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Abstract
Iris recognition has been developing for over 20 years, but, only in recent years

has it been more accessible and widely accepted as one of the most accurate and
un-obtrusive biometric modalities. Over the past few years, many companies have
developed iris acquisition systems that are more user-friendly. Iris-On-the-Move
(IOM) is one such system, offering significant stand-off acquisition distance (3m),
which is extremely convenient for users and very suitable for deployment at airports
to check passenger identifications and to control access. However, iris images ac-
quired by the IOM and other long range systems are, in most cases, considerably
blurred, of low contrast, and lacking detail in the iris texture compared to images
from very close proximity sensors (5cm stand-off). This thesis focuses on how to
deal with the three most challenging problems in long-range iris recognition: (1)
iris segmentation from long range systems, (2) automatic iris mask generation of
occluded regions, (3) iris matching performance enhancement using multiple irises
from a video sequence. In particular, we emphasize solutions in the context of the
IOM system and those that take advantage of an iris image video stream.

If an image of the eye is clear and has strong contrast, it is very easy to find
the boundaries of the pupil and iris. However, most images acquired by the long-
range iris acquisition system are blurred and noisy, which is the first problem that
we propose a solution to: iris segmentation. Even worse, there are always strong
specular reflections either in the pupil or on the iris region, which increases the
difficulty in achieving good iris segmentation results. For this problem, we propose a
novel iris segmentation algorithm which is robust in dealing with specular reflections
and image blur and is also computationally efficient.

For the second problem, automatic detection of iris occluded regions from eye-
lashes and specular reflections, we focus on estimating a mask for the iris texture in
the polar coordinate system. Unlike most current methods, we propose a probabilis-
tic, learning-based approach where the system can learn about the pixel distribution
from a training data set and create masks for a test data set in an efficient way. We
further search the parameter space of Gabor filters in order to optimize the features
set that the prposed algorithm learns, for the purpose of minimizing global error rate
for large-scale iris recognition.

Iris matching performance enhancement for images captured by long-range iris
acquisition devices, the third problem we address, deals with iris images that are
blurred, defocused, and noisy due to low quantum efficiency of long-range iris sen-
sors imaging in near-Infrared wavelengths. By exploiting the multi-frame video cap-
ture of the long-range iris acquisition system, it is possible to enhance the recogni-
tion performance by improving the low-quality iris images acquired from the system
using super-resolution methods designed specifically for irises. We show a com-
prehensive set of empirical results demonstrating the effectiveness of our proposed
approach designed for the IOM system that also apply to any video sequence of iris
images captured by long-range iris acquisition devices.
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Chapter 1

Introduction

Over the past few decades, biometric recognition has drawn significant attention due to its many
applications in the field of law enforcement, surveillance, border control, and national security.
The core goal of any biometric recognition system is to recognize the identity of the target person
based on his/her physiological or behavioral characteristics. Examples of such characteristics
include fingerprint, face, voice, signature, hand geometry, iris and palm print [1].

1.1 The Robustness of the Iris Recognition

Among all the usable characteristics for biometric recognition, the pattern of iris texture is one
of the few characteristics believed to be the most distinguishable among different people [2].
The iris is the annular area between the pupil and the sclera of the eye, as shown in Figure
1.1. It consists of pigmented fibril-vascular tissues which connect to the sphincter and dilator
muscles that control the contraction and dilation of the pupil. It is the randomness of the structure
of those tiny tissues that gives the iris pattern its uniqueness for each person. Furthermore,
the iris possesses certain properties that make it a very attractive biometric feature; first and
foremost, it is thought to remain relatively unchanged throughout a person’s lifetime. In fact, the
iris pattern is formed in the third month of gestation, and the structure becomes stable around
the eighth month [3]. This permanence over time makes iris recognition a reliable biometric
compared to other physiological characteristics, such as a face or voice, which change drastically
as a person grows old. The iris is also rarely affected by external elements because it is well
protected behind the cornea. Even eye surgery, which is typically performed on the cornea or
on the retina through the pupil, seldom hurts the iris. In comparison, fingerprints, although
unique and relatively permanent, suffer significantly from external elements, such as erosion,
cuts and scratches, and medical conditions like Psoriasis. These external elements cause thinning
of the finger pads and, ultimately, lead to failures in acquisition by common fingerprint sensors.
Although comparably harder to acquire, iris imaging is relatively un-intrusive and, as with face
imaging, requires minimal effort from a subject. The subject only needs to stand still or stare at
a camera. Because this requires no touching or physical contact, it is easier to accept. Lastly, it
is believed to be one of the hardest biometrics to spoof and circumvent.

A typical iris recognition system consists of following stages: (1) iris image acquisition, (2)
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Figure 1.1: Illustration of some important regions of an eye, such as pupil, iris, sclera, eye lashes,
eye lids, and specular reflection.
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iris image preprocessing, (3) iris texture feature extraction and (4) feature matching. Figure 1.2
shows the flow chart of a typical iris recognition system.

Figure 1.2: The flow chart of the process of a typical iris recognition system. Example images
are placed besides to each stage of the process.

1.2 Necessity for Non-Intrusive and Long Range Iris Recog-
nition

The advantages of iris recognition are its extraordinarily high recognition rate and its stability
through out a person’s lifetime. However, for the current and most popular iris recognition sys-
tems on the market, the major disadvantage is the stand-off distance: it is too small, typically
5-10cm. This constraint hinders the development of practical un-obtrusive iris recognition sys-
tems. If we want to make iris recognition useful in everyday life, this constraint needs to be
further relaxed to achieve longer stand-off distance to make the system un-obtrusive. In section
1.3.3, we will introduce a new iris acquisition device which is relatively new to the commercial
market and opens the possibility of capturing iris images from a longer distance.
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1.3 Variability of the Iris Image Acquisition Device and the
Resulting Iris Image Quality

Robust iris recognition is inherently related to the quality of the iris image and the acquisition
optic. With a good optical image capturing device and sensor and the appropriate lighting to
illuminate the iris, the captured image should reveal iris texture with a great level of detail, as
shown in Figure 1.3.

Figure 1.3: Illustration of crypts, furrows, collarette and moles in an iris image.

In Figure 1.3, one can see that the iris texture actually consists of many delicate details,
including collarette, contraction furrows, crypts and moles. The location of these tiny muscular
structures appear to be random across different eyes of different people. It is this randomness
in their existence and location that gives an extremely low probability of false acceptance in a
recognition task. In other words, the chances that two different irises would be classified as same
is unlikely. Therefore, the quality of the image is extremely important in iris recognition. If we
cannot get a high quality iris image for enrollment, it would be extremely difficult to get high
recognition performance at later testing stages.

In following sub-sections, three different models of iris acquisition will be introduced. Each
of them has its advantages and drawbacks in terms of image quality, as well as user-friendliness
and level of non-intrusiveness, which are the two most important aspects of an iris acquisition
system. Designers and engineers must take these into acccount in order to find the optimal trade-
off between the high quality imagery and ease of use best suited for a particular deployment and
operational scenario.
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(a) (b)

Figure 1.4: (a) Example picture of traditional iris acquisition device. (b) Example picture to
illustrate how to use it.

1.3.1 First Generation Iris Image Acquisition Devices
The original first generation iris acquisition devices usually consisted of a high resolution imag-
ing device (typically a digital camera), one or more light sources (illuminators), and an adjustable
mechanical rack to position the subject’s head at a very close proximity to the sensor. Figure 1.4
shows how a traditional first generation iris acquisition device looks and how it is operated and
positioned with respect to a subject. Figure 1.5 shows an example of the iris image captured by
such a device. From Figure 1.5, we can see that the quality of the captured image is so high that
every detail of the iris texture is revealed clearly.

The drawbacks of such devices are, obviously, the difficulty of use and the slow turn-over
rate of the system (very slow throughput). These systems are impractical in most real world
applications, such as access control and border security where the throughput of the system is
crucial. Such devices are typically confined to very specific medical applications that require
extremely high resolution imagery of the eye.

1.3.2 Short Range Iris Image Capturing Devices
In the last decade, a lot of research has been done to enhance the usability of iris imaging devices
by relaxing the constraints of the system as much as possible, while maintaining satisfactory
matching performance. As a result, many new iris capturing devices have the ability to detect the
location of a human face and eyes in an acquired image. Therefore, it does not require users to
place their heads in a fixed location, allowing the ability to achieve a certain amount of stand-off
distance between the user and the camera.

The LG IrisAccess 4000 is one such commercial device that is popular in the iris commercial
market [4]. In this device, the iris camera, face camera and illuminator are all packaged in one
relatively small form factor box, which makes it easy to move, install, and deploy in different
locations. There are also up/down control buttons located on the front of the panel to allow
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Figure 1.5: An example image captured by traditional iris acquisition device. The image quality
is so high that all details of iris texture are revealed clearly.

(a) (b)

Figure 1.6: (a) LG IrisAccess 4000 iris acquisition device and description of the functional unit.
(b) An example image to illustrate how to use it.
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(a) (b)

Figure 1.7: (a) IOM system. (b) Example picture of a subject walking through the portal.

users to adjust the angle of the camera, which compensates for people with different heights.
Additionally, these new LG models are dual iris capture devices, i.e. they capture both irises
from both eyes simultaneously. Conversely, some devices on the current market are single iris
capture devices, which take more time to acquire both eyes and can lead to erroneous labeling
of the acquired left/right eyes due to human error. Figure 1.6(a) shows a picture of frontal view
of LG IrisAccess 4000 camera as well as its functionality buttons. Figure 1.6(b) shows a person
using it to capture iris images.

1.3.3 Long Range Iris Image Capturing Devices –Iris-On-the-Move

High correct identification rates and low false matching rates make the iris biometric modality
ideal for high volume applications such as border control and a myriad of access control appli-
cations where there are a large number of subjects that need to be tested in a relatively short
amount of time. Therefore, the speed of acquisition and throughput of such a system becomes
critical. Recently, high-speed iris capturing devices have become available on the market. These
devices are capable of capturing iris images of both eyes in less than 3 seconds per person. One
example of a high-speed system is the Iris-On-the-Move (IOM) system, manufactured by Sarnoff
Corporation, shown in Figure 1.7. This system consists of three components: the portal through
which subjects walk; the cabinet where the imaging devices reside, and a computer to control
the device. The capturing process is made extremely easy. All the subjects have to do is to
walk through the portal looking straight at the cabinet. The cameras inside the cabinet will au-
tomatically capture the iris images. Figure 1.7(b) shows the iris capturing process with a subject
walking through the portal.

IOM has the capability of taking a video of subjects as they are walking through the portal.
Therefore, the number of the eye images it captures is much more than a traditional iris capturing
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Figure 1.8: Example video frames taken by IOM system.

device. Let us assume that it takes one second for a person to walk through the portal, which is a
pretty reasonable estimate. The standard video format records video at 30 frames/sec. Assuming
that the eye region is inside the camera capture volume for only 1/2 of the time during which
the subject is walking through the portal, the average number of iris images that can be captured
for a single run should be 30 × 1

2
= 15. Assume out of these 15 images, only 1/2 of them are

well focused, then the good quality iris images which can be captured in a single run is about 7
or 8 images. Figure 1.8 shows examples of video frames of a subject’s eye captured by the IOM
system.

There are both advantages and disadvantages in this system setup. An advantage of the
setup is that, given the multiple frames that have been captured, an enrolled iris image can be
matched with all of them. The final recognition result can be measured by selecting the best
score among them. However, the disadvantage is the image quality of IOM system is usually
very low, compared to the images taken by LG camera or a traditional iris acquisition device, as
shown in Figure 1.9. Therefore, further improvement is necessary in order for IOM system can
be practically usable in a real life scenario.

1.4 Basic Optics for IOM system
In this section, we will review some of the basic optical principles and design constraints that go
into a long-range iris acquisition device, such as the IOM system. As these optical principles are
introduced sequentially in each of the following sub-sections, the design philosophy, constraints,
and limitations of long range iris recognition systems will become clear.

We will use Figure 1.10 to illustrate the basic structure of a typical optical imaging system.
As shown in Figure 1.10, the purpose of a typical optical imaging system is to capture the light
emitted from the object and collect it on a receptive plane, so the image on the plane resembles
the details of the target object as much as possible. In most cases, this goal is achieved by using a
lens or array of lenses. D denotes the diameter of the entrance pupil, which is the maximal area
of the lens that allows for the light to pass through. θ is the half-angle of the maximal cone of
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(a) (b)

Figure 1.9: The same eye captured by different iris cameras. (a) the image captured by LG
IrisAccess 4000 (b) the image captured by Iris-On-the-Move. The detailed iris features are
clearly visible in (a) but not very clear in (b).

Figure 1.10: Illustration of a typical structure of an optical imaging system.
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light that can enter the lens. do denotes the distance of the object, which is the distance between
the object and the lens. di denotes the distance of the image, which is the distance between the
image plane and the lens.

1.4.1 Numerical Aperture
In optics, the numerical aperture (NA) of an optical system is a dimensionless number that char-
acterizes the range of angles over which the system can accept or emit light. In most areas of
optics, the numerical aperture of an optical system is defined as:

NA = n · sinθ (1.1)

where n is the index of refraction of the medium in which the light is passing through. For
the case of iris image acquisition, the light is passing through air, therefore, n = 1. For the
purpose of iris acquisition, usually the distance of the object is much larger than the diameter of
the entrance pupil, therefore, Eq. (1.1) can be approximated as:

NA = n · sinθ = sinθ ≈
D

2do
(1.2)

1.4.2 Minimum Resolvable Separation for Object
Once we know the numerical aperture (NA) and the wavelength (λ) of the system, we are able
to compute the Minimum Resolvable Separation (MRS) at the object side. It is described by the
following formula [5]:

MRS =
1.22λ

2NA
≈

1.22λdo
D

(1.3)

What Eq. (1.3) tells us is the minimal distance of two points on the object side when they
can be clearly seen as two separated points on the image plane. This limitation is caused by
the optical phenomenon called “diffraction”. Diffraction is directly related to the wavelength of
the light. The shorter the wavelength, the smaller MRS we can achieve. However, MRS is also
limited by the diameter of the lens. For example, under the normal visible light, the wavelength is
about 550nm. Suppose the distance between the object and the optical imaging system is 100m.
Table 1.1 shows the MRS value for three optical imaging systems: human eye, eagle eye and
telescope.

1.4.3 Magnification Rate
For an optical system, if the distance of the object and the distance of the image have been fixed
as constraints of the system, the focal length f of the system can be computed by the following
equation [5]:

1

f
=

1

do
+

1

di
(1.4)
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Table 1.1: The Minimum Resolvable Separation (MRS) of three optical imaging systems, under
the condition that the images are taken under normal visible light with λ = 550nm, and the
distance of the object is 100m.

Optical System D (cm) MRS (mm)
Human Eye 0.3 22.4
Eagle Eye 1 6.71

8” Telescope 20 0.33

Figure 1.11: The ray path of an optical system. In this figure, one can clearly see the relation
between focal length f , the distance of the object do, the distance of the image di, the height of
the object ho, and the height of the image hi.
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Figure 1.12: The back projection from image sensor array to the target object. The red grid on
the target object shows the size of Object Referred Pixels (ORP).

Figure 1.11 shows the relation between focal length f , the distance of the object do and the
distance of the image di, as well as the ray path of the optical system.

The desired magnification rate of the system can be computed using equation [5]:

M ≡ hi
ho

=
di
do

=
f

do − f
(1.5)

For example, for an optical system which has a focal length of 50mm, if the object is 10
meters away, then magnification rate is M = 0.05/(10 − 0.05) = 0.005. If the lens is replaced
with one with a focal length of 500mm, then the magnification rate becomes M = 0.5/(10 −
0.5) = 0.0528, which is ten times more than the first lens.

1.4.4 Object Referred Pixels

In digital photography, the basic unit that forms an image is a pixel unit. An image that has a
higher number of pixels has a “higher resolution” than an image composed of a lower number of
pixels. Object Referred Pixels (ORP) defines how much length of the target object is represented
by one pixel of the final image. The smaller the ORP, the higher the resolution of the image.
Therefore, if we would like to design a good optical system which captures the details of the
object, like texture in iris region, we are striving to achieve very low ORP values.

Suppose we use an optical sensor to capture images in the digital form, the semiconductor
sensor is arranged as an array in two-dimensional space, as shown on the right side of Figure
1.12. Assume the image sensor array is the size Li,x × Li,y. Now imagine we back-project the
grid of the image sensor array to the real target object, and it results in the figure shown on the
left side of Figure 1.12. The red grid depicts how much space is represented by one pixel from
the image side. The length of a side of the grid is the ORP.
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The magnification rate M can be computed from ORP. Suppose the lengths of the physical
sensor is Lpix,i and the object referred pixels is Lpix,o, magnification rate M can be computed as
following:

M ≡ Lpix,i
Lpix,o

=
f

do − f
≈ f

do
(1.6)

Therefore, if we already know the focal length f , the distance of the object do, and the spacing
between digital image sensors, we can compute the ORP Lpix,o by the following equation:

LORP = Lpix,i ·
do − f
f

≈ Lpix,i · do
f

(1.7)

For example, for a digital optical sensor array that has 8µm spacing across each sensor array
element, if we use a lens that has focal length of 100mm, and the distance of the object is 2m,
the object referred pixels can be computed as:

LORP ≈
Lpix,i · do

f
=

8µm · 2m
100mm

= 160µm (1.8)

For a normal eye that has a typical iris region of diameter 11mm, such a system can capture
an image of the iris and get a photo that has 11mm/160µm ≈ 69 pixels across the entire iris
region.

1.4.5 Field of View
Field of View (FoV) is the area that is visible through an optical imaging device. Suppose our
optical sensor array is composed of Npix×Mpix sensors and spacing between the sensors is Lpix,
then the dimension of the FoV is LORP × {Npix,Mpix}.

For example, suppose the sensor array is composed of a 2048 × 2048 pixel (4MP) sensor,
with 8µm spacing between pixels; the distance of the object is do = 2m, and the focal length is
f = 100mm:

FoV = LORP ·Npix ≈
[
Lpix ·

do
f

]
·Npix =

8µm · 2m
100mm

· 2048 = 0.328m (1.9)

For the purpose of iris acquisition, if we want the desired image to contain 100 pixels across
an 11mm iris area, and the sensor array containsN×M pixel sensors, then FoV = LORP ·Npix =
11mm

100
· {N,M}.

1.4.6 F-number
For optical imaging devices that have a variable aperture, the F-number of a system is the quan-
titative measure of the entrance pupil in terms of the focal length of the lens. In mathematical
form this is expressed as:

F ≡ f

D
(1.10)
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Figure 1.13: Illustration of F-number.

Figure 1.14: Illustration of the difference between pixel-limited and diffraction limited situation.

where f is the focal length and D is the diameter of the entrance pupil, as illustrated in
Figure 1.13. By convention, the F-number is expressed as “f/#”, with # replaced with the true
quantitative value. For example, if the focal length is 16 times the pupil diameter, the F-number
is f/16. The greater the F-number, the less light per unit area that transmits to the image plane of
the system. The amount of photons transmitted into the optical sensor decreases with the square
of the F-number. Therefore, the greater the F-number, the longer it takes the optical sensor to
get enough light. In the terminology of photography, it takes a longer exposure, or integration,
time. The smaller the F-number, the shorter the exposure time required. For the iris, the longer
the exposure, the more IR photons collected, increasing the signal-to-noise ratio in the image
acquired; however, the image is prone to motion blur if the subject is not still and is moving, as
in the case for the IOM system.

1.4.7 Resolution and Diffraction
Recall that in subsection 1.4.2, we introduced the concept of Minimum Resolvable Separation
(MRS) on object side, which is limited by the optical phenomenon “diffraction”. By using the
concept of magnification rate and Eq. (1.6), we can recover the MRS on the image side:

MRSimg ≈
1.22λdo
D

·M ≈ λdo
D
· f
do

= λ
f

D
= λF (1.11)

In subsection 1.4.4, we introduced the concept of Object Referred Pixel (ORP), which also
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Figure 1.15: Illustration of “Depth of Field”.

tells us the limitations of the resolution of the image. The limitation derived from ORP comes
from the physical limitation of semiconductor manufacturing process that produces the digital
optical sensor, and the limitation derived from MRS comes from the ubiquitous phenomenon
“diffraction”. These two limitations together bound the ability of the optical instrument in terms
of its image resolvability. Figure 1.14 shows the difference between pixel-limited resolution and
diffraction limited resolution.

By using these two limitations together, we are able to recover the optimal design parameter
for our optical system. Let

MRSimg = Lpix (1.12)

We can get

λF = Lpix (1.13)

Or

F =
Lpix
λ

(1.14)

For example, for the system that has Lpix = 8µm, imaging with infra-red illumination with
wavelength λ = 850nm, the optimal F-number of the system should be F = 8µm/850nm ≈ 10.

1.4.8 Depth of Field
Depth of field (DOF) is another very important concept in photography that is a very important
factor in the acquisition of irises. In optics and photography, DOF is the depth of the scene
that appears to be acceptably sharp in the final image. Theoretically speaking, a lens can only
precisely focus at one particular point. Objects that are in front and behind of that point will
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appear to be blurred to some degree. However, in digital photography, if the “circle of confusion”
of the blurring effect is less than the size of one pixel, it cannot be noticed in the final image.
Therefore, the depth of field can be computed using the constraint that the circle of confusion is
less than or equal to one pixel.

Figure 1.15 shows a lens system in which we will illustrate and develop the formula for DOF.
Suppose the subject at distance s, is in focus at image distance v. If we freely move the subject
either toward the lens or away from the lens, the final image starts to blur. Assume that the
diameter of the blur spot, the “circle of confusion” (denoted as c), reaches the maximum size
that we can tolerate at the distance DF and DN , then the DOF is defined as DF −DN . Assume
the image appears at vF and vN when the subject is at distance DF and DN , respectively. From
triangular similarity, we can get

vN − v
vN

=
c

d
(1.15)

v − vF
vF

=
c

d
(1.16)

By using Eq. (1.10), we can represent vF and vN by F-number:

vN =
fv

f − Fc
(1.17)

vF =
fv

f + Fc
(1.18)

We should not forget about the basic equation of thin lens, which states

1

s
+

1

v
= f (1.19)

Applying Eq. (1.19) with vN , DN , vF and DF , we get

1

DF

+
1

vF
=

1

f

1

DN

+
1

vN
=

1

f
(1.20)

Solving Eq. (1.17), (1.18) and (1.20), we can get

DN =
sf 2

f 2 + Fc(s− f)
(1.21)

DF =
sf 2

f 2 − Fc(s− f)
(1.22)

DOF = DF −DN =
sf 2

f 2 − Fc(s− f)
− sf 2

f 2 + Fc(s− f)
(1.23)
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1.4.9 Design of an Iris Acquisition System

Given some of the constraints and according to the optical principles stated in the previous sub-
sections, we are able to design the optimal parameters for a new iris acquisition system.

For example, in long range iris acquisition systems, the most important system constraints
are the following: (1) Object Distance do: How far away can the subject stand relative to the
system, so his/her iris images can still be captured? (2) Field of View FoV: How can we enlarge
the capture zone so that the system can still capture iris images even when the subject moves
slightly away from the appropriate location? (3) Wavelength λ: For iris acquisition, we usually
use infra-red light to image the iris; therefore, λ is longer than the normal visible light. (4) Object
Referred Pixel LORP : For iris acquisition, we would like to maintain a certain level of LORP , so
the iris detail can be fully captured. The higher the LORP , the greater the detail we can see in the
resulting images. We also want a suitable Depth-of-Field (DoF) so the iris is in focus, and the
user does not have to move in mm precision for the system to acquire an in-focus iris image.

In this example we use the four parameters {do, FoV, λ, LORP} to demonstrate how to derive
other system parameters. First, the size of optical sensors Limager is fixed; therefore, we can
compute the magnification rate M by

M =
Limager
FoV

(1.24)

Second, from Eq. (1.6), we can get

f =
Mdo
M + 1

(1.25)

Therefore, we can compute the focal length f from {M,do}. Next, we can compute the
number of pixels the system can render on image Npix by

Npix =
FoV

LORP
(1.26)

If we know Npix and the size of the optical sensor Limager , we can compute Lpix by

Lpix =
Limager
Npix

(1.27)

Next, from the parameter {Lpix, λ}, we are able to compute the F-number by using the
diffraction limit

F =
Lpix
λ

=
LORP ·M

λ
(1.28)

For the depth of field, the parameter “circle of confusion” c is defined as the size of the single
pixel, which is Lpix, and the subject distance is about 3m, by applying Eq. (1.23) we will be able
to compute the DOF.

According to the parameter listed in [6], the DOF of the IOM system should be
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DOF =
sf 2

f 2 − Fc(s− f)
− sf 2

f 2 + Fc(s− f)

=
3 · (0.21)2

0.212 − 16 · (7.4× 10−6)(3− 0.21)
− 3 · (0.21)2

0.212 + 16 · (7.4× 10−6)(3− 0.21)

= 0.0449 (1.29)

1.5 Problem Definition and Research Goal
In this thesis, the research goal is to further improve the iris image quality and overall recognition
performance of current IOM-type systems which are able to capture multiple images as a person
walks through the optimal focal point of the acquisition. Additionally we specifically address the
challenge of using IOM-type images for database enrollment. Currently, in order to achieve high
recognition performance, the enrolled iris images have to be sharp and clear. Usually people
enroll new subjects in the database using iris images captured by short range iris acquisition
devices, such as the PIER device or LG4000 system because of the high quality. Then the
high-quality images are used to be matched against those acquired through an IOM-type system.
However, it would be much more convenient if we could directly enroll data by using images
captured by Iris-On-the-Move system. We also inherently make use of the multiple acquired
images which have so far been ignored. Typically, only the best-matched iris images have been
used in the video sequence of acquire images. Thus, in this thesis we address several challenges
:

1. How do we locate the eye (and iris) in the video stream and perform iris segmentation?
What are the challenges that we face particularly for the long-range iris acquisition system?

2. How do we segment IOM-type iris images, particularly due to the IOM illumination setup
which causes specular reflections on the pupil boundary and on the iris region?

3. On an iris image, which part is the true iris texture region and which part is not? How can
we detect those regions efficiently and accurately?

4. Can we further refine the iris mask based on an initial inaccurate estimation?

5. How do we enhance the quality of iris images and make use of the video stream of acquired
irises?

6. How do we improve matching scores? The default operating setting of the long-range
iris acquisition system may not be the optimal configuration. If we can propose a novel
enrollment/identification scheme for the long-range iris acquisition system, is it possible
to further enhance the original system performance?

These are the problems that we address in this dissertation.
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Chapter 2

Robust Iris Segmentation Algorithm for
Images Acquired by the Long-Range Iris
Acquisition System

The high performance of iris recognition relies on the precise localization of the iris boundary.
If the iris boundary is not estimated correctly, it will inadvertently damage recognition perfor-
mance, even with a great iris feature extraction algorithm and recognition matching algorithm.
In this chapter, we describe a novel iris segmentation algorithm designed specifically for IOM
and other similar long-range acquisition systems, which is efficient, and, more importantly, very
robust to specular reflection and variation in pupil sizes. The irregular spatial distribution of
specular reflections and the consistent image blur are two characteristics of iris images captured
by the Iris-On-the-Move system, which cause traditional iris segmentation algorithms to fail. Ex-
perimental results show the effectiveness and the efficiency of the proposed algorithm, compared
to the traditional iris segmentation algorithms reported in literature.

(a) (b) (c) (d) (e) (f)

Figure 2.1: Example images, captured by IOM. The specular reflection causes problems because
their position relative to the pupillary boundary is indefinite. They can be (a) inside the pupil;
(b) outside the pupil (c) on the pupillary boundary (d) span the pupil and iris region. (e) and (f)
shows another of great challenges of IOM images, which is image blurring plus strong specular
reflection.
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2.1 Introduction

Iris segmentation is one of the most vital components of any iris recognition system. Incorrect
or errorneous segmentation results propagate the error to the next stage of feature extraction, in-
evitably decreasing the recognition performance. Due to the nature of iris normalization, which
is converting the annular iris region to polar coodinate system, any mis-segmentation of the iris
area leads to a non-linear deformation of the iris which causes the feature extraction stage to
extract features that are mis-aligned in a non-linear fashion. There are many challenges in iris
segmentation: the first problem is dealing with the dominant specular reflections on the pupil
boundary and on the iris region caused by the IOM near-IR illumination. These specular reflec-
tions form artificial edges that are stronger than the ordinary iris boundaries, causing boundary
detection algorithm to fail or be misleaded. This is a challenging problem because the spec-
ular reflections do not appear at fixed locations on the eye images and their positions depend
on the location of the subject as they enter the IOM portal. Specular reflections can be inside
the pupil, on the boundary between the pupil and iris, or outside the pupil area and inside the
iris region, as shown in Figure 2.1. The random locations of specular reflection greatly impact
the performance of iris segmentation algorithm. Another challenge we face with such a system
is the inherent image blur that is present in most images. If an eye image is taken in a less
constrained environment, where the subjects can freely move their eyes or head, there is a high
probability that the captured eye images are blurred due to head or body motion. Image blur
can also happen if the iris images are captured outside the optimal focus point (i.e. when the
person is moving outside the depth-of-field) of the system. From a segmentation algorithm point
of view, most algorithms rely heavily on the edge map of the raw eye images. If the input eye
image is blurred, this edge map will not contain a strong edge at the pupillary and limbic bound-
aries, causing the traditional segmentation algorithms to fail. When a blurred image contains
strong specular reflection, as shown in Figure 2.1 (f), the edge detector will pick up the edge
contributed by specular reflection, rather by pupillary or limbic boundary. Therefore, the tradi-
tional segmentation results will be erroneous in such cases. Another factor that also needs to be
considered in the design process is the efficiency of the iris segmentation algorithm. Many iris
segmentation algorithms are built upon the algorithms proposed by [7] and [8], which are based
on the circular Hough Transform and the integral-differential operator, respectively. The for-
mer approach requires significant computation to determine the pupillary and limbic boundary
candidates. Therefore, more efficient methods which do not depend on the Hough Transform,
and are more efficient than the integral-differential operations, are highly desirable, as long as
they can provide the same level of accuracy in locating the pupillary and limbic boundaries. In
this thesis, we proposed a novel iris segmentation algorithm which is very robust to specular
reflection, blurring of the image (whether due to motion blur or out-of-focus blur), and are very
efficient in terms of computational complexity. This is also important from a throughput point
of view, the faster the processing, the higher the throughput of people passing through such a
system (envision an airport security scenario where delays can cause significant distress).

This chapter is organized as follows: in section 2.2, a literature review is given to show what
approaches have been proposed in the field of iris segmentation. In section 2.3, we describe
the details of the proposed algorithm and the motivation behind it. In section 2.4, experimental
results are presented and compared to other segmentation algorithms. Finally, we provide a
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summary discussion and conclusion in section 2.5.

2.2 Previous Work

The history of the research of iris segmentation is as old as the work related to the iris recognition
itself. A number of papers in this area present various approaches to find the pupillary and limbic
boundaries. In 1993, Daugman proposed to use an integral-differential operator to search over
the parameter space (x,y,r) on the image plane [2]. Wildes proposed to use circular Hough
Transform to locate the pupillary and limbic boundaries in 1997 [7]. Most of the research that
followed has tried to improve upon these two algorithms in some way. Huang et al. suggested
rescaling the image for fast computation, then applying an edge detector and integral-differential
operator to locate the limbic and pupillary boundaries, respectively [9]. Liu et al. used the Canny
edge detector to detect the rough pupillary boundary, followed by computation of the crossover
points from a set of chords on the circle boundary [10]. In 2004, Sung et al. used the Canny
edge detector and bisection method to find the pupillary boundary, and they also discovered
the collarette boundary by using histogram equalization and high-pass filtering [11]. There are
also correlation-based methods reported in the literature. Due to the high cost of computing the
circular Hough Transform, Thornton et al. proposed fast approximation to the Hough Transform
by 2D cross-correlation with a set of contour filters [12]. The response of contour filters can
be stacked into a 3D image response cube, and the maximal value in this three dimensional
image cube will indicate optimal circular parameters (x,y,r) of the pupillary and limbic boundary.
However, none of these methods consider the case when strong specular reflections are present
in the eye image, especially when their locations are locally mixed with either pupillary or limbic
boundaries. What makes the problem even worse is that sometimes due to the arrangement of
the illuminators, the shape of the specular reflection is similar to that of an arc, or another circle
in the eye image. Figure 2.1 shows many examples of this. In such cases, the edge map based
algorithms will eventually fail because the edge produced by the specular reflection is much
stronger than the pupillary or limbic boundary. Therefore, no matter what kind of circular edge
detector is used in the following stage, the segmentation results will not be correct.

Strong specular reflections are frequently present in eye images when we use the IOM system
as our iris acquisition device [6]. IOM has the advantage that it can capture iris image from a
distance, when subjects are walking through the portal. This design is extremely user-friendly
and un-obtrusive for most people. It is very suitable to deploy in cases where high speed and high
volume throughput are required. However, due to the design of the IOM system, the eye images
captured always have eight white dots, four at each side. The positions of these specular reflec-
tions are random and cannot be predicted beforehand. The relative position between specular
reflection and the iris boundaries are also unpredictable. If we use traditional iris segmentation
algorithms, they fail miserably, as shown in our experimental results in section 2.4. Therefore, a
novel iris segmentation method is needed to solve this problem.
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2.3 Proposed Robust Iris Segmentation Algorithm

In this section, we introduce our proposed robust iris segmentation algorithm, which is especially
applicable for IOM-type images. Our basic goal is to correctly locate the pupillary boundary first,
then based on the pupillary boundary, estimate the limbic boundary. Our reason for this is that
the pixel intensity in the pupil area is typically the lowest, compared to other regions of the eye
image. Therefore, a simple technique like hard thresholding on a pixel value can easily and
efficiently locate the pupil, which makes our initial stage of the algorithm efficient and simple.
We describe each step of our algorithm in the following subsections, while providing images to
illustrate the idea.

2.3.1 Specular Reflection Removal

In order to achieve an accurate iris segmentation result, we have to remove the specular reflec-
tions at an early stage of the segmentation process. Only when we reduce or fully eliminate the
effect of these reflections, can the segmentation algorithm perform adequately at the later pro-
cessing stages. Our proposed scheme is very effective and can reduce or remove strong specular
reflections. The basic steps are illustrated as follows: first, we locate the positions of specular
reflections by simple thresholding. Due to the nature of the optical setup we can ensure that
this approach will always hold for an IOM-type system. This is very effective because specular
reflections are always regions with the highest pixel intensity in an IOM-type image. The pixel
intensity in the region of skin or sclera is usually lower than the specular reflection. Second, we
inpaint the region of specular reflection by an optimal value, so that the regions after painting
resemble the neighboruing iris regions. Thus the eye image starts to appear less contaminated.
Next we apply median filters to smooth the whole image. Median filtering is an effective tech-
nique to remove the noise in an image [13, 14], and if we carefully observe the resulting iris
image from step two, we can clearly see there exists a boundary at every specular reflection.
By applying median filters we can successfully remove these boundary artifacts and smooth the
whole iris image. Figure 2.2 shows an example input image going through the steps of specular
reflection removal. As one can see, the resulting image is a smooth version of the input image,
without any specular reflections observable.

2.3.2 Locating the Pupil

After we remove the specular reflections, it is very easy to locate the pupil. Because the pupil
is the darkest region in the whole image, a simple scheme, such as pixel intensity thresholding,
is enough to find the pupil. However, some other components around the eye may also have
low intensity, for example, eyebrows or an eyeglasses frame. We distinguish the region of pupil
from such artifacts by analyzing the geometric property of the connected components. There are
many geometric properties that we can choose to optimize the result. For example, the width and
height of the pupil area should be confined within a particular range. Many other constraints are
useful as well, as long as they provide discriminative property for the pupil from other artifacts.
After the pupil area is located, we can measure the center of the mass to locate the center of the
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(a) (b) (c) (d)

Figure 2.2: Examples of the scheme for specular reflection removal. (a) the input image (b)
location of the specular reflection, discovered by hard thresholding (c) image after painting the
region of specular reflection with a value which is most likely to appear on iris texture (d) image
after applying median filtering on (c).

pupil. Then the radius can be estimated by using the longest distance between the center of mass
and any point inside the region. The whole process is illustrated in Figure 2.3.

2.3.3 Locating the Iris Boundary

After locating the pupil, the next step is to find the circle for the iris boundary. We use the center
of the pupil as a starting point to estimate the limbic boundary. Suppose we draw many straight
lines departing from the center of the pupil growing out radially to the sclera region. While doing
this, we keep track of the variations in pixel intensity. Since the sclera appears much brighter
than the iris, the location where the intensity of pixels grows most rapidly should be the location
where those lines hit the boundary. This process is illustrated in Figure 2.4.

2.3.4 Recovering the Iris Center and the Radius

The next step is to use those points to locate the center of the iris and to compute the radius
of the outer boundary. Using fundamental geometry, we take the few known points from the
boundary circle and compute the intersection of the perpendicular bi-sectors of the lines that
pass through the pairs of those points. This is illustrated in Figure 2.5(a). After the center is
found, the radius can be computed as the average distance from the center to all of those points.
A realistic example is given in Figure 2.5(b).

2.4 Experiments and Results

In order to fairly measure the performance of our proposed iris segmentation algorithm, we ran
experiments on a large scale database, and also compared the performance with other existing
methods. We used two databases to perform iris segmentation, one of which is publicly available,
and the other one is collected in our research laboratory. We describe the databases, as well as
the experimental results in the following sub-sections.
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: Process of locating pupil. (a) input image (b) after specular reflection removal (c)
after pixel intensity thresholding (d) after applying geometrical constraints (e) finding the center
of the pupillary circle (f) redraw the segmentation result for the pupil on the input image.

(a) (b)

Figure 2.4: Illustration of how to locate iris boundary. (a) Draw a few straight lines from the
center of pupil to sclera region and detect the location where pixel intensity grows most rapidly;
(b) a realistic example image to illustrate the idea in (a).
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(a) (b)

Figure 2.5: Illustration of how to locate iris center and radius. (a) when drawing the perpendicular
bi-sectors of the lines that pass through pairs of the points which we found in section 2.3.3, the
intersection of all lines should be the center of the iris. After iris center is found, iris radius is
found by computing the average distance between center and all the points on the boundary. (b)
a realistic example image to illustrate the idea in (a).

2.4.1 Experiment on MBGC database
The Multiple Biometric Grand Challenge (MBGC) is a large-scale, multiple biometrics database
released by NIST in December 2007 [15]. The goal of the MBGC is to facilitate and direct
the biometric research effort into large-scale face and iris recognition. Because the IOM (and
similar systems) are emerging as a promising iris acquisition device to be widely used in the
public domain in the near future, there is a substantial portion of the face and iris database that
is collected by the IOM system. The IOM database is what we use for benchmarking in our
experiments.

The MBGC database stores all its IOM data as raw video sequences of the subjects as they
walk through the IOM portal, thus we need to pre-process the data before we can use it properly.
First, we have to perform eye detection for every frame in every video sequence in order to
estimate the region of the eye location. We use a correlation filter-based algorithm for our eye
detection method. Second, for all detected eye images, we need to correctly filter out all of
the false detected eye regions. We used a simple nearest-neighbor classifier based on projected
PCA features to perform this two-class classification task. Since our goal is to perform iris
segmentation, at this stage, we simply put all authentic the eye images together without labeling
them with the class information. However, we are still able to determine how many classes there
are in total by parsing the MBGC XML files. The specifications of the MBGC portal database is
listed in 2.1.

For the purpose of comparison, we ran our proposed iris segmentation algorithm, as well as
the other two existing algorithms (referred to the baseline algorithms). The first baseline algo-
rithm is Libor Masek’s implementation of the circular Hough Transform algorithm, as described
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(a)

(b)

Figure 2.6: Experimental results for MBGC database. (a) iris segmentation accuracy for the
proposed algorithm, as well as the two baseline algorithms; (b) histogram distribution of the
time needed to segment one iris for each algorithm.

Table 2.1: The basic facts of MBGC portal database.
Properties Video Sequence Subjects Usable Eye Images Left Eyes Right Eyes
Numbers 139 70 1384 832 552
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in [7] and [16]. This method is the most popular iris segmentation algorithm in the research
community. The second baseline algorithm is the correlation-based segmentation algorithm, as
described in [12]. This method is known for its speed on the ICE database [17]. Thus, we tested
it to see how it performed on the MBGC database.

Each algorithm is used to perform iris segmentation on all of the 1384 eye images in MBGC
portal database. Each recovered pupillary boundary is recorded as a triplet (x, y, r), which de-
notes the x and y coordinate of the center of the circle, and the radius of the circle. The limbic
boundaries are also recorded in the same triplet format. We assume and approximate the pupil-
lary and limbic boundaries as two non-concentric circles. We also recorded the time taken to
segment each iris image for each algorithm, so we can fairly compare the efficiency and compu-
tation cost of the algorithms under the same testing conditions. The results of the segmentation
accuracy, as well as the histogram distribution of the segmentation time, is shown in Figure 2.6.

2.4.2 Experiment on CMU-IOM database
We collected another IOM iris database in our lab during 2009, consisting of 2682 images, from
60 subjects, 111 iris classes. It contains different ehtnic groups, including Asian, Caucasian and
Indian. The ages of the subjects span from 19 to 61.

The experimental procedure is the same as the one described in section 2.4.1. Since we would
like to use the images in our iris super-resolution experiments later (as described in section 5.5),
we manually created iris segmentation information for each of these 2682 iris images. There-
fore, we have recorded the ground truth of the iris segmentation results. This information allows
us to measure the accuracy of each algorithm. In this experiment, we do not just label the seg-
mentation results as merely “correct” or “incorrect”. Instead, we use the concept of “threshold”
from the correct boundary to describe the accuracy of the iris segmentation. Since the pupillary
and limbic boundaries are described as circles, we can set the criteria of correct segmentation as
the displacement between the ground truth boundary and the hypothesis boundary. Assume the
ground truth circle is denoted as (xg, yg, rg), and the hypothesis circle is denoted as (xh, yh, rh),
we can compute a measurement of segmentation distance D, defined as:

D =
√

(xg − xh)2 + (yg − yh)2 + |rg − rh| (2.1)

Thus, we pick a threshold value forD, and use it as a correct/incorrect criterion for classifica-
tion. If we use different thresholds, it would result in labeling different sets of images as correct
or incorrect segmentation. We can draw a chart to show how the segmentation accuracy varies
with the threshold value. The experimental results are shown in Figure 2.7.

2.5 Conclusions

2.5.1 Segmentation Accuracy
From Figure 2.6(a), we can see that, in terms of segmentation accuracy, our proposed method
is better than the Hough Transform method, which is in turn better than the correlation-based
method. This trend is shown more clearly in Figure 2.7(a). In Figure 2.7(a), since we are able to
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(a)

(b)

Figure 2.7: Experimental results for CMU-IOM database. (a) iris segmentation accuracy for all
three algorithms. The accuracy is plotted with respect to the different threshold for the segmen-
tation distance value. (b) histogram distribution of the time needed to segment one iris for each
algorithm.

28



Figure 2.8: Comparison of segmentation results among different algorithms. First row: seg-
mentation results of correlation-based method. Second row: segmentation results of Hough
Transform method. Third row: segmentation results of the proposed method.

measure segmentation accuracy based on different thresholds, we can evaluate the algorithm per-
formance under different levels of accuracy requirements. When we relax the accuracy threshold,
the segmentation success rate increases, which is intuitive. However, it eventually goes into satu-
ration as the threshold become greater than 18 pixels. No matter what accuracy threshold we are
using, the performance gap between the proposed method and the other two baseline methods
is significant, which amplifies that the proposed method is obviously more robust than the other
existing methods.

Figure 2.8 shows a few segmentation results using all of the three methods for the purpose of
comparison. We can see that the hypothesis boundaries of the correlation-based method are very
easily affected by specular reflections, which occur in almost every eye image taken by the IOM
system. While the Hough transform method is more robust than correlation-based method, the
inner boundaries are easily confused with the outer boundaries. Our proposed method is much
better than the two baselines and can correctly estimate the two boundaries.

In the MBGC database, the quality of the eye images in most cases is not very good. There
are different factors that degrade the image quality. These include:

• Low intensity contrast: the contrast of the whole image is very low, which makes the inner
and outer boundaries very hard to locate.

• Defocus and motion blur: if the eye images are taken when the subject is outside the field
of focus, the defocus blur happens. If the shutter speed is slower than the moving speed
of the subject, motion blur occurs. Both blurring factors degrade the image and make
the boundaries softer, which increase the difficulty of recovering and detecting the correct
boundaries.

• Noise: there are plenty of eye images in MBGC which are degraded by noise. Image noise
occurs when the camera sensor captures the images under low illumination. Since we are
imaging in near-IR, the camera sensors only see in the near-IR band. However, due to
the low quantum efficiency of the camera sensor (~10%-15%), there is considerable noise
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Figure 2.9: Examples of segmentation results of the proposed algorithm, which demonstrates
the capability and robustness of the proposed algorithm. Column one: low contrast images.
Column two: images suffered from defocus and motion blur. Column three: images degraded
by noise. Column four: eye images under serious occlusion. Column five: images suffered from
unbalanced illumination. Column six: images that contains unexpected specular reflections.
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visible due to low SNR of image acquired. The longer the stand-off the darker the image
is acquired due to the drop-off of photon intensity which is inversely proportional to the
square of the distance of the light-source to the subject and to the camera. In the case for
the IOM, the illumination is not co-located with the camera source and is placed on the
side of the portal. Therefore the distance the light has to travel is measured from the person
to the camera, which is much longer than the case when it was co-located with the camera
source. The latter case would have removed the spurious specular reflections from the iris
and placed them inside the pupil, but at the cost of reduced illumination, more noise, and
less clarity of the iris as a result of dominating sensor read-out noise.

• Serious occlusion: the iris region of an eye image is easily occluded by other artifacts, such
as eyelids or eyeglasses frames.

• Unbalanced lighting: in MBGC database, for unknown reasons, many eye images appear
brighter on one side, but darker on the other side.

• Iris specular reflections: as stated above, the recovered boundaries are very easily affected
by specular reflections on the ris regions because they cause strong intensity contrast. Be-
cause we cannot control the location of the specularity in the final eye images, it is observed
that when it falls outside the pupil region, it will lead to confusion of the iris segmentation
and detection algorithms.

Our proposed algorithm is proven to be robust and able to handle all of the above problems that
we face in the IOM iris segmentation. Figure 2.9 shows a few segmentation results based on the
proposed method. Our method successfully handles all of the images which are very challenging
for the baseline algorithms, clearly demonstrating the capability of the proposed algorithm.

2.5.2 Extensibility of the Proposed Algorithm
Recently, more researchers in the field of iris recognition start to use elliptical segmentation,
which means using ellipses to describe pupillary and limbic boundaries, instead of using circles.
For our proposed algorithm, although it is described as using circular boundaries, in fact, it
can be easily modified to become elliptical segmentation. The only modification is that, during
stage four, we can fit all of the points on the outer boundary with an ellipse, instead of a circle.
This shows another advantage of our proposed algorithm, which is easily to adapt into different
segmentation paradigms.

2.5.3 Timing Analysis
Figure 2.6(b) and 2.7(b) shows the histogram distribution of the time needed to segment one iris
by each of the three algorithms, for the MBGC and CMU-IOM databases, respectively. The re-
sults are consistent for both databases. The correlation-based method is faster than the proposed
method, which in turn is faster than Hough Transform method. One might notice that the abso-
lute scale of time seems very different between these two plots. This is because the size of the
eye images we used in these two experiments were different. The size of eye images in MBGC
is 320x210, but the size we used in CMU-IOM is 640x480. Therefore, it takes much longer for
all three algorithms to perform iris segmentation in the CMU-IOM.
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Although the correlation-based method appears to be more efficient, in terms of accuracy of
segmentation, the correlation-based method is the worst. If our ultimate goal is to perform ac-
curate iris recognition, the importance of accurate iris segmentation cannot be over-emphasized.
Without accurate location of the iris region, all the later stages of the iris recognition system
(including mask estimation, feature extraction and iris matching) would be adversely affected.
Therefore, if we consider both accuracy and efficiency, our proposed algorithm is the best com-
bination from the three candidate algorithms. Additionally, this experiment was performed using
Matlab. If the source codes are written in C++, we expect timings to be significantly faster.
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Chapter 3

Gaussian Mixture Modeling for Automatic
Iris Mask Generation

Iris masks are essential in iris recognition to indicate which part of iris texture map is useful
and which part is occluded or contaminated with noisy image artifacts such as eyelashes, eye-
lids, eyeglasses frames, and specular reflections. The accuracy of this iris mask is extremely
important as it defines what parts of the iris to use for matching. The performance of the iris
recognition system will decrease dramatically when the iris mask is inaccurate, even when the
best recognition algorithm is used. Traditionally, people used the rule-based algorithms to esti-
mate iris mask from the iris texture map. However, the accuracy of the iris mask generated this
way is questionable. In this chapter, we propose a probabilistic and learning-based method to au-
tomatically estimate the iris mask from the iris texture map. The features used in this method are
very simple, yet the resulting estimated iris mask is significantly more accurate than the results
that the rule-based methods produce. We also demonstrate the effectiveness of the algorithm by
performing iris recognition based on masks generated from different algorithms. Experimental
results show that the masks generated by the proposed algorithm increase the iris recognition rate
on NIST’s Iris Challenge Evaluation (ICE) dataset, verifying that iris masking is very important
in the recognition stage.

3.1 Introduction

Most iris recognition systems consist of four stages: image acquisition, iris segmentation, iris
normalization and recognition. In most cases, in the iris normalization stage, iris images are
transformed from the Cartesian coordinate system to the polar coordinate system as suggested
by Daugman [2]. There are two main advantages of this coordinate transformation. First, it
normalizes the texture variation caused by changes in environmental illumination which leads to
pupil dilation and contraction. Without performing this transformation, it is extremely difficult
to compare two irises of different pupil sizes due to mis-alignment of iris features. The second
advantage of this coordinate transformation is that it translates the rotational shift, i.e. head tilt,
in the Cartesian coordinate system into a pure translational shift in horizontal direction in the
polar domain. It also simplifies the problem in matching stage because it is much more difficult
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Figure 3.1: Normalized iris texture map (upper picture) and its accurate mask (lower picture),
with white color indicates occluded area. In this iris map, there are noises caused by (1) eyelids,
(2) eyelashes, and (3) specular reflections, as indicated in the picture. All of these artifacts have
to be indicated in the mask in order to achieve high recognition performance.

and error-prone to perform pattern matching with rotational variation than translational variation.
This effectively is handled by bit-shifting the whole iris code left/right by several bit columns to
account for +- 15 degrees of head rotation. Due to these two significant advantages, most iris
recognition systems adopt this type of iris texture normalization in their implementation.

In most cases, after transforming iris texture from the Cartesian coordinate to the polar coor-
dinate, one has to create a mask for the iris map in the polar coordinate. The goal of this mask
is to indicate which part in the iris map is truly iris texture, and which part is noise. The sources
of the occlusions/artifacts of the iris map may be due to eyelids, eyelashes, shadows, or specu-
lar reflections. Figure 3.1 shows example images of an iris texture map and its accurate mask.
Note that in the iris texture, the noisy regions consist of texture created by eyelids, eyelashes,
and specular reflections. All of these noise artifiacts have to be indicated in the mask in order to
be ignored in the spatial feature match process, in order to achieve the high performance of iris
recognition.

The accuracy of the iris mask has a great impact to the recognition accuracy of the iris recog-
nition system. Traditionally, the main focus of iris recognition research addresses the power of
the matching algorithm and the feature extraction. Most researchers emphasize the novelty and
effectiveness of their iris feature extraction and matching algorithm. While these are important
issues that play a major role in iris recognition, we have found that the accuracy of the iris mask
contributes much more than what researchers thought in the past. Accurate iris masks, combined
with good features and effective recognition schemes, make the iris recognition system more
successful. However, if the iris mask is inaccurate, the best feature extraction and recognition
algorithms can not compensate for this. Thus the overall recognition rate will decrease dramat-
ically. This has been observed empirically in our experiments, and we present it in the later
sections.

Because researchers have traditionally focused their attentions on the matching algorithm,
the algorithm for automatic generation of the iris mask has not been given significant attention.
In this chapter, we propose a probabilistic, bayesian learning-based approach to estimate the
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iris mask from the original, normalized iris texture map. Another advantage of our proposed
algorithm is its efficiency. Since we are modeling the iris intensity probability distribution with a
mixture of Gaussians, and the formula of a Gaussian distribution is easy to evaluate, our proposed
algorithm can automatically generate an iris mask very efficiently in a short period of time. These
advantages make our proposed algorithm not only theoretically attractive but also practical and
efficient during the classification stage.

The rest of the chapter is organized as follows: we review previous work about automatic
iris generation in Section 3.2 and explain our proposed algorithm in Section 3.3. In Section 3.4,
we show our experimental settings and results. In Section 3.5 and 3.6, we discuss discoveries
in our experiments and conclude with the contribution of our proposed algorithm, followed by
information about our future work.

3.2 Previous Work
Daugman’s work is one of the earliest in iris recognition [2]. In 1993, he described the normal-
ization scheme for iris texture, calling it the “Doubly Dimensionless Projected Polar Coordinate
System”. However, when considering which part of the iris texture in the polar coordinate system
is the authentic iris, he proposed a very simple method which assumes the top part of the image
and the 45◦ notch at the 6 o’clock position is occluded, for every iris image.

Ma et al. proposed a full framework for an iris recognition system [18]. Although it addressed
many issues in the iris recognition process, it did not mention any specific solution for occlusion
detection. They merely stated that they discarded the lower part of the normalized iris texture
and focused only on the more discriminative regions. This scheme is equivalent to assuming that
the lower part of iris texture is occluded. A similar assumption was proposed in the work of Tisse
et al [19].

Daugman, in a later work, proposed a more sophisticated algorithm for finding occluded
regions in the iris [20]. He proposed to locate the boundary of the eyelids at the segmentation
stage. By replacing the circular integration operator (for finding iris and pupil boundary) with
the spline parameter, one can approximately locate the eyelid boundaries. Furthermore, in his
latest work [21], he proposed a new method, which uses active contours to find the boundary of
the eyelids.

Kong and Zhang proposed a model for detecting eyelashes and specular reflections [22]. They
proposed using Gabor filters to detect separable eyelashes and used the variance of intensity in
the local window to locate clusters of multiple eyelashes. After that, the connectivity criterion is
enforced to enhance the robustness of the algorithm. For strong specular reflections, they used a
hard threshold on pixel intensity to identify them. For weak specular reflections, they used mean
and standard deviation of the local window as an adaptive threshold for pixel intensity to classify.

Zou et al. proposed a procedure for iris occlusion detection [23]. It consisted of four stages:
first, they detected the horizontal edges of the eyelids. Second, they performed the morphological
operation on those edges to enhance them. Third, they used the segmentation result to localize
valid edge candidates. Finally, they used connectivity information to refine the mask. Although
this method looks simple and easy to implement, it may not work well for eyelashes because
they are usually vertically oriented. Also, the edge-detection based algorithm may incorrectly
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classify some part of the iris texture into a noisy region when the contrast within the iris texture
is large.

In [24], Krichen et al. proposed a probabilistic approach for iris quality measure. They
compared the performance of the Gaussian Mixture Model with Fourier-based methods, wavelet-
based methods and active-contour based methods. The iris masks estimated by their method
seem to be local patch-based, not pixel-based. In [12], Thornton proposed using a discriminative
learning method based on FLDA to estimate iris masks in the polar domain.

3.3 Proposed Method

All of the previous works performed in mask generation have some limitations. The methods
described by Daugman [2], Ma et al. [18], or Tisse et al. [19] are either inaccurate or cannot
handle iris images taken in real-time. The method described by Kong and Zhang [22] is basically
a rule-based approach, and while this approach may work well for specific settings or environ-
ments, it may not work when the environment, e.g. illumination, changes. The parameter-tuning
of the rule-based approach is also important to the performance of the iris mask generation;
thus making the rule-based approach very sensitive to the environmental setting for any specific
database.

To overcome the shortcomings of previous methods, we propose a novel and probablistic
method for automatic iris mask generation. The proposed method has to be flexible for all set-
tings and capable to work in environments and across sensors and databases. Additionally, we
quantify the performance of our generated iris masks by measuring how closely they fit to the
ground-truth of the iris masks.

Let us review this problem from a pattern-recognition perspective. The problem of generating
a mask for an iris map can be seen as a two-class classification problem. For each pixel on the
iris map, we need to extract robust features that contain discriminative information about whether
each pixel belongs to the iris texture or to the occluded region (eyelash, eye, specular reflection
etc.). We can then train a classifier by using some training data, and later use the trained classifier
to perform classification on unseen data and different datasets.

We propose the use of a Gaussian mixture modeling scheme (GMM) to model the posterior
probability distribution of both iris texture and occlusion regions. GMMs have been widely used
in all kinds of pattern recognition problems, including speech processing [25], human skin detec-
tion [26], real-time tracking [27], hazardous chemical agents detection [28] and bearing damage
detection for induction motors [29]. The advantage of GMM is its modeling ability. As long as
the number of Gaussians is large enough, GMM can virtually model any distribution. Another
advantage of GMM is that its mathematical equation is easy to evaluate; thus the classification
speed is very high during the testing stage. This is an important consideration when dealing with
problems like automatic mask generation because we have to perform pixel-wise classifications
for every iris image. Suppose the size of the normalized iris texture map is 30x180 pixels. The
total number of pixels in this map is 30x180=5,400. Our classifier has to perform classification
5,400 times to create a single mask for an iris image.
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3.3.1 Gaussian Mixture Model
Let us review the basic mathematical foundations for the Gaussian Mixture Model (GMM). The
Gaussian distribution of a D dimensional random variable X which has a value x is represented
by (3.1)

X ∼ N (x;µ,Σ) =
1

(2π)
D
2 |Σ| 12

e[−
1
2

(x−µ)TΣ−1(x−µ)] (3.1)

where µ is the mean vector and Σ is the covariance matrix of the Gaussian distributed random
variable X .

The probability density function of GMM can be defined as a weighted sum of multiple
Gaussian distributions, as shown in (3.2)

p(x; θ) =
C∑
c=1

αcN (x; µc; Σc) (3.2)

where αc is the prior probability that the random variable x is generated by the cth Gaussian
mixture, satisfying normalization constraints

0 ≤ αc ≤ 1 and
C∑
c=1

αc = 1 (3.3)

According to (3.1)-(3.3), the probability density function for a Gaussian mixture model can
be completely defined by a parameter list as shown in (3.4)

θ = {α1, µ1, Σ1, ..., αC , µC , ΣC , } (3.4)

We can calculate the number of free parameters for a GMM, given the random variable X of
dimensionD. For each µi, there areD free parameters; for each Σi, since it should be symmetric
in nature, the number of free parameters is (D2 −D) /2+D = 1

2
(D2 +D). For each αi, we have

one free parameter. Combining these calculations and (3.3), the total number of free parameters
is C(1

2
D2 + 3

2
D) + C − 1.

3.3.2 MLE and MAP Estimation for Model Parameters
The process of training GMM is to estimate the parameter list θ, given the observation X. Sup-
pose we have a set of independent, identically distributed samples X={x1, x2, ..., xN} drawn
from the same distribution described by the GMM probability density function p(x; θ). The
likelihood function can be defined as (3.5)

L(X; θ) =
N∏
n=1

p(x; θ) (3.5)

It depicts the probability that the series of observation X is generated by the distribution gov-
erned by θ. The goal of parameter estimation is to find the optimal parameter θ̂ that maximizes
the probability:
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θ̂ = arg max
θ
L(X; θ) (3.6)

L(X; θ) in (3.5) and (3.6) contains many multiplication operations. We can speed-up the
operation by taking logarithm on both sides. The log-likelihood function can be described as
(3.7):

L(X; θ) = lnL(X; θ) =
N∑
n=1

ln p(xn; θ) (3.7)

Since the logarithm function is monotonically increasing, we can substitute L(X; θ)with
L(X; θ) in (3.6) and get the same answer.

Parameter estimation by (3.6) is called Maximum-Likelihood Estimation (MLE). Sometimes
Maximum a Posteriori (MAP) estimation is used instead of MLE:

θ̂MAP = arg max {lnL(X; θ) + lnL(θ)} (3.8)

3.3.3 EM Algorithm
In literature, the Expectation-Maximization (EM) algorithm is used to find the parameter θ̂MLE

or θ̂MAP . EM is an iterative procedure to estimate parameters when part of the data is missing. In
training the GMM, we need to estimate multiple parameters at the same time, including the mean
and covariance matrix for each Gaussian mixture and determine which training sample belongs
to each of the Gaussian mixtures. EM can optimize all of these unknown parameters and can
converge to a local maximum of θ̂. There are two main steps in EM algorithm:

The E-step in EM estimating the expectation of the likelihood of the observed data, assuming
that we know the optimal model parameters. In other words, it is to evaluate the expectation
function Q(θ; θi) in (3.9)

Q(θ; θi) = EY

[
lnL(X, Y; θ)|X; θi

]
(3.9)

where Y is the unknown feature, which is the label that indicates to which Gaussian mixture
each sample belongs.

The M-step in EM is to search the parameter space to find the optimal parameter θ̂ that can
maximize the likelihood function defined in (3.9):

θi+1 = arg max
θ
Q(θ; θi) (3.10)

The two steps will be executed repeatedly until θ converges to a local maxima. Usually we
can define a convergence criterion as a threshold on the difference of the likelihood between two
iterations:

Q(θi+1; θi)−Q(θi; θi−1) ≤ T (3.11)

Alternatively, a convergence criterion can be defined as a threshold on the distance in param-
eter space:
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||θi+1 − θi|| ≤ ε (3.12)

3.3.4 Figueiredo–Jain’s Extension for GMM Training
EM-based parameter estimation for GMM training has a few drawbacks. First, the number of
Gaussian mixtures has to be manually chosen. Therefore, a wrong estimate for the number of
Gaussian mixtures may hurt the accuracy of the overall trained GMM. Second, the initializa-
tion of the mean of each Gaussian mixture is crucial. Similar to the K-means algorithm, if the
initial position of the means of each Gaussian is not initialized appropriately, the EM algorithm
may not be able to converge to the true location of the mean of each Gaussian. Due to these
two major drawbacks in the EM training algorithm, we decided to use an alternative training
approach. Figueiredo and Jain proposed an unsupervised learning method for training GMMs
[30]. This method can estimate the number of Gaussian mixtures without human intervention,
and can avoid the boundary of the parameter space during the converging stage. The basic idea
of Figueiredo–Jain’s extension for GMM training (FJ algorithm) is that it dynamically adjusts
the number of Gaussians by eliminating Gaussians which are not supported by the observation.
Also, during the mixture elimination process, it chooses to eliminate the Gaussian mixtures that
are close to becoming singular. This process can avoid converging to small Gaussians on the
boundary of parameter space.

The FJ algorithm uses the idea of Minimum Descriptive Length (MDL) and applies it to
mixture model training. It is equivalent to using the objective function in (3.13)

Λ(θ, X) =
V

2

∑
αc>0

ln

(
Nαc
12

)
+
Cnz
2

ln
N

12
(3.13)

+
Cnz (V + 1)

2
− lnL(X, θ)

where N is the number of training points, V is the number of free parameters of the GMM,
Cnz is the number of Gaussian mixtures that have nonzero weight (αc > 0), θ is defined as in
(3.4), and the last term is defined in (3.7).

By using (3.13) as a new objective function, the formula for estimating the prior distribution
of the Gaussian mixture in the FJ algorithm becomes

αi+1
c =

max
{

0,
(∑N

n=1wn,c

)
− V

2

}
∑C

j=1 max
{

0,
(∑N

n=1 wn,c

)
− V

2

} (3.14)

where wn,c is the probability that the nth observation is generated from the cth Gaussian
mixtures, defined as

wn,c =
αicp (xn|c; θi)∑C
j=1 α

i
cp (xn|c; θi)

(3.15)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Visualization of GMM trained on single iris texture. (a) Example image for train-
ing; (b) Example iris texture viewed in 3D, where z coordinate is the pixel intensity value; (c)
3D GMMs trained with FJ algorithm. Mixtures with red color represent GMMs for occlusion;
mixtures with green color represent GMMs for authentic iris texture; (d)-(f) Plotting original
iris texture data together with trained GMM, in 3D view. From (d)-(f), We can see that trained
GMMs fit the training data very well.
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(a) (b)

(c) (d)

Figure 3.3: Comparison of the iris mask estimated by different algorithms. (a) the input iris
texture image in the polar coordinate; (b) the “perfect” mask, generated by manual labor; (c) the
mask generated by a rule-based method; (d) the mask generated by FJ-GMM algorithm.

Table 3.1: Statistics about ICE1 and ICE2
Dataset ICE1 ICE2

Number of classes 124 120
Number of Total Images 1425 1528

Minimal Number of Images per class 1 1
Maximal Number of Images per class 31 31

The formula for estimating parameter µc and Σc is the same as in traditional EM algorithm:

µi+1
c =

∑N
n=1 xnwn,c∑N
n=1wn,c

(3.16)

Σi+1
c =

∑N
n=1wn,c (xn − µi+1

c ) (xn − µi+1
c )

T∑N
n=1 wn,c

(3.17)

3.4 Experiments and Results

3.4.1 Database Description

The database we used in our experiments is the Iris Challenge Evaluation (ICE) database, pub-
lished by NIST in 2005, as described in [17]. The ICE database consists of two subsets. They
are called ICE1 and ICE2, respectively. The details of the ICE1 and ICE2 subsets are given in
Table 3.1.
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3.4.2 GMM Trained on Single Image
We first tried our proposed method on a single iris image to see how the trained GMM would fit
into the training data. We took the image 245241.giff from the ICE2 database to be our training
sample. After manually segmenting the iris and performing iris normalization, we got Figure
3.2(a). Because we used the intensity value of every pixel as the Z coordinate of each pixel
in three-dimensional space, we were able to plot the iris texture map in Figure 3.2(a) in a 3D
perspective, as shown in Figure 3.2(b). We also manually created a mask for Figure 3.2(a) to
indicate which part was authentic iris texture to use this information (true iris vs. occlusion) as
the class labels for each pixel. Manually labelled iris masks were created, and each point was
designated a class label, which was then used to train two GMM models; the first one modeled
the distribution of iris texture, and the second one modeled the occluded regions. We plotted the
trained GMMs in Figure 3.2(c). In Figure 3.2(c), GMMs with the red color represent GMMs
trained for occlusion, and GMMs with the green color are models for iris texture. The brighter
the color, the higher the prior probability it has among all GMMs.

In Figure 3.2(d)-(f), we can see that the trained GMMs approximate very well the original
distribution of points in this three-dimensional space.The red GMMs modeled the noisy parts,
while the green GMMs modeled the authentic iris texture area. This confirmed that the GMMs
were able to fit for a single image.

If we use Figure 3.2(a) as our test image and use the trained GMM to perform the classi-
fication for every pixel on this image, plotting the results of the classification back into a two
dimensional array, with 0 indicating the authentic iris and 1 indicating the occlusion region, we
can visualize the mask generated by the GMM. We show the comparison of the iris mask esti-
mated by different algorithms in Figure 3.3. The input iris texture image in the polar coordinate
is shown in Figure 3.3(a), while the ground truth of the mask shown in Figure 3.3(b), is manu-
ally labeled. The mask generated by the proposed method is shown in Figure 3.3(d), compared
with another mask generated by a rule-based method, shown in Figure 3.3(c). As we can see,
the result generated by the proposed algorithm is much better than what we can get using the
rule-based method.

3.4.3 Feature Set Exploration
The experiment depicted in sub-section 3.4.2 produced good results. However, the feature set
seems overly simplistic. Besides only using the image intensity, local mean and standard de-
viation, we hypothesized that other features must exist that can better describe the difference
between the true iris texture and the occlusion artifacts. Therefore, we conducted an experiment
to look for a new set of features to capture texture discrimination.

In this experiment, the feature sets we tested included the following:

• X, Y coordinate of the location of the pixel and pixel intensity (learning the spatial geom-
etry)

• Mean and standard deviation in a local 3x3 neighborhood
• Response intensity after the image is filtered by Sobel edge filter
• Response intensity after the image is filtered by Gaussian
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Figure 3.4: The feature sets (textons) used in the experiment of feature set exploration.

• Response intensity after the image is filtered by Laplacian of Gaussian (LOG)
• Response intensity after the image is filtered by Gabor filter

Figure 3.4 gives a visual illustration of all of the feature sets we used. In order to organize the
experimental process and results, we gave a code name to each experiment, in order to better
distinguish what we tried in each experiment. The code names and the features are listed below:

1. IMS: Intensity of the pixel, Mean and Standard deviation within 3x3 neighborhood.

2. SxSyL: Response intensity after the image is filtered by Sobel edge filter (both horizontally
and vertically), and by Laplacian of Gaussian

3. IG: Intensity of the pixel and response intensity after the image is filtered by Gabor filter

4. IMSSxSyLG: Combination of all of the three above
Note that all of the above experiments included the (X,Y) coordinates of pixel locations as their
features.

Additionally to the proposed method, we also used two existing methods which are very pop-
ular in the iris research community to create iris masks. The results from these two methods serve
as the baseline for comparison purposes. By comparing the baseline results with our proposed
method, we can verify the effectiveness and accuracy gained by the proposed approach. The first
baseline method we use is the rule-based method which is similar to what is described in Kong
and Zhang’s work [22]. It basically detects whether there is a strong variance of pixel intensity
in a local window and uses it as a feature to perform classification. It can be illustrated in four
steps:

1. Normalize the image so that the energy of pixel intensity sums up to one.

2. Create a new image, which we will call the “mean image,” where each pixel computes the
mean value of the local 5x5 window.

3. Compute the global mean and standard deviation of all pixel intensity of the image of
mean.

4. For every pixel on the mean image, if the difference between its intensity value and the
global mean is less than twice the global standard deviation, then classify it as iris texture.
Otherwise, classify it as an occluded region.

The second baseline method that we tested is the Fisher-Linear Discriminant Analysis (FLDA)-
based occlusion detection method which is described in [12]. We performed our experiments
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(a) (b)

Figure 3.5: The Average Error Rate (AER) for the mask generated by different algorithms, in the
feature set exploration experiment.

on the NIST ICE database, on both ICE1 and ICE2 subsets where we performed segmentation
and generated masks for every image in ICE manually to get the ground truth for every mask
corresponding to each iris. For each iris class in ICE, we picked one image as training data and
left all the other images as test data. For each testing image, we computed the average error rate
(AER) of the masks estimated by different algorithms. AER can be computed as:

AER =

∑N
i=1 ei
N

(3.18)

ei =
NP (maskalg ⊗maskgt)

W ×H
(3.19)

where (W, H) is the size of the mask, maskalg and maskgt is the mask generated by specified
algorithm and human labor, respectively; N is the total number of testing images; ⊗ is the pixel-
wise XOR operator that can be used to compute the difference between two occlusion masks;
NP () is the function that counts the number of pixels in the images which are not zeros. The
results are shown in Figure 3.5.

From the results shown in Figure 3.5, we can see that our proposed method outperforms the
two baseline methods. For the feature set selection, we found that the feature set IG performs
better than other combinations. Therefore, the image response generated by Gabor filtering is
much more discriminative than those generated from other filters (Sobel, Gaussian and Laplacian
of Gaussian).
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(a) (b)

Figure 3.6: Example of a Gabor filter. (a) 2D view. (b) 3D view.

3.4.4 Gabor Filter Banks Optimization by Simulated Annealing

Observing the experimental results shown in sub-section 3.4.3, we conclude that among the
most popular image and feature extraction filters used in general field of image processing, the
Gabor filter is the best to extract the salient features for the goal of classification between iris
texture and occlusion artifacts. However, we had to decide which Gabor filter to use, i.e., what
modulation frequency, orientation and scale. In this section, we detail how we optimize the
Gabor filter banks, so the accuracy of the iris mask can be further enhanced. To achieve this
goal, we employed an iterative nonlinear optimization approach.

3.4.4.1 Gabor Filter Formulation

The mathematical equation of the generic Gabor filter is given below:

g(x, y;λ, θ, ψ, σ, γ) = e−
x′2+γ2y′2

2σ2 cos

(
2π
x′

λ
+ ψ

)
(3.20)

where x′ = xcosθ + ysinθ, and y′ = −xsinθ + ycosθ. In this equation, λ represents the
wavelength of the wavelet, θ is the in-plane rotational angle of the filter, ψ is the phase offset
between the peak and the valley of the wavelet, γ is the aspect ratio between the horizontal
and vertical direction before the in-plane rotation, and it specifies the ellipticity of the support
of the Gabor function; σ specifies the variance of the global envelope (which corresponds to the
frequency bandwidth of the bandpass in the frequency domain). Figure 3.6 shows the appearance
of the Gabor filter in both 2D and 3D view.
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3.4.4.2 Simulated Annealing

The Gabor filters have five parameters that need to be optimally selected to achieve the best dis-
crimination. Thus we formulate this selection task into an optimization problem. In mathematics,
our goal is to discover ĝ so that

ĝ = arg min
{λ,θ,ψ,σ,γ}

AER(g(x, y;λ, θ, ψ, σ, γ)) (3.21)

where AER() is a function that returns the Average Error Rate of the iris mask, given that
we are using the Gabor filter g() to extract features.

It is not easy for us to foresee what the shape of the objective function looks like in this five
dimensional parameter space. However, it is very likely to be highly nonlinear with possible local
minima and maxima in the error function. Simple methods like gradient descent may work but
are not guaranteed to find the global optima parameters. We propose to use Simulated Annealing
approach to optimize the parameters because this approach is known to be able to overcome the
local optima problem and find the global optimal solutions.

Simulated Annealing (SA) is a stochastic global optimization method which can (1) process
cost functions which have an arbitrary degree of nonlinearities and discontinuities; (2) process ar-
bitrary boundary conditions and constraints imposed on those cost functions; (3) be implemented
quite easily with minimal effort of coding compared to other non-linear optimization methods;
(4) statistically guarantee the finding of an optimal solution [31, 32, 33, 34, 35].

In SA, each point µ of the search space is analogous to a state of some physical system,
and the function E(µ) to be minimized is analogous to the internal energy of the system in that
state. The goal is to bring the system from an arbitrary initial state to a state with minimum
possible energy. At each step, the SA heuristic considers some neighbor µ′ of the current state
µ, and probabilistically decides between moving the system to state µ′ or staying in state µ. The
probabilities are chosen so that the system ultimately tends to move to states of lower energy.
Typically, this step is repeated until the system reaches a state that is good enough for the appli-
cation, or until a given computation budget has been exhausted. The probability of accepting the
new state µ′ is determined by an acceptance probability function P (e, e′, T ), which depends on
the energies e = E(µ) and e′ = E(µ′), as well as the time-varying parameter T , which is used
to model the temperature in the real annealing process in metallurgy.

The algorithmic steps of SA can be described as the following:

1. Initialize the value for the initial parameter µ0 and the corresponding cost function value
ebest = E(µ0)

2. Initialize the best parameter µ̂ = µ0

3. Set the starting temperature T , maximal number of iteration N , and the target value of the
cost function E

4. While the iteration number n < N and best cost function value ebest > E

(a) Select new parameter µn from the neighborhood of the previous parameter µn−1

(b) Compute its cost en

46



(c) If en < ebest then accept this new parameter, which means we set µ̂ = µn and
ebest = en

(d) If P (en−1, en, T ) is greater than some random number, accept this new parameter too.

(e) Decrease the temperature T and set n = n+ 1

5. When the iteration reaches its criteria, return µ̂.

In our experiments, because the final goal of automatic iris mask estimation is to generate an
accurate mask in order to improve iris recognition rate, we choose to use iris recognition perfor-
mance as our objective function that we want to maximize. That means, we are not using Eq.
(3.21) as our cost function. Instead, we are using this formula:

ĝ = arg min
{λ,θ,ψ,σ,γ}

FRR0.1(g(x, y;λ, θ, ψ, σ, γ)) (3.22)

where FRR0.1 stands for the False Reject Rate (FRR) when False Accept Rate (FAR) equals
0.1%.

3.4.4.3 Exploration of Optimal Gabor Filter Banks for Occlusion Estimation

Our goal is not simply to find the best Gabor filter. Instead, we would like to discover a set
of Gabor filters, or a set of Gabor Filter Banks (GFB), that maximizes the performance of our
proposed algorithm. GFB can be defined as

GFBN = {ĝ1, ĝ2, ..., ĝN} (3.23)

where N denotes how many Gabor filters we want for the GFB.
We use an iterative procedure to discover the optimal GFB, and expand it one at a time. Our

training procedure can be described as:

1. Estimate ĝ1 by using Eq. (3.22), and set GFB1 = {ĝ1}.
2. Set N as the maximal number of Gabor filter we would like to discover.

3. When i < N , repeat the following steps:

(a) Estimate ĝi+1 by ĝi+1 = arg mingj FRR0.1(gj(x, y;λ, θ, ψ, σ, γ)|GFBi)

(b) Set GFBi+1 = GFBi ∪ ĝi+1 = {ĝ1, ĝ2, ..., ĝi+1}

4. Return GFBN .

Figure 3.7 and 3.8 show the progressive results of the Gabor Filter Bank optimization, for
the ICE1 and ICE2 databases, respectively. In sub-figure (a), the x-axis shows the number of
Gabor filters in the GFB, and the y-axis shows the corresponding iris recognition performance
(measured by the FRR at a fixed FAR of 0.1%). Sub-figure (b) shows the ten optimized Gabor
filters that we obtained in each database after the optimization step.

In order to show more details about the process of GFB optimization, we also plot the ROC
curves for each of these ten experiments for both ICE1 and ICE2. Figure 3.9(a) shows the ROC
curves of the large-scale iris recognition performance for the ICE1 database, when we use the
best one, two, three and four Gabor filters that we obtained as the feature set. Figure 3.9(b) and
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(a)

(b)

Figure 3.7: Progressive results for GFB optimization for ICE1. (a) Large-scale iris recognition
performance measured with False Reject Rate (FRR) at 0.1% False Accept Rate (FAR), when
using different number of Gabor Filters (from one to ten) for feature extraction; (b) the discovered
10 Gabor filters.
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(a)

(b)

Figure 3.8: Progressive results for GFB optimization for ICE2. (a) Large-scale iris recognition
performance measured with False Reject Rate (FRR) at 0.1% False Accept Rate (FAR), when
using different number of Gabor Filters (from one to ten) for feature extraction; (b) the discovered
10 Gabor filters.
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3.10(a) shows same result when we use four to seven Gabors, and then seven to ten Gabors,
respectively.

Finally, in order to compare the results of GFB optimization with the baseline system, as
well as the perfect system (which uses manually created masks), we show the ROC curves for all
above cases in Figure 3.10(b).

Figure 3.11 and 3.12 shows the same results for the ICE2 database.

3.5 Discussion

3.5.1 Average Error Rate for Occlusion Estimation

First, in terms of the accuracy of the generated iris mask, Figure 3.5 shows that in both the ICE1
and ICE2 database, our proposed method, no matter which feature set we use, is better than
the two baseline systems (rule-based method and FLDA-based method). This result shows that
the proposed approach is useful and able to create iris masks which are much more similar to
manually created masks.

Second, from Figure 3.5 we found that feature IG seems to give the best result among all
the feature combinations. Therefore, in sub-section 3.4.4 we start a series of experiments of
GFB optimization. Using this GFB, we can further decrease the AER (for both the ICE1 and
ICE2 databases). Figure 3.13 shows the final AER we get after GFB optimization, compared
with the simplistic feature (IMS) as well as with the two baseline methods (FLDA and Rule-
based methods). From Figure 3.13, we can see that our proposed method combined with the
best feature can greatly improve the accuracy of the iris mask. Figure 3.14 shows the example
iris masks generated by the proposed algorithm, with optimized GFB, for both ICE1 and ICE2
database.

3.5.2 Insight from Gabor Filter Bank Optimization

There are some insights we can draw from the the optimization process of the GFB features.
For the ICE1 database, as the number of Gabor filters increases, we find that the recognition
performance also increases. However the improvement of performance seems to saturate at the
point when seven Gabor filters are used. When more than seven Gabor filters are used, the ROC
curve begins to drop down, as shown in Figure 3.10(a). We thus conclude that, though multiple
Gabor filters can give the most discriminative feature for occlusion estimation, there is a limit.
When the number of features exceeds the optimal value, the less effective feature will confuse the
generative model and degrade the performance. Only the good features can train better generative
models. This same phenomenon can be observed in the case of the ICE2 database, as shown in
Figure 3.11 and 3.12. For ICE2, the optimal number of Gabor filters is six, thus our observations
and conclusions are correlated on different datasets.
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(a)

(b)

Figure 3.9: ROC curves that shows the how the recognition rate changes with the number of
filters in GFB, with ICE1 database. (a) ROC curves of one to four Gabor filters (b) ROC curves
of four to seven Gabor filters.
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(a)

(b)

Figure 3.10: ROC curves that shows the how the recognition rate changes with the number of
filters in GFB, with ICE1 database. (a) ROC curves of seven to ten Gabor filters (b) ROC curves
comparison of the baseline, manual and the proposed method. The two baselines are FLDA and
Rule-based method. The best performance of the proposed method is when we use 7 Gabor
filters. 52



(a)

(b)

Figure 3.11: ROC curves that shows the how the recognition rate changes with the number of
filters in GFB, with ICE2 database. (a) ROC curves of one to four Gabor filters (b) ROC curves
of four to seven Gabor filters
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(a)

(b)

Figure 3.12: ROC curves that shows the how the recognition rate changes with the number of
filters in GFB, with ICE2 database. (a) ROC curves of seven to ten Gabor filters (b) ROC curves
comparison of the baseline, manual and the proposed method. The two baselines are FLDA and
Rule-based method. The best performance of the proposed method is when we use 6 Gabor
filters. 54



(a) (b)

Figure 3.13: Average Error Rate (AER) of the iris occlusion estimation with different algorithm,
which include (1) FLDA (2) Rule-based method (3) proposed method with IMS feature set (4)
proposed method with optimized GFB. Sub-figure (a) and (b) show the results for ICE1 database
and ICE2 database, respectively.

3.5.3 Performance Enhancement shown in ROC Curves

We can see how much the recognition performance is enhanced by our proposed algorithm, with
the best feature set obtained through the SA optimization process, in Figure 3.10(b) and 3.12(b).
In these two Figures, there are ROC curves that are based on five different masks. The ROC
based on the masks that are generated from FLDA and rule-based methods, shows the baseline
with which to be compared. The ROC based on the masks that are generated by the proposed
algorithm, with the IMS feature set, is the performance with our proposed algorithm, before we
perform GFB optimization. The ROC based on the manually labeled iris masks gave the best
achievable performance if we manually identified the regions of occlusion. The ROC based on
the masks that are generated by the proposed algorithm, with GFB optimization, is the ultimate
performance we can get by the process of optimization.

From both Figure 3.10(b) and 3.12(b), we can see that without the optimization process, and
only using simplistic features (image intensity, mean and standard deviation), we can greatly
enhance the recognition performance. For ICE1, after GFB optimization, we can improve the
recognition performance to a level that is very close to the manually-created mask.

For ICE2, the results are even more encouraging. After GFB optimization, the recognition
performance can exceed the performance based on manually-created masks. This observed re-
sult suggests two things: 1. The masks generated by the proposed algorithm must be different
from the manually created masks (if they are almost the same, both ROC curves should be very
similar). 2. In order to have higher recognition performance, the masks generated by the pro-
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Figure 3.14: Iris occlusion estimated by the proposed algorithm. Red region denotes the esti-
mated occlusion and dark green region denotes the estimated iris texture. Row 1~8 show the
results from ICE1 (7 Gabor filters) and Row 9~16 show the results from ICE2 (6 Gabor filters).
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Figure 3.15: Comparison of the iris masks that are generated by different algorithms. Each
column shows the iris masks that are generated by (1) Rule-based (2) FLDA (3) proposed method
with IMS feature (4) manual (5) proposed method with GFB optimization. From these three
examples we can see that GMM trained with optimal GFB can mask out the regions that contain
less discriminative information for iris recognition.

posed algorithm must mask out some regions which contain less discriminative features for iris
matching.

This observation and implication can be observed from Figure 3.15. In this figure, we show
three examples of how iris masks “evolve” or “improve” with different algorithms. Each column
represents the same input iris image being processed by different algorithms. The five algorithms
we compared are (1) rule-based (2) FLDA (3) proposed method with IMS feature (4) manually
labeled ground-truth data (5) proposed method with GFB optimization.

We can see that the proposed method with the IMS feature greatly improves the accuracy
of the masks, compared to the two baseline methods. However, masks generated manually are
slightly better than proposed method with IMS features, which explains the gap between the two
ROC curves. Finally, the proposed method with GFB optimization further modifies the manual
masks by eliminating the iris regions that have little or no discriminative information, e.g., the
regions at the top of the images. If we wrap the polar domain iris image back to Cartesian domain,
the top region of the polar domain image corresponds to the boundary between sclera and iris.
Slightly inaccurate iris segmentation will include the sclera region into the polar domain image,
causing the decrease of the recognition performance. Therefore, by masking out this region, the
recognition rate can be further enhanced.

3.6 Conclusions
Extracting robust iris masks is one of the key factors to achieving high iris recognition rates. This
is something that many researchers in this field have neglected. How to estimate iris occlusion
and create accurate iris masks robustly and efficiently is key to high performance iris recognition.
In this work, we have demonstrated that our approach for the iris occlusion estimation is accurate,
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efficient, and effective. It can detect the occluded region in an iris, and the detection result (the
iris mask) is very similar to a manually-created mask, as shown in our empirical analysis. It is
effective because we only use one training image from each class to get such a satisfactory result
for generating iris texture masks. Experiments have also shown that the iris masks created by the
proposed method can help to greatly improve iris recognition performance, and, in some cases,
the performance can be even higher than the manually labeled masks.

This leads us to another interesting topic. If the recognition performance based on the manual
masks can be further enhanced, then regions on authentic iris texture which are not very useful
for recognition purpose must exist. If we can find these regions and mask them out, just like what
our proposed algorithm did for the ICE2 database, the recognition performance can be further
improved. How to determine these regions, and how to do it efficiently are two important issues.
In chapter 4, we explore solutions for these questions and, hopefully, mask out more regions
which are not discriminative.
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Chapter 4

Automatic Iris Mask Refinement for
Improved Iris Recognition Performance

Estimating artifacts on an iris image in the polar domain is an important problem for any iris
recognition system which strives for a high recognition rate. In literature, there are many al-
gorithms that estimate iris occlusion in either Cartesian or polar coordinates. In chapter 3, we
proposed a novel learning-based iris occlusion estimation algorithm. Our goal in this chapter is
not to propose another method to compete with existing ones. Rather, it is to propose a new algo-
rithm which can take an iris mask estimated by any existing algorithm and refine it into a much
more accurate mask. In this way, the proposed method could work side-by-side with any other
existing algorithm and improve iris recognition performance. Experimental results show that the
proposed method can improve iris recognition rate significantly compared to the performance of
a system using un-refined iris masks.

4.1 Introduction

As discussed in chapter 3, iris occlusion estimation is an important problem in iris recognition
systems. If all of the occluded regions in an iris image can be accurately masked, the iris recog-
nition rate will be greatly improved. On the contrary, if the iris masks are not accurate and there
are many occluded regions which are not identified by the iris masks, the iris recognition perfor-
mance will be degraded. These facts have been shown in the section 3.4. A good illustration of
an iris image in the polar domain and its corresponding mask is shown in Figure 3.1.

There are two approaches to estimate accurate iris masks from images. The first is to esti-
mate the occluded region in the original images in Cartesian coordinates and then transform the
mask into polar coordinates. The second is to estimate the occlusion from the image in the polar
domain directly. In this chapter, we propose the latter approach. The advantage of estimating
occluded region in the polar domain is similar to the benefit we get by performing iris normaliza-
tion. In the Cartesian domain, there are many factors that vary all the time and are very difficult
to model. Modeling the occluded region in the polar domain simplifies the problem and also
increases the computational efficiency.

We propose a learning-based method which refines existing estimations of the occluded re-
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gion on iris images in the polar domain by maximizing the mutual information on the bit-level.
This method is simple, easy to implement, and computationally efficient. Experiments also show
the masks refined by the proposed method can enhance the recognition performance compared
to the original masks. All of the previous work related to iris occlusion estimation has been
reviewed in section 3.2. Therefore, we will not repeat the literature review in this chapter. We
describe the proposed method in section 4.2. Experimental settings and results are illustrated in
section 4.3. Discussion and Conclusions are presented in section 4.4.

4.2 Methodology
The primary focus of this chapter is on the problem of refining existing iris masks with a learning-
based method instead of iris mask generation from raw input iris images. Assuming there are
at least two training images for each class of iris, and there are roughly estimated iris masks
for both of them in the polar domain, by maximizing mutual information between every pair of
images in the training data, we are able to refine the iris masks of each iris image. In this section,
the proposed algorithm is demonstrated using only two training images, but the same procedure
generalizes in situations with more images.

Suppose these two iris images in the polar domain are denoted as X and Y , and their cor-
responding masks are MX and MY . The mutual information between these two masks can be
defined as (4.1)

I(MX ;MY ) =
∑
y3MY

∑
x3MX

P (x, y)log
P (x, y)

P (x)P (y)
(4.1)

where x and y represents each pixel in the maskMX andMY in the polar domain. Intuitively,
the regions in X which have high resemblance to Y are the regions which are more resistant to
noise and image distortion. Therefore, we propose to recover the refined mask RM by maximiz-
ing the mutual information between X and Y :

RM = arg max
X

I(X;MY ) (4.2)

= arg max
X

∑
y3MY

∑
x3X

P (x, y)log
P (x, y)

P (x)P (y)

Assuming all bits on the polar plane are equally likely to be discriminative regions, P (x) has
a flat distribution across the whole plane. Then (4.2) can be rewritten as

RM = arg max
X

∑
y3MY

∑
x3X

P (x, y)log
P (x, y)

P (y)
(4.3)

By definition of conditional probability, we can rewrite (4.3) into (4.4)

RM = arg max
X

∑
y3MY

∑
x3X

P (x|y)P (y)logP (x|y) (4.4)
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The probability P (y) is modeled by the given roughly estimated mask MY , set P (y) = 1 if
and only if the pixel value of y equals one on MY and P (y) = 0 if and only if pixel value of
y equals zero on MY . For P (x|y), it is modeled with the similarity scores between X and Y ,
given the mask of MY . Specifically, we set P (x|y) = 1 if the pixel at location x on image X
matches the same location on image Y , given the roughly estimated mask MY , otherwise, set
P (x|y) = 0. In other words, we model P (x|y) as a binomial distribution.

4.3 Preliminary Experiments

4.3.1 Iris Databases Description

Experiments are performed on the NIST ICE database, as described in section 3.4.1. We used
both subsets of ICE, which is ICE1 and ICE2.

For every iris class in both datasets, we partitioned the images into training and test sets with
an equal number of images for both sets. When there is only one image for a class, it is included
in training data but not the test data. We estimated and refined iris masks on the training set, used
training set images (partially or totally) as gallery images, and matched them against the probe
images, which are the test data.

4.3.2 Preliminary Estimation of Iris Masks

We experimented with three different methods for roughly estimating initial iris masks, which
had the possibility of being inaccurate and error-prone, and then used the proposed method to en-
hance the performance of the masks. The three methods are described in following sub-sections:

• Rule-based method
The first method we tried is a simple rule-based method. The rule-based method we used
here is similar to the method described in [22]. Basically, it detects whether there is strong
variance of pixel intensity on a local window and uses it as a feature to perform classifica-
tion. It can be illustrated in four steps:

1. Normalize the image so that the energy of pixel intensity sums to one.

2. Create a local mean image by computing the mean value of the 5x5 window centered
at each pixel.

3. Compute the global mean and standard deviation of all pixel intensity of the image
of the mean.

4. For every pixel on the local mean image, if the difference between its intensity value
and the global mean is less than twice the global standard deviation, classify it as the
iris texture. Otherwise, classify it as an occluded region.

• FLDA-based method
The second method we tried is an FLDA-based method, as described in [12]. It can be
illustrated in following steps:
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1. Extract features from the normalized iris image. The extracted features include:

(a) the mean intensity value in a small neighborhood of the pixel

(b) the standard deviation of the intensity values in the same neighborhood

(c) the percentage of pixels whose intensity is greater than one standard deviation
above the mean of the entire iris plane

(d) the shortest Euclidean distance to the centers of the upper and lower eyelids.

2. Use the FLDA method to reduce dimensionality of the features from four to one.

3. Set a threshold for the feature value to classify a pixel into either the “authentic iris”
or “occluded region” class.

• Active-contour based method
Daugman recently proposed a new iris segmentation algorithm, based on the active con-
tour technique (Snake), as shown in [21]. With the new segmentation scheme and other
improvements in score normalization, eyelash detection and off-axis eye normalization, he
reported a very high accuracy on the ICE database. Therefore, we also implement the iris
mask estimation algorithm by using snake, in order to re-evaluate it fairly and compare
it with other methods. The snake method we used here is the GVF Snake algorithm, as
described in [36].

4.3.3 Refining Iris Masks
After the initial estimation of the iris mask is computed, the initial iris masks are refined with the
proposed method. Since the separation of training data and test data is a random process, to make
the experimental results fair and reasonable, the whole training and testing process is repeated
ten times. This will eliminate any chance factors that bias the performance due to the selection of
training data. The experimental results reported in section 4.3.4 are derived by accumulating all
Hamming Distance from the ten-fold cross validation for all authentic and impostor comparisons.

For each experimental setting (one specific initial mask estimation algorithm on one specific
database), we ran three sub-experiments and used ROC curves to compare their individual perfor-
mance. First, we benchmarked the performance of the initial mask estimation algorithm, without
using the proposed method to refine the mask. This setting is called “baseline” in subsequent
sections. Second, we refined the masks from the baseline method, randomly picked one training
image per class to be the gallery image, and used all untrained images as probe images. This
setting is called “Algorithm 1” in subsequent sections. Finally, we used every image of every
class in the training data as gallery images, and use all the untrained images as probe images.
This setting is called “Algorithm 2” in subsequent sections.

We split the proposed method into “Algorithm 1” and “Algorithm 2” because we want to push
the algorithm to the limit to see how much improvement in matching accuracy it can achieve,
even in the case where only one training image is selected to be the gallery image. We expect
that the proposed algorithm will enhance the matching accuracy to a significant level so that,
even if there is only one training image per class, the iris recognition performance will still be
significantly improved. The use of “Algorithm 1” is an attempt to validate this expectation.
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Table 4.1: Numeric performance benchmarks for the three different settings, averaged over ten
iterations, on ICE1 dataset

Experimental Settings Baseline
Initial Mask Estimation Method EER FRR@.1 FRR@0 FR

Rule-based 1.9 3.1 9.3 2.4
FLDA-based 2.1 3.7 9.3 2.3

Active Contour based 2.0 3.4 10.8 2.4
Experimental Settings Algorithm 1

Initial Mask Estimation Method EER FRR@.1 FRR@0 FR
Rule-based 0.8 1.1 2.3 4.3

FLDA-based 0.8 1.0 2.1 4.2
Active Contour based 0.8 1.3 2.9 4.1
Experimental Settings Algorithm 2

Initial Mask Estimation Method EER FRR@.1 FRR@0 FR
Rule-based 0.7 1.0 3.1 4.4

FLDA-based 0.7 1.0 3.7 4.3
Active Contour based 0.7 1.3 3.4 4.2

For iris feature extraction, we used Libor Masek’s Matlab implementation of Daugman’s
algorithm, which can be freely downloaded, as stated in [16].

4.3.4 Results

As stated in section 4.3.3, we present the experimental results as ROC curves for different ex-
perimental settings. The results are presented in two parts: First, ROC curves are plotted to
illustrate the performance of the baselines, Algorithm 1 and Algorithm 2, with respect to each
initial iris mask estimation method on a given database. According to section 4.3.2, there are
three different methods for estimating an initial iris mask and there are two databases (ICE1 and
ICE2). Therefore, in the first part of this section, there are six ROC plots. They are shown in
Figure 4.1 and 4.2.

In the second part of the section, we observe the effect of the proposed algorithm on the
performance of all three initial occlusion estimation algorithms. This comparison would give
us an idea as to whether the proposed algorithms (Algorithm 1 and 2) favor a particular initial
estimation method. In addition, more insights can be obtained about how to choose an initial
method wisely. The results are shown in Figure 4.3 and 4.4.

For every setting, besides ROC curves, we also measure some numeric performance bench-
marks. The benchmarks are: (1) Equal Error Rate (EER); (2) False Reject Rate when False
Accept Rate (FAR) equals to 0.1%, denoted as FRR@.1; (3) False Reject Rate when False Ac-
cept Rate (FAR) equals to 0%, denoted as FRR@0; (4) Fisher Ratios (FR). The results are shown
in Table 4.1 and 4.2.
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(a)

(b)

(c)

Figure 4.1: ROC curves for different iris mask estimation algorithm, on ICE1 database. (a)
Rule-based iris mask estimation algorithm. (b) FLDA-based iris mask estimation algorithm. (c)
Active Contour based iris mask estimation algorithm.
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(a)

(b)

(c)

Figure 4.2: ROC curves for different iris mask estimation algorithm, on ICE2 database. (a)
Rule-based iris mask estimation algorithm. (b) FLDA-based iris mask estimation algorithm. (c)
Active Contour based iris mask estimation algorithm.
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(a)

(b)

(c)

Figure 4.3: ROC curves for benchmark the performance of baseline, Algorithm 1 and 2, on ICE1
database. Within each plot, performance of three initial iris mask estimation methods is shown.
(a) Baseline performance for all three methods. (b) Performance of all three methods, after
improved by Algorithm 1. (c) Performance of all three methods, after improved by Algorithm 2.

66



(a)

(b)

(c)

Figure 4.4: ROC curves for benchmark the performance of baseline, Algorithm 1 and 2, on ICE2
database. Within each plot, performance of three initial iris mask estimation methods is shown.
(a) Baseline performance for all three methods. (b) Performance of all three methods, after
improved by Algorithm 1. (c) Performance of all three methods, after improved by Algorithm 2.
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Table 4.2: Numeric performance benchmarks for the three different settings, averaged over ten
iterations, on ICE2 dataset

Experimental Settings Baseline
Initial Mask Estimation Method EER FRR@.1 FRR@0 FR

Rule-based 2.0 3.4 9.3 2.3
FLDA-based 2.1 3.7 12.9 2.2

Active Contour based 2.1 3.6 10.7 2.3
Experimental Settings Algorithm 1

Initial Mask Estimation Method EER FRR@.1 FRR@0 FR
Rule-based 1.1 1.5 2.3 4.4

FLDA-based 0.9 1.5 2.9 4.3
Active Contour based 1.1 1.4 2.4 4.3
Experimental Settings Algorithm 2

Initial Mask Estimation Method EER FRR@.1 FRR@0 FR
Rule-based 0.9 1.2 2.3 4.6

FLDA-based 0.8 1.2 2.7 4.5
Active Contour based 1.0 1.2 2.3 4.4

4.4 Discussion and Conclusions

4.4.1 Effectiveness of the Proposed Algorithm

All ROC plots in Figure 4.1 and 4.2 confirm the effectiveness of the proposed algorithm. For
every subplot in Figure 4.1 and 4.2, Algorithm 2 out-performs Algorithm 1, which in turn, out-
performs the baseline. This result is consistent with our assumptions from before: Our proposed
method improves the accuracy of the iris mask, which, in turn, improves the accuracy of the
matching experiment. It is also observed that using more training images in the gallery set is
better than using fewer images.

4.4.2 Algorithm Performance Comparison

ROC plots in Figure 4.3 and 4.4 also show the comparison of the accuracy enhancement through
Algorithm 1 and Algorithm2. Although in the subplots in Figure 4.2, Algorithm 2 is constantly
better than Algorithm 1, the performance of these too algorithms is similar and the difference
between the two ROC curves is very small. This tells us that, even when we randomly pick only
one image to be in the gallery set, after using our proposed algorithm to refine the iris mask,
we can still achieve a high recognition rate. This is a significant advantage of the proposed algo-
rithm, especially when dealing with a large-scale iris recognition task. For online iris recognition
systems, where efficiency is critical, decreasing the number of gallery images as the number of
classes increases significantly improves the matching speed.
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4.4.3 Choice of Initial Iris Mask Estimation Algorithm
From the ROC plots in Figure 4.3 and 4.4, we get an insight about how to choose the initial iris
mask estimation algorithm. First, without using the proposed algorithm to refine masks, in terms
of baseline performance, Figure 4.3(a) and 4.4(a) show that among these three initial estimation
methods, the rule-based method performs the best, and the FLDA-based method performs the
worst. But after applying the proposed method, the performance becomes similar among all
three cases, as shown in Figure 4.3 (b)-(c) and Figure 4.4 (b)-(c). In other words, no matter which
initial estimation algorithm we started with, after applying the proposed refinement algorithm,
the iris masks can be improved to approximately the same level of accuracy. This gives us the
freedom to choose whatever algorithm is most convenient. This is also an advantage of the
proposed algorithm.

4.4.4 Conclusion
Experimental results have shown that our proposed iris mask refinement algorithm is effective
and useful. It can refine the iris mask to a much higher quality and improve the iris recog-
nition rate significantly. Moreover, the proposed method is easy to implement, and can work
side-by-side with any existing iris mask estimation algorithm. The proposed algorithm can be
implemented in existing iris recognition systems as an additional layer between iris mask gen-
eration and matching, making it suitable to be used in a real-world situation without the need of
large scale modification of the original system.

One limitation of our proposed method is that it requires at least two training images for
the same iris class in order to estimate mutual information. This limitation should be easily
overcome because modern iris recognition systems usually take more than one iris image during
the enrollment stage. In fact, most of the newly released iris databases contain more than one
image per class.
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Chapter 5

Image Restoration and Enhancement for
Iris Images from the Long-Range Iris
Acquisition System

5.1 Introduction
As stated in Chapter 1, the IOM system has the ability to capture a subject’s iris image from a
large stand-off distance, while the subject is walking through the portal. Here we notice that for
a less constrained iris capturing device like the IOM, the optical conditions required to capture a
quality image are difficult to obtain. Image capture issues in less constrained systems arise from
the following:

1. Motion blurring due to subject movement.

2. Uneven illumination of the target objects caused by the locations of the infrared illumina-
tors.

3. In some cases, the images are taken while the subject is located outside of the focus zone;
therefore, the images may suffer from out-of-focus blur.

On the other hand, images taken by a constrained device, such as SecuriMetrics PIER [37], have
no such problem.

Figure 5.1 shows an iris image captured by the IOM system, compared with one captured by
SecuriMetrics PIER device. From the pictures shown, it can be seen that there is a considerable
difference in picture quality between the IOM images and the PIER images. Irises texture is
revealed clearly in PIER images, while in IOM images, the motion blur, out-of-focus blur and
uneven illumination reduce quality of the images. Iris textures cannot be seen clearly in those
images.

In order to overcome this problem, we propose to use the technique of image Super-Resolution
(SR) to perform image restoration and enhancement. SR is a technique which estimates high-
resolution (HR) images from low-resolution (LR) ones. Depending on the input and output
constraints, SR can be divided into one of the following three categories:

1. Single Input, Single Output (SISO): it is the case where only one image is used as input,
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Figure 5.1: Comparison of image quality between IOM images and PIER images. First row
shows images captured by IOM system. Second row shows images of exactly the same eye,
captured by SecuriMetrics PIER device.

and only one output image is acquired, as shown in [38, 39, 40, 41, 42].

2. Multiple Input, Single Output (MISO): it is the case where several LR images are used as
input, and one HR image is generated as output, as shown in [43, 44, 45, 46, 47, 48, 49].

3. Multiple Input, Multiple Output (MIMO): it is the case where the input of SR is a LR video
and the output is HR video, as shown in [50, 51].

In our case, we would like to enhance the quality of iris images acquired by the long-range iris
acquisition system. Since an advantage of such system is the ability to capture several images
per subject, the suitable SR in this case is to use multiple images to produce a single restored
and enhanced output image, i.e., MISO. In the section 5.2, an image degradation model which is
widely used in the SR research community is presented. After that, in section 5.3, we introduce
some of the famous SR algorithms in the MISO category. In section 5.4, we introduce our pro-
posed SR algorithm and describe all of the details in every functional unit. Experimental results
of both the existing and the proposed algorithms are also presented to show the effectiveness of
our proposed algorithms in section 5.5. In order to explore the limit of the ability of our pro-
posed algorithm in dealing with focus blur and noises, we design two experiments to simulate
the possible degradation process in a quantitative manner. The results are shown in section 5.6.
Lastly, We summarize the findings and conclude in section 5.7.

5.2 Image Degradation Model for Super-Resolution
In the literature, the process of image degradation can be modeled by the original image con-
volved with a Point Spread Function (PSF) of the camera (for modeling of defocus blur), fol-
lowed by a convolution with a motion operator (for modeling of motion blur) and then mixed
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with Gaussian white noise [52]. This image degradation model is illustrated in Figure 5.2.
This process can be described in matrix form as

Y = DMGX +N (5.1)

where X denotes the original high quality image, represented as a column vector.
Suppose the original high quality image is of size L1N1 × L2N2, then X is a column vector

of size L1N1L2N2 × 1, arranged in lexicographical order. Y denotes the observed LR image.
Suppose the observed LR image is of size N1×N2, then Y is a column vector of size N1N2× 1,
arranged in lexicographical order. L1 and L2 are the down-sampling factors for the horizontal
and vertical directions between the original HR image and observed LR image. G is the matrix
operator used to model camera PSF. Camera PSF may introduce optical blur or affine warping
between the input and output image. Since the size of the input and output images are the same,
G is of size L1N1L2N2 × L1N1L2N2. M represents a L1N1L2N2 × L1N1L2N2 motion blur
matrix, which models the motion blur effect between the input and output images. D is a down-
sampling matrix, of size N1N2 × L1N1L2N2. N is to model the additive noise. The size of N is
N1N2 × 1.

5.3 Previous Work
To the best of the author’s knowledge, there has been no previous work done on the application
of the super-resolution technique for the goal of enhancing the quality of iris images. Therefore,
in this section, we will briefly review the existing work of generic image super-resolution.

Generally speaking, the image super-resolution algorithm can be divided into three stages, as
illustrated in Figure 5.3.

The first stage in Figure 5.3 is image registration. In this stage, one of the input images is
chosen to be the template image. Image alignment algorithms are applied on all of the other input
images to measure the most likely rotation and translation between them. After image alignment
is completed, it is possible to determine how much rotation and translation each input image has
with respect to the template image. The rotation and translation in opposite direction is applied
in order to correct all of the other images. During image reconstruction, we fuse the information
from input images into one final image. Finally, during the post-processing stage, we apply
image processing techniques to further remove noise and blur. In the following sub-sections, we
review some of the most popular algorithms for each stage.

5.3.1 Image Registration
Keren et al. proposed a sub-pixel image registration method in the late 1980s [48]that formulated
the image registration problem in matrix form in the spatial domain. Assuming the relative
rotational and translational shift between two input images is small, Taylor series expansion can
be applied to compute the estimated image after the relative shift. The residual error can be
computed by the difference between the second image and the estimated image. By taking the
partial derivative of the residual error, one can find the minimal value of the error and recover the
rotational and translational parameters; this gives the minimal residual error.
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Figure 5.2: Image degradation modeling for Super-Resolution reconstruction.
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Figure 5.3: Flow chart of a typical image super-resolution algorithm.
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The advantage of this approach is that nine out of the twelve parameters can be computed
beforehand. This reduces the computational cost of the registration. In order to speed up the
process further, the authors suggest using a Gaussian pyramid in the registration process [53]. A
Gaussian pyramid is a coarse-to-fine image analysis tool. In this scheme, the original image of
size N ×N is convolved with a Gaussian filter and sub-sampled to give an N

2
× N

2
image. This

process repeats until the image is reduced to one pixel. Keren et al. suggest a recursive process to
compute the motion parameters for an image. Their process starts by computing the parameters
for a very small image and using those results to interpolate the a slightly larger image, which are
corrected and used to initialize an even larger image. This process is performed until the desired
image size is reached. This algorithm works because, at smaller levels, big translations appear
small. This process continues until the original image size is reached.

Reddy and Chatterji proposed another image registration method in frequency domain [54].
Their method is based on FFT analysis. Assuming that the relative rotational and translational
shift between two input images is known, it is possible to write an equation to describe the
relation between the original image and its translated version. After applying FFT to both sides
of the equation, the relation between these two images can be described in the Fourier domain.
The translational parameters can be recovered by computing the inverse Fourier transform of the
cross-power spectrum, and the rotational parameters can be recovered by performing Cartesian to
Polar coordinate transformation on the magnitudes of FFT spectrum and finding the most likely
relative shift between them.

Vandewalle et al. proposed another frequency domain-based image registration method in
2006 [45]. Their method is similar to Reddy and Chatterji’s method, except with a different
parameter estimation scheme. In [54], Reddy and Chatterji propose using Cartesian to Polar
coordinate transformation on the magnitudes of FFT spectrum in order to recover the rotational
parameters. However, this transformation is time-consuming and error-prone. Instead, Vande-
walle et al. proposed to compute a new function h(α) to describe the summation of the magnitude
of the frequency spectrum for the given angle α. When computing the function h(α), Vandewalle
et al. suggested ignoring the low-frequency region in order to make this method more robust.
After h(α) is computed, by applying 1D cross-correlation, we are able to find the most likely
translational shift between h1(α) and h2(α), recovering the rotational parameters. To recover the
translational parameter, the authors apply plane fitting through the phase difference using a least
squares method that makes the solution robust to noise.

5.3.2 Image Reconstruction
After the relative translational and rotational shift between LR frames are measured, we have to
reconstruct the HR image based on LR images. In this section we briefly review some of the
most commonly used image reconstruction methods.

One of the most intuitive ways to fuse several LR images into one HR image is the nonuni-
form image interpolation method. The procedure of nonuniform image interpolation simply
places the sample points from all input images back at their corresponding location on the tem-
plate image and uses a function to approximate the values where there are no available sample
points. The approximation function can be spline, bilinear, bicubic or any other higher order
function. The only concern for the function we use is the trade-off between the speed and the
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accuracy.
Irani and Peleg proposed a Super-Resolution reconstruction method based on a process of

iterative back projection [49]. First, the motion parameters of all the LR images have to be pre-
cisely estimated. They used a method which is very similar to the method in [48] to estimate mo-
tion parameters. After the parameters are estimated, reconstruction is completed by an iterative
process. The assumption is that if the motion parameters are all accurate, and we know the esti-
mated parameters of the image degradation process, then we will be able to project the degraded
LR images from the HR image. Hence, the HR image is an initial estimation of the SR image.
By minimizing the residual error between the real LR input images and the “back-projected” LR
images, we are able to reconstruct the HR image so that it approximates the ground truth closely.
The process is done in an iterative manner. In each iteration, the residual error becomes smaller
and the SR image will gradually approximate to the real HR image.

In 2001, Zomet et al. proposed a method called “Robust Super-Resolution” for image recon-
struction [46]. Their method is very similar to Irani and Peleg’s method. However, Zomet et al.
proposed a novel idea about how to iteratively update the estimated SR image. Instead of using
the sum of the residual error as the derivative, they proposed to use the median value to replace
the sum. For a symmetric distribution, a median can approximate the mean quite accurately,
given a sufficient set of samples; in the case of distant outliers, the median is much more robust
than the mean.

5.4 Proposed Method
All of the above SR reconstruction methods are global methods. Here, by using the term
“global”, it means that in every algorithmic step, the operations are performed on the holistic
image. The image registration is performed in order to find the global relative shift between
two LR images. The image reconstruction is performed to fuse the information globally from
multiple LR images.

Instead of using a global SR algorithm, in this thesis, we propose to use local patch-based
SR to perform image SR on iris images in the polar domain. The main difference between local
patch-based SR and global SR algorithm is that we first break the whole image into subsets of
rectangular areas, which are referred as “local patches” in the text. The image registration and
image fusion are performed on each local patch set, not on the global image. The final global
image is composed by combining each super-resolved local patch into one image.

By using local patches to perform Super-Resolution on the iris image in the polar domain, it
is possible to avoid local deformation. As shown in chapter 3 and 4, the iris images in the polar
domain are obtained by unwrapping the iris region from the Cartesian coordinate. This Cartesian
to Polar coordinate transformation is extremely sensitive to the accuracy of both the iris and
pupillary boundary recovered by iris segmentation algorithm. Even for the same iris image,
different segmentation algorithms will recover different iris boundaries. Also, for the same iris
image, there may exist multiple iris and pupillary boundaries that can be considered “correct”
segmentations The parameter values of different “correct” segmentations may only be slightly
different from each other, but may result in an observable local deformation after unwrapping
the iris from Cartesian to polar coordinates.
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The local deformation phenomenon of iris images in the polar domain is widely known in the
iris recognition community. In [12, 55, 56], the authors propose a local patch-based matching
algorithm which reports an extremely high recognition rate compared to Daugman’s algorithm.
If the local patch-based recognition algorithm can outperform global image-based recognition
algorithms, it is very reasonable to apply local patch-based philosophy to the SR problem for iris
images.

5.4.1 Key Components of the Proposed Algorithm

The key components of the proposed Local Path-based Super-Resolution algorithm (LPSR) can
be summarized as the following:

1. Quality assessment

2. Global alignment

3. Up-sampling and patch binning

4. Local alignment

5. Local patch reconstruction

6. Patch stitching

7. Post-processing

We explain the details of each stage in the following paragraphs.

5.4.2 Iris Image Quality Assessment

The first step in the LPSR algorithm is to assess the image quality among the input LR images
and find out which image is of the best quality image. After the best quality image is located, we
can use it as the template image, and perform all other operations to fuse information from other
images into this template image.

We propose two different kinds of image quality assessment algorithms. They are based
on different philosophies, but both are reasonable. We illustrate each of them in the following
paragraphs.

The first method we tried is to use 2D-FFT spectrum to assess image quality. FFT spectrum
analysis is a widely used method to analyze the frequency component in a given signal. Since
an image can be seen as a two-dimensional discrete signal, we can use 2D-FFT to represent the
frequency component of an image. Images that contain sharp edges and details should exhibit
more high frequency content in the 2D-FFT spectrum. If an image is blurred and sharp edge
information is lost, there will be less high-frequency content. Therefore, the basic idea is that, by
comparing the magnitude of the ratio between high frequency and low frequency components,
we are able to assess how good the quality of the image is. The higher the ratio, the better the
quality of the image.

The flow chart of quality assessment of the 2D-FFT method is presented in Figure 5.4, with
the flow chart shown on the left side and an example image for each stage shown on the right
side. First, given an input image (a), the 2D-FFT spectrum is computed, shown in (b). Note
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Figure 5.4: Flow chart of quality assessment with 2D-FFT
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that in this 2D-FFT plot, origin is located at the center of the plot. The X-axis and Y-axis
represent the frequency scale in the x and y direction. The intensity denotes the magnitude of
the frequency component in its own frequency band. In Figure 5.4(b), we can see that the center
region is brighter than the neighboring regions, which shows that there are more low frequency
components than high frequency ones.

After the 2D-FFT spectrum is computed, two regions should be masked out. The first is
the pixels located at the center of the spectrum. These pixels denote the magnitude of the DC
component in the image, which is the average intensity over the whole image. Since the goal
of this method is to assess the ratio between the low frequency and high frequency component,
it should not be influenced by the average intensity of the image. Therefore, we should fill this
region with zeros so we do not consider the DC component.

Second, since the noise in images is represented as high frequency components in the 2D-
FFT spectrum, the region of very high frequency is also not trustworthy and should be masked
out. By masking out the very high frequency components, the performance of this method should
be more stable and robust to noise-contaminated images.

After masking out the DC component and the very high frequency components in the 2D-
FFT plot, the spectrum is divided into two regions: the Low-Frequency (LF) region and High-
Frequency (HF) region. Since the origin of the 2D-FFT plot is at the center, this region is the
LF region and the outer region is the HF region. We accumulate the energy over the LF region
and the HF region separately, getting a score for the LF region (LFS) and the HF region (HFS)
separately.

Finally the quality score is computed by dividing HFS with LFS.

The second method we proposed for quality assessment is based on mutual Hamming Dis-
tance (HD) score. The HD score computation is a standard method used for measuring the
distance between two iris images within a normalized range between zero and one. The lower
the HD, the greater the similarity between two iris images. Usually, if two iris images are from
the same class, and both of them are very sharp and clear, the HD would be low. However, if the
images are blurred or noisy, even if they are from the same class, the HD would be high.

The use of HD in iris matching reveals the possibility of using it in quality assessment.
In this thesis, we propose an iris quality assessment and alignment method based on the HD,
which has never been seen in literature before. Given N input iris images, we can compute the
HD between every possible pair of images, and organize all the HD in the form of a similarity
matrix. A similarity matrix is a matrix S of size N ×N where each element S(i, j) denotes the
HD between image i and j. Therefore, S is a symmetric matrix and S = ST .

After the Similarity matrix is computed, we can compute the average of each row and get a
column vector C. In this column vector, each element Ci represents the average HD between
the image i and all other images. If an iris image is clear and of good quality, it is supposed to
have a lower HD when being matched to all other images. On the contrary, if an iris image is
blurred and noisy, the HD would be high. Therefore, by locating the smallest value in C, we
would be able to locate the iris image of the best quality, and use this image as our template for
all subsequent stages. The process of quality assessment by mutual HD is illustrated in Figure
5.5.
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Figure 5.5: Illustration of image quality assessment by comparing mutual HD score.

5.4.3 Global Alignment

After we have located the image of best quality, but before we start the SR process using local
patches, it is a good idea to align the input LR images globally. There are chances that the input
LR images may have relatively large translational shifts between them. By aligning LR images
globally, we can minimize the possibility of erroneous alignment in the local patch domain,
thereby enhancing the success rate of local alignment.

The reference image for global alignment is the template image, which is the image of best
quality. In section 5.4.2, at the same time when computing HD between each pair of LR images,
we can also keep track of the relative translational shift that gives the best HD. This optimal
relative translational shift information tells us by how many pixels we should shift one image in
order for it to align to another image. In the stage of global alignment, we shift each input LR
image with exactly the optimal translational shift with respect to the template iris image, but in
the opposite direction. In this way, all input LR images would be aligned to the template image.

5.4.4 Iris Patch Configuration

After input LR images are globally aligned, they are up-sampled to double the original size, both
horizontally and vertically. The LPSR algorithm aligns and fuses local patches in the up-sampled
image, and then reduce the super-resolved image back to its original size. In the following
experiments, the size of LR images is 360× 60, and the size after up-sampling is 720× 120.

After the input LR images are up-sampled, they are divided into local patch sets. In the
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(a)

(b)

Figure 5.6: Illustration of image division and local patches reorganization. (a) Every input LR
image is divided into 36 local patches. (b) Patches that come from different mother image but
belong to the same location would be stored in the same “location bin”.
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following experiments, we divide the image into 3 partitions in the y direction and 12 partitions
in the x direction. Therefore, the total number of patches for one image is 3 × 12 = 36. Since
the size of the up-sampled image is 720× 120, the size of each patch is 60× 40. An example of
the image division process is illustrated in Figure 5.6(a).

5.4.5 Local Alignment

After the input LR images are divided, the local patches are re-ordered based on the patch loca-
tion. In section 5.4.4, it is mentioned that there are 36 patches in all per LR image, which means
there are 36 locations. The input image patches are reorganized and grouped according to their
corresponding locations, as shown in Figure 5.6(b).

For local patches that belongs to the same bin, we would like to align them locally. As stated
before, an iris image in the polar domain suffers from the effect of local deformation. Therefore,
the goal of local alignment is to recover the relative translational parameters between every pair
of patches. Once this parameter is recovered, we are able to fuse the information from multiple
patches during the local patch reconstruction stage and at the correct location where they should
be fused.

The algorithm we used in this stage to align local patches is Normalized Cross Correlation
(NCC). NCC is an important technique in image processing and has been widely used in pattern
recognition, object and target tracking, robotics, and biomedical image processing [57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67]. Traditionally, cross correlation between two signals can be
computed in the frequency domain, but this is not true for NCC. In this thesis, the NCC algorithm
implementation follows the technique proposed by Lewis in 1995 [68, 69]. We briefly review
and describe this technique in the following paragraphs.

For two images (target image and scene image) t(x, y) and f(x, y), the Euclidean distance
between them when one of them is shifted (u, v) in the spatial domain is

d2
f,t(u, v) =

∑
x,y

[f(x, y)− t(x− u, y − v)]2 (5.2)

We can expand d2
f,t(u, v) so that

d2
f,t(u, v) =

∑
x,y

[
f 2(x, y)− 2f(x, y)t(x− u, y − v) + t2(x− u, y − v)

]
(5.3)

If t(x, y) represents the target image, then
∑

x,y t
2(x−u, y− v) is constant. Also, if the term∑

f 2(x, y) is approximately constant then the remaining cross-correlation term

c(u, v) =
∑
x,y

f(x, y)t(x− u, y − v) (5.4)

is a measure of the similarity between the target image and the scene.
If we used Eq. 5.4 to compute similarity, there are several disadvantages. First, if the image

energy
∑
f 2(x, y) varies with position, the approximation would fail. Second, the range of

c(u, v) is dependent on the size of the feature. Third, Eq. 5.4 is not invariant to changes in image
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intensity. Therefore, if there is illumination variation between the target and the scene image, the
similarity score computed by Eq. 5.4 would be different.

Instead, if we compute the correlation coefficient by normalizing the target and scene feature
vectors to unit length, it would become a cosine-like correlation coefficient

γ(u, v) =

∑
x,y

[
f(x, y)− f̄u,v

]
[t(x− u, y − v)− t̄]√∑

x,y

[
f(x, y)− f̄u,v

]2∑
x,y [t(x− u, y − v)− t̄]2

(5.5)

where t̄ is the mean of the feature and ¯fu,v is the mean of f(x, y) in the region under the
feature. Eq. 5.5 is the definition of NCC.

Now, consider the numerator in Eq. 5.5, and assume that we have pre-computed the image
f ′(x, y) , f(x, y) − f̄u,v and t′(x, y) , t(x, y) − t̄ in which the mean value has already been
removed:

N(u, v) =
∑
x,y

f ′(x, y)t′(x− u, y − v) (5.6)

We can use FFT to compute Eq. 5.6 efficiently because it is basically convolving the image
f ′ with the reversed target t′(−x,−y). The FFT computation of N(u, v) is

N(u, v) = F−1{F (f ′)F ∗(t′)} (5.7)

where F (·) is the Fourier transform. The complex conjugate operator would reverse the
feature via Fourier transform property F (f ∗(−x)) = F ∗(ω).

Now, let us consider the denominator of Eq. 5.5. The length of the feature vector can be
precomputed, and the feature itself can be pre-normalized into length one. But the problem lies
on the term

∑
x,y[f(x, y) − f̄u,v]2. The image mean and local energy must be computed at each

(u, v), resulting in a higher number of computations.
A more efficient method to compute this term is by using integral (the running sum) of the

image and image square over the search area, i.e.,

s(u, v) = f(u, v) + s(u− 1, v) + s(u, v − 1)− s(u− 1, v − 1)

s2(u, v) = f 2(u, v) + s2(u− 1, v) + s2(u, v − 1)− s2(u− 1, v − 1) (5.8)

with s(u, v) = s2(u, v) = 0 when either u, v < 0. The energy of the image under the feature
positioned at (u, v) is

ef (u, v) = s2(u+N − 1, v +N − 1)− s2(u− 1, v +N − 1)

−s2(u+N − 1, v − 1) + s2(u− 1, v − 1) (5.9)

and similarly for the image sum under the feature.
The problematic term

∑
x,y[f(x, y) − f̄u,v]2 can now be computed with very few operations

since it expands into an expression involving only the image sum and sum squared under the
feature. The construction of the table requires approximately 3MN , where (M,N) is the size of
f .
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5.4.6 Local Patch Reconstruction

After local patches are aligned with each other, the next step is to fuse the information from
multiple patches and generate one single HR patch. In this stage, there are two key factors we
have to consider. The first factor deals with the components which can be fused, and the benefit
in using them to reconstruct the HR local patch. The second important factor is how to fuse pixel
information from multiple patches. In this section, more details about these two key factors are
discussed.

5.4.6.1 Components for Local Patch Reconstruction

The goal of local patch reconstruction is to fuse pixel intensity information from multiple local
patches and generate one final patch which is supposed to be clear, clean, and sharp. In order to
achieve this goal, we have to consider how to sharpen the final image so that the edge information
is more evident in the final patch when compared to the original patches.

We know that the edge in an image is the location where there is discontinuity in image pixel
intensity. If we treat the image as a signal, denoted as f(x), the locations where the discontinu-
ities happen can be found by taking the first-order derivative of the signal ∂f

∂x
, and locating the

positions of non-zeros (∂f
∂x
6= 0). This is because ∂f

∂x
returns the difference of the adjacent points

in f(x), at the places where ∂f
∂x

= 0, f(x) does not change at all.
It is an interesting idea to consider what we would get if we perform linear combination

between f(x) and its derivative ∂f
∂x

. Let g1(x) denotes f(x) + ∂f
∂x

. At the places where ∂f
∂x

= 0,
g1(x) = f(x), which means at the places where there is a constant value in original image f(x),
the new image g1(x) has the same value as f(x). At the places where edges occur (∂f

∂x
6= 0), if the

signal f(x) is increasing, ∂f
∂x
> 0, g1(x) would have a higher value then f(x). On the contrary,

at the places where f(x) is decreasing, ∂f
∂x

< 0, g1(x) would have a lower value then f(x). In
this way, g1 is an edge-enhanced version of f , because both increasing and decreasing edges are
enhanced.

This idea can be illustrated by the examples shown in Figure 5.7. Figure 5.7(a) shows an
example of the 1D signal. Suppose the original signal f(x) has an edge at x = −0.4 and x = 0.5.
Red dash-dot line shows ∂f

∂x
, which is zero everywhere, except at the two positions where edges

occur. If we sum up f(x) and ∂f
∂x

, the pink curve is what we get. Comparing it with f(x), we can
see the new curve has a stronger pixel difference at the places where edges occur.

Figure 5.7(b) shows examples in 2D signals (images). We can see that by adding the first-
order derivative of the local patch to itself, it generates images that have stronger edges. Compare
the regions circled in red ellipses.

Alternatively, we can take the second-order derivative of the original signal (denoted as ∂2f
∂x2 )

and add it back to the original image. Figure 5.8 shows some examples. Suppose original signal
f(x) has a gradually increasing edge between x = −0.5 and x = 0.5. This edge is not so strong
compared to f(x) in Figure 5.7(a). However, if we took the second-order derivative of f(x), the
red curve is what we get. It clearly shows the two places where edges occur. If we compute a
new signal g2(x) = f(x)− ∂2f

∂x2 , g2(x) would be an edge-enhanced version of f(x), as shown in
the pink curve in Figure 5.8(a).
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(a)

(b)

Figure 5.7: Effect of edge enhancement by combining original signal with its first-order deriva-
tive. (a) 1D example (b) 2D example

86



(a)

(b)

Figure 5.8: Effect of edge enhancement by combining original signal with its second-order
derivative. (a) 1D example (b) 2D example
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Figure 5.9: Two different types of approximations to image gradient used in experiments. (I)
Sobel filter in x direction (II) Derivative of Gaussian

Figure 5.8(b) shows examples in 2D signal (images). We can see that, by adding second-order
derivative of the local patch to itself, it generates images that have stronger edges. Compare the
regions circled in red ellipses.

In short, the components that we can add into the final reconstructed image in order to further
enhance the edge include the following:

1. Local patches of image itself.

2. Local patches of first-order derivative of the image patches.

3. Local patches of second-order derivative of the image patches.

Practically speaking, when we want to compute the first-order derivative of the image, usually
we use image filter to achieve this goal. One commonly used filter is the Sobel filter [14]. Another
choice is to use derivative of Gaussians. For the experiments described later in section 5.5, we
tried two different kinds of derivative approximations, as shown in Figure 5.9.

5.4.6.2 Local Patch Weighting Scheme

The next important issue is how to fuse the pixel information from multiple patches. The most
intuitive way of doing this is to compute the average value (mean) of the pixel values from
multiple patches. This scheme can be called “uniform weighting”. The probability density
function of the uniform weighting scheme is shown in Figure 5.10(a).

Alternatively, since the quality of the input LR images vary, an improved way of doing this
is to consider the quality index and use it to weigh the pixel value of different patches.

In this thesis, a method called Exponential Decay Weighting by Image Quality (EDWIQ) is
proposed. The basic idea is to weigh the pixel value of different patches differently, according to
their quality. The quality of the input LR images can be determined by the method mentioned in
section 5.4.2. After the rank of the image quality has been determined, it will be mapped to an
exponential decaying function, from which the weighting coefficients can be derived.

Specifically speaking, suppose there are N input LR images. After the image quality has
been determined, we re-arrange the order of the input image, so the first image is the best quality
image and the last image is the worst. Then in the EDWIQ scheme, we make the weighting factor
wi fit an exponential decaying function. Suppose the target exponential decaying function is ex

with x-axis reversed and x ∈ [1, 8], as shown in Figure 5.10(c). Suppose we make the weighting
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Figure 5.10: Proposed patch weighting function. (a) uniform weighting (b) Gaussian Transla-
tional Belief Model (GTBM) (c) Exponential Decay Weighting by Image Quality (EDWIQ)

of rank 1 image as e8 and the weighting of rank N image as e1. Then in general, the weighting
factor wi for image at rank i is equal to

wi =
e1+

7(N−i)
N−1∑N

i=1 e
1+

7(N−i)
N−1

(5.10)

The denominator in Eq. 5.10 is a normalization factor so that
∑N

i=1wi = 1.
Generally speaking, x ∈ [M1,M2], as long as M2 > M1 and |M2 > M1| are reasonably

large. The reason for choosing x ∈ [1, 8] is a decision we arrive at after parameter tuning. Also,
in the database collected for the experiment, the average number of IOM images in one session
is eight, which justifies the decision.

Another possible weighting scheme is to weigh by the possibility of local distortion of the
patches. As mentioned in section 5.4, iris images in the polar domain suffer from local distortion.
However, since all of the input images have been aligned globally, in the most likely case, the
local distortion between local patches should be small. If the local distortion is too big, there
might be something wrong in the preprocessing stage (wrong iris detection or segmentation);
therefore, we should weigh this patch much lower than the others.

We propose a Gaussian Translational Belief Model (GTBM) which models the probability of
the local patch as a 2D Gaussian distribution based on 2D relative shift. Assume the relative shift
between two patches, discovered by using the method described in section 5.4.5, is (4x,4y).
Then the probability of this patch is modeled as

P4x,4y =
1

C
e
−4x

2

2σ2
x e
−4y

2

2σ2
y (5.11)

where C is a normalization factor, and σx and σy are parameters that control the width of
the 2D Gaussian in the x and y direction. Because we assume the translational shifts in x and y
direction are independent to each other, they are modeled separately and combined by the product
rule. When σ is large, the Gaussian envelope appears wider, and it means that we tolerate more
local distortion, and vice versa.

An example of the 3D plot of probability density function of GTBM is shown in Figure
5.10(b).
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Figure 5.11: Effects of pixel intensity normalization in the stage of patch stitching.

5.4.7 Local Iris Patch Stitching

In the stage of patch stitching, the goal is to combine the local reconstructed patches back into one
global image. One severe problem we face when doing Super-Resolution in local patch-based
method, is the mismatch of image energy across the patch boundaries. This is because every
input LR image may have different global intensities. When the input LR images are divided
into patches, the average intensity between each patch may vary more. The problem becomes
even worse when there are local distortions between images in the same local patch set. If we
shift the distorted local patch and add it back into the template patch, the boundary between them
will look very obvious in the final image.

A few examples are shown in Figure 5.11. On the left are those SR images produced without
considering the problem of pixel intensity normalization. There are many block-like boundaries
in the images, and the average intensity of problematic patches is quite different from adjacent
patches, resulting in a very bad final stitched image. On the contrary, if we take steps to perform
pixel intensity normalization, the problem of blocky effects will be solved. The final fused
images look very natural and the average intensity of each patch matched with the neighboring
patches very well.

In this thesis, we normalize the pixel intensity by constructing a pixel-wise accumulator. This
process can be illustrated by Figure 5.12. Suppose we have three input local patches, as shown
in Figure 5.12(a). Assume the reference template is the patch in the middle, with the red border.
For each input local patch, a pixel accumulation plane is created, as shown in Figure 5.12(b).
A pixel accumulation plane is a 2D matrix, where the values at a given position keep track of
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(a) (b)

(c) (d)

Figure 5.12: Illustration of pixel intensity normalization by pixel counting. (a) Input local
patches. Assume the one with red border is the template. (b) Initialization of pixel accumu-
lation plane (c) Aligning local patches (blue and green ones) with respect to the template patch,
and pixel accumulation planes are aligned as well. (d) Final grid values for pixel accumulation
plane.
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how many pixels have been added into this position. Therefore, every location in this plane is a
“counter” for that location. The initial size of the pixel accumulation plane is exactly the same
as the size of the input patches, but the size will expand later after the alignment is complete.
We find the relative positions between all three patches by performing local alignment. Then, we
align the three pixel accumulation plane accordingly, as shown in Figure 5.12(c). The final pixel
accumulation plane consists of the area which is the union of the three, and the value at each
location is the sum of all value that intersect with it, as shown in Figure 5.12(d).

After we compute the final pixel accumulation plane, the last step is to divide the fused
patch with the pixel counter element-wise. Assume the fused patch is f(x, y), and the final pixel
accumulation plane is a(x, y), the final fused patch is derived by

p(x, y) =
f(x, y)

a(x, y)
, ∀x, y (5.12)

In this way, pixel values of the final fused patch will be normalized and the block effects
would be eliminated.

Note that this method can also be applied to the case when we use GTBM and EDWIQ to
give a fractional weighting to local patches. In that case, the value accumulated in each pixel
counter is not an integer. Instead, it is a real number which keeps track of how much “weighting”
has been added to this location. Therefore, the method of using the pixel accumulation plane can
apply to all three patch weighting schemes mentioned in section 5.4.6.2.

5.4.8 Post-Processing
After the local patches have been correctly stitched together, we can apply some post-processing
techniques to further remove noises in the final image. The post-processing technique we have
tried in the experiments include the following: (1) Gaussian Low-Pass Filtering (GLPF) (2)
Gamma correction (3) Median filtering (4) Histogram specification

5.4.8.1 Gaussian Low-Pass Filter

The Gaussian Low-Pass Filter (GLPF) is one of the most simplistic post-processing methods
for removing noise. Although it is simple, it has been proved to be useful in many practical
situations. The frequency response of a GLPF can be described as

H(u, v) = e−D
2(u,v)/2σ2

(5.13)

where D(u, v) is the distance from the center of the frequency spectrum, and parameter
σ decides the cut-off frequency of the GLPF. The cut-off frequency should not be too large,
otherwise details of the reconstructed image will be smoothed out. In the experiment, the size of
the GLPF used is 3x3, with σ = 0.5.

5.4.8.2 Gamma Correction

Gamma correction is a nonlinear transformation of pixel intensity value. It can be described as
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(a)

(b)

Figure 5.13: (a) The relation between input and output pixel value of Gamma correction, based
on different γ (b) The effect of Gamma correction. The image on the left is the original input
image, the image on the right is the output after Gamma corrected.
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s = crγ (5.14)

where r is the original pixel value, s is the new pixel value, c and γ are positive constants.
Sometimes Eq. 5.14 will be written as s = c(r + ε)γ to account for an offset.

Gamma correction provides a warping effect on the pixel intensity. Figure 5.13(a) shows this
warping effect for different values of γ. Figure 5.13(b) shows a visual example of how Gamma
correction can make the iris image brighter such that more details are revealed.

5.4.8.3 Median Filter

Median filter is a very useful tool in removing salt-and-pepper noise. Assume the input image is
g(x, y), and given a local window S whose size is pre-determined, the filtered image f(x, y) can
be expressed as

f(x, y) = median
(s,t)∈S

{g(s, t)} (5.15)

However, just like GLPF, when using the median filter, the window size should be carefully
tuned. If the window size is too large, many details in the iris texture may be lost. In the
experiment described in section 5.5, we use a median filter of size 3x3.

5.4.8.4 Histogram Specification

Histogram specification is an image processing technique that maps the histogram of pixels of
an input image to the histogram of pixels of a target image. It is different from the technique
of “histogram equalization”, which transforms the histogram of pixels of input image to an uni-
form distribution. However, histogram specification is based on histogram equalization. In the
following paragraphs, the mathematical equations and the procedures of histogram specification
are briefly reviewed.

Assume we have an input imageR, and the pixel value contained inR is denoted by a variable
r. Suppose R is of size MxN, and the range of pixel intensity value is within [0, L− 1], then we
can treat r as a random variable, which lies in [0, L − 1], and we have MN observations of r.
Now, let us consider a transformation for this random variable

s = T (r), 0 ≤ r ≤ L− 1 (5.16)

This transformation will transform the pixel value of input image R into another set of pixel
values, and producing a new image S. Assume T (r) satisfies two conditions:

1. T (r) is monotonically increasing function in the interval 0 ≤ r ≤ L− 1

2. 0 ≤ T (r) ≤ L− 1 for 0 ≤ r ≤ L− 1

Then T (r) is a reasonable histogram transformation function. This is because after histogram
transformation, we would like to preserve the order of the pixel intensity value, so that if region
A is brighter than region B in R, after histogram transformation, region A is still brighter than
region B in S. Therefore, condition 1 is important. Condition 2 tells us that, after histogram
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transformation, the pixel intensity range of S should still be confined within the original allow-
able range, which is also a basic requirement.

Since we treat r as a random variable, we can compute the Probability Density Function
(PDF) of r from the input image R. Assume the PDF of r is pr(r). Since s is a transformation
of r, it can also be treated as a random variable. Let ps(s) denotes the PDF of s. Now, let us
consider a particular form of T (r), as defined in Eq. 5.17

s = T (r) = (L− 1)

∫ r

0

pr(w)dw (5.17)

The right side of Eq. 5.17 is the Cumulative Distribution Function (CDF) of r. Because PDFs
are always positive and CDF is the integral of the PDF, T (r) will be monotonically increasing,
which satisfies condition 1. Also, when the right side of Eq. 5.17 reaches its maximum, which
means r = L−1, the integral of a PDF within whole range is one, therefore, s = L−1. So T (r)
also satisfies condition 2.

If we take derivative of s in Eq. 5.17, we get

ds

dr
=
dT (r)

dr
= (L− 1)

d

dr

∫ r

0

pr(w)dw = (L− 1)pr(r) (5.18)

From the basic probability theory, we know the relation between the PDF of a transformed
random variable and the PDF of original variable is

ps(s) = pr(r)|
dr

ds
|

= pr(r)|
1

(L− 1)pr(r)
|

=
1

L− 1
(5.19)

Eq. 5.19 tells us that the PDF of s is a constant, it does not change with respect to the value
of s. Therefore, the histogram of the output image S is an uniform distribution. Therefore, the
transformation stated in Eq. 5.17 achieves “histogram equalization” of the input image R.

Now, let us add one more image into the example. Suppose we have another image Z, and
random variable z is used to model the distribution of the pixel intensity in Z. Assume the PDF
of z is pz(z). Now, consider another transformation function G:

G(z) = (L− 1)

∫ z

0

pz(t)dt (5.20)

Compare Eq. 5.17 with Eq. 5.20, one can quickly see that G(z) is the histogram equalization
transform for z. Therefore, theoretically speaking, the new variable derived by transformation
G(z) would have exactly the same distribution of s. If G(z) can transform Z into a histogram
equalized image S, then G−1(s) can transform a histogram equalized image S into the target
image Z.

In summary, assume the input image is R and the target image is Z, the procedure for his-
togram specification is:
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Figure 5.14: The effect of histogram specification.

1. Compute pr(r) from the input image R, and use Eq. 5.17 to obtain the mapping table from
r to s.

2. Compute pz(z) from the target image Z and use Eq. 5.20 to obtain the mapping table from
z to s.

3. Compute the inverse transformation z = G−1(s) by inverting the table derived in step 2.

4. For every pixel in the input image R, first transform it to s by using the look-up table in
step 1, then transform it to z by using the look-up table in step 3. Then the final image is
the image whose histogram has been matched to the histogram of the target image Z.

Figure 5.14 shows a few example images before and after histogram specification. From
those examples, we can clearly see that histogram specification is very useful and effective in
enhancing the details of the original images.

5.5 Large-Scale Experiments

5.5.1 Database Description

In order to measure the iris recognition performance based on the proposed SR algorithm, ex-
periments have to be performed on databases which contain both HR and LR iris images for the
same iris class. So far there does not exist any such database which is publicly available to the
iris recognition community. Therefore, we collected an iris database at Carnegie Mellon Univer-
sity during March and April in 2009. The iris images are captured by three different kinds of iris
acquisition devices: IOM [6], LG IrisAccess 4000 [4] and SecuriMetrics PIER 2.3 [37]. The iris
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Table 5.1: Details of iris database collected by IOM, LG IrisAccess 4000 and SecuriMetrics
PIER 2.3

Database Properties IOM LG PIER
Number of iris classes 111

Size of the picture 640x480
Number of sessions 3 1 1

Maximal number of images per session 28 4 3
Minimal number of images per session 3 4 3
Average number of images per session 8 4 3

Total number of images 2682 444 333

images captured by the IOM system are low-quality images. On the contrary, images captured
by the LG IrisAccess 4000 and the SecuriMetrics PIER are high-quality.

For the LG IrisAccess 4000, the iris images are captured by default programs that come with
the device. The default setting of the program captures two images of each of the subjects’ eye.
For every subject, we use the program to record the iris images twice. Therefore, for every iris
class, there are four images recorded by the LG IrisAccess 4000.

For the PIER, the default enrollment program is used to record the iris images. For every iris
class, three images are recorded by the PIER.

For the IOM, when the subjects walk through the IOM portal, the number of iris images
recorded varies, depending on the subject’s height and how fast they are moving through the
portal. Often, only one of the subject’s eyes is recorded. Therefore, the number of iris images
recorded by the IOM is indefinite.

We asked every subject to walk through the IOM portal three times. Each such trial can be
called a “session”. Therefore, for every subject, iris images of three sessions are recorded. This
allows us to explore the relation of the image series between different sessions for the same iris
class.

The details of the iris database collected by the IOM, the LG and the PIER is listed in Table
5.1.

Figure 5.15 shows some examples of IOM images. Figure 5.16 shows some examples of LG
images. Figure 5.17 shows some examples of PIER images.

5.5.2 Super-Resolution Methods Compared in the Experiments

In section 5.3, a few previous SR algorithms were introduced. In summary, there are three regis-
tration methods proposed by the following: (1) Keren et al., (2) Reddy and Chatterji (3) Vande-
walle et al. For the image reconstruction methods, there are also three different existing methods:
(1) nonuniform image interpolation (2) iterative back projection (3) robust Super-Resolution.
Later in the experiments, all possible combinations of the image registration and reconstruction
methods are used to compare the SR performance to the proposed methods.

Table 5.2 shows all nine possible combinations of the existing SR algorithm and their corre-
sponding code names. Later in the experiment, the code name is used to refer to each algorithm.
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Figure 5.15: Examples of IOM images.

Figure 5.16: Examples of LG images.
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Figure 5.17: Examples of PIER images.

Table 5.2: Code names for the existing SR algorithms. There are totally nine possible combina-
tions.

Registration\Reconstruction interpolation back projection robust Super-Resolution
Keren et al. KE+IN KE+BP KE+RS

Reddy and Chatterji RC+IN RC+BP RC+RS
Vandewalle et al. VA+IN VA+BP VA+RS
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Figure 5.18: Relational chart of the proposed local patch-based SR algorithms. There are totally
15 combinations.
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For the proposed local patch-based SR algorithms, given all of the choices that one can
choose freely in each of the stages stated in section 5.4, there are, in total, 15 different combina-
tions of local patch-based SR algorithms tested in the experiments. The relation between them is
illustrated in Figure 5.18. They will be referred to as LPSR#, where # is the numbering given to
that algorithm. In summary, the characteristics of each algorithm are the following:

• LPSR1: use uniform weighting to weigh the local patches. Use only the image patches to
do reconstruction.

• LPSR2: use GTBM to weigh the local patches. Use only the image patches to do recon-
struction.

• LPSR7: use GTBM to weigh the local patches. Use both image patches and the first-order
derivative of the patches to do reconstruction. The first-order derivative of the patches is
computed by convolving image with Sobel filter (type I).

• LPSR8: use GTBM to weigh the local patches. Use both image patches and the first-order
derivative of the patches to do reconstruction. The first-order derivative of the patches are
computed by convolving images with derivative of Gaussians (type II).

• LPSR26: same as 8, but the final reconstructed image is transformed by using histogram
specification.

• LPSR12: use GTBM to weigh the local patches. The local patches are reconstructed by
using the image patches, the first-order and the second-order derivative of the patches. The
first-order derivative of the patches are computed by convolving images with derivative
of Gaussians (type II). The final reconstructed image is transformed by using histogram
specification.

• LPSR14: use GTBM to weigh the local patches. The local patches are reconstructed by
using the image patches, the first-order and the second-order derivative of the patches. The
first-order derivative of the patches are computed by convolving images with derivative
of Gaussians (type II). The final reconstructed image is transformed by using Gamma
correction.

• LPSR15: use EDWIQ to weigh the local patches. Use only the image patches to do recon-
struction.

• LPSR16: use both GTBM and EDWIQ to weigh the local patches. Use only the image
patches to do reconstruction.

• LPSR17: use both GTBM and EDWIQ to weigh the local patches. Use only the image
patches to do reconstruction. The final reconstructed image is transformed by using his-
togram specification.

• LPSR18: same as 17, but the parameter of GTBM has been fine-tuned according to a
smaller subset of data.

• LPSR19: same as 16, but the parameter of GTBM has been fine-tuned according to a
smaller subset of data.

• LPSR29: use both GTBM and EDWIQ to weigh the local patches. Use both image patches
and the first-order derivative of the patches to do reconstruction. The final reconstructed
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image is transformed by using histogram specification.
• LPSR20: same as 29, but the the final reconstructed image is further transformed by using

GLPF.
• LPSR30: same as 29, but the the final reconstructed image is further filtered by median

filter.

5.5.3 Performance Evaluation -Scenario 1

The goal of the experiments is to measure the recognition performance using the proposed SR
algorithm and compare it to the original IOM system. In order to fairly measure the difference
of the performance, we have to understand how the regular IOM system operates. Here, the
operation of a regular IOM system refers to how a regular IOM system enrolls a new iris class
into the database and how it perform identification during the test stage. It will be illustrated in
the following paragraph.

5.5.3.1 Baseline for Scenario 1: IOM vs. PIER

The baseline system describes how a regular IOM system works when no SR algorithm is ap-
plied. In almost all biometric recognition systems, the recognition performance can be measured
if the global similarity matrix Σ can be computed. The way to compute the global similarity
matrix Σ is to compute the similarity score, or the distance score, between the gallery class γ and
the probe class π, and record the score in the element Σ(γ, π).

For a baseline system, suppose we use all three images captured by the PIER device to enroll
the subject into the database of gallery images. During the test (identification) stage, when a
subject is walking through the IOM portal, multiple iris images are recorded by the IOM device.
Assume for the probe class π, there are totally p IOM images recorded, and for each gallery class
γ, there are g images. In our case, g = 3 because we only have three PIER images for each class.

For each gallery class γ and probe class π, a local similarity matrix L is formed by computing
the similarity score between every possible pair from the gallery images and the probe images.
Then the largest value (or the smallest value, if distance score is used) of this local similarity
matrix is the best score we can get to match gallery class γ with the probe class π, when no SR
algorithm is used. In mathematics, it can be described as following:

Σ(γ, π) = min(L(i, j)), ∀1 ≤ i ≤ g, 1 ≤ j ≤ p (5.21)

Figure 5.19 shows the iris recognition performance of the baseline system, which is IOM
vs. PIER. We call this configuration as scenario 1 because later in section 5.5.4 another possible
configuration is introduced. Figure 5.19(a) shows the ROC curve of baseline 1, and Figure
5.19(b) shows the histogram distribution of the HD.

102



(a) (b)

Figure 5.19: Iris recognition performance of the default IOM setting, which is IOM vs. PIER
(scenario 1). (a) ROC curve (b) Histogram distribution of HD of the authentic and imposter
comparison.

5.5.3.2 Proposed System Structure for Enhancing Image Quality by SR Algorithms in
Scenario 1: SR vs. PIER

In order to use the SR algorithm to enhance the iris recognition performance, the way we compute
the local similarity matrix needs to be changed. For probe class π, we can apply the proposed
SR algorithm to the input probe images captured by the IOM system, generating a single high
quality image Sπ. Now the new local similarity matrix Λ becomes a vector of size g× 1 because
we only need to match Sπ with each gallery images. In mathematics, it can be described as
following:

Σ(γ, π) = min(Λ(i, 1)), ∀1 ≤ i ≤ g (5.22)

Because we are matching a super-resolved image with a PIER image, we can call this setting
as “SR vs. PIER”.

5.5.3.3 Performance Evaluation of SR-enhanced System (SRvsPIER) for all SR Methods

As described in section 5.5.2, there are 9 existing SR methods and 15 proposed local patch-based
SR methods. So there are totally 24 SR methods being compared in this section. Figure A.1-
A.8 shows all of the plots for the 24 SR methods in Appendix A. Among them we can see that
the LPSR20 achieves the lowest error rate. The ROC curves and histogram distribution of the
Hamming distance of the LPSR20 versus baseline are shown in Figure 5.20.

For every experiment, besides ROC curves and HD histogram distribution, four important
quantitative metrics are also recorded, they are the following: Equal Error Rate (EER), False
Reject Rate at False Accept Rate=0.1% (FRR@FAR=0.1), False Reject Rate at False Accept
Rate=0% (FRR@FAR=0) and Fisher Ratio (FR) of the HD histogram distribution. They are
all listed in Table 5.3. This table is sorted according to the performance. The performance is
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Table 5.3: EER, FRR@FAR=0.1, FRR@FAR=0 and FR for all of the SR experiment
(SRvsPIER) in scenario 1.

Method FRR@FAR=0.1 EER FRR@FAR=0 FR
LPSR20 1.50% 0.90% 2.10% 2.932
LPSR18 1.50% 0.90% 2.10% 2.863
LPSR17 1.50% 0.90% 2.10% 2.804
LPSR30 1.50% 0.90% 2.40% 2.943
LPSR29 1.50% 0.90% 2.40% 2.878
LPSR12 1.50% 1.20% 1.80% 2.865
LPSR2 1.50% 1.20% 2.10% 2.873
LPSR8 1.50% 1.20% 2.10% 2.839

LPSR16 1.50% 1.20% 2.10% 2.721
LPSR26 1.50% 1.50% 2.10% 2.874
LPSR14 1.50% 1.50% 2.10% 2.83
LPSR15 1.80% 1.20% 2.10% 2.805
LPSR19 1.80% 1.20% 2.10% 2.793
LPSR7 1.80% 1.50% 2.10% 2.793
LPSR1 2.10% 1.20% 3.60% 2.588
baseline 2.11% 1.20% 3.61% 2.74
VA+IN 2.40% 1.20% 4.81% 2.717
VA+RS 2.40% 1.50% 2.40% 2.721
KE+RS 3.00% 1.20% 5.11% 2.51
KE+IN 4.81% 1.80% 10.21% 2.293
VA+BP 10.51% 7.81% 12.01% 1.881
KE+BP 10.81% 7.21% 13.81% 1.832
RC+RS 21.62% 8.41% 31.53% 1.443
RC+IN 29.13% 8.71% 37.84% 1.337
RC+BP 30.63% 13.51% 41.74% 1.19
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(a) (b)

Figure 5.20: Large-scale iris recognition performance of SR-enhanced System, under the system
structure SR vs. PIER. Under this setting, LPSR20 performs best. (a) ROC curves of baseline
(IOM vs. PIER) and LPSR20-enhanced system. (b) Histogram distribution of Hamming distance
of baseline (IOM vs. PIER) and LPSR20-enhanced system.

evaluated according to the following priorities: (1) FRR@FAR=0.1 (the lower the better) (2)
EER (the lower the better) (3) FRR@FAR=0 (the lower the better) (4) FR (the higher the better).

5.5.4 Performance Evaluation -Scenario 2

Section 5.5.3.1 described the default setting for the IOM system. However, there are other pos-
sibilities. In this section, we offer another possible baseline setup and the possible solution for
embedding SR methods to enhance performance in such setting.

5.5.4.1 Baseline for Scenario 2: IOM vs. LG

Since we collect LG images in our database, we can also use LG images to enroll new iris classes.
In this baseline, everything is the same as described in section 5.5.3.1, except we replace PIER
images with LG images during the enrollment and testing stages. This setting can be called
“IOM vs. LG”.

Figure 5.21 shows the iris recognition performance of the baseline 2, which is IOM vs. LG.
Figure 5.21(a) shows the ROC curve of baseline 2, and Figure 5.21(b) shows the histogram
distribution of the HD of baseline 2.

5.5.4.2 Proposed System Structure for Enhancing Image Quality by SR Algorithms in
Scenario 2: SR vs. LG

We can apply the same system as described in section 5.5.3.2. In summary, we can super-resolve
a high quality image Sπ from several low quality IOM images of probe class π, and compute the
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Figure 5.21: Iris recognition performance of the baseline 2, which is IOM vs. LG (scenario 2).
(a) ROC curve (b) Histogram distribution of HD of the authentic and imposter comparison.

new local similarity matrix Λ based on Sπ. The computation of the global similarity matrix Σ is
still the same, as described in Eq. (5.22). This scheme can be called as “SR vs. LG”.

5.5.4.3 Performance Evaluation of SR-enhanced System (SRvsLG) for all SR Methods

We used both the ROC curve and HD histogram distribution plot to illustrate the performance and
compared it with the baseline performance. All nine existing SR methods and 15 proposed local
patch-based SR methods are plotted, just like what we did in section 5.5.3.3. So there are totally
24 SR methods being compared in this section. Figure B.1-B.8 shows all of the plots for the 24
SR methods in Appendix B. Table 5.4 shows the four quantitative measures (FRR@FAR=0.1,
EER, FRR@FAR=0, and FR) for all of the 24 SR methods, as well as the baseline system, which
is IOM vs. LG. Among them we can see that LPSR30 achieves the lowest error rate. The ROC
curves and histogram distribution of the Hamming distance of the LPSR30 versus the baseline
are shown in Figure 5.22.

5.5.5 Performance Evaluation -Scenario 3
Besides the system architecture proposed in section 5.5.3.2 (SR vs. PIER) and 5.5.4.2 (SR vs.
LG), we would also like to propose a different system architecture to see if we can further im-
prove the overall performance. These two new system architectures can be called “SR vs. IOM”
and “SR vs. SR”. We describe each of them in section 5.5.5 and 5.5.6, respectively.

5.5.5.1 Proposed System Structure in Scenario 3: SR vs. IOM

One of our ultimate goals in this study is to explore the possibility of whether we could use
super-resolved high quality images for iris database enrollment so that we do not have to use
the PIER device to capture images anymore. Using the IOM system to acquire iris images is
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Table 5.4: EER, FRR@FAR=0.1, FRR@FAR=0 and FR for all of the SR experiment (SRvsLG)
in scenario 2.

Method FRR@FAR=0.1 EER FRR@FAR=0 FR
LPSR30 0.00% 0.00% 1.80% 2.818
LPSR26 0.00% 0.00% 1.80% 2.762
LPSR12 0.30% 0.00% 1.80% 2.769
LPSR17 0.30% 0.00% 1.80% 2.686
LPSR29 0.30% 0.00% 2.10% 2.749
LPSR20 0.30% 0.30% 1.80% 2.803
LPSR2 0.30% 0.30% 2.70% 2.757
LPSR8 0.30% 0.30% 2.70% 2.707
LPSR7 0.30% 0.30% 2.70% 2.676

LPSR18 0.60% 0.00% 1.20% 2.755
LPSR14 0.60% 0.30% 2.70% 2.708
LPSR15 0.60% 0.30% 2.70% 2.673
LPSR19 0.60% 0.30% 2.70% 2.662
LPSR16 0.60% 0.30% 3.00% 2.584
LPSR1 0.60% 0.30% 4.20% 2.552
VA+RS 0.90% 0.30% 3.30% 2.679
KE+RS 1.20% 0.60% 5.41% 2.443
baseline 1.50% 0.60% 3.60% 2.35
VA+IN 1.50% 0.30% 3.60% 2.635
KE+IN 3.60% 0.60% 10.81% 2.23
VA+BP 8.71% 6.91% 11.41% 1.892
KE+BP 9.01% 6.61% 11.11% 1.828
RC+RS 18.92% 7.51% 39.64% 1.491
RC+IN 26.73% 9.31% 37.84% 1.312
RC+BP 29.13% 11.71% 51.95% 1.19
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Figure 5.22: Large-scale iris recognition performance of SR-enhanced System, under the system
structure SR vs. LG. Under this setting, LPSR30 performs best. (a) ROC curves of baseline
(IOM vs. LG) and LPSR30-enhanced system. (b) Histogram distribution of Hamming distance
of baseline (IOM vs. LG) and LPSR30-enhanced system.

much easier and time-saving than most of the traditional iris capturing device. Therefore, if we
can achieve the goal of enrolling iris data by using SR images, it will improve the usability and
user-friendliness of the system.

The new system structure can be called “SR vs. IOM”. During the data enrollment, for
gallery class γ, instead of using PIER or LG images, we use super-resolved image Sγ(computed
by super-resolving IOM images of class γ) to enroll. During the testing stage, the local similarity
matrix Λ (between gallery class γ and probe class π) is computed by matching Sγ with all IOM
images of the probe class π. Assume there are p IOM images for probe class π. In mathematics,
it can be described as the following:

Σ(γ, π) = min(Λ(1, j)), ∀1 ≤ j ≤ p (5.23)

Under the system structure of “SR vs. IOM”, we perform large-scale iris recognition ex-
periments for all of the 24 algorithms (9 existing algorithms + 15 proposed algorithms). For
comparison purposes, we can compare the performance, in the format of either ROC curves or
HD histogram distribution, to either baseline 1 (IOM vs. PIER) or baseline 2 (IOM vs. LG). All
of the experimental result are shown in figures in Appendix C. Table 5.5 shows the four quan-
titative measures (FRR@FAR=0.1, EER, FRR@FAR=0, and FR) for all of the experiments, as
well as both baseline systems. Among them we can see that the LPSR2 achieves the lowest error
rate. The ROC curves and histogram distribution of the Hamming distance of the LPSR2 versus
both baselines are shown in Figure 5.23.
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Table 5.5: EER, FRR@FAR=0.1, FRR@FAR=0 and FR for all of the SR experiment (SRvsIOM)
in scenario 3, compared with baseline 1 (PIER vs. IOM) and baseline 2 (LG vs. IOM).

Method FRR@FAR=0.1 EER FRR@FAR=0 FR
LPSR2 0.3% 0.3% 0.3% 3.223

LPSR12 0.3% 0.3% 0.3% 3.156
LPSR26 0.3% 0.3% 0.3% 3.121
LPSR7 0.3% 0.3% 0.6% 3.132

LPSR30 0.3% 0.3% 0.6% 3.121
LPSR18 0.3% 0.3% 0.6% 3.094
LPSR20 0.3% 0.3% 0.6% 3.08
LPSR29 0.3% 0.3% 0.6% 3.036
LPSR14 0.3% 0.3% 0.9% 3.2
LPSR8 0.3% 0.3% 0.9% 3.183

LPSR15 0.3% 0.3% 0.9% 3.153
LPSR19 0.3% 0.3% 0.9% 3.127
LPSR1 0.3% 0.3% 0.9% 3.122

LPSR16 0.3% 0.3% 1.2% 3.039
LPSR17 0.3% 0.3% 1.2% 3.01
VA+RS 0.3% 0.3% 1.5% 3.125
KE+RS 0.3% 0.3% 1.5% 2.968
VA+IN 0.3% 0.3% 1.8% 3.107
KE+IN 0.3% 0.3% 3.6% 2.776

baseline2 1.5% 0.6% 3.6% 2.35
baseline1 2.1% 1.2% 3.6% 2.74
VA+BP 2.1% 1.5% 2.4% 2.659
KE+BP 2.7% 1.8% 3.3% 2.573
RC+RS 8.4% 2.1% 13.5% 2.08
RC+IN 8.7% 2.4% 17.1% 1.964
RC+BP 11.7% 4.5% 19.2% 1.829
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(a) (b)

(c) (d)

Figure 5.23: Large-scale iris recognition performance of SR-enhanced System, under the system
structure SR vs. IOM. Under this setting, LPSR2 performs best. (a) ROC curves of baseline 1
(IOM vs. PIER) and LPSR2-enhanced system. (b) Histogram distribution of Hamming distance
of baseline 1 (IOM vs. PIER) and LPSR2-enhanced system. (c) ROC curves of baseline 2
(IOM vs. LG) and LPSR2-enhanced system. (d) Histogram distribution of Hamming distance of
baseline 2 (IOM vs. LG) and LPSR2-enhanced system.
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Table 5.6: EER, FRR@FAR=0.1, FRR@FAR=0 and FR for all of the SR experiment (SRvsSR)
in scenario 4, compared with baseline 1 (PIER vs. IOM) and baseline 2 (LG vs. IOM).

Method FRR@FAR=0.1 EER FRR@FAR=0 FR
LPSR30 0.0% 0.0% 0.3% 3.288
LPSR14 0.0% 0.0% 0.6% 3.349
LPSR12 0.0% 0.0% 0.6% 3.315
LPSR26 0.0% 0.0% 0.6% 3.236
LPSR18 0.0% 0.0% 0.6% 3.148
LPSR29 0.0% 0.0% 0.6% 3.119
LPSR17 0.0% 0.0% 0.6% 3.084
LPSR20 0.3% 0.0% 0.3% 3.191
LPSR2 0.3% 0.0% 0.6% 3.428
LPSR8 0.3% 0.0% 0.6% 3.333
LPSR7 0.3% 0.0% 0.6% 3.24
VA+RS 0.3% 0.3% 0.3% 3.048
LPSR15 0.3% 0.3% 0.6% 3.205
LPSR19 0.3% 0.3% 0.9% 3.162
LPSR16 0.3% 0.3% 0.9% 3.132
KE+RS 0.3% 0.3% 1.8% 2.766
VA+IN 0.6% 0.3% 1.8% 3.143
LPSR1 0.6% 0.3% 1.8% 3.073

baseline2 1.5% 0.6% 3.6% 2.35
baseline1 2.1% 1.2% 3.6% 2.74
KE+IN 2.4% 0.9% 10.8% 2.501
KE+BP 9.0% 7.2% 10.5% 1.91
VA+BP 9.0% 7.5% 10.8% 1.948
RC+RS 24.0% 10.5% 40.2% 1.353
RC+BP 32.4% 15.6% 41.4% 1.117
RC+IN 34.8% 10.5% 46.2% 1.219

5.5.6 Performance Evaluation -Scenario 4

Another system structure is worth exploring, too. In section 5.5.5.1, we enroll the iris data with
SR images and match them with the IOM images. If the SR algorithm is also applied during
the testing stage, we can generate one single high-quality iris image from several probe images.
Then the local similarity matrix Λ, between gallery class γ and probe class π, can be simplified
to a scalar value, derived by computing the the similarity score ξγ,π(or distance score) between
Sγ and Sπ. The global similarity matrix can be computed as Σ(γ, π) = ξγ,π. This structure can
be called as “SR vs SR”.

Similar to sub-section 5.5.5.1, for the system structure of “SR vs. SR”, we also perform
a large-scale experiment of all 24 SR algorithms. All of the results are shown in figures in Ap-
pendix D. Table 5.6 shows the four quantitative measures (FRR@FAR=0.1, EER, FRR@FAR=0,
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Figure 5.24: Large-scale iris recognition performance of SR-enhanced System, under the system
structure SR vs. SR. Under this setting, LPSR30 performs best. (a) ROC curves of baseline 1
(IOM vs. PIER) and LPSR30-enhanced system. (b) Histogram distribution of Hamming distance
of baseline 1 (IOM vs. PIER) and LPSR30-enhanced system. (c) ROC curves of baseline 2
(IOM vs. LG) and LPSR30-enhanced system. (d) Histogram distribution of Hamming distance
of baseline 2 (IOM vs. LG) and LPSR30-enhanced system.
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and FR) for all 24 SR-enhanced systems, as well as the both baseline systems. Among them we
can see that the LPSR30 achieves the lowest error rate. The ROC curves and histogram dis-
tribution of the Hamming distance of the LPSR30 versus both baselines are shown in Figure
5.24.

5.6 Exploration of the Limit of the Power of the Proposed SR
Algorithm

We want to explore the limit of the power of our proposed SR algorithm. As stated in section
5.2, the two major factors that degrade the images are noise and defocus blur. In this section,
we describe how we design experiments to simulate the degradation process and measure the
performance of our proposed SR algorithm under various degradation levels.

5.6.1 The Limit of the Ability of Proposed SR Algorithm in Handling Noise
Contamination

We designed experiments to detect how well our proposed SR algorithms could handle noise
contamination, in a quantitative manner. As stated in section 5.5, we have the PIER database
which contains crystal clear iris images. Assume there is no noise in the PIER database. For
every iris class, we take all three PIER images of that class as gallery image set, and add Gaussian
white noise with a specific Signal-to-Noise Ratio (SNR). We then use the noise contaminated
PIER images as probe set. We match the probe set with the gallery set, and the smallest HD is
the best HD we can get with presence of the noise with this predefined SNR, for this particular
class. We repeat this procedure for all classes, for a wide range of SNR values. The SNR range
we used is from 1 to 40. This experiment test the ability of our iris matcher, and the results tell
us how the HD distribution varies with the SNR levels. These results can be called the baseline.

For our proposed SR algorithm, for every iris class, again, we add Gaussian white noise to
all three PIER images. Then, we apply our proposed SR algorithm to these three noisy PIER
images and get a super-resolved image. Matching this SR image with all three images in the
gallery set, we get three HDs. The smallest value among them is the best score we can get by
using SR algorithm to improve iris quality. We repeat this procedure for all classes, for a wide
range of SNR values. We use the LPSR30 algorithm in this experiment because it is the most
delicate algorithm among all, and seems to have the best performance in section 5.5.4.3.

The results of this experiment is the HD of authentic comparison, with various SNR levels. In
order to show more details of the HD distribution for every SNR level, we choose to use the box
plot to present the result. The main component of the box plot contains a rectangular box with a
red line in the middle. The red line indicates the median of the distribution, while the lower and
upper edge of the box indicates the lower and higher quartile of the data. The distance between
the higher and lower quartile is called the Inter-Quartile Range (IQR). The upper and lower black
edge outside the box is called the “whisker”, which indicates the location that extends 1.5 IQR
from the higher and lower quartile. Samples that fall outside the upper and lower whisker are
defined as outliers and are denoted as red + sign. Figure 5.25 shows the effect of noises on the
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Figure 5.25: The quantitative measurement of the ability of proposed SR algorithm (LPSR30) to
deal with various noise levels. The HD distributions are plotted with respect to different noise
levels. For every measured SNR level, both results from “original” (baseline) and “SR” are
plotted with box plot.
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HD distribution on the baseline system and the SR-enhanced system.

5.6.2 The Limit of the Ability of Proposed SR Algorithm in Handling De-
focus Blur

We also designed experiments to detect how well our proposed SR algorithms can handle image
degradation caused by defocus blur in a quantitative manner. As in section 5.6.1, we use the
PIER database to perform our experiments. For every iris class in the PIER database, we take all
three PIER images of that class as the gallery image set, and we perform defocus blur on all three
images, by filtering them with Gaussian filters. Gaussian filters, with different sizes and standard
deviations (denoted as σ), can simulate the effect of defocus blur in optical devices. Using the
blurred images as probe set, and matching them with the gallery set, we can get a local similarity
matrix. The smallest number in the local similarity matrix is the best HD we can get for this
particular class. Accumulating all the best HD values for every class in the PIER database, we
can get a full distribution of the HD under this particular defocus blur. These results are called
the baseline.

For our proposed SR algorithm, for every iris class, again, we filtered all three PIER images
with Gaussian filters. Then, we applied our proposed SR algorithm on these three blurred PIER
images to get a super-resolved image. Matching this SR image with all three images in the
gallery set, we get three HDs. The smallest value among them is the best score we can get
by using the SR algorithm to improve iris quality. We repeat this procedure for all classes, for
various Gaussian filters (from small sigma to large sigma). We use the LPSR30 algorithm in this
experiment as well.

The HD distribution of the baseline system, along with that of the SR-enhanced system, is
plotted with respect to different σ values, in Figure 5.26.

5.7 Conclusion

5.7.1 The Necessity of Image Enhancement for Long-Range Iris Recogni-
tion System

The quality of the iris pictures taken by a long-range iris acquisition device is highly constrained
by optical conditions. For most of the available iris cameras on the market, the iris images are
captured by infrared (IR) optical devices. This makes the goal of capturing high quality iris
images from a long distance, in a less constrained setting become much more difficult. This is
because of the difficulty in providing enough and evenly distributed IR illumination across the
subjects’ faces, while they are allowed to move freely without restriction.

The second problem of long-range iris acquisition is also related to the less constrained envi-
ronment and the user’s mobility. Because of these two factors, it is difficult to predict the user’s
position or speed when the iris images are taken, giving rise to the possibility of both motion blur
and defocus blur in the outcome images.

Figure 5.29 and 5.30 shows six example sets of images. Images located in the same column
denote the same set. In every column, the bottom image is the super-resolved image after ap-
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Figure 5.26: The quantitative measurement of the ability of proposed SR algorithm (LPSR30) to
deal with various levels of defocus blur. The blurring effect is simulated by filtering the images
with Gaussian filters with various sigma values. The HD distributions are plotted with respect
to the sigma values of Gaussian filters. For every measured blurring level, both results from
“original” (baseline) and “SR” are plotted with box plot.

116



Figure 5.27: Examples of original PIER images and degraded images after they are contami-
nated with Gaussian white noises. Left: original clear images. Right: the degraded image after
contaminated with Gaussian white noises, when SNR=16.

Figure 5.28: Examples of original PIER images and degraded images after they are filtered with
Gaussian filters to simulate defocus blur effect. Left: original clear images. Right: the degraded
image after filtered with Gaussian filter, with σ=5.
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Figure 5.29: Example of the source images and the super-resolved image (with LPSR30 algo-
rithm). Each column show an example of the four input source images and the final super-
resolved image (at the bottom).

Figure 5.30: Example of the source images and the super-resolved image (with LPSR30 algo-
rithm). Each column show an example of the four input source images and the final super-
resolved image (at the bottom).
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Figure 5.31: Comparison between original IOM images and their super-resolved counter part,
shown in Cartesian coordinate. Column 1, 3 and 5: original IOM images in Cartesian coordinate.
Column 2, 4 and 6: the super-resolved image by LPSR30 algorithm. The super-resolved images
are much more clear and many details of iris texture are restored by the proposed algorithm.
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plying the LPSR30 algorithm on source IOM images. Figure 5.31 shows original IOM images
and their super-resolved counter parts, in the Cartesian coordinate. We can see that the proposed
algorithm can successfully reveal and enhance the details of the iris texture, so the iris features
are more prominent and can be used to improve the iris recognition rate in later stages.

5.7.2 Novelty of the Proposed Method

Most existing super-resolution and image restoration algorithms are global methods, as described
in section 5.3. However, for image restoration for iris images, it seems like our method, which
is mainly based on local patches, is more suitable and effective because local deformation is an
easily observable phenomenon for almost all iris images in the polar domain. As stated in section
5.4, iris images in the polar domain suffer from local deformation because of the variation in iris
and pupillary boundary estimation, variations of pupil size, and the off-axis viewing angle of
the subjects. Therefore, if we only apply the super-resolution algorithm in the global sense, the
details of the local iris texture may not be recovered completely, which can cause the final image
to be still blurry and noisy.

By applying the proposed Local Patch-based Super-Resolution (LPSR) algorithm, as shown
in our large-scale experimental results in section 5.5, it is demonstrated that LPSR method
can successfully enhance the iris recognition performance, compared to global super-resolution
method, which conforms with the observation of local deformation of iris texture.

5.7.3 Exploring the Limitation of the Proposed Method in Simulated Im-
age Degradation

By reading and analyzing the plots in Figure 5.25 and 5.26, we can learn the limits of our pro-
posed LPSR algorithm, in terms of the percentage of the authentic comparison score that can
be kept under a reasonable range, with respect to different levels of noise and defocus blur. In
literature, the best threshold of the HD which achieves the optimal compromise between False
Accept Rate (FAR) and False Reject Rate (FRR) is 0.32 [2, 20]. Therefore, in this study, we also
use HD=0.32 as our threshold to test the limit of our algorithm.

Figure 5.25 shows HD distribution of authentic comparison, under different levels of noise
contamination. The HD distribution is plotted by pairs, and each pair contains the result based on
the matching with the original degraded images (marked with blue color) and the super-resolved
images (marked with purple color). The green line indicates the optimal HD threshold, which
is 0.32. Figure 5.26 use the same format to plot the experimental result for different levels of
defocus blur.

The first observable result in Figure 5.25 and 5.26 is that for each level of noise contamination
and defocus blur, the HD distribution of authentic comparisons using super-resolved images are
globally shifted towards zero, compared with using the original degraded images. Note that this
observation holds true for all distributions, no matter if they are under or above the threshold (the
green line). This result shows our proposed LPSR algorithm can successfully increase the iris
recognition performance, in both noise-contaminated images and blurred images.
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The second result we observe is that, for noise-contaminated images (Figure 5.25), the major-
ity of the HD scores are under the optimal threshold (HD=0.32), as long as the SNR is higher or
equal to 16 dB. For images with defocus blur (Figure 5.26), the majority of HD scores are under
the optimal threshold (HD=0.32), as long as the σ value, the standard deviation, of the spatial
Gaussian filters is under 5. Figure 5.27 and 5.28 show example iris images that are degraded by
Gaussian white noise and the defocus blur, at SNR=16dB and σ = 5, respectively. It is amazing
that under such bad imaging condition, the proposed LPSR algorithm is still able to enhance the
image quality, so the recognition performance can be maintained.

5.7.4 Performance of the Proposed Method in Large-Scale Iris Recogni-
tion

In section 5.5, we show the results of iris recognition performance on large-scale database. The
experimental results can be summarized as the following:

1. The proposed LPSR algorithms outperform all existing SR algorithms, and the baseline
system.

2. In the setting of “SR vs. PIER”, LPSR20 performs best.

3. In the setting of “SR vs. LG”, LPSR30 performs best.

4. In the setting of “SR vs. IOM”, LPSR2 performs best.

5. In the setting of “SR vs. SR”, LPSR30 performs best.

Overall, the system structured “SR vs. SR” achieves the best recognition performance. This
result has significant meaning. It means that we can enroll iris images by using super-resolved
images, instead of using the PIER or LG images. This means that the image quality of the super-
resolved image is good enough for large-scale experiments. Also, from a system perspective,
it means that we can acquire iris images by using only one iris acquisition device, in a less
constrained environment. This greatly mitigates the difficulty of the iris acquisition process and
greatly improves the overall usability.

Anti-terrorism can benefit from the proposed system structure, too. We can combine the
long-range iris acquisition system with a face detector/tracker; when there is a terrorist suspect
detected by the face detector, we can immediately acquire the iris image from a remote location
and enroll it into the nationwide iris database. Or if the iris database is already established, we
can immediately match the iris images of the suspect with the database from a remote location,
providing more time for early screening and alert.
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Chapter 6

Conclusions and Future Work

The goal of this dissertation is to enhance the iris recognition performance of the long-range
iris acquisition system by capitalizing on the video stream of irises. This goal can be achieved
through improvements in every stage of the system: iris segmentation, iris occlusion estimation,
iris mask refinement, and multiple image fusion. All of the previous chapters have explained
the proposed methods for each stage, and the experimental results show that these proposed
methods are indeed effective, efficient, and robust. This dissertation is the first of its kind to
tackle multi-frame iris fusion (super-resolution) for image enhancement and robust long range
iris recognition.

6.1 Conclusions
This sub-section summarizes and discusses the findings from the previous chapters. These in-
clude findings specific to each stage of the iris recognition system, as well as findings about the
nature of the iris texture in general.
• For iris segmentation on iris images acquired by the long-range iris acquisition system:

We found that the randomly distributed specular reflections are indeed a challenging
problem. The traditional iris segmentation algorithms are mostly based on strong
circular edge feature detection. For example, the correlation-based method looks
for strong response from partial circular contour filters, and the Hough Transform
method is heavily based on edge map too. In such cases, eliminating specularity
through image processing algorithms and decreasing the reliance on edge information
becomes the key to successful iris segmentation.

We found that the median filter is suitable to eliminate specular reflection in iris im-
ages. Due to the size of the specular reflections, which are usually relatively small,
median filtering does not destroy the contour of the pupil or the iris. However, in-
painting a proper intensity value before median filtering is important. Median filter-
ing cannot render smooth images if incorrect values are inpainted into the specularity.

Median filtering softens the edge information in images. If we still rely on contin-
uous circular edge information to perform segmentation, the success rate decreases
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significantly. That is the reason why the existing segmentation algorithms fail even
when we pre-process the iris image with the median filter. Instead, we should use
sparse samples on the hypothesis boundaries to estimate them.

Our proposed algorithm, which is based on specularity removal and sparse sampling
on the boundary, has proved to be more robust and accurate compared to existing
methods. It can deal with iris images which can be degraded due to one of the fol-
lowing reasons: (1) contaminated by multiple strong specular reflections (2) partially
occluded by other artifacts, such as eyeglasses frames, eyelids or eyelashes (3) de-
graded by low intensity contrast and low ambient lighting (4) degraded by motion
blur, defocus blur and noise. Our proposed algorithm is also more efficient than the
Hough Transform method.

• For automatic iris mask generation:

In literature, there is virtually no solid and thorough research focused on mask gen-
eration. It was always treated as an easy problem during the iris segmentation stage.
Usually people use simple features and pre-defined rules to create the iris masks.
In this thesis, we formulate the problem from a pattern recognition perspective, and
translate it into a pixel-wise two-class classification problem in the 2D plane.

We experimented with different features in order to see which image feature set works
best for this problem. The features we tried are all described in section 3.4. We found
that the feature set IG (pixel intensity and Gabor response) is the optimal feature
combination for the GMM to learn discriminative features, so it can differentiate
the iris texture from the occlusion. Later, we further optimized the Gabor Filter
Bank(GFB) in order to discover the optimal GFB which has the most discriminative
power for detecting true iris texture, for the purpose of enhancing the large-scale iris
recognition rate.

The optimization method used in our experiment is Simulated Annealing (SA). SA
has the ability to escape from the local minimum and discover the global optimal
solution. We used SA to optimize the GFB with up to 10 filters, for both the ICE1
and ICE2 NIST databases. We empirically found that the performance reaches its
peak when we use 6 or 7 Gabor filters. After that, the performance decreases.

The choice of using the GMM instead of other pattern recognition algorithms is ap-
propriate for our problem and is supported by the experimental results. This is be-
cause the GMM has the ability to model the nature of the appearance of both iris tex-
ture and the occlusion artifacts. As shown in chapter 3, various objects occlude the
iris, including eyelids, eyelashes, eyeglasses frames, and specular reflection. There-
fore, by using a multi-modal approach, it is easier for us to model the nature of the
artifacts.

From the system perspective, the GMM is a good choice with low computational
operational complexity. Although GMMs may take a longer time during the learning
phase, they are very fast and efficient during classification. The performance of iris
recognition can be enhanced to levels similar to those of manually created masks.
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Table 6.1: Large-scale iris recognition performance comparison, in terms of three different error
metrics, as well as the average of them, among the four new system structures we proposed in
chapter 5, compared to the baseline.
New System Structure PIER vs. IOM SR vs. PIER SR vs. LG SR vs. IOM SR vs. SR

FRR@FAR=0.1% 2.1% 1.5% 0.0% 0.3% 0.0%
EER 1.2% 0.9% 0.0% 0.3% 0.0%

FRR@FAR=0% 3.6% 2.1% 1.8% 0.3% 0.3%
Average 2.3% 1.5% 0.6% 0.3% 0.1%

Table 6.2: Large-scale iris recognition performance comparison, in terms of three different error
metrics, as well as the average of them, among the configuration “PIER vs. PIER”, “LG vs. LG”,
and “SR vs. SR”.

New System Structure PIER vs. PIER LG vs. LG SR vs. SR
FRR@FAR=0.1% 0.0% 0.0% 0.0%

EER 0.0% 0.0% 0.0%
FRR@FAR=0% 0.0% 0.0% 0.3%

Average 0.0% 0.0% 0.1%

• For automatic iris mask refinement:

Some parts of the iris region contain more complex tissue structure than other parts.
This fact is easily observed by simply inspecting several iris images of different
classes. The complex regions have higher response to Gabor filters. If we can suc-
cessfully identify those regions and emphasize them during iris matching, the iris
recognition performance improves. This hypothesis was verified in our experiments.

The final iris mask derived from the proposed algorithm is more conservative than
the manually created masks. In other words, the refined iris mask is a super set of
the manual masks, where only the discriminative region of the iris is highlighted as
the true iris region. Our experiment proved that less is better; focusing on smaller but
more discriminative regions gives higher recognition rates.

The performance when using a single image with a refined mask is relatively the
same as using multiple training images. This is a huge advantage from a system
perspective. This will greatly reduce the run-time of iris matching, which is key for
a large-scale iris recognition, like searching in regional or national databases.

• For iris image enhancement by Super-Resolution algorithm:

Super-Resolution (SR) technology has been successfully applied in the fields of com-
puter vision and image processing. However, in the field of iris image processing, to
the best of the author’s knowledge, this thesis is the first in-depth study about how
to apply SR on iris images in the polar domain, and how much performance we can
gain from it.

We have proposed a novel local patch-based and quality-weighted SR algorithm. This
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idea is inspired from the observation that iris images in the polar domain suffer from
serious local deformation. Our experiments show that even the simplest form of
our patch-based algorithm outperforms the global SR algorithm, which suggests that
local deformation is an important factor to consider in order to restore high quality
iris images.

In this thesis, four new system structures have been proposed in order to utilize the
SR in the traditional IOM system. In each of the four system structures, the proposed
SR algorithm can enhance the system performance. Table 6.1 shows the system per-
formance enhancement by each of the four system structures, in terms of the three
error metrics. We found that the scenario of matching super-resolved irises “SR vs.
SR” achieves the best performance. This scenario uses all images captured of the
person passing through the IOM to synthesize a single iris which is used for enroll-
ment and matching. Since the source images in the gallery are different from those
in the probe, this result suggests that our proposed SR algorithm is robust and stable,
and is able to restore the low quality IOM images from different sessions to a more
stable and consistent representation. Table 6.2 shows the system performance of “SR
vs. SR”, compared with “PIER vs. PIER” and “LG vs. LG”, which are two upper
bounds of the recognition performance in our case. We can see that after applying
our proposed SR algorithm, the system performance of “SR vs. SR” approaches very
closely to that of “PIER vs. PIER” and “LG vs. LG”.

We also performed experiments to explore the limit of our proposed SR algorithm in
terms of the noise and defocus blur it can handle. The experimental results show that
our proposed SR algorithm can handle Gaussian white noise up to 16dB, and defocus
blur up to σ = 5.

From a system perspective, there is a trade-off between accuracy and speed. If we aim
for speed during testing stage, we can choose the system structure of “SR vs. IOM”,
because the SR can be operated during enrollment. If we prefer system accuracy to
the speed, we can choose the system structure of “SR vs. SR”, which requires the SR
operation in both enrollment and testing stages.

From a system perspective, the success of the “SR vs. SR” mode suggests that we
can enroll and match iris images using super-resolved IOM images. This has potential
for many defense and national security applications in matching a potential terrorist
from a distance. Similarly for law enforcement applications, the ability to identify
a criminal without getting too close has significant life saving implications to the
officers patrolling and guarding our streets.

6.2 Possible Future Work
We plan to extend the work on automatic iris mask generation based on GMM of the iris texture
to other generative machine learning methods such as the Probabilistic Latent Semantic Analysis
(pLSA) and the Latent Dirichlet Allocation (LDA), which are two machine learning methods
based on probabilistic graphical models [70]. They were originally used in information retrieval,
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but later widely applied to source separation, speech processing, machine translation, and com-
puter vision.

From a system perspective, it is desirable to build a system which can acquire iris images from
even farther away, without the constraint that users have to walk through a portal. Such a system
would have to be equipped with a high resolution camera and a telephoto lens. The camera may
need Pan-Tilt-Zoom (PTZ) capability to track the object with three degrees of freedom. The
system would need to have fast and accurate face/eye tracking software in order to detect and
track subjects efficiently. Additionally, tackling the illumination problem is challenging for long
range acquisition due to eye safety considerations.
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Appendix A

Experimental Figures for SR vs. PIER

All of the experimental results figures (ROC curves and histogram distribution of Hamming
distance) of the system architecture SR vs. PIER are listed here. Under this architecture, the
LPSR 20 achieves lowest recognition errors compared to other methods.
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: Performance comparison: baseline scenario 1 vs. SR enhanced system (RC). (a)
ROC curves of RC+IN; (b) HD histogram distribution of RC+IN; (c) ROC curves of RC+BP; (d)
HD histogram distribution of RC+BP; (e) ROC curves of RC+RS; (f) HD histogram distribution
of RC+RS
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(a) (b)

(c) (d)

(e) (f)

Figure A.2: Performance comparison: baseline scenario 1 vs. SR enhanced system (KE). (a)
ROC curves of KE+IN; (b) HD histogram distribution of KE+IN; (c) ROC curves of KE+BP; (d)
HD histogram distribution of KE+BP; (e) ROC curves of KE+RS; (f) HD histogram distribution
of KE+RS
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(a) (b)

(c) (d)

(e) (f)

Figure A.3: Performance comparison: baseline scenario 1 vs. SR enhanced system (VA). (a)
ROC curves of VA+IN; (b) HD histogram distribution of VA+IN; (c) ROC curves of VA+BP; (d)
HD histogram distribution of VA+BP; (e) ROC curves of VA+RS; (f) HD histogram distribution
of VA+RS
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(a) (b)

(c) (d)

(e) (f)

Figure A.4: Performance comparison: baseline scenario 1 vs. SR enhanced system (LPSR1, 2
and 7). (a) ROC curves of LPSR1; (b) HD histogram distribution of LPSR1; (c) ROC curves of
LPSR2; (d) HD histogram distribution of LPSR2; (e) ROC curves of LPSR7; (f) HD histogram
distribution of LPSR7
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(a) (b)

(c) (d)

(e) (f)

Figure A.5: Performance comparison: baseline scenario 1 vs. SR enhanced system (LPSR8, 12
and 14). (a) ROC curves of LPSR8; (b) HD histogram distribution of LPSR8; (c) ROC curves
of LPSR12; (d) HD histogram distribution of LPSR12; (e) ROC curves of LPSR14; (f) HD
histogram distribution of LPSR14
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(c) (d)

(e) (f)

Figure A.6: Performance comparison: baseline scenario 1 vs. SR enhanced system (LPSR15,
16 and 17). (a) ROC curves of LPSR15; (b) HD histogram distribution of LPSR15; (c) ROC
curves of LPSR16; (d) HD histogram distribution of LPSR16; (e) ROC curves of LPSR17; (f)
HD histogram distribution of LPSR17
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(c) (d)

(e) (f)

Figure A.7: Performance comparison: baseline scenario 1 vs. SR enhanced system (LPSR18,
19 and 20). (a) ROC curves of LPSR18; (b) HD histogram distribution of LPSR18; (c) ROC
curves of LPSR19; (d) HD histogram distribution of LPSR19; (e) ROC curves of LPSR20; (f)
HD histogram distribution of LPSR20
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(c) (d)

(e) (f)

Figure A.8: Performance comparison: baseline scenario 1 vs. SR enhanced system (LPSR26,
29 and 30). (a) ROC curves of LPSR26; (b) HD histogram distribution of LPSR26; (c) ROC
curves of LPSR29; (d) HD histogram distribution of LPSR29; (e) ROC curves of LPSR30; (f)
HD histogram distribution of LPSR30
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Appendix B

Experimental Figures for SR vs. LG

All of the experimental results figures (ROC curves and histogram distribution of Hamming
distance) of the system architecture SR vs. LG are listed here. Under this architecture, the LPSR
30 achieves lowest recognition errors compared to other methods.
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(a) (b)

(c) (d)

(e) (f)

Figure B.1: Performance comparison: baseline scenario 2 vs. SR enhanced system (RC). (a)
ROC curves of RC+IN; (b) HD histogram distribution of RC+IN; (c) ROC curves of RC+BP; (d)
HD histogram distribution of RC+BP; (e) ROC curves of RC+RS; (f) HD histogram distribution
of RC+RS
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(c) (d)

(e) (f)

Figure B.2: Performance comparison: baseline scenario 2 vs. SR enhanced system (KE). (a)
ROC curves of KE+IN; (b) HD histogram distribution of KE+IN; (c) ROC curves of KE+BP; (d)
HD histogram distribution of KE+BP; (e) ROC curves of KE+RS; (f) HD histogram distribution
of KE+RS
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(a) (b)

(c) (d)

(e) (f)

Figure B.3: Performance comparison: baseline scenario 2 vs. SR enhanced system (VA). (a)
ROC curves of VA+IN; (b) HD histogram distribution of VA+IN; (c) ROC curves of VA+BP; (d)
HD histogram distribution of VA+BP; (e) ROC curves of VA+RS; (f) HD histogram distribution
of VA+RS
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(a) (b)

(c) (d)

(e) (f)

Figure B.4: Performance comparison: baseline scenario 2 vs. SR enhanced system (LPSR1, 2
and 7). (a) ROC curves of LPSR1; (b) HD histogram distribution of LPSR1; (c) ROC curves of
LPSR2; (d) HD histogram distribution of LPSR2; (e) ROC curves of LPSR7; (f) HD histogram
distribution of LPSR7

143



(a) (b)

(c) (d)

(e) (f)

Figure B.5: Performance comparison: baseline scenario 2 vs. SR enhanced system (LPSR8, 12
and 14). (a) ROC curves of LPSR8; (b) HD histogram distribution of LPSR8; (c) ROC curves
of LPSR12; (d) HD histogram distribution of LPSR12; (e) ROC curves of LPSR14; (f) HD
histogram distribution of LPSR14
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(c) (d)

(e) (f)

Figure B.6: Performance comparison: baseline scenario 2 vs. SR enhanced system (LPSR15,
16 and 17). (a) ROC curves of LPSR15; (b) HD histogram distribution of LPSR15; (c) ROC
curves of LPSR16; (d) HD histogram distribution of LPSR16; (e) ROC curves of LPSR17; (f)
HD histogram distribution of LPSR17
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(a) (b)

(c) (d)

(e) (f)

Figure B.7: Performance comparison: baseline scenario 2 vs. SR enhanced system (LPSR18,
19 and 20). (a) ROC curves of LPSR18; (b) HD histogram distribution of LPSR18; (c) ROC
curves of LPSR19; (d) HD histogram distribution of LPSR19; (e) ROC curves of LPSR20; (f)
HD histogram distribution of LPSR20
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(a) (b)

(c) (d)

(e) (f)

Figure B.8: Performance comparison: baseline scenario 2 vs. SR enhanced system (LPSR26,
29 and 30). (a) ROC curves of LPSR26; (b) HD histogram distribution of LPSR26; (c) ROC
curves of LPSR29; (d) HD histogram distribution of LPSR29; (e) ROC curves of LPSR30; (f)
HD histogram distribution of LPSR30
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Appendix C

Experimental Figures for SR vs. IOM

All of the experimental results figures (ROC curves and histogram distribution of Hamming
distance) of the system architecture SR vs. IOM are listed here. Under this architecture, the
LPSR 2 achieves lowest recognition errors compared to other methods.
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(a) (b)

(c) (d)

(e) (f)

Figure C.1: Performance comparison: baseline scenario 1 (IOM vs. PIER) compared to con-
figuration of “IOM vs. SR” (LPSR1, 2 and 7). (a) ROC curves of LPSR1; (b) HD histogram
distribution of LPSR1; (c) ROC curves of LPSR2; (d) HD histogram distribution of LPSR2; (e)
ROC curves of LPSR7; (f) HD histogram distribution of LPSR7
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(a) (b)

(c) (d)

(e) (f)

Figure C.2: Performance comparison: baseline scenario 1 (IOM vs. PIER) compared to config-
uration of “IOM vs. SR” (LPSR8, 12 and 14). (a) ROC curves of LPSR8; (b) HD histogram
distribution of LPSR8; (c) ROC curves of LPSR12; (d) HD histogram distribution of LPSR12;
(e) ROC curves of LPSR14; (f) HD histogram distribution of LPSR14
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(a) (b)

(c) (d)

(e) (f)

Figure C.3: Performance comparison: baseline scenario 1 (IOM vs. PIER) compared to config-
uration of “IOM vs. SR” (LPSR15, 16 and 17). (a) ROC curves of LPSR15; (b) HD histogram
distribution of LPSR15; (c) ROC curves of LPSR16; (d) HD histogram distribution of LPSR16;
(e) ROC curves of LPSR17; (f) HD histogram distribution of LPSR17
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(c) (d)

(e) (f)

Figure C.4: Performance comparison: baseline scenario 1 (IOM vs. PIER) compared to config-
uration of “IOM vs. SR” (LPSR18, 19 and 20). (a) ROC curves of LPSR18; (b) HD histogram
distribution of LPSR18; (c) ROC curves of LPSR19; (d) HD histogram distribution of LPSR19;
(e) ROC curves of LPSR20; (f) HD histogram distribution of LPSR20
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(c) (d)

(e) (f)

Figure C.5: Performance comparison: baseline scenario 1 (IOM vs. PIER) compared to config-
uration of “IOM vs. SR” (LPSR26, 29 and 30). (a) ROC curves of LPSR26; (b) HD histogram
distribution of LPSR26; (c) ROC curves of LPSR29; (d) HD histogram distribution of LPSR29;
(e) ROC curves of LPSR30; (f) HD histogram distribution of LPSR30
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(c) (d)

(e) (f)

Figure C.6: Performance comparison: baseline scenario 2 (IOM vs. LG) compared to config-
uration of “IOM vs. SR” (LPSR1, 2 and 7). (a) ROC curves of LPSR1; (b) HD histogram
distribution of LPSR1; (c) ROC curves of LPSR2; (d) HD histogram distribution of LPSR2; (e)
ROC curves of LPSR7; (f) HD histogram distribution of LPSR7
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(c) (d)

(e) (f)

Figure C.7: Performance comparison: baseline scenario 2 (IOM vs. LG) compared to config-
uration of “IOM vs. SR” (LPSR8, 12 and 14). (a) ROC curves of LPSR8; (b) HD histogram
distribution of LPSR8; (c) ROC curves of LPSR12; (d) HD histogram distribution of LPSR12;
(e) ROC curves of LPSR14; (f) HD histogram distribution of LPSR14
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(e) (f)

Figure C.8: Performance comparison: baseline scenario 2 (IOM vs. LG) compared to configu-
ration of “IOM vs. SR” (LPSR15, 16 and 17). (a) ROC curves of LPSR15; (b) HD histogram
distribution of LPSR15; (c) ROC curves of LPSR16; (d) HD histogram distribution of LPSR16;
(e) ROC curves of LPSR17; (f) HD histogram distribution of LPSR17
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(c) (d)

(e) (f)

Figure C.9: Performance comparison: baseline scenario 2 (IOM vs. LG) compared to configu-
ration of “IOM vs. SR” (LPSR18, 19 and 20). (a) ROC curves of LPSR18; (b) HD histogram
distribution of LPSR18; (c) ROC curves of LPSR19; (d) HD histogram distribution of LPSR19;
(e) ROC curves of LPSR20; (f) HD histogram distribution of LPSR20
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(c) (d)

(e) (f)

Figure C.10: Performance comparison: baseline scenario 2 (IOM vs. LG) compared to config-
uration of “IOM vs. SR” (LPSR26, 29 and 30). (a) ROC curves of LPSR26; (b) HD histogram
distribution of LPSR26; (c) ROC curves of LPSR29; (d) HD histogram distribution of LPSR29;
(e) ROC curves of LPSR30; (f) HD histogram distribution of LPSR30
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Appendix D

Experimental Figures for SR vs. SR

All of the experimental results figures (ROC curves and histogram distribution of Hamming
distance) of the system architecture SR vs. SR are listed here. Under this architecture, the LPSR
30 achieves lowest recognition errors compared to other methods.
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(a) (b)

(c) (d)

(e) (f)

Figure D.1: Performance comparison: baseline scenario 1 (IOM vs. PIER) compared to con-
figuration of “SR vs. SR” (LPSR1, 2 and 7). (a) ROC curves of LPSR1; (b) HD histogram
distribution of LPSR1; (c) ROC curves of LPSR2; (d) HD histogram distribution of LPSR2; (e)
ROC curves of LPSR7; (f) HD histogram distribution of LPSR7
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(a) (b)

(c) (d)

(e) (f)

Figure D.2: Performance comparison: baseline scenario 1 (IOM vs. PIER) compared to con-
figuration of “SR vs. SR” (LPSR8, 12 and 14). (a) ROC curves of LPSR8; (b) HD histogram
distribution of LPSR8; (c) ROC curves of LPSR12; (d) HD histogram distribution of LPSR12;
(e) ROC curves of LPSR14; (f) HD histogram distribution of LPSR14
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(a) (b)

(c) (d)

(e) (f)

Figure D.3: Performance comparison: baseline scenario 1 (IOM vs. PIER) compared to config-
uration of “SR vs. SR” (LPSR15, 16 and 17). (a) ROC curves of LPSR15; (b) HD histogram
distribution of LPSR15; (c) ROC curves of LPSR16; (d) HD histogram distribution of LPSR16;
(e) ROC curves of LPSR17; (f) HD histogram distribution of LPSR17
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(a) (b)

(c) (d)

(e) (f)

Figure D.4: Performance comparison: baseline scenario 1 (IOM vs. PIER) compared to config-
uration of “SR vs. SR” (LPSR18, 19 and 20). (a) ROC curves of LPSR18; (b) HD histogram
distribution of LPSR18; (c) ROC curves of LPSR19; (d) HD histogram distribution of LPSR19;
(e) ROC curves of LPSR20; (f) HD histogram distribution of LPSR20
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(c) (d)

(e) (f)

Figure D.5: Performance comparison: baseline scenario 1 (IOM vs. PIER) compared to config-
uration of “SR vs. SR” (LPSR26, 29 and 30). (a) ROC curves of LPSR26; (b) HD histogram
distribution of LPSR26; (c) ROC curves of LPSR29; (d) HD histogram distribution of LPSR29;
(e) ROC curves of LPSR30; (f) HD histogram distribution of LPSR30
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(c) (d)

(e) (f)

Figure D.6: Performance comparison: baseline scenario 2 (IOM vs. LG) compared to configura-
tion of “SR vs. SR” (LPSR1, 2 and 7). (a) ROC curves of LPSR1; (b) HD histogram distribution
of LPSR1; (c) ROC curves of LPSR2; (d) HD histogram distribution of LPSR2; (e) ROC curves
of LPSR7; (f) HD histogram distribution of LPSR7
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(c) (d)

(e) (f)

Figure D.7: Performance comparison: baseline scenario 2 (IOM vs. LG) compared to config-
uration of “SR vs. SR” (LPSR8, 12 and 14). (a) ROC curves of LPSR8; (b) HD histogram
distribution of LPSR8; (c) ROC curves of LPSR12; (d) HD histogram distribution of LPSR12;
(e) ROC curves of LPSR14; (f) HD histogram distribution of LPSR14
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(c) (d)

(e) (f)

Figure D.8: Performance comparison: baseline scenario 2 (IOM vs. LG) compared to config-
uration of “SR vs. SR” (LPSR15, 16 and 17). (a) ROC curves of LPSR15; (b) HD histogram
distribution of LPSR15; (c) ROC curves of LPSR16; (d) HD histogram distribution of LPSR16;
(e) ROC curves of LPSR17; (f) HD histogram distribution of LPSR17
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(e) (f)

Figure D.9: Performance comparison: baseline scenario 2 (IOM vs. LG) compared to config-
uration of “SR vs. SR” (LPSR18, 19 and 20). (a) ROC curves of LPSR18; (b) HD histogram
distribution of LPSR18; (c) ROC curves of LPSR19; (d) HD histogram distribution of LPSR19;
(e) ROC curves of LPSR20; (f) HD histogram distribution of LPSR20
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Figure D.10: Performance comparison: baseline scenario 2 (IOM vs. LG) compared to config-
uration of “SR vs. SR” (LPSR26, 29 and 30). (a) ROC curves of LPSR26; (b) HD histogram
distribution of LPSR26; (c) ROC curves of LPSR29; (d) HD histogram distribution of LPSR29;
(e) ROC curves of LPSR30; (f) HD histogram distribution of LPSR30
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