

Socially Capable Conversational Agents
for Multi-Party Interactive Situations

Rohit Kumar
CMU-LTI-11-013

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
Carolyn P. Rosé, Chair

Alan W. Black
Ian R. Lane

Jason D. Williams, AT&T Research

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Language and Information Technologies

Copyright © 2011, Rohit Kumar

This research was supported in part by U. S. National Science Foundation (Grant numbers: EEC 0935145, DRL
0835426, SBE 0836012, DUE 0837661). The views and conclusions in this document are those of the author and
should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

ii

Keywords:
Conversational Agents, Artificial Intelligence, Small Group Communication,
Human-Computer Interaction, Social Interaction, Multi-Party Interaction,
Collaborative Learning, Group Decision Making

To the motion pictures

that shape our sense of good, right and useful.

iv

v

Abstract

Since the inception of AI research, great strides have been made towards
achieving the goal of extending natural language conversation as a medium of
interaction with machines. Today, we find many Conversational Agents (CAs)
situated in various aspects of our everyday life such as information access, education
and entertainment. However, most of the existing work on CAs has focused on agents
that support only one user in each interactive session.

On the other hand, people organize themselves in groups such as teams of co-
workers, family and networks of friends. With the mass-adoption of Internet based
communication technologies for group interaction, there is an unprecedented
opportunity for CAs to support interactive situations involving multiple human
participants. Support provided by these CAs can make the functioning of some of
these groups more efficient, enjoyable and rewarding to the participants.

Through our work on supporting various Multi-Party Interactive Situations
(MPIS), we have identified two problems that must be addressed in order to embed
effective CAs in such situations. The first problem highlights the technical challenges
involving the development of CAs in MPIS. Existing approaches for modeling agent
behavior make assumptions that break down in multi-party interaction. As a step
towards addressing this problem, this thesis contributes the Basilica software
architecture that uses an event-driven approach to model conversation as an
orchestration of triggering of conversational behaviors. This architecture alleviates
the technical problems by providing a rich representational capability and the
flexibility to address complex interaction dynamics.

The second problem involves the choice of appropriate agent behaviors. In MPIS,
agents must compete with human participants for attention in order to effectively
deliver support and interventions. In this work, we follow a model of human group
interaction developed by empirical research in small group communication. This
model identifies two fundamental processes in human group interaction, i.e.,
Instrumental (Task-related) and Expressive (Social-Emotional). Behaviors that
constitute this expressive process hold the key to managing and regulating user
attention and serve other social functions in group interaction.

This thesis describes two socially capable conversational agents that support
users in collaborative learning and group decision making activities. Their social
capabilities are composed of a set of behaviors based on the Social-Emotional
interaction categories identified by work in small group communication. These agents

vi

demonstrate the generalizability of our methodology for designing and implementing
social capabilities across two very different interactive situations.

In addition to the implementation of these agents, the thesis presents a series of
experiments and analysis conducted to investigate the effectiveness of these social
capabilities. First and foremost, these experiments show significant benefits of the
use of socially capable agents on task success and agent perception across the two
different interactive situations listed above. Second, they investigate issues related to
the appropriate use of these social capabilities specifically in terms of the amount and
timing of the constituent social behaviors. Finally, these experiments provide an
understanding of the underlying mechanism that explains the effects that social
capabilities can achieve.

vii

Acknowledgements

At the conclusion of this significant step in my career, I want to thank some of
the many individuals and groups who have enabled my journey so far. First among
them is my advisor Carolyn, who has made a long lasting impact on my approach
towards research and towards people. Thank you Carolyn. I hope to pass on some of
your teachings forward.

I wish to express my gratitude towards my mentors and advisors who have
provided me with endless opportunities to explore areas of my interest. Most
recently: Carolyn Rosé, Alan Black, Jason Williams, Ian Lane, Alex Rudnicky,
Anatole Gershman, Robert Frederking, Lewis Johnson, Diane Litman, Kishore
Prahallad, Sanjeev Sofat and Rahul Jindal. Also, I have acquired a wealth of
knowledge by observing and interacting with the some of the extra-ordinary faculty
and researchers at CMU: Jack Beuth, Jack Mostow, Roni Rosenfeld, Tanja Schultz,
Bruce McLaren and Vincent Aleven.

Thank you to my colleagues who have provided an eco-system to nourish my
thought and work. I think I will never be able find a replacement to that anywhere.
Gahgene, Mahesh, Yi-Chia, Iris, Gregory, Hua, Moon, Nitin, Alicia, Le, Vasco, José,
John, Brian, Satanjeev, Dan, Antoine, Jaime, Emil, Rashmi and Sharath. The Dialogs
on Dialogs group has been instrumental at keeping me going when self-doubt fogged
my path.

Several campus groups helped me achieve a work-life balance including LTI
Student Activities Committee, Indian Graduate Students' Association, Graduate
Student Assembly and Project Olympus. Thanks to Radha, Dana, Brooke, Linda,
Mary Jo, Kelly and Stacey for facilitating my academic and socio-cultural activities
at CMU for the past six years. So many things would have been impossible without
your support.

Beyond my life on campus, my friends made it possible to keep Pittsburgh
interesting for over six years. They have continually served me with a balanced diet
of all round social life. While a quarter of this dissertation deals with discovering the
right amount of social behavior for agents, I must credit these guys for having figured
out that formula well in advance. Mudit, Ayesha, Mohit Kumar, Shivangi, Sana,
Shailendra, Laxmi, Arpit, Sujoyeeta, Sourish, Prince Udhyakumar, Vamshi, Matt,
Venkat, Swapnil, Kaustav, Suyash, Vishnu, Mohit Aggarwal, Priyanka, Betty, Aarav,
Ponguru, Pranjali, Saurabh. While the cycle of meeting new people and sharing

viii

memorable experiences will continue, I doubt I will ever find another group of such
incredible friends in my life again.

While the pages are unlimited, my memory never forgets to fail me. However, I
cannot forget to thank my parents for many obvious reasons. Most of all, I want to
thank them for allowing me to find my way as it is the one reason which I have often
convinced myself to take for granted. Thanks Mummy, Papa.

ix

Contents

Chapter 1 Introduction .. 1

1.1 Conversational Agents .. 1

1.2 Multi-Party Interactive Situations .. 2

1.3 Conversational Agents in Multi-Party Interactive Situations 3

1.3.1 Organizing space for Agents ... 5

1.4 Thesis Objective & Organization ... 8

Chapter 2 Basilica: Software Architecture 9

2.1 Desiderata ... 9

2.1.1 Lack of Rich Representational Capability 9

2.1.2 Inflexibility to address Complex Interaction Dynamics ... 10

2.1.3 Development Effort .. 13

2.2 A Model of Interaction ... 13

2.3 Basilica: The new architecture ... 14

2.4 Integrating existing behavior within Agents 17

2.5 An Example Agent: SecondLife Tutor ... 18

2.6 Supporting the Agent Development Process 21

2.6.1 Re-Use of Decomposable Components 21

2.6.2 Development Tools ... 21

2.7 Related Work .. 23

Chapter 3 Agents built using Basilica .. 25

3.1 CycleTalk Tutor .. 26

3.2 PsychChallenge Peer .. 30

3.3 Emergency Response Interpreter Agent 32

3.4 Types of Behavioral Components .. 35

x

Chapter 4 Socially Capable Conversational Agents 37

4.1 Need for Social Capabilities ... 37

4.2 Small Group Communication ... 38

4.3 Social Interaction Strategies ... 40

4.4 Related Work .. 41

4.5 Implementation of Social Behavior .. 42

4.6 Alternative Perspectives ... 45

Chapter 5 Application: Collaborative Learning 47

5.1 Methodology & Metrics ... 47

5.1.1 Recruitment ... 47

5.1.2 Design ... 48

5.1.3 Procedure .. 48

5.1.4 Materials ... 48

5.2 Experiment 1: Benefits of Social Behaviors................................. 48

5.2.1 Experimental Design ... 49

5.2.2 Learning Outcomes ... 53

5.2.3 Perception Ratings .. 53

5.3 Analysis of performed Social Behavior .. 55

5.4 Analysis of effect of Social Behavior ... 56

5.4.1 Coding Tutoring Episodes .. 57

5.4.2 Structural Equation Modeling ... 58

5.4.3 Interpretation ... 62

5.5 Experiment 2: Amount of Social Behavior 62

5.5.1 Agent Implementation .. 63

5.5.2 Experimental Design ... 65

5.5.3 Learning Outcomes ... 67

5.5.4 Survey Outcomes .. 68

xi

5.5.5 Exposure Effect with Tutors ... 69

5.5.6 Estimating the Optimal Amount of Social Behavior 70

5.5.7 Summary of Experiment 2 .. 71

Chapter 6 Triggering Policy for Social Behavior 73

6.1 Modeling Human Social Behavior ... 74

6.1.1 Data ... 74

6.1.2 Learning Problem ... 78

6.1.3 Metrics .. 78

6.1.4 Features ... 80

6.1.5 Generating Social Behaviors .. 81

6.1.6 Baseline Experiments ... 82

6.1.7 Proposed Algorithm .. 83

6.1.8 Social Ratio Filtering .. 87

6.1.9 Results ... 88

6.2 Experiment 3: Evaluating a Human-like Triggering Policy 92

6.2.1 Procedure & Materials .. 92

6.2.2 Experimental Design ... 94

6.2.3 Results ... 94

6.2.4 Analysis of Tutoring Episodes .. 97

6.2.5 Discussion ... 100

6.2.7 Summary ... 103

Chapter 7 Application: Group Decision Making 105

7.1 Non-Combatant Evacuation Operation 105

7.1.1 Red Cross Rescue Scenario .. 105

7.1.2 Procedure .. 106

7.1.3 Metrics .. 107

7.2 Agent for supporting Group-Decision making 108

xii

7.2.1 Agent Capabilities ... 108

7.2.2 Implementation ... 111

7.3 Experiment 4: Supporting Group Decision Making 113

7.3.1 Experimental Design ... 114

7.3.2 Participants .. 114

7.3.3 Results ... 115

Chapter 8 Conclusion ... 121

8.1 Thesis Contributions ... 122

8.1.1 Building Agents for Multi-Party Interactive Situations .. 122

8.1.2 Socially Capable Conversational Agents 123

8.2 Directions.. 125

8.2.1 Outlook ... 127

Appendix A Test administered during Wrench Lab .. 129

Appendix B Test administered during Thermodynamics Lab 131

Appendix C Collaborative Learning Perception Survey ... 135

Appendix D Design Sheet for Collaborative Wrench Design Activity 137

Appendix E Design sheet for Collaborative Power Plant Design Activity 139

Appendix F Scoring Rubric for Non-Combatant Evacuation Planning 141

Appendix G Group Decision Making Perception Survey 143

Appendix H Knowledge Test: Non-Combatant Evacuation 147

Appendix I Design of the Annotation Interface ... 151

Appendix J Rules for Triggering Social Behaviors ... 153

Bibliography ... 155

xiii

List of Figures

Figure 1.1: Percentage of publications on Multi-Party Interactive Situations out of
the publications on Conversational Agents / Dialog Systems 4

Figure 2.1: Failure of Even Participation assumption in (a): Two-Party Interaction
and (b): Multi-party interaction ... 11

Figure 2.2: A behaviorist model for Conversational Agents 14

Figure 2.3: Example of an Agent’s Component Network (T) 15

Figure 2.4: Logic Diagram of Behavioral Components ... 16

Figure 2.5: Example XML Specification of a Basilica Agent 17

Figure 2.6: Two students interacting with the Second Life Tutor 18

Figure 2.7: Component Network of the Second Life Tutor .. 19

Figure 2.8: Basilica Visual Debugging Interface .. 22

Figure 3.1: ConcertChat Collaboration Environment ... 27

Figure 3.2: Component Network of the CycleTalk Tutor .. 29

Figure 3.3: The PsychChallenge Game Web-Interface (Showing the Guesser
Interface) .. 31

Figure 3.4: Component Network of the PsychChallenge Peer 32

Figure 3.5: Component Network of the Emergency Response Interpreter Agent 34

Figure 4.1: Component Network of the WrenchTalk Tutor 44

Figure 5.1: Average ratings for the Tutor (Q1-Q6) and the Learning Task (Q7-Q9) . 54

Figure 5.2: Venn Diagram of Episode Turn Annotations ... 57

Figure 5.3: SEM discovered using all 6 variables in our dataset 59

Figure 5.4: SEM including the MeanResponseTime and UnrespondedTurns variables
 .. 60

Figure 5.5: SEM with normalized variables ... 61

Figure 5.6: Component Network of the CycleTalk Tutor used in Experiment 2 64

Figure 5.7: Average ratings for the Tutor and the Learning Task 68

xiv

Figure 5.8: Interaction between our Experimental manipulation and Prior Exposure
to Tutors ... 69

Figure 5.9: Scatter plot between Adjusted Post-Test scores and Social Ratio of the
tutors in High and Low conditions ... 70

Figure 6.1: Mean Label Confidence & No. of Social Turns for different values of
Confidence Threshold Θ .. 77

Figure 6.2: Pseudo-code of our Large-Margin Learner .. 84

Figure 6.3: Estimated function for SRTutor ... 87

Figure 6.4: Example of Social Behavior being generated by the Learnt Model (1) ... 90

Figure 6.5: Example of Social Behavior being generated by the Learnt Model (2) ... 91

Figure 6.6: SEM applied to data from this experiment ... 98

Figure 6.7: SEM from Meta-Analysis of Experiment 1 and Experiment 3 99

Figure 7.1: Component Network of the NEO Agent .. 112

Figure 7.2: Communication Environment for NEO Group Decision Making Activity
 .. 113

Figure 7.3: Plot of Total Score and Coarse & Fine grained Penalties 116

Figure 7.4: Mean Rating by the participants for the Agent and their Teammates 117

Figure 7.5: Average Ratings about Team, Task and Discussion 118

xv

List of Tables

Table 1.1: Examples of conversational agents split across Task and Role................... 6

Table 2.1: Excerpt of a conversation between two students and a tutor 12

Table 2.2: Excerpt of a conversation between two students and the Second Life Tutor
 .. 20

Table 3.1: Excerpt showing the Attention Grabbing Strategy (Turn 61) 27

Table 3.2: Excerpt showing the Ask when Ready Strategy (Turn 41 & 42) 28

Table 4.1: Excerpt of an interaction between a CA (tutor) and a group of students .. 37

Table 4.2: Interaction Categories of Bales’ Interaction Process Analysis Scheme 39

Table 4.3: Social Interaction Strategies based on three of Bales’ Socio-Emotional
Interaction Categories .. 40

Table 4.4: Excerpt of a conversation between three students and WrenchTalk Tutor 43

Table 5.1: Excerpt of a tutor providing a lesson to a team of four students 49

Table 5.2: Excerpts showing examples of the Social Interaction Strategies 51

Table 5.3: Average number of social behavior turns displayed by tutor 55

Table 5.4: Excerpt of a Conceptual Tutoring Episode .. 56

Table 5.5: Excerpt of an interaction between a team of students and a Human tutor 63

Table 5.6: Excerpt of an interaction between a team of students and an automated
tutor .. 63

Table 5.7: Average Pre & Post test scores for each condition (Standard deviation in
paranthesis) .. 67

Table 6.1: Labeling Categories ... 75

Table 6.2: Confusion matrix for 5-class labels (Θ=0.65) ... 76

Table 6.3: Summary of Baseline Results .. 82

Table 6.4: Evaluation results of our proposed Triggering Policies 89

Table 6.5: Mean and Standard Deviation of Adjusted Post Test Scores for Short
Essay Type Questions .. 96

Table 6.6: Mean and Standard Deviation of Tutor Ratings .. 97

xvi

Table 6.7: Mean and Standard Deviation of Duration of Tutoring Episodes 98

Table 6.8: Excerpt showing a social behavior being triggered too late (1) 102

Table 6.9: Excerpt showing a social behavior being triggered too late (2) 102

Table 7.1: Excerpt of an interaction between Agent and Participants 108

Table 7.2: Social Interaction Strategies used by Agent to support Group Decision
Making ... 109

Table 7.3: Examples of Instantiation of Social Interaction Strategies during the NEO
Group Decision Making Activity ... 110

1

Chapter 1

Introduction

1.1 Conversational Agents

Human Society has used conversation as an efficient, reliable and adaptive means
of exchanging knowledge. One of the earliest grand challenges of artificial
intelligence has been to extend this conversational medium to interactions with
automated participants like computers or robots. We refer to these automated
participants as Conversational Agents (CAs) or simply as Agents hereon.

Agents are autonomous interfaces that extend Conversation (spoken or text-
based) as a medium of interaction with machines. A large number of such agents
have been built and experimented with over the last three decades in a variety of
interactive situations. Specifically, a number of agents have been developed and
deployed for information access applications. They are also an extension of a history
of interactive voice response systems (IVRS) and are commonly also referred to as
spoken dialog systems. Some of the agents deployed in commercial / public use
include: Amtrak Julie, AT&T How May I Help You (Gorin et. al., 1997), CMU Let’s
Go (Raux et. al., 2005) and Siri Virtual Personal Assistant. A much larger number of
such agents have been developed in laboratories, some of which have been deployed
publicly for academic study and evaluation purposes. Some examples of such agents
include NJFun (Litman et. al., 2000), ConQuest (Bohus et. al., 2007a), Project54
(Kun et. al., 2007), AthosMail (Turunen et. al., 2004), Trains/Trips (Allen et. al.,
1996), Clarissa (Rayner et. al., 2005), etc.

 Another application of CAs which has been extensively researched is
automated tutoring. Various research groups have developed agents in a variety of
domains including reading (Aist and Mostow, 2009), algebra (Patel et. al., 2003),

2

geometry (Aleven et.al., 2001), calculus (Murray et. al., 2001; Callaway et. al., 2007),
physics (Rosé et. al., 2001a; Litman and Silliman, 2004; Jordan et. al., 2006;
VanLehn et. al., 2007), computer literacy (Graesser et. al., 2003), programming (Lane
and VanLehn, 2004), foreign languages (Johnson, 2007), research methods (Arnott
et. al., 2008) and thermodynamics (Rosé et. al., 2006). Many evaluations show that
CAs can be effective tutors (Arnott et. al., 2008; Kumar et. al., 2007a; Graesser et. al.,
2005).

Other common applications of CAs include customer support (NoHold),
translation assistance (Nallasamy et. al. 2008), entertainment (Foner, 1997;
A.L.I.C.E.), marketing (Cassell et. al., 1999), navigation (Edlund et. al., 2004),
security (Pakucs and Melin, 2001), therapy (Bickmore and Cassell, 2001;
Weizenbaum, 1966; Ferguson et. al., 2009), personal assistance (Siri), etc. Dan Bohus
and Staffan Larsson maintain a listing of several spoken dialog systems on their
websites1.

Several commercial products and platforms (Nuance Café, Voxeo) are publicly
available which have made development tools for agents for simple task domains
easily accessible to a large number of developers using standardized frameworks like
VoiceXML. Besides the mass availability and presence of these agents/systems, the
Loebner Prize, an annual competition to evaluate a class of CAs continues to
contribute to the popularity and wide-spread interest in these conversational agents.

However, despite their popularity and presence in the real world, most of the
work on creating CAs over the last five decades has focused on agents that can
engage in interaction with a single human user. More recently, there is an emerging
interest in building agents that can be one of the many human and automated
participants in interactive situations.

1.2 Multi-Party Interactive Situations

Everyday, we participate in interactive situations involving two or more people.
These multi-party situations are as common as sharing a meal with friends and family
to having a meeting with colleagues at our workplace. Besides serving the need for
companionship, these situations provide opportunities for group work. In Intellective
Tasks such as problem solving, several researchers (Laughlin, 1980; Davis, 1969)

1 http://research.microsoft.com/en-us/um/people/dbohus/SDS/index.html
 http://www.ling.gu.se/~sl/dialogue_links.html

http://research.microsoft.com/en-us/um/people/dbohus/SDS/index.html

3

find that groups are more effective (more right answers) than individuals. Even
though this increased effectiveness comes at the cost of time (“man-hours”), it is
preferred practice to function in groups in a variety of situations. The set of situations
where the costs of time is affordable is of interest to organizational behavior,
communication and management scholars.

Advances in communication technologies over the last two decades have enabled
a larger variety of groups to participate in joint activities in a variety of interactive
situations. These multi-party interactive situations include situations where the
participants interact with each other face-to-face (FTF) as well as situations where
communication is mediated through artificial environments like tele-conferencing,
instant messengers and virtual worlds. Each environment affords different modalities
for interaction. Comparisons of these mediums based on their affordances relative to
face-to-face interaction are discussed widely in literature on Computer Mediated
Communication (CMC). Some examples of Multi-Party Interactive Situations include

• Collaborative Learning

• Online communication

• Collaborative Work

• Online shopping / auctioning

• Multi-Player games

• Collaborative content creation

• Social networking

As this research in CMC continues to progress, communication technologies will
continue to enable and create a variety of multi-party interactive situations.

1.3 Conversational Agents in Multi-Party Interactive
Situations

Advances in digital telephone systems in the latter half of the twentieth century
led to the mass proliferation of Conversational Agents that could interact with
individual users to help them with routine interactive tasks over the telephone. We
can see an increasing interest in Conversational Agents that can participate in multi-

4

party interactive situations enabled by currently available CMC environments. An
estimation of this increased interest can be seen from the graph in Figure 1.1 which
shows the percentage of annual publications on conversational agents that are also
about multi-party interactions.

Figure 1.1: Percentage of publications on Multi-Party Interactive Situations

out of the publications on Conversational Agents / Dialog Systems

One of the earliest agents deployed in a multi-user chat room was CoBot (Isbell
et. al., 2001). It accumulates presence information of users and shares that
information with other users who may be looking for their friends. Isbister et. al.
(2000) developed a Helper Agent that introduces safe topics of discussion in a multi-
cultural human-human interaction environment to improve group functioning and the
perceptions of group participants about each other. In the context of the Virtual
Humans project, Traum & Rickel (2002) developed an act-based model for creating
conversational agents capable of interacting with multiple users using verbal as well
as non-verbal interaction modalities. Elva (Zheng et. al., 2005) is an embodied tour
guide that facilitates multi-party interaction in an interactive art gallery environment.

In educational domains, Kumar et. al. (2007a) have shown that agents playing
the role of a tutor in a collaborative learning environment can lead to over one grade
improvement. Other work (Liu & Chee, 2004; Kumar et. al., 2007b, Chaudhuri et. al.,
2008 & 2009) has explored a variety of interaction patterns and tactics that could be
used in multi-party educational situations.

Bohus & Horvitz (2009) have demonstrated multiple open-world interactive
situations in which multiple human users are able to engage in interaction with an
agent. Dohsaka et. al. (2009) created an agent that can engage a group of users in a
quiz-style thought-evoking dialogue.

5

Besides the work on such agents in the academia, the entertainment industry has
developed several scripted agents that can operate in massively multi-player games
like Sims. Further, other non-conversational support tools for multi-party situations
are being studied (Banerjee & Rudnicky, 2006).

While situations involving one agent and multiple human participants are the
primary focus of this thesis, it must be noted that the general case of multi-party
interactive situations can involve multiple agents and one or more human users. An
example of this case is explored in the TeamTalk project (Harris & Rudnicky, 2007)
that supports a human controller during search and rescue mission using multiple
robots.

These initial efforts for building conversational agents to support multi-party
interaction are based on extending existing approaches for creating agents that
interact with one user at a time. This approach leads to two problems identified and
addressed by this thesis. The first problem, discussed in Chapter 2, pertains to the
assumptions made by approaches for modeling one-on-one interaction that do not
generalize to multi-party interaction. Chapter 4 discusses the problems resulting for
the lack of necessary communication skills that the agents must possess to participate
in groups.

1.3.1 Organizing space for Agents

Within the collection of agents for MPIS listed above, we can see a diversity of
applications and environments including agents that can participate in face-to-face
interactions. In this section, I will present an organizing space to classify and
compare between different agents. A space like this would help in generalizing
design principles between agents by observing the similarities and differences
between the agents.

Isbister & Doyle (2002) proposed a taxonomy for organizing research in
embodied conversational agents. In order to organize the agents described and
evaluated in this thesis, a narrower organizing space is described below. This space is
split orthogonally along two dimensions, i.e., task and role.

Task

This dimension is similar in motivation to the application domains class of the
Isbister & Doyle. The task domain within which the agent is situated determines most

6

of the primary functions of the agent. Further the application for which the agent is
being used specifies the metrics that must be used to evaluate the
usefulness/effectiveness of the agent.

 Task
Behavioral Conceptual Cooperative Competitive

R
ol

e

Same CoBot Agent as peer
learner

Agent as team
member

Agent as
another buyer
in Marketplace

Different
Information
Access (Bohus
& Horovitz)

Tutoring Agent
(Kumar et. al.)

Helper Agent
(Isbister et. al.)

Shop keeper /
Auctioneer in
Marketplace

Table 1.1: Examples of conversational agents split across Task and Role

As we design and evaluate categories of social behaviors exhibited by the agent,
we want to study the generalizability of those behaviors across agents involved in
different types of tasks. Broadly, the tasks can be classified along four classes under
this dimension based on the group task circumplex proposed by McGrath (1984).
These tasks cover most of the common types of applications of interest currently.

1. Behavioral tasks: Tasks involving a sequence of physical and cognitive
actions to achieve a predetermined objective such as asking for
information. (Isbell et. al., 2001; Bohus & Horovitz, 2009)

Metrics: Task completion, Reduction in time taken to complete the task,
Task Satisfaction

2. Conceptual tasks: Tasks such as problem solving that require
participants to acquire and share knowledge to achieve conceptual
agreement (Kumar et. al. 2007; Liu & Chee, 2004)

Metrics: Concept coverage, Concept learning / retention, Task
Satisfaction, Task Quality/Creativity

7

3. Cooperative tasks: Tasks such as planning and decision-making during
which participate with shared task goals generate and evaluate options to
achieve their goals. (Isbister et. al., 2000)

Metrics: Cost of Resources (time, money, people, equipment), Reward,
Group Cohesion/Bonding, Task Completion Rate, Task Satisfaction

4. Competitive tasks: Tasks that involve contest over conflicting goals
where participants attempt to maximize achievement of individual goals.
(Dohsaka et. al., 2009)

Metrics: User resource depletion, Agent resource accumulated, Time to
victory, Number of exchanges

Role

Agents can play a variety of roles in different interactive situations. For example
tutors play the roles of instructors and moderators in learning groups. An agent can
play the role of another participant in a competitive task group and compete with the
other participants. In a multi-lingual or multi-cultural task, agents can play the role of
mediators as interpreters. In other tasks, agent can play the role of helpers, observers,
referee, etc.

The role an agent plays is crucial to the study of agent behaviors. It determines
the relevance of various behaviors an agent could exhibit. Further, the role sets up
expectations of performance / capability / knowledge from the agent with respect to
the user. For example: An agent playing the role of a peer student is not expected to
know the answers to conceptual questions while a tutor agent is expected to be
capable of responding accurately on such matters.

In order to keep the space of agents relatively small to allow possible
generalizations between agent classes, the role dimension in the proposed space will
have only two levels – i.e. same and different – defined with respect to the other
participants. When we discuss specific agents in Chapter 3, their role will be
subjectively elaborated in addition to categorizing the agent within these two levels.

Note that it is possible to add other dimensions that will define this organizing
space at an increasingly fine level of detail. Foremost in the list of those dimensions

8

would be the type of interactive environment (e.g., mobile, chatroom, voice, virtual
worlds, face to face, etc.) employed for the interactive situation as that determines the
affordances the agent can utilize while performing its functions.

1.4 Thesis Objective & Organization

In our work on building Conversational Agents for Multi-Party Interactive
Situations, we have identified two problems that must be addressed to develop these
agents. As discussed earlier, this thesis focuses on addressing both of these problems.

Foremost is the problem of building these software agents. While several
representations and formalisms have been developed for developing agents that
interact with a single user, all of these formalisms make simplifying assumptions
(discussed in Section 2.1) that do not hold in the multi-party case.

Besides this technical problem, we also need to address the problem of designing
agent behaviors that demonstrate necessary communication skills suitable for the
interactive task and the role of the agent. In the case of agents participating in
conversation with multiple users, the agents must perform social behaviors, which
may be task-specific and task-independent, to engage the users as it competes with
the other human participants to hold the floor.

Through this thesis, we are investigating general solutions to both of these
problems. Chapter 2 of this document elaborates the technical challenge and
describes a new software architecture that helps in alleviating the problems related to
building CAs for MPIS. Chapter 3 describes the implementation of three agents built
using this architecture. Two other agents built using this architecture that have been
used in the experiments presented here are discussed in Chapter 4 and Chapter 7
respectively.

Chapter 4 motivates the need for socially capable conversational agents in multi-
party interactive situations and presents a model of social behavior. We also describe
an implementation of an agent with these capabilities. Chapter 5, Chapter 6 and
Chapter 7 describe a series of experiments conducted using our socially capable
agents to study their effects on user productivity and perception ratings.

9

Chapter 2

Basilica: Software Architecture

2.1 Desiderata

The first challenge that must be addressed towards building Conversational
Agents in Multi-Party Interactive Situations is the technical challenge of
implementing such agents as software.

Work on conversational agents and dialog systems in single user applications has
explored several representations (Constantinides et. al., 1998; Rudnicky and Xu,
1999; Freedman, 2000; Rosé et. al., 2003; Bohus and Rudnicky, 2003) and
implementation solutions (Seneff et. al., 1998; Turunen and Hakulinen, 2003; Bohus
et. al., 2007b; Nakano et. al., 2008) that can be potentially extended to CAs in the
multi-party case. However, as we borrow these approaches to build agents in multi-
party situations, we note that there are certain shortcomings in these approaches. In
this chapter, we will present these shortcomings that led us to define the desiderata
for a new architecture, Basilica.

2.1.1 Lack of Rich Representational Capability

To achieve autonomous behavior by agents, characterized as involving a
combination of simulated cognition and control, it was important to achieve a level of
representational richness that allows us to model the agent in the concerned general
class of conversational situations. However, while it would be relatively simple to
add complexity to the representation if that was the only consideration, it could easily
lead to the downside that the effort involved in authoring (or programming) the
knowledge and the procedures that enable the agent to participate in specific
situations would increase beyond what is practical. Thus, the consideration of
representational adequacy and efficiency of implementation often conflict with each
other.

10

For example, a simple representation like a finite state machine (Rosé et. al.,
2003) is suitable only for relatively short and simple interactions, but the advantage
of using them is that the development effort involved is relatively small and is often
facilitated using state-machine authoring tools (Jordan et. al., 2007). Richer
representations like the ones used in plan-based approaches (Freedman, 2000; Bohus
and Rudnicky, 2003) model the conversational goal(s) of the agent and use planning
algorithms to determine a sequence of steps that can achieve the goal(s). While such
approaches have been shown to be flexible and robust in conversational situations
like mixed-initiative dialog, a considerable amount of effort is involved in specifying
the goal representations, operators, potential steps, pre-conditions, etc., required by
the underlying planning algorithms.

In the new architecture proposed here, we adopt a rich representational capability
that is not restricted by a small set of interaction operators. The interactive behaviors
are specified using the full representational capability of a high-level programming
language. This enables the developers of CAs in multi-party interactive situations to
program complex interactive behaviors like the ones we describe in the case-studies
in Chapter 3.

2.1.2 Inflexibility to address Complex Interaction Dynamics

Considering the amount of research that has gone into developing approaches for
building CAs that are capable of conversational interaction with one user in each
session, it is natural to push the envelope in order to deploy agents in multi-user
interactive situations. However, typical approaches to developing CAs for single user
settings make heavy use of the simplifying assumption that there are only two
participants in the interaction, namely the human user and the agent. From this
fundamental assumption come two more practical assumptions. One is that there will
be a relatively even participation of both parties, which will typically mean that
speakers take turns alternately. And the other assumption is the known addressee
assumption, namely that if there are only two participants, then the addressee must
always be the one who is not the speaker. Here we discuss why these assumptions
break down in multi-party scenarios and what practical implications that has.

Figure 2.1a represents a typical interaction in a single user (two-party) scenario.
The white dots represent the agent turns and the grey dots represent the user turns.
Notice that typically white and grey alternate with one another. This is not the case
100% of time. Nevertheless, it is true often enough that if the system behaves in a
way that presupposes that this will always be the case, it won’t make mistakes very
often. In this specific example, at turn 7, imagine that the user is responding to a

11

agent prompt for information, and after the user has provided an initial answer, he
then provides additional information (or a correction) to the system. However, since
the agent (system) is based on an even participation assumption, at turn 8, the system
is still trying to respond to turn 6 from the user and ignores the information provided
in turn 7. In the last few years, work on flexible turn taking (Raux, 2008; Benuš,
2009) has proposed sophisticated models that can help the system anticipate the
possibility of failure of such an assumption and avoid (or recover from) potential
failure in the interaction. However, as illustrated in Figure 2.1b, in the case of a
multi-party interaction, the failure of even-participation assumption is not an
exception to be recovered from. Instead it is a normal characteristic of the dynamic
interaction in multi-party settings. In this example, each color represents a different
speaker. As can be seen, speakers do not alternate in any predictable pattern of even
participation. Assuming the white dots represent the agent turns, we can see that
ambiguity about which contribution to consider as an answer to its prompts is
common rather than a rare exception.

Figure 2.1: Failure of Even Participation assumption in

(a): Two-Party Interaction and (b): Multi-party interaction

Related to the problem just described is the problem of knowing who is the
addressee of an utterance. When there are multiple speakers, sometimes the speakers
will be talking to each other, and not the agent. Mainly the agent needs to know
when it is being addressed, but this is far from trivial in this multi-user case. The
known addressee assumption on which conversational agents for two-party
interactions are developed implies in the two-party case that the addressee is the other
speaker. A naïve extension of this assumption to the multi-party case would be that
contributions from each participant are addressed to all the other participants, which
includes the agent. Failure of this assumption happens when the user says something
that is not addressed to the agent, or even if the agent is among the users addressed,
but the agent’s prompts are not addressed. This is illustrated in the excerpt from a
thermodynamics tutorial dialog system shown in Table 2.1.

When Student2 asks Student1 to respond to the tutor’s first question, the tutor
follows the known addressee assumption and considers Student2’s turn as a response

12

to its previous question. The response is evaluated as an incorrect (or non-
understandable) answer and the tutor provides the correct answer. Meanwhile,
Student1’s response to the first question is considered as a response to the second
question from the tutor.

Student1 OK, lets start

Tutor What would happen to the power output of a Rankine Cycle at a
higher operating temperature?

Student2 hmmm … Can you answer that?

Student1 I think it will increase.

Tutor
The correct answer is that at a higher operating temperature, more
heat is added to the cycle and hence the power output increases
too. What about the heat rejected by the cycle though?

Student1 You are right S1. It increases too. Lets move on to the next topic.

Table 2.1: Excerpt of a conversation between two students and a tutor

State-of-the-art conversational agents implement error recovery strategies
(Bohus, 2007) designed to deal with non-understandings or mis-understandings in
order to recover from local failures of the known addressee assumption. In multi-
party scenarios, the dynamics of responding to a turn from the user becomes
increasingly complicated and task specific. For example, in a collaborative learning
setting, students may choose to discuss the answer to a tutor turn among themselves
before responding to the tutor.

An additional complicating factor is the duration of interaction with agents in
typical collaborative learning scenarios. Agents that interact with one user at a time
have been developed for interactive situations that do not require any more than a few
minutes of interaction. As we extend the application of these agents to applications
such as collaborative learning where a learning session could last from 30 minutes to
multiple hours, the structure of the conversation becomes increasingly complex, and
the breakdown of the above assumptions become increasing likely.

Group dynamics is another consideration. As the number of users participating in
the interaction increases, the exchange between them becomes an increasingly larger
factor in the interaction. This interaction may include interpersonal conflict, free
riding, or other sources of process loss. Thus, agents may have to monitor and

13

regulate the interaction between users in order to provide appropriate support. For
example, in an extended collaborative learning interaction, the tutor may elicit
participation from students who are contributing less than other students. Such task /
interactive situation specific interaction dynamics may be more complex than the
scenarios that have been explored in current work.

The proposed architecture provides the flexibility to develop conversational
agents that can implement interaction strategies (and tactics) which would enable
them to participate in multi-party interactive situations without failure as mentioned
earlier in this section.

2.1.3 Development Effort

While the primary motivations that guided the design of our new architecture was
to increase the representational capability that encodes the knowledge and the
behavior of the agent, as well as implement agents capable of performing
sophisticated interaction tactics and strategies, we note that these improvements could
easily increase the effort involved in developing the conversational agents. Thus, a
final objective of our effort has been to develop the architecture in a way that reduces
development effort. To alleviate additional effort to some extent, the architecture
adopts principles of object-oriented design. Modeling the agent as a collection of
appropriately sized, independent objects allows incremental development as well as
reusability as discussed in the next section. Earlier related work on architectures for
conversational agents (O’Neill et. al., 2003) has also employed similar object-
oriented programming principles for developing conversational agents.

Before we proceed to discuss the details of the architecture for building
conversational agents proposed in this chapter, we present a model of interaction
between a conversational participant and the environment.

2.2 A Model of Interaction

The participant could be a human user or an agent and the environment includes
other participants and observers. The environment also specifies the modalities of
interaction (e.g., text, voice, video, gesture, etc.) based on its affordances.

In the model of interaction shown in Figure 2.2, the participant (Agent) observes
environmental stimuli (like entrance of a new participant, action by one of the current
participants, change in environment such as server notifications, etc.). These stimuli

14

are conveyed to the perception components of the agent, which process the stimuli in
order to determine whether any relevant behavior is to be triggered in response to the
stimuli. For example, in a telephone based interaction, the listener component (ears)
triggers the behavior of hearing upon receiving the voice stimulus from the handset
(medium/environment). The triggered behavior may respond by generating events
(that are internal to the agent) as well as by sending a response back to the
environment. The generated events are transferred to other components. This way the
environmental stimulus is propagated through a collection of components that
implement all the singular behaviors an agent can perform. As a result of the stimulus
propagation, a response may be sent back to the environment, and internal states of
each component may be updated.

Figure 2.2: A behaviorist model for Conversational Agents

2.3 Basilica: The new architecture

The Basilica architecture is based on the above described model of interaction
between conversational participants and the environment. Agents built using the
Basilica architecture are implemented as a collection of what we refer to as
behavioral components. Computational capabilities like perception, action, cognition
and memory are implemented as behaviors. The selection function (si) for each
component (ci) is implemented as a one to one mapping function that maps the type
of event (ej) to behavior (bij). Each behavior is programmatically defined as a
function that responds to a type of event by generating a set of zero or more events
(ek).

15

 (2.1)

The transfer function (T) is specified by a network of components. Events
generated by a behavior bij are propagated to all components that are connected to
component ci. The connections of the network are unidirectional, i.e., if component c1
can receive events from c2, then c2 do not necessarily receive events from c1 (unless
so connected). For example, in the network shown in Figure 2.3, only components c2
and c3 receive events generated by c1.

Figure 2.3: Example of an Agent’s Component Network (T)

The Basilica architecture provides a set of core abstract classes (implemented in
Java) for defining agents, components, connections and events. While the behaviors
performed by the agent are specific to the agent’s implementation and change
between agents, the Basilica architecture provides low-level functionality required to
implement the agents.

Foremost within this scope is the control mechanism for propagating events
between components. Events are propagated as a broadcast to all connected
components. For example, all events generated by c1 are received by c2 and c3. While
sometimes this might cause components to receive events that they do not need to
process, the broadcast mechanism allows for relatively simpler specification of the
network. Additionally, the architecture provides developers the ability to selectively
transmit events to a subset of all connected components. Basilica is responsible for
initializing and maintaining the connection between components over which events
are transmitted. Besides maintaining these connections, the architecture provides
observer interfaces that allow developers to observe events as they are transmitted

16

over the connections. This supports creation of graphical displays that can be used by
facilitators and moderators. The debugging interface discussed in section 3.5 uses this
mechanism.

Figure 2.4: Logic Diagram of Behavioral Components

Second, the abstract classes used for defining behavioral components provide a
generic mechanism for initializing, executing and observing each component. Figure
2.4 shows a logic diagram of behavioral component. By default this mechanism
allows each component to perform its behaviors asynchronously by allowing each
component to run in a separate thread. So, if a particular component (like a parser)
takes an extended amount of time for processing its events, the other components are
not blocked from processing their events.

Third, the selection function (si) within each component is responsible for
accumulating incoming events and triggering their corresponding behaviors (bij).
Basilica implements a generic mechanism for this function. By default, events are
buffered and processed sequentially in the order in which events are received.
However, the object oriented implementation of Basilica allows developers to
override this default mechanism for special purpose components to prioritize certain
kinds of stimuli (like a user barge-in or a resource unavailability notification).

17

Figure 2.5: Example XML Specification of a Basilica Agent

Besides the core classes, Basilica provides a generic class for a memory
component that provides the ability to keep state-based information accessible across
components. An application of the memory component is discussed in Section 4.5.
Additionally, the architecture provides an agent factory class that allows runtime
agent construction from an XML specification like the one shown in Figure 2.5,
which also enables more dynamic forms of behavior.

2.4 Integrating existing behavior within Agents

Basilica allows for integration of a wide range of behavioral components, but one
that we have used frequently in our agents is the TuTalk dialog engine (Jordan et. al.,
2007). In the next section, we will discuss its role within an example Basilica agent,
illustrated in Figure 2.6. TuTalk is a state-based dialogue engine that operates using
what are referred to as tutoring scripts. Tutoring scripts compatible with the TuTalk
dialog engine define directed lines of reasoning composed of a sequence of steps that
implement an Initiation – Response – Feedback interaction pattern with the goal of
leading a student to construct a correct explanation for a complex concept as
independently as possible. The dialog engine executes these steps by presenting the
Initation question, matching the student response and presenting appropriate feedback
before moving on to the next step. The script formalism also allows introducing
another intervening sequence of remedial steps as feedback to incorrect responses.

18

Thus, support is provided on an as-needed basis. In order to facilitate authoring of
these scripts, TuTalk provides a set of authoring tools for rapid development of these
scripts by subject matter experts who may not be technology experts.

Integration of TuTalk within Basilica’s tutoring components demonstrates the
flexibility to integrate existing tools and interactive representations within agents
built using this architecture. Note that the TuTalk dialog engine inherently does not
provide a mechanism to address the issues related to multi-party interaction discussed
earlier. However, Basilica allows us to augment these tutoring components with other
necessary behavior to address the issues related to complex interaction dynamics
without needing to add any sophistication to component technologies themselves.
Table 2.1 and Table 2.2 illustrate example interactions with authored TuTalk agents.

2.5 An Example Agent: SecondLife Tutor

Figure 2.6: Two students interacting with the Second Life Tutor

19

Now we will demonstrate how an agent built using the Basilica architecture
works using an example agent that tutors a team of students in the SecondLife (SL)
virtual environment. The SecondLife Tutor shown in Figure 2.6 is implemented as a
SecondLife object (see as the spherical object in the figure).

The SecondLife tutor performs two types of user observable behaviors, i.e.,
greeting and tutoring. To customize the tutoring behavior, the tutor can be augmented
with a list of TuTalk scripts and the tutor sequentially executes those scripts. We see
two students interacting with the tutor object using text chat. The users activate the
tutor by clicking on it (touch stimuli).

Connectivity between the tutor and SecondLife environment is enabled using a
HTTP Middleware (Weusijana et. al., 2008). The component network of the
SecondLife tutor, shown graphically in Figure 2.7, is made of nine components and
twelve connections. It receives two types of stimuli from the SecondLife
environment, i.e.,

1. the user touching the agent to activate it and

2. the user sending message in the agent’s vicinity

Figure 2.7: Component Network of the Second Life Tutor

When the tutor is activated, a LaunchEvent is propagated to the GreetingActor
and the TutoringManager. GreetingActor sends a greeting message back to the
environment via the OutputCoordinator and the SLActor. The TutoringManager
encapsulates the TuTalk dialog engine. When triggered, it starts tutoring by

20

sequentially executing the available TuTalk scripts. Tutor turns (questions and
feedback) are sent to the environment via the TutoringActor, the OutputCoordinator
and the SLActor. Student answers received via the MessageFilter are collected by the
TurnTakingCoordinator when the Tutor is expecting the students to respond to its
question (e.g. after the first turn of Table 2.2). If multiple students respond within a
few moments of each other to the same tutor turn, the TurnTakingCoordinator
accumulates those responses and sends them to the TutoringManager to be matched
to the tutor’s question. The TutoringManager filters responses collected by the
TurnTakingCoordinator through prioritization rules that look for a correct or an
incorrect answer, i.e., a relevant response to the tutor’s questions.

[09:21] Tutor Consider the effect of T-max on the efficiency of a cycle.
Do you know whether T-max should be kept high or low?

[09:22] Student1 we should keep tmax high

[09:22] Tutor
But let's think about one important consequence of
keeping T-max high. At high T-max what happens to the
quality of steam.

[09:24] Student2 it increases i believe

[09:24] Tutor

The turbine exit will have better steam quality when T-
max is increased. So increasing steam quality and
efficiency means high T-max is good. Nevertheless, there
are limitations to how high you can increase T-max. There
are mainly two problems. Can you name them?

[09:25] Student2 safety is one... efficiency is the other?

[09:25] Tutor

Mainly, safety concerns and exceeding the maximum
temperature the material can withstand. Keeping Tmax
high increases efficiency and also steam quality. Make
sure you and your partner both understand these ideas.

Table 2.2: Excerpt of a conversation between two students and the Second Life Tutor

Here we have adopted a solution that is specific to the situation of tutoring
interaction to deal with the problem of not knowing the addressee of a student turn
since responses that are relevant to the tutor’s question can be considered as
addressed to the Tutor. If no relevant responses are received for an extended amount

21

of time, the TutoringManager can employ interaction tactics such as repeating the
question, urging the students to respond, giving a hint or moving on.

As mentioned earlier, the flexibility to incorporate components such as the
TurnTakingCoordinator and TutoringManager is an example of how Basilica allows
developers to address the complex interaction dynamics of multi-user interactive
situations.

2.6 Supporting the Agent Development Process

2.6.1 Re-Use of Decomposable Components

We have a growing set of behavioral components which can be re-used to build
tutors for several learning situations. For example, as shown in the example in the
previous section, the TutoringManager and the TutoringActor can be used to include
tutoring scripts developed for the TuTalk system within the agent’s interactive
behavior. The agents discussed in Chapter 3 show extensive re-use of these
components.

Furthermore, the interaction with the SecondLife environment is isolated to the
SLListener and SLActor components. These components can be replaced to make the
same agent work in other similar environments (like chatrooms or other multi-user
virtual environments). It is useful to allow agents to operate in multiple environments
with comparable affordances especially in the online learning situation to allow the
students to be able to interact with the agent from an environment of their choice.
Overall, decomposing agents into small, loosely coupled components that encapsulate
behavior allows application of object-oriented programming principles that facilitate
incremental and distributed development in teams. Just as these principles have
enabled scalable software development, we believe that they will facilitate
development of complex and highly interactive instructional agents for mass use.

2.6.2 Development Tools

Besides the core classes of the architecture, Basilica provides a variety of
debugging utilities through loggers and observer classes. A visual debugging
interface is available as a part of these utilities to help developers verify the
connections between components and track event propagation as components are
incrementally added to the agent. Figure 2.8 shows a screenshot of this debugging
interface. The component network shown in the interface is animated as events

22

propagate through the network. Developers can click on any component or
connection to get a detailed look at the events generated and processed by each
component.

Figure 2.8: Basilica Visual Debugging Interface

To support the deployment of agents built using the Basilica architecture for large
experiments, the architecture provides an operation class that can launch and manage
several agents. Another utility built within the architecture is the Timer which can has
been useful for implementing behaviors that should be triggered periodically rather
than in a state-based fashion (e.g., checking for student participation).

Additionally, we have developed a set of simulated environment listener and
actor components that allow developers to simulate user input from a previously
available transcript of interaction between the user and a tutor. These transcripts can
serve as extended testing scripts during development. Replacing the agent’s

23

environment listener and actor components with these components can help the
developers in consistently and effortlessly test for previously known bugs.

2.7 Related Work

Recently, there has been other work on modeling conversational agents as a
decomposition of components. Queen’s Communicator (O’Neill et. al., 2003) applies
principles of Object-Oriented programming to decompose CAs into classes that
abstract task-independent conversational behavior and allows developers to
programmatically extend them to create task-dependent behaviors.

Jaspis (Turunen and Hakulinen, 2003) models the agent as a collection of
managers, agents and evaluators which synchronize with each other through
transactions. Also, while Jaspis agents are stateless, actors in our architecture need
not be stateless. RIME (Murray et. al., 2001) R. Charles Murray, Kurt VanLehn and
Jack Mostow, 2001, A decision-theoretic architecture for selecting tutorial discourse
actions, AIED-2001 Workshop on Tutorial Dialogue Systems, San Antonio, Texas

(Nakano et. al., 2008) distributes cognitive capabilities across a collection of
experts of two types. In contrast to Basilica that allows components to be connected
in any manner, in these architectures, the evaluators and the agents are configured as
a collection of parallel modules. Hence, designing conversational agents with Basilica
gives the flexibility to change the network topology. A recently proposed multi-
policy approach to dialog management (Lison, 2011) models the agent as a collection
of hierarchically connected concurrently operating policies. This approach is very
similar to the Basilica architecture in terms of the flexibility it provides for modeling
individual policies using different dialog modeling techniques and for interconnecting
each of these policies.

In other work on event-based multi-layered architectures (Raux and Eskenazi,
2007), events are used for communication between layers as a mean to provide higher
degree of reactivity compared to pipeline architectures. While we share this
motivation, definition of events is extended here as events are used for all kinds of
communication, coordination and control in Basilica. Also, recent interest in the use
of incremental processing techniques for various components as well as entire dialog
systems (Skantze and Schlangen, 2009; DeVault et. al., 2009) is enabled by the use of
event-driven architectures. While Basilica does not explicitly model the input and
output (left and right) buffers for all of its components by default, the principle that
updates from preceding components in a pipeline should be incrementally processed

24

by subsequent components is applied within agents built using Basilica by conveying
updates as events.

Through this comparison of the Basilica architecture with the other approaches
discussed here in terms of their similarities and differences, we find that the event-
driven approach that the Basilica architecture is based on allows this architecture to
serve as a meta-architecture. Basilica allows systems developers to combine
representations and design principles from multiple approaches to create highly
complex agents with rich behavioral capabilities.

In the next chapter, we will describe three agents building using Basilica. These
agents will demonstrate the advantages of using the Basilica architecture while
providing design patterns that can be used to develop other agents.

25

Chapter 3

Agents built using Basilica

The Basilica approach is applicable for building a variety of conversational
agents that are situated in complex, extended, multi-party interactive situations. In
this chapter, we will describe our work on developing Conversational Agents that
support teams of two or more users in broad classes of multi-party interactive
situations like Collaborative Learning and Mediated Interaction.

We will discuss the implementations of three agents developed by us using the
Basilica architecture to highlight how these agents showcase the strengths of the
proposed architecture. These agents explore the organization space of agents
described in Section 1.3.1 both in terms of tasks and role. While the CycleTalk tutor
and the PsychChallenge peer presented in Section 3.1 and 3.2 respectively support
conceptual tasks, the 9-1-1 emergency response interpreter presented in Section 3.3
supports a behavioral task. The PsychChallenge peer agent plays the same role as the
users while the other two agents play a role that is different compared to the users.

A study of the component networks of the agents described here as well as the
agents described in Chapter 4 and Chapter 7 will show some common patterns. First
of all, we notice that these agents use different types of components. Section 3.4
discusses the types of components commonly used in our agents.

Second, we can notice that the agents built using the Basilica architecture are an
extension of the traditional pipeline approaches. We can observe multiple input-
process-output pipelines that transport events from right to left in Figure 3.2, Figure
3.4, Figure 3.5, Figure 4.1 and Figure 7.1. We note that many components especially
filters that perceive and process user input are often shared between these pipelines.

Third, we note that by choosing an appropriate level of decomposition of
behaviors into different components, we can reuse components across agents. An
example of this reuse can be seen between Figure 3.2 and Figure 4.1 where the

26

TutoringManager, TutoringActor, TurnTakingCoordinator and RequestDetector
components are reused. The RequestDetector component that implements the Ask
When Ready strategy discussed in the next section. It is separated from the
TutoringManager because other components such as the PlanExecutor in Figure 4.1
that wait on verbal triggers from users to precondition the move to next steps can also
use the RequestDetector’s capabilities. So, we can see that appropriate decomposition
allows reuse of different types.

Additionally, the choice of level of decomposition of behaviors is determined by
the need to change certain components without changing the behavior of other
components. The TutoringManager component needs to be connected to a
component that generates events to trigger the start of a directed tutoring episode. In
Figure 3.1 the AttentionGrabbingFilter provides this event whereas in Figure 4.1 the
PlanExecutor provides this event.

3.1 CycleTalk Tutor

CycleTalk is an intelligent tutoring system that helps sophomore university
students learn principles of thermodynamic cycles (specifically Rankine Cycle) in the
context of a power plant design task. Teams of two students work on designing a
Rankine cycle using a Thermodynamics simulation software package called
CyclePad (Forbus et. al., 1999). As a part of the design lab during which this learning
task is performed, students participate in a collaborative design interaction for 30-45
minutes using ConcertChat, a text based collaboration environment (Mühlpfordt and
Wessner, 2005) shown in Figure 3.1. Our work (Kumar et. al., 2007a) has shown the
effectiveness of this collaborative design activity.

An automated tutor participates in the design interaction along with the two
students. The CycleTalk tutor provides instructional support to the students to ensure
that they learn underlying thermodynamic concepts as they design. The CycleTalk
tutor was the first tutor implemented using the Basilica architecture and has been
modified over the last three years in accordance with the evolution of the research
studies conducted using this tutor. Improvements to the CycleTalk tutor served as
requirements for improving the the Basilica architecture. Specifically, these
improvements included development of various types of components, efficiencies in
the architecture’s event propagation mechanism and creation of suitable abstractions
and interfaces to the architecture’s core classes to facilitate development and re-use.
Some of these aspects are discussed below as we present a recent implementation of
the CycleTalk tutor implemented using the Basilica architecture.

27

Figure 3.1: ConcertChat Collaboration Environment

59 [09:35:07] Student2 the pressure stays constant through the boiler?

60 [09:35:47] Student1 Yeah

61 [09:35:55] Tutor Now might be a good time for some reflection.

62

[09:36:00]

Tutor

Consider the effect of increasing Qin. What
happens to power out when Qin is increased?

64 [09:36:46] Student2 i am pretty sure we want high Qin

Table 3.1: Excerpt showing the Attention Grabbing Strategy (Turn 61)

While we have shown that instructional support provided by automated tutors is
effective, as compared to students working individually, we have observed that teams
of students often ignore and abuse the tutor (Kumar et. al., 2007a). In our recent
studies in this thermodynamics learning domain, we have investigated the use of
interaction strategies that can help in engaging the students more deeply in the

28

instructional conversation with the tutors. One of these strategies (Attention
Grabbing) was designed to intrusively grab the student’s attention (Chaudhuri et. al.,
2008). It prompts the students to pay attention to the tutor before the tutor starts the
instructional conversation. An excerpt of this strategy is shown in Table 3.1. The
tutor prompts the students (Turn 61) to grab their attention and waits for a silence (5
seconds) between the students to infer that the students are now paying attention to
the tutor.

Another strategy (Ask when Ready) developed as an improvement to the Attention
Grabbing strategy informed the students that the tutor has a relevant instructional
topic to discuss and asks them to let the tutor know when they were ready to talk
about the topic (Chaudhuri et. al., 2009). This strategy allows the students to
complete their current topic of discussion before engaging in conversation with the
tutor. An example of this strategy is shown in Table 3.2. The tutor informs the
students that it is ready to talk about Pmax (maximum pressure in a rankine cycle) in
turn 41 & 42. The students finish their current topic of discussion and indicate that
they are ready to discuss Pmax in turn 47. Note that the turn 41 is similar to principle
to the attention grabbing prompt shown in turn 61 in Table 3.1.

40 [08.52.24] Student5 and then Power out vs. the same things

41 [08.52.26] Tutor Lets review the effect of changing P-max on the
cycle.

42 [08.52.27] Tutor Type: HELP WITH PMAXKCD if you want to
discuss it with me.

... ...

47 [08.54.08] Student7 HELP WITH PMAXKCD

48 [08.54.14] Tutor When P-max increases, is the need to reject heat
from the cycle increased or decreased?

49 [08.54.51] Student5 decreased

Table 3.2: Excerpt showing the Ask when Ready Strategy (Turn 41 & 42)

Both these agents employ the turn-taking and tutoring components discussed in
the example agent in Section 2.5. Figure 3.2 shows the component network
implemented for a tutor that employs the Ask when Ready strategy. It is made of 13

29

components and 21 connections. There are six types of components, i.e., Listeners,
Actors, Filters, Detectors, Coordinators and Managers. Listeners listen to stimuli
from the environment and translate them into events internal to the agent. Actors
perform actions which may be directly observable by other participants in the
environment. Filters process information that events carry and propagate them further
based on their programmed conditions. Detectors are special kinds of Filter which
detect specific semantic concepts/phrases and send out a detection event.
Coordinators control the flow of events between related components to achieve
coordinated behavior. Manager components exhibit a variety of behavior like
planning, execution and control. A summary of the various types of components used
in the agents developed in our work can be found in Section 3.4.

Figure 3.2: Component Network of the CycleTalk Tutor

We can note that components shown in the shaded area labeled as 1 in Figure 3.2
are connected the same way as those components in the example agent. In order to
implement the behavioral capabilities that allow the agent to use the Attention
Grabbing and Ask when Ready interaction strategies, we have added three new
components shown in the shaded area labeled 2. When the TutoringManager decides
that an instructional topic is relevant to the current discussion, it informs the
AttentionGrabbingFilter to grab the students’ attention using an appropriate
interaction strategy. The TutoringManager also informs the RequestDetector to look
out for the appropriate trigger phrase. Once the trigger phrase is detected, the

30

TutoringManager starts the TuTalk script corresponding to the requested
instructional topic. Besides the tutoring behavior, the CycleTalk tutor has a hinting
behavior implemented using the HintingManager and HintingActor that use a topic
model to provide relevant hints based on the interaction between the students (Kumar
et. al., 2007a).

Using the Basilica architecture to develop the CycleTalk tutor has supported this
line of investigation in multiple ways. Foremost, it may be noted that components
corresponding to behaviors that do not change because our experimental strategies
remain constant between prototypes because they can be isolated within the agent
network in a modular way. This allows us to incrementally add behavioral
components that implement the experimental strategies. Further, because of the use of
a programmatic approach to building these agents, we are not restricted to a small set
of operators provided by typical agent authoring languages making it possible to
implement strategies like Attention Grabbing and Ask when Ready. Finally, the
ability to integrate existing natural language processing modules as Filter
components makes Basilica a helpful architecture for creating complex and highly
interactive conversational agents.

Besides implementing strategies for beginning tutoring conversations with a team
of students, we have been investigating the use of role assignment to the students
(Chaudhuri et. al., 2008, Ai et. al, 2010). Teams of students are divided into Pro-
Environment vs. Pro-Power roles to elicit broad coverage of arguments within the
team during the learning interaction. Basilica has allowed us to create components
that can take into account the task-specific learner roles while presenting instructional
content to the students.

3.2 PsychChallenge Peer

The Basilica architecture does not make any specific assumptions about the role
of the agent in the interaction. Agents supporting learners may not only be tutors. In
this section we will discusses an agent that demonstrates the ability to build agents
that play a variety of roles.

PsychChallenge is a vocabulary game that is part of a learning portal of an
introductory psychology text book. Students play this game as part of an assignment
as they progress through each chapter of the book. The game involves learning
vocabulary related to the each chapter by helping each other guess terms related to
the chapter by providing hints about the term. One of the players takes on the role of

31

a hint Giver and the other players play the Guesser role. The game is accessible to the
students through a special purpose web-interface shown in Figure 3.3.

Figure 3.3: The PsychChallenge Game Web-Interface

(Showing the Guesser Interface)

Students can choose to play the game with other students who are online at the
same time. Teams (or individuals) can choose to add the PsychChallenge peer agent
to the game. Note that this agent is different from the other agents discussed in this
chapter in that it plays the role of a peer with respect to the student instead of a tutor.
Figure 3.4 shows the component network of the peer agent. The agent is connected to
the web-interface through a middleware component that operates in a way similar to
the SecondLife HTTP middleware (Weusijana et. al, 2008). The peer agent plays the
role of the Guesser or the Giver based on the role that it is assigned by the game. The
GuessingActor and the HintingActor components are augmented with instructional
content corresponding to each term in the game’s vocabulary to allow the agent to
behave intelligently. When the agent is playing the Guesser role it tries to elicit better
hints from the Giver. When the agent is the Giver, it provides useful hints to the
students to help them guess the correct term. Other behavior that this Peer agent

32

displays includes greeting the students at the start of the game and informing them
about its role at the change of every round.

Figure 3.4: Component Network of the PsychChallenge Peer

3.3 Emergency Response Interpreter Agent

The interactive situations for the agents described earlier support involve two or
more users where all the users have the same explicit task objectives (e.g. designing a
power plant, or winning a game). Also, the implicit goals of the users (learners),
which shape their interaction with the agents, are similar (i.e. learning the underlying
domain concepts). In contrast to that, the emergency response interpreter agent
described in this section supports an interactive situation where the two users have
very different task objectives and goals of interaction.

The emergency response interactive situation involves two human participants
i.e. a distressed caller and an emergency dispatch operator such as people employed
at 9-1-1 response centers (Nallasamy et. al., 2008). In states such as Louisiana,
emergency calls from Spanish speakers (especially at night) are mediated by third
party human translation service that is dialed in when the dispatch operator
determines that he/she cannot communicate with the caller because of the language
barrier.

33

The emergency response interpreter agent is designed as a replacement to the
third party translation service (for at least a subset of calls). The caller, dispatch
operator (dispatcher) and the agent communicate using eJabberd, a general purpose
communication backend based on the XMPP protocol. Caller dials in to the response
center where a caller proxy makes a connection to an available dispatcher through the
XMPP server. The caller proxy is responsible for packaging and broadcasting speech
and recognition output of the caller turns to all participants in the call (dispatcher /
agent).

We have developed a special purpose GUI for the dispatcher that allows the
dispatcher to attend to the callers as well as interact with the agent using a variety of
actions. Specifically the dispatcher can command the agent to perform:

• MetaAct (e.g. Ask-Emergency-Type) which are available at all times
during the interaction

• IQAAct (e.g. Ask-Victim-Bleeding) which are specific to type of incident
the caller is reporting based on the response center’s protocols

• ConfirmationAct to ask the caller to confirm a piece of information that
was provided earlier (e.g. confirming address of the victim)

Besides these controls, the GUI lets operators communicate with the available /
dispatched units with updated information that the caller provides. A discourse
history display in the GUI allows the operator to read the text of all the turns in a call
(along with partial translations).

We can note that in this situation the agent providing a channel for
communication between two users (the caller and the dispatch operator) who have
very different task roles and hence different objectives. The caller’s objective is to the
get the required emergency resources (like ambulance, police, fire-truck) based on the
incident. The dispatcher’s objective is to ask the caller for the details of the incident
and follow protocols to dispatch all the required resource and provide the dispatched
resources with the information they require. While the objectives of the two
participants do not conflict with each other, the agent must communicate with both
the participants in a way that serves the individual objectives of each of the
participant.

Figure 3.5 shows the components network of an agent we developed to
participate in this interactive situation. We can notice that at a high level this network
implements two pipelines (events flows right to left). One of the pipelines (shown in
the shaded area marked as 2 in Figure 3.5)

34

• Takes information from the caller

• Annotates it with the syntactic as well as domain specific semantic
information

• Identifies the type of incident or a piece of information related to the
incident being reported

• Communicates that information to the dispatcher with appropriate
displaying information such that it is organized properly on the dispatcher
GUI

Figure 3.5: Component Network of the Emergency Response Interpreter Agent

35

The other pipeline (shown in the shaded area marked as 1) takes commands from
the dispatcher and performs the corresponding action to provide or elicit information
to/from the caller. The choice of which pipeline should a message over the XMPP
broadcast channel be passed through is made by the MessageFilter components based
on the sender of the message packet.

The implementation of this agent demonstrates the flexibility the Basilica
architecture provides to build agents that can interact with users with different roles
within the same interactive session. Agent behaviors required to understand and
communicate with the two participants are implemented in the corresponding
pipeline. This helps us in incrementally adding additional behaviors required to
interact with the user (e.g. additional types of incident report from the caller).

3.4 Types of Behavioral Components

Based on the three agents developed using the Basilica architecture that are
described in this chapter, we can identify the characteristics of different types of
behavioral components that are necessary and/or common to most agents
implemented using Basilica.

Foremost of these are the environment listener and environment actor
components. They are necessary for all agents as they integrate the agent with a
collaboration environment such as SecondLife (SLListener and SLActor) or
ConcertChat (ConcertChatListener and ConcertChatActor). These can be readily re-
used for new agents being developed for already supported environments. On the
other hand, these components are among the first components to be implemented
while developing agents for a new environment.

We can find multiple filter and detector components being used among the three
agents. They perform a variety of operations (like parsing, classification, annotation,
etc.) and transformations on the data encapsulated within events they receive. Further
these components can be used to control the flow of events. For example the
MessageFilter keep the presence events from the environment from propagating to
components that do not need those events. All agents the process student input have
atleast one of these components.

Different types of manager components make up the controllers of the different
user observable behaviors of the agent. These managers keep track of knowledge
resources and interaction states for the behaviors they perform and provide triggers to
other components that realize the behaviors these managers control. All agents that

36

actively interact with students have atleast one of these manager components. Note
that for very simple behaviors the management logic is sometimes built within the
actor components that realize those behaviors (e.g. the GreetingActor in Figure 3.4
and Actors in Figure 3.5).

Memory components while not mandatory to any agent implementation are often
used for agents that need to have several managers. Finally, we find that all agents
implement several special purpose components like actors that realize the user-
observable behaviors and coordinators that facilitate agent participation in complex
interaction dynamics. As discussed in section 2.6.1, many of these components can be
reused among agents that display the same behaviors.

37

Chapter 4

Socially Capable Conversational Agents

4.1 Need for Social Capabilities

In our prior work on supporting Collaborative Learning, which is a type of Multi-
Party Interactive Situation as it involves multiple students working together on a
learning task, we have shown that students benefit both by learning as a group and
receiving tutorials from agents (Kumar et. al., 2007a). However, students learning in
groups ignore the tutor’s messages most of the time, unlike the case where students
were individually tutored. Also, groups often abused tutors as shown in the excerpt in
Table 4.1.

Tutor There will be more potential for cooling. Is there more or less

potential for power generation?

St16 not necessarily

Tutor There will be more potential for power generation ... Where might
the increased heat input go instead?

St16 this tutor is really annoying

St5 Agreed

Table 4.1: Excerpt of an interaction between a CA (tutor) and a group of students

We reason that the presence of other students in collaborative learning scenarios
caused the agents to compete for the attention of the students. Since the agents were
not adept at performing social interactive behavior, which is a significant part of the

38

formative phase of the group interaction, the agents were quickly pushed to the
periphery of the learning group.

This observation demonstrates that besides the technical challenges underlying
the development of CAs, we also find ourselves with a shortage of design principles
that can help us make effective CAs in multi-party interactive situations. In particular,
the presence of multiple human users in the interaction initiates additional
communication processes within the group. We should design agents which can
observe and participate in all of these processes with reasonable effectiveness when
necessary.

Towards addressing this goal of creating agents as effective communicators, we
must adopt principles of effective communication into agent design. Specifically in
the case of multi-party interactive situations, investigations on small group
communication offers relevant theories which are largely ignored in work on
Conversational agents. One of the goals of this work is to bridge this gap between
computational aspects of realizing CAs and theories in small group communication.

As discussed in the next section, we find that the agents which were being used in
our earlier work do not perform social behaviors which are prominent and necessary
in human group interaction.

4.2 Small Group Communication

Theoretical and empirical study of group interaction processes has been of
interest in sociology and communications research communities since the 1950’s.
McGrath (1984) reviews various theories that address the functions of group
interaction processes. Of particular interest among these are the theories proposed by
Robert F. Bales (1950) and Wilfred R. Bion (1961).

Both of these theories propose that two fundamental processes operate within
groups. Bales identified that these two process correspond to instrumental (task-
related) and expressive (socio-emotional) interaction. Bion divides group interaction
between similar categories of Work and Emotion processes. Over attention to any one
of these processes causes lapses on the other. Hence, interaction shifts between these
two in order to keep the group functional.

Bales developed an Interaction Process Analysis (IPA) scheme to analyze group
interaction along twelve interaction categories shown in Table 4.2. Six of these
interaction categories correspond to instrumental (task-related) interaction and the

39

other six correspond to expressive (social-emotional) interaction. IPA is of particular
interest from the point of view of designing appropriate social behavior for CAs
because the units of interactions that IPA is applied to are fine grained and
correspond roughly to the size of conversational turns. Another analysis scheme
developed by Bion and Thelen (1956) analyzes units at a coarse level of granularity
such that each unit is made of about 30 - 50 utterances.

Positive Expressive
Interaction Categories

Shows Solidarity
Shows Tension Release
Agrees

Instrumental
Interaction Categories

Gives Suggestion
Gives Opinion
Gives Orientation
Asks for Orientation
Asks for Opinion
Asks for Suggestion

Negative Expressive
Interaction Categories

Disagrees
Shows Tension
Shows Antagonism

Table 4.2: Interaction Categories of Bales’ Interaction Process Analysis Scheme

Most of the existing research on interaction strategies for Conversational Agents
used in various interactive settings has focused on task-related strategies. In the case
of conversational tutors, the task (or work) related interaction include aspects like
instructing students about the task, delivering appropriate interventions in suitable
form (e.g. socratic dialog, hints), providing feedback and other such tactics (Graesser
et. al., 2001). Some studies (Rosé et. al., 2001b; Wang and Johnson, 2008) have
evaluated the effect of these task related conversational behavior in tutorial dialog
scenarios. Work in the area of affective computing and its application to tutorial
dialog has focused on identification of student’s emotional states (D’Mello et. al.,
2008) and using those to improve choice of task related behavior by tutors.

40

However, there has been only limited study of expressive (socio-emotional)
aspects of the agent’s conversations. The focus of our work is to systematically use
research in Small group communication to design expressive behavior that is relevant
and appropriate for conversational agents in the interactive situations we are
investigating.

4.3 Social Interaction Strategies

1. Showing Solidarity: Raises other's status, gives help, reward
1a. Do Introductions: Introduce and ask names of all participants
1b. Be Protective & Nurturing: Discourage teasing
1c. Give Reassurance: When student is discontent, asking for help
1d. Compliment / Praise: To acknowledge student contributions
1e. Encourage: When group or members are inactive
1f. Conclude Socially

2. Showing Tension Release: Jokes, laughs, shows satisfaction
2a. Expression of feeling better: After periods of tension, work pressure
2b. Be cheerful
2c. Express enthusiasm, elation, satisfaction: On completing significant task steps

3. Agreeing: Shows passive acceptance, understands, concurs, complies
3a. Show attention: To student ideas as encouragement
3b. Show comprehension / approval:
 To student opinions and orientations

Table 4.3: Social Interaction Strategies based on
three of Bales’ Socio-Emotional Interaction Categories

In this section, we present our process of designing and implementing Social
Behavior motivated from the literature in Small Group Communication discussed in
the last section.

41

As discussed earlier, current state-of-the-art conversational agents do not perform
the socio-emotional function of interaction that is known to be a fundamental aspect
of group interaction. Hence, we hypothesize that socially capable agents will be able
to perform better in multi-party interactive situations. In order to further specify
social capability, we use the interaction process analysis (IPA) schema developed by
Bales (1950).

IPA identifies three positive socio-emotional interaction categories: showing
solidarity, showing tension release and agreeing. We have mapped these categories to
practically implementable conversational strategies that are relevant to collaborative
learning situations since this is the multi-party interactive situation we will use in
most of our experiments. This mapping from IPA categories to Social Interaction
Strategies is shown in Table 4.3.

These strategies were developed over two iterations. We conducted a pilot
evaluation with 6 subjects between the iterations to verify if the strategies were
successful at eliciting their intended perception from users. Subjects were shown
crafted excerpts of interactions between users and an agent. The agent’s turns in the
excerpts that corresponded to social interaction strategies were highlighted and the
subjects were asked to report their perception of friendliness, tension release and
agreeing after reading each excerpt. Some strategies and corresponding prompts were
modified in the cases where the reported scores were relatively low.

4.4 Related Work

While our work employs research in small group communication to design social
behaviors for conversational agents, there has been some other work on CAs that
employ social (non-task) behavior.

Bickmore et. al. (2009) report that users found agents with autobiographies i.e.
back stories in first person more enjoyable and they completed more conversations
with such agents. Dybala et. al. (2009) found that agents equipped with humor were
evaluated as more human-like, funny and likeable. In a multi-party conversational
scenario, Dohsaka et. al. (2009) found that an agent’s use of emphatic expressions
improved user satisfaction and user rating of the agent.

In educational applications, Wang and Johnson (2008) found that learners who
received polite tutorial feedback reported higher increase in self-efficacy at the
learning task. In our earlier work (Kumar et. al. 2007b) we used personal preferences
determined from engaging in small talk with learners to construct word problems to

42

engage the learners in the problem solving activity. Other work in affective
computing has attempted to endow spoken dialog systems with emotional intelligence
(Andre et. al., 2004) to respond to user’s affective states during the interaction.

Besides the use of verbal social behavior, work on developing virtual humans and
embodied conversational agents has investigated the user of non-verbal behavior
through gesture and gaze to convey social messages to participants in the interaction.

Most of the earlier work on verbal social or non-task behavior focuses on only
one type of behavior such as human, politeness, etc. The work presented in this thesis
takes a holistic approach to the design social behaviors using descriptions of the six
socio-emotional interaction categories of IPA as a model of social behaviors. Besides
showing that these behaviors can help in achieving higher performance and
perception outcomes, Chapter 7 also shows that this approach can be used to
systematically create social capabilities for conversational agents for a variety of
applications.

4.5 Implementation of Social Behavior

Table 4.4 shows an excerpt of an interaction that shows the agent’s use of some
of these interaction strategies. The agent is playing the role of a tutor in this
collaborative learning situation. Turn 142 concludes a TuTalk script about the
relationship of stress and ease of use of a wrench. At turn 144, the agent compliments
(Strategy 1d) one of the students for participating in the discussion. Also note that
one of the students exhibits enthusiasm about their team’s designs in turns 143 and
146. These types of turns are detected using dictionaries built using a corpus analysis
of collaborative learning interactions. In response, the agent exhibits cheerfulness
(Strategy 2b) in turn 145 and 147 to reciprocate the student’s enthusiasm.

Figure 4.1 shows the components network of the WrenchTalk tutor agent. This
agent, built using the Basilica architecture, is capable of employing the social
interaction strategies alongside the task-related (tutoring) behavior.

We use two specialized types of manager components (PlanExecutor and
SocialController) in this network. The PlanExecutor is responsible for executing the
tutor’s task-related interaction plan, which is comprised of 37 steps. The plan is
executed largely sequentially; however the plan controller can choose to skip some
steps in the interest of time. The SocialController implements the eleven social
interaction strategies listed in Table 4.3. The strategies are triggered by rules
(Appendix J) based on combinations of four features: the most recent plan step,

43

semantic annotations of the most recent student turns (by the AnnotationFilter),
activity levels of each student (measured by the ActivityDetector) and the percentage
of tutor turns generated by SocialController to regulate the amount of social behavior
by the tutor. Once the controllers determine a step or a strategy that is to be generated
they are conveyed to the corresponding observable behavior generation components
(PromptingManager, TutoringManager, IntroductionsManager).

139 Tutor One last thing on this topic, Does more (or less) stress in a wrench
make it easier to use?

140 S95 no change?

141 Tutor You are correct about that.. Stress doesn't determine ease of use.

142 Tutor It's the moment achieved by the wrench that determines the ease of
use.

143 S89 yay!

144 Tutor It's good to have your contributions in the discussion Jackie :-)

145 Tutor Go team :-)

146 S89 Go team yay

147 Tutor I am happy to be working with our team

148 S89 Me too

149 S95 whoa the bot knows my name

150 Tutor Unfortunately maximum stress (12800) in our design1 is way above
the maximum allowed stress (i.e. 8750)

151 Tutor This wrench cannot be safely used!

Table 4.4: Excerpt of a conversation between three students and WrenchTalk Tutor

The flexibility that the Basilica architecture provides is demonstrated in this case
by the use of the two primary controllers (PlanExecutor and SocialController), unlike
typical dialog systems, which use only one primary controller (Dialog Manager).
Coordination between the two controllers is achieved by connecting them. For
instance, when the PlanExecutor is working, it blocks the SocialController and vice
versa. Control is shared between the two by transferring control at the end of every

44

interaction step. We also notice the re-use of the tutoring components from the
CycleTalk tutor agent discussed in Chapter 3

Figure 4.1: Component Network of the WrenchTalk Tutor

The ActivityDetector component provides a way to monitor the uneven student
participation by students which is characteristic of multi-party interaction. When one
or more students become critically inactive in the interaction, this component can
choose to trigger Strategy 1e listed in Table 4.3 through the SocialController to
encourage the inactive students to contribute to the discussion.

An additional type of component we see in this network is the memory
component (DiscourseMemory). It maintains a history of the discourse state messages
and interaction steps. Memory components circumvent the usual event propagation
mechanism by using a specialized faster commit / retrieve mode of access from other
components. This is to reduce the computational overhead of using two events
(request and response) otherwise required for accessing memory components.

45

An experiment, described in the next chapter, conducted to evaluate the
WrenchTalk tutor also demonstrates the usefulness another feature of the Basilica
architecture, i.e., Observer components. In order to compare our implementation of
the social interaction strategies with human quality social interaction, we augmented
the tutor with a human observer user interface that allowed a human tutor to insert
social prompts at any time during the interaction with the students. The students
would see that human modified prompt as another prompt from the tutor. This was
implemented by assigning an observer to the AnnotationFilter and PlanExecutor
components.

4.6 Alternative Perspectives

While the rest of this thesis focuses on the use of the social interaction strategies
based on IPA categories, in this section, we consider alternative perspectives from
recent work in the area of small group communication. Bales (1958) suggested the
emergence of leaders in group interaction that serve the roles of task and social
experts/leaders. Recent views on shared leadership (Pearce and Conger, 2003)
discussed in contrast to traditional approaches to leadership (e.g. hierarchical)
suggests the distribution of leadership among the participants of a groups wherein the
participants of the groups influence each other to support the achievement of shared
goals.

The shared leadership paradigm is consistent with the emergent task and social
roles differentiation suggested by Bales. IPA provides a mechanism to study the
emergence of these expert roles during group interaction by tracking contributions of
each participant across the categories corresponding to each role. Relationships
between the previous and emerging leaders of each role have been studied in terms of
their initiation and reception of contributions across the various interaction
categories.

Within the context of shared leadership, the concept of self-in-relation described
in the Stone Center Relational Theory (Miller, 1976) allows us to consider a unified
model of relationships between the participant’s goals towards themselves as well as
towards the group. While IPA does not consider self as a recipient of a contribution,
interaction categories may be mapped to objectives directed at self (e.g mitigating
face threats) or at the group.

46

While we do not apply these concepts within the analysis of the experiments
discussed in this thesis, they offer directions for further integration of research in the
fields of small group communication and conversational agents.

47

Chapter 5

Application: Collaborative Learning

Availability of an implementation of the Social Interaction Strategies for
Conversational Agents presents the opportunity to investigate a collection of
interesting research questions. Foremost of these corresponds to evidence of impact
of using these Social Interaction Strategies. Besides the efficacy of using these
strategies, we want to investigate the appropriate use of these strategies in terms of
amount and timing of these strategies. Finally, we are interested in investigating the
generalizability of these social behaviors to other multi-party interactive situations.

In this chapter, we will describe two experiments that were conducted to
investigate the benefits and the optimal amount of the social interaction strategies
listed in Table 4.3. Chapter 6 describes our work on investigating the appropriate use
of these strategies in terms of timing considerations. The issue of generalizability is
explored in Chapter 7 where we consider the use of socially capable conversational
agents to support a group decision making application.

5.1 Methodology & Metrics

Before we discuss the experiments, this section provides a general description of
the methodology we adopt in this line of work.

5.1.1 Recruitment

Subjects participating in our experiments are recruited either from public
announcements or through voluntary consent of students participating in courses that
employ our instructional agents. In the experiments described in this chapter, students
enrolled in freshmen and sophomore mechanical engineering courses interact with
our agents during one of the labs of each of these courses. All the enrolled students

48

participate in this lab and go through the same procedure including interacting with
the agent. Subjects are compensated through gift cards or lab credit depending on the
mode of recruitment.

5.1.2 Design

Our experimental designs generally involve conducting controlled experiments
with a small number (3-6) of conditions in which one or two experimental variables
are manipulated. Subjects are randomly divided into groups of 2-4 participants.
Groups are evenly distributed between the experimental conditions i.e. each group
participates in only one of the experimental conditions.

5.1.3 Procedure

1. Pre-manipulation tests and surveys (if any) are administered.

2. Subjects are given instructions about the group activity along with a
tutorial on the collaboration environment. Subjects are not made aware of
the experimental manipulation.

3. Subjects participate in the group activity.

4. Post-manipulation tests and surveys are administered. While subjects
work in groups during step 3 of this procedure, tests and surveys in step 1
and step 3 are administered individually.

5.1.4 Materials

We will discuss specific materials used for each of the experiment as we present
the experiments. The same perception survey (Appendix B) has been used in all of
these experiments. The survey comprised of nine items to be rated on a seven point
Likert-scale ranging from Strongly Disagree (1) to Strongly Agree (7). Six of the
items were based on Burke’s (1967) survey rephrased to elicit ratings about the
tutor’s behavior. The other three questions were designed to elicit ratings of task
satisfaction, satisfaction with group discussion and perceived task legitimacy.

5.2 Experiment 1: Benefits of Social Behaviors

Foremost, we are interested in studying the productivity and perception effects of
the use of social interaction strategies by conversational tutors in collaborative

49

learning settings. This section describes the conditions, procedures and results from a
controlled experiment we conducted to validate our hypothesis that socially capable
tutors will be able to perform better in collaborative learning scenarios.

5.2.1 Experimental Design

58 Tutor Lets talk about making the wrench easy to use.

59 Tutor Are you ready?

62 S19 o yeah

64 Tutor Intuitively, if you wanted to make the wrench easier to
use, would you make it longer or shorter?

67 S5 longer

70 Tutor That's right. A longer wrench is better.

72 Tutor Why is a longer wrench easier to use though! Let's look
at the concept of Moment.

73 Tutor When you use a wrench to turn a bolt, do you want a
higher or lower moment?

74 S16 higher

75 S13 higher

77 Tutor That's right. A higher moment means the Wrench turns
easier.

79 Tutor We know that moment = force x length. So...

Table 5.1: Excerpt of a tutor providing a lesson to a team of four students

We designed a study with three conditions. In the experimental condition
(Social), students interacted with a tutor that was equipped with the eleven social
interaction strategies, unlike the control condition (Task) which is our lower baseline
condition. In a third (gold standard) condition, a human tutor controlled the social
interaction while the students interacted with a tutor similar to the Task condition.
The human tutors used in the third condition were instructed to not give any task
related information/instructions. They were asked to trigger appropriate social

50

prompts (from the same list the automated tutor uses) when they thought it was
appropriate. Human tutors were allowed to make modifications to the prompts before
triggering them. They were also allowed to type in new prompts.

In all three conditions, students would receive the same task related information
(instructions / lessons / feedback) through the automated tutor. As shown in the
excerpt in Table 5.1, the tutor has instructional capabilities (like asking questions and
giving feedback) that are found in state-of-the-art tutors that perform only task-
related behavior. These instructional capabilities are common to the tutors used in all
three conditions in our experiment. The time allotted for the interaction is the same
for each group.

Strategy 1a: Do Introductions

7 Tutor Hi, I am your tutor for today's lab.

8 Tutor Lets introduce ourselves briefly. I am Avis.

9 S083 Hey Avis! I'm _name1_

10 S073 Im _name2_

11 S089 i'm _name3_

12 Tutor Its nice to meet you all. :)

13 Tutor Let's get started by reviewing the base design in your worksheet.

Strategy 3b: Show Comprehension / Approval

48 S083 R we using the same material?

49 S073 I assume so

50 S073 just changing the length

51 S089 yeah we have multiple design steps

52 S089 so probably for now

53 Tutor cool :)

54 S083 O ok

51

Strategy 1e: Encourage (inactive members)

119 Tutor Is this a safe wrench?

120 S073 and then is the same for design 2

121 S073 so yes the wrench is safe

122 Tutor _name1_ ... any thoughts you'd like to contribute?

123 S083 its a safer wrench if its in steel

Strategy 1d: Compliment / Praise

143 S073 high

144 Tutor Right, higher yield stress is better.

145 S089 so steel or titanium

146 S089 but have fun paying for that...

147 Tutor All other things being equal, you want to choose a stronger
material.

148 Tutor It's good to have your contributions to the discussion :-)

149 S073 yay

Strategy 2c: Express Enthusiasm, Elation, Satisfaction

150 S073 :)

151 Tutor Let's improve design 1 by using Steel for our 2nd _truncated_

152 Tutor I am happy to be working with our team

153 S083 thanks :-)

154 Tutor You can start calculating the fields in the worksheet _truncated_

155 S089 woo...

Table 5.2: Excerpts showing examples of the Social Interaction Strategies

52

The only manipulation in this design is the amount of social interaction
performed by the tutors. It varies from minimal (Task) to computationalizable
(Social) to ideal (Human). In automated tutor used in Social condition was the same
as the one described in Section 4.5. The social behaviors of this tutor were triggered
by a set of hand crafted rules (Appendix J). Table 5.2 shows some instantiations of
the social interaction strategies triggered by these rules.

According to our hypothesis, socially capable tutors used in the Social and the
Human conditions will perform better than the Task condition. We conducted a
between-subjects experiment during a college freshmen computer-aided engineering
lab project. 98 mechanical engineering students enrolled in the lab participated in the
experiment, which was held over six sessions spread evenly between two days. The
two days of the experiment were separated by two weeks.

Students were grouped into teams of three to four individuals. Each group
communicated using ConcertChat (Mühlpfordt and Wessner, 2005) which is a shared
workspace environment that allows participants to communicate with each other
using text messages. Figure 3.1 shows a screenshot of the ConcertChat environment.
No two members of the same group sat next to each other during the lab. The groups
were evenly distributed between the three conditions (Task, Social and Human) in
each session.

Each session started with a follow along tutorial of computer-aided analysis
where the students analyzed a wrench they had designed in a previous lab. A pre-test
with 11 questions (7 multiple choice questions and 4 short essay questions) was
administered after the analysis tutorial. The experimental manipulation happened
during a Collaborative Design Competition after the pre-test. Students were asked to
work as a team to design a better wrench taking three aspects into consideration: ease
of use, material cost and safety (Appendix C). Students were instructed to make three
new designs and calculate success measures for each of the three aspects under
consideration.

They were also told that a tutor will help them with the first and the second
designs so that they are well prepared to do the final design. No additional details
about the tutors were given. Besides receiving lab credit for participating in the
design competition, students were told that every member of the team that performs
best overall will receive a $10 gift card as prize.

After the students spent 35 minutes on the design competition, a post-test was
administered (Appendix A). Following the test, student filled out a perception survey.

53

5.2.2 Learning Outcomes

The pre-test and post-test were graded by two different graders who were
provided answer keys for the tests. The graders were not aware of the condition
assigned to each student.

Using an ANOVA, we were unable to find any significant differences (p = 0.680)
between pre-test scores for the three conditions (Task, Social, Human). Another
ANOVA using test-phase (Pre, Post) and condition as independent variables showed
that there was a general positive effect of the learning task indicated by a significant
improvement in test scores between the pre-test and the post-test F(1,190) = 16.67, p
< 0.001, effect size = 0.51 standard deviations. There was no interaction between test-
phase and condition. Students in all conditions learned between the pre-test and the
post-test.

To evaluate the effect of the tutor’s social capability on the post-test achievement,
we used an ANCOVA model with day of the experiment and the condition as
independent variables. Pre-test score was used as a covariate. We found a significant
main effect of the condition variable F(2, 93) = 10.56, p < 0.001. A pairwise Tukey
test post-hoc analysis revealed that both the Human and Social conditions were
significantly better than Task condition. This is consistent with our hypothesis. The
Social and Human conditions were not significantly different on this measure. The
relative effect sizes with respect to the Task condition was 0.93 standard deviations
(σ) for the Human condition and 0.71σ for the Social condition. There was no main
effect of day of experiment on this outcome.

5.2.3 Perception Ratings

Figure 5.1 shows the average rating by the students for the survey items about the
tutor. Using condition and day of the experiment as independent variables in an
ANOVA, we modeled the ratings for the items about tutor (Q1-Q6). There was a
significant main effect of condition (p < 0.05) on the first five items i.e. liking, being
friendly, providing good ideas, trying to release tension and being part of the team.
We found no significant difference on the item about tutor agreeing with the students
(Q6). Also, there was no main effect of day of experiment on these outcomes.

Pairwise Tukey test post-hoc analysis showed the only tutors in the Human
condition were significantly (p < 0.05) better than Task condition for the first five
questions (Q1-Q5). The tutor in Social condition was rated significantly (p < 0.05)
better only for Q2 (being friendly) and marginally better (p < 0.08) for Q5 (being part

54

of the team). The social tutors were not significantly better than our lower baseline
(Task) on the other four items (Q1, Q3, Q4, Q6).

Figure 5.1 also shows the average rating about the learning task. Once again,
ANOVA using condition and day of experiment as independent variables showed that
there were significant main effects of condition on Q8 (task satisfaction) F(2,92) =
4.91, p < 0.01 and day of experiment F(1, 92) = 11.57, p = 0.001. Day2 (Mean=5.77,
σ=1.56) was significant better than Day1 (Mean=4.66, σ=1.67). Also, Social
condition was the worst of the three conditions on this measure, even though only the
difference between Human and Social conditions was significant. An interaction
analysis showed a marginal interaction effect of the two independent variables on this
item F(2, 92) = 2.78, p < 0.08. There were no main effects on Q7 (satisfaction with
group discussion) and Q9 (perceived task legitimacy).

Figure 5.1: Average ratings for the Tutor (Q1-Q6) and the Learning Task (Q7-Q9)

Burke (1967) has shown that under conditions of high task legitimacy,
differentiation between social and task role leaders (tutor) in the group does not
happen. Assuming that effect of social behavior on task satisfaction is conditioned on
role differentiation, we account for the variance due to perceived task legitimacy (Q9)
by including it as a covariate in an ANCOVA to model task satisfaction (Q8) FQ9(1,
91) = 26.37, p < 0.001. Using this model, we find that the only significant difference
in task satisfaction among the three conditions is between the Human and Task
conditions. The lower task satisfaction rating for the social condition is explained by
the lower perceived task legitimacy in that condition.

55

5.3 Analysis of performed Social Behavior

In order to compare our automatic implementation of the social behaviors to the
human tutors, we counted the instances of actual display of social behaviors by those
tutors. The turns were classified as one of seven behaviors listed in Table 5.3 based
on the social prompt closest to the turn. Table 5.3 also shows the average turn counts
for the seven types of social behavior for the two types of tutors.

Behavior Strategy Social Human

Doing Introductions 1a 2.67 3.80

Being Friendly 1b-1e 5.61 8.10

Doing Conclusions 1f 0.97 1.80

Trying to Release Tension 2a-2c 5.81 1.77

Agreeing 3a-3b 1.78 4.90

Pushing 0.57

Being Antagonist 1.23

Table 5.3: Average number of social behavior turns displayed by tutor

All the differences between the tutors shown in Table 5.3 are significant. We note
that except the number of turns related to tension release strategies (2a, 2b, 2c), the
human tutors performed significantly more social turns. Also, we note that the human
tutors performed additional social behaviors that were not part of the social strategies
implemented in our social tutors on some occasions. Both the Pushing and Being
Antagonist behavior classify as negative socio-emotional interaction categories in
Bales’ IPA scheme.

Overall, we find that the human tutors performed significantly more social
behavior than the automated tutors. This observation led us to investigate the effect of
the amount of social behavior displayed by conversational agents. Experiment 2 and
3 explore the relationship between amount of social behavior and outcomes metrics
within the context of collaborative learning application.

56

5.4 Analysis of effect of Social Behavior

We have observed that the use of social behavior in collaborative learning
settings can help in improving learning outcomes (Kumar et. al., 2010a). This
observation is not necessarily consistent with intuition. On the one hand, we could
attribute this to the ability to manage the user’s (student) attention towards the agent
(tutor) by displaying the social behavior. At the same time, we could argue against
the use of social behavior by considering it as a potential distraction from the task. As
described in Experiment 2, we found that it is important to keep the amount of social
behavior at an optimal level in order to observe the learning benefits of the social
behavior and to avoid its distraction costs.

1 Tutor Are you paying attention to this?

2 S006 of course

3 S001 yes

4 Tutor What would happen if the stress in our Wrench is too high?

5 S006 fail

6 S001 it'd fail

7 S014 it would break.

8 Tutor That's right. The wrench can break!

9 Tutor A wrench that can break in normal use is not safe!

10 S006 :(

11 Tutor In general, to keep a wrench safe, we want to keep the stress in
the wrench high or low?

12 S006 lowwww

13 S001 low

14 Tutor Right, stress should be kept low.

15 Tutor Which material property determines when the stress is too high?

16 S001 yield strength?

Table 5.4: Excerpt of a Conceptual Tutoring Episode

57

In this section, we present a corpus analysis to discover an underlying model of
how the social behavior affects learning outcomes. We used a corpus of collaborative
learning interactions between teams of three or more students and a tutor. The
interactions involve the teams performing a learning activity which lasts
approximately 40 minutes. During this time, the tutors provide directions, hints and
conceptual tutoring. Each team undergoes up to four conceptual tutoring episodes.

A conceptual tutoring episode is a system-initiated conversation during which the
tutor leads the students through a directed line of reasoning to help them reflect upon
a concept related to the learning activity. An excerpt of a tutoring episode discussing
the relationship between stress and safety is shown in Table 5.4. No social behaviors
are performed during such an episode. During the collaborative design activity, these
episodes are the primary source of knowledge that the tests administered to the
students measure. The tutor performance objective is to deliver the instructional
content of the episodes as effectively and efficiently as possible. As discussed in
section 5.4.2, we measure the performance of the tutor on these objectives using the
test scores and the amount of time spent on the tutoring episodes.

5.4.1 Coding Tutoring Episodes

Each turn in all the tutoring episodes of the 32 interactions between a team of
students and an automated tutor were annotated using a coding scheme described
here. The tutor turns were categorized as either Respondable (TR) if the students
were expected to respond to that tutor turn or Not Respondable (TU) otherwise. In
Table 5.4, all the shaded turns are labeled as Respondable.

Figure 5.2: Venn Diagram of Episode Turn Annotations

58

Student turns are categorized into one of three categories. The Good turns (SG)
label identifies turns where the students are showing attention to a respondable tutor
turn (e.g. Turn 2 & 3 in Table 5.4) or the students are giving a correct or an incorrect
response to a direct question by the tutor (e.g. Turns 5, 6, 7, 12, 13 & 16).
Counterproductive (Bad) student turns (SB) include students abusing the tutor or
ignoring the tutor (e.g. talking to another student when the students are expected to
respond to a tutor turn). Student turns that are not categorized as Good or Bad are
labeled as Other (SO). Turn 10 is an example of SO because it is a response to a tutor
turn (9) where no student response is expected. Figure 5.2 shows a Venn diagram of
the different annotations. All five categories are mutually exclusive.

5.4.2 Structural Equation Modeling

In order to discover an underlying model of how the use of social behavior
affects student learning, we used a structural equation modeling (SEM) technique
(Scheines et. al., 1994).

Data

To measure learning outcomes, our data comprised of scores from pre-test and
post-test administered to 88 students who were part of the 32 teams whose data was
annotated for this analysis. We included the count of number of good and bad
responses from the students as measures of interaction characteristics of each student
in our dataset. Total number of social turns performed by the tutor in each interaction
was included as a characteristic of social behavior displayed by the tutor. Finally, the
total amount of time (in seconds) that the students spent on the tutoring episodes was
included as a characteristic of the interaction efficiency during the tutoring episodes.

Prior Knowledge

The only prior knowledge input to the model stated that the pre-test occurs before
the post-test.

Discovered Models

We used Tetrad IV to discover a structural equation model in the data comprising
of 6 fields (PreTest, PostTest, GoodResponses, BadResponses, SocialTurns,
EpisodeTime) for each of the 88 students. Figure 5.3 shows the structural equation
model discovered by Tetrad using the dataset described above. p-Value of 0.38 for
this model confirms the hypothesis used by Tetrad for its statistical analysis i.e. the

59

model was not discovered randomly. Note that unlike other statistical tests, SEM
models built using Tetrad are evaluated as significant if the p-Value is greater than
0.05. The numbers on the arrows are correlation coefficients and the numbers on the
boxes indicate mean values for each variable.

Figure 5.3: SEM discovered using all 6 variables in our dataset

Besides the expected causal effect of PreTest score on PostTest score, we find
that as the duration of the tutoring episodes (EpisodeTime) increases, the learning
outcomes deteriorate. We notice that an increase in the number of Bad responses by
the students increases EpisodeTime indicating that students who abuse or ignore the
tutor are likely to not pay attention to the instructional content presented during the
tutoring episodes, hence prolonging the tutoring episode as the tutor tries to get the
students through the instructional content. While it may seem that reducing the
episode duration should hurt test scores because it reduces the time spent on learning.
However, this is not the case because of the way tutoring episodes are conducted in
our implementation. Reducing the episode duration does not reduce the instructional
content being delivered. It only indicates a higher efficiency of delivery as same
amount of content is being delivered in a smaller amount of time.

We observe that social behavior helps in counteracting the negative learning
effect of Bad interaction behaviors of the students by reducing the EpisodeTime.

60

Tutors that perform social behavior are capable of managing the student’s attention
and get the students through the tutoring episode faster. Also, we note that tutor’s use
of social behavior does not directly reduce the amount of dysfunctional (bad)
behavior of the students.

Figure 5.4: SEM including the MeanResponseTime and UnrespondedTurns variables

In order to verify this further, we experimented with two other configurations of
the structural equation model. One of these configurations prohibited the relationship
between SocialTurns and EpisodeTime and the other explicitly mentioned a
relationship between SocialTurns and BadResponses. We found neither of the models
discovered using these configurations to be statistically significant. While the

61

relationships between those variables may become statistically significant with the
availability of more data, the explanation of the effect of social behavior leading from
Figure 5.3 seems to be more.

Also, we experimented with two additional variables (MeanResponseTime and
UnrespondedTurns) which measured how quickly and how often the students
responded to a direct question by the tutor. They act as additional measures of student
attention and engagement. Figure 5.4 shows the structural equation model discovered
using these variables (p=0.5264). We see that like EpisodeTime, MeanResponseTime
is decreased by the use of social behavior and bad behavior by the students increases
it. Also, as expected, increase in MeanResponseTime contributes to increasing
EpisodeTime.

Note that the coefficients on the arrows in Figure 5.3 cannot be used to compare
the magnitude of effect of the different variables on each other because of the
different means and range of variation of each of the variables. We normalized the six
variables used in that SEM to have a mean of 0 and a standard deviation of 1. Figure
5.5 shows the SEM using the normalized variables. The magnitude of the coefficient
can be used to estimate the relative effect of two variables. For example, we see that a
PreTest has a larger effect on PostTest than EpisodeTime.

Figure 5.5: SEM with normalized variables

62

5.4.3 Interpretation

The SEM analysis discussed in the previous section helps us better understand
the relationship between the use of social behavior and student learning in a
collaborative learning setting. If we consider the duration of the tutoring episodes as
an indicator of the students’ attention to the tutor (higher duration lower attention).
We see that social behavior helps in managing the students’ attention, which may be
affected negatively by counterproductive/bad interaction behavior from the students.

Besides suggesting that social behavior could be a useful strategy for directing
student attention, it also suggests that social behavior may not serve this function
where counterproductive student behavior is not present or where it does not occur
enough to negatively impact task behavior. This is because a minimum amount of
time needs to be spent on each tutoring episode to deliver the instructional of the
concept being discussed. In the absence of counterproductive student behavior,
episode duration may be close to that minimum.

5.5 Experiment 2: Amount of Social Behavior

From experiment 1, we notice that the human capability outperformed our
implementation of the social-capable automated tutor on most measures. One of the
possible reasons for the shortcomings of the automated tutors on the performance and
perception metrics could be attributed to insufficient display of social behavior by
those tutors. Table 5.5 shows an excerpt from an interaction between a team of
students and a Human tutor. Names are changed to preserve anonymity. A
comparable example of a similar interaction is shown in Table 5.6 where a team of
students is interacting with an automated tutor. In both cases, one of the members of
the team responds (turns 65 and 82 respectively) to the tutor checking about the
student’s progress. The human tutor uses this event as an opportunity to encourage
(Strategy 1e) the other group members to contribute (turn 66, 67) unlike the
automated tutor.

The experiment described in this section attempts to investigate the effect of
amount of social behavior on performance and perception outcomes in a collaborative
learning situation. The effect of the amount of social behavior displayed on outcomes
is our first choice for an experiment as it is one of the easiest dimensions to
manipulate given our existing implementation of a socially-capable tutor. Further, if
this hypothesis was shown to be valid, it has the potential to cover the most ground

63

towards matching human social capabilities. Next, we describe how our automated
tutors were modified to vary the amount of social behavior they displayed.

63 Tutor Did you manage to calculate the moment already?

65 S66 600?

66 Tutor Talk to your teammates about the design.
Discussions are helpful!

67 Tutor Does anyone want to respond to Timmy?

70 S73 yes it is. x2

71 S73 everything is x2

72 Tutor Thank you Bobby

79 S73 you are welcome avis

Table 5.5: Excerpt of an interaction between a team of students and a Human tutor

80 Tutor Now let's calculate the maximum stress in the
Wrench.

81 Tutor Note: Stress increases proportionately with the
Moment.

82 S99 So just 8750x2?

83 Tutor Since the moment doubled, the maximum stress in
design 1 should be doubled too, i.e., 12800lb/in^2

Table 5.6: Excerpt of an interaction between a team of students
and an automated tutor

5.5.1 Agent Implementation

The component network (20 components and 40 connections) of the CycleTalk
tutor agent is shown in Figure 5.6. We can see that this component network is very
similar to the component network shown in Figure 4.1. However the GoalManager,
GoalActor components are new and the ProgressDetector component has been
removed. The first two are used for performing a behavior specific to learning

64

activity performed by students while interacting with this agent. The
ProgressDetector is not used in this agent because none of the steps of this agent’s
plan depend on the detection of phrases indicative of the students’ progress on the
learning activity. The rest of this section describes the implementation details of this
agent.

Figure 5.6: Component Network of the CycleTalk Tutor used in Experiment 2

The ConcertChatListener and ConcertChatActor components provide
connectivity to the ConcertChat environment and isolate the components of the agent
to allow easy integration with other environments if required. Text messages from the
students are propagated through the component network after being annotated with
semantic categories by the AnnotationFilter.

The interactive behaviors of the agent that are directly observable by the students
are implemented by 4 manager-actor dyads. For example, the IntroductionsManager-
IntroductionsActor dyad implements the introductions behavior that is performed
when the Social Interaction Strategy 1a is triggered. The PlanExecutor and the
SocialController trigger relevant task-related and social behavior respectively.

The PlanExecutor executes the tutor’s task-related interaction plan comprised of
14 steps (including 4 tutorial dialogs) some of which may be skipped in the interest of

65

time. One of the steps includes asking the students about their design goals which is
performed by the GoalsManager-GoalsActor dyad. Based on a configuration
parameter, the TutoringManager can favor one of the goals (or remain neutral) by
choosing corresponding versions of the 4 tutorial dialogs when they are triggered.

The SocialController implements eight of the social strategies listed in Table 4.3.
We did not use the three tension release strategies (2a, 2b, 2c) because we observed
that in Experiment 1, the human tutor used these strategies very rarely. The strategies
are triggered by rules based on the most recent plan step (for strategy 1a, 1d, 1f),
semantic categories of the most recent student turns (for strategies 1b, 1c, 3a, 3b) and
inactivity events by the ActivityDetector (for strategy 1e). In additional to these rules,
the amount of social behavior is regulated using a Social Ratio parameter that
specifies the percentage of all tutor turns that can be generated by the
SocialController. For example, Social Ratio of 20% (as used in Experiment 1) limits
the tutor to perform at most 20 turns generated by the SocialController for every 100
turns by the tutor.

For Experiment 2, we use two versions of this tutor with different values of the
social ratio parameter. The tutor that generates lower amounts of social behavior
(Low) is configured at 15% social ratio. The other version (High) is configured at
30% social ratio which is comparable to the percentage of social turns displayed by
the human tutors in our earlier experiment.

5.5.2 Experimental Design

We conducted an experiment to evaluate the effect of amount of social behavior
displayed by the automated tutors on performance and perception metrics. The
experiment was part of a sophomore Thermodynamics lab project. 106 students
enrolled in a sophomore Mechanical engineering course participated in the
experiment. The students worked in teams of two to design a Rankine cycle. The
experiment was conducted over 3 consecutive days of the same week. Two sessions
were held each day. So, different students participated in the six different sessions.
Within each session, students were randomly assigned to groups and conditions.

The procedure for the lab was divided into eight phases.

1. Students were led through a tutorial on using a thermodynamics cycle
simulator called CyclePad (Forbus et. al., 1999).

2. Students read through written material on the subject of Rankine Cycle
and green engineering.

66

3. Students used the CyclePad software to analyze the response of the cycle
in terms of its efficiency, net power, waste heat and steam quality with
respect to various system properties like temperature and pressure.
During this phase, students followed along with our lab coordinator.

4. Following the tutorial, students filled out a motivation questionnaire (5
items) and a pre-test (30 items).

5. Students were given a tutorial on the ConcertChat collaboration software
which they used in the next phase.

6. Next, the students logged into private ConcertChat rooms of their
respective teams and started interacting with their teammate and an
automated tutor. The students were asked to design a new Rankine cycle
by choosing a set of values for the system properties in order to find an
optimal output on the response variables. They were told that teams with
the best designs will receive gift cards worth $20 as an additional
incentive besides class credit which all participants received. To guide
their design and to enable systematic interaction with the tutors, the
students were asked to follow a worksheet (shown in Appendix E) which
was designed to guide the students through every system property while
considering its effect on each of the responses.

7. After the collaborative design phase, a post-test (29 items) was
administered. They students also responded to the perception survey
shown in Appendix B.

8. Finally, the students implemented the designs they came up with during
the design phase individually using CyclePad. They were allowed to
make further modifications to the design based on the observed responses
from the simulator.

Our experimental manipulation was part of a larger experiment with multiple
independent variables. The manipulation we are concerned with here is with regards
to the amount of social behavior (social ratio) the tutors employed in phase (iv) were
allowed to display. The student teams (dyads) were randomly assigned to one of three
conditions i.e. None (0%), Low (15%) and High (30%). The corresponding values of
social ratio for each of these conditions are shown in parenthesis. Conditions were
evenly distributed among the teams across sessions. Each team spent the same
amount of time on the collaborative design activity (35 minutes).

67

5.5.3 Learning Outcomes

The pre-test had one additional question than the post-test which was added to
make the pre-test and post-test slightly different. This question was not used for
calculating pre-test scores. Also, one of the questions on the tests was not used in
calculating the test scores as it was very open-ended. Among the remaining 28
questions, 22 were objective (multiple choice questions) and 6 were subjective (brief
explanation questions). The tests were graded by two graders without any information
about the condition assigned to each student.

Using an ANOVA with the condition as an independent variable, we were unable
to find any significant difference between the conditions on the total pre-test scores.
This was also the case for the scores on the subjective questions and the objective
questions. There was a significant improvement in all test scores (total, subjective and
objective) between the pre-test and the post-test in all conditions, which shows that in
general, the collaborative design activity was beneficial to all students. With respect
to the pre-test, the relative effect sizes were 0.79 standard deviations (σ) for the total
score, 0.69σ for the objective scores and 0.73σ for the subjective scores. All scores
for both the pre and the post tests are shown below in Table 5.7.

Condition
Pre-Test Post-Test

Total Objective Subjective Total Objective Subjective

None (0%)
13.94 11.28 2.67 17.72 13.33 4.39

(4.53) (2.91) (2.23) (4.09) (2.47) (2.04)

Low (15%)
14.00 11.38 2.62 18.59 14.77 3.82

(6.15) (4.16) (2.54) (4.72) (3.43) (1.74)

High (30%)
14.08 12.03 2.06 17.72 13.75 3.97

(4.46) (3.13) (1.88) (3.77) (3.07) (1.72)

Table 5.7: Average Pre & Post test scores for each condition
(Standard deviation in paranthesis)

Using three different ANCOVA models for the three types of scores that used
corresponding pre-test scores as a covariate and condition and session as independent

68

variables, we found no significant differences between the three conditions (None,
Low and High) on the total as well as the subjective scores. However, there was a
significant effect of the condition variable on the objective scores F(2, 97)=3.48, p <
0.05. A pairwise Tukey test post-hoc analysis showed that the Low (15%) social ratio
condition was marginally (p < 0.07) better than both None (effect size = 0.69σ) and
High (effect size = 0.55σ) social ratio conditions. The difference between the None
and the High conditions was not significant.

We find a similar effect on one of the learning performance metrics as reported in
our previous experiment by an automated tutor with a comparable social ratio (20%).
The hypothesis that performance gap between human and automated social tutors can
be bridged by performing more social behavior like the human tutors does not hold in
the case of learning metrics. Further, we think that the lack of significant differences
on the subjective questions is because the tests were very long and the students might
have focused more on the objective questions to complete most of the test. This is
reflected in the relatively high scores on the objective questions (mean = 13.93)
compared to a maximum of 22. In the case of the subjective questions (mean = 4.07),
the maximum possible score was 11.

5.5.4 Survey Outcomes

Figure 5.7: Average ratings for the Tutor and the Learning Task

We used the survey shown in Appendix B to elicit ratings about the tutor and the
task from the students. However, the survey item about tension release was not used
because we did not use the tension release strategies in this experiment (as mentioned
in Section 5.5.1).

69

Figure 5.7 shows the average rating for the three types of tutors used in our
manipulation. None of the differences between the three types of tutors were
statistically significant for these perception measures. Once again, we note that the
hypothesis that suggests performing a higher amount of social behavior to create
human-like tutors does not hold for these measures.

5.5.5 Exposure Effect with Tutors

An additional analysis we were able to perform with the data available from this
study was the effect of multiple exposures to automated tutors. Since our studies with
engineering students span multiple years and classes, we were able to determine that
27 of our 106 participants had participated in a pilot study in a previous semester. The
pilot study employed interaction with automated tutors (with no social capabilities) to
teach the students about freshmen mechanical engineering concepts like relationships
between forces, moments and stress. By including prior exposure as a binary (yes, no)
pseudo-independent variable in the ANCOVA used to model learning outcomes on
the objective questions (as described in Section 5.5.3), we found a significant
interaction between the condition and the prior exposure variables (F(2, 94) = 3.68, p
< 0.05). Figure 5.8 shows the interaction plot for the two variables.

Figure 5.8: Interaction between our Experimental manipulation

and Prior Exposure to Tutors

We note that tutors that display high amounts of social behavior lead to
significantly poor performance for students who have had prior exposure to

70

automated tutors. Relative to the students who do not have prior exposure to such
tutors, the effect size is 1σ. This analysis suggest that it becomes increasingly
important to choose the right amount of social behavior when creating conversational
agents for repeated use or for user who may have prior exposure to such agents.

5.5.6 Estimating the Optimal Amount of Social Behavior

Up until here, we find in general that high (30%) social ratio tutors are not
significantly different than tutors with no social capabilities (None). Also, in the case
of students with prior exposure to automated tutors, these (High) tutors were
significantly worse.

Figure 5.9: Scatter plot between Adjusted Post-Test scores
and Social Ratio of the tutors in High and Low conditions

So, why do the High tutors lead to poor learning? We found that there was a
significant effect of condition on the number of tutorial dialog turns the tutor
performed F(2, 98) = 5.01, p < 0.01. A pairwise Tukey test post-hoc analysis showed
that in the High condition (Mean=76.56, s.d.=9.03) the tutor performed significantly
fewer task-related turns compared to the None condition (Mean=82.42, s.d.=4.67).
The dialog turns performed by the tutors in Low condition was not significantly
different from either High or None conditions (Mean=80.59, s.d.=11.59). We believe
that this was because the high amount of social behavior was distracting the students
from the learning activity and causing delays in their progress. Fewer dialog turns led

71

to lower coverage of domain relevant material during the learning activity, which in
turn led to poor performance on the tests.

The above observations suggest the relationship between learning performance
and the amount of social behavior displayed by the tutor is non-monotonic. Figure 5.9
shows cubic polynomial regressions between the adjusted post-test scores and the
percentage of social turns performed by the corresponding tutors for each student.
Students with and without prior exposure to automated tutors are shown separately.
We see that both in the case of students with or without prior exposure to automated
tutors, a maxima in performance can be found around 16% performed social ratio.

5.5.7 Summary of Experiment 2

To summarize, we find that the tutors with low social ratio (15%) perform better
than the high social ratio (30%) tutors and tutors with no social capabilities on
learning outcomes. On perception metrics, these tutors are not significantly different
from each other. Both these observations invalidate the hypothesis that matching the
display of social behavior with human tutors in quantity will lead to human-like
outcomes. Further, the learning effect between in the Low and the None conditions is
consistent with the corresponding results from Experiment 1 (Task vs. Social).

The poor performance of High social ratio tutors suggests that the right amount of
social interaction benefits the learning activity by keeping the group’s instrumental
and expressive needs fulfilled, excessive social interaction becomes a distraction and
hinders the task-related interaction (dialogs about lessons in this case). This is
consistent with the work of Bales (1953) with human small groups which finds that
groups strive to achieve equilibrium between the instrumental (task-related) and
expressive (Social-Emotional) interaction processes.

A separate analysis (Hua et. al., 2010) on the interactions between students and
tutor during this experiment found that the number of abusive/negative comment
made by the students about the tutor during the interaction were significantly higher
in the High condition. This is indicative of the distractive effect of social behavior in
the High condition. We have reported empirical values for the optimal amount of
social behavior suitable for automated tutors in collaborative learning situations.

Having shown that automated tutors cannot match the performance of human
tutors merely by matching the amount of social behavior displayed by the human
tutors, we turn our investigation to other aspects of human social behavior display.
Among the many options as next steps in improving the social capabilities of tutors,
we think closer attention needs to be paid to circumstances under which human tutors

72

choose to employ various social strategies and how the display of these strategies is
intertwined with task based interaction. For example, in the excerpt shown in Table
5.5, the decision to elicit participation from other students may be relevant only if
Timmy’s contribution to recent discussion outweighed contributions of the other
students. Another aspect that can be potentially useful in modeling good social
behavior by tutors is the study of student responses (or lack of responses) in the data
we have collected from recent studies. In Table 5.5, turn 79 suggests that the tutor’s
social behavior in turn 72 (Thanking Bobby) was appropriate.

73

Chapter 6

Triggering Policy for Social Behavior

The results of Experiment 1 demonstrate that the use of social interaction
strategies help the agents participating in collaborative learning interactions achieve
higher learning outcomes. The eleven social interaction strategies utilized by the tutor
agents in that experiment were automatically triggered using a set of rules that are
based on features of the discourse such as the lexical content of recent student turns,
the most recent state of the agent’s discourse planner, activity levels of the individual
students as well as the group as a whole, and the number of social turns displayed by
the agent per 100 contributions (Kumar et. al., 2010b).

These rules together form the agent’s triggering policy for the social interaction
strategies. The effectiveness of this triggering policy was compared to a gold-
standard where human tutors were asked to choose, customize and trigger the
prompts associated with each of the social interaction strategies (Kumar et. al.,
2010a). Results showed that the groups with the human tutor had larger learning
gains with respect to a non-social baseline. However, we were unable to find a
significant difference between test scores of the students who interacted either with
the human tutor or the rule-based agent. On metrics computed from a perception
questionnaire, the human tutors were consistently rated better than the rule-based
agents.

This observation suggests scope for further improvement and leads us to the
motivation for the work presented in this chapter. We hypothesize that an agent
equipped with a human-like triggering policy will be able to perform better on both
performance outcomes like learning effectiveness as well as perception outcomes,
which may be crucial for incorporating such agents in situations involving long term
or recurring interactions with users in various day to day multi-party interactive
situations.

74

In this chapter, we will first describe our approach and efforts towards building a
human-like triggering policy as the first step towards verifying the hypothesis
mentioned earlier. We employ a data-driven approach to learn a triggering policy
from a corpus of tutoring interactions where human tutors triggered the social
behaviors. Second, we will describe a classroom experiment conducted to verify the
hypothesis mentioned in the previous paragraph.

6.1 Modeling Human Social Behavior

6.1.1 Data

As described in Chapter 5, our work is situated in the area of collaborative
discussion in synchronous chat where a facilitator is managing or regulating the
interaction. Specifically, in this case groups of three or more students work together
on a collaborative design exercise under the supervision of a tutor. The data we use
for this work consists of a collection of ten such transcripts. The students were all
freshmen enrolled in a Fundamentals of Mechanical Engineering course. The
collaborative design exercise involved designing a better wrench by changing the
dimensions and materials of a wrench specification initially provided to them. The
students were asked to take into account concepts of force, moment, stress, safety and
cost while working on their design.

As mentioned, a tutor played a facilitating role in each team’s chatroom. The
tutor performed two primary functions. First, it provided instructions and brought up
relevant concepts as the students worked on the design exercise. This function was
fully automated. Second, the tutor performed social behaviors (Kumar et. al., 2010)
mentioned earlier. The display of these social behaviors was controlled by a human
tutor who was asked to select prompts corresponding to various social behaviors,
modify the prompts if need be, and insert the prompts into the chat interaction. In the
chatroom, the students saw the messages corresponding to both functions as messages
from the same person (i.e. the tutor).

Annotation

In order to generate labels that identify the function of each of the tutor turns in
the data, we collected annotations for each of the tutor turns using Amazon
Mechanical Turk. Appendix I shows a screenshot of the annotation interface. The
details of this annotation task are described next.

75

The annotation task was presented as a task involving classification of tutor turns.
Each tutor turn to be classified was displayed along with a history of up to seven
previous turns from the interaction. The turn to be classified was highlighted in a
different color. The annotators were asked to evaluate the highlighted tutor turn in
terms of whether it fit any of the following five categories.

Being Friendly (F)

So
ci

al

Relieving tension (TR)

Agreeing (A)

Showing Social/Emotional problems (N)

Helping the students learn (T)

Table 6.1: Labeling Categories

Description of the various ways behaviors corresponding to each of these
categories could be realized was provided along with the list of categories. Categories
{F, TR, A, N} correspond to social behaviors, and T category corresponds to the
instructional behaviors of the tutor. The annotators were allowed to select as many of
the five categories as appropriate including none. Each tutor turn was annotated by at
least five different annotators. We collected a total of 6688 annotations for 1335 tutor
turns.

The multiple (n) annotations for the same tutor turn (ti) were combined to get
a single label for each tutor turn using equation (6.1). 1[x] is an indicator function that
evaluates to 1 when . , the confidence of label l for turn ti is calculated as the
fraction of annotators of ti that selected the category label l. We choose the category
with the highest confidence to label the tutor turn with the condition that the label
should be above a threshold of Θ. If the highest confidence category has a confidence
of less than Θ, the label defaults to task (T) (i.e. non-social).

 (6.1)

76

 (6.2)

 (6.3)

Using this method, we can compute both the label as well as a confidence
measure of the label. We computed two types of labels for each tutor turn. The first
type of label maps the tutor turn to one of five possible categories {F,TR,A,N,T}. We
refer to this type of label as the 5-class label. The second type of label combines the
social behavior categories into a single category(S) mapping each tutor turn to one of
two possible categories {S, T}. We refer to the second type of label as 2-class label.

In order to measure the quality of labels obtained by combining the multiple
annotations collected via Mechanical Turk, we compared the labels to annotations
provided by one expert. Table 6.2 shows the confusion matrix for the 5-class labels
with respect to the expert annotations (Θ=0.65).

M
ec

ha
ni

ca
l T

ur
k

Expert Annotation

F TR A N T

F 114 18 17 6 38

Social

TR 2 0 0 1 1

A 3 1 23 0 25

N 1 0 0 1 1

T 62 11 14 14 982

Table 6.2: Confusion matrix for 5-class labels (Θ=0.65)

Using Θ=0.65, Cohen’s kappa for the 5-class type of label is 0.53. For the 2-class
labels, kappa is 0.62. For now, we will only focus on the problem of predicting when
to trigger a social behavior and ignore the issue of which social behavior should be
performed at the time of triggering. Hence, we will only use the 2-class labels.

77

The choice of Θ=0.65 is based on a compromise between the mean confidence of
the labels and the number of positive examples available to the learning algorithm. As
we increase Θ, the number of tutor turns that we will be labeled as Social will reduce
because of the elimination criteria in equation (6.1). This will reduce the number of
positive examples available to our learning algorithm. As shown in Figure 6.1, we
choose the value of Θ to maximize the number of positive examples while ensuring
that the mean confidence of all our labels is above 0.8. Higher mean label confidence
helps us avoid the mislabeling of instructional tutor turns such as positive feedback as
social turns, which some annotators may otherwise see as Agreeing or Friendly turns.

Figure 6.1: Mean Label Confidence &

No. of Social Turns for different values of Confidence Threshold Θ

To summarize the dataset discussed in this section, we have 10 transcripts of
interactions between a team of students and a tutor. The transcripts comprise of a
total of 2939 turns of which 1335 are from the tutor. We have labels for each of the
tutor turns that indicate if the tutor turn was social. Using Θ=0.65 gives us 252 tutor
turns that are social (positive examples) and 1083 task-related turns (negative
examples).

78

6.1.2 Learning Problem

Given the data set discussed in the previous section, our objective is to learn a
triggering policy that could predict when the human tutor would perform a social
behavior. We consider this problem in an event-driven framework where the
triggering policy has to provide a binary decision of whether to perform a social
behavior at every occurrence of an event. The event-driven framework follows from
the architecture (Kumar and Rosé, 2011) we use to build our agents.

In our current approach, we consider every turn in the interaction as an event. So
after every turn in the interaction, the triggering policy has to consider information
from the discourse up until that event (represented by features X discussed in Section
6.1.4) to make its decision.

 (6.4)

Formally, a triggering policy is a function Ψ that maps events (ei) to decisions
(di). When executed over a sequence of events (e.g. a transcript), it produces a
sequence of binary decisions of the same length such
that di=1 if the policy decides to trigger a social behavior. In the rest of this section,
we will discuss metrics for comparing triggering policies and features used to
represent each event.

6.1.3 Metrics

Evaluating a triggering policy is a sequence comparison problem where we
compare a reference sequence R with a hypothesized sequence H. Other problems in
the field of natural language processing have developed evaluation metrics for such
sequence comparisons. Research on topic/discourse segmentation (Eisenstein and
Barzilay, 2008) has used a collection of metrics to compare binary sequences where 1
indicates the presence of a segment boundary. Other sequence comparison metrics
such as word error rate use dynamic programming based alignment algorithm to align
multi-class sequences and measure their dissimilarities (such as insertions, deletions,
modifications).

Since the triggering policies we discuss here generate binary sequences of
decisions, we will use the metrics used by earlier work in the area of topic
segmentation. Here we will review various topic segmentation metrics that provide
partial credit for near-miss segment boundaries by comparing several corresponding
sub-sequences (windows) in the reference and hypothesis sequences.

79

Pk (Beeferman et. al., 1999) is the most commonly used metric in this evaluation
setting. It is defined as the fraction of corresponding sub-sequences of length k where
R and H do not share the presence or absence of a segment boundary. For example, if
two binary sequences of length ten each are being compared using a sub-sequence
window of length five, then Pk compares six difference sub-sequences.
Corresponding sub-sequences are considered to be identical if both or neither have a
segment boundary irrespective of the position of the boundary within each of sub-
sequences. So, if three of the six sub-sequences are identical, Pk is equal to 0.5. This
metric gives partial credit for near-miss cases within distance k, by allowing a
fraction of the sub-sequences to be identical.

Another metric, WindowDiff WD (Pevzner and Hearst, 2002) measures the
fraction of sub-sequences in R and H that do not share the same number of
boundaries. Lower values of Pk and WD indicate better match between R and H.

Recently, Niekrasz and Moore (2010) identified biases inherent in the Pk and
WD metrics by conducting formal and empirical analysis of these metrics. They
suggested three new metrics: kKappa (k-κ), kPrecision (k-prec) and kRecall (k-rec).
They suggest that kKappa is an unbiased metric of evaluation in the coarse-grained
binary sequence comparison case.

Furthermore, the paper suggests some diagnostic metrics that can be used to
identify clumping and edge-bias in sequences. Clumping is a property of a sequence
that has several positive decisions (triggers or segment boundaries) placed closed to
one another. Edge-bias is another property of a sequence that places several positive
decisions at the edge of a discourse. Pk and WD favor sequences that have clumping
and/or edge-bias. For our application, a triggering policy that displays clumping or
edge-bias is undesirable. Clumping leads to excessive social behavior being triggered
and edge-bias prevents social behavior from being triggered when required. Since the
k-κ metric does not favor triggering policies that display these problems, we will use
the k-κ as our primary metric for evaluating triggering policies.

In this chapter, we will report results in terms of three of the new metrics (k-κ, k-
prec, k-rec). All of these metrics will be computed using k=5 which is approximately
half the mean number of turns between two social turns by the tutor in our dataset.
We will also report Pk and a metric (ΔB) that indicates the absolute difference in the
amount of social behaviors triggered in R and H. It is important to trigger the right
amount of social behavior during group interaction to achieve balance between task
and social processes (Kumar and Rosé, 2010c). So, lower values of ΔB are desirable.

80

6.1.4 Features

Each event in the interaction is represented by a set of features that capture the
information present in the discourse up until the event. In our current work, we are
using five types of features.

Lexical features capture the content in the most recent student and tutor turns. We
use a window of the most recent three student turns as well three tutor turns. Binary
unigram and bigram features computed over the student and tutor turn windows were
used as lexical features. No stemming or stop word removal was applied.

We used 57 sentiment features that were applied to the lexical content of the
student turn window. These features were computed using General Inquirer (Stone,
1966) dictionaries with vocabulary size larger than 100 words. Semantic features
indicate the presence of special phrases in the student window. These phrases were
used by the rules which were used for automatic social behavior triggering (Kumar
and Rosé, 2010b). We used 13 semantic features that indicate student contributions
containing idea contributions, positivity, teasing, etc. Both the sentiment and the
semantic features map the discourse of the students to a low dimensional space and
attempt to capture social-emotional signals from the discourse.

State features represent the state of the discourse plan. These features help in
capturing the task-specific characteristics of when social behavior should be
performed. The 37 steps in the tutor’s interaction plan are represented as binary
features (Bohus et. al., 2006) indicating which step of the interaction is being
executed. We included the information about the dialog state before and after the
event using this feature representation. Additionally, we used a binary feature that
indicates if the dialog state changed at the event.

Finally we included some special purpose features that capture the activity levels
of the participants in the interaction. These features measure the number of chat
contributions in the last 5 minutes from the tutor, the most active student and the least
active student, as well as the range of the activity levels.

With these features representing the events, we now have a dataset of 10
transcripts each comprising of multiple events. For the rest of the section, we use the
following notation for dataset. is the ith event of transcript t. are the features
for that event. is the reference decision label and is the confidence of social
behavior at .

81

 (6.5)

Here, (6.6)

 (6.7)

 (6.8)

Given this dataset, we can formulate the learning problem in two ways. First is a
binary classification problem i.e. learning Ψ as in equation (6.4). Second is a
regression problem where we learn a function Ψ that maps events to a confidence of
triggering social behavior.

 (6.9)

6.1.5 Generating Social Behaviors

The focus of Section 6.1 is to learn a triggering policy that determines when an
agent should perform a social behavior. However, in practical use, besides triggering
the social behavior, we need to determine which one of the eleven social interaction
strategies should be performed. Ideally, the triggering policy should decide this too.
However, as we can see in Table 6.2, our dataset has very few examples for learning
a policy at the level of granularity of individual strategies. For example, we only have
four positive instances where the Tension Release strategies are being used.

Our implementation of the agent that uses the learnt trigger model provides a
continuous stream of scores for each of the eleven strategies. The scores are
computed using hand-crafted functions that use the same features used in our rule-
based triggering policy (Kumar et. al., 2010b). When a social behavior is triggered, a
roulette wheel selection is used to determine the strategy to be performed. Score of
each strategy is used to determine its share of the circumference of the wheel. If the
score of all the strategies is zero, a generic social prompt is performed.

82

6.1.6 Baseline Experiments

In this section, we will establish four baseline results before we present our
proposed large margin learning algorithm in Section 6.1.7. These four baselines
evaluate four different triggering policies using the metrics discussed in Section 6.1.3.

The first baseline uses a random (Rndm) triggering policy. This policy makes the
triggering decision in two steps. The first step randomly generates a confidence for
triggering social behavior. The second step converts the random confidence to a
decision by applying a threshold (Θ=0.65).

The second triggering policy (Rules) uses the same set of rules (Appendix J)
which were used by the tutor agent in our rule-based implementation of the social
interaction strategies described in Section 4.5.

Two other triggering policies are learnt from our dataset. The first of the learnt
triggering policies (Logit) learns a classification function of the form shown in
equation (6.4). We used a binary logistic regression algorithm to learn this policy.

The second learnt policy (Linear) makes the triggering decision in two steps
similar to the (Rndm) policy. However, the first step uses a linear combination of the
features to predict the confidence of the social trigger. This needs a function of the
form shown in equation (6.9). We used a boosted (AdditiveRegression) linear
regression algorithm (Hall et. al., 2009) to learn the weight parameters of a linear
function that combines the features to obtain the predicted confidence.

 Rndm Rules Logit Linear

k-κ 0.01 -0.09 0.05 0.00

k-prec 0.36 0.33 0.45 0.12

k-rec 0.86 0.35 0.24 0.01

Pk 0.60 0.52 0.42 0.39

ΔB 70.70 3.10 5.80 26.30

Table 6.3: Summary of Baseline Results

We employ a leave-one-transcript-out cross-validation approach that trains a
policy on 9 transcripts and tests the policy on the 10th held-out transcript. Results

83

reported in Table 6.3 are averaged over 10 test sets corresponding to each fold. For
all the learnt policies, we use correlation-based feature selection and keep only the
top 500 features computed separately over the training set for each fold.

Table 6.3 shows the results for these four baselines. The best results are
highlighted in bold. All the best results are significantly better (p < 0.05) than the rest.
On the conventional metrics Pk, the learnt policies (Logit and Linear) perform
significantly better than Rules and Random. The learnt policies are significantly
better than the Rules in terms of the unbiased metric k-κ. But they are not a
significant improvement over Random. Linear performs significantly worse than the
rest on the precision metric (k-prec). Rules score high on recall by generating too
many triggers. Both Rules and the learnt policy Logit get closest to generating the
right number of triggers. However the triggers generated by Rules are quite
misplaced w.r.t the reference R as indicated by k-κ and Pk. Overall, we find that the
learnt policy, Logit, performs best on 4 out of 5 metrics.

6.1.7 Proposed Algorithm

Now we will present the motivation and the implementation details of our
proposed learning algorithm. This algorithm learns a triggering policy similar to the
Linear baselines. The first step uses the features of the event to predict the
confidence using a regression. The learning algorithm learns the features weights
from the data as described in the rest of this section. The second step uses a
thresholding filter like the baselines. In Section 6.1.8, we will also present a third
filtering step, which we use to regulate the number of generated triggers.

Large Margin Learner

We have based our proposed learning algorithm on the online large-margin
learning algorithms of Crammer and Singer (2003). We chose to use these algorithms
because of the flexibility they provide to optimize the learnt regression weights over
an entire discourse using one of the metrics presented in Section 6.1.3. In contrast to
these algorithms, conventional regression learning algorithms optimize a loss
function over individual data instances. In the case of our problem, near missed
triggers are acceptable if that leads to an improvement in the metrics that evaluate the
entire sequences of decisions in our discourse.

 (6.10)

84

1. w0 = 0, v = 0, c = 0

2. for each iteration: k: 1 … K

3. for each training transcript: t: 1 … m

4. for each event in t: i: 1 … nt

5. w = Change wc using

6. wc+1 = Update wc using w and V

7. v += wc+1

8. c++

9. wfinal = v / c

Figure 6.2: Pseudo-code of our Large-Margin Learner

Since the function learnt by the large-margin learner performs the first step of our
triggering policy, it takes the form of equation (6.9). Equation (6.10) shows the form
of Ψ we will use in this work. We will use two different functions for Φ. First, Φ(x)=x
corresponds to linear regression (ΨLinear). Second, we can use the logistic function for
Φ which corresponds to a logistic regression (ΨLogit). In both cases, the large margin
learning algorithm learns a set of weights (w) based on the training and validation
data. The pseudo-code of the algorithm is shown in Figure 6.2. Training data T
comprises of m transcripts. Each transcript t contains nt events. Validation data V
includes only one transcript which has nv events.

This is similar to the pseudo-code for a generic online learning algorithm
(McDonald et. al., 2005). The algorithm performs multiple iterations over each event
in the training data and updates the weights being learnt. The two main operations of
this algorithm are the Change and the Update operations in steps 5 and 6
respectively.

85

At each iteration, the Change operation discovers new weights w using the ith
training instance from tth training transcript as a potential improvement over the
current weights wc. The new weights are discovered by solving the quadratic program
shown in equations (6.11) - (6.15).

and are the weighted centroids of the positive and the
negative examples respectively in the training set t. We use tyi as the
weight for positive examples and 1- tyi as the weight for the negative examples. δ
calculates the differences in the feature values of a training instance and its matching
centroid. Similarly, δ calculates the differences in the feature values of a training
instance and the other centroid. is the difference between the predicted and the
actual values of confidence for a training instance. α and β are parameters of the
learning algorithm. They can be used to tighten or loosen the constraints.

 (6.11)

s. t. (6.12)

 (6.13)

 (6.14)

 (6.15)

 (6.16)

 (6.17)

 (6.18)

86

We used an off the shelf solver2 to solve this optimization problem. This solver
was used because of its compliance with standard quadratic programming formalism
and ease of integration with the rest of our learning algorithm implementation.

The four constraints shown in equations (6.12) – (6.15) guide the discovery of
new weights in step 5 of the algorithm. Constraint (6.12) tries to bring the confidence
of a training instance within a αM1 margin of its matching centroid’s confidence.
Constraint (6.13) tries to keep the margin between the confidence and of a training
instance and the other centroid at least as large as (1 - αM1). Together, these two
constraints push the weights so as to separate the positive examples from the negative
examples by a margin of 1 in the confidence space.

Constraint (6.14) tries to bring the predicted confidence of a training instance
within a margin of βM2 of its true confidence (tyi). Finally, constraint (6.15) keeps the
predicted confidence of a training instance above zero (negative confidences are
meaningless).

The Update operation in step 6 of the algorithm incorporates the newly
discovered weights from step 5 into the current weights based on their performance
on the validation set in terms of a desirable metric (M3) as well as the confidence of
the training instance. Currently, we use the following update rule:

 (6.19)

where (6.20)

In Section 6.1.9, we will report results using this algorithm for both ΨLinear and
ΨLogit. In all the experiments reported in this chapter, we use K = 2 (number of
iterations), α = 0.15, β = 0.30, γ = 1,

2 ojAlgo: http://ojalgo.org/

87

and M3 = . In the experiments ΨLogit is used, constraint (6.15) is not applied.

6.1.8 Social Ratio Filtering

As mentioned earlier, we used an additional filtering step in our experimental
triggering policy in order to keep the amount of social behavior at appropriate levels.
We measure the level of social behavior using social ratio which is the fraction of
turns that correspond to social behavior.

Empirical studies from small group communication suggest that functional
human groups have a social ratio of around 0.20 (Bales, 1950) over the entire course
of the interaction. However, the actual social ratio changes based on what the group
members are talking about. For example, it is reasonable to have a higher social ratio
at the start of an interaction to help with the formative processes of the group.

Figure 6.3: Estimated function for SRTutor

88

Also, the triggering policy can only control the contribution of the tutor’s social
turn to the social ratio. In order to capture the temporal variation of the tutor’s
contribution to social ratio, we built a non-linear regression model using our entire
dataset. At any given turn, the tutor’s contribution to social ratio (SRTutor) was
computed as the fraction of social tutor turns in the tutor’s last 20 turns.

We modeled the change in SRTutor as a combination of four Gaussians. Figure 6.3
shows a plot of the estimated function which we will use to regulate the number of
triggers generated by our experimental triggering policies.

Instead of the using social ratio as we feature in our triggering policy learning
algorithm, the use of a separate filter component for regulating the amount of social
behavior was motivated by multiple practical and theoretical reasons. First of all,
based on prior research in human small group communication as well as the results of
Experiment 2, we are aware of the importance of performing the right amount of
social behavior. The social ratio filter explicitly incorporates this knowledge into our
model of social behavior triggering.

Second, the use of social ratio as a feature demands online updates to that feature
during training which although not prohibitive, needs additional computation.
Furthermore, the effect of the social ratio feature on the triggering decision depends
on the weight assigned to that feature by the learning algorithm. While the most
discriminative features are likely to be assigned sizeable weights, the fate of
incorporation of this important knowledge in the learnt triggering model is dependent
on the ability of the learning algorithm to discover evidence for this from our rather
limited dataset. Preliminary experiments using social ratio as a feature without online
updates did not lead to any improvements. Due to these reasons, we decided to use an
explicitly filter to regulate the amount of social behavior.

6.1.9 Results

Table 6.4 shows results for four triggering policies with the best results from our
non random baselines. As in the case of Table 6.3, best results are highlighted. The
best results are significantly better than the rest.

Both the filtered large-margin learnt policies outperform everything else on the
unbiased metric k-κ. In terms of precision, the large margin models are not
significantly better than the best baseline (Logit). All of these models are

89

significantly better than the Rules and Random baselines. The policy
performs best on recall. However it is not significantly better than Rules.

On the conventional metric Pk, all of the learnt models are significantly better
than Rules and Random baselines. Finally, model performs as close as the
rules in terms of generating the right number of social behaviors. Overall, we find
that is the best triggering policy in terms of all the five metrics we have
used.

 Baseline

k-κ 0.05 0.08 0.10 0.08 0.13

k-prec 0.45 0.48 0.50 0.48 0.49

k-rec 0.35 0.30 0.29 0.33 0.42

Pk 0.39 0.41 0.39 0.41 0.41

ΔB 3.10 12.57 13.13 14.38 6.56

Table 6.4: Evaluation results of our proposed Triggering Policies

Figure 6.4 and Figure 6.5 show an example of the use of the learnt triggering
policy, the social ratio filter and the rule based scoring of each strategy (as discussed
in section 6.1.5) to generate social behavior. In Figure 6.4 we see that the triggering
confidence is below the allowed threshold as the interaction approaches the end of a
tutoring episode. Also, we notice that five out of the eleven strategies are applicable
at this time.

At the end of the tutoring episode, as we see in Figure 6.5, the learnt triggering
policy generates a trigger with a confidence that is above the threshold and the social
ratio filter approves of this trigger. The rules select strategy 1b (compliment/praise)
and it is realized as shown in the highlighted line in the chat in Figure 6.5.

Given that we now have a triggering policy that mimics human triggering of
social behavior to greater extent than our existing triggering policies, the next section
describes a user study conducted to verify the hypothesis stated at the beginning of
this chapter.

90

Figure 6.4: Example of Social Behavior being generated by the Learnt Model (1)

Strategies
Available

(5 out of 11)

Trigger
Confidence
(below
threshold)

Tutoring
Episode

B
ef

or
e

91

Figure 6.5: Example of Social Behavior being generated by the Learnt Model (2)

Behavior
Triggered

Trigger
Confidence
(above
threshold)

Behavior
Performed

Social Ratio
(less than
filter
threshold)

A
ft

er

92

6.2 Experiment 3: Evaluating a Human-like Triggering
Policy

Here we will present an experiment we conducted to evaluate the effectiveness of
various ways to trigger social behavior discussed in the previous section. This
experiment is a step towards verifying the hypothesis that a human-like triggering
policy could outperform a rule-based triggering policy that was used in our earlier
experiments (Kumar et. al., 2010a).

We use the same interactive situation for the experiment presented here as in our
earlier work. Freshmen mechanical engineering students enrolled at an American
university participate in a computer-aided engineering lab that is divided into three
parts, i.e., Computer-Aided Design (CAD), Computer-Aided Analysis (CAA) and
Computer-Aided Manufacturing (CAM). Students practice the use of various
engineering software packages for all three parts as they design, analyze and
manufacture an Aluminum wrench. Our experiment is conducted during the second
part (CAA) of the lab.

6.2.1 Procedure & Materials

The procedures and materials described in this section are similar to those
employed in Experiment 1 (Section 5.1). The Computer-Aided Analysis lab
comprises of two activities. The first activity involves analyzing a wrench design
given to the students by specifying certain loading conditions and simulating the
stresses and deformations in the wrench. Students are led by a teaching assistant
during this activity. They spend approximately 25 minutes performing this activity.
At the end of the analysis activity, the students see a simulation of the stress
distribution in the body of the wrench.

After the analysis activity, a pre-test is administered. Each student spends 10
minutes working on the pre-test individually. The pre-test comprises of 11 questions,
8 of which are multiple-choice questions and the other 3 are short essay type
questions.

The second activity of the CAA lab is a collaborative design activity. During this
activity, students work in teams of three. Student in the same team are seated in
separate parts of the lab and can only communicate using a text-based chatroom

93

application (Mühlpfordt and Wessner, 2005). The chatroom application also provides
a shared workspace in the form of a whiteboard.

After the pre-test, students are given written instructions describing the
collaborative design activity. The instructions ask the students to design a better
wrench in terms of ease of use, cost of materials and safety compared to the wrench
they analyzed earlier. The students are expected to come up with three new designs in
40 minutes by varying parameters like dimensions and materials of the wrench. The
instructions also include various formulae and data that the students might need to
use for their designs. Besides course credit, the instructions mention an additional
giftcard for the team that comes up with the best design ($10 for each member of the
winning team).

Students are asked to log in to their respective team’s chatroom. They spend the
next 40 minutes working on the collaborative design activity. Besides the three
students, the chatroom for each team includes an automated tutor. The tutor guides
the students through the first two designs suggesting potential choices for dimension
and materials for each design. As the design activity progresses, the tutor initiates
four conceptual tutoring episodes to help the students reflect upon underlying
mechanical engineering concepts like stress, force, moment, safety, etc., that are
relevant to the design activity.

Our experimental manipulation happens during this 40 minute segment. The tutor
in each team’s chatroom is configured to perform social behavior using different
triggering policies as specified by the condition assigned to the team. The conditions
are discussed in the next section. Irrespective of the condition, each team receives the
4 conceptual tutoring episodes. Every student performs all the steps of this procedure
like all other students.

At the end of the collaborative design activity, a post-test and a survey are
administered. Students are asked to spend 15 minutes to first complete the test and
then the survey. The post-test is the same test used for pre-test. The survey comprises
of 15 items shown in Appendix B. The students are asked to rate each item on a 7-
point Likert scale ranging from Strongly Disagree (1) to Strongly Agree (7). The 15
items on the survey include 11 items eliciting their perception of the tutor. 9 of the 11
items state positive aspects of the tutor (e.g. …tutor was friendly…). The other 2
items stated negative aspects about the tutor (e.g. …tutor’s responses got in the
way…). Besides the items about the tutor, 2 items elicited the student’s rating about
the collaborative design activity. The last 2 items were about the student’s
satisfaction with their performance on the design task.

94

In total, both the activities that are part of the CAA lab take approximately 1 hour
40 minutes.

6.2.2 Experimental Design

The teams participating in the experiment described here were divided into six
conditions. These conditions determined the triggering policy and the amount of
social behavior performed by the automated tutors. Tutors in the None condition did
not perform any social behavior. Tutors in the Rules condition used the same hand
crafted rule-based triggering policy (Appendix J) employed in our earlier experiment
(Section 5.2). Following the results from another experiment (Kumar & Rosé,
2010c), the automated tutors in the Rules condition performed a moderate amount of
social behavior (atmost 20% of all tutor turns). On average, the Rules policy triggered
25 social turns per interaction. This corresponds to the same amount of social
behavior as the two Low conditions described ahead.

The RandomLow and RandomHigh conditions used a random triggering policy
with a social ratio filter to regulate the amount of social behavior. In both the random
conditions, the tutor would trigger social behavior using a random number generator
to generate the confidence of triggering a social behavior after every turn (by a
student or a tutor). In the RandomLow condition, a trigger was generated if the
confidence was above 0.91. In the RandomHigh condition, a trigger was generated if
the confidence was above 0.85. The triggers were filtered using the social ratio filter
before generating social behavior. On average, the RandomLow condition had 23
behaviors triggered per interaction. About 37 behaviors were triggered in the
RandomHigh condition.

The LearntLow and LearntHigh conditions used the best triggering policy
learnt from a corpus of human triggering of social behavior as discussed in Section
6.1.9. The same social ratio filter used in the random conditions was used in these
two conditions also. As in the case with RandomLow and RandomHigh, different
values of a confidence parameter were used for the LearntLow and LearntHigh
conditions to control the number of social behaviors triggered. On average, the
LearntLow condition had 22 triggers and the LearntHigh condition had 28 triggers.

6.2.3 Results

126 students enrolled in an introductory mechanical engineering course at an
Carnegie Mellon University participated in the experiment described in this section.
The course was selected based on the suitability of the collaborative wrench design

95

activity as a curricular exercise for this course. On each day, four sessions of the
Computer-Aided Analysis lab were conducted, and students attended only one
assigned session. Session assignment was made based on an alphabetic split. The 126
students were divided into 42 teams. 20 teams participated on the first day of the
experiment. They were evenly split into four conditions (None, Rules, RandomHigh
& LearntHigh). The remaining 22 teams participated on the second day. Out of these,
5 teams each were assigned to the None and RandomLow condition. 6 teams each
were assigned to the Rules and LearntLow conditions.

The rest of this section presents detailed results and analysis of this experiment.
To summarize, we found that out of the six evaluated policies only the LearntLow
policy that uses a triggering model learnt from human triggering data and generates a
moderate amount of social behavior is consistently better than the other policies in
terms of both performance as well as perception outcomes. Also, the LearntLow
policy is found to be most efficient at delivering the instructional content as indicated
by the smallest EpisodeDuration in Table 6.7.

Learning Outcomes

The learning outcomes analysis presented here shows the advantage of using a
triggering policy learnt from a corpus of human triggering behavior along with a
filtering technique that regulates the amount of social behavior as shown in Table 6.5.

First of all, we found no significant difference between the six conditions on the
pre-test scores. As in the case of previous experiments using this learning activity, we
saw that the learning activity was pedagogically beneficial to the students irrespective
of the condition. There was a significant improvement in test scores between pre-test
and post-test { p < 0.0001, F(1,250) = 26.01, effect-size = 0.58σ }.

The primary objective of the experiment described here was to verify the
hypothesis that a human-like triggering policy could outperform a rule-based
triggering policy. We used an ANCOVA analysis to compare the conditions that
employed either a rule-based (Rules) or learnt triggering policy (LearntLow and
LearntHigh). Using the post-test score as an dependent variable, the pre-test score as
a covariate and the condition as the independent variable, we found a significant
effect of condition { p = 0.01, F(2,62) = 4.98 } on the scores from the short-essay
type questions on the tests.

A post-hoc analysis showed that the LearntLow condition was significantly better
than the LearntHigh condition and the LearntLow condition was marginally better
than the Rules condition { p ≈ 0.08, effect-size = 0.84σ }. We observe that a

96

triggering policy learnt from human triggering behavior can achieve a marginal
improvement on learning outcomes compared to our existing rule-based triggering
policy. This is consistent with our hypothesis.

Mean St.Dev.

LearntLow 5.12 0.54

RandomLow 5.06 0.67

None 4.75 1.13

RandomHigh 4.59 1.09

Rules 4.38 0.89

LearntHigh 3.98 1.74

Table 6.5: Mean and Standard Deviation of Adjusted Post Test Scores
for Short Essay Type Questions

To further investigate the effects of other types of triggering policies, we repeated
the ANCOVA described above with the data from all the six conditions of our
experiment. We found no significant effect of the condition assigned to each team on
the total test scores. However, there was a significant effect on the test scores of
short-essay type questions using the pre-test score as a covariate and the condition as
a factor { p < 0.05, F(5, 119) = 2.88 }. The adjusted post test scores for the short
essay type questions and their standard deviations are shown in Table 6.5. Post-hoc
analysis showed that the LearntLow condition was significantly better than
LearntHigh condition { effect-size = 0.65σ }. Also, RandomLow condition was
marginally better than LearntHigh condition { p < 0.07, effect-size = 0.62σ }.

This result further supports the observation from our earlier experiment (Kumar
& Rosé, 2010c) which demonstrated that importance of performing the right amount
of social behavior. Both RandomLow and LearntLow conditions employ the non-
linear social ratio filter.

Perception Ratings

We averaged the student’s rating for the 11 items about the tutor into a single
tutor rating measure used here. Rating on the two negative statements about the tutor

97

were inverted (7→1, 6→2, and so on) for this calculation. We found a significant
effect of condition on the tutor ratings { p < 0.01, F(5,120) = 3.83 }. Table 6.6 shows
the mean and standard deviations of tutor ratings for each condition. Post-hoc
analysis showed that only the Rules condition was significantly better than the
RandomLow condition. Also, we found that Rules was marginally better than
LearntHigh condition { p < 0.08 } and both Learnt-Low and None conditions was
marginally better than RandomLow condition { p < 0.08 }.

Mean St.Dev.

Rules 4.74 1.45

LearntLow 4.56 1.58

None 4.42 1.49

RandomHigh 3.74 1.63

LearntHigh 3.55 1.26

RandomLow 3.18 0.91

Table 6.6: Mean and Standard Deviation of Tutor Ratings

While we did not see a significant improvement in perception due the use of a
learnt triggering policy when compared to a rule-based triggering policy, we find an
advantage over using a random triggering policy (RandomLow) which was as good
as a learnt policy on the learning outcomes. The results from the tutor’s perception
ratings further support the importance of timing and regulating the amount of social
behavior.

We did not find any significant effect of condition on the ratings about the design
activity or student’s task satisfaction.

6.2.4 Analysis of Tutoring Episodes

In comparison to Experiments 1 and 2, we find that the differences between the
conditions in this experiment are milder in comparison. In order to further understand
the results from the experiment 3, we applied the structural equation model discussed
earlier (Figure 5.3) to the data collected from experiment 3.

98

Figure 6.6 shows the parameters of the structural equation model for our current
experiment (p=0.4492). Only four variables were used because the annotations of
good and bad student behavior are not available.

Figure 6.6: SEM applied to data from this experiment

Mean St.Dev. MeanExperiment 1

RandomHigh 540.80 49.50

LearntHigh 534.80 61.00

None 523.88 41.54 619.31 (Task)

Rules 519.80 102.70 543.12 (Social)

RandomLow 519.20 74.40

LearntLow 484.00 69.80

483.89 (Human)

Table 6.7: Mean and Standard Deviation of Duration of Tutoring Episodes

We see that most of the model parameters (p-Value, means & correlations) are
similar to parameters for the model shown in Figure 5.3. However there are two

99

differences. First, we note that the mean of EpisodeDuration is smaller compared to
that in Figure 5.3 which indicates that lesser counterproductive behavior was
displayed by the students in this experiment. Eventhough the same learning activity
was used in these two experiments; they were conducted at different times of the
year. Experiment 1 was conducted in the first semester of freshmen year whereas
experiment 3 was conducted in the second semester.

Nonetheless, the lower episode duration indicated that the conceptual tutoring
episodes are operating closer to the minimum episode duration which leaves a smaller
room for improvement by the use of social interaction strategies. As discussed in
Section 5.4, we expect the social behavior to have a smaller effect on reducing
episode duration in this case.

This is confirmed by the second difference between Figure 5.3 and Figure 6.6.
The correlation between SocialTurns and EpisodeDuration is much smaller in
magnitude compared to Figure 5.3 (-3.9). Figure 6.7 shows a structural equation
model (p=0.6488) that combines that data from experiment 1 and experiment 3. The
relationship between SocialTurns and EpisodeTurns in this figure is similar to Figure
5.3.

Figure 6.7: SEM from Meta-Analysis of Experiment 1 and Experiment 3

The milder differences between conditions in this experiment can be further
explained using the Table 6.7 which shows the mean and standard deviations of the
duration of tutoring episodes for each condition from experiment 3. The table also

100

shows the mean episode duration from the corresponding conditions (Task None,
Social Rules, Human) available in experiment 1. Note that the human condition
was not used in experiment 3.

We see that in experiment 1, the attention of the group of students without any
effect of social behaviors (Task) by the tutors was much worse than in the case of
experiment 3 (None) as indicated by the higher episode duration for the Task
condition. Using social behavior, our experimental tutors in the Social condition were
able to reduce the mean episode duration by 76.19 seconds during experiment 1.
However, the episode duration in the None condition in experiment 3 was already
less than the episode duration for the social condition in experiment1, the rules were
unable to reduce it further by much, which explains the lack of a significant learning
effect between the None and the Rules conditions like experiment 1.

Table 6.7 also shows two additional interesting statistics. First, we see that both
the RandomHigh and LearntHigh condition conditions which performed more than an
optimal amount of social behavior added to further distracting the students. It is
because of the higher episode duration for these conditions compared to the None
condition. Second, we see that our learnt triggering policy with the right amount of
social behavior used in the LearntLow condition was able to reduce the episode
duration to almost the same values as the Human condition from experiment 1. This
indicates that the LearntLow triggering policy was as good as the human tutors at
maintaining student attention during the interaction.

6.2.5 Discussion

Prior work in the field of human-human interaction and human-machine
interaction in the form of dialog systems has emphasized the importance of timing the
display of behavior to achieve natural and/or productive interactions. In general,
timing of interactive behaviors (verbal as well as non-verbal) has been studied in the
context of joint activities being performed by the participants. Behaviors are timed to
achieve and maintain coordination between the participants (Clark, 2005).
Specifically, among other topics, timing of low-level (signal) interaction like turn-
taking has been the subject of several investigations (Raux & Eskenazi, 2008;
Takeuchi et. al., 2004).

On the other hand, the use of social behavior by conversational agents to support
students has been proposed (Veletsianos et. al., 2009; Gulz et. al., 2010). Work in the
area of affective computing and its application to tutorial dialog has focused on
identification of student’s emotional states and using those to improve choice of
behavior performed by tutors (D’Mello et. al., 2005). Our prior work (Kumar et. al.,

101

2010; Kumar et. al., 2007) has shown that social behavior motivated from empirical
research in small group communication (Bales, 1950) can help in effectively
supporting students in collaborative learning settings. Use of social interaction in
other applications of conversational agents besides education has been investigated
(Bickmore et. al., 2009; Dybala et. al., 2009; Dohsaka et. al., 2009).

The experiments presented here bridges these two tracks of research specifically
proposing a solution to the challenge of timing social behavior in the context of a
supporting collaborative learning. Compared to the work on timing signal-level joint
activities like turn-taking, this work focuses on the timing of joint activities at the
conversation level. The success of our algorithm at learning a model of timing
conversational behaviors in the context of an interactive task could potentially offer a
general approach for realizing such behaviors in other conversational agents.

6.2.6 Scope for Improvement: Error Analysis

In this section, we will discuss some of the common errors made by our
triggering policy which can help in improving the approach to learn a triggering
policy.

First of all, a quantitative analysis of the number of times social behavior was
triggering when none of the social interaction strategies were applicable, i.e., number
of times a generic social prompt is generated showed a significant negative
correlation with the tutor’s perception rating { coefficient = -0.20, p < 0.05 }. A
closer integration between the triggering policy and the strategies selection
mechanism would help in avoiding the generation of these behaviors. One way of
addressing this problem may be to incorporate the scores of each of these strategies,
computed at each turn during the interaction, as features in the learning algorithm.

Second, we notice few instances of social behavior being triggered too late
making it irrelevant in the discourse context. An example of this is shown in the
excerpt in the Table 6.8. Strategy 2a (Expression of feeling better) is becomes
applicable at the end of second tutor turn when a significant calculation in the
learning activity is completed. However, the triggering for this strategy is delayed by
72.3 second (515.9 - 443.6). While in some cases this may not be a problem if the
group is still on the same topic. However, as we see in Table 6.9, the prompt is out of
place after 25.3 seconds (296.9 - 271.6) when the discussion moves on to the next
topic.

102

t=438.3 Tutor So the moment achieved by the new 12" wrench is 600lb.in.

t=439.6 S026 wait 50% isnt 12

t=443.6 Tutor That's double of what we had with the original design.

t=446.2 S026 half of 6 is three

t=451.0 S020 no 50% of 6 is 3

t=459.2 S026 exactly

t=465.6 S026 so it is 100

t=468.3 S020 yes

t=480.5 S026 cool, so what is our moment?

t=484.5 S034 double

t=496.3 S020 600

t=503.0 S020 moment = force times distance

t=508.5 S020 force = 50, distance = 12

t=515.9 Tutor That's pretty good :-)

Table 6.8: Excerpt showing a social behavior being triggered too late (1)

t=251.3 Tutor So, using a longer wrench, you can get a higher moment for
the same effort. That makes the wrench easy to use, right?

t=260.7 S078 yes

t=266.1 S071 yes

t=271.6 Tutor Let's apply this concept to the design challenge.

t=288.4 Tutor To make the wrench easy to use, let's increase the length by
100%, i.e., to 12"

t=296.9 Tutor It's good to have your contributions to the discussion :-)

Table 6.9: Excerpt showing a social behavior being triggered too late (2)

103

Finally, we observe that using the social ratio filter brings the amount of the
social behavior generated by our policy closer to the amount of social behavior
displayed by the human tutors. However, the social ratio filter also ensure that
generated behavior is less than (or equal) to amount of human social behavior. From
Table 6.4 we note that on average our filtered policy generates 6.56 fewer social
turns. While we do not want to perform excessive social behavior, it might be
beneficial to maintain the same level of social behavior as human tutors.

Our current implementation of the social ratio filter does not facilitate this
matching in the amount of social behavior. One way of addressing this would be to
dynamically shift the confidence threshold (shown in Figure 6.4) based on the gap
between the current social ratio and the social ratio allowed by the filter. This would
allow more triggers to be generated, when the policy is performing less than the
expected number of social behaviors and vice versa.

6.2.7 Summary

In this chapter, we presented an experiment that compared the effectiveness of
several social behavior triggering policies. Specifically, we compared a triggering
policy learnt from a corpus of human triggering behavior to a rule-based policy which
has previously been shown to be successful at triggering effective social behavior in a
collaborative learning activity.

The presented experiment provides further evidence in support of the intuition
that timing of social behavior and regulating the amount of social behavior are critical
to improving performance and perception outcomes. A triggering policy based on
human-like timing in combination with a filter that attempts to keep amount of social
behavior at the same level as human tutors was shown to be marginally better than
the rule-based policy on learning outcomes. Also, on perception measures, we found
that the human-like policy is marginally better than a random triggering policy which
uses the same filter to control the amount of social behavior. Only the learned model
provides a win both on learning and on perception measures.

In order to better understand the effect of use of social behavior by automated
tutors on student’s learning outcomes, we presented a structured model which
suggests that social behavior helps in achieving higher learning outcomes by allowing
the tutor to better manage the student’s attention (measured indirectly using episode
duration). Following this model, we saw that a human-like triggering policy is able to
achieve higher student attention as indicated by the smaller duration of tutoring
episodes. Furthermore, the episode duration is comparable to that achieved by human
tutors during the same learning activity in experiment 1.

104

105

Chapter 7

Application: Group Decision Making

The three experiments described in Chapter 5 and Chapter 6 study the benefits
and appropriate use of social behavior by Conversational Agents for Collaborative
Learning application. While we find strong results in favor of the use of social
behavior for this application, we are also interested in investigating the
generalizability of these benefits to other multi-party interactive situations.

In this chapter, we will describe our work on developing a socially capable agent
that supports a group decision making activity. We will present an experiment
conducted to verify the generalizability of the effects that socially capable agents can
have on task success and perception.

7.1 Non-Combatant Evacuation Operation

7.1.1 Red Cross Rescue Scenario

In this section, we will describe an interactive situation involving a group of
participants working on a decision making task. We use this situation to investigate
the effects of socially capable agents. The Non-Combatant Evacuation Operation
(NEO) task is a common military operation conducted to rescue, extract and evacuate
non-combatant personnel under various circumstances including natural disasters,
threat of hostile enemy, political uncertainty, etc. We have chosen to use an
instantiation of a NEO. The Red Cross Rescue scenario (Warner et. al., 2003) was
developed for the Office of Naval Research Collaboration and Knowledge
Interoperability program in order to facilitate research on team collaboration and
problem solving.

106

In this scenario, a team of participants work together to plan a course of action
(COA) to rescue three Red Cross workers trapped on a pacific island in a war
between the guerilla forces and the local military. The participants are assigned expert
roles such as Weapons expert, Environmental expert and Intelligence expert. They are
provided with extensive information regarding the scenario, the island, the guerilla
forces, the local military, the condition of the Red Cross workers, their mission
objective and knowledge related to their assigned expert role. The participants are
asked to come up with a realistic COA that meets all the mission’s objectives.

7.1.2 Procedure

A lab experiment that involves a team of participants working on the Red Cross
rescue scenario is comprised of the following steps.

1. Participants complete a consent form and questionnaire that collects
demographic information such as age, gender, occupation and military
experience.

2. Participants are given instructions about the group decision making task.
They are asked to communicate only through an Instant Messaging
application. The instructions walk them through the Red Cross rescue
scenario and give them information such as amount of time available to
them and deliverables that are part of the COA.

3. The participants spend 12 minutes reading through the information about
the island, guerilla and local military, their expert knowledge, etc.

4. Participants are given instructions to log into their instant messaging chat
room.

5. The participants spend 50 minutes communicating with each other and an
automated agent playing the role of an administrator to plan the COA for
the scenario given to them. By the end of the 50 minutes, the participants
come up with a plan comprising of six elements.

• List of US personnel involved in the rescue

• Any transportation they will need to get to, from and around the
island

• Any weapons they will need

107

• Critical timings for the mission

• A detailed plan describing the COA

• Any additional comments

6. After the group activity is completed, the participants individually
complete a survey that elicits their perception about each other, the
administrator agent and the task (Appendix G).

7. Finally, the participants complete a knowledge test that assesses their
understanding of the mission objectives (Appendix H).

This procedure takes 90 minutes. During the entire time, participants are located
in separate cubicles of the same room. They are not able to see each other. They are
paid $15 for their time. They are also told that a performance reward is available to
teams that come up with a high scoring plan.

7.1.3 Metrics

We use two direct metrics in this application scenario. The first one is a task
success/performance metric that measures the quality of the COA generated by the
team through their 50 minute interaction. The quality is measured using an evaluation
rubric (Appendix F) that penalizes a COA for various types of mistakes and computes
a quality score by subtracting the penalties from a maximum score of 100. The rubric
includes five levels of penalties for mistakes that have different degrees of impact on
the success of a mission. For example, an incorrect calculation with minimal impact
carries a penalty of only 2 points. On the other hand, a calculation error with severe
impact on mission success carries a penalty of 5 points.

The second metric is based on the perception survey shown in Appendix G. The
metrics comprise of 18 items in total. 10 of these items elicit perception ratings of
each teammate and of the agent. The other 8 items elicit ratings about the quality of
discussion, task satisfaction, team cooperation, etc.

Note that a single performance metric is computed for the entire team. This is
different from the metrics used in the Collaborative Learning application where the
learning outcome was computed for each participant individually. On the other hand,
the perception ratings are computed individually for each participant. This is similar
to the case with the Collaborative Learning application.

108

7.2 Agent for supporting Group-Decision making

7.2.1 Agent Capabilities

neoagent Hmmm ...

neoagent According to your plan, are the rescuers likely to engage the
enemy?

neo1 no

neo3 no

neoagent Alright.

neo3 we will be as covert as possible

neoagent BTW: Is this consistent with your mission objectives?

neo1 Yes

neo3 i think so, we dont want to destroy villages with missiles

neoagent Hmmm... might help to think about how you can improve on this
aspect.

Table 7.1: Excerpt of an interaction between Agent and Participants

We have developed a conversational agent that interacts with the team of
participants during the 50 minutes they have for planning their COA for the Red cross
rescue scenario. To situate the agent’s presence in the team, the agent is assigned the
role of an administrator. As the administrator, the agent’s task is to provide necessary
information and instructions to the team such as

1. Real time updates about the situation on the island while the team
members move forward with their interaction. These updates are based
on the dynamic information condition that was part of the design of the
original Non-Combatant Evacuation Operation scenario (Warner et. al.,
2003).

2. Reminders about the amount of time left to complete the COA

109

3. Reminders about taking the time to fill out the elements of the plan if the
participants have not made significant progress on it.

In addition to delivering these necessary instructions to the participants, the agent
tracks the decision making of the team to detect common mistakes such as not
accounting for the medical needs of the Red Cross workers, using unavailable
resources such as a translator, not being able to avoid detection by the enemy forces,
etc. When such a mistake is detected by the agent, it brings up its concerns to the
team by asking them a series of very general questions related to the concern.

The questions are framed in a very general form to allow generalizability of this
capability of the agent to support planning of Non-Combatant Evacuation operation
in general, without being specific to the Red cross rescue scenario. An excerpt of an
interaction where the agent brings up a concern about engaging the enemy is shown
in Table 7.1.

1. Showing Solidarity: Raises other's status, gives help, reward
1a. Do Introductions: Introduce and ask names of all participants
1b. Give Reassurance: When participant is discontent, asking for help
1c. Compliment / Praise: To acknowledge participant contributions
1d. Support Agreement: When teammates show approval towards each other
1e. Conclude Socially

2. Showing Tension Release: Jokes, laughs, shows satisfaction
2a. Be cheerful
2b. Highlight Disagreement: To encourage the team to address concerns that a
participants might have

3. Agreeing: Shows passive acceptance, understands, concurs, complies
3a. Show attention / encouragement: To ideas from participants
3b. Show comprehension / approval: To opinions and orientations

Table 7.2: Social Interaction Strategies used by Agent
to support Group Decision Making

110

Besides these task-related behaviors the agent is also programmed with social
capabilities similar to the social interaction strategies used for the tutor agents in
Collaborative Learning applications. Table 7.2 lists the nine social interaction
strategies used by the agent developed for this application. In addition to sharing
many of the strategies listed in Table 4.3, we have implemented two additional
strategies that are relevant to the group decision making application. Both of these
strategies are triggered by presence of agreements or disagreements among the
participants. Supporting agreement (Strategy 1d) and encouraging the participants to
address the concerns that led to any potential disagreements (Strategy 2b) can help in
regulating the social-emotional processes during the decision making interaction.

neo1 Okay, maybe we should break this problem down

neo1 let's tackle the first item

neoagent Let's try that

neo3 re speed, checking. break down -- agreed.

neo1 We have night vision, they don't

neo1 Here, let me edit the plan real quick

neo3 sure

neoagent Good to see that we are moving forward.

neo3 done editing for a bit?

neo3 I'm thinking we should cut our losses and come from the north. We
might have casualties, but civilians won't get hurt

neo3 What do you think neo1

neoagent It might help your plan to address any concerns your teammates have.

neo1 Ok

neo1 send everyone we have from different angles?

Table 7.3: Examples of Instantiation of Social Interaction Strategies
during the NEO Group Decision Making Activity

111

Examples of the instantiation of some of these strategies during actual
interactions with the participants performing the NEO activity in lab experiments are
shown in Table 7.3. The first example shows the agent using strategy 3a to show
encouragement towards a decisive act by one of the participants. In the second
example, the agent demonstrates strategy 1d in response to the show of
agreement/approval among the participants regarding using the tactical advantage of
having night vision. Strategy 2b is exhibited in the last example in Table 7.3 where
the agent highlights the concerns of one of the team members regarding civilian
casualties.

7.2.2 Implementation

An agent with all the capabilities described in the previous section has been
implemented using the Basilica architecture. Figure 7.1 shows the component
network of this agent.

We can observe the similarities between the component network of this agent and
that of other agents described in Chapter 3 and Chapter 4. The three user observable
behaviors of the agent (doing introductions, prompting and short dialogs) are
implemented as three filter-actor pairs. Input from the users is processed through a
dictionary based annotator (MessageAnnotator).

Unlike the WrenchTalker agent that had two controller components that shared
control, the NEO agent has three controller components. The PlanExecutor and the
SocialController are similar to the corresponding components in the WrenchTalker
agent. They control the execution of the interaction plan and the social behavior of
the agent respectively. The triggering policy employed by the SocialController to
trigger the social interaction strategies listed in Table 7.2 is based on a set of hand-
crafted rules similar to those used by the WrenchTalker agent described in Chapter 4.
The learnt triggering policy described in Chapter 6 would not generalize to be used in
this scenario because it used features specific to the collaborative learning activities.

However, the NEO agent has a third controller component. The DecisionTracker
component tracks the discussion of the users to maintain scores for the common
mistakes that the team might be make during the decision making task. The
DecisionTracker uses changes in these scores to generate events that launch dialogs
that might help the users reevaluate and correct potential mistakes in their COA. An
example of such a dialog is shown in Table 7.1. The list of common mistakes and the
vocabularies used to track them were gradually developed during the development
phase of our user studies described in the next section.

112

Figure 7.1: Component Network of the NEO Agent

Also, we can note that unlike the WrenchTalker agent where the two primary
controllers (PlanExecutor and SocialController) shared control by alternately
checking the need for control with each other, in the case of the NEO agent, control is
managed through a dedicated ControlManager component. All the primary
controllers (DecisionTracker, PlanExecutor and SocialController) request control
from the ControlManager when they need to perform a behavior and relinquish the
control as soon as their behavior is done. The ControlManager serves the requests for
control as a queue. Furthermore, the ControlManager implements certain sanity
checks into the control sharing mechanism by retracting control from components
that might not relinquish it within a reasonable amount of time from being granted
control. This serves as a mechanism for recovering from potential failures in one of
the components and isolates the functionality of the rest of the component network
from being affected by this failure. In general, this provides a scalable control sharing
mechanism as the number of primary controllers in an agent grows.

We note that the environment listener and actor components have been replaced
by XMPPListener and XMPPActor similar to the 9-1-1 Interpreter agent. We have
developed a special purpose communication environment for the NEO group decision
making activity that uses a server implementing the XMPP protocol as its
communication backend. A screenshot of this communication environment is shown

113

in Figure 7.2. On the left hand side, the environment provides a typical chat
environment that allows the participants to communicate with each other and the
agent using text messages. On the right hand side, the environment provides a shared
workspace that allows the participants to collaboratively construct the course of
action for the rescue. They can also refer to the list of available military assets and the
island map within the other tabs on the right hand side of the environment.

Figure 7.2: Communication Environment for NEO Group Decision Making Activity

7.3 Experiment 4: Supporting Group Decision Making

While earlier work with the NEO Red Cross rescue scenario has focused on
studying communication and collaboration in teams comprising of only human
participants (Letsky et. al., 2008), here we are interested in studying the benefits of

114

using a socially capable conversational agent in addition to the human participants. In
this section, we will describe an experiment similar to Experiment 1 discussed in
Chapter 5.

7.3.1 Experimental Design

This controlled lab experiment compares the performance of human teams that
are supported by a socially capable agent described in the previous section to that of
teams supported by an agent that does not perform any of the social behavior listed in
Table 7.2. We conducted a between subject experiment where each team of
participants was randomly assigned to one of two conditions. The experiment
followed the procedure described in Section 7.1.2. The experimental manipulation
took place during step 5 of this procedure where the team of the participants
interacted with each other as well as an automated agent for 50 minutes to decide on a
course of action for the rescue operation.

The teams in the Social condition interacted with a socially capable agent
whereas the teams in the Task condition interacted with an agent that performed only
the task related functions.

7.3.2 Participants

The experiment was conducted in a closed lab with four cubicles that prevent the
participants from seeing each other. Participants were recruited from the CMU
Experiment Scheduling website. The website allows participants from the Pittsburgh
community to enroll in experiments. An age restriction of 18 years – 36 years was
applied and three participants were requested for each experimental session. If all
three participants reported on time, they were randomly assigned to the three expert
roles (Weapons, Environmental, Intelligence). If only two participants reported on
time, the Environmental and Intelligence expert roles were combined and assigned to
one of the participants and the other participant was assigned the Weapons expert
role. The experiment session was canceled when only one or none of the participants
reported on time.

The experiment sessions were conducted during 5 weeks spread over a duration
of about four months. During this time, 37 sessions were conducted. 17 of these
sessions had three participants and the remaining 20 had only two participants. Of
these 37 sessions, only the last 20 sessions will be used in the analysis discussed in
the next section. The two conditions that are part of our experimental design are
evenly distributed between these 20 sessions. Two of the other 17 sessions were

115

discarded because of connectivity problems that reduced the interaction time during
step 5 of our procedure significantly. The other 15 were session held during the initial
weeks of the experiment were discarded as development session which were used to
test and fine tune the agent while it was being implemented. The agent development
was frozen during the last 20 sessions and the same version of agents was used
consistently through all of these sessions.

Of the 20 sessions used in our final analysis, 10 of the teams had 2 participants
and the other 10 team had 3 participants. Teams of both sizes were evenly distributed
between the two conditions. We found no significant differences between the
distribution of age, gender, number of students and the number of people with
military history (including ROTC) between the two conditions.

7.3.3 Results

As discussed in Section 7.1.3, we will analyze the results of this experiment in
terms of two metrics.

Task Success / Performance Metrics

As a performance metric, we use the score that each team’s course of action
received based on the scoring rubric shown in Appendix F. The score is computed by
subtracting the penalties assigned to the team’s COA as per the rubric from a
maximum score of 100. We can further subdivide the penalties into two categories.
Coarse grained penalties (Error Type A or B) correspond to mistakes such as

• Ignoring to fill out a necessary element of the COA (e.g. timing, weapons,
etc.)

• Choosing an unrealistic solution such as deploying tanks etc.

In contrast, the Fine grained penalties (Error Type C, D or E) correspond to
minor mistakes such as a

• Calculation errors

• Spending more than 30 minutes on evacuating the Red Cross workers

• Damaging the village

Figure 7.3 shows a plot of the total score and each type of penalty for the teams
in both the conditions. An ANOVA using each of these performance metrics as the

116

dependent variable and condition as the independent variable showed that the Social
condition is significantly better than the Task condition on the Total Score (higher
score) as well as the fine-grained penalties (lower penalty). The difference between
the two conditions for the coarse-grained penalties is not significant.

• Total Score: F(1,19)=9.21, p < 0.01

• Coarse-grained Penalty: F(1,19)=0.65, p=0.431

• Fine-grained Penalty: F(1,19)=14.82, p<0.001

This observation suggest that the participants make significantly fewer Type C, D
and E errors when the NEO agent performs social behavior. Most of the dialogs that
the agent brings up during the interaction correspond to mistakes that lead to such
penalties. We believe the reason for this effect is that the participants in the NEO
group decision making activity paid more attention to the agent’s dialogs about these
fine-grained mistakes and were able to rectify them within the time they had to come
with their final COA. This reasoning follows from our analysis of the effect of social
behavior on student attention towards tutorial dialogs in collaborative learning
activities.

Figure 7.3: Plot of Total Score and Coarse & Fine grained Penalties

We found no significant effect of the size of the team on these metrics. In order to
study the effect of the participant’s understanding of the mission objectives on their
performance as measured by the knowledge test (Appendix H), we performed an

117

ANCOVA using their individual test scores as a covariate to model their team’s total
score and penalties. Condition was used as the independent variable. We found no
significant effect of their knowledge test scores on their team performance.

Perception Metrics

The perception metrics used in this experiment are based on a survey (Appendix
G) administered to the participants after the group decision making activity. The first
10 items on the survey elicited ratings from each participant about the agent and their
teammates on a 7-point Likert scale. We use the average score on these items as a
participant’s rating for the agent and his/her teammates. Ratings on questions 8 and 9
of the survey were inverted (7 1, 6 2, …) to match the polarity of all the
questions. Figure 7.4 shows the mean agent and teammate rating for the participants
in both of the conditions.

Figure 7.4: Mean Rating by the participants for the Agent and their Teammates

An ANOVA using the ratings as the dependent variable and the condition as the
independent variable showed significant effect of condition on both agent as well as
the teammate rating. The participants rated both their agent as well as their teammates
significantly higher when the agents performed the social behaviors.

• Agent Rating: F(1,49)=4.62, p < 0.05

• Teammate Rating: F(1,49)=4.46, p < 0.05

118

Further, we performed an ANCOVA on the agent rating using teammate rating as
a covariate and condition as an independent variable to check if the higher rating for
the agent was because the participants were rating the agent relative to their
teammates whom they rated higher in Social condition. We found no significant
effect of teammate rating on agent rating.

While the higher rating for the agent could be explained by the use of social
capabilities of the agent, we further investigated the reason for the higher ratings for
the teammates using demographics and other available ratings as additional factors in
the model. First of all, we found a significant gender effect on teammate rating. Male
participants were significantly (F(1,49)=4.9, p < 0.05) more likely to rate their
teammates higher (Average=6.11) compared to female participants (Average=5.55).
We found no significant effect of the gender distribution of the teammates on the
participant’s ratings of their teammates. Second, we observed a significant positive
correlation (r=0.566, p < 0.001) between the teammate rating and the cooperation
rating given by the participant (Q15 on Appendix G). This suggests that teammates
were rated higher when the participants perceived a higher degree of cooperation
during the group decision making activity.

Figure 7.5: Average Ratings about Team, Task and Discussion

Figure 7.5 shows a plot of the average rating for the other items (Q11-Q18) on
the survey shown in Appendix G. We observe significant effects in favor of the
Social condition for the items 14 – 18 (Quality of discussion, Cooperation, Best
Effort, Task Satisfaction, Team Performance).

119

Overall, we observe strong effects in favor of the Social condition for both the
performance as well as the perception metrics. The use of socially capable agents can
help in improving the quality of a team’s decisions and enrich their experience during
group decision making activities.

120

121

Chapter 8

Conclusion

Interfaces such as Conversational Agents can offer effective support to users in a
variety of interactive situations. The work presented in this thesis is motivated by a
vision of agents that can participate and engage users in multi-party interactive
situations while enhancing their productivity and enriching their experience.

Through this thesis, we have explored two problems that must be addressed to
achieve this vision. The first of these problems involves the technical issues
surrounding the implementation of agents that can participate in such situations.
These problems arise from the assumptions (Chapter 2) implicit within the
approaches and tools previously available for the development of Conversational
Agents.

The second problem focuses on the communication skills that agents
participating in multi-party situations must display. Specifically, we find the need for
creating socially capable agents. In this work, we follow a model of human social
behavior developed by research in small group communication to identify and
implement the social capabilities that are relevant to the interactive situations
investigated here.

This thesis contributes approaches, knowledge and software artifacts that address
both of these problems. Experiments described in this thesis discuss the effectiveness
and appropriate use of some of these contributions in the context of two multi-party
application domains: Collaborative Learning and Group Decision Making.

In this chapter, we will list the specific contributions of this thesis in the context
of these two problems. This will be followed by a discussion of the shortcomings and
future directions leading from the conclusions derived from our experiments.

122

8.1 Thesis Contributions

8.1.1 Building Agents for Multi-Party Interactive Situations

Chapter 2 and Chapter 3 of this thesis describe our work on identifying and
alleviating the problems involved in building agents for MPIS. We describe an
approach for modeling conversation as an orchestration of triggering of behaviors.
Development of agents based on this approach is supported by the Basilica
architecture which is the primary technical contribution of this thesis. Basilica is an
event-driven architecture that represents CAs as a network of behavioral components.

Following a programmatic approach (vs. an authoring approach), the behaviors of
each of these components are specified using a high-level programming language
(like Java). This approach provides us with a rich representational capability to build
agents because the behaviors of these agents are not restricted to simple combinations
of a limited set of conversational operations. This is different from many existing
formalisms for representing agent behaviors which use very high level languages that
provide only a small set of operators to specify agent behavior.

The use of an event-driven architecture and decomposition of the agent into a
network of behavioral components provides the flexibility to model complex
interaction dynamics that are often observed during multi-party interactive situations
(e.g. Multi-Party turn taking in a collaborative learning situation). The loose-coupling
of behavioral components that follows from the decomposition facilitates re-usability
of these components across agents as demonstrated by the progression of agents
discussed in Chapter 3.

As an extension of the benefits of this representational capability and
decomposability, the architecture facilitates the development of hybrid agents that
combine many existing techniques for modeling the individual conversational
behaviors encapsulated within each of the behavioral components. Hence, in a way,
the Basilica architecture functions as a meta-architecture.

Besides building the Basilica architecture, we have developed a collection of
agents using this architecture for a variety of interactive tasks and a variety of agent
roles to demonstrate the breadth of capabilities of the Basilica architecture. These
agent implementations provide reusable components that can be used for developing
other agents. Also, the designs of the component networks of these agents provide
guidelines and examples for designing agents that can be implemented using the
Basilica architecture.

123

8.1.2 Socially Capable Conversational Agents

This thesis experimentally explored the design space of socially capable agents.
The relevant social capabilities of these agents are determined within the context of
their application using the social-emotional interaction categories identified by
research in Small Group Communication. Chapter 4 and Chapter 7 discuss the use of
this approach to design and implement agents that support users in two applications
scenarios, i.e., collaborative learning and group decision making.

The thesis describes a series of experiments conducted using these socially
capable agents. The results and analysis of these experiments contribute the following
insights into the use of socially capable conversational agents.

Agents with social capabilities can achieve significantly better task success and
perception ratings compared to agents that perform the same task related behaviors
but no social behaviors. Specifically, experiments 1 and 4 show this in the context of
the two different applications listed above. While both the applications use similar
metrics of agent perception, the metrics used for task success are very different.
However, a similar effect of the use of social behavior is observed. Together, these
results recommend the use agents with social capabilities to support users in multi-
party interactive situations.

Structural equation modeling discussed in Section 5.4 contributes an insight into
the mechanism through which the use of social behaviors by agents achieve the
outcomes described above. We find that social behavior helps in regulating the
attention of the user towards the information being delivered by the agent.
Specifically, we notice that social behavior helps in counteracting the negative effects
of dysfunction in groups on the attention of the users. The resulting higher attention
of the user towards the agent has a direct positive effect on task success. While on the
one hand this recommends the use of socially capable agents in applications
frequently used by communicatively dysfunctional groups, we also note that the
benefits of the use of these social capabilities may diminish or disappear in the case
of interaction involving high functioning groups.

Experiment 2 and 3 investigate the issue of appropriate use of the social
capabilities of the agent used in experiment 1. Experiment 2 compares three agents
that perform different amount of social behavior to determine an appropriate amount
of social behavior. Experiment 3 on the other hand compares six agents that use three
different policies for timing social behavior.

124

First of all, both of these experiments emphasize the important of performing the
right amount of social behavior. A simpler recommendation based on experiment 2
suggests using a moderate (15-20%) amount of social behavior on average over the
course of a 35 minute interaction with a group of users. The fine grained social ratio
filtering approach discussed in Section 6.1.8 suggests the use of model that capture
that temporal dynamics of the appropriate amount of social behavior over the course
of the 35 minutes interaction with the users. The model learnt using the filtering
approach suggests that it may be appropriate to perform as much as 50% of social
behavior in the formative/conclusive phases of group interaction and agrees with the
15% recommendation of the simpler model during the performance phase of the
interaction.

Second, based on experiment 3, we find support for the use of a triggering policy
learnt from data that captures a series of human-made decisions to perform social
behavior in a collaborative learning application. Compared to random and rule-based
triggering policies, the learnt policy used in combination with the social ratio filter
mentioned above was found to be the only policy that performs highly on both the
task success as well as the perception metrics. Besides recommending the choice of
an appropriate triggering policy, this thesis also contributes an approach for modeling
the timing of human social behavior. Specifically, this approach uses a large margin
learning technique to learn a model that decides when a social behavior should be
performed. The technique provides us the flexibility to design optimization
constraints that direct the algorithm towards discovering a model that optimizes a
metric (such a Pk or kKappa) of our choice.

Together, these experiments contributes knowledge that helps us in taking a step
towards achieving the vision of creating effective and useable agents that can use
social capabilities to improve the support they offer to users in multi-party interactive
situations. In addition to this knowledge, the experiments described here and other
experiments conducted using the various agents built using the Basilica architecture
contribute data collected from over 1000 human subjects who make up over 300
small groups.

Above all, through this work, we have attempted to bridge the fields of Small
group communication and Conversational Agents. As further discussed in the next
section, both of these fields stand to gain from this bridge. While group
communication offers insights into the design of appropriate communication skills for
CAs, these agents offer a controlled technique for simulating and modeling the
effects of specific behaviors on the outcomes of group interaction.

125

8.2 Directions

Before we discuss the next steps and promising future directions resulting from
this thesis, four shortcomings of the analysis and techniques used in this work are
listed below.

First, in our analysis of the effect of the use of social behaviors on learning, we
only consider the social behavior performed by the agents. While this is the primary
interest of this thesis, conventionally an analysis of Balesian equilibrium between
instrumental and expressive processes in group interaction takes into account the
expressive contributions of all the participants in the group. In our analysis, we have
assumed invariance in the amount of social behavior performed by the users between
the teams used in our analysis. As a next step towards improving our understanding
of the mechanism through which social behaviors affect outcomes of our interest,
further analysis should incorporate variables that measure the social behaviors
performed by the users.

Second, the techniques used to learn a policy for triggering social behavior only
helps the agents decide if they should perform a social behavior. As discussed in
section 6.1.5, this decision is followed by a rule-based determination of which social
behavior should be performed. Although rarely, this leads to the situations such as the
triggering policy recommending that the agent should perform a social behavior
while the rules do not find any of the social interaction strategies applicable at that
time. In our current implementation, this is addressed by performing a default social
behavior. This hybrid approach that combines learnt and rule based models to create a
triggering policy is a suitable solution in our case considering the relatively small
amount of data available to train the triggering policy. However, this directs our
attention to a general problem of learning multi-class policies that have to choose
between more than two options. As we suggest an approach that model agents as a
collection of behavior one or more which may be triggered by learnt policies, it may
be useful to investigate algorithms that can learn to choose between more than two
actions associated with a behavior.

Related to the above mentioned shortcoming is the issue of coordination among
various behaviors that may be triggered almost simultaneously. Our current
implementations of CAs address this issue in different ways. For example, the
WrenchTalker tutor agent described in section 4.5 achieves coordination between the
task and social behaviors of the agent by using a control token that is alternately
shared between the components that perform these behaviors. The component that
does not need control, immediately relinquishes it to the other component. In contrast

126

to this implementation, the NEO agent described in section 7.2 uses a
ControlManager component to achieve coordination between the three behaviors of
that agent. While currently the control manager uses a simple queue based approach
to coordinate between the three behaviors, we find this to be a better approach as we
move towards agents with large number of behaviors. Depending on the application
and the design of the agent’s component network, a more sophisticated coordination
policy such as a priority queue can be implemented as an extension to this approach.
In general, coordination among behaviors is a one of the challenges that must be
investigated further to create highly complex CAs.

The fourth shortcoming relates to the two options offered by this thesis to help us
choose the appropriate amount of social behavior that agents should perform. Both of
these choices (fixed percentage, social ratio filter) use an interaction invariant model.
However, it may be useful to change the amount of social behavior performed by the
agents based on the characteristics of the group and its interaction. The structural
equation model shown in Figure 5.3 offers two potential approaches to adaptively
determine the right amount of social behavior for collaborative learning applications.
First, a simple approach can use the magnitude of increase in the episode duration
from an efficient minimum for each tutoring episode. Higher episode duration can be
used as an indication of the need for higher amount of social behavior. A more
complex approach could model the dysfunction in the groups by automatically
monitoring the bad behavior of the students and use that to determine the right
amount of social behavior appropriate for each group.

Besides the four shortcoming and the corresponding next steps discussed above,
we have considered two promising research directions that could use the techniques
and knowledge developed in this thesis.

First of all, we found that social behavior acts as a regulatory mechanism in
group interaction. Specifically, it regulates user attention towards the agent measured
as the reduction in the time it takes for the tutor to deliver its instructional content
during tutoring episodes. Discovery and study of other regulatory mechanism which
are crucial to functioning of small groups could help us create better agents for MPIS.

Second, the conversational agents are only one of many types of interfaces that
support group interaction. Other interfaces such as chatrooms, multi-player video
games, discussion forums, online social networks, etc. could potentially benefit from
having relevant social capabilities alongside their existing task related functionality.
In general, the display of multiple behaviors so as to maintain equilibrium between
different objectives of the interactive situation is a problem that re-occurs in many of
these modern interfaces. A common example of this is the display of advertisements

127

on websites where designs and developers must choose the right amount of
advertising for the content being presented to maintain equilibrium between the
attention and the financial economies of the website.

8.2.1 Outlook

In contrast to the useful yet rather simplistic applications which were being
investigated in the context of conversational agents and dialog systems until recently,
we now see this technology being applied to richer and more complex interactive
applications such as the two applications discussed in this thesis. Future work on CAs
will focus on developing systems that can interact with many users using multiple
modalities for input and output. The duration of an interactive session may extend
from minutes to hours and days. The agents may need to interact with other interfaces
including other agents. The range of application may vary from experience driven
casual use to performance driven serious use. Many of these aspects are currently
being investigated by researchers within the context of several application scenarios.

As we move towards realizing these agents, research on this technology must
investigate not only novel approaches for representing and generating interactive
capabilities, but also allow several approaches to work together to create highly
interactive agents. While our use of Basilica as a meta-architecture enables this
within the scope of the work discussed in this work, earlier in this section, we have
discussed two shortcomings of behavior generation and coordination that must be
investigated in the near future as we move towards these complex applications. Along
these lines, few other directions are worth further investigation.

We must investigate approaches to generate novel behavior to keep the user
engaged over long term interaction. The use of data-driven and crowd sourcing
techniques can help us acquire agent behavior from the observation of human
behavior. In addition to approaches for modeling agents the focus on adhering to a
plan or reacting to local discourse events, we must develop approaches that allow
agents to be opportunistic. Such agents will be able to effectively utilize opportunities
to achieve secondary goals such as delivering recommendations to the user, eliciting
user feedback, shaping user perspective towards the task or the agent, etc. The use of
non-anthropomorphic interactive behaviors (e.g. beeps) can help in improving the
communication efficiency in certain application. The lack of a model of the effects of
such behaviors impedes their use and is worth future exploration.

Within the context of multi-party interactive situations, the issue of group
formation is crucial. While in our applications ad-hoc groups were used, group
functioning and productivity can be further improved by selectively grouping users

128

that are likely to complement yet cooperate with each other. Initial or prior interaction
of the users with agents can be used to systematically or opportunistically elicit user
characteristics that can help in determining optimal grouping of users.

129

Appendix A

Test administered during Wrench Lab

Q1. Stress is 1 point

a) Force b) Force x Area
c) Force / Area d) Area / Force

Q2. Does stress determine how easy it is to use a Wrench to turn a bolt? 1 point

a) Yes
b) No

Q3. Explain your answer to Q2 in the space below 2 points

Q4. In general, while designing a Wrench, we want to 1 point

a) Increase Stress
b) Decrease Stress
c) Not change Stress

Q5. Explain your answer to Q4 in the space below 2 points

130

For questions 6 - 8, What happens to the following on increasing the length of
the handle?

Q6. Stress a) Increases 1 point

b) Decreases
c) Doesn’t Change

Q7. Ease of Use a) Improves 1 point

b) Degrades
c) Doesn’t Change

Q8. Cost a) Increases 1 point

b) Decreases
c) Doesn’t Change

Q9. Explain your answer to Q7 in the space below 2 points

Q10. If the Yield Stress of the following material is as below 1 point

 Plastic = 4000 lb/in2
 Aluminum = 35000 lb/in2
 Steel = 50000 lb/in2
 Titanium = 80000 lb/in2

From a safety point of view, which is the best material of choice for building the
Wrench?
 a) Plastic b) Aluminum
 c) Steel d) Titanium

Q11. The maximum stress in the Aluminum Wrench you designed is about 5000
lb/in2. If you double the length of the handle, which all of the following materials
can you use safely to manufacture the wrench. Use a Safety Factor of 4.
 2 points
 a) Plastic b) Aluminum
 c) Steel d) Titanium

131

Appendix B

Test administered during
Thermodynamics Lab

For each of the following changes to cycle parameters, how is the efficiency changed.
Pick only one option. (1 point each)

Q1. Decreasing Maximum Temperature at which heat is added to the Cycle
 (a) increases (b) decreases (c) remains the same

Q2. Decreasing Minimum Temperature at which heat is rejected from the Cycle
 (a) increases (b) decreases (c) remains the same

Q3. Why is excessive moisture or liquid water in steam undesirable in steam
turbines? (1 point)

Q4. What limits the minimum pressure at which a condenser of a Rankine cycle can
be operated at? (2 points)

Q5. If you were cared both about the power output and the environmental impact of a
Rankine cycle, how would you achieve the best compromise between these two
goals? (1 point)

132

Consider a simple ideal Rankine cycle with fixed turbine inlet temperature (Tmax)
and condenser pressure (Pmin). For each of the following (Q6 – Q11), what is the
effect of increasing the boiler pressure (Pmax) on: (1 point each)

Q6. Pump work input
 (a) increases (b) decreases (c) remains the same

Q7. Turbine work output
 (a) increases (b) decreases (c) remains the same

Q8. Heat supplied
 (a) increases (b) decreases (c) remains the same

Q9. Heat rejected
 (a) increases (b) decreases (c) remains the same

Q10. Cycle efficiency
 (a) increases (b) decreases (c) remains the same

Q11. Liquid moisture content at turbine exit
 (a) increases (b) decreases (c) remains the same

Q12. Explain your answer to Question 10 (2 points)

Consider a simple ideal Rankine cycle with fixed boiler and condenser pressures
(Pmax and Pmin). For each of the following (Q13 – Q18) what is the effect of
superheating the steam to a higher temperature on: (1 point each)

Q13. Pump work input
 (a) increases (b) decreases (c) remains the same

Q14. Turbine work output
 (a) increases (b) decreases (c) remains the same

133

Q15. Heat supplied
 (a) increases (b) decreases (c) remains the same

Q16. Heat rejected
 (a) increases (b) decreases (c) remains the same

Q17. Cycle efficiency
 (a) increases (b) decreases (c) remains the same

Q18. Liquid moisture content at turbine exit
 (a) increases (b) decreases (c) remains the same

Q19. Explain your answer to Question 16 (2 points)

Consider a simple ideal Rankine cycle with fixed turbine inlet conditions (Pmax and
Tmax). For each of the following (Q20 – Q25) what is the effect of lowering the
condenser pressure (Pmin) on: (1 point each)

Q20. Pump work input
 (a) increases (b) decreases (c) remains the same

Q21. Turbine work output
 (a) increases (b) decreases (c) remains the same

Q22. Heat supplied
 (a) increases (b) decreases (c) remains the same

Q23. Heat rejected
 (a) increases (b) decreases (c) remains the same

Q24. Cycle efficiency
 (a) increases (b) decreases (c) remains the same

Q25. Liquid moisture content at turbine exit
 (a) increases (b) decreases (c) remains the same

134

Q26. Explain your answer to Question 21 (2 points)

Q27. Which of the following energy sources is the best choice for improving Cycle
efficiency? (1 point)
 (a) Coal (b) Solar (c) Natural Gas (d) Nuclear

Q28. In the T-S diagram for a Rankine Cycle shown below, indicate the net amount
of work done by the Rankine Cycle. (1 point)

Q29. Modify the T-S diagram for a Rankine Cycle shown below to indicate how the
cycle changes when you increase the Maximum Pressure of the Cycle (2 points)

135

Appendix C

Collaborative Learning Perception
Survey

Using the following scale, Indicate to what extent you agree with each of the
following items.

1 2 3 4 5 6 7
Strongly
Disagree

Mostly
Disagree

Somewhat
Disagree

Neutral Somewhat
Agree

Mostly
Agree

Strongly
Agree

Q1 I liked the tutor very much. 1 2 3 4 5 6 7

Q2 The tutor was very cordial and friendly during the
discussion 1 2 3 4 5 6 7

Q3 The tutor was providing very good ideas for the
discussion 1 2 3 4 5 6 7

Q4 The tutor kept the discussion at a very comfortable level
socially 1 2 3 4 5 6 7

Q5 The tutor was part of my team 1 2 3 4 5 6 7

Q6 The tutor received the ideas and suggestions I
contributed to the discussion positively 1 2 3 4 5 6 7

Q7 I am happy with the discussion we had during the
design challenge 1 2 3 4 5 6 7

Q8 My group was successful at meeting the goals of the
design challenge 1 2 3 4 5 6 7

Q9 The design challenge was exciting and I did my best to
come up with good designs 1 2 3 4 5 6 7

136

137

Appendix D

Design Sheet for Collaborative Wrench
Design Activity

138

139

Appendix E

Design sheet for Collaborative Power
Plant Design Activity

140

141

Appendix F

Scoring Rubric for Non-Combatant
Evacuation Planning

Planning Card Error Error
Type

Points
Lost

Personnel Omitting Personnel Card A 20

Transportation Omitting Transportation Card A 20

Using aircraft that requires in flight refueling without calculating
refueling needs

C

5

 Calculation error rendering the solution impossible C 5

 Using aircraft that requires in flight refueling (with correct
calculations) E 2

 Performing calculations incorrectly with minimal impact E 2

 Using one aircraft that needs refueling, but others that don’t. E 2

Weapons Omitting Weapons Card A 20

 Using unavailable weapons D 3

 Failing to address weapons used by selected military D 3

Times Omitting Times Card A 20

 Failing to include required critical times (onset of operation,
contact with workers, evacuation, return)

C

5

 Calculation error rendering the solution impossible C 5

 Failing to account for tides or coral reef (if using sea approach) D 3

142

Planning Card Error Error
Type

Points
Lost

 Rescuing workers during daylight hours D 3

 Performing calculations incorrectly with minimal impact E 2

 More than 0.5 hours spent in church E 2

Plan Omitting Plan Card A 20

 Unrealistic solution (tanks, etc.) B 10

Neglecting to include all requirements of the plan as listed in the
Mission Statement

• Getting to the church
• Evacuating the workers
• Returning to the base or ship

C

5 for
each

 Failing to address medical treatment
a. Insulin, b. Broken leg C 2.5 each

 Harming the enemy unnecessarily C 5

 Damaging the village unnecessarily C 5

 Failing to arrange for translator if need established D 3

 Failing to address detection D 3

 Failing to avoid detection if addressed C 2

 Failing to avoid land mines E 2

Miscellaneous Other Type A error (e.g. omitting planning card) A 20

 Other Type B error (e.g. serious violation of mission statement,
unrealistic solution)

B

10

 Other Type C error (e.g. moderate violation of mission statement,
calculation error with serious impact)

C

5

 Other Type D error (e.g. minor violation of mission statement)
D

3

 Other Type E error (e.g. calculation error with minimal impact)
E

2

143

Appendix G

Group Decision Making Perception
Survey

1 2 3 4 5 6 7
Strongly
Disagree

Mostly
Disagree

Somewhat
Disagree

Neutral Somewhat
Agree

Mostly
Agree

Strongly
Agree

Using the above scale,
Indicate to what extent you agree with each of the following statements for each
participant in your team. Ignore the field about yourself.

Q1 This participant provided good ideas for
our task.

Admin 1 2 3 4 5 6 7
Weapons 1 2 3 4 5 6 7

Environmental 1 2 3 4 5 6 7
Intelligence 1 2 3 4 5 6 7

Q2 This participant received my contributions
positively.

Admin 1 2 3 4 5 6 7
Weapons 1 2 3 4 5 6 7

Environmental 1 2 3 4 5 6 7
Intelligence 1 2 3 4 5 6 7

Q3 This participant was friendly during the
discussion.

Admin 1 2 3 4 5 6 7
Weapons 1 2 3 4 5 6 7

Environmental 1 2 3 4 5 6 7
Intelligence 1 2 3 4 5 6 7

Q4 This participant responded to my
contributions.

Admin 1 2 3 4 5 6 7
Weapons 1 2 3 4 5 6 7

Environmental 1 2 3 4 5 6 7
Intelligence 1 2 3 4 5 6 7

144

Q5 This participant helped in lowering the
tension in our team.

Admin 1 2 3 4 5 6 7
Weapons 1 2 3 4 5 6 7

Environmental 1 2 3 4 5 6 7
Intelligence 1 2 3 4 5 6 7

Q6 This participant was paying attention to our
conversation.

Admin 1 2 3 4 5 6 7
Weapons 1 2 3 4 5 6 7

Environmental 1 2 3 4 5 6 7
Intelligence 1 2 3 4 5 6 7

Q7 Overall, I liked this participant very much.

Admin 1 2 3 4 5 6 7
Weapons 1 2 3 4 5 6 7

Environmental 1 2 3 4 5 6 7
Intelligence 1 2 3 4 5 6 7

Q8 I often ignored what this participant was
saying.

Admin 1 2 3 4 5 6 7
Weapons 1 2 3 4 5 6 7

Environmental 1 2 3 4 5 6 7
Intelligence 1 2 3 4 5 6 7

Q9 This participant's contributions got in the
way of our planning.

Admin 1 2 3 4 5 6 7
Weapons 1 2 3 4 5 6 7

Environmental 1 2 3 4 5 6 7
Intelligence 1 2 3 4 5 6 7

Q10 This participant was an important part of
my team.

Admin 1 2 3 4 5 6 7
Weapons 1 2 3 4 5 6 7

Environmental 1 2 3 4 5 6 7
Intelligence 1 2 3 4 5 6 7

Using the same scale as above,
Indicate to what extent you agree with each of the following statements.

Q11 The mission was exciting 1 2 3 4 5 6 7

Q12 I wanted to win the extra reward 1 2 3 4 5 6 7

Q13 My group members felt that the discussion was important 1 2 3 4 5 6 7

Q14 I am happy with the discussion we had during this task 1 2 3 4 5 6 7

145

Q15 We worked together during the mission 1 2 3 4 5 6 7

Q16 We tried our best to come with the rescue plan 1 2 3 4 5 6 7

Q17 My team was successful at meeting all the objectives of our
mission 1 2 3 4 5 6 7

Q18 The plan we came up with will qualify for the extra reward 1 2 3 4 5 6 7

146

147

Appendix H

Knowledge Test:
Non-Combatant Evacuation

Consider the following evacuation plan that one of the teams came up with:

Personnel:
Flight Crew for two helicopters
4 for seahawk, 2 for hornets
2 riflemen with rifles and grenades
1 riflemen with just rifle
1 radioman

Weapons:
Whatever is on the helicopters

Transportation:
1 US Navy SeaHawk
1 F-18 Hornet
1 C-130 with extra fuel

Comments:
Hornets for fire support

Timing:

1. Seahawk leaves USS Enterprise: 3am

2. Hornet leaves USS Enterprise: 4:45am

3. C-130 leaves base in time to refuel
seahawk

4. Seahawk Arrive at Church: 5am

5. Hornet arrives at church 5mins after
seahawk

6. Leave Island: 5:30am

7. Return to USS Enterprise: 9am

Details:
• Hover over church and airlift evacuees
• Two navy seals will reach down to church

and secure area, stabilize medical
situation and evacuate

• Fly over the north and enter the island
from north

• Seahawk to be refuel on route back to
USS Enterprise by C-130

Answer the following questions about the above plan:

Q1. Do the rescuers have all the personnel they need to execute this plan? YES NO

Q2. Do the rescuers have sufficient weapons to execute this plan? YES NO

Q3. Do the rescuers have sufficient transportation to execute this plan? YES NO

148

Q4. Does the plan address all the medical care that must be provided YES NO
 to the evacuees?

Q5. According to this plan, are the rescuers likely to be detected or YES NO
 engage the enemy?

Q6. Does the plan involve potentially complicated operations like YES NO
 refueling, use of tanks, navigating through land mines, involving locals, etc.

Q7. On a scale of 1 (worst) to 10 (best), how would rate the above plan? _________

Consider the following evacuation plan that one of the teams came up with:

Personnel:
7-man squad of Navy seals
6-man squad of Army special forces

Weapons:
As included on aircraft + /w team

Transportation:
3 Toyota Trucks
1 C-130
1 Zodiac
1 Blackhawk
5 F-18s

Timing:
• Onset: 2am
• Contact: 4:10am
• Evacuation: 4:20am

• Return to Base or Ship: 5:20am

Details:
• 2am: Contact local by radio for 3 toyota

trucks to be waiting 50 miles south of
church on the shore

• Fly C-130 in with 5 seals, 6 army, 6 miles
from shore

• Meet trucks on shore + at the same time
send in 3 F-18s on the east shore for
diversion

• Drive to church in trucks
• 2 medics go into church w/water + insulin
• 4:20 black hawks will pick team up while

F-18s defends us.
• Send the F-18s back

Answer the following questions about the above plan:

Q1. Do the rescuers have all the personnel they need to execute this plan? YES NO

Q2. Do the rescuers have sufficient weapons to execute this plan? YES NO

Q3. Do the rescuers have sufficient transportation to execute this plan? YES NO

149

Q4. Does the plan address all the medical care that must be provided YES NO
 to the evacuees?

Q5. According to this plan, are the rescuers likely to be detected or YES NO
 engage the enemy?

Q6. Does the plan involve potentially complicated operations like refueling, YES NO
 use of tanks, navigating through land mines, involving locals, etc.

Q7. On a scale of 1 (worst) to 10 (best), how would rate the above plan? _________

150

151

Appendix I

Design of the Annotation Interface

152

153

Appendix J

Rules for Triggering Social Behaviors

Only Triggered if Current Social Ratio < Threshold (0.2 in Experiment 1)

Event Received

Social Behavior Triggered

DORMANT_GROUP
When group is inactive

1e: Encourage
Prompt targeted towards entire group

DORMANT_STUDENT
When individual is inactive

1e: Encourage
Prompt targeted inactive individual

Plan Step Completed

Social Behavior Triggered

DO_GREETINGS 1a: Do introductions

DO_CONCLUSION 1f: Conclude socially

{ Calculation Steps } 2a: Expression of feeling better
Prompt is selected based on step completed

{ Design Review Steps } 2c: Express enthusiasm, elation, satisfaction
Prompt is selected based on step completed

154

Plan Step Completed

Social Behavior Triggered

{ Tutoring Episode Steps } 1d: Compliment / Praise
Praised students selected based on contributions

Only Triggered if Current Social Ratio < Threshold (0.2 in Experiment 1)

Student Message
Annotation

Social Behavior Triggered

TEASING &&
!TUTOR_REFERENCE 1b: Be protective & nurturing

DISCONTENT ||
HELP_NEEDED 1c: Give reassurance

SMILES || POSITIVITY 2b: Be cheerful

IDEA_CONTRIBUTION 3a: Show attention

GIVING_OPINION ||
GIVING_ORIENTATION 3b: Show compression / approval

155

Bibliography

(Ai et. al., 2010) Hua Ai, Rohit Kumar, Amrut Nagasunder, Carolyn P. Rosé, 2010,
Exploring the Effectiveness of Social Capabilities and Goal Alignment in
Computer Supported Collaborative Learning, Intelligent Tutoring Systems,
Pittsburgh, PA

(Aist and Mostow, 2009) Gregory Aist and Jack Mostow, 2009, Designing Spoken
Tutorial Dialogue with Children to Elicit Predictable but Educationally Valuable
Responses, Interspeech 2009, Brighton, UK

(Aleven et. al., 2001) Vincent Aleven, Octav Popescu and Kenneth R. Koedinger,
2001, Pedagogical Content Knowledge in a Tutorial Dialogue System to Support
Self-Explanation, AIED-2001 Workshop on Tutorial Dialogue Systems, San
Antonio, Texas

(Allen et. al. 1996) James F. Allen, Bradford W. Miller, Eric K. Ringger, and Teresa
Sikorski, A Robust System for Natural Spoken Dialogue, Proc. of the 1996 Annual
Meeting of the Association for Computational Linguistics (ACL'96), June 1996.
pp. 62-70

Amtrack Julie, 2003, http://www.networkworld.com/news/ 2003/0619julie.html

(Andre et. al., 2004) Elisabeth Andre, Matthias Rehm, Wolfgang Minker, and Dirk
Buhler, 2004, Endowing Spoken Language Dialogue Systems with Emotional
Intelligence, Proc. of Affective Dialogue Systems, 2004

(Arnott et. al., 2008) Elizabeth Arnott, Peter Hastings and David Allbritton, 2008,
Research Methods Tutor: Evaluation of a dialogue-based tutoring system in the
classroom, Behavior Research Methods, 40 (3), 694-698

A.L.I.C.E. Bot, http://www.alicebot.org/about.html

(Bales, 1950) Robert F. Bales, 1950, Interaction process analysis: A method for the
study of small groups, Addison-Wesley, Cambridge, MA

(Bales, 1953) Robert F. Bales, 1953, The Equilibrium Problem in Small Groups, In:
T. Pardone, R. F. Bales, E. A. Shils (Eds): Working Papers in the Theory of
Action, Glencoe, IL, Free Press

156

(Bales, 1958) Robert F. Bales, 1958, Task roles and social roles in problem-solving
groups, In: T. M. Newcomb and E. L. Hartley (Eds): Readings in Social
Psychology, Hold, Rinhart and Winston, 1958

(Banerjee and Rudnicky, 2006) Satanjeev Banerjee and Alex Rudnicky, 2006,
SmartNotes: Implicit Labeling of Meeting Data through User Note-Taking and
Browsing, Proc. of the NAACL-HLT, New York, NY

Basilica Wiki, Architecture for building Conversational Agents,
 http://basilica.rohitkumar.net/wiki/

(Beeferman et. al., 1999) Doug Beeferman, Adam Berger and John D, Lafferty, 1999,
Statistical Models for Text Segmentation, Machine Learning, 34 (1-3): 177-210

(Benuš, 2009) Štefan Benuš, 2009, Are we ‘in sync’: Turn-taking in collaborative
dialogues, Proc. Interspeech 2009

(Bhatt et. al., 2004) Khelan Bhatt, Martha Evens, Shlomo Argamon, 2004, Hedged
responses and expressions of affect in human/human and human/computer tutorial
interactions, CogSci, Chicago, IL

 (Bickmore and Cassell, 2001) Timothy Bickmore and Justine Cassell, 2001,
Relational agents: a model and implementation of building user trust, Proc. of the
SIGCHI Conference on Human Factors in Computing Systems, CHI '01. ACM,
New York, NY, 396-403

(Bickmore et. al., 2009) Timothy Bickmore, Daniel Schulman and Langxuan Yin,
2009, Engagement vs. Deceit: Virtual Humans with Human Autobiographies, Proc.
of Intelligent Virtual Agents, Amsterdam, Netherlands

(Bion, 1961) Wilfred R. Bion, 1961, Experiences in groups: And other papers. Basic
Books, New York, NY

(Bohus, 2007) Dan Bohus, 2007, Error Awareness and Recovery in Conversational
Spoken Language Interfaces, PhD dissertation, Computer Sci-ence Department,
Carnegie Mellon University, Pittsburgh, PA

(Bohus et. al., 2007a) Dan Bohus, Sergio Grau, David Huggins-Daines, Venkatesh
Keri, Gopala Krishna A., Rohit Kumar, Antoine Raux, and Stefanie Tomko, 2007,
Conquest - an Open-Source Dialog System for Conferences, HLT-NAACL 2007,
Rochester, NY

(Bohus et. al., 2007b) Dan Bohus, Antoine Raux, Thomas Harris, Maxine Eskenazi
and Alex Rudnicky, 2007, Olympus: an open-source framework for conversational

157

spoken language interface research, HLT-NAACL 2007, Workshop on Bridging
the Gap: Academic and Industrial Research in Dialog Technology, Rochester, NY

(Bohus and Horovitz, 2009) Dan Bohus and Eric Horvitz, 2009, Dialog in the Open
World: Platform and Applications, Proc. of the 11th International Conference on
Multimodal Interfaces and the 6th Workshop on Machine Learning for Multimodal
Interfaces, Cambridge, MA, USA' , pp. 31-38

(Bohus and Rudnicky, 2003) Dan Bohus and Alex Rudnicky, 2003, RavenClaw:
Dialog Management Using Hierarchical Task Decomposition and an Expectation
Agenda, Eurospeech 2003, Geneva, Switzerland

(Bos and Oka, 2003) Johan Bos and Tetsushi Oka, 2003, Building Spoken Dialogue
Systems for Believable Characters, 7th workshop on the semantics & pragmatics of
dialogue

(Burke, 1967) Peter J. Burke, 1967, The development of Task and Social-Emotional
Role Differentiation, Sociometry, vol. 30 (4), pp. 379-392

(Callaway et. al., 2007) Charles Callaway, Myroslava Dzikovska, Elaine Farrow,
Manuel Marques-pita, Colin Matheson and Johanna Moore, 2007, The Beetle and
BeeDiff tutoring systems, SLaTE 2007, Farmington PA

(Clark, 2005) Herbert H. Clark, 2005, Coordinating with each other in a material
world, Discourse Studies, 7 (4-5), 507-525

(Constantinides et. al., 1998) Paul C. Constantinides, Scott Hansma, Chris Tchou,
Alexander I. Rudnicky, 1998, A schema-based approach to dialog control, Proc. of
ICSL

(Cassell et.al., 1999) Justine Cassell, Timothy Bickmore, M. Billinghurst, L.
Campbell, K. Chang, H. Vilhjálmsson, and H. Yan, 1999, Embodiment in
Conversational Interfaces: REA, Proc. of the CHI'99 Conference, pp. 520-527.
Pittsburgh, PA

(Chaudhuri et. al., 2008) Sourish Chaudhuri, Rohit Kumar, Carolyn P. Rosé, 2008,
It’s not easy being green - Supporting Collaborative Green Design Learning, ITS
2008, Montreal

(Chaudhuri et. al., 2009) Sourish Chaudhuri, Rohit Kumar, Iris Howley, Carolyn P.
Rosé, 2009, Engaging Collaborative Learners with Helping Agents, Proc. of AI in
Education

158

(Pearce and Conger, 2003) Craig L. Pearce and Jay Alden Conger (Eds.), 2003,
Shared leadership: Reframing the hows and whys of leadership, Sage, Thousand
Oaks, CA

(Crammer and Singer, 2003) Koby Crammer and Yoram Singer, 2003,
Ultraconservative online algorithms for multiclass problems, Journal of Machine
Learning Research, 3, 951-991

Dan Bohus, A list of spoken language interfaces,
http://research.microsoft.com/en-us/um/people/dbohus/SDS

(DeVault et. al., 2009) David DeVault, Kenji Sagae and David Traum, 2009, Can I
finish? Learning when to respond to incremental interpretation results in
interactive dialogue, SIGDIAL 2009, London, UK

(Davis, 1969), James H. Davis, 1969, Group performance, Addison–Wesley,
Reading, MA

(D’Mello et. al., 2008) Sidney D’Mello, Tanner Jackson, Scotty Craig, Brent Morgan,
Patrick Chipman, Holly White, Natalie Person, Barry Kort, Rana el Kaliouby,
Rosalid W. Picard and Arthur Graesser, 2008, AutoTutor Detects and Responds to
Learners Affective and Cognitive States, Workshop on Emotional and Cognitive
Issues, ITS 2008, Montreal

(Dohsaka et. al., 2009) Kohji Dohsaka, Ryoto Asai, Ryichiro Higashinaka, Yasuhiro
Minami and Eisaku Maeda, 2009, Effects of Conversational Agents on Human
Communication in Though Evoking Multi-Party dialogues, 10th Annual SigDial
meeting on Discourse and Dialogue, London, UK

(Dybala et. al., 2009) Pawel Dybala, Michal Ptaszynski, Rafal Rzepka and Kenji
Araki, Humoroids: Conversational Agents that induce positive emotions with
humor, 2009, AAMAS, Budapest, Hungary

(Edlund et. al., 2004) Jens Edlund, Gabriel Skantze and Rolf Carlson, 2004, Higgins -
a spoken dialogue system for investigating error handling techniques, Proc. of
ICSLP, Jeju Island, Korea

(Eisenstein and Barzilay, 2008) Jacob Eisenstein and Regina Barzilay, 2008,
Bayesian unsupervised topic segmentation, Proc. of EMNLP, Honolulu, HI

(Ferguson et. al., 2009) George Ferguson, James Allen, Lucian Galescu, Jill Quinn,
Mary Swift, 2009, CARDIAC: An Intelligent Conversational Assistant for Chronic
Heart Failure Patient Heath Monitoring, Proc. of the AAAI Fall Symposium on
Virtual Healthcare Interaction, Arlington, VA

159

(Foner, 1997) Leonard N. Foner, 1997, Entertaining agents: a sociological case
study, Proc. of the First international Conference on Autonomous Agents,
AGENTS '97. ACM, New York, NY, 122-129

(Forbus et. al. 1999) Kenneth D. Forbus, Peter B. Whalley, John O. Everett, Leo
Ureel, Mike Brokowski, Julie Baher, Sven E. Kuehne, 1999, CyclePad: An
Articulate Virtual Laboratory for Engineering Thermodynamics, Artificial
Intelligence, vol. 114 (1-2), pp. 297-347

(Freedman, 2000) Reva Freedman, 2000, Plan-based dialogue management in a
physics tutor, Proc. 6th conference on Applied Natural Language, pp 52-59

(Gulz et. al., 2010) Agneta Gulz, Annika Silvervarg and Björn Sjödén, 2010, Design
for off-task interaction - Rethinking pedagogy in technology enhanced learning,
Intl. Conf. on Advanced Learning Technologies, Tunisia

(Graesser et. al., 2001) Arthur C. Graesser, Natalie K. Person. Derek Harter and The
Tutoring Research Group, 2001, Teaching tactics and dialog in AutoTutor, Intl.
journal of AI in Education. vol. 12(3), pp. 257-279

(Graesser et. al., 2003) Arthur C. Graesser, Kristen Moreno, Johana Marineau, Amy
Adcock, Andrew Olney and Natalie Person, 2003, AutoTutor Improves Deep
Learning of Computer Literacy: Is it the Dialog or the Talking Head? AIED 2003,
Sydney, Australia

(Graesser et. al., 2005) Arthur C. Graesser, Patrick Chipman, Brian C. Haynes, and
Andrew Olney, 2005, AutoTutor: An Intelligent Tutoring System with Mixed-
initiative Dialogue, IEEE Transactions in Education, 48, 612-618

(Gockley et. al., 2005) Rachel Gockley, Allison Bruce, Jodi Forlizzi, Marek
Michalowski, Anne Mundell, Stephanie Rosenthal, Brennan Sellner, Reid
Simmons, Kevin Snipes, Alan C. Schultz and Jue Wang, 2005, Designing Robots
for Long-Term Social Interaction, IROS 2005

(Gorin et. al., 1997) Allen L. Gorin, Giuseppe Riccardi, Jeremy H. Wright, 1997,
How may I help you? Speech Communication (SPEECH) 23(1-2):113-127

(Gweon et. al., 2011) Gahgene Gweon, S. Jeon, J. Lee, and Carolyn P. Rosé, 2011, A
Framework for Assessment of Student Project Groups On-Line and Off-Line, In S.
Puntambekar, G. Erkens, C. Hmelo-Silver, C. (Eds.), Analyzing Collaborative
Interactions in CSCL: Methods, Approaches and Issues, Springer

160

(Hall et. al., 2009) Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,
Peter Reutemann and Ian H. Witten, 2009, The WEKA Data Mining Software: An
Update; SIGKDD Explorations, Volume 11, Issue 1

 (Hanna et. al., 2007) Philip Hanna, Ian O'neill, Craig Wootton, Michael Mctear,
2007, Promoting extension and reuse in a spoken dialog manager: An evaluation
of the queen's communicator, ACM Trans. Speech Language Processing 4, 3

(Harris and Rudnicky, 2007) Thomas K. Harris and Alex I. Rudnicky, 2007,
Teamtalk: a platform for multi-human-robot dialog research in coherent real and
virtual spaces, Association for the Advancement of Artificial Intelligence,
Vancouver B.C., Canada

(Isbell et. al., 2001) Charles Isbell, Christian R. Shelton, Michael Kearns, Satinder
Singh, Peter Stone, 2001, A social reinforcement learning agent, Proc. of the 5th
International Conference on Autonomous Agents, AGENTS '01, Montreal, Canada

(Isbister et. al., 2000) Katherine Isbister, Hideyuki Nakanishi, Toru Ishida, Cliff Nass,
2000, Helper Agent: Designing an assistant for human-human interaction in a
virtual meeting space, CHI 2000, 57-64, The Hague, Netherlands

(Isbister and Doyle, 2002) Katherine Isbister and Patrick Doyle, 2002, Design and
Evaluation of Embodied Conversational Agents: A Proposed Taxonomy, AAMAS
Workshop: Embodied Conversational Agents, Bologna, Italy

(Miller, 1976) Jean Baker Miller, 1976, Toward a New Psychology of Women.
Beacon Press, Boston, MA

(Johnson, 2007) W. Lewis Johnson, 2007, Serious use of a serious game for language
learning, In R. Luckin et al. (Eds.), Artificial Intelligence in Education, Amsterdam

(Jordan et. al., 2006) Pamela W. Jordan, Maxim Makatchev, Umarani Pappuswamy,
Kurt VanLehn and Patricia Albacete, 2006, A natural language tutorial dialogue
system for physics, Proc of the 19th International FLAIRS Conference. Menlo
Park, CA

(Jordan et. al., 2007) Pamela Jordan, Brian Hall, Michael Ringenberg, Yue Cui,
Carolyn P. Rosé, 2007, Tools for Authoring a Dialogue Agent that Participates in
Learning Studies, AIED 2007

(Kumar et. al., 2011) Rohit Kumar, Jack L. Beuth and Carolyn P. Rosé, 2011,
Conversational Strategies that Support Idea Generation Productivity in Groups, 9th
Intl. Conf. on Computer Supported Collaborative Learning, Hong Kong

161

 (Kumar and Rosé, 2010a) Rohit Kumar, Carolyn P. Rosé, 2010, Conversational
Tutors with Rich Interactive Behaviors that support Collaborative Learning,
Workshop on Opportunities for intelligent and adaptive behavior in collaborative
learning systems, ITS 2010, Pittsburgh, PA

(Kumar et. al., 2010) Rohit Kumar, Hua Ai, Jack Beuth, Carolyn P. Rosé, 2010,
Socially-capable Conversational Tutors can be Effective in Collaborative-Learning
situations, Intelligent Tutoring Systems, Pittsburgh, PA

(Kumar and Rosé, 2010b) Rohit Kumar, Carolyn P. Rosé, 2010, Engaging learning
groups using Social Interaction Strategies, NAACL-HLT, Los Angeles, CA

(Kumar et. al., 2007a) Rohit Kumar, Carolyn Rosé, Mahesh Joshi, Yi-Chia Wang,
Yue Cui and Allen Robinson, 2007, Tutorial Dialogue as Adaptive Collaborative
Learning Support, 13th AIED 2007, Los Angeles, California

(Kumar et. al., 2007b) Rohit Kumar, Gahgene Gweon, Mahesh Joshi, Yue Cui,
Carolyn Rosé, Supporting students working together on Math with Social
Dialogue, Workshop on Speech and Language Technology in Education,
Farmington, PA, 2007

(Kumar and Rosé, 2009) Rohit Kumar, Carolyn Rosé, 2009, Building Conversational
Agents with Basilica, Proc. of NAACL-HLT, Boulder, CO

(Kun et. al., 2007) Andrew Kun, Tim Paek and Zeljko Medenica, 2007, The Effect of
Speech Interface Accuracy on Driving Performance, Interspeech 2007, Antwerp,
Belgium

(Lane and VanLehn, 2004) H. Chad Lane and Kurt VanLehn, 2004, A Dialogue-
based tutoring system for beginning programming, FLAIRS 2004, Miami Beach,
FL

(Laughlin, 1980) Pattrick R. Laughlin, 1980, Social combination processes of
cooperative problem-solving groups on verbal intellective tasks, In: M Fishbein
(Ed.), Progress in Social Psychology (pp. 127–155). Hillsdale, NJ: Erlbaum

(Letsky et. al., 2008) Michael P. Letsky, Norman W. Warner, Stephen M. Fiore, and
C. A. P. Smith, (Eds.)., 2008, Macrocognition in teams: Theories and
methodologies, Ashgate

(Litman et. al., 2000) Diane Litman, Satinder Singh, Michael Kearns and Marilyn
Walker, 2000, NJFun: a reinforcement learning spoken dialogue system, Proc. of
the ANLP-NAACL 2000 Workshop on Conversational Systems, Morristown, NJ

162

(Litman and Silliman, 2004) Diane J. Litman and Scott Silliman, 2004, ITSPOKE: An
Intelligent Tutoring Spoken Dialogue System, HLT-NAACL Demonstrations,
Boston, MA

(Lison, 2011) Pierre Lison, 2011, Multi-Policy Dialogue Management, SigDial 2011,
Portland OR

(Liu and Chee, 2004) Yi Liu and Yam San Chee, Designing Interaction Models in a
Multiparty 3D learning environment, Intl. Conf. on Computers in Education, 2004

(McDonald et. al., 2005) Ryan McDonald, Koby Crammer and Fernando Pereira,
2005, Online large-margin training of dependency parsers, Proc. of ACL, 91-98,
Ann Arbor, MI

(McGrath, 1984) Joseph E. McGrath, 1984, Groups: Interaction and Performance,
Prentice-Hall, NJ

(Mühlpfordt and Wessner, 2005), Martin Mühlpfordt and Martin Wessner, 2005,
Explicit referencing in chat supports collaborative learning, Proc. Computer
Support for Collaborative Learning (CSCL)

(Murray et. al., 2001) R. Charles Murray, Kurt VanLehn and Jack Mostow, 2001, A
decision-theoretic architecture for selecting tutorial discourse actions, AIED-2001
Workshop on Tutorial Dialogue Systems, San Antonio, Texas

(Nakano et. al., 2008) Mikio Nakano, Kotaro Funakoshi, Yuji Hasegawa, Hiroshi
Tsujino, 2008, A Framework for Building Conversational Agents Based on a
Multi-Expert Model, 9th SigDial Workshop on Discourse and Dialog, Columbus,
Ohio

(Nallasamy et. al., 2008) Udhyakumar Nallasamy, Alan W Black, Tanja Schultz and
Robert Frederking, 2008, NineOneOne: Recognizing and Classifying Speech for
Handling Minority Language Emergency Calls, LREC 2008, Marrakech, Morocco

(Neikrasz and Moore, 2010) John Niekrasz and Johanna D. Moore, 2010, Unbiased
Discourse Segmentation Evaluation, Proc. of SLT, Berkeley, CA

NoHold Instant Support, http://www.nohold.com

Nuance Café, http://cafe.bevocal.com/

(O’Neill et. al., 2003) Ian O’Neill, Philip Hanna, Xingkun Liu and Michael McTear,
2003, The Queen’s Communicator: A Object-Oriented Dialogue Manager, Proc.
Eurospeech 2003, pp 593-596

http://www.nohold.com/

163

(Pakucs and Melin, 2001) Botond Pakucs and Håkan Melin, 2001, PER: A speech
based automated entrance receptionist, In 13th Nordic Conference of
Computational Linguistics, NoDaLiDa'01. Uppsala University, Uppsala

(Patel et. al., 2003) Niraj Patel, Michael Glass and Jung Hee Kim, 2003, Data
Collection Applications for the NC A&T State University Algebra Tutoring,
Fourteenth Midwest Artificial Intelligence and Cognitive Science Conference,
Cincinnati, OH

(Pevzner and Hearst, 2002) Lev Pevzner and Marti A. Hearst, 2002, A critique and
improvement of an evaluation metric for text segmentation, Computational
Linguistics, 28(1):19–36

(Raux et. al. 2005) Antoine Raux, Brian Langner, Dan Bohus, Alan Black, and
Maxine Eskenazi, 2005, Let's Go Public! Taking a Spoken Dialog System to the
Real World, Interspeech 2005, Lisbon, Portugal

(Raux and Eskenazi, 2007) Antoine Raux and Maxine Eskenazi, 2007, A Multi-Layer
Architecture for Semi-Synchronous Event-Driven Dialogue Management, ASRU
2007, Kyoto

(Raux, 2008) Antoine Raux, 2008, Flexible turn-taking in Spoken Dialog Systems,
PhD Dissertation, Language Technologies Institute, Carnegie Mellon University,
Pittsburgh, PA

(Rayner et. al., 2005) Manny Rayner, Beth Ann Hockey, Jean-Michel Renders, Nikos
Chatzichrisafis and Kim Farrell, 2005, Spoken Language Processing in the
Clarissa Procedure Browser, Natural Language Engineering 1 (1), pp. 1-28

(Rosé et. al., 2001a) Carolyn P. Rosé, Pamela Jordan, Michael Ringenberg, Stephanie
Siler, Kurth VanLehn, Anders Weinstein, 2001, Interactive Conceptual Tutoring in
Atlas-Andes, Proc. Artificial Intelligence in Education (AIED), San Antonio, TX

(Rosé et. al., 2001b) Carolyn P. Rosé, Johanna D. Moore, Kurt VanLehn, David
Allbritton, 2001, A Comparative Evaluation of Socratic versus Didactic Tutoring,
Proc of Cognitive Sciences Society

(Rosé et. al., 2003) Carolyn P. Rosé, D. Bhembe, S. Siler, R. Srivastava, and Kurt
VanLehn, 2003, Exploring the Effectiveness of Knowledge Construction
Dialogues, Proc. Artificial Intelligence in Education (AIED)

(Rosé et. al., 2006) Carolyn P. Rosé, Rohit Kumar, Vincent Aleven, Allen Robinson,
Chih Wu, 2006, CycleTalk: Data Driven Design of Support for Simulation Based

164

Learning, Intl. Journal of AI in Education Special Issue on The Best of ITS '04 ,
16, 195-223

(Rudnicky and Xu, 1999) Alex I. Rudnicky, and Wei Xu, 1999, An agenda-based
dialog management architecture for spoken language systems, IEEE Automatic
Speech Recognition and Understanding Workshop

(Scheines et. al., 1994) Richard Scheines, Peter Spirtes, Clark Glymour, and
Christopher Meek, 1994, TETRAD II: Tools for Discovery, Lawrence Erlbaum
Associates, Hillsdale, NJ

(Seneff et. al., 1998) Stephanie Seneff, Ed Hurley, Raymond Lau, Christine Pao,
Philipp Schmid, and Victor Zue, 1998, GALAXY-II: A Reference Architecture for
Conversational System Development, Proc. ICSLP 98, Sydney, Australia

Siri: Virtual Personal Assistant, http://siri.com/

(Skantze and Schlangen, 2009) Gabriel Skantze and David Schlangen, 2009,
Incremental dialogue processing in a Micro-Domain, EACL. Athens, Greece

Staffan Larsson, Dialogue systems and projects,
http://www.ling.gu.se/~sl/dialogue_links.html

(Stone, 1966) Phillip J. Stone, 1966, The General Inquirer: A Computer Approach to
Content Analysis. The MIT Press

(Takeuchi et. al., 2004) Masashi Takeuchi, Norihide Kitaoka and Seiichi
NakagawaM, 2004, Timing detection for realtime dialog systems using prosodic
and linguistic information, Intl Conf. on Speech Prosody 2004, Nara, Japan

Tetrad IV, http://www.phil.cmu.edu/projects/tetrad/tetrad4.html

(Thelen, 1956) Herbert A. Thelen, 1956, Emotionality and Work in Groups, In L. D.
White (ed.), The State of the Social Sciences, Chicago, IL: University of Chicago
Press

(Traum and Rickel, 2002) David Traum, Jeff Rickel, 2002, Embodied agents for
multi-party dialogue in immersive virtual worlds, AAMAS, Bologna, Italy

(Turunen et. al., 2004) Markku Turunen, Esa-Pekka Salonen, Mikko Hartikainen,
Jakko Hakulinen, William Black, Allan Ramsay, Adam Funk, Andrew Conroy,
Paul Thompson, Mark Stairmand, Kristiina Jokinen, Jyrki Rissanen, Kari Kanto,
Antti Kerminen, Bjorn Gamback, Maria Cheadle, Fredrik Olsson and Magnus
Sahlgren, 2004, AthosMail - a Multilingual Adaptive Spoken Dialogue System for

165

E-mail Domain, Workshop on Robust and Adaptive Information Processing for
Mobile Speech Interfaces

(Turunen and Hakulinen, 2003) Markku Turunen and Jaakko Hakulinen, 2003, Jaspis
- An Architecture for Supporting Distributed Spoken Dialogues, Eurospeech’ 2003,
Geneva, Switzerland

(VanLehn et. al., 2007) Kurt VanLehn, Arthur C. Graesser, G. Tanner Jackson,
Pamela Jordan, Andrew Olney, Carolyn P. Rosé, 2007, When Are Tutorial
Dialogues More Effective Than Reading? , Cognitive Science 31, pp. 3–62

(Veletsianos et. al., 2009) George Veletsianos, Charles Miller and Aaron Doering,
Veletsianos, 2009, EnALI: A Research and Design Framework for Virtual
Characters and Pedagogical Agents, Journal of Educational Computing Research,
41(2), 171-194

VoiceXML, http://www.w3.org/TR/voicexml21/, 2007

Voxeo Prophecy, http://www.voxeo.com/products/

(Wang and Johnson, 2008) Ning Wang and Lewis Johnson, 2008, The Politeness
Effect in an intelligent foreign language tutoring system, Intelligent Tutoring
Systems, Montreal, Canada

(Warner et. al., 2003) Norman W. Warner, Elizabeth M. Wroblewski and K. Shuck,
2003, Noncombatant Evacuation Operation Scenario, Naval Air Systems
Command, Human Systems Department (4.6), Patuxent River, MD.

(Weizenbaum, 1966) Joseph Weizenbaum, 1966, ELIZA — A Computer Program
For the Study of Natural Language Communication Between Man And Machine,
Communications of the ACM 9 (1): 36–45

(Weusijana et. al., 2008) Baba Kofi A. Weusijana, Rohit Kumar, Carolyn P. Rosé,
2008. MultiTalker: Building Conversational Agents in Second Life using Basilica,
Second Life Education Community Convention, Purple Strand: Educational Tools
and Products, 2008, Tampa, FL

(Williams, 2007) Jason D. Williams, 2007, Applying POMDPs to Dialog Systems in
the Troubleshooting Domain, Proc. HLT/NAACL Workshop on Bridging the Gap:
Academic and Industrial Research in Dialog Technology, Rochester, NY

(Zheng et. al., 2005) Jun Zheng, Xiang Yuan, Yam San Chee, 2005, Designing
multiparty interaction support in Elva, an embodied tour guide, AAMAS,
Netherlands

http://thesis.rohitkumar.net/thesis.pdf

	Chapter 1 Introduction
	1.1 Conversational Agents
	1.2 Multi-Party Interactive Situations
	1.3 Conversational Agents in Multi-Party Interactive Situations
	1.3.1 Organizing space for Agents
	Task
	Role

	1.4 Thesis Objective & Organization

	Chapter 2 Basilica: Software Architecture
	2.1 Desiderata
	2.1.1 Lack of Rich Representational Capability
	2.1.2 Inflexibility to address Complex Interaction Dynamics
	2.1.3 Development Effort

	2.2 A Model of Interaction
	2.3 Basilica: The new architecture
	2.4 Integrating existing behavior within Agents
	2.5 An Example Agent: SecondLife Tutor
	2.6 Supporting the Agent Development Process
	2.6.1 Re-Use of Decomposable Components
	2.6.2 Development Tools

	2.7 Related Work

	Chapter 3 Agents built using Basilica
	3.1 CycleTalk Tutor
	3.2 PsychChallenge Peer
	3.3 Emergency Response Interpreter Agent
	3.4 Types of Behavioral Components

	Chapter 4 Socially Capable Conversational Agents
	4.1 Need for Social Capabilities
	4.2 Small Group Communication
	4.3 Social Interaction Strategies
	4.4 Related Work
	4.5 Implementation of Social Behavior
	4.6 Alternative Perspectives

	Chapter 5 Application: Collaborative Learning
	5.1 Methodology & Metrics
	5.1.1 Recruitment
	5.1.2 Design
	5.1.3 Procedure
	5.1.4 Materials

	5.2 Experiment 1: Benefits of Social Behaviors
	5.2.1 Experimental Design
	5.2.2 Learning Outcomes
	5.2.3 Perception Ratings

	5.3 Analysis of performed Social Behavior
	5.4 Analysis of effect of Social Behavior
	5.4.1 Coding Tutoring Episodes
	5.4.2 Structural Equation Modeling
	Data
	Prior Knowledge
	Discovered Models

	5.4.3 Interpretation

	5.5 Experiment 2: Amount of Social Behavior
	5.5.1 Agent Implementation
	5.5.2 Experimental Design
	5.5.3 Learning Outcomes
	5.5.4 Survey Outcomes
	5.5.5 Exposure Effect with Tutors
	5.5.6 Estimating the Optimal Amount of Social Behavior
	5.5.7 Summary of Experiment 2

	Chapter 6 Triggering Policy for Social Behavior
	6.1 Modeling Human Social Behavior
	6.1.1 Data
	Annotation

	6.1.2 Learning Problem
	6.1.3 Metrics
	6.1.4 Features
	6.1.5 Generating Social Behaviors
	6.1.6 Baseline Experiments
	6.1.7 Proposed Algorithm
	Large Margin Learner

	6.1.8 Social Ratio Filtering
	6.1.9 Results

	6.2 Experiment 3: Evaluating a Human-like Triggering Policy
	6.2.1 Procedure & Materials
	6.2.2 Experimental Design
	6.2.3 Results
	Learning Outcomes
	Perception Ratings

	6.2.4 Analysis of Tutoring Episodes
	6.2.5 Discussion
	6.2.7 Summary

	Chapter 7 Application: Group Decision Making
	7.1 Non-Combatant Evacuation Operation
	7.1.1 Red Cross Rescue Scenario
	7.1.2 Procedure
	7.1.3 Metrics

	7.2 Agent for supporting Group-Decision making
	7.2.1 Agent Capabilities
	7.2.2 Implementation

	7.3 Experiment 4: Supporting Group Decision Making
	7.3.1 Experimental Design
	7.3.2 Participants
	7.3.3 Results
	Task Success / Performance Metrics
	Perception Metrics

	Chapter 8 Conclusion
	8.1 Thesis Contributions
	8.1.1 Building Agents for Multi-Party Interactive Situations
	8.1.2 Socially Capable Conversational Agents

	8.2 Directions
	8.2.1 Outlook

