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Abstract

Relational learning is a subfield of artificial intelligence, that learns with expressive logical

or relational representations. In this thesis, I consider the problem of efficient relational

learning. I describe a new relational learning approach based on path-constrained random

walks, and demonstrate, with extensive experiments on IR and NLP tasks, how relational

learning can be applied at a scale not possible before. This scalability is made possible

by defining a family of easy-to-learn features, fast random walk methods, and distributed

computing.
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Chapter 1

Introduction

1.1 The Problem

Relational learning is the subfield of artificial intelligence, which considers both machine

learning and knowledge representation. Machine learning studies systems that improve

their behavior over time with experience (examples), which typically involves a search

process through various generalizations of the examples. Much success has been had with

techniques such as neural networks [42], decision trees [77], and support vector machines

[18]. However, these approaches only handle data with a propositional representation,

which is limited to objects with their attributes. A more expressive representation describes

entities as well as the relationships that hold among them. These representations are often

called relational, and when they are grounded in or derived from first-order logic they are

called logical representations. These are intuitive ways of describing the world around us

and describing human knowledge. Therefore, relational learning not only has a wide range

of applications, but may also pave the road to better understanding of intelligence.

In this thesis, we work with a simplified knowledge base consisting of a set C of

concepts and a set R of labels. Each label r denotes some binary relation partially

1



Chapter 1. Introduction

represented in the knowledge base. The concrete KB is a directed, edge-labeled graph

K = (C,R, T ) where T ⊆ C × R × C is the set of labeled edges (also known as

triples) (c, r, c′). Each triple represents an instance r(c, c′) of the relation r ∈ R. Each

concept may correspond to an entity in the world such as CharlotteBronte, or an abstract

notion such as Writer. Each edge indicates that a relation exists between two entities

such as HasFather(CharlotteBronte,PatrickBronte), or the category of an entity such as

IsA(CharlotteBronte,Human). We denote by r−1 the inverse relation of r: r(c, c′) ⇔

r−1(c′, c). For instance PeopleWithProfession−1 is equivalent to ProfessionHasInstance. It

is convenient to take G as containing triple (c′, r−1, c) whenever it contains triple (c, r, c′).

The KB may be incomplete, that is, r(c, c′) holds in the real world but (c, r, c′) 6∈ T .

In particular, we consider a generic relational learning task called link prediction: given

a directed edge-labeled graph KB representing background knowledge, a relation r, and

a source node s (also called a query), find the set of nodes G, s.t. r(s, t) for each t in G.

This kind of link prediction problem has been studied by the Inductive Logic

Programming community. However, existing solutions cannot scale to large data sets

mainly because of two intrinsic properties of relational learning:

• the need to explore an exponentially large feature space, and

• potentially exponentially many instantiations for each feature in a KB graph.

This thesis considers these efficiency problems of relational learning, so that relational

learning can be applied to domains with large scale data.

1.2 Results

This thesis introduces random walk inference, which combines the expressiveness of logic,

the robustness of statistical learning, and the scalability of random walk models. Random

walk inference formulates relational learning as statistical classification problems—given

a query answer node pair (s, t), generate random walk features that summarize their

2



Chapter 1. Introduction

relational neighborhood, and then train classifiers based on these features. These random

walk features are denoted as P (s → t; π), the probability of reaching node t from

node s through a particular path type π and following a particular random walk process.

For example, when considering the question of “whether Charlotte has Writer as her

Profession?”, features such as

• P (Charlotte→ Writer; 〈HasFather,Profession〉)

• P (Charlotte→ Writer;
〈
Mention,Mention−1,Profession

〉
)

are generated. These pathes belong to a very constrained subset of logical expressions

(Horn clauses with chain structures), which can be efficiently learned. As will be described

in later chapters, simple but effective metrics can be used to explore the large feature space,

and the instantiation of such features can be computationally bounded using sampling

based random walk approaches.

The main contribution of this thesis is to apply relational learning at scales not possible

before. This scalability is made possible by

• a family of easy-to-learn path features (Chapter 2 and 7),

• fast random walk (Chapter 5), and

• distributed computing (Chapter 6).

1.3 Outline

Chapter 2 analyzes the nature of relational learning and identifies feature type complexity,

and feature instantiation complexity as two main challenges for efficient relational

learning. A path ranking algorithm (PRA), which combines the expressiveness of logic,

the robustness of statistical learning, and the scalability of random walk models is

introduced. Its relations to existing approaches are also discussed.

3
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Chapter 3 applies PRA to an inference task. It considers the problem of performing

learning and inference in a large scale knowledge base containing imperfect knowledge

with incomplete coverage. We show that the Path Ranking Algorithm can be used to

reliably infer new beliefs for the knowledge base [52].

Chapter 4 applies PRA to information retrieval in biology. It considers the problem of

monitoring newly published literatures, and tasks encountered during the preparation of a

new paper.

Chapter 5 discusses the problem of efficiency in random walk calculations, which

corresponds to the instantiation complexity problem described in this chapter.

Chapter 6 describes how PRA can scale to large graphs which contain billions of parsed

sentences, particularly for the task of extracting new beliefs from a large text corpora.

Chapter 7 discuss how PRA can effectively learn features that correspond to first

order rules with constants as well as long relational paths. These features are applied

to knowledge base inference tasks, and the problem of coordinate term extraction (i.e.

given an initial set of concepts as seeds, discover more concepts of this type from parsed

text).

Finally, chapter 8 concludes the thesis, and discusses promising future directions for

relational learning based on random walks.

4



Chapter 2

The Framework

This chapter describes the basic path ranking algorithm, which combines the

expressiveness of logic, the robustness of statistical learning, and the scalability of random

walk models.

2.1 Motivation

2.1.1 Link Prediction in Knowledge Bases: An Example

One example of the link prediction task is to predict the profession of a person—e.g.

Charlotte Bronte as shown in Figure 2.1. For this purpose, we might want to consider

the professions of friends or family of this person—e.g. Charlotte’s father is a writer.

We might consider the professions of people with similar behavior in the past—e.g. both

Charlotte and Charles wrote a novel, and Charles is a writer. We might also consider

text mentioning these entities—e.g. if Charlotte is mentioned together with many other

persons in the same sentences, and some of these persons are writers, and a few of them

are painters. Although some of these rules are more useful than others, most of them are

not very accurate. The relational learning task here is to efficiently find useful rules and

5
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combine them to make an accurate prediction.

 

Mentioned

Profession?

Charlotte 

Brontë

Patrick Brontë

HasFather

Writer

Profession

Mentioned-1

Profession

Jane 

Eyre

Wrote

Novel

A Tale of 

Two Cities 

IsA-1

IsA

Charles Dickens

Profession

Wrote-1

Painter

Profession

Figure 2.1: Link prediction in a knowledge base. IsA−1 is the inverse of IsA. Wrote−1 is
the inverse of Wrote. The Mentioned edges connect each entity to the sentences where this
entity is mentioned

2.1.2 Why Is Relational Learning Challenging

From the link prediction task described above, one might conclude that the following three

desirable characteristics of relational learning methods are desirable:

• Expressiveness—ability to define features expressing sequences of relations;

• Robustness—ability to combine many such features when making decisions;

• Scalablity—ability to efficiently discover and calculate such features.

The first two problems, expressiveness and robustness, have been studied extensively in

the field of Inductive Logical Programming (ILP) [79], and Statistical relational learning

(SRL) [34]. The third problem, scalability, though it has been studied from different angles

in the past, is far from adequately addressed. Till now, both ILP and SRL methods have

only been applied to relatively small domains. More specifically, the scalability problem

has two parts, which we call feature type complexity, and feature instantiation complexity.

6
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Figure 2.2: Two efficiency challenges for relational learning: feature type complexity (a),
and feature instantiation complexity (b)

Feature Type Complexity

The first efficiency challenge we call feature type complexity (Figure 2.2a). As in

Chapter 1, we represent background knowledge as an edge-typed graph. Relational

learning methods generally define features as connectivity patterns. For example, a pair

of nodes s and t can be connected through edges sequences of type 〈a, a〉, 〈a, b〉, 〈a, c〉,

etc. The number of such path types is exponential in their lengths. However, for complex

domains useful path types are often of considerable sizes. For example, useful relational

features in the language domain, where the underlying graph represents parsed texts, have

been shown to involve edge sequences of length six or more [58]. This results in the

problem of efficiently eliminating the many path types, that are useless for a task. Existing

relational learning approaches such as FOIL [79] incrementally add edges to existing

patterns (e.g. path types) to gradually expand the feature searching space. This procedure

is often susceptible to local optima.

Feature Instantiation Complexity

The second efficiency challenge we call feature instantiation complexity (Figure 2.2b).

Given a particular connectivity path type such as 〈a, b, c〉, there can be exponentially many

7
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places in a graph where this path type is matched. This problem is acute for domains where

there are nodes with high connectivity, such as a knowledge base with an IsA relation.

Forced to consider each and every one of these path types instantiations, most relational

learning methods are slow to perform inference.

2.1.3 Logic, Statistics, and Random Walks

Existing ILP systems such as First Order Inductive Learner (FOIL) [79] are expressive

because they can learn first-order Horn clauses such as

HasFather(a, b) ∧ Profession(b, y) −→ Profession(a, y),

which correspond to edge sequences in the graph representation of a knowledge base.

However, these methods are not very robust or scalable—i.e. they lack a way to

probabilistically combine low accuracy rule in the prediction process, and do not directly

address the feature type and feature instantiation complexity problems.

Recently, there has been more and more work on Statistical Relational Learning

(SRL), which seeks to combine statistical and relational learning, and has been applied to

many domains such as social network analysis, reinforcement learning, natural language

processing, and information extraction [34]. Most SRL approaches are defined in terms

of directed or undirected graphical models [33, 86]. These are powerful joint inference

formulations which give badly needed robustness to relational learning. However, they

are still challenged by the complexity of relational inference and learning when applied to

large scale problems, because again they do not directly address the problem of exploring

an exponentially large relational feature space.

One type of very common and successful approach on graph data are random walk

algorithms, for instance lazy random walks [59], personalized PageRank [10, 15], or

Random Walk with Restart [98]. These algorithms produce a set of proximity measures

based on random walk probabilities between nodes on a graph. Extensive study of

8
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approximate algorithms for these tasks means that these probabilities can be estimated

very efficiently. These methods are also robust in the sense that different types of edges

in a knowledge base graph are used together to estimate these probabilities. However,

regular graph-walk based similarity measures lack expressiveness, in the sense that the

random walker does not distinguish the importance of different paths.

This thesis proposes random walk inference, which combines the expressiveness of

logic, the robustness of statistical learning, and the scalability of random walk models.

2.2 Path Ranking Algorithm (PRA)

As described in Chapter 1, we work with a simplified knowledge base consisting of a set C

of concepts, a set R of relation labels. Each label r denotes some binary relation partially

represented in the KB. The concrete KB is a directed, edge-labeled graph K = (C, T )

where T ⊆ C × R × C is the set of labeled edges (also known as triples) (c, r, c′). Each

triple represents an instance r(c, c′) of the relation r ∈ R. The KB may be incomplete, that

is, r(c, c′) holds but (c, r, c′) 6∈ T . We consider a generic relational learning task called link

prediction: given a directed edge-labeled graph K representing background knowledge, a

relation r, and a source node s (also called a query), find the set of nodes G s.t. r(s, t) for

each t ∈ G.

2.2.1 Path Constrained Random Walks (PCRW)

A path type in K is defined as a sequence of edge types π = 〈r1, . . . , rm〉, ri ∈ R. An

instance of π is a sequence of nodes c0, . . . , cm such that ri(ci−1, ci), ∀i : 2 ≤ i ≤ m.

For instance, “the persons who were born in the same town as the query person”, and

“the nationalities of persons who were born in the same town as the query person” can be

9
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reached respectively through paths matching the following types

π1 :
〈
BornIn,BornIn−1

〉
π2 :

〈
BornIn,BornIn−1,Nationality

〉
Given a path type π = 〈r1, r2, ..., r`〉, and a starting node s = v0, we define P (s →

t; π) as the probability of reaching t from s by a random walk that instantiates π. More

specifically, suppose that the random walk has just reached vi by traversing edges labeled

r1, . . . , ri. Then vi+1 is drawn at random from all nodes reachable from vi by edges labeled

ri+1. A path type π is active for pair (s, t) if P (s → t; π) > 0. This probability can be

recursively defined

P (s→ t; π) =
∑
z

P (s→ z; π′)P (z → t; r), (2.2.1)

where r is the last relation in path π, and π′ is its prefix, such that adding r to π’ gives π. In

case that π is the empty path φ (with zero length), P (u→ v; π) is defined to be 1 if u = v,

and 0 otherwise. The probability of following a particular relation P (u→ v; r) is defined

as 1/|r(u)| if r(u, v), and 0 otherwise, where r(u) is the set of nodes for which r(u, v)

is true. Using sampling techniques described in Chapter 5, this dynamic programming

procedure can be done with bounded complexity, therefore we can efficiently calculate

P (s→ t; π) for a s together with all possible t’s.

Note that by using this calculation procedure the summation
∑

t P (s→ t; π) might be

smaller than 1 due to the fact that certain nodes might not have out links of certain types.

Therefore, strictly speaking, it is not a probabilistic distribution anymore.

2.2.2 Propositionalization Based on PCRW

A key idea for path ranking algorithm is that P (s → t; π) can be used as a feature for

the task of prediction whether r(s, t) is true. Specifically, let Q = {π1, ..., πn} be a set of

10
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path types that occur in the graph with |πi| ≤ `, where |πi| is the length of π, and θπ a

weight assigned to π, PRA’s score for whether query node s is related to another node t

via relation r is given by

score(s, t) =
∑
π∈Q

P (s→ t; π)θπ. (2.2.2)

This score encodes a PRA model’s confidence that node s and t are connected by

relation r. Note that given a query node s, this score function is likely to be sparse w.r.t.

t (with score(s, t)=0 for many t’s), because the PCRW probabilities P (s → t; π) are

likely to be sparse w.r.t. t. The learning problem for PRA is to properly assign weights to

different path types, so that the scoring function has high values for node ts where r(s, t)

is true, and low values for other node ts.

In general, this kind of technics that transform relational data into less expressive

representations such as feature vectors is called propositionalization. The resulting

problems can directly be solved by standard machine learning algorithms that require

flat representations such as support-vector, and decision trees. PCRW is more efficient

compared to traditional propositionalization methods such as average or summation [23],

because PCRW can bound its computation complexity by sampling techniques.

2.2.3 Feature Selection for Random Walk Inference

Given a graph, the total number of path types is an exponential function of the maximum

path length `. Due to the large feature space, feature selection is required to allow effective

learning in relational domains. First-order learning systems (e.g. FOIL[79], FOCL [71],

and FORTE [84] ) mostly rely on hill-climbing to explore a combinatorial model space,

and are vulnerable to local maxima. PRA takes another approach, where a goodness

measure that is inexpensive to calculate is first applied to rule out the majority of the

features, and regularized learning methods (e.g., L1 and L2 regularized logistic regression)
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serve as another selection mechanism, allowing PRA to process a relatively large number

of features.

As preliminaries, we define several measures that can be derived from the random walk

process. We organize our training data as a set of training queries (si, Gi), i = 1...n, where

Gi is the set of “good” answers to query si, i.e. Gi = {t|r(si, t)}. The accuracy of a path

type π reflects the probability of reaching any correct answer node following π

acc(π) =
1

n

∑
i

P (si → Gi; π), (2.2.3)

where P (si → Gi; π) ≡
∑

z∈Gi
P (si → z; π) denotes the probability of reaching any

correct answer in the training data following π.

The hits of a path π reflects the number of queries for which path π leads to any correct

answer:

hits(π) =
∑
i

I(P (si → Gi; π) > 0), (2.2.4)

where I() is the indicator function.

In order for a path π to be included into a PRA model, it is required that acc(π) ≥ a

and hits(π) ≥ h, where the thresholds a and h are tuned empirically on training data. In

addition to making the training more efficient, these constraints also have the nice effect

of removing low quality path types. Both measures can be calculated efficiently, because

the PCRWs can be calculated efficiently.

2.2.4 Generate Training Samples

For each relation r and a set of node pairs {(si, ti)}, we can construct a training dataset

D = {(xi, yi)}, where xi is a vector of all the path features for the pair (si, ti). That is,

the j-th component of xi is P (si → ti; πj), and yi is a boolean variable indicating whether

r(si, ti) holds (i.e. if ti ∈ Gi). We also assume that xi contains a bias feature, with fixed
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value 1.0. Following previous work [52, 60], we adopt a closed-world assumption – node

pairs which are known to have relation r in the knowledge base are treated as positive

examples, and all other pairs are treated as negative examples.

For most tasks, there are just a few “good” answers for each si, but thousands (or

millions) of “bad” ones. Therefore using all of them in the objective function is expensive.

Here we used a simple strategy similar to stratified random sampling [69]. First, the path

types discovered in the previous (path discovery) step are used to construct an initial PRA

model (all feature weights θπ are set to 1); then, for each query node si, this model is

used to retrieve candidate answer nodes, which are then sorted in descending order by

their scores; finally, nodes at the k(k + 1)/2-th positions are selected as negative samples,

where k = 0, 1, 2, .... This is helpful because, in generally, non-relevant entities highly

ranked by this weak ranking function are more important than lower ranked ones. For

in-depth comparisons of different selection strategies we refer the reader to Aslam et al.’s

work [7].

2.2.5 Logistic Regression Training

Given a set of training samples, the parameters θ can be estimated by maximizing the

following objective

F(θ) =
∑
i

fi(θ)− λ1‖θ‖1 − λ2‖θ‖22 (2.2.5)

where λ1 and λ2 respectively control the strength of the L1-regularization, which helps

with structure selection, and L2-regularization, which prevents overfitting. Here fi(θ) is

given by

fi(θ) = yi ln pi(θ) + (1− yi) ln(1− pi(θ)), (2.2.6)

and

pi(θ) ≡ P (yi = 1|xi; θ) =
exp(θTxi)

1 + exp(θTxi)
(2.2.7)
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is the predicted probability. This composite L1/L2 norm is known as Elastic Net [102].

The maximization can be achieved using a special version of L-BFGS1, which is designed

to deal with non-differentiable L1 norm [5].

In order to achieve good prediction accuracy, we first tune L2 parameter on training

data to achieve the best training accuracy, and then tune L1 parameter so that the accuracy

is not sacrificed.

2.2.6 Inference and Evaluation

After a model is trained for a relation r in the knowledge base, it can be used to produce

new instances of r. We first generate unlabeled queries s which belong to the domain of r

(queries which appear in the training set are excluded).

For each unlabeled query node s, we apply the trained PRA model to generate a list

of candidate t nodes together with their scores by running inference on each path π with

non-zero weight. We then sort all the prediction pairs (s, t) by their scores as in Eq. (2.2.2)

in descending order, and evaluate the top ones manually.

For the purpose of parameter tuning, we would like to perform cross-validation with

labeled queries. For each fold of cross-validation, we train a PRA model only using the

rest of the queries, and then use this model to produce a ranked list of answers for each

query in this fold. This collection of rank lists can be evaluated by information retrieval

measures such as mean reciprocal rank (MRR) 2 and mean average precision (MAP)3.

While MRR focuses on top part of the result list, MAP evaluates the overall quality of the

result list, or how easy it is to find all the relevant documents.

1a commonly used second order optimization procedure in many machine learning problems
2For a set of queries Q, MRR is defined as the average inverse rank of the highest ranked

relevant result in a set of results. MRR = 1
|Q|
∑

q∈Q
1

rank of the first correct answer for q If the
the first returned result is relevant, then reciprocal rank is 1.0, otherwise, it is smaller than 1.0.

3For a query Q, MAP is defined as the average precisions at the position of each relevant
documents in a sorted result list.
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Random Walk with Restart (RWR) (also called personalized PageRank [37]) is a

general-purpose graph proximity measure which has been shown to be fairly successful

for many types of tasks. In our experiments, we will compare PRA to two versions of

RWR—an untrained RWR model and a trained RWR model. In brief, in the trained RWR

model, the walker will probabilistically prefer to follow edges associated with different

labels, where the weight for each edge label is chosen to minimize the same loss function

as in Equation 2.2.5. In the untrained model, edge weights are uniform.

2.3 Comparison to Existing Approaches

2.3.1 Inductive Logic Programming

Since the very beginning of artificial intelligence, relational learning has been investigated

[23]. Several cognitive scientists, such as a team involving the Nobel prize winner Herbert

A. Simon [50], developed several models that explain how specific scientific theories could

be obtained. Later studies [16, 88] show that logical representations are an excellent

formalism to express the complexity of problems in different domains, and to employ

the available background knowledge to obtain meaningful hypotheses. Muggleton [62]

first defined the research field of Inductive Logic Programming (ILP) as the intersection

of inductive concept learning and logic programming.

ILP uses logic programming as a uniform representation for examples, background

knowledge and hypotheses. Given an encoding of the known background knowledge K,

and a set of examples as ground facts E, an ILP system will derive a hypothesized logic

program H which entails all the positive and none of the negative examples.

Various inductive logic programming systems such as FOIL [78], Golem [62],

Progol [63], and Claudien [24] were developed. For instance, FOIL employs a

separate-and-conquer rule-learning strategy: a set-covering approach, which repeatedly
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searches for a rule covering many positive examples and none of the negative examples.

Then the positive examples covered by the current clause are deleted, and this process is

repeated until all positive examples have been covered. The rules are typically discovered

by a general-to-specific heuristic search employing refinement operators. The idea of

relational learning also became popular in the relational database research community

and forms the subfield of (multi-)relational data mining (MRDM) [29].

In comparison, a PRA model is trained for each relation in a knowledge base, which

corresponds to all the clauses that share the same head in a logic program. As in FOIL

[78], PRA assumes that both background knowledge and examples are ground facts. This

setting renders relational learning more like a function approximation problem, and thus

more amiable to statistical machine learning techniques such as logistic regression.

Robustness

ILP systems are typically not robust, because they lack a way to probabilistically combine

low accuracy rules for prediction. The goal of early ILP systems was to discover one

hypothesis which is consistent—i.e., a hypothesis that covers all positive examples and

no negative example, or, in IR terminology, has both high precision and recall. This goal

is actually not attainable for many real life applications. Take the prediction of Charlotte

Bronte’s profession as an example: we might know that her father is a writer, we might also

know that she is mentioned together with writers 60 percent of the time but with painters

40 percent of the time. However, none of these two rules is accurate enough to predict

Charlotte’s profession. A more accurate prediction might be made by combining many of

such low precision rules— hence, PRA treats each of these hypothesis as a feature, and

combines them with a logistic regression classifier. One might wonder how well would a

logistic regression classifier perform, if we treat matched rules as binary features. It turns

out that the fractional values of random walk features are very important to successful

predictions (see Chapter 6). The feature values often represent some sort of voting of
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importance—e.g. if Charlotte is mentioned together with many other persons with 80%

of them being writers and 20% of them being painters, then the indication of her being a

writer should be stronger than being a painter. However, this kind of weights are lost in

binary features. Furthermore,

Furthermore, statistical learning theories are particularly important for relational

learning, because having large hypothesis spaces is its nature. For realistic applications

their learning problems are often under-determined—i.e. the number of training samples

is smaller than the number of features even after some sort of feature selection routine is

applies. For instance, there can be large number of hypothesis, which are correct on the

training data set (or with very high accuracies), but perform poorly on the test set. From

statistical learning theories we know that this is called overfitting, which can be dealt with

by proper regularization to the model. PRA addsL2-regularization to its logistic regression

model, which performs quite well based on our experiments in several domains.

Inference Efficiency

Most PAC-learning results for relational learning are negative. Cohen and Page [17]

distinguish three proof techniques for obtaining negative PAC-learning results. First,

if the problem of finding a consistent hypothesis—i.e., a hypothesis that covers all

positive examples and no negative examples—cannot be solved in polynomial time, then

the problem is not PAC-learnable. For instance, it can be shown that the well-known

SAT problem is polynomially reducible to the consistency problem for a particular

language of patterns. A second proof technique, called evaluation hardness, states

that a language cannot be PAC-learnable if there exists a concept in the language for

which the covers test cannot be evaluated in polynomial time. A third proof technique,

called prediction-preserving reducibility, directly reduces one PAC-learning problem to

another. Testing whether a hypothesis covers a particular example is one of the key factors

responsible for the computational complexity of ILP systems. It is typically NP-hard or
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even undecidable in the general case, and repeated a large number of times in relational

learning systems. Therefore, the overall performance of the relational learning systems can

be significantly improved, if one can optimize the coverage test. PRA achieves this goal by

doing approximated inference based on random walks, for which the computation can be

bounded using sampling strategies. In order to define random walks over background

knowledge, PRA also restricts background knowledge to be relations—allowing only

ground predicates of arity two.

Model Expressiveness

For efficiency reasons, all systems that learn in first-order logic restrict the hypothesis

space. Early work such as the Model Inference System [91] has a hypothesis space of

logic programs, which is very computationally expensive. Later influential systems such

as FOIL [78] restrict its hypothesis space to function-free Horn clauses. In both cases

refinement operators, such as adding a term or replacing a variable with constant, are used

to modify existing hypothesis in order to produce new hypothesis.

In comparison, PRA learns in a even more restricted hypothesis space—Horn clauses

with chain structures (Chapter 7 will discuss how to learn chain structures, which contain

constants). This hypothesis space is still expressive enough to cover many useful

structures, but enables exhaustive enumeration and evaluation of all hypothesis above

a goodness threshold with respect to a given set of examples. Being able to perform

exhaustive search, PRA avoids the local mimina suffered by many relation learning

approaches which use local search. However, it is an interesting future direction for PRA

is to learn a less restricted hypothesis space—e.g. to learn clauses with tree structures.
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2.3.2 Statistical Relational Learning

It has long been recognized that logical programs need robustness. Early approaches

directly assign probabilities to the logical clauses, and in order to assign probability

to derivations or proofs, probabilities of different clauses and different instantiations

of the same clause are combined during inference by ad-hoc ways, which rely on

certain independence assumptions. Stochastic logic programs [64] upgrade stochastic

context-free grammars to definite clause logic. PRISM [89] and Probabilistic Horn

Abduction [73] employ the assumption that the explanations for a goal are mutually

exclusive; then the goal’s probability is simply the sum of the probabilities of its

explanations. Bayesian logic programs [46] assume that the explanations for a goal are

mutually independent; then the goal’s probability is simply the noisy-or or noisy-and of the

probabilities of its explanations. Often, the knowledge-based model construction process

takes into account a particular query to the network, and generates only that grounded part

that is needed to answer the query. Sometimes, lifted-inference can reduce computation

by collapsing many instantiations of the same pattern (path type in our case) into one

instantiation with higher weight [74, 25].

Later approaches are more statistically rigorous by defining probabilities over possible

worlds, and logical rules are only used to define the skeleton of either a directed or

undirected graphical model. Probabilistic Relational Models [33] are based on Bayesian

networks, for which parameters are easy to estimate, but the overall structure has to be

restricted to directed acyclic graph. To reduce model complexity, aggregate functions (e.g.

MIN, MAX, SUM, AVG), which are well-known from the database literature, are used to

summarize possibly many instantiations of logical rules into a single observation. Markov

Logic Networks [86] are based on Markov networks, for which parameters are hard to

estimate due to inference complexity, but the overall structure is not restricted. Similar

lifted-inference ideas can be applied [44, 93].

A key idea to all these approaches is that, in order to estimate the values of a
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single ground fact, evidence from the instantiations of one or many clauses need to

be all combined together. Different than non-probabilistic logical programming, where

derivations can be terminated early, probabilistic logical programming fully explores

all the derivation trees and combines them in order to achieve robustness. This is the

instantiation complexity we described at the beginning of this chapter, and is one of the

main obstacles to efficient statistical relational learning. Lifted inferences may reduce the

complexity in certain applications, but, in most cases, the complexity of instantiation is

still exponential to the size of rules.

PRA uses a sampling approach to deal with the instantiation complexity—i.e., the

complexity of random walks can be bounded by the number of walkers (or particles). This

also greatly reduces the feature type complexity problem, since inference is a subroutine

for the evaluation and selection of rules. PRA defines efficient rule (feature) quality

measures directly based on random walk results.

2.3.3 Random Walk Models

Many early approaches to the problem of retrieval on graph data are keyword-based

database systems [4][43][10] based on proximity, which are designed mainly for ad-hoc

queries, thus are not trainable for specific IR tasks. Another branch of works is using

random walk on graphs as proximity measures, notably the PageRank [66] and the

Personalized PageRank algorithms [37].

The efficiency of proximity search on graphs has been a concern for many previous

systems. Most of them [80][38][20] build two-level representations of the graphs offline.

Tong et al.[98] studied fast RWR methods based on low-rank matrix approximation, and

graph partitioning. More recently, Chakrabarti [15] developed the HubRank algorithm,

which precomputes offline the Personalized Pagerank Vectors (PPVs) for a small fraction

of nodes, carefully chosen using query log statistics. It is not immediately apparent how

to adapt these methods to path-constrained random-walk distance measures; hence, in this
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study, we will focus on methods for maintaining a sparse representation of random walks.

On the other hand, there has been much follow up work in supervised learning of

random walk models. Nie et al.[65] use simulated annealing to perform local search over

each edge type, which is only applicable when the number of parameters is very small.

Diligenti et al. [27] optimize relation weights using back-propagation, which has linear

convergence, therefore requires many iterations to reach convergence. Agarwal et al. [2]

applied efficient second order optimization procedure with preference labels of pairs of

entities; however, instead of using real relevance data, document orderings generated from

artificially manipulated random walk models were used.

One limitation to all these models is that by using one parameter per edge type, these

models cannot leverage complex path features for relational data. Recently, there has been

work on systems that learn to do graph retrieval with richer feature sets. Minkov et al. [59]

showed that using n-grams of relation paths as reranking features can significantly improve

the retrieval quality of a random walk based model. More recently, Minkov & Cohen[58]

proposed a random walk based generative learning model that favors paths which are more

likely to reach relevant entities. This thesis introduces a discriminative version of this

learning technique that is based on Path Constrained Random Walks (PCRW), in which

similarity is defined by a learned combination of constrained random walkers [52]. By

avoiding the costly inference step (i.e. performing random walks) at each iteration of

optimization, the training process of this work is significantly more efficient than that of

Minkov et al. [58].

2.3.4 Propositionalization

The work of this thesis is most closely related to the relational learning approaches which

do propositionalization—transform positive and negative examples into feature vectors.

The LINUS system [56] first transforms facts in deductive hierarchical database (DHDB)

form into feature vectors using utility predicates or utility functions. Then it induces a
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concept description using attribute-value learning programs such as decision trees. Finally,

these models are translated back to DHDB clauses corresponding to if-then rules. LINUS

has a severely restricted hypothesis space (more restricted than PRA)—all variables in the

body of a DHDB clause must appear in its head.

The structural Generalized Linear Regression (SGLR) framework [75] uses refinement

graphs [91] and aggregation functions to summarize the relational neighborhood of a node,

and then applies statistical learners such as logistic regression to this data representation.

Statistical model selection criteria such as Bayesian Information Criterion is applied to

evaluate each feature candidate. A major difference between PRA and SGLR is that PRA

uses cheap feature goodness measures based on random walk results to evaluate a massive

number of features without any model training. This allows us to exhaustively find all

features which pass a certain goodness threshold, and include all of them in the model. In

contrast, SGLR retrains its model for each candidate feature, and can thus consider only

a small number of features. The aggregation functions of SGLR are also applicable to

random walk inference, which is an interesting direction for future exploration.

2.4 Summary

In summary, no existing approach in the related fields possess all three desirable

characteristics of relational learning — expressiveness, robustness, and scalablity. The

logical programming approaches are expressive but not robust or scalable. The graphical

model based SRL approaches are expressive and robust but not scalable. The random walk

approaches are scalable and robust, but lacks of expressiveness. Therefore, we introduce

random walk inference, which combines the expressiveness of logical programming, the

robustness of statistical learning, and the scalability of random walk models.
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Case Study: Knowledge Base Inference

In this chapter we consider the problem of performing learning and inference in a large

scale knowledge base containing imperfect knowledge with incomplete coverage. We

show that Path Ranking Algorithm can be used to reliably infer new beliefs for the NELL

knowledge base. More details on the experiments of this chapter can be found in our

previous work [52].

3.1 Motivation

Although there is a great deal of recent research on extracting knowledge from text

[3, 31, 95, 68, 9, 100], much less progress has been made on the problem of drawing

reliable inferences from this imperfectly extracted knowledge. In particular, traditional

logical inference methods [79] are too brittle to be used to make complex inferences from

automatically-extracted knowledge, and probabilistic inference methods [86] suffer from

scalability problems. Here we considers the problem of constructing inference methods

that can scale to large knowledge bases (KB’s), and that are robust to imperfect knowledge.

The KB we consider is a large triple store, which can be represented as a labeled,
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Predicate Instance
cityInState (troy, Michigan)
musicArtistGenre (Nirvana, Grunge)
tvStationInCity (WLS-TV, Chicago)
sportUsesEquip (soccer, balls)
athleteInLeague (Dan Fouts, NFL)
starredIn (Will Smith, Seven Pounds)
productType (Acrobat Reader, FILE)
athletePlaysSport (scott shields, baseball)
cityInCountry (Dublin Airport, Ireland)

Table 3.1: Sample of NELL beliefs

directed graph in which each entity a is a node, each binary relation r(a, b) is an edge

labeled r between a and b, and unary concepts C(a) are represented as an edge labeled

“isa” between the node for the entity a and a node for the concept C. We apply the PRA

algorithm to infer relations by combining the results of different random walks through this

graph, and show that the method achieves good scaling properties and robust inference in

a KB containing over 500,000 triples extracted from the web by the NELL system [13].

To evaluate our approach experimentally, we study it in the context of the NELL (Never

Ending Language Learning) research project, which is an effort to develop a never-ending

learning system that operates 24 hours per day, for years, to continuously improve its

ability to read (extract structured facts from) the web [13]. NELL began operation in

January 2010. As of March 2011, NELL had built a knowledge base containing several

million candidate beliefs which it had extracted from the web with varying confidence (see

Table 3.1 for examples). Among these, NELL had fairly high confidence in approximately

half a million, which we refer to as NELL’s (confident) beliefs. NELL had lower

confidence in a few million others, which we refer to as its candidate beliefs.
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3.2 Knowledge Base Inference with FOIL

Although NELL has now grown a sizable knowledge base, its ability to perform inference

over this knowledge base is currently very limited. Until this work, its only inference

method (beyond simple inheritance) involves applying first order Horn clause rules to

infer new beliefs from current beliefs. For example, it may use a Horn clause such as

AthletePlaysForTeam(a, b)∧TeamPlaysInLeague(b, c)⇒ AthletePlaysInLeague(a, c)

(3.2.1)

to infer that AthletePlaysInLeague(HinesWard,NFL), if it has already extracted the

beliefs in the preconditions of the rule, with variables a, b and c bound to HinesWard,

PittsburghSteelers and NFL respectively as shown in Figure 3.1. NELL had a set of

approximately 600 such rules, which it has learned by data mining its knowledge base

of beliefs. Each learned rule carries a conditional probability that its conclusion will hold,

given that its preconditions are satisfied.

NELL learned these Horn clause rules using a variant of the FOIL algorithm

[79], henceforth N-FOIL. N-FOIL takes as input a set of positive and negative

examples of a rule’s consequent (e.g., +AthletePlaysInLeague(HinesWard,NFL),

−AthletePlaysInLeague(HinesWard,NBA)), and uses a “separate-and-conquer” strategy to

learn a set of Horn clauses that fit the data well. Each Horn clause was learned by starting

with a general rule and progressively specializing it, so that it still covers many positive

examples but covers few negative examples. After a clause is learned, the examples

covered by that clause are removed from the training set, and the process repeats until

no positive examples remain.

Learning first-order Horn clauses is computationally expensive—not only is

the search space large, but some Horn clauses can be costly to evaluate [17].

N-FOIL uses two tricks to improve its scalability. First, it assumes that the

consequent predicate is functional—e.g., that each Athlete plays in at most one
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Eli Manning Giants
AthletePlays

ForTeam

HinesWard Steelers

AthletePlays
ForTeam NFL

TeamPlays
InLeague

MLBTeamPlays
InLeague

TeamPlays
InLeague

Figure 3.1: An example subgraph

League. This means that explicit negative examples need not be provided

[101]: e.g., if AthletePlaysInLeague(HinesWard,NFL) is a positive example, then

AthletePlaysInLeague(HinesWard,c′) for any other value of c′ is negative. In general,

this constraint guides the search algorithm toward Horn clauses that have fewer possible

instantiations, and hence are less expensive to match. Second, N-FOIL uses “relational

pathfinding” [85] to produce general rules—i.e., the starting point for a predicate r is

found by looking at positive instances r(a, b) of the consequent, and finding a clause

that corresponds to a bounded-length path of binary relations that link a to b. In the

example above, a start clause might be the clause (3.2.1). The clause is then (potentially)

specialized by greedily adding additional conditions (like ProfessionalAthlete(a)) or by

replacing variables with constants (eg, replacing c with NFL).

For each N-FOIL rule, an estimated conditional probability

P̂ (conclusion|preconditions) is calculated using a Dirichlet prior according to

P̂ = (N+ +m · prior)/(N+ +N− +m) (3.2.2)

where N+ is the number of positive instances matched by this rule in the FOIL training

data, N− is the number of negative instances matched, m = 5 and prior = 0.5.

As the results below show, N-FOIL generally learns a small number of high-precision

inference rules. One important role of these inference rules is that they contribute to the

bootstrapping procedure, as inferences made by N-FOIL increase either the number of

candidate beliefs, or (if the inference is already a candidate) improve NELL’s confidence
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in candidate beliefs.

3.3 Knowledge Base Inference with PRA

In this chapter, we consider an alternative approach, based on PRA. As an example,

consider a path from a to b via the sequence of edge types isa, isa−1 (the inverse of isa),

and AthletePlaysInLeague, which corresponds to the Horn clause

isa(a, c) ∧ isa−1(c, a′) ∧ AthletePlaysInLeague(a′, b)⇒ AthletePlaysInLeague(a, b)

(3.3.1)

Suppose a random walk starts at a query node a (say a=HinesWard). If HinesWard is

linked to the single concept node ProfessionalAthlete via isa, the walk will reach that node

with probability 1 after one step. If A is the set of ProfessionalAthlete’s in the KB, then

after two steps, the walk will have probability 1/|A| of being at any a′ ∈ A. If L is the

set of athletic leagues and l ∈ L, let Al be the set of athletes in league l: after three steps,

the walk will have probability |Al|/|A| of being at any point b ∈ L. In short, the ranking

associated with this path gives the prior probability of a value b being an athletic league

for a—which is useful as a feature in a combined ranking method, although not by itself a

high-precision inference rule.

Note that the rankings produced by this “expert” will change as the knowledge base

evolves—for instance, if the system learns about proportionally more soccer athletes

than hockey athletes over time, then the league rankings for the path of clause (3.3.1)

will change. Also, the ranking is specific to the query node a. For instance, suppose

the KB contains facts which reflect the ambiguity of the team name “Giants”1 as in

Figure 3.1. Then the path for clause (3.2.1) above will give lower weight to b = NFL

for a = EliManning than to b = NFL for a = HinesWard.

1San Francisco’s Major-League Baseball and New York’s National Football League teams are
both called the “Giants”.
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Table 3.2: Number of paths in PRA of maximum path length `, averaged over 96 tasks
`=3 `=4

all paths up to length ` 15, 376 1, 906, 624
+query accuracy≥ α = 0.01 522 5016
+query support ≥ 2 136 792
+L1 regularization 63 271

Here we introduce and evaluate PRA as an algorithm for making probabilistic

inference in large KBs. Compared to Horn clause inference, the key characteristics of

this new inference method are as follows:

• The evidence in support of inferring a relation instance r(s, t) is based on many

existing paths between s and t in the KB, combined by a learned logistic function.

• The confidence in an inference is sensitive to the current state of the knowledge base,

and the specific entities being queried.

• Experimentally, the inference method yields many more moderately-confident

inferences than the Horn clauses learned by N-FOIL.

• The learning and inference are more efficient than N-FOIL, in part because we can

exploit efficient approximation schemes for random walks (Chapter 5 [51]). The

resulting inference is as fast as 10 milliseconds per query on average.

For each relation r in the knowledge base we train a model for the link prediction task:

given a concept a, find all other concepts bwhich potentially have the relation r(a, b). This

prediction is made based on an existing knowledge base extracted imperfectly from the

web. Although a model can potentially benefit from predicting multiple relations jointly,

such joint inference is beyond the scope of this work.

To ensure a reasonable number of training instances, we generate labeled training

example queries from 48 relations which have more than 100 instances in the knowledge

base. We create two tasks for each relation—i.e., predicting b given a and predicting a

given b— yielding 96 tasks in all. Each node a which has relation r in the knowledge
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Chapter 3. Case Study: Knowledge Base Inference

base with any other node is treated as a training query, the actual nodes b in the knowledge

base known to satisfy r(a, b) are treated as labeled positive examples, and any other nodes

are treated as negative examples. Table 3.6 shows example names and number of training

queries for a subset of relations.

Table 3.2 investigates how goodness measures help filtering out most of the useless

features. Define a query s to be supporting a path P if hs,P (e) 6= 0 for any entity

e. We require that any path node created during path finding needs to have accuracy

of at least a, as well as being of length no more than ` (In the experiments, we set

a = 0.01) We also require that in order for a relation path to be included in the PRA

model, it must retrieve at least h = 2 target entities ti in the training set. We can see that

together these two constraints dramatically reduce the number of relation paths that need

to be considered, relative to systematically enumerating all possible relation paths. L1

regularization reduces the size of the model even more.

Table 3.3 shows the top two weighted PRA features for each task on which N-FOIL

can successfully learn. These PRA rules can be categorized into broad coverage rules

which set priors over answers (e.g. 1-2, 4-6, 15), accurate rules which leverage specific

relation sequences (e.g. 9, 11, 14), rules which leverage information about the synonyms

of the query node (e.g. 7-8, 10, 12), and rules which leverage information from a local

neighborhood of the query node (e.g. 3, 12-13, 16). The synonym paths are useful, because

an entity may have multiple names on the web. We find that all 17 general rules (no

specialization of variables to constants) learned by N-FOIL can be expressed as length

two relation paths such as path 11. In comparison, PRA explores a feature space with

many length three paths.

Next we report empirical results of applying random walk inference to NELL’s

knowledge base after the 165th iteration of its learning process. We first investigate PRA’s

behavior by cross validation on the training queries. Then we compare PRA and N-FOIL’s

ability to reliably infer new beliefs, by leveraging the Amazon Mechanical Turk service.
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Chapter 3. Case Study: Knowledge Base Inference

Table 3.4: Comparing PRA with RWR models. MRRs and training times are averaged
over 96 tasks. p-value=9×10−8 comparing untrained and trained RWR using paired t-test.
p-value=4× 10−4 comparing trained RWR with PRA using paired t-test.

`=2 `=3
MRR Time MRR Time

RWR(no train) 0.271 0.456
RWR 0.280 3.7s 0.471 9.2s
PRA 0.307 5.7s 0.516 15.4s

3.4 Cross Validation on the Training Queries

We compare PRA to an untrained RWR model and a trained RWR model (defined in

Chapter 2) on the 96 tasks of link prediction with NELL’s knowledge base. We explored

a range of values for the regularization parameters λ1 and λ2 using cross validation on the

training data, and then fix both of them to 0.001 for all tasks. The maximum path length

is fixed to 3.2 Table 3.4 compares the three methods using 5-fold cross validation. We can

see that supervised training can significantly improve retrieval quality, and leveraging path

information can produce further improvement. Besides to its effectiveness, the average

training time for a predicate is only a few seconds.

3.5 Evaluation by Mechanical Turk

The cross-validation result above assumes that the knowledge base is complete and correct,

which we know to be untrue. To accurately compare PRA and N-FOIL’s ability to

reliably infer new beliefs from an imperfect knowledge base, we use human assessments

obtained from Amazon Mechanical Turk. To limit labeling costs, and since our goal

is to improve the performance of NELL, we do not include RWR-based approaches in

this comparison. Among all the 24 functional predicates, N-FOIL discovers confident

rules for 8 of them (it produces no result for the other 16 predicates). Therefore, we

2 Results with maximum length 4 are not reported here. Generally models with length 4 paths
produce slightly better results, but are one order of magnitude slower to train (see Chapter 7)

31



Chapter 3. Case Study: Knowledge Base Inference

Table 3.5: Comparing Mechanical Turk workers’ voted assessments with our gold standard
labels based on 100 samples.

AMT=F AMT=T
Gold=F 25% 15%
Gold=T 11% 49%

compare the quality of PRA to N-FOIL on these 8 predicates only. Among all the 72

non-functional predicates—which N-FOIL cannot be applied to—PRA exhibits a wide

range of performance in cross-validation. There are 43 tasks for which PRA obtains MRR

higher than 0.4 and builds a model with more than 10 path features. We randomly sampled

8 of these predicates to be evaluated by Amazon Mechanical Turk.

For each relation r to be evaluated, we generate test queries s which belong to

domain(r). Queries which appear in the training set are excluded. For each query

node s, we applied a trained model (either PRA or N-FOIL) to generate a ranked list of

candidate t nodes. For PRA, the candidates are sorted by their scores as in Eq. (2.2.2). For

N-FOIL, the candidates are sorted by the estimated accuracies of the rules as in Eq. (3.2.2).

Since there are about 7 thousand (and 13 thousand) test queries s for each functional (and

non-functional) predicate r, and there are (potentially) thousands of candidates t returned

for each query s, we cannot evaluate all candidates of all queries. Therefore, we only

evaluate the top ranked candidate ti for each query si. They are first sorted in descending

order by their scores, and then precision at the top 10, 100 and 1000 are calculated. To

reduce the labeling load, we judge all top 10 results for each predicate, but randomly

sample 50 out of the top 100, and randomly sample 50 out of the top 1000.

Each belief is evaluated by 5 workers at Mechanical Turk, who are given assertions

like “Hines Ward plays for the team Steelers”, as well as Google search links for each

entity, and the combination of both entities. Statistics shows that the workers spend on

average 25 seconds to judge each belief. We also removed some workers’ judgments

which are obviously incorrect3. We sampled 100 beliefs, and compared their voted result

3Certain workers labeled all the questions with the same answer
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to gold-standard labels produced by the author. Table 3.5 shows that 74% of the time the

workers’ voted result agrees with our judgement.

Table 3.6 shows the evaluation result. The Pmajority column shows for each predicate

the accuracy achieved by the majority prediction: given a query r(a, ?), predict the b that

most often satisfies r over all possible a in the knowledge base. Thus, the higher Pmajority

is, the simpler the task. The #Query column shows the number of training queries for

each task. Predicting the functional predicates is generally easier than predicting the

non-functional predicates. On average N-FOIL is only able to produce results for 91

queries for each functional per predicate. In comparison, PRA is able to produce results

for 6,599 queries on average for each functional predicate, and 12,519 queries on average

for each non-functional predicate. Although the precision at 10 (p@10) of N-FOIL is

comparable to that of PRA, precision at 100 and at 1000 (p@100 and p@1000) is much

lower4.

The #Path column shows the number of paths learned by PRA, and the #Rule

column shows the number of rules learned by N-FOIL, with the numbers before brackets

correspond to unspecialized rules, and the numbers in brackets correspond to specialized

rules. Generally, specialized rules have much lower recall than unspecialized rules.

Therefore, the PRA approach achieves high recall partially by combining a large number

of unspecialized paths, which correspond to unspecialized rules. Learning more accurate

specialized paths will be discussed in Chapter 7.

4If a method makes k predictions, and k < n, then p@n is the number correct out of the k
predictions, divided by n
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A significant advantage of PRA over N-FOIL is that it can be applied to non-functional

predicates. The last eight rows of Table 3.6 show PRA’s performance on eight of these

predicates. Compared to the result on functional predicates, precisions at 10 and at 100

of non-functional predicates are slightly lower, but precisions at 1000 are comparable.

We note that for some predicates precision at 1000 is better than at 100. After some

investigation we found that for many relations, the top portion of the result list is more

diverse: i.e. showing products produced by different companies, journalist working at

different publications. While the lower half of the result list is more homogeneous: i.e.

showing relations concentrated on one or two companies/publications. On the other hand,

through the process of labeling the Mechanical Turk workers seem to build up a prior

about which company/publication is likely to have correct beliefs, and their judgments

are positively biased towards these companies/publications. These two factors combined

together result in positive bias towards the lower portion of the result list. In future work

we hope to design a labeling strategy which avoids this bias.

3.6 Related Work

The TextRunner system [12] answers list queries on a large knowledge base produced by

open domain information extraction. Spreading activation is used to measure the closeness

of any node to the query term nodes. This approach is similar to the random walk with

restart approach which is used as a baseline in our experiment. The FactRank system

[45] compares different ways of constructing random walks, and combining them with

extraction scores. However, the shortcoming of both approaches is that they ignore edge

type information, which is important for achieving high accuracy predictions.

The HOLMES system [90] derives new assertions using a few manually written

inference rules. A Markov network corresponding to the grounding of these rules to the

knowledge base is constructed for each query, and then belief propagation is used for
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inference. In comparison, our proposed approach discovers inference rules automatically

from training data.

Similarly, the Markov Logic Networks [86] are Markov networks constructed

corresponding to the grounding of rules to knowledge bases. In comparison, our proposed

approach is much more efficient by avoiding the harder problem of joint inferences and by

leveraging efficient random walk schemes [51].

3.7 Summary

We have shown that PRA can be used to reliably infer new beliefs for the knowledge base.

We applied this approach to a knowledge base of approximately 500,000 beliefs extracted

imperfectly from the web by NELL. This new system improves significantly over NELL’s

earlier Horn-clause learning and inference method: it obtains nearly double the precision

at rank 100. The inference and learning are both very efficient—our experiment shows

that the inference time is as fast as 10 milliseconds per query on average, and the training

for a predicate takes only a few seconds.
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Chapter 4

Case Study: Relational Retrieval in the

Scientific Literature

The rapid growth of research in biology, and the increasing degree to which different

subareas of biology are connected, make it difficult to monitor the published literature

effectively. To address this problem, we develop a reading recommendation system that

requires no other input from users except their reading or citation history. This frees

the users from the problem of expressing their information need using query languages.

We use a graph representation for publication databases with rich metadata. With this

representation, a PRA model is trained to discover effective recommendation strategies,

represented as edge paths on the graph. Experiments on citation-based and history-based

reading recommendation tasks show that by leveraging rich context information the

PCRW-based approach outperforms random walk with restart based approaches as well

as traditional content-based and collaborative filtering approaches. Experiments on eight

tasks in two subdomains of biology show that the new learning method significantly

outperforms the RWR model (both trained and untrained) [52].

37



Chapter 4. Case Study: Relational Retrieval in the Scientific Literature

4.1 Motivation

One approach to accessing the scientific literature is to formulate it as a recommendation

task. The goal of a recommender system is to generate meaningful recommendations

to a collection of users for items or products that might interest them. Effective

recommendation of scientific papers also relies relating the paper’s content and metadata

to biological background knowledge, such as the relationships known to hold among genes

mentioned in the paper (and its metadata) and genes of interest to the end user. For

example, Figure 4.1 illustrates several such strategies one might use to recommend new

papers for a scientist to read. The relational task here is to efficiently find such strategies

and combine them to make an informed recommendation.

One-parameter-per-edge label RWR proximity measures are limited because the

context in which an edge label appears is ignored. For example, in the reference

recommendation task, one of the query nodes is a year. There are two ways in which

one might use a year y to find candidate papers to cite: (H1) find papers published in

year y, or (H2) find papers frequently cited by papers published in year y. Intuitively, the

second heuristic seems more plausible than the first; however, a system that insists on a

using a single parameter for the “importance” of the edge label PublishedIn cannot easily

encode this intuition.

The applications in this chapter involve multiple node types, and each relation has a

predefined range and domain—e.g., edges of relation PublishedIn always always connect

nodes of type paper to nodes of type year. In order to emphasize the types associated with

each step in a path, we will write the path type P = r1 . . . r` as

T0
r1−→ . . .

r`−→ . . . T`

where T0 = dom(r1) = dom(P ), T1 = range(r1) = dom(r2) and so on. In this
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notation,the two heuristics suggested above would be written as:

H1 : year
PublishedIn−1

−−−−−−−−→ paper

H2 : year
PublishedIn−1

−−−−−−−−→ paper
Cite−−→ paper

This notation makes it clear that the range of each relation path is paper, the desired type

for reference recommendation.

Different than the knowledge base inference task described in the previous

chapter, a query for the recommendation task might contain different types of context

information—e.g., a few search words given by the user, names of a few biology entities

that the user finds relevant, or the identity of the user. Therefore, the link prediction task

defined in Chapter 1 needs to be generalized. Instead of having a single source node s,

each query has d sets of source nodes [S1, ..., Sd], d ≥ 1, where each set contains source

nodes of a certain type. For instance, a query [{w1, ...wW}, {e1, ...eE}, {u}] consists of a

set of nodes {w1, ...wW} of typeword representing search words, a set of nodes {e1, ...eE}

of type entity representing biology entities, and a node u of type user representing the

user who issued the query. The target type for this task is paper.

Given a candidate answer t, we define P (Si → t; π) as the probability of reaching

node t starting from any of the nodes in Si with equal chance and following path π. Note

that each source node set Si may have its own set of paths, and a PRA model employs

features of all these paths together.

4.2 Datasets

We created two publication data sets (Yeast and Fly) in the biological domain.

Figure 4.2 shows the schema of the yeast corpus. We extracted gene mentions from
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or read the same papers as I did before

Figure 4.1: Strategies for recommending papers to a scientist from a stream of papers.
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Figure 4.3: Schema of the fly data.

the Saccharomyces Genome Database(SGD)1, which is a database of various types of

information concerning the yeast organism Saccharomyces cerevisiae, including about

48K papers, each annotated with the genes it mentions. The title words are filtered by a

stop word list of size 429. The Authorship relations are further distinguished into three

sub-types: any author, first author, and last author. We extracted gene-gene relations

from Gene Ontology (GO)2, which is a large ontology describing the properties of and

relationships between various biological entities across numerous organisms.

Figure 4.3 shows the schema of the fly corpus. It is extracted from Flymine3, which is

an integrated database for Drosophila and Anopheles genomics, and contains about 127K

papers tagged with genes and proteins. The schema is similar to that of the yeast data,

1www.yeastgenome.org
2www.geneontology.org
3www.flymine.org
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except for a new entity type Protein4, and several relations among genes. Downstream and

Upstream relation connect a gene to its two neighbors on the DNA strand.

Paper content and metadata information of both data sets are crawled from two

resources: PubMed5 is a free on-line archive of over 18 million biological abstracts for

papers published since 1948; PubMed Central (PMC)6 contains full-text and references to

over one million of these papers.

4.3 Two Baseline Approaches

In order to compare the effectiveness of this random walk model to existing approaches,

we first describe two commonly used recommendation approaches– content-based and

community-based recommendations.

4.3.1 Content-based Recommendation

Recommendation systems are usually classified into content-based and community-based

approaches [1]. Both of them have proved to be useful under different settings. The

content-based recommendation approaches [8, 70, 49, 61] are rooted in information

retrieval settings, where descriptive features can be extracted from the items, but no rating

information from users other than the current one is needed. The users are recommended

items similar to the ones the user preferred in the past.

More formally, each item i is represented by an item profile Item(i), which is a vector

of features. In our case of publication recommendation, each item is an paper, and each

feature is a piece of metadata information such as author, venue, topic category, title word,

4In yeast, there is a nearly one-to-one relationship between genes and proteins, as most genes
are transcribed to a unique protein; in flies, alternative splicing means that a gene can be transcribed
to several different proteins.

5www.ncbi.nlm.nih.gov/pubmed
6www.ncbi.nlm.nih.gov/pmc
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gene, chemical substance, etc. One of the best known weighting scheme for the features is

the TF-IDF measure, in which the weight of the j-th feature to the k-th item is defined as

wk,j = TFk,j · IDFj =
fk,j

maxz fk,z
· log

N

nj
, (4.3.1)

where fk,j is the number of times feature j appears in item k, N is the total number of

items, and the j-th feature appears in nj of them. Similarly, each user u is represented by

a user profile User(u), which is usually the average profile [8, 49] of all the items user u

have liked. In our case of publication recommendation, it is the set of all papers that a user

have read in the past. Finally, the utility of item i to user u is estimated by the similarity

between their profile vectors, often measured by cosine function:

U(u, i) = cos(User(u), Item(i)). (4.3.2)

4.3.2 Community-based Recommendation

The community-based recommendation approaches (also called collaborative filtering)

[83, 35, 48, 82, 41, 92] predict the utility of items for a particular user based on the items

previously rated by a sub-community, and no content information is assumed. The users

are recommended items that people with similar tastes and preferences liked in the past.

More formally, the unknown rating ru,i for user u and item i is usually computed as an

aggregation of the ratings of some other (usually, the K most similar) users for the same

item i:

Rate(u, i) = aggru′∈N(u,K)Rate(u
′, i),

where N(u,K) is the set of K users that are the most similar to user u (and who have

rated item i). In the simplest case, the aggregation can be the average:

Rate(u, i) =
1

K

∑
u′∈N(u,K)

Rate(u′, i).

However, the most common approach is a weighted sum:
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Rate(u, i) =
1

Z

∑
u′∈N(u,K)

Sim(u, u′)Rate(u′, i), (4.3.3)

where Sim(u, u′) is a similarity measure between user u and u′, and Z is a normalization

constant
∑

u′∈N(u,K) Sim(u, u′). In our case of publication recommendation, we can only

observe if a user read a document or not, instead of rating scores. Therefore, we choose

the cosine-based approach when calculating the similarities between users:

Sim(u, u′) = cos(fu, fu′), (4.3.4)

where fu is a binary vector indicating whether or not user u has read each of all the

documents.

Furthermore, the content-based model’s prediction for the current user can be

combined with the prediction to its neighbors. We use a parameter α to control their

relative importance, and the final scoring function has the form

Rate(u, i) = αU(u, i) +
1

Z

∑
u′∈N(u,K)

Sim(u, u′)U(u′, i). (4.3.5)

4.4 Citation-based Reading Recommendation

We define citation-based reading recommendation as recommending new publications

which might interest a user given the publication history of this user. In order to train

PRA in a supervised manner, here we describe how to generate training data automatically

from an existing publication database.

For each user in a publication database, we assume that we know all the papers that

he/she has published. From here on, we use the term user and author interchangeably. We

also assume that each citation in a user’s paper is somewhat related to his/her research

interest. Therefore, predicting whether a paper is going to be cited by a particular user

is approximately predicting whether the user is interested in this paper. We would like to

analyze the importance of users’ behavior information to the recommendation tasks, so we
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only consider users who are recorded as publishing more than M papers in the database.

This filtering process has the extra benefit of reducing the amount of training data and

speeding up the training process.

For each year and each user, our task is to predict which papers from that year are

going to be cited by the user. Each of the year-author pairs, for which the user has made

any citations, is used to generate a query, and the set of papers actually cited are treated

as the relevant targets. Papers written by the author him/herself are not included. We

use these cited papers of a user to approximate his/her reading history, and we augment

the graphs with one extra relation Read, which links a user to all the papers he/she has

ever cited. We assume that the users always read a paper, if ever, the year after it was

published. This way of generating training data is suitable for learning models which are

good at suggesting the most recent publications to the users.

We set M = 100, and 1143 year-author queries are generated. We randomly reserve

1/3 of the queries for testing, and use the rest for parameter tuning (with 5-fold cross

validation) and training. As a practical concern, we need to prevent the system from using

information obtained later than a query when processing that query. Therefore, we define

a time variant graph in which each edge in the graph is tagged with a time tag (the year in

which this edge is added to the graph). When random walk is performed for a particular

query, we only consider edges that are earlier than the query’s year.

Figure 4.4 shows the effect of L2- and L1-regularization on recommendation quality

on the tuning set. More complex models (` = 3, 4) have better accuracies. The L2

regularizer is very important for preventing overfitting, and the L1 regularizer can slightly

improve recommendation quality. Though not shown, the L1 regularizer can significantly

reduce the number of features with non-zero weights. We report results for models up to

maximum path length ` = 4, because the random walk features of length 5 cannot be fit

into the 24Gb memory of our machine. For all PRA experiment in this chapter, we fix hit

and accuracy thresholds to h = 1 and a = 0.01 respectively.
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Figure 4.4: Tuning L2-regularizer parameter λ2 (left) and L1-regularizer parameter λ1
(right) for the citation-based reading recommendation on the yeast dataset. L is the
maximum length of PRA paths.

Table 4.1 shows highest and lowest weighted features for the trained model of `=3. All

the high positive weight features are related to the user’s reading or publication history.

Most of these features correspond to content-based recommendation strategies (feature 1,

3, 4, 6, and 7)—first find papers read by the current user before, then find similar paper

through shared contents like authors, genes, chemicals, MeSH descriptors, or title words.

Interestingly, feature 2 takes a collaborative filtering approach—first find other users with

similar reading history, and then find what they published in the current year.

All the high negative weight features (9-14) are independent of the user’s behaviors

but related to the recency of a paper’s topics, authors, mentioned genes or chemicals. Take

feature 13 as an example. If an paper p of the current year is written by an author who has

published no paper in the past years, then a random walker starting from p and following

the path paper
Write−1

−−−−−→ author
Write−−−→ paper is very likely to return to paper p, so p would

receive a relatively big negative weight. However, if the author has published many papers

in the past years, the walker is very likely to end up in a paper from the past years, so the

paper p would only receive a small negative weight in the PRA scoring function.
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Figure 4.5: Comparing different approaches for the citation-based reading
recommendation task on the yeast data.

Figure 4.5 shows the final evaluation results on the test queries. The community-based

approach is noticeably better than the content-based approach, but close to the untrained

RWR model. The trained RWR model performs better than the untrained version, but only

to a certain extent. More complex versions (`=3 and 4) of PCRW-based models are more

accurate than RWR-based approaches and traditional recommendation approaches.

4.5 History-based Reading Recommendation

In the case where users’ reading activities are accessible we define the following

history-based reading recommendation task—given the papers read by a user for the past

years, recommending new publications which might interest this user.

In this study a biologist (Dr. Woolford) whose major research interest is

Saccharomyces volunteered to provide his reading information. We collect all the papers

Dr. Woolford has read during 1988-2008 (the data were collected during 2009). We have

found 364 papers from his computer, 265 of which can be matched in the yeast dataset.

Since Dr. Woolford cannot remember exactly in which year he read each of the papers,
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Figure 4.6: Tuning L2-regularizer parameter λ2 (left) and L1-regularizer parameter λ1
(right) for the citation-based reading recommendation on the yeast dataset. L is the
maximum depth of relation trees.

we assume that he read each paper the following year after its publication. This way

of generating training data is suitable for learning models, which are good at suggesting

the most recent publications to the users. The yeast graph is augmented with two extra

relations. One is the relation Read, which links a user (Dr. Woolford) to all the papers

he has read in the past (265 papers). Another, with some notation overloading, is the

Read relation, which links each year to the set of papers read by the user during that year.

Dr. Woolford is recorded to have published 56 papers in the yeast database.

Our task is to predict for each year, which papers Dr. Woolford actually read, based on

the papers he had read before that year. A query consisting of the user node (corresponding

to Dr. Woolford) and the year node is generated for each year, and its relevant target nodes

are the papers which are actually read by Dr. Woolford in that year. Therefore, we have 21

labeled queries. We tune parameters with leave-one-out cross validations on all 21 queries.

We further evaluate the final model (trained on all queries) by Dr. Woolford’s judgement

of papers recommended for him to read in 2009.
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Figure 4.7: Comparing different approaches for the history-based reading
recommendation task on the yeast data by MRR (left) and MAP (right). L is the
maximum length of relation paths. K = 30, α = 0.

Figure 4.6 shows the effect of L2- and L1-regularization to recommendation quality

measured by MRR on the tuning query set. Although L2 regularizer is very important for

preventing overfitting, L1 is less useful in this task. We can see that if L2 regularizer is too

small or too big MRR is significantly lower. This indicates that with very small number of

training queries (21 for this task) the model can easily overfit or underfit.

Table 4.2 shows the top weighted features for models of different complexities. For the

simplest type of model (`=2), only one feature (beside the bias term) has non-zero weight.

It leverages the user’s reading behaviors in the past. More complex models (`=4 and 5) are

able to differentiate the user’s reading information one, two, and three years back through

the following paths

author
Read−−−→ paper

year
After−−−→ year

Read−−−→ paper

year
After−−−→ year

After−−−→ year
Read−−−→ paper

Figure 4.7 shows the final evaluation results. The community-based approach is
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significantly better than the content-based approach, but close to the untrained RWR

model. Again the trained RWR model performs better than the untrained version but only

to a certain extent, and more complex versions (`=4 and 5) of PCRW-based models are

significantly more accurate than RWR-based approaches and traditional recommendation

approaches. However, it would be an interesting future work to apply efficient path finding

and feature selection techniques to explore features which correspond to longer paths.

We further applied the PRA model trained on all the queries to recommend papers for

Dr. Woolford for 2009 and 2010. The number of relevant documents for the 2010 query

is small, because the SGD database and PubMed papers were downloaded in 2010, when

many papers of that year have not been included in the databases. For each query, results

with negative scores (the bias feature is ignored) were removed, because they are even less

relevant, judged by our model, than most documents in the database. We showed top 50

results from 2009 and 16 results from 2010 to Dr. Woolford, and he labeled each of them as

relevant to his research interest or not. The accuracy judged by Dr. Woolford is p@50=0.82

and p@16=0.63 respectively , which is reasonably high for such a recommendation task.

4.6 Two Extensions to PRA

Here we describe two extensions to PRA, which are applicable to settings where

there are few relations. Chapter 7 will describe generalizations to these extensions,

which are applicable to more general settings such as knowledge base inference. The

query-independent experts are generalizations to PageRank to multi-relational graphs. The

popular entity experts directly capture correlations between query and answer nodes.

4.6.1 Query-Independent Experts

The basic PRA features describe an entity only in terms of its position in the graph

relative to the query entities. However, the relevance of an entity may also depend on
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query-independent qualities—for instance, its recency of publication, its citation count, or

the authoritativeness of the venue in which it was published. To account for these intrinsic

properties of entities, we extend every query set Eq to include a special entity e∗. We then

extend the graph so that for each type T , there is a relation AnyT such that AnyT(e∗,e) is

true for every e ∈ T . For example, the relation AnyPaper maps e∗ to each paper, and the

relation AnyYear maps e∗ to each year.

For example, the path e∗
AnyPaper−−−−−−→ paper

Cite−−→ paper defines this random-walk

process: start from any paper with equal probability, and then jump to one of its referenced

papers. This results in higher probability mass to the papers with high citation count.

A path that starts with AnyPaper and then follows two Cite edges assigns weight to

papers frequently cited by other highly-cited papers: as path length increases, this type of

query-independent path begins to approximate PageRank for papers on the citation graph.

For a more involved example, a feature generated from the path e∗
AnyPaper−−−−−−→ paper

Cite−−→

paper
In−→ journal has higher weights on journals, which contain many well cited papers.

These query-independent features can express a rich set of semantics, and can be

combined with query-dependent path features to rank the target entities. To use them, the

scoring function remains unchanged. However, since these paths are query-independent,

we can improve performance by computing their values for every entity offline. In

particular, using the time-variant-graph, we calculate, for each year, the random walks

scores for all query-independent paths, using only edges earlier than that year.

4.6.2 Popular Entity Experts

Previous work in information retrieval has shown that entity specific characteristics can

be leveraged for retrieval [28, 99]. For the ad-hoc retrieval task, for instance, some lower

ranked document got clicked very often by the users, because of features not captured by

the ranking function of the system. In this case, promoting these popular documents to

higher rank would result in a better user experience [99]. For personalized search [28],
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different users may have different information needs for the same query: for instance, the

word “mouse” can mean different things for a biologist and a programmer. In this case,

modeling the correlation between query entities (users) and target entities (documents) can

be useful.

In this work, we provide a simple yet general way of modeling entity popularities by

adding biases and query-conditioned biases to the target entities. For a task with source

node type T07, and target type Tq, we introduce a popular entity bias θpopt for each target

entity t ∈ Tq. We also introduce a conditional popular entity bias θs,t for each query-target

entity pair (s, t), where s ∈ T0, t ∈ Tq. The scoring function in Eq.(2.2.2) is extended to

score(s, t) =
∑
π∈B

P (s→ t; π) + θpopt +
∑
e′∈Eq

θpops,t , θπ. (4.6.1)

or in matrix form s = Aθ+θpop+Θq, where θpop is an concatenation of all bias parameters,

Θ is an matrix of all conditional bias parameters, and q is a binary vector indicating

whether each entity is included in the query.

We can see that the number of parameters is potentially very large. For example, θpop

has length equal to |Tq| (the total number of nodes of the target type), and Θ is a huge

matrix with dimension |Tq| · |T0| (the number of nodes of target and query entity type).

Since it is impractical to include all of them to the model (consider the task of retrieving

documents using words), we use an efficient induction strategy which only add the most

important features [72]. After training an initial logistic regression model with only regular

path features, we repeatedly add to PRA model the top J popular entity expert parameters,

which have the largest gradient (in magnitude) w.r.t the objective function in Eq.(2.2.5),

and retrain the model, until no more features to be added. We call J the batch size. Instead

of considering all possible popular entity experts, we only need to consider those matched

in the positive training examples. In our experiment, we found J = 20 gives relatively

good performance. We also restrict the interactive process to be applied no more than 20

7 Here we assume that there is only one type of source nodes. Discussion can be easily
generalized to situations, where there are several types of source nodes.

54



Chapter 4. Case Study: Relational Retrieval in the Scientific Literature

times. In this way, the computation cost is not bounded by the size of θpop and Θ, but

by the number of non-zero elements in them. In practice, we found that training a PRA

model with popular entity experts is not much more expensive than training a regular PRA

model; the details will be given in the next section.

4.7 Paper Completion Tasks

We consider four more tasks that a scientist may encounter during the process of

publishing a paper. For all these tasks, we can generate large number of training queries

from an existing publication database.

Venue recommendation is the problem of finding a venue to publish a new research

paper. Here the query is a heterogeneous set of nodes: the terms in the title of the new

paper, the set of entities (genes or proteins) associated with the paper, and the current year.

The answer type is “journal”, so the answer will be a list of biological journals, ranked by

suitability for the new paper.

Reference recommendation (or citation recommendation) is the problem of finding

relevant citations for a new paper. The query is, as in venue recommendation, the title

terms and relevant entities for the new paper, the current year, and the answer type is

“paper”. The desired answer is a list of papers ranked by appropriateness as citations in

the new paper. This task is similar to The TREC-CHEM Prior Art Search Task [57], and

can also be seen as a simplified version of context-aware citation recommendation [39].

Expert finding is the problem of finding a domain expert to cooperate with for a

particular topic. The query is again a list of terms and relevant entities, the current year,

and the answer type is “person”. The desired answer is a list of people with expertise on

this topic.

The first two of these tasks are encountered in preparing a new paper, and the third
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is encountered in finding reviewers, or new collaborators. To evaluate performance

on these tasks, we will compare the ranked list from a query associated with a paper

to the actual metadata associated with the paper: specifically, we will compare actual

venue to the recommended venues, and the actual citations to the recommended citations.

Perhaps more speculatively, we will also compare the authors of a paper to the experts

recommended by the query based on the title and related-entity set for the paper. In each

case the predictions will be made using a graph that does not contain the actual paper in

question—see the next subsection for details.

As a fourth task, we will consider the gene recommendation task considered by Arnold

and Cohen [6]—i.e., predicting, given past publishing history, which genes an author will

publish about over the next year. Here the query nodes are an author and a year, and

the expected answer is of type “gene”. This task is an approximation to predicting future

interests.

Each paper can be used to simulate a query and relevance judgements for any of the

four above mentioned tasks. For each task on any of the two corpora, we randomly hold out

2000 queries for development, and another 2000 queries for testing. We evaluate models

by Mean Average Precision (MAP).

4.7.1 Parameter Tuning on Development Data

In this subsection, we tune PRA parameters for reference recommendation task on the

yeast data. Other tasks have similar trends, but their plots are not shown here.

Figure 4.8 shows the relation between maximum path length and model complexity

(measured by number of features). We can see that both model complexity and query

execution time are exponential in the path length. The query independent path (qip)

extension introduces about twice as many paths than the basic PRA algorithm. Since

their random walks are performed offline, they do not significantly affect query execution
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time. Although the popular entity experts introduce a large number of features, they are

easy to calculate, and do not significantly affect query execution time.
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Figure 4.9a shows the effect of L2-regularization and path length on retrieval quality.

We can see that a small amount of L2-regularization can slightly improve MAP, and longer

path lengths give better performance, but only to a certain level. In order to balance

between retrieval quality and computational complexity, we fix max path length, for the

rest of the experiment, to 4 for the venue recommendation task and 3 for the other three

tasks. Figure 4.9b shows how training data size affects the quality of the model. We can

see that all learning methods benefit from more training data, and this is especially evident

when popular entity experts are used. This is due to the fact that they have a large number

of parameters to estimate, and we need at least 1000 training queries to prevent overfitting.

4.7.2 Examples of Important Path Features

In the TREC-CHEM Prior Art Search Task [57], people found that instead of directly

searching for patents with the query words, it is much more effective to first find patents

with similar topics, then aggregate these patents’ citations. The relation path of this

strategy can be expressed as “query word
ContainedBy−−−−−−−→ patent Cite−−→ patent”. In our

experiment, PRA not only successfully identifies this path as an important feature in

scientific literature domain (path #2 in Table 4.3), but also finds several other useful paths.

Table 4.3 shows a subset of features for a PRA+qip+pop model trained for the

reference recommendation task on the yeast data. Feature #1-#8 are regular path features.

Among them, feature #6 resembles what most ad-hoc retrieval systems would do to find

relevant papers: finding papers with many words overlapping with the query. However,

we can see that this feature is not considered the most important by the model. Instead, the

model favors the papers that are well cited by on-topic papers (#2), and the papers cited

together with the on-topic papers (#1). Papers cited during the past two years (#7,#8) are

also favored. In contrary, general papers published during the past two years (#12,#13) are

disfavored.
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Chapter 4. Case Study: Relational Retrieval in the Scientific Literature

Features starting with e∗ are query-independent path features. We can see that well

cited papers are generally favored (#9). Since the number of papers published is increasing

every year, feature #14 actually disfavors old papers.

Features of the form “> XXX” are popular entity biases on specific entities. Features

of the form “XXX > XXX” are conditional popular entity biases that associate a query

entity with a target entity. We can see that papers about specific genes (e.g. CAL4, CYC1)

often cite specific early works (#10,#11).

Table 4.4 shows a subset of features for a PRA+qip+pop model trained for the venue

recommendation task on the fly data. We can see that different journals have different

preferred topics (#7-#9), and some journals are less likely to accept drosophila related

papers (#11-#13). Although journals of old papers are disfavored (#14), journals of

popular papers are favored (#6). Interestingly, journals with many on-topic first authors

(#2) are more favored than those with just any on-topic authors (#3).

4.7.3 Main Results

Table 4.5 compares the effectiveness of different ranking algorithms on all four tasks and

two corpora. We can see that PRA performs significantly better than RWR under most

tasks. The query-independent path experts (PRA+qip) manage to improve over basic PRA

model in all tasks, and especially in reference recommendation and expert finding tasks.

The popular entity experts (PRA+pop) also manage to improve over the basic PRA model

in all tasks, and the difference is statistically significant on the yeast tasks.

4.8 Summary

We use a graph representation for publication databases with rich metadata. With this

representation, PRA models are trained to discover effective recommendation strategies

represented as edge paths on the graph. Experiments on citation-based and history-based
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Table 4.5: Comparing baseline RWR with PRA and its two extensions: query-independent
path experts (+qip) and popular entity experts (+pop) by MAP. Except these†, all
improvements over trained RWR are statistically significant at p<0.05 by paired t-test.

Corpus/Task RWR PRA
Corpus=yeast untrained trained trained +qip +pop +qip+pop

Venue 40.4 44.2 45.7 46.4 48.7 49.3
Reference 11.8 16.0 16.9 18.3 19.1 19.8

Expert 9.9 11.1 11.9 12.4 12.5 12.9
Gene 14.4 14.4 14.9 15.1 15.1 15.3

Corpus=fly untrained trained trained +qip +pop +qip+pop
Venue 45.4 48.3 50.4 51.1 50.7 51.7

Reference 18.8 20.5 20.8† 21.0 21.6 21.7
Expert 5.6 7.2 7.6† 8.3 7.9 8.5
Gene 18.7 19.2 20.7 21.1 21.1 21.0

reading recommendation tasks show that by leveraging rich context information the

PCRW-based approach outperforms random walk with restart based approaches as well

as traditional content-based and collaborative filtering approaches. Experiments on eight

paper completion tasks in two subdomains of biology show that the new learning method

significantly outperforms the RWR model (both trained and untrained). We also extend

the method to support two additional types of experts to model intrinsic properties of

entities: query-independent experts, which generalize the PageRank measure, and popular

entity experts which allow rankings to be adjusted for particular entities that are especially

important.
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Chapter 5

Efficient Random Walk

In previous chapters we see that PRA which is based on Path-Constrained Random Walks

(PCRW), significantly outperforms unsupervised random walk based queries, and models

with learned edge weights. Unfortunately, PCRW query systems are expensive to evaluate.

In this chapter we evaluate the use of approximations to the computation of the PCRW

distributions, including fingerprinting, particle filtering, and truncation strategies [52].

We compare these strategies using recommendation and retrieval tasks, for which large

number of training and testing queries can be generated. Our experiments show speedups

of factors of 100 with little loss in accuracy. We also discuss using low-variance sampling

to further improve the random walk qualities.

5.1 Motivation

As discussed in Chapter 2 PCRW query systems are expensive to evaluate—on a

well connected graph, the number of nodes with non-zero probability generally grows

exponentially with respect to path lengths. However, one important fact about random

walks is that, in general, we expect that the random walk will lead to very uneven
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Chapter 5. Efficient Random Walk

distributions over all the entities: high probability on a few entities, usually entities of

high in-degrees, and low probability on the remainder. For example, this kind of uneven

distribution (called power law distribution) has been observed [67] on PageRank scores of

web pages; PageRank is also a type of random walk model. As a consequence, a few nodes

have a large influence on the retrieval result, and most nodes have very small influence,

and it is plausibly acceptable to ignore, or approximate, the weight of most nodes. In

past work, a sampling based random walk strategy has been shown to give inaccurate

estimations for low ranked nodes; in spite of this, however, Fogaras et al. [32] showed

that using a Monte Carlo algorithm and a small number of trials is sufficient to distinguish

between the high, medium and low ranked nodes accurately in Personalized PageRank

scores. As well, Chakrabarti [14] used a dynamic pruning strategy for the calculation of

Personalized Pageranks, in which weights smaller than a threshold are pruned, and showed

that this operation has minimal effect on accuracy. Therefore, we can expect that keeping

the distribution reached by random walks sparse may significantly reduce the amount of

time and memory spent on query execution.

In order to investigate the trade-off between inference efficiency and retrieval quality

for supervised learning of PCRW models, we compare the query execution speedups by

different strategies that help maintain sparsity of random walk, including fingerprinting,

particle filtering, and truncation strategies.

5.2 Sparse Random Walks

We describe four strategies approximate the exact random walk distribution defined by

equation (2.2.1), but with different ways of generating or sparsifying P (s→ t; π) at each

step of random walk. Each of these strategies will be used in both parameter estimation at

training time and query execution at test time.

From here on, we assume that π = 〈r1, r2, ..., rm〉 has m steps. The prefixes of π are
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π0 = 〈〉, π1 = 〈r1〉, π2 = 〈r1, r2〉, etc. We denote the approximate distributions at each

step of random walk as gi(e) ≈ P (s→ e; πi).

5.2.1 The Fingerprinting Strategy

Fogaras et al. [32] suggested a Monte Carlo algorithm to approximate the distributions of

personalized PageRank, where K independent random walks are simulated starting from

the query node. The probability of a node u is approximated by the normalized count of

number of times it is visited by the random walkers, and the amount of computation can

be easily controlled by varying K. The authors showed that using only a relatively small

number of random walkers is sufficient to distinguish between the high, medium and low

ranked nodes in the fully computed Personalized PageRank scores. Although the ordering

of the low ranked nodes are usually not as accurate using sampling, it is most often the

high ranked nodes that determine the quality of retrieval.

In this study, we test the effectiveness of this sampling strategy in the context of PCRW.

The distribution hi(e) at the i-th step can be approximated by the normalized count of the

number of walkers visiting a node e after following label sequence πi starting from node s

hi(e) =
#walkers visiting e at the i-th step

#walkers
.

5.2.2 Weighted Particle Filtering

One possible downside for the fingerprinting strategy is the waste of computation when

the number of walkers is much larger than the number of links. For example, if we start

with 30k walkers from a node which only has three outlinks, the fingerprinting strategy

will draw 30k random numbers, and assign each of the walkers to follow a specific outlink.

However, with knowledge of probabilities, we know that it is expected to have around 10k

walkers following each of the outlinks.

65



Chapter 5. Efficient Random Walk

Here we describe a weighted particle filtering procedure (Algorithm 1), which is an

combination of exact random walk and sampling. Conceptually, we can treat the initial

30k walkers as a single particle (of size 30k), and at the first step of random walk it splits

into three equal-sized particles, each of size 10k and following a different link. If we let the

particles split to arbitrarily small sizes, then we just get the exact probability distribution

defined by equation (2.2.1)(with proper normalization). In order to keep the distribution

sparse and random walk fast, we set a threshold εmin on the minimum size of the particles.

If a potential split breaks a particle to particles with sizes smaller than the threshold, we

switch from exact calculation to a sampling strategy. We let the particle split to a smaller

number of child particles, each having the same size as the threshold εmin. Each of these

child particles randomly picks one of the outlinks to follow.

5.2.3 Truncation Strategies

As we explained before, random walks usually have an uneven distribution over all the

entities: high probability on a few important entities, and low probability on many noisy

entities. Therefore, we hypothesize that zeroing the weights on the low-weight entities will

not significantly affect the random walk’s ability to identify important entities, but may

significantly reduce the amount of time and memory spent on random walk. Recently,

Chakrabarti [14] applied a dynamic pruning strategy to the calculation of Personalized

Pageranks, for which elements in the fingerprint vectors smaller than a threshold are

pruned. They discover that this operation has a dramatic effect on keeping the fingerprint

vectors sparse, while having a minimal effect on accuracy.

Here we apply this strategy in the context of PCRW. At each step of the random walk,

we add a truncation step to the distribution estimated by equation (2.2.1):

hi+1(e) = max(0, hi+1(e)− ε),

where ε is a parameter to control the harshness of truncation. This procedure also has the
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Algorithm 1 Weighted Particle Filtering
1: Input: distribution hi(e), relation r, threshold εmin

2: Output: hi+1(e)

3: Set hi+1(e) = 0

4: for each e with hi(e) 6= 0 do

5: sizenew = hi(e)/|r(e)|

6: if sizenew > εmin then

7: for each e′ ∈ r(e) do

8: hi+1(e
′)+ = sizenew

9: end for

10: else

11: for k=1..floor(hi(e)/εmin) do

12: randomly pick e′ ∈ r(e)

13: hi+1(e
′)+ = εmin

14: end for

15: end if

16: end for

effect of penalizing longer paths. Since longer paths are generally reduced more harshly

by this truncation procedure, their weights need to be larger than the short paths in order

to achieve the same effect in the ranking function. We call this approach fixed truncation.

One possible disadvantage of fixed truncation is that the truncation parameter ε is

not directly related to the sparsities of probability distributions. Therefore, we design

an adaptive truncation strategy called beam truncation, which explicitly constrains the

random walk to the desired sparseness. The truncation step is defined as

hi+1(e) = max(0, hi+1(e)− εW (hi+1)),

where εW (hi+1) is the W -th highest probability in distribution hi+1. Below W is called

the width of the beam.
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Figure 5.1: Speedup (w.r.t. exact PCRW) vs. MAP on yeast (left) and fly (right) data.
T0 is the average query execution time using exact PCRW. ` is the maximum length of
PCRW. Points are marked with the number of random walkers (particles). Some points§

are significantly better than exact PCRW (p < 10−5 by paired t-test).
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5.3 Case Study: Paper Completion Tasks

5.3.1 PRA with Approximate Random Walks

Here we compare different sparsity strategies by their retrieval qualities on the paper

completion tasks defined in Chapter 4. The baseline for these strategies is the exact

calculation of random walk distributions. In order to investigate the trade-off between

the speedup of query execution and retrieval quality, we vary, for each sparsity method, its

sparsity parameter— from the most inefficient to the most efficient setting— and see how

the retrieval speed and quality are affected. We provide three baselines as references to the

quality of retrieval: exact but unsupervised RWR (uniform weight 1.0), exact RWR, and

exact PCRW. For supervised models we fix the regularization parameter λ2 to 0.001. Note

that, in our experiment, train and test of PRA always use the same random walk method.

Figure 5.1 compares the speedup of query execution verses MAP for different sparsity

strategies. From top to bottm we order the tasks in increasing order of random walk

complexity. The average single query execution times range from 0.15 seconds to 2.7

seconds when using exact calculation of PCRW. We can see that all four strategies manage

to speedup query execution to a certain extent without significantly sacrificing the quality

of retrieval. The strategies are relatively more effective on complex tasks like gene

recommendation and reference recommendation.

The two truncation strategies (fixed and beam truncation) have a relatively limited

ability to speedup query execution (ranging from 2- to 10-fold). This is because, at each

step of random walk, they need to calculate the full distribution before truncation. When

the truncation is harsh, on the other hand, it is likely to produce empty distributions, which

are useless for retrieval. Fixed truncation generally has slightly better retrieval quality than

beam truncation. After close inspection, we found that although fixed and beam truncation

can produce random walk distributions with the same sparsity when their parameters are

properly set, fixed truncation has the extra effect of demoting longer paths as discussed
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Figure 5.2: Comparing sparsity and model weights of fixed and beam truncations for the
reference recommendation task on Yeast data. (a) Comparing the random walk density (by
the number of nodes with non-zero weights averaged over all training queries). Each dot
is a particular path type. (b) Comparing the learned weight for each path type.

above. Since random walks of longer paths are reduced more harshly by this truncation

procedure, their weights need to be larger than the short paths in order to achieve the same

effect in the ranking function. The beam truncation on the other hand might not truncate

the distribution at all if the number of non-zero nodes is smaller than the beam size, which

is very likely to happen in the first few steps of random walk.

This regularization effect to long paths is evident in Figure 5.2, where we compare

sparsity and learned weights for fixed and beam truncation. Parameters are set so both

strategies give a 2.7-fold speedup over the exact random walk baseline. However, fixed

truncation has statistically significantly better performance (MRR=0.407, MAP=0.205)

than beam truncation (MRR=0.398, MAP=0.200). We can see that although the sparsities

of these two strategies correlates with each other very well, the learnt weights of fixed

truncations are generally much smaller than that of beam truncation. This is because the

absolute values of the probabilities produced by fixed truncation are smaller than that of

beam truncation, so the path weights of fixed truncation need to be larger than those of
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beam truncation in order to achieve the same effect to ranking. Therefore, fixed truncation

has the effect of putting heavier regularization on the weights of longer paths.

The two sampling based strategies (fingerprinting and particle filtering) have relatively

larger speedups (ranging from 10- to 100-fold on various tasks). We mark, in Figure

5.1, the number of random walkers and the maximum number of particles (estimated

by 1/εmin) at the points where retrieval quality starts to drop quickly. We can see that,

compared to fingerprinting, particle filtering is almost always 2- to 4-fold faster. This is

what we have expected, since particle filtering can potentially represent a large number

of walkers with a small number of particles during the first few steps of random walk.

Overall, we can see that around 1k to 10k particles (or random walkers) are enough for

producing good retrieval quality.

Furthermore, for the same speedup, particle filtering almost always produces better

retrieval quality than fingerprinting. This is a result of the fact that although both strategies

rely on sampling to estimate the exact distribution, particle filtering will have lower

variance than fingerprinting. For example, imagine a node with only two outlinks, and

let the two strategies each have two particles (minimum particle size 0.5) and two walkers

respectively. Fingerprinting has a high chance (0.5) to put all probability mass on only one

of the outlinks. Particle filtering, on the other hand, will always assign equal probability

0.5 to both of the links.

5.3.2 Why Approximate Inference Can Improve Retrieval Accuracy

More interestingly, in many cases applying the sparsity strategies not only speeds up the

query execution but also produces better retrieval quality (in four out of six tasks). It

is not immediately evident whether this is because that the sparsity strategies produce

distributions that are concentrated on important nodes or because that they produce models

with better weighting of the relation paths. In this section, we argue that particle filtering

helps because it imposes a penalty on paths with dense distributions, which is often helpful.
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Figure 5.3: Comparing exact PCRW and particle filtering (εmin = 0.001) for the reference
recommendation task on Yeast data. (a) Retrieval qualities with fixed model but various
particle filtering settings at query time. The differences of the two models at the same
speed up levels are statistically significant at p < 10−5 using paired t-test. (b) For each
relation path the number of nodes with non-zero probability (averaged over all training
queries). (c) For each relation path the ratio of its weight in the particle filtering model
vs. its weight in the exact PCRW model. The ‘+’ and ‘−’ signs correspond to paths with
positive and negative weights in the model trained with exact PCRW.

In Figure 5.3a we fix the retrieval model to either the one trained with exact PCRW or

the one with particle filtering. Then we apply particle filtering during test time and vary

εmin. We can see that when the model is fixed, particle filtering does not improve retrieval

quality. However, the model trained with particle filtering still performs better than the one

trained with exact PCRW. This result indicates that training with particle filtering PCRW

can produce better models than exact PCRW.

Figure 5.3b shows the density of each relation path (i.e., the number of nodes with

non-zero probability). We can see that for those paths with dense distribution (density >

1000) under exact PCRW, particle filtering effectively reduces densities to a few hundred.

Figure 5.3c further shows that, in the model trained with exact PCRW, most of the

high density paths have positive weights, and their weights are significantly dropped in

the corresponding model trained with particle filtering. Therefore, we can see that the

sparsity strategies have the effect of putting a higher regularization on the paths with dense

distributions, which turns out to be useful in producing good retrieval models.
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5.4 Low-Variance Sampling

We have shown that sampling techniques like finger printing and particle filtering can

significantly speedup random walk without sacrificing retrieval quality. However, the

sampling procedures can induce a loss of diversity in the particle population. For example,

consider a node in the graph with just two out links with equal weights, and suppose we

are required to generate two walkers starting from this node. A disappointing result is

that with 50 percent chance both walkers will follow the same branch, and leave the other

branch with no probability mass.

To overcome this problem, we apply a technique called Low-Variance Sampling (LVS)

[97], which is commonly used in robotics to improve the quality of sampling. Instead of

generating independent samples from a distribution, LVS uses a single random number to

generate all samples, which are evenly distributed across the whole distribution. Note that

given a distribution P (x), any number r in [0, 1] points to exactly one x value, namely

x = arg minj
∑

m=1..j P (m) ≤ r. Suppose we want to generate M samples from P (x).

LVS first generates a random number r in the interval [0,M−1]. Then LVS repeatedly adds

the fixed amount M−1 to r and chooses x values corresponding to the resulting numbers.

We also investigate the effect of low-variance sampling on the quality of prediction.

Figure 5.4 compares independent and low variance sampling when applied to particle

filtering [51]. The horizontal axis corresponds to the speedup of random walk compared

with exact inference, and the vertical axis measures the quality of prediction by MRR with

three fold cross validation. Low-variance sampling can improve prediction especially at

high speedup range, where there are smaller number of walkers, and the random walk

is more susceptible to variance. The numbers on the curves indicate the number of

particles (or walkers). When using a large number of particles, the particle filtering

methods converge to the exact inference. We noticed a similar improvement on retrieval

tasks (Chapter 4), and conjectured that it is because the sampling inference imposes a

regularization penalty on longer relation paths [51].
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5.5 Summary

In this study, we evaluate the use of approximations to the computation of the path

constrained random-walk distributions. We compared fingerprinting, particle filtering, and

truncation strategies. In experiments on several recommendation and retrieval problems

using two large scientific publication corpora, we show speedups of factors of 100 with

little loss in retrieval accuracy. More interestingly, we found that in many cases moderately

applying the sparsity strategies not only speeds up the query execution but also produces

better retrieval quality. We also explore using low-variance sampling to further improve

the random walk qualities.
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Chapter 6

Case Study: Reading The Web with

Learned Syntactic-Semantic Patterns

In Chapter 3 we discussed learning to extend a KB of facts extracted from the Web.

Here we study how to extend a large knowledge base (Freebase) by using two source of

information: other relations in FreeBase, and information from a large parsed text corpus.

Previous studies on extracting relational knowledge from text show the potential

of syntactic patterns for extraction [60, 94, 96], but they do not exploit background

knowledge of other relations in the knowledge base. We describe a distributed, Web-scale

implementation of a path-constrained random walk model that learns syntactic-semantic

inference rules for binary relations from a graph representation of the parsed text and the

knowledge base. Experiments show significant accuracy improvements in binary relation

prediction over methods that consider only text, or only the existing knowledge base [54].
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6.1 Motivation

Manually-created knowledge bases (KBs) often lack basic information about some entities

and their relationships, either because the information was missing in the initial sources

used to create the KB, or because human curators were not confident about the status of

some putative fact, and so they excluded it from the KB. For instance, as we will see

in more detail later, many person entries in Freebase [11] lack nationality information.

To fill those KB gaps, we might use general rules, ideally automatically learned, such as

“if person was born in town and town is in country then the person is a national of the

country.” Of course, rules like this may be defeasible, in this case for example because

of naturalization or political changes. Nevertheless, many such imperfect rules can be

learned and combined to yield useful KB completions, as demonstrated in particular with

PRA (see Chapter 3).

Alternatively, we may attempt to fill KB gaps by applying relation extraction rules to

free text. For instance, Snow et al. [94] and Suchanek et al. [96] showed the value of

syntactic patterns in extracting specific relations. In those approaches, KB tuples of the

relation to be extracted serve as positive training examples for the extraction rule induction

algorithm. However, the KB contains much more knowledge about other relations, which

could potentially be helpful in improving relation extraction accuracy and coverage, but

which is not used in such purely text-based approaches.

In this study, we test the hypothesis that PRA can be used to find useful

“syntactic-semantic patterns” – that is, patterns that exploit both semantic and syntactic

relationships, thereby using semantic knowledge as background in interpreting syntactic

relationships. As shown in Figure 6.1, we extend the KB graph G with nodes and

edges from text that has been syntactically analyzed with a dependency parser1 and

where pronouns and other anaphoric referring expressions have been clustered with their

1We use Stanford dependencies [22].
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antecedents. The text nodes are word/phrase instances, and the edges are syntactic

dependencies labeled by the corresponding dependency type. Mentions of entities in the

text are linked to KB concepts by mention edges created by an entity resolution process.

Given, for instance, the query Profession(CharlotteBronte, ?), PRA produces a ranked

list of answers that may have the relation Profession with the query node CharlotteBronte.

The features used to score answers are the random walk probabilities of reaching a

certain profession node from the query node by paths with particular path types. PRA

can learn path types that combine background knowledge in the database with syntactic

patterns in the text corpus. We now exemplify some path types involving relations

described in Table 6.4. Type
〈
M, conj,M−1,Profession

〉
is active (matches paths) for

professions of persons who are mentioned in conjunction with the query person as
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Notation Name Description
appos appositional An appositional modifier of an NP is an NP

modifier immediately to the right of it that serves to
define or modify that NP. e.g., “Sam, my brother”

conj conjunct A conjunct is the relation between two elements
connected by as “and”, “or”, etc. E.g., “Bill is big

and honest”, “They either ski or snowboard”.
dobj direct object The direct object of a VP is the noun phrase which

is the (accusative) object of the verb. E.g.,
“She gave me a raise” dobj(gave, raise).

nn noun compound A noun compound modifier of an NP is any noun
modifier that modifies the head noun. (Note that many

dependency parsers have no intelligent noun
compound analysis. all nouns modify the

rightmost noun of the NP. E.g., “Oil price futures”
nn(futures, oil) nn(futures, price)

nsubj nominal A nominal subject is a noun phrase which is the
subject syntactic subject of a clause. E.g., “Clinton

defeated Dole” nsubj(defeated, Clinton)
poss possession The possession modifier relation holds between the

modifier head of an NP and its possessive determiner.
E.g., “Bill’s clothes” poss(clothes, Bill)

tmod temporal A temporal modifier is a bare noun phrase that modify
modifier the meaning of a constituent by specifying a time. E.g.

“Last night, I swam in the pool” tmod(swam, night)
Table 6.1: List of dependency edges used in our examples

in “collaboration between McDougall and Simon Philips”. For a somewhat subtler

example, type
〈
M,TW,CW−1,Profession−1,Profession

〉
is active for persons who are

mentioned by their titles as in “President Barack Obama”. The type subsequence〈
Profession−1,Profession

〉
ensures that only profession concepts are activated. The

features generated from these path types combine syntactic dependency relations (conj)

and textual information relations (TW and CW) with semantic relations in the KB

(Profession). Those relations are defined on Table 6.4.

Experiments on three Freebase relations (profession, nationality and parents) show that
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exploiting existing background knowledge as path features can significantly improve the

quality of extraction compared with using either Freebase or the text corpus alone.

6.2 Related Work

Much of the previous work on automatic relation extraction was based on certain

lexico-syntactic patterns. Hearst [40] first noticed that patterns such as “NP and other

NP” and “NP such as NP” often imply hyponym relations (NP refers to a noun phrase).

However, such approaches are limited by the availability of domain knowledge. Later

systems for extracting arbitrary relations from text mostly use shallow surface text patterns

[30, 3, 81]. The idea of using sequences of dependency edges as features for relation

extraction was explored by Snow et al. [94] and Suchanek et al. [96]. They define features

to be shortest paths on dependency trees which connect pairs of NP candidates.

This study is most closely related to work of Mintz et al. [60], who also study the

problem of extending Freebase by extraction from parsed text. As in our work, they use

a logistic regression model with path features. However, their approach does not exploit

existing knowledge in the KB. Furthermore, their path patterns are used as binary-valued

features. We show experimentally that fractional-valued features generated by random

walks provide much higher accuracy than binary-valued ones for this task.

Culotta et al. [19]’s work is similar to our approach in the sense of relation extraction

by discovering relational patterns. However while they focus on identifying relation

mentions in text, this work attempts to infer new tuples by gathering path evidence over

the whole corpus. In addition, their work involves a few thousand examples, while we aim

for Web-scale extraction.

Do and Roth [87] use a KB (YAGO) to aid the generation of features from free

text. However their method is designed specifically for extracting hierarchical taxonomic

structures, while our algorithm can discover relations for general graph-based KBs.
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6.3 Extending PRA

As described in the previous section, the PRA model is trained on positive and negative

queries generated from the KB. As Freebase contains millions of concepts and edges,

training on all the generated queries is computationally challenging. Further, we extend

the Freebase graph with parse paths of mentions of concepts in Freebase in millions of

Web pages. Yet another issue is that the training queries generated using Freebase are

inherently biased towards the distribution of concepts in Freebase and may not reflect the

distribution of mentions of these concepts in text data. As one of the goals of our approach

is to learn relation instances that are missing in Freebase, training on such a set, biased

towards the distribution of concepts in Freebase, may not lead to good performance. In

this section we explain how we modified the PRA algorithm to address those issues.

6.3.1 Scaling Up

Most relations in Freebase have a large set of existing triples. For example, for the

profession relation, there are around 2 million persons in Freebase, and about 0.3 million

of them have known professions. This results in more than 0.3 million training queries

(persons), each with one or more positive answers (professions), and millions of negative

answers, which make training computationally challenging. Generating all the paths for

millions of queries over a graph with millions of concepts and edges further complicates

the computational issues. Incorporating the parse path features from the text only

exacerbates the matter. Finally once we have trained a PRA model for a given relation,

say profession, we would like to infer the professions for all the 1.7 million persons whose

professions are not known to Freebase (and possibly predict changes to the profession

information of the 0.3 million people whose professions were given).

We use distributed computing to deal with the large number of training and prediction

queries over a large graph. A key observation is that the different stages of the PRA
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algorithm are based on independent computations involving individual queries. Therefore,

we can use the MapReduce framework to distribute the computation [26]. For path

discovery, we modify path finding approach to decouple the queries: instead of using one

depth-first search that involves all the queries, we first find all paths up to certain length

for each query node in the map stage, and then collect statistics for each path from all the

query nodes in the reduce stage. We used a 500-machine, 8GB/machine cluster for these

computations.

Another challenge associated with applying PRA to a graph constructed using large

amounts of text is that we cannot load the entire graph on a single machine. To circumvent

this problem, we first index all parsed sentences by the concepts that they mention.

Therefore, to perform a random walk for a query concept s, we only load the sentences

which mention s.

6.3.2 Sampling Training Data

Using the r-edges in the KB as positive examples distorts the training set. For example,

for the profession relation, there are 0.3 million persons for whom Freebase has profession

information, and amongst these 0.24 million are either politicians or actors. This may not

reflect the distribution of professions of persons mentioned in Web data. Using all of these

as training queries will most certainly bias the trained model towards these professions,

as PRA is trained discriminatively. In other words, training directly with this data would

lead to a model that is more likely to predict professions that are popular in Freebase. To

avoid this distortion, we use stratified sampling. For each relation r and concept t ∈ C,

we count the number of r edges pointing to t as Nr,t = |{(s, r, t) ∈ T}|. Given a training

query (s, r, t) we sample it according to

Pr,t = min

(
1,

√
m+Nr,t

Nr,t

)
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We fix m = 100 in our experiments. If we take the profession relation as an example, the

above implies that for popular professions, we only sample about
√
Nr,t out of the Nr,t

possible queries that end in t, whereas for the less popular professions we would use all

the training queries.

6.3.3 Text Graph Construction

As we are processing Web text data (see following section for more detail), the number

of mentions of a concept follows a somewhat heavy-tailed distribution: there are a small

number of very popular concepts (head concepts) and a large number of not so popular

concepts (tail concepts). For instance the concept BarackObama is mentioned about 8.9

million times in our text corpus. To prevent the text graph from being dominated by the

head concepts, for each sentence that mentions concept c ∈ C, we accept it as part of the

text graph with probability:

Pc = min

(
1,

√
k + Sc
Sc

)
where Sc is the number of sentences in which c is mentioned in the whole corpus. In our

experiments we use k = 105. This means that if Sc � k, then we only sample about
√
Sc

of the sentences that contain a mention of the concept, while if Sc � k, then all mentions

of that concept will likely be included.

6.4 Experiment Setup

We use Freebase [11] as our knowledge base for these experiments. Freebase data is

harvested from many sources, including Wikipedia, AMG, and IMDB.2 As of this writing,

it contains more than 21 million concepts and 70 million labeled edges. For a large

2www.wikipedia.org, www.allmusic.com, www.imdb.com.
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majority of concepts that appear both in Freebase and Wikipedia, Freebase maintains a

link to the Wikipedia page of that concept.

We also collect a large Web corpus and identify 60 million pages that mention concepts

relevant to this study. The free text on those pages are POS-tagged and dependency

parsed with an accuracy comparable to that of the current Stanford dependency parser [47].

The parser produces a dependency tree for each sentence with each edge labeled with a

standard dependency tag (see Figure 6.1).

In each of the parsed documents, we use POS tags and dependency edges to identify

noun phrases (NPs). We then use a within-document coreference resolver comparable

to that of [36] to group referring NPs into co-referring clusters. For each cluster that

contains a proper-name mention, we find the Freebase concept or concepts, if any, with

a name or alias that matches the mention. If a cluster has multiple possible matching

Freebase concepts, we choose a single sense based on the following simple model. For

each Freebase concept c ∈ C, we compute N(c,m), the number of times the concept c is

referred by mention m by using both the alias information in Freebase and the anchors of

the corresponding Wikipedia page for that concept. Based on N(c,m) we can calculate

the empirical probability p(c|m) = N(c,m)/
∑

c′ N(c′,m). If u is a cluster with mention

set M(u) in the document, and C(m) the set of concepts in KB with name or alias m,

we assign u to concept c∗ = argmax
c∈C(m),m∈M(u)

p(c|m), provided that there exists at least one

c ∈ C(m) and m ∈M(u) such that p(c|m) > 0. Note that here M(c) only consists of the

proper-name mentions in cluster c.

We use three relations profession, nationality and parents for our experiments. For

each relation, we select its current set of triples in Freebase, and apply the stratified

sampling (Section 6.3.2) to each of the three triple sets. The resulting triple sets are then

randomly split into training (60% of the triples) and test (the remaining triples). However,

the parents relation yields 350k triples after stratified sampling, so to reduce experimental

effort we further randomly sub-sample 10% of that as input to the train-test split. Table 6.2
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Table 6.2: Size of training and test sets for each relation.
Task Training Set Test Set

Profession 22,829 15,219
Nationality 14,431 9,620

Parents 21,232 14,155

shows the sizes of the training and test sets for each relation.

To encourage PRA to find paths involving the text corpus, we do not count relation M

(which connects concepts to their mentions) or M−1 when calculating path lengths. We use

L1/L2-regularized logistic regression to learn feature weights. The PRA hyperparameters

(α and K as defined in Chapter 2) and regularizer hyperparameters are tuned by threefold

cross validation (CV) on the training set. We average the models across all the folds and

choose the model that gives the best performance on the training set for each relation.

We report results of two evaluations. First, we evaluate the performance of the PRA

algorithm when trained on a subset of existing Freebase facts and tested on the rest.

Second, we had human annotators verify facts proposed by PRA that are not in Freebase.

6.5 Evaluation with Closed-World Assumption

Previous work in relation extraction from parsed text [60] has mostly used binary features

to indicate whether a pattern is present in the sentences where two concepts are mentioned.

To investigate the benefit of having fractional valued features generated by random

walks (as in PRA), we also evaluate a binarized PRA approach, for which we use the same

syntactic-semantic pattern features as PRA does, but binarize the feature values from PRA:

if the original fractional feature value was zero, the feature value is set to zero (equivalent

to not having the feature in that example), otherwise it is set to 1.

Table 6.3 shows a comparison of the results obtained using the PRA algorithm trained
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Table 6.3: Mean Reciprocal Rank (MRR) for different approaches under closed-world
assumption. Here KB, Text and KB+Text columns represent results obtained by training
a PRA model with only the KB, only text, and both KB and text. KB+Text[b] is the
binarized PRA approach trained on both KB and text. The best performing system (results
shown in bold font) is significant at 0.0001 level over its nearest competitor according to
a difference of proportions significance test.

Task KB Text KB+Text KB+Text[b]
Profession 0.532 0.516 0.583 0.453
Nationality 0.734 0.729 0.812 0.693
Parents 0.329 0.332 0.392 0.319

using only Freebase (KB), using only the text corpus graph (Text), trained with both

Freebase and the text corpus (KB+Text) and the binarized PRA algorithm using both

Freebase and the text corpus (KB+Text[b]). Comparing the results of first three columns

we see that combining Freebase and text achieves significantly better results than using

either Freebase or text alone. Further comparing the results of last two columns we also

observe a significant drop in MRR for the binarized version of PRA. This clearly shows

the importance of using the random walk probabilities. It can also be seen that the MRR

for the parents relation is lower than those for other relations. This is mainly because there

are larger number of potential answers for each query node of Parent relation than for each

query node of the other two relations – all persons in Freebase versus all professions or

nationalities. Finally, it is important to point out that our evaluations are actually lower

bounds of actual performance, because, for instance, a person might have a profession

besides the ones in Freebase and in such cases, this evaluation does not give any credit for

predicting those professions — they are treated as errors. We try to address this issue with

the manual evaluations in the next section.

Table 6.3 only reports results for the maximum path length ` = 4 case. We found

that shorter maximum path lengths give worse results: for instance, with ` = 3 for the

profession relation, MRR drops to 0.542, from 0.583 for ` = 4 when using both Freebase

and text. This difference is significant at the 0.0001 level according to a difference of

proportions test. Further we find that using longer path length takes much longer time to
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train and test, but does not lead to statistically significant improvements over the ` = 4

case. For example, for profession, ` = 5 gives a MRR of 0.589.

Table 6.4 shows the top weighted features that involve text edges for PRA models

trained on both Freebase and the text corpus. To make them easier to understand, we group

them based on their functionality. For the profession and nationality tasks, the conjunction

dependency relation (in group 1,4) plays an important role: these features first find

persons mentioned in conjunction with the query person, and then find their professions or

nationalities. The features in group 2 capture the fact that sometimes people are mentioned

by their professions. The subpath
〈
Profession−1,Profession

〉
ensures that only profession

related concepts are activated. Features in group 3 first find persons with similar names

or mentioned in similar ways to the query person, and then aggregate the professions of

their children, parents, or advisors. Features in group 6 can be seen as special versions

of feature 〈PlaceOfBirth,ContainedBy〉 and 〈PlaceOfDeath,ContainedBy〉. The subpaths〈
M, poss, poss−1,M−1

〉
and

〈
M, title, title−1,M−1

〉
return the random walks back to the

query node only if the mentions of the query node have poss (stands for possessive

modifier, e.g. “Bill’s clothes”) or title (stands for person’s title, e.g. “President Obama”)

edges in text; otherwise these features are inactive. Therefore, these features are active

only for specific subsets of queries. Features in group 8 generally find persons with similar

names or mentioned in similar ways to the query person. However, they further expand or

restrict this person set in various ways.

Typically, each trained model includes hundreds of paths with non-zero weights,

so the bulk of classifications are based on on the combination of a large number of

lower-precision high-recall or high-precision lower-recall rules.
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Table 6.4: Top weighted path types involving text edges for each task grouped according
to functionality. M connects each concept in knowledge base to its mentions in the corpus.
TW connects each token in a sentence to the words in the text representation of this token.
CW connects each concept in knowledge base to the words in the text representation of
this concept. We use lower case names to denote dependency edges, and word capitalized
names to denote KB edges. See Table 6.1 for the meaning of dependency edges

Profession Comments
1

〈
M, conj,M−1,Profession

〉
Professions of persons mentioned in conjunction
with the query person: “McDougall and Simon
Phillips collaborated ...”

〈
M, conj−1,M−1,Profession

〉
2
〈
M,TW,CW−1,Profession−1,Profession

〉
Active if a person is mentioned by his profession:
“The president said ...”

3
〈
M,TW,TW−1,M−1,Children,Profession

〉
First find persons with similar names or mentioned
in similar ways, then aggregate the professions of
their children/parents/advisors: starting from the
concept BarackObama, words such as “Obama”,
“leader”, “president”, and “he” are reachable
through path 〈M,TW〉

〈
M,TW,TW−1,M−1,Parents,Profession

〉〈
M,TW,TW−1,M−1,Advisors,Profession

〉

Nationality Comments
4

〈
M, conj,TW,CW−1,Nationality

〉
The nationalities of persons mentioned in
conjunction with the query person: “McDougall
and Simon Phillips collaborated ...”

〈
M, conj−1,TW,CW−1,Nationality

〉
5

〈
M, nc−1,TW,CW−1,Nationality

〉
The nationalities of persons mentioned close to the
query person through other dependency relations.

〈
M, tmod−1,TW,CW−1,Nationality

〉〈
M, nn,TW,CW−1,Nationality

〉
6

〈
M, poss, poss−1,M−1,PlaceOfBirth,

The birth/death places of the query person with
restrictions to different syntactic constructions.

ContainedBy〉〈
M, title, title−1,M−1,PlaceOfDeath,

ContainedBy〉
Parents Comments

7
〈
M,TW,CW−1,Parents

〉
The parents of persons mentioned in similar ways:
starting from the concept CharlotteBronte words
such as “Bronte”, “Charlotte”, “Patrick’’, and
“she” are reachable through path 〈M,TW〉.

8
〈
M, nsubj, nsubj−1,TW,CW−1

〉
Persons mentioned in similar ways to the query
person with various restrictions or expansions.〈
nsubj, nsubj−1

〉
and

〈
nc−1, nc

〉
require the query

to be subject and noun compound respectively.〈
TW−1,TW

〉
expands further by word similarities.

〈
M, nsubj, nsubj−1,M−1,CW,CW−1

〉〈
M, nc−1, nc,TW,CW−1

〉〈
M,TW,CW−1

〉〈
M,TW,TW−1,TW,CW−1

〉
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6.6 Manual Evaluation

We performed two sets of manual evaluations. In each case, an annotator is presented with

the triples predicted by PRA, and asked if they are correct. The annotator has access to the

Freebase and Wikipedia pages for the concepts, and web search engines.

In the first evaluation, we compared the performance of two PRA models, one trained

using the stratified sampled queries and another trained using a randomly sampled set of

queries for the profession relation. For each model, we randomly sample 100 predictions

from the top 1000 predictions (sorted by the scores returned by the model). We found that

the PRA model trained with stratified sampled queries has 0.92 precision, while the other

model has only 0.84 precision (significant at the 0.02 level). This shows that stratified

sampling leads to improved performance.

We also evaluated the new beliefs proposed by the models trained for all the three

relations using stratified sampled queries. We estimated precision for the top 100

predictions and randomly sampled 100 predictions each from the top 1,000 and 10,000

predictions. Here we use the PRA model trained using both KB and text. The results of

this evaluation are shown in Table 6.5. It can be seen that the PRA model is able to produce

very high precision predications even when one considers the top 10,000 predictions.

The model produces many new predictions. For instance, for the profession relation,

we are able to predict professions for the around 2 million persons in Freebase. The top

1000 profession facts extracted by our system involve 970 distinct people, the top 10,000

facts involve 8,726 distinct people, and the top 100,000 facts involve 79,885 people.

Table 6.5: Human judgement for predicted new beliefs.
Task p@100 p@1k p@10k

Profession 0.97 0.92 0.84
Nationality 0.98 0.97 0.90

Parents 0.86 0.81 0.79
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6.7 Summary

We have shown that path constrained random walk models can effectively infer new beliefs

from a large scale parsed text corpus with background knowledge. Evaluation by human

annotators shows that by combining syntactic patterns in parsed text with semantic patterns

in the background knowledge, our model can propose new beliefs with high accuracy.

Thus, the proposed random walk model can be an effective way to automate knowledge

acquisition from the web.
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Chapter 7

More Expressive Features

We have shown that PRA scales to large data sets. However, it has been limited to

considering paths with no constants. In this chapter, we show that PRA can effectively

model paths that correspond to first order rules with constants. In addition, we extend PRA

to consider longer relational paths. We show that both types of paths can be efficiently

discovered using a backward random walk techniques.

7.1 Motivation

Despite its efficiency, the expressibility of PRA is somewhat limited, compared with

inductive logical programming approaches such as FOIL [79]. In particular, while

methods such as FOIL learn first order rules (patterns) with constants, PRA restricts

its features to generic edge type sequences. Learning features that include constants is

generally desirable; for example, consider the rule

IsA(t, SportsTeam) ∧ AthleteEmployeedByAgent(s, t)→ AthletePlaysForTeam(s, t)

where SportsTeam is a constant, corresponding to a fixed graph node.
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In this chapter we extend PRA to consider a larger set of possible paths, including

paths with constants. To this end, we perform backward random walks to identify a set of

candidate paths with constants, and estimate their quality at the same time. For instance,

consider a given a training example, such as AthletePlaysForTeam(HinesWard, Steelers),

stating that for the query node HinesWard and the relation AhtletePlaysForTeam, the node

denoting Steelers is a correct answer. We perform a special type of backward random

walks from the given correct answer Steelers. Any node z reachable through a path π

indicates a potential useful random walk feature, originating from the constant node z and

following the reversed path of π. A graph walk based goodness measure is then used to

efficiently select the most promising features to be added to the model. We show that the

paths with constants learned provide informative class priors to relational classification

tasks. For example, a random walk that starts from the concept Sports following the

path
〈
IsA−1,TeamPlaysSport−1

〉
provides a distribution over teams playing all types of

sports, and thus serves as a useful prior for the task of predicting the AthletePlaysForTeam

relationship.

In addition to learning paths with constants, we enhance PRA so that it efficiently

learns patterns that consist of long predicate chains. While relational patterns often

comprise of a short chain of relations between objects (such as the examples given so far),

some phenomena may be represented by relatively long patterns. In order to efficiently

find patterns containing long predicate chains, we introduce an random walk calculation

method inspired by bi-directional search. More specifically, to calculate P (s → t; π1π2),

the probability of reaching t from s following a long path type π = π1π2, we break the

computation into two parts— calculating P (s→ z; π1) using forward random walks, and

calculating P (z → t; π2) using backward random walks. For paths of length 2M , this

reduces the time complexity of path finding from O(|V |2M) to O(|V |M), where |V | is the

number of relations types in a domain.

The main contribution of this chapter is to introduce and evaluate backward random
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walks as a tool for efficiently learning complex relational features. Experiments on

graph-based knowledge base inference and coordinate term extraction from parsed text

show that these extensions allow PRA to efficiently explore larger feature spaces,

significantly improving model quality over previous results in both domains. In particular,

incorporating paths with constants significantly improves model quality across tasks,

and the coordinate term extraction task benefits from learning long relational paths.

In addition, we demonstrate the scalability of the proposed framework compared with

traditional relational learning approaches, such as FOIL.

7.2 Related Work

The paths with constants features learned here are a generalization of the

query-independent experts introduced in Chapter 4. There, query-independent experts

constitute random walkers starting from a special node which has links to all nodes of a

certain type. Thus, these experts form a general prior distribution over nodes (entities)

of the entity type retrieved. In contrast, the paths with constants here can start from any

node in the graph, corresponding to particular concepts that are task-specific (e.g., sports).

Furthermore, by leveraging labeled samples, a relatively small number of these specialized

paths are learned, as opposed to arbitrarily generating a large number of query-independent

experts in an unsupervised fashion.

Previously, it has been proposed to pre-compute the graph walk distribution for a

subset of ‘hub’ nodes in an entity-relation graph as means of accelerating the graph walk

computation, where hub nodes were selected based on query log statistics [14]. Similarly,

graph walks starting at these constant “hub” nodes are efficiently computed once and

re-used. However, the set of paths with constants was selected here so as to maximize

output nodes’ relevancy.

Learning long relational paths is desirable as it allows capturing complex and specific
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relationships between entities. In a recent work, the Markov Logic Network framework

has been extended to model long paths, showing improvements in prediction performance

in some cases [?]. To detect long useful paths, they analyze the graph to identify

typical path segments (motifs) and perform search within and between these segments

to reduce the search space size. In comparison, we show that extending PRA with

simple bidirectional random walks, coupled with efficient sampling measures, allows to

effectively learn long meaningful paths from the raw graph. Interestingly, we find that

long paths can be viewed as an alternative to concatenating multiple path segments in

a bootstrapping process [13]. This implies that incorporating long paths in relational

inference can boost recall, as will be demonstrated in our experiments.

7.3 Approach

In this section, we define backward random walks (Sec. 7.3.1), which are used to

efficiently apply two extensions to PRA—learning patterns with constants (Sec. 7.3.2),

and learning patterns with long predicate chains (Sec. 7.3.3).

7.3.1 Backward Random Walks

We next define backward random walk, which will be used in evaluating paths with

constants, and paths that describe long predicate chains.

Alternatively to Eq. (2.2.1), the probability of reaching a target node t from s,

following path π, can be recursively defined in a backward fashion as

P (s→ t; π) =
∑
z

P (s→ z; r)P (z → t; π′), (7.3.1)

where π′ is the path that results from removing the first relation relation r in π. Using

the sampling techniques described in [51], we can efficiently calculate P (s → t; π) for a

given t and all possible source nodes s.
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s t

z

Figure 7.1: Six types of random walks which can generate relational features for link
prediction tasks: P (s → t; π), P (t → s; π), P (z → s; π), P (s → z; π), P (z → t; π),
P (t→ z; π), where s is the query node, t is the target node, and z is a constant node.

As shown in Figure 7.1, there are six types of random walk probabilities that can be

used as relational features. The original PRA algorithm only uses features of the form

P (s→ t; π). In this study we also consider graph walk features in the inverse direction of

the form P (t→ s; π). Therefore, we define generalized feature quality measures

acc(f) =
1

n

∑
i

∑
t∈Gi

f(si, t)∑
t f(si, t)

, and (7.3.2)

hits(f) =
∑
i

I(
∑
t∈Gi

f(si, t) > 0), (7.3.3)

where f(s, t) is either P (s → t; π) or P (t → s; π). The accuracy measure is in the range

[0, 1], as all features are random walk probabilities.

We also define the support of a path type π (either forward or backward) on a set of

queries, as sup(π) the number of queries for which this path type is active. Note that

his(π) ≤ sup(π), and it will be useful for pruning the search space of useful paths with

constants and long paths.

In the next section, we discuss how to identify useful constant nodes z using backward

random walks, and efficiently compute P (z → t; π) and P (t → z; π) features. The

number of useful constant nodes z is usually small, and, unlike the query-specific s and

t node pairs, the set of constant nodes z can be stored and reused for different queries

that are targeted at relation r. Random walk probabilities between s and constant nodes

z, P (z → s; π) and P (s → z; π), do not directly affect the ranking of candidate answer
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nodes, so we do not use them in this study. It is possible, however, to generate random

walk features that combine these probabilities with random walks starting or ending with

target t through conjunction.

7.3.2 Paths with Constants

First we consider efficiently finding paths with constants that are potentially useful for

relational learning. The set of candidate constant nodes z ranges over all the nodes in

graph, and it is impractical to perform random walks (forward or backward) from all of

them. Instead, we propose to efficiently select the set of constant nodes z that are reached

over backward random walks starting from correct target nodes in Gi.

Algorithm 2 describes the process of efficiently computing P (z → Gi; π) for all zs.

The process for computing path probabilities in the inverse direction, P (t → z; π), is

similar and is not shown here. Here B is the set of backward path types that are active

in more than h queries (backward random walks start from good answer nodes Gi). We

don’t need to consider other backward paths, because their resulting path with constants

have no chance of passing the hits threshold.

As described in Section 2.2.3, our goal is to find all combinations of constant nodes z

and paths π for which hits and accuracy exceed thresholds h and a, respectively. The sparse

matrices A(z, π) and H(z, π) represent the accuracies and hits for different combinations

of z and π. For each query (si, Gi) and each backward path π ∈ B, the P (z → Gi; π)

values of all zs are estimated as a sparse vector by a particle filtering-based random

walk approach [51]. The accuracies and hits for the z nodes with non-zero probabilities

are updated accordingly. Not all of these path types are added to the model; in our

experiments, we only add to PRA the top informative paths with constants. Specifically,

we elect the K highest scoring paths with constants found, ranked by their accuracy.

We have found in our experiment that many paths with constants are actually
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Algorithm 2 Find Constant Paths
1: Input training queries {(si, Gi)}, i = 1...n

2: Input backward paths B

3: Input parameters a, h

4: Initialize sparse matrix A(z, π) = 0, H(z, π) = 0

5: for each query (si, Gi) do

6: for each backward path π ∈ B do

7: for each node z s.t. P (z → Gi;π) 6= 0 do

8: A(z, π)+ = P (z → Gi;π)

9: H(z, π)+ = 1

10: end for

11: end for

12: end for

13: A(z, π)/ = n

14: return (z, π) for which A(z, π) ≥ a, H(z, π) ≥ h

redundant. For instance, “the sports leagues participated by Boise State university teams”

are very likely to overlap with“the sports leagues participated by Boise Braves university

teams” (as shown in Table 7.2. If we consider combining this pattern to every university

in KB, we end up with generating many paths with constants, which correspond to almost

identical features. In this thesis, we take a simple approach to reduce such kind of

redundancy—if several paths with constants have exactly the same accuracy value in the

feature selection stage, then only (the first) one of them is added to the model.

7.3.3 Long Relational Paths

In order to efficiently find long paths, which are potentially useful for relational

learning, we employ bidirectional random walks, combining forward and backward walks,

as formulated in Section 7.3.1. Our goal is to efficiently find forward path type πs (starting

from the query node s) and backward path type πt (starting from the target node t), such
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Algorithm 3 Bidirectional Random Walks
1: Input training queries {(si, Gi)}, i = 1...n

2: Input forward paths F , backward paths B

3: Input parameters a, h

4: Initialize matrix A(πs, πt) = 0, H(πs, πt) = 0

5: for each query (si, Gi) do

6: Initialize matrix M(z, πt) = 0

7: for each backward path πt ∈ B do

8: for each node z s.t. P (z → Gi;πt) 6= 0 do

9: M(z, πt) = P (z → Gi;πt)

10: end for

11: end for

12: Initialize matrix H0(πs, πt) = 0

13: for each forward path πs ∈ F do

14: for each node z s.t. P (s→ Gi;πs) 6= 0 do

15: for each path πt s.t. M(z, πt) 6= 0 do

16: A(πs, πt)+ = P (s→ Gi;πs)M(z, πt)

17: H0(πs, πt)+ = 1

18: end for

19: end for

20: end for

21: for each (πs, πt) s.t. H0(πs, πt) > 0 do

22: H(πs, πt)+ = 1

23: end for

24: end for

25: A(πs, πt)/ = n

26: return πsπt for which A(πs, πt) ≥ a, H(z, π) ≥ h

that the concatenated path type πsπt is characterized with hits and accuracy rates that

exceed thresholds h and a, respectively. This means that in addition to finding long paths
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π that connect a given node pair, it is required to efficiently compute P (s→ t; π).

Algorithm 3 outlines the proposed process for computing long relational paths features

P (s → t; π) using bidirectional graph walks. Here B is the set of backward paths with

good support {π|sup(π) ≥ h}, and F is the set of forward paths with good support

{π|sup(π) ≥ h}. The sparse matrices A(πs, πt) and H(πs, πt) represent the accuracies

and hits for long path types, which are the results of different forward-backward path type

concatenation. The queries are processed one at a time. For efficiency, we first index the

backward random walk results P (z → Gi; πt) into a sparse matrix M (indexed by z). For

each forward path πs ∈ F , each node z, and each backward path πt ∈ B, the accuracy

of the concatenated path type πsπt is updated accordingly. To deal with the possibility

that node s and t are connected through multiple instantiation of a path type πsπt, H is

updated according to an intermediate counting matrix H0. The process for finding long

P (t→ s; π) paths is similar and not shown here.

Both Algorithm 2 and 3 involve the task of collecting accuracies and hits statistics

from individual queries. Therefore, we can employ multi-threaded computing to both of

them in order to speedup the training process.

7.4 Experiments

This section reports the results of applying paths with constants and long paths found using

bidirectional random walks to the tasks of knowledge base inference and coordinate term

extraction. Given a set of labeled queries, we conduct 3-fold cross validation experiments.

Since the number of correct answers per query is large in some cases, we report results

in terms of Mean Average Precision (MAP), a measure that reflects both precision and

recall1. All experiments were run on a machine with 16 core Intel Xeon 2.33GHz CPU

and 24Gb of memory. We use multiple threads (8) to speedup different stages of PRA

1 MAP is also used by previous work [58] that this work compares against
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including path finding, random walks, and gradient calculation for parameter estimation.

The parameters of hits and accuracy thresholds have been set to h = 2 and a = 0.001 for

all our experiment, based on empirical tuning using a subset of the training data. Several

variants of PRA are evaluated, in order to assess the contribution of including paths with

constants, as well as long paths, in the PRA model.

We compare PRA against Random Walk with Restart (RWR). We also compare PRA

to a variant of the FOIL algorithm [79]. FOIL takes as input a set of positive and negative

examples, and uses a “separate-and-conquer” strategy to learn a set of Horn clauses that fit

the data well. Each Horn clause is learned by starting with a general rule and progressively

specializing it, so that it still covers many positive examples but covers few negative

examples. After a clause is learned, the examples covered by that clause are removed

from the training set, and the process repeats until no positive examples remain. In order to

evaluate FOIL by MAP, we modify the original FOIL implementation2 to give confidence

measures to each predicted new beliefs. To that end, we estimate a conditional probability

P̂ (conclusion|preconditions) = (N+ + m · prior)/(N+ + N− + m), where N+ and

N− are the numbers of positive and negative instances matched by this rule in the FOIL

training data. We set m = 5 and prior = 0.2. We tried several different scoring functions,

and found that the following gives the best MRR performance— the score of an example

is the sum of estimated probabilities P̂ for all rules that are applicable to this example.

7.4.1 Case Study: Knowledge Base Inference

We study relational inference in the context of 16 NELL inference tasks defined in

Chapter 3. The snapshot of the NELL knowledge base used here corresponds to a graph

consisting of 1,661,245 edges, comprised of 353 relations, and 741,794 nodes (concepts).

Following Lao et al. [53], we test our approach on 16 link prediction tasks as in Chapter 3.

Given a relation r of interest and query node s, our model is evaluated on its ability to find

2http://www.rulequest.com/Personal/
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Figure 7.2: Path finding time (a) and MAP (b) for the KB inference tasks. The markers
iF+jB indicate the maximum path length for forward and backward random walks during
feature selection. The markers iF indicate the baseline settings, where only forward
random walk is applied.

nodes t for which r(s, t) is true.

Figure 7.2 shows the effect of using bidirectional random walks on the knowledge

base inference tasks. The curve denoted by kF shows baseline performances, where only

forward random walk is applied to feature selection. We can clearly see that the time

spent on path finding grows exponentially with the maximum path length. Forward path

finding can be executed up to a maximal length of 4 steps due to memory limitation. The

curves denoted by kF + 1B and kF + 2B show the results of adding backward random

walks for up to one and two steps, respectively. As shown, the time needed for path

search with bidirectional random walk is orders of magnitudes faster than the forward

search, given the same total path length. In particular, the time spent on path finding is

dominated by the longest path segment (either forward or backward)—e.g., the settings

3F, 3F+1B, 3F+2B have similar time complexity. The quality of the bidirectional models

(MAP) is comparable to the forward search baseline on the evaluated tasks, indicating that

the meaningful paths in this domain are mostly short.
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Figure 7.3: MAP vs. number of paths with constants features for the KB inference tasks
(a) and the person name extract task (b). PRAi denotes PRA method with random walk
features of length up to ` = i. cj denotes paths with constants up to length j.

We next consider the contribution of learning paths with constants on performance.

Figure 7.3a shows MAP results, varying the number of paths with constants modeled K.

MAP performance peaks at roughly K = 20, and gradually decays as K increases. We

therefore set K = 20 in this set of experiments.

Table 7.1 reports qualitative results and the time required for learning of PRA variants,

comparing them against RWR and FOIL. By comparing PRA-iRW and PRA we can see

that using backward random walk features increases training time by 60% percent, but

only marginally improves MAP. The table includes the results of adding the top K paths

with constants, up to length 2, to the baseline graph walk model. MAP results improve

noticeably, when paths with constants are incorporated. As shown, PRA is significantly

faster than FOIL, resulting in a competitive MAP performance.

Table 7.2 shows example paths with constants and their interpretations. We can see

that they mainly provide informative class biases (priors) to different tasks.
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Table 7.1: Compare approaches on the KB inference tasks. #Result is the average number
of potential answers found per query. For PRA the maximum random walk length ` is 3.
PRA-iRW is a variant of PRA without inverse random walk features. ci denotes paths with
constants up to length i.

#Results Train Time(s) MAP(SD)
RWR 2269.3 25.6 0.429 (0.005)
FOIL 69.3 18918.1 0.358 (0.005)
PRA-iRW 195.6 10.2 0.477 (0.005)
PRA 219.3 16.7 0.479 (0.005)
PRA+c1 219.3 23.3 0.524 (0.005)
PRA+c2 250.6 27.1 0.530 (0.005)

Table 7.2: Example paths with constants for the knowledge base inference tasks. (φ
denotes an empty path.)

Paths with Constants Interpretation
competesWith
P (google→ t;φ) Bias toward Google
P (google→ t; The companies that are competing

〈competesWith, competesWith〉) with Google’s competitors
athletePlaysInLeague
P (mlb→ t;φ) Bias toward MLB
P (boston braves→ t; The sports leagues participated by
〈athleteP laysForTeam−1, Boston Braves university team members
athletePlaysInLeague〉)

teamPlaysInLeague
P (ncaa→ t;φ) Bias toward NCAA
P (boise state→ t; The sports leagues participated by

〈teamPlaysInLeague〉) Boise State university teams

7.4.2 Case Study: Coordinate Term Extraction

For the second case study, we follow closely the experimental settings introduced by

Minkov and Cohen [58]. In this domain, an entity-relation graph is constructed from

a corpus of parsed sentences [21], where nodes denote word types and word mentions,

and syntactic relations between word mention pairs are represented by directed edges. A

special relation W links each word mention to its corresponding word type. The graph
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Figure 7.4: Two example sentences in the parsed MUC-6 data set. Relation W and POS
connect tokens in sentences to their word representations and part of speeches. nsubj and
appos are dependency relations in standard dependency parsers.

schema is illustrated in Figure 7.4. In this graph, given a small number of query nodes

denoting person names, one expects that traversing meaningful syntactic paths through

common neighboring words will retrieve a ranked list populated with many additional

person names. In the experiments, we use the training set portion of the MUC-6 dataset

[76], represented as a graph with 153k nodes and 748K edges. We generated 30 queries,

each comprised of 4 person names selected randomly from the known person names, and

evaluated performance using true named entity tags available.

Figure 7.5a shows the effect of using bidirectional random walks in the language

domain. The curve denoted by kF corresponds to a forward search baseline. As shown,

the time required for path finding grows exponentially with the maximal path length k.

Forward path finding can process paths only up to length 5 due to the memory limitation

of 24Gb of our machine. The curves kF + 1B, kF + 2B and kF + 3B show the result

of adding backward search from the target nodes of up to 1, 2 or 3 steps, respectively.

The results are consistent with our findings on the knowledge base inference tasks. In
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Figure 7.5: Path finding time (a) and MAP (b) for the person name extraction task. The
markers iF+jB indicate the maximum path length for forward and backward random
walks during feature selection. The markers iF indicate the baseline settings, where only
forward random walk is applied.

particular, it is demonstrated that, by combining random walks in both directions, path

finding is much faster. It is also shown that performance in terms of MAP (Figure 7.5b)

mostly depends on the total path length explored, rather than on the search mode. In this

domain, using bidirectional random walks enables us to exhaustively explore paths up to

6 steps long, which further improve the model performance3.

Table 7.3 shows example long paths learned for the person name extraction task. These

paths are similar to the top ranked paths found in previous work by Minkov and Cohen

[58]. In comparison, their results on this dataset using paths of up to 6 steps long measured

up to 0.09 in MAP. The results here reach roughly 0.15 in MAP with long relational paths.

Interestingly, by repeatedly applying the path concatenation procedure, a novel

9 step path can be found P (s → t; 〈W−1, conj and−1,W,W−1, conj and−1,W,

W−1, conj and,W 〉). It corresponds to a chain of words linked by conjunctions,

3MAP values are low for this dataset, because there is a large number of correct answers, and
many of them are not reachable from the seed nodes.
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Table 7.3: Example long paths for person name extraction
Long Paths Interpretation

P (s→ t;
〈
W−1, conj and−1,W, Entities connected to the seeds by two conjunction

W−1, conj and,W
〉
) relations, e.g. “Bill Gates and Steve Jobs collaborated ...”

P (s← t;
〈
W−1, nsubj−1,W, Entities having the same action as the seeds

W−1, nsubj,W
〉
) e.g. “Bill Gates founded ...” (as in Figure 7.4)

P (s→ t;
〈
W−1, appos,W, Entities having the same appositive modifier as the seeds

W−1, appos−1,W
〉
) e.g. “Bill Gates, the CEO of ...” (as in Figure 7.4)

Table 7.4: Example paths with constants on the person name extraction task. #Result is
the average number of potential answers found per query. For PRA the maximum random
walk length ` is 6. PRA-iRW is a variant of PRA without inverse random walk features.
ci denotes paths with constants up to length i.

#Results Train Time(s) MAP(SD)
RWR 132,832.9 7,375.7 0.017 (0.01)
FOIL 683.1 366,558.6 0.167 (0.02)
PRA-iRW 15,880.4 277.8 0.107 (0.02)
PRA 15,925.9 449.4 0.167 (0.02)
PRA+c2 15,944.1 556.2 0.186 (0.02)
PRA+c3 16,034.0 643.6 0.316 (0.03)

mimicking a bootstrapping process, and improves MAP over the length-6 model.

However, a study of repeated path concatenation is beyond the scope of this thesis.

Figure 7.3b shows MAP results, varying K, the number of paths with constants

modeled. As shown, MAP performance improves as these paths are added to the model,

indicating their usefulness. Performance picks (and stabilizes) at roughly K = 100. We

therefore set K = 100.

Finally, Table 7.4 shows the impact of adding paths with constants on this dataset,

comparing against other PRA variants, RWR and FOIL in terms of qualitative and learning

time performance. PRA is much faster than RWR or FOIL methods, and gives competitive

MAP performance to FOIL. The RWR approach is ineffective on this task, because

similarity in this domain is represented by a relatively small set of long paths, rather than
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Table 7.5: Example paths with constants for person name extraction. The relation POS
links tokens in sentences to their part of speeches.

Paths with Constants Interpretation
P (t→ said; 〈W−1, nsubj−1,W 〉) The subjects of “said”
P (t→ says; 〈W−1, nsubj−1,W 〉) The subjects of “says”
P (t→ vbg; 〈W−1, nsubj−1, POS〉) The subjects of verbs
P (t→ nnp; 〈W−1, POS〉) Entities having noun compound POS
P (t→ nn; 〈W−1, appos, POS〉) Entities having appositive constructions

e.g. “Bill Gates, the CEO of ...”
P (t→ nn; 〈W−1, poss−1, POS〉) Entities having possessive constructions

e.g. “Bill Gates’ view of ...”

general node association in the graph. As shown by the MAP results, adding features of

paths with constants boosts performance. In this domain, these features mainly provide

class priors for different part of speech categories. By comparing PRA-iRW and PRA we

can see that backward random walk features although noticeably increases training time,

but also noticeably improves MAP.

Table 7.5 shows examples of the top weighted paths with constants learned. They

indicate that the subjects of verbs (especially “said” and “says”) and nouns (especially

those with apposition and possessive constructions) are likely to be person names.

Compared to PRA, FOIL generates fewer rules, which are characterized with low recall

and high precisions, such as

W (B,A)∧POS(B, nnp)∧nsubj(D,B)∧W (D, said)∧appos(B,F )→ person(A).

This indicates an interesting future work of using products of basic random walk features

to express their conjunctions. Such conjunctions can be represented as features that include

random walks between constant node z and query node s.
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7.5 Summary

We have shown that it is feasible to efficiently learn random walk features which involve

long paths or constant nodes. Towards the first goal, we use backward random walks

from target nodes to efficiently evaluate constant path types. Towards the second goal,

we combine forward and backward random walks from both query and target nodes to

evaluate the goodness of long path patterns. Knowledge base inference and person name

extraction experiments show significant improvement in training time and model quality.
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Conclusion and Future Work

8.1 Summary of Contributions

This thesis introduces random walk inference, which combines the expressiveness of logic,

the robustness of statistical learning, and the scalability of random walk models. It also

introduces the path ranking algorithm (PRA), a method for learning random walk inference

for a family of restricted first order rules. A key to PRA’s efficiency and robustness

is the stochastic approach to feature instantiation. As we have described, simple but

effective metrics can be used to explore the large feature space (Chapter 2 and 7), and

the instantiation cost of such features can be computationally bounded using sampling

based random walk approaches (Chapter 5). Experiments show that we are able to apply

relational learning at scales not possible before.

Compared to existing ILP methods such as FOIL, the key characteristics of this new

inference method are as follows:

• The evidence in support of inferring a relation instance r(s, t) is based on many

existing paths between s and t in the KB, combined by a learned logistic function.

• The confidence in an inference is sensitive to the current state of the knowledge base,
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and the specific entities being queried.

• Experimentally, the inference method yields many more moderately-confident

inferences than the Horn clauses learned by FOIL, and is more accurate than random

walk with restart.

• The learning and inference are more efficient than FOIL, in part because we can

exploit efficient approximation schemes for random walks.

Although link prediction, the task performed by PRA, is a special case of logical

inference, it has may applications. We applied PRA to several applications including

inference in a large scale knowledge base (Chapter 3), recommendation problems in the

biological literature (Chapter 4), relation extraction from parsed text with knowledge base

(Chapter 6), and coordinate term extraction (Chapter 7). We have shown that PRA has

very competitive speed and accuracy compared to existing approaches such as random

walks with restart and FOIL.

8.2 Limitations

Because of its efficiency, PRA can potentially be applied to a wide range of tasks, for

which a knowledge base might help. However, the presented framework has its limitations

in several aspects, which point to possible avenues of future research.

• PRA Implementation—the current PRA implementation cannot effectively handle

graphs with large numbers of virtual nodes. It also suffers from an overfitting

problem when facing a large number of correlated path features.

• Model Expressiveness—compared to logic programs, PRA’s language for defining

features is very restricted, which prevents it from effectively encode certain type of

semantics.

• Multitask Learning—the current framework learns models of different relations in

a KB separately. The models can neither share useful prior information about which
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relations (or combinations of relations) are more likely to be useful, nor can they

make decisions based on each other’s decisions.

In the following, we describe these limitations in detail, and discuss possible solutions.

8.3 PRA Implementation Extensions

There are two directions in which the current PRA implementation can be improved.

Unsupervised Learning to Find Groups of Related paths

As we have discussed in Chapter 7, many paths with constants are actually redundant.

For instance, “the sports leagues participated in by University of Michigan” are very likely

to overlap with “the sports leagues participated in by University of Wisconsin”. If we

consider applying this rule to every university in KB, we end up with generating many

paths with constants, which correspond to almost identical features. Using all of them as

features for logistic regression training would lead to overfitting as shown in the knowledge

base inference task.

In this thesis, we take a simple approach to reduce this kind of redundancy—if several

paths with constants have exactly the same accuracy value in the feature selection stage,

then only (the first) one of them is added to the model. One interesting research direction

is to employ more robust feature selection or dimensionality reduction methods to reduce

the redundancy of the random walk features.

Dynamic Graph Instantiation

This thesis assumes that the graph representation of knowledge base is given before

PRA does any random walk or learning. However, for domains with large number of nodes

or even an infinite number of nodes, maybe only a small subset of nodes are relevant to

PRA’s queries. In this case it is more practical to generate parts of PRA’s graph during
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random walk. For example, social computing tasks may require pairs of persons to be

represented as nodes in the knowledge base. However, it is unnecessary to instantiate

possible pairs among all persons, since most of them are not related to each other anyway.

For text processing tasks, we might want to conceptually treat any character sequence

as a node in the graph representation, but only instantiate the ones generated by string

manipulation operators such as string concatenation, or a spell checker. Similarly, for

natural language processing tasks, we might want to conceptually treat any sub-span of a

word sequence (i.e. a sentence) as a node in the graph representation, but only instantiate

the ones relevant to the queries.

8.4 Path Language vs. Logic Programs

Although PRA is very efficient, it uses a very restricted language to express rules compared

to logic programs such as FOIL.

Existential Quantifier

PRA learns rules that involve source, target, and constant nodes. In comparison,

most logical programs can include rules that involve unbounded nodes such as y in

IsA(x,writer) ← Write(x, y). As we can see, such rules can compactly express certain

semantics. The incorporation of such rules to PRA is straight forward—we can defined

the probability of reaching any node from a bounded node, through a particular path.
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Conjunctions of Paths

The random walk features in PRA correspond to edge sequences. However, it is

desirable, for many applications, to have features that correspond to more complex

structures. For example, Mintz et al. [60] discovered, from their relation extraction

experiment, that it is useful to define features that are conjunctions of dependency

chains and the word/POS representations of tokens along these chains. For example, the

rule 〈W (s, t1), dobj(t1, t2),W (t2, founded), nsubj(t3, t2),W (t3, t)〉 would be useful in

predicting the CEO of a company, given the fragment of parse tree shown in Figure 8.1.

Here W relation links tokens in sentences to their word representations. In PRA’s

terminology, each of these features corresponds to a tree T with constant nodes, source

nodes, and the target node as its leaves, and KB relations as edges.

In order to use such tree structured rules in the random walk inference framework,

we need to define random walk processes on tree structures instead of on paths. Note

that the random walk probabilities P (s → t; π) defined in this thesis can be interpreted

as the probability that an instantiation of path type π ends at node t, if started from s,

and choosing possible node instantiations with equal probabilities at each step. Here is a

possible way to generalize this definition to tree shaped rules.

Let’s assume that [s1, ..., sd] is the set of source nodes and constant nodes, and treat

the target node t as as the root of instantiation. Then we can define a forward random

walk probability P ([s1, ..., sd] → t; π) as the chance of starting d walkers from the leaf

nodes and instantiating a tree structure of rule π, which ends at node t. Here we require

that wherever π has a merging structure such as
〈
s

r1−→ x, s
r2−→ x

〉
the walkers that follow

this pattern meet at exactly the same node otherwise the join random walk fails, and, once

they meet, they walk together as if they are a single walker. By setting t as the root, we

can efficiently calculate such probabilities for all possible t using dynamic programming.

A set of tree rules, as well as their random walk results, can be compactly represented as a

relation network (as oppose to a relation tree [58, 52].
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Similarly, we can define a backward random walk probability P (t → [s1, ..., sd]; π)

as the chance of starting one walker from the root t and instantiating a tree structure of

rule π, which ends at nodes [s1, ..., sd]. Here we require that, wherever π has a diverging

structure such as
〈
x

r1−→ s1, x
r2−→ s2

〉
, the walker that follows this pattern splits into two

or more walkers (one for each branch). The result walkers walk independently thereafter

following different branches of the rule π.

Representing K-ary Relations

The graph representation of PRA only has binary relations. However, many types of

knowledge, such as events, are naturally represented as K-ary relations. For example,

“Alice met Bob in 1999” expresses a ternary relation MeetInYear(Alice,Bob, 1999). FOIL

represents these K-ary relations as K-ary predicates.

Learning rules that contain K-ary relations leads to a much larger hypothesis space

than the one PRA considers. The hypothesis space of PRA (sequences of binary relations)

can be compactly represented as a path tree. The size of such a tree is generally O(|R|`),

where ` is the number of relations allowed in a rule, and |R| is the number relations in

a KB. If K-ary relations are considered, the hypothesis space can be represented as a

directed acyclic graph (DAG), where each node can have one or more parents. More

specifically, a node generated by a K-ary relation has K − 1 parents. The size of such a

DAG is generally double exponential O((|R| ·K)(K−1)
`
).

Instead of exhaustive search, FOIL relies on local searches based on refinement

operators. A similar strategy can potentially be applied to random walk inference.

Learning K-ary Target Relations

This thesis started from a link prediction task: given a directed edge-labeled graph

KB representing background knowledge, a relation r, and a source node s (also called

a query), find the set of nodes G s.t. r(s, t) for each t ∈ G. Then Chapter 4 extended

this definition: instead of having a single source node s, each query has d sets of source
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nodes [S1, ..., Sd], d ≥ 1, where each set contains source nodes of a certain type. It is an

interesting direction to generalize this task definition even further to situations where there

is no target node (classification tasks), or where there are more than one target node (e.g.

the query PersonPlaysSportAtLocation(Bob, a, b)).

The extension to classification tasks is straight forward: instead of defining random

walks between source nodes and target nodes, we just define random walks between source

nodes and constant nodes, or among source nodes themselves.

The extension to more than one target node is more involved. One possible solution

[55] is to conceptually treat each pair of nodes in a KB as a new node of “composition

type”. These composite nodes are connected to regular nodes through composition

relations, e.g. ComposeOf ([Bob,Alice], Bob, Alice), where [Bob,Alice] is a composite

node. This allow the positive and negative samples of a link prediction task to still be

individual nodes.

8.5 Joint Learning of Multiple Relations

The rules defined in PRA are based on existing edges in a KB. However, it can be beneficial

for a model to make decision based on other models’ decisions—i.e. to impute missing

edges, or correct erroneous edges in a KB. One can imagine training several PRA models

for different relations at the same time, where the path types of these PRA models are

defined as either existing edges in the KB or other PRA models. For instance, a PRA

model that predicts the hobby of a person, may contain a path 〈PRAHasFriend,HasHobby〉,

which invokes another PRA model PRAHasFriend, which predicts the friend of a person.

Since the models are dependent on each other, it is natural to consider training them

in a single coherent process. The objective function for learning these models collectively

can be the sum of all their individual objective functions. To optimize such a combined

objective function, we can either do coordinate descent, or joint update. In the former
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case, we update the parameters of only one model at a time, while fixing the parameters

for all other model. This approach is easy to implement, but may converge slowly. In the

later case, we update the parameters of all model at the same time. This approach has

good convergence speed, but involves calculating gradient of each model with respect to

parameters of other models.

One interesting question arises in this multitask learning setting—since the models

of different target relations may share the same rules or rule fragments, it can potentially

useful for them to share the knowledge about which rule (or rule fragments) are more likely

to lead to good model. One possible way to achieve this, is to learn “macro” relations,

which are combinations of several existing relations. For example, the macro relation

Grandpa(x, y) can be defined as Father(x, z) ∧ Father(z, y). A more powerful way to

share knowledge between models is predicate invention. For example, a new relation

Grandpa(x, y) may be discovered from existing relations in a KB, and a corresponding

model is learnt, which involves rules such as Grandpa(x, y)← Father(x, z)∧Father(z, y)

and Grandpa(x, y)← Mother(x, z) ∧ Father(z, y).

Another interesting question arises, if we allow the definition of PRA models to be

recursive (e.g. a PRA model relies on itself, or two PRA models rely on each other).

Some kind of computation complexity measure or merit measure is needed to prevent

infinite calls among PRA models when they make decisions.

115



References

[1] G Adomavicius and A Tuzhilin. Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions. In IEEE
Transactions on Knowledge and Data Engineering, volume 17, pages 734–749.
Department of Molecular and Cell Biology, University of California, Berkeley
94720., IEEE Educational Activities Department, 2005.

[2] Alekh Agarwal, Soumen Chakrabarti, and Sunny Aggarwal. Learning to rank
networked entities. In KDD, 2006.

[3] Eugene Agichtein and Luis Gravano. Snowball: extracting relations from large
plain-text collections. In ACM conference on Digital libraries - DL, pages 85–94,
New York, New York, USA, 2000. ACM Press.

[4] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer: A System for
Keyword-Based Search over Relational Databases. ICDE, 2002.

[5] Galen Andrew and Jianfeng Gao. Scalable training of l1-regularized log-linear
models. ICML, pages 33–40, 2007.

[6] Andrew Arnold and William W. Cohen. Information extraction as link prediction:
Using curated citation networks to improve gene detection. WASA, pages 541–550,
2009.

[7] Javed A. Aslam, Evangelos Kanoulas, Virgiliu Pavlu, Stefan Savev, and
Emine Yilmaz. Document selection methodologies for efficient and effective
learning-to-rank. SIGIR, pages 468–475, 2009.

[8] Marko Balabanovic and Yoav Shoham. Fab : content-based , collaborative
recommendation .( Special Section : Recommender Systems ). Communications
of the ACM, 66(March):1–7, 1997.

116



References

[9] Michele Banko, Michael J. Cafarella, Stephen Soderland, Matthew Broadhead,
and Oren Etzioni. Open Information Extraction from the Web. In IJCAI, pages
2670–2676, 2007.

[10] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and
S Sudarshan. Keyword Searching and Browsing in Databases using BANKS. ICDE,
2002.

[11] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, SIGMOD ’08, pages 1247–1250, New York, NY, USA,
2008. ACM.

[12] MJ Cafarella, M Banko, and O Etzioni. Relational Web Search. In www, 2006.

[13] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam
R. Hruschka Jr., and Tom M. Mitchell. Toward an Architecture for Never-Ending
Language Learning. In AAAI, 2010.

[14] Soumen Chakrabarti. Dynamic personalized pagerank in entity-relation graphs.
Proceedings of the 16th international conference on World Wide Web WWW 07,
10(3):571, 2007.

[15] Soumen Chakrabarti and Alekh Agarwal. Learning Parameters in Entity
Relationship Graphs from Ranking Preferences. PKDD, 2006.

[16] Brian Cohen and Claude Sammut. Object recognition and concept learning with
CONFUCIUS. Pattern Recognition, 15(4):309–316, January 1982.

[17] William W. Cohen and C. David Page Jr. Polynomial Learnability and Inductive
Logic Programming: Methods and Results. In New Generation Comput.,
volume 13, pages 369–409, 1995.

[18] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[19] Aron Culotta, Andrew McCallum, and Jonathan Betz. Integrating probabilistic
extraction models and data mining to discover relations and patterns in text.
Proceedings of the main conference on Human Language Technology Conference
of the North American Chapter of the Association of Computational Linguistics,
(June):296–303, 2006.

117



References

[20] Bhavana Bharat Dalvi, Meghana Kshirsagar, and S Sudarshan. Keyword search on
external memory data graphs. In Proc VLDB Endow, volume 1, pages 1189–1204.
VLDB Endowment, 2008.

[21] Marie-Catherine De Marneffe, Bill MacCartney, and Christopher D Manning.
Generating Typed Dependency Parses from Phrase Structure Trees. In Proceedings
LREC2006, pages 449–454, 2006.

[22] Marie-Catherine de Marneffe and Chris Manning. Stanford dependencies. http:
//www.tex.ac.uk/cgi-bin/texfaq2html?label=citeURL, 2008.

[23] Luc De Raedt. Logical and Relational Learning, volume 38 of Cognitive
Technologies. Springer, 2008.

[24] Luc De Raedt and Luc Dehaspe. Clausal Discovery. Machine Learning,
26(2-3):99–146, 1997.

[25] Rodrigo De Salvo Braz, Eyal Amir, and Dan Roth. Lifted First-Order Probabilistic
Inference. In F Giunchiglia and L Pack Kaelbling, editors, Introduction to Statistical
Relational Learning, pages 1125–1319. AAAI Press, 2007.

[26] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, January 2008.

[27] Michelangelo Diligenti, Marco Gori, and Marco Maggini. Learning Web Page
Scores by Error Back-Propagation. In IJCAI, 2005.

[28] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. A large-scale evaluation and
analysis of personalized search strategies. WWW, pages 581–590, 2007.

[29] Saso Dzeroski. Relational Data Mining. In The Data Mining and Knowledge
Discovery Handbook, pages 869–898. 2005.

[30] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu,
Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Web-scale
information extraction in knowitall. In WWW, page 100, New York, New York,
USA, 2004. ACM Press.

[31] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-maria Popescu, Tal Shaked,
Stephen Soderl, Daniel S. Weld, and Er Yates. Unsupervised Named-Entity
Extraction from the Web: An Experimental Study. Artificial Intelligence,
165:91–134, 2005.

118

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=citeURL
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=citeURL


References
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