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Abstract
We often come across events on our daily commute such as a traffic jam, a per-

son running a red light, or an ambulance approaching. These are complex events that
human can effortlessly recognize and to which we react appropriately. For comput-
ers to be capable of recognizing complex events in a reliable way, like humans can,
will facilitate many important applications such as self-driving cars, smart security
systems, and elderly care systems. However, existing computer vision and multime-
dia research focuses mainly on detecting elementary visual concepts (for example,
actions, objects, and scenes). Such detection alone are generally insufficient for de-
cision making. Hence we have a pressing need for complex event detection systems.
Much research emphasis should be placed on developing such systems.

Compared to elementary visual concept detection, complex event detection is
much more difficult in terms of representing both the task and the data that describe
the task. Unlike elementary visual concepts, complex events are higher level ab-
stractions of longer temporal spans, and they have richer content with more dramatic
variations. The web videos which describe those events are generally much larger
in size, noisier in content, and sparser in labels than the images used for concept
detection research. Thus, complex event detection introduces several novel research
challenges that have not been sufficiently studied in the literature. In this disserta-
tion, we propose a set of algorithms to address such challenges. These algorithms
enable us to build a multimedia event detection (MED) system which is practically
useful for complex event detection.

The proposed algorithms significantly improve the accuracy and speed of our
MED system by addressing the aforementioned challenges. For example, our new
data augmentation step and a new way of integrating multi-modal information sig-
nificantly reduce the impact of the large event variation problem; our two-stage Con-
volutional Neural Network (CNN) training method allows us to get in-domain CNN
features using noisy labels; our new feature smoothing technique is a thorough solu-
tion to the problem that noisy and uninformative background contents dominate the
video representations; and so forth.

We have implemented most of the proposed methods into the CMU-Elamp sys-
tem. They are one of the major reasons for its leading performances in the TRECVID
MED competition 2011 ∼ 2015, the most representative task for MED. Our govern-
ing aim, however, has been to uncover enduring insights that can be widely used.
Given the complexity of our task and the significance of those improvements, we
believe that our algorithms and lessons derived could be generalized to other tasks.
Indeed, our methods have already been used by other researchers on tasks such as
medical video analysis and image segmentation.
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Chapter 1

Introduction

In our daily life, we often come across dozens of different events such as a meeting, an accident,
or a party. In order to make proper decisions and react appropriately to these events, we need
to understand what these events are. In most cases, given the visual and/or audio information,
humans detect these events with ease. I speak, of course, of normal adults who have no problem
with seeing or hearing.

The ease at which human can accomplish these tasks lead us to wonder how we can build
machines that perform a similar function – detecting complex events. Digging into this research
question will not only lead to a deeper understanding of human visual perception, but also pro-
vide practical solutions for many applications. For example, a self-driving car would be able to
negotiate traffic more safely if it can detect a person running a red light; an airport smart security
system would be more effective if it can identify a person leaving luggage unattended; an elder-
care system would be more helpful if it can recognize events like a person falling on the floor;
and a video retrieval system can cover much broader range of videos if it can tell what happens
inside the videos without human descriptions. Figure 1.1 shows some more specific examples.
As illustrated, we would not need to search for our pets if surveillance cameras can tell us that
somebody had dumped our cat into a trash bin (Figure 1.1a); it would be easy to find out how
safe an intersection is if we can search for the number of accidents that happened within a period
of time (Figure 1.1b); the girl in the picture can easily relive her birthday party years later if she
were able to search inside her large personal photo and video collections (Figure 1.1c).

Despite its profound research and application values, automatic event detection is immensely

(a) Where is my cat? (b) How often does this happen? (c) When did this happen?

Figure 1.1: Exemplar scenarios where a MED system can play a role in.
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complex and difficult. As will be explained later, it not only involves sub-tasks that are far
from solved, but also requires computational resources that are too expensive for large-scale
application. It is for this reason that most current computer vision and multimedia research
focuses on detecting simpler and more elementary concepts such as an object, a scene, or an
action. More often than not, recognizing these simple concepts alone is insufficient for decision
making. Detecting a bag itself, for example, is not enough for an airport security system to signal
an alert.

However, due to the recent advances in machine learning, computer vision, multimedia and
computer architecture, it has become much more feasible to address this complex event detection
problem. For that reason, since 2010, CMU Informedia lab has started to work with National
Institute of Standard and Technology (NIST) to develop an accurate, efficient and customizable
Multimedia Event Detection (MED) solution. This dissertation summarizes my contributions
on this development. These contributions have been one of the major reasons for the leading
performance of our CMU MED system [65] in TRECVID MED competition 2011 ∼ 2015,
which is the most representative forum for MED.

1.1 Research Problem, Challenges, and Solutions
Broadly speaking, my long-term goal is to enable computers to understand complex events in
unconstrained environments using limited resources. In this dissertation, I focus on a more con-
crete problem of efficiently detecting complex events from web videos. To a large extend, web
videos represent the complexity of the real world due to their high diversity in content, style,
production qualities, encoding, language, etc. Also, web videos often depict those events that
humans are interested in and are gaining popularity as a way of communication. According to
Cisco, video content will take up approximately 82% of Internet traffic by 2020 [115].

In this dissertation, an event is defined by its event name, event definition, description and
some exemplar videos, as shown in Figure 1.2. Given the exemplar videos, our task is to find
others videos in the database that belong to the same event class. We assume that no video in the
database associates with Meta-data. That is to say, the search is purely based on understanding
the content of the videos. Compared to elementary concept detection, MED is more challenging
for the following reasons.

First, events are much more complex than elementary concepts. An event is a higher level
semantic abstraction of video sequences than a concept and consists of multiple concepts. For
instance, a batting a run in event can be described by multiple objects (e.g., bag, glove, and
fence), scenes (e.g., indoor and outdoor), and actions (e.g., swinging a bat, running, and cheer-
ing). Because of their complexities, the variances within each event are often large while the
differences among events can be subtle. For example, to recognize an event called “attempting
a board trick”, our algorithms need to discover the similarities among “snow boarding”, “skate
boarding”, and “surf boarding”, while distinguishes them from ’skiing’, “roller skating”, and
“swimming”.

Second, an elementary concept can be depicted by one or several frames but an event often
lasts much longer. A baseball, for example, can be recognized from a frame, whereas a full event
where a player bats a run in may last from less than ten seconds to several minutes. Normally,
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Figure 1.2: An exemplar event of batting a run in.

from within one or a few frames, it is hard to tell whether a runner scores a run or not. Therefore,
we need to handle a much larger size of data for MED than for elementary concept detection. It
is for this reason that efficiency is a critical factor in developing a MED system.

Third, high-quality event labels are more difficult to get than concept labels. This difficulty
is mainly because labeling long videos is much more time-consuming than labeling short clips
or images. It is also because the subjective definition of an event. For example, without further
specification, it is hard to tell what counts a trick in the event of “attempting a board trick”.
Consequently, the number of the manually labelled videos we have is much smaller than the
number of manually labelled images. For example, ImageNet [23] is one of the largest manually
labelled image datasets and has 14 millions labelled images, while TRECVID MED2014 [62],
which is one of the largest manually labelled image datasets, has less than 250,000 labelled
videos.

Finally, event detection often requires various sources or multi-modal information while el-
ementary concept detection often deals with single-source information. For example, in MED,
we need to detect visual information like object, motion, scene, text, and audio information like
speech and music that occur in the videos. Whereas, object or scene recognition only needs
images.

As a result, MED introduces several novel research challenges that have not been sufficiently
studied in the literature. This dissertation deals with the following challenges:
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Figure 1.3: CMU Informedia MED System

• The first major challenge of building an event detector is the high variation within an event
and subtle differences among events. To address this problem, we propose a video prepro-
cessing step that reduces the speed variance of motions and a feature encoding method to
mitigate the impact of dominated factors such as repeated patterns in the background.

• The second challenge we faced is how to maintain the efficiency given the size of the data.
We deal with this problem by improving the system in the following three aspects. These
three improvements include a new Convolutional Neural Network (CNN) feature, an effi-
cient space-time encoding method, and a systematical study of the efficacy and efficiency
of different features given the existence of others.

• The third challenge comes from that fact that video labeling is expensive. To better utilize
the sparse labels we have, we propose a two-stage training procedure to improve our CNN
features and a reranking algorithm to utilize information from other event classes. Addi-
tionally, we propose an unsupervised local video feature learning method that combines
the advantages of handcrafted and learning based methods.

• Finally, we also face the challenge of how to smartly fuse these multiple sources of infor-
mation in MED. As a solution, we propose a new feature fusion methods that combines
the advantages of traditional early fusion and late fusion methods [109].

1.2 Dissertation Overview
This section provides an overview of the dissertation and a comprehensive picture about how we
address the challenges described in the last section. As shown in Figure 1.3, CMU MED system
uses a standard video classification pipeline, in which we first preprocess the videos to gain some
desired characteristics. We then extract and encode multimodal features followed by mapping
different features into kernel spaces and performing early fusion [109]. After that, we train a set
of classifiers and apply them to the testing data to get their initial predictions. Late fusion and
some postprocessing steps are carried out at the end to get the final predictions. I will present the
proposed methods in the same order.

A briefly review of MED related works will be shown in Chapter 2 followed by a description
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of evaluation datasets and metrics in Chapter 3.
Chapter 4 introduces a new algorithm called Multi-skIp Feature Stacking (MIFS) as a new

preprocessing step for our MED system that helps to achieve speed invariance for video fea-
tures [CVPR’15]. Chapter 5 shows experiments on the CNN video features that significantly
improve the accuracy of our system [TRECVID’13, MMM’14]. This chapter also introduces a
new CNN-based video feature called Deep local Video Feature (DoVF). Chapter 6 introduces an
unsupervised descriptors learning methods to learn descriptors for a state-of-the-art handcrafted
motion feature. Despite its superior performance compared to state-of-the-art methods, we did
not use it for MED because of the high cost in processing local features. I show it here in the hope
that it can provide lessons for future unsupervised global feature learning development. Also, it
has the theoretical value of showing the connection between traditional handcrafted methods and
CNNs. Chapters 7 and 8 detail two simple improvements for the feature encoding step of our
MED system. The first one, called Rank Normalization (RNorm), fundamentally addresses the
problem that uninformative background patterns dominate the video representations. The sec-
ond one, called Space-Time Extended descriptors (STED), replaces the classic spatial pyramid
matching (SPM) method as a more efficient way to encode space-time information [CVPR’15,
MM’15]. Chapter 9 introduces a new fusion method called double fusion, which incorporates the
advantages of early fusion and late fusion by fusing before and after classification [MMM’12,
MTA’14]. Chapter 10 elaborates the training-free reranking technique called Multi-class Itera-
tive Re-ranking (MIR) that captures relationships among multiple event classes and significantly
improves the ranking performance of our MED system. MIR is a postprocessing step for our
MED system [MM’15]. Chapter 11 presents a study comparing the cost and efficiency tradeoffs
of multiple features for MED.

Finally, Chapter 12 concludes this dissertation by summarizing the main lessons I have
learned in undertaking this project as well as the promising directions that can be explored in
the future.

5



6



Chapter 2

Related Work

The field of multimedia event detection has changed drastically over the past few years. In this
chapter, I will briefly review some important works that has contributed to the improvement of
MED. More detailed reviews about each problem we addressed can be found in its corresponding
chapter.

2.1 Features

Previous works [84] [116] [26] [77] on developing and evaluating features for MED can be
divided in two main categories depending whether they used low-level features or high-level se-
mantic concepts. Yang et al. [134] and Tamrakar et al. [116] proposed to evaluate the individual
performance of different low-level visual features (for ecample, SIFT [79], STIP [69], and Tra-
jectories [126]) as well as their combinations. Meler et al. [84], Ebadollahi et al. [26] and Liu et
al. [77] focus on testing high-level features’ performance on event recognition.

In terms of motion features, the trajectory based approaches [53, 82, 113, 125, 126], es-
pecially the Improved Dense Trajectory (IDT) method proposed by Wang et al. [125, 126],
together with the FV encoding [96] is the basis of the current state-of-the-art performances on
several benchmark action recognition datasets. Peng et al. [93] further improved the perfor-
mance of IDT by increasing the codebook sizes and fusing multiple coding methods. However,
with the rise of deep neural network methods, these traditional methods are gradually becoming
less relevant.

Motivated by this success of CNNs, researchers are working intensely towards developing
CNN equivalents for learning video features. Several accomplishments have been reported from
using CNNs for action recognition in videos [121, 130, 140]. Karpathy et al. [54] trained deep
CNNs through one million weakly labelled YouTube videos and reported moderate success while
using it as a feature extractor. Simonyan & Zisserman [106] demonstrated a result competitive to
IDT [126] through training CNNs using both sampled frames and stacked optical flows. Wang et
al. [127–129] show multiple insightful analysis about how to improve two-stream frameworks
and find several useful observations including pre-training two-stream ConvNets, using a smaller
learning rate, and using deeper networks, etc. With these observations, their approach finally out-
performs IDT [126] by a large margin on UCF101 dataset [110]. However, all these approaches
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rely on shot-clip predictions to get the final video scores without using global features.
In image classification, we often take a whole image as the input to CNNs. However, in video

classification, because of the much larger size of videos, we often use sampled frames/clips as
inputs. One major problem of this common practice is that video-level label information can be
incomplete or even missing at frame/clip-level. This information mismatch leads to the prob-
lem of false label assignment, which motivates another line of research that tries to do CNN-
based video classification beyond short snippets. Ng et al. [87] reduced the dimension of each
frame/clip using a CNN and aggregated frame-level information using LSTM. Varol et al. [122]
stated that Ng et al. ’s approach is suboptimal as it breaks the temporal structure of videos in the
CNN step. Instead, they proposed to reduce the size of each frame and use longer clips (e.g., 60
frames vs 16 frames) as inputs. They managed to gain significant accuracy improvements com-
pared to shorter clips. However, the way they reduced the spatial resolution comes at a cost of a
large accuracy drop. In the end, the overall accuracy improvement is less impressive. Wang et al.
[129] experimented with sparse sampling and jointly train on the sparsely sampled frames/clips.
In this way, they incorporate more temporal information while preserving the spatial resolution.
Diba et al. [24], Qiu et al. [97], and We [68] took a step forward along this line by using the
networks of Wang et al. [129] to scan through the whole video, aggregate the features (output
of a layer of the networks) using some pooling methods, and fine-tune the last layer of the net-
work using the aggregated features. We believe that these approaches are still sub-optimal as
they again break the end-to-end learning into a two-stage approach. However, because these ap-
proaches are currently the best at incorporating global temporal information, they represent the
current state-of-the-art in this field.

Another direction of CNN-based video feature learning is to address the speed bottleneck
problem from using traditional way to pre-compute optical flow for temporal stream CNN. Com-
pared to the CNN step, the optical flow calculation step is computationally expensive. It is the
major speed bottleneck of the current two-stream approaches. As an alternative, Zhang et al.
[141] proposed to use motion vectors, which can be obtained directly from compressed videos
without extra calculation, to replace the more precise optical flow. This simple improvement
brought more than 20x speedup compared to the traditional two-stream approaches. However,
this speed improvement came with an equally significant accuracy drop. The encoded motion
vectors lack fine structures, and contain noisy and inaccurate motion patterns, leading to much
worse accuracy compared to the more precise optical flow [139]. These weaknesses are fun-
damental and can hardly be improved. Another more promising approach is to learn to predict
optical flow using supervised CNNs, which is closer to our approach. There are two representa-
tive works in this direction. Ng. et al. [88] used optical flow calculated by traditional methods as
supervision to train a network to predict optical flow. This method avoids the pre-computation
of optical flow at inference time and greatly speeds up the process. However, as we will demon-
strate later, the quality of the optical flow calculated by this approach is limited by the quality of
the traditional flow estimation, which again limits its potential on action recognition. The other
representative work is by Ilg et al. [40] and uses the network trained on synthetic data where
ground truth flow exists. The performance of this approach is again limited by the quality of the
data used for supervision. The ability of synthetic data to represent the complexity of real data is
very limited. Actually, in Ilg et al. [40]’s work, they show that there is a domain gap between real
data and synthetic data. To address this gap, they simply grew the synthetic data to narrow the
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gap. The problem with this solution is that it may not work for other datasets and it is infeasible
to do this for all datasets.

In terms of multi-scale feature representations [3, 76], a multi-scale image key-point detec-
tor was initially proposed by Lindeberg [75]. Lowe [79] used it to detect scale invariant key
points using Laplacian pyramid methods, where Gaussian smoothing is used iteratively for each
pyramid level. Simonyan & Zisserman [107] reported a significant performance improvement
on Imagenet Challenge 2014 by using a multi-scale CNNs. In video processing, Space Time
Interest Points (STIP) [69] extends SIFT [79] to the temporal domain by finding the scale invari-
ant feature points in 3D space. Shao et al. [105] also try to achieve scale invariance for action
recognition using 3-D Laplacian pyramids and 3D Gabor filters. However, without awareness of
the fundamental difference between image and video processing, [105] was not very successful
when compared to the state-of-the-art methods.

2.2 Encoding
For local feature encoding, Fiher Vector (FV) [95] and Vector of Local Aggregated Descrip-
tors (VLAD) [46] are the most significant encoding methods and have been widely used to
encode various features including IDT [126] and CNN features [7, 25, 132]. There are very
similar encoding methods [6] and both have been popular for image and video classification
[6, 85, 96, 126, 132]. In the original scheme [44, 95], they either do not require post processing
[95] or use only `2 normalization [44]. Although `2 normalization can reduce the influence of
background information and transform the linear kernel into an `2 similarity measurement [96],
it does not disperse the data. As a result, the original FV encoding method showed inconclu-
sive results compared to other state-of-the-art encoding methods [95]. It is the introduction of
Power Normalization (PNorm) [6, 96] that significantly improved the performance of those en-
coding methods and thus made them useful in practice. PNorm alleviates the problem of sparse
and bursty distribution of FV and VLAD. Later on, as a special design for VLAD, Arandjelovic
and Zisserman [6] proposed Intra-normalization (INorm) to further reduce the bursty distribution
problem of VLADs. Jégou and Chum [44] used PCA to decorrelate a low dimensional represen-
tation and adopted multiple clustering to reduce the quantization errors for VLADs. Nonetheless,
those methods only partially alleviated the burstiness problem [45]. The sparsity of the encoded
descriptors still depends on that of the sparsity of the original representations.

There has been a large amount of work in building representations that keep spatial infor-
mation of image patterns. Among them, spatial pyramid matching [71] is the most popular one.
However, building spatial pyramids requires dimensions that are orders of magnitude higher than
the original spatial invariant representations and hence make it less suitable for high dimensional
encoding methods such as FV [96] and VLAD [6]. Spatial FV [57] and spatial augmentation
[83, 100] provide more compact representations to encode spatial information and show similar
performance as spatial pyramid methods. Few approaches consider encoding global temporal
information into video representations. Oneata et al. [91] show that better action recognition
performance can be achieved by dividing videos into two parts and encoding each one sepa-
rately. Codella et al. [20] try to use a temporal pyramid for event detection. They use n temporal
segments, where n incrementally increases from 1 to 10.
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2.3 Classifiers
Given the encoded features, state-of-the-art methods often use ‘one versus the rest’ SVM, which
does not consider the relationships among action classes. To model those relationships, Bergamo
& Torresani [13] suggested a meta-class method for identifying related image classes based on
mis-classification errors from a validation set. Hou et al. [37] identified similar class pairs and
grouped them together to train ‘two versus the rest’ classifiers. By combining ‘two versus the
rest’ with ‘one versus the rest’ classifiers, they observed significant improvements from base-
lines. However, when calculating the similarities, most of these methods only take a subset of
classes into consideration, which restricts the improvements they can make. Neural network
based methods such as mixtures of experts also shown superior performance on video classi-
fication [2]. However, due to the size of the parameters, they tend to requires more data for
training. Another interesting direction is training classifiers that takes noisy labels into consid-
eration [29, 112]. This noisy label learning is of particular useful in Internet video learning.
However, because the main focus on this dissertation is video feature learning, we will not go
into too much details of this noisy label classifier learning topic.

2.4 Fusion
Historically, researchers in image and video retrieval [41, 52, 73, 109, 136] found that a combi-
nation of multi-modality information almost always helps in obtaining high retrieval accuracy.
In general, researchers use two types of combination strategies, namely early fusion and late fu-
sion [109]. Early fusion combines features before performing classification, such as multi-kernel
learning [21, 33]. Late fusion combines output of classifiers from different features, such as
average fusion, committee voting [120] and co-regularized least squared regression [15]. There
is no universal conclusion as to which strategy is preferred for multimedia content analysis and
retrieval. Snoek et al. [109] found that early fusion is better than late fusion in TRECVID 2004
semantic indexing task. By studying data on the TRECVID 2006 semantic indexing (SIN) task,
Ayache et al. [8] found that early fusion gets better results on most of tasks while late fusion is
more robust and can handle some more complex tasks.
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Chapter 3

Datasets and Evaluation Criteria

In this section, we describe the benchmark datasets and evaluation criteria we used to evaluate
our algorithms in this thesis. Besides evaluating on MED tasks, we also evaluate our algorithms
on several action recognition tasks. There are two reasons for us to choose action recognition
tasks over others such as scene and object recognition. First of all, it is the concept recognition
task that is most similar to MED tasks in terms of difficulty level and the data it works on. Both
of them use video data and need to gather information from multiple frames. Therefore, the
improvements on action recognition tasks can often be used for MED tasks. Second, most of
the action recognition tasks focus on evaluating the motion part of an algorithm, thus they are
useful for us to determine where an improvement comes from. In the rest of this chapter, we
provide the detailed description of the two tasks and their corresponding datasets and evaluation
criteria. Together, we have evaluated on eleven datasets including six MED datasets and five
action recognition datasets. However, most of these datasets are quite similar in terms of sources
and contents. Therefore, our results can be bias towards these datasets and possibly that they
will not generalize to some new datasets such as surveillance datasets. However, in the process
of designing these algorithms, we try to avoid exploring the data bias so that we can reduce the
possibility of overfitting.

3.1 Multimedia Event Detection

3.1.1 Definition

Recalling what we discussed in in section 1.1, the goal of an event detection task is to detect
events of interest such as Birthday Party and Parade, solely based on the video content.

3.1.2 Datasets

Started at 2010, NIST has gradually built up a video event database that contains 8000 hours of
videos and over 40 events, which is by far the largest event detection collection. Over the years,
we have used the following five benchmark datasets including MED10, MED11, MEDTEST13,
KINDREDTEST, and MEDTEST14, of which MEDTEST14 is the latest and major dataset that
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P01: Assembling shelter E22: Cleaning an appliance
P02: Batting a run E23: Dog show
P03: Making a cake E24: Giving directions to a location
E01: Attempting a board trick E25: Marriage proposal
E02: Feeding an animal E26: Renovating a home
E03: Landing a fish E27: Rock climbing
E04: Wedding ceremony E28: Town hall meeting
E05: Working on a woodworking project E29: Winning a race without a vehicle
E06: Birthday Party E30: Working on a metal crafts project
E07: Changing a vehicle tire E31: Beekeeping
E08: Flash mob gathering E32: Wedding shower
E09: Getting a vehicle unstuck E33: Non-motorized vehicle repair
E10: Grooming an animal E34: Fixing musical instrument
E11: Making a sandwich E35: Horse riding competition
E12: Parade E36: Felling a tree
E13: Parkour E37: Parking a vehicle
E14: Repairing an appliance E38: Playing fetch
E15: Working on a sewing project E39: Tailgating
E21: Attempting a bike trick E40: Tuning musical instrument

Table 3.1: MED event ID and name. Event ID staring with ’P’ and ’E’ indicate events in 2010
and after 2010.

we will use throughout this thesis.
For TRECVID MED 2010, we used both the annotated training and testing data, which

consists of 114 hours of video clips and three events with event ID P01 to P03 in Table 3.1.
The MED2011 dataset has about 1570 hours of video clips which includes MED 2011 Train-

ing dataset (about 370 hours) and MED 2011 Testing dataset (about 1200 hours). There are 15
events including E01 to E015. For this dataset, we test event detection on the training data where
the labels have been released by NIST. We randomly split the 15 events into equal sizes of train-
ing and testing data and put all the video clips labeled as NULL in MED 2011 into testing set.
After the splitting, we have 3135 video clips for training and a set of 6687 videos for testing. We
also report results of the whole MED2011 dataset evaluated by NIST.

The MEDTEST2013 and KINDDREDTEST are two standard system evaluation datasets
released by NIST in 2013. Each of them contains around 10 percent of the whole MED collection
and has 20 events ranging from E05 to E15 and E21 to E30 (Table 3.1). They consist of two tasks,
i.e. EK100 and EK10. As their names suggested, EK100 task has 100 positive training samples
while EK10 has 10. For both tasks, they have around 5000 background samples. Together, each
dataset has 8000 training samples and 24000 testing samples.

The MEDTEST14 dataset was released by NIST in 2014. It has similar amount of data as
MEDTEST13 and KINDDRESTEST datasts. The events in this dataset range from E21 to E40
(Table 3.1). It also has the EK100 and EK10 scenarios. Because MEDTEST14 is the latest and
the most difficult evaluaton datasets in the history of MED, I will use it as the major datasets to
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(a) HighJump (b) Kick

(c) HandShake (d) HighJump

Figure 3.1: Examples frames from (a) UCF101 / UCF50, (b) HMDB51, (c) Hollywood2, (d)
Olympic Sports.

Datasets Source Mean Duration Clips Classes Size Difficulty level
HMDB51 YouTube/Movie 3.14s 6766 50 2.1 G Middle
UCF101 YouTube 7.21s 13320 101 6.8 G Easy
UCF50 YouTube 7.44s 6681 50 3.2 G Easy

Hollywood2 Movie 11.55s 1707 12 8.6 G Hard
Olympic YouTube 7.74s 783 16 11 G Easy

Table 3.2: Meta data for action datasets.

evaluate all our algorithms. Other datasets are only used for historical reasons or when additional
evaluation is need.

Unless specified, we use mean average precision (MAP) as our evaluation criteria. It is a
very popular measure in information retrieval. In our case, given a ranked list returned for an
event class, the precision indicates the fraction of videos belonging to that class at each ranking
position. Average precision (AP) is the mean of the precision for each position where there is a
correctly labeled video. MAP further takes the mean of APs across all the event classes.

3.2 Action Recognition

3.2.1 Definition

Given a collection of short clips of videos that usually last a few seconds, the goal of an action
recognition task is to determine if they contain actions of interest such as running and kissing,
solely based on the video content. Unlike MED tasks where the videos last much longer, action
recognition often uses short video clips.
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3.2.2 Datasets
We use five widely used action recognition benchmark datasets including the HMDB51 [59],
UCF101 [110], UCF50 [98], Hollywood2 [81] and Olympic Sports datasets [89]. Figure 3.1
show some example frames of these datasets.

As summarized in Table 3.2, the HMDB51 dataset [59] has 51 action classes and 6766 video
clips extracted from digitized movies and YouTube. Kuehne et al. . [59] provides both the
original videos and the stabilized ones. We only use the original videos in this paper. The
UCF101 dataset [110] has 101 action classes spanning over 13320 YouTube videos clips. We use
the standard splits with training and testing videos provided by Soomro et al. [110]. The UCF50
dataset [98] has 50 action classes spanning over 6618 YouTube videos clips that can be split
into 25 groups. The video clips in the same group are generally very similar in background.The
Hollywood2 dataset [81] contains 12 action classes and 1707 video clips that are collected from
69 different Hollywood movies. There are 12 action classes such as answering a phone, driving
a car and standing up. Each video of this dataset may contain multiple actions. We use the clean
training dataset and standard splits with training (823 samples) and test videos (884 samples)
provided by Marszalek et al. [81]. The Olympic Sports dataset [89] consists of 16 athletes
practicing sports such as high-jump, pole-vault and basketball lay-up. It has a total of 783 video
clips. We use standard splits with 649 training clips and 134 test clips. Note that in this standard
split each class only has about 8 testing samples, so the results of this dataset may not be able to
reliably evaluate the quality of the model.

We report mean accuracy (MAcc) for HMDB51, UCF101 and UCF50 and mean average
precision (MAP) for Hollyowood2 and Olympic Sports datasets as in the original papers. And
again, we will only use them we we need to evaluate the motion part of our algorithms. Based
on the performance (Macc or MAP) of the state-of-the-art algorithms on these datasets, we also
assign a difficulty level for each datasets. As can be seen, the meta data such as length and size
has very little impact on determining the performance of the algorithms on these videos.
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Chapter 4

Video Preprocessing: Multi-skip Feature
Stacking (MIFS)

4.1 Introduction

In this chapter, we introduce a novel preprocessing step that helps to generate speed invariant
motion representations. Part of this chapter has been published in [62].

As pointed out by Marr [80] and Lindeberg [76], robust visual representations, or visual
features, are of utmost importance for a vision system. The advances of visual representations
are not only the chief reasons for tremendous progress in the field, but also lead to a deeper
understanding of the information processing in the human vision system. In fact, most of the
qualitative improvements to visual analysis can be attributed to the introduction of improved
representations, from SIFT [79] to CNNs [103], STIP [69] to IDT [125] . A common charac-
teristic of these several generations of visual features is that they all, in some way, benefit from
the idea of multi-scale representation, which is generally viewed as an indiscriminately appli-
cable tool that reliably yields improvements in performance when applied to almost all feature
extractors.

At the core of image multi-scale representation is the requirement that no new detail infor-
mation should be artificially found at the coarse scale of resolution [56]. Gaussian Pyramid, a
unique solution based on this constraint, generates a family of images where fine-scale informa-
tion is successively suppressed by Gaussian smoothing. However, in motion representations, we
often desire the opposite requirements. For example, in generating action features using differ-
ential filters, we need coarse-scale features to: 1) recover the information that has been filtered
out by highpass filters at fine scales, e.g., the red and cyan signals in Figure 4.1c are likely to
be filtered out; 2) generate features at higher frequency for matching similar actions at different
speeds and ranges of motion, e.g., the orange and green signals in Figure 4.1c. Neither of these
requirements can be satisfied with a Gaussian Pyramid representation.

In this chapter, we introduce a new video representation called Multi-skIp Feature Stacking
(MIFS). MIFS stacks features extracted by a family of differential filters parameterized with
multiple time skips (scales). Through skipping frames, MIFS extracts and represents motions
with different magnitudes. MIFS has several attractive properties:
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(a) Kids Running (b) Olympics Running

(c) Action signal S (d) ∆S

Figure 4.1: Simplified action signals (4.1c) from ”running” actions (4.1a,4.1b) show dramatic
differences among subjects and scenes. With such dramatic differences among action signals, a
differential operator with single scale is incapable of covering a full range of action frequency
and tends to lose low frequency information (the red and cyan signals) .

• It is an broadly applicable tool that can be reliably and easily adopted by any feature
extractor with differential filters, like Gaussian Pyramid.

• It generates features that are shift-invariant in frequency space, hence making it easier to
match similar actions at different speeds and ranges of motion.

• It stacks features at multiple frequencies, which allows covering a longer range of motion
signals compared to conventional action representations.

• It generates feature matrices that have lower conditional numbers and variances, hence
higher learnability [104] compared to the conventional original-scale representations, based
on our theoretical analysis.

• It significantly improves the performance of state-of-the-art methods, based on experimen-
tal results on both action and event benchmarks.

• It exponentially enhances the learnability of the resulting feature matrices. Therefore the
required additional number of scales is logarithmic to the bandwidth of the action signals.
Empirical studies show that one or two additional scales are enough to recover the infor-
mation lost by differential operators. Hence the additional computational cost of MIFS is
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small.
In the remainder of this chapter, we provide more background information about motion and

multi-scale presentations. We then describe MIFS in detail, followed by theoretically proving
that MIFS improves the learnability of video representations exponentially. After that, an evalu-
ation of our method on both action recognition and MED tasks is performed. Further discussions
including potential improvements are given at the end of this chapter.

4.2 Related Work
There is an extensive body of literature about action recognition and MED in videos; here we just
mention a few relevant ones involved with state-of-the-art feature extractors and feature encod-
ing methods. See [4] for an in-depth survey. In conventional video representations, features and
encoding methods are the two chief reasons for considerable progress in the field. Among them,
the trajectory based approaches [53, 82, 113, 125, 126], especially the IDT method proposed
by Wang et al. [125, 126], together with the FV [96] yields the current state-of-the-art perfor-
mances on several benchmark action recognition datasets. Peng et al. [93] further improved
the performance of IDT by increasing the codebook sizes and fusing multiple coding methods.
Some success has been reported recently using CNNs for action recognition in videos. Karpathy
et al. [54] trained a CNN using 1 million weakly labeled YouTube videos and reported a mod-
erate success on using it as a feature extractor. Simonyan & Zisserman [106] reported a result
that is competitive to IDT [126] by training CNNs using both sampled frames and optical flows.
MIFS is an broadly applicable tool that can be used to improve all of above mentioned feature
extractors.

Multi-scale representations [3, 76] have been very popular for most image processing tasks
such as image compression, image enhancement and object recognition. Simonyan & Zisserman
[107] reported a significant performance improvement on the Imagenet Challenge 2014 by using
a multi-scale CNN. In video processing, STIP [69] extends SIFT to the temporal domain by
finding the scale invariant feature points in 3D space. Shao et al. [105] also try to achieve scale
invariance for action recognition using 3-D Laplacian pyramids and 3D Gabor filters. However,
without awareness of the fundamental difference between image and video processing, [105] was
not very successful when compared to the state-of-the-art methods.

For lab datasets where human poses or action templates can be reliably estimated, Dynamic
Time Warping (DTW) [22], Hidden Markov Models (HMMs) [133] and Dynamic Bayesian Net-
works (DBNs) [92] are well studied methods for aligning actions that have speed variation. How-
ever, for noisy real-world actions, these methods have not shown themselves to be very robust.

4.3 Multi-skIp Feature Stacking (MIFS)
We now formalize our notation. For the present discussion a video X is just a real function of
three variables:

X = X(x, y, t). (4.1)
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(a) Gaussian Pyramid (b) MIFS

Figure 4.2: Comparison of Gaussian Pyramid and MIFS for a real action signal. The left figure
(a) shows that as the level (L) goes higher (from 1 to 2), the resulting features (∆S) from a
differential operator become less prominent. So once a feature has been filtered out (assume the
threshold for a feature to be represented is 0.1), it cannot be recovered by higher level features
under the Gaussian Pyramid framework. The right figure (b) shows that under MIFS, the features
(∆S) become more prominent as the levels go higher and can represent those signals that have
been filtered out at low levels.

The normalized coordinates (x, y, t) ∈ R3 are the Cartesian coordinates of the video space. Since
we focus on temporal domain, we omit (x, y) in further discussion and denote a video as X(t).
The length of the video is assumed to be normalized, that is t ∈ [0, 1]. In our model, the content
of a video is generated by a linear mixture of k latent action signals:

X̄ = [x̄1, x̄2, · · · , x̄k] . (4.2)

The mixing weight of each latent action signal x̄i at time t is denoted as αi(t). Therefore, a
given video is generated as

X(t) =X̄α(t) + ε(t) (4.3)

α(t) =[α1(t), α2(t), · · · , αk(t)]T . (4.4)

where ε(t) is additive subgaussian noise with noise level σ. We assume ∀i,

|αi(t)| ≤ 1 Et{αi(t)} = 0 (4.5)
Et{αi(t)2} ≤ 1 Et{αi(t)× αj(t)|i 6=j} = 0 . (4.6)

The feature extractor is assumed to be modeled as a differential operatorF [·, τ ] parameterized
with time skip τ . Given a fixed τ , the feature extractor F [X(t), τ ] generates T = b1/τc features.

F [X(t), τ ] = [f(t1, τ), f(t2, τ), · · · , f(tT , τ)] .

where t1, t2, · · · , tT are uniformly sampled on [0, 1]. The i-th feature vector f(ti, τ) is generated
by

f(ti, τ) = X(ti + τ)−X(ti) (4.7)
= X̄ × (α(ti + τ)−α(ti)) + ε(ti + τ)− ε(ti) .
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We can rewrite the feature matrix as

F [X(t), τ ] = X̄P +
T∑
i=1

ε(ti + τ)− ε(ti)

where P is a k × T matrix, representing the gradients of latent signal weights. That is to say,
Pi,j = αi(tj + τ)−αi(tj).

Most action feature extractors are different versions of F . For example, STIP [69] and DT
[125] can be derived from F [·, 1

L
], where L is the number of frames in the video.

MIFS stacks multiple F [X(t), τ ] with different τ . By stacking multiple features with dif-
ferent frequencies, MIFS seeks invariance in the frequency domain via resampling in the time
domain. Figure 4.2 shows the difference of Gaussian Pyramid and MIFS for a real signal from
an unconstrained video. It is clear that, because of smoothing, Gaussian Pyramid fails to recover
signals once they have been filtered out. As the levels go higher, the feature generated by Gaus-
sian Pyramids can only become weaker. While in MIFS, the generated features become more
prominent and can be recovered as the levels go higher.

4.4 The Learnability of MIFS
In this section, we first show that under our model in Eq. (4.2), the standard feature extraction
method cannot produce a feature matrix conditioned well enough. Then we show that MIFS
improves the condition number of the extracted feature matrix exponentially. One of the key
novelties of the MIFS is that it also reduces the uncertainty of the feature matrix simultaneously.
This reduction is not possible in a naive approach.

4.4.1 Condition number of P under a fixed τ
In this subsection, we will prove, based on the Matrix Bernstein’s Inequality [118], that the
condition number of P is not necessarily a small number.

In static feature extractors such as SIFT, the weight coefficient matrix α is independent of t.
While in a video stream, the action signal is dynamic in t. To measure the dynamic of an action
signal, we introduce γi as an index.
Definition 1 A latent action signal is γ dynamic, if given a non-negative constant c ∈ [0, 1],
∀τ ∈ [0, 1],

1− (1 + c) exp(−γ/τ) ≤ Et|α(t)α(t+ τ)| ≤ 1− exp(−γ/τ) ,

provided 1− (1 + c) exp(−γ/τ) ≥ 0.

The value γ measures how fast the coefficient α(t) varies along time t. Here we take the expo-
nential function by assuming the correlation between α(t+τ) and α(t) to be at least subgaussian.
If in a given video, the i-th action signal is a high frequency component, then its coefficientαi(t)
will behave like a random number for time skip τ . Therefore, we would expect that the cor-
relation between αi(t) and αi(t + τ) is close to 0. Or if the action signal is a low frequency
component, the correlation of αi(t) and αi(t + τ) hence the correlation indicator γ should be
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close to 1. For the sake of simplicity, we rearrange latent action signal X̄ by their frequency to
have γ1 ≤ γ2 ≤ · · · ≤ γk.

In a learning problem, we hope the feature matrix F [X(t), τ ] is well-conditioned. Given
feature matrix F [X(t), τ ], we can recover X̄ by various methods, such as subspace clustering.
The sampling complexity of any recovery algorithm depends on the condition number of P .
Clearly when P is ill–conditioned, we require a large number of training examples to estimate
X̄ . The learnability of F [X(t), τ ] depends on its condition number [18] which in return depends
on P again. In the following, we will prove that for a fixed time skip τ , P is not necessarily
well conditioned. Therefore the learnability of F [X(t), τ ] is suboptimal. The intuition behind
our proof is that when an action signal has a large γ, then a small time skip τ will make the
coefficient of that signal close to zero. Therefore, P is ill-conditioned. Formally, we have the
following theorem to bound the condition number β(PPT) of PPT(see the proof in Appendix
A).

Theorem 1 Given a fixed time skip τ , with probability at least 1 − δ, the condition number
β(PPT) is bounded by

β(PPT) ≤ (1 + c) exp(−γ1/τ) + ∆τ

exp(−γk/τ)−∆τ

(4.8)

β(PPT) ≥ (1 + c) exp(−γ1/τ)−∆τ

exp(−γk/τ) + ∆τ

. (4.9)

where

∆τ = 2

√
k

1

T
(1 + c) log(2k/δ) (4.10)

provided the number of feature points

T ≥ 1

9(1 + c)
k log(2k/δ) . (4.11)

Theorem 1 shows that when the number of features T is large enough, the condition number
β(PPT) is a random number concentrated around its expectation (1 + c) exp(−γ1/τ)

exp(−γk/τ)
. Since γ1 �

γk, the numerator is much greater than the denominator when τ is fixed. Since our proof is based
on Bernstein’s Inequality, the upper bound is tight. This forces β(PPT) to be a relatively large
value. More specifically, the following corollary shows that when γk is linear to γ1, β(PPT) is
exponentially large in expectation.
Corollary 1 When γk ≥ (M + 1)γ1,

E{β(PPT)} ≥ (1 + c)[exp(
γ1
τ

)]M ≥ (1 + c)(1 +
γ1
τ

)M . (4.12)

Corollary 1 shows that when the actions in the video span across a vast range of dynamic
(large M), the feature extractor with single τ tends to have ill-conditioned feature matrices. A
naive solution to this problem is to increase τ to reduce the condition number in expection.
However, this will increase the variance ∆τ of β(PP T ) because of a smaller number of features.
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In practice, a large τ also increases the difficulty in optical flow calculation and tracking. Hence,
as will also be observed in our experiments, choosing a good τ can be fairly difficult. Intuitively
speaking, selecting τ is a trade-off between feature bias and variance. A feature extractor with a
large τ covers a long range of action signals but with less feature points hence generates features
with small bias but large variance. Similarly, a feature extractor with a small τ will generate
feature with large bias but small variance.

4.4.2 Condition number of P under multiple τ
From Theorem 1, to make PPT well-conditioned, we need τ as large as possible. However,
when τ is too large, we cannot sample enough high quality feature points, the variance in PPT

will increase. To address this problem, we propose to use MIFS, which incrementally enlarges
the time skip τ , then stacks all features under various τi to form a feature matrix. Hopefully,
by increasing τ , we improve the condition number β(PPT) and by stacking, we sample enough
features to reduce the variance.

Assuming we have features extracted from {τ, 2τ, · · ·mτ}. For the iτ skip, the number of
extracted features is Ti = b1/(iτ)c. The following theorem bounds the condition number of
MIFS (see the proof in supplementary materials).
Theorem 2 With probability at least 1−δ, the condition number of PPT in the MIFS is bounded
by

β(PPT) ≤
∑

i
Ti
T

2(1 + c) exp(−γ1/τi) + ∆τ∑
i
Ti
T

2 exp(−γk/τi)−∆τ

. (4.13)

where

∆τ ≤ 2

√
k

1∑
i Ti

(1 + c) log(2k/δ) . (4.14)

Theorem 2 shows that, in the MIFS, the expected condition number β(PPT) is roughly the
weighted average of condition numbers under various τi. Since τi+1 > τi, the condition number
under τi+1 is smaller than the one under τi. Therefore, the condition number is reduced as we
expected. What’s nicer is that the variance component ∆τ is actually on order of 1/

√∑
i Ti,

which is also much smaller than a single τ scenario. In summary, we prove:
The MIFS representation improves the learnability of differential feature extractors
because it reduces the expectation and variance of condition number β(PPT) simul-
taneously.

4.5 Experiments
We examine our hypothesis and the proposed MIFS representation on two tasks: action recog-
nition and MED. The experimental results show that MIFS representations outperform conven-
tional original-scale representations on seven challenging real-world datasets.

IDT with Fisher Vector encoding [126] represents the current state-of-the-arts for most real-
world action recognition datasets. Therefore, we use it as a foundation to evaluate our method.
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(a) HMDB51
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(b) Hollywood2
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(c) UCF101

Figure 4.3: The decaying trend of singular values of feature matrices for HMDB51, Hollywood
and UCF101 Datasets. 0 to 5 indicate the MIFS level and i indicates the ith singular value. From
all three datasets, we can see that MIFS representations do have a slower singular value decaying
trend compared to conventional representations (blue lines).

4.5.1 Action Recognition

Experimental Settings

The goal of this task is to recognize human actions in short clips of videos. Five action recogni-
tion datasets including HMDB51, UCF101, UCF50, Hollywood2 and Olympic Sports are used
in this evaluation.

IDT features are extracted using 15 frame tracking, camera motion stabilization and Root-
SIFT normalization and described by Trajectory, HOG, HOF, MBHx and MBHy descriptors
[126]. We use PCA to reduce the dimensionality of these descriptors by a factor of two. After
reduction, we augmented the descriptors with three dimensional normalized location informa-
tion. The only difference between MIFS and other conventional methods is that instead of using
feature points extracted from one time scale, we extract and stack all the raw feature points from
different scales together before encoding. For Fisher Vector encoding, we map the raw descrip-
tors into a Gaussian Mixture Model with 256 Gaussians trained from a set of randomly sampled
256000 data points. Power and L2 normalization are also used after concatenating different types
of descriptors into a video based representation. For classification, we use a linear SVM classi-
fier with a fixed C = 100 as recommended by Wang et al. [126] and the one-versus-all approach
is used for multi-class classification scenario.

Results

We demonstrate that the conditional number β(PPT) is improved by MIFS. However, it would
not be meaningful to compute β(PPT) directly because we have noise ε in F [X(t), τi] and the
smallest singular value λmin is in noise space . A workaround is to examine the decaying speed
of singular values of the feature matrix. The singular values are normalized by dividing the max-
imum singlular value λmax. We only plot the top 10 singular values, since the subspace spanned
by the small singular values is noise space. Clearly, when MIFS improves the learnability, we
should get a slower decaying curve of the top k singular values. Shown in Figure 4.3 are the
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HMDB51 Hollywood2 UCF101 UCF50 Olympics Sports
(MAcc%) (MAP%) (MAcc%) (MAcc%) (MAP%)

L single-scale MIFS single-scale MIFS single-scale MIFS single-scale MIFS single-scale MIFS
0 62.1 67.0 87.3 93.0 89.8
1 63.1 63.8 66.4 67.5 87.3 88.1 93.3 94.0 89.4 92.9
2 54.3 64.4 62.5 67.9 85.5 88.8 92.2 94.1 88.1 91.7
3 43.8 65.1 60.5 68.0 81.3 89.1 89.7 94.4 85.3 91.4
4 24.1 65.4 58.1 67.4 74.6 89.1 84.3 94.4 85.0 90.3
5 15.9 65.4 54.4 67.1 66.7 89.0 76.7 94.3 82.3 91.3

Table 4.1: Comparison of different scale levels for MIFS.

trends of λi
λmax

on the first three datasets: HMDB51, Hollywood2 and UCF101. On all three
datasets, the singular values of MIFS decrease slower than the conventional one (0). It is also
interesting to see that by having one or two additional levels, we have already exploited most of
the potential improvement.

We further examine how performance changes with respect to the MIFS level, as shown in
Table 4.1 (detailed results can be found in Appendix B). First, let us compare the performance of
L=0 to the standard location-insentative feature representation. Our performance on HMDB51,
Hollywood2, UCF101 and UCF50 datasets are 62.1% MAcc, 67.0% MAP, 87.3% MAcc and
93.0% respectively. These numbers are higher than Wang & Schmid [126]’s results, which are
57.2%, 64.3%, 85.9% and 91.2%, respectively. This improvement is largely because of our loca-
tion sensitive feature representation. Next, let us check the behavior of MIFS. For completeness,
we list both single-scale and stacking performance. For single-scale performance, we observe
that for HMDB51, its performance increases from 62.1% to 63.1% and then decreases rapidly.
Similar patterns can be seen in other datasets except some of them do not increase at L = 1.
These results are consistent with our observation that different action types need different scale
ranges. They also substantiate our proof that selecting time interval τ is a trade-off between
the feature bias and its variance. Now let us compare MIFS with a single-scale representation.
We observe that for MIFS representations, although there is still a bias and variance trade-off
as in single-scale representations for different levels, they all perform better than single-scale
representation and the levels at which performance starts decreasing occur later than those in
the single-scale representations. We also observe that for MIFS representations, most of the
performance improvement comes from L = 1 and L = 2, which supports what we observed
in Figure 4.3 that, in practice, having one or two more scales is enough to recover most of the
lost information due to the differential operations. Higher scale features become less reliable
due to the increasing difficulty in optical flow estimation and tracking. It is also interesting to
observe that HMDB51 enjoys a higher performance improvement from MIFS than the other four
datasets have. We believe that the main reason is that HMDB dataset is a mixture of videos from
two sources: amateur and movies, which results in larger action velocity range than pure movie
videos or pure amateur videos in the other two datasets.

In Table 4.2, we compare MIFS at L = 3, which performs well across all three action
datasets, with the algorithm from which we build on our approaches. We can see that MIFS
consistently improves IDT by a large margin except for Olympic Sports dataset.
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HMDB51 (MAcc. %) Hollywood2 (MAP %) UCF101(MAcc. %) UCF50 (MAcc. %) Olympics Sports (MAP %)
Wang et al. 57.2 Wang et al. 64.3 Wang et al. 85.9 Wang & Schmid 91.2 Wang & Schmid 91.1
MIFS (L=3) 65.1 MIFS (L = 3) 68.0 MIFS (L = 3) 89.1 MIFS (L=3) 94.4 MIFS (L = 3) 91.4

Table 4.2: Comparison between our results to the baseline method.

MEDTEST13 MEDTEST14
EK100 EK10 EK100 EK10

Baseline 34.2 17.7 27.3 12.7
MIFS (L=3) 36.3 19.3 29.0 14.9

Table 4.3: Performance Comparison on the MED task.

4.5.2 Multimedia Event Detection
Experimental Settings

Both MEDTEST2013 and MEDTEST2014 are used in this evaluation. A similar setting as dis-
cussed in section 4.5.1 is applied except we use five-fold cross-validation to choose the penalty
parameter C for linear SVM. For each classifier, C is chosen among 10−3, 10−2, 10−1, 1, 101, 102, 103.
We only test MIFS with L = 3 as recommended in section 4.5.1 because extracting IDT features
from such a large datasets itself is very time consuming. It took us 4 days to generate representa-
tions for both MEDTEST2013, MEDTEST2014 using a cluster with more than 500 Intel E565+
series processors. We use MAP as our evaluation criteria.

Results

Table 4.3 lists the overall MAP (detailed results can be found in Appendix B). The baseline
method is a conventional single-scale representation with L = 0. From Table 4.3, we can see that
for both MEDTEST2013 and MEDTEST2014, MIFS representations consistently improve over
the original-scale representation by about 2% in both EK100 and EK10. It is worth emphasizing
that MED is such a challenging task that 2% of absolute performance improvement is quite
significant.

4.5.3 Computational Complexity
Level 0 of a MIFS representation has the same cost as other single pass methods, e.g., Wang &
Schmid. [126]. For each level l, the cost becomes 1/l of the level 0. So with a MIFS up to level
2, the computational cost will be less than twice the cost of a single pass through the original
video, yet it can significantly improve the single-pass methods.

4.6 Conclusion
In this chapter, we describe a new video preprocessing method called MIFS. MIFS enhances
the learnability of motion representations for MED. It stacks features extracted using a family
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of differential filters parameterized with multiple time skips and achieves shift-invariance in the
frequency space. In contrast to Gaussian Pyramid, MIFS generates features at all scales and
tends to cover a longer range of motion signals. Theoretical results show that MIFS improves
the learnability of motion representation exponentially. Extensive experiments on seven real-
world datasets show that MIFS exceeds state-of-the-art methods. A potential improvement is
to determine the appropriate level for different motion types. Additionally, we would like to
improve the quality of optical flow calculation and tracking at coarse scales.
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Chapter 5

Feature: Learning based Video Features

5.1 Introduction
In this chapter, we will discuss our works on using CNNs to learn video representations. De-
spite much effort and progress, deep convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) have yet to achieve the same success on video classification as they have on
image classification. This can in large part be attributed to the following two differences between
image and videos, differences which are key to deep-learning based approaches. First, videos are
much larger in size and thus it becomes memory prohibitive to train and apply CNNs/RNNs at
the video level. Second, it is very difficult to construct the large labeled video datasets required
for training deep networks. Recent approaches [106, 128, 129] circumvent these problems by
learning on sampled frames or very short video clips (temporally local inputs1) with video-level
(global) labels.

However, video-level label information can be incomplete or even missing at frame/clip-
level. This information mismatch leads to the problem of false label assignment. In other words,
the imprecise frame/clip-level labels populated from video labels are too noisy to guide precise
mapping from local video snippets to labels. To deal with this problem, a common practice is
to sample multiple frames/clips from a video at testing time and aggregate the prediction scores
of these sampled frames/clips to get the final results for that video. However, simply averaging
the prediction scores, without another level of mapping, is not enough to recover the damages
brought by false label assignment.

We instead compensate for the noisy labels by treating the deep networks trained on local
inputs as feature extractors as shown in Figure 5.1. Local features extracted using the pre-trained
networks are aggregated into global video-level features and another mapping function (e.g., a
shallow network) is learned using the same dataset to assign video-level labels.

Our method is therefore related to the fine-tuning practices that are popular in image clas-
sification. The major difference is that we train our feature extraction networks with local data
and with very noisy labels due to the false label assignment. We thus rely heavily on the shallow
network to compensate for the suboptimal local feature learning.

Our method is also similar to the common practice of using networks pre-trained on the

1local from here on will mean temporally local
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Figure 5.1: Overview of our proposed framework which consists of two stages. First (Left):
A temporal segment network [129] is trained using local video snippets with the video-level
labels. These networks are used as local feature extractors. Second (Right): The local features
are aggregated to form a global feature which is then mapped to the video-level labels. Our
results show that this two stage process compensates for the noisy snippet labels that result from
propagating the video-level labels.

ImageNet image classification task to extract frame-level (local) features for video classification
[65, 132]. The main difference is that our local feature extractors (deep networks) are trained on
the target dataset. Therefore, the features extracted from deep networks are in-domain. We don’t
have the domain gap problem as we have in using the ImageNet trained deep networks.

We name our new class of local video features Deep lOcal Video Feature (DOVF).
In summary, DOVF is a class of local video features that are extracted from deep neural

networks trained on local video clips using global video labels. In this paper, we investigate the
following design choices related to DOVF:
• From which layer(s) of the CNNs should the local features be extracted? Without further

investigation, the only guidance we have is that we should avoid the probability layer as
it is likely to severely overfit the noisy training data and thus result in a distribution that
varies greatly between the training and test sets.

• What is the best way to aggregate the local features into video-level global features? We
consider a number of feature aggregation methods such as mean pooling, max pooling,
Fisher Vectors (FV) encoding, etc..

• How densely should the local features be extracted? Sparse temporal sampling would be
preferred from a efficiency standpoint.

• How complementary is DOVF to traditional local features such as IDT [126]? The more
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complementary they are, the more opportunity there is for improvement by applying tech-
niques that have been developed for traditional local features.

The remainder of this chapter is organized as follows. We first provide some background
on video features with an emphasis on recent work on learning with deep neural networks. We
then describe the experimental settings we use to evaluate our framework on the HMDB51 and
UCF101 datasets. We conclude with a discussion including potential improvements.

5.2 Related Works
New video representations have typically been the main source of breakthroughs for video clas-
sification.

In traditional video representations, trajectory based approaches [53, 126], especially the
Dense Trajectory (DT) and its improved form, IDT [125, 126], are the basis of current state-
of-the-art hand-crafted algorithms. These trajectory-based methods are designed to address the
shortcomings of image-extended video features. Their superior performance validates the need
for motion feature representations. Many studies have tried to improve upon IDT due to its
success and popularity. Peng et al. [93] enhanced the performance of IDT by increasing the
codebook sizes and fusing multiple coding methods. Sapienza et al. [101] explored ways to sub-
sample and generate vocabularies for DT features. Hoai and Zisserman [36] achieved superior
performance on several action recognition datasets by applying data augmentation, modeling
the score distributions over video subsequences, and capturing the relationships among action
classes. Fernando et al. [30] modeled the evolution of appearance in video and achieved state-
of-the-art results on the Hollywood2 dataset. [67] proposed to extract features from videos at
multiple playback speeds to achieve speed invariance. However, these traditional, hand-crafted
methods have recently started to become overshadowed by the rise of deep learning using neural
networks.

Motivated by the success of CNNs, researchers have invested significant effort towards devel-
oping CNN equivalents for learning video features. Several accomplishments have been reported
from using CNNs for action recognition in videos [121, 130, 140, 142]. Karpathy et al. [54]
trained deep CNNs using one million weakly labeled YouTube videos and reported moderate
success using the network as a feature extractor. Simonyan and Zisserman [106] demonstrated a
result competitive with IDT [126] by training deep CNNs using both sampled frames and stacked
optical flow. Tran et al. [117] explored 3D CNNs to simultaneously learn spatiotemporal fea-
tures without pre-computing optical flow. This allows them to achieve competitive performance
at much faster rates. Wang et al. [127–129] provide insightful analyses on improving two-
stream frameworks such as pre-training two-stream CNNs, using smaller learning rates, using
deeper networks, etc. These improvements result in a CNN-based approach that finally outper-
forms IDT [126] by a large margin on the UCF101 dataset. These approaches, however, all rely
on shot-clip predictions to determine the final video labels and do not use global features.

Two concurrent works [24, 97] on global features for action recognition have recently been
posted on arXiv. Both propose new feature aggregation methods to pool the local neural network
features to form global video features. Diba et al. [24] propose a bilinear model to pool the
outputs of the last convolutional layers of pre-trained networks and achieve state-of-the-art results
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ID
VGG16 Inception-BN

Name Dimension Type Name Dimension Type
L-1 fc8 101 FC fc-action 101 FC
L-2 fc7 4096 FC global pool 1024 Conv
L-3 fc6 4096 FC inception 5b 50176 Conv
L-4 pool5 25088 Conv inception 5a 50176 Conv
L-5 conv5 3 100352 Conv inception 4e 51744 Conv

Table 5.1: Names, dimensions and types of the layers that we consider in the VGG16 and
Inception-BN networks for local feature extraction.

Layers
Spatial CNNs (%) Temporal CNNs (%) Two-stream (%)

VGG-16 Inception-BN VGG16 Inception-BN VGG-16 Inception-BN
L-1 77.8 83.9 82.6 83.7 89.6 91.7
L-2 79.5 88.3 85.1 88.8 91.4 94.2
L-3 80.1 88.3 86.6 88.7 91.8 93.9
L-4 83.7 85.6 86.5 85.3 92.4 91.4
L-5 83.5 83.6 87.0 83.6 92.3 89.8
TSN 79.8 85.7 85.7 87.9 90.9 93.5

Table 5.2: Layer-wise comparison of VGG-16 and Inception-BN networks on the split 1 of
UCF101. The values are the overall video-level classification accuracy of our complete frame-
work.

on both the HMDB51 and UCF101 datasets. Qiu et al. [97] propose a new quantization method
similar to FV and achieve comparable performance to [24]. However, neither work provides
detailed analysis of the local neural network features that are used. In this paper, we perform
an extensive analysis and show that a simple max pooling can achieve similar or better results
compared to much more complex feature aggregation methods such as those in [24, 97].

5.3 Experimental Settings

5.4 Methodology

In this section, we first review temporal segment networks [129], the architecture upon which
our approach is built. We next describe our Deep lOcal Video Features (DOVF), methods for
aggregating them to form global features, and the mapping of the global features to video-level
labels. Finally, we provide our experimental settings.
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5.4.1 Temporal Segment Networks

With the goal of capturing long-range temporal structure for improved action recognition, Wang
et al. propose temporal segment networks (TSN) [129] with a sparse sampling strategy. This
allows an entire video to be analyzed with reasonable computational costs. TSN first divides a
video evenly into three segments and one short snippet is randomly selected from each segment.
Two-stream networks are then applied to the short snippets to obtain the initial action class pre-
diction scores. TSN finally uses a segmental consensus function to combine the outputs from
multiple short snippets to predict the action class probabilities for the video as a whole.

Wang et al. [129] show TSN achieves state-of-the-art results on the popular action recogni-
tion benchmarks UCF101 and HMDB51. These results demonstrate the importance of capturing
long-range temporal information for video analysis. However, the training of the local snippet
classifiers is performed using the video-level labels. As noted earlier, these are likely to be noisy
labels and will thus limit the accuracy of the snippet-level classification.

We there propose instead to use the snippet-level analysis for local feature extraction and
add a second stage which maps the aggregated features to the video-level labels. The combi-
nation of DOVF and a second classification stage compensates for the suboptimal snippet-level
classification that results from the noisy training dataset.

5.4.2 Deep local video feature (DOVF)

Instead of performing action recognition in a single step like [24, 129], our framework consists of
two stages. In the first stage, deep networks (e.g. , TSN) that have been trained with video-level
labels to perform snipped-level classification are used as local feature extractors. In the second
stage, the local features are aggregated to form global features and another classifier which has
also been trained using the video-level labels performs the video-level classification.

The training of our classification framework proceeds as follows where each video V in the
training set has ground truth action label p. In the first stage, V is evenly divided intoN segments,
v1, v2, · · · , vN and one short snippet is randomly selected from each segment, s1, s2, · · · , sN .
These snippets are assigned the video-level labels and the snippets from all the training videos
are used to train a two-stream CNNs (single RGB video frame and stack of consecutive optical
flow images). The details on training the two-stream CNNs can be found in [128, 129]. Once
trained, the network is used to extract local features, f1, f2, · · · , fN from a video.

In the second stage, the local features are aggregated into a global feature fG,

fG = G(f1, f2, · · · , fN) (5.1)

whereG denotes the aggregation function. We explore different aggregation functions in Section
5.5.2. We then learn a classifier that maps the global feature fG to the video label p:

p = M(fG). (5.2)

Once trained, the framework can be used to predict the label of a video. Figure 5.1 contains
an overview of the framework.
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Layers
Spatial CNNs (%) Temporal CNNs (%) Two-stream (%)

HMDB51 UCF101 HMDB51 UCF101 HMDB51 UCF101
Mean 56.0 87.5 63.7 88.3 71.1 93.8

Mean Std 58.1 88.1 65.2 88.5 72.0 94.2
Max 57.7 88.3 64.8 88.8 72.5 94.2
BoW 36.9 71.9 47.9 80.0 53.4 85.3
FV 39.1 69.8 55.6 81.3 58.5 83.8

V LAD 45.3 77.3 57.4 84.7 64.7 89.2

Table 5.3: Comparison of different local feature aggregation methods on split 1 of UCF101 and
HMDB51.

5.4.3 Experimental settings

We compare two networks, VGG16 and Inception-BN, for the local feature extraction. (We use
networks trained by Wang et al. [128, 129].) We further compare the outputs from the last five
layers from each network as our features. Table 5.1 shows the layer names of each network and
the correspondent feature dimensions. We divide the layers into two categories: fully-connected
(FC) layers and convolution (Conv) layers (pooling layers are treated as Conv layers). FC layers
have significantly more parameters and are thus more likely to overfit the training data than the
Conv layers. As shown, VGG16 has three FC layers while Inception-BN only has one.

Following the scheme of [106, 129], we evenly sample 25 frames and flow clips for each
video. For each frame/clip, we perform 10x data augmentation by cropping the 4 corners and
center along with horizontal flipping. A single feature is computed for each frame/clip by av-
eraging over the augmented data. This results in a set of 25 local features for each video. The
dimensions of local features extracted from different network/layer combinations are shown in
Table 5.1.

We compare a number of local feature aggregation methods ranging from simple mean and
maximum pooling to more complex feature encoding methods such as Bag of words (BoW ),
Vector of Locally Aggregated Descriptors (V LAD) and Fisher Vector (FV ) encoding. In order
to incorporate global temporal information, we divide each video into three parts and perform
the aggregation separately. That is, the first eight, middle nine and final eight of the 25 local
features are separately aggregated and then concatenated to form the final global feature. This
increases the final feature dimension by three. After concatenation, we perform a square root
normalization and L2 normalization as in [67] on the global feature.

We use support vector machines (SVMs) to map (classify) the global features to video-level
labels. We use a chi-square kernel and C = 100 as in [67] except for the FV and VLAD
aggregated features where we use a linear kernel as suggested in [123]. Note that while we use
SVMs to predict the video action labels, other mappings/classifiers, such as a shallow neural
network, could also be used.

The spatial-net and temporal-net prediction scores of the two-stream network are fused with
weights 1 and 1.5, respectively, as in [129].
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# of
samples

Spatial CNNs (%) Temporal CNNs (%) Two-stream (%)
HMDB51 UCF101 HMDB51 UCF101 HMDB51 UCF101

3 52.5 85.6 54.9 82.4 64.6 91.6
9 56.1 87.4 62.2 87.7 70.9 93.5
15 56.9 88.2 64.4 88.5 72.3 93.8
21 57.1 88.1 64.8 88.6 71.8 94.1
25 57.7 88.3 64.8 88.8 72.5 94.2

Max 57.6 88.4 65.3 88.9 72.4 94.3

Table 5.4: Number of samples per video versus accuracy on split 1 of UCF101 and HMDB51.

5.5 Evaluation
In this section, we experimentally explore the design choices posed in the Introduction using the
UCF101 and HMDB51 datasets.

UCF101 is composed of realistic action videos from YouTube. It contains 13, 320 video clips
distributed among 101 action classes. HMDB51 includes 6, 766 video clips of 51 actions ex-
tracted from a wide range of sources, such as online videos and movies. UCF101 and HMDB51
both have a standard three split evaluation protocol. We report the average recognition accuracies
over the three splits.

Our default configuration uses the outputs of the global pool layer in the Inception-BN net-
work as the local features due to this layer’s low dimension (3072 dimensions with global in-
formation encoding). It also uses maximum pooling to aggregate the local features to form the
global features.

5.5.1 From which layer(s) should the local features be extracted?

We conduct experiments using both VGG16 and Inception-BN to explore which layers are op-
timal for extracting the local features. The video-level action classification accuracies on split 1
of UCF101 using different layers are shown in Table 5.2.

Layer L-2 from Inception-BN and layer L-4 from VGG16 give the best performance. These
are the final convolution layers in each network which suggests the following three reasons for
their superior performance. First, the convolution layers have far fewer parameters compared to
the fully connected layers and thus are less likely to overfit the training data that has false label
assignment problem. Second, the fully connected layers do not preserve spatial information
while the convolution layers do. Third, the later convolution layers encode more global (spatial)
information than the earlier ones. We conclude that extracting the local features from the final
convolution layers is the optimal choice. We believe this finding helps explain why several recent
works [24, 97, 132] also choose the output of the final convolution layer for further processing.

Compared to the results of Wang et al. [129], from which we get the pre-trained networks,
we can see that our approach do improve the performance on both spatial-net and temporal-net.
However, the improvements from spatial networks are much larger. This larger improvement
may be because that, in training local feature extractors, the inputs for spatial net are single
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frames while the input for temporal net are video clips with 10 stacked frames. Smaller inputs
lead to larger chance of false label assignment hence larger performance gap compared to our
global feature approach.

Previous work [65, 132, 140] on using local features from networks pre-trained using the
ImageNet dataset show that combining features from multiple layers can improve the overall
performance significantly. We investigated combining features from multiple layers but found
no improvement. This difference shows that fine-tuning brings some new characteristics to the
local features.

In the remaining experiments, we use the output of the global pool layer from the Inception-
BN network as it achieves the best performance.

5.5.2 What is the optimal aggregation strategy?

We consider six aggregation methods on split 1 of the the UCF101 and HMDB51 datasets.
Given n local features, each of which has a dimension of d, the six different aggregation

methods are as follows:

• Mean computes the mean value of the n local features along each dimension.
• Max selects the maximum value along each dimension.
• Mean Std, inspired by Fisher Vector encoding, computes the mean and standard deviation

along each dimension.
• BoW quantizes each of the n local features as one of k codewords using a codebook

generated through k-means clustering.
• V LAD is similar to BoW but encodes the distance between each of the n local features

and the assigned codewords.
• FV models the distribution of the local features using a Gaussian mixture model (GMM)

with k components and computes the mean and standard deviation of the weighted differ-
ence between the n local features and these k components.

For those feature aggregation methods that require clustering, we project each local feature
into 256 dimensions using PCA and set the number of clusters as 256. This is similar to what
suggested in [132] except we don’t break the local features into multiple subfeatures.

As can be seen in Table 5.3, maximum pooling (Max) achieves the best overall performance
(two-stream network results). This result is different from that of [65] where mean pooling
(Mean) performs better than maximum pooling (Max). It is also interesting that Mean std
consistently performs better than Mean. The more complicated encoding methods, BoW , FV
and V LAD, all perform much worse than simple pooling. We conjecture that extracting a larger
number of local features for each video and dividing the features into lower dimension subfea-
tures as in [132] would likely improve the performance of the more complicated methods. This
would, however, incur excessive computational cost and limit practical application.

We use maximum pooling in the remainder of the experiments.
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HMDB51 UCF101
IDT 57.2 85.9
Two-stream 59.4 88.0
MIFS 65.1 89.1
C3D - 90.4
TDD 65.9 91.5
Action Transformations 62.0 92.4
LTC 67.2 92.7
Depth2Action 68.2 93.0
Key Volume Mining 63.3 93.1
Two-stream Fusion 69.2 93.5
TSN 68.5 94.0
Deep Quantization - 95.2
TLE 71.1 95.6
DOVF (ours) 71.7 94.9
DOVF + MIFS (ours) 75.0 95.3

Table 5.5: Comparison with state-of-the-art. Mean classification accuracy on UCF101 and
HMDB51 over three splits.

5.5.3 How densely should the local features be extracted?

We vary the number of local features extracted from each video between 3 and 25. We also
experiment with using the maximum number (Max) by extracting features for every frame/clip
(for optical flow, we use a sliding window with step size equal to 1). The videos in HMDB51
and UCF101 contain 92 and 185 frames on average, respectively.

The results in Table 5.4 show that, after a threshold of around 15, the number of sampled
frames/clips does not have much of an effect on performance. Sampling 25 frames/clips achieves
similar performance to using them all. This is consistent with the observations in [65] and is
likely due to the high level of redundancy between frames. However, since the videos in UCF101
and HMDB51 are quite short and the datasets are small, these results should be taken with a
bit of caution. Also, using attention model [137] to select frame should improve the overall
performance. However, attention model greatly increases the model size, hence make it much
more difficult to train.

5.5.4 Comparison with state-of-the-art

Table 5.5 compares our best performance with the state-of-the-art. We improve upon TSN [129],
which forms the basis of our approach, by around 3% and 1% on HMDB51 and UCF101, re-
spectively. Our results are also much better than both traditional IDT based methods [67] and
the original Two-stream CNNs [106]. In comparison to TLE [24] and Deep Quantization [97],
our maximum pooling achieves similar performance to their more complex bilinear models and
FV-VAE framework. We also show the results of fusing our prediction scores with those from
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MIFS 2 using late fusion. For HMDB51, the improvement from fusing with MIFS is very signif-
icant and is more than 3%. The improvement for UCF101 is smaller as the accuracy is already
saturated.

5.6 Conclusion
In this chapter, we propose an effective method for deriving global video features from local fea-
tures extracted using CNNs. We study a set of design choices such as which layer(s) to extract
the features from, how to aggregate them and how densely to sample them. Based on a set of ex-
periments on the UCF101 and HMDB51 datasets, we conclude that 1) the local features should
be extracted from the final convolution layer; 2) maximum pooling works better than other fea-
ture aggregation methods including those which need further encoding; and 3) a sparse sampling
of around 15 frames/clips per video is sufficient. While we propose plausible explanations for
these conclusions, further investigation into DOVF is warranted. Also, the current two-stage ap-
proach only corrects the mistakes after it happens, we believe that a better way would be directly
mapping a whole video into the global label, or so called end-to-end learning. Our future work
will focus on these directions.

2We download the the prediction scores of MIFS from here
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Chapter 6

Feature: Convolutional Independent
Subspace Analysis for Trajectories
(ConvISA)

6.1 Introduction

In this chapter, we present an unsupervised local descriptors learning methods. Despite its supe-
rior performance compared to handcrafted methods, we did not use it for MED because of the
high cost in processing local features. We present it here in the hope that it can provide lessons
for future unsupervised global feature learning development. Also, it has the theoretical value of
showing the connection between generating features using traditional handcrafted methods and
CNN-based methods.

Recent progress on the problem of action recognition mainly comes from the improvements
of features, which can be categorized into two broad classes: 1) more traditional hand-crafted
local features [124, 125] and their corresponding BoW encoding methods [94]; and 2) learning
based features that are mainly inspired by the success of CNNs for image recognition [54, 58,
106] and of RNNs for speech recognition [34, 35, 87]. In this chapter, we design algorithms to
combine the merits of both methodologies.

Trajectory based features, especially IDT [126], are the state-of-the-art hand-crafted features
that have dominated action recognition in videos over the last few years. Compared to other
hand-crafted motion features, IDT performs better in that it models long-term motion informa-
tion and has a MBH descriptor that is robust to camera motion. This long-term motion infor-
mation modeling, as shown in [54, 106], is very hard to learn in a CNN framework. Despite
its superiority, IDT, somewhat surprisingly, relies on simple hand-crafted local descriptors such
as HOG and HOF [81]. In contrast, for image and speech recognition [58, 87], data-driven ap-
proaches have consistently demonstrated their superiority and have been gradually replacing the
traditional hand-crafted methods.

These revolutionary changes are largely are largely enabled by the easy access of neural
network algorithms, large scale labelled data, and powerful parallel machines. Learning video
features for action recognition, however, has proven to be quite a challenge due to its intrinsic
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Figure 6.1: Illustration of our novel local video descriptors. LOP and LOF describe gray pixel
and optical flow volumes, respectively. They resemble HOG/HOF/MBH in a data-driven learning
framework.

high dimensionality, the lack of training data, and the difficulty in processing large-scale video
data [54, 87, 106]. With limited training data and computational power, the learned features
are generally not discriminative enough and perform worse than IDT, especially among datasets
that have few training instances. Recent approaches [87, 106] circumvent these problems by
learning from sampled frames or very short video clips, as well as using weakly labelled data.
However, video-level label information can be incomplete or even missing at the frame/clip-level
and leads to false label assignment, which can be even worse for weakly labelled data [54]. In
other words, the imprecise frame/clip-level labels populated from video labels are usually too
noisy for learning powerful models. With better labelled data, neural network algorithms can
give superior results. Unfortunately, accurately labelled video data is very expensive to obtain.

Though we see the value in developing fully automatically learned global video features using
labeled training data, in this chapter we propose to revisit the traditional local feature pipeline and
unsupervised feature learning methods. By doing so, we hope to connect both data-independent
and data-driven approaches and combine their strengths. Inspired by the two-stream CNNs [106]
and ConvISA [72], we introduce a two-stream ISA-IDT to learn both visual appearance and
motion information in an unsupervised manner. As shown in Figure 6.1, instead of learning from
frames or short video clips, we learn from much smaller primitives – video volumes that follow
the trajectories detected by IDT. The learned descriptors, called LOP (Learned descriptors of
Pixel) and LOF (Learned descriptors of optical Flow), improve the best performing hand-crafted
descriptors by using an unsupervised data-driven method. Our proposed architecture has several
attractive properties:
• Compared to full video learning, small video volumes lie in a much lower dimensional

space, hence they are computationally efficient to learn and apply.
• Unsupervised learning avoids the costly work of collecting labelled data and the false label

assignment problem among current supervised video learning settings.
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Feature Training Time Need Label HMDB51 UCF101
Ours ∼2 hours / 1 CPU No 61.5% 88.3%
IDT ∼ 1 hour / 1 CPU No 57.2 % 85.9%

Two-stream CNNs ∼ 1 day / 4 GPUs Yes 59.4% 88.0%

Table 6.1: Performance comparison of our approach with IDT and two-stream CNNs.

• Through learning from video volumes defined by IDT, the resulting descriptors can be
seamlessly combined with hand-crafted descriptors and boost the overall performance.

• By following the traditional local feature pipeline, we can easily utilize techniques devel-
oped for traditional local descriptors to improve our data-driven descriptors.

Although the idea of unsupervised video feature learning sounds appealing, it is, in fact, a
very challenging problem. It introduces several novel problems that have not been sufficiently
studied in the literature. The first one, of course, is the challenge of achieving high accuracy. For
our algorithm to be useful, it needs to at least as good as IDT. This is by no means easy. For
example, after years of research efforts, in unsupervised image feature learning, SIFT was still
the best feature in PASCAL VOC challenges 2012 ([28]). The second challenge, which is unique
to video feature learning, is how to learn to describe optical flow data in an unsupervised way.
Research in the past [27, 69, 106, 126] show that the optical flow feature is an essential part of
motion representation. To the best of our knowledge, we are the first to deal with unsupervised
optical flow feature learning.

Before revealing how we address the above mentioned challenges, let us first show that our
algorithm indeed outperforms IDT. We conduct experiments on HMDB51 and UCF101, as in
[106]. Table 6.1 compares the model training times and accuracy of our method to IDT and
two-stream CNN ([106]), a state-of-the-art CNN approach. For both IDT and two-steam CNN,
several improvements have been proposed since they were first introduced, but we compare re-
sults from the original papers as most of the improvements can also be applied to our method.
Later in this thesis, we will have more complete comparisons to the state-of-the-art. In Table
6.1, we show that the training time of our approach is several orders of magnitude shorter than
two-stream CNNs. Two-stream CNNs need about 1 day to train a model on 4 Titan-X GPUs
while our method only needs about 2 hours on 1 CPU. IDT feature training only needs around
1 hour on 1 CPU because the only part that requires learning is the codebook training. In terms
of accuracy, our method outperforms two-stream CNNs on HMDB51 and has similar results on
UCF101 despite the fact that it was trained on less data and does not need any labels to train the
feature extraction module. Our results are also significantly better than the results of IDT.

In the remainder of this chapter, we first provide more background information about video
features. We then describe the relationship between handcrafted features and CNN-based fea-
tures in detail, followed by the descriptions of our two-stream ISA-IDT algorithm. After that, we
conduct experiments and show more detailed comparisons of our method to the state-of-the-art
methods. Further discussions including potential improvements are provided at the end.
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6.2 Related Work
Features and encoding methods are the major sources of breakthroughs in conventional video
representations. Among them, trajectory based approaches [53, 126], especially the IDT [125,
126], are the basis of current state-of-the-art hand-crafted algorithms. These trajectory-based
methods are designed to address the flaws of image-extended video features. Their superior
performance validates the need for a unique representation of motion features.

There have been many studies attempting to improve IDT due to its popularity. Peng et
al. [93] enhanced the performance of IDT by increasing codebook sizes and fusing multiple
coding methods. Sapienza et al. [101] explored ways to sub-sample and generate vocabularies
for DT features. Hoai & Zisserman [36] achieved state-of-the-art performance on several ac-
tion recognition datasets by using three techniques including data augmentation, modeling score
distribution over video subsequences, and capturing the relationship among action classes. Fer-
nando et al. [30] modeled the evolution of appearance in the video and achieved state-of-the-art
results on the Hollywood2 dataset. [67] proposed to extract features from videos with multiple
playback speeds to achieve speed invariances. However, none of them dealt with the fact that
IDT relies on very simple, hand-crafted descriptors. In contrast, many data-driven approaches
have demonstrated their modeling power in image recognition [58] and are quickly replacing
traditional hand-crafted methods.

Motivated by this success of CNNs in image recognition, researchers are working intensely
towards developing CNN equivalents for learning video features. Several accomplishments have
been reported from using CNNs for action recognition in videos [121, 130, 140]. Karpathy et al.
[54] trained CNNs through one million weakly labelled YouTube videos and reported moderate
success while using it as a feature extractor. Simonyan & Zisserman [106] demonstrated a result
competitive to IDT [126] through training deep CNNs using both sampled frames and stacked
optical flows. Wang et al. [127] use the outputs of two-stream CNNs as features to replace
HOG and achieved state-of-the-art results on HMDB51 and UCF101 datasets. All of the above
relied on a large amount of labels which are expensive to get and generally perform worse than
hand-crafted features among small datasets.

There have been a limited number of studies regarding unsupervised methods for learning
video features. Among them the Independent Component Analysis (ICA) [38] was the first
approach to learn representations of videos in an unsupervised way. Le et al. [72] addressed
the issue using stacked ConvISA. Srivastava et al. [111] applied unsupervised feature learning
through long-short term memory. Since these methods rely purely on pixel data, they struggled to
capture motion information and generally performed no better than state-of-the-art hand-crafted
methods. Also, the network structures of these methods, because they are designed for pixel
data, cannot be directly used in learning motion features.

There are also several attempts at connecting the traditional feature encoding pipeline to
the neural network frameworks. Vladyslav et al. [114] studied the structural similarities be-
tween Fisher vectors and neural networks and proposed to jointly optimize Fisher vectors and
the classifier. Richard and Gall [99] converted the BoW model into an equivalent recurrent neu-
ral network and trained the BoW model and classifier together. Both above approaches focus on
the end-to-end training of CNNs and again require labels and significantly increase the model
training time. Instead, we emphasize the convoltional-pooling structure of CNNs rather than
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their training methods. Jarrett et al. [43] also pointed out the connection between handcrafted
features and CNNs. However, they focus on image feature learning, which is inherently differ-
ent from video feature learning. They also did not explicitly explain what linear and non-linear
operators these handcrafted features have and how to map them into a CNN framework.

This study overcomes many limitations from previous works by designing and adapting un-
supervised feature learning methods to video and optical flow volumes detected by IDT. Our new
learning paradigm does not rely on any labels, hence can work well among small datasets. It is
better at capturing motion information due to our enhanced approaches to model optical flow
information, and can use feature enhancing techniques developed for hand-crafted descriptors,
as illustrated by MIFS.

6.3 Improved Dense Trajectory
IDT improves DT feature [125] through explicitly estimating camera motions and removing tra-
jectories generated by them. It relies on histogram-based descriptors, which are computed within
space-time volumes aligned with a trajectory to encode the appearance and motion information.
The size of the volume is s × s pixels and l frames long, which corresponds to the input size
of stacked ISA. To embed structure information, the volume is subdivided into discrete spatio-
temporal grids of size sτ × sτ × lπ. The default size of volume and grid for IDT are s = 32,
l = 15, sτ = 2 and lπ = 3.

6.4 The Convolution-Pooling Architecture
In this section we first define the convolution-pooling structure and then compare IDT with CNN-
based video features. We highlight their structural similarities by showing that they are both
features generated by deep convolution-pooling cascade with two key elements: convolution and
pooling layers.

We define a convolution-pooling cascade as any single, iterative or recursive implementation
of the following sequence of operations:

c(x) = f(w ⊗ x)

p(x) = g(c(x))

where w ⊗ x is a three-dimensional convolution of a filter w with the N ×M × T video blocks
x and f() is any component-wise operation that is often non-linear. w⊗x, and as a consequence
c(x) also have size N ×M × T . (In practice, convolution may result in size shrinking). g() is
a pooling function that results in a shrinking of the argument and operates on any N ×M × T
input to generate a J ×K × L output p(x), where J ≤ N , K ≤M , and L ≤M .

6.4.1 Handcrafted video features
A typical handcrafted video feature extraction procedure is often composed of two stages of
convolution and pooling. The first stage purely relies on handcrafted filters and generates de-
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Figure 6.2: Schematic description of IDT as procedures of multiple convolution and pooling
operations. Dashed red and green boxes represent the procedure of generating handcrafted de-
scriptors and BoW encoding, respectively. In each operation, the first three numbers are the
receptive field sizes in space and time (x, y, t) and the last number indicates the size of output
channels.

scriptors from local data. The second one often uses filters learned from unsupervised methods
to encode the descriptors generated from the first stage and pool them together to get global
features. For example, shown in Figure 6.2 is a schematic description of three HOG-based IDT
descriptors, each of which contains two stages of convolution and pooling (marked by dashed
red and green boxes, respectively) including a total of three distinct convolution and two distinct
pooling operations. Among them, Conv1 uses two gradient filters as w and with:

f(x) = x.

Conv2 is an oriented soft binning, which can be approximated with w being the unit directional
vectors and f being non-linear activation functions such as rectified linear unit ([58]):

f(x) = max(x, 0).

Conv3 is BoW, which uses KMeans centroids as w and a softmax function ([99]) as f :

fk(x) =
exp(xk)∑
j exp(xj)

,

where k is the kth centroid. Pool1 is a local sum pooling:

gx,y,t(x) =
∑

j,l,m∈[1,d]

xxj,yl,tm,

where d is the pool size in space and time and x, y, t are the space and time locations where g()
is applied. Pool2 is a global sum pooling:

g(x) =
∑
x,y,t

xx,y,t.

42



Using above key operators, the IDT-HOG Net represents the procedure of generating a BoW
encoded HOG feature from stacked frames. At the first stage, the stacked frames are convolved
with two gradient filters followed by 8 oriented binning filters and one spatio-temporal sum pool-
ing. During the second stage, the descriptors from the first stage are convolved with K binning
filters learned using KMeans and pooled together afterwards. The IDT-HOF Net and IDT-MBH
Net represent the procedures of generating KMeans encoded HOF and MBH features, respec-
tively, from stacked optical flows. IDT-MBH Net is similar to the IDT-HOG Net except taking
optical flows as inputs instead of pixels. IDT-HOF Net removes Conv1 and using 9 oriented
binning filters instead of 8. Note that although we use KMeans encoding as an example, other
encoding methods such as Fisher Vector and VLAD have similar procedures ([99, 114]). For
simplicity, we leave out the feature detection step, which can be viewed as another convolution
with binary activation function. The main strength of this pipeline is that it is computationally
efficient because of the layer-wise training and does not need labels to train the feature extraction
module because it is meant to minimize reconstruction error. Its limitations lie in the first stage
of the structure (dashed red box) in which it uses fixed parameters and structures for different
sources of data.

6.4.2 Comparison with CNN-based video features

Needless to say CNNs employ convolution-pooling architecture. In CNNs, the non-linear acti-
vation is generally given by f(x) = tanh(x), f(x) = (1 + e−x)−1 or f(x) = max(x, 0). The
pooling functions are local average or maximum pooling, for example,

gx,y,t(x) = max
j,l,m∈[1,d]

xxj,yl,tm,

where d is the pool size in space and time. The parameters of the model are the filters w. These
are learned by minimizing a loss function, typically defined by

min
w

n∑
i=1

||yi − h(w, xi)||2

where h(w, ·) is the full convolution-pooling architecture that takes x as inputs. As can be noted
above, the loss function requires the labels y of the training data.

Comparing the above two procedures, it is clear that their differences are not so much struc-
tural, but rather in how to get the network parameters. With this understanding, we try to answer
the question of how to design a video feature learning algorithm that balances efficiency and
effectiveness. At first, one might try performing end-to-end training on the network structure in
Figure 6.2. However, this training again requires labels and large computational resources. In
addition, results from [114] and [99] show that directly applying end-to-end learning on the tra-
ditional handcrafted pipelines would not bring large performance gains. So instead we keep the
stage-wise unsupervised training to avoid the costly labeling and training. We address the lim-
itations of handcrafted features by proposing a two-stream ISA-IDT to replace the handcrafted
filters and enhance the proposed algorithms with two well motivated improvements.
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Figure 6.3: The neural network architecture of an ISA network with PCA preprocessing. The
dashed blue boxes represent the outputs of our model.

6.5 Two-stream ISA-IDT

In this section, we will describe two-stream ISA-IDT in detail and its structures for both appear-
ance (pixel) and motion (optical flow) stream learning ([106]).

As illustrated in Figure 6.3, an ISA ([39]) is a unsupervised feature learning method that can
be described as a two-layered network within convolution-pooling architecture with: f(x) = x2

and g(x) =
√
x. Specifically, let matrixW ∈ Rm×n and matrix V ∈ Rd×m denote the parameters

of the first and second layers of ISA respectively. n is the dimension of the inputs and d is the
dimension of outputs. m is the number of latent variables between the first layer and the second
layer. Typically d ≤ m ≤ n. The matrix W is learned from data with orthogonal constraint
WW> = I . Therefore we call W the projection matrix because it projects the data into a lower
dimensional space where the data dimension are orthogonal to each other. The matrix V groups
the dimensions to which W maps the data. The grouping criteria is designed to minimize the
number of groups to represent each data point. Vij = 1 if the j-th output variable of the first layer
is in the i-th group, otherwise Vij = 0. Therefore we call V the grouping matrix. Given an input
pattern X t ∈ Rn, the activation of i-th output unit of the second layer is pi(X t;W,V ) defined by

pi(X
t;W,V ) ,

√√√√ m∑
k=1

Vik(
n∑
j=1

WkjX t
j)

2 . (6.1)

ISA enforces the activation of the output unit to be sparse. To achieve the sparse activation, it
minimizes the following loss function defined on T training instances:

min
W

T∑
t=1

d∑
i=1

pi(X
t;W,V, ) (6.2)

s.t. WW> = I .

Another way to interpret ISA is from sparse coding framework. Let G = [G1,G2, · · · ,Gd]
denote the variable group indexes defined by V , that is, j ∈ Gi if and only if Vi,j = 1. |Gi| defines
group size, which is generally the same across groups.
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As in group LASSO ([31]), for any vector a ∈ Rm, we defined the group `1-norm ‖a‖G,1 as

‖a‖G,1 ,
d∑
i=1

√∑
j∈Gi

a2
j .

We can write pi(X t;W,V ) as

pi(X
t;W,V ) = ‖WX t‖G,1 .

Denote αt = WX t, since WW> = I , we have

X t = W †αt ,

whereW † is the Moore–Penrose pseudo inverse ofW . Eq. (6.2) can be re-formulated as a sparse
coding method that

min
W,αt

T∑
t=1

‖αt‖G,1 (6.3)

s.t. (W †)>W † = I X t = W †αt

Based on Eq. (6.3), ISA is essentially searching a group-sparse representation αt of the input
signal Xt. The matrix W † is the dictionaries of sparse coding. The orthogonal constraint of W †

makes the learned components maximally independent.
We select ISA as our unsupervised learning method because it is one of the best unsupervised

feature learning methods [39]. ISA also connects to to the popular group Lasso algorithms.
Figure 6.4 visualizes, in both original and frequency domains, example filters learned from

ISA and PCA models. As illustrated in Figure 6.4b and 6.4d , the ISA model learns more
complex filters that capture higher-frequency information while PCA captures lower-frequency
information. To have a more complete frequency coverage, we combine the outputs of ISA with
an equivalent number of top outputs from PCA. As will be shown in the experimental section, our
enhanced method, denoted by ISA+, significantly outperforms individual PCA or ISA model.

To reflect the different characteristics of different data sources, we design different network
structures for pixel and optical flow data. Our learned descriptor for appearance stream LOP
is learned by directly applying an ISA+ model to a stack of video frames and implicitly learn-
ing temporal pooling. Our learned descriptor of motion stream LOF is trained by applying an
ISA+ model to each individual optical flow frame and explicitly performing a temporal pooling
afterwards. This design difference of the network structures reflects our observation that pixel
data has high temporal correlation while optical flow data often has much less temporal corre-
lation due to the estimation error. As a result, it is much easier to learn temporally consistent
appearance filters than temporally consistent motion filters. As shown in Figure 6.5, in which we
show some example images and optical flow patches and the filters learned in both structures.
From the columns in Figure 6.5a and 6.5b, it is clear that image patches are consistent across
frames while optical flow patches have large temporal variation. Quantitatively, we estimate a
0.8014 pixels correlation while only 0.2808 for optical flow correlation by using the Pearson
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(a) Example PCA filters (b) 6.4a in frequency domain

(c) Example ISA filters (d) 6.4c in frequency domain

Figure 6.4: Example filters learned from our ISA-IDT model. For all figures, y-axis represents
same component at different time step and x-axis represents different components. In frequency
visualization, zero-frequency component are centered in the figure.

product-moment correlation coefficients to measure their temporal correlation from 100000 ran-
dom sampled HMDB51 trackets. As a result, the learned appearance filters (Figure 6.5e) are
temporally consistent and the learned flow filters are quite chaotic (Figure 6.5f). We suspect
that a better optical flow will have higher correlation, but we have not explored this direction
further because the Farneback optical flow we used has shown to be the best optical flow for IDT
[125]. To discriminate the implicit temporal pooling of LOP from the explicit temporal pooling
for optical flow data, we call it temporal projection.

6.6 Experiments
In the following section, we first show that our ISA+ model performs significantly better than
either ISA or PCA. We then empirically demonstrate that custom designed network structures
for pixel and optical flow data are necessary. After that, we compare our methods to the state-of-
the-art video features in both descriptors and overall performance. We conduct experiments on
HMDB51 and UCF101 datasets.

6.6.1 Experimental settings
As in [126], IDT features are extracted using 15 frame tracking, camera motion stabilization and
RootSIFT normalization and described by Trajectory, HOG, HOF, MBH, LOP and LOF descrip-
tors. Two-stream ISA-IDT models are trained on 200000 IDT trackets for each stream of data.
For both PCA and ISA, we keep the filter size the same as in the handcrafted descriptors and use
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(a) Image patches (b) Optical flow patches

(c) Image filters learned from single frame (d) Flow filters learned from single frame

(e) Image filters learned from 5 stacked
frames

(f) Flow filters learned from 5 stacked
frames

Figure 6.5: Example inputs and filters learned from our ISA models. For each figure, the y-axis
represents same component at different time steps and the x-axis represents different component
expect on Figure 6.5c and 6.5d, we replicate the filters 5 times for visualization purpose.

a pooling size of 10 for ISA. Another PCA is used to reduce the dimensionality of the resulting
descriptors by a factor of two. For Fisher Vector encoding, we map the raw descriptors into a
Gaussian Mixture Model with 256 Gaussians trained from a set of 256000 randomly sampled
data points. After encoding, we attach the normalized space-time location information to the
encoded descriptors as suggested in [67]. Power and `2 normalization are also used before con-
catenating different types of descriptors into a video based representation. For classification, we
use a linear SVM classifier with a fixed C = 100 as recommended by [126] and the one-versus-
all approach is used for multi-class classification scenario. We still need labels for training SVM
classifiers, what we avoided is the need of labels for training the feature extraction model, which,
because of its much larger parameter space, requires a much larger number of labels.
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PCA ISA ISA+
HMDB51 58.1% 58.4% 61.5%
UCF101 85.9% 86.2% 88.3%

Table 6.2: Comparison of different unsupervised feature learning methods.

LOG LOF
Projection Pooling Projection Pooling

HMDB51 52.4% 44.3% 46.2% 59.5%
UCF101 80.0% 73.5% 79.6% 84.8%

Table 6.3: Comparison of temporal projection and temporal pooling.

6.6.2 ISA+ is better than individual PCA or ISA models

Table 6.2 compares our ISA+ model with individual PCA and ISA models. First, comparing
PCA and ISA, we observe that, surprisingly, a simple PCA model can get similar results to a
much more complex ISA model. These results demonstrate that PCA can learn good features
when the number of features to generate is small. By combining the PCA and ISA outputs,
we get more than 3% improvement on HMDB51 and 2% on UCF101. The improvements are
significant given that these improvements are on the combined results of appearance and motion
models where the potential for improvement is smaller.

6.6.3 Temporal projection versus temporal pooling

In Table 6.3, we compare the results of temporal projection and temporal pooling. As evidenced
by the results of both datasets, for appearance modeling, temporal projection is better than tem-
poral pooling, and for motion modeling, temporal pooling performs much better than temporal
projection. Furthermore, if we compare single frame image filters (Figure 6.5c) to filters learned
using 5 frame stacks (Figure 6.5e) , we can see that adding temporal variation can help to learn
more complex filters. A potential improvement, therefore, is to explicitly enforce temporal co-
herence for optical flow filter learning and learn the temporal pooling for optical flow data.

6.6.4 Performance comparison of individual descriptors

Appearance Descriptors Motion Descriptors
HOG S-CNNs LOG LOG HOF MBH T-CNNs LOF LOF

HMDB51 42.0% N.A. 47.2 52.4% 49.8% 52.4% 55.4% 51.0 59.5%
UCF101 72.4% 72.8% 79.3 80.0% 74.6% 81.4% 81.2% 81.2 84.8%

Table 6.4: Comparison of our proposed descriptors to IDT and two-stream CNNs.

In Table 6.4, we compare our learned descriptors LOG and LOF to the video descriptors
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from IDT and spatial (S-CNNs) and temporal (T-CNNs) CNNs 1 from [106]. On the appearance
descriptors, an impressive performance improvement of more than 10% over HOG, from 42.0%
to 52.4% is achieved by LOG on HMDB51. For UCF101, LOG also gets more than 7% improve-
ment over HOG and Spatial CNNs despite the fact that Spatial CNNs utilize additional training
data. The same trend can be observed on motion descriptors. LOF outperforms other descriptors
by more than 4% on HMDB51 and more than 3% on UCF101. Although it may not surprise
that LOG outperforms HOG since it has been shown that unsupervised learned appearance de-
scriptors can outperform handcrafted descriptors. However, as far as we know, we are the first
to show that unsupervised motion descriptors (LOF) can outperform MBH, which is currently
the best handcrafted motion descriptor. On the other hand, if we simply adopt the ConvISA [72]
structures that we designed for learning from pixels, we get worse results (indicated by LOF
(ConvISA)) than MBH. These results again show that unsupervised optical flow feature learning
is quite difficult.

6.7 Conclusions
Contrary to the current trend of learning video features using end-to-end deep CNNs, which is
computationally demanding and label intensive, we propose in this chapter to revisit the tradi-
tional local feature pipeline and combine the merits of both handcrafted and CNN approaches.
As an example, we present a video feature learning algorithm called two-stream ConvISA that
has better performance, lower computational expense than current state-of-the-art methods and
does not require labels. We show that filters learned in an unsupervised fashion, when incorpo-
rated in convolution-pooling structures that are custom designed for pixel and optical flow data,
can outperform supervised end-to-end networks. This result serves as a reminder that the design
choices in handcrafted features may still have many useful properties which could be potentially
incorporated into future deep action recognition networks. Currently, we haven’t used this algo-
rithm for MED because, although it is fast to learn the model, it is much slower than two-stream
CNNs in applying the model. This slow application is mostly because extracting the tracklets is
very expensive. Future work would be explicitly enforcing temporal consistency for optical flow
feature learning and developing a deeper and better unsupervised learning methods. We would
also like to explore end-to-end fine-tuning given the unsupervised learned networks, which is
less expensive than training from scratch.

1The first split results from [106], pre-trained on Imagenet and trained HMDB51 and UCF101 together (multi-
task learning)
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Chapter 7

Feature Encoding: Space-time Extended
Descriptors (STED)

7.1 Introduction

This chapter addresses the problem of encoding space-time information into the video repre-
sentations. The spatial pyramid and its variants have been very popular feature models due to
their success in balancing spatial location encoding and spatial invariance. Although it seems
straightforward to extend spatial pyramid to the temporal domain (spatio-temporal pyramid), the
large spatio-temporal diversity of unconstrained videos and the resulting significantly higher di-
mensional representations make it impractical. Instead, we introduce the space-time extended
descriptor (STED), a simple but efficient way to include the spatio-temporal location into the
video features. Parts of this chapter have been published in [61, 62].

MED is a difficult task since on-line videos are subject to large visual diversity. Robust to
such variability, the BoW [23] model has been used extensively in representing videos. A BoW
can be summarized as an encoding step and a pooling step [14]. Traditional pooling discards the
local feature position information in the video space. However, this spatio-temporal information
has been proven to be a discriminative clue [70]. Indeed, discriminative motion information is not
equally distributed in the frame space as shown in Figure 7.1. To benefit from this information,
spatial pyramids [70, 71] divides a video using fixed grids and pools the features locally into each
grid cell. Spatial pyramids can be easily extended to spatio-temporal pyramid (STP) to encode
the order of actions or events, another important cue for video representation. For example,
to perform an action called “sitting down”, we need to gradually bend our knees and lower
our body, while “standing up” is the reverse. Despite its usefulness, STP is not as effective as
its spatial sibling on still images due to the fact that actions in unconstrained videos will have
much more dramatic spatio-temporal variance than still images. For example, as illustrated in
Figure 7.2, we see the person doing a cartwheel moves through out the frame whereas a still
image would center the person in the frame. In this case, STP, which commits too much to the
artificial boundaries and may lead to a performance drop. Another major criticism of spatial
pyramid is that it generates features with dimensions that are orders of magnitude higher than
the spatio-temporal invariant representations and hence make it computationally expensive to
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Figure 7.1: “Catch” and “hit” are likely to be distinguished by upper-bodies, especially hands
while “kick” and “run” are more easily distinguished by legs.

Inter-videos Intra-video

Figure 7.2: In different videos, actions localization can be subject to variation due to camera
viewpoint change. But, even within a single video sequence, the action area can change among
frames.

process. A more effective and efficient space-time encoding method is therefore critical for
video representations in retrieving videos from large data collections.

In this chapter, we propose to take advantage of the spatio-temporal discriminative infor-
mation with an emphasis on retaining the spatio-temporal robustness while also controlling di-
mension explosion. Beyond standard spatial pooling which uses fixed segmentation grids, our
proposed STED augments the feature descriptor with spatio-temporal location information. By
simultaneously encoding motion and location information, we remove the necessity of a compli-
cated pooling stage and the danger of committing to artificial boundaries. Experimental results
on several benchmark datasets show the advantages of STED over STP.

In the remainder of this chapter, we start by providing more background information about
spatial pyramids and its variants. We then compare STP and STED in detail. After that, an
evaluation of our method is performed and demonstrates STED’s superiority over STP. Further
discussions including potential improvements are given at the end.

7.2 Related Work

Video retrieval research is conducted in a diverse setting where emphasis includes low-level and
high-level feature design [51, 108], multi-modality fusion [5, 65] and multi-modality retrieval
models [48]. Here we focus on reviewing low-level features design and encoding for latter
experimental comparison. There has been a large amount of work in building representations
that keep spatial information of image patterns. Among them, spatial pyramid matching [71] is
the most popular one. However, building spatial pyramids requires dimensions that are orders

52



of magnitude higher than the original spatial invariant representations and hence make it less
suitable for high dimensional encoding methods such as FV [96] and VLAD [6]. Spatial FV
[57] and spatial augmentation [83, 100] provide more compact representations to encode spatial
information and show similar performance as spatial pyramid methods. Few approaches consider
encoding global temporal information into video representations. Oneata et al. [91] shows that
better action recognition performance can be achieved by dividing videos into two parts and
encoding each one separately. Codella et al. [20] use temporal pyramids for event detection.
They use n temporal segments, where n incrementally increases from 1 to 10.

7.3 Space-time Encoding Methods
In the following, we reformulate the spatial pyramid model and then extend this formulation to
describe the STP and STED.

Let D = {d1(φ1, x1, y1), d2(φ2, x2, y2), ..., dM(φM , xM , yM)} be a set of local feature de-
scriptors extracted from a video. Each di contains the appearance/motion description φi, and the
normalized pixel location (xi, yi) at which feature i is centered. We denote encoding function
g : φi → RK as a local feature encoding scheme such as sparse-coding or locality encoding.
Note that here g solely relies on the appearance/motion portion of the descriptors. We further
denote by G = {G1, ..., Gn} a set of grid cells. Each Gj is a binary matrix indicating which
pixels are active, Gj ∈ 0, 1(sx×sy) , (sx, sy) being the image size. Based on those definitions, we
express the average spatial pooling operation as

Xj =
1

n

M∑
i=1

Gj
(xi,yi)

× g(φi). (7.1)

Basically, for each grid, average spatial pooling is the sum of all the encoded vector belonging
to this grid and divide by a constant representing the number of grids.

7.3.1 Spatio-Temporal Pyramid (STP)
For temporal expansion, we simply add the temporal location into formula 7.1. That is

Xj =
1

n

M∑
i=1

Gj
(xi,yi,ti)

× g(φi). (7.2)

Note that by having one more location dimension, the resulting number of grid cells in G,
hence number of dimension in feature X , will be orders of magnitude higher than the original
spatial pyramid method. This may not be computationaly affordable for high dimensional repre-
sentation such as FV. For example, if we want to represent an Improved Dense Trajectory (IDT)
[125] feature (dimension of φi is 426) using a FV representation with 256 Gaussian mixture
models, then a k × k × l with k ∈ (1, 2) and l ∈ (1, 3) STP can result in a representation about
4.4 million dimensions. Whereas for the image case, if we use SIFT with the same configuration,
then the resulting dimension will be only a quarter of a million dimension.
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UCF50 HMDB51 Hollywood2 Olympic
(mAcc. %) (mAcc. %) (mAP %) (mAP %)

l Single Pyramid Single Pyramid Single Pyramid Single Pyramid
1 92.7 59.6 65.8 89.8
2 92.3 92.6 61.0 61.3 66.3 67.4 87.8 89.3
4 91.6 92.3 60.5 61.6 65.2 67.0 85.2 87.6
8 90.4 92.1 58.1 61.6 62.2 65.7 83.8 83.8

Table 7.1: Comparison of different temporal pyramid levels for STP.

7.3.2 Space-Time Extended Descriptor (STED)
For STED, instead of using space-time information to locate the grid cells G, we use it to encode
the feature, i.e., the mapping function g now includes the space-time information as inputs.
Formally, we have,

X =
1

n

M∑
i=1

g(φi, xi, yi, ti). (7.3)

One advantage of STED is that we avoid having to commit to artificial grid boundaries to
define the spatial pooling regions, which can lead to very divergent representations for similar
actions happening in different space-time location. Another advantage is that the dimension of
STED is only slightly higher than the original space-time invariant representation and is much
lower than STP. Again taking the IDT + FV setting for example, for each video, STED generates
a feature with only about 0.21 million dimensions, which is about 20 times lower than the STP
representation.

7.4 Experiments

7.4.1 Experimental Setting
IDT with FV encoding [126] represents a current state-of-the-art for most real-world action
recognition datasets. Therefore, we use it to evaluate our method. Note that although we use
FV, our method can be applied to any quantization and pooling method such as VLAD [6]. Our
baseline method uses the same settings as in [126]. These settings include the IDT feature ex-
traction, FV representation and a linear SVM classifier.

IDT features are extracted using 15 frame tracking, camera motion stabilization with hu-
man masking and RootSIFT normalization and described by Trajectory, HOG, HOF and MBH
descriptors. We use PCA to reduce the dimensionality of these descriptors by a factor of two.
For FV representation, we map the raw feature descriptors into a Gaussian Mixture Model with
256 Gaussians trained from a set of randomly sampled 256000 data points. Power and L2 nor-
malization are also used before concatenating different types of descriptors into a video based
representation. For classification, we use a linear SVM classifier with a fixed C=100 as recom-
mended by [126] and the one-versus-all approach is used for multi-class classification scenario.
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UCF50 HMDB51 Hollywood2 Olympic EK100 EK10
STED (mAcc. %) (mAcc. %) (mAP %) (mAP %) (mAP %) (mAP %)

w/o 91.5 59.0 64.6 89.5 29.74 15.28
w 93.0 62.1 67.0 89.8 29.77 16.18

Table 7.2: Performance of STED.

For STP, we use k× k× l, k is 1 and 2 and l ∈ (1, 2, 4, 8) grid cells. For STED, we attached
the normalized 3 dimensional location to each descriptor as described in section 7.3.2.

7.4.2 Datasets
We use UCF50, HMDB51, Hollywood2, Olympic Sports, and MEDTEST2014 for evaluation.

7.4.3 Experimental results
Spatial-Temporal Pyramids (STP)

In Table 7.1, we compare the performance of the STP at different temporal pyramid levels l.
l = 1 corresponds to results only using a 1 × 1 and a 2 × 2 spatial pyramid pooling. From
Table 7.1, we can see that, due to the large spatio-temporal diversity of unconstrained videos,
the usefulness of STP is inconclusive. For some datasets such as HMDB51 and Hollywood2,
it provides significant performance improvement while for other datasets such as UCF50 and
Olympic Sports, it hurts the performance. Further division (from level 2 to 4 or 8) almost always
results in worse performance with the exception of the pyramids in the HMDB51 dataset. These
results show that a straightforward extension of spatial pyramids may hurt the performance. Also,
due to the high dimension, the computational cost for processing these encoded vectors are high.

Space-time Extension Descriptor (STED)

From Table 7.2, we see that, unlike STP, STED consistently improves the performance for
all datasets. It is worth mentioning that both HMDB51 and Hollywood2 are very challenging
datasets, more than 3% absolute improvement over space-time invariant representation is quite
a notable gain. For Olympics dataset, because on average, each class only contains 8 testing
examples, the improvement may not be statistically meaningful. Similarly, for MEDTEST2014
EK100 and EK10, the improvements from STED is not as significant as in other action recogni-
tion tasks. This smaller improvements may result from the larger variances of videos hence more
difficult in deciding the influence of space-time location information.

7.5 Conclusions and Discussions
In this chapter, we proposed STED, a simple way to encode into local descriptors with spatio-
temporal information. Despite it simplicity, STED is a much more effective and efficient way
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to encode space-time location than previous methods. By simultaneously coding appearance,
motion and location, STED avoids the danger of committing to artificial grid boundaries that de-
fine the spatial-temporal pooling regions and hence is better in dealing with unconstrained video
that have large spatial-temporal motion diversity. We compared STED with STP, a straight-
forward way to extend spatial pyramids, and showed that STED generates representations with
much lower dimension while achieving similar or better results. A potential improvement is to
determine the optimal weighting for appearance/motion and location.
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Chapter 8

Feature Encoding: Ranking Normalization
(RNorm)

8.1 Introduction
FV [95] and VLAD [46] are the current state-of-the-art local feature encoding methods that have
been widely used to encode various features such as IDT[126] and CNN features [7, 25, 132].

However, when FV was first introduced by Jaakkola and Haussler [42] and applied to image
classification by Perronnin and Dance [95], it did not attract a great deal of attention as it had
not shown its superiority over BoW [95]. It is only after the introduction of power normalization
(PNorm) [96] that significantly improves the performance of FV and thus make it into many
researchers best practice list. The same phenomenon [46] was also witnessed for VLAD and
intra normalization (INorm) [6]. The reason that FV and VLAD did not outperform BoW is that
they suffer from two critical problems: sparse distributions and bursty distributions.

The sparse distribution problem [96] is where most values in the high dimensional FV en-
coded vectors are close to zero. It comes from the fact that, as the codebook (cluster) size
increases, fewer local descriptors are assigned to each codebook. For each encoded vector, fewer
descriptor assignments mean that some of components will have small and imprecise statistics.
After `2 normalization, these numbers are inevitably close to zero. These sparse high dimen-
sional vectors would lead to imprecise visual similarity measurement [96]. In Figure 8.1a and
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Figure 8.1: An example FV (resp. VLAD) and the pair-wise cosine similarity distribution of `2
normalized FV (resp. VLAD) encoded vectors from Hollywood2 dataset.
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Figure 8.2: Repeated patterns from a brick wall (left) and camera motions (right).

8.1b, we show a randomly sampled FV from Hollywood2 dataset and the cosine similarity dis-
tribution of all the `2 normalized FV encoded vectors in the whole dataset. As can be seen, the
FVs are indeed sparse and their pair-wise cosine similarities are, as expected, clustered around
zero.

The bursty distribution problem was first discovered by Hervé et al. [45] in BoW encoding
and later observed by Arandjelovic and Zisserman [6] in VLAD encoding as well. Different
from the sparse distribution problem that is caused by the encoding process, the bursty distri-
bution problem comes from the data itself. It occurs when repeated patterns in an image or a
video produce a few artificially large blocks (i.e. sum of residuals within a coarse cluster) in
the encoded vectors. Examples of such patterns, as illustrated in Figure 8.2, are a brick wall in
an image and camera motions in videos. Unlike the sparse distribution problem, these repeated
patterns may not generate sparse vectors. while both VLAD and FV suffer from the sparse distri-
bution problem, the bursty problem often happens in VLAD. For example, the VLAD vector in
Figure 8.1c is much denser than the vector in Figure 8.1a (note the difference of scale in x-axis);
the center of the pair-wise cosine similarity distribution (Figure 8.1d) of all vectors in the dataset
is also far away from zero. However, because the encoded dimensions from these repeated pat-
terns have large numerical values yet carry very little useful information, the similarity measures
computed from the encoded vectors are still imprecise.

As it is a characteristic of the data rather than the encoding process, the bursty distribution
problem should also exist in FV encoded vectors. Therefore, FV has both sparse and bursty
distribution problems while VLAD only has the bursty distribution problem. This may explain
the observations [132] that, without proper normalization, sometimes FV performs worse than
VLAD even though it encodes more information than VLAD does.

The sparse and bursty distribution problems are often considered as two different problems
as they are stemmed from different causes and generate different feature patterns. However, they
share similar characteristics. For example, both of them lead to imprecise distance measure.
Even the solutions have similar smoothing effects. In Figure 8.3, we plot the results of PNorm
and INorm of the example FV and VLAD vectors in Figure 8.1a and 8.1c. As illustrated, both
PNorm and INorm suppress large values and enlarge smaller ones.

A large amount of empirical evidence [6, 96] shows that both PNorm and INorm can signifi-
cantly improve the performance of FV and VLAD. The unexpected effectiveness of these simple
smoothing techniques set us thinking, wondering the reasons behind the success. If the smooth-
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Figure 8.3: The smoothing effects of PNorm and Inorm on the FV (8.3a and 8.3b) and VLAD
(8.3c and 8.3d) encoded vectors from Figure 8.1a and 8.1c, respectively.

ing (compression) is so useful, there must be a large mismatch between the numerical values
and ideal values of the encoded vectors. Here we define the ideal value of a dimension as how
much it should contribute to the similarity measurement. In other words, if suppressing a large
numerical value can get better performance, it means that the numerical value over-estimates its
importance in determining the distance between two feature vectors. Similarly, the usefulness of
increasing small numerical values suggests that these values may not be as negligible in distance
measure as the numerical values specify. This is what we call the value-mismatch problem. It
summarizes the reasons (problems) that cause the necessity of a normalization technique.

The value-mismatch problem is inherent in the unsupervised feature learning scheme. With-
out supervision, we really do not know how much useful information each pattern (dimension)
carries. Some of the patterns, even if they only contain a small region of an image or a video
hence having small values after encoding, can be very important in determining the class of the
image or video. Some of the dimensions with large numerical values can be useless in classifi-
cation. This situation is true even for end-to-end learned CNN features. When CNN features are
applied to another task where fine-tuning is not available or not applicable [25, 132], regardless
of their numerical values, it is difficult to tell how useful each dimension is for the target task.

As we do not know how important each dimension is, the PNorm and INorm can only help
alleviate the value-mismatch problem. It is often difficult to decide how much dispersal each
task requires. In most cases, even after certain suppression or dispersion, the numerical values
in each dimension still do not represent their ideal values. Such being the case, we argue that a
better way to solve the value-mismatch problem is to treat all dimensions with equal importance,
namely, to use the rank to replace the original values of FV and VLAD encoded features. We
call this new normalization method rank normalization (RNorm).

RNorm ranks all video representations in a dataset along each dimension and uses the nor-
malized rankings in place of the original video representations for the subsequent classification.
Since it only needs a ranking operation, it is computationally efficient and parameter free. Our
experiments also show that RNorm can significantly outperform PNorm and INorm. Our empir-
ical results also show that an approximate ranking is enough for RNorm and it can be applied to
not only FV/VLAD, but also to local descriptors.

In the remainder of this paper, we first review some relevant works about the improvement of
feature encoding, mostly associated with FV and VLAD. We then detail the encoding methods,
baseline method, and evaluation benchmarks we used. Next, we describe the proposed method
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and demonstrate its performance gain over the baseline approach (composed of IDT, FV, and
SVMs) on six human video classification datasets. After that, we describe the proposed approx-
imate ranking method and extend the usage of RNorm to local descriptors. Finally, we conclude
our work on feature encoding.

8.2 Related Work
Features and encoding methods are the major sources of breakthroughs in conventional video
representations. Among them the trajectory based approaches [53, 126], especially the DT, IDT
[125, 126], and FV encoding, are the basis of current state-of-the-art algorithms.

FV and VLAD are very similar encoding methods [6] and both have been popular for image
and video classification [6, 85, 96, 126, 132]. In the original scheme [44, 95], they either do
not require post processing [95] or use only `2 normalization [44]. Although `2 normalization
can reduce the influence of background information and transform the linear kernel into an `2
similarity measurement [96], it does not disperse the data. As a result, the original FV encoding
method showed inconclusive results compared to other state-of-the-art encoding methods [95].
It is the introduction of PNorm [6, 96] which significantly improved the performance of those
encoding methods and thus makes them useful in practices. PNorm helps alleviate the problem
of sparse and bursty distribution of FV and VLAD. Later on, as a special design for VLAD,
Arandjelovic and Zisserman [6] proposed INorm to further reduce the bursty distribution problem
of VLADs. Jégou and Chum [44] used PCA to decorrelate a low dimensional representation and
adopted multiple clustering to reduce the quantization errors for VLADs. Nonetheless, those
methods only alleviated the burstiness problem [45]. The sparsity of the encoded descriptors still
depends on that of the original data. Unlike the above two approaches, RNorm normalizes each
dimension of FV and VLAD encoded features to evenly distribute the energy to each dimension,
regardless of how sparse the original data are.

8.3 Background
In this section, we detail some background information of the FV and VLAD encoding methods,
PNorm and INorm, `2 normalized baseline method, and evaluation benchmarks.

8.3.1 FV and VLAD
After getting the IDT local descriptors, FV and VLAD are applied to do the encoding. For FV, we
first trained a Gaussian Mixture Model (GMM) with 256 Gaussians for each type of descriptor
and then map all the descriptors in that type to the model. Let γt(i) be the soft assignment of
descriptors xt to Gaussian ui:

γt(i) =
wiui(xt)∑K
j=1wjuj(xt)

(8.1)

where wi is the mixture weight of Gaussian ui and K is the number of Gaussians. Let D be
the dimension of the descriptors xt; and GXµ,i and GXσ,i are the D-dimensional gradient with respect
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to the mean µi and standard deviation σi of ui, respectively:

GXµ,i =
1

T
√
πi

T∑
t=1

γt(i)

(
xt − µi
σi

)
, (8.2)

GXσ,i =
1

T
√

2πi

T∑
t=1

γt(i)

[
(xt − µi)2

σ2
i

− 1

]
, (8.3)

where T is the number of descriptors. The final encoded vector is the concatenation of GXµ,i
and GXσ,i for i = 1...K and is therefore 2KD dimensional. More detailed descriptions of FV can
be found in [96].

The VLAD encoding is similar to FV encoding. The differences are VLAD often uses K-
means clustering instead of GMMs and only records the residuals between the descriptors and
the cluster means. That is to say, VLAD only has the GXµ,i part and the final dimension would be
KD.

8.3.2 PNorm and INorm
Although it is customary to use PNorm for FV and INorm for VLAD, they have very similar
effects, as can be seen in Figure 8.3. PNorm has the following element-wise operation:

f(z) = sign(z)|z|α, (8.4)

where 0 ≤ α ≤ 1. Without further specification, this paper uses PNorm with α = 0.5, which
is the most commonly used one and also named as signed square root (SSR) normalization [6].
From this formula, we can tell that PNorm is essentially a smoothing function that suppresses
large numerical values and enlarges small ones.

The INorm, which `2 normalizes each VLAD block independently, has a very similar smooth-
ing effect. However, from Figure 8.3, we can see that PNorm has a stronger normalization effect
than INorm has. In general, we believe that PNorm is better in dealing with the value-mismatch
problem than INorm because PNorm can smooth out both the problems that happen in individual
dimension and the whole block while INorm can only deal with the block-wise value-mismatch
problem. As mentioned before, a block here means a part of vector that represents one cluster.
For example, if we use 256 k-mean clusters for VLAD, then each VLAD vector has 256 blocks.

8.3.3 Evaluation benchmarks
For action recognition, we use both Hollywood2 and Olympic Sports datasts. For the MED task,
we evalute on both MEDTEST13 and MEDTEST14 datasets.

8.3.4 Experimental settings
We follow the experimental settings in [67]. More specifically, we use IDT features extracted us-
ing 15 frame tracking and camera motion stabilization. PCA is utilized to reduce the dimension-
ality of IDT descriptors by a factor of two. After reduction, the local descriptors are augmented
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Figure 8.4: The effect of various normalization methods to the FV and VLAD encoded vectors
(Note that the scales are different).

with three-dimensional normalized location information [67]. FV (resp. VLAD) encoding maps
the raw descriptors into a GMM (resp. K-means) with 256 clusters trained from a set of 256000
randomly sampled data points. Classification in conducted by a “one versus rest” linear SVM
classifier with a fixed C = 100 as in [126] for fair comparison. For PNorm, we use SSR unless
otherwise stated.

8.4 Rank Normalization (RNorm)
RNorm applies to each dimension of the FV and VLAD encoded vectors the following function:

f(z) = rank(z)/N,

where rank(z) is z’s position after sorting along the dimension of all N FV or VLAD vectors in
a dataset. In the following, we will provide our experimental analysis about RNorm.

8.4.1 Qualitative analysis
Figure 8.4 shows the standard deviation (i.e. energy) of the values for each dimension of FV
and VLAD encoded vectors across all the videos in Hollywood2 dataset. It can be observed that
the energy is strongly concentrated around only a few dimensions in the `2 normalized encoded
vectors(8.4a and 8.4e). These peaks strongly influence the similarity scores. PNorm (8.4b and
8.4f) and INorm (8.4c and 8.4g) indeed manage to discount their effect. However, even with
PNorm and INorm, it is clear that the distributions are still peaky. RNorm (8.4d and 8.4h)
completely alleviates this effect and evenly distributes the energy across different dimensions.
If we compare PNorm and INorm, we would observe that PNorm has a better smoothing effect
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Figure 8.5: The cosine similarities of videos under different normalization methods. The blue
and plain lines are the distributions of pair-wise cosine similarities between positive samples, and
the red and dashed lines show the distributions of pair-wise cosine similarities between positive
and negative samples.

(note that the scales are different). Also, by comparing Figure 8.4e and Figure 8.4g, we can see
that INorm can suppress large blocks. However, INorm also creates artificially large dimension
and cannot preserve the order of the original values. These characteristics again show that INorm
is not as desirable as PNorm or RNorm for smoothing normalization.

The improvements on similarity measurement brought by these normalization methods are
also obvious. In Figure 8.5, we visualize the distribution of pair-wise cosine similarity between
positive/positive and positive/negative samples. First, by comparing Figure 8.5b, 8.5c and 8.5d
to 8.5a, we observe that, for FV, after normalizations, the data samples are much more separable.
Instead of clustering around zero, the normalized vectors have much broader range of similarity
distributions. Second, if we compare the Figure 8.5a to 8.5e, we can see that, unlike FV, where
the cosine similarities cluster around zero, the similarity distribution center of VLAD encoded
vectors are far away from zero. This observation again confirms that VLAD encoded vectors are
not as sparse as FV encoded vectors. It also explains why the improvements for VLAD are much
more subtle. Comparing Figure 8.5e, 8.5f, 8.5g and 8.5h, we can see that why the improvement
for VLAD aren’t as great.

In Figure 8.6, we also compare the PNorm and RNorm on the first dimension of FV encoded
vector on the Hollywood2 dataset. The x-axis shows the original values and the y-axis are the
corresponding values after normalization 1. For a better visualization, we normalize all the curves
so that their values are between -1 and 1. For example, PNorm returns the original values when
α = 1 and becomes a step function as α = 0. When 0 < α < 1 , PNorm carries out a
mapping like a sigmoid activation function. It magnifies those values around zeros and allows
them to possess more of the y-axis space. RNorm has a similar effect as PNorm except it is not

1INorm cannot be visualized in this way as it does not preserve the order of the values.
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Figure 8.6: Comparison of the effects of PNorm (PN) and RNorm (RaN) on the first dimension
of FV in Hollywood2. For a better visualization, we normalize all the curves so that their values
are between -1 and 1.

constrained to maintain sign.

8.4.2 Quantitative analysis

In Table 8.1, we compare the results of different normalization methods on both Hollywood2
and Olympic Sports datasets. `2 normalization serves as a baseline method. First, if we compare
the baseline results of FV and VLAD, we can see that only using `2 normalization, FV performs
worse than VLAD. These results are consistent with our hypothesis that FV suffers more severe
value-mismatch problem than VLAD has. After normalization, FV significantly outperforms
VLAD, which again confirm our analysis that with better normalization, FV can outperform
VLAD. Second, if we compare PNorm with INorm, we can see that PNorm always achieves
better results than INorm, which is in line with our observation in Figure 8.4 that INorm is not
as good as PNorm. Finally, RNorm consistently outperforms all other normalization methods,
especially for FV encoding. Compared to the baseline method in FV, RNorm gives about 10%
absolute improvement on a difficult dataset like Hollywood2; on the relatively easy one like
Olympic Sports that has less potential to explore, RNorm still manages to improve by more than
9%, absolutely.

Figure 8.7 shows the per-class comparison of with and without RNorm. Most remarkably,
RNorm improves the baseline method on all 12 actions from the Hollywood2 dataset. On some
of the hard classes like ‘HandShake’, RNorm improves the baseline results by more than 15%. A
similar trend can be seen in the Olympic Sports dataset. Compared to the baseline method,
RNorm either improves or delivers similar results on 15 out of 16 actions. These per-class
performance comparisons show that our improvements are robust and significant.
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Hollywood2 (%) Olympic Sports (%)
FV VLAD FV VLAD

Baseline (`2) 57.9 59.6 83.0 87.5
PNorm 66.1 62.2 90.1 88.6
INorm 65.7 61.6 89.0 88.5
RNorm 67.7 62.4 92.3 88.9

Table 8.1: Performance comparison of different normalization methods on action recognition
datasets.
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Figure 8.7: Per-class performance comparison of the baseline performances with and without
RNorm.

8.4.3 Results on MED

Table 8.2 lists the overall MAP on all four datasets of MED. The baseline method is the same
as in action recognition tasks. First, on all four datasets, PNorm, INorm and RNorm all notably
improve the baseline results. RNorm still consistently outperforms other methods. It improves
the baseline method by around 3% on both EK10 and EK100 tasks. It is worth emphasizing that
MED is such a challenging task that 3% of absolute performance improvement is significant.
These results demonstrate that RNorm is robust across tasks with different difficulty levels and
video types.

MEDTEST13 (%) MEDTEST14 (%)
EK10 EK100 EK10 EK100

Baseline (`2) 17.0 33.6 12.0 26.2
PNorm 19.3 36.3 14.9 29.0
INorm 19.1 35.8 14.5 28.9
RNorm 20.2 36.6 15.4 29.3

Table 8.2: Performance Comparison on the MED task.
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S Hollywood2 (% ) Olympic Sports ( %)
2 43.8± 24.0 31.6± 27.5
4 67.0± 0.4 91.6± 1.1
6 67.6± 0.2 92.1± 0.9

10 67.5± 0.3 92.6± 0.4
50 67.6± 0.1 92.7± 0.2

100 67.7± 0.1 92.7± 0.1

Table 8.3: Comparison of different seed size S for RNorm. Each experiment is repeated 10 times
and the mean values and standard deviations are given.

8.5 Approximate Ranking
The exact ranking we have used so far requires each vector to compare all other vectors in the
database. Although computationally this is not a problem as we have efficient sorting algorithms;
in practice, we may not have all the data available to compute the rank. For example, in on-line
learning scenario. This problem motivates us to develop an approximate ranking algorithm. The
algorithm is similar to product quantization [47] except it quantize each dimension separately.
First, we randomly choose a small subset of vectors as our seed vectors. These seed vectors
serve as the “codebook” for computing the rank of a new vector. Given the seed vectors, each
dimension is first sorted, and a rank is assigned to each dimension of a seed vector. When a new
vector is given, for each dimension, the nearest neighbor in the seed vectors is found, and the
rank of the nearest neighbor is applied to the current dimension of the new vector. For example,
if we have S=2, then each dimension of the target vectors will have value that is either 0 or 1,
depending on whether it is closer to the smaller or larger values of the same dimension in the
two seed vectors. Similarly, seed vectors with size S=4 means that we quantize each dimension
into a value range of 0 to 3, which also implies that we only need 2 bits rather than 32 bits to
store each dimension. This is significant in terms of saving storage space. Let us see how the
accuracy change with respect to the approximate ranking. We conduct experiments with different
S on both Hollywood2 and Olympic Sports datasets using FV encoded vectors. The results are
shown in Table 8.3, in which we report the mean values and standard deviations of 10 repeated
experiments for each configuration. Surprisingly, a seed size S as small as 4 is good enough
to achieve a result that is almost as high as precise ranking. That is to say, with approximate
ranking, we can save significant amount of storage space with minimal performance drop.

8.6 Local Descriptors Normalization
So far, we have been discussing the use of different normalization methods to address the value-
mismatch problem of FV and VLAD encoded features. In this section, we extend the usage
of these normalization methods to local descriptors, where the value-mismatch problem also
exists. As we have discussed before, the value-mismatch problem originates from the unsuper-
vised/handcrafted feature generation mechanism, where we do not know which dimension is
more useful in similarity measurement. As the local descriptors are handcrafted, they also suffer
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Hollywood2 Olympic Sports
Baseline (`2) 57.9% 83.0%

PNorm 58.2% 83.7%
INorm 58.0% 83.3%
RNorm 58.1% 84.0%

Table 8.4: Performance comparison of different normalization methods on local descriptors.

from the value-mismatch problem. This mismatch is mostly because of the repeated patterns
in images and videos. Table 8.4 shows the effects of different normalization methods on local
descriptors. For RNorm, we use the approximate ranking with a seed size of 4. Unlike the results
in Table 8.1, the improvements here are quite small but consistent. This improvement is because
the number of clusters in local descriptors is quite small (8 or 9). However, since we only need 2
bits instead of 32 bits to store each dimension of the local descriptors, RNorm can still be used
as an efficient way to store these descriptors.

8.7 Conclusions
In this chapter, we have shown that both FV and VLAD bear the value-mismatch problem, which
is caused by the sparse and bursty distribution phenomena. The classic PNorm and INorm can
only mitigate this problem. Compared to PNorm and INorm, our proposed RNorm is a better
way to handle this problem. It evenly distributes the energy across dimensions while preserving
the order of the original values. Experimental results on six real-world datasets also demonstrate
that RNorm is better than PNorm and INorm. Furthermore, our proposed approximate ranking
significantly improves its computation and storage efficiency while retaining the accuracy. The
local descriptor ranking, although only having small but consistent accuracy improvement, can
also be used to save storage space.
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Chapter 9

Fusion: Double Fusion

9.1 Introduction

In previous chapters, we have talked about several features and encoding methods. In this chap-
ter, we will talk about how to fuse the resulting representations. Fusion is particularly important
for MED as the complexity of the problem requires a combination of multiple sources of infor-
mation. Generally speaking, early fusion and late fusion [109] are the two most popular combi-
nation strategies. The former one fuses features before performing classification and the latter
one combines outputs of different classifiers. Early fusion can better capture the relationship
among features yet is prone to over-fit the training data. Late fusion deals with the over-fitting
problem better but each classifier can only see part of the information. In this chapter, we in-
troduce a new fusion scheme named double fusion, which effectively combines early fusion and
late fusion to incorporate their advantages and mitigate their disadvantages. Parts of this chapter
have been published in [63, 64].

Historically, researchers in image and video retrieval [41, 52, 73, 109, 136] found that a
combination of multi-modality information almost always boosts retrieval accuracy. Early fusion
combines features before performing classification using methods such as multi-kernel learning
[21, 33]. Late fusion combines output of classifiers from different features using methods such as
average fusion, committee voting [120] and co-regularized least squared regression [15]. There
is no universal conclusion of which strategy is preferred for multimedia content analysis and
retrieval. Snoek et al. [109] found that early fusion is better than late fusion in TRECVID 2004
semantic indexing task. By studying data on TRECVID 2006 semantic indexing task, Ayache et
al. [8] found that early fusion gets better results on most of tasks while late fusion is more robust
and can handle some harder tasks. To incorporate the advantages of both methods, we introduce a
simple yet efficient fusion strategy called double fusion. In double fusion, we first perform early
fusion to generate different combinations of features from subsets of features. After that, we train
classifiers on each feature or feature combination and use late fusion to combine the outputs of all
those classifiers. For example, as shown in Fig. 9.1, we first extract three kinds of features (visual,
audio and text) from training and testing videos. After that, pairwise early fusion (visual+audio,
visual+text) are carried out in these three features by combining their kernel matrices. In the
training step, five classifiers are trained based on five features and feature combinations (visual,
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Figure 9.1: The illustration of our MED system.

audio, text, visual+audio, visual+text). For each video, there are five scores indicating how
likely it is that this video belongs to the event. In the last step, late fusion is used to fuse five
score vectors into one score vector, on which the final interpretation can be done. Experimental
results on the TRECVID MED 2010 and MED 2011 data sets with about 1684 hours’ video clips
for 18 events show the effectiveness of double fusion. For MED 2010 we get a mean minimal
normalized detection cost (MNDC) of 0.49, which exceeds the state-of-the-art performance [52]
by more than 12%.

The remainder of the chapter is organized as follows. Section 9.2 briefly introduces different
fusion strategies that motivate our work. Section 9.3 presents the details of our E-lamp system,
including feature representation, BoW scheme, classifiers and fusion schemes. Section 9.4 ana-
lyzes experimental results on MED 2010 and MED 2011. We conclude this chapter in Section
9.5.

9.2 Fusion Scheme
Early Fusion [109] is a combination scheme that runs before classification. Both feature fusion
and kernel space fusion are examples of early fusion. The main advantage of early fusion is that
the classifier can “see” all the features at once and only one learning phase is required. However,
due to their different meanings and value ranges, it is often difficult to combine features that
are vastly different in feature spaces [109]. Multiple kernel learning (MKL) [21] is one of the
most popular early fusion technologies. Its drawback is the curse of high dimensionality, usually
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accompanied by limited training data. Our observations show that early fusion will be negatively
affected by features that have relatively low performance.

In contrast to early fusion, late fusion [109] happens in prediction score space. After classi-
fication, all the features lie in the same score space. Therefore, late fusion is often much easier
to perform and does not have the problem of two features which are not compatible. However,
in late fusion, because we classify each feature individually, the relationships among different
features become more difficult to exploit. Normally, another learning procedure is needed to
combine these outputs, but because of the overfitting problem, simply average fusion is often
used to combine the output scores and often yields better or at least comparable results than
training another classifier for fusion. Compared to early fusion, late fusion is more robust to
features that have negative impact.

We introduce a method called double fusion. Double fusion combines early fusion and late
fusion. Specifically, for early fusion, we fuse multiple subsets of features by using standard early
fusion technologies; for late fusion, we combine outputs of classifiers trained from single and
combined features. By using this scheme, we can freely combine different early fusion and late
fusion techniques, and get benefits of both methods. Given n features, we first train n classifiers
for n individual features. We then perform early fusion to combine some of the features. Because
of the explosive number (the number of combinations is 2n − 1, n is the number of features) of
combinations, it is computationally expensive to explore all possible feature combinations when
the feature space is large. Therefore, we select two types of combinations including category-
wise combination and all-future combination. In category-wise combination, we map all features
belonging to the same categories into a single feature and generate c new classifiers, where c is
the number of categories. For example, all visual features belongs to a feature type. In all-
feature combination, we just combine all the features as in early fusion. We use two early fusion
strategies, i.e., rule-based combination and MKL [21]. Rule-based combination simple averages
the kernel matrices. MKL [21] is an extension of average combination that automatically learns
the fusion weights for different kernel matrices. Our experimental results show that MKL is only
slightly better than average fusion.

9.3 Implementation

9.3.1 System details

As shown in Fig. 9.1, there are four key steps in our system. Step one does feature extraction on
visual, textual and audio modality. After modality specific data processing, BoW representation
is used to aggregate the local descriptors into video representations. Early fusion is applied in
step two after calculating the kernel matrices. In step three, classifiers are trained to get models.
After classification, the outputs of different classifiers are combined through late fusion.

Features

Features are critical for video content understanding. In our MED system, we explore four fea-
ture modalities including visual, audio, text, and concepts based features.
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Visual Features We use five visual features, namely SIFT [79], CSIFT [119], Transformed
color SIFT (TSIFT) [119], MoSIFT [16], STIP [69] and GIST [90].

For SIFT, CSIFT and TSIFT features, the harris-laplace key point detector is used to detect
interest points. As processing all MED video frames is computationally expensive, we only
extract features from key frames generated by a shot boundary detection algorithm. Specifically,
the algorithm calculates the color histogram for every five frames and subtracts the histogram
with the histogram of the previous frame, if the value is larger than a certain threshold, which is
empirically set, the key frame will be a shot boundary. After detecting a shot, we use the frame
in the middle of the shot to represent that shot. By using this algorithm, we extracted 114992 key
frames from MED 2010 and 364747 key frames from MED 2011 training dataset and 1035417
key frames from MED 2011 test dataset.

While SIFT, CSIFT and TSIFT describe 2D local structure in images, STIP and MoSIFT
capture space time volumes where the image values have significant local variations in both
space and time. STIP and MoSIFT are different in both interest points detectors and descriptors.
STIP uses 3D Harris corner detectors and its interest points are represented in two parts: the first
part is a HOG (Histogram of Oriented Gradients; 72 dimensions), which indicates the spatial
appearance and the second part is a HOF (Histogram of Optical Flow; 90 dimensions), describing
the motion information. MoSIFT uses a Difference of Gaussian (DoG) based detector and is
represented by another descriptor which is also concatenated from two parts: the first part is a
SIFT (128 dimensions), which indicates the spatial appearance and the second part is also a HOF
(128 dimensions).

For the GIST feature, we follow the suggestion from [90] and set the dimension of descriptors
to 960. However, because it did not help in improving our final system accuracy, we did not use
it for our MED 2011 final submission. The reason that GIST is not helpful for our system is that
it is a very weak visual feature that cannot impact the system given the existence of other strong
visual features.

Audio Features For the audio features, we used the Automatic Speech Recognition (ASR)
features, whose extraction process is as described in [73]. Briefly speaking, a simple speech-
to-text system is used to automatically transcribe the audio tracks of the videos. The system is
for American English and trained on a variety of audio sources, including Broadcast News and
’Meeting’ audio. It has a vocabulary of about 40k words. The outputs of the system consist of
word strings. In addition to ASR, we also use MFCC features as in [52] to capture other sound
besides spoken word.

Textual Features Following the work of [73], we use the Optical Character Recognition
(OCR) feature extracted by the Informedia system to represent the text feature. To extract OCR
features, we first identify text blocks based on the assumption that text blocks consist of short
edges in vertical and horizontal orientations. Canny filters and morphological operators are used
to perform the edge detection. We then use a commercial OCR system to recognize the text
within the text blocks. However, because OCR rarely gets a correct and complete word, instead
of treating the misspelled word as tokens, we treat each trigram of characters as a token. For ex-
ample the word ”scre∼en” will be split into ”scr”, ”cre”, ”re∼”, ”e∼e” and ”∼en”. This method
minimizes the size of the dictionary.

72



Concepts-based Features In our MED 2011 final submission, we used two high level fea-
tures. The first one, called SIN346, is trained from the data provided by TRECVID Semantic
Indexing (SIN) track. This feature has 346 dimensions that represents 346 concepts in SIN . The
second one is a set of face attributes extracted by PittPatt. After recognizing faces in videos, we
count the numbers of faces in each video, the maximum number of faces within each frame, the
number of frontal faces and other attributes of faces to represent the video.

BoW Representation

After extracting the features described in the previous section, a BoW representation is adopted
to cast local features into global video features. First, K-means is used to cluster feature descrip-
tors into a large number of clusters (i.e. ’words’ ). For visual features, the codebook size is 4096
except GIST, which has 960 dimensions. Second, by mapping these features into their cluster
centroids and summing all the mapped local features, we get frame-based representations. We
use a soft-weight strategy that selects the ten nearest clusters and assigns a rank weight to them.
Finally, we transform the frame-based features into video-based features. For SIFT, CSIFT,
TSIFT and GIST, we first normalize feature vectors of each key frame in a video and then sum
them together to represent the video. For STIP and MoSIFT, we just sum all the feature descrip-
tors in a video together and normalize it. As for ASR and OCR, we simply count the number of
words or tokens found in videos without doing the frame-based feature step. There are a total of
11618 unique words and 180228 unique tokens extracted for ASR and OCR, respectively.

Spatial Pyramid Matching

Since the classic BoW method discards all information about the spatial layout of features,
Lazebnik et al. [71] proposed the pyramid matching scheme by repeatedly subdividing the image
and computing histograms of local features for each sub-regions. We use the same method in our
system. Specifically, besides the BoW representation for the whole image, we divided each key
frame into 2x2 and 1x3 sub-regions, and computed the BoW representation for each sub-region.
The feature dimension for our visual feature vector is 8x4096=32768. We applied this simple
and effective method for SIFT, CSIFT,TSIFT, MoSIFT and STIP.

Classifiers

A large variety of classifiers exist for mapping the features into score space. In this chapter, we
use two classifiers, i.e. non-linear support vector machine (SVM) and kernel regression (KR)
[15]. SVM is one of the most commonly used classifiers due to its simple implementation, low
computational cost, relatively mature theory and high performance. In TRECVID MED 2010,
most of the teams [52] [41] use SVM as their classifiers. Compared to SVM, KR is a simpler but
less popular algorithm. However, our experiment shows that KR consistently outperforms SVM
in MED scenario. Therefore, we use KR.
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Fusion

Due to the computational cost, in justifying our choices of classifiers and fusion strategies, we
only use 7 features (SIFT, CSIFT, MoSIFT, STIP, ASR, OCR, GIST) and conduct experiments on
MED10 and MED11 development dataset with a total of 9822 videos. In this set of experiments,
only the visual feature set has multiple features, while all other categories are represented by a
single feature. By performing a visual feature (SIFT, CSIFT, MoSIFT, STIP, GIST) combination
and an all-feature (SIFT, CSIFT, MoSIFT, STIP, ASR, OCR, GIST) combination, we have two
combined features and seven single features (SIFT, CSIFT, MoSIFT, STIP, ASR, OCR, GIST).
For late fusion, we use two rule-based fusion methods to combine the outputs of the above 9
classifiers. One is an average combination, another one is a weighted combination. The details
of the weight calculation will be given in the experimental part.

In our second set of experiments, we use all the features except GIST as it does not contribute
to the final performance. For double fusion, we fuse visual features (SIFT, CSIFT, TSIFT and
MoSIFT), audio features (ASR, MFCC) and all the features as three early fusions and fuse them
with the outputs of classifiers trained on individual features.

9.3.2 Datasets and system environment
We evaluate this work on the MED2010 and MED2011 datasets.

We ran our program on the Carnegie Mellon University Parallel Data Lab cluster, which
contains 300 cores and it took us about 272140 CPU hours to extract features and run the BoW
mapping.

9.3.3 Evaluation metrics
For historical reasons, we also use the following two evaluation metrics, namely Minimal Nor-
malized Detection Cost (MinNDC) and Mean Maximm F1 (MMF1). As shown in Formula 1,
NDC is a normalized weighted sum of miss detection probability PMD and false positive rate
PFA. In our case, we use CMD = 80 as the weight for miss detection and CFA = 1 as the cost
for false positive. MinNDC is the minmal value of NDC along the precision-recall curve. Lower
MinNDC indicates better performance. These two criteria were the standard evaluation criteria
for NIST in TRECVID 2010 and 2011.

NDC(S,E) =
CMD ∗ PMD ∗ PT + CFA ∗ PFA ∗ (1− PT )

MINIMUM(CMD ∗ PT , CFA ∗ (1− PT ))
(9.1)

9.3.4 Experimental settings
For both SVM and KR, we use a χ2 kernel and use two-folder cross-validation to select the χ2

parameter γ and SVM parameter C. γ controls the influence of kernel and C controls the bias
variance trade-off of SVM.

The search ranges for both C and γ are 10−3 to 103, in multiples of 10. We did try small step
size search for parameter selection suggested by [102], but could not find statistically significant
differences.

74



Feature MMNDC %± STD MMF1%± STD
CSIFT 60.6 ± 0.7 52.5 ± 0.6
SIFT 60.5 ± 1.4 53.3 ± 1.1

MoSIFT 63.9 ± 1.4 50.6 ± 0.9
STIP 69.1 ± 0.5 48.2 ± 1.8
GIST 82.9 ± 1.5 33.7 ± 0.7
ASR 89.1 ±4.7 22.5 ± 4.1
OCR 85.7 ± 0.1 28.8 ± 0.8

Table 9.1: Comparison of single features on TRECVID MED2010. For MMNDC, lower score
indicates better performance; for MMF1, higher score means better performance.

9.4 Results

To get statistically meaningful experiments, for all settings except MED 2011 submission, we
repeat our experiments 10 times and calculate the mean and standard deviation of the results
for each setting. Because running all the combinations of fusion strategies and classifiers will
be computational expensive, we first compare all the classifiers, early fusion and late fusion
strategies on MED 2010 and choose the best strategy for each step to perform further experiments
on MED 2011.

9.4.1 Single feature comparison

First, we compare the mean MNDC (MMNDC) (lower MMNDC indicates better performance)
and MMF1 (higher MMF1 indicates better performance) of single features on MED 2010. As
shown in Table 9.1 and Fig. 9.2, the performance of different features varies dramatically from
event to event. Generally, four local features including CSIFT, SIFT, MOSIFT and STIP con-
sistently outperform other three features. In these four features, motion based features including
MOSIFT and STIP get much better results than static features including SIFT and CSIFT in
“Assembling a shelter” event, which has a lot of motion. Interestingly, static features are obvi-
ously superior to other features in “Batting a run” event and “Making a cake”, because of their
relatively monotonous background. Different characteristics and suitable situations for different
features shows that our features are complementary to each other. Also, the performances of
ASR and OCR features alone are much worse than visual features.

9.4.2 KR versus SVM

We further compared the performance of different classifiers by simply using SIFT, which is the
single best feature. From Table 9.2, we can see that, compared to SVM, KR has lower MMNDC
and higher MMF1, which indicates that KR is a better classifier for TRECVID MED tasks. From
now on, we will use KR as our classifier except MED 2011 submission, in which we will use
both KR and SVM classifiers.
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MMNDC MMF1

Figure 9.2: Comparison of single feature on TRECVID MED2010. For MMNDC, lower score
indicates better performance; for MMF1, higher score means better performance.

Classifiers Early Fusion Late Fusion
KR SVM MKL Average Weighted Average

Fusion Fusion Fusion
MMNDC% ± STD 60.5 ± 1.4 62.3 ± 1.1 50.6 ± 0.8 50.7 ± 0.6 52.5 ± 1.5 57.6 ± 1.9

MMF1% ± STD 53.3 ± 1.1 50.7 ± 2.9 61.4 ± 0.1 61.2 ± 0.6 59.7 ± 1.1 54.4 ± 1.6

Table 9.2: Comparison of classifiers, early fusion and late fusion strategies on TRECVID MED
2010. For MMNDC, lower score indicates better performance; for MMF1, higher score means
better performance.

9.4.3 Early Fusion strategies comparison

For early fusion, we test both MKL and early fusion average fusion. The results are shown
Table 9.2, in which we can see that MKL only gets comparable results to simple average fusion,
this is consistent with what was suggested by [21]. Since MKL is much slower than average
fusion, we will use average fusion for our further experiments.

9.4.4 Late Fusion strategies comparison

Table 9.2 shows the results of late fusion using weighted fusion and average fusion. The result of
weighted late fusion is much better than the result of average late fusion. This indicates that dif-
ferent features have different contributions to the final results, especially when the performance
varies dramatically between features. We will only use the weighted combination for late fusion
for further comparison except our MED’11 submission.
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MMNDC MMF1

Figure 9.3: Comparison of double fusion with early fusion and late fusion on MED 2010. For
MMNDC, lower score indicates better performance; for MMF1, higher score means better per-
formance.

MED 2010 MED 2011
Early Late Double Early Late Double

Fusion Fusion Fusion Fusion Fusion Fusion
MMNDC% ± STD 50.6 ± 0.8 52.5 ± 1.5 48.9 ± 0.7 65.6 ± 0.7 68.2 ± 1.3 60.6 ± 0.8

MMF1% ± STD 61.4 ± 0.1 59.7 ± 1.1 62.9 ± 0.6 41.1 ± 0.5 37.4 ± 3.8 44.3 ± 0.9

Table 9.3: Comparison of double fusion with early fusion and late fusion on MED2010. For
MMNDC, lower score indicates better performance; for MMF1, higher score means better per-
formance.

9.4.5 Double Fusion versus Early Fusion and Late Fusion

The result of double fusion is shown in Table 9.3 . From the table, we can see that double fusion
gives much better results than both early and late fusion. Fig. 9.3 shows that double fusion
consistently outperform early fusion and late fusion on all of three events in MED 2010. MED
2011 is much harder and more diverse than MED 2010 since we have 15 events now, but Fig. 9.4
and Fig. 9.5 indicate that double fusion still gets better performance than early fusion and late
fusion on 11 of 15 events. For the other 4 events, double fusion gets comparable results to the best
method and outperform the worse method. Therefore, double fusion does capture advantages of
both early fusion and late fusion.

MED 2011 Submission

In our TRECVID MED 2011 submission [9], we used double fusion and achieved second best in
terms of MMNDC. Again, from table 9.4, we can see that double fusion outperform both early
fusion and late fusion.
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Figure 9.4: Comparison of double fusion with early fusion and late fusion on MED 2011 by
suing MMNDC criteria. Lower MMNDC indicates better performances.

Figure 9.5: Comparison of double fusion with early fusion and late fusion on MED 2011 by
using MMF1 criteria. Higher MMF1 indicates better performances.
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Early Fusion Late Fusion Double Fusion
SVM 63.2 52.8 51.9
KR 58.5 51.6 50.6

Table 9.4: Comparison of classifiers and fusion methods by using MED’11 dataset. MMNDC is
used for evaluation, lower score indicates better performance.

9.5 Conclusions and Discussions
In this chapter, we present an analysis of early fusion and late fusion that combine features of
different modalities in MED and introduce a double fusion scheme which combines early fusion
and late fusion to incorporate their advantages. Our experiments on about 1684 hours of videos
from TRECVID MED 2010 and 2011 showed that this simple strategy is very effective and had a
substantial advantage over both early fusion and late fusion strategies. Moreover, we found that
weighted combination is better than average combination for late fusion but performs similarly
to average combination in early fusion. For historical reasons, the data and features we used
in this analysis are relatively outdated. However, the lessons we learned from this analysis still
holds for new datasets and features. And the techniques we used will be valuable in evaluating
new features and method. We have been using double fusion for TRECVID MED submissions
since 2010.

79



80



Chapter 10

Postprocessing: Multi-class Iterative
Re-ranking (MIR)

10.1 Introduction
In our MED pipeline, we use a traditional “one-versus-all” classifiers, which fails to capture the
relationships among multiple event classes. To address this problem, we introduce in this chapter
a postprocessing step that applies to the classifiers’ predictions. Parts of this chapter have been
published in [61].

Our proposed method is inspired by curriculum learning which mimics the human learning
scheme and has become popular for image and video classification [12, 17, 19, 49]. Curriculum
learning [12, 60] suggests distinguishing easy and typical samples from difficult ones and treat-
ing them separately. Traditional curriculum learning methods [11, 12, 60] rely on human or extra
resources to define data with difficulty levels (curriculum). Instead, we use freely-available clas-
sifiers from other action classes to define the curriculum. We then re-rank the prediction results
to promote easy videos and suppress difficult ones. Our proposed method, called Multi-class
Iterative Re-ranking (MIR), is easy to implement and training-free.

In the remainder of this chapter, We will first briefly introduce recent studies on capturing
relationships among multiple action classes and curriculum learning. We then describe the details
of our proposed method and demonstrate its performance gain over the baseline approach for the
action recognition task represented by Hollywood2 and Olympic Sports datasets. Next, we report
results for several MED tasks. A conclusion and discussion of future works are provided at the
end.

10.2 Related Work
Given the encoded features, state-of-the-art methods often use “one versus the rest” SVM, which
does not consider the relationships among action classes. To model those relationships, Bergamo
& Torresani [13] suggested a meta-class method for identifying related image classes based on
misclassification errors from a validation set. Hou et al. [37] identified similar class pairs and
grouped them together to train “two versus the rest” classifiers. By combining “two versus
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the rest” with “one versus the rest” classifiers, they observed significant improvements from
baselines. Unlike the aforementioned approaches that require training and modify the predictions
for one time only, MIR is training-free and iteratively updates the prediction rankings given those
rankings from previous iterations.

Our MIR model is inspired by a new learning paradigm called curriculum learning, proposed
by Bengio et al. [12]. Curriculum learning rates the difficulty levels for classifying samples and
uses the rating as a ‘curriculum’ to guide learning. This new way of learning, from a human
behavioral perspective, is considered similar to human learning in principle [55]. Moreover, just
like school curriculum design in the everyday case, it relies on human or other data resources to
define the curriculum. Our method instead uses freely available classifier predictions from other
action classes to help define the curriculum without human intervention.

10.3 Action Recognition
We use Hollywood2 and Olympic Sports datasets for this evaluation. The reason we only use two
instead of all five datasets is that MIR improves ranking rather than classification performance.
That is to say, for HMDB51, UCF101 and UCF50 where the datasets where the MAcc is used
for evaluation, MIR will not change their results.

We follow the experimental settings in [126]. More specifically, we use IDT features ex-
tracted using 15 frame tracking and camera motion stabilization. PCA is utilized to reduce the
dimensionality of IDT descriptors by a factor of two. After reduction, the local descriptors are
augmented with three-dimensional normalized location information [67]. FV encoding maps the
raw descriptors into a Gaussian Mixture Model with 256 Gaussians trained from a set of 256000
randomly sampled data points. Classification in conducted by a ‘one versus the rest’ linear SVM
classifier with a fixed C = 100 ([126]).

10.4 Multi-class Iterative Re-ranking (MIR)
As mentioned previously, traditional curriculum learning [12] often relies on human or extra
data sources to define the curriculum: easy and typical samples versus difficult ones. In this
chapter, we instead rely on classifiers of other classes, which are freely available, to define the
curriculum. This new way of curriculum definition captures relationships among multiple human
activity classes.

As depicted in Figure 10.1, we rank the videos from easy to difficult based on the classifiers’
confidences. Obviously, easier videos have a much faster roll-off rate of sorted classification
confidences. According to this ranking, we discover that videos that have some combinations of
the following three scenarios will be more likely to be ranked on the difficult end of the scale:
• Contains noisy background motions. If the background of a video contains noisy motions

and the target action has a small and weak signal, then the target action would likely be
obscured. For example, the videos of HandShake actions in 10.1b are obscured by the
background motions and much more difficult to detect than those videos of HandShake
actions in 10.1a.
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(a) Easy Videos. The example actions are:
HandShake (left), Kiss (middle), HugPer-
son (right).

(b) Difficult Videos. The example ac-
tions are: HandShake (left), Kiss (middle),
SitUp (right).

Figure 10.1: Illustration of easy and typical videos versus difficult ones. The bar charts show
the sorted predictions of all the classifiers to the example videos. The predictions are normalized
so that the values are between 0 and 1. As shown, the predictions of typical easy videos often
have one or two dominant classes while those predictions of difficult videos often have much
smoother score distributions.

• Contains multiple actions. If the subject performs multiple actions, the classifiers would
be confused as the video features represent a mixture of the multiple actions. For example,
the Kiss video in 10.1b contain both Kiss and Hug actions (appear in the following frames)
while the Kiss examples in 10.1a only contain the Kiss action itself.

• Ill-defined actions. If the target action is ill-defined by itself, the video would be more
difficult to classify. For example, ’SitUp’ action is often encapsulated in the ’StandUp’
action, which make it harder to classify.

Based on the difficulty scale, we design MIR to re-rank the predictions of classifiers. The
intuition behind MIR is that if videos are more difficult to classify, then their predictions are less
reliable and their rank should be lowered; if videos are easy and typical, then the predictions
should be more reliable and the videos should be ranked higher. The algorithm to re-rank is easy
to implement and fast to run. As shown in Algorithm 1, given a score matrix P ∈ RN×K that
contains K classifiers’ predictions on N videos. We update each score P (w)

i,j iteratively by looking
at other classifiers’ predictions on the same video and reducing the score using the predictions
from the other classifiers. The reduction is carried out by first sorting other classifiers’ predic-
tions {P (w)

i,1 , P
(w)
i,2 , · · · , P

(w)
i,K }\P

(w)
i,j in a descending order and then subtracting the weighted sum

of the sorted scores from Pi,j . We use exponentially decaying weights and the weighting co-
efficient β and the annealing parameter η have been set to 1 and 0.5, respectively, throughout
this chapter. These values were determined experimentally. It improves more than 2% over the
baseline method on both datasets. We also show the per-class comparison with and without MIR
in Figure 10.3. We can see that for Hollywood2, MIR improves upon the baseline results for 11
out of 12 actions, and for Olympic Sports, MIR improves or gets similar results for 14 out of
16 actions. These per-class performance comparisons again show that the improvements from
MIR are robust and significant. For those three situations that MIR did worse were the rare cases

83



Algorithm 1 Multi-class Iterative Re-ranking (MIR)
1: Input: The prediction scores of K class P ∈ RN×K ; Re-ranking annealing parameter η;

Re-ranking weighting coefficient β > 0; Total iteration steps W .
2: Init:P (0) = P
3: for w = 1, 2, · · · ,W − 1 do
4: For any instance index i ∈ {1, 2, · · · , N} and class index j ∈ {1, 2, · · · , K} ,

∆
(w)
i,j = sort({P (w)

i,1 , P
(w)
i,2 , · · · , P

(w)
i,K }\P

(w)
i,j , ↓)

P
(w+1)
i,j = P

(w)
i,j − ηw−1

K∑
r=1
r 6=j

e−βr∆
(w)
i,j (r)

5: end for
6: Output: P (W )
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Figure 10.2: MIR performance versus number of iterations.

where the reranking causes the drop of the performance. As shown in Figure 10.2, MIR typically
converges within 3 or 4 iterations.

10.5 Combined Results: MIFS, RNorm and MIR

10.5.1 Action Recognition

The data, feature encoding methods and classifiers are the same as the settings discussed in
section 10.3.

If we combine the proposed MIFS, RNorm and MIR methods, we observe an even more
prominent improvement over the baseline method. We improve upon the baseline method by
more than 13% and 10% absolute performance improvement on Hollywood2 and Olympic Sports
datasets, respectively. A more detailed comparison is provided in Figure 10.4, from which we
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Figure 10.3: Per-class performance comparison of the baseline performances with and without
MIR.

can see that our proposed methods together improve the baseline method on all the action classes
in Hollywood2. For some of the hard classes like ’Hand Shake’ and ’Answer Phone’, we can get
more than 20% absolute improvement. For Olympic Sports dataset, we observe a similar trend
and get 9 out 16 classes with perfect predictions.
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Figure 10.4: Per-class performance comparison of our combined results to the baseline method.
‘Combined’ indicates applying MIF, RNorm and MIR to the baseline method.

10.5.2 Multimedia Event Detection

We test on MEDTEST2013 and MEDTEST2014 datasets in both EK100 and EK10 scenarios.
The feature encoding methods and classifiers are the same as the settings discussed in section

10.3.
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MEDTEST13 MEDTEST14
EK10 EK100 EK10 EK100

Baseline 17.0 33.6 12.0 26.2
MIR 16.7 34.2 11.3 26.6

Combined 20.0 37.5 14.9 29.9

Table 10.1: Performance Comparison on the MED task.

Table 10.1 lists the overall mAP on all four datasets. The baseline method is a conven-
tional IDT representation. First, in EK10 scenario where the baseline performance is unusually
low, MIR hurts the performance due to the inaccurate curriculum estimation; in EK100 setting
that have comparatively reasonable baseline performance, MIR manages to achieve noticeable
improvements, though not as much as the improvements in action recognition tasks where the
baseline performances are much higher. These results reveal the fact that for MIR to be useful,
the baseline performance should be reasonably accurate. Finally, the combined results of MIFS,
RNorm and MIR, improve upon the baseline method by around 4% on EK100 tasks and about
3% on EK10 tasks. It is worth emphasizing that MED is such a challenging task that 3% of
absolute performance improvement is significant.

10.6 Conclusions
This chapter introduces a postprocessing step for our MED system to capture the relationships
among multiple event classes. MIR iteratively uses the predictions of other classifiers to rank
videos from easy to difficult task levels and re-ranks the predictions accordingly. We also show
that the combination of MIFS, RNorm and MIR significantly improve the performance of FV
on the six real-world datasets we tested and set new state-of-the-art results for two benchmark
action datasets including Hollywood2 and Olympic Sports.
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Chapter 11

Resource Constrained Multimedia Event
Detection

11.1 Introduction
In this chapter, we present a study comparing the cost and efficiency tradeoffs of multiple features
for MED. Parts of this chapter have been published in [65, 66].

Features are a critical part of contemporary multimedia and computer vision research. How-
ever, their efficacy has not been systematically studied. In this chapter, we evaluate the accuracy
and contribution of more than 10 features from different modalities. Contrasting multiple per-
formance metrics including MAP, MinNDC, and PMD@TER = 12.5, our study balances the
trade-off between accuracy and computational cost. This study provides empirical results for se-
lecting feature sets that are capable for dealing with large-scale data using limited computational
resources. Our methods can also be applied to other resource limited multimedia analysis such
as selecting/fusing multiple classifiers and different representations of each feature set.

The remaining chapter are organized as follows. We discuss related work in section 11.2
and we elaborate our MED system including features and evaluation metrics in section 11.3. In
section 11.4, we discuss experimental results. Finally, we summarize this chapter in section 11.5.

11.2 Related Work
Previous work [84] [116] [26] [77] on MED feature evaluation can be divided in two main cate-
gories whether they rely on low-level features or high-level semantic concepts. Yang et al. [134]
and Tamrakar et al. [116] evaluated the individual performance of different low-level visual
features (SIFT, STIP, Trajectories. . . ) and their combinations. Meler et al. [84], Ebadollahi
et al. [26] and Liu et al. [77] evaluated high-level features’ performance on MED. In this
work, we include both low-level and high-level features, leading to a more complete compar-
ison. Moreover, most previous work only evaluated each feature’s single performance, while
we focus more on each feature’s contribution to the combined system. We show that the single
feature performance, albeit important, does not necessarily reflect its contribution to the overall
performance.
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In terms of efficiency, most previous works focused on improving one component of a recog-
nition system with faster algorithms. For example, Bay et al. [10] introduced SURF as a faster
alternative of SIFT. Moosmann et al. [86] proposed to use random forest to replace SVM.
Jiang [50] conducted an interesting study to evaluate and combine a number of speed-up strate-
gies to get a fast event recognition system. Different from previous work, we offer a resource
constrained solution that can be customized by users who have different resource constraints.

11.3 MED System
Given a set of training and testing videos, we first extract features in different modalities from
the videos and then train a χ2 SVM classifier for each feature. Average late fusion is used to
combine the prediction results from each feature.

11.3.1 Features
To build a good MED system, it is important to have features that capture various aspects of
an event. In our MED system, we explore five different feature modalities which are computed
from different sources. Image features capturing appearance information are computed from
key-frames. Video features are extracted from videos directly and collect motion information.
Audio features characterize acoustic information. Text features and semantic features can bor-
row domain knowledge from other datasets such as Flickr and give semantically meaningful
representations for events.

Image Features: We use three image features that are computed from the keyframes ex-
tracted as described in [64]. The three images feature are SIFT, CSIFT, and TCH [119].

After detecting key points using harris-laplace key point detectors from key frames, we use
three different feature descriptors to generate SIFT, CSIFT and TCH features, which hopefully
are complementary. From the key points’ descriptors, a k-means algorithm generates a code-
book which has 4096 words for each feature. Next, a soft-mapping strategy, in which we choose
the ten nearest clusters and assign a rank weight ( 1

rank
) to them, maps key points into the code-

book. Spatial pyramid matching as described in [63] compensates for spatial information lost
in the bag-of-words representation. We then aggregate the image representation into video rep-
resentations by averaging all the image representations in one video and normalize the video
representation using an L2 normalization.

Video Features: We have three visual video features, namely IDT [126], MoSIFT [16] and
STIP [69], which are computed directly from videos. MoSIFT, as a three dimensional extension
of SIFT features, uses a Difference of Gaussian (DoG) based detector and is represented by a
descriptor combining SIFT and HOF. STIP uses 3D Harris corner detectors and its interest points
are represented as the combination of HOG and HOF. After getting the key point descriptors, the
same bag-of words and spatial pyramid matching as with image features is adopted to cast the
key point representation into a video-level representation.

Audio Features: Audio features are another important resource to detect events in videos.
To represent general audio information, we use the Mel-frequency cepstral coefficients (MFCCs)
feature. We compute 20 dimensional MFCCs for every 10ms over a 32ms sliding window. Given
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the raw features, we compute a 4096 word codebook and aggregate all MFCC features from one
video into a 4096 dimensional bag-of-words representation. In addition to MFCC, we also use
have ASR features as described in [9] to capture semantic information in audio.

Semantic Features: In our MED system, three semantic features are used. The first one
called SIN346 is defined by the TRECVID SIN track. This feature has 346 dimensions rep-
resenting the 346 concepts in SIN [9]. The second one is the Object Bank feature (ObjBank)
introduced by Li et.al. [74], in which we extended the original 176 objects to 1000 objects by
using the Imagenet challenge 2012 dataset (ILSVRC2012) [58]. Another semantic feature that
is also trained on the ILSVRC2012 dataset is the DCNN feature, in which we trained a Deep
Convolutional Neural Network feature using the method introduced by Krizhevsky et al. [58]
on a NVIDIA Tesla K20m GPU.

Text Features: Following Bao et al. [9], we also use Optical Character Recognition (OCR)
features to represent the text feature. We use a commercial OCR system is used to recognize the
text. As OCR rarely gets a complete word correct, we treat each trigram of characters as a token
instead of each whole word as a token. The details can be found in Chapter 9

11.4 Experiments
We evaluate on both MEDTEST2013 and KINDREDTEST datasets. To extract features, we
use the PSC blacklight [1] machine, which is a SGI UV 1000cc-NUMA shared-memory sys-
tem comprising 256 blades. Each blade holds 2 Intel Xeon X7560 (Nehalem) eight-core 2.27
GHz processors. For the GPU, we use a NVIDA Tesla-K20, which has 2496 cores. All GPU
measurment are relative to on of these GPUs.

For historical reasons, besides MAP, we also use two other evaluation metrics, namely Min-
imal Normalized Detection Cost (MinNDC) and PMD@TER = 12.5. As shown in Formula
1, NDC is a normalized weighted sum of miss detection probability PMD and false positive
rate PFA. In our case, we use CMD = 80 as the weight for miss detection and CFA = 1 as
the cost for false positive. MinNDC is the minmal value of NDC along the precision-recall
curve. Lower MinNDC indicates better performance. Another metric related to MinNDC is
PMD@TER = 12.5, in which TER = PMD

PFA
is an indicator of the miss detection rate at a given

threshold. These two criteria were the standard evaluation criteria for NIST in TRECVID 2010
and 2011.

NDC(S,E) =
CMD ∗ PMD ∗ PT + CFA ∗ PFA ∗ (1− PT )

MINIMUM(CMD ∗ PT , CFA ∗ (1− PT ))
(11.1)

11.4.1 Single feature performance and contribution

We study both single and combined features’ performance using the three evaluation metrics
described in Section 3.2.

Fig. 11.1 shows the single feature accuracies on our MEDTEST2013 and KINDREDTEST
sets. We order the features according to their MAPs. From Fig. 11.1, we can see that the ranks
are quite consist across different metrics and datasets. Specifically, the top two features that
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Figure 11.1: Single feature accuracy for both datasets, ranked according to MAP. Lower score
corresponds to better performance for MinNDC and PMD@TER = 12.5, but higher is better for
MAP.

significantly outperform other features are DCNN and Traj; the two features that are worse than
other features are ASR and OCR; others have very similar performances and their ranks vary due
to their minor performance differences. It is interesting to see that DCNN, a high-level feature,
can significantly outperform low-level features. Also, our OCR has higher recognition accuracy
than ObjBank and SIN, yet its overall performance is the worst among all eleven features. The
reason is that most of video don’t contain recognizable text. The significant performance differ-
ence between visual and audio features shows that, in unconstrained, visual information is more
discriminative than audio information.

To determine the contribution of each feature, we conduct an ablation study. In this study,
we first get the results of combining all features, then we remove one feature from the set and
recalculate the results. Fig. 11.2 shows the performance drop (leave-one-feature-out accuracy)
from removing one feature at a time. This drop shows the importance of each feature to the
overall combined feature set. The ranks by performance drop is quite different from the ranks
of single feature performance. In this case, higher values are better for all performance measure.
The higher the value, the greater the contribution to the overall system. For example, MFCC has a
low rank as a single feature accuracy but rank highest in leave-one-feature-out performance. This
indicates that MFCC is very complementary to the other features. While SIFT and CSIFT, align
with most other features, they combine to reduce MAP because they reduce the overall weight per
feature while not contributing additional information in the average late fusion method. More
sophisticated fusion methods such as fusion by learning combination weights may be able to
avoid this problem but will inevitably give smaller weights to those redundant features. Fig. 11.3
shows the Spearman rank coefficients for all of the features: it indicates MFCC and ASR are very
different from the other features. The figure demonstrate how MFCC and ASR are orthogonal to
the other features. Although the Spearman rank coefficients also show OCR is very different from
the other features, its close to random individual performance indicates its negligible role in the
system. Fig. 11.2 demonstrates that single feature accuracy alone does not indicate suitability for
inclusion in the combined feature set. However, as long as the leave-one-feature-out accuracy is
not negative, inclusion will increase the overall score. Unfortunately, including all features with
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Figure 11.2: Leave-one-out Accuracy for MED, Ranked According to ∆MAP. In all three met-
rics, higher values means higher performance drop when we leave the feature out, hence a higher
contribution of the feature to the combined system.

a positive value in Fig. 11.2 will lead to a computationally expensive system that is generally
unsuitable for a real world applications.

11.4.2 Performance versus cost trade-off

In order to determine the performance versus cost trade-off, we first determine each feature’s
computational cost as shown in Table 11.1, which also shows the abbreviation of features for
later usage. For each feature, the time is the number of hours to process one hour of video.
Let’s assume our goal is to process one hour of video in one hour. We then determine, for a
given number of CPUs, what the best possible performance is by a brute-force search across
all features in Table 11.1. Fig. 11.4 shows the best possible performance given one hour of
processing time for the given number of CPUs for all three metrics without using a GPU, thus
excluding the DCNN feature. Tables 11.2 and 11.3 show the optimal feature sets for the given
number of CPUs. Fig. 11.5 shows the best possible performance given one hour of processing
time for the given number of CPUs for all three metrics using one GPU, including the DCNN
feature. Tables 11.4 and 11.5 give the optimal feature sets for the given number of CPUs. As we
can see from Tables 11.2 to 11.5, the MFCC feature appears in almost all configurations due to its
low computational cost (Table 11.1) and relatively high contribution (Fig. 11.2). Although Traj
has a high contribution, it does not show up in Tables 11.2 to 11.5 until we have a minimum of 16
CPUs due to its high computational cost. We can see from the tables that the optimal feature sets
are very similar for the MEDTEST2013 and the KINDREDTEST, which demonstrates that it is
possible to select the optimal feature set from a smaller dataset like KINDREDEST and apply
it to a larger dataset like MEDTEST2013. Likewise, these optimal feature sets are fairly similar
across the three metrics. Further, we can also see from the figures that we get a diminishing
return beyond 32 CPUs. In all cases, we can get more than 92 percent of the best performance
by just using 32 cores.

Comparing Fig. 11.2 and Tables 11.4 and 11.5, we can see that in listing the importance
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Figure 11.3: Spearman’s rank correlation coefficient for features.

Table 11.1: Computational cost for features.

Features (Abbrev.) core hours features (Abbrev.) core hours
Traj(Tr) 12.38 Objbank(Ob) 28.43

MoSIFT(Mo) 11.23 DCNN(DC) 0.15 GPU
STIP(ST) 10.33 SIN(SIN) 78.92
SIFT(SI) 3.57 MFCC(MF) 1.36

CSIFT(CS) 5.05 ASR(AS) 4.99
TCH(TC) 2.12 OCR(OCR) 1.34

of features, where importance in the table is measured by the ratio of the number of times the
feature occurs to the number of possible occurrence given timing constraints, leave-one-feature-
out performance is consistent with brute-force search results, hence very predictive in selecting
the right feature set. For example, MFCC, DCNN, Traj and ASR, as the top 4 contributing
features appear in almost all of the configurations as long as we have enough computational
resources in terms of MAP. For other metrics, we have the same basic observation. The cost
of computing the leave-one-feature-out accuracy is relatively inexpensive for late fusion, as all
the components are already computed. In our system with 12 features, leave-one-feature-out
accuracy computation is about 300 times faster than brute-force search.

Table 11.2: Resource specific feature sets for MEDTEST2013.

CPUs Optimal Sets in Real-time Performance
MinNDC PMD@TER = 12.5 MAP

2 MF MF MF
4 TC MF SI TC MF
8 TC SI MF TC SI MF TC SI MF
16 Tr TC MF CS SI AS MF Tr TC MF
32 Mo TC CS SI AS MF Mo TC CS SI OCR AS MF Tr TC SI OCR AS MF
64 Ob ST Mo TC CS AS MF Ob Mo Tr SI OCR AS MF Ob Mo Tr TC OCR AS MF

128 Ob ST Mo TC CS OCR AS MF Ob Mo Tr CS SI OCR AS MF Ob Mo Tr TC OCR AS MF
256 SIN Ob Mo Tr CS SI OCR AS MF SIN Ob Mo Tr SI OCR AS MF SIN Ob Mo Tr TC OCR AS MF
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Figure 11.4: Resource specific performance for MED (without DCNN).
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Figure 11.5: Resource specific performance for MED (with DCNN on a GPU).

Table 11.3: Resource specific feature sets for KINDREDTEST.

CPUs Optimal Sets in Real-time Performance
MinNDC PMD@TER = 12.5 MAP

2 MF MF MF
4 SI SI SI
8 TC SI MF TC SI MF TC SI MF
16 Tr MF Tr TC MF Tr TC MF
32 ST Mo SI AS MF Tr CS SI OCR AS MF Tr TC SI AS MF
64 ST Mo Tr SI OCR AS MF Ob Mo Tr SI OCR AS MF ST Mo Tr TC SI OCR AS MF

128 SIN ST Mo Tr SI OCR AS MF SIN ST Mo Tr SI OCR AS MF SIN Mo Tr TC OCR AS MF
256 SIN Ob ST Mo Tr CS SI OCR AS MF SIN Ob ST Mo Tr SI OCR AS MF SIN Mo Tr TC OCR AS MF

11.5 Conclusions and Discussions

In this chapter, we systematically evaluated the performance and contributions of more than 10
multi-modality features for MED. Based on the evaluation and computational cost of feature
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Table 11.4: Resource specific feature sets for MEDTEST2013 (with 1 additional GPU).

CPUs Optimal Sets in Real-time Performance
MinNDC PMD@TER = 12.5 MAP

2 DC MF DC MF DC MF
4 DC MF DC MF DC TC MF
8 DC SI MF DC SI MF DC SI MF

16 DC Tr MF DC TC SI OCR AS MF DC Tr TC MF
32 DC Tr SI AS MF DC Mo TC SI OCR AS MF DC Tr CS OCR AS MF
64 DC Ob ST Mo TC SI AS MF DC ST Mo Tr TC CS SI OCR AS MF DC Ob Mo Tr TC OCR AS MF

128 SIN DC ST Mo TC SI OCR AS MF SIN DC ST Mo SI OCR AS MF DC Ob Mo Tr TC OCR AS MF
256 SIN DC Ob Mo Tr AS MF SIN DC ST Mo SI OCR AS MF DC Ob Mo Tr TC OCR AS MF

Table 11.5: Resource specific feature sets for KINDREDTEST(with 1 additional GPU).

CPUs Optimal Sets in Real-time Performance
MinNDC PMD@TER = 12.5 MAP

2 DC MF DC MF DC MF
4 DC MF DC MF DC TC MF
8 DC AS MF DC AS MF DC SI MF

16 DC Tr MF DC Tr MF DC Tr MF
32 DC Tr AS MF DC Mo Tr OCR AS MF DC Tr SI AS MF
64 DC Tr AS MF DC Mo Tr OCR AS MF DC Mo Tr SI AS MF

128 SIN DC ST Mo Tr SI OCR AS MF SIN DC Mo Tr OCR AS MF SIN DC Mo Tr TC OCR AS MF
256 SIN DC ST Mo Tr SI OCR AS MF SIN DC Mo Tr OCR AS MF SIN DC Mo Tr TC OCR AS MF

extraction, we select feature sets that have optimal real-time performance under various resource
constraints by measuring leave-one-feature-out performance and brute-force search performance.

A particularly important insight from above experiments is that leave-one-feature-out feature
performance is very predictive in selecting the right feature set.

We also found that in both datasets and across the three different metrics:
• DCNN and Trajectory features are very useful features in unconstrained video analysis.

Especially DCNN, given its semantic and high accuracy characteristics, is a feature that is
worth paying a lot of attention to.

• Even a less accurate feature such as MFCC, if it is cheap and complementary to other
features, can be very useful.

• By selecting the right features, we can save a large amount of computational cost with a
minimum accuracy drop. For example, in our experiments, we can still achieve 92% of op-
timal performance by using a system that only requires 13% of the original computational
cost.

By using the results of this analysis, researchers can use it as a guide to tailor a system based
on their resource constraints.
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Chapter 12

Conclusions and Future Work

In this thesis, we study the problem of multimedia event detection (MED) in web videos. By
introducing a series of improvements on the classic video classification pipeline, we have been
able to realize an accurate and customizable MED system. Some of these proposed methods
have been incorporated as major components of the CMU E-lamp system, which has achieved
the leading performances in the TRECVID Multimedia Event Detection (MED) competition
2011 ∼ 2015.

Besides an applicable system, our research also provides a set of insights that we believe
would be helpful for the future MED study. These insights are:
• Different from spatial scale invariance, Gaussian smoothing should not be applied to tem-

poral scale invariance (MIFS).
• Due to the heavy redundancy of video frames, we can take single frame/shots as inputs to

train CNNs. However, this type of training is suboptimal because the label describes the
entire video taken as a whole but not necessarily each frame/clip (DOVF).

• In representing videos, we do not need to represent every frame (DOVF).
• Handcrafted features share a similar process as CNNs (ConvISA).
• Performance tends to improve when we design different network structures for different

kinds of data such as optical flows and pixels (ConvISA).
• Space (and time) encoding in video classification is not as useful as space encoding in

image classification because of the much larger diversity in video content (STED).
• In space-time information encoding, instead of using spatial pyramid matching, a better

way is to extend features with spatio-temporal location information, which can dramati-
cally reduce the dimensionality of the final features and keep the performance the same
(STED).

• Replacing the original FV values with their instance-wise ranking can fundamentally ad-
dress the sparse and bursty distribution problem of FV and lead to significant performance
improvements (RNorm).

• Combining both early fusion and late fusion together can do better than either one of them
alone, especially in those cases where late fusion outperform early fusion (Double Fusion).
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• Incorporating the information from other events into event classification can significantly
improve the performance of the MED system (MIR).

• In choosing the right feature to incorporate into the system, an ablation study can be much
more informative than looking at each feature independently.

Given the complexity of our task and the significance of our improvements, we believe that
our algorithms and the above lessons could be generalized to other tasks and better methods.
For example, our double fusion methods can be used on tasks such as image segmentation [78],
text retrieval [138], and action recognition in Inferred data [32], etc. It can also be extended
to neural network scenario [131]. Similarly, our MIFS algorithm has been extended to deep
learning scenario [135].

In the near future, a promising direction is to improve the speed of two-stream CNNs. Cur-
rently, we rely on traditional local optical flow estimation methods to compute motion informa-
tion for the CNNs. This two-stage pipeline is sub-optimal for the following reasons:
• The pre-computation of optical flow is time consuming and storage demanding compared

to the CNN step. Even extracted on GPUs, optical flow calculation has been the major
speed bottleneck of the current two-stream approaches, which learn to encode appearance
and motion information in two separate CNNs.

• Traditional optical flow estimation is completely independent of action recognition and is
prone to error. Because it is not end-to-end trainable, we cannot extract motion information
that is optimal for the tasks.

The primary goal, therefore, is to move toward end-to-end learning by incorporating the
optical flow estimation into the CNN framework. I hope that, by taking consecutive video frames
as inputs, CNNs learn the temporal relationships among pixels and use the relationships to predict
action classes.

Another very promising direction to do joint multi-stream learning. Currently, we train two-
stream CNN separately. Can we train them jointly? Can we do multiple stream training? For
example, adding audio information into the joint training? It would be interesting if we can
provide insights for these questions.

The above enhancements, if successful, will great improve the performance (speed and accu-
racy) of MED and general video classification.
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Appendix A

Proof

Here we give the details of proofs in the main text. Our proofs are based on the following
Bernstein’s Matrix Inequaltiy.
Lemma 1 (Bernstein’s Matrix Inequality) Let xi ∈ Rp×1, ‖xi‖2 ≤ B. S = x1x1

T+· · ·xnxnT.
Then with probability at least 1− δ,

‖S − E{S}‖ ≤
√

2B ‖E{S}‖ log(2p/δ) +
B

3
log(2p/δ) . (A.1)

A.0.1 Proof of Theorem 1
For the i-th row, j-th column of P ,

|Pi,j| =[αi(tj + τ)−αi(tj)] ≤ 2 (A.2)

‖Pj‖2 ≤4k (A.3)
E{P 2

i,j} ≤2(1 + c) exp(−γ/τ) (A.4)

E{P 2
i,j} ≥2 exp(−γ/τ) (A.5)

E{Pi,jPk,j} =0 i 6= k (A.6)

λmax{E{PjPjT}} =
1

T
λmax{E{PPT}} ≤ 2(1 + c) exp(−γ1/τ) (A.7)

λmin{E{PjPjT}} =
1

T
λmin{E{PPT}} ≥ 2 exp(−γk/τ) . (A.8)

By Bernstein’s Matrix inequality (Theorem 1), with probability at least 1− δ, we have

4T∆τ ,
∥∥PPT − E{PPT}

∥∥ ≤√2× 4k × 2T (1 + c) exp(−γ1/τ) log(2k/δ) +
4k

3
log(2k/δ)

=4
√
kT (1 + c) exp(−γ1/τ) log(2k/δ) +

4

3
k log(2k/δ)

≤4
√
kT (1 + c) log(2k/δ) +

4

3
k log(2k/δ) (A.9)

When
T ≥ 1

9(1 + c)
k log(2k/δ) (A.10)
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we have

∆τ ≤ 2

√
k

1

T
(1 + c) log(2k/δ) (A.11)

Therefore, when T large enough,

β(PPT) ≤ (1 + c) exp(−γ1/τ) + ∆τ

exp(−γk/τ)−∆τ

. (A.12)

A lower bound on β(PPT) could be given similarly by changing ∆τ to −∆τ .

A.0.2 Proof of Theorem 2
The proof is similar to Theorem 1, except that Pi is sampled from m different distribution. To
borrow the proof in Theorem 1, the distribution of Pi has m components. The i-th component is
sampled from iτ skip with probability Ti/

∑
j Tj = Ti/T where T =

∑
j Tj is the total number

of features. Based on this observation, we have:

|Pi,j| ≤2 (A.13)

‖Pj‖2 ≤4k (A.14)

E{P 2
i,j} ≤

∑
i

Ti
T

2(1 + c) exp(−γ/τi) (A.15)

E{P 2
i,j} ≥

∑
i

Ti
T

2 exp(−γ/τi) (A.16)

E{Pi,jPk,j} =0 i 6= k (A.17)

λmax{E{PjPjT}} =
1

T
λmax{E{PPT}} ≤

∑
i

Ti
T

2(1 + c) exp(−γ1/τi) (A.18)

λmin{E{PjPjT}} =
1

T
λmin{E{PPT}} ≥

∑
i

Ti
T

2 exp(−γk/τi) (A.19)

From matrix concentration,

4T∆τ ,
∥∥PPT − E{PPT}

∥∥ ≤√2× 4k × [
∑
i

Ti2(1 + c) exp(−γ/τi)] log(2k/δ) +
4k

3
log(2k/δ)

=4

√
k[
∑
i

Ti(1 + c) exp(−γ/τi)] log(2k/δ) +
4

3
k log(2k/δ)

≤4
√
k(1 + c)T log(2k/δ) +

4

3
k log(2k/δ) (A.20)
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Appendix B

Detailed Results

Table B.1 B.2 B.3 B.4 B.5 B.6 B.7 show the detailed MIFS results of seven datasets we use in this
paper. We mask the best result of each class in bold and calculate the number of classes that have
the best results for each method. It is interesting to observe, from action recognition datasets, that
similar patterns as in each dataset still hold within each class. That is to say, different actions can
have very different scale requirements; the performances of coarse scale features are limited by
the difficulty of optical flow calculation and tracking. Our future work will focus on selecting the
right scale for each action type and improving the quality of optical flow calcuation and tracking
at coase scale. For MED results, we can see that MIFS does not only perform significantly better
over the baseline method in terms of mAP, but also dominates in terms of number of event that
performs better.

Table B.1: Detailed results of HMDB51 for MIFS with different scale levels. Accuracy (%) is
used for evaluation. The best accuracy is marked in bold.

Action Name L=0 L=1 L=2 L=3 L=4 L=5
BrushHair 92.22 94.44 92.22 92.22 93.33 93.33
Cartwheel 56.67 63.33 64.44 61.11 63.33 63.33
Catch 78.89 81.11 80.00 81.11 77.78 78.89
Chew 70.00 71.11 72.22 74.44 80.00 74.44
Clap 85.56 82.22 77.78 77.78 73.33 78.89
Climb 82.22 86.67 91.11 90.00 92.22 91.11
ClimbStairs 50.00 56.67 56.67 53.33 54.44 53.33
Dive 60.00 62.22 56.67 57.78 60.00 56.67
DrawSword 54.44 55.56 55.56 55.56 57.78 57.78
Dribble 85.56 86.67 86.67 85.56 84.44 84.44
Drink 67.78 66.67 68.89 67.78 66.67 67.78
Eat 56.67 52.22 48.89 51.11 48.89 52.22
FallFloor 47.78 46.67 45.56 44.44 42.22 45.56
Fencing 56.67 62.22 63.33 60.00 64.44 62.22
FlicFlac 84.44 85.56 82.22 83.33 83.33 80.00
Golf 98.89 98.89 98.89 98.89 98.89 98.89

Continued on next page
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TableB.1 – continued from previous page
Action Name L=0 L=1 L=2 L=3 L=4 L=5
Handstand 75.56 75.56 77.78 77.78 80.00 80.00
Hit 60.00 56.67 63.33 65.56 68.89 70.00
Hug 80.00 82.22 82.22 82.22 84.44 81.11
Jump 44.44 50.00 51.11 50.00 52.22 46.67
Kick 37.78 40.00 44.44 46.67 47.78 42.22
KickBall 61.11 57.78 55.56 60.00 58.89 61.11
Kiss 77.78 83.33 82.22 81.11 75.56 82.22
Laugh 75.56 77.78 80.00 78.89 80.00 82.22
Pick 30.00 42.22 41.11 37.78 35.56 37.78
Pour 85.56 86.67 88.89 90.00 90.00 91.11
Pullup 97.78 98.89 100.00 100.00 100.00 100.00
Punch 38.89 44.44 41.11 43.33 43.33 43.33
Push 58.89 62.22 66.67 68.89 68.89 68.89
Pushup 92.22 87.78 88.89 87.78 88.89 88.89
RideBike 77.78 78.89 81.11 77.78 81.11 78.89
RideHorse 71.11 75.56 80.00 81.11 80.00 84.44
Run 44.44 43.33 36.67 35.56 38.89 34.44
ShakeHands 66.67 68.89 70.00 70.00 72.22 68.89
ShootBall 81.11 86.67 85.56 85.56 85.56 85.56
ShootBow 76.67 90.00 90.00 91.11 91.11 91.11
ShootGun 48.89 51.11 56.67 56.67 60.00 58.89
Sit 80.00 81.11 81.11 81.11 81.11 84.44
Situp 80.00 86.67 86.67 88.89 90.00 90.00
Smile 37.78 42.22 41.11 45.56 43.33 42.22
Smoke 44.44 54.44 62.22 60.00 56.67 55.56
Somersault 71.11 68.89 67.78 64.44 67.78 70.00
Stand 65.56 70.00 77.78 74.44 74.44 73.33
SwingBaseball 10.00 16.67 15.56 18.89 22.22 21.11
Sword 33.33 34.44 35.56 33.33 34.44 34.44
SwordExercise 18.89 18.89 25.56 25.56 26.67 21.11
Talk 73.33 67.78 70.00 74.44 73.33 72.22
Throw 5.56 4.44 8.89 4.44 4.44 4.44
Turn 71.11 74.44 74.44 73.33 73.33 78.89
Walk 57.78 57.78 53.33 58.89 53.33 56.67
Wave 10.00 14.44 12.22 14.44 12.22 15.56
Mean 62.14 64.40 65.03 65.10 65.45 65.42
NumOfBest 8 11 11 7 18 14
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Table B.2: Detailed results of Hollywood2 for MIFS with different scale levels. Average preci-
sion (AP) (%) is used for evaluation. The best AP is marked in bold.

Action Name L=0 L=1 L=2 L=3 L=4 L=5
AnswerPhone 34.84 41.00 39.25 42.72 40.55 38.45
DriveCar 95.27 95.98 96.21 96.48 96.34 96.22
Eat 70.76 73.10 73.10 73.83 70.28 70.91
FightPerson 83.64 82.85 82.66 82.09 82.84 82.61
GetOutCar 63.41 63.90 62.53 63.03 64.18 63.89
HandShake 57.72 52.91 52.83 49.14 50.82 48.38
HugPerson 54.49 55.23 58.76 58.15 56.56 54.17
Kiss 63.06 63.49 64.32 65.12 65.19 64.78
Run 85.88 86.07 86.10 86.10 86.26 85.97
SitDown 79.55 80.45 82.14 81.68 81.36 82.30
SitUp 35.43 35.69 37.98 36.51 34.20 36.92
StandUp 79.68 79.87 79.10 80.99 80.61 81.03
Mean 66.98 67.55 67.92 67.99 67.43 67.14
numOfBest 2 0 2 3 3 2

Table B.3: Detailed results of UCF101 for MIFS with different scale levels. Accuracy (%) is
used for evaluation. The best accuracy is marked in bold.

Action Name L=0 L=1 L=2 L=3 L=4 L=5
ApplyEyeMakeup 83.46 85.97 86.63 89.14 89.90 86.77
ApplyLipstick 62.54 67.73 65.57 68.66 70.82 69.78
Archery 75.03 78.54 77.60 76.72 77.60 76.72
BabyCrawling 83.25 86.11 84.30 87.16 83.64 83.64
BalanceBeam 89.25 92.47 92.47 93.55 94.62 94.62
BandMarching 91.51 87.67 92.32 93.09 95.42 95.42
BaseballPitch 86.41 86.41 89.52 89.52 90.29 90.29
Basketball 78.15 79.96 78.95 80.97 80.13 81.02
BasketballDunk 98.33 98.33 98.33 98.33 98.33 98.33
BenchPress 100.00 100.00 100.00 99.21 100.00 99.21
Biking 96.39 97.27 96.39 95.52 96.39 97.27
Billiards 100.00 100.00 100.00 100.00 100.00 100.00
BlowDryHair 73.61 75.13 74.34 76.15 77.82 76.11
BlowingCandles 83.96 89.29 90.40 90.40 88.28 90.40
BodyWeightSquats 96.67 97.78 97.78 97.78 96.74 97.78
Bowling 96.12 96.12 96.12 96.12 96.12 96.12
BoxingPunchingBag 88.47 89.96 95.65 94.29 94.29 94.16
BoxingSpeedBag 94.59 94.66 92.93 94.66 93.06 94.66
BreastStroke 98.81 97.66 96.47 96.47 96.47 95.32
BrushingTeeth 66.50 70.37 65.52 66.50 65.58 62.64

Continued on next page
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Table B.3 – continued from previous page
Action Name L=0 L=1 L=2 L=3 L=4 L=5
CleanAndJerk 93.74 94.85 93.74 96.87 95.86 97.88
CliffDiving 100.00 100.00 100.00 100.00 100.00 100.00
CricketBowling 83.70 84.49 87.06 84.55 85.28 84.48
CricketShot 90.87 90.78 92.42 90.97 93.78 93.88
CuttingInKitchen 72.62 81.32 79.42 79.23 80.67 81.44
Diving 99.12 100.00 99.12 99.12 99.12 99.12
Drumming 83.68 86.65 87.42 91.82 88.95 88.90
Fencing 98.81 100.00 100.00 100.00 98.81 98.81
FieldHockeyPenalty 89.44 93.06 94.72 93.89 95.56 91.94
FloorGymnastics 92.62 93.52 95.34 96.27 96.29 96.27
FrisbeeCatch 86.01 89.77 88.79 91.65 91.57 90.67
FrontCrawl 79.51 80.37 79.47 80.37 81.27 81.27
GolfSwing 97.50 98.33 98.33 98.33 98.33 98.33
Haircut 53.36 56.33 55.75 58.18 60.36 60.20
Hammering 55.50 47.69 53.26 57.47 58.69 61.51
HammerThrow 99.26 99.26 99.26 99.26 99.26 99.26
HandstandPushups 94.63 91.96 93.15 94.34 93.15 93.15
HandstandWalking 62.99 75.97 72.84 65.37 70.36 68.19
HeadMassage 84.47 85.33 86.12 86.14 86.95 86.95
HighJump 85.80 86.88 85.80 85.80 83.20 85.25
HorseRace 96.97 100.00 100.00 99.05 98.10 98.10
HorseRiding 90.15 92.58 94.02 93.34 93.26 92.58
HulaHoop 97.11 97.11 97.11 97.11 96.16 97.11
IceDancing 98.48 98.48 98.48 99.28 99.28 99.28
JavelinThrow 74.36 74.29 71.26 73.35 75.43 70.19
JugglingBalls 87.39 92.30 90.27 91.11 91.11 92.09
JumpingJack 91.69 92.62 92.62 94.44 95.37 95.37
JumpRope 93.86 96.49 97.37 97.37 97.37 97.37
Kayaking 77.01 77.94 79.07 77.21 76.29 76.29
Knitting 91.45 94.39 96.24 96.24 95.26 95.26
LongJump 85.65 80.58 81.56 81.56 83.15 81.56
Lunges 74.11 77.69 78.54 78.54 79.44 79.44
MilitaryParade 97.19 95.42 94.41 92.61 92.61 93.53
Mixing 87.76 85.51 86.58 88.08 87.32 85.84
MoppingFloor 58.66 61.54 61.03 60.14 55.05 56.09
Nunchucks 61.61 60.84 57.32 58.04 57.14 57.08
ParallelBars 98.20 98.20 100.00 98.20 98.99 98.09
PizzaTossing 61.13 66.32 66.18 70.36 67.19 64.02
PlayingCello 89.57 91.75 93.22 93.20 93.96 93.96
PlayingDaf 90.75 90.75 90.75 90.75 90.75 92.23
PlayingDhol 99.19 99.19 99.19 97.80 98.49 97.81

Continued on next page
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Table B.3 – continued from previous page
Action Name L=0 L=1 L=2 L=3 L=4 L=5
PlayingFlute 77.98 77.18 76.49 78.08 77.38 76.49
PlayingGuitar 85.05 87.81 88.56 90.64 90.64 92.14
PlayingPiano 91.67 91.67 95.24 96.43 96.43 96.43
PlayingSitar 94.01 94.73 96.97 94.76 95.49 96.25
PlayingTabla 96.84 98.92 98.92 98.92 98.92 96.84
PlayingViolin 84.52 85.71 85.71 88.10 88.10 85.71
PoleVault 98.33 97.59 99.17 97.57 98.31 97.57
PommelHorse 100.00 100.00 100.00 100.00 100.00 100.00
PullUps 92.86 97.62 95.24 96.43 96.43 97.62
Punch 90.17 90.17 90.17 90.17 90.17 90.17
PushUps 82.30 86.98 85.71 89.29 89.29 89.29
Rafting 80.53 79.49 80.47 77.50 78.48 79.49
RockClimbingIndoor 91.74 93.41 93.37 92.52 92.52 91.66
RopeClimbing 85.20 89.06 89.06 92.04 91.03 89.06
Rowing 88.62 92.91 92.91 93.84 93.84 94.59
SalsaSpin 95.73 97.44 99.15 97.36 97.36 96.74
ShavingBeard 75.68 76.45 76.37 75.60 76.37 73.27
Shotput 69.79 74.73 72.04 69.27 69.50 71.90
SkateBoarding 93.13 90.15 91.10 90.15 90.15 90.15
Skiing 82.98 85.46 84.58 87.24 85.50 87.28
Skijet 96.43 95.24 92.86 89.29 91.67 92.86
SkyDiving 92.87 90.82 92.87 92.87 93.85 94.83
SoccerJuggling 84.64 83.54 86.64 86.56 86.56 85.79
SoccerPenalty 92.64 93.46 95.10 94.27 94.27 94.27
StillRings 96.84 97.92 97.92 97.92 97.92 97.92
SumoWrestling 95.96 95.99 96.97 96.97 97.98 97.98
Surfing 90.60 93.16 94.87 94.02 93.16 93.16
Swing 92.33 96.03 96.03 95.24 95.24 96.03
TableTennisShot 91.77 91.77 90.94 91.11 90.94 90.94
TaiChi 86.90 88.10 88.10 88.10 88.10 88.10
TennisSwing 94.56 95.92 93.88 96.58 95.24 93.88
ThrowDiscus 93.62 93.64 94.57 94.57 95.47 95.47
TrampolineJumping 92.71 95.83 95.83 96.88 96.88 96.88
Typing 82.30 86.37 89.55 87.70 87.70 87.70
UnevenBars 91.82 91.82 91.96 94.20 91.96 94.20
VolleyballSpiking 99.10 100.00 100.00 100.00 100.00 100.00
WalkingWithDog 77.21 81.05 79.14 78.16 79.11 80.99
WallPushups 82.91 89.68 90.48 89.52 90.48 89.52
WritingOnBoard 92.95 94.75 96.56 96.40 95.50 95.66
YoYo 78.49 79.37 75.56 76.48 74.58 77.41
Mean 87.26 88.65 88.81 89.05 89.08 88.98
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Table B.3 – continued from previous page
Action Name L=0 L=1 L=2 L=3 L=4 L=5
NumOfBest 19 35 36 33 37 44

Table B.4: Detailed results of UCF50 for MIFS with different scale levels. Accuracy (%) is used
for evaluation. The best accuracy is marked in bold.

Action Name L=0 L=1 L=2 L=3 L=4 L=5
BaseballPitch 90.15 91.87 92.53 93.10 93.68 94.34
Basketball 84.29 87.80 87.47 89.77 88.10 86.63
BenchPress 99.20 99.20 99.20 99.20 99.20 99.20
Biking 94.53 96.33 96.33 94.33 95.33 95.33
Billiards 100.00 100.00 100.00 100.00 100.00 100.00
BreastStroke 99.00 100.00 100.00 100.00 100.00 100.00
CleanAndJerk 99.00 99.00 100.00 100.00 100.00 100.00
Diving 99.43 100.00 99.43 100.00 99.43 99.43
Drumming 86.90 89.33 92.05 91.52 93.06 92.39
Fencing 99.00 99.00 100.00 100.00 99.00 99.00
GolfSwing 96.00 98.67 98.67 99.33 100.00 100.00
HighJump 93.80 94.80 94.80 93.80 94.00 93.00
HorseRace 99.00 98.33 98.33 98.33 98.67 98.67
HorseRiding 93.50 94.00 95.43 95.43 94.36 94.36
HulaHoop 97.00 96.87 96.87 96.87 96.20 96.87
JavelinThrow 84.20 85.33 84.67 86.13 86.80 85.13
JugglingBalls 96.30 94.43 94.43 95.10 94.10 95.10
JumpRope 95.71 96.14 97.43 98.43 98.43 97.43
JumpingJack 91.43 94.43 95.43 96.00 96.00 97.00
Kayaking 90.95 90.38 91.62 92.19 92.19 91.62
Lunges 79.07 83.20 84.44 86.49 85.69 85.93
MilitaryParade 100.00 100.00 100.00 100.00 100.00 100.00
Mixing 96.00 93.69 93.52 94.19 94.86 94.19
Nunchucks 70.06 71.98 70.42 66.71 65.58 65.01
PizzaTossing 74.40 75.10 76.10 75.60 74.40 75.30
PlayingGuitar 96.83 98.86 98.86 99.43 99.43 99.43
a PlayingPiano 97.00 98.00 99.00 99.00 99.00 98.00
PlayingTabla 100.00 100.00 100.00 100.00 100.00 100.00
PlayingViolin 97.00 96.00 96.00 97.00 97.00 97.00
PoleVault 97.48 98.56 97.56 96.56 96.56 96.56
PommelHorse 99.00 99.00 100.00 99.00 100.00 100.00
PullUps 98.00 97.00 97.00 97.00 97.00 98.00
Punch 91.06 91.63 91.06 91.63 92.06 92.63
PushUps 91.00 90.00 90.00 92.00 92.00 94.00
RockClimbingIndoor 92.57 93.90 93.05 95.86 95.29 94.76
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Table B.4 – continued from previous page
Action Name L=0 L=1 L=2 L=3 L=4 L=5
RopeClimbing 85.40 92.96 93.46 95.96 94.46 92.96
Rowing 92.76 94.76 94.76 94.76 94.76 94.76
SalsaSpin 98.33 97.43 97.43 97.43 96.43 97.43
SkateBoarding 85.00 88.00 87.00 87.67 86.00 86.00
Skiing 93.12 93.96 94.51 94.46 95.36 93.27
Skijet 94.00 93.00 94.00 93.00 93.00 93.00
SoccerJuggling 87.40 92.55 92.55 93.62 93.05 93.05
Swing 93.33 93.87 95.20 95.20 95.20 95.20
TaiChi 92.00 93.00 92.00 92.00 93.00 93.00
TennisSwing 95.81 96.48 96.48 94.76 97.05 96.48
ThrowDiscus 96.43 97.43 97.43 97.43 97.43 97.43
TrampolineJumping 95.00 96.00 98.00 98.00 99.00 98.00
VolleyballSpiking 98.33 99.00 99.00 100.00 99.00 100.00
WalkingWithDog 87.07 88.73 89.87 90.73 89.40 88.87
YoYo 88.67 89.13 88.60 87.27 88.27 88.27
Mean 93.03 93.98 94.24 94.45 94.38 94.28
numOfBest 12 15 16 24 22 20

Table B.5: Detailed results of Olympic Sports for MIFS with different scale levels. Average
precision (AP) (%) is used for evaluation. The best AP is marked in bold.

Action Name L=0 L=1 L=2 L=3 L=4 L=5
BasketballLayup 100.00 100.00 100.00 100.00 100.00 100.00
Bowling 89.11 86.49 86.69 87.21 86.28 87.16
CleanJerk 92.43 99.09 99.09 100.00 100.00 100.00
DiscusThrow 84.01 87.51 89.79 91.84 94.41 92.98
DivingPlatform10m 100.00 100.00 100.00 100.00 100.00 100.00
DivingSpringboard3m 100.00 100.00 100.00 100.00 100.00 100.00
HammerThrow 96.59 97.50 97.50 97.50 97.50 97.50
HighJump 86.63 78.59 81.19 80.30 80.51 80.14
JavelinThrow 100.00 100.00 100.00 100.00 100.00 100.00
LongJump 81.79 91.51 80.00 80.00 71.67 85.56
PoleVault 95.83 98.61 95.03 97.05 98.61 98.61
ShotPut 83.29 88.11 85.26 81.55 84.09 82.68
Snatch 70.46 83.74 89.55 88.78 91.22 88.78
TennisServe 100.00 100.00 100.00 100.00 100.00 100.00
TripleJump 74.70 95.00 83.04 77.50 59.64 64.36
Vault 82.25 80.69 80.14 80.59 81.40 82.27
Mean 89.82 92.93 91.70 91.40 90.33 91.25
numOfBest 7 10 6 7 10 9
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Table B.6: Detailed results of MIFS and baseline methods on TRECVID MEDTEST13 dataset.
Average precision (AP) (%) is used for evaluation. The best AP is marked in bold.

EK10 EK100
Event ID & Name Baseline MIFS(L = 3) Baseline MIFS(L = 3)
E006: Birthday party 9.40 10.66 32.38 35.59
E007: Changing a vehicle tire 10.22 12.76 41.18 44.97
E008: Flash mob gathering 48.88 52.46 66.36 68.73
E009: Getting a vehicle unstuck 9.94 11.21 46.11 52.04
E010: Grooming an animal 10.88 13.81 31.32 34.45
E011: Making a sandwich 6.83 6.99 23.51 25.26
E012: Parade 38.51 40.88 53.56 58.65
E013: Parkour 68.22 72.57 74.93 77.15
E014: Repairing an appliance 22.42 20.52 47.44 45.58
E015: Working on a sewing project 11.99 13.63 38.16 38.87
E021: Attempting a bike trick 7.48 7.29 11.08 11.66
E022: Cleaning an appliance 3.90 4.10 21.81 22.50
E023: Dog Show 32.38 41.93 64.75 68.75
E024: Giving directions to a location 1.25 1.77 11.18 15.75
E025: Marriage proposal 0.55 0.54 12.67 12.04
E026: Renovating a home 4.78 5.29 13.18 13.07
E027: Rock climbing 19.11 20.48 22.60 26.05
E028: Town hall meeting 22.39 22.81 35.84 36.38
E029: Winning a race without a vehicle 16.73 18.62 21.07 17.79
E030: Working on a metal crafts project 9.78 8.09 16.63 21.29
Mean 17.78 19.32 34.27 36.33
numOfBest 4 16 4 16

Table B.7: Detailed results of MIFS and baseline methods on TRECVID MEDTEST14 dataset.
Average precision (AP) (%) is used for evaluation. The best AP is marked in bold.

EK10 EK100
Event ID & Name Baseline MIFS(L = 3) Baseline MIFS(L = 3)
E021: Attempting a bike trick 7.47 7.26 11.17 11.76
E022: Cleaning an appliance 4.01 4.38 23.67 23.02
E023: Dog Show 28.92 39.34 66.17 69.91
E024: Giving directions to a location 1.41 2.16 8.31 13.91
E025: Marriage proposal 0.60 0.66 12.87 12.31
E026: Renovating a home 4.80 5.31 13.19 13.27
E027: Rock climbing 19.07 20.47 22.69 26.08
E028: Town hall meeting 22.46 22.91 39.94 36.93
E029: Winning a race without a vehicle 16.78 18.68 21.11 17.84
E030: Working on a metal crafts project 10.32 8.45 21.44 22.49
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Table B.7 – continued from previous page
EK10 EK100

Event ID & Name Baseline MIFS(L = 3) Baseline MIFS(L = 3)
E031: Beekeeping 35.91 38.71 63.42 65.46
E032: Wedding shower 7.79 10.04 22.61 25.39
E033: Non-motorized vehicle repair 21.47 22.64 35.34 38.34
E034: Fixing musical instrument 5.08 4.84 23.29 22.99
E035: Horse riding competition 28.47 33.70 34.69 37.24
E036: Felling a tree 8.49 11.14 19.18 26.57
E037: Parking a vehicle 9.56 14.21 27.44 31.78
E038: Playing fetch 0.94 1.22 6.96 7.08
E039: Tailgating 7.75 12.55 46.49 46.71
E040: Tuning musical instrument 14.07 19.97 27.51 31.20
Mean 12.77 14.93 27.37 29.01
numOfBest 3 17 5 15
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