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Abstract
How to model sequential data in various settings is an important machine learn-

ing problem across many domains, including predictions over time series data, nat-
ural language text, and event streams. Sequential data in different fields usually
have different characteristics. For example, natural-language text can be viewed as
a a sequence of a discrete variable while sensor-network signals can be treated as a
multi-variate sequence in a continuous vector space. In order to develop successful
neural network models in such various real-world domains, we need to customize
the architectures and algorithms based on the nature of the data and the problems.
This thesis designs novel and efficient neural network solutions for the sequential
modeling and applications. Specifically, the contributions can be grouped into four
parts.
• The first part focuses on the correlation among variables in the multivariate

sequential data, such as the time series of multiple sensors, and proposes novel
algorithms namely Depthwise Separable Graph Convolution Network (DSGC)
(Chapter 2) [60] and Factorized Recurrent Neural Newtork (FRNN) (Chapter
3) [63] for leveraging correlation patterns and improving prediction accuracy.

• The second part focus on incorporating human prior knowledge in temporal
modeling of dependency pattens in sequential data. Specifically, we propose
a novel approach named the Long- and Short-term Time-series Network (LST-
Net) (Chapter 4) [59] which is proven to be particularly effective for capturing
various periodic patterns in different applications.

• The third part focuses on efficient algorithms for Transformers in sequence
classification tasks. Specifically, by identifying the computation redundancy
in the commonly used Transformer architectures and by proposing a novel
replacement namely the Funnel Transformer (Chapter 5) [27], we achieve a
better trade-off between computation and accuracy.

• The fourth part focuses on the modeling/prediction of the temporal relationship
among events, where the major challenge is effective learning from sparsely
labeled data. We address this challenge via the combination of advanced data
augmentation, semi-supervised learning and introduction of human prior knowl-
edge (Chapter 6). As a result, we improve the state-of-the-art performance of
this task by a large margin.
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Chapter 1

Introduction

1.1 Background and motivation

In the past decade, machine learning, especially deep learning, has achieved great success in
multiple real-world applications, such as image classification [58], speech recognition [107] and
natural language processing [30]. To achieve better performance in these domains, researchers
have developed different neural network architectures and algorithms to accommodate different
characteristics of data. For example, in the computer vision domain, the convolution neural net-
work is the dominant architecture due to its ability to capture shift-invariant features of images.
In the language-related domain, the language modeling style pretraining is the most popular al-
gorithm, because it can take the advantage of the large-scale unlabeled data in this domain and
leads to the best performance.

The sequential structure is a very important data structure in real-world applications, includ-
ing time-series data from sensors, natural language, event stream from news and social networks,
and so on. The machine learning problems with sequential data have been extensively studied
in past decades. Many classic algorithms were proposed, such as the auto-regression method,
Hawkes Process, and N-gram Language model. In the last decade, the neural networks were
playing the most important role in solving problems with sequential data. Among these prob-
lems, classical ones in the natural language domain, such as language modeling and machine
translation, have been extensively studied and well addressed by applying the deep neural net-
work. However, how to extend the success to other types of sequential data is still an open
challenge. For example, for time-series data, which is in the form of real numbers, the scale of
data would have a significant influence on the prediction stability and accuracy of the model, but
it would not be a concern for the natural language which is presented as discretized labels. An-
other example is that how to model dependency among the variables of multi-variate sequential
data is a key factor of the accuracy of the model. But it is not considered in the network design
for natural language which only has one discrete variable.

In summary, different types of sequential data have their own characteristics. To maximize
the performance of the machine learning models, we need to inject the prior knowledge of prob-
lems and data structures to models. In this thesis, we customize the deep learning architecture
and algorithm in different applications with sequential data according to their own characteris-
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tics, and achieve better performance compared with previous methods. Our contribution to this
topic can be summarized into four parts:
• Capturing the correlation of variables in the multivariate sequential data (DSGN and FRNN).
• Learning periodic temporal dependency from data efficiently with human prior knowledge

(LSTNet).
• Efficient Transformer architecture for the sequence classification task (Funnel-Transformer).
• Event temporal modeling with sparse labels.

In the following, we detail all the contributions listed above.

1.2 Capture the intra-step dependency in the multivariate se-
quential data

1.2.1 Depthwise Separable Graph Convolution (DSGC) [60]
In Chapter 2, we focus on the spatiotemporal data, such as the temperature and solar energy
output. Each of these sequential variables represents a sensor with geographic location informa-
tion. With this kind of data, we can utilize the geometric information to capture the correlations
among the variables when we are learning the temporal dependency. To model the spatial fea-
ture, the most popular approach is the 2D convolution neural network [58] in the image domain.
But the 2D convolution cannot be applied to real-world data without a regular 2D-grid structure.
A workaround is to use graph convolution method (GCN) [14, 29, 55], which can take any graph
structure data as input. The problem of GCN is that they rely on the input graph structure to
model the interaction between nodes. They don’t learn spatial features from data.

To combine the advantages of 2D convolution and Graph convolution, we propose Depth-
wise Separable Graph Convolution (DSGC), a novel graph convolution approach derived from
the 2D-convolution method. It inherits the strength of depthwise separable convolution, which
has contributed to multiple state-of-the-art image classification frameworks including Inception
Network [104], Xception Network [20] and MobileNet [47]. Compared with the previous graph
and geometric methods, DSGC is more expressive and compatible with the depthwise separa-
ble convolution network and shares the desirable characteristic of small parameter size as in
the depthwise separable convolution. In the experiment section, the DSGC produces the new
state-of-the-art results in 3 different spatiotemporal datasets.

1.2.2 Factorized Recurrent Neural Network (FRNN) [63]
Except for the spatiotemporal data, there is multivariate time series data without usable side
features, which does not allow us to construct a graph for the DSGC method. In Chapter 3, we
study how to capture the correlation between variables in this scenario. The naive approach is
viewing the problem as a multitask learning problem [59]. It relies on the hidden layers in the
neural models to capture dependency implicitly. In the output layer, the model makes predictions
on the different variables independently. Another popular method in previous publications [1,
6, 22, 34, 38, 62] is to introduce stochastic latent variables to model the dependency among
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variables. In their experiments, they show a significant improvement over the multitask style
approaches.

In our work, We first re-exam both style approaches from both theoretical and experimen-
tal perspectives. In summary, our re-examination reveals that the stochastic latent variables are
serving as a way to explicitly model the correlation between output variables. Finally, we pro-
pose a more powerful approach according to our mathematical analysis, which is applying an
auto-regressive loss inside each time step and over the dimension of the variables. During the
inference, it predicts the ith variable based on all variables with the index smaller than i. The
experiments show the proposed method is better than the stochastic model style algorithms and
able to capture the correlation between variables without side information.

1.3 Long- and Short-term Time-series Network (LSTNet) [59]
Besides capturing the dependency of variables in the sequential data, we also explore how to bet-
ter model the temporal dependency of the sequential data by leveraging the prior knowledge for
specific tasks. Time series forecasting is a long-standing research problem. The autoregressive
(AR) model is the most representative one among the linear models designed for this problem.
Its variant, autoregressive integrated moving average - ARMIA model [9], is viewed as the best
forecasting model for decays until the neural network model appears. A big class of temporal
data in real life is the periodic time series, such as electricity usage and traffic occupation. To
introduce the human prior about the period to the learning model, the researchers have proposed
to integrate the Fourier transformation with ARIMA method [128]. But there is no work to study
how to leverage periodic information with the neural network techniques.

In Chapter 4, we propose Long- and Short-term Time-series Network (LSTNet), which is the
first deep learning framework designed for periodic time series forecasting. A novel recurrent
structure, namely Recurrent-skip, is designed for capturing very long-term dependence patterns
and making the optimization easier as it utilizes the periodic property of the input time-series
signals. Additionally, the LSTNet incorporates a traditional autoregressive linear model in paral-
lel to the non-linear neural network part, which makes the non-linear deep learning model more
robust for the time series with violated scale changing. Experiments over real-world seasonal
time series datasets consistently show the stronger performance of the proposed model over the
traditional linear models and recurrent neural network. In addition, we also perform a statistical
analysis to reveal that the neural network model performs better on the data with strong temporal
correlation, while on the more chaotic data, such as stock prices and currency exchange rate, the
neural network model performance would be similar to the linear ones.

1.4 Funnel Transformer [27]
In Chapter 5, we shift our attention to the sequence classification problem. We propose an effi-
cient Transformer architecture for this problem. The Transformer model [110] has been proved as
a strong neural architecture to deal with sequential data, especially with the help of the pretrain-
ing technique [30]. However, the classification problems, such as time series classification and
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sentence classification, only require a hidden representation for the whole sequence. The Trans-
formers always maintain a full-length token-level representation. To improve the efficiency, we
examine this much-overlooked redundancy. With this intuition, we propose Funnel-Transformer
which gradually compresses the sequence of hidden states to a shorter one and hence reduces the
computation cost. More importantly, by re-investing the saved FLOPs from length reduction in
constructing a deeper or wider model, we further improve the model capacity. In addition, to per-
form token-level predictions as required by common pretraining objectives, Funnel-Transformer
is able to recover a deep representation for each token from the reduced hidden sequence via a
decoder. Empirically, with comparable or fewer FLOPs, Funnel-Transformer outperforms the
standard Transformer on a wide variety of sequence-level classification tasks and achieves better
efficiency and accuracy trade-off.

1.5 Event Temporal Modeling with Sparse Labels
In Chapter 6, we focus on utilizing the advanced deep learning techniques to solve a real-world
application with sequential data, event temporal relationship classification. This task takes natu-
ral language text and the extracted events as input and predicts the temporal relationship labels
of each pair of events. By solving this task, it can provide us a tool to summarize and structure
news streams. However, the events and temporal relationship both require human annotation,
which is expensive. The data sparsity issue is the main challenge of this task. A decade ago,
the main approach for this task was based on Hawkes Process, which predefined a mixture of
Bayesian processes for the event distribution based on human prior knowledge. Until the advent
of pre-trained language models [30], we can use limited size data to achieve better performance.
In this work, We first study and compare several baseline methods on this task, including linear
model, Hawkes Process [45], Neural Hawkes Process [80], and pretrained language model [77].
Although the pretrained language model already achieved strong results, there are no works to
combine the task-specific prior knowledge and advanced regularization technique to better ad-
dress the data sparsity issue when using the pretrained language model. Based on this intuition,
we propose 3 remedies:
• Leverage the human prior knowledge about event temporal sequence includes symmetry

and transitivity.
• Data augmentation, which maximizes the labeled data utilization.
• Utilizing the unlabeled data to make our model more robust.

With these improvements, we gain a significant performance boost compared to the baseline
methods and achieve the new state-of-the-art results on the benchmark dataset.

6



Chapter 2

Depthwise Separable Graph Convolution

2.1 Background and Motivation

Convolution Neural Network (CNN) [67], also referred to as 2D-convolution in the following
chapter, has been proven to be an efficient model family in extracting hierarchical local patterns
from grid-structured data, which has significantly advanced the state-of-the-art performance of a
wide range of machine learning tasks, including image classification, object detection and audio
recognition [68]. Recently, growing attention has been paid to dealing with data with a non-grid
structure, such as prediction tasks in sensor networks [119], transportation systems [72], and 3D
shape correspondence application in the computation graphics [13]. How to replicate the success
of CNNs for manifold-structured data remains an open challenge.

In this chapter, we provide a unified view of the 2D-convolution methods and the graph
convolution (including the geometric convolution) with the label propagation process [129]. To
best of our knowledge, it is the first time that the 2D-convolution and graph convolution proposed
in [55] are unified mathematically. It helps us better understand and compare the difference
between them, and shows that the fundamental difference can be summarized as two points,
(1) 2D-convolution learns spatial filters from the data. (2) Spatial filters in 2D-convolution are
channel-specific.

Many graph convolution and geometric convolution methods have been proposed recently.
The spectral convolution methods are the mainstream algorithms developed as the graph con-
volution methods. Their theory is based on the graph Fourier analysis [96]. Another group of
approaches are geometric convolution methods, which focus on various ways to leverage spatial
information about nodes [7, 37, 79, 82]. Existing models mentioned above are either fully trust-
ing the given graph or applying one graph filter across all channels, which are corresponding to
the two differences between the traditional 2D-convolution and the graph convolution. Firstly,
as a result of trusting the given graph, namely only using a given graph filter across the whole
model, the model ability to discover the special graph filters from the supervision data is limited.
And applying one graph filter across all channels would also introduce several drawbacks to the
model as follows. (1) It makes the mathematical formulation of the graph convolution methods
incompatible with the traditional 2D-convolution. (2) The model cannot propagate information
with different diffusion patterns in one layer. (3) The image recognition experiment in Section
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2.5.2 shows that multiple filters are critical to the model performance in the task which requires
extracting complex local features. Some models, such as MoNet [82] and Graph Attention Net-
work [111], try to model multiple filters by simultaneously learning K sub-layers, each with one
global filter, and summarizes them as one layer. However, this approach would lead to a larger
number of parameters and more expensive computation cost, and it is still incompatible with the
traditional 2D-convolution method.

In this chapter, we derive a novel graph convolution approach directly from the 2D-convolution
method. We propose the Depthwise Separable Graph Convolution (DSGC), which inherits the
strength of depthwise separable convolution that has been extensively used in different state-of-
the-art image classification frameworks including Inception Network [104], Xception Network
[20] and MobileNet [47]. Compared with previous graph and geometric methods, the DSGC is
more expressive and compatible with the depthwise separable convolution network, and shares
the desirable characteristic of small parameter size as in the depthwise separable convolution.
In experiments section, we evaluate the DSGC and baselines in three different machine learning
tasks. The experiment results show that the performance of the proposed method is close to the
standard convolution network in the image classification task on CIFAR dataset. And it outper-
forms previous graph convolution and geometric convolution methods in all tasks. Furthermore,
we demonstrate that the proposed method can easily leverage the state-of-the-art architectures
developed for image classification to enhance the model performance, such as the Inception
module [104], the dense block [49] and the Squeeze-and-Excitation block [48].

The main contribution of this chapter is threefold:
• A unified view of traditional 2D-convolution and graph convolution methods by introduc-

ing depthwise separable convolution.
• A novel Depthwise Separable Graph Convolution (DSGC) for data residing on arbitrary

manifolds.
• We demonstrate the efficiency of the DSGC module with extensive experiments and show

that it can be plugged into existing state-of-the-art CNN architectures to improve the per-
formance for graph tasks.

2.2 A Graph Perspective of Convolution

In this section, we provide a unified view of several convolution operations by showing that
they are different message aggregation protocols over the graphs or manifolds. Unless otherwise
specified, we denote a matrix by X , the i-th row in the matrix by xi, and the (i, j)-th element
in the matrix by xij . Superscripts are used to distinguish different matrices when necessary. All
the operations below can be viewed as a function that transforms input feature mapsX ∈ RN×P

to output feature maps Y ∈ RN×Q, where N is the number of nodes and P,Q are the number
of its associated input and output features (channels) respectively. We use G to denote the
adjacency matrix of a graph, and G(i) to denote the set of neighbors for node i. For tasks over
sensor networks [119], transportation graphs [72] or computational graphics [13], graph G often
corresponds to the latent structure of the underlying manifold, and is induced from the spatial
coordinates of input data.

8



2.2.1 Convolution over Graphs

For the operations discussed below, the filter weights are fully determined by the given graph G.

Label Propagation

Label propagation (LP) [129] can be viewed as a simplistic convolution operation to aggregate
local information over a graph:

yi =
∑
j∈G(i)

Gijxj (2.1)

In other words, the feature map for each node is updated as the weighted combination of its
neighbors’ feature maps. In this case, the numbers of input and output channels are identical.

Graph Convolution

Graph convolution [55] (GC) can be viewed as an extension of LP, formulated as:

yi =
∑
j∈G(i)

Gijzj where zj = xjU (2.2)

While both LP and GC utilize the graph structure inG, GC has an learnable linear transformation
U ∈ RP×Q that maps xj into the intermediate representation zj . This additional step enables
GC to capture the dependencies among channels.

2.2.2 Convolution over Grid-Structures

Here, we write the convolution methods over 2D-grid in the Label Propagation framework. Let
∆ij be the coordinate offset from i-th node to j-th node, we say j ∈ G(i) if j is one of i’s
k-nearest neighbors based on the relative distance |∆ij|.

Full Convolution

The full convolution [67] can be formulated as

yiq =
∑
j∈G(i)

P∑
p=1

w
(pq)
∆ij

xjp (2.3)

For Euclidean grid-structured data such as images, ∆ij denotes the offset between pixel i and
pixel j, and G(i) contains pixel i’s surrounding pixels. For example, the size of G(i), or k, is 9
for 3 × 3 convolution and 25 for 5 × 5 convolution, corresponding to the size of the receptive
field. The full convolution operation captures the channel correlation and spatial correlation
simultaneously byW (pq).
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Depthwise Separable Convolution

The Depthwise Separable Convolution (DSC) [20] is a factorized version of full convolution un-
der the intuition that the channel correlation and spatial correlation can be decoupled. In practice,
DSC is able to achieve comparable performance as full convolution with a substantially smaller
number of parameters. We focus on DSC here due to its simplicity and intimate connections to
Graph Convolution. DSC can be formulated in a graph-based fashion as follows

yiq =
∑
j∈G(i)

w
(q)
∆ij
zjq where zj = xjU (2.4)

The formulation of DSC is analogous to GC by substitutingG in eq. (2.2) withW . However,
unlike LP and GC which directly utilize the graph G to define their filter weights, weights W
in eq. (2.4) is a learnable lookup table of size Q × R, where R is the number of possible
choices for ∆ij . For example, R = 9 for 3 × 3 convolution, since ∆ij can take any value in
{−1, 0, 1} × {−1, 0, 1}.

2.3 Depthwise Separable Graph Convolution

2.3.1 Motivation
We notice that DSC is more powerful than GC in the following aspects:

1. The spatial filter in GC is fully determined once the graph is given 1, but the spatial filters
in DSC are learned automatically from data. This means GC would fully trust the given
graph even if it is suboptimal for the task and data on hand.

2. Compared with full convolution and DSC, which are capable of modeling channel-specific
convolution filters, GC uses a global spatial filter for all channels (features), which can
be viewed as a restricted version of DSC. Thus a GC module is unable to simultaneously
capture or fuse diverse information based on different channels/features over the graph.

On the other hand, while GC is generally applicable to arbitrary graphs, the DSC method so
far is only designed for regular grid-based structures and hence only applicable to the domains
like image processing, where the pixels naturally form a grid structure. For nodes scattered with
arbitrarily spatial coordinates, the number of possible choices for ∆ij can be infinite. That is,
using a lookup table W to memorize the filter weights for each ∆ij is no longer feasible. This
makes traditional DSC not directly applicable to arbitrary graphs.

2.3.2 Proposed Method
To address the aforementioned limitations of Graph Convolution, we propose Depthwise Sepa-
rable Graph Convolution (DSGC), which naturally generalizes DSC and GC as:

yiq =
∑
j∈G(i)

w(q)(∆ij)zjq where zj = xjU (2.5)

1The linear transformation U in GC is not a graph/spatial filter, as it only fuses the information across the
channels.
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where we slightly abuse the notation by overloading w(q)(·) as a function (neural network) that
maps ∆ij to a real scalar, namely the predicted filter weight for the q-th channel.

The key distinctions in our formulation are as follows.
1. Different from DSC (eq. (2.4)), the filter weight is calculated using a “soft” function ap-

proximator. That is, DSGC predicts the convolution filter weights from ∆ij via the func-
tion instead of memorizing them in a look-up table. In our experiments, function w(q)(·) is
implemented as a two-layer MLP.

2. Different from GC (eq. (2.2)), DSGC enables the learning of channel-specific spatial
convolution filters (channels are indexed by q in eq. (2.5)). This amounts to simultane-
ously constructing channel-specific graphs under the different node-node similarity met-
rics, where the metrics are implicitly defined by neural networks and hence, are jointly
optimized during the training.

The idea of predicting the filter weights has also been explored in Message Passing Neural
Network (MPNN) [37]. However, MPNN learns only a global function across all channels,
hence, MPNN is incapable of capturing channel-specific spatial filters as in DSC.

2.3.3 Parameter Grouping Strategy

Overfitting is a common issue in graph-based applications due to limited data available. To
alleviate this issue, a simple strategy is to group the original Q channels into C groups, where
D = Q/C channels in the same group would share the same filter:

w(q)(·) = w(q′)(·) if b q
D
c = b q

′

D
c (2.6)

where b·c denotes the floor function.

2.3.4 Filter Normalization

A common practice in label propagation and graph convolution is to normalize the adjacency
matrix for G. In DSGC, a natural way to carry out normalization is to apply a softmax function
as the final layer of the filter weights predictor, to ensure that

∑
j∈G(i) w

(q)(∆ij) = 1 for each i.
We empirically found that normalization leads to improved performance and faster convergence.

2.4 Closely Related Models

Several representative works in graph convolution are worth discussing w.r.t. their connections
to ours.
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2.4.1 Spectral Convolution Methods
The Spectral Network [14] is derived from the graph signal processing work [96], which gener-
alizes Fourier analysis for its use in the graph domain as:

yiq =
∑
j∈G(i)

P∑
p=1

w
(pq)
ij xjp

where W (pq) = ΦΛ(pq)ΦT

(2.7)

where Φ ∈ Rn×n are the eigenvectors of G’s graph Laplacian matrix, and Λ are learnable non-
parametric filters from the training data. The Spectral Network can be matched with the full
convolution (eq.(2.3)), but with the different filter subspace, in other words, with different ba-
sic filters. Limitations of Spectral Networks include its high computation cost due to eigen-
decomposition of the graph Laplacian, the lack of spatial locality and the large number of pa-
rameters which grows linearly over the graph size.

These limitations are partially addressed in the Chebyshev Networks [29] (ChebyNet), which
approximates the non-parametric filters as:

yiq =
∑
j∈G(i)

K∑
k=1

Tk(L)ijz
(k)
iq , z

(k)
i = xjU

(k) (2.8)

where Tk(L) is the k-th order Chebyshev polynomial term. While being faster than Spectral
Networks, ChebyNet suffers from insufficient expressiveness, similar to the limitations of GC.
The expressiveness of ChebyNet can be improved by enlarging K, which requires a much larger
number of parameters and eventually converges to Spectral Networks.

2.4.2 Geometric Convolution Methods
Several geometric convolution methods [7, 79, 82] are proposed for manifold structured data,
among which MoNet [82] is the state-of-the-art.

The updating formula for MoNet can be written as

yiq =
∑
j∈G(i)

K∑
k=1

wk(v(i, j))z
(k)
jq , z

(k)
j = xjU

(k)

wk(v) = exp

(
−1

2
(v − µk)TΣ−1

k (v − µk)
) (2.9)

where v(i, j) is the embedding of a node pair similar to ∆ij in our model, and µk,Σk are both
learnable parameters. MoNet can be viewed as an extension of ChebyNet where the graph filters
are learned from data instead of being fully determined by a given graph. However, a graph
filter in MoNet is still applied across all channels. In order to have k filters in MoNet, it needs
to learn k different channel filters U . Then the total number of model parameters will grow
linearly with k. While DSGC only learns a channel filter U for one layer. By taking advantage

12



of that, the number of parameters in DSGC would not be significantly growing with k as MoNet.
Similar to it, the recently proposed Graph Attention Network (GAT) [111] is also required to
learn multiple channel filters in order to model multiple filters in one layer, which would lead to
a larger number of the model parameters. Furthermore, in the setting that nodes in graph have
geometric information, GAT can be viewed as a MoNet extension with the filter normalization
trick. We empirically found that the extension exhibits obvious improvement over the original
MoNet. In the following parts, we denote it as MoNet with GAT.

Message Passing Neural Networks (MPNN) [37, 95] are developed for modeling information
propagation over graphs, specialized for the prediction tasks in quantum chemistry. Similar to
DSGC, MPNN utilizes a neural network to predict the filter weights for the convolution opera-
tions. The key difference is that while DSGC allows channel-specific graph convolution filters
(hence allowing a variety of diffusion patterns over the graph), MPNN learns only a single graph
filter function for all channels in a layer. So MPNN can be viewed as a special case of DSGC
with C = 1 in eq. (2.6). In our experiments, our method consistently outperforms MPNN across
tasks in a variety of domains.

2.5 Experiments

2.5.1 Experimental Design

Our experiments for evaluating the proposed DSGC approach consists of three parts. Firstly, we
evaluate DSGC on a popular image classification dataset (Sec. 2.5.2). The purpose is to confirm
the strong performance of DSGC in handling grid-based convolution although it is designed for
more general graph structures. Secondly, we compare DSGC and strong methods in the tasks of
time series forecasting (Sec. 2.5.3) and text categorization (Sec. 2.5.4) where grid-based con-
volutions are invalid but graph convolution would have advantages instead as they are designed
for more flexible graph structures. Thirdly, we examine the flexibility and effectiveness of us-
ing DSGC as a building block (module) in multiple well-known neural network architectures,
including Inception [104], DenseNet framework [49] and etc.

For controlled experiments, all the graph convolution methods share the same empirical set-
tings unless otherwise specified, including network structures, the dimension of latent factors,
and hyper-parameter tunning process. The neural network used to model the spatial convolution
filter (w(q)(·)) in eq. (2.5) is a two-layer MLP with 256 hidden dimensions and tanh activation
function. We have conducted ablation tests with the two-layer MLP by changing the number of
layers and activation function of each hidden layer, and by trying several weight sharing strate-
gies. The results are very similar; the two-layer MLP provides a reasonable performance with
the shortest running time. The algorithms are implemented in PyTorch; all the data and the code
including baselines are made publicly accessible 2.

2Code: https://github.com/laiguokun/DSGC
Data: https://drive.google.com/drive/folders/0BweQMXBkrHAcSkpkejFsOXNId2s?usp=sharing
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2.5.2 Evaluation on Image Classification
We conduct experiments on CIFAR10 and CIFAR100 [57], which are popular benchmark datasets
in image classification. Both sets contain 60000 images with 32 × 32 pixels but CIFAR10 has
10 category labels and CIFAR100 has 100 category labels. Each image is typically treated as
a 32 × 32 grid structure for standard image-based convolution. To enable the comparison on
generic graphs, we create the modified versions of CIFAR10 and CIFAR100 respectively, by
subsampling only 25% of the pixels from each graph. As illustrated in Figure 2.1, the subsam-
pling result is irregularly scattered nodes for each image.

(a) (b) (c)

Figure 2.1: How to construct subsampled CIFAR datasets: (a) is an example image from CIFAR
dataset. (b) is the subsampled pixels map. The blue points indicate which points are sampled.
(c) is the image after sampling, where the black points are those not being sampled.

For all methods, we use the VGG-13 architecture [97] as the basic framework, and replace its
convolution layers with different convolution modules. The experiment results are summarized
in Table 2.1. The best performances among the graph-based neural networks are in bold. Firstly,
we observe that Xception and CNN have the best results; this is not surprising because both
methods use grid-based convolution which is naturally suitable for image recognition. Secondly,
DSGC outperforms all the other graph-based convolution methods, and its performance is very
close to that of the grid-based convolution methods. We also see that the models that learn
multiple filters (DSGC and MoNet) have better performance than the models that only learn
one global graph filter, such as MPNN and GCN. It demonstrates that it is necessary to enable
multiple filters in this task. Furthermore, contributed by the depthwise separable convolution and
graph sharing technique, our model can achieve a competitive performance without increasing
the number of parameters as GCN, the one with the smallest number of parameters among graph
convolution approaches. On the contrary, MoNet and ChebyNet have a relatively larger number
of parameters in order to model multiple filters in one layer.

2.5.3 Evaluation on Time Series Forecasting
In time-series forecasting, we are usually interested in how to effectively utilize the geometric
information about sensor networks. For example, how to incorporate the longitudes/latitudes of
sensors w.r.t. temporal cloud movement is a challenge in spatiotemporal modeling for predicting
the energy output of solar energy farms in the United States.
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Subsampled Images Original Images
Method CIFAR10 CIFAR100 #params CIFAR10 CIFAR100 #params
DCNN [3] 43.68% 76.65% 12M 55.56% 84.16% 50M
ChebyNet [29] 25.04% 49.44% 10M 12.99% 36.96% 19M
GCN [55] 26.78% 51.30% 5.6M 19.09% 41.64 % 9.8M
MoNet (with GAT) [82] 21.20% 47.87% 11M 8.34% 29.56% 20M
MPNN [37] 22.71% 49.03% 5.6M 11.01% 32.95% 9.9M
DSGC (ours) 18.72% 44.33% 5.7M 7.31% 27.29% 9.9M
CNN (VGG-13) [97] 18.03% 43.42% 18M 6.86% 26.86% 18M
CNN (Xception) [20] 17.07% 41.54% 3.1M 7.08% 26.84% 3.1M

Table 2.1: Test-set error rates on CIFAR10 and CIFAR100. DSGC has the best performance
among the graph-based convolution method group (first six methods), and is comparable to the
state-of-the-art grid-based convolution methods (VGG-13 and Xception) which are tailed for
image classification.

We choose three publicly available benchmark datasets for this task:
• The U.S Historical Climatology Network (USHCN)3 dataset, used in [4], contains daily

climatological data from 1,218 meteorology sensors over the years from 1915 to 2000.
The sequence length is 32,507. It includes five subsets, and each has a climate variable:
(1) maximum temperature, (2) minimum temperature, (3) precipitation, (4) snowfall and
(5) snow depth. We use daily maximum temperature data and precipitation data, and refer
them as the TMAX and PRCP sets, respectively.

• The solar power production records in the year of 2006 has the data with the production rate
of every 10 minutes from 1,082 solar power stations in the west of the U.S. The sequence
length is 52,560. We refer this set of data as Solar.

All the datasets have been split into the training set (60%), the validation set (20%) and the test
set (20%) in chronological order.

Table 2.2 summarizes the evaluation results of all the methods, where the performance is
measured using the Root Square Mean Error (RMSE). The best result on each dataset is high-
lighted in boldface. Overall, our proposed method (DSGC) has the best performance on all
the datasets, demonstrating its strength in capturing informative local propagation patterns both
temporally and spatially.

2.5.4 Evaluation on Document Categorization
Following the experiment in [29], we test DSGC and other baselines in the text categorization ap-
plication, and use the 20NEWS dataset ([51]) for our experiments. 20NEWS consists of 18,845
text documents with 20 topic labels. Individual words in the document vocabulary are the nodes
in the graph for convolution. Each node has its word embedding vector generated by Word2Vec
algorithm ([81]) on the same corpus. Following the experiment settings in [29] we select the top
1000 most frequent words as the nodes. Table 2.3 summarizes the results of the graph convo-

3http://cdiac.ornl.gov/epubs/ndp/ushcn/daily_doc.html
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Method TMAX PRCP Solar
DCNN 6.5188 29.0424 0.02652
ChebyNet 5.5823 27.1298 0.02531
GCN 5.4671 27.1172 0.02512
MoNet (with GAT) 5.8263 26.8076 0.02564
MPNN 5.3331 26.4766 0.02496
DSGC (ours) 5.1438(±0.0498) 25.8228(±0.249) 0.02453(±0.00022)

Table 2.2: Test-set performance for graph convolution methods on time series prediction tasks
measuring in RMSE. For our method, we report the standard deviation of the performance by
running the model with 10 random seeds.

Method Accuracy
Linear SVM† 65.90%
Multinomial NB† 68.51%
Softmax† 66.28%
FC2500† 64.64%
FC2500-FC500† 65.76%
DCNN 70.35%
ChebyNet 70.92%
GCN 71.01%
MoNet (with GAT) 70.60%
MPNN 71.58%
DSGC (ours) 72.11%(±0.285)

Table 2.3: Accuracy on the validation set of 20NEWS. Results marked with † come from [29].
The number in the parenthesis is the standard deviation.

lution methods plus three popular traditional classifiers (Linear SVM, Multivariate Naive Bayes
and Softmax). DSGC has the best result on this dataset. Notice that the traditional classifiers
are trained and tested with the feature set of the top 1000 words, which is the same setting as
in the graph convolution models. If all words are used, traditional classifiers would have higher
performance.
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Figure 2.2: Toy examples visualizing 3 graph operations: Shift, Rotation and Left-Right Flip-
ping.
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(a) Shift (b) Rotation (c) Left-Right Flip

Figure 2.3: Binary Cross Entropy (BCE) loss vs. training epoch for DSGC and GC on simulated
data

2.5.5 Simulation-based Analysis

To compare the representation power of DSGC and GC (given comparable number of parame-
ters), we generated simulated data for the following tasks:
• Shift: Shift the input graph 1 step to the right.
• Rotation: Rotate the input graph by 90 degree.
• Flip: Left-Right flip the input graph.

Toy examples for those tasks are visualized in Figure 2.2.
We use identical hyper-parameter settings for DSGC- and GC-based architectures in all those

tasks, including the number of layers (fixed to be 3) and the activation function. The total num-
bers of model parameters of DSGC and GC are roughly equal.

The training loss curves for GC and DSGC are shown in Figure 2.3, where DSGC clearly
outperforms GC. This is because GC treats the surrounding nodes for any given node as ex-
changeable [12], while DSGC learns to distinguish the neighbors conditioned on the tasks. The
ability of learning asymmetric relationships is important in real applications such as wind power
forecasting because of the directional influences (trends and anisotropy) from one geographic
location to its adjacent locations.

2.5.6 DSGC with Multiple Neural Architectures

As the proposed DSGC is mathematically compatible with the traditional convolution method by
performing channel special filter learning within one-layer, naturally, we can directly replace the
convolution layers of general deep convolution frameworks with the DSGC modules while keep-
ing a similar performance without modifying the framework structure. We examine DSGC with
the following frameworks which are popular in recent years for standard convolution over im-
ages: (1) Inception [104], (2) DenseNet framework [49] and (3) Squeeze-and-Excitation block
[48]. The results are presented in Table 2.4. Clearly, combined with the advantageous archi-
tectures, the performance of DSGC in image classification can be further improved (DSGC-
DenseNet over DSGC-VGG-13). It demonstrates that the DSGC can easily enjoy the benefits of
framework design for free from the traditional 2d-convolution network community.
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Subsampled Images Original Images
Method CIFAR10 CIFAR100 #params CIFAR10 CIFAR100 #params
DSGC-VGG-13 18.72% 44.33% 5.7M 7.31% 27.29% 9.9M
DSGC-INCEPTION 18.27% 43.41% 9.9M 6.44% 28.55% 12M
DSGC-DenseNet 17.17% 43.34% 2.7M 7.14% 26.50% 2.9M
DSGC-SE 18.71% 44.15% 6.1M 7.00% 27.26% 10M
VGG-13 18.03% 43.42% 18M 6.86% 26.86% 18M
Xception 17.07% 41.54% 3.1M 7.08% 26.84% 3.1M

Table 2.4: Test-set error rates of DSGC-based architectures (first group) and CNNs (second
group)

2.5.7 Training Time Comparison
In Table 2.5, we report the mean training time per epoch for GCN, DSGC and MoNet. The pro-
posed DSGC computes the convolution weight for each edge in the graph, which requires more
computation resources compared to GCN. However, we always perform the graph convolution
on a sparse k-nearest neighbor graph, where the number of edges grows only linearly with the
node size. Therefore the training is fairly efficient. Notably, DSGC consistently performs better
than all graph convolution methods with around 1.5x-4x running time compared to the fastest
graph convolution framework (GCN). And MoNet, which also learns multiple filters in a layer
but without the channel separation technique applied for DSGC, would be 1x slower than the
proposed DSGC method.

Method CIFAR10 TMAX 20news
GCN 1.75 0.465 0.207
MoNet 6.87 2.81 0.550
DSGC (ours) 3.81 1.73 0.280

Table 2.5: Training time per epoch for GCN, MoNet and DSGC in three benchmark datasets,
meausred in minutes.

2.6 Implementation Details

2.6.1 Implementation Details of CIFAR Experiment
In section 2.5.2 and 2.5.6, we conduct the experiment on the CIFAR10 and CIFAR100 datasets.
We will introduce the architecture settings for the DSGC and baseline models. Table 2.6 illus-
trates the basic architecture used in the experiment. In the DSGC-VGG13 and DSGC-DenseNet
models, the k-conv refers to the spatial convolution (Eq.2.5) with k-nearest neighbors as the
neighbor setting. So the 1-conv is the same as the 1×1 conv, which is doing linear transformation
on channels. The hidden dimensions of VGG13 and DSGC-VGG13 are set as {256, 512, 512, 512}
and {256, 512, 512, 1024}. The growth rate of DSGC-DenseNet is 32. And the baseline graph
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Layers VGG13 DSGC-VGG13 DSGC-DenseNet
Convolution

[
3× 3 conv

]
× 2

[
9-conv

]
× 2

[
9-conv

]
× 6

Transition 1-conv
Pooling 2× 2 max-pooling 4 max-pooling

Convolution
[

3× 3 conv
]
× 2

[
9-conv

]
× 2

[
9-conv

]
× 12

Transition 1-conv
Pooling 2× 2 max-pooling 4 max-pooling

Convolution
[

3× 3 conv
]
× 2

[
9-conv

]
× 2

[
9-conv

]
× 24

Transition 1-conv
Pooling 2× 2 max-pooling 4 max-pooling

Convolution
[

3× 3 conv
]
× 2

[
9-conv

]
× 2

[
9-conv

]
× 16

Transition 1-conv
Pooling 2× 2 max-pooling 4 max-pooling

Convolution
[

3× 3 conv
]
× 2

[
9-conv

]
× 2

Pooling 2× 2 max-pooling 4 max-pooling
Classifier 512D fully-connected, softmax

Table 2.6: Neural Network architecture for CIFAR datasets. Please see the text for more details.

and geometric convolution methods use the identical architecture as DSGC-VGG13. For the
subsampled CIFAR experiment, We eliminate the first convolution, transition and pooling layer,
and change the spatial convolution from 9-conv to {16-conv, 12-conv, 8-conv, 4-conv}. For the
DSGC-SE, we follow the method described in [48] to add the SE block to DSGC-VGG13 ar-
chitecture. We use the dropout scheme described in [49] for the DSGC-DenseNet model, and
add the dropout layer after the pooling layer for VGG13 and DSGC-VGG13 models. For the
DSGC-Inception model, we imitate the design of the Inception Network ([104]). The key idea is
letting a convolution layer have different size of convolution filters. We use a simple example as
our Inception module, which is illustrated in Figure 2.4.

For the CNN model, we still format the input signal in the matrix shape. The signals in
invalid points are set as 0. Furthermore, to perform the fair comparison with standard CNN in
the subsampled situation, we append a mask matrix as an additional channel for input signals
to indicate whether the pixel is valid or not. For the ChebyNet, we set the polynomial order as
K = 3.

The pooling layer is implemented by K-means clustering. The centroid of each clusters is
regarded as the new node after pooling, and its hidden vector is the mean or max over the nodes
in that cluster. Notice that, we only normalize the input signals to [0,1] and do not adopt any
other data preprocessing or augmentation tricks.

For the 4ij used in DSGC and MoNet, we use a 5 dimension feature vector. We denote the
coordinate of i-th node as (xi, yi), and 4xij = xi − xj,4yij = yi − yj,4dij = 4x2

ij +4y2
ij .

Then4ij = (sign(4xij), |4xij|, sign(4yij), |4yij|,4dij).
The same learning schedule is applied to all models. We use SGD to train the model for 400

epochs. The initial learning rate is 0.1, and is divided by 10 at 50% and 75% of the total number
of training epochs.
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Figure 2.4: Inception Module

2.6.2 Implementation Details of Time Series Prediction

Firstly, we will give the formal definition of the time series forecasting, that is, spatiotemporal
regression problem. We formulate the the spatiotemporal regression problem as a multivariate
time series forecasting task with the sensors’ location as the input. More formally, given a series
of time series signals observed from sensors Y = {y1,y2, · · · ,yT} where yt ∈ Rn and n are
the number of sensors, and the locations of sensors L = {l1, l2, · · · , ln} where li ∈ R2 and
indicates the coordinate of the sensor, the task is to predict a series of future signals in a rolling
forecasting fashion. That being said, to predict yT+h where h is the desirable horizon ahead of
the current time stamp T , we assume {y1,y2, · · · ,yT} are available. Likewise, to predict the
signal of the next time stamp yT+h+1, we assume {y1,y2, · · · ,yT ,yT+1} are available. In this
paper, we follow the setting of the autoregressive model. Define a window size p which is a
hyper-parameter firstly. The model input at time stamp T is XT = {yT−p+1, · · · ,yT} ∈ Rn×p.
In the experiments of this paper, the horizon is always set as 1.

Intuitively, different sensors may have node-level hidden features influencing its propagation
patterns and final outputs. For each node, we let the model learn a node embedding vector and
concatenate it with the input signals. The embedding size is tuned according to the validation
set. By using this trick, each node has limited freedom to interface with its propagation patterns.

One thing readers may notice is that there are 10% data in USHCN dataset missing. To deal
with that, we add an additional feature channel to indicate which point is missing. For the time
series models, we tune the historical window p according to the validation set. For the rest of
models, we set the window size p = 18 for Solar dataset and p = 6 for USHCN datasets. The
network architecture used in this task is 7 convolution layers followed by a regression layer. The
4ij setting is the same as the previous one. We use the Adam optimizer [52] for this task, and
train each model 200 epochs with learning rate 0.001.

Except for the graph convolution methods, we also add in traditional methods of time series
forecasting for comparison, such as (1) Autoregressive model (AR) which predicts future signal
using a window of historical data based on a linear assumption about temporal dependencies,
(2) Vector autoregressive model (VAR) which extends AR to the multivariate version, namely,
the input is the signals from all sensors in the history window, and (3) the LSTNet deep neural
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network model [59] which combines the strengths of CNN, RNN and AR. None of those methods
is capable of leveraging locational dependencies via graph convolution.

Method TMAX PRCP Solar
AR 8.2354 30.3825 0.03195
VAR 17.9743 29.2597 0.03296
LSTNet 10.1973 29.0624 0.02865
DCNN 6.5188 29.0424 0.02652
ChebyNet 5.5823 27.1298 0.02531
GCN 5.4671 27.1172 0.02512
MoNet (with GAT) 5.8263 26.8076 0.02564
MPNN 5.3331 26.4766 0.02496
DSGC (ours) 5.1438(±0.0498) 25.8228(±0.249) 0.02453(±0.00022)

Table 2.7: Test-set performance for graph convolution methods on time series prediction tasks
measuring in RMSE. For our method, we report the standard deviation of the performance by
running the model with 10 random seeds.

Table 3.5 summarizes the evaluation results of all the methods, where the performance is
measured using the Root Square Mean Error (RMSE). The best result on each dataset is high-
lighted in boldface. The group of the first three methods does not leverage the spatial or locational
information in data. The second group (graph-based convolution methods) consists of the neural
network models which leverage the spatial information about sensor networks. The methods in
the second group clearly outperform the methods in the first one, which does not explicitly model
the spacial correlation within sensor networks.

2.6.3 Implementation Details of Document Categorization
The data preprocessing follows the experiment details in [29]. And the network architecture
for all models is 5 convolution layers followed by two MLP layers as the classifier. After each
convolution layer, a dropout layer is performed with dropout rate of 0.5. The nodes’ coordinate
is the word embedding, and the method to calculate 4ij is similar to the previous ones. The
optimizer used in this task is the same as the CIFAR experiment.

2.7 Summary
This chapter presents a unified view of graph convolution and grid-based convolution methods,
and proposes the novel DSGC approach that is applicable to non-grid spatial data. DSGC sub-
sumes several existing graph convolution methods as special cases and is compatible to depth-
wise separable convolution for image classification by performing channel-special filters learn-
ing in data manifold. The proposed DSGC yields state-of-the-art performance on multi-domain
benchmark datasets with a relatively small number of model parameters, reasonable computa-
tion cost, and is easy to be plugged in different neural network architectures. For future research
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we plan to extend DSGC to a broader range of problems, including social network and cita-
tion graph analysis, where the spatial coordinates of the nodes (node embeddings) can be jointly
learned along with the convolution filters, or defined by node embedding algorithm.
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Chapter 3

Factorized Recurrent Neural Network

3.1 Motivation

As a fundamental problem in machine learning, probabilistic sequence modeling aims at cap-
turing the sequential correlations in both short and long ranges. Among many possible model
choices, deep auto-regressive models [40, 105] have become one of the most widely adopted so-
lutions. Typically, a deep auto-regressive model factorizes the likelihood function of sequences
in an auto-regressive manner, i.e., p(x) =

∏|x|
t=1 p(xt | x<t). Then, a neural network (e.g.

RNN) is employed to encode the conditional context x<t into a compact hidden representation
ht = f(x<t), which is then used to define the output distribution p(xt | x<t) , p(xt | ht).

Despite the state-of-the-art (SOTA) performance in many domains [19, 26, 33, 88], the hid-
den representations of standard auto-regressive models are produced in a completely determin-
istic way. Hence, the stochastic aspects of the observed sequences can only be modeled by the
output distribution, which however, usually has a simple parametric form such as a unimodal
distribution or a finite mixture of unimodal distributions. A potential weakness of such simple
forms is that they may not be sufficiently expressive for modeling real-world sequential data with
complex stochastic dynamics.

Recently, many efforts have been made to enrich the expressive power of auto-regressive
models by injecting stochastic latent variables into the computation of hidden states. Notably,
relying on the variational auto-encoding (VAE) framework [53, 92], stochastic recurrent models
(SRNN) have outperformed standard RNN-based auto-regressive models by a large margin in
modeling raw sound-wave sequences [1, 6, 22, 34, 38, 62].

However, the success of stochastic latent variables does not necessarily generalize to other
domains such as text and images. For instance, the authors [38] report that an SRNN trained by Z-
Forcing lags behind a baseline RNN in language modeling. Similarly, for the density estimation
of natural images, PixelCNN [87, 94, 108] consistently outperforms generative models with
latent variables [31, 41, 42, 54, 91].

To better understand the discrepancy, we perform a re-examination on the role of stochas-
tic variables in SRNN models. By carefully inspecting of the previous experiment settings for
sound-wave density estimation, and systematically analyzing the properties of SRNN, we iden-
tify two potential causes of the performance gap between SRNN and RNN. Controlled experi-
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ments are designed to test each hypothesis, where we find that previous evaluations impose an
unnecessary restriction of fully factorized output distributions, which has led to an unfair com-
parison between SRNN and RNN. Specifically, under the factorized parameterization, SRNN can
still implicitly leverage the intra-step correlation, i.e., the simultaneity [8], while the RNN base-
lines are prohibited to do so. Meanwhile, we also observe that the posterior learned by SRNN
can get outperformed by a simple hand-crafted posterior, raising serious doubt about the general
effectiveness of injecting latent variables.

To provide a fair comparison, we propose an evaluation setting where both the SRNN and
RNN can utilize an auto-regressive output distribution to model the intra-step correlation explic-
itly. Under the new setting, we re-evaluate SRNN and RNN on a diverse collection of sequential
data, including human speech, MIDI music, handwriting trajectory and frame-permuted speech.
Empirically, we find that sequential models with continuous latent variables fail to offer any
practical benefits, despite their widely believed theoretical superiority. On the contrary, explic-
itly capturing the intra-step correlation with an auto-regressive output distribution consistently
performs better, substantially improving the SOTA performances in modeling speech signals.
Overall, these observations show that the previously reported performance “advantage” of SRNN
is merely the result of a long-existing experiment bias of using factorized output distributions.

3.2 Background
In this section, we briefly review SRNN and RNN for probabilistic sequence modeling. Through-
out the chapter, we will use bold font x to denote a sequence, x<t and x≤t to indicate the sub-
sequence of first t− 1 and t elements respectively, and xt to represent the t-th element. Note that
xt can either be a scalar or a multivariate vector. In the latter case, xt,i denotes the i-th element
of the vector xt.

Given a set of sequences D =
{
x1,x2, · · · ,x|D|

}
, we are interested in building a density

estimation model for sequences. A widely adapted solution is to employ an auto-regressive
model powered by a neural network, and utilize MLE to perform the training:

max
θ
LD = E

x∼D

Tx∑
t=1

log pθ(xt | x<t), (3.1)

where Tx is the length of the sequence x. More concretely, the conditional distribution pθ(xt |
x<t) is usually jointly modeled by two sub-modules:
• The pre-defined distribution family of the output distribution pθ(xt | x<t), such as a Gaussian,

Categorical or Gaussian Mixture;
• The sequence model fθ, which encodes the contextual sequence x<t into a compact hidden

vector ht;
Under this general framework, RNN and SRNN can be seen as two different instantiations of
the sequence model. As we have discussed in Section 3.1, the computation inside RNN is fully
deterministic.

To improve the model expressiveness, SRNN takes an alternative route and incorporates con-
tinuous latent variables into the sequence model. Typically, SRNN associates the observed data
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sequence x with a sequence of latent variables z = [z1, . . . , zTx ], one for each step. With latent
variables, the internal dynamics of the sequence model is not deterministic any more, offering
a theoretical possibility to capture more complex stochastic patterns. However, the improved
capacity comes with a computational burden — the log-likelihood is generally intractable due to
the integral:

LSRNN
D = E

x∼D
log

∫
pθ(x, z)dz.

Hence, standard MLE training cannot be performed.
To handle the intractability, SRNN utilizes the VAE framework and maximizes the evidence

lower bound (ELBO) of the log-likelihood (3.1) for training:

max
θ,φ
FD = E

x∼D
E

qφ(z|x)

Tx∑
t=1

log
pθ(xt | z≤t,x<t)pθ(zt|z<t,x<t)

qφ(zt | z<t,x)
≤ LSRNN

D , (3.2)

where qφ(z | x) is the approximate posterior distribution modeled by an encoder network. Com-
putationally, several SRNN variants have been proposed [6, 22, 34, 38], mostly differing in how
the generative distribution pθ(x, z) and the variational posterior qφ(z | x) are parameterized. In
this work, we follow the parameterization and optimization in Z-forcing SRNN method [38],
which is the one with the best performance.

3.3 Revisiting SRNN for Speech Modeling

3.3.1 Previous Setting for Speech Density Estimation
To compare SRNN and RNN, previous studies largely rely on the density estimation of sound-
wave sequences. Usually, a sound-wave dataset consists of a collection of audio sequences with
a sample rate of 16Hz, where each frame (element) of the sequence is a scalar in [−1, 1], repre-
senting the normalized amplitude of the sound. Instead of treating each frame as a single step,
the authors [22] propose a multi-frame setting, where every 200 consecutive frames are taken as
a single step. Effectively, the data can be viewed as a sequence of 200-dimensional real-valued
vectors, i.e., xt ∈ RL with L = 200. During training, every T = 40 steps (8,000 frames) are
taken as an i.i.d. sequence to form the training set.

Under this data format, notice that the output distributions pθ(xt | x<t) and pθ(xt | z≤t,x<t)
now correspond to an L-dimensional random vector xt. Therefore, how to parameterize this
multivariate distribution can largely influence empirical performance. That said, recent ap-
proaches [34, 38] have all followed [22] to employ a fully factorized parametric form which
ignores the inner dependency:

pθ(xt | x) ≈
L∏
i=1

pθ(xt,i | x<t), (3.3)

pθ(xt | z≤t,x<t) ≈
L∏
i=1

pθ(xt,i | z≤t,x<t). (3.4)
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Here, we have used the≈ to emphasize this choice effectively poses an independent assumption.
Despite this convenience, note that the restriction of a fully factorized form is not necessary at all.
Nevertheless, we will refer to the models in Eqn. (3.3) and Eqn. (3.4), respectively, as factorized
RNN (F-RNN) and factorized SRNN (F-SRNN) in the following.

To provide a baseline for further discussion, we replicate the experiments under the setting
introduced above and evaluate them on three speech datasets, namely TIMIT, VCTK, and Bliz-
zard. Following the previous work [22], we choose a Gaussian mixture to model the per-frame
distribution pθ(xt,i | x<t) of F-RNN, which enables a basic multi-modality.

We report the averaged test log-likelihood in Table 3.1. For consistency with previous results
in the literature, the results of TIMIT and Blizzard are based on sequence-level average, while the
result of VCTK is frame-level average. As we can see, similar to previous observations, F-SRNN
outperforms F-RNN on all three datasets by a dramatic margin.

Models TIMIT VCTK Blizzard

F-RNN 32,745 0.786 7,610
F-SRNN 69,296 2.383 15,258

Table 3.1: Performance comparison on three benchmark datasets.

3.3.2 Decomposing the Advantages of Factorized SRNN
To understand why the F-SRNN outperforms F-RNN by such a large margin, it is helpful to
examine the effective output distribution pθ(xt | x<t) of F-SRNN after marginalizing out the
latent variables:

pθ(xt |x<t)=

∫
pθ(z≤t |x<t)

L∏
i=1

pθ(xt,i |z≤t,x<t)dz≤t. (3.5)

From this particular form, we can see two potential causes of the performance gap between
F-SRNN and F-RNN in the multi-frame setting:
• Advantage under High Volatility: By incorporating the continuous latent variable, the dis-

tribution pθ(xt | x<t) of F-SRNN essentially forms an infinite mixture of simpler distributions
(see first line of Eqn. (3.5)). As a result, the distribution is significantly more expressive
and flexible, and it is believed to be particularly suitable for modeling high-entropy sequential
dynamics [22].
The multi-frame setting introduced above well matches this description. Concretely, since the
model is required to predict the next L frames all together in this setting, the long prediction
horizon will naturally involve a higher uncertainty. Therefore, the high volatility of the multi-
frame setting may provide a perfect scenario for SRNN to exhibit its theoretical advantage in
expressiveness.

• Utilizing the Intra-Step Correlation: From Eqn. (3.5), notice that the distribution pθ(xt |
x<t) after marginalization is generally not factorized any more, due to the coupling with z.
In contrast, recall the same distribution of the F-RNN (Eqn. (3.3)) is fully factorized pθ(xt |
x<t) =

∏L
i=1 pθ(xt,i | x<t). Therefore, in theory, a factorized SRNN could still model the
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correlation among the L frames within each step, if properly trained, while the factorized
RNN has no means to do so at all. Thus, SRNN may also benefit from this difference.

While both advantages could have jointly led to the performance gap in Table 3.1, the impli-
cations are totally different. The first advantage under high volatility is a unique property of
latent-variable models that other generative models without latent variables can hardly to obtain.
Therefore, if this property significantly contributes to the superior performance of F-SRNN over
F-RNN, it suggests more general effectiveness of incorporating stochastic latent variables.

Quite the contrary, being able to utilize the intra-step correlation is more like an unfair ben-
efit to SRNN, since it is the unnecessary restriction of fully factorized output distributions in
previous experimental design that prevents RNNs from modeling the correlation. In practice,
one can easily enable RNNs to do so by employing a non-factorized output distribution. In this
case, it remains unclear whether this particular advantage will sustain. Motivated by the distinct
implications, in the sequel, we will try to figure out how much each of the two hypotheses above
actually contributes to the performance gap.

3.3.3 Advantage under High Volatility
In order to test the advantage of F-SRNN in modeling high-volatile data in isolation, the idea
is to construct a sequential dataset where each step consists of a single frame (i.e., a uni-variate
variable), while there exists high volatility between every two consecutive steps.

Concretely, for each sequence x ∈ D, we create a sub-sequence by selecting one frame
from every M consecutive frames, i.e., x̂ = [x1, xM+1, x2M+1, . . .] with xt ∈ R. Intuitively, a
larger stride M will lead to a longer horizon between two selected frames and hence a higher
uncertainty. Moreover, since each step corresponds to a single scalar, the second advantage (i.e.,
the potential confounding factor) automatically disappears.

Following this idea, from the original datasets, we derive the stride-TIMIT, stride-VCTK and
stride-Blizzard with different stride valuesM , and evaluate the RNN and SRNN on each of them.
Again, we report the sequence- or frame-average test likelihood in Table 3.2.

Stride = 50 Stride = 200
Model TIMIT VCTK Blizzard TIMIT VCTK Blizzard

RNN 20,655 0.668 4,607 4,124 0.177 -320
SRNN 14,469 0.605 3,603 -1,137 0.0187 -1,231

Table 3.2: Performance comparison on high-volatility datasets.
Surprisingly, RNN consistently achieves a better performance than SRNN in this setting.

It suggests the theoretically better expressiveness of SRNN does not help that much in high-
volatility scenarios. Hence, this potential advantage does not really contribute to the performance
gap observed in Table 3.1.

3.3.4 Utilizing the Intra-Step Correlation
After ruling out the first hypothesis, it becomes more likely that being able to utilize the intra-
step correlation actually leads to the superior performance of F-SRNN. However, despite the
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non-factorized form in Eqn. (3.5), it is still not clear how F-SRNN computationally captures the
correlation in practice. Here, we provide a particular possibility.

Recall that in ELBO function of SRNN method (Eqn. (3.2)), the vector xt, we hope to
reconstruct at step t, is included in the conditional input to the posterior qφ(zt | z<t,x). With this
computational structure, the encoder could theoretically leak a subset of the vector xt into the
latent variable zt, and leverage the leaked subset to predict (reconstruct) the rest elements in xt.
Intuitively, the procedure of using the leaked subset to predict the remained subset is essentially
exploiting the dependency between the two subsets, or in other words, the correlation within xt.
Proposition 1. Given a vector xt, we split its elements into two arbitrary disjoint subsets, the
leaked subset xat and its complement xbt = xt\xat . Assume that the latent variables and leaked
subset have the same dimensionality, |zt| = |xat |. Define the posterior distribution as a delta
function:

qφ(zt | z<t,x) = δzt=xat =

{
∞, if zt = xat
0, otherwise

, (3.6)

We further assume pθ(xt | z≤t,x<t) ≈ pθ(xt | zt,x<t). The ELBO function (Eqn. (3.2)) would
reduce to a special case of auto-regressive factorization:

max
θ
LD = E

x∼D

Tx∑
t=1

log pθ(x
a
t | x<t) + log pθ(x

b
t | xat ,x<t). (3.7)

Now, the second term in Eqn. (3.7) is conditioned on the leaked subset of xat to predict xbt ,
which is exactly utilizing the correlation between the two subsets. In other words, with a proper
posterior, F-SRNN can recover a certain auto-regressive parameterization, making it possible to
utilize the intra-step correlation, even with a fully factorized output distribution.

Although the analysis and construction above provide a theoretical possibility, we still lack
concrete evidence to support the hypothesis that F-SRNN has significantly benefited from mod-
eling the intra-step correlation. While it is difficult to verify this hypothesis in general, we can
parameterize an RNN according to Eqn. (3.7), which is equivalent to an F-SRNN with a delta
posterior. Therefore, by measuring the performance of this special RNN, we can get a conserva-
tive estimate of how much modeling the intra-step correlation can contribute to the performance
of F-SRNN.

To finish the special RNN idea, we still need to specify how xt is split into xat and xbt . Here,
we consider two methods with different intuitions:
• Interleaving: The first method takes one out of every U elements to construct
xat = {xt,1, xt,U+1, xt,2U+1, . . .}. Essentially, this method interleaves the two subsets xat and
xbt . In the extreme case of U = 2, xat includes the odd elements of xt and xbt the even ones.
Hence, when predicting an even element xt,2k ∈ xbt , the output distribution is conditioned on
both the elements to the left xt,2k−1 and to the right xt,2k+1, making the problem much easier.

• Random: The second method simply uniformly selects V random elements from xt to form
xat , and leaves the rest for xbt . Intuitively, this can be viewed as an informal “lower bound” of
performance gain through modeling the intra-step correlation.
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Models TIMIT VCTK Blizzard

F-RNN 32,745 0.786 7,610
F-SRNN 69,296 2.383 15,258

δ-RNN (U = 2) 70,900 2.027 15,306
δ-RNN (U = 3) 72,067 2.262 15,284

δ-RNN (V = 50) 66,122 2.199 14,389
δ-RNN (V = 75) 66,453 2.120 14,585

Table 3.3: Performance comparison between δ-RNN and F-SRNN. Note that a smaller U corre-
sponds to leaking more elements.

Since the parametric form Eqn. (3.7) is derived from a delta posterior, we will refer to the special
RNN model as δ-RNN. Based on the two split methods, we train δ-RNN on TIMIT, VCTK and
Blizzard with different values of U and V . The results are summarized in Table 3.3. As we
can see, when the interleaving split scheme is used, δ-RNN significantly improves upon F-RNN
and becomes very competitive with F-SRNN. Specifically, on TIMIT and Blizzard, δ-RNN can
even outperform F-SRNN in certain cases. More surprisingly, the δ-RNN with the random-copy
scheme can also achieve a performance that is very close to that of F-SRNN, especially compared
to F-RNN.

Recall that δ-RNN is equivalent to employing a manually designed delta posterior that can
only copy but never compresses (auto-encodes) the information in xt. As a result, compared
to a posterior that can learn to compress information, the delta posterior will involve a higher
KL cost when leaking information through the posterior. Furthermore, the correlation between
historical latent variables and outputs is ignored. It would decrease the model capacity of δ-RNN.
Despite these disadvantages, δ-RNN is still able to match or even surpasses the performance of
F-SRNN, suggesting the learned posterior in F-SRNN is far from satisfying. Quite contrary
to that, the limited performance gap between F-SRNN and the random copy baseline raises a
serious concern about the effectiveness of current variational inference techniques.

Nevertheless, putting the analysis and empirical evidence together, we can conclude that the
performance advantage of F-SRNN in the multi-frame setting can be entirely attributed to the
second cause. That is, under the factorized constraint in previous experiments, F-SRNN can still
implicitly leverage the intra-step correlation, while F-RNN is prohibited to do so. However, as
we have discussed earlier in Section 3.3.2, this is essentially an unfair comparison. More impor-
tantly, the claimed superiority of SRNN over RNN may be misleading, as it is unclear whether
performance advantage of SRNN will sustain or not when a non-factorized output distribution is
employed to capture the intra-step correlation explicitly.

As far as we know, no previous work has carefully compared the performance of SRNN and
RNN when non-factorized output distribution is allowed. On the other hand, as shown in Table
3.3, by modeling the multivariate simultaneity in the simplest way, δ-RNN can achieve dramatic
performance improvement. Motivated by the huge potential as well as the lack of a systematic
study, we will next include non-factorized output distributions in our consideration, and properly
re-evaluate SRNN and RNN for multivariate sequence modeling.
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3.4 Proper Multivariate Sequence Modeling with or without
Latent Variables

3.4.1 Avoiding the Implicit Data Bias

In this section, we aim to eliminate any experimental bias and provide a proper evaluation of
SRNN and RNN for multivariate sequence modeling. Apart from the “model bias” of employing
fully factorized output distributions we have discussed, another possible source of bias is actually
the experimental data. For example, as we discussed in Section 3.3.1, the multi-frame speech
sequences are constructed by reshaping L consecutive real-valued frames into L-dimensional
vectors. Consequently, elements within each step xt are simply temporally correlated with a
natural order, which would favor a model that recurrently process each element from xt,1 to xt,L
with parameter sharing.

Thus, to avoid such “data bias”, besides speech sequences, we additionally consider three
more types of multivariate sequences with different patterns of intra-step correlation, they are
MIDI sound sequence data (including Muse and Nottingham datasets), handwriting trajectory
data (IAM-OnDB) and the Perm-TIMIT dataset. The Perm-TIMIT is a variant of multivariate
TIMIT dataset. It permutes the elements within each time step, which is designed to remove the
temporal bias.

3.4.2 Modeling Simultaneity with Auto-Regressive Decomposition

With proper datasets, we now consider how to construct a family of non-factorized distributions
that (1) can be easily integrated into RNN and SRNN as the output distribution, and (2) are
reasonably expressive for modeling multivariate correlations. Among many possible choices, the
most straightforward choice would be the auto-regressive parameterization. Compared to other
options such as the normalizing flow or Markov Random Field (e.g. RBM), the auto-regressive
structure is conceptually simpler and can be applied to both discrete and continuous data with
full tractability. In light of these benefits, we choose to follow this simple idea, and decompose
the output distribution of the RNN and SRNN, respectively, as

pθ(xt | x<t) =
L∏
i=1

pθ(xt,i | x<t, xt,<i), (3.8)

pθ(xt | z≤t,x<t) =
L∏
i=1

pθ(xt,i | z≤t,x<t, xt,<i). (3.9)

Notice that although we use the natural decomposition order from smallest index to largest one,
this particular order is generally not optimal for modeling multivariate distributions. A better
choice could be adapting the orderless training previously explored in literature [105]. But for
simplicity, we will stick to this simple approach.

Given the auto-regressive decomposition, a natural neural instantiation would be a recurrent
hierarchical model that utilizes a two-level architecture to process the sequence:
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Models TIMIT VCTK Blizzard Muse Nottingham IAM-OnDB Perm-TIMIT

VRNN† 28,982 - 9,392 - - 1384 -
SRNN† 60,550 - 11,991 -6.28 -2.94 - -
Z-Forcing† 70,469 - 15,430 - - - -
SWaveNet†‡ 72,463 - 15,708 - - 1301 -
STCN†‡ 77,438 - 17,670 - - 1796 -

F-RNN 32,745 0.786 7,610 -6.991 -3.400 1397 25,679
F-SRNN 69,296 2.383 15,258 -6.438 -2.811 1402 67,613
δ-RNN-random 66,453 2.199 14,585 -6.252 -2.834 N/A 61,103

RNN-flat 117,721? 3.2173? 22,714? -5.251 -2.180 N/A 15,763
SRNN-flat 109,284 3.2062 22,290 -5.616 -2.324 N/A 14,278

RNN-hier 109,641 3.1822 21,950 -5.161 -2.028 1440 95,161
SRNN-hier 107,912 3.1423 21,845 -5.483 -2.065 1395 94,402

Table 3.4: Performance comparison on a diverse set of datasets. The models with † indicate that
the performances are directly copied from previous publications. Numbers with ? indicate the
state-of-the-art performances. N/A suggests the model is not application on the dataset. The
models with ‡ have other architectures than recurrent neural network as the backbone.

• Firstly, a high-level RNN or SRNN is employed to encode the multivariate steps x = [x1, . . . , xT ]
into a sequence of high-level hidden vectors h = [h1, . . . , hT ], which follows exactly the same
as the computational procedure used in F-RNN and F-SRNN . Recall that, in the case of
SRNN, the computation of high-level vectors involves sampling the latent variables.

• Based on the high-level representations, for each multivariate step xt, another neural model
flow will take both the elements [xt,1, · · · , xt,L] and the high-level vector ht as input, and
auto-regressively produce a sequence of low-level hidden vectors [gt,1, · · · , gt,L] where gt,i =
flow(xt,<i, ht). They can be then used to form the per-element output distributions in Eqn. (3.8)
and (3.9).

In practice, the low-level model could simply be an RNN or a causally masked MLP [36], de-
pending on our prior about the data. For convenience, we will refer to the hierarchical models as
RNN-hier and SRNN-hier.

In some cases where all the elements within a step share the same statistical type, such as on
the speech or MIDI dataset, one may alternatively consider a flat model. As the name suggests,
the flat model will break the boundary between steps and flatten the data into a new uni-variate
sequence, where each step is simply a single element. Then, the new uni-variate sequence can
be directly fed into a standard RNN or SRNN model, producing each conditional factor in Eqn.
(3.8) and (3.9) in an auto-regressive manner. Similarly, this class of RNN and SRNN will be
referred to as RNN-flat and SRNN-flat, respectively. Compared to the hierarchical model, the flat
variant implicitly assumes a sequential continuity between xt,L and xt+1,1. Since this inductive
bias matches the characteristics of multi-frame speech sequences, we expect the flat model to
perform better in this case.
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3.4.3 Experiment Results

Based on the seven datasets, we compare the performance of the models introduced above. To
provide a random baseline, we include the δ-RNN with the random split scheme in the compari-
son. Moreover, previous results, if exist, are also presented to provide additional information. For
a fair comparison, we make sure all models share the same parameter size. For more implemen-
tation details, please refer to the source code1. We also include the running time comparison in
section 3.4.4. Finally, the results are summarized in Table 3.4, where we make several important
observations.

Firstly, on the speech and MIDI datasets, models with auto-regressive (lower-half) output
distributions obtain a dramatic advantage over models with fully factorized output distributions
(upper-half), achieving new SOTA results on three speech datasets. This observation reminds us
that, besides capturing the long-term temporal structure across steps, how to properly model the
intra-step dependency is equally, if not more, crucial to the practical performance.

Secondly, when the auto-regressive output distribution is employed (lower-half), the non-
stochastic recurrent models consistently outperform their stochastic counterparts across all datasets.
In other words, the advantage of SRNN completely disappears once a powerful output distribu-
tion is used. Combined with the previous observation, it verifies our earlier concern that the
so-called superiority of F-SRNN over F-RNN is merely a result of the biased experiment design
in previous work.

In addition, as we expected, when the inductive bias of the flat model matches the character-
istics of speech data, it will achieve a better performance than the hierarchical model. Inversely,
when the prior does not match data property on the other datasets, the hierarchical model is al-
ways better. In the extreme case of permuted TIMIT, the flat model even falls behind factorized
models, while the hierarchical model achieves a very decent performance that is even much bet-
ter than what F-SRNN can achieve on the original TIMIT. This shows that the hierarchical model
is usually more robust, especially when we don’t have a good prior.

Overall, we don’t find any advantage of employing stochastic latent variables for multivariate
sequence modeling. Instead, relying on a full auto-regressive solution yields better or even state-
of-the-art performances. Combined with the observation that δ-RNN-random can often achieve a
competitive performance to F-SRNN, we believe that the theoretical advantage of latent-variable
models in sequence modeling is still far from fulfilled, if ultimately possible. In addition, we sug-
gest future development along this line compare with the simple but extremely robust baselines
with an auto-regressive output distribution.

3.4.4 Training Time Comparison

Here, we report the training time of different methods in TIMIT dataset. The running times
of training models for 40k updating steps on TIMIT are summarized in Table 3.5. The input
length indicates the sample length of input during the training phrase. Admittedly, modeling the
intra-step correlation (*-hier and *-flat model) would require extra computation time. Hence,
this leads to a trade-off between quality and speed. Ideally, latent-variable models would provide

1https://github.com/zihangdai/reexamine-srnn
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Input Length 8000 1000

Model Name F-RNN F-SRNN δ-RNN RNN-hier SRNN-hier RNN-flat SRNN-flat RNN-hier

Training Time 0.54h 0.94h 0.90h 9.92h 12.52h 37.48h 42.26h 1.7h

Log-Likelihood 32,745 69,296 66,453 109,641 107,912 117,721 109,284 101,713

Table 3.5: Training time comparison between various models.

a solution close to the sweet point of this trade-off. However, in our experiment, we find a sim-
ple hierarchical auto-regressive model trained with a shorter input length could already achieve
significantly better performance with a comparable computation time (RNN-hier vs. F-SRNN in
Table 3.5).

3.5 Summary
In summary, our re-examination reveals a misleading impression on the benefits of latent vari-
ables in sequence modeling. From our empirical observation, the main effect of latent variables
is only to provide a mechanism to leverage the intra-step correlation, which is however, not as
powerful as employing the straightforward auto-regressive decomposition. It remains unclear
what leads to the significant gap between the theoretical potential of latent variables and their
practical effectiveness, which we believe deserves more research attention. Meanwhile, given
the large gain of modeling simultaneity, using sequential structures to better capture local pat-
terns is another good future direction in sequence modeling.
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Chapter 4

Long- and Short-term Time-series Network

4.1 Background and Motivation

Multivariate time series data are ubiquitous in our everyday life ranging from the prices in stock
markets, the traffic flows on highways, the outputs of solar power plants, the temperatures across
different cities, just to name a few. In such applications, users are often interested in the fore-
casting of the new trends or potential hazardous events based on historical observations on time
series signals. For instance, a better route plan could be devised based on the predicted traffic
jam patterns a few hours ahead, and a larger profit could be made with the forecasting of the
near-future stock market.

Multivariate time series forecasting often faces a major research challenge, that is, how to
capture and leverage the dynamics dependencies among multiple variables. Specifically, real-
world applications often entail a mixture of short-term and long-term repeating patterns, as
shown in Figure 4.1 which plots the hourly occupancy rate of a freeway. Apparently, there
are two repeating patterns, daily and weekly. The former portraits the morning peaks vs. evening
peaks, while the latter reflects the workday and weekend patterns. A successful time series fore-
casting model should be capture both kinds of recurring patterns for accurate predictions. As
another example, consider the task of predicting the output of a solar energy farm based on
the measured solar radiation by massive sensors over different locations. The long-term pat-
terns reflect the difference between days vs. nights, summer vs. winter, etc., and the short-term
patterns reflect the effects of cloud movements, wind direction changes, etc. Again, without
taking both kinds of recurrent patterns into account, accurate time series forecasting is not pos-
sible. However, traditional approaches such as the large body of work in autoregressive methods
[10, 43, 71, 123, 125] fall short in this aspect, as most of them do not distinguish the two kinds
of patterns nor model their interactions explicitly and dynamically. Addressing such limitations
of existing methods in time series forecasting is the main focus of this , for which we propose a
novel framework that takes advantages of recent developments in deep learning research.

Deep neural networks have received an increasing amount of attention in time series analysis.
A substantial portion of the previous work has been focusing on time series classification, i.e., the
task of automated assignment of class labels to time series input. For instance, RNN architectures
have been studied for extracting informative patterns from health-care sequential data [17, 75]
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Figure 4.1: The hourly occupancy rate of a road in the bay area for 2 weeks

Figure 4.2: An overview of the Long- and Short-term Time-series network (LSTNet)

and classifying the data with respect diagnostic categories. RNN has been applied to mobile
data, for classifying the input sequences with respect to actions or activities [44]. CNN models
have been used in action/activity recognition [44, 66, 120], for the extraction of shift-invariant
local patterns from input sequences as the features of classification models.

Deep neural networks have been studied for time series forecasting [28, 83, 124, 130], i.e., the
task of using observed time series in the past to predict the unknown time series in a look-ahead
horizon – the larger the horizon, the harder the problem. Efforts in this direction range from the
early work using naive RNN models [24] and the hybrid models [50, 125, 126] combining the
use of ARIMA [9] and Multilayer Perceptron (MLP), to the recent combination of vanilla RNN
and Dynamic Boltzmann Machines in time series forecasting [28].

In this chapter, we propose a deep learning framework designed for the multivariate time
series forecasting, namely Long- and Short-term Time-series Network (LSTNet), as illustrated
in Figure 4.2. It leverages the strengths of both the convolutional layer to discover the local
dependency patterns among multi-dimensional input variables and the recurrent layer to cap-
ture complex long-term dependencies. A novel recurrent structure, namely Recurrent-skip, is
designed for capturing very long-term dependence patterns and making the optimization easier
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as it utilizes the periodic property of the input time series signals. Finally, the LSTNet incorpo-
rates a traditional autoregressive linear model in parallel to the non-linear neural network part,
which makes the non-linear deep learning model more robust for the time series with violate
scale changing. In the experiment on the real world seasonal time series datasets, our model
consistently outperforms the traditional linear models and GRU recurrent neural network.

4.2 Framework
In this section, we first formulate the time series forecasting problem, and then discuss the details
of the proposed LSTNet architecture (Figure 4.2) in the following part. Finally, we introduce the
objective function and the optimization strategy.

4.2.1 Problem Formulation
In this chapter, we are interested in the task of multivariate time series forecasting. More for-
mally, given a series of fully observed time series signals Y = {y1,y2, . . . ,yT} where yt ∈ Rn,
and n is the variable dimension, we aim at predicting a series of future signals in a rolling fore-
casting fashion. That being said, to predict yT+h where h is the desirable horizon ahead of the
current time stamp, we assume {y1,y2, . . . ,yT} are available. Likewise, to predict the value of
the next time stamp yT+h+1, we assume {y1,y2, . . . ,yT ,yT+1} are available. We hence formu-
late the input matrix at time stamp T as XT = {y1,y2, . . . ,yT} ∈ Rn×T .

In the most of cases, the horizon of the forecasting task is chosen according to the demands
of the environmental settings, e.g. for the traffic usage, the horizon of interest ranges from hours
to a day; for the stock market data, even seconds/minutes-ahead forecast can be meaningful for
generating returns.

Figure 4.2 presents an overview of the proposed LSTnet architecture. The LSTNet is a deep
learning framework specifically designed for multivariate time series forecasting tasks with a
mixture of long- and short-term patterns. In following sections, we introduce the building blocks
for the LSTNet in detail.

4.2.2 Convolutional Component
The first layer of LSTNet is a convolutional network without pooling, which aims to extract
short-term patterns in the time dimension as well as local dependencies between variables. The
convolutional layer consists of multiple filters of width ω and height n (the height is set to be
the same as the number of variables). The k-th filter sweeps through the input matrix X and
produces

hk = RELU(Wk ∗X + bk) (4.1)

where ∗ denotes the convolution operation and the output hk would be a vector, and the RELU
function is RELU(x) = max(0, x). We make each vector hk of length T by zero-padding on
the left of input matrix X . The output matrix of the convolutional layer is of size dc × T where
dc denotes the number of filters.
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4.2.3 Recurrent Component

The output of the convolutional layer is simultaneously fed into the Recurrent component and
Recurrent-skip component (to be described in subsection 4.2.4). The Recurrent component is a
recurrent layer with the Gated Recurrent Unit (GRU) [21] and uses the RELU function as the
hidden update activation function. The hidden state of recurrent units at time t is computed as,

rt = σ(xtWxr + ht−1Whr + br)

ut = σ(xtWxu + ht−1Whu + bu)

ct = RELU(xtWxc + rt � (ht−1Whc) + bc)

ht = (1− ut)� ht−1 + ut � ct

(4.2)

where � is the element-wise product, σ is the sigmoid function and xt is the input of this
layer at time t. The output of this layer is the hidden state at each time stamp. While researchers
are accustomed to using tanh function as hidden update activation function, we empirically
found RELU leads to more reliable performance, through which the gradient is easier to back
propagate.

4.2.4 Recurrent-skip Component

The Recurrent layers with GRU [21] and LSTM [46] unit are carefully designed to memorize the
historical information and hence to be aware of relatively long-term dependencies. Due to gra-
dient vanishing, however, GRU and LSTM usually fail to capture very long-term correlation in
practice. We propose to alleviate this issue via a novel recurrent-skip component which leverages
the periodic pattern in real-world sets. For instance, both the electricity consumption and traffic
usage exhibit clear pattern on a daily basis. If we want to predict the electricity consumption at
t o’clock for today, a classical trick in the seasonal forecasting model is to leverage the records
at t o’clock in historical days, besides the most recent records. This type of dependencies can
hardly be captured by off-the-shelf recurrent units due to the extremely long length of one period
(24 hours) and the subsequent optimization issues. Inspired by the effectiveness of this trick, we
develop a recurrent structure with temporal skip-connections to extend the temporal span of the
information flow and hence to ease the optimization process. Specifically, skip-links are added
between the current hidden cell and the hidden cells in the same phase in adjacent periods. The
updating process can be formulated as,

rt = σ(xtWxr + ht−pWhr + br)

ut = σ(xtWxu + ht−pWhu + bu)

ct = RELU(xtWxc + rt � (ht−pWhc) + bc)

ht = (1− ut)� ht−p + ut � ct

(4.3)

where the input of this layer is the output of the convolutional layer, and p is the number of
hidden cells skipped through. The value of p can be easily determined for datasets with clear
periodic patterns (e.g. p = 24 for the hourly electricity consumption and traffic usage datasets),
and has to be tuned otherwise. In our experiments, we empirically found that a well-tuned p can
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considerably boost the model performance even for the latter case. Furthermore, the LSTNet
could be easily extended to contain variants of the skip length p.

We use a dense layer to combine the outputs of the Recurrent and Recurrent-skip components.
The inputs to the dense layer include the hidden state of Recurrent component at time stamp t,
denoted by hRt , and p hidden states of Recurrent-skip component from time stamp t− p+ 1 to t
denoted by hSt−p+1, h

S
t−p+2 . . . , h

S
t . The output of the dense layer is computed as,

hDt = WRhRt +

p−1∑
i=0

W S
i h

S
t−i + b (4.4)

where hDt is the prediction result of the neural network (upper) part in the Fig.4.2 at time
stamp t.

4.2.5 Temporal Attention Layer

However, the Recurrent-skip layer requires a predefined hyper-parameter p, which is unfavorable
in the nonseasonal time series prediction, or whose period length is dynamic over time. To
alleviate such issue, we consider an alternative approach, attention mechanism [5], which learns
the weighted combination of hidden representations at each window position of the input matrix.
Specifically, the attention weights αt ∈ Rq at current time stamp t are calculated as

αt = AttnScore(HR
t , h

R
t−1)

where HR
t = [hRt−q, . . . , h

R
t−1] is a matrix stacking the hidden representation of RNN column-

wisely and AttnScore is some similarity functions such as dot product, cosine, or parameterized
by a simple multi-layer perceptron.

The final output of temporal attention layer is the concatenation of the weighted context
vector ct = Htαt and last window hidden representation hRt−1, along with a linear projection
operation

hDt = W [ct;h
R
t−1] + b.

4.2.6 Autoregressive Component

Due to the non-linear nature of the Convolutional and Recurrent components, one major draw-
back of the neural network model is that the scale of outputs is not sensitive to the scale of
inputs. Unfortunately, in specific real datasets, the scale of input signals constantly changes in a
non-periodic manner, which significantly lowers the forecasting accuracy of the neural network
model. A concrete example of this failure is given in Section 4.3.6. To address this deficiency,
similar in spirit to the highway network [101], we decompose the final prediction of LSTNet into
a linear part, which primarily focuses on the local scaling issue, plus a non-linear part contain-
ing recurring patterns. In the LSTNet architecture, we adopt the classical Autoregressive (AR)
model as the linear component. Denote the forecasting result of the AR component as hLt ∈ Rn,
and the coefficients of the AR model as W ar ∈ Rqar and bar ∈ R, where qar is the size of input
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window over the input matrix. Note that in our model, all dimensions share the same set of linear
parameters. The AR model is formulated as follows,

hLt,i =

qar−1∑
k=0

W ar
k yt−k,i + bar (4.5)

The final prediction of LSTNet is then obtained by integrating the outputs of the neural net-
work part and the AR component:

Ŷt = hDt + hLt (4.6)

where Ŷt denotes the model’s final prediction at time stamp t.

4.2.7 Objective function
The squared error is the default loss function for many forecasting tasks, the corresponding
optimization objective is formulated as,

minimize
Θ

∑
t∈ΩTrain

||Yt − Ŷt−h||2F (4.7)

where Θ denotes the parameter set of our model, ΩTrain is the set of time stamps used for training,
|| · ||F is the Frobenius norm, and h is the horizon as mentioned in Section 4.2.1. The traditional
linear regression model with the square loss function is named as Linear Ridge, which is equiv-
alent to the vector autoregressive model with ridge regularization. However, experiments show
that the Linear Support Vector Regression (Linear SVR) [109] dominates the Linear Ridge model
in certain datasets. The only difference between Linear SVR and Linear Ridge is the objective
function. The objective function for Linear SVR is,

minimize
Θ

1

2
||Θ||2F + C

∑
t∈ΩTrain

n−1∑
i=0

ξt,i

subject to |Ŷt−h,i − Yt,i| ≤ ξt,i + ε, t ∈ ΩTrain

ξt,i ≥ 0

(4.8)

where C and ε are hyper-parameters. Motivated by the remarkable performance of the Linear
SVR model, we incorporate its objective function in the LSTNet model as an alternative of the
squared loss. For simplicity, we assume ε = 01, and the objective function above reduces to
absolute loss (L1-loss) function as follows:

minimize
Θ

∑
t∈ΩTrain

n−1∑
i=0

|Yt,i − Ŷt−h,i| (4.9)

The advantage of the absolute loss function is that it is more robust to the anomaly in the
real time series data. In the experiment section, we use the validation set to decide to use which
objective function, square loss Eq.4.7 or absolute one Eq.4.9.

1One could keep ε to make the objective function more faithful to the Linear SVR model without modifying the
optimization strategy. We leave this for future study.
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4.2.8 Optimization Strategy

In this chapter, our optimization strategy is the same as that in the traditional time series fore-
casting model. Supposing the input time series is Yt = {y1,y2, . . . ,yt}, we define a tunable
window size q, and reformulate the input at time stamp t asXt = {yt−q+1,yt−q+2, . . . ,yt}. The
problem then becomes a regression task with a set of feature-value pairs {Xt,Yt+h}, and can be
solved by Stochastic Gradient Decent (SGD) or its variants such as Adam [52].

4.3 Evaluation

We conducted extensive experiments with 9 methods (including our new methods) on 4 bench-
mark datasets for time series forecasting tasks. All the data and experiment codes are available
online 2.

4.3.1 Methods for Comparison

The methods in our comparative evaluation are the follows.
• AR stands for the autoregressive model, which is equivalent to the one dimensional VAR

model.
• LRidge is the vector autoregression (VAR) model with L2-regularization, which has been

most popular for multivariate time series forecasting.
• LSVR is the vector autoregression (VAR) model with Support Vector Regression objective

function [109] .
• TRMF is the autoregressive model using temporal regularized matrix factorization by

[123].
• GP is the Gaussian Process for time series modeling. [35, 93]
• VAR-MLP is the model proposed in [125] that combines Multilayer Perception (MLP) and

autoregressive model.
• RNN-GRU is the Recurrent Neural Network model using GRU cell.
• LSTNet-skip is our proposed LSTNet model with skip-RNN layer.
• LSTNet-Attn is our proposed LSTNet model with temporal attention layer.

For the single output methods above such as AR, LRidge, LSVR and GP, we just trained n
models independently, i.e., one model for each of the n output variables.

4.3.2 Metrics

We used three conventional evaluation metrics defined as:

2https://github.com/laiguokun/LSTNet
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• Root Relative Squared Error (RSE):

RSE =

√∑
(i,t)∈ΩTest

(Yit − Ŷit)2√∑
(i,t)∈ΩTest

(Yit −mean(Y ))2
(4.10)

• Empirical Correlation Coefficient (CORR)

CORR =
1

n

n∑
i=1

∑
t

(
Yit −mean(Yi)

)(
Ŷit −mean(Ŷi)

)√∑
t

(
Yit −mean(Yi)

)2(
Ŷit −mean(Ŷi)

)2
(4.11)

where Y , Ŷ ∈ Rn×T are ground true signals and system prediction signals, respectively. The
RSE are the scaled version of the widely used Root Mean Square Error(RMSE), which is design
to make more readable evaluation, regardless the data scale. For RSE lower value is better, while
for CORR higher value is better.

4.3.3 Data
We used four benchmark datasets which are publicly available. Table 4.1 summarizes the corpus
statistics.
• Traffic3: A collection of 48 months (2015-2016) hourly data from the California Depart-

ment of Transportation. The data describes the road occupancy rates (between 0 and 1)
measured by different sensors on San Francisco Bay area freeways.

• Solar-Energy4 : the solar power production records in the year of 2006, which is sampled
every 10 minutes from 137 PV plants in Alabama State.

• Electricity5: The electricity consumption in kWh was recorded every 15 minutes from
2012 to 2014, for n = 321 clients. We converted the data to reflect hourly consumption;

• Exchange-Rate: the collection of the daily exchange rates of eight foreign countries in-
cluding Australia, British, Canada, Switzerland, China, Japan, New Zealand and Singapore
ranging from 1990 to 2016.

All datasets have been split into training set (60%), validation set (20%) and test set (20%)
in chronological order. To facilitate future research in multivariate time series forecasting, we
publicize all raw datasets and the one after preprocessing in the website.

In order to examine the existence of long-term and/or short-term repetitive patterns in time
series data, we plot autocorrelation graph for some randomly selected variables from the four
datasets in Figure 4.3. Autocorrelation, also known as serial correlation, is the correlation of a
signal with a delayed copy of itself as a function of delay defined below

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2

3http://pems.dot.ca.gov
4http://www.nrel.gov/grid/solar-power-data.html
5https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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Datasets T D L

Traffic 17,544 862 1 hour
Solar-Energy 52,560 137 10 minutes
Electricity 26,304 321 1 hour
Exchange-Rate 7,588 8 1 day

Table 4.1: Dataset Statistics, where T is length of time series, D is number of variables, L is the
sample rate.

where Xt is the time series signals, µ is mean and σ2 is variance. In practice, we consider the
empirical unbiased estimator to calculate the autocorrelation.

We can see in the graphs (a), (b) and (c) of Figure 4.3, there are repetitive patterns with high
autocorrelation in the Traffic, Solar-Energy and Electricity datasets, but not in the Exchange-
Rate dataset. Furthermore, we can observe a short-term daily pattern (in every 24 hours) and
long-term weekly pattern (in every 7 days) in the graph of the Traffic and Electricity dataset,
which perfectly reflect the expected regularity in highway traffic situations and electricity con-
sumptions. On the other hand, in graph (d) of the Exchange-Rate dataset, we hardly see any
repetitive long-term patterns, expect some short-term local continuity. These observations are
important for our later analysis on the empirical results of different methods. That is, for the
methods which can properly model and successfully leverage both short-term and long-term
repetitive patterns in data, they should outperform well when the data contain such repetitive
patterns (like in Electricity, Traffic and Solar-Energy). On the other hand, if the dataset does
not contain such patterns (like in Exchange-Rate), the advantageous power of those methods
may not lead a better performance than that of other less powerful methods. We will revisit this
point in Section 4.3.7 with empirical justifications.

(a) Traffic dataset (b) Solar dataset (c) Electricity dataset (d) Exchange dataset

Figure 4.3: Autocorrelation graphs of sampled variables form four datasets.

4.3.4 Experimental Details
We conduct grid search over all tunable hyper-parameters on the held-out validation set for each
method and dataset. Specifically, all methods share the same grid search range of the window size
q ranging from {20, 21, . . . , 29} if applied. For LRidge and LSVR, the regularization coefficient
λ is chosen from {2−10, 2−8, . . . , 28, 210}. For GP, the RBF kernel bandwidth σ and the noise
level α are chosen from {2−10, 2−8, . . . , 28, 210}. For TRMF, the hidden dimension is chosen
from {22, . . . , 26} and the regularization coefficient λ is chosen from {0.1, 1, 10}. For LST-Skip
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Dataset Solar-Energy Traffic Electricity Exchange-Rate

Horizon Horizon Horizon Horizon

Methods Metrics 3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24

AR RSE 0.2435 0.3790 0.5911 0.8699 0.5991 0.6218 0.6252 0.6293 0.0995 0.1035 0.1050 0.1054 0.0228 0.0279 0.0353 0.0445
(3) CORR 0.9710 0.9263 0.8107 0.5314 0.7752 0.7568 0.7544 0.7519 0.8845 0.8632 0.8591 0.8595 0.9734 0.9656 0.9526 0.9357

LRidge RSE 0.2019 0.2954 0.4832 0.7287 0.5833 0.5920 0.6148 0.6025 0.1467 0.1419 0.2129 0.1280 0.0184 0.0274 0.0419 0.0675
(3) CORR 0.9807 0.9568 0.8765 0.6803 0.8038 0.8051 0.7879 0.7862 0.8890 0.8594 0.8003 0.8806 0.9788 0.9722 0.9543 0.9305

LSVR RSE 0.2021 0.2999 0.4846 0.7300 0.5740 0.6580 0.7714 0.5909 0.1523 0.1372 0.1333 0.1180 0.0189 0.0284 0.0425 0.0662
(1) CORR 0.9807 0.9562 0.8764 0.6789 0.7993 0.7267 0.6711 0.7850 0.8888 0.8861 0.8961 0.8891 0.9782 0.9697 0.9546 0.9370

TRMF RSE 0.2473 0.3470 0.5597 0.9005 0.6708 0.6261 0.5956 0.6442 0.1802 0.2039 0.2186 0.3656 0.0351 0.0875 0.0494 0.0563
(0) CORR 0.9703 0.9418 0.8475 0.5598 0.6964 0.7430 0.7748 0.7278 0.8538 0.8424 0.8304 0.7471 0.9142 0.8123 0.8993 0.8678

GP RSE 0.2259 0.3286 0.5200 0.7973 0.6082 0.6772 0.6406 0.5995 0.1500 0.1907 0.1621 0.1273 0.0239 0.0272 0.0394 0.0580
(1) CORR 0.9751 0.9448 0.8518 0.5971 0.7831 0.7406 0.7671 0.7909 0.8670 0.8334 0.8394 0.8818 0.8713 0.8193 0.8484 0.8278

VARMLP RSE 0.1922 0.2679 0.4244 0.6841 0.5582 0.6579 0.6023 0.6146 0.1393 0.1620 0.1557 0.1274 0.0265 0.0304 0.0407 0.0578
(0) CORR 0.9829 0.9655 0.9058 0.7149 0.8245 0.7695 0.7929 0.7891 0.8708 0.8389 0.8192 0.8679 0.8609 0.8725 0.8280 0.7675

RNN-GRU RSE 0.1932 0.2628 0.4163 0.4852 0.5358 0.5522 0.5562 0.5633 0.1102 0.1144 0.1183 0.1295 0.0192 0.0264 0.0408 0.0626
(0) CORR 0.9823 0.9675 0.9150 0.8823 0.8511 0.8405 0.8345 0.8300 0.8597 0.8623 0.8472 0.8651 0.9786 0.9712 0.9531 0.9223

LST-Skip RSE 0.1843 0.2559 0.3254 0.4643 0.4777 0.4893 0.4950 0.4973 0.0864 0.0931 0.1007 0.1007 0.0226 0.0280 0.0356 0.0449
(17) CORR 0.9843 0.9690 0.9467 0.8870 0.8721 0.8690 0.8614 0.8588 0.9283 0.9135 0.9077 0.9119 0.9735 0.9658 0.9511 0.9354

LST-Attn RSE 0.1816 0.2538 0.3466 0.4403 0.4897 0.4973 0.5173 0.5300 0.0868 0.0953 0.0984 0.1059 0.0276 0.0321 0.0448 0.0590
(7) CORR 0.9848 0.9696 0.9397 0.8995 0.8704 0.8669 0.8540 0.8429 0.9243 0.9095 0.9030 0.9025 0.9717 0.9656 0.9499 0.9339

Table 4.2: Results summary (in RSE and CORR) of all methods on four datasets: 1) each row
has the results of a specific method in a particular metric; 2) each column compares the results of
all methods on a particular dataset with a specific horizon value; 3) bold face indicates the best
result of each column in a particular metric; and 4) the total number of bold-faced results of each
method is listed under the method name within parentheses.

and LST-Attn, we adopted the training strategy described in Section 4.2.8. The hidden dimension
of the Recurrent and Convolutional layer is chosen from {50, 100, 200}, and {20, 50, 100} for
Recurrent-skip layer. The skip-length p of Recurrent-skip layer is set as 24 for the Traffic and
Electricity dataset, and tuned range from 21 to 26 for the Solar-Energy and Exchange-Rate
datasets. The regularization coefficient of the AR component is chosen from {0.1, 1, 10} to
achieve the best performance. We perform dropout after each layer, except input and output
ones, and the rate usually is set to 0.1 or 0.2. The Adam[52] algorithm is utilized to optimize the
parameters of our model.

4.3.5 Main Results

Table 4.2 summarizes the evaluation results of all the methods (8) on all the test sets (4) in all
the metrics (3). We set horizon = {3, 6, 12, 24}, respectively, which means the horizons was
set from 3 to 24 hours for the forecasting over the Electricity and Traffic data, from 30 to 240
minutes over the Solar-Energy data, and from 3 to 24 days over the Exchange-Rate data.
The larger the horizons, the harder the prediction tasks. The best result for each (data, metric)
pair is highlighted in bold face in this table. The total count of the bold-faced results is 17 for
LSTNet-Skip (one version of the proposed LSTNet), 7 for LSTNet-Attn (the other version of our
LSTNet), and between 0 to 3 for the rest of the methods.

Clearly, the two proposed models, LSTNet-skip and LSTNet-Attn, consistently enhance over
state-of-the-art on the datasets with periodic pattern, especially in the settings of large horizons.
Besides, LSTNet outperforms the strong neural baseline RNN-GRU by 9.2%, 11.7%, 22.2%
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in RSE metric on Solar-Energy, Traffic and Electricity dataset respectively when the horizon
is 24, demonstrating the effectiveness of the framework design for complex repetitive patterns.
What’s more, when the periodic pattern q is not clear from applications, users may consider
LSTNet-attn as alternative over LSTNet-skip, given the former still yield considerable improve-
ment over the baselines. But the proposed LSTNet is slightly worse than AR and LRidge on the
Exchange-Rate dataset. Why? Recall that in Section 4.3.3 and Figure 4.3 we used the autocor-
relation curves of these datasets to show the existence of repetitive patterns in the Solar-Energy,
Traffic and Electricity datasets but not in Exchange-Rate. The current results provide empirical
evidence for the success of LSTNet models in modeling long-term and short-term dependency
patterns when they do occur in data. Otherwise, LSTNet performed comparably with the better
ones (AR and LRidge) among the representative baselines.

Compared the results of univariate AR with that of the multivariate baseline methods (LRidge,
LSVR and RNN), we see that in some datasets, i.e. Solar-Energy and Traffic, the multivariate
approaches is stronger, but weaker otherwise, which means that the richer input information
would causes overfitting in the traditional multivariate approaches. In contrast, the LSTNet has
robust performance in different situations, partly due to its autoregressive component, which we
will discuss further in Section 4.3.6.

4.3.6 Ablation Study

To demonstrate the efficiency of our framework design, a careful ablation study is conducted.
Specifically, we remove each component one at a time in our LSTNet framework. First, we
name the LSTNet without different components as follows.

• LSTw/oskip: The LSTNet models without the Recurrent-skip component and attention
component.

• LSTw/oCNN: The LSTNet-skip models without the Convolutional component.
• LSTw/oAR: The LSTNet-skip models without the AR component.

For different baselines, we tune the hidden dimension of models such that they have similar
numbers of model parameters to the completed LSTNet model, removing the performance gain
induced by model complexity.

The test results measured using RSE and CORR are shown in Figure 4.56. Several observa-
tions from these results are worth highlighting:
• The best result on each dataset is obtained with either LST-Skip or LST-Attn.
• Removing the AR component (in LSTw/oAR) from the full model caused the most sig-

nificant performance drops on most of the datasets, showing the crucial role of the AR
component in general.

• Removing the Skip and CNN components in (LSTw/oCNN or LSTw/oskip) caused big
performance drops on some datasets but not all. All the components of LSTNet together
leads to the robust performance of our approach on all the datasets.

6We omit the results in RAE as it shows similar comparison with respect to the relative performance among the
methods.
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Figure 4.4: Simulation Test: Left side is the training set and right side is test set.

The conclusion is that our architecture design is most robust across all experiment settings,
especially with the large horizons.

As for why the AR component would have such an important role, our interpretation is that
AR is generally robust to the scale changing in data. To empirically validate this intuition we plot
one dimension (one variable) of the time series signals in the electricity consumption dataset for
the duration from 1 to 5000 hours in Figure 4.6, where the blue curve is the true data and the red
curve is the system-forecasted signals. We can see that the true consumption suddenly increases
around the 1000th hour, and that LSTNet-Skip successfully captures this sudden change but
LSTw/oAR fails to react properly.

In order to better verify this assumption, we conduct a simulation experiment. First, we
randomly generate an autoregressive process with the scale changing by the following steps.
Firstly, we randomly sample a vector, w ∼ N(0, I), w ∈ Rp, where p is a given window size.
Then the generated autoregressive process xt can be described as

xt =

p∑
i=1

wixt−i + ε (4.12)

where ε ∼ N(µ, 1). To inject the scale changing, we increase the mean of Gaussian noise by µ0

every T timestamp. Then the Gaussian noise of time series xt can be written as

ε ∼ N(bt/T cµ0, 1) (4.13)

where the b·c denotes the floor function. We split the time series as the training set and test in
chronological order, and test the RNN-GRU and the LSTNet models. The result is illustrated in
Figure 4.4. Both RNN and LSTNet can memorize the pattern in training set (left side). But, the
RNN-GRU model cannot follow the scale changing pattern in the test set (right side). Oppositely,
the LSTNet model fits the test set much better. In other words, the normal RNN module, or says
the neural-network component in LSTNet, may not be sufficiently sensitive to violated scale
fluctuations in data (which is typical in Electricity data possibly due to random events for public
holidays or temperature turbulence, etc.), while the simple linear AR model can make a proper
adjustment in the forecasting.

In summary, this ablation study clearly justifies the efficiency of our architecture design. All
components have contributed to the excellent and robust performance of LSTNet.
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4.3.7 Mixture of long- and short-term patterns
To illustrate the success of LSTNet in modeling the mixture of short-term and long-term recur-
ring patterns in time series data, Figure 4.7 compares the performance of LSTNet and VAR on
an specific time series (one of the output variables) in the Traffic dataset. As discussed in Sec-
tion 4.3.3, the Traffic data exhibit two kinds of repeating patterns, i.e. the daily ones and the
weekly ones. We can see in Figure 4.7 that the true patterns (in blue) of traffic occupancy are
very different on Fridays and Saturdays, and another on Sunday and Monday. The Figure 4.7 is
the prediction result of the VAR model (part (a)) and LSTNet (part (b)) of a traffic flow monitor
sensor, where their hyper-parameters are chosen according to the RMSE result on the validation
set. The figure shows that the VAR model is only capable to deal with the short-term patterns.
The pattern of prediction results of the VAR model only depend on the day before the predic-
tions. We can clearly see that the results of it in Saturday (2rd and 9th peaks) and Monday (4th
and 11th peaks) is different from the ground truth, where the ground truth of Monday (weekday)
has two peaks, one peak for Saturday (weekend). In the contrary, our proposed LSTNet model
performs two patterns for weekdays and weekends respectfully. This example proves the ability
of LSTNet model to memorize short-term and long-term recurring patterns simultaneously.

4.4 Summary
In this part of thesis, we presented a novel deep learning framework (LSTNet) for the task of
multivariate time series forecasting. By combining the strengths of convolutional and recurrent
neural networks and an autoregressive component, the proposed approach significantly improved
the state-of-the-art results in time series forecasting on multiple benchmark datasets. With in-
depth analysis and empirical evidence, we show the efficiency of the architecture of LSTNet
model, and that it indeed successfully captures both short-term and long-term repeating patterns
in data, and combines both linear and non-linear models for robust prediction.
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(a) Solar-Energy dataset

(b) Traffic dataset

(c) Electricity dataset

Figure 4.5: Results of LSTNet in the ablation tests on the Solar-Energy, Traffic and Electricity
dataset
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(a) (b)

Figure 4.6: The predicted time series (red) by LSTw/oAR (a) and by LST-Skip (b) vs. the true
data (blue) on Electricity dataset with horizon = 24

(a) (b)

Figure 4.7: The true time series (blue) and the predicted ones (red) by VAR (a) and by LSTNet
(b) for one variable in the Traffic occupation dataset. The X axis indicates the week days and the
forecasting horizon = 24. VAR inadequately predicts similar patterns for Fridays and Saturdays,
and ones for Sundays and Mondays, while LSTNet successfully captures both the daily and
weekly repeating patterns.
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Chapter 5

Funnel Transformer

5.1 Motivation

With the recent success of unsupervised language pretraining [23, 30, 56, 65, 70, 76, 77, 89,
90, 99, 100, 121], the power of neural self-attention models (a.k.a. Transformer) [110] has been
pushed to a new level, leading to dramatic advancements in machine learning and natural lan-
guage processing (NLP). More importantly, it has been observed that with more FLOPs invested
in longer pretraining and/or larger models, the performance of pretrained Transformer models
consistently improve. However, it is extremely expensive to pretrain or even just to finetune the
state-of-the-art self-attention models, as they require much more FLOPs and memory resources
compared to traditional models in NLP. This largely limits their applications and success in more
fields.

Given this challenge, there has been an increasing amount of efforts to reduce the costs of
pretraining and finetuning self-attention models. From the perspective of post-pretraining pro-
cessing, typical approaches include distillation, pruning and quantization of various kinds, which
try to derive a lighter model from an well-pretrained model by taking advantage of the richer
signals in the larger model or learning to remove less important operations. Another line of re-
search aims at designing an architecture that not only has a lower resource-to-performance ratio
(more efficient) but also scales as well as the Transformer, at least in certain domains. Most
of such methods build upon the Transformer backbone and focus on redesigning its building
blocks. Representative solutions include searching for better micro operation or macro mod-
ule designs [18, 98], replacing the full pairwise attention with local operations such as convo-
lution [116] and dynamic convolution [115], and optimizing the hidden size combinations for
existing blocks [103].

Across the wide variety of ideas mentioned above, a common strategy is to identify redun-
dant operations or representations and replace them with more efficient ones. Inspired by this
line of thinking, in this work, we will be focusing on the potential redundancy induced by always
maintaining a full-length sequence of hidden representations across all layers in Transformer.
Intuitively, for many sequence-level NLP tasks such as text classification and ranking, the most
common use case is to extract a single vector from the entire sequence, which does not neces-
sarily preserve all information down to the token-level granularity. Hence, for such tasks, the
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full-length sequence of hidden states may contain significant redundancy. This is analogous to
the case of image recognition, where the convolution neural network gradually reduces the spa-
tial resolution/size of feature maps as the neural network goes deeper. In addition, linguistic prior
also encourages gradually merging nearby tokens (words) into larger semantic units (phrases),
which naturally leads to a shorter sequence of representations.

Concretely, we propose to gradually reduce the sequential resolution (i.e. length) of the hid-
den representation in self-attention models. Immediately, the reduction in sequence length can
lead to significant savings in both FLOPs and memory. More importantly, the saved computa-
tional resource can be directly re-invested in constructing a deeper (or wider) model to boost the
model capacity without additional computational burden. In addition, to address the challenge
that common pretraining objectives such as masked language modeling (MLM) [30] require
separate representations for each token, we design a simple strategy to decode a full-length se-
quence of deep representations from the hidden state of reduced length. As a result, the proposed
model can be directly trained without modifying the pretraining objectives, as well as adopted
for downstream tasks that require token-level representations.

Empirically, with comparable or even fewer FLOPs, by trading sequential resolution for
depth, our proposed model achieves an improved performance over the standard Transformer
on a wide variety of sequence-level prediction tasks, including text classification, language un-
derstanding, and reading comprehension.

5.2 Method

5.2.1 Background

Transformer Architecture The Transformer architecture [110] is a highly modularized neural
network, where each Transformer layer consists of two sub-modules, namely the multi-head
self-attention (S-Attn) and position-wise feed-forward network (P-FFN). Both sub-modules are
wrapped by a residual connection and layer normalization. Schematically, given a length T
sequence of hidden states h = [h1, . . . , hT ], the computation of a single Transformer layer can
be expressed as

h← LayerNorm(h + S-Attn(Q = h,KV = h)), (5.1)
hi ← LayerNorm(hi + P-FFN(hi)), ∀i = 1, · · · , T. (5.2)

Pretraining Objectives The most commonly used pretraining objective is the masked lan-
guage modeling (MLM) proposed by BERT [30]. For a length-T natural language sequence x
sample from a large unlabeled set D, the MLM objective first constructs a corrupted sequence
x̂ by randomly replacing 15% of the tokens of x with a special token [mask] and then trains a
Transformer model [30] to reconstruct the original x based on x̂, i.e.,

max
θ
JMLM(θ) = Ex∼DEI

∑
i∈I

logPθ(xi | x̂I) = Ex∼DEI
∑
i∈I

log
exp

(
e(xi)

>hi(x̂I)
)∑

x′ exp (e(x′)>hi(x̂I))
,
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where I is the positions of masked tokens, the subscript in x̂I emphasizes its dependence on
I, e(x) denotes the embedding of the token x, and hi(x̂I) the last-layer hidden state at posi-
tion i produced by the Transformer model. After pretraining, the entire model is finetuned in
downstream tasks.

To show the generality of our proposed model, we also experiment with another pretraining
objective ELECTRA [23]. Different from MLM, ELECTRA relies a pair of jointly trained gen-
erator and discriminator. Specifically, the generator usually has a smaller size (1/4 of that of the
discriminator) and is directly trained via the MLM objective, i.e., maxθG JMLM(θG). Then, for
each masked position, a token is sampled from the reconstruction distribution of the generator
to replace the [mask] token and form a new sequence x̃, i.e., if i ∈ I, x̃i ∼ PθG(xi | x̂I)
else x̃i = xi. Given the new sequence x̃, the discriminator is then trained to distinguish whether
each token in x̃ is real (same as x) or fake (different from x) via binary classification. After
pretraining, only the discriminator will be used during finetuning and the generator is simply
discarded.

Discussion Note that both pretraining objectives introduced above require the ability to pro-
duce a hidden state for each input token, i.e., hi(x̂I) and hi(x̃). Due to this requirement, it
seems natural to keep a full sequence of hidden states. However, in contrast, many sequence-
level downstream tasks like classification or ranking only need a single-vector summary of the
entire sequence. Fundamentally, this suggests that some kind of compression is usually required
to remove the unnecessary redundancy during finetuning. This observation immediately leads to
the following two questions:
• Can we design a general model that is equally expressive but more efficient by compressing

the full sequence of hidden states into a more compact form?
• With the compressed representations, how can the model retain the ability to produce token-

level representations for pretraining?
To answer these two questions, we next present our proposed architecture.

5.2.2 Proposed Architecture

To inherit the high capacity and optimization advantages of the Transformer architecture, the
proposed model keeps the same overall skeleton of interleaved S-Attn and P-FFN sub-modules
wrapped by residual connection and layer normalization. But differently, to achieve represen-
tation compression and computation reduction, our model employs an encoder that gradually
reduces the sequence length of the hidden states as the layer gets deeper. In addition, for tasks
involving per-token predictions like pretraining, a simple decoder is used to reconstruct a full
sequence of token-level representations from the compressed encoder output.

Encoder As illustrated in the left part of Fig. 5.1, the encoder consists of several blocks of
consecutive Transformer layers. Within each block, the sequence length of the hidden states
always remains the same. But when going from a lower-level block to a higher-level block,
the length of the hidden sequence is reduced by performing certain type of pooling along the

53



… … … … … …

Block 1 Block 2 Block 3

+

+

+

+

+

+

+

+

=

=

=

=

=

=

=

=

Pool Pool

Up-sample

Up-sample

Residual/Skip Connection

…

Encoder Decoder (optional)

Figure 5.1: High-level visualization of the proposed Funnel-Transformer.

sequence dimension, i.e.,

h′ ← Pooling(h), (5.3)

where h ∈ RT×D and h′ ∈ RT ′×D for some T ′ < T . Importantly, instead of directly feeding the
pooled sequence h′ into the first S-Attn layer of the new block, we only use pooled sequence h′

to construct the query vector (and the residual signal) of the self-attention, while the unpooled
sequence h serves that role of key and value vectors, i.e.

h← LayerNorm(h′ + S-Attn(Q = h′,KV = h)). (5.4)

Note that the output sequence of this special S-Attn module has the same length as the pooled
sequence h′. To understand the advantage of this particular design, it is helpful to compare the
proposed “pool-query-only” variant with the naive alternative of using h′ for both the query and
key-value vectors, i.e., S-Attn(Q = h′,KV = h′):
• Under the naive approach, the compression is solely controlled by the pooling operation, which

is finished before the attention module. Hence, relatively simple pooling methods such as
average/mean pooling won’t be able to achieve good compression.

• Under the pool-query-only variant, the compression depends on not only how the pooling is
performed, but also how the self-attention weighted sums the unpooled sequence to form each
pooled vector. Effectively, the particular attention here can be seen as a type of linear compres-
sion that combines T bases into a smaller number of T ′ “compressed bases”. Therefore, with
minimum computational overhead, this variant makes compression operation more expressive.

With this particular pool-query-only design in place, we find the simplest strided mean pooling
applied to each sliding window of the sequence work very well in practice. For simplicity, we
only experiment with stride 2 and window size 2 in this work. Hence, the pooling operation will
reduce the sequence by half and each pooled hidden state corresponds to a window of 2 unpooled
hidden vectors. Intuitively, this type of pooling roughly follows the linguistic prior that nearby
tokens could be gradually merged (or compressed) into a larger semantic component. Once the
sequence length is halved after the pooling and pool-query-only attention, the rest of the encoder
computation simply follows the standard updates in Eqn. (5.2) and (5.1).
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Finally, as an extra implementation detail, recall that a particular design in language pretrain-
ing is to add a special token [cls] to the beginning of the original input sequence, and use the
last-layer hidden state corresponding to [cls] (i.e., h1) as the representation of the sequence.
To prevent the pooling from destroying this special structure, we first separate the [cls] hidden
state and the rest of hidden states and only apply the pooling to the rest of hidden states.

Decoder In order to recover a full sequence of hidden states from the encoder output of re-
duced length, a natural idea would be performing some kind of up-sampling. For instance, in
image generation or super-resolution, deconvolution (transposed convolution) or parameter-free
resizing with bilinear interpolation are often used to increase the spatial resolution of the feature
map. Hence, we can simply adapt these ideas from 2D processing to our 1D case and apply
proper up-sampling to the encoder output.

However, instead of performing multiple up-samplings with small expansion rate (e.g. in-
creasing the sequence length by 2x each time) as in image domain, we here choose to employ a
single up-sampling with a large expansion rate, as shown on the right part of Fig. 5.1. Specif-
ically, given the output sequence hM of length TM = T/2M−1 from an M -block encoder, we
directly up-sample it to a full-length sequence hup = [hup

1 , · · · , h
up
T ] by repeating each hidden

vector 2M−1 times:

∀i = 1, · · · , T, hup
i = hMi//2M−1 , (5.5)

where ·//· denotes floor division. However, note that every 2M−1 consecutive vectors in hup

are exactly the same and hence do not contain detailed token-level information. Hence, we
further extract the last-layer hidden states from the first block of the encoder h1, which still has
the full length T and contains the uncompressed token-level information. Then, the lower-level
representation h1 and up-sampled higher-level representation hup are added together to form a
deep token-level representation g = h1 + hup. Effectively, this forms a residual/skip connection
that enables detailed token information and potentially easier optimization. In addition, we stack
a few more Transformer layers upon g to achieve a better deep fusion of the low-level and high-
level features. In this work, we always use 2 Transformer layers in decoder.

It is important to emphasize that the decoder is only used if the task requires token-level pre-
diction, such as in standard pretraining or sequence labeling. For tasks that only requires a single
vectorial representation of the sequence like classification, the decoder is discarded after pretrain-
ing and only the encoder is finetuned. Finally, to emphasize the filtering/compression property
of the encoder as well as its shape, we name the proposed model Funnel-Transformer
(F-TFM).

5.2.3 Complexity & Capacity Analysis

With the architecture design specified, we now analyze how the sequence compression affects
the complexity and capacity of the proposed model, especially compared to the standard Trans-
former.

Firstly, for a Transformer layer with an S-Attn and a P-FFN module of hidden size D, the
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complexity of processing a length-T sequence is O(T 2D + TD2).1 Hence, every time the se-
quence length is reduced by half in the encoder, we enjoy a super-linear (more than half) com-
plexity drop. In practice, as the O(TD2) term has a large constant, a near-linear speedup is
observed more often. The super-linear effect is more detectable when the sequence length is
relatively long like in pretraining. Therefore, given the same FLOPs, we can at least trade a full-
length layer in the 1st block for 2m−1 layers in the m-th block, which provides an economical
way to increase the depth of network.

On the other hand, the capacity of a compressed-length layer is clearly upper-bounded by
that of a normal full-length layer. In most cases where the compression is lossy, reducing the
sequence length will inevitably lead to capacity drop. The good news is that the capacity drop
of a single layer could be well compensated by re-investing the saved FLOPs in stacking more
cheaper layers of reduced length or increasing the width of the model.

As a concrete example, for a Transformer of BERTBase size, i.e., 12 layers of hidden size
768 (L12H768), we may construct a Funnel-Transformer of 3 blocks where each block has 6
layers of hidden size 768 (B6-6-6H768). Despite having 18 layers in total, when finetuned for
classification, the FLOPs of the B6-6-6H768 architecture only corresponds to at most 6 + 6/2 +
6/4 = 10.5 full-length layers, clearly fewer than that of L12H768. More importantly, as we will
show in the experiments, B6-6-6H768 significantly outperforms L12H768. While intuitive, how
to construct an optimal block layout given this depth-length trade-off remains an open challenge.
For this work, we only consider relatively regular layout and leave more systematic studies for
future work.

Finally, notice that trading sequential resolution for depth or width has a side effect of in-
creasing the total number of parameters. For instance, B6-6-6H768 has 1.5x Transformer pa-
rameters compared to L12H768. In practice, more parameters may increase communication cost
in distributed training as well as the memory consumption and memory access time. A simple
remedy is to perform certain parameter sharing, as used in ALBERT, to recover the same param-
eter count. Taking B6-6-6H768 as an example, one may tie the parameters for every two layers
in the 2nd and 3rd blocks, denoted as B6-3x2-3x2H768, which gives back the same number of
parameters to L12H768. However, parameter sharing could result in performance loss. Fun-
damentally, this brings us another trade-off between the gain (capacity) and cost (memory and
communication cost) of using more parameters, which can be highly device dependent.

5.3 Implementation Optimization

5.3.1 Sequence Truncation for Separating [cls] trick
As discussed in Section 5.2.2, to avoid breaking the [cls] structure commonly used in pretrain-
ing, we do not apply the pooling operation to the [cls] and keep the hidden state corresponding
to [cls] intact. While conceptually simple, a naive implementation could slow down the com-
putation by 15% due to the “irregular” sequence length caused by such an operation. Specifically,
assume that sequence length of an input sample is a power of two, i.e., 2p, which usually is 512

1Since the corresponding memory complexity is simply O(T 2 + TD), which is always offset by a multiplier
1/D, we will focus on the computation complexity with the conclusion directly carried through.
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in the pretraining phase. After one pooling operation with the [cls] intact, the length of the
pooled sequence becomes 2p−1 + 1, which is not a power of 2 anymore. As a result, it can cause
memory misalignment and the waste of paralleled computation power in accelerators, leading to
substantial speed loss.

To resolve this issue, we employ a simple strategy to truncate the last token after the pooling.
Formally, denoting the pooled hidden state as h = {h[cls] , h1, · · · , h2p−1}, the truncation can
be expressed as

ĥ = truncate(h) = [h[cls] , h1, · · · , h2p−1−1] (5.6)

With this simple trick, we can always keep the sequence length a power of 2, hence avoiding the
slowdown caused by maintaining an independent [cls] hidden state.

5.3.2 Relative Positional Attention Implementation
In this work, we use the relative positional attention parameterization proposed in the Transformer-
XL [26]. To facilitate further discussion, we first review the details of this parameterization.
Taking the case of single head attention as the example head. Let T,D be the sequence length
and hidden dimension respectively. Then, the pre-softmax attention score Aij between a pair of
positions i and j consists of two terms:

Aij = (WQhi + v)>(WKhj)︸ ︷︷ ︸
content term

+ (WQhi + u)>(WRri−j)︸ ︷︷ ︸
position term

. (5.7)

where v, u ∈ RD are two trainable bias vectors, WQ,WK ,WR ∈ RD×D are three trainable
projection matrices, and ri−j ∈ RD is the sinusoidal positional encoding that represents the
relative distance i− j between the two positions.

To compute the entire attention score matrix A, the content term can easily be obtained via
two head projections and an outer product of complexity O(TD2 + T 2D):

Acontent = (HWQ + v)(HWK)>,

where H = [h1, · · · , hT ] ∈ RT×D collects all hidden states into a matrix. However, we cannot
compute the position term in the same way as eachAposition

ij corresponds to a different ri−j . Hence,
a naive solution will be stacking T 2 pairs of position encodings into a tensor R̂ ∈ RT×T×D where
R̂ij = ri−j , and then perform the following tensor product:

Aposition = einsum("id,ijd->ij",HWQ + u, R̂WR).

Note that the head projection RWK now has a complexity of O(T 2D2) and a memory footprint
of O(T 2D), dominating all other computations.

Standard Solution: Gather / Shift

To resolve the computation burden above, a common technique is to instead collect a matrix
R ∈ R2T−1×D, where

R = [rT−1, . . . , r0, · · · , r1−T ]
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which includes all possible position encodings arranged from the maximum possible distance
value T − 1 to the minimum one 1−T . Note that the full R̂ can be formed by gathering specific
elements from R with an index matrix I of shape [T × T ], i.e.,

R̂ = gather(R, I), Iij = T + i− j.

Mathematically, this is equivalent to using a permutation tensor P ∈ RT×T×2T−1 to multiply R,
i.e., R̂ = PR, where Pij ∈ R2T−1 is a one-hot vector used to select/gather a single position
of R. As the attention score computation only involves linear operations, we can rearrange the
computation of the position term as follows

Aposition = einsum("id,ijd->ij",HWQ + u, (PR)WR)

= einsum
(
"ijk,jk->ij",P,

[
(HWQ + v)(RWR)>

])
= gather

(
(HWQ + v)(RWR)>, I

)
Note that, assuming gathering T 2 elements only has a complexity of O(T 2), which is true for
CPU/GPU, this trick reduces the computation complexity back toO(2TD2+2T 2D). In practice,
the gather operation can be implemented via a smart reshape operation, that is even cheaper.

Optimization for TPU: factorized relative positional attention

However, on TPUs, the assumption that gathering T 2 elements only has a complexity of O(T 2)
does not hold. Instead, we found that such a gather operation is dramatically slower on TPU.
Hence, we here consider another implementation which is significantly faster on TPU.

Firstly, let’s rewrite the position term as follows

Aposition
ij = (WQhi + u)>(WRri−j)

=
[
W>
R (WQhi + u)︸ ︷︷ ︸

qi

]>
ri−j

= q>i ri−j. (5.8)

For easier derivation, we have introduced a notation of qi. Then, recall the ri−j is the sinusoidal
encoding that consists of the sine and the cosine components ri−j = cat(sini−j, cosi−j), where

sint =
[
sin
(
t/100002/D

)
, sin

(
t/100004/D

)
, · · · , sin

(
t/10000D/D

)]
∈ RD/2,

cost =
[
cos
(
t/100002/D

)
, cos

(
t/100004/D

)
, · · · , cos

(
t/10000D/D

)]
∈ RD/2.

Hence, we similarly divide qi defined above into two parts, i.e.,

qi = cat(qsin
i , qcos

i ).

Given the definitions, we can further break Eqn. (5.8) into two terms:

Aposition
ij = q>i ri−j = qsin

i

>
sini−j +qcos

i
> cosi−j .
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Now, using the trigonometric identities sin(a−b) = sin(a) cos(b)−cos(a) sin(b) and cos(a−b) =
cos(a) cos(b) + sin(a) sin(b), the two terms can be respectively reformulated into

qsin
i

>
sini−j = qsin

i

>
[sini� cosj − cosi� sinj]

= qsin
i

>
(sini� cosj)− qsin

i

>
(cosi� sinj)

=
[
qsin
i � sini

]>
cosj +

[
qsin
i � (− cosi)

]>
sinj

and

qcos
i
> cosi−j = qcos

i
>[cosi� cosj + sini� sinj]

= qcos
i
>(cosi� cosj) + qcos

i
>(sini� sinj)

= [qcos
i � cosi]

> cosj +[qcos
i � sini]

> sinj

Hence, combining these two parts together, it follows that

q>i ri−j = qsin
i

>
sini−j +qcos

i
> cosi−j

=
[
qsin
i � sini

]>
cosj +

[
qsin
i � (− cosi)

]>
sinj +[qcos

i � cosi]
> cosj +[qcos

i � sini]
> sinj

=
{[
qsin
i � sini

]>
cosj +[qcos

i � cosi]
> cosj

}
+
{[
qsin
i � (− cosi)

]>
sinj +[qcos

i � sini]
> sinj

}
=

[
cat(qsin

i , qcos
i )︸ ︷︷ ︸

=qi

�cat(sini, cosi)︸ ︷︷ ︸
:=φi

]>
cat(cosj, cosj)︸ ︷︷ ︸

:=ψj

+

[
cat(qsin

i , qcos
i )︸ ︷︷ ︸

=qi

�cat(− cosi, sini)︸ ︷︷ ︸
:=πi

]>
cat(sinj, sinj)︸ ︷︷ ︸

:=ωj

= [qi � φi]>ψj + [qi � πi]>ωj,

where φi, ψj, πi, ωj above are simply 4 positional encodings formed by concatenating the cosine
and sine vectors of the corresponding i and j in different ways. Note that, each term of the last
line has a factorized form that can be computed via an outer product, just like the standard content
term. Therefore, by stacking φi, ψj, πi, ωj of all positions (i.e. i = 1, . . . , T and j = 1, . . . , T )
into the corresponding Φ,Ψ,Π,Ω ∈ RT×D respectively, the full position term can be expressed
in a simple form

Aposition =
{[

(HWQ + u)W>
R

]
�Φ

}
Ψ> +

{[
(HWQ + u)W>

R

]
�Π

}
Ω>

which leads to the complexity of O(2TD2 + 4T 2D), which is comparable to the content term.

5.3.3 Potential Model Extensions
In this section, we discuss some potential model extensions of Funnel-Transformer. As described
in section 5.2, Funnel-Transformer can be divided into an encoder with a compression function-
ality and a decoder that recovers the full-length token-level representations. To further extend the
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proposed model, first note that the encoder-decoder framework can be formulated into a more
general form:

henc = Encoder(xenc),

hdec = Decoder(henc,xdec),

where xenc and xdec are the encoder input sequence and the optional and problem-specific decoder
input, respectively. The goal of encoder is to compressing the input sequence xenc into the hidden
representations henc with a reduced length. Then, conditioned on the decoder input henc if any,
the decoder will extract relevant information/representations from henc to solve the specific NLP
problem at hand. Next, we will how the general form of Funnel-Transformer can be instantiated
into specific forms to solve corresponding NLP problems.

Sequence-level prediction This is essentially the case we consider in most of our experiments
where we want to obtain a vectorial representation of the input sequence such as text classifica-
tion. In this case, we don’t really need the decoder xdec (i.e. xdec = ∅) and the decoder simply
extracts the hidden representation corresponding to the [cls] token from henc and feeds it into
the task-specific structure (e.g. classifier).

Token-level prediction In the token-level prediction tasks such as the MLM pretraining, SQuAD
and sequence labeling, we need a decoder to recover the token-level representations from the
compressed sequence henc. In many cases, xdec could simply be the original sequence or a token-
level hidden representation of it to provide fine grained low-level information of each token and
hence ease the optimization. In this thesis, we utilize the last-layer hidden states of the 1st block
(before the first pooling operation) as the additional decoder input.

But for problems that utilize additional input signals, such as the permutation order used for
permuted language modeling in XLNet [121]. This additional information can be injected into
Funnel-Transformer via the decoder input xdec to (approximately) recover some more complex
control of attention mechanism.

Sequence-to-sequence problems Another important category of NLP task is sequence-to-
sequence problems, including machine translation, text summarization, and dialog generation,
whose state-of-the-art solution is the conventional encoder-decoder framework. Hence, Funnel-
Transformer naturally fits these tasks, where the decoder input xdec corresponds to the target
text sequence and the encoder input xenc the source text sequence. This way, the key difference
compared to conventional models is the source side compression Funnel-Transformer provides.

Overall, we summarize some potential directions to extend Funnel-Transformer presented in
section 5.2.2 to NLP problems. Finally, although we focus on discussion on the NLP tasks in
this thesis, Funnel-Transformer could be applied to any tasks dealing with sequential data, such
as time series and video stream analysis.
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5.4 Experiment
In this section, we empirically evaluate the proposed F-TFM by first pretraining it and then
finetuning it in downstream tasks. Following previous work, for pretraining, we consider two
common settings:
• Base scale: Pretraining models for 1M steps with batch size 256 on Wikipedia + Book Corpus.

This is the setting used by original BERT [30]. We will rely on this setting to perform fair
comparison between F-TFM and the standard Transformer as well as some ablation studies.

• Large scale: Pretraining models for 500K steps with batch size 8K on the five datasets used
by XLNet [121] and ELECTRA [23] (Wikipedia + Book Corpus + ClueWeb + Gigaword +
Common Crawl). We will compare F-TFM trained at this scale with previous state-of-the-art
methods.

For finetuning, we mainly focus on sequence-level tasks that only requires a single vectorial rep-
resentation of the input sequence, since F-TFM is designed with such a purpose in mind. Specif-
ically, such tasks include the GLUE benchmark for language understanding [113], 7 widely used
text (sentiment / topic) classification tasks (IMDB, AD, DBpedia, Yelp-2, Yelp-5, Amazon-2,
Amazon-5) [127], and the RACE reading comprehension dataset [61]. In addition, to see how
F-TFM performs when token-level prediction is needed, we consider the SQuAD question an-
swering task which requires the model to select a token span from the context paragraph as the
answer.

Finally, for all models implemented in this work including Transformer baselines in the base-
scale comparison section 5.4.1, we always use the relative positional attention parameteriza-
tion proposed by Transformer-XL [26] (see Appendix 5.3.2 for some implementation details of
Transformer-XL).

5.4.1 Base-scale Results
Firstly, we evaluate how F-TFM performs compared to the standard Transformer under simi-
lar amount of computation (i.e., FLOPs). For this purpose, we consider three commonly used
model sizes for the standard Transformer, namely large (L24H1024), base (L12H768) and small
(L6H768). Then, for each Transformer baseline, we construct F-TFMs of different block layouts
and parameters, while ensuring the F-TFMs always have fewer or similar FLOPs. Based on the
MLM pretraining objective, the results on GLUE benchmark and text classification are presented
in Table 5.1, where we also include the relative FLOPs and #Params. Here, we can make a few
key observations:
• Given similar or fewer FLOPs, by trading sequential resolution for more layers, the F-TFM

outperforms the standard Transformer in most tasks except STS-B, especially for smaller mod-
els.

• When we only compress the sequence length without increasing the depth (and #Params),
F-TFM could suffer from some performance loss in certain settings on the GLUE datasets.
However, as the model size increases, such performance gaps become smaller or even disap-
pear.

• In addition, we find partial parameter-sharing often harms the performance. Therefore, the
practical trade-off should be made according to the actual task and computation device.
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Model size CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE GLUE-AVG

L24H1024 63.2 94.8 91.8/88.5 91.1 88.7/91.7 88.7 94.0 80.5 86.6
B10-10-10 64.8 95.0 92.5/89.5 90.7 88.6/91.5 88.9 94.0 81.5 87.0
B8-8-8 63.5 94.7 92.2/89.0 90.7 88.9/91.7 88.8 93.6 81.2 86.7

L12H768 60.5 93.0 92.2/89.0 89.4 88.1/91.2 86.0 92.2 73.6 84.4
B6-6-6 62.5 94.0 92.2/89.0 89.5 88.4/91.4 87.0 92.7 76.5 85.3
B6-3x2-3x2 60.5 93.6 92.4/89.2 89.4 88.2/91.3 86.4 92.5 75.0 84.7
B4-4-4 59.1 92.7 91.8/88.7 89.1 88.2/91.3 85.5 92.0 73.2 83.9

L6H768 55.2 91.5 91.1/87.8 88.1 87.2/90.6 82.7 90.0 64.6 81.3
B3-4-4 59.0 92.8 91.8/88.5 88.5 87.8/90.9 84.8 91.8 73.2 83.7

Model size IMDB AG DBpedia Yelp2 Yelp5 Amazon2 Amazon5 FLOPs #Params

L24H1024 4.440 4.987 0.646 1.758 28.73 2.409 32.78 1.00x 1.00x
B10-10-10 4.404 5.026 0.617 1.734 28.52 2.400 32.65 0.73x 1.22x
B8-8-8 4.552 5.079 0.664 1.713 28.84 2.438 32.87 0.58x 1.00x

L12H768 5.328 5.184 0.663 2.013 29.35 2.571 33.14 1.00x 1.00x
B6-6-6 4.908 5.079 0.654 1.939 29.03 2.518 32.91 0.88x 1.39x
B6-3x2-3x2 5.144 5.342 0.649 1.892 29.03 2.570 33.01 0.88x 1.00x
B4-4-4 5.348 5.250 0.670 1.979 29.37 2.596 33.16 0.58x 1.00x

L6H768 6.252 5.421 0.697 2.203 30.33 2.801 33.69 1.00x 1.00x
B3-4-4 5.520 5.342 0.670 2.042 29.51 2.603 33.16 1.00x 1.53x

Table 5.1: MLM pretraining results at the base scale: GLUE dev performances (the higher the
better) in the upper panel and text classification error rates (the lower the better) in the lower
panel . The FLOPs and #Params both refer to the finetuning setting with only the encoder. The
FLOPs is a rough estimation assuming linear complexity w.r.t. the sequence length. The #Params
is exact including the embedding matrix.

To further test generality of F-TFM, we additionally consider ELECTRA for pretraining.
The results are summarized in Table 5.2. Overall, we see a similar trend, though the gain is
slightly smaller on the GLUE benchmark. This could be attributed to reusing two key hyper-
parameters (discriminator loss coefficient and generator size multiplier) tuned for Transformer
to train F-TFMs without any adjustment at all.

Running Time Comparison While FLOPs count offers a general idea of the model speed,
it still differs from the actual running time, especially when other overhead exists.

5.4.2 Large-scale Results

Given the encouraging results of F-TFM at base-scale, we next consider training F-TFM under
the large-scale setting and compare it with previous models pretrained in similar settings. Due to
the slightly better performance of ELECTRA over MLM, we will use the ELECTRA objective
for all large-scale experiments. Given the pretrained F-TFM of different sizes, we first compare
the finetuning performance on the GLUE benchmark in Table 5.3. Similar to the base-scale
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Model size CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE GLUE-AVG

L24H1024 66.5 94.3 92.8/90.0 91.5 89.6/92.2 89.4 94.1 84.5 87.8
B10-10-10 68.6 95.0 93.0/90.0 91.0 88.9/91.7 89.1 93.6 84.5 87.9
B8-8-8 66.6 94.8 92.6/89.7 90.7 88.8/91.7 89.0 93.6 82.1 87.3

L12H768 64.3 93.1 92.1/89.2 90.8 88.7/91.7 86.4 92.1 75.4 85.4
B6-6-6 64.3 94.2 92.8/89.7 90.1 88.7/91.6 87.4 92.5 78.3 86.0
B6-3x2-3x2 63.9 94.2 93.0/90.2 89.5 88.4/91.4 87.0 92.2 77.6 85.7
B4-4-4 62.8 93.6 92.5/89.2 89.2 88.4/91.3 86.0 91.6 74.3 84.8

L6H768 62.1 91.1 90.8/86.8 88.9 88.2/91.3 83.9 89.7 66.7 82.6
B3-4-4 59.0 93.1 90.8/87.5 88.7 88.1/91.0 85.8 91.1 72.5 83.6

Model size IMDB AG DBpedia Yelp2 Yelp5 Amazon2 Amazon5 FLOPs #Params

L24H1024 4.724 5.053 0.653 1.874 28.84 2.425 32.85 1.00x 1.00x
B10-10-10 4.324 5.250 0.639 1.789 28.68 2.419 32.72 0.73x 1.22x
B8-8-8 4.364 5.408 0.651 1.729 28.76 2.447 32.85 0.58x 1.00x

L12H768 5.248 5.355 0.657 1.953 29.24 2.596 33.04 1.00x 1.00x
B6-6-6 4.792 5.237 0.650 1.850 28.73 2.499 32.79 0.88x 1.39x
B6-3x2-3x2 4.924 5.342 0.671 1.913 29.00 2.523 32.85 0.88x 1.00x
B4-4-4 5.152 5.382 0.659 2.032 29.33 2.566 33.03 0.58x 1.00x

L6H768 6.220 5.395 0.674 2.287 30.16 2.759 33.57 1.00x 1.00x
B3-4-4 5.396 5.342 0.653 2.000 29.60 2.591 33.09 1.00x 1.53x

Table 5.2: ELECTRA pretraining results at the base scale.

results, with fewer or comparable FLOPs, F-TFM outperforms the corresponding baselines in
the majority of tasks, suggesting the good scalability of F-TFM. We also test the models on the
7 text classification tasks.

Next, we consider the RACE dataset, which is quite different from the GLUE benchmark. At
the core, RACE is a multiple-choice reading comprehension task requiring complex reasoning,
which though, can be formulated as classifying the correct choice. Also, paragraphs in RACE
are much longer. To F-TFM, this presents both a challenge, as it requires detailed reasoning, and
an opportunity to compress long paragraph. As we can see in Table 5.4, F-TFM achieves better
performances compared to all previous models. In particular, within the base model group, the
gain is very significant. It shows that F-TFM can also excel for sequence-level task that involves
long text and reasoning.

Finally, although F-TFM is mainly designed for tasks that only require a sequence-level rep-
resentation, it is possible to apply F-TFM to token-level tasks by additionally finetuning the
decoder. To test this ability, we finetune F-TFM on the SQuAD datasets and compare it with
previous models in Table 5.5. While F-TFM outperforms previous models in the base group by a
large margin, in the large model group, the F-TFM with about 83% FLOPs (B10-10-10) still falls
behind the standard Transformer that always maintains a full-length token-level representations.
This suggests sequential compression could harm the performance when detailed token-level in-
formation is critical. On the other hand, compared to the results on SQuAD1.1, F-TFMs perform
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Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI AVG

Dev set results (single model)

ROBERTALarge [77] 68.0 96.4 -/90.9 92.4 -/92.2 90.2 94.7 86.6 - 88.9
XLNetLarge [121] 69.0 97.0 -/90.8 92.5 -/92.3 90.8 94.9 85.9 - 89.2
ELECTRALarge [23] 69.1 96.9 -/90.8 92.6 -/92.4 90.9 95.0 88.0 - 89.5
B10-10-10H1024 72.4 96.8 93.5/90.9 92.1 89.8/92.4 91.1/- 95.1 89.5 - 90.0
B8-8-8H1024 71.3 96.8 93.1/90.7 91.7 89.8/92.4 90.8/- 94.7 89.2 - 89.7

ROBERTABase [77] 63.6 94.8 -/90.2 91.2 -/91.9 87.6/- 92.8 78.7 - 86.4
MPNetBase [100] 65.0 95.4 -/91.5 90.9 -/91.9 88.5/- 93.3 85.2 - 87.7
B6-6-6H768 70.1 96.3 93.2/90.4 91.1 89.2/92.0 89.7/- 93.7 83.4 - 88.3
B6-3x2-3x2H768 68.5 95.6 92.5/89.5 91.0 89.3/92.0 89.1/- 93.0 83.4 - 87.8
B4-4-4H768 68.2 95.0 92.8/90.2 90.3 89.0/91.8 88.6/- 92.6 79.1 - 87.0

Leaderboard test set results (single task & single model)

ELECTRALarge [23] 68.1 96.7 89.2/92.0 92.1/91.7 74.8/90.4 90.7/90.2 95.5 86.1 65.1 85.2
B10-10-10H1024 68.9 97.2 89.4/92.1 91.6/91.3 74.3/90.2 90.9/90.9 95.5 86.5 65.1 85.4
B8-8-8H1024 68.3 96.9 89.2/92.0 91.5/91.1 73.8/90.1 90.7/90.7 95.1 85.3 65.1 85.0

ELECTRABase [23] 64.6 96.0 88.1/91.2 91.0/90.2 73.2/89.5 88.5/88.0 93.1 75.2 65.1 82.7
B6-6-6H768 68.3 96.5 89.1/91.9 90.6/89.9 73.3/89.9 89.7/89.4 94.0 80.4 65.1 84.0
B6-3x2-3x2H768 65.9 96.0 87.8/91.0 90.0/89.6 73.3/89.8 88.9/88.7 93.8 79.9 65.1 83.4

Leaderboard test set results (multi-task & ensemble)

ROBERTALarge [77] 67.8 96.7 89.8/92.3 92.2/91.9 74.3/90.2 90.8/90.2 95.4 88.2 89.0 88.1
ELECTRALarge [23] 71.7 97.1 90.7/93.1 92.9/92.5 75.6/90.8 91.3/90.8 95.8 89.8 91.8 89.4
B10-10-10H1024 70.5 97.5 91.2/93.4 92.6/92.3 75.4/90.7 91.4/91.1 95.8 90.0 94.5 89.7

Table 5.3: Comparison with previous methods on the GLUE benchmark under large-scale pre-
training.

Model RACE
Total High Middle

ROBERTALarge [77] 83.2 81.3 86.5
XLNetLarge [121] 85.4 84.0 88.6
B10-10-10 85.7 84.4 88.8
B8-8-8 85.2 83.9 88.4

ALBERTBase [65] 66.0 - -
MPNetBase [100] 72.0 76.3 70.3
B6-6-6 79.7 78.2 83.4
B6-3x2-3x2 78.8 77.5 82.0
B4-4-4 76.2 74.6 80.0

Table 5.4: RACE test performance compari-
son.

Model SQuAD2.0 SQuAD1.1
EM F1 EM F1

ROBERTALarge [77] 86.5 89.4 88.9 94.6
ELECTRALarge [23] 88.0 90.6 89.7 94.9
B10-10-10 87.6 90.4 89.0 94.7
B8-8-8 87.1 89.8 88.7 94.4

ROBERTABase [77] 80.5 83.7 84.6 91.5
MPNetBase [73] 80.5 83.3 86.8 92.5
B6-6-6 85.1 87.7 87.4 93.3
B6-3x2-3x2 84.2 87.0 87.0 93.0
B4-4-4 82.6 85.5 85.9 92.2

Table 5.5: SQuAD dev performance compari-
son.

relatively better on SQuAD2.0, which additionally requires the model to make a sequence-level
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prediction on whether the question is answerable. This again shows the general effectiveness of
the F-TFM in sequence-level tasks.

5.4.3 Ablation Study

ID Layout (FLOPs / Params) Pool-Op Pool-query-only Sep [cls] Rel-Attn GLUE-AVG

(1) B6-6-6 (1.00x / 1.00x) Mean X X X 83.5
(2) Mean X X 82.9
(3) Mean X X 83.0
(4) Mean X X 81.4
(5) Max X X X 83.4
(6) Top-Attn X X X 75.8
(7) B8-8 (1.14x / 0.91x) Mean X X X 83.4
(8) B5-5-5-5 (0.89x / 1.08x) Mean X X X 82.9

Table 5.6: Ablation study of F-TFMs with different designs.

Finally, based on the GLUE benchmark, we perform a series of ablation studies on the im-
portance of various designs in F-TFM, including the block layout design, the type of pooling
operation, the pool-query-only technique, maintaining a separate [cls] vector and the usage of
Transformer-XL parameterization.
• Pooling operation: Including the mean pooling we finally employ in F-TFM, we actually test

two types of pooling operations.

(1) The first type is just the strided mean/max pooling as described in section 5.2.

(2) The second type aims to select a subset of “hub” states, which refer to those hidden
vectors that are attended most in the previous S-Attn layer and hence likely to carry most
critical information about the sequence. Concretely, given the attention map from the
previous S-Attn layer, we reduce sum the scores along the number of head and query
length dimensions to a score for each position. Then, we simply choose the top 50% of
states to achieve the same compression rate. Note that, this type of pooling operation is
essentially the same as the important states selection procedure in Power-BERT [39].

• Pool-query-only design
• Separating [cls] in the pooling operation
• Block layout design: In our experiments, all models actually utilize a 3-block design. Here,

we compare the 3-blocks design with the 2-blocks and the 4-blocks design.
• Relative attention parameterization proposed in Transformer-XL [26]. We compare this pa-

rameterization with the learned absolute position embedding as used in the BERT [30].
The ablation results are included in Table 5.6. To save the computation resources, the size

of model hidden states in table 5.6 is set as 512. From the ablation results, we can make the
following observations:
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• Comparing pooling different operation ((1), (5), and (6)), we found that the performance of
the mean and max pooling operation is similar. But they are significantly better than the idea
of utilizing attention score (Top-Attn pooling) to select the “hub” states.

• Comparing (1) with (2) and (3) respectively, we see that the two special designs, i.e. “pool-
query-only” and maintaining a separate non-pooled [cls] , can both bring a clear improve-
ment to the proposed model.

• Comparing (1) and (4), we find that the relative positional parameterization is key to the per-
formance of the proposed F-TFM. We suspect that the pooling operation could destroy the
positional information carried by the absolute position encoding, which is only injected to the
model in the input embedding layer. As a result, the higher blocks may not have enough po-
sitional information to learn a good enough attention pattern. In comparison, the positional
information is injected to each layer under the relative positional attention scheme. Therefore,
to achieve good result with F-TFM based on absolute positional embedding, one may inject
the absolute positional embedding into each attention layer. Actually, a contemporary appli-
cation of Transformer to the detection problem in computer vision shows injecting positional
embedding into each layer is important [15].

• Finally, we study the influence of block layout design in our framework. With B6-6-6 as the
3-block benchmark, we consider two other layout design with similar FLOPs and number
of parameters. Specifically, we consider B8-8 for the 2-block design and B5-5-5-5 for the
4-block design. Comparing the results in (1), (7), and (8), we find that the performance of
the 3-block (B6-6-6) design achieves the best performance, which is significantly better than
the 4-block design and slightly better than the 2-block design. However, if we further taking
the FLOPs/#Params into consideration, it is more clear that the 3-block design is superior.
Therefore, in the this thesis, we always use the 3-block design.

5.4.4 Training Cost Comparison

In this section, we test the pretraining and finetuning speed of the F-TFM in comparison to the
standard Transformer on the TPU and GPU platform. For the pretraining speed evaluation, we
test F-TFM on TPU v3-16 (16 cores x 16Gb) with TensorFlow. For the finetuning speed evalua-
tion, we test F-TFM on TPU v2-8 (8 cores x 8Gb) with TensorFlow and on Nvidia-V100 (16Gb)
GPU with the PyTorch. The TensorFlow version is 2.2.0, and the PyTorch version is 1.5.0. For
the GPU experiments, we use an 8-GPU node on the Google Cloud Platform. All running speeds
are reported with the FP16 optimizer. In the PyTorch implementation, we use “O2” options of
AMP manager in the apex2 package to handle the FP16 optimization. For finetuning, we consider
three different sequence lengths, namely 128, 256 and 512. For pretraining, we only consider the
sequence length 512. In each case, we choose the maximum possible batch size allowed by the
memory size of the device(s). We measure the actual model running time by performing 1000
steps gradient descent with random input sequences with the fixed length.

Firstly, we compare the model speed in the finetuning stage. Note that the decoder is not used
in this setting. Table 5.7 and 5.8 summarize the finetuning running time comparison on GPUs

2https://github.com/NVIDIA/apex
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Sequence length 128 256 512

Metrics
Run time

Mem
Run time

Mem
Run time

Mem GLUE
1 GPU 8 GPUs 1 GPU 8 GPUs 8 GPUs

Batch size / GPU 64 32 16

L12H768 1.00x 1.00x 9.2G 1.00x 1.00x 11.0G 1.00x 14.3G 84.40
B6-6-6 0.97x 0.99x 9.1G 0.95x 0.97x 10.3G 0.94x 12.5G 85.37
B6-3x2-3x2 0.93x 0.93x 8.4G 0.91x 0.92x 9.5G 0.90x 11.8G 84.78
B4-4-4 0.67x 0.67x 6.6G 0.65x 0.66x 7.5G 0.64x 9.0G 83.99

Batch size / GPU 32 12 4

L24H1024 1.00x 1.00x 14.8G 1.00x 1.00x 14.4G 1.00x 13.9G 86.62
B10-10-10 0.87x 0.92x 14.0G 0.90x 0.93x 13.0G 0.96x 12.7G 87.03
B8-8-8 0.70x 0.73x 11.6G 0.73x 0.75x 10.8G 0.78x 10.5G 86.70

Table 5.7: Running time and memory consumption comparison between F-TFMs and the stan-
dard Transformer on the GPU. In each model group, the standard Transformer (first model) is
used as the benchmark for the rest of F-TFM models. Note that, given the same batch size per
GPU, the memory consumption is roughly the same for 1 GPU and 8 GPUs.

Sequence length 128 256 512

Metrics Run time on 8 TPU cores (TPUv2-8) GLUE

Batch size / TPU core 64 32 16

L12H768 1.00x 1.00x 1.00x 84.40
B6-6-6 0.99x 0.88x 0.81x 85.37
B6-3x2-3x2 0.97x 0.87x 0.77x 84.78
B4-4-4 0.69x 0.62x 0.55x 83.99

Batch size / TPU core 16 8 4

L24H1024 1.00x 1.00x 1.00x 86.62
B10-10-10 0.89x 0.81x 0.73x 87.03
B8-8-8 0.66x 0.60x 0.56x 86.70

Table 5.8: Running time between F-TFMs and the standard Transformer on the TPU v2-8. In
each model group, the standard Transformer (first model) is used as the benchmark for the rest
of F-TFM models.

and TPUs, respectively.
• In the base model (L12H768) group, we observe that the speed of B6-6-6H768 is similar or

faster than the base Transformer model, despite the fact that B6-6-6 is deeper, has more pa-
rameters. Moreover, B6-6-6H768 achieves better results compared with the base Transformer
model. The similar conclusion applies to the B6-3x2-3x2 model, which has the same amount
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of parameters as the base model. The B4-4-4 model, which has the same depth and model
parameters as the base model, is able to provide 30%-50% speedup without losing too much
performance.

• In the large model (L24H1024) group, the conclusion is similar. The speed of the larger model
B10-10-10 is almost the same as the large model, and the speed of B8-8-8 is significantly
faster than the large model. In addition, when sequence length equals 512, the acceleration of
F-TFM on the TPU is more obvious than the GPU.

• In the both groups, all the tested F-TFM variants have smaller memory footprint compared
with the standard TFM models, showing the memory efficiency of F-TFM.

Next, we compare the model speed during pretraining under the MLM objective in table 5.9,
which has an additional cost due to the decoder. The results show that the proposed method can
still substantially improve the pretraining speed compared to the standard Transformer, though
the speed gain is slightly smaller than the finetuning stage. In summary, this study demonstrates
that the proposed method is more efficient in both the finetuning and pretraining stages in modern
parallel computing platforms.

Sequence Length 512

Running Time FLOPs

#TPU cores / Total bsz 16 / 512

L12H768 1.00x 1.00x
B6-6-6H768D2 0.99x 1.04x
B6-3x2-3x2H768D2 0.97x 1.04x
B4-4-4H768D2 0.79x 0.75x

#TPU cores / Total bsz 16 / 128

L24H1024 1.00x 1.00x
B10-10-10H1024D2 0.83x 0.81x
B8-8-8H1024D2 0.71x 0.66x

Table 5.9: TPU pretraining speed comparison. The suffix “D2” means that the F-TFM model
has 2 decoder layers.

5.5 Conclusion & Discussion

In this work, under the pretraining-finetuning paradigm, we investigate a largely overlooked di-
mension of complexity in language processing. With the proposed Funnel-Transformer, we show
how sequential resolution can be compressed in a simple form to save computation and how the
saved FLOPs can be re-invested in improving the model capacity and hence the performance.
Open challenges for future research include the better ways to improve the compression scheme,
to optimize the block layout design and to re-invest the saved FLOPs. In addition, combining
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Funnel-Transformer with model compression techniques like knowledge distillation and quanti-
zation would be an important direction towards the enhancement of practical impact.
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Chapter 6

Event Temporal Modeling with Sparse
Labels

6.1 Motivation
An important task in temporal sequence modeling is to automatically extract and summarize
the semantic information from news stories for the events of interest. Although topic detection
and tracking (TDT) [2] has been studied for decades by the information extraction (IE) [74]
and information retrieval (IR) [78], how to effectively predict the semantic relationships among
events, especially how to use cutting-edge neural network technologies to improve temporal and
causal reasoning, are still open challenges for research [106].

This chapter focuses on the event-level temporal relationship classification problem [84, 106].
The task is to take the context (natural language text) and an events pair as input and predict the
temporal relationship label of the event pair. A lot of methods have been proposed for this task
in the past decades. They roughly can be split into 3 classes.

1. Rule Based System: The CAEVO [16] is the representative one among the rule based sys-
tems. It classifies the temporal relationship of the event pairs according to a set of prede-
fined rules, including comparing the timestamp of two events and checking the preposition
that bridging two events.

2. Point Process: The point process method views an event as a point of a point stream and
uses the Bayesian process to describe the distribution of points in this stream over time.
The Hawkes Process [45] is the most famous one of them, which defines the point process
as a mixture of self-exciting exponential processes. However, the point process doesn’t
consider the context of events, which limits its performance.

3. Neural Network Approaches: Since the neural network achieves state-of-the-art perfor-
mance in various domains, the researchers have applied it to this problem [84] and achieve
good performance. They also combine neural networks with the Hawkes process to pro-
pose the neural Hawkes process [80]. Then the pretrained language model [30] is proposed,
which learns natural language prior knowledge from the large-scale unlabeled data. The
researchers have shown that we can achieve better results by leveraging the pretraining
models [86].
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To better understand the bottleneck of current approaches, we first study and compare the
performance of the above methods. In our experiments, we found that the biggest challenge
of this task is the label sparsity issue, which leads neural network models to quick overfitting.
To solve this problem, we propose a more effective learning strategy for finetuning the Roberta
model. The proposed strategy can be split into three parts.

1. Regularization by the Human Prior Knowledge: The event temporal sequence has two
human prior knowledge about the sequence structure, i.e. symmetry and transitivity. We
introduce this human prior to the machine learning model by adding them as the regular-
ization in the loss function.

2. Data augmentation: Another popular method to prevent model overfitting is data augmen-
tation [25]. Here we design a data augmentation method for the temporal event sequence
to produce pseudo labeled training instances.

3. Utilizing unlabeled data: Although the annotated event temporal relationships are sparse,
there are almost unlimited news documents available, which contain plenty of events in
various domains. We utilize the large-scale unlabeled data by the advanced self-training
technique [69] and semi-supervised learning over data augmentation graph [117] to im-
prove the model robustness.

Finally, our experiment results show that, by incorporating the proposed improvements, we
are able to greatly improve the performance of the model and achieve the new state-of-the-art
results for the event temporal classification task.

6.1.1 Problem Formulation and Notation

Next, we are going to introduce the problem formulation and mathematical notation used by
the rest of this chapter. The input includes a context x = {x1, x2, · · · , xT} and a pair of event
(e1, e2), where the context is the natural language paragraph with T tokens, and the event pair
contains two sets of tokens in the context, which are represented by e1, e2 ∈ x. Given the input,
we want to classify the temporal relationship of the event pair. The label is denoted as c and the
label set is denoted as C, which contains 4 labels (1) Before, (2) After, (3) Simultaneous, and (4)
Vague.

6.2 Proposed Strategy

6.2.1 Regularization by the Human Prior Knowledge

To deal with the label sparsity issue mentioned in Motivation, an effective strategy is introducing
human prior knowledge to machine learning models. As discussed in [11, 85, 112], we can
summarize several rules about temporal relationships of an event sequence. They are
• Symmetry: Considering a event pair e1 and e2. if the relationship of e1 and e2 is “Be-

fore", the relationship of e2 and e1 should be “After". Similarly, “After" −→ “Before”,
“Simultaneously” −→ “Simultaneously” and “Vague" −→ “Vague".
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• Transitivity: Considering an event triplet e1, e2 and e3. Given the (e1, e2) and (e2, e3)
relationship, we can know the (e1, e3) relationship should belong to a candidate set. Here
I give 4 examples,

1. (“Before”, “Before”) −→ { “Before" }
2. (“Before”, “After”) −→ { all categories }
3. (“Before”, “Simultaneously”) −→ { “Before" }
4. (“Before”, “Vague”) −→ { “Before", “Vague" }

We can infer the remaining transitivity rules accordingly.
Then our goal is to introduce the prior knowledge over the pretrained model. For the sym-

metry rule, given a event pair e1 and e2, a label c and its symmetric label c′ = symmetry(c), we
want the output distribution satisfies

P (c|x, e1, e2) = P (c′|x, e2, e1) (6.1)

Then we design a corresponding loss function regularizer as

Lsym =
∑
c∈C

|P (c|x, e1, e2)− P (c′|x, e2, e1)| (6.2)

Similarly, for the transitivity rule, given an event triple, we want the output distribution to
satisfies

P (c1|x, e1, e2)× P (c2|x, e2, e3) ≤
∑
c′∈C′

P (c′|x, e1, e3) (6.3)

where C ′ is the transitivity set of the relation pair (c1, c2). Accordingly, we can design a regular-
izer as,

Ltrans =
∑

c1,c2∈C

max(P (c1|x, e1, e2)× P (c2|x, e2, e3)−
∑
c′∈C′

P (c′|x, e1, e3), 0) (6.4)

Finally, we combine the two regularizers with the cross-entropy loss of the classification
layer, which can be written as,

L = Lcross_entory + λsLsym + λtLtrans (6.5)

where λs and λt are two tunable hyperparameters. With the two regularizers, we can force the
classifier to fit the human prior knowledge about the event sequence.

6.2.2 Data Augmentation to Produce Pseudo Labeled Training Instances
Another popular method to improve model robustness is data augmentation. Given a data sam-
ple (x, e1, e2, c), we want to design an augmentation method to produce the augmented sample
(q(x), e1, e2, c). The most popular augmentation method in natural language processing is round
translation [122]. But the translation will break or drop the event information, (e1, e2). Af-
ter trying different strategies in experiments, we design a token-level augmentation strategy by
leveraging the methods proposed in [64] and [114]. The augmentation method is applying the
following operators by order,
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• Randomly replace words with a synonym.
• Randomly insert words. The inserted words are synonyms of one word in the original text.
• Randomly drop words.
• Randomly shuffle words. We limit the position shift to less than 2.

6.2.3 Semi-supervised Label Propagation Based on Augmented Data Graph

Next, we will discuss how to use unlabeled data to improve model performance. Besides the
advantage that seeing more data will make our model more robust and prevent overfitting, un-
labeled data can also help us address the domain shift problem. If the domain of test data is
different from the training data, we can use the unlabeled data from the test domain, which usu-
ally are cheap, to let the model learn the prior information of the test domain. The first task is to
generate the unlabeled event sequence data. We use the OpenIE system [102] to extract events
from the news corpus. Given the unlabeled data, the next question is how to utilize it to improve
our model. Here we test two methods, self-training, and semi-supervised learning.

The most straightforward method is the self-training method [69]. It first trains a teacher
model with the human-annotated data, then produces the pseudo-labels on the unlabeled data
based on the teacher model. Finally, the model retrains a student model from scratch based on
the annotated data. The self-training method is simple, but it shows strong empirical performance
with careful hyperparameters tuning in various classic benchmarks [32, 118]. Its problem is that
the teacher model would propagate its error to the student model, and we could not correct it.

Another solution is the semi-supervised learning method. Instead of separating the processes
of annotating the unlabeled data and training the student classifier in the self-training. The semi-
supervised learning model can optimize them jointly with the label propagation technique. Here,
We apply the state-of-the-art semi-supervised method, Unsupervised Data Augmentation (UDA)
[117]. Its core idea is building an augmented data graph that links every sample with several of
its augmented samples. Then we train a model that can produce consistent prediction results on
the augmented data graph. The objective function can be written as,

LUDA =
∑
c∈C

KL(P (c|q(x), e1, e2)||P (c|x, e1, e2)) (6.6)

Then we also combine this loss with the cross-entropy loss from the supervised data.

L = λULUDA + Lcross_entropy (6.7)

where λU is a tunable coefficient. Notice that in both self-training and semi-supervised learn-
ing, we still can apply the human prior knowledge regularization mentioned in Section 6.2.1 in
the loss function. We drop it here to keep the notation simple.
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Acc F1 Unlabel

LSTM (Ning et al.(2018)) 61.6 66.6 7

LSTM (Goyal and Durrett (2019)) 68.6 74.2 7

Bert (Ning et al.(2019)) 71.7 76.7 7

Roberta (Ballesteros, Miguel, et al. (2020)) 73.5 78.9 7

Roberta (Ballesteros, Miguel, et al. (2020)) 75.5 81.6 3

Logistic Regression 59.74 63.85 7

Hawkes Process 58.06 62.20 7

LSTM 65.71 70.42 7

Neural Hawkes Process 65.31 69.93 7

Our Roberta 74.51 79.21 7

Our Roberta with Proposed Learning Strategy 76.58† 81.67† 7

+ semi-supervised learning 77.66† 82.47† 3

Table 6.1: Experiment results on MATRES dataset. The first section contains the results from
previous publications. The second section contains the results from our implementation. The
“unlabeled" column is referred to as whether to use unlabeled data during the training. The
results with † mean that the p-values in the significance tests (one-sample t-tests) for comparing
our method with the second best (not ours) in the table are smaller than 5%.

6.3 Main Results

6.3.1 Experiment setting
In the experiment section, we focus on the MATRES dataset [84]. It is an event temporal relation
dataset, whose label space is the same as the description in section 6.1.1. Its training set contains
256 contexts and 12,740 event pair relations. Its test set contains 20 contexts and 837 event pair
relations. We split 10% of training data as the development set.

To evaluate the model prediction, we use two metrics, accuracy and F1 score. For the F1
score, we treat the “Vague" class as the null class. In our experiment, we always use the Roberta
Base model as the pretrained language model.

For the unlabeled data used in this experiment, we use the News Crawl 2007 and 2008 from
the WMT task. After extracting the events by the OpenIE system, we obtain 4M context and
40M event pairs, which is 1000x larger than the MATRES training set.

6.3.2 Baselines
To comprehensively study the performance of traditional and advanced baselines, we implement
the following methods and report in our experiment results.

• Logistic Regression: Given the event pair (e1, e2), we use a linear classifier to predict its
temporal relationship label. The linear classifier is trained by the cross-entropy function.

• Hawkes Process: Given the event pair (e1, e2), we use the Hawkes process to estimate the
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density of different labels. Then choose the label with the highest density estimation as
our prediction.

• LSTM: Given the event pair (e1, e2) and context, we use LSTM to produce the contextual
embedding of the two events. The prediction layer and learning strategy are the same as
the logistic Regression.

• Neural Hawkes Process: Similar to LSTM, we use LSTM to produce contextual embed-
ding and use them to predict the coefficient of the Hawkes Process.

• Roberta: Similar to LSTM, replace the embedding model by the Roberta model [77].

6.3.3 Experiment Results
Here, we present experiment results of the baseline methods and the proposed methods in Ta-
ble 6.1. We also include the results reported in previous publications as the reference. First,
Compared with the model with softmax function output distribution, Logistic Regression, and
LSTM, Hawkes process family models, Hawkes Process and Neural Hawkes Process, didn’t
provide improvements. We hypothesize the main reason is the strong assumption about the ex-
ponential distribution family, which did not fit our problem setting. Second, by comparing the
baseline models, we found that the pretrained language model (Our Roberta) produces the best
performance among the baseline method, which means that utilizing the context information is
important in this task.

Then by comparing the proposed method with the best-reported results without using ad-
ditional unlabeled event sequences, we observe that the proposed learning strategy significantly
improves both accuracy and F1 metrics. Furthermore, when using the unlabeled data, we achieve
the new state-of-the-art performance in this task, 77.66 accuracy and 82.47 F1 score. But, con-
sidering the large-scale of the unlabeled dataset, semi-supervised learning would cost much more
computation resources compared to purely supervised learning. It is a trade-off between compu-
tation and accuracy. On the other hand, the cost of adding regularization and data augmentation
is small due to the limit size of labeled data. Finally, the improvements over previous baselines
have passed the one-tail significance test.

6.3.4 Ablation Study
Next, we conduct the ablation study for the proposed learning strategy. The ablation results
are recorded in Figure 6.1. Based on the results, we observe that all 3 proposed improvements
(introducing human prior, data augmentation, and utilizing unlabeled data) contribute to the final
performance. Compared with the self-training method, the semi-supervised learning approach
has better performance for utilizing the unlabeled data.

6.4 Conclusion
In this chapter, we study an important machine learning task, event temporal relationship classi-
fication. We carefully compare several kinds of important baselines. We found the main issue is
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the overfitting problem caused by the data sparsity nature of this task. To alleviate that, we pro-
pose several improvements, including introducing new regularization to introduce human prior,
design data augmentation to generate pseudo training labels, and utilizing the unlabeled data.
Finally, in both supervised and semi-supervised settings, the proposed models improve current
state-of-the-art results by a large margin.
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Figure 6.1: Ablation study of the proposed strategy. "kw" means using regularization to introduce
human prior. "aug" means using data augmentation to generate pseudo labels. "self" means using
self-training. "semi" means using semi-supervised learning.
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Chapter 7

Conclusion

This thesis focuses on sequential data, which is one of the most important types of data in real-
world applications, including natural language processing, speech analysis, electricity usage,
prices of financial products, traffic occupation, and so on. The various types of sequential data
bring us different challenges. For example, modeling correlation among variables in the multi-
variate time series modeling and the range of data value issue in the continues time series data
forecasting. The main goal of this thesis is to enhance the state-of-the-art in this field by devel-
oping novel neural network frameworks and learning algorithms to solve these sequential tasks
according to their unique formats and characteristics. The main contributions can be summarized
from five aspects below.

1. A novel graph convolution architecture for spatiotemporal sequence modeling: In-
spired by the great success of convolution networks on image data, we want to extend
such techniques for spatiotemporal modeling. But standard 2D convolution methods re-
quire the data to have a grid-like structure, which is too restrictive for the spatiotempo-
ral domain. To address this issue, We propose Depthwise Separable Graph Convolution
(DSGC), which combines the strengths of CNN in 2D convolution and the flexibility of
Graph Convolution Network (GCN), enabling automated learning of spatial correlations
with irregular spatiotemporal structures. In our experiments, DSGC shows better empiri-
cal performance compared to representative Graph Convolution methods on spatiotempo-
ral forecasting benchmarks.

2. A factorized recurrent neural network for multivariate time series modeling: The
DSGC method utilizes spatial correlations among variables. However, how to generalize
the method to the dependencies beyond spatial correlations is an open question. For ex-
ample, the status of each key (being pressed or unpressed) in a piano can be treated as
a temporal sequence, and the states of all the keys in a piano score form a multivariate
time series, where the dependencies are more complicated than a spatial correlation. We
propose to use an autoregressive prediction layer along the variables in each time step, i.e.,
to predict the value of the ith variable at time step t based on all values of variables with
smaller index at time step t. Compared with the previous state-of-the-art methods such as
adding stochastic latent variables to RNN, our approach consistently improves the density
estimation results by 40% on average.
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3. Modeling periodic patterns with RNN for temporal sequence forecasting: While neu-
ral networks have achieved good performance in the various sequential tasks, none of the
previous methods can integrate the periodic prior into their neural models. On the other
hand, periodic time series are common in real life, such as traffic occupation, electric-
ity usage, and solar-energy farm output. This thesis address this modeling challenge by
proposing a Recurrent-Skip layer that explicitly introduces the periodic prior into the neu-
ral network model. We also add a linear bypass to the neural network, which makes the
model robust to the out-of-domain time series data in real-world applications. In experi-
ments, we consistently achieve better results in the temporal forecasting tasks compared
with the methods introduced by previous publications.

4. Efficient Transformer for sequence classification: Since the huge success of the lan-
guage model style pretraining models, such as Bert and Roberta, they have become the
dominant solution for sequence classification tasks. The main shortcoming of the pretrain-
ing method is that the pretraining process consumes a huge amount of data and leads to
expensive training costs. Here we identify an overlook redundancy of the Transformer
pretraining process. In the downstream classification tasks, we only need one hidden rep-
resentation to represent the whole sequence, while the Transformer always maintains a
full sequence representation during pretraining and finetuning. According to this observa-
tion, we propose a novel Transformer architecture, Funnel-Transformer, which maintains
a compressed sequence representation by injecting the pooling operation into Transformer
architecture. The experiments show that the Funnel-Transformer can reduce the pretrain-
ing time by 30% without losing accuracy.

5. Modeling temporal events with sparse labels: Event temporal modeling is an important
real-world application. However, event modeling is difficult because events are often not
explicitly annotated in natural language tests. The event modeling systems usually rely on
machine learning algorithms to detect the occurrences of events and the temporal relation-
ship among them. It leads to insufficient human-annotated labels for both neural network
training and testing. To alleviate the label sparsity issue, we design three improvements
over the finetuning pretrained model method: (1) introduce the regularization by human
prior knowledge about event temporal relationship (2) data augmentation (3) utilize the
unlabeled data by semi-supervised technique. With the help of them, we boost the state-
of-the-art result by a large margin.

Beyond the topics covered in this thesis, there are many interesting topics and unsolved prob-
lems, including:

Transfer the Works between the NLP Domain and Other Time Series Domains: Since
the appearance of deep learning, NLP research is the pioneer of research related to sequence data.
The attention mechanism and the Transformer model are all proposed for solving NLP problems.
An important question is that: when we are solving tasks with other kinds of sequential data, what
can we learn from the NLP models? According to our experience, an important commonality
of NLP and other time series problems is modeling the general sequential dependency of data.
For example, a shared core task of NLP domain and time series domains is prediction, which is

80



written as an autoregressive problem:

maximize
θ

Pθ(xt|x<t) (7.1)

In the NLP domain, this problem is named as language modeling. In the time series domains,
it is named as forecasting. Because the NLP problems are the most extensively studied among
all sequential tasks. It usually represents the advanced way to model sequential dependency.
So when we are studying problems with time series data, we can trust the NLP model to capture
the general sequential dependency, and focus on the other features that the language data doesn’t
have, such as periodic patterns and multivariate correlations. On the other hand, if we can provide
a better way to model general temporal dependency in other domains, it should also be effective
and be examined on the standard NLP tasks. For example, if we found a better way to model
general temporal dependency and be helpful in the time series forecasting task, we should test
that idea in the language modeling problem. The benefit to examine the general ideas in the NLP
domain is that it can almost eliminate the influence of the hyper-parameters and problematic
optimization to make sure that the correct conclusions are drawn. However, as demonstrated in
this thesis, if the targeted domain exhibits a specific structure or human prior knowledge, we can
propose a specific solution for this task.

Optimization Issue of Stochastic Neural Network: In Chapter 3, we reveal the problem of
optimizing the sequential stochastic neural network. We find there is a large gap between its theo-
retical advantage and empirical performance. In [53], the authors propose the re-parameterization
trick to enable the back-propagation over the deep neural networks with the stochastic latent vari-
ables. But in most of all benchmark datasets, such as the image and natural language model, the
stochastic models did not achieve better results compared to the deterministic models. In our
experiments, a human-designed posterior distribution can achieve similar or better performance
compared to the optimized posterior distribution. It indicates the optimization of the stochas-
tic latent variable is problematic. In summary, how to optimize the posterior distribution of the
stochastic neural network and let it demonstrate the theoretical advantage is still an open prob-
lem.

Modeling the Variable Dependency of Temporal Data in Parallel: In Chapter 3, we design
an autoregressive layer to capture the correlation of variables in multivariate temporal modeling
tasks. Although this approach provides us a simple and powerful way to model correlations, it is
very expensive in the aspect of computation time. Because the output of dimension i relies on the
previous dimension, it prevents us to make predictions in a parallel manner. So how to model the
correlation among variables with both efficient and powerful algorithms is still an open question.

Reducing the Sequential Redundancy in the Other Sequence Related Problems: In
Chapter 5, we design an efficient Transformer for sequence classification tasks. Besides that,
there are many other sequence related problems with sequential redundancy. For example, the
Sequence to Sequence task (Seq2Seq) is another large category of applications with sequential
data. We hypothesize that the sequential redundancy of the classification task also exists in the
Seq2Seq tasks. For example, in the machine translation task, a classic sequence to sequence
problem, the decoder may need two kinds of information. One is the global information, which
conveys the semantic information from the source sentence. Another is more token-level infor-
mation, such as the noun of a specific object. For the first kind of information, we can use a
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similar idea as the funnel-transformer to compress the encoder representation. But for the sec-
ond kind of information, we still need a token-level representation. How to make these two parts
balanced is the key challenge in this direction.

Another related problem is speech. Compared with language data, the speech data contain
more noise signals, which means there is more redundancy information. Furthermore, speech
related applications usually require fast inference speed. How to utilize the Funnel-Transformer
in the speech domain is a promising research direction.

Transformer Model for Time Series Data: During my PhD research career, the Trans-
former architecture took over the Recurrent Neural Network (RNN) to become the dominated
solution for the tasks with sequential data. The major advantages of Transformer is that its global
attention operation can capture longer sequential dependency compared with the recurrent neural
network, and it does not suffer from the gradient vanish issue of RNN. Its disadvantage is that
the computation and memory cost of attention operation grows quadratically with the length of
sequence. In our thesis, some proposed improvements are implemented over the recurrent neu-
ral network backbone, including LSTNet (Section 4) and Factorized RNN (Section 3). In most
cases, we can directly replace the RNN backbone with the Transformer backbone, and I expect
them to achieve better results. In several cases such as the skip-recurrent link in LSTNet, it is
specifically designed for recurrent neural networks. It can not directly migrate to Transformer.
But we still can leverage the proposed idea, injecting the periodic pattern into the Transformer,
to improve the Transformer model.
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[111] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017. 8, 13

[112] Marc Verhagen. Times between the lines. Brandeis University, Massachusetts, 2004. 72

[113] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. Glue: A multi-task benchmark and analysis platform for natural language un-
derstanding. arXiv preprint arXiv:1804.07461, 2018. 61

[114] Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting perfor-
mance on text classification tasks. arXiv preprint arXiv:1901.11196, 2019. 73

[115] Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and Michael Auli. Pay less
attention with lightweight and dynamic convolutions. arXiv preprint arXiv:1901.10430,
2019. 51

[116] Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite transformer with long-
short range attention. arXiv preprint arXiv:2004.11886, 2020. 51

90



[117] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Unsupervised
data augmentation. arXiv preprint arXiv:1904.12848, 2019. 72, 74

[118] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy
student improves imagenet classification. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10687–10698, 2020. 74

[119] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-
chun Woo. Convolutional lstm network: A machine learning approach for precipitation
nowcasting. In Advances in neural information processing systems, pages 802–810, 2015.
7, 8

[120] Jian Bo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiao Li Li, and Shonali Krish-
naswamy. Deep convolutional neural networks on multichannel time series for human
activity recognition. In Proceedings of the 24th International Joint Conference on Artifi-
cial Intelligence (IJCAI), Buenos Aires, Argentina, pages 25–31, 2015. 36

[121] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding.
In Advances in neural information processing systems, pages 5754–5764, 2019. 51, 60,
61, 64

[122] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad
Norouzi, and Quoc V Le. Qanet: Combining local convolution with global self-attention
for reading comprehension. arXiv preprint arXiv:1804.09541, 2018. 73

[123] Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix factor-
ization for high-dimensional time series prediction. In Advances in Neural Information
Processing Systems, pages 847–855, 2016. 35, 41

[124] Rose Yu, Yaguang Li, Cyrus Shahabi, Ugur Demiryurek, and Yan Liu. Deep learning:
A generic approach for extreme condition traffic forecasting. In Proceedings of the 2017
SIAM International Conference on Data Mining, pages 777–785. SIAM, 2017. 36

[125] G Peter Zhang. Time series forecasting using a hybrid arima and neural network model.
Neurocomputing, 50:159–175, 2003. 35, 36, 41

[126] Guoqiang Zhang, B Eddy Patuwo, and Michael Y Hu. Forecasting with artificial neural
networks:: The state of the art. International journal of forecasting, 14(1):35–62, 1998.
36

[127] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for
text classification. In Advances in neural information processing systems, pages 649–657,
2015. 61

[128] Yongfeng Zhang, Min Zhang, Yi Zhang, Guokun Lai, Yiqun Liu, Honghui Zhang, and
Shaoping Ma. Daily-aware personalized recommendation based on feature-level time
series analysis. In Proceedings of the 24th international conference on world wide web,
pages 1373–1383. International World Wide Web Conferences Steering Committee, 2015.
5

[129] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using

91



gaussian fields and harmonic functions. In Proceedings of the 20th International confer-
ence on Machine learning (ICML-03), pages 912–919, 2003. 7, 9

[130] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng Cai.
What to do next: modeling user behaviors by time-lstm. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pages 3602–
3608, 2017. 36

92


	1 Introduction
	1.1 Background and motivation
	1.2 Capture the intra-step dependency in the multivariate sequential data
	1.2.1 Depthwise Separable Graph Convolution (DSGC) lai2017learning
	1.2.2 Factorized Recurrent Neural Network (FRNN) lai2019re

	1.3 Long- and Short-term Time-series Network (LSTNet) lai2017modeling
	1.4 Funnel Transformer dai2020funnel
	1.5 Event Temporal Modeling with Sparse Labels

	2 Depthwise Separable Graph Convolution 
	2.1 Background and Motivation
	2.2 A Graph Perspective of Convolution
	2.2.1 Convolution over Graphs
	2.2.2 Convolution over Grid-Structures

	2.3 Depthwise Separable Graph Convolution
	2.3.1 Motivation
	2.3.2 Proposed Method
	2.3.3 Parameter Grouping Strategy
	2.3.4 Filter Normalization

	2.4 Closely Related Models
	2.4.1 Spectral Convolution Methods
	2.4.2 Geometric Convolution Methods

	2.5 Experiments
	2.5.1 Experimental Design
	2.5.2 Evaluation on Image Classification
	2.5.3 Evaluation on Time Series Forecasting
	2.5.4 Evaluation on Document Categorization
	2.5.5 Simulation-based Analysis
	2.5.6 DSGC with Multiple Neural Architectures
	2.5.7 Training Time Comparison

	2.6 Implementation Details
	2.6.1 Implementation Details of CIFAR Experiment
	2.6.2 Implementation Details of Time Series Prediction
	2.6.3 Implementation Details of Document Categorization

	2.7 Summary

	3 Factorized Recurrent Neural Network
	3.1 Motivation
	3.2 Background
	3.3 Revisiting SRNN for Speech Modeling
	3.3.1 Previous Setting for Speech Density Estimation
	3.3.2 Decomposing the Advantages of Factorized SRNN
	3.3.3 Advantage under High Volatility
	3.3.4 Utilizing the Intra-Step Correlation

	3.4 Proper Multivariate Sequence Modeling with or without Latent Variables
	3.4.1 Avoiding the Implicit Data Bias
	3.4.2 Modeling Simultaneity with Auto-Regressive Decomposition
	3.4.3 Experiment Results
	3.4.4 Training Time Comparison

	3.5 Summary

	4 Long- and Short-term Time-series Network
	4.1 Background and Motivation
	4.2 Framework
	4.2.1 Problem Formulation
	4.2.2 Convolutional Component
	4.2.3 Recurrent Component
	4.2.4 Recurrent-skip Component
	4.2.5 Temporal Attention Layer
	4.2.6 Autoregressive Component
	4.2.7 Objective function
	4.2.8 Optimization Strategy

	4.3 Evaluation
	4.3.1 Methods for Comparison
	4.3.2 Metrics
	4.3.3 Data
	4.3.4 Experimental Details
	4.3.5 Main Results
	4.3.6 Ablation Study
	4.3.7 Mixture of long- and short-term patterns

	4.4 Summary

	5 Funnel Transformer
	5.1 Motivation
	5.2 Method
	5.2.1 Background
	5.2.2 Proposed Architecture
	5.2.3 Complexity & Capacity Analysis

	5.3 Implementation Optimization
	5.3.1 Sequence Truncation for Separating [cls] trick
	5.3.2 Relative Positional Attention Implementation
	5.3.3 Potential Model Extensions

	5.4 Experiment
	5.4.1 Base-scale Results
	5.4.2 Large-scale Results
	5.4.3 Ablation Study
	5.4.4 Training Cost Comparison

	5.5 Conclusion & Discussion

	6 Event Temporal Modeling with Sparse Labels
	6.1 Motivation
	6.1.1 Problem Formulation and Notation

	6.2 Proposed Strategy
	6.2.1 Regularization by the Human Prior Knowledge
	6.2.2 Data Augmentation to Produce Pseudo Labeled Training Instances
	6.2.3 Semi-supervised Label Propagation Based on Augmented Data Graph

	6.3 Main Results
	6.3.1 Experiment setting
	6.3.2 Baselines
	6.3.3 Experiment Results
	6.3.4 Ablation Study

	6.4 Conclusion

	7 Conclusion
	Bibliography

