
Efficient and Effective Large-scale Search

Anagha Kulkarni

CMU-LTI-13-003

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
Jamie Callan, Chair

Jaime Carbonell
Christos Faloutsos

Alistair Moffat (The University of Melbourne)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Language and Information Technologies

Copyright c⃝ 2013 Anagha Kulkarni

Abstract

Search engine indexes for large document collections are often divided into shards that are
distributed across multiple computers and searched in parallel to provide rapid interactive
search. Typically, all index shards are searched for each query. For organizations with modest
computing resources the high query processing cost of this exhaustive search setup can be a
deterrent to working with large collections. This thesis questions the necessity of exhaustive
search and investigates distributed selective search as an alternative where only a few shards are
searched for each query.

For selective search to be as effective as exhaustive search it is important for the chosen shards
to contain the majority of the relevant documents. Toward this goal, we study three types of
document allocation policies that organize the collection into shards using different strategies
for concentrating the relevant documents for a particular query into a few shards. Empirical
evaluation with three large datasets indicates that topical partitioning of the collection provides
the most cost-effective selective search setup. We further develop the best performing allocation
policy to control for the distribution of sizes of the constructed shards. The resulting shards
exhibit nearly uniform size distribution, and support comparable selective search performance.
Analyses of several other variables of the shard creation process demonstrate that selective
search is not highly sensitive to different parameterizations of these variables, confirming the
reliability and consistency of the observed trends.

The set of shards that are searched for a query directly influence the effectiveness of selective
search. We test the efficacy of a widely used resource ranking algorithm for the task of shard
selection. The results indicate that a (nearly) off-the-shelf resource ranking algorithm can be
employed to support a highly efficient selective search approach. We also propose a family of
three shard ranking algorithms that use a joint formulation to model the two interdependent
problems of shard ranking and rank cutoff estimation. The empirical results demonstrate
that the proposed algorithms along with the query-specific predictor of rank cutoff provide
a substantially higher search efficiency than the off-the-shelf resource ranking algorithm and
provide comparable search effectiveness.

A comparative analysis of query runtime in a low-resource environment demonstrates that
distributed selective search is much faster than distributed exhaustive search. Analysis of the
shard ranking runtime suggests two ways of reducing this overhead. Topical homogeneity of
the shards can be exploited to reduce the sample size used by the sample-based shard ranking
algorithms to substantially lower the runtime overhead of this step. Experiments with a well-
established query optimization technique indicate that the query runtime with selective search
is much shorter than with query optimization alone.

iii

Acknowledgments

First and foremost I would like to thank my advisor, Jamie Callan, for his support
and advice throughout my academic journey toward this milestone. My commit-
tee members, Alistair Moffat, Christos Faloutsos, and Jaime Carbonell have been
generous with their time and advice. I would like to thank them for the same.

Jaime Teevan, who was one of my mentors during an internship at MSR has
inspired me in more ways than she realizes. I would like to thank her, and my two
other awesome mentors from that internship, Krysta Svore, and Susan Dumais for
a wonderful summer. I have been fortunate to find student collaborators that I have
actually enjoyed working with. Yubin Kim, and Almer Tigelaar are two of those
people, and I want to thank them for being no-nonsense collaborators.

My parents have blessed me with many things, but the one thing that I am most
thankful for is the grit that they instilled in me which has been critical to reaching
here. The unwavering support and love that my parents and my mother-in-law
have showered on me has kept me going in the most challenging times, and I am
eternally indebted to them for that. My sweetest ‘thank you’ goes to my son, Sohum,
who brightens every day with his innocent smile. None of this would have come to
pass was it not for the love and encouragement that I have received from my best
friend and husband, Mahesh. M: this thesis is dedicated to you, and our family.

——Om Shri Sairam——

Contents

1 Introduction 1
1.1 Distributed exhaustive search . 2
1.2 Distributed selective search . 2

1.2.1 Distributed selective search: Efficiency . 3
1.2.2 Distributed selective search: Effectiveness 5

1.3 Contributions of thesis research . 6
1.4 Overview of dissertation organization . 8

2 Related Work 9
2.1 Large-scale search . 9

2.1.1 Tier-based retrieval . 10
2.1.2 Index pruning . 10

2.2 Cluster-based retrieval . 15
2.3 Federated search . 18

2.3.1 Model-based algorithms . 19
2.3.2 Sample-based algorithms . 21
2.3.3 Feature-based algorithms . 22

2.4 Summary . 22

3 Distributed Selective Search 25
3.1 Baseline system: Distributed exhaustive search (DES) 26
3.2 Proposed approach: Distributed selective search (DSS) 26
3.3 Datasets . 29
3.4 Evaluation Metrics . 30

3.4.1 Search effectiveness . 31
3.4.2 Stability . 31
3.4.3 Search efficiency . 32
3.4.4 Search effort: Cost-in-Documents (CiD) . 32
3.4.5 Search effort: Cost-in-Shards (CiS) . 34

vii

3.4.6 Search effort: Motivation . 34
3.5 Summary . 34
3.6 A reference system: Setup . 34
3.7 A reference system: Results . 36
3.8 Summary . 38

4 Offline phase: Shard Creation 39
4.1 Document allocation policies . 39

4.1.1 Random document allocation . 40
4.1.2 Source-based document allocation . 40
4.1.3 Topic-based document allocation . 41
4.1.4 Experimental results: Search effectiveness and efficiency 48
4.1.5 Experimental results: Stability analysis . 59
4.1.6 Experimental results: Relevance density distribution 66
4.1.7 Experimental results: Effect of query length on search performance 68

4.2 Number of topical shards for a collection (K) . 71
4.3 Seed centroid selection for topic-based allocation policy 75

4.3.1 Simple Random Sampling (SRS): . 75
4.3.2 Vocabulary size based Rejection Sampling (VRS): 76
4.3.3 Hartigan and Wong (HW): . 76
4.3.4 Arthur and Vissilvitskii technique (AV): . 77
4.3.5 Experimental results . 77

4.4 Size bounded sampling-based K-means (SB2 K-means) 78
4.4.1 Initial phase . 79
4.4.2 Split phase . 79
4.4.3 Project phase . 80
4.4.4 Merge phase . 80
4.4.5 Experimental results . 81

4.5 Summary . 82

5 Online phase: Query processing 85
5.1 Query representation: Bag-of-words versus Dependence model 85
5.2 Shard ranking . 89

5.2.1 Modified ReDDE . 90
5.2.2 Experimental setup: CORI versus ReDDE 91
5.2.3 Experimental results: CORI versus ReDDE 92

5.3 Shard ranking and cutoff estimation: Sampling-based Hierarchical Relevance
Estimation (SHiRE) . 93
5.3.1 SHiRE tree traversal and scoring function 95

viii

5.3.2 Lexical SHiRE (Lex-S) . 96
5.3.3 Rank SHiRE (Rank-S) . 99
5.3.4 Connected SHiRE (Conn-S) . 100

5.4 Experimental results: Search effectiveness and efficiency 102
5.4.1 Sensitivity of SHiRE algorithms to parameter B 104

5.5 Experimental results: Shard rank cutoff estimation 105
5.6 Experimental results: Additional datasets . 110
5.7 Summary . 111

6 Search time analyses 113
6.1 Platform . 113
6.2 Storage and computational costs of random and topic-based shards 116
6.3 Query runtime for Exhaustive Search and Selective Search 117

6.3.1 Shard ranking time versus shard search time 118
6.4 Shard ranking: CSI Size . 120
6.5 Effect of query optimization . 122
6.6 Effect of query length . 124
6.7 Throughput analysis . 125

6.7.1 Experimental methodology . 126
6.7.2 Experimental results . 127

6.8 Cost-in-Documents metric revisited . 130
6.8.1 Query length and cost metric . 130
6.8.2 Query representation and cost metric . 132

6.9 Summary . 135

7 Conclusions 137
7.1 Thesis summary and main results . 137
7.2 Thesis contributions . 140
7.3 Future directions . 141

7.3.1 Effectiveness and efficiency of selective search 141
7.3.2 Load-balancing for selective search . 142
7.3.3 Applications of selective search . 143

Bibliography 145

ix

List of Figures

1.1 Distributed exhaustive search. 3

1.2 Distributed selective search. 4

3.1 Schematic diagram of distributed selective search architecture. 27
3.2 Query runtime versus the number of postings evaluated for query. 33
3.3 Stability analysis for P@10 . 37

4.1 Graphical Model for Latent Dirichlet Allocation. 45
4.2 Sample size vs. percentage of OOV terms per document, on average. 47
4.3 Distributed Selective Search with SB K-means and SB-LDA. Metrics: P@10 and

P@100. 49
4.4 Distributed Selective Search with SB K-means and SB-LDA. Metrics: NDCG@100

and MAP. 50
4.5 Distributed Selective Search with Random, Source-based, and Topic-based shards.

Dataset: GOV2. Metrics: P@10 and P@100. 52
4.6 Distributed Selective Search with Random, Source-based, and Topic-based shards.

Dataset: GOV2. Metrics: NDCG@100 and MAP. 53
4.7 Distributed Selective Search with Random, Source-based, and Topic-based shards.

Dataset: CW09-B. Metrics: P@10 and P@100. 54
4.8 Distributed Selective Search with Random, Source-based, and Topic-based shards.

Dataset: CW09-B. Metrics: NDCG@100 and MAP. 55
4.9 Distributed Selective Search with Random, Source-based, and Topic-based shards.

Dataset: CW09-Eng. Metrics: P@10 and NDCG@10. 56
4.10 Distributed Selective Search with Random, Source-based, and Topic-based shards.

Dataset: CW09-Eng. Metrics: P@100 and MAP. 57
4.11 Stability analysis. Metric: P@10. Dataset: GOV2. 60

4.12 Stability analysis. Metric: P@10. Dataset: CW09-B. 60
4.13 Stability analysis. Metric: P@10. Dataset: CW09-Eng. 61
4.14 Stability analysis of source-based shards. Metrics: P@100 and MAP. Dataset:

GOV2. 62

xi

4.15 Stability analysis of topic-based shards. Metrics: P@100 and MAP. Dataset: GOV2. 63
4.16 Stability analysis of source-based shards. Metrics: P@100 and MAP. Dataset:

CW09-B. 63
4.17 Stability analysis of topic-based shards. Metrics: P@100 and MAP. Dataset:

CW09-B. 64
4.18 Stability analysis of source-based shards. Metrics: P@100 and MAP. Dataset:

CW09-Eng. 65
4.19 Stability analysis of topic-based shards. Metrics: P@100 and MAP. Dataset:

CW09-Eng. 65
4.20 Size distribution of random, source-based, and topic-based shards. 67
4.21 Relevance density distributions. 69
4.22 Effect of query length on selective search effectiveness. 70
4.23 Effects of number of total shards (K) on the costs of distributed selective search.

Query set: Tuning. 72
4.24 Effect of seed centroid selection strategy on selective search performance. 76
4.25 Shard size distribution for SB K-means and SB2 K-means. 81

5.1 Query representation example. 86
5.2 Bag-of-words versus dependence model query representation. 87
5.3 Distribution of the term obama across shards. Dataset: CW09-B. 92
5.4 Optimal versus fixed shard rank cutoffs for ReDDE. Dataset: GOV2. Metric: P@10. 94
5.5 Lexical SHiRE. 97
5.6 Rank SHiRE. 99
5.7 Connected SHiRE. 101
5.8 Sensitivity of Rank-S and Conn-S algorithms to parameter B (Base of the expo-

nential decay function.). Dataset: GOV2. 104
5.9 Sensitivity of Rank-S and Conn-S algorithms to parameter B (Base of the expo-

nential decay function.). Dataset: CW09-B. 105
5.10 Shard rank cutoff estimation errors. 106
5.11 Confusion matrix for shard rank cutoff estimation for Rank-S. Dataset: GOV2. . . 107
5.12 Confusion matrix for shard rank cutoff estimation for Rank-S. Dataset: CW09-B. 109

6.1 Block diagram of the platform used for the timing experiments. 114
6.2 Shard ranking time versus shard search time for distributed selective search with

ReDDE, CSI=4%. 119
6.3 Distribution of the term obama across shards. Dataset: CW09-B. 120
6.4 Shard ranking time versus shard search time for distributed selective search with

ReDDE, CSI=0.5%. 123
6.5 Throughput and Query latency timing results for different degrees of parallelism. 127

xii

6.6 Average memory usage for exhaustive search and selective search. 128
6.7 Correlation between cost metric (CiD or CiP) and query runtime. 131
6.8 Correlation between CiD and query runtime for different query representations.

BOW query length: 3 . 133
6.9 Correlation between CiD and query runtime for different query representations.

BOW query length: 5 . 134

xiii

List of Tables

3.1 Datasets. 30

3.2 Query sets. 30

3.3 Distributed selective search versus distributed exhaustive search. 35

4.1 Effect of number of total shards (K) on selective search performance. Query set:
Testing. 74

5.1 Selective search performance using CORI and ReDDE shard ranking algorithm. . 91

5.2 Selective search performance with different shard ranking algorithms. Dataset:
GOV2. 101

5.3 Selective search performance with different shard ranking algorithms. Dataset:
CW09-B. 103

5.4 Additional datasets. 108

5.5 Query sets. 110

5.6 Selective search performance with different shard ranking algorithms. Dataset:
TREC123-BySrc. 110

5.7 Selective search performance with different shard ranking algorithms. Dataset:
TREC4-Kmeans. 111

6.1 Storage and computational costs for shard creation. 116

6.2 Query runtime and search cost results for distributed exhaustive search and
distributed selective search. 118

6.3 Effect of CSI size on selective search effectiveness. Dataset: GOV2. 121

6.4 Effect of CSI size on selective search effectiveness. Dataset: CW09-Eng. 121

6.5 Query runtime for ReDDE-based selective search with different CSI sizes. 122

6.6 Query runtime for exhaustive search and selective search with and without query
optimization. 123

6.7 Query run-time for exhaustive search and selective search on sets of queries with
different lengths. 125

xv

6.8 Influence of query length on the Pearson’s correlation (ρ) between cost metrics
and query runtime. 132

xvi

Chapter 1

Introduction

Information retrieval (IR) as a field of research is relatively young compared to many other
disciplines of science. We have however engaged in the act of storing, organizing, and searching
information for a very long time. And yet IR has never been as important and essential as it
is in this age of big data. We have witnessed IR applications being brought out of the confines
of libraries to our personal computers, laptops, tablets and mobile phones for everyday usage.
The volume of search requests that commercial search engines service daily is an attestation of
our increasing search requirements. For the largest search engine by volume, the figures are in
the order of few billion queries per day.

This increased reliance and need for search has been driven by many factors, one of which
is the growing availability of large, information-rich, and search-friendly collections. The Web
is its most prominent example1 but it’s hardly the only one. More and more organizations and
businesses are digitizing all types of internal data in order to make it searchable. The information
that can be mined from these large collections is often invaluable to the organizations.

The research community has also responded to the trend of increasing collection sizes by
compiling, and using progressively larger datasets in their research. Shared IR evaluation
efforts such as TREC2 have adopted increasingly larger datasets over years. For instance, the
largest dataset that was widely used at TREC 2000, WT10g, consisted of 1.69 million pages
(10GB uncompressed). By TREC 2010 the dataset size had grown by more than 250 times.
The dataset that was used by many TREC participants in 2010, ClueWeb09 CategoryA English,
consisted of half a billion documents (15TB uncompressed).

The other factor that has contributed to the widespread use of search systems has been
the advancements in retrieval algorithms employed by modern search systems. The current
state-of-the-art retrieval algorithms are able to provide much more accurate search results than
their previous manifestations. The early retrieval algorithms typically inferred a document’s

1In 2000 Google’s index consisted of 1 billion pages. By 2010 this figure had crossed the mark of 30 billion pages.
2http://trec.nist.gov/

1

1. Introduction 1.2. Distributed selective search

relevance based on the presence (or absence) of the query terms, and provided an unranked
result set. Whereas the current search systems might employ a multi-layered retrieval strategy
that operates different algorithms at each level, and make use of a slew of information, such as,
the document quality, authority, and time-stamps, in addition to the user query.

When the task of information search was reserved for librarians the expected shortest
response time for an information need might have been minutes. In contrast the current search
systems are pushing the state-of-the-art at sub-second query response time. Through Web
search more and more users are being trained to expect instant search ability on datasets of
enormous size. Search engines have lead by example and have changed user expectations over
time.

All these factors, together, have made search systems more user-friendly, effective, and pop-
ular, in general. The search service which was often perceived in the past as being cumbersome,
and slow, has been transformed into an easy and extremely useful feature. For many services
and establishments the ability to search has become quintessential to their business operations.
The above trends have also however placed unprecedented amounts of computational demands
on the underlying search system. Processing large collections is in itself computationally ex-
pensive, but the sophisticated retrieval algorithms further add to the complexity.

1.1 Distributed exhaustive search

Commercial search providers have kept up with the growing computational demand by period-
ically expanding their computing and network infrastructure. The large document collections
are typically partitioned into shards which are then distributed across a large number of comput-
ers and searched in parallel to provide rapid interactive search. Typically, all index shards are
searched for each query. This solution, referred to as distributed exhaustive search, (depicted in
Figure 1.1), assumes availability of large computing clusters. As such, the data centers deployed
by the commercial search engines are the quintessential components of this search architecture.

1.2 Distributed selective search

For most mid-sized and small organizations, however, deploying a large computing infrastruc-
ture is impossible. As a result, such resource-constrained organizations often have to settle for
working with smaller document collections, and also avoid employing computationally intense
state-of-the-art retrieval models. This thesis offers a search solution for such organizations that
does not require them to make such compromises. More generally, this thesis proposes a search
architecture that can support efficient and effective large-scale search using few computing
resources. To achieve this goal we propose an architecture that partitions the collection such
that only a few shards need to be searched for a query. We refer to this approach as distributed

2

1.2. Distributed selective search 1. Introduction

…

… Computing

Cluster

Index

Shards

Document

Collection

<query>

…

Controller

…

…

…

…
……

Cluster

…

…

…

Result

Lists

Merged

Result List

Figure 1.1: Distributed exhaustive search.

selective search and demonstrate that it reduces the amount of search effort needed per query
dramatically while providing competitive search effectiveness.

1.2.1 Distributed selective search: Efficiency

Distributed selective search brings together insights from several different research areas of IR.
In fact, we build upon two key ideas from existing large-scale search approaches: parallelism,
and partial search. The task of estimating the relevance of a document for a query can proceed
independently of any other document’s relevance estimate. As such, query evaluation on large
collections can be easily parallelized. Like distributed exhaustive search, distributed selective
search also exploits this property by partitioning the collection into smaller shards which can
be searched in parallel.

Secondly, for most search applications every document that contains a query term does not
need to be evaluated in order to provide accurate search results. Large-scale search systems
often leverage this property and deploy partial search approaches to improve query processing
efficiency. Tiering techniques are instances of this category that divide the collection into a small
number of tiers based on document properties such as, quality and geographic source [5, 18, 63].

3

1. Introduction 1.2. Distributed selective search

During query processing only the primary tier is searched by default. The secondary tier(s) are
searched if the primary tier fails to return sufficient results. Tiering techniques exploit the
observation that it is not necessary to evaluate every document that contains a query term in
order to provide accurate search results. However, the primary tier is also typically quite large.
As a result often it is further partitioned into smaller shards in order to facilitate distributed
exhaustive search.

<query> Controller

…

…

…

…

………

…

Figure 1.2: Distributed selective search.

In this thesis we claim that both the above properties can be better leveraged using dis-
tributed selective search by employing a more sophisticated collection partitioning technique,
and by searching only a small subset of these partitions for each query. The proposed approach

4

1.2. Distributed selective search 1. Introduction

in effect transforms a large-scale distributed task (as performed by exhaustive search) into a
smaller distributed task. Naturally, the demand for computing resources reduces dramatically,
as is illustrated by the schematic diagram of selective search in Figure 1.2.

So far we have focused on the efficiency of distributed selective search, and on its low
resource requirements. In the following section the focus shifts to search effectiveness. We
present the center pieces of the selective search architecture that make it possible to support
search that is as accurate as exhaustive search while being substantially more efficient.

1.2.2 Distributed selective search: Effectiveness

The distributed selective search approach is based on the following two-part hypothesis where
we conjecture that:

1. A document collection can be partitioned such that the majority of the relevant docu-
ments for a query are concentrated in a few shards without any prior knowledge of the
query-set; and

2. When a collection is thus partitioned three things follow:

(a) the shards can be ranked based on their relevance to the query;

(b) the minimum number of top shards in this ranking that need to be searched for
the query can be estimated; and

(c) the merged results from the searched shards can be just as accurate as results from
exhaustive search.

The first part requires the collection to be organized in a way that is conducive to selective
search. If the distribution of relevant documents across shards is skewed then the search can be
restricted to the relevant shards without any loss in search effectiveness. The challenge though is
to provide a skewed distribution of relevant documents for every query that the search system
receives without any prior knowledge of the query stream, and without re-partitioning the
collection often. We identify the Cluster Hypothesis as a potential solution to this problem [77].
As per the Cluster Hypothesis closely associated documents tend to be relevant to the same requests.
This suggests that if similar documents are clustered together then the relevant documents for a
query would also be grouped together. By extension, a document similarity-based partitioning
technique would divide a collection such that, (a) the distribution of relevant documents across
the created shards is skewed for any (or many) given query, and (b) each shard consists of
similar, and thus topically homogeneous documents (topical shards). Developing a collection
partitioning technique that satisfies the above requirements, and also scales to large collection
sizes is one of the goals of this thesis.

The second part of the hypothesis recognizes that for each query the set of relevant shards

5

1. Introduction 1.3. Contributions of thesis research

might be different. As a first step, the ability to rank the shards based on their estimated
relevance to the given query is needed. Next, in order to search as few shards as possible without
degrading effectiveness, a rank cutoff on the estimated shard ranking has to be computed.
Proposing accurate, efficient and scalable solutions to these problems is the other goal of this
thesis. We conjecture that these two tasks, shard ranking, and shard rank cutoff estimation,
are interdependent and propose a joint formulation that provides query-specific predictions for
both the problems.

Finally, the above hypothesis states that a search architecture that satisfies all of the above
requirements can balance search effectiveness, and efficiency, while demanding few computing
resources. A thorough validation of this hypothesis using some of the largest available datasets,
and using the appropriate evaluation metrics is the bigger goal of this thesis.

1.3 Contributions of thesis research

This thesis brings together learnings from research areas of large-scale search, cluster-based
retrieval, and federated search, to propose a search architecture that is efficient and effective even
in low-resource environments. Search approaches for large collections have always employed
distributed query processing in order to achieve fast response time [4, 5, 7, 21, 63]. However,
these approaches have typically partitioned the collection such that the majority of the shards
need to be searched for each query. The search approach proposed in this thesis also employs
distributed query processing, however, by controlling the partitioning of the collection, the
search is restricted to only a few shards for each query. The consequence of this is substantially
lower search effort, and fewer computing requirements than those of other large-scale search
approaches. Thus one of the key insights from this work is the importance of the collection
organization employed by a distributed search system.

One of the key elements of this thesis, the Cluster Hypothesis, comes from the research
area of cluster-based retrieval [24, 27, 64, 79, 82, 85]. Our contribution toward this research
area is in proposing a collection partitioning technique that, in addition to modeling the Cluster
Hypothesis, offers several advantages over the traditional approaches. First, it is scalable. Large
collections can be efficiently divided into topical shards using the approach proposed in this
thesis. The computational complexity of the approach is linear in collection size. Second, it
can be parallelized. The process of assigning a document to a shard can proceed in parallel
for multiple documents. Third, it is general. Since the proposed approach does not require
knowledge of the query traffic, and does not use any external resources, it can be applied to
any collections. Finally, it is effective. Through empirical validation we demonstrate that the
proposed approach creates shards that concentrate the relevant documents for a query into a
few shards. Most existing collection partitioning techniques lack some or all of these properties.
The other contribution of this thesis is its potential to revive the research area of cluster-based

6

1.3. Contributions of thesis research 1. Introduction

retrieval which went dormant more than a decade ago due to lack of consistent and stable
empirical results.

The field of federated search has investigated the problem of ranking collections of doc-
uments (resources) for the past two decades [2, 14, 15, 32, 40, 65, 66, 69, 74]. This research
problem is similar to the shard ranking problem that we study in this thesis. Our contributions
to this line of work are two-fold. Nearly all existing resource ranking algorithms model the
task as consisting of a single goal: estimating the distribution of relevant documents across
resources for the query. Instead, we argue that it consists of two interdependent goals: (a)
shard ranking, and (b) shard rank cutoff estimation. We propose a joint formulation of these
tasks, and demonstrate that a query-specific ranking, and cutoff estimation improves search
efficiency. This thesis is also one of the first to study the efficiency of the resource (or shard)
ranking algorithms. Previous work has focused exclusively on the effectiveness of these algo-
rithms. This investigation leads to our other contribution. We renew the research interest in the
older class of resource ranking algorithms, popularly known as the big document approaches or
model-based algorithms [14, 32]. Although, these algorithms have fallen out of favor because of
their lower effectiveness, we demonstrate that they offer unparalleled efficiency. This suggests
that reviving the research on more accurate model-based algorithms might be worthwhile.

Providing a good balance between the competing requirements of search efficiency and
search effectiveness is a challenge for any search approach. Most existing techniques that
improve search efficiency can claim competitive search effectiveness only for the top ranks of
the search results [23, 31, 47, 74, 84, 85]. Users and applications, such as, legal search, that
care about effectiveness at deeper ranks cannot benefit from such techniques. As a result the
impact of these search approaches is limited. We addresses this limitation by employing some
of the most comprehensive metrics that evaluate the effectiveness of the search results at much
deeper ranks. The results from the empirical evaluation demonstrate that selective search
provides competitive effectiveness even on these metrics, and the corresponding search cost is
still substantially lower than that of exhaustive search. To the best of our knowledge no other
search technique can provide such a balance of efficiency and effectiveness.

The amount of search effort needed per query has a direct impact on the operational costs of
a search system. In addition to the computing resources used by the search system, the cooling
systems used to maintain the temperature of the computing facilities also consume enormous
amount of energy. As such, the savings in search effort offered by selective search also translate
into financial, and environmental savings. Overall, we believe that the proposed approach
is a greener search process, that also lowers operational and maintenance costs. As such, the
distributed selective search technique can potentially be useful even to large organizations that
are not constrained in terms of the available computing resources but would like to lower their
energy requirements.

In summary, there are several rationales, based on both search efficiency and effectiveness,

7

1. Introduction 1.4. Overview of dissertation organization

based on historic relevance, and on its potential to change the current search paradigm, that
justify a careful and systematic study of distributed selective search.

1.4 Overview of dissertation organization

This thesis is organized as follows. The related prior work that forms the basis of the work
in this thesis is described in Chapter 2. The high-level architecture of the distributed selective
search approach is provided in Chapter 3 along with a reference system. Chapters 4 and 5
describe the two center-pieces of the proposed search architecture – shards creation, and shard
selection. An in-depth treatment of the efficiency of selective search, as measured in query
runtime, is provided in Chapter 6. In Chapter 7 we conclude the dissertation with the summary
of the research, its contributions, and its possible future directions.

8

Chapter 2

Related Work

Three lines of research provide the context for the work in this dissertation. The problem of
efficiently searching a large collection is at the core of any large-scale search system. We review
this literature in the first section of this chapter. The second line of related work, cluster-based
retrieval, takes us back four decades where the initial goal was to improve search efficiency
but later shifted to improved effectiveness. The literature from the federated search field is also
closely related to the work in this thesis, especially because of the shared research problem of
ranking collections of documents for a query.

2.1 Large-scale search

Commercial search providers care deeply about the price-performance tradeoff that the de-
ployed system can provide [4, 5, 7, 21, 63]. As a result, most search providers optimize for
multiple operational requirements, such as, throughput, response-time, resource utilization,
hardware costs, and infrastructure costs. A host of strategies are typically employed to meet
these operational requirements.

Distributed query processing is among the most widely used strategy for achieving short
query response time. Here the large collection is divided into smaller partitions, shards, that
are searched in parallel using large computing clusters. This strategy exploits the inherent
parallelism in the query evaluation process in order to reduce query latency. Another popu-
lar technique is that of index replication where data redundancy is employed to achieve the
needed throughput and fault-tolerance. Many search systems also use tiering which divides
the collection at multiple levels with the goal of evaluating the query against only a subset of
the collection [5, 63].

Notice that the first two strategies, index partitioning and index replication, do not offer
any savings in the average search cost or in the number of resources needed for the system,
but tiering can. We thus review tiering strategies in more details in Section 2.1.1. Techniques

9

2. Related Work 2.1. Large-scale search

categorized as index pruning algorithms also aim for reducing the average amount of search
effort needed per query, and are frequently used by commercial search engines. We review this
literature in Section 2.1.2.

In addition to the above techniques caching at several levels of the search system architecture
is routinely employed to reduce the disk and network activities, both of which are almost always
the costliest components of query processing.

2.1.1 Tier-based retrieval

A document quality based tiering approach separates the high quality documents into the first
tier, and the remaining documents are delegated to the lower tier(s). The document quality
can be defined as a function of various document properties, such as, its spam score, click
probability, and number of inlinks. In this architecture most queries are served by the first tier
which contains a relatively small subset of the collection and the lower tiers act as fall-back
options which are searched only if the higher tier fails to generate sufficient search results.
Every query that is successfully served by the first tier, effectively avoids searching a large
portion of the collection thus decreasing the search cost.

For Web search, it has been observed that often search intents tend to be geographically
localized. A tiering technique that exploits this property can be used to drive down the search
cost. Geographical tiering divides the document collection into tiers based on the geographical
source of the documents [18]. Cambazoglu et al. maintain a goal of constructing search results
in a geographically tiered search system that are identical to those generated by complete
search. Each incoming query is processed against the local tier by default and the highest
possible document score that could be computed for the query at each of the remote tiers is
estimated using statistics obtained from offline queries. The highest document score estimates
are compared to the score of the kth document retrieved from the local tier to predict if the
remote tier would contribute document(s) to the top k ranks. The query is forwarded to all the
remote tier which are predicted to contribute one or more documents.

It is important to note that the tiers created by any of the above strategies are still quite large.
In fact, because of their size each tier is typically further divided into multiple smaller shards
that are evaluated in parallel for each query. For search environments with limited computing
resources the cost of searching even just the primary tier can be high.

2.1.2 Index pruning

There is a large body of prior work that investigates the problem of improving search efficiency
by manipulating the inverted index of the document collection. These approaches are commonly
categorized as either performing dynamic index pruning or static index pruning depending upon
when the reduction in index happens.

10

2.1. Large-scale search 2. Related Work

Static index pruning

Static index pruning techniques explore the space of lossy compression techniques where search
efficiency is improved by permanently excluding certain portions of the inverted index such
that these omissions would have minimal adverse effect on the search effectiveness.

Carmel et al. [19] propose two term-centric pruning techniques that work by reducing the
entries in the term postings lists. Shorter posting lists reduce the volume of data that needs
to be read and transfered from the disk. The first technique, uniform, prunes the postings
list of each term in the index using a single fixed threshold that is defined on the document
scores for the term. In the second technique a term specific threshold is computed for each
term by defining the threshold as a function of the kth highest document score for the term.
The experimental results demonstrate that term specific thresholding performs better than
the uniform thresholding approach. However, even with term specific pruning the average
precision degrades significantly when only 10% of the index is pruned. The drop in P@10
values is more gradual as the index is pruned more aggressively. Also the overlap between the
top 10 original results and those obtained with the pruned index is high (about 0.7 or higher)
for 35% or lower index pruning. Overall, this approach is a good contender if only precision at
early ranks is of interest.

de Moura et al. [25] extended the above work by proposing a pruning approach that can
effectively handle conjunctive and phrasal queries in addition to disjunctive queries. The set of
sentences that contain at least one of the terms identified by Carmel et al. [19] as important to the
document is identified in the first step. This set of sentences is ranked based on the frequency
of these terms. All the terms in the top n sentences are included in the pruned index. This
approach retains not just the important terms but also the terms that co-occur with those terms
in the document. The authors hypothesize that these terms are also likely to co-occur in the
conjunctive and phrasal queries. Single term queries are excluded from the evaluation query
set because their performance under the proposed approach, and the baseline system (Carmel
et al. [19]) is very similar. The experimental results demonstrate that at 60% index pruning the
locality based technique can provide comparable average precision, and precision-recall curve
to that with unpruned index. The query runtime with the 60% pruned index is 65% of that with
unpruned index. Also the overlap between the top 20 original results and those obtained with
the 60% pruned index is about 0.7. Overall, the locality based approach provides substantial
improvements over Carmel et al. across the board.

Büttcher and Clarke [12] experiment with document-centric pruning that works by indexing
only a subset of terms from each document. Kullback-Liebler divergence computed between
the unigram language model of a document and the collection is used to rank the terms in the
document based on their contribution to the document. The top k terms or the top n% of the
terms in the document, that is, the terms that are most unique to the document, are selected to be
indexed from each document. In addition to this in-memory pruned index the complete index

11

2. Related Work 2.1. Large-scale search

is also searched in parallel for every query. The results from the unpruned index are referred
to whenever postings cannot be found in the pruned index for a query term. The experimental
results demonstrate that by indexing only the top 10% terms from each document, the pruned
index size is 12% of the original index, and the query processing time reduces by 87%. The
corresponding search Precision degrades by 2.5% for the top 10 documents, by 3.4% for the top
20 documents, and MAP degrades by 16%. Nguyen [55] propose a posting-based approach that
combines term-centric and document-centric approaches to compute a score for each postings
list entry < t, d >. The pruning is performed by thresholding on these scores to selectively
include postings list entries. The experimental results show that document-centric pruning
does as well or better than the posting-based approach.

Static index pruning is most useful when the pruned index of a collection can fit entirely
in the main memory. For large collections this might be difficult even when index is pruned
aggressively. For instance, the largest dataset used in this dissertation consists of 0.5 billion
documents (Indri index is 5.4 TB). A 10% subset of the complete index would be about 54 GB
for this dataset. As such, the usability of these techniques for large datasets is questionable
and remains to be evaluated. Also, the performance of these techniques in absence of the
on-disk unpruned index has not been studied. Recall that in this thesis we assume that only
limited computational resources are available to the search system. Thus a setup that needs
to consult the complete index of a large dataset, even occasionally, would be unrealistic. Since
static index pruning employs lossy compression it is important to study individual query
performance. This is especially true for higher compression rates, such as those recommended
by de Moura (60% and higher), and for higher Recall levels where search Precision performance
can potentially vary substantial across queries. Unfortunately, none of the studies provide
stability or robustness analysis that can quantify the fraction of evaluation query that were
adversely affected by pruning.

Dynamic index pruning

Dynamic index pruning is a lossless query optimization technique that aims at reducing the
amount of computations needed for a query, on average.

Smeaton and van Rijsbergen [70] proposed one of the early approaches that explored dynamic
index pruning. The main idea was that not all query terms are equally important for obtaining
document ranking that is similar to the perfect ranking and thus excluding these query terms from
the query evaluation process can provide efficiency gains without degrading search quality. To
operationalize this they process the query terms in the descending order of their inverse document
frequency (id f) weights and accumulate partial similarity scores for documents in the postings
lists of these terms. After a postings list for a query term is processed in its entirety the upper
bound on the similarity score that is obtainable from the documents not yet in the accumulators
is computed. If this value is smaller than the highest partial similarity score in the accumulators

12

2.1. Large-scale search 2. Related Work

then the query evaluation is terminated.

Wong and Lee [83] studied two variants of this approach. The first method processes the
query terms in the descending order of their t fmax ∗ id f weights where t fmax is the highest within
document frequency observed for the term. The second approach takes this a step further by
ordering the entries in the postings list for each term based on the t f weight of the term in the
document. Sorting of the postings lists ensures that documents that would contribute more
toward the partial document scores are processed before the documents that would make small
contributions.

Moffat and Zobel [54] suggested thresholding the number of accumulators that hold the
partial document scores during the query evaluation as a way of increasing the efficiency. They
demonstrated that using only 1% of the collection size as the upper limit on the number of
accumulators could lead to search Precision that was comparable to the one obtained using
an unlimited number of accumulators when their method was executed in the continue mode.
In the quit mode the processing of the postings lists and the query evaluation stops once the
upper limit on number of accumulators is reached but in the continue mode the postings lists
continue to be processed and the partial scores for the documents already in the accumulators
are updated. Thus the continue mode does provide savings in terms of the memory used to
hold the accumulators however it does not reduce the search space.

Persin et al. [58, 59] pioneered a line of research that leveraged different orderings of posting
list entries in order to improve query evaluation efficiency. Persin recommended sorting the
posting lists based on document term frequency instead of document number, and provided
mechanisms to query and compress such frequency sorted indexes. Anh et al. [1] improved on
this approach using impact sorted index where the entries in the postings lists are sorted based
on the normalized t f .id f values. Query evaluation is terminated after examining the top k
postings list entries. The empirical results demonstrate that the search effectiveness does not
degrade significantly. Garcia et al [29] introduced another ordering policy for postings lists
where the entries in the postings lists (documents) are sorted by the frequency with which they
were ranked highly for training queries. These techniques are also commonly referred to as the
early termination optimization or inexact top k retrieval techniques.

Turtle and Flood [76] proposed an optimization technique that is rank safe for the top r
results – it is guaranteed to produce the same document ranking for the top r results as would
be provided by a non-optimized system. The first step of the algorithm orders the query terms
(and their posting lists) according to their inverse-document-frequencies (idf). Less frequent
(more important) terms are ordered before more frequent terms. The first r documents provided
by this ordering of the posting lists are evaluated and ranked. The lowest document score in
this ranking is referred to as the max-score. For every document after the first r documents
the following scoring strategy is used. The query terms are sorted based on their idfs. The
score contribution of the query term t for the current document is computed and added to

13

2. Related Work 2.1. Large-scale search

the document score. For the remaining query terms their highest possible contributions1 are
assumed and temporarily added to the document score. If the resulting document score is less
than the max-score then the evaluation for this document is terminated. However, if the score
is higher than the max-score then the next query term is evaluated similarly. If the document is
scored for all the query terms and the final document score is higher than the max-score then
the document is inserted into the current top r ranking and the max-score value is updated. As
the evaluation progresses the acceptance threshold placed by the increasingly higher max-score
value becomes harder to satisfy and the evaluation for many documents terminates before all
the terms are scored.

Brown [11] proposed an optimization technique based on the use of topdocs lists which
are partial posting lists that are sorted on term frequency (instead of document number). In
addition to the term posting lists, the topdocs list are maintained for terms with long posting
lists (low idf). During query evaluation all the documents for terms with short posting lists are
added to the candidate document set but for terms with long posting lists only the documents
in the topdocs are added to the set. All the documents in the candidate set are evaluated and
ranked to provide the final results. Unlike the max-score approach, the optimization proposed
by Brown [11] is not rank or score safe.

The term bounded max-score (TBMS) algorithm is an extension to the max-score algorithm
proposed by Turtle and Flood [76] for top k retrieval [72]. The TBMS algorithm employs
the topdocs lists, proposed by Brown [11], to further improve the efficiency of the max-score
algorithm. However, instead of using term frequency to sort the topdocs lists, TBMS employs
document weight which is the ratio of term frequency and document length. In the first step
of the query evaluation process all the entries from the topdoc lists of each of the query terms
are added to the candidate document set, D. The documents in the set D are scored and ranked
in the next step to provide the first version of the top k results for the query. The smallest
document score from set D is used as the threshold for the max-score algorithm. Specifically,
when a document outside of the candidate set is considered for evaluation, first an upper bound
on the document’s score is estimated and compared to the threshold. If the upper bound is not
higher than the threshold then the document is guaranteed to be not in the top k ranks and thus
is not evaluated. TBMS uses this methodology to skip over posting lists entries and also query
terms to reduce the number of computations needed for each query, on average.

In general, large-scale search systems almost always employ a dynamic index pruning
technique to improve query processing efficiency. We thus compare the approach proposed
in this thesis with a baseline search system that is optimized using a dynamic index pruning
technique in Chapter 6. However, before we conclude this section, the following limitations of
dynamic index pruning techniques are worth noting.

The effectiveness of some of the techniques, such as those by Smeaton and van Rijsber-

1The highest possible contribution of a term is a collection specific value that can be precomputed.

14

2.2. Cluster-based retrieval 2. Related Work

gen [70], and Wong and Lee [83], can be dependent on the query length. These techniques
provide a simple and an effective way to optimize the evaluation of long queries. However, it
is difficult for these techniques to achieve a good balance between effectiveness and efficiency
for short keyword queries where discarding a term would have a significant impact on the
search effectiveness. While other techniques, such as those by Brown [11], and Strohman et
al.[72], need additional data structures (topdocs) for their operation. More importantly though,
dynamic index pruning can offer only limited reduction in the amount of disk activity needed
for query evaluation. This is because the complete posting lists for the query terms must still be
read from the disk, even if the individual posting list entries (and the corresponding document
scoring) are skipped.

2.2 Cluster-based retrieval

The term cluster-based retrieval has been used for two different types of search approaches in
prior work. The search approaches that cluster the complete collection as a preprocessing step,
and select one or more clusters during query processing have been referred to as cluster-based
retrieval methods [24, 42, 64, 78, 85]. Document retrieval models that cluster only the documents
returned for the query with the goal of improving search effectiveness have also been referred
to as cluster-based retrieval [38, 48]. The former is related to this thesis and is thus studied in
detail below.

Retrieval models that employed clustering algorithms were much more popular a few
decades ago than they have been in the recent past. For instance, in the early 1970s the use
of inverted indexes for efficient access, and full-text retrieval were not common IR practices.
One early work employed clustering of document collections to enable an efficient user-guided
search [64]. The query response time had to be strictly controlled due to the interactive nature
of the task. This was achieved by partitioning the collection containing 200 documents into
smaller groups of similar documents using Rocchio’s clustering algorithm [41]. For query
processing the similarity between the query and the cluster centroids was computed and the
most similar cluster was returned to the user. This approach reduced the number of similarity
computations needed for each query thus improving the efficiency and query response time.

Jardine and van Rijsbergen [42] organized the collection of 200 documents into a hierarchy of
progressively more similar document clusters. Specifically, the single-link clustering algorithm
and the Dice coefficient as the similarity measure were applied. During query evaluation the
single most similar cluster from the hierarchy was chosen for each query using a top-down
tree traversal based cluster selection approach. The proposed approach was compared with the
traditional ad hoc document retrieval model as the baseline and cluster-based retrieval with op-
timal cluster selection as the gold-standard benchmark. The experimental results demonstrated
that the proposed approach performed at par with the best performing ad hoc retrieval setup

15

2. Related Work 2.2. Cluster-based retrieval

in terms of precision but not recall. Also, the proposed approach fared substantially worse than
cluster-based retrieval without optimal cluster selection.

Although, the approach proposed by Jardine and van Rijsbergen [42] had a limited impact
on the subsequent techniques proposed in this area, their paper remains an important landmark
in cluster-based retrieval because it was the first work to formally define and make use of the
cluster hypothesis which is the basis of all the cluster-based retrieval algorithms. The cluster
hypothesis states that similar documents tend to be relevant to the same request. This implies that
if a collection is organized such that the sets of similar documents are separated into their own
clusters then the document retrieval task can be formulated as a function of the cluster retrieval
problem. This transformation of the document retrieval problem is expected to improve its
efficiency and effectiveness. The cluster hypothesis is one of the cornerstones of the work
proposed in this thesis.

Croft [24] provided a more principled cluster selection technique by formulating the task in
a probabilistic framework where the conditional probability of the cluster being relevant to the
query was estimated using Bayes’ rule as follows.

P(Ci|Q) =
P(Q|Ci)P(Ci)

P(Q)
∝ P(Q|Ci)P(Ci) (2.1)

Here the prior probability, P(Ci) is simply the size of the cluster, and P(Q|Ci) is approximated
by the product of individual query term generation probabilities.

P(Q|Ci) =
∏
q jϵQ

P(q j|Ci) (2.2)

This cluster ranking model is similar to the widely used query likelihood model for document
retrieval. An empirical evaluation of this model was conducted on a collection of 1400 docu-
ments from the Cranfield collection. The documents were clustered into a hierarchy of 37 levels
and more than 400 leaf-node clusters using single-link clustering algorithm. Two variants of the
collection selection algorithm based on the direction of the traversal, top-down or bottom-up,
were evaluated. The results showed that as compared to the baseline, cosine similarity based
document retrieval from the complete collection, the cluster-based retrieval with bottom-up
cluster selection does marginally better when the evaluation metric weights precision twice as
important as the recall. This is not completely surprising because the experimental setup used
in this work allowed cluster-based retrieval to return only one cluster for every query and the
clusters selected by the bottom-up strategy were almost always small (about 2 documents).

Subsequent work in cluster-based retrieval that attempted to reproduce the trends observed
by Jardine and van Rijsbergen, and Croft, using a better evaluation setup that consisted of
more datasets and improved metrics were unable to demonstrate consistent and useful gains
in retrieval effectiveness over that of the traditional document retrieval [33, 79, 82]. In fact,
Voorhees [79] concluded after an extensive comparison of hierarchical clustering algorithms,

16

2.2. Cluster-based retrieval 2. Related Work

and several cluster selection strategies that even the combination of the costliest clustering
algorithm (complete linkage) and a costly top-down cluster selection approach could only
provide marginal improvement over the baseline document retrieval approach. One of the last
works in this line of research, by El-Hamdouchi and Willet [27], also concluded after a thorough
comparative analysis that the non-clustered traditional retrieval on the complete collection was
more effective than any of the hierarchical cluster-based retrieval approaches.

There are several potential causes of the observed inconsistent improvements with cluster-
based retrieval methods, such as, ineffective document representation (using only document
titles or abstracts), sub-optimal cluster selection algorithms, datasets with short documents,
and small datasets. Overall, none of the studies could justify the additional cost of creating
elaborate collection hierarchies by demonstrating consistent and substantial improvements in
search effectiveness. Also, the scalability of the hierarchical approaches was becoming a serious
limitation as larger document collections were starting to become available. As a result, this
line of work that focused on hierarchical arrangement of datasets and on improving search
effectiveness went dormant for about a decade.

The work by Xu and Croft [85] is related to cluster-based retrieval approaches because it
uses the Cluster Hypothesis. However, it did not continue the tradition of creating document
taxonomies, neither did it expect to improve search effectiveness over complete search. The
approach proposed by Xu and Croft [85] offered a solution which consisted of a collection
partitioning technique with linear time complexity, and a more effective cluster selection algo-
rithm. Specifically, a two-pass K-means clustering algorithm and a Kullback-Liebler divergence
based distance metric were employed to partition the complete collection into clusters of similar
documents. The efficiency of the partitioning algorithm allowed for experimentation with col-
lections containing over a half a million documents while using a full-text retrieval approach.
For each query the relevant clusters were selected by computing the distance between the
query’s unigram language model and each cluster’s unigram language model. The Kullback-
Liebler divergence was used as the distance metric. The empirical evaluation compared the
accuracy of the documents retrieved from the top 10 clusters to those retrieved from the com-
plete collection. The effectiveness of the proposed approach was found to be comparable to
that of the centralized search for all the three datasets evaluated. When compared to a second
baseline system that organized the documents based on their sources, the proposed approach
provided substantially more accurate retrieval at all of the top 30 ranks.

Because of the similarities of the search architecture of the above approach and cluster-
based retrieval techniques, we reviewed this work in the current section. However, Xu and
Croft had approached their work from the distributed IR and federated search point of view
(Section 2.3) where the document collection might be already partitioned into groups of docu-
ments (resources). As a result, in addition to the above setup they also studied two other search
environments which offered progressively less cooperation to the search system. The local clus-

17

2. Related Work 2.3. Federated search

tering scenario clustered only the documents within a resource according to their similarities.
The least cooperative setup, multi-topic representation did not physically re-organize documents
but simply estimated several topic models for each of the resources which were then used for
improving resource selection. The experimental results demonstrated that at early ranks the
Precision of the document retrieved with local clustering is comparable to those retrieved from
a complete index. The Precision however degrades at deeper ranks (15, 20, and 30). It is not
surprising that the least cooperative setup, multi-topic representation, does much worse than
the performance with complete index. However, multi-topic representation does better than
the distributed retrieval baseline of source-based organization.

The most cooperative setup studied by Xu and Croft is closely related to the search approach
proposed in this thesis because of the similarities in the collection organization technique, and
the search architecture.

More recently Puppin et al. [60] employed a co-clustering algorithm to partition a large
document collection using query log data. The query log covered a period of time when
exhaustive search was used for each query. These training queries and the documents that they
retrieved were co-clustered to generate a set of query clusters and a set of corresponding document
clusters. A collection of 6 million documents was partitioned into 17 clusters. Documents that
were not retrieved by any of the training queries could not be clustered using the proposed
technique. Such documents made up 52% of the collection. The overlap with results from a
complete index was used as a search Precision measure, instead of human-labeled relevance
judgments. Random partitioning of the dataset into 17 resources was employed as the baseline
organization. Searching the top few clusters was found to be more accurate than searching the
top few random partitions.

2.3 Federated search

The field of federated search concerns itself with servicing search requests in the presence of
multiple (often autonomous) collections of documents (resources) [15, 66]. This thread of research
is related to the two research areas reviewed earlier and to this thesis because of the similarities
in their search architecture. However, there are two main distinguishing characteristics of
federated search. First, the collections of documents, the resources, are predefined. The search
system does not, and often cannot reorganize the documents. The other unique attribute is
the level of cooperation that the resources offer to the federated search system. In many cases,
minimal cooperation is available. Each resource is an autonomous entity that does not share
any data with the federated search system and provides access to the documents only through
a query interface.

In this environment it becomes necessary to learn a profile for each resource that can then be
used to infer the ranking of resources for a given query. Query-based sampling (QBS) [16, 17]

18

2.3. Federated search 2. Related Work

has been widely used to acquire resource profiles in an uncooperative environment. QBS
approximates random sampling of the resource contents by executing a small set of queries
against the resource and downloading the top few documents retrieved for each of these
sampling queries. The set of downloaded documents is then used to create a representation
for the resource. Several variants of QBS have investigated its various parameters. The effects
of different types and sizes of the sampling query sets have been studied [23, 39, 68]. Also, the
impact of different types of retrieved sets (documents, snippets, document blocks) and their
sizes have also been analyzed in literature [6, 67]. The other research problem in federated
search that has received much attention is the resource selection problem where the goal is to
infer a ranking of resources based on their estimated relevance to the query. This is closely
related to the problem of shard ranking studied in this thesis. Previous work in resource ranking
algorithms can be classified into three families: model-based, sample-based, and feature-based
algorithms.

2.3.1 Model-based algorithms

Nearly all of the early resource ranking algorithms adopted a model-based approach where
they learned a representative model for each resource and used it to infer a ranking of resource
for a query.

Gravano et al. proposed a series of three algorithms [30, 31, 32], bGlOSS, vGlOSS, and
hGlOSS, all of which assumed a cooperative search setup where each resource periodically
shares collection statistics. The bGlOSS algorithm assumed a boolean model where a resource
C is scored for the query Q using the following function.

gloss(Q,C j) =
n∏

i=1

d f (qi,C j)
|C j|

(2.3)

where the function d f (qi,C j) returns the number of documents in resource C j that contain an
occurrence of the query term qi. This approach assumed a cooperative environment where each
resource shares all the necessary collection statistics with the resource ranker. The empirical
evaluation using a search setup with six resources demonstrated that for 84% of the queries the
top ranked resource is among the best resources for that query, and for 88% of the queries all
the best resources were included in the set of resources ranked highly by GlOSS. The set of best
resource for a query was defined based on the number of candidate documents in the resource
for the query, not using human-labeled relevance judgments.

A later manifestations of GlOSS, vGlOSS [30], improved over the boolean version by adopt-
ing the vector-space model for document and query representation, and by proposing a more
sophisticated resource scoring. At a high-level, vGloss ranks resources based on their usefulness
for the query. The usefulness of a resource is defined as the number of documents for which the
similarity to the query is above a user-defined threshold. In order to compute the usefulness

19

2. Related Work 2.3. Federated search

scores without executing the query against each resource, an approximate scoring function is
proposed. For this function two resource-specific summary statistics are assumed to be avail-
able for every vocabulary item of the resource: cumulative term weight (for instance, collection
term frequency), and document frequency. These statistics are used in two different ways to
create vectors for hypothetical documents from each resource. Query vector and the document
vectors are used to compute approximate similarity scores which are then thresholded and
eventually provide the estimated usefulness score for the resource. An empirical evaluation
using 53 resources and nearly 7000 queries demonstrated that the proposed approach when
thresholded at similarity score of 0.2 provides good balance of recall and precision on the
resource ranking task.

The next model in this line of research, hGloss [32], is an extension of vGloss (or bGloss)
that operates in a hierarchy of Gloss servers as a meta-server. The goal is to direct the user
query to the Gloss server that indexes resources containing relevant documents for the query.
As such, the task is to rank the Gloss servers, instead of the resources. The proposed approach
is similar to the scoring function employed by vGloss. The hGloss server uses server-level
summary statistics, such as, the number of resources in the server that contain the query term,
to infer a ranking of the Gloss servers. The user chooses a particular server(s) to visit based on
this ranking and the vGloss scoring function is used next to rank the resources indexed by this
server.

Callan et al. [14, 15] proposed a resource ranking approach, CORI, that did not assume any
cooperation from the resources. The CORI algorithm represented each resource as one large
document containing all the unique terms (and their document frequencies) in the resource.
This transforms the resource ranking task into a document ranking problem. CORI employs an
adaptation of the INQUERY [13] document ranking algorithm to the big documents to infer a
resource ranking for the query. Specifically, the formulation used for ranking the big documents
is as follows:

T(i, j) =
d f (i, j)

d f (i, j) + 50 + 150 ∗ cw(j)/avg cw
(2.4)

I(i) =
log(K+0.5

k f (i))

log(K + 1.0)
(2.5)

p(qi|s j) = 0.4 + 0.6 ∗ T(i, j) ∗ I(i) (2.6)

where d f (i, j) is the number of documents in resource s j that contain query term qi, cw(j) is the
number of indexing terms in resource s j, avg cw is the average number of indexing terms across
resources, K is the total number of resources, k f (i) is the number of resources that contain qi

and n is the query length in terms. For a query term qi, the I(i) component is constant for all the
resources. The T(i, j) component introduces a bias for small resources (small cw(i)) with many
documents containing the query term (large d f (i, j)). The probability estimates based on the
individual query terms (Equation 2.6) are combined using one of the INQUERY operators, such

20

2.3. Federated search 2. Related Work

as, sum or and, to obtain a relevance score for the resource. The collection statistics required
in the above formulation is approximated using the query-based sampling (QBS) technique.
CORI has been empirically evaluated on datasets of different sizes and different number of
total resources [15]. The results showed that for each dataset the top 10% of the resources
contained about 60% of the relevant documents as that contained in the top 10% of the gold
standard ranking. CORI’s top 50% of the resources contained 90% or more of the relevant
documents in the 50% of the gold standard ranking. The gold standard ranking was obtained
by ordering the resources based on the number of relevant documents in a resource. The effect of
incomplete collection statistics was studied by comparing CORI’s performance with complete
resource representations and with representations learned with QBS. The difference in CORI’s
performance was found to be small when the resource representations were learned from 3%
to 6% sample of each resource.

2.3.2 Sample-based algorithms

The sample-based resource ranking algorithms subscribe to the philosophy that summary
statistics from each resource do not model the ability of the resources to provide relevant
documents. In order to capture that a sample of documents from each resource is used to
construct a central sample index (CSI) which forms the basis of these sample-based approaches.

Si and Callan [69] leveraged the insight that the documents sampled from the resources
(typically using the query-based sampling technique) to learn the resource descriptions (or
profiles) could be re-purposed for resource ranking. Specifically, a central sample index (CSI) is
created from the sampled documents, and the CSI is used as a proxy for the complete central
index of the collection. The user query is run against the CSI and the top n retrieved documents
are assumed to be relevant. If nR is the number of documents in n that are mapped to shard R
then a score sR for each R is computed as:

θR = nR ∗ wR (2.7)

where the shard weight wR is the ratio of size of the shard (|R|) and the size of its sample (|SR|).
The shard scores θR are then normalized to obtain a valid probability distribution which is used
to rank the shards. An empirical evaluation that compared ReDDE with CORI observed that
ReDDE performed consistently better than CORI.

The SUSHI [74] algorithm also employed the central sample index (CSI) to predict a ranking
of the shards for a given query. It uses the scores and adjusted ranks of the top 50 documents
retrieved from the CSI for the query to fit curves for each resource represented in these doc-
uments. Three types of curves, linear, logarithmic, and exponential are tried. The curve with
the best fit is used to interpolate scores for the top m ranks for each resource. The interpolated
points from each resource are merged into a single ranking and scores are aggregated to com-
pute a relevance score for the resources. The number of unique resources present in the top

21

2. Related Work 2.4. Summary

R documents in this ranking is the predicted rank cutoff for the P@R metric. This estimator is
evaluated using common federated search datasets. The results demonstrate that SUSHI pre-
dicts lower rank cutoffs on average as compared to a query-agnostic fixed cutoff of the 10 and
its precision at rank 10 is comparable to that of the baseline approach for many of the datasets.
Notice that in addition to resource ranking, the SUSHI algorithm also predicts the number of
top ranked resources that should be searched for a query. Traditionally, a query-independent
value that has been predefined is used for this cutoff. To the best of our knowledge, this is the
first approach that proposes a query-specific predictor for the cutoff. We extend this research
direction in this thesis by proposing a family of cutoff prediction algorithms (Section 5.3).

Ipeirotis and Gravano [40] organize the resources into a topical hierarchy that is constructed
by clustering documents sampled from each resource. This hierarchy is static and query
independent. The hierarchical resource selection is performed by evaluating the query against
all of the resources at a particular level in the hierarchy using one of the flat resource ranking
algorithms like CORI. The top ranked resource at this level is then selected to be searched and
the sub-tree rooted at that node is further explored. The experimental results show that this
hierarchical resource ranking approach enables higher average precision as compared to the
flat resource ranking technique.

2.3.3 Feature-based algorithms

More recently Arguello et al. [2] took a classification based approach that develops classifier
features that are functions of CORI’s resource ranking, ReDDE’s resource ranking, query cat-
egory, and click-through data. For each resource a binary classifier is learned that estimates
the relevance probability. The confidence score assigned for a prediction by each of the classi-
fiers is used to rank the resources. The fixed rank cutoffs of 1–5 are evaluated and the results
demonstrate that the non-content features together with the conventionally used content fea-
tures yield a robust ranking approach. Of the different resource ranking algorithms reviewed
here the above approach is most dependant on external knowledge resources such as query log
data, and query categories.

2.4 Summary

This chapter reviewed three lines of research that are related to the work in this dissertation.
Since one of the primary goals of this thesis is to enable efficient large-scale search, prior art in
this research area was reviewed in Section 2.1 with special emphasis on the different techniques
that are commonly employed to improve the efficiency of the search process. This survey
highlights the absence of an approach that offers substantial reduction in search cost (effort,
runtime, and computing resources), while providing search effectiveness that is on par with
that of exhaustive search.

22

2.4. Summary 2. Related Work

The other two research areas, cluster-based retrieval, and federated search, reviewed in this
chapter are closely related to this thesis because we build upon some of the central ideas from
this literature to propose the search architecture described in the next chapter.

23

Chapter 3

Distributed Selective Search

As search systems have evolved to work with larger document collections, several techniques
have emerged that prevent the corresponding query runtime and/or the search effort from
increasing. Some of these approaches exploit the inherent parallelism in the search process
by distributing the document collection, and consequentially the search effort, across several
computing nodes [5, 7, 21, 63]. These techniques offer improvements in query runtime that
are typically proportional to the number of computing nodes allocated to the task. Since the
complete collection (or the complete primary tier) is searched in a distributed mode for each
query we refer to these approaches as the distributed exhaustive search (DES) techniques.

Other search approaches employ partial search in order to improve search efficiency. These
techniques observe that most queries can be answered effectively without evaluating all the
documents in which the query term(s) occur (Section 2.1.2). These techniques reduce the
average amount of search effort needed per query by evaluating fewer documents. In this
thesis we propose a search strategy that leverages both properties, parallelism and partial
search, to propose a search strategy that is especially well suited for environments with limited
computing resources. .

One of the goals of this chapter is to introduce the proposed search approach at a high-
level. This enables us to provide the complete view of the studied search architecture before
analyzing its individual components in the later chapters. Like any complex system with
multiple components, the different parts of this architecture influence and interact with each
other to ultimately impact the performance of the entire search system. This chapter provides
the necessary grounding for the study of these dynamics in the remainder of the thesis. The other
objective of this chapter is to introduce the baseline system and the evaluation methodology
that will be used throughout the thesis. We start by describing the baseline approach in the
next section.

25

3. Distributed Selective Search 3.2. Proposed approach: Distributed selective search (DSS)

3.1 Baseline system: Distributed exhaustive search (DES)1

The classic search systems consisted of a single monolithic inverted index for the entire doc-
ument collection. But as the collection sizes increased the single inverted index was spread
across several computing nodes in order to facilitate parallel search on the entire collection.
The distributed exhaustive search, as instantiated in this thesis, consists of two phases. In the
offline phase the document collection is divided into smaller partitions (shards). Typically, the
total number of shards for a collection is decided based on the number of computing nodes
available to the search system or the desired query response time. During the online phase of
exhaustive search the query is forwarded to all the shards for processing. The ranked results
retrieved at each shard are then merged and compiled into a final results list for the query.

The distributed exhaustive search has become the de facto search architecture for large
collections. Many search systems also support some form of query optimization techniques (Sec-
tion 2.1.2) in order to improve search efficiency. We also experiment with an optimized ex-
haustive search system in a later chapter of this dissertation and compare it with the proposed
approach. For the remaining chapter, however, we select unoptimized distributed exhaustive
search as a baseline due to its simplicity, and easy interpretation.

3.2 Proposed approach: Distributed selective search (DSS)2

We are interested in a search approach that can process a large document collection efficiently
and effectively using few computational resources. Using distributed exhaustive search to
achieve this goal is a challenge. By design exhaustive search is a resource-greedy approach.
As such, an alternative approach that effectively balances search effectiveness and efficiency
without placing enormous demands on computing resources is needed. In order to make this
more specific we define a set of objectives that the new approach must satisfy.

• Competitive search effectiveness: The search results should be as accurate as those
obtained with a strong baseline, on average.

• Low search effort: The average amount of search effort expended per query (θP) should
be substantially lower than that needed by the baseline system (θB), θP << θB.

• Short query runtime: The query response time (tP) should be substantially shorter than
that with the baseline approach (tB) given the same amount of computing resources,
tP < tB.

• Low resource requirements: The proposed approach should be able to operate in low-
resource environments where the number of available processing cores are relatively small

1We use the following terms interchangeably: distributed exhaustive search, DES, and exhaustive search.
2We use the following terms interchangeably: distributed selective search, DSS, and selective search.

26

3.2. Proposed approach: Distributed selective search (DSS) 3. Distributed Selective Search

Document

Collection

Document

Allocation

Policy

Offline Phase

S1 S2 S3 … SK

Modified

Query

Q’

Shard

Ranking

&

Cutoff

Estimation

Document

Retrieval

Query

Q
Results

Merging

Selected

Shards

{R1,...,RT}

Result

Lists

{L1,...,LT}
Final

Results

List

L

… SK

Shards

Online Phase

Query

Transfor-

mation

Figure 3.1: Schematic diagram of distributed selective search architecture.

(10–50 cores), and the main memory requirement is also low (8GB–32GB).

• Scalability: The search approach should be able to satisfy all of the above requirements
for a wide range of collection sizes (1 million to 1 billion documents).

While developing an approach that meets the above objectives, we also require it to respect the
following constraints and assumptions.

• We expect the approach to not use any external resources such as query logs, and labeled
data. This allows the approach to be widely applicable.

• We assume that the collection to be searched consists only of textual data, that is, no
images, maps, or audio files.

• We also assume a cooperative environment where the search system has a complete
control over the organization, storage and search of the dataset.

We propose distributed selective search as the potential solution that meets the above objectives
and requirements. The search architecture that supports selective search is first described in
this section, followed by the details about the approach itself.

Like distributed exhaustive search, the selective search architecture, illustrated in Figure 3.1,
also adopts a two-phase setup. In the offline phase the document collection is organized into

27

3. Distributed Selective Search 3.2. Proposed approach: Distributed selective search (DSS)

multiple smaller partitions (shards) using a document allocation policy. Query processing happens
in the online phase where the query may be first transformed into a richer representation. In
the next step of shard ranking and cutoff estimation the shards are ranked based on their estimated
relevance to the query. The top few shards are searched in the document retrieval step, and the
result lists from each of these shards are merged in the final component of this architecture.

The distributed selective search approach is based on two hypotheses. The first assumes
that a document collection can be partitioned such that the majority of the relevant documents
for a query are concentrated in a few shards without any prior knowledge of the query-set.
The second hypothesis conjectures that when a collection is thus partitioned the search can be
restricted to a few shards that have been identified as relevant for the query, and the retrieved
results can be just as accurate as exhaustive search.

The first hypothesis is addressed with the Cluster Hypothesis which states that closely as-
sociated documents tend to be relevant to the same requests. We leverage this observation to
develop a topic-based document allocation policy that partitions the collection based on doc-
ument similarity. If Cluster Hypothesis holds then a topic-based document allocation would
create shards that concentrate the relevant documents for a query into a few shards. For exam-
ple, the majority of the relevant documents for the query march madness would be concentrated
in the sports shard(s), and those for the query barack obama on sequester would be in the politics
shard(s).

The second part of the selective search hypothesis recognizes that for each query a different
set of shards might be relevant. As a result, the ability to rank the shards based on their
estimated relevance to the given query is needed (shard ranking). Also, the number of top
shards that should be searched for the query must be computed (shard rank cutoff estimation).
We recognize the inter-dependent nature of these two problems and propose a family of three
algorithms that provide a joint modeling of the shard ranking and shard rank cutoff estimation
problems. For a given query each of these algorithms identifies the shards that are likely to
contain the majority of the relevant documents for the query. During the document retrieval
step the query is executed against each of the selected shards.

The results returned by each of the shards searched for the query are merged into a single
result list in the final step of the selective search process. The merging of the ranked lists is
straightforward due to the cooperative environment assumed for this search approach. The
relevance scores of documents retrieved from different shards are comparable because the
global statistics such as the idf (inverse document frequency of the complete collection) that are
used for score normalization are compiled and shared with each of the shards in advance at
partitioning time.

At a high level selective search attempts to strike a balance between the competing goals of
high search accuracy and low search effort by controlling the partitioning of the collection into
shards, and by reducing the search space for each query. Since selective search processes the

28

3.3. Datasets 3. Distributed Selective Search

query against only a few shards it is easy to see why it would easily function in low-resource
environment.

The ability of the selective search approach to provide competitive search effectiveness
hinges on two components of this architecture. If topic-based document allocation is able to
provide a skewed distribution of relevant documents across shards, and if the shard ranking
algorithms are able to exploit this distribution, then the search can be restricted to just a few
shards without hurting effectiveness. However, this might be more or less true for some queries
than others. As such, a detailed study of the search effectiveness supported by selective search
is one of the primary goals of this thesis.

Applying a sophisticated document allocation policy comes with a side-effect of higher
computational cost of the offline phase. As such, one of the important research challenges is
to design and develop a document allocation policy that is able to parallelize the partitioning
process, is efficient, and scales sub-linearly in the collection size. While developing these
approaches we also observe the restriction on using external resources in order to maintain
a wide applicability of the proposed search approach. Although, shard creation is the single
most computationally intense task of this architecture it is worth noting that it is executed only
once for a static (or near-static) collection. Even for a more dynamic collection a complete re-
partitioning would only be warranted if the topical structure of the dataset changes drastically.

In addition to achieving competitive search effectiveness, it is crucial to verify that selective
search offers real and consistent savings in search effort. Since selective search processes
the query against only a few shards, we would expect the corresponding search effort to be
substantially smaller than that with the baseline, exhaustive search. However, for some queries
this might not be true because the selected shards may contain all the candidate documents for
the query. In this case, the search effort for both, selective search and exhaustive search, would
be same. Validating that such cases are rare, and that on an average selective search is more
efficient than the baseline is an important objective for this work.

A thorough investigation of each of these research problems is the goal of this thesis.
A detailed treatment of every individual component of this architecture is provided in the
following chapters. In the remainder of this chapter we describe and experiment with a
reference search system that demonstrates an end-to-end functioning of the distributed selective
search system. In the next section we start by introducing the datasets used through out this
dissertation.

3.3 Datasets

Three of the largest available datasets were used in this work: GOV2, the CategoryB por-
tion of ClueWeb09 (CW09-B), and the English portion of ClueWeb09 (CW09-Eng). These are
summarized in Table 3.1. The GOV2 corpus [22] consists of 25 million documents from US gov-

29

3. Distributed Selective Search 3.4. Evaluation Metrics

Table 3.1: Datasets.

Size Number Number Vocabulary Average
(uncompressed) of of Words Size Document

Dataset (GB) Documents (billion) (million) Length
GOV2 400 25,205,179 23.9 39.2 949
CW09-B 1500 50,220,423 46.1 96.1 918
CW09-Eng 15000 503,903,810 381.3 1,226.3 757

Table 3.2: Query sets.

Average Average Number Number of
Query of Relevant Relevance

Dataset Query Set Length Documents per Query Levels
GOV2 701-850 3.1 181 (± 149) 3
CW09-B TREC09:1-100 2.1 81 (± 45) 5
CW09-Eng TREC09:1-100 2.1 127 (± 67) 5

ernment domains, such as .gov and .us, and also from government related websites, such as,
www.ncgov.com and www.youroklahoma.com3. TREC topics 701-850 were used for evaluation
with this dataset and the statistics for these queries are provided in the Table 3.2.

ClueWeb09 is a newer dataset that consists of 1 billion web pages crawled in January and
February 2009. Out of the 10 languages present in the dataset the English portion contributes
about half of the pages. The two datasets used in this thesis were created from this English
portion of ClueWeb09. The CW09-B dataset consists of the first 50 million English pages and
the CW09-Eng consists of all the English pages in the dataset (over 500 million). For evaluation
with both CW09-B and CW09-Eng datasets we use the 100 queries that were used in the Web
track at TREC 2009 and 2010.

3.4 Evaluation Metrics

Three different aspects of retrieval performance are evaluated in this work — retrieval effec-
tiveness, stability and search efficiency. The following sections describe the metrics we use in
this thesis to model each of these three aspects.

3http://ir.dcs.gla.ac.uk/test collections/GOV2-summary.htm

30

3.4. Evaluation Metrics 3. Distributed Selective Search

3.4.1 Search effectiveness

We measure search effectiveness using several Precision metrics. Specifically, we analyze results
of P@{10,30,100} metrics. The P@n metric measures the fraction of relevant documents in the
top n ranks. Typically, as the n increases search systems struggle to maintain the corresponding
search precision. This motivates us to include metrics such as P@30 and P@100 to test the
efficacy of distributed selective search at deeper ranks.

We also evaluate using the mean average precision (MAP) metric, which is one of the most
commonly used summary metrics due to its perceived stability for comparing systems. MAP
computes the arithmetic mean of Average Precision of all the evaluation queries. The Average
Precision (AP) is computed by averaging the precision value at each relevant document in the
result list until some rank. The standard TREC evaluation uses the top 1000 results for AP.
Unlike the P@n metrics, MAP models precision and Recall, both in its formulation. The Recall
for a result set is the fraction of total number of relevant documents for the query that could be
retrieved. Providing competitive performance on metrics that model search Recall is especially
challenging for systems that search only a subset of the collection. Although prior work almost
never evaluated using MAP, we include this metric in order to understand the limits of the
proposed search approach, and to provide a Recall-based evaluation.

One of the drawbacks of MAP is its inability to distinguish between different grades of
relevance in the results list. To compensate for these known shortcomings we also experiment
with the metric referred to as the Normalized Discounted Cumulative Gain at rank cutoff of 100
(NDCG@100) [43]. The NDCG metric measures the worth of a document based on its relevance
and position in the results list.

The above metrics (P@10,30,100, MAP, and NDCG@100) together provide a thorough eval-
uation of search effectiveness across different Recall levels. Prior work has typically used only
a subset of the above metrics. The difference between two values of these metrics was tested for
statistical significance using the paired T-test for all of the experiments reported in this disser-
tation. When testing if an experimental configuration is significantly better than the baseline,
we have used a stricter significance criterion (p < 0.01). For the experiments where the goal is
to verify that the experimental configuration is not worse than the baseline, we have employed
a significance criterion of p < 0.05, so that even relatively small degradations compared to the
baseline are identified.

3.4.2 Stability

The search effectiveness metrics described above enable comparative analysis based on average-
case retrieval performance. The objective of the stability analysis described in this section,
however, is to quantify the performance of individual queries, specifically when contrasted with
the performance of the baseline system, distributed exhaustive search (DES). The motivation for

31

3. Distributed Selective Search 3.4. Evaluation Metrics

stability analysis originates from the observation that a search system with good average-case
accuracy might still exhibit high variance across queries and thus lead to a poor user experience.

For this analysis queries are categorized along two dimensions based on their individual
search accuracies. One of the dimensions, improvement levels, measures the percentage of queries
for which selective search accuracy is,

worse: P@r(DSS) < P@r(DES),
equal: P@r(DSS) = P@r(DES),
better: P@r(DSS) > P@r(DES),

than the exhaustive search accuracy. These are exact comparisons with zero tolerance. In the
best case, selective search would perform at least as well or improve over the exhaustive search
accuracy for all the queries.

The other dimension, classifies queries into difficulty levels based on their performance with
exhaustive search (DES). Specifically, a query is categorized as,

hard: if P@r(DES) <= 0.2,
moderate: if 0.2 < P@r(DES) <= 0.6,
easy: P@r(DES) > 0.6

The thresholds were chosen to model our intuition of query difficulty and are not necessarily
supported by any IR theory. The intent of these query difficulty levels is to provide information
about the types of queries for which selective search is or is not effective. For instance, the
improvement levels together with difficulty levels can quantify, the percentage of hard queries that
do better versus the percentage easy queries that do better with selective search. We can also ask,
for example, whether selective search is as effective for hard queries as it is for easy queries. The
best case stability would be when the worse category is empty.

3.4.3 Search efficiency

We quantify search efficiency using two different types of metrics. The search cost metrics, that
are described below, quantify the total amount of search effort expended for a query by the
given search approach. For the most part of this dissertation we use the search cost metrics to
model search efficiency, and the motivation for this is also discussed below. Later, in Chapter 6
we also quantify efficiency in terms of query runtime where the total search time for a query-set
is reported.

3.4.4 Search effort: Cost-in-Documents (CiD)

Data transfer from the hard disks to memory is almost always the costliest component of query
processing in a large-scale search system. The volume of data fetched from the disk for a query

32

3.4. Evaluation Metrics 3. Distributed Selective Search

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3
x 10

7

Query Runtime

C
os

t−
in

−D
oc

um
en

ts
 (

C
iD

)

Figure 3.2: Query runtime versus the number of postings evaluated for query.

is proportional to the number of postings scored for a query (discounting caching effects). Also,
the number of computations performed for a query is directly proportional to the number of
postings evaluated for a query. The results in Figure 3.2 validate this relation by comparing
query’s runtime with the number of postings evaluated for it. For this analysis we used the
first 100 queries from the TREC 2009 Million Query track. Each query was processed against
a single Indri4 index using a single processor. The document collection consisted of about 51
million documents from the CW09-Eng dataset.

The Pearson’s correlation coefficient between the two variables, query runtime and number
of postings evaluated for query, is 0.98. Prior work that studies search efficiency also employed
posting list based efficiency metrics [10, 72]. These observations motivate the primary metric
for search efficiency used in this dissertation, cost-in-documents (CiD). For selective search the
CiD metric consists of two components. The total number of postings scored at all the selected
shards for the query, CiDq

R, is the first part of the metric.

The second component captures the cost of the shard selection step. The number of postings
evaluated for the query by the shard ranking algorithm is used to model the cost of this step.
For shard ranking algorithms such as ReDDE that adopt the sample-based model, the cost of
this step is proportional to the number of postings evaluated for the query at the sample index
(Section 2.3.2). For model-based approaches (section 2.3.1) such as CORI, the cost of shard
ranking is proportional to the number of shard models evaluated for the query. In either case
we refer to this quantity as CiDq

SS, and the CiDq for a query is simply the addition of CiDq
R and

CiDq
SS. The CiD values reported in result tables and figures throughout this dissertation are the

CiDq averaged over all the evaluation queries. Since the shard selection step is not needed for
exhaustive search, its CiD metric consists only of the CiDR component.

4http://www.lemurproject.org/indri/

33

3. Distributed Selective Search 3.6. A reference system: Setup

3.4.5 Search effort: Cost-in-Shards (CiS)

There are also peripheral costs associated with query processing and they can be non-trivial. In
a distributed search system costs associated with operations, such as, disk seek are replicated
at each node processing the query. In general the cost of such operations is proportional to the
number of shards searched for the query. The network cost of sending the result lists to the
server that merges the results is also a function of the number of shards searched for the query.
We thus define a second cost metric, cost-in-shards (CiS), the average number of shards searched
per query, as the other measure of the search system’s efficiency.

3.4.6 Search effort: Motivation

For both the cost metrics we choose to abstract away from system-dependent variables, such as,
the disk seek time, and the network cost. Instead we work with the above cost metrics which are
not dependent on the particular instrumentation of the system. For similar reasons we choose
to not model the effects of caching in the formulations of search cost described above. The
efficacy of caching is strongly dependent on various factors, such as, the current query stream,
query workload, the other processes on the machine, and system specifications (memory size).
Instead the above cost metrics offer more manageable formulations that can be thought of as
providing upper-bounds on the search cost.

The other motivation for quantifying efficiency using CiD and CiS is the following practical
constraint. Many of the experiments in this dissertation were performed using a simulated
search environment. Specifically, the partitioning of the datasets and the shard searches were
simulated using a single or a small number of inverted indexes. The simulated search setup
allowed us to explore a wide range of research problems efficiently. However, simulated search
cannot provide accurate query runtime estimates. Instead the above described cost metrics
model search efficiency more accurately in a simulated search environment. Although we use
CiD and CiS as the primary efficiency metrics in this dissertation, we also provide a query
runtime based efficiency analysis of distributed selective search in Chapter 6.

3.5 Summary

Overall, the three types of evaluation metrics described above, search effectiveness, stability, and
search efficiency, together provide an evaluation framework that is sophisticated and thorough.

3.6 A reference system: Setup

In this section we present a fully specified reference search system that demonstrates the
functioning of the complete selective search pipeline and its evaluation. We start by describing

34

3.6. A reference system: Setup 3. Distributed Selective Search

Table 3.3: Distributed selective search versus distributed exhaustive search.

Dataset Search CiS CiD P@10 P@30 P@100 NDCG MAP
Type (million) @100

GOV2 Exhaustive 10 (/10) 3.63 0.58 0.52 0.42 0.47 0.32
Selective 10 (/50) 0.87 0.47 0.37 0.21 0.25 0.07

CW09-B Exhaustive 10 (/10) 5.37 0.27 0.26 0.21 0.12 0.18
Selective 10 (/100) 0.76 0.21 0.14 0.06 0.10 0.03

CW09-Eng Exhaustive 10 (/10) 51.29 0.13 0.13 0.12 0.11 0.07
Selective 10 (/1000) 2.56 0.07 0.04 0.01 0.02 0.00

the experimental setup.

For the offline phase, we used a simple document allocation policy that assigns each doc-
ument to one of the shards at random. We do not expect random shards to support accurate
selective search but we use it for its simplicity which is important at this point in this disser-
tation. The three datasets, GOV2, CW09-B, and CW09-Eng were partitioned into 50, 100, and
1000 shards, respectively. Each shard contained about half a million documents.

During the online phase every query was first transformed into of full-dependence model
representation [52] that explicitly asserts the dependencies among the query terms (Section 5.1).
All of the following steps used the transformed query. Next, a resource selection algorithm from
federated search, ReDDE, (Section 2.3.2) was used to rank the shards for the query. The
centralized sample index needed for ReDDE was created by sampling 4% documents from each
shard. For nearly all of the experiments in this dissertation that use ReDDE we have used
the same sample size of 4%. This sample size was chosen based on the analysis presented
by Callan, 2001 [15] where resource representations learned from 3% to 6% samples of each
resource performed only slight worse than the complete resource representations.

In the document retrieval step the top 10 shards in the ranking proposed by ReDDE are
searched for each query using Indri [51], an inference network and language modeling based
retrieval algorithm. The number of shards searched for selective search was used to guide the
number of shards that the dataset is divided into for distributed exhaustive search. Specifically,
each dataset was partitioned into 10 random shards for exhaustive search. This strategy allocates
the same number of computing resources to both search approaches, which is necessary for a
fair appraisal. The same retrieval model, Indri, was used by distributed exhaustive search as
well.

35

3. Distributed Selective Search 3.7. A reference system: Results

3.7 A reference system: Results

The search effectiveness and efficiency, expressed in terms of metrics described in the previous
section are provided in Table 3.3. For all the three datasets the effectiveness of distributed
selective search is substantially worse than that of exhaustive search across all the effectiveness
metrics. The P@10, for example, is 19%, 22%, and 46% lower for GOV2, CW09-B, and CW09-
Eng, respectively. The corresponding search efficiency, quantified in terms of the two cost
metrics, is much better for selective search. For GOV2, the CiD cost for selective search is 76%
lower than that for exhaustive search. Similarly for CW09-B and CW09-Eng the CiD is 86% and
95% lower, respectively.

None of the above trends are surprising. The improved efficiency is explained by the fact
that only 10% or fewer shards were searched for any of the datasets. It also explains in part
the degradation in search effectiveness. However, the other important cause of the poor search
effectiveness is the random document allocation policy used to create the shards. This allocation
policy has an effect of spreading the relevant documents for a query across all the shards. As
a result, the shard ranking step of selective search is not able to offer much. In fact, searching
any 10 shards would lead to search effectiveness that is comparable to the one reported in
Table 3.3. These results underscore the importance of the document allocation policy used for
shard creation in case of selective search. Thus the next chapter starts with the analysis of this
component of the proposed search architecture.

The stability analysis for P@10 metric is illustrated in the plots in Figure 3.3. The three
improvement levels are along the X-axis with the span markers. The three query difficulty
levels are represented as individual bars within the improvement spans. The magnitude of
improvement is represented by the bar’s height.

For the smallest dataset, GOV2, only 13% of the queries do the same as exhaustive. Whereas,
for the largest dataset, CW09-Eng, nearly half of the queries (46%) are exactly as precise as
with exhaustive search. This is remarkable given that only 1% of the shards (10 out of 1000)
were searched by DSS for this dataset. We see a positive correlation between selective search
effectiveness and collection size. These results suggest that selective search can offer better
efficiency and effectiveness trade-off for larger collections.

Furthermore, for the same dataset, CW09-Eng, the precision of 21% of the queries improve
by about 50% on average when only 1% of the collection is searched, instead of the complete
collection. For all the datasets we see that a non-negligible fraction of queries improve when
the search system can access only a limited portion of the collection. This is contrary to the
common belief that exhaustive search provides the highest possible search effectiveness for a
query.

The improvements in effectiveness observed at query-level are not visible at the aggregate-
level. As was observed in Table 3.3 the average-case precision is significantly lower. The

36

3.7. A reference system: Results 3. Distributed Selective Search

P
@

10
(S

el
ec

tiv
e)

 −
 P

@
10

(E
xh

au
st

iv
e)

 (
%

)

−
10

0
0

10
0

20
0

Hard
Moderate
Easy

4 27 43 13

5 7 1

| |

| |

| |

...

............=

.............

Worse

= Equal

Better

(a) GOV2 dataset. X-axis: % of queries, binned by
improvement and difficulty levels.

P
@

10
(S

el
ec

tiv
e)

 −
 P

@
10

(E
xh

au
st

iv
e)

 (
%

)

−
10

0
0

10
0

20
0

Hard
Moderate
Easy

14 24 10 35

13 4

| |

| |

| |

...

..................................=

.................

Worse
= Equal

Better

(b) CW09-CatB dataset. X-axis: % of queries, binned
by improvement and difficulty levels.

P
@

10
(S

el
ec

tiv
e)

 −
 P

@
10

(E
xh

au
st

iv
e)

 (
%

)

−
10

0
0

10
0

20
0

Hard
Moderate
Easy

15 15 4 46

21

| |
| |

| |

.................................

...=

....................

Worse

= Equal

Better

(c) CW09-CatA-Eng dataset. X-axis: % of queries,
binned by improvement and difficulty levels.

Figure 3.3: Stability analysis for P@10

37

3. Distributed Selective Search 3.8. Summary

percentage of queries that do worse with selective search and the magnitude of the loss in
precision are the primary cause of the lower overall performance. Although these results are
specific to the P@10 metric, the stability trends for the remaining metrics are similar.

3.8 Summary

This chapter introduced a new search approach, distributed selective search, that exploits two
inherent properties of large-scale search, parallelism and occurrence-redundancy, to achieve
its goal. The proposed approach improves efficiency by searching only a small fraction of
the collection, and maintains the search effectiveness by being clever about organizing the
collection.

The overall architecture of distributed selective search was presented in this chapter and the
individual components are described in detail in the following chapters. A reference system
that demonstrates the workings of the complete architecture was also presented and evaluated
against a baseline search system in this chapter. The datasets, evaluation methodology, and the
baseline search system presented in this chapter are used through this dissertation. The next
chapter is devoted to the offline task of partitioning the collection into shards for distributed
selective search.

38

Chapter 4

Offline phase: Shard Creation

When partitioning a large document collection into shards for distributed selective search (DSS),
several research challenges arise. First, the shard creation approach developed for this task
needs to be highly efficient and scalable in order to be applicable to large collections. Second, it
also needs to create shards that facilitate effective selective search. A thorough analysis of several
shard creation approaches that satisfy these requirements to a varying degree is provided in
the first section of this chapter. Other related research problems, such as, the number of shards
that a collection should be partitioned into, and the size distribution of the created shards, are
also studied in later sections.

4.1 Document allocation policies1

A document collection can be divided into a set of partitions using many different approaches.
One of our requirements for the document allocation policy is that it be generally applicable.
We thus restrict ourselves to only those document allocation policies that do not rely on external
resources such as query-logs or categorization schemes, which were both used in previous
work [47, 60]. Although such resources can provide valuable additional information that can
be used in the allocation decision, they are not always available.

We also assume that the document allocation policy must operate on large document col-
lections and might have access to limited computational resources. Efficiency of the approach
is thus an important consideration. Algorithms that can be partially or fully parallelized are
preferred. As such, algorithms that scale linearly or sub-linearly in collection size and can be
parallelized would be best suited for this work.

The set of shards constructed by the document allocation policy needs to support competitive
search effectiveness. When the relevant documents for a query are concentrated in a small
number of shards the search can be restricted to those shards without compromising on the

1This work was published in LSDS-IR 2010 [45], and CIKM 2010 [44]

39

4. Offline phase: Shard Creation 4.1. Document allocation policies

search effectiveness. Thus the allocation policy needs to be capable of achieving such an
organization of the collection without any prior knowledge of the query stream that will be
served by the search system.

We study three type of document allocation policies that satisfy the above requirements to
varying extent: random, source-based and topic-based, which are described next.

4.1.1 Random document allocation

The random allocation policy assigns each document to one of the shards at random with equal
probability. This policy has the advantages of being the most efficient, scalable, easy to imple-
ment, and applicable to any document collection. It also naturally lends itself to parallelization.
Appending a new set of documents to an existing set of shards is also straightforward. It is thus
not a surprise that commercial Web search engines such as Google [7] and Bing2 employ this
allocation policy for sharding. At query time, this allocation policy also offers the advantage of
spreading the computational load evenly across the cluster.

One might not expect a random policy to be effective for distributed selective search since
it is likely to spread the relevant documents evenly across multiple shards. Nonetheless it is
a contender because of its advantages, its use in prior research [60], and its use by large-scale
operational search systems.

4.1.2 Source-based document allocation

The information about the source of each document in the collection is typically available. Some
of the examples of the source of the document would be the company department or the agency
that created or maintains the document, the Web host that supplied the document [85], or
the legal case that the document was filed under. This information can be used to organize
the collection into disjoint shards. The source-based allocation policy was widely used in
prior research in distributed IR [14, 17, 28, 80, 85] with the intention of replicating real world
distributed search environments consisting of independent document sources.

If we assume that documents from the same source are similar then as per the Cluster
Hypothesis [77] such documents would also be relevant to same information needs. This suggests
that a source-based partitioning would create shards that exhibit a skewed distribution of
relevant documents, and thus are conducive to selective search. However, the above assumption
of similar documents being members of the same source would often be violated. For example,
the source, wikipedia, provides access to pages that are not similar or related. Such exceptions
would lead to noisy or less cohesive shards and might affect search performance. Nonetheless,
we believe that source-based organization offers a better distribution of relevant documents than

2Personal communication.

40

4.1. Document allocation policies 4. Offline phase: Shard Creation

random allocation. We test this conjecture by developing a source-based allocation technique
that is described next.

In previous work that examined source-based allocation [47, 85], document URLs provided
the source information. Each unique top-level hostname was assigned a separate shard and the
documents were partitioned accordingly. However, for many collections this strategy would
lead to a large number of very small partitions. Thus instead we propose the following strategy
for the source-based allocation policy.

In the first step, the collection is sorted based on document URLs, which arranges documents
from the same website consecutively. In the second step, groups of M/K consecutive documents
are assigned to each shard where M is the total number of documents in the collection and K
is the total number of shards to be created. However, this is not a strict policy. Splitting of
websites across shards is avoided wherever possible.

As compared to the random allocation policy, source-based allocation is computationally
more complex. The first step of sorting the documents based on the URLs has a complexity of
O(|M|log(|M|)), where |M| is the number of collection documents. Also, this step can only be
partially parallelized (for example, using merge sort) and thus is less efficient than the random
policy. It is possible to design a more efficient source-based policy by avoiding the sort step
on the complete collection. A simple hash function on the document URLs can be used to
group the documents based on the website. A comparative analysis of these two variants of
the source-based allocation policy is left for future work.

Similar documents often use common terminology. As a result, posting lists for shards
created using a source-based policy are longer than for random shards. Longer posting lists
could imply longer I/O during query processing. On the other hand, posting lists for source-
based shards could offer a higher compression factor than random shards. Posting lists are
often compressed using techniques such as delta encoding where instead of the complete
document identifiers the differences in the identifiers are stored. Smaller deltas offer better
compression. Source-based sharding would organize a larger percentage of documents with
similar vocabulary in a consecutive order than random allocation. As a result, the delta values
for the postings lists are typically smaller for source-based than those with random allocation.
The resulting higher compression could compensate to some extent for the longer posting lists
and ameliorate longer I/O for source-based shards.

4.1.3 Topic-based document allocation

Like source-based, the topic-based allocation also appeals to the Cluster Hypothesis [77] in
order to group similar (and thus relevant) documents together. However, instead of using the
source of the document as the proxy for a similarity metric, topic-based allocation explicitly
models the similarity between documents. In this work, we approximate semantic similarity
with lexical similarity. Documents that exhibit affinity when evaluated using lexical similarity

41

4. Offline phase: Shard Creation 4.1. Document allocation policies

metrics are grouped together. In such an organization of documents where each shard is
composed of lexically and thus semantically coherent set of documents, each shard can be seen
as representing a unique topic. This grouping of documents into topics can also be thought of
as a dimensionality reduction process. Thus the task of organizing the collection into shards
can also be recast into that of learning a set of topics from the collection. We operationalize
this intuition using two different topic modeling techniques: K-means clustering and Latent
Dirichlet Allocation.

K-means based document allocation

The time-tested K-means algorithm [49] is one of the obvious choices for grouping topically
similar documents into clusters (shards). K-means is a simple version of the Expectation-
Maximization algorithm [26] that starts by partitioning the dataset into K clusters using a set of
K seed centroids. Following this the algorithm iteratively alternates between the Maximization
step where the centroid estimates are updated using the current dataset partitions, and the
Expectation step where the dataset is repartitioned using the updated centroids.

K-means was successfully used in prior research [47, 85]. In the next subsection we first
describe the limitations of the approach proposed by Xu and Croft [85], which motivates us to
propose the improved approach described in the following section.

Approach by Xu and Croft, 1999 Xu and Croft [85] showed that the K-means clustering algo-
rithm can be used to partition small collections into distributed indexes that support effective
partial search. However, problems of scale and accuracy emerge when applying Xu and Croft’s
method to much larger datasets. Typically, a clustering algorithm is applied to the entire dataset
in order to generate clusters. Xu and Croft also use the entire document collection to determine
its final partitioning. Although the computational complexity of the K-means algorithm is
linear in the number of documents (|M|), applying this algorithm to very large collections is
still computationally expensive. Also, parallelization opportunities in the case of the standard
K-means algorithm are limited to the Expectation step.

The K-means algorithm requires a similarity or a distance metric for document-to-centroid
assignment during the expectation step. Xu and Croft [85] used the distance metric shown
below.

dist(Ci,D) =
∑
w∈D

c(w,D)
|D| log

c(w,D)/|D|
(c(w,D) + c(w,Ci))/(|D| + |Ci|) (4.1)

where c(w,D) and c(w,Ci) are the occurrence counts of word w in document D and centroid Ci,
respectively. Equation 4.1 can be restated as shown below.

42

4.1. Document allocation policies 4. Offline phase: Shard Creation

Algorithm 1 Sample-based K-means (SB K-means)

Input: Document collection C, Sample size |S|, Number of shards K
Output: RK Topical shards

1: S← SAMPLE (C, |S|) // Sample S documents from C.

// Learn Phase
2: {CENTK, RS

K} ← K-MEANS (S, K) // Cluster S documents into K sample-shards {RS
1 , · · · ,R

S
k },

with cluster centroids {CENT1, · · · ,CENTk}.

// Infer Phase
3: RK ← PROJECT (C, CENTK) // Use the K centroids to project the complete collection into K

shards {R1, · · · ,Rk}.

dist(Ci,D) =
∑
w∈D

c(w,D)
|D| log

c(w,D) · (|D| + |Ci|)
(c(w,D) + c(w,Ci)) · |D| (4.2)

This formulation of the distance metric has three drawbacks. Firstly, the metric is biased toward
centroids that are shorter in length. This is an artifact of the presence of |Ci| term in the numerator
(Equation 4.2). Secondly, this formulation allows for unequal contribution from the document
and the centroid models by placing the second term inside a logarithm function. The terms
that are important only to the document but not to the centroid can make a large contribution
toward the distance value. Lastly, the term weighting that is provided by inverse collection or
inverse document frequency is not available in this metric. Absence of any form of smoothing
for the term estimates must also make those estimates unstable.

Sample-based K-means (SB K-means) We address the scalability problem using a simple
modification to the standard K-means algorithm. We assume that for the purposes of dis-
tributed selective search topical clusters defined by a subset of the collection (instead of the
entire collection) are sufficient. We propose a sample-based K-means (SB K-means) approach
that applies the standard K-means algorithm to only a small sample of documents from the
collection. The cluster definitions thus learned are then used to infer the topical assignment for
each document. The two steps of SB K-means, learn and infer, are described in detail below
using the pseudo code in Algorithm 1.

For the first step of the Algorithm 1, sampling a subset (S) from the collection, we employ
simple random sampling (SRS). The SRS strategy chooses documents at random from the
complete collection (without replacement). The size of the sample |S| is simply determined
based on the operational requirements. For example, |S| can be chosen such that the next step
of the algorithm, Learn, fits in the memory. The effects of this sample size selection strategy are

43

4. Offline phase: Shard Creation 4.1. Document allocation policies

analyzed in Section 4.1.3. Keeping in mind the high efficiency requirement of the algorithm
we note that the sampling step can be parallelized by splitting the collection into P disjoint
sets of documents and then sampling |S|/P unique documents from each set in parallel. The
complexity of this step is O(|S|).

In the learn step, the standard K-means clustering algorithm is applied to the sample S to
generate K clusters (or sample-shards). There are several important parameters of the standard
K-means algorithm that need to set for effective clustering of the sample. We perform a five-pass
K-means where the centroids are updated at the end of each iteration. The set of centroids from
the last iteration are used by the inference step. Using a fixed number of iterations of K-means
allows us to limit the runtime of the algorithm and thus maintains its efficiency. Also, it is often
the case that the clustering solution obtained using a fixed number of iterations is similar in
quality to the one obtained using other convergence criterion such as stable document-to-cluster
assignment [50]. The algorithm used to select the seed centroids for the K-means algorithm is
also an important design choice [3, 35, 53, 75]. We study several existing algorithms and also
propose a seed centroid selection in Section 4.3.

Instead of the distance metric (Equation 4.1) used by Xu and Croft we employ a symmetric
version of negative Kullback-Liebler divergence (Equation 4.3) that computes the similarity
between a document D and a centroid Ci. The first component in the equation computes
KL(Ci||D) which emphasizes the terms that are important to the centroid while the contribution
of the terms in the document is dampened by the logarithm function. However, the second
component compensates for this bias by emphasizing the terms that are important to the
document.

sim(Ci,D) =
∑

w∈Ci∩D

pci(w) log
pd(w)
λ pB(w)

+
∑

w∈Ci∩D

pd(w) log
pci(w)
λ pB(w)

(4.3)

pi
c(w) and pd(w) are the unigram language models of the cluster centroid Ci and the document

D, respectively. pB(w) is the probability of the term w in the background model which is the
arithmetic mean of the K centroid models. λ is the smoothing parameter.

Using the maximum likelihood estimation (MLE), the cluster centroid language model is,

pi
c(w) =

c(w,Ci)∑
w′ c(w′,Ci)

(4.4)

where c(w,Ci) is the occurrence count of w in Ci. Following Zhai and Lafferty [86], we estimate
pd(w) using MLE with Jelinek-Mercer smoothing which gives

pd(w) = (1 − λ)
c(w,D)∑

w′ c(w′,D)
+ λ pB(w) (4.5)

As such, the presence of pB(w) in the denominator plays an important role of incorporating the
inverse collection frequency of the term into the metric which Zhai and Lafferty [86] found to

44

4.1. Document allocation policies 4. Offline phase: Shard Creation

M

N

α

β

θ z w

Figure 4.1: Graphical Model for Latent Dirichlet Allocation.

behave similar to the traditional inverse document frequency (IDF) statistic3.
The standard K-means algorithm cannot be completely parallelized due to the Maximization

step. However the learn step of the SB K-means algorithm operates only on a small subset of the
collection (S) and is efficient as long as the size of S and the size of the corresponding vocabulary
(V) is not too large. The complexity of the learn step is O(|S||V|K).

The last step of the SB K-means algorithm infers the shard membership for each document of
the collection. The KL divergence based similarity metric in the Equation 4.3 is used to compute
the similarity between the document and the K shard centroids learned in the previous step.
The document is assigned to the shard with which it exhibits highest similarity, and any ties
are broken randomly.

Note that the above inference process for each document is independent of the inference for
any other document. As a result, this step naturally lends itself to parallelization. In theory,
the shard assignment for all the collection documents can commence in parallel. In practice,
the number of available computing nodes upper bounds the parallelism supported by this
step. Nevertheless, even massive collections can be efficiently partitioned into topical shards
using this approximate version of the K-means algorithm. The overall complexity of this step
is O(|M||V|K) where |M| is the number of documents in the collection, and V is the vocabulary.

The process of appending a new set of documents to an existing set of shards is no different
from that of shard assignment in the infer step and thus can be performed very efficiently.

Sample-based Latent Dirichlet Allocation (SB-LDA)

Latent Dirichlet Allocation (LDA) [8] is a widely used text modeling approach. It operates
in a generative probabilistic framework where the process of corpus generation is modeled at
three levels - corpus, document and word. A corpus is assumed to be composed of multiple
documents and each document is assumed to be a mixture of latent topics where each topic

3Please refer to [56] for the transformation of negative KL-divergence with smoothing into a similarity metric
as used in Equation 4.3.

45

4. Offline phase: Shard Creation 4.1. Document allocation policies

is defined by a distribution over words. The generative process for every document D in the
corpus, in the presence of K topics can be stated as follows.

1. Sample a distribution over topics (θ, a K dimensional vector) from a Dirichlet distribution
parameterized by the corpus parameter α, also a K dimensional vector.

2. For each word w in the document D:

(a) Sample a topic zw from a Multionomial distribution parameterized by θ which is a
distribution over topics that was sampled in step 1; and

(b) Sample a word w from p(w|zw, β) which is a multionomial distribution over words
conditioned by the topic zw.

where β is a k x V matrix, k is the number of topics and V is the vocabulary. Thus each row in the
βmatrix is a topic model defined over the words in V. Figure 4.1 provides plate representation
of this model where the boxes (plates) represent the steps that are repeated. For example, the
corpus consists of M documents and thus the document generation process of this model is
repeated M times. The filled circle indicates the entity in the model that is observable, which in
our case is the words.

We use an implementation of LDA4 that estimates the corpus parameters α and β, using
variational approximation. The computational cost of parameter estimation for LDA is quite
high, specifically O(|M|N2K), where |M| is the number of documents in the collection, N is
the average document length and K is the number of latent topics. We are interested in large
document collections in this work, as a result, the value of the variable |M| dominates the
computational cost, that is |M| >> N2. To control the complexity of parameter estimation, we
perform estimation on a small sample S of M where |S| << |M|, like we did for SB K-means
allocation policy. This reduces the computational complexity of this step to O(|S|N2K).

Once the K topic models are learned, the collection is partitioned into as many shards using
LDA inference. For each document the LDA inference consists of estimating a distribution over
the K topics using the learned topic models. This distribution is an estimate of the document’s
generation probability from each of the topics. The computational complexity of this step is
O(|M|NK). The document is assigned to the topic with highest generation probability. Note
that the inference process for any document is independent of all other documents. As a result,
the inference process can be easily parallelized.

Sample-size and OOV terms

Using a subset (S) instead of the entire collection to learn topical clusters reduces the compu-
tational cost and makes the topic-based allocation technique efficient and scalable. However,
it also introduces the issue of out-of-vocabulary (OOV) terms during inference. The remaining

4http://www.cs.princeton.edu/∼blei/lda-c/index.html

46

4.1. Document allocation policies 4. Offline phase: Shard Creation

0.05 0.1 0.5 1 2.5 5
0

2

4

6

8

10

12

Sample Size (%)

A
vg

 O
O

V
 T

er
m

s
P

er
 D

o
c

(%
)

(a) GOV2 Dataset.

0.05 0.1 0.5 1 2.5 5
0

2

4

6

8

10

12

Sample Size (%)

A
vg

 O
O

V
 T

er
m

s
P

er
 D

o
c

(%
)

(b) CW09-B Dataset.

0.05 0.1 0.5 1 2.5 5
0

2

4

6

8

10

12

Sample Size (%)

A
vg

 O
O

V
 T

er
m

s
P

er
 D

o
c

(%
)

(c) CW09-Eng Dataset.

Figure 4.2: Sample size vs. percentage of OOV terms per document, on average. (Error bars
indicate one standard deviation of the mean.)

47

4. Offline phase: Shard Creation 4.1. Document allocation policies

documents in the collection are bound to contain terms that were not observed in S and thus
are absent from the learned topic models. Inference must proceed using the seen terms and
ignore the OOV terms. However, the inference quality can potentially degrade because of the
discounting of the OOV terms. It may be important to select a sample size that leads to a
small percentage of OOV terms per document. Note that inference occurs at the document
level and thus as long as the percentage of OOV terms per document is small – even if the
overall percentage of words that are out-of-vocabulary is high – the inference quality for each
document would not be affected severely.

We know from Heaps’ law [37] that when examining a corpus, the rate at which vocabulary
is discovered tapers off as the examination continues. Based on this we hypothesize that using
a relatively small sample might be sufficient to obtain an acceptably low percentage of OOV
terms per document, on average. We verify this hypothesis empirically for each of the three
datasets used in this dissertation.

Figure 4.2 (X-axis in log domain) plots the sample size versus the average percentage of
OOV terms per document for GOV2, CW09-B and CW09-Eng datasets. A sample size as small
as 0.05% of the collection is sufficient to discover more than 95% of the document vocabulary,
on average. Also note that the drop in the average values is sub-linear in the sample size. This
is in accordance with Heaps’ law. Thus after a certain point there is little benefit in increasing
the sample size because additional documents do not reduce the percentage of OOV terms
significantly.

We leverage these observations to make our experimental methodology efficient. For GOV2
and CW09-B datasets we sample 1% (250K and 500K documents) and for CW09-Eng dataset we
sample 0.1% (500K documents) of the entire collection using uniform sampling. These samples
are used by the topic-based document allocation techniques to learn the cluster centroids.

4.1.4 Experimental results: Search effectiveness and efficiency

An empirical comparative analysis of the four document allocation policies described earlier is
the focus of this section. We start with comparing the two topic-based allocation approaches —
SB K-means and SB-LDA.

SB K-means versus SB-LDA

For this evaluation the CW09-B dataset was partitioned into 100 shards using both of the
topic-based techniques. Everything else in the selective search framework was held constant
across the two setups. Specifically, for both the experiments the full-dependence model query
representation was used, the resource selection algorithm, ReDDE with 4% sample (described in
Section 2.3.2), was employed for shard ranking, and inference network and language modeling
based retrieval algorithm, Indri [51] was used for document retrieval at each searched shard.

48

4.1. Document allocation policies 4. Offline phase: Shard Creation

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

SB K−means allocation (K=100)

P@10(DSS)
P@10(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

SB LDA allocation (K=100)

P@10(DSS)
P@10(DES)

CiD(DSS)
CiD(DES)

(a)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10
0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

SB K−means allocation (K=100)

P@100(DSS)
P@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10
0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

SB LDA allocation (K=100)

P@100(DSS)
P@100(DES)

CiD(DSS)
CiD(DES)

(b)

Figure 4.3: Distributed Selective Search with SB K-means and SB-LDA. Dataset: CW09-B.
Metrics: P@10 and P@100. Distributed Exhaustive Search: CiD=5.37M.

As reported in Section 4.1.3 the sample-size chosen for CW09-B dataset was 1%, or about
500K documents (vocabulary: about 1M). The SB K-means algorithm operated on this sample.
For efficiency reasons only 50K documents (0.1%, vocabulary: about 230K) could be used to
learn the topic models with SB-LDA. In spite of its smaller sample size the SB-LDA based
approach took 16 times longer than K-means for learning the topics. The time to learn the 100
topic models with LDA was more than 50 hours (wall clock time) while that with K-means
was about 3 hours. Later, in Section 6.2 we report the K-means runtime for all the three
datasets. The K-means implementation used for all the experiments in this dissertation was
developed in-house. A production-grade implementation would be more efficient. Also, other
optimization techniques such as centroid pruning, and use of efficient data-structures such as
kd-trees [57], could achieve further speedup in K-means runtime. In general, K-means has a
definite advantage over LDA in term efficiency.

49

4. Offline phase: Shard Creation 4.1. Document allocation policies

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
D

C
G

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

SB K−means allocation (K=100)

NDCG@100(DSS)
NDCG@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
D

C
G

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

SB LDA allocation (K=100)

NDCG@100(DSS)
NDCG@100(DES)

CiD(DSS)
CiD(DES)

(a)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

SB K−means allocation (K=100)

MAP(DSS)
MAP(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

SB LDA allocation (K=100)

MAP(DSS)
MAP(DES)

CiD(DSS)
CiD(DES)

(b)

Figure 4.4: Distributed Selective Search with SB K-means and SB-LDA. Dataset: CW09-B.
Metrics: NDCG@100 and MAP. Distributed Exhaustive Search: CiD=5.37M.

Figures 4.3 and 4.4 present the selective search results for the two topical shard creation
techniques. The columns in the plot grid are different effectiveness metrics and the two methods
are along the rows. Each plot in the grid reports three metrics. The left Y-axis is one of the
search effectiveness metrics. The right Y-axis provides the primary cost, cost-in-documents
(CiD). The secondary cost which is simply the number of shards searched, cost-in-shards (CiS),
is along the X-axis. For convenient comparison the effectiveness with distributed exhaustive
search (DES) is also reported in each of the plots. The exhaustive search costs are reported in
the figure captions.

When comparing the topic-based allocation approaches with the baseline, exhaustive search,
we see that both the topic-based techniques support selective search that is as precise or better
than exhaustive search. Selective search of the single top ranked shard provides competitive
accuracy at early ranks as measured by P@10 and NDCG@10. The corresponding cost in CiD

50

4.1. Document allocation policies 4. Offline phase: Shard Creation

is more than an order of magnitude smaller than that with DES. When more than the top
ranked shard is searched DSS supports higher effectiveness than that of exhaustive with both
the allocation approaches. Some of these improvements are statistically significant for both SB
K-means and SB-LDA. For precision at deeper ranks (P@100 and MAP) more top shards need
to be searched for competitive performance. In case of SB K-means searching the top 5 shards is
sufficient and the CiD is about a sixth of that of exhaustive. For SB-LDA the CiS cost is double
of that of SB K-means, the top 10 shards need to be searched for competitive MAP and the CiD
is about a third of that of exhaustive.

These are among the first results that empirically validate the potential of distributed se-
lective search. These results demonstrate using a range of effectiveness metrics that selective
search can be as effective as exhaustive search without evaluating every candidate document in
the collection for the query. In fact, we see that searching only a small fraction of the collection
is sufficient. In the following section these results are confirmed using two additional datasets.

Recall that the samples used to learn the topic models using LDA and K-means in these
experiments were a very small subset of the collection. These results demonstrate that an exact
clustering solution that uses the entire collection is not necessary for selective search to perform
at par with the exhaustive search. An efficient approximation to topic-based techniques can
partition large collections effectively and facilitate selective search.

When comparing the two topic-based techniques, SB K-means and SB-LDA, we conclude
based on the observed trends that during query processing the two techniques provide fairly
comparable search performance. However, based on the difference in their computational
complexities for shard creation we chose SB K-means for the remaining experiments reported
in this dissertation. Henceforth when we refer to topical shards we imply shards created using
the SB K-means approach. Next we present a detailed empirical comparison between the
random, source-based and topic-based allocation policies using the three datasets described in
Section 3.3.

Random, Source-based and Topic-based Allocation Policies

The ability of the different allocation policies to support competitive selective search is evaluated
in this section. This analysis also tests the necessity of the Cluster Hypothesis for the success
of selective search. The three allocation polices studied in this section conform to the Cluster
Hypothesis at different levels, the random allocation being the least and SB K-means being the
most complying method.

To enable this study the GOV2 dataset was partitioned into 250 shards using each of the
three allocation policies, the CW09-B dataset was partitioned into 100 shards and CW09-Eng
was divided into 1000 shards. The choice of number of shards for each dataset was guided by
the analysis, described later in Section 4.2, that studies the impact of this parameter on selective
search performance.

51

4. Offline phase: Shard Creation 4.1. Document allocation policies

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10

CiS

1 3 5 7 10 15 20 25 35
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

C
iD

Random allocation (K=250)

P@10(DSS)
P@10(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10

CiS

1 3 5 7 10 15 20 25 35
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

C
iD

Source−based allocation (K=250)

P@10(DSS)
P@10(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10

CiS

1 3 5 7 10 15 20 25 35
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

C
iD

SB K−means allocation (K=250)

P@10(DSS)
P@10(DES)

CiD(DSS)
CiD(DES)

(a)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10
0

CiS

1 3 5 7 10 15 20 25 35
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

C
iD

Random allocation (K=250)

P@100(DSS)
P@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

C
iD

Source−based allocation (K=250)

P@100(DSS)
P@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10
0

CiS

1 3 5 7 10 15 20 25 35
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

C
iD

SB K−means allocation (K=250)

P@100(DSS)
P@100(DES)

CiD(DSS)
CiD(DES)

(b)

Figure 4.5: Distributed Selective Search with Random, Source-based, and Topic-based shards.
Dataset: GOV2. Metrics: P@10 and P@100. Distributed Exhaustive Search: CiD=3.63M.

52

4.1. Document allocation policies 4. Offline phase: Shard Creation

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
D

C
G

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

C
iD

Random allocation (K=250)

NDCG@100(DSS)
NDCG@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
D

C
G

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

C
iD

Source−based allocation (K=250)

NDCG@100(DSS)
NDCG@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
D

C
G

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

C
iD

SB K−means allocation (K=250)

NDCG@100(DSS)
NDCG@100(DES)

CiD(DSS)
CiD(DES)

(a)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P

CiS

1 3 5 7 10 15 20 25 35
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

C
iD

Random allocation (K=250)

MAP(DSS)
MAP(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P

CiS

1 3 5 7 10 15 20 25 35
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

C
iD

Source−based allocation (K=250)

MAP(DSS)
MAP(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P

CiS

1 3 5 7 10 15 20 25 35
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

C
iD

SB K−means allocation (K=250)

MAP(DSS)
MAP(DES)

CiD(DSS)
CiD(DES)

(b)

Figure 4.6: Distributed Selective Search with Random, Source-based, and Topic-based shards.
Dataset: GOV2. Metrics: NDCG@100 and MAP. Distributed Exhaustive Search: CiD=3.63M.

53

4. Offline phase: Shard Creation 4.1. Document allocation policies

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

Random allocation (K=100)

P@10(DSS)
P@10(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

Source−based allocation (K=100)

P@10(DSS)
P@10(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

SB K−means allocation (K=100)

P@10(DSS)
P@10(DES)

CiD(DSS)
CiD(DES)

(a)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10
0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

Random allocation (K=100)

P@100(DSS)
P@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

Source−based allocation (K=100)

P@100(DSS)
P@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10
0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

SB K−means allocation (K=100)

P@100(DSS)
P@100(DES)

CiD(DSS)
CiD(DES)

(b)

Figure 4.7: Distributed Selective Search with Random, Source-based, and Topic-based shards.
Dataset: CW09-B. Metrics: P@10 and P@100. Distributed Exhaustive Search: CiD=5.37M.

54

4.1. Document allocation policies 4. Offline phase: Shard Creation

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
D

C
G

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

Random allocation (K=100)

NDCG@100(DSS)
NDCG@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
D

C
G

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

Source−based allocation (K=100)

NDCG@100(DSS)
NDCG@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
D

C
G

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

SB K−means allocation (K=100)

NDCG@100(DSS)
NDCG@100(DES)

CiD(DSS)
CiD(DES)

(a)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

Random allocation (K=100)

MAP(DSS)
MAP(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

Source−based allocation (K=100)

MAP(DSS)
MAP(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
6

C
iD

SB K−means allocation (K=100)

MAP(DSS)
MAP(DES)

CiD(DSS)
CiD(DES)

(b)

Figure 4.8: Distributed Selective Search with Random, Source-based, and Topic-based shards.
Dataset: CW09-B. Metrics: NDCG@100 and MAP. Distributed Exhaustive Search: CiD=5.37M.

55

4. Offline phase: Shard Creation 4.1. Document allocation policies

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
7

C
iD

Random allocation (K=1000)

P@10(DSS)
P@10(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
7

C
iD

Source−based allocation (K=1000)

P@10(DSS)
P@10(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
7

C
iD

SB K−means allocation (K=1000)

P@10(DSS)
P@10(DES)

CiD(DSS)
CiD(DES)

(a)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10
0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
7

C
iD

Random allocation (K=1000)

P@100(DSS)
P@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
7

C
iD

Source−based allocation (K=1000)

P@100(DSS)
P@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
@

10
0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
7

C
iD

SB K−means allocation (K=1000)

P@100(DSS)
P@100(DES)

CiD(DSS)
CiD(DES)

(b)

Figure 4.9: Distributed Selective Search with Random, Source-based, and Topic-based shards.
Dataset: CW09-Eng. Metrics: P@10 and NDCG@10. Distributed Exhaustive Search:
CiD=51.29M.

56

4.1. Document allocation policies 4. Offline phase: Shard Creation

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
D

C
G

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
7

C
iD

Random allocation (K=1000)

NDCG@100(DSS)
NDCG@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
D

C
G

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
7

C
iD

Source−based allocation (K=1000)

NDCG@100(DSS)
NDCG@100(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
D

C
G

@
10

0

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
7

C
iD

SB K−means allocation (K=1000)

NDCG@100(DSS)
NDCG@100(DES)

CiD(DSS)
CiD(DES)

(a)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
7

C
iD

Random allocation (K=1000)

MAP(DSS)
MAP(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
7

C
iD

Source−based allocation (K=1000)

MAP(DSS)
MAP(DES)

CiD(DSS)
CiD(DES)

1 3 5 7 10 15 20 25 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

P

CiS

1 3 5 7 10 15 20 25 35
0

1

2

3

4

5

x 10
7

C
iD

SB K−means allocation (K=1000)

MAP(DSS)
MAP(DES)

CiD(DSS)
CiD(DES)

(b)

Figure 4.10: Distributed Selective Search with Random, Source-based, and Topic-based shards.
Dataset: CW09-Eng. Metrics: P@100 and MAP. Distributed Exhaustive Search: CiD=51.29M.

57

4. Offline phase: Shard Creation 4.1. Document allocation policies

As before, the ReDDE algorithm was employed for shard ranking, and the Indri algorithm
was used for document retrieval in all the experiments.

Figures 4.5 through 4.10 provide the selective search results for the three datasets. The
columns in the plot grid are different effectiveness metrics and the three allocation policies are
along the rows. Each plot in the grid reports three metrics. The left Y-axis is one of the search
effectiveness metrics. The right Y-axis provides the primary cost, cost-in-documents (CiD). The
secondary cost which is simply the number of shards searched, cost-in-shards (CiS), is along
the X-axis. For ease of comparison the effectiveness with distributed exhaustive search (DES) is
also reported along with the effectiveness for distributed selective search (DSS). The exhaustive
search costs are reported in the figure captions.

Several trends emerge from these results. When comparing the three allocation policies
(across rows of plots), we see that the source-based approach is able to converge to exhaustive
search accuracy faster than random allocation, and topic-based policy is in turn able to converge
faster than the source-based, for all the evaluation metrics and across all the datasets. Recall that
smaller CiS value implies fewer active shards which translates to fewer disk seeks and network
costs for a query, and smaller CiD indicates fewer disk transfers and fewer computational cycles
per query. Also, recall that the CiD also includes the cost of shard ranking.

For the metrics that evaluate only until early ranks (P@10), the efficiency and effectiveness
trade-off offered by source-based is comparable to that provided by the topic-based shards,
especially for the larger collections. The random partitioning also performs surprisingly well at
early ranks for the larger collections, especially CW09-B. This might be because a large portion
of the CW09-B dataset consists of Wikipedia articles many of which are relevant documents.
For the metrics that evaluate precision at deeper ranks (P@100, NDCG@100 and MAP) only
the topic-based policy can continue to provide competitive performance irrespective of the
collection size. These results indicate the rate at which selective search converges to exhaustive
search performance is also dependent on the metric being optimized.

Even for NDCG@100, a metric that is sensitive to both the position and the relevance level
of the documents in the results list, selective search with topical shards performs on par with
exhaustive search for all the datasets. This is especially remarkable for the ClueWeb09 datasets
which used evaluation query-sets with 5 grades of relevance judgments.

When analyzing the partitioning techniques individually, for the random policy we see
that searching more shards improves the search effectiveness rapidly early on but the rate of
improvement tapers off for metrics such as P@100, NDCG@100 and MAP. This is not surprising
since these metrics model the Recall component. As such, we would expect them to exhibit
a linear, positive correlation with number of shards searched. As expected, the search cost
shows a linear increase with the number of shards searched. These results demonstrate that the
random document allocation policy is not the ideal choice for selective search, especially for
applications where reduction in search effectiveness is not acceptable. It is thus not surprising

58

4.1. Document allocation policies 4. Offline phase: Shard Creation

that the commercial Web search engines (for example, Google and Bing) which are know to use
random partitioning search all the shards.

Sharding a collection using source-based allocation policy offers much improvement over
the random allocation policy for all the datasets. This policy is especially well suited for
applications such as Web retrieval where the collection size is large and the most important
metrics might only be P@10 and NDCG@10. Selective search with source-based shards would
offer an economical alternative to exhaustive search for such applications.

The ability to lower both the search costs even when optimizing for comprehensive metrics
such as P@100 and MAP, is the distinctive strength of the topic-based allocation policy. For
the GOV2 dataset the selective search with topical shards becomes comparable to exhaustive
search on all the metrics analyzed here when the top 20 shards are searched (CiS), and the
corresponding CiD is 0.8M documents. The CiD is 23% of that of exhaustive. Similarly, for
CW09-B, the convergence occurs after the top 5 shards have been searched. The corresponding
CiD is 16% of that of exhaustive. For CW09-Eng searching the top three shards is enough when
working with topical shards. This equivalent to 6% of CiD for exhaustive.

Section 3.2 outlined a set of objectives that the proposed search approach needs to satisfy.
The above results demonstrate that Competitive search effectiveness objective is met successfully
for all the effectiveness metrics, and all the three datasets. The Low search effort objective is also
clearly satisfied. The search effort expended by topic-based selective search is 77%, 84%, and
94% lower than that with exhaustive search. This trend indicates that selective search’s ability
to reduce the search cost improves with collection size. This is an useful property that makes
selective search an especially appealing solution for large-scale search. Also, these results
satisfies the Scalability objective. The Low resource requirements requirement is also easily met
because only a small fraction of the total shards are searched for each query. For Gov2 8% of
the shards are searched, while for CW09-B and CW09-Eng only 5% and 0.3% of the shards need
to be searched for each query.

Overall, these experimental results demonstrate that the three document allocation policies
have different potentials in terms of their ability to support selective search. Each of the
document allocation policies, more or less, converges to the exhaustive search performance,
however, at different paces. Topic-based shards provide the most consistent and cost-effective
solution as compared to the source-based and random shards.

4.1.5 Experimental results: Stability analysis

The results in the previous section establish that selective search with topic-based and source-
based shards can provide average-case precision that is comparable to that of exhaustive search
and also offer substantial savings in search costs. Ideally we would expect these average-case
trends to hold for each individual query. However we verify this empirically using a query-level
stability analysis focused on the two allocation policies, source-based and topic-based.

59

4. Offline phase: Shard Creation 4.1. Document allocation policies
P

@
10

(S
el

ec
tiv

e)
 −

 P
@

10
(E

xh
au

st
iv

e)
 (

%
)

−
10

0
0

10
0

20
0

Hard
Moderate
Easy

1 13 16 44

5 15 7

| |

| |

| |

.............................

...=

..........................

Worse
= Equal

Better

(a) Stability analysis of source-based shards.
CiD=0.60M, CiS=20.

P
@

10
(S

el
ec

tiv
e)

 −
 P

@
10

(E
xh

au
st

iv
e)

 (
%

)

−
10

0
0

10
0

20
0

30
0

Hard
Moderate
Easy

1 7 9 72

3 6 2

| |

| |

| |

................

...=

...........

Worse

= Equal

Better

(b) Stability analysis of topic-based shards.
CiD=0.56M, CiS=10.

Figure 4.11: Stability analysis. Metric: P@10. Dataset: GOV2. (X-axis: % of queries, binned by
improvement and difficulty levels.)

P
@

10
(S

el
ec

tiv
e)

 −
 P

@
10

(E
xh

au
st

iv
e)

 (
%

)

−
20

0
0

20
0

40
0

60
0

Hard
Moderate
Easy

11 20 6 33
19 10 1

| |

| |

| |

....................................

................................=

..............................

Worse
= Equal

Better

(a) Stability analysis of source-based shards.
CiD=0.51M, CiS=5.

P
@

10
(S

el
ec

tiv
e)

 −
 P

@
10

(E
xh

au
st

iv
e)

 (
%

)

−
20

0
0

20
0

40
0

60
0

Hard
Moderate
Easy

7 5 2 64
9 12 1

| |

| |

| |

.............

...=

......................

Worse
= Equal

Better

(b) Stability analysis of topic-based shards.
CiD=0.65M, CiS=3.

Figure 4.12: Stability analysis. Metric: P@10. Dataset: CW09-B. (X-axis: % of queries, binned
by improvement and difficulty levels.)

60

4.1. Document allocation policies 4. Offline phase: Shard Creation

P
@

10
(S

el
ec

tiv
e)

 −
 P

@
10

(E
xh

au
st

iv
e)

 (
%

)

−
20

0
0

20
0

40
0

60
0

Hard
Moderate
Easy

19 11 4 43
21 2

| |

| |

| |

.................................

..=

.......................

Worse
= Equal

Better

(a) Stability analysis of source-based shards.
CiD=2.32M, CiS=5.

P
@

10
(S

el
ec

tiv
e)

 −
 P

@
10

(E
xh

au
st

iv
e)

 (
%

)

−
20

0
0

20
0

40
0

60
0

Hard
Moderate
Easy

6 9 1 61
18 5

| |

| |

| |

...............

..=

.......................

Worse
= Equal

Better

(b) Stability analysis of topic-based shards.
CiD=2.49M, CiS=1.

Figure 4.13: Stability analysis. Metric: P@10. Dataset: CW09-Eng. (X-axis: % of queries, binned
by improvement and difficulty levels.)

Recall that the stability analysis categorizes the evaluation queries along two dimensions
(Section 3.4.2). The categorization based on the improvement levels (worse, equal, and better)
group together the queries based on their selective search effectiveness relative to exhaustive
search. Each of these groups are further sub-divided based on the difficulty levels (hard, moder-
ate, and easy) which is measured by query’s exhaustive search effectiveness.

Use of Oracle for CiS

One of the parameters that need to be set in order to operationalize selective search is the
number of shards to search for a query (CiS). For many of the experiments in this dissertation
we have used an oracle to set CiS. The oracle for CiS chooses the smallest value for which
the aggregate selective search effectiveness is comparable to the aggregate exhaustive search
effectiveness. For instance, if the search effectiveness is measured using the MAP metric, then
the CiS value for which the aggregate MAP with selective search is comparable to the aggregate
MAP with exhaustive search is the value set by the oracle. A difference of at most 5% in the
two search effectiveness values is tolerated. Since this methodology indirectly uses relevance
judgments to set the CiS parameter we refer to it as an oracle estimator (or CiS oracle). The
CiS parameter influences the effectiveness as well as the efficiency of selective search. A large
CiS value might improve search effectiveness since more number of shards are searched, and
would degrade efficiency due to the same reason. Using the oracle to set this parameter provides
the best possible balance between search effectiveness and efficiency. In practice, finding this
point might be difficult since the CiS oracle needs relevance judgments for the queries, which

61

4. Offline phase: Shard Creation 4.1. Document allocation policies

20 40 60 80 100
0

20

40

60

80

100

120

%
 o

f
Q

u
er

ie
s

Number of shards searched (CiS)

P@100

Improvement level: Equal
Improvement level: Better

(a)

20 40 60 80 100
0

20

40

60

80

100

120

%
 o

f
Q

u
er

ie
s

Number of shards searched (CiS)

MAP

Improvement level: Equal
Improvement level: Better

(b)

Figure 4.14: Stability analysis of source-based shards. Metrics: P@100 and MAP. Dataset:
GOV2.

are rarely available for the query sets of interest. As such, the selective search performance
obtained with CiS set by an oracle provides an upper bound on the search performance.

In the first part of this section the search effectiveness is measured using P@10 metric. Using
this strategy, the top 20, 5, and 5 source-based shards were searched for each query for the
GOV2, CW09-B, and CW09-Eng datasets, respectively. With topic-based shards the top 10, 3,
and 1 shards were searched for each query for the GOV2, CW09-B, and CW09-Eng datasets,
respectively. The corresponding CiD costs are specified in the figure captions.

The stability results for selective search with source-based and topic-based shards are pro-
vided in Figures 4.11 through 4.13. When comparing the two partitioning approaches in terms
of the fraction of queries that degrade with selective search, we observe consistent trends across
the three datasets. With source-based shards selective search degrades 30-37% of the queries.
While with topical shards a smaller fraction of queries, 14-17% degrade with selective search.
Recall that only the top 10 out 250, 3 out of 100, and 1 out of 1000 topic-based shards were
searched in these experiments for GOV2, CW09-B, and CW09-Eng, respectively. When ana-
lyzing the stability over a range of shard cutoffs (results or figures not included), we see a
monotonic improvement in the stability as more shards are searched because selective search
becomes progressively more similar to exhaustive search.

The corresponding values for the primary search cost metric (CiD) are more or less compa-
rable for selective search with both the sharding techniques. The secondary cost, CiS, however,
is consistently lower for selective search with topic-based shards.

For all the three datasets we see that a large fraction of the queries (> 75%) fall in the equal
and better improvement levels for the topic-based selective search results. Queries from all the
three difficulty levels improve as well as degrade with topic-based selective search. We expected

62

4.1. Document allocation policies 4. Offline phase: Shard Creation

20 40 60 80 100
0

20

40

60

80

100

120

%
 o

f
Q

u
er

ie
s

Number of shards searched (CiS)

P@100

Improvement level: Equal
Improvement level: Better

(a)

20 40 60 80 100
0

20

40

60

80

100

120

%
 o

f
Q

u
er

ie
s

Number of shards searched (CiS)

MAP

Improvement level: Equal
Improvement level: Better

(b)

Figure 4.15: Stability analysis of topic-based shards. Metrics: P@100 and MAP. Dataset: GOV2.

20 40 60 80 100
0

20

40

60

80

100

120

%
 o

f
Q

u
er

ie
s

Number of shards searched (CiS)

P@100

Improvement level: Equal
Improvement level: Better

(a)

20 40 60 80 100
0

20

40

60

80

100

120

%
 o

f
Q

u
er

ie
s

Number of shards searched (CiS)

MAP

Improvement level: Equal
Improvement level: Better

(b)

Figure 4.16: Stability analysis of source-based shards. Metrics: P@100 and MAP. Dataset:
CW09-B.

63

4. Offline phase: Shard Creation 4.1. Document allocation policies

20 40 60 80 100
0

20

40

60

80

100

120

%
 o

f
Q

u
er

ie
s

Number of shards searched (CiS)

P@100

Improvement level: Equal
Improvement level: Better

(a)

20 40 60 80 100
0

20

40

60

80

100

120

%
 o

f
Q

u
er

ie
s

Number of shards searched (CiS)

MAP

Improvement level: Equal
Improvement level: Better

(b)

Figure 4.17: Stability analysis of topic-based shards. Metrics: P@100 and MAP. Dataset: CW09-
B.

the hard queries (P@10(Exh)< 0.2) to be difficult for selective search. We see that although some
hard queries degrade with selective search a non-negligible fraction also performs better with
selective search, especially for the larger datasets.

One of the conclusions of the previous section was that the rate at which selective search
converges to exhaustive search accuracy is dependent on the metric being optimized. The
metrics that evaluate only at early ranks (P@10) demonstrated markedly different trends than
metrics, such as, P@100 and MAP. For this reason, we present a simplified version of stability
analysis for P@100 and MAP next.

Figures 4.14 through 4.19 present a stability analysis where only the two improvement levels
of equal and better are specified. We see that the topic-based shards support substantially more
stable search than source-based shards for all the datasets and for both the metrics analyzed,
P@100 and MAP. The differences in the respective stabilities of topic-based and source-based
are larger for P@100 and MAP than P@10. This complies with the trends observed for the
average-case results in the previous section where the converge speed for P@100 and MAP was
much slower than that for P@10.

Because of its formulation the MAP metric is more sensitive to changes in the ranking of
relevant documents than the P@n metrics. As a result, reproducing the exact values as that of
exhaustive search is harder for MAP. This is one of the reasons why fewer queries categorize
into the equal improvement level when analyzing the stability for MAP.

64

4.1. Document allocation policies 4. Offline phase: Shard Creation

20 40 60 80 100
0

20

40

60

80

100

120

%
 o

f
Q

u
er

ie
s

Number of shards searched (CiS)

P@100

Improvement level: Equal
Improvement level: Better

(a)

20 40 60 80 100
0

20

40

60

80

100

120

%
 o

f
Q

u
er

ie
s

Number of shards searched (CiS)

MAP

Improvement level: Equal
Improvement level: Better

(b)

Figure 4.18: Stability analysis of source-based shards. Metrics: P@100 and MAP. Dataset:
CW09-Eng.

20 40 60 80 100
0

20

40

60

80

100

120

%
 o

f
Q

u
er

ie
s

Number of shards searched (CiS)

P@100

Improvement level: Equal
Improvement level: Better

(a)

20 40 60 80 100
0

20

40

60

80

100

120

%
 o

f
Q

u
er

ie
s

Number of shards searched (CiS)

MAP

Improvement level: Equal
Improvement level: Better

(b)

Figure 4.19: Stability analysis of topic-based shards. Metrics: P@100 and MAP. Dataset: CW09-
Eng.

65

4. Offline phase: Shard Creation 4.1. Document allocation policies

4.1.6 Experimental results: Relevance density distribution

The previous two sections demonstrated empirically that shards created using topic-based
allocation can support selective search that is consistently more effective and efficient than
source-based and random allocation. This section studies the cause of the differences observed
in the performance of the three shard creation techniques.

We believe that the distribution of relevant documents across shards needs to be skewed in
order for selective search to provide competitive effectiveness. Based on the Cluster Hypothesis
we expect the shards created with topic-based allocation to best satisfy this requirement, and the
shards created with random to conform the least. This hypothesis can be validated by analyzing
the relevance distribution of shards created using the three techniques. Instead, however, we
normalize the relevance distribution of shards with their sizes because of the following reasons.

As is shown in Figure 4.20, the distribution of shard sizes is skewed for topical shards for
all the datasets. Whereas, for source-based it is less skewed, and for random it is uniform.
Normalizing the distribution of relevant documents with the distribution of shard sizes elimi-
nates any biases toward larger shards. Furthermore, a larger shard is likely to result in higher
search cost (CiD) than a smaller shard. Thus given two shards with same number of relevant
documents for a query, the smaller is preferable to the larger for efficient search.

In summary, modeling both shard relevance and size provides a more accurate and complete
picture of the ability of an allocation policy to support effective and efficient selective search.
We thus analyze the size normalized relevance distributions, referred to as the relevance density
distribution (ρ) in this section. The relevance density of each query q and shard R pair, ρq

R, is
defined as:

ρ
q
R =
µ

q
R

|R| (4.6)

where µq
R is the set of documents in R that were judged relevant for query q, and |R| is the

total number of documents in shard R. We use the formulation in Equation 4.6 to compute
the relevance density distribution for a given set of shards. First, the relevance density for
each query-shard pair (ρq

R) is computed and the shards are ranked based on their density value
(in descending order) for the query. These ranked relevance density values are then averaged
across all the evaluation queries to generate the relevance density distribution.

Figure 4.21 provides a grid of plots where the different allocation policies are along the
columns and the three datasets are along the rows. The figures report the average relevance
density for the top 30 shards. Note that for each query this could be a different set of 30 shards.

We see very similar trends across the three datasets. Although the total number of shards
(K) for each dataset is different, the distributions exhibit nearly identical trends. The relevance
density distribution for topical shards is much more skewed than that for the shards created
with the other two partitioning techniques. The relevance density of the highest ranked topical

66

4.1. Document allocation policies 4. Offline phase: Shard Creation

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9
x 10

5

Shard

S
ha

rd
 S

iz
e

(in
 d

oc
um

en
ts

)

Random
Source−based
Topic−based

(a) Dataset: GOV2. Number of topical shards (K) = 250.
Average shard size = 100,821. Complete dataset size =
25,205,179 documents.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18
x 10

5

Shard

S
ha

rd
 S

iz
e

(in
 d

oc
um

en
ts

)

Random
Source−based
Topic−based

(b) Dataset: CW09-B. Number of topical shards (K) =
100. Average shard size = 502,204. Complete dataset
size = 50,220,423 documents.

100 300 500 700 900 1000
0

0.5

1

1.5

2

2.5

3
x 10

6

Shard

S
ha

rd
 S

iz
e

(in
 d

oc
um

en
ts

)

Random
Source−based
Topic−based

(c) Dataset: CW09-Eng. Number of topical shards (K) =
1000. Average shard size = 503,904. Complete dataset
size = 503,903,810 documents.

Figure 4.20: Size distribution of random, source-based, and topic-based shards.

67

4. Offline phase: Shard Creation 4.1. Document allocation policies

shard is more than twice that of the topical shard at the next rank. If the top ranked topical
shard is set aside then the remaining distribution for the topical shards is very similar to that of
source-based for all the datasets. This explains the high search precision results at early ranks
but low precision results for deeper ranks that source-based shards provide in Section 4.1.4.

The formulation for relevance density of an individual shard in Equation 4.6 can be extended
to the complete collection where the numerator specifies the number of relevant documents for
the query in the collection and the denominator is simply the collection size. These relevance
density values averaged across queries for the GOV2, CW09-B, and CW09-Eng are 0.7·10−3(±0.6·
10−3), 0.02 ·10−4(±0.01 ·10−4), and 0.002 ·10−4(±0.001 ·10−4), respectively. As compared to these
values the relevance density of the top ranked topical shard is 1.43, 45, and 750, times larger
for GOV2, CW09-B and CW09-Eng, respectively. Given that each of these datasets is larger
than the previous one these numbers are not entirely surprising. However, they do explain the
faster convergence to exhaustive search performance for the larger datasets that was observed
in Section 4.1.4.

Overall, the relevance density analysis supports and strengthens the search effectiveness,
efficiency and stability results provided in the earlier sections. Note that the results reported
in this section also provide an empirical validation of the Cluster Hypothesis. Henceforth we
study distributed selective search only with topic-based shards due to their higher performance.

4.1.7 Experimental results: Effect of query length on search performance

The length of the query could potentially influence the performance of selective search. For
instance, a longer query could imply a more diverse information need than a shorter query. As a
result, the search effectiveness for the longer query might be lower than the shorter query since
the relevant documents for the former might be spread out across more shards. On the other
hand, it could also be argued that a longer query might be less ambiguous (more focused) than
an under-specified shorter query which would lead to lower search effectiveness for the latter.
An investigation into the relation between query length and selective search performance that
tests the above conjectures is the focus of this section.

Figure 4.22 provides the necessary data for this analysis. The scatter plots for the three
datasets, GOV2, CW09-B, and CW09-Eng, compare the query length on the X-axis with the
difference in the retrieval effectiveness of exhaustive search and selective search on the Y-axis.
The number of shards searched for each dataset in these experiments were provided by an
oracle that optimized for overall search effectiveness. Specifically, the number of shards that
provided comparable retrieval effectiveness to that of exhaustive search was chosen. This is
similar to the methodology used earlier for the stability analysis, and described in more detail in
Section 4.1.5. For a thorough analysis we study the relation between query length and selective
search effectiveness using two metrics, P@10 and MAP.

None of the plots illustrate any systematic correlation between the two variables. The Pear-

68

4.1. Document allocation policies 4. Offline phase: Shard Creation

0 10 20 30
0

0.5

1

1.5

2

2.5
x 10

−3

R
el

ev
an

ce
 D

en
si

ty
 (

ρ)

Shard

Random (K=250)
Gov2

0 10 20 30
0

1

2
x 10

−4

R
el

ev
an

ce
 D

en
si

ty
 (

ρ)

Shard

Random (K=100)
CW09−B

0 10 20 30
0

1

2

3

x 10
−4

R
el

ev
an

ce
 D

en
si

ty
 (

ρ)

Shard

Random (K=1000)
CW09−A−Eng

(a)

0 10 20 30
0

0.5

1

1.5

2

2.5
x 10

−3

R
el

ev
an

ce
 D

en
si

ty
 (

ρ)

Shard

Source−based (K=250)
Gov2

0 10 20 30
0

1

2
x 10

−4

R
el

ev
an

ce
 D

en
si

ty
 (

ρ)

Shard

Source−based (K=100)
CW09−B

0 10 20 30
0

1

2

3

x 10
−4

R
el

ev
an

ce
 D

en
si

ty
 (

ρ)

Shard

Source−based (K=1000)
CW09−A−Eng

(b)

0 10 20 30
0

0.5

1

1.5

2

2.5
x 10

−3

R
el

ev
an

ce
 D

en
si

ty
 (

ρ)

Shard

Topic−based (K=250)
Gov2

0 10 20 30
0

1

2
x 10

−4

R
el

ev
an

ce
 D

en
si

ty
 (

ρ)

Shard

Topic−based (K=100)
CW09−B

0 10 20 30
0

1

2

3

x 10
−4

R
el

ev
an

ce
 D

en
si

ty
 (

ρ)

Shard

Topic−based (K=1000)
CW09−A−Eng

(c)

Figure 4.21: Relevance density distributions.

69

4. Offline phase: Shard Creation 4.1. Document allocation policies

0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Query Length

P
@

10
(E

xh
)−

P
@

10
(S

el
)

(a) Dataset: GOV2, Metric: P@10, Number of
shards searched: 20, Pearson correlation coeffi-
cient: 0.04

0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Query Length

M
A

P
(E

xh
)−

M
A

P
(S

el
)

(b) Dataset: GOV2, Metric: MAP, Number of
shards searched: 20, Pearson correlation coeffi-
cient: -0.20

0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Query Length

P
@

10
(E

xh
)−

P
@

10
(S

el
)

(c) Dataset: CW09-B, Metric: P@10, Number of
shards searched: 5, Pearson correlation coeffi-
cient: -0.02

0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Query Length

M
A

P
(E

xh
)−

M
A

P
(S

el
)

(d) Dataset: CW09-B, Metric: MAP, Number of
shards searched: 5, Pearson correlation coeffi-
cient: 0.16

0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Query Length

P
@

10
(E

xh
)−

P
@

10
(S

el
)

(e) Dataset: CW09-Eng, Metric: P@10, Number
of shards searched: 3, Pearson correlation coeffi-
cient: -0.10

0 1 2 3 4 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Query Length

M
A

P
(E

xh
)−

M
A

P
(S

el
)

(f) Dataset: CW09-Eng, Metric: MAP, Number
of shards searched: 3, Pearson correlation coeffi-
cient: 0.16

Figure 4.22: Effect of query length on selective search effectiveness.
70

4.2. Number of topical shards for a collection (K) 4. Offline phase: Shard Creation

son correlation coefficient reported in the plot captions confirms absence of strong correlation
between query length and selective search effectiveness. The MAP for one of the 4 term queries
for the CW09-Eng dataset, french lick resort and casino, degrades by more than 50% with selective
search, however, for another 4 term query, uss yorktown charleston sc, selective search improves
MAP by more than 100%. Similar trends are observed for the shorter queries as well. The cor-
relation coefficient for the GOV2 dataset and the MAP metric can be interpreted as a borderline
weak relation. The negative polarity of this relation suggests that it is harder for selective search
to provide competitive MAP scores for shorter queries than for longer queries for this dataset.

Overall however this data does not suggest that selective search’s effectiveness is strongly
influenced by the length of the query. It is also important to notice that the variation in
query length is limited for the query sets employed here. A more extensive evaluation that
experiments with a larger and more varied query set could provide additional insights. This
might be especially useful if the search task of interest exhibits a wider range of query lengths
than that analyzed in this section.

4.2 Number of topical shards for a collection (K)

The number of partitions (K) that a collection is divided into for a distributed search is typi-
cally determined by certain system specifications, such as, the number of available computing
nodes, or the desired query response time. This parameterization strategy works well for the
distributed exhaustive search. Dividing the collection into as many shards as the number of
compute nodes allows for the maximal usage of the available resources while exploiting the
inherent parallelism in the exhaustive search process. For selective search however we hypoth-
esize that the parameterization of K needs to be collection-specific. The rationale behind this
hypothesis is that if the collection is divided into as many partitions as the number of distinct
and dominant topics in it then selective search can minimize both the search costs while main-
taining competitive effectiveness. In this section we test the above hypothesis using different
parameterizations of K.

We note that the problem of estimating a collection-specific value for K is an instance of
the model complexity selection problem which has been studied by many [62, 75]. Others have
studied the problem of estimating K specifically in the context of K-means clustering. For
instance, the X-means algorithm proposed by Pelleg and Moore [57] is a wrapper around the
basic K-means algorithm where the initial clusters K0 are iteratively split into 2. The decision
about whether to split a cluster is based on the Bayesian Information Criterion (BIC) proposed
by Kass and Wasserman (1995), which takes into account the model complexity of the models
being compared, and the data likelihood with respect to each of them. The iterative procedure
stops if no centroids are split in an iteration, or the number of clusters exceeds a user-specified
maximum threshold.

71

4. Offline phase: Shard Creation 4.2. Number of topical shards for a collection (K)

25 100 250 500 750

1

2

3

4
x 10

6

C
iD

Total number of shards (K)

25 100 250 500 750

10

30

50

70

90

100

C
iS

Cost−in−Documents (CiD)
Cost−in−Shards (CiS)

(a) Dataset: GOV2.
Tuning set 1: P@10=0.59, P@30=0.53, P@100=0.43,
NDCG@100=0.45, MAP=0.30.

25 100 250 500 750

1

2

3

4
x 10

6

C
iD

Total number of shards (K)

25 100 250 500 750

10

30

50

70

90

100

C
iS

Cost−in−Documents (CiD)
Cost−in−Shards (CiS)

(b) Dataset: GOV2.
Tuning set 2: P@10=0.57, P@30=0.51, P@100=0.40,
NDCG@100=0.48, MAP=0.33.

100 500 1000 1500

1

2

3

4

5

6
x 10

6

C
iD

Total number of shards (K)

100 500 1000 1500

10

30

50

60

C
iS

Cost−in−Documents (CiD)

Cost−in−Shards (CiS)

(c) Dataset: CW09-B. Tuning set 1. P@10=0.31,
P@30=0.30, P@100=0.22, NDCG@100=0.29, MAP=0.18

100 500 1000 1500

1

2

3

4

5

6
x 10

6

C
iD

Total number of shards (K)

100 500 1000 1500

10

30

50

60

C
iS

Cost−in−Documents (CiD)

Cost−in−Shards (CiS)

(d) Dataset: CW09-B. Tuning set 2. P@10=0.25,
P@30=0.25, P@100=0.19, NDCG@100=0.25, MAP=0.17

Figure 4.23: Effects of number of total shards (K) on the costs of distributed selective search.
Query set: Tuning.

72

4.2. Number of topical shards for a collection (K) 4. Offline phase: Shard Creation

Another method by Hamerly and Elkan, named G-means [34], is also a wrapper around
K-means which also starts with some initial number of clusters and iteratively splits each
centroid into 2 child clusters subject to an evaluation criterion. The evaluation criterion used
is a statistical test that decides whether the data that belongs to a given centroid is Gaussian
or not. Empirically they show that G-means is better at estimating the number of clusters than
X-means, which often overfits the data in their experiments leading to an overestimation of K.

Unfortunately, the computational cost of applying these methods to large-scale datasets is
almost always prohibitively high. Developing efficient, scalable and effective model complexity
selection algorithms is an open research problem. In this work we only study the parameter K
in the context of selective search, specifically, we are interested in analyzing the sensitivity of
selective search to this parameter. The estimation of this parameter is left for future work.

Experimental results

For this analysis we experiment with a range of values for K. For each of the K values the
collection was repartitioned into those number of shards and selective search was performed.
These experiments were performed with the GOV2 and CW09-B datasets and the values for
K were chosen to maintain a comparable range of average shard-sizes across the two datasets.
Due to its size we do not perform this analysis for the CW09-Eng dataset. Since CW09-B and
CW09-Eng datasets are related to each other (Section 3.3) we extrapolate the conclusions from
the CW09-B results to CW09-Eng. We acknowledge that this is not ideal and cannot replace
empirical validation for the CW09-Eng dataset.

A two-fold cross-validation setup was employed for this analysis where 50% of the evalu-
ation queries were used as a tuning set and the other 50% served as the test query set during
each fold. The results for GOV2 and CW09-B on the tuning sets from each of the two folds
are reported in Figure 4.23. The different parameterizations of K are specified along the X-axis.
The number of top shards searches (CiS) for each configuration is specified on the right Y-axis.
The CiS values for each experimental configuration was provided by an oracle which selects a
value that provides search effectiveness that is comparable to that with exhaustive search. The
oracle methodology is described in detail in Section 4.1.5. The left Y-axis specifies the search
cost in terms of the average number of documents processed for each query (CiD). Because
of the use of an oracle, the search effectiveness (specified in the figure caption) for each of the
configurations is comparable to the corresponding exhaustive search performance.

A value for K that minimizes both the search costs, CiD and CiS, is desirable. However, as
the plots show the two cost metrics are inversely proportional to each other. A smaller value
of K creates larger shards which lead to more documents to be evaluated (higher CiD) at each
of the shards. As a result of the more documents being evaluated at each shard, fewer shards
need to be searched in order to perform on par with exhaustive search, thus reducing CiS. This
trend is reversed when the collection is divided into larger number of shards.

73

4. Offline phase: Shard Creation 4.2. Number of topical shards for a collection (K)

Table 4.1: Effect of number of total shards (K) on selective search performance. Query set: Test.

Dataset Search Fold P@10 P@30 P@100 NDCG MAP CiD CiS
Type @100 (million)

GOV2 Exhaustive Fold 1 0.57 0.50 0.40 0.48 0.34 3.54 20 (/20)
Selective Fold 1 0.57 0.51 0.40 0.48 0.33 0.80 20 (/250)

Exhaustive Fold 2 0.60 0.54 0.44 0.46 0.31 3.71 20 (/20)
Selective Fold 2 0.59 0.53 0.43 0.45 0.30 0.86 20 (/250)

CW09-B Exhaustive Fold 1 0.23 0.23 0.19 0.24 0.17 4.48 5 (/5)
Selective Fold 1 0.25 0.25 0.19 0.25 0.17 0.69 5 (/100)

Exhaustive Fold 2 0.30 0.29 0.23 0.30 0.19 6.27 5 (/5)
Selective Fold 2 0.31 0.30 0.22 0.29 0.18 1.04 5 (/100)

We see similar trends across the two tuning sets for both the datasets. Of the different values
of K evaluated for GOV2, dividing the collection into 250 topical shards, and searching the top
20 shards for each query, offers a good balance between the two cost metrics on both the tuning
sets. We evaluate this configuration on the test query set. The results reported in Table 4.1 show
that selective search is as effective as exhaustive search on the test set.

For CW09-B dataset the value of 100 for the parameter K is recommended by both the tuning
sets since it minimizes both the search costs (CiD and CiS) simultaneously. The performance of
selective search on the test query set using this parametrization is reported in Table 4.1. The K
values recommended for the two datasets by this analysis are neither the same nor proportional
to the dataset sizes. The smaller dataset (GOV2) is divided into more shards than the larger
dataset (CW09-B). This observation supports the above hypothesis that selective search benefits
from a collection-specific parameterization of K. Other criterion for setting the value of K, such
as the collection size, cannot provide the best selective search setup in terms of balancing search
efficiency and effectiveness.

We also observe that partitioning the GOV2 dataset into 750 shards instead of 250 offers
comparable CiD. Similarly for CW09-B, the CiD for K of 1000 and 1500 is lower or comparable
to that of K=100. However, the corresponding CiS costs are higher for larger K values. For
example, the top 25 shards need to be searched when CW09-B is divided into 1000 shards, as
opposed to the top 5 shards when partitioned into 100 shards. The shard creation cost is also
lower when the dataset is partitioned into fewer number of shards. For these reasons we choose
K=250, and K=100 for CW09-B for remaining experiments.

However, it is also important to note the following merit of using larger K values. When a
dataset is partitioned into larger number of shards there are more opportunities for paralleliza-
tion during query processing. For example, in case of the CW09-B dataset, one could chose to

74

4.3. Seed centroid selection for topic-based allocation policy 4. Offline phase: Shard Creation

distribute the processing of 0.8M documents per query across 50 nodes (K=1500) instead of 5
nodes (K=100), thus achieving the same effectiveness but faster query response time. If the ad-
ditional computational resources necessary to exploit this parallelization are available then the
query run time can be further improved, albeit at higher cost (CiS). These results demonstrate
that although a collection-specific K is recommended for selective search, the operational needs
of a search system can also be accommodated.

Following the recommendations for K made here we partition GOV2 into 250 and CW09-B
into 100 topical shards for the remaining experiments reported in this chapter. We extrapolate
from the CW09-B results and choose K=1000 for the CW09-Eng dataset since the CW09-Eng
dataset is an order of magnitude larger in size than CW09-B.

4.3 Seed centroid selection for topic-based allocation policy

One of the document allocation policies we propose for topic-based partitioning of the collection
(Section 4.1.3) employs K-means clustering algorithm. The K-means algorithm is initiated
using K seed centroids which are often simply the documents from the collection. A long
line of research in clustering algorithms [3, 35, 53, 75] has demonstrated the strong influence
of the seed centroid selection technique on the final clustering solution (shards). We also
know from the earlier sections that selective search performance is inherently dependent on the
collection shards. In this section we analyze the influence of this parameter on selective search
performance. We experiment with four seed centroid selection techniques which are described
next.

Recall that because of efficiency considerations the K-means clustering is applied only to a
subset of the complete collection (Section 4.1.3). The seed centroids are consequentially also
selected from the sample and not the collection. In the following sections this sample is denoted
as S.

4.3.1 Simple Random Sampling (SRS):

The first technique that we experiment with is one of the most commonly employed centroid
selection strategy. Here the seeds are sampled uniformly at random (without replacement) from
all the data points. SRS is also one of the simplest and most efficient sampling technique with
computational complexity of O(K). However, we argue that SRS is not well-suited for this work
due to the following two reasons. First, since SRS is designed to select a representative sample
of the underlying distribution, it would sample multiple seeds from high-density regions.
However, such seeds are quite likely to be similar to each and thus result in multiple similar
shards which leads to inefficient selective search. Such errors are hard to catch and correct for
in a non-hierarchical clustering algorithm such as K-means.

75

4. Offline phase: Shard Creation 4.3. Seed centroid selection for topic-based allocation policy

SRS VRS HW AV

10

20

30

40

50

60

70

80

90

100

25
20

25

35

C
iS

Seed Centroid Selection Technique

5

6

7

8

9

10

11

12
x 10

5

C
iD

Cost−in−Shards (CiS)

Cost−in−Documents (CiD)

(a) Dataset: GOV2. P@10=0.58, P@30=0.52,
P@100=0.42, NDCG@100=0.47, MAP=0.32

SRS VRS HW AV

10

20

30

40

50

60

70

80

90

100

5 5 5 5

C
iS

Seed Centroid Selection Technique

5

6

7

8

9

10

11

12
x 10

5

C
iD

Cost−in−Shards (CiS)

Cost−in−Documents (CiD)

(b) Dataset: CW09-B. P@10=0.27, P@30=0.26,
P@100=0.21, NDCG@100=0.27, MAP=0.18

Figure 4.24: Effect of seed centroid selection strategy on selective search performance.

Secondly, SRS is agnostic to the quality of the chosen seed centroids. For example, in the
case of a collection of Web documents selecting a spam page as a seed centroid is unlikely to
anchor a stable cluster. These observations direct us to also experiment with three other seeding
techniques that correct for some or all of these problems of SRS. These alternative techniques
are described next.

4.3.2 Vocabulary size based Rejection Sampling (VRS):

We experiment with a variant of SRS that addresses one of the problems noted above while
retaining the simplicity and efficiency of SRS. The objective of the vocabulary size based rejection
sampling (VRS) is to choose high quality documents as the seed centroids. This method uses
the document vocabulary-size as a measure of document quality. A rejection sampling based
methodology is applied where a candidate document is sampled uniformly at random from
the complete collection which is then accepted if its vocabulary-size is above certain threshold
τ else it is rejected. We set τ to be the average document vocabulary size of the set from which
the centroid would be chosen. This approach is nearly as efficient as the random sampling
technique with the computational complexity of about O(K).

4.3.3 Hartigan and Wong (HW):

Hartigan and Wong [35] proposed a seed centroid selection technique with the goal of reducing
the over and under-sampling errors of SRS. The HW technique selects a diverse set of seed
centroids to achieve this goal. First, a global centroid is computed from all the data-points. Next,
the data-points are ordered based on their similarity with the global centroid. In order to sample

76

4.3. Seed centroid selection for topic-based allocation policy 4. Offline phase: Shard Creation

K seed centroids every [1 + (i − 1) · ⌊S/K⌋]th data-point from the ordered list is chosen where S
is the subset of the collection on which the sample-based K-means will be applied and i = 1..K.
The computational complexity of this technique is O(|S||V|), where V is the vocabulary of the
sample. The computational complexity for HW is higher than the previous two techniques.
Note that unlike all the other seeding techniques studied here, HW is deterministic.

4.3.4 Arthur and Vissilvitskii technique (AV):

More recently, Arthur and Vassilvitskii [3] proposed a seed centroid selection technique that
is similar in spirit to the Hartigan and Wong technique but provides theoretical guarantees
and justifications. In this approach the first seed centroid is selected uniformly at random
from the collection sample S. Each of the remaining centroids are sampled from a distribution
where the sampling probability of a data-point is proportional to its shortest distance from
any of the currently selected seed centroids. As a result, data-points that are further away
from any of the current centroids are more likely to be sampled. The authors also recommend
sampling multiple data-points and retaining the farthest as the new centroid. This has an effect
of increasing the probability of sampling a farther away point while still maintaining a low
probability of sampling outliers. Notice that this approach requires the sampling distribution
to be recomputed after each new centroid is sampled. The computational complexity of this
approach is the highest among the four techniques we study at O(|S||V|K), where V is the
vocabulary of the sample.

4.3.5 Experimental results

We follow the recommendations of the previous sections and partition the GOV2 and CW09-
B datasets into 250 and 100 topical shards, respectively, using the K-means allocation policy
described in Section 4.1.3. For the VRS technique the minimum vocabulary size (the acceptance
threshold) which is the average vocabulary size of the collection sample was computed to be 63
terms per document for GOV2 and 83 for CW09-B. For the three non-deterministic techniques
(SRS, VRS and AV) three restarts were performed to capture the variance. Figures 4.24a and 4.24b
report the results where the X-axis specifies the seed centroid selection technique. The minimum
number of top shards that provided comparable search effectiveness to that of exhaustive search
was chosen for each dataset. This provided an upper bound on selective search effectiveness
under the different seed centroid selection techniques. These values are specified along the
right Y-axis, and the corresponding cost in terms of documents (CiD) is on the left Y-axis. The
search effectiveness for each of the techniques is comparable to that of exhaustive search which
is reported in the figure caption.

For both the datasets we see that the efficiency of selective search is sensitive to the seed
centroid selection technique. However, the sensitivity is lower for the larger dataset. Also, the

77

4. Offline phase: Shard Creation 4.4. Size bounded sampling-based K-means (SB2 K-means)

Algorithm 2 Size bounded sampling-based K-means (SB2 K-means)

Input: Document collection C, Sample size |S|, Number of shards K, Targeted shard-size
range [θL, θU]

Output: R Topical shards

// Initial Phase
1: S← SAMPLE (C, |S|) // Sample S documents from C.
2: {CENTK, RS

K} ← K-MEANS (S, K) // Cluster S documents into K sample-shards {RS
1 , · · · ,R

S
k },

with cluster centroids {CENT1, · · · ,CENTk}.

// SPLIT Phase: Identify and split the large sample-shards
3: {CENTKSPLIT , RS

KSPLIT
} ← SPLIT (RS

K, θU), where RKSPLIT is the total number of sample-shards
after the split phase. KSPLIT ≥ K.

// PROJECT Phase
4: RKSPLIT ← PROJECT (C, CENTKSPLIT) // Use the centroids to project the complete collection

into KSPLIT shards {R1, · · · ,RkSPLIT }.

//MERGE Phase: Identify and merge small shards
5: RKMERGE ← MERGE (RKSPLIT , θL, θU), where RKMERGE is the total number of shards after the

merge phase.

high variance in CiD observed for the smaller dataset does not carry over to the larger dataset.
For both the datasets, however, VRS provides lowest or near lowest search costs (CiD and CiS,
both). Also recall that the computational complexity of VRS is among the lowest of the four
techniques. Based on these observations we choose to employ the VRS seed centroid selection
technique for all the remaining experiments in this chapter.

4.4 Size bounded sampling-based K-means (SB2 K-means)

Distributed search systems typically prefer to divide the collection into equal sized partitions
which allows for better load balancing and also provides low variance in query run times.
The topic-based allocation approach (described in Section 4.1.3), however, is not guaranteed
to create shards with an uniform distribution of sizes. In fact, the inherent topical diversity of
the collection determines the size distribution of its shards. Figure 4.20 reported the sizes of
shards that were created using the sampling-based K-means allocation approach (along with
random, and source-based) for the three datasets, GOV2, CW09-B and CW09-Eng. We see that
the distribution of the shard sizes is highly skewed for each of the datasets. Only a small fraction
of the shards are of size that is comparable to the average shard size. The largest topical shard

78

4.4. Size bounded sampling-based K-means (SB2 K-means) 4. Offline phase: Shard Creation

is eight, three, and twenty-four times bigger than the expected shard size for GOV2, CW09-B
and CW09-Eng, respectively. The smallest shard is nearly empty for all the datasets. Overall,
there is a large variance in the shard sizes for each of these datasets.

In this section we propose and test a topic-based document allocation approach that parti-
tions the collection such that the majority of the resulting shards are of comparable size. The
new approach, size bounded sampling-based K-means (SB2 K-means) is a simple extension of the
sampling-based K-means algorithm and thus retains its efficiency and scalability.

Algorithm 2 provides the pseudo code for the SB2 K-means approach. The Initial phase for
the SB2 K-means starts with sampling a small set of documents from the complete collection.
These documents are clustered into sample-shards and the sizes of the sample-shards are used
to identify the large sample-shards. The split phase iteratively identifies and divides the large
sample-shards until a certain stopping criteria is reached. The next step, project, is the same
as that employed in sampling-based K-means where the complete collection is partitioned into
topical shards using the sample-shards centroids. In the third and final step of the algorithm,
merge, small shards from the previous step are identified and combined with other shards
using a certain merging strategy. This step is also repeated until a stopping criteria is reached.
The main motivation for the three step SB2 K-means algorithm is its scalability. The specific
parameterizations and other details for each of the steps are given in the following sections.

4.4.1 Initial phase

The first two steps of Algorithm 2 are similar to those in sampling-based K-means in Section 4.1.
Specifically, the sample S is compiled using simple random sampling which selects documents
uniformly at random (without replacement) from the complete collection. The sizes of the
samples for GOV2, CW09-B and CW09-Eng datasets are 252K, 502K and 503K, respectively.
The samples are clustered into 250, 100 and 1000 sample-shards for GOV2, CW09-B and CW09-
Eng, respectively, using the KL divergence based K-means algorithm described in Section 4.1.3.
The K seed centroids for the K-means algorithm are selected using the vocabulary size based
rejection sampling (VRS) approach described in Section 4.3.

4.4.2 Split phase

The upper bound on the sample-shard size is set to 110% of the average sample-shard size. Each
sample-shard that is larger than the upper bound is divided into m sample-shards using the
sampling-based K-means algorithm. The value for parameter m is proportional to the size of the
sample-shard. Specifically, it is the ratio of the sample-shard size and the average sample-shard
size. The m new sample-shards are augmented to the existing set of sample-shards and the
original large sample-shard is removed from the set. Some or all of the new sample-shards may
be large sample-shards. Thus the split step is applied iteratively five times to the latest set of

79

4. Offline phase: Shard Creation 4.4. Size bounded sampling-based K-means (SB2 K-means)

large sample-shards or until there are no more large sample-shards, whichever occurs earlier.
This stopping criteria allows us to bound the runtime of the algorithm. Initial experiments
showed that five rounds of iterative splitting provided a good balance between efficiency and
effectiveness of this step.

4.4.3 Project phase

The parameterization employed for this step is exactly same as that used with the sampling-
based K-means. The affinity metric given in equation 4.3 is used to infer the topical similarity
between a document and each of the cluster centroids. The document is allocated to the cluster
with the highest similarity. The output of this step is a disjoint partitioning of the document
collection in topical shards.

4.4.4 Merge phase

In the final step, the shards that are smaller than 90% of the average shard size are identified as
the source shards. The shards that are not a large shard (size greater than 110% of the average
shard size) are identified as the potential sink shards. Notice that the source and the sink sets are
not mutually exclusive. A merging iteration starts with the largest sink shard and ends when
the smallest sink shard has been considered. For each sink shard the largest possible source
shard that can be merged without resulting in a large shard is combined. Like the split phase,
the above merge process is repeated five times on the latest set of shards or until no shards can
be merged. Due to the iterative nature of this approach more than two original shards can get
merged.

Notice that the merging of shards is solely driven by the shard sizes. The topical similarity
or dissimilarity of the shards being merged is not considered by the above approach. However,
we did experiment with merging strategies that were functions of both, shard size and topical
relatedness between shards. The experimental results for these strategies were often similar
and sometimes inferior to the ones reported in this section. However, the computational cost of
these strategies was much higher than the one used here because the topical similarity between
shards had to be computed for each merge iteration.

The other design consideration that was explored was when to apply the merge phase.
Unlike the split step which operates on the sample-shards the merge step operates on the
shards in the above algorithm. We tested an alternative algorithm where the merge step was
also performed on the sample-shards, right after the split phase. In this variant of the algorithm
the project step uses cluster centroids that are products of two or more original centroids. We
saw that this reduced the topical fidelity of the centroids and consequentially of the resulting
centroid. Preliminary experiments demonstrated that this adversely affected selective search
performance. As a result, the proposed algorithm employs the merge step only after the

80

4.4. Size bounded sampling-based K-means (SB2 K-means) 4. Offline phase: Shard Creation

< 90% [90%, 110%] > 110%
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 S

ha
rd

s

SB K−means: K=250, CiD=0.83M, CiS=20

SB2 K−means: K=208, CiD=0.66M, CiS=20

(a) Dataset: GOV2.

< 90% [90%, 110%] > 110%
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 S

ha
rd

s

SB K−means: K=100, CiD=0.87M, CiS=5

SB2 K−means: K=92, CiD=0.76M, CiS=5

(b) Dataset: CW09-B.

< 90% [90%, 110%] > 110%
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 S

ha
rd

s

SB K−means: K=1000, CiD=3.08M, CiS=3

SB2 K−means: K=807, CiD=2.71M, CiS=3

(c) Dataset: CW09-Eng.

Figure 4.25: Shard size distribution for SB K-means and SB2 K-means.

projection step.

4.4.5 Experimental results

The parameterization reported in the previous section results in 208 shards for GOV2, 92 shards
for CW09-B, and 807 shards for the CW09-Eng dataset. The size distributions for each of these
sets is compared to the ones obtained using the SB K-means approach in Figure 4.25. The Y-axis
represents the percentage of shards assigned to each of the three shard size categories – small,
targeted and large.

These plots demonstrate that for each dataset the SB2 K-means algorithm creates substan-
tially more shards that have size in the targeted range of [90%, 110%] of the average shard size.
The SB2 K-means is most effective for the GOV2 dataset for which 83% of the shards are of
comparable size. CW09-B and CW09-Eng exhibit similar trends to each other where nearly 75%
of the shards are within the targeted shard size range. As compared to the other two datasets
CW09-Eng contains the smallest reduction in the number of large shards. Specifically, 21%, as
compared to 48% for GOV2, and 54% for CW09-B. Recall that the same split iterations (5) were
used for each dataset. It might be that for the CW09-Eng dataset more split iterations could
have been useful. These results suggest that instead of using a collection-agnostic value for
number of split iterations, a parameterization strategy that is a function of the collection size,
and the number of original large shards might be more effective at reducing the number of large
shards.

The effects of shard size manipulation on the efficiency of selective search are summarized
in the legend of each plot in Figure 4.25. We see that the equal sized shards support more

81

4. Offline phase: Shard Creation 4.5. Summary

efficient selective search. The cost in terms of documents (CiD) reduces by 20%, 12% and 12%
for GOV2, CW09-B, and CW09-Eng, respectively. The ReDDE algorithm, and many other shard
ranking algorithms, are inherently biased toward the larger shards. We see that a more uniform
shard size distribution helps counterbalance this bias which in turn reduces the average number
of documents evaluated per query. The CiS which is the number of top shards searched per
query remains steady in spite of the changes in the shard. This indicates that the SB2 K-means
algorithm does not disperse the relevant documents for a query across shards. The search
effectiveness results for both the allocation approaches, SB K-means and SB2 K-means are the
same and thus are not repeated here.

Overall, this analysis establishes SB2 K-means as the recommended topic-based document
allocation technique for selective search because of its higher efficiency and near-uniform size
distribution of the created shards.

4.5 Summary

This chapter studied the offline phase of the selective search architecture where the goal is to ef-
ficiently partition large collections into shards that are able to support effective selective search.
We developed and tested several shard creation techniques. The experimental results recom-
mend source-based document allocation policy for its efficiency and reasonable average-case
precision at early ranks. Source-based, however, scores low on query-level stability analysis.
Also if effectiveness at deeper ranks is important then selective search with source-based shards
is not recommended.

Instead, the topic-based policy proves to be an all-round sharding technique for distributed
selective search. The offline cost of shard creation is higher for the topic-based policy than the
other techniques studies here. However, during the online phase of query processing, topic-
based shards support selective search that is consistently more effective and efficient for a range
of metrics and dataset sizes. We also see a positive correlation between distributed selective
search performance and collection size in the results presented in this chapter. Selective search
is more effective and efficient when searching larger datasets.

This chapter also presented a relevance density analysis that compared the partitioning
techniques based on size normalized distribution of relevant documents across shards. The
topic-based shards exhibit the highest skew in the relevance density distribution, followed by
source-based. The ability of the topic-based policy to concentrate the relevant documents for a
query into a few shards is one of the primary reasons for its high effectiveness and efficiency.
This analysis also brought to surface the skewness in the shard size distribution for topic-based
shards.

We propose a variant of the topic-based policy that reduces the skewness in the distribution
of shard sizes substantially. The new approach further increases the cost of partitioning a col-

82

4.5. Summary 4. Offline phase: Shard Creation

lection into topical shards. However, the experimental results demonstrate that the additional
offline cost pays off during the online phase of selective search. A set of more evenly sized
topical shards is able to support selective search that is just as effective but more efficient than
topical shards with a skewed size distribution.

This chapter also analyzed the effects of the total number of shards that a collection is
partitioned into on selective search performance. As a general trend the results show that
increasing the number of total shards decreases the cost-in-documents but increases the cost-in-
shards. The parameterization that minimizes both the costs is collection-specific in the results
presented here. We believe the optimal value for this parameter is a function of the latent topics
in the collection. An efficient estimator for the number of latent topics in a large collection is an
open research challenge.

Overall, this chapter establishes that distributed selective search with topic-based shards
successfully satisfies the objectives laid out in Section 3.2: Competitive search effectiveness, Low
search effort, Low resource requirements, and Scalability, while also complying with the specified
constraints and assumptions. The query runtime objective is studied in Chapter 6.

83

Chapter 5

Online phase: Query processing

This chapter studies the online phase of distributed selective search where the incoming queries
are processed against the shards created during the offline phase. The query processing task
consists of three stages: query transformation, shard ranking and cutoff estimation, and retrieval
and merging. The first two components are the focus of this chapter. For the final step of shard
retrieval we employ an off-the-shelf document retrieval algorithm, Indri [51] implemented
in the Lemur Toolkit1. The results merging task is straightforward in this cooperative search
environment. The relevance scores of documents retrieved from different shards are comparable
because the global statistics such as the idf (inverse document frequency of the complete
collection) that are used for score normalization are compiled and shared with each of the
shards at partitioning time.

5.1 Query representation: Bag-of-words versus Dependence model

The commonly used bag-of-words (BOW) query representation is an unstructured formulation
of the query that ignores any potential relations between the query terms. Instead, using a
query representation that explicitly asserts the dependencies among the query terms has been
shown to improve adhoc retrieval performance [52] in an exhaustive search setup. The query
representation proposed by Metzler and Croft [52] expresses term dependence using ordered
and unordered proximity constraints constructed from the query terms. A full-dependence
model query assumes each query term to be dependent on all the other query terms. An
example of a full-dependence model query formulated using the Indri Query Language2 is
given in Figure 5.1. The relation between consecutive terms is expressed using the ordered
distance operator #1, and the weaker dependence between distant terms is conveyed through
the unordered window operator (#uwN) in this representation.

1www.lemurproject.org
2http://www.lemurproject.org/lemur/IndriQueryLanguage.php

85

5. Online phase: Query processing 5.1. Query representation: Bag-of-words versus Dependence model

Bag of words query: obama family tree

Full-dependence model query:
#weight(

0.8 #combine(obama family tree)
0.1 #combine(

#1(obama family)
#1(family tree)
#1(obama tree)#1(obama tree)
)

0.1 #combine(
#uw8(obama family)
#uw8(family tree)
#uw8(obama tree)
#uw12(obama family tree)
)

)

Figure 5.1: Query representation example.

Although Metzler and Croft concluded that dependence model query representations im-
prove the search effectiveness, they also noted that the improvements are dependent on factors
such as the collection size, homogeneity of the documents, proportion of noisy documents in
the dataset, and query lengths. In our work when we partition a large collection into multiple
topical shards, the characteristics of the individual shards are markedly different from those of
the complete collection. For instance, a topical shard is smaller, topically more homogeneous,
and less noisy than the complete collection. As such, it is not clear whether the trends observed
by Metzler and Croft for exhaustive search would also hold for selective search. Also, the
effect of query representation on search efficiency has not been explored. In order to answer
these questions we compare the bag-of-words representation with the full-dependence model
query representation in the context of distributed selective search, and also in the context of
exhaustive search.

For this investigation a search setup where the three datasets, GOV2, CW09-B, and CW09-
Eng had been partitioned into 50, 100, and 1000 topical shards, respectively, using the SB
K-means technique (Section 4.1.3) was employed3. During the online phase the ReDDE [69]
algorithm was used to rank the shards for each query. The TREC topics from the evaluation
queries sets for each of the datasets were used as the bag-of-words baseline queries. The TREC
topics were transformed into full-dependence model queries using the utility made available

3The work presented in this chapter was done before SB2 K-means, the size-balanced shard creation approach
presented in Section 4.4, was developed. As a result, the experiments presented in this chapter use SB K-means, and
not SB2 K-means.

86

5.1. Query representation: Bag-of-words versus Dependence model 5. Online phase: Query processing

Figure 5.2: Bag-of-words versus dependence model query representation. K denotes signifi-
cantly better search effectiveness with dependence model query representation than with BOW
(p < 0.01).

(a) Dataset: GOV2.

Search Query CiS CiD P@10 P@30 P@100 NDCG MAP
Type Rep (million) @100
Exhaustive BOW 10 (/10) 3.63 0.53 0.48 0.38 0.42 0.29

Dep 10 (/10) 3.63 K0.58 K0.52 K0.42 K0.47 K0.32
(+9%) (+10%) (+8%) (+10%) (+9%)

Selective BOW 10 (/50) 1.59 0.53 0.48 0.37 0.42 0.28
Dep 10 (/50) 1.62 K0.59 K0.52 K0.41 K0.47 K0.32

(+10%) (+10%) (+8%) (+10%) (+10%)

(b) Dataset: CW09-B.

Search Query CiS CiD P@10 P@30 P@100 NDCG MAP
Type Rep (million) @100
Exhaustive BOW 7 (/7) 5.37 0.24 0.22 0.19 0.24 0.16

Dep 7 (/7) 5.37 K0.27 K0.26 0.21 K0.27 K0.18
(+11%) (+5%) (+15%) (+10%) (+11%)

Selective BOW 7 (/100) 1.08 0.25 0.24 0.19 0.24 0.15
Dep 7 (/100) 1.07 K0.28 K0.28 K0.21 K0.27 K0.18

(+11%) (+5%) (+14%) (+10%) (+11%)

(c) Dataset: CW09-Eng.

Search Query CiS CiD P@10 P@30 P@100 NDCG MAP
Type Rep (million) @100
Exhaustive BOW 3 (/3) 51.29 0.12 0.11 0.10 0.10 0.06

Dep 3 (/3) 51.29 0.13 0.13 K0.12 0.11 0.07
(+8%) (+0%) (+15%) (+17%) (+14%)

Selective BOW 3 (/1000) 3.16 0.13 0.13 0.12 0.11 0.06
Dep 3 (/1000) 3.16 0.14 0.15 0.13 0.12 0.07

(+7%) (+11%) (+13%) (+8%) (+14%)

87

5. Online phase: Query processing 5.1. Query representation: Bag-of-words versus Dependence model

by Metzler4 for each of the datasets. The parameters recommended by Metzler and Croft in [52]
for the transformation of the bag-of-words queries to full-dependence model representation
were used for these experiments. Specifically, we use 0.8, 0.1, and 0.1 weights for the unigram,
ordered n-gram, and unordered n-gram features, respectively.

For selective search the number of shards searched (CiS) for a query was decided using
an oracle setup. A detailed description of the oracle based methodology for setting CiS is in
Section 4.1.5. In summary, the CiS oracle chooses a value for this parameter that provides a good
balance between the effectiveness and the efficiency of selective search. As such, the results
presented in this section provided an upper bound on selective search performance under the
two different query representations. These oracle values are reported in the result tables as the
cost-in-shards (CiS) metric.

The dependence model query representation incurs additional processing cost since new
posting lists need to be created on the fly for the multi-term features. The search efficiency
metric, cost-in-documents (CiD), however only computes the number of documents evaluated
for each query and thus does not model this overhead associated with dependence model
query processing. However, since the focus of this section is on search effectiveness, we do not
address this inaccuracy in the measurement of search cost here. Instead, the following chapter
revisits search efficiency from the perspective of search time, and provides a more accurate
characterization of the cost of selective search with the two query representations.

The results for the three datasets are reported in Table 5.2. The trends in search effec-
tiveness observed for exhaustive search are closely replicated by selective search for all the
three datasets. Many of the improvements in effectiveness with dependence model queries
are statistically significant for the smaller datasets, GOV2 and CW09-B. For the largest dataset,
although dependence model query representation improves search effectiveness, the improve-
ments are not statistically significant in most cases. This is contrary to the observation made by
Metzler and Croft that the improvements offered by dependence model query representation
were larger for larger datasets. It is possible that the collection-agnostic parameter settings that
were used in this work (as per the recommendation by Metzler and Croft) are the cause of this
contradiction.

The average number of documents evaluated per query (CiD) are comparable for the two
query representations for both the search approaches. However, the overhead costs of process-
ing the dependence model queries are not included in the reported numbers for both, exhaustive
search and selective search.

Overall, these results demonstrate that selective search is similar to exhaustive search in its
ability to leverage richer query representation to improve search effectiveness.

4http://ciir.cs.umass.edu/metzler/dm.pl

88

5.2. Shard ranking 5. Online phase: Query processing

5.2 Shard ranking

The next step in the query processing pipeline of selective search is that of ranking the shards
based on their estimated relevance to the query. The goal is to restrict the search to only the
most relevant shards for the query.

The problem of ordering a collection of documents (resources) based on their query relevance
has been extensively studied in the context of federated search [2, 14, 32, 40, 69, 74]. All the
experimental evaluations reported until this point in the dissertation have employed a simple
variant of a well-established resource ranking algorithm, ReDDE, for the purpose of ranking
shards. In this section we analyze the effects of the choice of shard ranking algorithm on selective
search performance. Specifically, we experiment with two resource ranking algorithms, CORI
and ReDDE, and compare their ability to support selective search (both are described in detail
in Section 2.3.1 and 2.3.2). In addition to being widely used these particular algorithms were
chosen because they exhibit different characteristics and biases.

The CORI algorithm belongs to a class of algorithms that learn a representative model for
each resource and use them as the basis for resource ranking. In contrast, the ReDDE algorithm
adopts a sample-based approach where samples of documents from each shard are directly used
as representatives of the shards’ contents. The results obtained from running the query against
the sample index are used as the basis for resource ranking.

The models learned for CORI typically only contain summary statistics such as the shard-
specific df s for the shard vocabulary. Information about term frequency in individual docu-
ments is not available and is not used during shard scoring. As such, document level term
weighting is not performed for CORI. In case of ReDDE, however, the document retrieval
against the sample index provides an opportunity to use document term weights. This is
important because the term weights model the ability of a shard to provide high relevance
documents as opposed to low relevance or false-relevant documents. This limitation of CORI
may be less of a problem for topical shards which inherently provide some amount of reduction
in noise (false-relevant documents).

The other difference between the two ranking algorithms is in the formulation they employ
for shard scoring. The shard size based normalization used by the CORI algorithm induces a
bias for smaller shards containing many candidate documents. The ReDDE algorithm on the
other hand is biased toward larger shards containing many candidate documents because it
weights the shard scores based on the shard sizes. These differences among the algorithms
make them good candidates for testing the sensitivity of selective search to the choice of shard
ranking algorithm.

The CORI and ReDDE algorithms also differ in their computational costs. Although previous
work does not provide any comparative analysis, we expect CORI to be more efficient than
ReDDE due to the following reasons. Recall that CORI is a single step process where the

89

5. Online phase: Query processing 5.2. Shard ranking

query (Q) is evaluated against each of the shard models that contain the query terms (worst-
case computational complexity: O(K|Q|), where K is the number of shards.). Whereas ReDDE
consists of a two step process where the query is first executed against the central sample index
(CSI) (worst-case computational complexity: O(|CSI||Q|)), and then a shard ranking is inferred
from the retrieved results. The number of documents in the CSI are typically much larger than
the number of models used by CORI (|CSI| ≫ K). We thus expect selective search with ReDDE
to be computationally costlier than selective search with CORI. The focus of this section is the
analysis of selective search’s effectiveness using the two shard ranking algorithms, however,
we acknowledge that a careful study of the costs of these two algorithms is an important future
work.

The ReDDE algorithm as proposed by Si and Callan [69] was described in Section 2.3.2.
In this work we used a modified version of ReDDE that demonstrated better performance
in preliminary experiments. We describe this variant of ReDDE next, and then report the
experimental results comparing selective search performance with CORI and ReDDE.

5.2.1 Modified ReDDE

The resource ranking algorithm, ReDDE [69], uses a central sample index, CSI, to estimate the
distribution of relevant documents across shards. Previous work has typically assumed an
uncooperative environment and thus employed query-based-sampling [16] for creating the
CSI. In this dissertation, however, we work with a cooperative setup and thus employ the more
accurate sampling technique, simple random sampling. The original ReDDE algorithm and the
variant used in this dissertation also differ in the formulation used for shard score computation.

ReDDE executes the query against the CSI and uses the shard membership of the top m
retrieved documents, and the shard weights (which are ratio of resource size to sample size)
to compute a score for each shard (Section 2.3.2). This formulation weights each retrieved
document equally irrespective of its rank or score in the retrieved list. Instead we use the
relevance score assigned by the retrieval model to weight the document. Also, we do not scale
the shard scores with shard weights because that introduces a bias for larger shards. When
these modifications are put together the resulting scoring function is as follows:

sR =

m∑
i=1

score(Di
R) (5.1)

where sR is the score computed for shard R, Di
R is a document from shard R that was retrieved

at rank i from CSI for the query. The score(.) function returns the relevance score assigned by the
ranking model. This modification to the formulation incorporates an aspect of shard relevance
quality into the estimation process. The scores computed using this formulation are used to
rank the shards for the query, and the top few shards are searched for the query.

90

5.2. Shard ranking 5. Online phase: Query processing

Table 5.1: Selective search performance using CORI and ReDDE shard ranking algorithm. K
denotes significantly better search effectiveness than the other shard ranker (p < 0.01).

Dataset Shard CiS CiD P@10 P@30 P@100 NDCG MAP
Ranker (million) @100

GOV2 CORI 10 (/50) 1.63 0.54 0.48 0.37 0.42 0.22
ReDDE 10 (/50) 1.59 0.53 0.48 0.37 0.42 K0.28

CW09-B CORI 7 (/100) 1.21 0.23 0.23 0.18 0.23 0.13
ReDDE 7 (/100) 1.08 0.25 0.23 0.19 0.24 0.15

CW09-Eng CORI 5 (/1000) 5.37 0.13 0.12 0.10 0.10 0.04
ReDDE 3 (/1000) 3.16 0.13 0.13 0.12 0.11 0.06

5.2.2 Experimental setup: CORI versus ReDDE

The three datasets were partitioned into 50, 100 and 1000 topical shards. A central sample
index (CSI) used by the ReDDE algorithm was created for each dataset using simple random
sampling. From each shard 4% of the documents were sampled for the CSI. Recall, that the
sample size was guided by the results from the analysis presented by Callan, 2001 [15] where
resource representations learned from 3% to 6% of the resource documents were found to be
only slightly worse than the complete resource representations. Many of the previous studies
that used CORI learned the shard models from a subset of the document collection. This design
choice was often enforced by the uncooperative search environment assumed in these studies.
We need not operate within such constraints in this work and thus for CORI we use the complete
collection to obtain accurate collection statistics.

CORI uses a unigram language model when learning the shard models. As a result, queries
that need term co-occurrence information, such as the dependence model queries, cannot be
evaluated accurately with this algorithm. As a result, the bag-of-words representation was used
for experiments reported in this section. The Indri algorithm was employed for the CSI retrieval
in case of ReDDE experiments, and for shard retrieval in both ReDDE and CORI experiments
reported here. The number of shards searched (CiS) was decided by an oracle for all the
selective search experiments reported in this section. Please refer to Section 4.1.5 for a detailed
description of the oracle methodology for setting CiS. In short the CiS oracle chooses a value
for this parameter that provides a good balance between the effectiveness and the efficiency
of selective search. As such, the results presented in this section provided an upper bound on
selective search performance under the two different shard ranking algorithms.

91

5. Online phase: Query processing 5.2. Shard ranking

0 20 40 60 80 100
10

2

10
3

10
4

10
5

10
6

Shard

D
oc

um
en

t−
fr

eq
ue

nc
y(

"o
ba

m
a"

)
(L

og
 s

ca
le

)

Random
Source−based
Topic−based

Figure 5.3: Distribution of the term obama across shards. Dataset: CW09-B.

5.2.3 Experimental results: CORI versus ReDDE

The results reported in Table 5.1 demonstrate that both the shard ranking algorithm support
competitive selective search performance, especially at early ranks. CORI struggles with pro-
viding competitive effectiveness at deeper ranks, especially for the smallest dataset, GOV2.
In terms of the search cost, CiD, ReDDE scores consistently better than CORI across all the
datasets. Recall that CiS is the number of top shards that had to be searched in order to provide
search effectiveness that is comparable to that of exhaustive search. We see that for the largest
dataset more of the top shards need to be searched when they are ranked by CORI than by
ReDDE. This suggests that the ranking proposed by CORI for this dataset is inferior to the one
by ReDDE which is consistent with prior research.

Previous work that compared CORI and ReDDE have often reported larger difference in
their performance [2, 69, 74] than that observed here. We believe that one of the reasons for this
discrepancy is the difference in the accuracy of the collection statistics made available to CORI.
Recall that in this work we use the complete collection to generate the shard models for CORI
whereas many of the previous works were restricted only to a subset.

The other notable difference between this search setup and the ones used in other studies
is the topic-based arrangement of the documents. The distribution of terms across shards
is markedly different for topical shards than for random, or even source-based shards. An
example is provided in Figure 5.3 where the document frequencies of the term obama in each
of the 100 shards of the CW09-B dataset are plotted. The distribution of the term across shards
is much more skewed for the topic-based shards than the other two types of shards. A shard
ranking algorithm is likely to be more accurate when the distribution of the query terms across
shards is skewed. This could be the other contributing factor for the higher performance of the

92

5.3. Shard ranking and cutoff estimation: Sampling-based Hierarchical Relevance Estimation (SHiRE)5. Online phase: Query processing

CORI algorithm here than that reported in previous work.
Overall, these results demonstrate that the performance of distributed selective search is not

overly dependent on the choice of the shard ranking algorithm. We also see that model-based
algorithms like CORI perform much better with topic-based shards and in cooperative search
environment, than what they have in prior research.

5.3 Shard ranking and cutoff estimation: Sampling-based Hierarchi-
cal Relevance Estimation (SHiRE)5

In addition to experimenting with existing resource ranking algorithm for selective search we
also propose a suite of algorithms that solve the two related problems of shard ranking, and shard
rank cutoff estimation together. Although the problem of ranking collections of documents has
received plenty of attention, the task of estimating the number of shards that should be searched
for a given query has gone nearly unnoticed. Most previous work (including the experiments
reported in this dissertation until now) used fixed cutoff values on the shard ranking that are
query-agnostic [14, 60, 65, 69] or used other query independent criteria, such as, the load on the
system, to determine the number of shards that would process the query [61].

We define the optimal shard rank cutoff as the smallest rank in a given shard ranking that
provides search effectiveness that is on par with exhaustive search. Notice that the optimal
cutoff is specific to a shard ranking. Two different shard rankings for the same query could
have different optimal cutoff values. The cutoff also depends on the evaluation metric under
consideration.

Figure 5.4 plots the optimal rank cutoffs for 150 evaluation queries used with the GOV2
dataset. The optimal rank cutoffs were computed for precision at rank 10 metric (P@10). The
straight lines represent the commonly used query-agnostic fixed rank cutoffs. This figure
illustrates that the optimal shard rank cutoffs (represented by asterisks) exhibit high variability
across queries. A fixed cutoff leads to an under or overestimation error for many queries. A
small fixed value, such as 1, would lead to a poor search effectiveness for 42% of the queries
in this example, while a larger fixed value of 10, would lead to an unwarranted increase in the
search cost for 99% of the queries. Neither of these error types are acceptable choices for most
search environments but it is especially critical for search providers with limited computing
resources to operationalize a search strategy that is efficient and also effective.

The task of estimating the optimal shard rank cutoff for a query is inherently dependent
on the predicted ranking of the shards for the query. An ordering that places the relevant
shards at the top enables an early shard rank cutoff. However, a poor shard ranking requires
a much deeper search into that particular ranking. Solving these problems together allows for

5This work was performed in collaboration with researchers from the University of Twente, Dr. Almer Tigelaar
and Dr. Djoerd Hiemstra, and was published in CIKM 2012 [46].

93

5. Online phase: Query processing5.3. Shard ranking and cutoff estimation: Sampling-based Hierarchical Relevance Estimation (SHiRE)

0 20 40 60 80 100 120 140 150
0

1

2

3

4

5

6

7

8

9

10

11

Queries

S
ha

rd
 R

an
k

C
ut

of
f

Optimal Cutoff
Fixed Cutoff=1 (Over est=0%, Under est=42%)
Fixed Cutoff=3 (Over est=82%, Under est=9%)
Fixed Cutoff=5 (Over est=94%, Under est=4%)
Fixed Cutoff=10 (Over est=99%, Under est=1%)

Figure 5.4: Optimal versus fixed shard rank cutoffs for ReDDE. Dataset: GOV2. Metric: P@10.

modeling the intrinsic dynamics between these two components. We thus propose a family
of three algorithms that provide a ranking of shards for the given query and also estimate
the optimal search cutoff in this ranking that supports competitive search effectiveness. We
refer this family of algorithms together as Sampling-based Hierarchical Relevance Estimation
(SHiRE). The individual algorithms are named as Lexical SHiRE (Lex-S), Rank SHiRE (Rank-S),
and Connected SHiRE (Conn-S). The outline of the algorithm that is common to all the three
members of the SHiRE family is provided in the form of a pseudo-code in Algorithm 3.

The first step of Algorithm 3 is common to all the three SHiRE algorithms. Each of the
SHiRE algorithms starts by executing the query against the CSI using Indri and obtaining a
ranked result list of documents. The information contained in this list, such as, the document
ranks, the retrieval scores, the document contents, and the originating shards of the documents,
is used by each algorithm in a unique way to construct a query-specific hierarchy in the second
step. The specifics are provided in Sections 5.3.2 through 5.3.4. In the final step of the SHiRE
algorithm the constructed hierarchy is traversed bottom-up starting from the node containing
the top ranked CSI document. The traversal stops when the root node is visited. The final
output of this traversal is a set of shards that are estimated to contain majority of the relevant
documents for the query. The traversal and scoring function used in this last step is common
to all the SHiRE algorithms, and is described in Section 5.3.1.

The rational behind overlaying a hierarchy on the flat CSI results for the query is to encode
additional information about the documents and the originating shards. Often the sample
used to create the CSI, and thus the shard ranking, is a very small portion of the complete
collection. As such, the shard ranking algorithm is offered only a limited and incomplete view
of the collection contents. Short queries can make the task of shard ranking further challenging.

94

5.3. Shard ranking and cutoff estimation: Sampling-based Hierarchical Relevance Estimation (SHiRE)5. Online phase: Query processing

Algorithm 3 Sampling-based Hierarchical Relevance Estimation (SHiRE)

Input: Central Sample Index (CSI), and query Q.
Output: Set of shards, {R1, ..,RP}, to search for the query Q.

// Execute the query Q against CSI and obtain the ranked list of documents retrieved for the
query.

1: {D1..Dn} ← runQuery(CSI, Q)

// Organize the CSI results into a hierarchy using one of SHiRE algorithms: Lexical SHiRE
(Algorithm 4) OR Rank SHiRE (Algorithm 5) OR Connected SHiRE (Algorithm 6).

2: tree.node(D1) ← transform({D1..Dn}) // transform function returns a pointer to the node
containing the top ranked CSI document.

// Perform a bottom-up traversal of the hierarchy starting at the node returned by the
previous step (Section 5.3.1). The output of the traversal function is the set of shards that
are predicted to be relevant to the query Q.

3: {R1, ..,RP} ← traversal(tree.node(D1))

When the flat CSI results are transformed into an hierarchy it provides an opportunity to model
the relations between the retrieved documents, in terms of their lexical similarities or shard
memberships. The goal is to gleaning additional information for shard ranking and cutoff
estimation.

Like ReDDE, the SHiRE algorithms are also instances of sample-based ranking algorithms since
they make use of the sample index to represent the shard contents. This choice was motivated
by the observation that the use of CSI for resource ranking has shown to be effective by several
previous studies [2, 69, 74], and also in our experiments in Section 5.2. Also, note that the CSI
creation happens during an offline phase that is not repeated for each query.

The details for steps two and three of the Algorithm 3 are provided next, starting with the
third step of traversal and scoring of the hierarchy of the CSI documents.

5.3.1 SHiRE tree traversal and scoring function

Given a hierarchy where each leaf node is a document from the CSI result list for the query, the
traversal starts from the leaf node that represents the top ranked CSI document. A bottom-up
traversal starting from this node reveals more documents at each step up through the tree. All
the documents that are directly attached to the current node or are indirectly attached through
a sub-tree, are both considered revealed at this level. The documents uncovered at each step
‘vote’ for the shards that they represent. However, the votes are exponentially decayed at each
level in this traversal. Specifically, a document d revealed at step U in the traversal contributes

95

5. Online phase: Query processing5.3. Shard ranking and cutoff estimation: Sampling-based Hierarchical Relevance Estimation (SHiRE)

a vote toward its parent shard as follows:

Vote(d) =Wd · B−U (5.2)

where Wd is either the document score assigned by the retrieval model or is a unit weight, B is
the base of the exponential function, and U = 0, 1, 2, 3.. is the traversal level.

The bottom-up traversal terminates once the root node is reached. The accumulated votes
assigned to the shards during the traversal are used to obtain a ranking of the shards ({R1..RK})
for the query. This method of scoring the shards for the query has an effect of driving the scores
to zero for shards that are represented only higher up in the tree. We leverage this property to
define an estimator for shard rank cutoff. It predicts the rank (P) at which the corresponding
shard score is close to zero as the cutoff for the query. As such, the top ranked shards up to the
predicted cutoff ({R1..RP}) are returned as the final output of the SHiRE algorithms.

For the experiments presented in this chapter we interpret the score of 10−4 or lower as
having converged to zero. In retrospect we realize that it would have been better to introduce
an additional parameter (C) for this threshold. The values chosen for the parameters B and C
together influence the cutoff prediction made by the SHiRE algorithm for a query. Introducing
a new parameter C would facilitated a thorough study of these interactions. In the experiments
presented in this dissertation, only a single value for C (10−4) was tested; it was effective, so
other values were not considered. However, other values could very well be better choices
for the parameter C. This exploration was not conducted here but would be a useful future
direction for the SHiRE algorithms.

By starting the tree traversal at the top ranked CSI document these algorithms assert that
the shard represented by the first document in the CSI ranking is likely to be the most relevant
shard for the query. The process of dampening the votes at each step models the intuition that
longer path lengths from the anchor node implies less similarity with it which further implies
lower likelihood of relevance to the query (Cluster Hypothesis [77]). If a tree is very shallow, few
shards would accumulate a zero relevance score, whereas a very deep tree will result in many
shards with zero scores.

This tree traversal and the scoring methodology is further illustrated with examples for each
of the three SHiRE algorithms in the following sections.

5.3.2 Lexical SHiRE (Lex-S)

The Lex-S algorithm organizes the CSI documents retrieved for a query into a hierarchy based
on their lexical similarities. The pseudo-code for transform function implemented by the Lex-S
is provided in Figure 4. As a first step the Lex-S algorithm represents each of the CSI documents
retrieved for the query as a vector of tf-idf values for the unique terms of the document. An
off-the-shelf agglomerative hierarchical clustering algorithm is then applied to the document
vectors in order to obtain a document similarity based tree. The Manhattan distance metric was

96

5.3. Shard ranking and cutoff estimation: Sampling-based Hierarchical Relevance Estimation (SHiRE)5. Online phase: Query processing

D1 D2

I1

I2

I3

D4 D30 12 3

(S3)(S3) (S5) (S5)

Figure 5.5: Lexical SHiRE. CSI ranking: D1,D2,D3,D4. Dashed arrows represent the path
followed by the bottom-up traversal starting at D1. Numbers besides the leaf nodes specify the
order of revelation of the documents. Parent shards specified in the brackets.

Algorithm 4 transform function by Lexical SHiRE (Lex-S)

Input: ranked results list from CSI for Q, {D1..Dn}.
Output: tree node for the top ranked document, tree.node(D1).

// Fetch the document vectors for {D1..Dn}.
1: for each rank r in {1..n} do
2: DVr← fetchDocumentVector(Dr)
3: end for

// Apply hierarchical agglomerative clustering (HAC) to the document vectors
4: tree← HAC(Linkage criterion:Ward, Distance metric:Manhattan, {DV1..DVn})

// Return the node in the resulting tree for the top ranked document D1.
5: return tree.node(D1)

used to compute pairwise lexical similarities between the document vectors and the Ward’s
method [81] provided the linkage criterion. The computational complexity of agglomerative
clustering is O(n3) where n is the number of CSI documents retrieved for the query.

The motivation for organizing the documents based on their similarity is that such an
hierarchy provides equal voting rights to all documents that are similar (attached to the same
node in the tree) irrespective of their CSI ranking.

An example hierarchy for a toy set consisting of four CSI documents retrieved for a query
is shown in Figure 5.5. Dn represents the document at rank n in the CSI results. Recall that
the ranking of shards is derived by traversing up this tree, starting from the leaf node for the
first document in the CSI ranking (D1). The next step in the traversal would reach the internal
node I1 and thus reveal the document D2. D4 would be observed next and D3 would be

97

5. Online phase: Query processing5.3. Shard ranking and cutoff estimation: Sampling-based Hierarchical Relevance Estimation (SHiRE)

Algorithm 5 transform function by Rank SHiRE (Rank-S)

Input: ranked results list from CSI for Q, {D1..Dn}.
Output: tree node for the top ranked document, tree.node(D1).

// Create a leaf node for the first document, D1.
1: L1← createLeafNode(D1)

// Create a parent node for the first document
2: I1← createInternalNode()

// Attach the leaf node as a left child of the parent
3: makeLeftChild(I1, L1)

4: for each rank r in {2..n − 1} do
5: Lr← createLeafNode(Dr) // Create a new leaf node for the current document, Dr

6: makeRightChild(Ir−1, Lr) //Attach the leaf node as a right child of the last created parent
7: Ir← createInternalNode() // Create a parent node for the next document
8: makeLeftChild(Ir, Ir−1) //Attach the previous parent as a left child to the new parent node
9: end for

// Create a leaf node for the last document, Dn.
10: Ln← createLeafNode(Dn)

// Attach the leaf node as a right child of the last created parent
11: makeRightChild(In−1, Ln)

// // Return the node in the resulting tree for the top ranked document D1.
12: return L1

found the last. If VD1 is the vote that D1 ascribes to its parent shard then D1 will contribute:
VD1 · B−U, where U=0 is the number of steps traversed up the hierarchy, and B is the base of
the exponential decay function. Similarly, D2, D4 and D3 will contribute: VD4 · B−1, VD3 · B−2,
and, VD4 · B−3 respectively, to their parent shards. The shard S3 will accumulate votes from
documents D4 and D1, and shard S5 will accumulate votes from documents D2 and D3. The
resulting scores would be used to rank the shards S3 and S5. For more complex trees where a
traversal step reveals a subtree instead of an individual node, all the documents attached to the
sub-tree will be considered revealed at the same level. As a result, the B−U component of the
scoring equation will be the same for all these documents.

98

5.3. Shard ranking and cutoff estimation: Sampling-based Hierarchical Relevance Estimation (SHiRE)5. Online phase: Query processing

D1 D2

I1

I2

I3

D4D30 1 2 3

(S5) (S5) (S3)(S3)

Figure 5.6: Rank SHiRE. CSI ranking: D1,D2,D3,D4. Dashed arrows represent the path
followed by the bottom-up traversal starting at D1. Numbers besides the leaf nodes specify the
order of revelation of the documents. Parent shards specified in the brackets.

5.3.3 Rank SHiRE (Rank-S)

The Rank-S algorithm uses only the rank information of the documents retrieved from CSI for
the query to construct the hierarchy. A pseudo-code for this transformation is provided in
Figure 5. The tree creation starts at the leftmost leaf node which is assigned to the top ranked
document. All the remaining documents get attached as right leaf nodes in the resulting left-
branching binary tree. An example tree structure created by the Rank-S transform function for
a toy example is illustrated in Figure 5.6. The tree creation stops when the last document in the
CSI ranking get attached to the highest node (root) in this tree.

The motivation for the Rank-S transformation is to make use of the document ranks to infer
shard ranking and cutoff estimation. The goal is to prefer shards that are likely to provide
highly ranked documents for the query.

The procedure for inferring a shard ranking from this tree is similar to that used by the Lex-S
algorithm. For the toy example in Figure 5.6 the traversal would start at the leaf node, D1, and
proceed to discover documents D2, D3, and D4, in that order. As a result, the parent shard of
documents D1 and D4, shard S3 will be assigned a score of (VD1 ·B−0)+ (VD4 ·B−3). The shard S5
which is represented by documents D2 and D3 will be assigned a score of (VD2 ·B−1)+(VD3 ·B−2).

The shard ranking and cutoff estimation achieved through the above method can also be
replicated without the use of a tree structure, by simply walking down the ranked list, and
using the document rank to set the variable U in equation 5.2. Instead, we use the tree structure
to leverage the existing framework of the SHiRE algorithm.

The simplicity of the Rank-S algorithm makes it the most efficient algorithm of this family.
This approach is most similar in spirit to the CRCS(e) ranking method [65]. However, other CSI
based shard ranking methods, like ReDDE, can also be easily transformed to work with a left-
branching binary tree of CSI documents where the votes are not decayed during the bottom-up
traversal. As such, the computational complexity of Rank-S is very similar to that of ReDDE.

99

5. Online phase: Query processing5.3. Shard ranking and cutoff estimation: Sampling-based Hierarchical Relevance Estimation (SHiRE)

Algorithm 6 transform function by Connected SHiRE (Conn-S)

Input: ranked results list from CSI for Q, {D1..Dn}.
Output: tree node for the top ranked document, tree.node(D1).

// Create a leaf node for the first document, D1.
1: L1← createLeafNode(D1)

// Create a parent node for the first document
2: I1← createInternalNode()

// Attach the leaf node as a child of the parent
3: makeChild(I1, L1)

4: j = 1
5: for each rank r in {2..n} do
6: Lr← createLeafNode(Dr) // Create a new leaf node for the current document, Dr

//Check if the current document, Dr, belongs to the same shard as the previous document.

7: if (shard(Dr) == shard(Dr−1)) then
8: makeChild(parent(Dr−1),Lr) // Attach the leaf node as a child of the parent node of the

previous document
9: else

10: j++
11: I j← createInternalNode() // Create a new internal node
12: makeChild(I j,parent(Dr−1)) // Attach the previous parent as a child of the new parent
13: makeChild(I j,Lr) // Attach the leaf node as a child of the new parent
14: end if
15: end for

// Return the node in the resulting tree for the top ranked document D1.
16: return L1

5.3.4 Connected SHiRE (Conn-S)

The transform function defined by the Conn-S approach uses the connections between the re-
trieved CSI documents, specifically their shard membership, to guide the construction of the
hierarchy. The pseudo-code for the Conn-S function is specified in Figure 6. This approach is
similar to the Rank-S tree construction approach. The top ranked document is at the deepest
node in the hierarchy. The next document in the CSI ranking is either attached at the same
level as the previous node, or it prompts creation of another level depending upon whether it

100

5.3. Shard ranking and cutoff estimation: Sampling-based Hierarchical Relevance Estimation (SHiRE)5. Online phase: Query processing

D1 D2 D4D30 1 2

(S5) (S3)(S5)

1

(S3)

I1

I2

I3

Figure 5.7: Connected SHiRE. CSI ranking: D1,D2,D3,D4. Dashed arrows represent the path
followed by the bottom-up traversal starting at D1. Numbers besides the leaf nodes specify the
order of revelation of the documents. Parent shards specified in the brackets.

Table 5.2: Selective search performance with different shard ranking algorithms. Dataset:
GOV2. L denotes significantly worse effectiveness than ReDDE (p < 0.05).

CiD CiDSHiRE− P@10 P@30 P@100 NDCG MAP
CiS (million) CiDReDDE @100

Exhaustive - 3.62 - 0.58 0.52 0.42 0.47 0.32
ReDDE (T=5) 5.0 1.29 - 0.58 0.52 0.42 0.47 0.32
SUSHI 3.4 0.65 -50% L0.51 L0.41 L0.32 L0.35 L0.22
Lex-S (B=3) 6.5 1.24 -4% 0.57 L0.51 L0.40 L0.45 L0.30
Rank-S (B=3) 3.4 0.81 -37% 0.58 0.52 0.41 L0.46 L0.31
Conn-S (B=3) 4.6 1.01 -22% 0.58 0.52 0.42 L0.46 0.31

belongs to the same shard as the previous document. As per the Cluster Hypothesis, for topical
shards, documents from the same shard are likely to be relevant to the same information need.
Placing such documents at the same internal node provides them equal voting rights.

For the toy example (Figure 5.7), the Conn-S algorithm attaches documents D1 and D2 to
different internal nodes since the documents originate from different shards. In contrast, D2
and D3 belong to the same shard, and thus D3 attaches to the same node as D2. Finally, D4
leads to a creation of another internal node because it belongs to a different shard (S3) than D3
(S5). This continues until every document in the CSI ranking is processed. A CSI ranking that
does not place any pair of documents from the same shard in consecutive ranks results in a
left-branching binary tree using this method. A shard ranking is estimated from the resulting
hierarchy using the same approach as that used by Lex-S: bottom-up traversal with exponential
decays at each level. Specifically, documents D1 and D4 assign votes of VD1 · B−0 and VD4 · B−2

to shard S3, respectively. Documents D2 and D3 assign votes of VD2 ·B−1 and VD3 ·B−1 to shard
S5, respectively.

101

5. Online phase: Query processing 5.4. Experimental results: Search effectiveness and efficiency

5.4 Experimental results: Search effectiveness and efficiency

For this analysis the GOV2 and CW09-B datasets were partitioned into 50 and 100 topical shards,
respectively. Tables 5.2 and 5.3 report the search effectiveness and efficiency results for the two
datasets. The SHiRE algorithms with dynamic shard rank cutoff estimation are compared with
two previously proposed shard rankers: ReDDE and SUSHI, described in Section 2.3. An oracle
setup was used for these experiments where several different parameterizations were evaluated
and the setting that provided the best trade-off in terms of search effectiveness and processing
cost was chosen for each algorithm. For ReDDE the parameter under consideration was the
fixed shard rank cutoff (T) and for the SHiRE algorithms it was the base for the exponential decay
function (B). Though not a realistic setup, this provides the upper bound on the performance
of both, the baselines and the SHiRE algorithms. The chosen values for these parameters are
provided in brackets in the first column of the tables. For the parameter B, we explored a
range of integer values from 2 through 50. The sensitivity of SHiRE algorithms to different
parameterizations is analyzed later, in Section 5.4.1. The space of fractional values larger than
1 is also valid for the parameter B. Although fractional values are not explored in this work,
we realize on the hindsight, that it would have been an interesting range to study. The use of
exponential decay function drives the votes computed using larger B values to near-zero very
quickly, but smaller B values would slowdown this convergence. The effect of this on the search
performance could provide useful insights for the SHiRE algorithms.

In our experiments the number of documents retrieved from the CSI for a query was in the
range of 1700 to 2000 documents. The transform functions of the SHiRE algorithms organized
these documents into an hierarchy.

The differences in the search accuracies of ReDDE and the proposed approaches were tested
for statistical significance using the paired T-test (p < 0.05). As before the search efficiency is
reported in terms of the two cost metrics, cost-in-documents (CiD), and cost-in-shards (CiS). In
addition, each algorithm’s CiD is compared with that of ReDDE.

When analyzing the search effectiveness of the SHiRE algorithms the results in Tables 5.2
and 5.3 suggest that the SHiRE algorithms have potential to provide comparable performance
to that of ReDDE, especially at early ranks. Results for the Recall oriented metric, MAP, show
that the Conn-S algorithm is the most successful one on this metric. In terms of efficiency the
Rank-S algorithm offers the largest savings in the search cost for both the datasets. For the
larger dataset the cost is cut in nearly half of that of ReDDE. The Lex-S algorithm offers the
smallest savings in cost and struggles to perform as well as ReDDE. A trend that is common
across the three SHiRE algorithms is that the savings in CiD over that of ReDDE’s are bigger
for the larger dataset. This is especially noticeable for the Lex-S and the Rank-S algorithms.

The number of top shards searched for ReDDE and Lex-S exhibit similar pattern – fewer
shards are searched for the larger dataset. This explains in part the bigger reduction in CiD for

102

5.4. Experimental results: Search effectiveness and efficiency 5. Online phase: Query processing

Table 5.3: Selective search performance with different shard ranking algorithms. Dataset:
CW09-B.

CiD CiDSHiRE− P@10 P@30 P@100 NDCG MAP
CiS (million) CiDReDDE @100

Exhaustive - 5.37 - 0.27 0.26 0.21 0.27 0.18
ReDDE (T=3) 3.0 0.68 - 0.29 0.28 0.20 0.27 0.17
SUSHI 5.3 0.54 -21% 0.28 0.27 0.19 0.25 0.16
Lex-S (B=20) 5.6 0.57 -16% 0.29 0.27 0.19 0.25 0.16
Rank-S (B=5) 3.6 0.36 -47% 0.29 0.28 0.20 0.27 0.17
Conn-S (B=5) 4.6 0.52 -24% 0.29 0.28 0.20 0.27 0.17

CW09-B. The predictions for the shard rank cutoffwith Rank-S and the Conn-S are comparable
across the two datasets in spite of the differences in dataset sizes and the total number of shards.
Like CiD, the trends in CiS across the two datasets also indicate sub-linear scaling of selective
search cost with dataset size.

For the baselines and all the SHiRE algorithms, the reductions in search cost over that of
exhaustive search are bigger for the larger dataset. However, the reductions are much bigger
for some of the SHiRE algorithms. For the Rank-S algorithm the savings are 78% and 93% for
the GOV2 and CW09-B datasets, respectively. For the Conn-S algorithm the reductions are 72%
and 90% for GOV2 and CW09-B, respectively.

When comparing the three SHiRE algorithms with each other we see that Lex-S is biased
toward larger shard rank cutoff predictions (higher CiS). This is not surprising since the docu-
ment hierarchies created by Lex-S are more flat than deep. As a result, during the bottom-up
tree traversal, the votes accumulated at each level in the tree decay at a much slower rate.
Consequentially many more shards are scored, and the predicted cutoff is higher. The search
effectiveness results for the Lex-S algorithm in Tables demonstrate that in spite of its bias for
higher CiS, it does not support a more effective selective search. This indicates that Lex-S
performs poorly on the task of shard ranking. The Rank-S hierarchies are much more deeper
than the other two algorithms. As a result, Rank-s exhibits a bias toward smaller predictions.
The Conn-S trees are shorter than Rank-S but deeper than Lex-S. Thus Conn-S exhibits the least
amount of bias of the three algorithms.

The shard rank cutoff estimator used by SUSHI optimizes its prediction for a particular
precision metric (Section 2.3). The P@10 and P@30 values reported for SUSHI are thus from
separate runs and the remaining values are an average over those two runs. For the GOV2
dataset SUSHI is unable to provide a good balance between search accuracy and cost for the
smaller dataset. It is overly biased toward smaller shard rank cutoffwhich leads to lower search
effectiveness. For the CW09-B dataset, although the search effectiveness results for SUSHI are

103

5. Online phase: Query processing 5.4. Experimental results: Search effectiveness and efficiency

2 3 4 5 6 7 8 910 20 30 40 50
0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

Base of the Exponential Decay Function (B)
(Log scale)

2 3 4 5 6 7 8 910 20 30 40 50
0

0.5

1

1.5

2

2.5

3
x 10

6

C
o

st
 M

et
ri

c
(C

iD
)

Base of the Exponential Decay Function (B)
(Log scale)

P@10
P@30
P@100
NDCG@100
MAP

Cost

(a) Rank-S algorithm.

2 3 4 5 6 7 8 910 20 30 40 50
0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

Base of the Exponential Decay Function (B)
(Log scale)

2 3 4 5 6 7 8 910 20 30 40 50
0

0.5

1

1.5

2

2.5

3
x 10

6

C
o

st
 M

et
ri

c
(C

iD
)

Base of the Exponential Decay Function (B)
(Log scale)

P@10
P@30
P@100
NDCG@100
MAP

Cost

(b) Conn-S algorithm.

Figure 5.8: Sensitivity of Rank-S and Conn-S algorithms to parameter B (Base of the exponential
decay function.). Dataset: GOV2.

comparable to other approaches, its corresponding efficiency is lower than Rank-S and Conn-S.
Overall SUSHI does not offer a stable performance across the datasets and as such is a weaker
baseline than ReDDE. In the following sections we compare the SHiRE algorithms only with
the ReDDE algorithm.

Overall, these experiments suggest that if competitive precision at early ranks is of interest
then the Rank-S algorithm can provide the most cost effective solution. For search tasks where
precision at deeper ranks is important the Conn-S algorithm can offer the best solution. Recall,
that the computational cost of Rank-S and Conn-S is comparable to that of ReDDE. This further
recommends the two shard ranking and cutoff estimation algorithms. Due to their better
performance we only study the Rank-S and the Conn-S algorithms in the following sections.

5.4.1 Sensitivity of SHiRE algorithms to parameter B

We experimented with a range of base values (B) for the exponential decay function (Equa-
tion 5.2) in order to analyze its influence on the performance of the SHiRE algorithms. Fig-
ures 5.8 and 5.9 present the results for the Rank-S and Conn-S algorithms for the GOV2 and
CW09-B dataset, respectively.

The plots show that the search effectiveness, as quantified by various metrics, is fairly stable
over a range of B values for both the datasets. This trend is exhibited by both Rank-S and
Conn-S algorithms. We see more variation in the values for the cost metric. A small base value
leads to a slower decay which allows for higher search budget (in terms of shard rank cutoff).
As a result, the corresponding search cost increases as the base value decreases.

104

5.5. Experimental results: Shard rank cutoff estimation 5. Online phase: Query processing

2 3 4 5 6 7 8 910 20 30 40 50
0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

Base of the Exponential Decay Function (B)
(Log scale)

2 3 4 5 6 7 8 910 20 30 40 50
0

0.5

1

1.5

2

2.5

3
x 10

6

C
o

st
 M

et
ri

c
(C

iD
)

Base of the Exponential Decay Function (B)
(Log scale)

P@10
P@30
P@100
NDCG@100
MAP

Cost

(a) Rank-S algorithm.

2 3 4 5 6 7 8 910 20 30 40 50
0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy

Base of the Exponential Decay Function (B)
(Log scale)

2 3 4 5 6 7 8 910 20 30 40 50
0

0.5

1

1.5

2

2.5

3
x 10

6

C
o

st
 M

et
ri

c
(C

iD
)

Base of the Exponential Decay Function (B)
(Log scale)

P@10
P@30
P@100
NDCG@100
MAP

Cost

(b) Conn-S algorithm.

Figure 5.9: Sensitivity of Rank-S and Conn-S algorithms to parameter B (Base of the exponential
decay function.). Dataset: CW09-B.

Overall, we can conclude from these results that the SHiRE algorithms are not highly
sensitive to the parameter B and that we see consistent trends that are intuitive.

5.5 Experimental results: Shard rank cutoff estimation

In this section we analyze the effectiveness of the SHiRE algorithms at predicting the optimal
shard rank cutoff for the query. The optimal cutoff is the earliest rank at which the selective
search accuracy is equal or better than that of exhaustive search as measured by a particular
evaluation metric. Notice that this definition of the optimal rank cutoff is metric-specific. As
such, the optimal cutoff for P@10 could be different from that for MAP for the same query.

For this analysis we categorize the cutoff predictions into: under, equal and over estimates,
based on comparison with the optimal rank cutoff. The equal category has a tolerance of±1. An
estimate that is off by +1 or -1 from the optimal value would be counted as an accurate estimate
for this analysis. The under-estimation errors lead to ineffective search while over-estimation
errors result into inefficient search.

Figure 5.10 provides the distribution of estimation errors for ReDDE and the three SHiRE
algorithms for the GOV2 and CW09-B datasets, respectively. We analyze three metrics, P@10,
NDCG@100, and MAP, which evaluate search effectiveness at increasingly deeper ranks. We
see that the percentage of under-estimation errors increase for all the algorithms and both the
datasets when search effectiveness at deeper ranks is evaluated.

When comparing the algorithms to each other, the Rank-S algorithm exhibits substantially
larger percentage of equal predictions than the other algorithms for the GOV2 dataset. The

105

5. Online phase: Query processing 5.5. Experimental results: Shard rank cutoff estimation

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 Q

ue
rie

s

Metric: P@10

under
equal
over

Rank−S
(B=3)

Lex−S
(B=3)

ReDDE
(T=5)

Conn−S
(B=3)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 Q

ue
rie

s

Metric: NDCG@100

 under
equal
over

ReDDE
(T=5)

Lex−S
(B=3)

Rank−S
(B=3)

Conn−S
(B=3)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 Q

ue
rie

s

Metric: MAP

 under
equal
over

ReDDE
(T=5)

Lex−S
(B=3)

Rank−S
(B=3)

Conn−S
(B=3)

(a) Dataset: GOV2

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 Q

ue
rie

s

Metric: P@10

 under
equal
over

ReDDE
(T=3)

Lex−S
(B=20)

Rank−S
(B=5)

Conn−S
(B=5)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 Q

ue
rie

s
Metric: NDCG@100

 under
equal
over

ReDDE
(T=3)

Lex−S
(B=20)

Rank−S
(B=5)

Conn−S
(B=5)

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 Q

ue
rie

s

Metric: MAP

 under
equal
over

ReDDE
(T=3)

Lex−S
(B=20)

Rank−S
(B=5)

Conn−S
(B=5)

(b) Dataset: CW09-B

Figure 5.10: Shard rank cutoff estimation errors.

106

5.5. Experimental results: Shard rank cutoff estimation 5. Online phase: Query processing

Figure 5.11: Confusion matrix for shard rank cutoff estimation for Rank-S (B=3). Dataset:
GOV2. Number of queries: 149.

(a) Metric: P@10. Cutoff averages: optimal=1.9,
predicted=3.4.

Predicted
1 2 3 4 5 >5

O
pt

im
al

1 14 22 24 23 9 8
2 0 2 10 6 4 1
3 0 0 3 7 0 1
4 0 1 0 3 1 0
5 0 1 0 1 0 0
>5 1 0 1 1 5 0

(b) Metric: NDCG@100. Cutoff averages: opti-
mal=4.9, predicted=3.4.

Predicted
1 2 3 4 5 >5

O
pt

im
al

1 11 15 13 13 2 2
2 0 5 8 5 6 0
3 2 0 4 4 0 3
4 0 0 0 4 1 0
5 0 3 5 4 0 1
>5 2 3 8 11 10 8

(c) Metric: MAP. Cutoff averages: optimal=6.7,
predicted=3.4.

Predicted
1 2 3 4 5 >5

O
pt

im
al

1 10 10 5 9 2 0
2 1 4 9 6 0 0
3 1 1 5 4 0 1
4 0 1 3 3 1 0
5 0 1 2 4 1 2
>5 3 9 14 15 15 14

107

5. Online phase: Query processing 5.5. Experimental results: Shard rank cutoff estimation

Table 5.4: Additional datasets.

Size Number Number Vocabulary Average
(uncompressed) of of Words Size Document

Dataset (GB) Documents (million) (million) Length
TREC123-BySrc (100) 3.2 1,078,166 0.5 0.9 420
TREC4-Kmeans (100) 2.0 567,529 0.3 0.6 481

trend for the CW09-B dataset is less clear where the Lex-S and the Rank-S are on par in terms
of equal estimates. For both the datasets and nearly all the three metrics, the percentage of
over-estimation errors are larger than under-estimation errors for the Conn-S algorithm.

The above analysis provides a high-level validation of the cutoff estimator’s efficacy. For
a more thorough understanding we study the magnitude of the cutoff prediction errors for the
Rank-S algorithm. The confusion matrices in Tables 5.11 and 5.12 present these values for the
GOV2 and CW09-B datasets. We continue to use the three metrics from the previous analysis,
P@10, NDCG@100, and MAP.

For all the metrics and both the datasets these confusion matrices are right-heavy around the
diagonal. This reaffirms the observation from the previous analysis that over-estimation errors
occur more frequently than the under-estimation errors. Another trend that is prevalent across
the board is that smaller magnitude errors are more common than the larger magnitude errors
– the off-diagonal cells with larger numbers are closer to the diagonal.

For the GOV2 dataset, the cutoff prediction is correct (with a tolerance of ±1) for 47%, 49%,
and 56% of the queries for the P@10, NDCG@100, and MAP metrics, respectively. For the
CW09-B dataset, the estimation is correct (with a tolerance of ±1) for 41%, 49%, and 53% of the
queries for the P@10, NDCG@100, and MAP metrics, respectively. In contrast, the best fixed
cutoff of 5 used by ReDDE for the GOV2 dataset is correct for 9%, 33%, and 56% of the queries
for the P@10, NDCG@100, and MAP metrics, respectively. Similarly, the best fixed cutoff of 3
used by ReDDE for the CW09-B dataset is correct for 15%, 18%, and 23% of the queries for the
P@10, NDCG@100, and MAP metrics, respectively.

Overall, the proposed query-specific rank cutoff estimators take a step in the right direction
and offer improvements over the query-agnostic fixed cutoff approach. However, the above
analysis also reveals the areas in which the estimator could be improved. A metric-specific
estimator, in addition to query-specific, would be able to better model the distinct requirements
of the different metrics.

108

5.5. Experimental results: Shard rank cutoff estimation 5. Online phase: Query processing

Figure 5.12: Confusion matrix for shard rank cutoff estimation for Rank-S (B=5). Dataset:
CW09-B. Number of queries: 98.

(a) Metric: P@10. Cutoff averages: optimal=2.9,
predicted=3.6.

Predicted
1 2 3 4 5 >5

O
pt

im
al

1 15 13 14 8 16 7
2 0 1 2 2 2 3
3 0 1 0 2 0 0
4 0 0 1 1 0 2
5 0 0 0 0 1 2
>5 0 1 0 3 1 0

(b) Metric: NDCG@100. Cutoff averages: op-
timal=7.0, predicted=3.6.

Predicted
1 2 3 4 5 >5

O
pt

im
al

1 15 9 9 3 6 5
2 0 3 1 3 7 2
3 0 1 1 0 0 0
4 0 0 0 2 1 2
5 0 0 2 1 1 0
>5 0 3 4 7 5 10

(c) Metric: MAP. Cutoff averages: optimal=11.0,
predicted=3.6.

Predicted
1 2 3 4 5 >5

O
pt

im
al

1 14 10 7 2 5 4
2 0 2 1 1 5 2
3 0 1 1 1 1 0
4 0 0 1 1 1 1
5 0 0 2 1 1 1
>5 1 3 5 10 7 12

109

5. Online phase: Query processing 5.6. Experimental results: Additional datasets

Table 5.5: Query sets.

Average Average Number Number of
Query of Relevant Relevance

Dataset Query Set Length Documents per Query Levels
TREC123-BySrc 51-100 3.4 546 (± 375) 2
TREC4-Kmeans 201-250 9.1 130 (± 115) 2

Table 5.6: Selective search performance with different shard ranking algorithms. Dataset:
TREC123-BySrc. L denotes significantly worse effectiveness than ReDDE (p < 0.05).

CiS CiD CiDSHiRE− P@10 P@30 P@100 MAP
(million) CiDReDDE

Exhaustive 100 0.21 0.15 0.48 0.47 0.41
ReDDE (T=25) 25 0.06 - 0.48 0.46 0.37 0.14
Lex-S (B=3) 26 0.05 -17% 0.52 0.46 0.35 0.13
Rank-S (B=2) 11 0.02 -67% 0.50 L0.42 L0.31 L0.09
Conn-S (B=2) 12 0.03 -50% 0.50 0.44 L0.32 L0.10

5.6 Experimental results: Additional datasets

Although they are now considered small and outdated, TREC4-Kmeans and TREC123-BySrc are
two of the most widely used datasets in distributed information retrieval research. Also since
they were not created using the document allocation approaches proposed in this dissertation,
they serve to test the sensitivity of selective search to the choice of partitioning technique. Xu
and Croft [85] created the TREC4-Kmeans dataset by clustering the documents from the Text
Research Collection, Volumes 2 and 36 into 100 clusters. French et al. [28] created the TREC123-
BySrc dataset by dividing the Text Research Collection, Volumes 1, 2 and 3, into 100 partitions
based on the source of the documents.

The dataset statistics are given in Table 5.4. The evaluation queries that were used with these
datasets are summarized in Table 5.5. Unlike GOV2 and CW09-B the relevance judgments for
the evaluation queries of TREC4-Kmeans and TREC123-BySrc contain only binary relevance
scale. Thus we do not analyze NDCG@100 results for the TREC datasets.

The results for both datasets are given in Tables 5.6 and 5.7. As with the other two datasets,
the differences in precision values of ReDDE and the SHiRE algorithms were tested for signifi-
cance using the paired T-test (p < 0.05).

None of the shard ranking algorithms are able to support selective search that is competitive
with exhaustive search at deeper ranks for either of the additional datasets. In contrast, selective

6http://trec.nist.gov/data/docs eng.html

110

5.7. Summary 5. Online phase: Query processing

Table 5.7: Selective search performance with different shard ranking algorithms. Dataset:
TREC4-Kmeans. L denotes significantly worse effectiveness than ReDDE (p < 0.05).

CiS CiD CiDSHiRE− P@10 P@30 P@100 MAP
(million) CiDReDDE

Exhaustive 100 0.21 0.19 0.46 0.35 0.25
ReDDE (T=20) 20 0.09 - 0.45 0.34 0.23 0.19
Lex-S (B=2) 22 0.08 -11% 0.46 0.34 0.22 0.16
Rank-S (B=2) 8 0.03 -67% L0.41 0.32 L0.22 0.16
Conn-S (B=2) 9 0.03 -67% L0.41 0.32 L0.22 0.17

search with the SHiRE algorithms provide higher search effectiveness than exhaustive search
at early ranks for the TREC123-BySrc dataset, although, the improvement are not statistically
significant.

When the three SHiRE algorithms are compared to ReDDE and with each other we notice
another prominent deviation in these results from the earlier trends. The Lex-S algorithm
provides competitive search accuracy for both the datasets. However, the Rank-S and the
Conn-S algorithms do not provide a good balance between effectiveness and efficiency. The
Rank-S and Conn-S algorithms predict much smaller cutoff values, as is evidenced by the CiS
values, than the Lex-S algorithm. It is thus not a surprise that Rank-S and Conn-S offer large
savings in search cost. This bias toward smaller cutoff predictions is a problem particularly
for the dataset that is not partitioned into topical shards, like in case of TREC123-BySrc. The
Lex-S algorithm on the other hand provides modest savings in search costs but offers search
effectiveness that is comparable to that of the fixed cutoff approach for both the datasets.

Overall, these results indicate that the family of SHiRE algorithms together provide a search
approach that has reasonable adaptability, and is cost-effective for different search needs.

5.7 Summary

This chapter studied the online phase of distributed selective search where each incoming query
is processed at selected shards. The analysis of the first component of the query processing
pipeline, query transformation, demonstrated that the richer query representation provides
substantial improvements in search effectiveness for both exhaustive and selective search. This
is especially true for the smaller datasets where the search effectiveness improves by 10% or
more for nearly all of the metrics. For the larger datasets, the richer query representation offers
fewer improvements in search effectiveness and most of these are not statistically significant.

This chapter also tested the sensitivity of selective search to a particular shard ranking algo-
rithm. We chose two widely used resource ranking algorithms, CORI and ReDDE, that are quite

111

5. Online phase: Query processing 5.7. Summary

dissimilar to each other in terms of their design and inherent biases. The experimental results
demonstrate that the distributed selective search provides competitive search effectiveness with
both the shard ranking algorithm.

In addition to experimenting with existing shard ranking algorithms we also proposed
a family of three SHiRE shard ranking algorithms: Lex-S, Rank-S and Conn-S. As a basis
each of these algorithms employ a commonly used data structure, the central sample index
(CSI) [69], to represent the shard contents. Running a query against the CSI yields a flat
document ranking that the SHiRE algorithms transforms into a tree structure in order to encode
additional information about the documents and the shards. A bottom-up traversal of the
constructed hierarchy is used to infer shard ranking and an cutoff estimate by each algorithm.
The presented algorithms are one of the few approaches to dynamically predict query-specific
shard rank cutoffs. The joint formulation of the two inter-dependent problems of shard ranking
and cutoff estimation is also one of the contributions of this work.

We tested the proposed algorithms on two large datasets that were both partitioned into
topical shards. The experimental results suggest that the search effectiveness of the SHiRE
algorithms can be on par with a strong baseline and also with exhaustive search, while the
search cost is substantially lower than the baseline as well as exhaustive search. The Rank-S
and the Conn-S algorithms are the most efficient search methods for large topically partitioned
collections. They reduced the search cost by at least a quarter. The Rank-S algorithm also
supports query-specific cutoff estimation that is at least twice as accurate as the best fixed cutoff
value for topical shards.

Experiments with two supplementary datasets demonstrated that the conservative nature
of the Rank-S and Conn-S estimators, which enables very efficient search, can be a detriment for
smaller and topically less focused collections. However, Lex-S provides an attractive solution
that is efficient and yet effective as compared to the baseline. Overall, the family of SHiRE
algorithms offers cost-effective solutions for different search requirements.

112

Chapter 6

Search time analyses1

The experiments reported in the previous chapters of this dissertation made use of a simulated
search setup. The efficiency of this experimentation model allowed us to explore a wide range
of research problems studied as part of this thesis. However, the downside of a simulated
setup is that it only provides an approximate indicator of query runtime. In order to address
this limitation we study a full software implementation of distributed selective search in this
chapter. In addition, we also study other search efficiency problems that focus on query runtime.
We start the chapter by describing in detail the hardware and software platform used for the
experiments.

6.1 Platform

For the experiments in this chapter we use the size-bounded topical shards created using the
SB2 K-means approach described in Section 4.4. For each shard a separate Indri index was
constructed. The GOV2 dataset was spread across 208 index shards, and CW09-Eng was
partitioned into 807 index shards.

Figure 6.1 provides a block diagram of the experimental platform used in this chapter. To
provide distributed search Indri supports a standard client/server architecture. As is typical in
this architecture, the query is received by a client process which broadcasts it to multiple servers
processes, each of which searches a separate index shard. The search results from the server
processes are returned to the client where they are merged and the final results are returned
to the user. For our experiments we made use of this distributed search architecture, and the
server processes were instances of the Indri Daemon application2. The memory footprint of
an idle Indri Daemon is small, thus hundreds of daemon processes can be initiated on a single

1This work was done in collaboration with a fellow graduate student, Yubin Kim, and a summer intern, Jeevan
Shankar, from International Institute of Information Technology, Hyderabad.

2http://sourceforge.net/p/lemur/wiki/The%20Indri%20Daemon/

113

6. Search time analyses 6.1. Platform

<query>
Shard Ranking

(Client Process)

…

...

…

…

…

…

I/D 1

I/D 2

I/D m-1

I/D m

Machine 1 NAS

RAID 1

Shard 1

Shard 2

Shard m-1

Shard m

<query>
(Client Process) ...

…

…

…

…

I/D 1

I/D 2

I/D m-1

I/D m

Machine 2
RAID X

Shard 1

Shard 2

Shard m-1

Shard m

Legend:

I/D n: Indri Daemon for Shard n (Server Process)

Shard n: Inverted Index for Shard n

Figure 6.1: Block diagram of the platform used for the timing experiments.

machine. Since distributed selective search executes the query against only a small subset of
the daemon processes the total memory requirements of this setup are not exorbitant.

The experiments were conducted on two machines, each with 8-core, 2.44 GHz CPU (Intel
Xeon) and 16 GB of RAM. The total number of Indri daemon processes used for a dataset was
divided evenly between the two machines. The shard indexes for both the datasets were stored
on RAID partitions that are served by shared network-attached storage (NAS) units which
are connected to the machines over a Gigabit network. This configuration is representative of
computer hardware that one might find in an organization with modest computing resources.

For the selective search experiments we continue to use the parameter settings used in
Section 4.4.5 where the results for the size-bounded shards were first reported. For the GOV2
dataset the top 20 shards are searched for each query, and the top 3 shards for CW09-Eng. As
such, at any given time only 20 out of the 208 shard daemons are active for GOV2, and 3 out
of the 807 daemons are active for CW09-Eng. In the best case, 10 daemon processes out of the
top 20 selected for a query could be running on one machine and the remaining 10 would be on

114

6.1. Platform 6. Search time analyses

the other machine in our setup. In the worst case, however, all the 20 daemon processes may
reside on the same machine. In this case the cores in one machine would be over-utilized while
the cores on the other machine idle. We do not address this problem in this thesis but identify
shard-machine assignment as an important future direction for this work.

Since we are interested in comparing selective search with exhaustive search based on their
query runtimes, it is important that both the systems are allocated same amount of computing
resources. We use this requirement to guide the number of shards that each collection is divided
into for distributed exhaustive search. The GOV2 collection is partitioned into 20 shards, and
CW09-Eng is divided into 3 shards. A dataset sequence order based partitioning approach was
used for both the datasets where the first 5% of the documents in the GOV2 collection were
assigned to the first shard, the next 5% were allocated to the second shard, and so on. Indri’s
client/server architecture was used for exhaustive search as well. Specifically, each shard was
searched by a dedicated Indri daemon process, and the total number of daemons was divided
evenly across the two machines. This setup for distributed exhaustive search is also similar
to the approach commonly chosen when working with large collections in a low-resource
environments [9, 36, 71].

Ideally one would want to store each index shard on a separate RAID partition in order
to facilitate a completely distributed and parallel search process with minimum resource con-
tentions. However, this is rarely possible, especially in low-resource environments. As such,
the 208 index shards for the smaller dataset, GOV2, were all stored on a single RAID partition
in our experiments. For the larger CW09-Eng collection, its 807 index shards were spread
across four RAID partitions. The GOV2 setup is representative of search environments that
are constrained on processing resources as well as storage resources, while the CW09-Eng
setup represents environments that have modest storage resources but are more constrained in
processing power.

A single-threaded query processing approach was employed for the baseline as well as the
experimental approach where the queries were run in serial rather than in parallel. This is
appropriate since in the earlier part of this chapter we compare the runtimes of the approaches
and not throughput. Also, a single-threaded setup affords a cleaner and simpler setup for the
analysis of each individual query. The consequence is that in some experimental configurations
all of the available 16 CPU cores are not utilized. However, this under-utilization applies
equally to selective search and exhaustive search. We also present a throughput experiment
that makes better use of all the available processing cores in Section 6.7.

The previous chapter argued for a query-specific shard rank cutoffwhich specifies the num-
ber of top ranked shards to be searched for the query when doing selective search. However, for
the analysis presented in this chapter we used the ReDDE algorithm with a query-independent
fixed rank cutoff because it afforded better control of the computing resources allocated for each
query. This control is especially important for the experiments presented in this chapter since

115

6. Search time analyses 6.2. Storage and computational costs of random and topic-based shards

Table 6.1: Storage and computational costs for shard creation. The reported wall-clock time
were estimated for 16-processor machine.

GOV2 CW09-Eng
Random Topic-based Random Topic-based

shards shards shards shards
SB2 K-means - 2.4 hrs - 181.0 hrs
(Wall-clock time) (208 shards) (807 shards)

Shard index construction 1.6 hrs 10.7 hrs 32.9 hrs 57.3 hrs
(Wall-clock time) (16 shards) (208 shards) (16 shards) (807 shards)
CSI construction - 0.7 hrs - 10.4 hrs
(Wall-clock time)

Disk space 217 GB 212 GB 5513 GB 5310 GB
Disk space for CSI (4%) - 4.8 GB - 112 GB

we compare the runtimes of the baseline and the experimental approach.

6.2 Storage and computational costs of random and topic-based shards

Before presenting the runtime results in the next section, we summarize the storage and compu-
tational costs that are associated with creating index shards for exhaustive search and selective
search. Table 6.1 reports the time required to partition the document collection into topic-based
shards using SB2 K-means algorithm, and the time to transform the shards (random, and topic-
based) into inverted indexes using Indri. When analyzing these numbers it is important to note
that these experiments were performed on a shared computing cluster. As a result, the runtimes
of these experiments have been influenced by other computing tasks executing on the cluster
that time. The timing results in Table 6.1 should thus be interpreted as only being suggestive
of the true trends.

The shared computing cluster that was used to perform the experiments contains 150+
processing cores that are managed by Condor [73]. The original experiments exploited as much
processing power as possible by scheduling multiple jobs concurrently. The wall-clock time for
those experiments was used to estimate the wall-clock time these experiments would take on a
16 core setup. This was done to facilitate a consistent use of fixed number of processing cores
(at most 16) throughout this chapter. This also provides a fair comparison between the baseline
and the experimental approach since both use the same number of processing cores.

The wall-clock time needed to cluster the document collections into topic-base shards rep-
resent the overhead cost of selective search. The SB2 K-means algorithm takes 2.4 hrs to cluster
GOV2 (25 million document collection) into 208 shards. The wall-clock time needed to cluster

116

6.3. Query runtime for Exhaustive Search and Selective Search 6. Search time analyses

CW09-Eng (500 million documents) into 807 topical shards is about 75 times longer than GOV2.
This large difference in the wall-clock times for these datasets is caused by two factors: the
difference in collection size, and the difference in the number of shards created. The CW09-Eng
collection is 20 times larger than GOV2, and the number of shards that CW09-Eng is divided
into is about 4 times larger than that for GOV2.

The inverted indexes for all the shards as well as the central sample index (CSI) were
constructed using Indri. The wall-clock time for creating inverted indexes in parallel using 16
processing cores are reported in Table 6.1. As we would expect, the larger number of topic-
based shards take longer to get transformed into inverted indexes than the fewer number of
random shards. The CSI construction time is also an overhead cost for selective search. It is
clear from these results that the indexing time for selective search (topical shards and CSI) will
be longer than the indexing time for exhaustive search. However, the exact relation between
the two indexing times cannot be concluded from these numbers. This is so because the index
creation jobs were not run in a controlled environment.

The storage costs reported in Table 6.1 indicate that the selective search indexes (topical
shard indexes and CSI) need slightly less disk space than the exhaustive search indexes (ran-
dom shards). There are two main reasons for this trend. First, the topical shards cause less
duplication, and second, the topical shards compress better than the random shards. For topic-
based shards, most occurrences of a given term are concentrated into a few shards while in
case of random shards they are uniformly distributed across all the shards. As a result, the
book-keeping information that is needed for each term (for example, a term dictionary entry)
has to be maintained in nearly all the indexes for random shards. For topical shards, only a few
indexes duplicate such information for many terms. The topical shards compress better because
of the topical homogeneity of the shard contents. Often, the topically focused terms in a shard
occur in nearly all of the shard documents. The posting lists for such terms when compressed
using delta encoding offer high compression ratio since the resulting deltas are small. The
documents within a random shard index, on the other hand, lack topical homogeneity and thus
cannot offer small deltas and better compression.

6.3 Query runtime for Exhaustive Search and Selective Search

Armed with an actual implementation of distributed selective search we revisit the objectives
about search efficiency laid out in Section 3.2. Specifically, we test whether distributed selective
search offers substantial speed up in query runtime over distributed exhaustive search when
provided with the same amount of computing resources. The experimental results are reported
in Table 6.2. The runtime values reported throughout this chapter are cumulative over all the
queries. Search efficiency as measured by cost-in-documents and cost-in-shards metrics is also
reproduced in Table 6.2 for completeness.

117

6. Search time analyses 6.3. Query runtime for Exhaustive Search and Selective Search

Table 6.2: Query runtime and search cost results for distributed exhaustive search and dis-
tributed selective search.

Runtime Gain CiD Gain CiS
(secs) (million)

GOV2 Exhaustive 760 - 3.63 - 20 (/20)
(150 Queries) Selective 603 21% 0.66 82% 20 (/208)
CW09-Eng Exhaustive 8452 - 51.29 - 3 (/3)
(100 Queries) Selective 1570 81% 2.71 95% 3 (/807)

The total query runtime with selective search is substantially shorter than with exhaustive
search for both the datasets. We also observe the reoccurring trend that the improvement is
larger for the bigger dataset. However, an important difference in the datasets, other than the
difference in their sizes, is the parallelization opportunity offered to the baseline approach. For
GOV2 the exhaustive search proceeds simultaneously on 20 shards, whereas for CW09-Eng it
is spread out on only 3 processes.

The results in Table 6.2 also show that the improvements in query runtime do not track the
improvements in CiD well, especially for GOV2. One of the main reasons for this is that the
two metrics, query runtime and CiD are not comparable. The former is dominated by the single
longest running shard searched for the query, while the latter measures the cumulative search
effort expended for the query at each of the searched shards. It is thus not surprising that the
difference in their respective improvements widens as the search becomes more distributed,
like it does for GOV2.

For GOV2 the average memory usage when processing a query using distributed exhaustive
search was 0.33GB, while for selective search it was 3.8GB. For the larger dataset, CW09-Eng,
the average memory footprint of exhaustive search less than 1GB and for selective it was about
14GB. For both datasets, the memory usage for selective search is about an order of magnitude
higher than that for exhaustive search.

Overall, the runtime results ascertain that selective search meets one of its important ob-
jectives, shorter query runtime. The next section provides a deeper analysis of selective search’s
runtime.

6.3.1 Shard ranking time versus shard search time

Every query proceeds through two distinct stages during selective search: shard ranking, and
shard search. The division of query runtime into these two phases is reported in the scatter
plots in Figures 6.2a and 6.2b for GOV2 and CW09-Eng datasets, respectively.

These plots exhibit very different trends for the two datasets. Many queries spend more time
in the shard search phase than in shard ranking for the GOV2 dataset, whereas for CW09-Eng

118

6.3. Query runtime for Exhaustive Search and Selective Search 6. Search time analyses

0 1 2 3 4 5
0

1

2

3

4

5

Shard search time (secs)

S
h

ar
d

 r
an

ki
n

g
 t

im
e

(s
ec

s)

(a) Dataset: GOV2. Avg Shard Ranking Time: 1 secs
±0.8, Avg Shard Search Time: 3 secs ±0.8

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Shard search time (secs)

S
h

ar
d

 r
an

ki
n

g
 t

im
e

(s
ec

s)

(b) Dataset: CW09-Eng. Avg Shard Ranking Time: 10
secs ±13, Avg Shard Search Time: 6 secs ±4

Figure 6.2: Shard ranking time versus shard search time for distributed selective search with
ReDDE, CSI=4%.

it is exactly the opposite. We believe that this difference is caused by a combination of factors.
Recall that the shard storage configurations for the two datasets are quite different. For GOV2
all the shards are stored on a single RAID partition while the CW09-Eng shards are spread out
on four RAID partitions. Furthermore, selective search processes each query against the top 20
shards for GOV2 as opposed to the top 3 shards for CW09-Eng. As a result, disk contention
during the shard search phase may be much higher for GOV2 than for CW09-Eng. It is thus
not surprising that for the GOV2 dataset the shard search phase takes longer than the shard
ranking phase where the shard ranker process is the sole user of disk I/O.

For the CW09-Eng dataset, however, the I/O wait time due to disk contention could be
minimal because only the top 3 shards are searched for each query and it is likely that the
selected index shards might reside on different RAID partitions. As a result, the query runtime
for this dataset is instead influenced by the sizes of the inverted indexes used by the shard
ranking and the shard search phases. In our experiments the central sample index (CSI) used
by the shard ranking algorithm consists of 4% of the collection documents. Since the CW09-
Eng dataset is divided into 807 shards, each index shard contains an average of 0.12% of the
collection documents. Given the difference in their sizes it is not surprising that running the
query against the CSI index takes longer than searching the shards in parallel for the CW09-Eng
dataset.

Ideally, one would want the overhead of shard ranking to be negligible and constant time
for selective search. However, shard ranking accounts for about 22% of the average query
runtime for GOV2, and 44% for CW09-Eng. Also, nearly half of the queries spend more time in
the shard ranking phase than in shard searching for CW09-Eng. This suggests that if the cost of

119

6. Search time analyses 6.4. Shard ranking: CSI Size

0 20 40 60 80 100
0

2

4

6

8

10

12
x 10

4

Shard

D
oc

um
en

t−
fr

eq
ue

nc
y(

"o
ba

m
a"

)

Random
Source−based
Topic−based

Figure 6.3: Distribution of the term obama across shards. Dataset: CW09-B.

the shard ranking step is reduced then the efficiency of selective search could improve further.
In the following section we analyze one simple approach toward achieving this goal.

6.4 Shard ranking: CSI Size

For sample-based resource ranking algorithms such as ReDDE, the size of the centralized
sample index (CSI), is an important parameter that influences the algorithm’s accuracy as well
as efficiency. Here the CSI size is measured in terms of number of documents sampled from
each resource (shard). Prior work in federated search extensively investigated the effect of CSI
size on search effectiveness [15, 66]. However, it is not clear whether the findings from this
research can be directly applied to selective search for two reasons. First, the efficiency of the
resource ranking algorithms was rarely studied. While a larger CSI might improve the accuracy
of the resource ranking algorithm, it would likely degrade the efficiency of the algorithm. Since
previous work primarily focused on the accuracy of the resource ranking algorithms, a tradeoff
analysis that compares the cost and the value of using larger CSI is not available.

Secondly, the resources used in previous work are different from the shards used in this
work in terms of their makeup. Certain statistical properties of the topical shards are markedly
different from those of the resources used in the past research. For topical shards, the distribution
of content terms across shards is often highly skewed, while for most of the types of resources
used in previous work this distribution would be uniform or nearly-uniform. Figure 6.3
(reproduced from Chapter 5) illustrates this point using the term obama. The skewed distribution
of terms in case of topical shards is caused by the lexical similarity based partitioning approach
used to create the topical shards. We conjecture that the homogeneous nature of topical shards
can be exploited to reduce the CSI size without hurting the accuracy of the resource ranking

120

6.4. Shard ranking: CSI Size 6. Search time analyses

Table 6.3: Effect of CSI size on selective search effectiveness. Dataset: GOV2.
L denotes significantly worse effectiveness than with 4% CSI (p < 0.05).

CSI size (%) P@10 P@30 P@100 NDCG@100 MAP
4.00 0.53 0.48 0.37 0.41 0.27
2.00 0.52 0.48 0.37 0.41 L0.26
1.00 0.53 0.47 0.36 L0.40 L0.25
0.50 0.53 0.47 L0.36 L0.40 L0.25
0.25 0.52 L0.44 L0.34 L0.38 L0.23
0.10 L0.51 L0.43 L0.33 L0.36 L0.21
0.05 L0.49 L0.41 L0.31 L0.34 L0.19

Table 6.4: Effect of CSI size on selective search effectiveness. Dataset: CW09-Eng.
L denotes significantly worse effectiveness than with 4% CSI (p < 0.05).

CSI size (%) P@10 P@30 P@100 NDCG@100 MAP
4.00 0.15 0.13 0.12 0.12 0.06
2.00 0.13 0.13 0.12 0.11 0.06
1.00 0.13 0.13 0.12 0.11 0.06
0.50 0.13 0.12 0.12 0.11 0.06
0.25 0.13 0.12 0.12 0.11 0.05
0.10 0.14 0.13 L0.11 L0.10 L0.05
0.05 L0.10 0.11 L0.09 L0.08 L0.04

algorithm. We test this hypothesis in this section.
We experimented with a range of CSI sizes and report the corresponding search effectiveness

results in Tables 6.3 and 6.4 for GOV2 and CW90-Eng, respectively. For both datasets, the
CSI size does impact the final search effectiveness. However, the rate at which the search
effectiveness degrades is slow, especially for the larger dataset and at early ranks (P@10, P@30
and P@100). These results indicate that fewer documents are sufficient to provide a reliable
representation of the shard contents in case of topical shards.

We chose the CSI size of 0.5% for the runtime experiments presented next because we expect
it to provide a good balance between efficiency and effectiveness. For both datasets it supports
search effectiveness that is comparable to that of the 4% CSI for most metrics. The results for
the search runtime experiments are presented in Table 6.5. As we would expect the smaller CSI
provides shorter query runtime than exhaustive search as well as selective search with 4% CSI.
The 0.5% CSI is about 88% smaller in size than the 4% CSI, however, the runtime improvements
over the 4% CSI are much smaller in these results. In order to understand this discrepancy it is
necessary to analyze the shard ranking time and shard search time separately.

121

6. Search time analyses 6.5. Effect of query optimization

Table 6.5: Query runtime for ReDDE-based selective search with different CSI sizes.

Dataset Search Method
CSI size Runtime Gain over Gain over

(secs) Exh 4.0% CSI
GOV2 Exh (S=20) - 760 - -

(150 Queries)
Sel (T=20 /208) 4.0% 603 21% -
Sel (T=20 /208) 0.5% 512 33% 15%

CW09-Eng Exh (S=3) - 8,452 - -

(100 Queries)
Sel (T=3 /807) 4.0% 1,570 81% -
Sel (T=3 /807) 0.5% 856 90% 45%

The scatter plots in Figure 6.4 provide these details. Notice that the average shard ranking
time with the 0.5% CSI (specified in the label of scatter plots) as compared with that of the
4% CSI (1 sec for GOV2 and 10 secs for CW09-Eng) is 75% shorter for GOV2, and 78% for
CW09-Eng. These improvements in shard ranking time are comparable to the reduction in CSI
size (88%). It is not surprising that the efficiency gains due to smaller CSI are localized to the
shard ranking phase.

In these scatter plots nearly all of the queries spend less time in the shard ranking phase
than in the shard search phase. For GOV2, the shard ranking time is about 8% of the total query
runtime, and for CW09-Eng it is 23%. If we contrast these numbers with those for 4% CSI,
where shard ranking time is 22% of the total query runtime for GOV2 and 44% for CW09-Eng,
then the reduction in the shard ranking overhead becomes apparent. Overall, these results
validate our belief that smaller CSI can support efficient and accurate search when working
with topic-based shards.

6.5 Effect of query optimization

The analysis undertaken in this section is motivated by two observations. First, large-scale
search systems often employ query optimization techniques to speed up the processing of
queries (also referred to as top k retrieval, and dynamic index pruning). Since one of the objectives
of the search approach proposed in this thesis is to improve query processing efficiency, it
behooves us to compare selective search with an optimized exhaustive search.

Secondly, we conjecture that selective search and query optimization techniques are com-
plementary, and can be applied together to improve search efficiency further. We are interested
in testing this hypothesis because selective search and query optimization methods leverage
different properties of large-scale search in order to improve efficiency. Selective search uses the
Cluster Hypothesis to reduce the number of evaluated documents, while query optimization
identifies the documents that would not be ranked in the top k positions and eliminates them

122

6.5. Effect of query optimization 6. Search time analyses

0 2 4 6 8 10
0

2

4

6

8

10

Shard search time (secs)

S
h

ar
d

 r
an

ki
n

g
 t

im
e

(s
ec

s)

(a) Dataset: GOV2. Avg Shard Ranking Time: 0.25
secs ±0.12, Avg Shard Search Time: 3 secs ±0.9.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Shard search time (secs)

S
h

ar
d

 r
an

ki
n

g
 t

im
e

(s
ec

s)

(b) Dataset: CW09-Eng. Avg Shard Ranking Time: 2
secs ±2, Avg Shard Search Time: 6.5 secs ±4.

Figure 6.4: Shard ranking time versus shard search time for distributed selective search with
ReDDE, CSI=0.5%.

Table 6.6: Query runtime for exhaustive search and selective search with and without query
optimization.

Optimization=Off Optimization=On
Runtime Gain over Runtime Gain over Gain over

(secs) Exh (secs) Exhaustive Opt=Off
GOV2 Exh (S=20) 760 - 698 - 8%
(150 Queries) Sel (T=20 /208) 512 33% 488 30% 5%
CW09-Eng Exh (S=3) 8,452 - 5,194 - 39%
(150 Queries) Sel (T=3 /807) 856 90% 728 86% 15%

from the candidate set.

Also, the topic-based shards create longer posting lists for the on-topic terms in each shard
(for example, refer to Figure 6.3). Many query optimization techniques are known to be more
effective when the posting lists for the query terms are long. We study if one such query
optimization technique is able to exploit this property of topical shards to its advantage. We
use the term-bounded max-score (TBMS) query optimization technique which is implemented
in Indri for our experiments [72]. The TBMS technique (described in detail in Section 2.1.2) is
among the state-of-the-art approaches that prioritize the documents evaluated for a query and
then skip over documents that are unlikely to rank high enough in the final results list for the
query.

The results for exhaustive and selective search, with and without optimization, are sum-

123

6. Search time analyses 6.6. Effect of query length

marized in Table 6.6. If we compare selective search and TBMS as two different techniques
for improving search efficiency then these results suggest two trends that are consistent across
the datasets. First, TBMS improves efficiency of exhaustive search (8% for GOV2 and 39% for
CW09-Eng), but these gains are substantially smaller than those with selective search (33% for
GOV2 and 90% for CW09-Eng). Second, both the techniques, TBMS and selective search, are
more effective for the larger dataset.

The difference in the performance of TBMS and selective search is not surprising. Most
optimization techniques primarily reduce only the computations needed for query processing,
while selective search reduces both I/O and computations. The ability to reduce the amount of
data transferred from the disk reduces latency substantially because often that is the slowest
component of query processing.

The results in Table 6.6 support the hypothesis that selective search and query optimization
are complementary techniques for improving search efficiency. TBMS is able to offer substantial
speed up in selective search runtime for both datasets (5% for GOV2 and 15% for CW09-Eng).
This suggests that TBMS is able to identify documents in the selected topical shards that are
unlikely to be ranked highly for the query.

These results also compare exhaustive search and selective search in two different settings,
with and without query optimization. The improvements over exhaustive search offered by
selective search when query optimization is not employed (33% for GOV2 and 90% for CW09-
Eng) are only slightly larger than those when TBMS is applied for both search approaches (30%
for GOV2 and 86% for CW09-Eng). The consistent performance of selective search across the
two configurations indicates that, one, it is a stable search approach, and two, that TBMS and
selective search are leveraging different properties of large-scale search.

Finally, these results show that even an unoptimized selective search is faster than an optimized
exhaustive search. For GOV2 and CW09-Eng, the runtime for unoptimized selective search
(512 secs for GOV2 and 856 secs for CW09-Eng) is 27% and 84% shorter than the runtime for
optimized exhaustive search (698 secs for GOV2 and 5194 secs for CW09-Eng).

In summary, this analysis indicates that like exhaustive search, the selective search approach
also benefits from query optimization techniques. However, the improvements in query run-
time achieved by using selective search are substantially larger than those offered by query
optimization alone.

6.6 Effect of query length

Among other factors, query length strongly influences the runtime of the query. Techniques used
to improve search efficiency are also known to be impacted by query length. For instance, Broder
et al., 2003, report higher efficiency gains for longer queries (7-word) than shorter queries (2.5-
word) with their proposed query optimization approach [10]. The strong correlation between

124

6.7. Throughput analysis 6. Search time analyses

Table 6.7: Query run-time for exhaustive search and selective search on sets of queries with
different lengths.

1 word 3 words 5 words 10 words
Time Gain Time Gain Time Gain Time Gain
(secs) (secs) (secs) (secs)

GOV2
Exh (S=20) 111 - 270 - 343 - 364 -
Sel (T=20 /208) 70 37% 176 35% 193 44% 204 44%

CW09-
Eng

Exh (S=3) 747 - 6,639 - 12,013 - 15,618 -
Sel (T=3 /807) 231 69% 544 92% 705 94% 892 94%

query length and runtime motivates us to investigate the impact of query length on the efficiency
of distributed selective search.

We experiment with a range of query lengths, specifically, 1, 3, 5, and 10 word. For each
length a set of 50 queries was selected for the CW09-Eng dataset from the TREC Million Query
Track query logs [20]. However, 10 word queries were rare in this query log, thus some queries
had to be supplemented from the AOL query log. For GOV2 all the queries were sampled
from the AOL query log. For these experiments, CSI of size 0.5% was used, and the TBMS
optimization was not employed.

The runtime results for the query sets are provided in Table 6.7. We see substantial im-
provements in query runtime over the baseline for both the datasets and across all the query
lengths. The speed up is larger for the longer queries. This is consistent with prior work. We
see a plateauing effect among the two sets of long queries (5 and 10 word) for both the datasets.

Recall that the queries in the evaluation sets are on average 3.1 and 2.1 word long for
GOV2 and CW09-Eng, respectively (Table 3.2). If we compare the evaluation queries with the
3-word queries in this section then we see comparable improvements in runtime with selective
search for both datasets. Specifically, selective search with 0.5% CSI is 33% and 90% faster
than exhaustive search for the evaluation queries in Table 6.5. The result table for this section
(Table 6.7) shows 35% and 92% gain in runtime with selective search of 3-word queries.

Overall, these results demonstrate that selective search is more efficient for longer queries
but provides substantial speed up for shorter queries as well.

6.7 Throughput analysis

The goal of this section to compare exhaustive and selective search based on their throughput
performance. We are interested in analyzing the amount of time that each search approach
needs to process a given number of queries under different degrees of parallelism. Specific
details about the experimental setup are described next.

125

6. Search time analyses 6.7. Throughput analysis

6.7.1 Experimental methodology

For this analysis we sampled 1000 queries from the AOL .gov query log for the GOV2 dataset,
and 999 queries3 from the TREC Million Query Track query logs [20] for the experiments with
CW09-Eng dataset. The stopwords were filtered out from all the queries. The average query
length after stopword removal was 3.4 terms for GOV2 queries and 2.3 terms for CW09-Eng.
For the exhaustive search experiments both the datasets were partitioned into 16 random shards
each. The Indri indexes for the 16 shards were uniformly spread across 4 RAID partitions. The
topical shard indexes used for the selective search experiments were likewise spread uniformly
across the same 4 RAID partitions. There were 208 topical shards for GOV2 and 807 for CW09-
Eng.

The same two machines used previously were also used for the experiments reported in
this section. Recall that each of these two machine is a 8-core, 2.44 GHz CPU (Intel Xeon)
and contains 16 GB RAM. The total number of cores (16) motivates the 16-way partitioning of
the collection for the exhaustive search approach. The central sample index (CSI) needed for
selective search was stored on the local disks of the two machine. One copy of the CSI index
was used at most by two query streams on a machine. In an experimental setup, for example,
that used 3 query streams for selective search, a total of 2 copies of CSI were used, while for 10
query stream configuration 5 copies of the CSI were used. The CSI size of 0.5% of the collection
documents was used for both the datasets.

We used as few shared computing resources as possible in order to control the environment
in which these experiments were conducted. However, some amount of sharing could not
be avoided. The NAS controller and the network were used by other users too. In order to
account for this partially-controlled environment we performed 5 runs of each configuration.
The results reported in this section are averages (and standard deviations) over the 5 runs.
Before starting each run the local and server caches were cleared to provide a cold start for each
experiment.

Exhaustive search executes each query against all the 16 random shards. Like in previous
experiments, selective search executes each query against the top 20 topical shards for GOV2,
and against top 3 shards for CW09-Eng. As a result, a selective search experiment that processes
a single query stream, is able to make use of all the available cores for GOV2, but for CW09-Eng
only 3 out of the 16 cores are utilized. We thus initiate 5 query streams at once for selective
search with CW09-Eng which then uses 15 out of the 16 cores. This provides a setup where the
baseline and the experimental method, both, utilize most of the available computing power.

In order to achieve the maximum possible utilization of the processing cores and to test its
effect on the search approaches, we experimented with different degrees of parallelism. Specifi-
cally, we experiment with different number of parallel query streams where the total number of

3We started with 1000 queries, however, after removing the stopwords one of the queries reduced to an empty
set. Thus the unorthodox number of 999 queries.

126

6.7. Throughput analysis 6. Search time analyses

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2298.31

3564.49

1317.55

1806.86

960.95

1207.56

806.23

917.60

681.43

745.93

Queries / Core

E
la

p
se

d
 t

im
e

fo
r

lo
n

g
es

t
ru

n
n

in
g

 q
u

er
y

st
re

am
 (

se
cs

)

Exhaustive Search
Selective Search

(a) Elapsed time results. Dataset: GOV2.

1 2 3 4 5
0

1

2

3

4

5

6

7

2.30

3.56

2.63

3.61

2.89

3.63

3.22

3.67

3.41

3.73

Queries / Core

A
vg

 r
u

n
ti

m
e

p
er

 q
u

er
y

fo
r

lo
n

g
es

t
ru

n
n

in
g

 q
u

er
y

st
re

am
 (

se
cs

)

Exhaustive Search
Selective Search

(b) Average query runtime results. Dataset: GOV2.

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
8298.56

1030.70

4678.33

821.53

4002.75

808.78

3699.80

909.07

3544.37

1015.70

Queries / Core

E
la

p
se

d
 t

im
e

fo
r

lo
n

g
es

t
ru

n
n

in
g

 q
u

er
y

st
re

am
 (

se
cs

)

Exhaustive Search
Selective Search

(c) Elapsed time results. Dataset: CW09-Eng.

1 2 3 4 5
0

5

10

15

20

25

30

35

40

8.31

5.15

9.36

8.22

12.02

12.25

14.80

18.18

17.72

25.39

Queries / Core

A
vg

 r
u

n
ti

m
e

p
er

 q
u

er
y

fo
r

lo
n

g
es

t
ru

n
n

in
g

 q
u

er
y

st
re

am
 (

se
cs

)

Exhaustive Search
Selective Search

(d) Average query runtime results. Dataset: CW09-
Eng.

Figure 6.5: Throughput and Query latency timing results for different degrees of parallelism.

queries is held fixed. The goal is to vary the average number of queries executed per processing
core, while holding the total query load fixed. For exhaustive search we experimented with 1
through 5 parallel query streams. The corresponding selective search configurations employed
1 through 5 parallel query streams for GOV2, and 5 through 25 parallel query streams for
CW09-Eng.

6.7.2 Experimental results

The results for the GOV2 and the CW09-Eng datasets are summarized in the Figure 6.5. Since
the time to run a batch of queries is dominated by the longest running query thread, the Y-axis
reports the timing numbers for the query stream that ran longest. The aggregate runtime for

127

6. Search time analyses 6.7. Throughput analysis

1 2 3 4 5
0

2

4

6

8

10

12

14

16

Queries / Core

A
ve

ra
g

e
m

em
o

ry
 u

sa
g

e
(G

B
)

Exhaustive Search
Selective Search

(a) Dataset: GOV2.

1 2 3 4 5
0

2

4

6

8

10

12

14

16

Queries / Core

A
ve

ra
g

e
m

em
o

ry
 u

sa
g

e
(G

B
)

Exhaustive Search
Selective Search

(b) Dataset: CW09-Eng.

Figure 6.6: Average memory usage for exhaustive search and selective search.

selective search consists of the time it takes to rank the shards and the time it takes to search
the selected shards for a query. Those two runtimes are also reported in the plots for average
query runtime.

The trends for the two datasets are markedly different on both the metrics, elapsed time,
and query runtime. For GOV2, exhaustive search does consistently better than selective search,
but as parallelism increases the two search approaches start to converge. On the other hand,
for CW09-Eng, the total elapsed time with selective search is substantially lower than that with
exhaustive search. The difference in the results for the two datasets is explained by two main
differences. First, each GOV2 shard is a larger fraction of the collection (0.5%) than a CW09-Eng
shard (0.1%). Second, nearly 7 times as many shards are searched per query for GOV2 than for
CW09-Eng. The top 20 shards out of the total of 208 shards (10% of all shards) are searched per
query for GOV2. While for CW09-Eng only the top 3 shards out of the total of 807 shards (0.4%
of all shards) are searched per query. The total work required for selective search, relative to
the exhaustive search, is smaller for CW09-Eng than for GOV2.

For every x query per core configuration, a total of 20x shards need to be searched for
selective search, and 16x for exhaustive search, in case of the GOV2 dataset. There is no
guarantee that the 20x shards processed by selective search would be spread evenly across the
two machines. In the worst case, all the 20x shards could be on a single machine causing higher
disk and CPU contention. The possibility of this scenario occurring is higher for GOV2 than
CW09-Eng because a larger fraction of the total shards is searched per query for GOV2.

When analyzing the query latency results we see that selective search provides improvement
only for the CW09-Eng dataset. For 3 or fewer queries per core configurations selective search
provides comparable or faster query response than exhaustive search for CW09-Eng. However,

128

6.7. Throughput analysis 6. Search time analyses

this trend reverses after this point. Recall that for each x queries per core configuration, the
total queries are divided into x query streams for exhaustive search and 5x query streams for
selective search. As a result the individual query streams are much smaller for selective search
which reduces the caching benefits. In general, we expect the caching benefits to be smaller
for selective search than exhaustive search. Certain indexing data structures, such as, the term
dictionary, are common to all queries in case of exhaustive search because same the set of shards
is searched for every query. However, for selective search the shards searched for a query could
very well be completely different from those searched for previous queries and thus would not
lead to any cache hits.

The differences in the selective search performance across the two datasets suggest that the
benefits of selective search are dependent on how many shards need to be searched for each
query, which in turn is dependent on the distribution of relevant documents across shards.
This motivates an important future direction for this work: improving topic-based allocation
technique to reduce the spread of the relevant documents, which in turn would reduce the
number of shards searched per query. We expect this research effort to help datasets like
GOV2 where relatively large number of shards need to searched in the current setup. The
other direction that these results suggest is: proposing ways to offer better load-balancing with
selective search which would improve its performance in multi-query stream configurations.
We expect this direction to provided a sustained improvement in query latency for datasets like
CW09-Eng.

The memory usage data for these experiments is reported in Figure 6.6. For both the datasets
the memory usage for selective search is higher than that for exhaustive search. This is primarily
due to the difference in the number of index daemons processes running for exhaustive search
and selective search. Each index shard is assign a dedicated Indri daemon process. As a result,
there are 16 daemons running for exhaustive search for both the datasets. But for selective
search there are 208 daemons for GOV2, and 807 for CW09-Eng. Although the number of
daemons for selective are 13x and 50x larger than those for exhaustive search for GOV2 and
CW09-Eng, respectively, the difference in average memory usage of exhaustive and selective
search is not proportionately large. This is so because only a small fraction of all the daemons
are active at a time for selective search, and idle Indri daemons have a small memory footprint.

The main goal of this section was to compare the exhaustive and selective search approaches
based on their throughput performance. The results suggest that if the document collection
can be partitioned into a large number of small shards such that very few shards need to be
searched per query then selective search can substantially reduce the overall search effort, and
also improve query latency. If such a partitioning cannot be achieved then the benefits of
selective search are limited.

129

6. Search time analyses 6.8. Cost-in-Documents metric revisited

6.8 Cost-in-Documents metric revisited

The previous chapters have used the cost-in-documents (CiD) metric to quantify the search cost
of a given approach. One of the main advantages of the CiD metric is that it allowed us to
measure search effort in a simulated experimental setup. However, it is an approximate metric
that does not model certain query processing costs, such as, the overheads associated with
evaluating structured queries. In this section we thus revisit the CiD metric to compare it with
the more direct measure of search effort: the query runtime. We analyze the sensitivity of the
CiD metric to two factors in this section: query length, and query representation (unstructured
versus structured queries).

6.8.1 Query length and cost metric

For this analysis we experimented with 4 query lengths: 1, 3, 5, and 10. we sampled 50
queries for each length, from the AOL .gov query log for the GOV2 dataset. The query set for
CW09-Eng also contained 50 queries for lengths 1, 3, and 5. We could only experiment with
10 queries of length 10 because our current implementation for computing CiD takes a long
time for CW09-Eng. For both the datasets the query length requirement was enforced after
filtering out stopwords. Each query set was evaluated using the selective search approach.
The experimental setup was similar to the one used in Section 6.7 for selective search, with
the exception of number of parallel query streams. For all the experiments in this section, a
single-threaded query processing was employed.

In this sub-section we also study a new but related metric: cost-in-postings (CiP). The CiP
metric reports the sum of all the posting list sizes for the query terms. The volume of data
transferred from the disk for a query is likely to be proportional to the total posting list sizes. It
could thus be hypothesized that CiP is a better metric that models the I/O costs more accurately,
while the CiD is a better metric for modeling the computational costs. Often query processing
on large document collections is I/O bound rather than CPU bound, and thus we are interested
in comparing both, CiD and CiP, with the query runtime metric.

The scatter plots that compare the two cost metrics with query runtime are presented
in Figure 6.7. The data-point labels report the query length. The correlation between the
cost metrics and query runtime, which is reported in the figure captions, is high for both the
datasets. The correlation between CiP and query runtime is higher than the correlation between
CiD and query runtime for both the datasets, and the difference is larger for the bigger dataset.
This suggests that metrics that model the I/O costs associated with query processing are better
estimators of query runtime.

The correlation between query length and query runtime, which is also reported in the
captions of Figure 6.7 indicates that there exists a strong dependence between query length
and query runtime. This is not surprising, longer queries require more work and thus have

130

6.8. Cost-in-Documents metric revisited 6. Search time analyses

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
x 10

6

Query runtime

C
iD

1
1

1

1

1
1

1

1

1

1

11 1

1 1

1
1

1

11 11
1

1

1
1 1 1

11

1

1

1

11

1

1

11

111

1

1
1

1
1 1

1

1

3

3
3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3
33

3

3

3

3

3

3

3
3

3

33

5

5

5

5

5 5

5

5

5

5

5

5

5 5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5 5

5 5
5

5 5

5

5 5

5 10

10
10
10

10

10

10

10

10

10

10

10

10

10

1010

10

10

10

10

10

1010

10

10

10

10

10
10

10

10

10

10

10

1010

10

10

10

10

10

10

10

10

10

10

10

10

10

10

(a) CiD versus Query runtime. Pearson’s correlation co-
efficient (ρ): 0.58. Dataset: GOV2. (Data-point labels are
query lengths. ρ(Query length,Query runtime)=0.63.)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10
x 10

6

Query runtime
C

iP
11

1
1

11

1

1

1
1

11 1
1 1

11
1

11 11 1
1

11 1 1
11

1

1 111
1 1

11

111
1

11

11 1
1

1

3

3
3

3

3

3

3

3

3

3

3
33

333 3

3
3

33

3

3

3

3

3

3

33

3

3

3

3

3 3
3

33
3

3

33

3

3

3
33

3

3
3

5

5

5

5

5 5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5

55

5
5

5
5

5
5

5

5

5

5

5

5

5

5

5

5

5
5

5

55
5 5

5

5 5

5

10

10

10

10

10

10

10

10
10

10

10

10

10

10

10
10

10

10

10

10

10

10

10

10

10

10

10
1010

10

10

10

10 101010

10

10

10

10

10 10

10

10

10

10

10

10

10
10

(b) CiP versus Query runtime. Pearson’s correlation co-
efficient (ρ): 0.60. Dataset: GOV2. (Data-point labels are
query lengths. ρ(Query length,Query runtime)=0.63.)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Query runtime

C
iD

111
1

1

1

1

1
1

1 1
111

1

1

1

11 11 11 11 1
1

1

1 1 111 1
1

1

11

1

1

1

1 11

1

11 1 11

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3
3

3

3
3

3
3

3
3

3

3

3

3
3

3
33

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

333 3

5
5

5

5

55

5

5

5

5

5

5

5

55

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5
5

5 5
5

5

5 5
5

5

55

5
5

5

5

5 55

5

5 10
10

10

10

10
10

10

10

10

(c) CiD versus Query runtime. Pearson’s correlation co-
efficient (ρ): 0.61. Dataset: CW09-Eng. (Data-point labels
are query lengths. ρ(Query length,Query runtime)=0.74.)

0 5 10 15 20
0

2

4

6

8

10

12
x 10

6

Query runtime

C
iP

1111

1

1

1
111 11111 11

11 11 11 11 1 11
1 1 111 1 1111

1
1

1

1 11
1

11 1 11

3

3

3

3

3
3

3 3

3
3

3 3
3 33
3

3

33

3 3

33

3

3
3

3
3

3
33

3

3

3

3

3

3 33
3

3
3

3
3

33

3
3

3 3

5
55

5

5

5
5

5

5

5

5

5
55

5

5

5

5 5

5
5

5

5
5

5

5

5

5

5

5

5
5 5

5

5

5
5

5

55
5

5

5
5

5
5

5
5

5

5

10

10

10

10

10

10

10

10

10

(d) CiP versus Query runtime. Pearson’s correlation co-
efficient (ρ): 0.68. Dataset: CW09-Eng. (Data-point labels
are query lengths. ρ(Query length,Query runtime)=0.74.)

Figure 6.7: Correlation between cost metric (CiD or CiP) and query runtime.

131

6. Search time analyses 6.8. Cost-in-Documents metric revisited

Table 6.8: Influence of query length on the Pearson’s correlation (ρ) between cost metrics and
query runtime.

Dataset Query Pearson’s correlation (ρ)
length (CiD,Query runtime) (CiP,Query runtime)

GOV2

1 0.51 0.51
3 0.15 0.09
5 0.12 0.07
10 0.57 0.52

CW09-Eng

1 0.35 0.35
3 0.62 0.63
5 0.44 0.51
10 0.12 0.03

longer runtimes than shorter queries. In addition to this high-level validation, we are also
interested in analyzing if the query length influences the cost metric’s ability to model query
runtime. For instance, is it the case that CiD is less correlated with query runtime for longer
queries. The data for this analysis is provided in Table 6.8. Here the Pearson’s correlation
coefficient between the cost metric and query runtime were computed for each query length
separately. Since longer queries require larger I/O we expected the correlation between CiP and
query runtime to be higher than the correlation between CiD and query runtime for the longer
queries. However, no such trends emerge from these results. This suggests that query length is
not much of a factor in terms of influencing the cost metric’s ability to model the query runtime.
This does not imply that query length does not affect the query runtime. As was observed
earlier, the Pearson’s correlation coefficient between query length and query runtime for GOV2
and CW09-Eng demonstrate high strengths of 0.63 and 0.74, respectively.

The low correlation coefficients for queries of length 3 and 5 for GOV2, and for queries of
length 1 and 10 for CW09-Eng also reveal that the cost metrics are not always reliable predictors
of search runtime. Unfortunately, these results do not suggest any systematic trends as to when
the cost metrics fail.

6.8.2 Query representation and cost metric

In this section our goal is to investigate if query representation influences the relation between
CiD and query runtime. The bag-of-word (BOW) queries of lengths 3 and 5 from the previous
section were reused for this analysis for both the datasets. Each query set contains 50 queries.
These BOW queries were transformed into the full-dependence model representation using the
utility made available by Metzler4.

4http://ciir.cs.umass.edu/metzler/dm.pl

132

6.8. Cost-in-Documents metric revisited 6. Search time analyses

3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5
x 10

6

Query runtime

C
iD

(a) CiD versus Query runtime for BOW query represen-
tation. Pearson’s correlation coefficient (ρ): 0.15. Dataset:
GOV2.

4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5
x 10

6

Query runtime
C

iD

(b) CiD versus Query runtime for Full-dependence model
query representation. Pearson’s correlation coefficient
(ρ): 0.59. Dataset: GOV2.

4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5
x 10

6

Query runtime

C
iD

(c) CiD versus Query runtime for BOW query represen-
tation. Pearson’s correlation coefficient (ρ): 0.62. Dataset:
CW09-Eng.

5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

6

Query runtime

C
iD

(d) CiD versus Query runtime for Full-dependence model
query representation. Pearson’s correlation coefficient
(ρ): 0.84. Dataset: CW09-Eng.

Figure 6.8: Correlation between CiD and query runtime for different query representations.
BOW query length: 3

133

6. Search time analyses 6.8. Cost-in-Documents metric revisited

3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5
x 10

6

Query runtime

C
iD

(a) CiD versus Query runtime for BOW query represen-
tation. Pearson’s correlation coefficient (ρ): 0.12. Dataset:
GOV2.

4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5
x 10

6

Query runtime

C
iD

(b) CiD versus Query runtime for Full-dependence model
query representation. Pearson’s correlation coefficient
(ρ): 0.76. Dataset: GOV2.

4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5
x 10

6

Query runtime

C
iD

(c) CiD versus Query runtime for BOW query represen-
tation. Pearson’s correlation coefficient (ρ): 0.44. Dataset:
CW09-Eng.

5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

6

Query runtime

C
iD

(d) CiD versus Query runtime for Full-dependence model
query representation. Pearson’s correlation coefficient
(ρ): 0.55. Dataset: CW09-Eng.

Figure 6.9: Correlation between CiD and query runtime for different query representations.
BOW query length: 5

134

6.9. Summary 6. Search time analyses

The scatter plots that illustrate the influence of query representation on query runtime and
on the cost-in-documents (CiD) metric are reported in Figure 6.8 for queries of length 3, and in
Figure 6.9 for queries of length 5. The Pearson’s correlation coefficients for the different variable
pairs are reported in the figure captions. Contrary to our expectations, these plots indicate
higher positive correlation between CiD and query runtime for the structured queries than
with unstructured queries. Since CiD does not explicitly model the overhead costs associated
with structured query processing, we had expected the trends to be reverse. However, this
trend is consistent across the datasets and across the query lengths as well. The cause of this
trend is not clear to us.

To summarize, the high-level correlation analysis presented in this section suggests that in
absence of more accurate metrics such as query runtime, the cost-in-documents and cost-in-
postings can be used as proxy metrics for search effort. However, the fine-grained analysis
suggests that this conclusion is not true in some situations. Further investigation is necessary
to resolve this inconsistency and to identify when CiD or CiP are appropriate metrics and when
they are not.

6.9 Summary

In this chapter we tested the two remaining objectives laid out in Section 3.2 for distributed
selective search: first, shorter query runtime than distributed exhaustive search, and second, the
ability of the proposed approach to function in a modestly equipped search environment (low
computing resources requirement). The query runtime results presented in this chapter establish
that selective search can be faster than exhaustive search if the document collection can be
partitioned into a large number of small shards such that very few of those shards need to
be searched per query. The hardware platform used for the experiments exemplifies a typical
low-resource environment and thus demonstrates selective search’s ability to operate in low
computing environments.

This chapter also brought to light the importance of analyzing and improving the efficiency
of the shard (resource) ranking algorithms. We conjectured that the topical homogeneity of
the shards can be exploited to reduce the number of documents used by the resource ranking
algorithm without degrading its effectiveness. The experimental results demonstrated that
substantially fewer documents can support effective search while reducing the shard ranking
overhead when working with topic-based shards.

In Section 6.5 we studied another approach for improving efficiency of selective search. We
showed that a widely used query optimization technique could be applied to selective search
to improve query runtime further. This analysis also established that selective search, with or
without query optimization, is faster than exhaustive search with query optimization. Finally,
a study of the impact of query length on selective search’s efficiency demonstrates that the

135

6. Search time analyses 6.9. Summary

runtime is sub-linear in query length. As such, selective search provides larger speed ups for
longer queries but improvements for smaller queries are also substantial.

136

Chapter 7

Conclusions

This thesis recognizes the growing need to search large collections using modest computational
resources and responds to the need with the tool of distributed selective search. We conclude the
dissertation in this chapter by summarizing the proposed search architecture and the key ideas
developed for it. The chapter also summarizes the main results presented in this dissertation
along with our interpretations of the results. The broader significance of this work along with
its potential impact on other work are presented in the second part of this chapter. Finally, new
research challenges that this work inspires are outlined in the last section.

7.1 Thesis summary and main results

This dissertation questions the common practice of searching the complete collection (or a large
portion of the collection) for each query. Instead we propose a search approach that processes
each query against only a small subset of the collection, thus reducing the required search effort,
and by extension, the required computational resources. This approach, distributed selective
search, maintains competitive search effectiveness by making use of the Cluster Hypothesis as per
which closely associated documents tend to be relevant to the same requests. We develop a document
allocation policy to organize the dataset into smaller partitions (shards) based on their lexical
similarity. Empirical evaluation demonstrates that the resulting topical shards concentrate the
relevant documents for a particular query into a few shards. This result validates the Cluster
Hypothesis, and provides the necessary basis for selective search. The skewed distribution of
relevant documents across shards can be exploited to restrict the search to a few shards without
degrading retrieval effectiveness.

The other key component of the distributed selective search approach is relevance based
shard selection. We observe that the set of relevant shards for each query may be different in
the topic-based organization of the collection. For instance, the topical shards that contain
relevant documents for the query bob marley could very well be different from those for the

137

7. Conclusions 7.1. Thesis summary and main results

query solomon islands. The task of selecting relevant shards for the query consists of two sub-
problems: shard ranking, and shard rank cutoff estimation. The former ranks the shards based
on their estimated relevance to the query. The latter predicts the number of top shards in the
proposed ranking that ought be searched for the query. We develop a family of algorithms that
simultaneously solves both, shard ranking and rank cutoff estimation problems. The ability to
identify the smallest set of relevant shards for the query allows distributed selective search to
balance search effectiveness and efficiency. Below we summarize the main findings and results
from this dissertation.

Although the Cluster Hypothesis has been used in prior work to partition document col-
lections, the topic-based allocation policy developed in this dissertation is different on three
accounts. First, it is efficient. It uses approximate clustering that processes only a small sam-
ple of the dataset. Second, it can be parallelized. The task of assigning a document to one
of the pre-learned topical shards can proceed in parallel for multiple documents. Third, it is
widely applicable. Since it does not make use of any external resources such as query logs
or categorization taxonomies it can be used to partition any given dataset. The experiments
indicate that topical shards learned from samples as small as 0.1% of the dataset can support
accurate selective search. In addition to topical shards we also experiment with random and
source-based shards which have been used in prior work. Experiments indicate that the ability
to concentrate relevant documents for a query into few shards is however unique to topical
shards. We see that selective search with topic-based shards is markedly more accurate than
with random or source-based. This is especially true for metrics that evaluate at deeper ranks.

Experiments with three of the largest datasets available for research demonstrate that selec-
tive search with topical shards expends 77–94% less effort than exhaustive search while being
just as accurate. Previous work in large-scale search has typically evaluated search effectiveness
only at early ranks. In contrast, our results show that selective search with topical shards is
accurate at much deeper ranks and on graded relevance using metrics such as P@100, MAP,
and NDCG@100. Another consistent trend across all the experiments in this dissertation is
that the savings in search effort with selective search are bigger for the larger datasets. This is
an important and useful result that makes selective search even more attractive for large-scale
search.

Operational search systems typically prefer equal sized shards because they support better
load balancing and provide low variance in query run times. The shards created by the topic-
based algorithm, however, exhibit a high variance in their sizes. We thus develop an extension
to the algorithm that bounds the sizes of the created shards. The experimental results show that
the majority of the topical shards created by the new approach are of comparable sizes, for each
of the datasets. Furthermore, selective search using the equal sized topical shards evaluates
fewer documents on average since there are fewer large shards. Compared to the baseline,
selective search is improved to 82%–95% more efficient while still being just as accurate.

138

7.1. Thesis summary and main results 7. Conclusions

The problem of ranking collections of documents (resources) based on their estimated rel-
evance to the query has been studied extensively in the federated search field. One of the
consistent findings from the resource ranking research has been that the sample-based algo-
rithms perform better than the model-based algorithms. Contrary to this trend, however, our
experiments demonstrate that a model-based algorithm (CORI) supports selective search that
is as accurate as selective search with a sample-based algorithm (ReDDE). This result suggests
two interesting findings. First, that selective search is not overly sensitive to the choice of
shard ranking algorithm. Second, that the model-based algorithms are more effective when
the resources are topically focused and distinct, like the topic-based shards used with selective
search.

Although off-the-shelf resource ranking algorithms such as CORI and ReDDE can be used
for shard ranking, the problem of predicting the number of top shards to search for a query
has not been investigated in prior work. We show that the minimal shard rank cutoff varies
widely across queries. As a result, using a preset query independent rank cutoff, as was done
in most prior work, provides suboptimal search efficiency. We mend this by proposing a family
of three algorithms, SHiRE, that jointly formulate the two inter-dependent problems of shard
ranking and cutoff estimation. Experiments comparing the SHiRE algorithms with a state-of-
the-art resource ranking algorithm and best fixed rank cutoff demonstrate that the proposed
algorithms reduce the search cost by at least a quarter and these improvements are higher for
larger collections.

It is commonly believed that a complete search yields the best possible search results, and
by extension, defines the upper-bound on search effectiveness. The results in this dissertation
challenge this belief. For both the ClueWeb09 datasets selective search with topic-based shards
provides more accurate results than those with exhaustive search. Although these improve-
ments are not statistically significant, the trend suggests that for some queries a partial search
of the collection might be better than a complete search.

Another important result from this work is the quantification of the efficiency of selective
search in terms of query runtime. Experiments where exhaustive search and selective search
were provided the same number of computing resources show that selective search is 81% faster
than exhaustive search for the larger dataset, and 21% faster for the smaller collection. Further
we see that the lexical homogeneity of topic-based shards can be exploited to make selective
search even more efficient. A smaller shard ranking index is able to support accurate selective
search that is 90% faster than the baseline.

Many large-scale search systems employ query optimization techniques to improve retrieval
efficiency. A study of the dynamics between selective search and a well established optimiza-
tion approach provides several important insights. The first is that selective search supports
substantially faster query processing than even an optimized exhaustive search (27–84%). Sec-
ondly, we see that selective search and query optimization are complementary approaches to

139

7. Conclusions 7.2. Thesis contributions

improving search efficiency. The optimized selective search provides speed up of 5–15% over
unoptimized selective search. Lastly, all the gains in runtime are bigger for the larger dataset.

7.2 Thesis contributions

The primary goal of this thesis is to provide a solution to the problem of accurate and efficient
large-scale search. The significance of the solution proposed in this dissertation, distributed
selective search, and its potential impact are discussed in this section.

Selective search has the potential to transform large-scale search into a more greener pro-
cess. The efficiency improvements offered by selective search can translate to financial and
environmental incentives. These are especially visible for larger computing facilities. A lower
search effort translates to lower energy requirements in multiple ways. The energy usage of the
computing nodes, and the cooling systems used to keep the computing nodes functional, both,
decrease when the search effort needed per query reduces. This advocates the use of selective
search approach even in environment that are not necessarily constrained in terms of available
computing resources.

Over the years the gap between the collection sizes used by the IR research community and
the commercial search engines has steadily widened. Most research groups are not equipped
to work with Web scale collections. As a result, it is not always clear if the findings from the
research conducted by the IR community are applicable to Web search which is unfortunate
because Web search is one of the biggest applications of IR by volume. In order to bring more
credibility to the research findings of smaller research groups search approaches that can process
large-scale collections on modest computing resources need to be developed. Designing and
testing one such search approach is the focus of this dissertation.

The other equally important goal for the proposed approach is to not compromise search
effectiveness in order to improve search efficiency. This is important for user-facing IR systems,
and also for applications of IR, such as, question-answering systems, information extraction
techniques, summarization approaches, and contextual ad placement algorithms, that build
on the results provided by the search system. Although Web search is often categorized as
precision-oriented, many other search applications are recall-oriented. We thus evaluate the
proposed search approach using metrics such as NDCG@100 and MAP, in addition to the
commonly used early rank metrics.

The reliability of selective search performance demonstrated in this dissertation helps revive
the cluster-based retrieval, a line of research from early 1980s that vanished from main stream
IR research primarily due to lack of consistent results’ trends. Through this work we renew
the research interest in cluster-based retrieval by making its connections to two active areas of
research more evident. Specifically, going ahead we expect more exchange of ideas between
large-scale search, federated search, and cluster-based retrieval.

140

7.3. Future directions 7. Conclusions

The other reason for the disappearance of the cluster-based retrieval approaches was their
inability to scale to larger datasets. In fact, none of the techniques described in related work
would be able to efficiently partition the datasets used in this dissertation. The shard creation
approach developed as part of this thesis is thus one of key contributions. The sub-linear
computational complexity of the proposed collection partitioning technique makes it highly
efficient.

The family of shard ranking and cutoff estimation algorithms presented in this dissertation
is instrumental in two ways. It introduces a new problem of shard rank cutoff estimation to the
research community, and demonstrates the interdependence between the new problem and the
old problem of shard (resource) ranking that has been widely studied.

Overall, this dissertation provides one of the first end-to-end evaluations of a distributed IR
technique on some of the largest available dataset, and demonstrates consistent and substantial
improvements in search efficiency. speed up in query response time.

7.3 Future directions

In this section we identify three different directions along which the research pioneered by
distributed selective search can be extended. One of the directions would leverage the unique
characteristics of selective search, such as the shard and document level modularity, to improve
its efficiency and effectiveness. The second direction would explore the challenges faced by
high-traffic search systems, such as load-balancing and query response time, in the context of
distributed selective search. The third part would test the ability of selective search to support
a wide spectrum of research problems from language technologies.

7.3.1 Effectiveness and efficiency of selective search

A document collection that is partitioned into topical shards provides a modular organization
of data. In this search environment the retrieval model for each shard can be customized to
take advantage of the unique characteristics of its documents and the queries that are directed
to the shard. Query categorization algorithms can be employed to identify and model the
dynamics between different topics and the different types of queries that they serve. For
instance, if a large fraction of the queries processed by a shard are of informational type then
the retrieval algorithm could be adapted to exhibit a similar bias. Likewise if a shard tends
to serve time-sensitive queries then adapting the shard’s inverted index for efficient access
to temporal data, employing sophisticated query transformation functions, and tailoring the
retrieval algorithm appropriately would be useful. The existing research in vertical search
which has some similarities with the proposed future direction, can be used to inform the next
steps.

141

7. Conclusions 7.3. Future directions

The estimator proposed in this work for the task of query-specific shard rank cutoff pre-
diction takes a step in the right direction but more work is needed. A prediction model that
integrates additional information sources, such as query difficulty predictors and functions
that capture the topical affinity between the highly ranked shards for the query, could be more
effective at shard rank cutoff estimation. For example, multiple shards with high affinity could
indicate a flat distribution of relevant documents for the query, which in turn would suggest a
larger shard rank cutoff value. Also, a larger cutoff estimate might be useful for difficult queries.
This model could be especially useful for identifying and responding to faceted information
needs, and ambiguous information needs. The efficiency and effectiveness of selective search,
both, could be improved using these enhancements.

7.3.2 Load-balancing for selective search

For many organizations we expect the number of available computing resources (m) to be much
smaller than the number of topical shards (n) created from a collection. As a result, multiple
shards need to be assigned to each resource. An important future direction is to investigate
the shard-machine assignment problem. It is likely that a shard allocation policy that distributes
similar shards across different resources would be most successful at exploiting the inherent
parallelism in the search process. For example, if the two shards selected for search for a
query are assigned to different resources then both shards can be searched simultaneously thus
improving the query response time. Like the topic-based document allocation policy, the shard
allocation policy would also leverage the cluster hypothesis to identify the shards that would
be relevant to the same query but instead of grouping them together it would spread them
across resources.

The topic-based partitioning of the collection is central to the success of distributed selective
search approach. However, this topically skewed arrangement of documents can make the task
of balancing the computing load on the cluster difficult. This might be especially challenging
in search environments where the query stream exhibits high fluctuations in the popularity
of topics, as is often observed in Web search. In such scenarios the resources assigned to a
few of the currently popular shards could be over-utilized while the other shards’ resources
may idle. One solution to this problem of imbalanced resource utilization is to distribute
each topical shard across several of the available resources in order to spread out the needed
computations. Although each resource may hold a part of many topical shards, the search
can still be restricted to only a subset of the shards by maintaining the necessary mapping
information. In this architecture many of the resources would be active for every query.

In order to meet the operational requirements of fast query response time and high query
throughput, search environments with heavy query traffic often employ data replication as the
solution. When the documents are partitioned into random shards, all the shards are typically
replicated in order to reduce data contention. The topic-based partitioning of the shards can

142

7.3. Future directions 7. Conclusions

support an adaptive replication approach that replicates only a few shards based on usage
patterns, and thus lowers the overall replication factor. The past usage of the shards and the
current query traffic patterns can be used to design a selective and dynamic replication strategy
that makes use of the disk resources judiciously.

7.3.3 Applications of selective search

Increasing number of applications make use of search technology as an underlying tier that
supports a specialized task. For example, question answering systems, such as IBM Watson1,
often use document search as one of the first steps in their pipeline architecture. Intelligent
vocabulary tutors, such as REAP2, employ document retrieval to provide the students with
more engaging reading material. Information extraction projects, such as ‘Read the Web’
(http://rtw.ml.cmu.edu/rtw/), make extensive use of search technology to extract and organize
facts from a large collection (or Web).

Selective search can be used to power the underlying search tier in each of the above instances.
Extending and adapting selective search to apply it to a diverse set of specialized tasks is an
exciting future direction.

1http://www-03.ibm.com/innovation/us/watson/
2http://reap.cs.cmu.edu/

143

Bibliography

[1] Vo Ngoc Anh, Owen de Kretser, and Alistair Moffat. Vector-space ranking with effective
early termination. In Proceedings of the ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 35–42, 2001. 2.1.2

[2] Jaime Arguello, Jamie Callan, and Fernando Diaz. Classification-based resource selection.
In Proceedings of the ACM Conference on Information and Knowledge Management, pages 1277–
1286, 2009. 1.3, 2.3.3, 5.2, 5.2.3, 5.3

[3] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
Proceedings of the ACM SIAM Symposium on Discrete Algorithms, pages 1027–1035, 2007.
4.1.3, 4.3, 4.3.4

[4] R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, and F. Silvestri. Challenges on
distributed Web retrieval. In Proceedings of the International Conference on Data Engineering,
pages 6–20, 2007. 1.3, 2.1

[5] Ricardo Baeza-Yates, Vanessa Murdock, and Claudia Hauff. Efficiency trade-offs in two-tier
Web search systems. In Proceedings of the ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 163–170, 2009. 1.2.1, 1.3, 2.1, 3

[6] Mark Baillie, Leif Azzopardi, and Fabio Crestani. Adaptive query-based sampling of
distributed collections. In Proceedings of the International Conference on String Processing and
Information Retrieval, pages 316–328, 2006. 2.3

[7] Luiz Andró Barroso, Jeffrey Dean, and Urs Hölzle. Web Search for a Planet: The Google
cluster architecture. IEEE Micro, 23(2):22–28, 2003. 1.3, 2.1, 3, 4.1.1

[8] David Blei, Andrew Ng, and Michael Jordan. Latent dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003. 4.1.3

[9] Leonid Boytsov and Anna Belova. Evaluating learning-to-rank methods in the Web track
Adhoc task. In The Twentieth Text REtrieval Conference (TREC 2011) Proceedings, 2012. 6.1

[10] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien. Efficient
query evaluation using a two-level retrieval process. In Proceedings of the ACM Conference
on Information and Knowledge Management, pages 426–434, 2003. 3.4.4, 6.6

145

7. Bibliography .

[11] Eric W. Brown. Fast evaluation of structured queries for information retrieval. In Proceedings
of the ACM SIGIR Conference on Research and Development in Information Retrieval, pages 30–
38, 1995. 2.1.2

[12] Stefan Büttcher and Charles L. A. Clarke. A document-centric approach to static index
pruning in text retrieval systems. In Proceedings of the ACM Conference on Information and
Knowledge Management, pages 182–189, 2006. 2.1.2

[13] James Callan, W. Bruce Croft, and Stephen M. Harding. The INQUERY retrieval system. In
Proceedings of the International Conference on Database and Expert Systems Applications, pages
78–83, 1992. 2.3.1

[14] James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching distributed collections with
inference networks. In Proceedings of the ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 21–28, 1995. 1.3, 2.3.1, 4.1.2, 5.2, 5.3

[15] Jamie Callan. Distributed information retrieval. In W. Bruce Croft, editor, Advances in
Information Retrieval, pages 127–150. 2000. 1.3, 2.3, 2.3.1, 2.3.1, 3.6, 5.2.2, 6.4

[16] Jamie Callan and Margaret Connell. Query-based sampling of text databases. ACM
Transactions on Information Systems, 19(2):97–130, 2001. 2.3, 5.2.1

[17] Jamie Callan, Margaret Connell, and Aiqun Du. Automatic discovery of language models
for text databases. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 479–490, 1999. 2.3, 4.1.2

[18] B. Barla Cambazoglu, Vassilis Plachouras, and Ricardo Baeza-Yates. Quantifying perfor-
mance and quality gains in distributed Web search engines. In Proceedings of the ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 411–418, 2009.
1.2.1, 2.1.1

[19] David Carmel, Doron Cohen, Ronald Fagin, Eitan Farchi, Michael Herscovici, Yoölle S.
Maarek, and Aya Soffer. Static index pruning for information retrieval systems. In Proceed-
ings of the ACM SIGIR Conference on Research and Development in Information Retrieval, pages
43–50, 2001. 2.1.2

[20] B. Carterette, V. Pavlu, H. Fang, and E. Kanoulas. Overview of the TREC 2009 Million
Query track. In Proceedings of the 2009 Text Retrieval Conference, 2009. 6.6, 6.7.1

[21] Abdur Chowdhury and Greg Pass. Operational requirements for scalable search systems.
In Proceedings of the Conference on Information and Knowledge Management, pages 435–442,
2003. 1.3, 2.1, 3

[22] Charles Clarke, Nick Craswell, and Ian Soboroff. Overview of the TREC 2004 Terabyte
track. In Proceedings of the 2004 Text Retrieval Conference, 2004. 3.3

[23] Nick Craswell, Peter Bailey, and David Hawking. Server selection on the World Wide

146

. 7. Bibliography

Web. In Proceedings of the ACM conference on Digital Libraries, pages 37–46, 2000. 1.3, 2.3

[24] W. Bruce Croft. A model of cluster searching based on classification. In Information Systems,
pages 189–195, 1980. 1.3, 2.2

[25] Edleno S. de Moura, Célia F. dos Santos, Daniel R. Fernandes, Altigran S. Silva, Pavel
Calado, and Mario A. Nascimento. Improving Web search efficiency via a locality based
static pruning method. In Proceedings of the 14th International Conference on World Wide Web,
pages 235–244, 2005. 2.1.2

[26] Arthur P. Dempster, N M. Laird, and Donald B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–38,
1977. 4.1.3

[27] A. El-Hamdouchi and P. Willett. Comparison of hierarchic agglomerative clustering meth-
ods for document retrieval. The Computer Journal, 32(3):220–227, 1989. 1.3, 2.2

[28] James C. French, Allison L. Powell, Jamie Callan, Charles L. Viles, Travis Emmitt, Kevin J.
Prey, and Yun Mou. Comparing the performance of database selection algorithms. In
Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 238–245, 1999. 4.1.2, 5.6

[29] Steven Garcia, Hugh E. Williams, and Adam Cannane. Access-ordered indexes. In Pro-
ceedings of the 27th Australasian Conference on Computer science, pages 7–14, 2004. 2.1.2

[30] Luis Gravano and Héctor Garcı́a-Molina. Generalizing GlOSS to vector-space databases
and broker hierarchies. In Proceedings of the Conference on Very Large Data Bases, pages 78–89,
1995. 2.3.1, 2.3.1

[31] Luis Gravano, Héctor Garcı́a-Molina, and Anthony Tomasic. The effectiveness of GIOSS
for the text database discovery problem. In Proceedings of the ACM SIGMOD Conference on
Management of Data, pages 126–137, 1994. 1.3, 2.3.1

[32] Luis Gravano, Héctor Garcı́a-Molina, and Anthony Tomasic. GlOSS: text-source discovery
over the internet. ACM Transactions on Database Systems, 24:229–264, June 1999. 1.3, 2.3.1,
2.3.1, 5.2

[33] Alan Griffiths, H.Claire Luckhurst, and Peter Willett. Using inter-document similarity
information in document retrieval systems. Journal of the American Society for Information
Science, 37(1):3–11, 1986. 2.2

[34] Greg Hamerly and Charles Elkan. Learning the k in k-means. In Proceedings of the Conference
on Neural Information Processing Systems, pages 281–288, 2003. 4.2

[35] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-Means Clustering Algorithm.
Journal of the Royal Statistical Society. Series C, 28(1):100–108, 1979. 4.1.3, 4.3, 4.3.3

[36] Claudia Hauff and Djoerd Hiemstra. University of Twente @ TREC 2009: Indexing half

147

7. Bibliography .

a million Web pages. In The Eighteenth Text REtrieval Conference Proceedings (TREC 2009),
2010. 6.1

[37] J. Heaps. Information Retrieval – Computational and Theoretical Aspects. Academic Press Inc.,
1978. 4.1.3

[38] Marti A. Hearst and Jan O. Pedersen. Reexamining the cluster hypothesis: scatter/gather
on retrieval results. In Proceedings of the ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 76–84, 1996. 2.2

[39] Panagiotis G. Ipeirotis and Luis Gravano. Distributed search over the hidden Web: hier-
archical database sampling and selection. In Proceedings of the Conference on Very Large Data
Bases, pages 394–405, 2002. 2.3

[40] Panagiotis G. Ipeirotis and Luis Gravano. Distributed search over the hidden Web: Hier-
archical database sampling and selection. In Proceedings of Conference on Very Large Data
Bases, pages 394–405, 2002. 1.3, 2.3.2, 5.2

[41] Rocchio J. Document retrieval systems - optimization and evaluation. PhD thesis, 1966. 2.2

[42] N. Jardine and Cornelis Joost van Rijsbergen. The use of hierarchical clustering in infor-
mation retrieval. Information Storage and Retrieval, 7:217–240, 1971. 2.2

[43] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems, 20(4):422–446, 2002. 3.4.1

[44] Anagha Kulkarni and Jamie Callan. Document allocation policies for selective searching
of distributed indexes. In Proceedings of the ACM Conference on Information and Knowledge
Management, pages 449–458, 2010. 1

[45] Anagha Kulkarni and Jamie Callan. Topic-based index partitions for efficient and effective
selective search. In SIGIR 2010 Workshop on Large-Scale Distributed Information Retrieval,
pages 19–24, July 2010. 1

[46] Anagha Kulkarni, Almer Tigelaar, Djoerd Hiemstra, and Jamie Callan. Shard ranking and
cutoff estimation for topically partitioned collections. In Proceedings of the ACM Conference
on Information and Knowledge Management, pages 555–564, 2012. 5

[47] Leah S. Larkey, Margaret E. Connell, and Jamie Callan. Collection selection and results
merging with topically organized U.S. patents and TREC data. In Proceedings of the ACM
Conference on Information and Knowledge Management, pages 282–289, 2000. 1.3, 4.1, 4.1.2,
4.1.3

[48] Xiaoyong Liu and W. Bruce Croft. Cluster-based retrieval using language models. In
Proceedings of the ACM SIGIR conference on Research and Development in Information Retrieval,
pages 186–193, 2004. 2.2

[49] J. B. MacQueen. Some methods for classification and analysis of multivariate observations.

148

. 7. Bibliography

In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pages 281–
297, 1967. 4.1.3

[50] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008. 4.1.3

[51] Donald Metzler and W. Bruce Croft. Combining the language model and inference network
approaches to retrieval. Information Processing and Management, 40(5):735–750, 2004. 3.6,
4.1.4, 5

[52] Donald Metzler and W. Bruce Croft. A markov random field model for term dependencies.
In Proceedings of the ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 472–479, 2005. 3.6, 5.1, 5.1

[53] Glenn Milligan and Martha Cooper. An examination of procedures for determining the
number of clusters in a data set. Psychometrika, 50(2):159–179, 1985. 4.1.3, 4.3

[54] Alistair Moffat and Justin Zobel. Self-indexing inverted files for fast text retrieval. ACM
Transactions on Information Systems, 14(4):349–379, 1996. 2.1.2

[55] Linh Thai Nguyen. Static index pruning for information retrieval systems: A posting-
based approach. In SIGIR 2009 Workshop on Large-Scale Distributed Information Retrieval,
pages 25–32, 2009. 2.1.2

[56] Paul Ogilvie and Jamie Callan. Experiments using the lemur toolkit. In Proceedings of the
2001 Text Retrieval Conference, 2001. 3

[57] Dan Pelleg and Andrew Moore. X-means: Extending K-means with efficient estimation of
the number of clusters. In Proceedings of the International Conference on Machine Learning,
pages 727–734, 2000. 4.1.4, 4.2

[58] Michael Persin. Document filtering for fast ranking. In Proceedings of the ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 339–348, 1994. 2.1.2

[59] Michael Persin, Justin Zobel, and Ron Sacks-davis. Filtered document retrieval with
frequency-sorted indexes. Journal of the American Society for Information Science, 47:749–764,
1996. 2.1.2

[60] Diego Puppin, Fabrizio Silvestri, and Domenico Laforenza. Query-driven document par-
titioning and collection selection. In Proceedings of the 1st International Conference on Scalable
Information Systems, page 34, 2006. 2.2, 4.1, 4.1.1, 5.3

[61] Diego Puppin, Fabrizio Silvestri, Raffaele Perego, and Ricardo Baeza-Yates. Tuning the
capacity of search engines: Load-driven routing and incremental caching to reduce and
balance the load. ACM Transactions on Information Systems, 28(2):5:1–5:36, 2010. 5.3

[62] Carl Edward Rasmussen. The infinite gaussian mixture model. In Advances in Neural
Information Processing Systems 12, pages 554–560, 2000. 4.2

149

7. Bibliography .

[63] Knut Magne Risvik, Yngve Aasheim, and Mathias Lidal. Multi-tier architecture for Web
search engines. In Proceedings of the First Latin American Web Congress, pages 132–143, 2003.
1.2.1, 1.3, 2.1, 3

[64] Gerard Salton. Cluster search strategies and the optimization of retrieval effectiveness. In
Gerard Salton, editor, The SMART Retrieval System, pages 223–242. 1971. 1.3, 2.2

[65] Milad Shokouhi. Central-rank-based collection selection in uncooperative distributed
information retrieval. In Proceedings of the 29th European Conference on Information Retrieval,
pages 160–172, 2007. 1.3, 5.3, 5.3.3

[66] Milad Shokouhi and Luo Si. Federated search. Foundations and Trends in Information
Retrieval, 5(1):1–102, 2011. 1.3, 2.3, 6.4

[67] Milad Shokouhi, Falk Scholer, and Justin Zobel. Sample sizes for query probing in un-
cooperative distributed information retrieval. In Xiaofang Zhou, Jianzhong Li, HengTao
Shen, Masaru Kitsuregawa, and Yanchun Zhang, editors, Frontiers of WWW Research and
Development - APWeb 2006, pages 63–75. 2006. 2.3

[68] Milad Shokouhi, Justin Zobel, Saied Tahaghoghi, and Falk Scholer. Using query logs
to establish vocabularies in distributed information retrieval. Information Processing and
Management, 43(1):169–180, 2007. 2.3

[69] Luo Si and Jamie Callan. Relevant document distribution estimation method for resource
selection. In Proceedings of the ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 298–305, 2003. 1.3, 2.3.2, 5.1, 5.2, 5.2.1, 5.2.3, 5.3, 5.3, 5.7

[70] Alan F. Smeaton and Cornelis Joost van Rijsbergen. The nearest neighbour problem in
information retrieval: an algorithm using upperbounds. In Proceedings of the 4th Annual
International ACM SIGIR Conference on Information Storage and Retrieval, pages 83–87, 1981.
2.1.2

[71] Mark D. Smucker, Charles L. A. Clarke, and Gordon V. Cormack. Experiments with
ClueWeb09: Relevance Feedback and Web tracks. In The Eighteenth Text REtrieval Conference
Proceedings (TREC 2009), 2010. 6.1

[72] Trevor Strohman, Howard Turtle, and W. Bruce Croft. Optimization strategies for complex
queries. In Proceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 219–225, 2005. 2.1.2, 3.4.4, 6.5

[73] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Condor – a distributed
job scheduler. In Thomas Sterling, editor, Beowulf Cluster Computing with Linux. MIT Press,
October 2001. 6.2

[74] Paul Thomas and Milad Shokouhi. Sushi: Scoring scaled samples for server selection. In
Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval,

150

. 7. Bibliography

pages 419–426, 2009. 1.3, 2.3.2, 5.2, 5.2.3, 5.3

[75] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters
in a data set via the gap statistic. Journal Of The Royal Statistical Society Series B, 63(2):411–423,
2001. 4.1.3, 4.2, 4.3

[76] Howard Turtle and James Flood. Query evaluation: strategies and optimizations. Infor-
mation Processing and Management, 31(6):831–850, 1995. 2.1.2

[77] Cornelis Joost van Rijsbergen. Information Retrieval. Butterworths, 1979. 1.2.2, 4.1.2, 4.1.3,
5.3.1

[78] Cornelis Joost van Rijsbergen and W. Bruce Croft. Document clustering: An evaluation of
some experiments with the cranfield 1400 collection. Information Processing and Management,
11(5-7):171–182, 1975. 2.2

[79] Ellen M. Voorhees. The cluster hypothesis revisited. In Proceedings of the 8th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 188–196, 1985. 1.3, 2.2

[80] Ellen M. Voorhees, Narendra K. Gupta, and Ben Johnson-Laird. Learning collection fusion
strategies. In Proceedings of the ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 172–179, 1995. 4.1.2

[81] Jr. Ward, Joe H. Hierarchical Grouping to Optimize an Objective Function. Journal of the
American Statistical Association, 58(301):236–244, 1963. 5.3.2

[82] Peter Willett. Recent trends in hierarchic document clustering: a critical review. Information
Processing and Management, 24(5):577–597, 1988. 1.3, 2.2

[83] Wai Yee Peter Wong and Dik Lun Lee. Implementations of partial document ranking using
inverted files. Information Processing and Management, 29(5):647–669, 1993. 2.1.2

[84] Jinxi Xu and Jamie Callan. Effective retrieval with distributed collections. In Proceedings
of the ACM SIGIR Conference on Research and Development in Information Retrieval, pages
112–120, New York, NY, USA, 1998. 1.3

[85] Jinxi Xu and W. Bruce Croft. Cluster-based language models for distributed retrieval. In
Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 254–261, 1999. 1.3, 2.2, 2.2, 4.1.2, 4.1.3, 5.6

[86] Chengxiang Zhai and John Lafferty. A study of smoothing methods for language models
applied to information retrieval. ACM Transactions on Information Systems, 22(2):179–214,
2004. 4.1.3, 4.1.3

151

