
ance issue which makes the full capacity underutilized. To mitigate it, we introduce a constraint
on the routing function which is described below.

Language-level MoEs with Linguistic Family Constraint (LF-MoEs): In this routing strat-
egy, we first group target languages into several clusters according to their linguistic families,
then all experts are split into several subsets evenly, the size of which equals the number of lan-
guage family groups. Each language can only select experts which are assigned to its language
family.

This constraint can be regarded as a predefined loading balance rule. With this constraint,
the number of experts which can be selected by a given language is smaller than other routing

98

strategies. If top-k weight experts will be chosen for a given input, the extreme case is that there
are only k experts in each group and we consider it as a deterministic MoEs routing strategy
since there is no need to select a sparse combination of experts.

(a) Token-level MoEs

(b) Language-level MoEs

(c) Language-level MoEs with the Linguistic Family Constraint

Figure 8.1: MoEs with various routing strategies. Each expert is a feed-forward network block
in transformer.

We illustrate their differences in Figure 8.1. Figure 8.1a shows the token-level MoEs. Each
token will choose top-k (k=2 in the case) experts independently. As a result, the gating result
for the input sequence may span a wide range of experts. On the contrary, language-level MoEs
(Figure 8.1b) route all tokens in the input sequence to the same subset of experts according to the
language information. Figure 8.1c refers to the language-level MoEs with the linguistic family

99

constraint. For a target language, it can only choose experts belonging to its linguistic family. In
this example, the target language is English which is a Germanic language. As a result, it can
only choose top-k Germanic experts.

8.4 Experiments

Experiment Settings

Same as the previous chapter, we also conduct experiments on three multilingual translation
benchmarks mentioned above, i.e., TED8-Related, TED8-Diverse and OPUS-100. In MoEs
models, the feed-forward network (FFN) layer in the shallow decoder is replaced with multiple
parallel FFN experts. For a fair comparison to DEMSD, in our main experiments, 12, 15 and 28
experts are employed for MoEs models on TED8-Related, TED8-Diverse and OPUS-100 corpora
respectively to make the model capacity (number of parameters) the same as DEMSD models.
Following previous works [104, 157], the gating network chooses top-2 weight experts for each
token or language so only 2 experts are needed during inference time for a given target language.
For our language-level MoEs with the linguistic family constraint model, there are 3 and 2 experts
in each language family group on TED8-Corpora and OPUS-100 datasets respectively. Here we
show the language family group of the TED8-Related dataset in Table 8.1 and the language
family information of other datasets can be found in Chapter 71.

Language Family Languages

TURKIC az, tr
SLAVIC be, ru

ROMANCE gl, pt
CZECH–SLOVAK sk, cs

Table 8.1: Language families in the TED8-Related corpus.

On OPUS-100, we follow most of the standard hyperparameters in the transformer-base [178]:
8 attention heads per layer, 512 model dimensions, 2048 hidden dimensions and 0.1 dropout. We
train batches of 128k tokens using Adam [81] with β = (0.9, 0.98) and ε = 10−6 and 0.1 label
smoothing. Following [199], the learning rate goes to 4e−4 within 4,000 steps, and then decays
with the inverse square-root schedule. All models are trained for 300,000 steps. Furthermore,
to mitigate the training data imbalance issue, the temperature sampling method is adopted [4]

1There are 4, 5, 14 language families in TED8-Related, TED8-Diverse and OPUS-100 corpora respectively.

100

which is set as 5 in all experiments. On TED8 corpora, a smaller transformer model with 512
model dimensions, 1024 hidden dimensions and 0.3 dropout is adopted. All models are trained
for 40k steps with batches of 16k tokens with a smaller learning rate 2e−4. The other training
procedure is the same as the OPUS-100.

For deep encoder, shallow decoder models, we apply the proposed methods to shallow de-
coders with 1 and 2-layers. During decoding, we use beam search with beam size 4 and length
penalty 0.6. We employ BLEU [133], BERTScore [201] and COMET (wmt20-comet-da) [147]
to assess the translation quality. Furthermore, we employ comet-compare to compare vari-
ous models to get statistical significance [88] when necessary. For the evaluation speed, DS, it is
measured by the number of tokens the system translates per second given one sentence at a time
on a single GPU.

For token- and language-level MoEs, an auxiliary loss mentioned in Shazeer et al. [157] is
employed to mitigate the loading imbalance issue. For language-level MoEs with the linguistic
family constraint, we regard this constraint as a predefined loading rule so we do not apply any
auxiliary loss.

ID Model
TED8-Related TED8-Diverse

TP DP Speed BLEU COMET BS TP DP Speed BLEU COMET BS

1 6-6 64 64 1.0× 16.7 -0.063 79.9 68 68 1.0× 18.0 -0.054 81.9

2 DEMSD (11-1) 68 58 2.3× 15.2 -0.262 78.6 74 61 2.6× 16.5 -0.256 80.6
3 DESD (11-1) 58 58 2.3× 14.6 -0.330 78.1 61 61 2.6× 15.6 -0.322 80.2
4 + T-MoEs 66 66 2.1× 15.6 -0.248 78.8 74 74 2.3× 16.7 -0.198 80.9
5 + L-MoEs 68 59 2.3× 15.2 -0.226 78.9 74 62 2.6× 16.3 -0.259 80.7
6 + LF-MoEs 68 59 2.3× 15.9 -0.239 78.1 74 62 2.6× 17.3 -0.177 81.2

7 DEMSD (10-2) 78 59 1.9× 16.5 -0.109 79.7 87 62 1.9× 17.7 -0.120 81.5
8 DESD (10-2) 59 59 1.9× 15.6 -0.229 78.9 62 62 1.9× 16.9 -0.207 81.0
9 + T-MoEs 78 78 1.8× 16.8 -0.087 79.5 87 87 1.8× 17.6 -0.122 81.4

10 + L-MoEs 78 61 1.9× 16.2 -0.138 79.4 87 64 1.9× 17.4 -0.128 81.2
11 + LF-MoEs 78 61 1.9× 17.3 -0.064 79.7 87 64 1.9× 18.1 -0.060 81.9

Table 8.2: Performance comparison over various models on TED8-Related and TED8-Diverse
datasets. BS (BERTScore), TP (# Training Parameters), DP (# Decoding Parameters) show the
BERTScore scores and number of parameters loaded in the memory during training and inference
time respectively. For all COMET, BLEU and BERTScore, the higher the better.

Experiment Results

Our main results are shown in Table 8.2 and 8.3.

101

ID Model
All Low High

TP DP Speed BLEU COMET BS BLEU COMET BS BLEU COMET BS

1 Trans. Base 77 77 1.0× 23.2 0.186 83.1 25.7 0.265 84.6 21.1 0.117 81.8

2 DEMSD (11-1) 127 72 2.2× 22.6 0.134 82.9 24.9 0.211 84.3 20.7 0.067 81.6
3 DESD (11-1) 72 72 2.2× 21.1 0.060 82.5 23.2 0.168 84.0 19.3 -0.033 81.1
4 + T-MoEs 127 127 2.0× 23.0 0.128 82.8 25.4 0.212 84.3 20.8 0.055 81.6
5 + L-MoEs 127 74 2.2× 22.4 0.114 82.8 24.6 0.195 84.2 20.6 0.044 81.5
6 + LF-MoEs 127 74 2.2× 23.3 0.146 83.0 25.7 0.229 84.4 21.2 0.075 81.7

7 DEMSD (10-2) 183 73 1.8× 24.8 0.234 83.4 27.0 0.277 84.8 22.9 0.197 82.3
8 DESD (10-2) 73 73 1.8× 22.3 0.153 83.0 24.3 0.244 84.4 20.5 0.074 81.7
9 + T-MoEs 183 183 1.7× 24.9 0.240 83.4 27.3 0.296 84.8 22.9 0.192 82.2

10 + L-MoEs 183 77 1.8× 24.5 0.228 83.4 26.8 0.281 84.8 22.5 0.182 82.3
11 + LF-MoEs 183 77 1.8× 25.5 0.252 83.6 27.8 0.302 85.0 23.5 0.209 82.4

Table 8.3: Performance comparison over various models on OPUS-100. High and Low denote
high-resource language (>= 1 million training sentence pairs) and low-resource language (< 1
million training sample pairs). For all COMET, BLEU and BERTScore, the higher the better.

In terms of translation quality Compared to the vanilla deep encoder, shallow decoder (DESD)
model, our MoEs-based models from all granularity (token, language, language family) achieve
consistent gains across all datasets. Among various routing strategies, we see that the language-
level MoEs with the linguistic family constraint (LF-MoEs) achieve the best performance. We
attribute it to the maximum positive knowledge transfer by grouping languages belonging to the
same language family together with the predefined loading balancing rule. This observation is
consistent with findings in Chapter 7. Our Language-level MoEs (L-MoEs) suffers from the load-
ing imbalance issue even with an auxiliary loading balance loss. For instance, on TED8-Related
dataset, 4 out of 12 experts are not selected by any language. Therefore, the capacity is under-
utilized and improvement over the baseline is smaller. Compared to the DEMSD model, our LF-
MoEs model is significantly better through statistical significance testings (comet-compare).
Furthermore, in contrast to the transformer base model (row 1), no significant difference has been
found for our best model (10-2 + LF MoEs) on TED8 corpora and our (10-2 + LF MoEs) model
is significantly better on OPUS-100 benchmark.

In terms of translation speed Shallow decoder-based models have a clear advantage over
the transformer-base model. Specifically, 1- and 2-layers decodes are able to achieve 1.8× and
2.2× speedups respectively. For token-level MoEs, it has a slightly lower speed compared to
language-level MoEs models since much more experts are involved in the computation process.

In terms of model size efficiency at inference time For language-level MoEs (with the lin-
guistic family constraint), given a specific target language, during the inference process, it only

102

needs to pre-load top-2 weight experts so only a small number of extra parameters are introduced.
For example, compared to the DESD model, language-level MoEs models introduce 3%∼5% ex-
tra parameters. However, token-level MoEs incurs more than 80% parameters at inference time.

0 1 2 3 4 5 6 7 8 9
Experts in Each Group

0.2

0.1

0.0

0.1

0.2

0.3

CO
M

ET
 S

co
re

TED8-Related
TED8-Diverse
OPUS-100

Figure 8.2: Translation quality of models with various number of experts in each language family
group. ’0’ denotes no MoEs and all languages share the same feed-forward network.

Number of Experts in Each Language Family Group

In our main experiments, the number of experts is set for the purpose of a fair comparison to
the DEMSD model. Here, we explore models with different numbers of experts on those three
benchmarks for our 10-2 LF-MoEs model. The translation quality in COMET with respect to the
number of experts in each language family group is shown in Figure 8.2. We find that with more
experts, the better translation quality will be obtained but the improvement becomes smaller.

8.5 Revisit Capacity Bottleneck of the Shallow Decoder

In our main experiments, we find that our LF-MoEs-based models outperform DEMSD models
under the same capacity budget. The major difference between these two models is that MoEs
models mainly allocate the capacity to the FFN layer but DEMSD tries to add capacity to all
components in the decoder simultaneously. To understand this difference, in this section, we
revisit the capacity bottleneck issue. Specifically, we first review the basic structure of the trans-
former decoder block and identify three key modules in it. Then we conduct an empirical study
to analyze the capacity bottleneck of the shallow decoder.

103

Transformer Decoder Block

The transformer decoder consists of a stack of identical blocks and one block is shown in Fig-
ure 8.3. We can see that there are typically three stages in a standard transformer decoder block:
self-attention, cross attention (encoder-decoder attention) and feed-forward network (FFN). All
of these modules are followed by layer normalization [5] and a residual connection [62]. Given
an input sequence, the standard self attention allows each position in the decoder to attend to all
positions in the decoder up to and including that position. To preserve the autoregressive property
of the language modelling, the attention matrix is causally masked to prevent future information
leak to the past. The next component is cross attention, a.k.a. encoder-decoder attention. This
allows every position in the decoder to attend over all positions in the source sequence to ob-
tain the alignment between the target and source sequences. The last stage is a position-wise
feed-forward network (FFN), which consists of two linear transformations with a default ReLU
activation function in between. This FFN module applies to each position separately and identi-
cally.

Figure 8.3: Transformer decoder block.

104

Capacity Bottleneck Breakdown

In our proposed multiple shallow decoders-based models, DEMSD (Chapter 7), we have multiple
parallel decoders and each target language will be routed to a specific decoder according to
various assignment methods. In another word, DEMSD can also be regarded as a giant decoder,
in which there are multiple independent sub-networks (decoders) (Figure 8.4b) and the capacity
of all components in the decoder is improved at the same time.

(a) No Capacity Increase (standard) (b) All Capacity Increase (DEMSD)

(c) SA Capacity Increase (d) CA Capacity Increase (e) FFN Capacity Increase

(f) SA+CA Capacity Increase (g) SA+FFN Capacity Increase (h) CA+FFN Capacity Increase

Figure 8.4: Increasing the capacity of various combinations of components in a transformer
decoder block. Layer normalization and the residual connection are ignored for simplicity. SA,
CA and FFN denote the self-attention, cross attention and feed-forward networks respectively.

Here we conduct an ablation study to understand the capacity bottleneck of the shallow de-
coder and which stage in the decoder needs to have a large capacity. Specifically, we focus on
the breakdown of the decoder block and explore the capacity bottleneck implications at the com-
ponent level via increasing the capacity of different subsets of these components. For example,
in Figure 8.4d, we only increase the capacity of the cross attention parts through employing mul-
tiple parallel cross attention modules. Each target language will be assigned to one of them. In
this case, all target languages will share the same self attention and feed-forward network. All
configurations are shown in Figure 8.4. Experiments are conducted on three datasets mentioned
above which are OPUS-100, TED8-Related and TED8-Diverse.

105

Following Chapter 7, 11-1 (11-layer encoder and (multiple) 1-layer decoder(s)) and 10-2 ar-
chitectures are explored. We employ the linguistic family-based assignment methods. The same
model configuration and training details mentioned above are employed. Average BLEU [133],
COMET (wmt20-comet-da) [147] and BERTScore [201] over all language directions are com-
puted to assess the translation quality.

ID Model
11-1-FAM 10-2-FAM

BLEU COMET BS BLEU COMET BS

1 No 14.6 -0.329 78.1 15.6 -0.229 78.9
2 All 15.2 -0.262 78.6 16.5 -0.109 79.7

3 SA 14.5 -0.340 78.0 15.6 -0.220 78.9
4 CA 14.8 -0.280 78.5 16.1 -0.137 79.5
5 FFN 15.1 -0.263 78.6 16.2 -0.119 79.5

6 SA + CA 14.7 -0.291 78.3 15.9 -0.148 79.4
7 SA + FFN 14.9 -0.276 78.4 16.4 -0.110 79.6
8 CA + FFN 15.2 -0.261 78.6 16.4 -0.107 79.5

Table 8.4: Comparison between models with various capacity increase methods on TED8-
Related. BS denotes BERTScore. For all COMET, BLEU and BERTScore, the higher the better.

ID Model
11-1-FAM 10-2-FAM

BLEU COMET BS BLEU COMET BS

1 No 15.6 -0.322 80.2 16.9 -0.207 81.0
2 All 16.5 -0.256 80.2 17.7 -0.120 81.5

3 SA 15.3 -0.347 80.0 15.6 -0.219 80.4
4 CA 15.9 -0.290 80.4 17.3 -0.147 81.4
5 FFN 16.3 -0.251 80.7 17.3 -0.134 81.3

6 SA + CA 15.7 -0.302 80.2 17.3 -0.161 81.3
7 SA + FFN 16.0 -0.274 80.5 17.5 -0.128 81.6
8 CA + FFN 16.5 -0.248 80.7 17.6 -0.125 81.5

Table 8.5: Comparison between models with various capacity increase methods on TED8-
Diverse. BS denotes BERTScore. For all COMET, BLEU and BERTScore, the higher the better.

Results on TED8 corpora are shown in Tables 8.4 and 8.5 (OPUS-100 results are shown in
the Appendix). The vanilla shallow decoder without any capacity increase (NO) performs much

106

worse than DEMSD model (ALL) which increases the capacity of all modules (row 1 vs. 2).
When we increase the capacity of only one module (rows 3, 4, 5), through statistic significance
tests (comet-compare), models with a large capacity feed-forward network (row 5) perform
significantly better than adding the capacity to SA or CA. Furthermore, when we increase the
capacity of two modules (rows 6, 7, 8), there is a clear performance difference between models
with and without capacity-enhanced feed-forward networks (row 6 vs. 7, 8). Similar observations
are made on the OPUS-100 dataset. Therefore, from this empirical study, we see that having a
large capacity feed-forward network is key to mitigating the capacity bottleneck issue. Therefore,
MoEs which allocates capacity to FFN layers can achieve great performance.

8.6 Summary

In this chapter, we investigate mixture-of-experts to increase the capacity of the shallow decoder
while maintaining its high decoding speed. After exploring routing strategies from various gran-
ularity (token, language and language family), we empirically show that language-level MoEs
with the linguistic family constraint models outperforms DEMSD on three multilingual neural
machine translation benchmarks. Furthermore, we conduct an empirical study to revisit the ca-
pacity bottleneck issue of the shallow decoder and find out that adding more capacity to the FFN
layer of the shallow decoder is key to boosting the translation quality. Finally, in contrast to the
standard transformer model, our best model can successfully close the performance gap while
achieving 1.8× speed up on average at the same time.

8.7 Appendix

Capacity Bottleneck Results on OPUS-100 Corpora

We show capacity bottleneck experiment results on TED8-Related and -Diverse datasets. Com-
pared to OPUS-100 results, similar observations are found. Capacity-enhanced FFN models
effectively improve the performance of DESD models.

107

ID Model
11-1-FAM 10-2-FAM

BLEU COMET BS BLEU COMET BS

1 No 21.1 0.060 82.5 22.3 0.153 83.0
2 All 22.6 0.134 82.9 24.8 0.234 83.4

3 SA 21.6 0.069 82.5 23.2 0.166 83.0
4 CA 21.2 0.062 82.4 23.0 0.181 83.1
5 FFN 22.7 0.123 82.8 24.4 0.224 83.4

6 SA + CA 21.7 0.077 82.5 23.3 0.185 83.2
7 SA + FFN 23.0 0.123 82.8 24.7 0.230 83.4
8 CA + FFN 22.4 0.114 82.8 24.6 0.228 83.4

Table 8.6: Comparison between models with various capacity increase methods on OPUS-100.
BS denotes BERTScore. For all COMET, BLEU and BERTScore, the higher the better.

108

Chapter 9

Conclusion and Future Directions

This thesis tries to improve the decoding efficiency of neural machine translation (NMT) from
three perspectives, optimizing the complexity of modules in NMT, improving decoding paral-
lelizability and allocating the capacity of multilingual neural machine translation models.

Our contributions are summarized as follows:

• We aim to optimize the vocabulary representation to reduce the parameter size and com-
putation complexity of the embedding and softmax layers. Two word encoding mecha-
nisms are investigated and we find that Byte Pair Encoding achieves the best efficiency-
performance trade-off due to its strong ability to handle rare and out-of-vocabulary words.
Therefore, we suggest readers build NMT systems with subword-based vocabulary.

• We develop Luna, a simple, efficient and effective linear attention mechanism used as a
drop-in substitute for the standard attention mechanism. By introducing an extra input
with a fixed length, Luna is capable of capturing adequate contextual information while
reducing the computational complexity of attention operations from quadratic to linear.
Experimental results indicate the advantage of Luna in translating long sentences in terms
of memory consumption and latency. We find that Luna is capable of achieving superior
performance on various natural language and vision understanding tasks such as sentiment
analysis, natural language inference, image classification, etc. On language generation
tasks such as machine translation, the efficiency advantage of Luna become clear on long
sequences. Therefore, we encourage readers to apply Luna to other NLP and vision tasks
such as document-level translation and image generation.

• We design a local autoregressive translation (LAT) mechanism to enhance the decoding
parallelizability. For each target decoding position, instead of only one token, we predict
a short sequence of tokens in an autoregressive way and these short sequences at all trans-
lation positions are generated in parallel. Moreover, a simple but effective merging algo-

109

rithm is designed to merge these pieces into the final translation. This semi-autoregressive
decoding mechanism improves the decoding parallelism and retains the high translation
quality. This algorithm is easy to implement but it is worthwhile to tune the number of
local translation steps to achieve the best accuracy and speed trade-off on specific datasets
with certain efficiency requirements.

• We make the effort to close the gap between autoregressive translation (AT) models and
fully non-autoregressive translation (NAT) models which generate sentences with just one
single forward pass of neural networks. We first inspect the fundamental issue of fully
NAT models, then adopt several various target dependency reduction techniques to build
competitive fully NAT models which obtain new state-of-the-art results over other fully
NAT models. Moreover, in contrast with AT systems, our proposed system obtains com-
parable performance and approximately 16.5× speed-up at inference time. This model
has the highest decoding speed with full parallelism among all models in this thesis while
achieving competitive translation accuracy. We encourage researchers to try our models
in different scenarios such as summarization and document-level translation. One concern
is that if the sequence is very long such as documents, the dependency is more difficult
to capture than sentence-level translation. At this time, the CTC beam-search (+ language
model) is worth a try.

• We analyze the speed-accuracy trade-off of multilingual neural machine translation tasks
through model capacity allocations, i.e., the deep encoder, shallow decoder (DESD) archi-
tecture. We find that for many-to-one translation we can indeed increase decoding speed
without sacrificing quality using the DESD architecture, but for one-to-many translation,
this structure causes a clear quality drop. To ameliorate this drop and retain high decoding
speed, we propose a scheme of a deep encoder with multiple shallow decoders (DEMSD)
where each shallow decoder is responsible for a disjoint subset of target languages. Exper-
imental results show that our best DEMSD models achieve comparable translation accu-
racy and higher decoding speed. This method is intuitive and easy to implement and train.
However, we can have a better trade-off with Mixture-of-Experts (MoEs).

• We investigate Mixture-of-Experts (MoEs) which can successfully increase the model ca-
pacity without a proportional increase in training computation. To meet the memory re-
quirement at inference time, we introduce a language-level MoEs with the linguistic family
constraint and successfully boost the performance of DESD on the one-to-many transla-
tion task while maintaining its high decoding speed. Furthermore, we revisit the capacity
bottleneck of the shallow decoder and argue that the feed-forward network layer is key to
mitigating this issue through an empirical study. We solely apply our proposed language-
level MoEs to shallow decoders and show a superior performance and accuracy trade-off.

110

We argue that our method can generalize to multilingual tasks such as pre-training lan-
guage models for language understanding and generation for the purpose of increasing
capacity (better performance) and retaining the parameter efficiency at decoding time at
the same time.

Experiments conducted in this thesis are based on the current hardware configuration such
as CPU and GPU. In the future, there will be accelerators with larger memory and higher paral-
lelism. Conclusions made in this thesis such as speed-ups may be different on them. However,
we argue that the advantage of some proposed methods especially the non-autoregressive ma-
chine translation will become more distinct on more powerful hardware.

As deep-learning models are increasingly popular being parts of many real-world applica-
tions, it is important for these models to meet efficiency requirements of applications with strict
latency requirements and limited memory resources. To achieve this goal, there are still open
research questions which are worth further investigation along this line.

• First, efficiency matters especially in this era of larger models. Multilingual Language
Models (MLLMs) such as mBERT [33], XLM-R [99] have emerged as a viable option
for bringing the power of pretraining to a large number of languages. Several works try
to apply pretrained MLLMs to machine translation tasks and find out surprisingly great
performance, showing the strong ability of MLLMs to learn interlingual patterns to some
extent. However, MLLMs refers to some largest models and running inference on these
models is difficult. Several standard efficiency-related techniques such as pruning, knowl-
edge distillation, factorization and quantization have been successfully applied to mono-
lingual pretrained models without loss of accuracy on downstreaming tasks. We should
call for more works to explore the trade-off between efficiency and accuracy of MLLMs.
For instance, our language-level mixture of experts can be theoretically applied to many
multilingual tasks to enhance both the training and decoding efficiency.

• Second, it is meaningful to extend proposed techniques to other tasks. In this thesis, we
mainly apply proposed methods to machine translation tasks. However, we argue that
these techniques can also be extended to other NLP and modality tasks such as automatic
summarization, story generation, image and video generation. Recently, transformer has
been applied to the image generation scenario and showed its strong ability to generate
high-fidelity images such as ImageGPT [17] and DALL·E [145]. However, the generation
process is inefficient due to its autoregressive property and a large number of pixels in
images (very long sequences). Techniques mentioned in Part II can be worth a try and they
will become more valuable on video generation which has much more generation steps.

• Third, decoding-efficient neural machine translation should embrace Simultaneous Neural
Machine Translation. Simultaneous Neural Machine Translation is an essential application

111

for real-time understanding of conversations and lectures [43, 195]. This task requires that
users receive translated sentences in an expeditious manner [121]. Several models have
been built to solve this problem, which are mostly in the context of phrase-based machine
translation. These methods receive the input incrementally, then decide when to send it
to a MT system to translate the current segment independently [129], or with a minimal
amount of language model context [9]. It is great to build Simultaneous Neural Machine
Translation to achieve better the trade-off between translation accuracy and time delay.

112

Bibliography

[1] Roee Aharoni, Melvin Johnson, and Orhan Firat. Massively multilingual neural machine
translation. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, 2019. 2.1

[2] Ravindra K Ahuja, Thomas L Magnanti, James B Orlin, et al. Network flows: theory,
algorithms, and applications, volume 1. Prentice hall Englewood Cliffs, NJ, 1993. 3.3

[3] Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary Fisher, Philip
Pham, Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang. Etc: Encoding long and
structured inputs in transformers. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 268–284, 2020. 4.5

[4] Naveen Arivazhagan, Ankur Bapna, Orhan Firat, Dmitry Lepikhin, Melvin Johnson,
Maxim Krikun, Mia Xu Chen, Yuan Cao, George Foster, Colin Cherry, et al. Mas-
sively multilingual neural machine translation in the wild: Findings and challenges. arXiv
preprint arXiv:1907.05019, 2019. 2.1, 7.1, 7.4, 7.4, 8.4

[5] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016. 4.2, 8.5

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. 3.1, 5.1,
6.2, 7.1

[7] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. January 2015. 3rd International Conference
on Learning Representations, ICLR 2015 ; Conference date: 07-05-2015 Through 09-05-
2015. 1, 2.1, 2.1

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In International Conference on Learning Represen-
tations (ICLR), 2015. 4.1

[9] Srinivas Bangalore, Vivek Kumar Rangarajan Sridhar, Prakash Kolan, Ladan Golipour,

113

and Aura Jimenez. Real-time incremental speech-to-speech translation of dialogs. In
Proceedings of the 2012 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 437–445. Association
for Computational Linguistics, 2012. 9

[10] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document trans-
former. arXiv preprint arXiv:2004.05150, 2020. 4.1

[11] Yoshua Bengio, Rejean Ducharme, and Pascal Vincent. A neural probabilistic language
model. Journal of Machine Learning Research, 3:1137–1155, 2003. 2.1

[12] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagat-
ing gradients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 8.2

[13] Peter F Brown, Vincent J Della Pietra, Stephen A Della Pietra, and Robert L Mercer.
The mathematics of statistical machine translation: Parameter estimation. Computational
linguistics, 19(2):263–311, 1993. 1

[14] Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico.
Report on the 11th iwslt evaluation campaign. In Proc. of IWSLT, 2014. 3.5

[15] William Chan, Nikita Kitaev, Kelvin Guu, Mitchell Stern, and Jakob Uszkoreit. Kermit:
Generative insertion-based modeling for sequences. arXiv preprint arXiv:1906.01604,
2019. 2.4, ??

[16] William Chan, Chitwan Saharia, Geoffrey Hinton, Mohammad Norouzi, and Navdeep
Jaitly. Imputer: Sequence modelling via imputation and dynamic programming. In Inter-
national Conference on Machine Learning, pages 1403–1413. PMLR, 2020. 2.4

[17] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya
Sutskever. Generative pretraining from pixels. In International Conference on Machine
Learning, pages 1691–1703. PMLR, 2020. 9

[18] Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schul-
man, Ilya Sutskever, and Pieter Abbeel. Variational lossy autoencoder. arXiv preprint
arXiv:1611.02731, 2016. 6.6

[19] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation
server. arXiv preprint arXiv:1504.00325, 2015. 3.5

[20] Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi Zhao. Quora question pairs. Univer-
sity of Waterloo, 2018. 4.4

[21] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences

114

with sparse transformers. arXiv preprint arXiv:1904.10509, 2019. 4.1

[22] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder–decoder for statistical machine translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–
1734, 2014. 1, 5.1, 7.1

[23] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. In EMNLP 2014, 2014. 2.1, 2.1

[24] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. arXiv preprint arXiv:2009.14794, 2020. 4.1, 4.3,
4.5

[25] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). In International Conference on Learn-
ing Representations (ICLR), 2016. 4.3, 4.4

[26] Bernard Comrie. Language universals and linguistic typology: Syntax and morphology.
University of Chicago press, 1989. 7.3

[27] Zihang Dai, Qizhe Xie, and Eduard Hovy. From credit assignment to entropy reg-
ularization: Two new algorithms for neural sequence prediction. arXiv preprint
arXiv:1804.10974, 2018. 3.5, 3.5

[28] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length con-
text. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, 2019. 4.5

[29] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser.
Universal transformers. arXiv preprint arXiv:1807.03819, 2018. 4.5

[30] Yuntian Deng and Alexander Rush. Cascaded text generation with markov transformers.
Advances in Neural Information Processing Systems, 33:170–181, 2020. 2.4, 18

[31] Yuntian Deng and Alexander Rush. Sequence-to-lattice models for fast translation.
In Findings of the Association for Computational Linguistics: EMNLP 2021, pages
3765–3772, Punta Cana, Dominican Republic, November 2021. Association for Com-
putational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.318. URL https://

aclanthology.org/2021.findings-emnlp.318. 2.4

115

https://aclanthology.org/2021.findings-emnlp.318
https://aclanthology.org/2021.findings-emnlp.318

[32] Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation
evaluation for any target language. In Proceedings of the ninth workshop on statistical
machine translation, pages 376–380, 2014. (document), 3.5, 4.4, 5.3, 6.3, 6.4, 6.4

[33] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, 2019. 2.1, 2.4, 4.1, 4.2, 4.4, ??, 5.1, 5.2, 5.2, 5.2, 9

[34] Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. Multi-task learning for
multiple language translation. In Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers), pages 1723–1732, Beijing, China,
July 2015. Association for Computational Linguistics. doi: 10.3115/v1/P15-1166. URL
https://www.aclweb.org/anthology/P15-1166. 7.1

[35] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020. 4.1

[36] Matthew S. Dryer and Martin Haspelmath, editors. WALS Online. Max Planck Institute
for Evolutionary Anthropology, Leipzig, 2013. URL https://wals.info/. 7.3

[37] David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representa-
tions in a deep mixture of experts. arXiv preprint arXiv:1312.4314, 2013. 3.4

[38] Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand
with structured dropout. In International Conference on Learning Representations, 2019.
2.4

[39] Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Remi Gribonval, Herve
Jegou, and Armand Joulin. Training with quantization noise for extreme fixed-point com-
pression. arXiv preprint arXiv:2004.07320, 2020. 4.5

[40] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961.
8.1, 8.2

[41] Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. Multi-way, multilingual neural ma-
chine translation with a shared attention mechanism. In NAACL, 2016. 7.1

[42] Mikel L Forcada, Mireia Ginestí-Rosell, Jacob Nordfalk, Jim O’Regan, Sergio Ortiz-

116

https://www.aclweb.org/anthology/P15-1166
https://wals.info/

Rojas, Juan Antonio Pérez-Ortiz, Felipe Sánchez-Martínez, Gema Ramírez-Sánchez, and
Francis M Tyers. Apertium: a free/open-source platform for rule-based machine transla-
tion. Machine translation, 25(2):127–144, 2011. 1

[43] Christian Fügen, Alex Waibel, and Muntsin Kolss. Simultaneous translation of lectures
and speeches. Machine Translation, 21(4):209–252, 2007. 9

[44] Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–38,
1994. 2.2, 3.1, 3.3, 3.3

[45] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Con-
volutional sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017. 2.1,
5.1, 7.1

[46] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict:
Parallel decoding of conditional masked language models. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6112–
6121, Hong Kong, China, November 2019. 2.4, 5.2, 5.5

[47] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict:
Parallel decoding of conditional masked language models. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing, 2019. (document),
5.1, 5.2, 5.2, 5.1, 5.3, 5.3

[48] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict:
Parallel decoding of conditional masked language models. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6114–
6123, 2019. (document), 6.1, 6.2, 6.3, 6.3, ??, 6.3, 6.4

[49] Marjan Ghazvininejad, Vladimir Karpukhin, Luke Zettlemoyer, and Omer Levy. Aligned
cross entropy for non-autoregressive machine translation. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages 3515–3523. PMLR,
2020. 2.4, 6.1, 6.2, 6.3, ??

[50] Marjan Ghazvininejad, Omer Levy, and Luke Zettlemoyer. Semi-autoregressive training
improves mask-predict decoding. arXiv preprint arXiv:2001.08785, 2020. ??

[51] Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou. Ef-
ficient softmax approximation for gpus. arXiv preprint arXiv:1609.04309, 2016. 3.4

[52] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connec-

117

tionist temporal classification: labelling unsegmented sequence data with recurrent neural
networks. In Proceedings of the 23rd international conference on Machine learning, pages
369–376. ACM, 2006. 6.3

[53] Sam Gross, Marc’Aurelio Ranzato, and Arthur Szlam. Hard mixtures of experts for large
scale weakly supervised vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6865–6873, 2017. 8.2

[54] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with
structured state spaces. arXiv preprint arXiv:2111.00396, 2021. 4.5

[55] Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-
autoregressive neural machine translation. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, Canada, April 30-May 3, 2018, Conference
Track Proceedings, 2018. (document), 2.4, 5.1, 5.3, 6.1, 6.2, 6.2, 6.3, 6.3, 6.4, ??, 6.5

[56] Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 32, pages 11181–11191. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/

file/675f9820626f5bc0afb47b57890b466e-Paper.pdf. (document), 2.4,
6.1, 6.2, ??, 6.3

[57] Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormal-
ized statistical models, with applications to natural image statistics. Journal of Machine
Learning Research, 13(Feb):307–361, 2012. 3.4

[58] Thanh-Le Ha, Jan Niehues, and Alexander Waibel. Toward multilingual neural machine
translation with universal encoder and decoder. arXiv preprint arXiv:1611.04798, 2016.
7.1

[59] Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian
Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, et al.
Achieving human parity on automatic chinese to english news translation. arXiv preprint
arXiv:1803.05567, 2018. 1

[60] Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioannis Konstas, Andrew Finch, Minh-
Thang Luong, Graham Neubig, and Katsuhito Sudoh. Findings of the third workshop on
neural generation and translation. In Proceedings of the 3rd Workshop on Neural Genera-
tion and Translation, pages 1–14, Hong Kong, November 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D19-5601. URL https://aclanthology.

org/D19-5601. 2.4

118

https://proceedings.neurips.cc/paper/2019/file/675f9820626f5bc0afb47b57890b466e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/675f9820626f5bc0afb47b57890b466e-Paper.pdf
https://aclanthology.org/D19-5601
https://aclanthology.org/D19-5601

[61] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. arXiv preprint arXiv:1512.03385, 2015. 4.2

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proc of CVPR, pages 770–778, 2016. 3.5, 8.5

[63] Kenneth Heafield. KenLM: Faster and smaller language model queries. In Proceedings
of the Sixth Workshop on Statistical Machine Translation, pages 187–197, Edinburgh,
Scotland, July 2011. Association for Computational Linguistics. URL https://www.

aclweb.org/anthology/W11-2123. 6.4

[64] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531, 2015. 2.4, 5.3, 6.3

[65] Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V Le. Transformer quality in linear
time. arXiv preprint arXiv:2202.10447, 2022. 4.5

[66] RA Jacobs, MI Jordan, SJ Nowlan, and GE Hinton. Adaptive mixtures of local experts.
Neural Computation, 3(1):79–87, 1991. 8.2

[67] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144, 2016. 7.3

[68] Melvin Johnson, Mike Schuster, Quoc Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen,
Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. Google’s mul-
tilingual neural machine translation system: Enabling zero-shot translation. Transactions
of the Association for Computational Linguistics, 5:339–351, 2017. 2.1, 7.1, 7.3

[69] Marcin Junczys-Dowmunt, Roman Grundkiewicz, Tomasz Dwojak, Hieu Hoang, Ken-
neth Heafield, Tom Neckermann, Frank Seide, Ulrich Germann, Alham Fikri Aji, Niko-
lay Bogoychev, et al. Marian: Fast neural machine translation in c++. arXiv preprint
arXiv:1804.00344, 2018. 1, 2.4

[70] Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish Vaswani, Niki Parmar, Jakob Uszkoreit,
and Noam Shazeer. Fast decoding in sequence models using discrete latent variables. In
International Conference on Machine Learning, pages 2395–2404, 2018. 2.4, 6.3, ??

[71] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image
descriptions. In Proc. of CVPR, pages 3128–3137, 2015. 3.5

[72] Jungo Kasai, James Cross, Marjan Ghazvininejad, and Jiatao Gu. Non-autoregressive
machine translation with disentangled context transformer. In International Conference
on Machine Learning, pages 5144–5155. PMLR, 2020. 6.2, ??

[73] Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, and Noah A Smith. Deep encoder,
shallow decoder: Reevaluating the speed-quality tradeoff in machine translation. arXiv

119

https://www.aclweb.org/anthology/W11-2123
https://www.aclweb.org/anthology/W11-2123

preprint arXiv:2006.10369, 2020. (document), 1.1, 2.4, 6.1, 6.2, 6.4, 6.4, 6.3, 7, 7.1, 7.2,
8.1

[74] Zdeněk Kasner, Jindřich Libovickỳ, and Jindřich Helcl. Improving fluency of non-
autoregressive machine translation. arXiv preprint arXiv:2004.03227, 2020. 6.4

[75] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autore-
gressive transformers with linear attention. In Proceedings of the International Conference
on Machine Learning (ICML), 2020. 4.3

[76] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Trans-
formers are rnns: Fast autoregressive transformers with linear attention. In International
Conference on Machine Learning, pages 5156–5165. PMLR, 2020. 4.1, 4.3, ??, 4.4, 4.5

[77] Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pages
1317–1327, Austin, Texas, November 2016. Association for Computational Linguis-
tics. doi: 10.18653/v1/D16-1139. URL https://www.aclweb.org/anthology/

D16-1139. 5.3, 6.4

[78] Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, pages
1317–1327, 2016. 2.4, 2.4, 6.3

[79] Yoon Kim, Yacine Jernite, David Sontag, and Alexander Rush. Character-aware neural
language models. In Proceedings of the AAAI conference on artificial intelligence, vol-
ume 30, 2016. 2.2

[80] Young Jin Kim, Marcin Junczys-Dowmunt, Hany Hassan, Alham Fikri Aji, Kenneth
Heafield, Roman Grundkiewicz, and Nikolay Bogoychev. From research to production
and back: Ludicrously fast neural machine translation. In Proceedings of the 3rd Work-
shop on Neural Generation and Translation, pages 280–288, 2019. 2.4

[81] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 3.5, 7.4, 8.4

[82] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings, 2015. URL http://arxiv.org/abs/1412.6980. 5.5

[83] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015. 4.4

[84] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings

120

https://www.aclweb.org/anthology/D16-1139
https://www.aclweb.org/anthology/D16-1139
http://arxiv.org/abs/1412.6980

of the 2nd International Conference on Learning Representations (ICLR), number 2014,
2013. 6.3

[85] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
In International Conference on Learning Representations, 2019. 4.4

[86] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020. 4.1, 4.5

[87] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. Open-
NMT: Open-source toolkit for neural machine translation. In Proceedings of ACL
2017, System Demonstrations, pages 67–72, Vancouver, Canada, July 2017. Association
for Computational Linguistics. URL https://www.aclweb.org/anthology/

P17-4012. 1

[88] Philipp Koehn. Statistical significance tests for machine translation evaluation. In
EMNLP, pages 388–395, 2004. 2.1, 7.4, 7.4, 8.4

[89] Philipp Koehn. Statistical machine translation. Cambridge University Press, 2009. 1

[90] Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation. In
Proceedings of the First Workshop on Neural Machine Translation, pages 28–39, 2017.
(document), 1, 2.3

[91] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based translation. In
Proceedings of the 2003 Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics, pages 127–133, 2003. 1, 4.4,
6.4

[92] Xian Kong, Adithya Renduchintala, James Cross, Yuqing Tang, Jiatao Gu, and Xian Li.
Multilingual neural machine translation with deep encoder and multiple shallow decoders.
In Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics (EACL), 2021. 8.1

[93] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Technical
Report. University of Toronto, 2009. 4.4

[94] Taku Kudo and John Richardson. SentencePiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, pages 66–71, Brussels, Belgium, November 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D18-2012. URL https://www.aclweb.org/

anthology/D18-2012. 6.4

[95] Taku Kudo and John Richardson. Sentencepiece: A simple and language independent

121

https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/D18-2012
https://www.aclweb.org/anthology/D18-2012

subword tokenizer and detokenizer for neural text processing. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing: System Demonstra-
tions, pages 66–71, 2018. 2.2

[96] Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin,
Minh-Thang Luong, and Orhan Firat. Beyond distillation: Task-level mixture-of-experts
for efficient inference. In Findings of the Association for Computational Linguistics:
EMNLP 2021, pages 3577–3599, 2021. 8.2

[97] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. 2001. 18

[98] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale
reading comprehension dataset from examinations. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pages 785–794, 2017. 4.4

[99] Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. arXiv
preprint arXiv:1901.07291, 2019. 9

[100] Alon Lavie, Kenji Sagae, and Shyamsundar Jayaraman. The significance of recall in auto-
matic metrics for mt evaluation. In Conference of the Association for Machine Translation
in the Americas, pages 134–143. Springer, 2004. 3.5, 2

[101] Jason Lee, Kyunghyun Cho, and Thomas Hofmann. Fully character-level neural machine
translation without explicit segmentation. Transactions of the Association for Computa-
tional Linguistics, 5:365–378, 2017. 2.2

[102] Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive
neural sequence modeling by iterative refinement. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 1173–1182, 2018. 2.4, 5.3,
5.5, 6.2, 6.4, ??

[103] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye
Teh. Set transformer: A framework for attention-based permutation-invariant neural net-
works. In International Conference on Machine Learning, pages 3744–3753. PMLR,
2019. 4.3, 4.3, 4.5

[104] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping
Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models
with conditional computation and automatic sharding. arXiv preprint arXiv:2006.16668,
2020. 8.1, 8.2, 8.3, 8.4

[105] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966. 6.3

122

[106] M Paul Lewis. Ethnologue: Languages of the world. SIL international, 2009. 7.3

[107] Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base
layers: Simplifying training of large, sparse models. In International Conference on Ma-
chine Learning, pages 6265–6274. PMLR, 2021. 8.2

[108] Xiang Li, Tao Qin, Jian Yang, Xiaolin Hu, and Tieyan Liu. Lightrnn: Memory and
computation-efficient recurrent neural networks. In NIPS, pages 4385–4393, 2016. (doc-
ument), 1.2, 3.3, 3.3, 3.1, 3.3, 3.3

[109] Zhuohan Li, Di He, Fei Tian, Tao Qin, Liwei Wang, and Tie-Yan Liu. Hint-based training
for non-autoregressive translation. 2018. 6.2, ??

[110] Jindřich Libovický and Jindřich Helcl. End-to-end non-autoregressive neural machine
translation with connectionist temporal classification. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, pages 3016–3021, Brussels,
Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.
18653/v1/D18-1336. URL https://www.aclweb.org/anthology/D18-1336.
2.4, 6.2, 6.3, 6.4, ??

[111] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in con-
text. In ECCV. Springer, 2014. 3.5

[112] Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas Serre.
Learning long-range spatial dependencies with horizontal gated recurrent units. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/

ec8956637a99787bd197eacd77acce5e-Paper.pdf. 4.4

[113] Hanxiao Liu, Zihang Dai, David So, and Quoc Le. Pay attention to mlps. Advances in
Neural Information Processing Systems, 34, 2021. 4.5

[114] Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser,
and Noam Shazeer. Generating wikipedia by summarizing long sequences. In Interna-
tional Conference on Learning Representations, 2018. 4.1

[115] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019. 4.4, 4.4, ??

[116] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015. 3.5

123

https://www.aclweb.org/anthology/D18-1336
https://proceedings.neurips.cc/paper/2018/file/ec8956637a99787bd197eacd77acce5e-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/ec8956637a99787bd197eacd77acce5e-Paper.pdf

[117] Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neubig, and Eduard Hovy. Flowseq: Non-
autoregressive conditional sequence generation with generative flow. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
4273–4283, 2019. 2.4, 6.2, 6.3, ??

[118] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christo-
pher Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th
annual meeting of the association for computational linguistics: Human language tech-
nologies, pages 142–150, 2011. 4.4

[119] Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Namrata Anand,
Raphael R Eguchi, Possu Huang, and Richard Socher. Progen: Language modeling for
protein generation. bioRxiv, 2020. 4.1

[120] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one?
Advances in neural information processing systems, 32, 2019. 2.4

[121] Takashi Mieno, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura.
Speed or accuracy? a study in evaluation of simultaneous speech translation. In Sixteenth
Annual Conference of the International Speech Communication Association, 2015. 9

[122] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013. 3.4

[123] Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical distributed language model.
In NIPS, pages 1081–1088, 2009. 3.4

[124] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural proba-
bilistic language models. arXiv preprint arXiv:1206.6426, 2012. 3.4

[125] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language
model. In Aistats, volume 5, pages 246–252. Citeseer, 2005. 3.4

[126] Makoto Nagao. A framework of a mechanical translation between japanese and english
by analogy principle. 1

[127] Nikita Nangia and Samuel Bowman. Listops: A diagnostic dataset for latent tree learning.
In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Student Research Workshop, pages 92–99, 2018. 4.3, 4.4

[128] Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel, Danish Pruthi, Xinyi Wang, and John
Wieting. compare-mt: A tool for holistic comparison of language generation systems.
CoRR, abs/1903.07926, 2019. URL http://arxiv.org/abs/1903.07926. 6.4

124

http://arxiv.org/abs/1903.07926

[129] Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. Opti-
mizing segmentation strategies for simultaneous speech translation. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 551–556, 2014. 9

[130] Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. Analyzing uncer-
tainty in neural machine translation. In International Conference on Machine Learning,
2018. 6.6

[131] Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine
translation. arXiv preprint arXiv:1806.00187, 2018. 4.1

[132] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David
Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In
Proceedings of NAACL-HLT 2019: Demonstrations, 2019. 1, 4.4, 6.6

[133] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th annual meeting
of the Association for Computational Linguistics, pages 311–318, 2002. 3.5, 4.4, 5.3, 6.4,
7.2, 7.4, 8.4, 8.5

[134] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexan-
der Ku, and Dustin Tran. Image transformer. In International Conference on Machine
Learning, pages 4055–4064. PMLR, 2018. 4.1, 4.5

[135] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah Smith, and Lingpeng
Kong. Random feature attention. In International Conference on Learning Representa-
tions, 2020. 2.4, ??

[136] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah Smith, and Lingpeng
Kong. Random feature attention. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=QtTKTdVrFBB. (doc-
ument), 4.1, 4.3, 4.3, 4.3, 4.1, 4.4, 4.5

[137] Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third
Conference on Machine Translation: Research Papers, pages 186–191, Belgium, Brus-
sels, October 2018. Association for Computational Linguistics. URL https://www.

aclweb.org/anthology/W18-6319. 6.4

[138] Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu, and
Lei Li. Glancing transformer for non-autoregressive neural machine translation. arXiv
preprint arXiv:2008.07905, 2020. 2.4, 6.1, 6.3, 6.3, ??, 6.6

[139] Jiezhong Qiu, Hao Ma, Omer Levy, Scott Wen-tau Yih, Sinong Wang, and Jie

125

https://openreview.net/forum?id=QtTKTdVrFBB
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319

Tang. Blockwise self-attention for long document understanding. arXiv preprint
arXiv:1911.02972, 2019. 4.1

[140] Dragomir R Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and Amjad Abu-Jbara.
The acl anthology network corpus. Language Resources and Evaluation, 47(4):919–944,
2013. 4.4

[141] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lil-
licrap. Compressive transformers for long-range sequence modeling. In International
Conference on Learning Representations (ICLR), 2020. 4.5

[142] Alessandro Raganato, Yves Scherrer, and Jörg Tiedemann. Fixed encoder self-attention
patterns in transformer-based machine translation. arXiv preprint arXiv:2002.10260,
2020. 2.4

[143] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Ad-
vances in neural information processing systems, 20, 2007. 4.3

[144] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 2383–2392, 2016. 4.4

[145] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International
Conference on Machine Learning, pages 8821–8831. PMLR, 2021. 9

[146] Qiu Ran, Yankai Lin, Peng Li, and Jie Zhou. Guiding non-autoregressive neural machine
translation decoding with reordering information. arXiv preprint arXiv:1911.02215, 2019.
??

[147] Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. Comet: A neural frame-
work for mt evaluation. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2685–2702, 2020. 7.4, 8.4, 8.5

[148] Yi Ren, Jinglin Liu, Xu Tan, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. A study of non-
autoregressive model for sequence generation. arXiv preprint arXiv:2004.10454, 2020.
6.2

[149] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-
based sparse attention with routing transformers. Transactions of the Association for Com-
putational Linguistics, 9:53–68, 2021. 4.1

[150] Chitwan Saharia, William Chan, Saurabh Saxena, and Mohammad Norouzi. Non-
autoregressive machine translation with latent alignments. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages

126

1098–1108, Online, November 2020. Association for Computational Linguistics. doi: 10.
18653/v1/2020.emnlp-main.83. URL https://www.aclweb.org/anthology/

2020.emnlp-main.83. 2.4, 6.1, 6.2, 6.3, ??, ??

[151] Víctor M. Sánchez-Cartagena, Marta Bañón, Sergio Ortiz-Rojas, and Gema Ramírez-
Sánchez. Prompsit’s submission to wmt 2018 parallel corpus filtering shared task. In
Proceedings of the Third Conference on Machine Translation, Volume 2: Shared Task
Papers, Brussels, Belgium, October . Association for Computational Linguistics. 6.4

[152] Abigail See, Minh-Thang Luong, and Christopher D. Manning. Compression of neural
machine translation models via pruning. In Proceedings of The 20th SIGNLL Conference
on Computational Natural Language Learning, pages 291–301, Berlin, Germany, August
2016. Association for Computational Linguistics. doi: 10.18653/v1/K16-1029. URL
https://www.aclweb.org/anthology/K16-1029. 2.4

[153] Jean Senellart, Dakun Zhang, Bo Wang, Guillaume Klein, Jean-Pierre Ramatchandirin,
Josep Crego, and Alexander Rush. OpenNMT system description for WNMT 2018:
800 words/sec on a single-core CPU. In Proceedings of the 2nd Workshop on Neu-
ral Machine Translation and Generation, pages 122–128, Melbourne, Australia, July
2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-2715. URL
https://www.aclweb.org/anthology/W18-2715. 1

[154] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin,
Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/
P16-1162. URL https://www.aclweb.org/anthology/P16-1162. 1.2, 2.2

[155] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proc. of ACL, volume 1, pages 1715–1725, 2016. 3.1, 3.3,
3.3, 5.5

[156] Chenze Shao, Jinchao Zhang, Yang Feng, Fandong Meng, and Jie Zhou. Minimizing the
bag-of-ngrams difference for non-autoregressive neural machine translation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 34, pages 198–205, 2020.
2.4, ??

[157] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. In Proceedings of International Conference on Learning Representations
(ICLR), 2017. 3.4, 8.1, 8.2, 8.3, 8.4, 8.4

[158] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W

127

https://www.aclweb.org/anthology/2020.emnlp-main.83
https://www.aclweb.org/anthology/2020.emnlp-main.83
https://www.aclweb.org/anthology/K16-1029
https://www.aclweb.org/anthology/W18-2715
https://www.aclweb.org/anthology/P16-1162

Mahoney, and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of
bert. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
8815–8821, 2020. 4.5

[159] Xing Shi and Kevin Knight. Speeding up neural machine translation decoding by shrink-
ing run-time vocabulary. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), pages 574–579, 2017. 2.4

[160] Raphael Shu, Jason Lee, Hideki Nakayama, and Kyunghyun Cho. Latent-variable non-
autoregressive neural machine translation with deterministic inference using a delta pos-
terior. 2020. 2.4, 6.2, 6.3, ??, 6.6

[161] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, An-
drew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality
over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods
in natural language processing, pages 1631–1642, 2013. 4.4

[162] Harold Somers. Example-based machine translation. Machine translation, 14(2):113–
157, 1999. 1

[163] Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep
autoregressive models. In Advances in Neural Information Processing Systems, pages
10107–10116, 2018. 2.4, ??

[164] Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer:
Flexible sequence generation via insertion operations. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 5976–5985,
Long Beach, California, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.
mlr.press/v97/stern19a.html. 6.2, ??

[165] Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. Insertion transformer:
Flexible sequence generation via insertion operations. arXiv preprint arXiv:1902.03249,
2019. 2.4

[166] Zhiqing Sun and Yiming Yang. An em approach to non-autoregressive conditional se-
quence generation. In International Conference on Machine Learning, pages 9249–9258.
PMLR, 2020. ??

[167] Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, and Zhihong Deng. Fast struc-
tured decoding for sequence models. In Advances in Neural Information Processing Sys-
tems, pages 3011–3020, 2019. 2.4, 6.2, ??

[168] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural

128

http://proceedings.mlr.press/v97/stern19a.html
http://proceedings.mlr.press/v97/stern19a.html

networks. In NIPS, pages 3104–3112, 2014. 1, 3.1, 5.1, 7.1

[169] Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with
neural networks. In NIPS 2014, 2014. 2.1, 2.1, 2.1

[170] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa:
A question answering challenge targeting commonsense knowledge. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4149–4158, 2019. 4.4

[171] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn
attention. In International Conference on Machine Learning, pages 9438–9447. PMLR,
2020. 4.1

[172] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A
survey. arXiv preprint arXiv:2009.06732, 2020. 4.1, 4.3, 4.5, 4.5

[173] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng
Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for
efficient transformers. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=qVyeW-grC2k. (document), 4.1,
4.1, 4.3, 4.4, 4.1, 4.4, 4.4, 4.7

[174] Jörg Tiedemann. Parallel data, tools and interfaces in opus. In Lrec, volume 2012, pages
2214–2218. Citeseer, 2012. 7.2

[175] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai,
Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit,
et al. Mlp-mixer: An all-mlp architecture for vision. Advances in Neural Information
Processing Systems, 34, 2021. 4.5

[176] Peter Toma. Systran as a multilingual machine translation system. In Proceedings of the
Third European Congress on Information Systems and Networks, Overcoming the lan-
guage barrier, pages 569–581, 1977. 1

[177] Lifu Tu, Richard Yuanzhe Pang, Sam Wiseman, and Kevin Gimpel. Engine: Energy-
based inference networks for non-autoregressive machine translation. arXiv preprint
arXiv:2005.00850, 2020. 2.4

[178] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
Neural Information Processing Systems, 30:5998–6008, 2017. 1, 1.1, 1.2, 2.1, 2.4, 3.1,
3.5, 4, 4.1, 4.2, 4.2, 4.2, 4.3, 4.4, 5.1, 5.3, 5.5, 6.2, 6.4, 6.6, 7.1, 7.2, 7.4, 8.4

129

https://openreview.net/forum?id=qVyeW-grC2k

[179] Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan Gomez, Stephan
Gouws, Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar, et al. Tensor2tensor
for neural machine translation. In Proceedings of the 13th Conference of the Association
for Machine Translation in the Americas (Volume 1: Research Track), pages 193–199,
2018. 4.2

[180] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A
neural image caption generator. In Proc. of CVPR, pages 3156–3164. IEEE, 2015. 3.5

[181] Chengyi Wang, Shuangzhi Wu, and Shujie Liu. Accelerating transformer decoding via a
hybrid of self-attention and recurrent neural network. arXiv preprint arXiv:1909.02279,
2019. 2.4

[182] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and
Lidia S Chao. Learning deep transformer models for machine translation. arXiv preprint
arXiv:1906.01787, 2019. 2.1, 4.2, 4.3, 4.3, 4.5, 4.5, 7.1

[183] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-
attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020. 4.1, 4.3, 4.4,
??

[184] Xinyi Wang, Yulia Tsvetkov, and Graham Neubig. Balancing training for multilingual
neural machine translation. arXiv preprint arXiv:2004.06748, 2020. 7.2, 7.4, 7.4, 7.7

[185] Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Non-
autoregressive machine translation with auxiliary regularization. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 5377–5384, 2019. 2.4, ??

[186] Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang Lin, and Xu Sun. Imitation learning
for non-autoregressive neural machine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 1304–1312, 2019. 6.6

[187] David Weiss and Benjamin Taskar. Structured prediction cascades. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, pages 916–
923. JMLR Workshop and Conference Proceedings, 2010. 18

[188] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemomet-
rics and intelligent laboratory systems, 2(1-3):37–52, 1987. 6.4

[189] Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and Michael Auli. Pay less
attention with lightweight and dynamic convolutions. arXiv preprint arXiv:1901.10430,
2019. 2.4

[190] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural

130

machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016. 1, 4.4

[191] Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and Tao Qin. Tied transformers: Neu-
ral machine translation with shared encoder and decoder. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 5466–5473, 2019. 4.3

[192] Tong Xiao, Jingbo Zhu, Hao Zhang, and Qiang Li. Niutrans: an open source toolkit
for phrase-based and syntax-based machine translation. In Proceedings of the ACL 2012
System Demonstrations, pages 19–24, 2012. 6.4

[193] Tong Xiao, Yinqiao Li, Jingbo Zhu, Zhengtao Yu, and Tongran Liu. Sharing attention
weights for fast transformer. arXiv preprint arXiv:1906.11024, 2019. 2.4

[194] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the
softmax bottleneck: a high-rank rnn language model. In Proc. of ICLR, 2018. 3.1, 3.2,
3.2, 3.4

[195] Mahsa Yarmohammadi, Vivek Kumar Rangarajan Sridhar, Srinivas Bangalore, and
Baskaran Sankaran. Incremental segmentation and decoding strategies for simultaneous
translation. In IJCNLP, pages 1032–1036, 2013. 9

[196] Weiqiu You, Simeng Sun, and Mohit Iyyer. Hard-coded gaussian attention for neural
machine translation. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7689–7700, 2020. 2.4

[197] Biao Zhang, Deyi Xiong, and Jinsong Su. Accelerating neural transformer via an average
attention network. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1789–1798, 2018. 2.4

[198] Biao Zhang, Ivan Titov, and Rico Sennrich. Improving deep transformer with depth-scaled
initialization and merged attention. arXiv preprint arXiv:1908.11365, 2019. 2.1, 7.1

[199] Biao Zhang, Philip Williams, Ivan Titov, and Rico Sennrich. Improving massively
multilingual neural machine translation and zero-shot translation. arXiv preprint
arXiv:2004.11867, 2020. 2.1, 7.1, 7.4, 7.4, 8.4

[200] Jiacheng Zhang, Yanzhuo Ding, Shiqi Shen, Yong Cheng, Maosong Sun, Huanbo Luan,
and Yang Liu. Thumt: An open source toolkit for neural machine translation. arXiv
preprint arXiv:1706.06415, 2017. 3.5

[201] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. In International Conference on Learning Represen-
tations, 2019. (document), 7.4, 7.2, 7.3, 8.4, 8.5

[202] Chunting Zhou, Jiatao Gu, and Graham Neubig. Understanding knowledge distillation in

131

non-autoregressive machine translation. 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, Conference Track
Proceedings, 2020. 5.3, 6.3, 6.4, 6.4

[203] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual expla-
nations by watching movies and reading books. In Proceedings of the IEEE international
conference on computer vision, pages 19–27, 2015. 4.4

132

	1 Introduction
	1.1 Research Objective
	1.2 Thesis Outline

	2 Background
	2.1 Modeling
	2.2 Training
	2.3 Inference
	2.4 Related Work

	I Computation-efficient Neural Machine Translation
	3 Fast and Simple Mixture of Softmaxes with BPE and Hybrid-LightRNN for Language Generation
	3.1 Introduction
	3.2 Background: Mixture of Softmaxes
	3.3 Efficient Word Encoding
	3.4 Related Work
	3.5 Experiments
	3.6 Summary

	4 Luna: Linear Unified Nested Attention
	4.1 Introduction
	4.2 Background
	4.3 Linear Unified Nested Attention (Luna)
	4.4 Experiments
	4.5 Related Work
	4.6 Summary
	4.7 Appendix

	II Neural Machine Translation with High Decoding Parallelizability
	5 Semi-autoregressive Neural Machine Translation with Local Translation Mechanism
	5.1 Introduction
	5.2 NMT with Local Autoregressive Translation (LAT)
	5.3 Experiments
	5.4 Summary
	5.5 Appendix

	6 Fully Non-autoregressive Neural Machine Translation: Tricks of the Trade
	6.1 Introduction
	6.2 Motivation
	6.3 Methods
	6.4 Experiments
	6.5 Summary
	6.6 Appendix

	III Capacity Allocation in Multilingual Neural Machine Translation
	7 Multilingual Neural Machine Translation with Deep Encoder and Multiple Shallow Decoders
	7.1 Introduction
	7.2 Deep encoder and shallow decoder (DESD) for multilingual NMT
	7.3 Deep Encoder and Multiple Shallow Decoders (DEMSD)
	7.4 Experiments
	7.5 Analysis and Discussion
	7.6 Summary
	7.7 Appendix

	8 Deep encoder, Shallow Decoder with Language-level Mixture-of-Experts
	8.1 Introduction
	8.2 Background and Related Work
	8.3 Improving the Capacity of the Shallow Decoder via Mixture-of-Experts
	8.4 Experiments
	8.5 Revisit Capacity Bottleneck of the Shallow Decoder
	8.6 Summary
	8.7 Appendix

	9 Conclusion and Future Directions
	Bibliography

