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Abstract
Graphs are ubiquitous in a broad range of statistical modeling and machine learn-

ing applications. They are powerful mathematical concepts in representing not only
structured data, but also structured computation procedures (e.g. neural network
architectures). Despite their ubiquity, efficient learning over heterogeneous and/or
complex graph structures remains a grand challenge, beyond much existing theory
and algorithms. In this thesis, we address this challenge in several complementary
aspects:

In part I we focus on learning across heterogeneous graphs. We propose a novel
framework to fuse multiple heterogeneous graphs into a single homogeneous graph,
on which the learning task can be formulated in a principled manner (Chapter 2). We
then develop a method that imposes analogical structures among the heterogeneous
nodes in the graphs for improved generalization (Chapter 3), which also theoretically
unifies several representative models. In both cases, we develop scalable approxi-
mation algorithms to ensure linear scalability over the size of the input graphs.

In part II we focus on graph induction problems where a latent graph structure
must be inferred directly from the data. We investigate the task in the graph spectral
domain (of eigenvectors and eigenvalues), and propose an efficient non-parametric
approach to recover the graph spectrum that best characterizes the underlying diffu-
sion process over the data (Chapter 4).

Finally, in part III we focus on the optimization of neural network architectures,
represented as acyclic graphs. We present a hierarchical representation scheme for
neural network topologies, where smaller graph motifs are used as building blocks
to form the larger ones (Chapter 5). We then relax the discrete architectures as
continuous variables to enable efficient gradient-based optimization, leading to or-
ders of magnitude speedup over several state-of-the-art non-differentiable techniques
(Chapter 6). The automatically learned architectures achieve highly competitive
performance for both image classification and language modeling, outperforming
a large number of architectures manually designed by human experts.
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4.2 We maintain a piecewise lowerbound g̃(θ), which keeps being refined during
optimization to better approximate g(θ). . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Classification accuracy on 20NewsGroup, Isolet and MNIST . . . . . . . . . . . 51

4.4 STs produced by all methods on the MNIST dataset (each sub-figure contains the
results of 30 different runs), where the x-axis and y-axis (log-scale) correspond
to the original spectrum λi’s and the transformed spectrum σ(λi)’s, resp. . . . . . 52

5.1 An example of a three-level hierarchical architecture representation. The bottom
row shows how level-1 primitive operations o(1)

1 , o
(1)
2 , o

(1)
3 are assembled into a

level-2 motif o(2)
1 . The top row shows how level-2 motifs o(2)

1 , o
(2)
2 , o

(2)
3 are then

assembled into a level-3 motif o(3)
1 . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Image classification models constructed using the cells optimized with architec-
ture search. Top-left: small model used during architecture search on CIFAR-10.
Top-right: large CIFAR-10 model used for learned cell evaluation. Bottom: Im-
ageNet model used for learned cell evaluation. . . . . . . . . . . . . . . . . . . 62

5.3 Fitness and number of parameters vs evolution step for flat and hierarchical rep-
resentations. Left: fitness of a genotype generated at each evolution step. Mid-
dle: maximum fitness across all genotypes generated before each evolution step.
Right: number of parameters in the small CIFAR-10 model constructed using
the genotype generated at each evolution step. . . . . . . . . . . . . . . . . . . 63

5.4 Accuracy improvement over the course of evolution, measured with respect to
the first random genotype. The small model is the model used for fitness com-
putation during evolution (its absolute fitness value is shown with the red curve
in Fig. 5.3 (middle)). The large model is the model where the evolved cell archi-
tecture is deployed for training and evaluation. . . . . . . . . . . . . . . . . . . . 64

6.1 An overview of DARTS: (a) Operations on the edges are initially unknown. (b)
Continuous relaxation of the search space by placing a mixture of candidate op-
erations on each edge. (c) Joint optimization of the mixing probabilities and the
network weights by solving a bilevel optimization problem. (d) Inducing the
final architecture from the learned mixing probabilities. . . . . . . . . . . . . . . 70

6.2 Learning dynamics of our iterative algorithm when Lval(w, α) = αw − 2α + 1
and Ltrain(w, α) = w2 − 2αw + α2, starting from (α(0), w(0)) = (2,−2).
The analytical solution for the corresponding bilevel optimization problem is
(α∗, w∗) = (1, 1), which is highlighted in the red circle. The dashed red line in-
dicates the feasible set where constraint (6.4) is satisfied exactly (namely, weights
in w are optimal for the given architecture α). The example shows that a suitable
choice of ξ helps to converge to a better local optimum. . . . . . . . . . . . . . . 72

xiv



6.3 Search progress of DARTS for convolutional cells on CIFAR-10 and recurrent
cells on PTB. We keep track of the most recent architectures over time. Each
architecture snapshot is re-trained from scratch using the training set (for 100
epochs on CIFAR-10 and for 300 epochs on PTB) and then evaluated on the
validation set. For each task, we repeat the experiments for 4 times with dif-
ferent random seeds, and report the median and the best (per run) validation
performance of the architectures over time. As references, we also report the
results (with the same evaluation setup and comparable number of parameters)
of the best existing cells discovered using RL or evolution, including NASNet-
A (Zoph et al., 2017) (1800 GPU days), AmoebaNet-A (3150 GPU days) (Real
et al., 2018) and ENAS (0.5 GPU day) (Pham et al., 2018b). . . . . . . . . . . . 74

6.4 Normal cell learned on CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5 Reduction cell learned on CIFAR-10. . . . . . . . . . . . . . . . . . . . . . . . 75
6.6 Recurrent cell learned on PTB. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xv



xvi



List of Tables

2.1 Tensor GP and Cartesian GP in higher-orders. . . . . . . . . . . . . . . . . . . . 11

3.1 Dataset statistics for FB15K and WN18. . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Hits@10 (filt.) of all models on WN18 and FB15K categories into three groups:

(i) 19 baselines without modeling analogies; (ii) 3 baselines and our proposed
ANALOGY which implicitly or explicitly enforce analogical properties over the
induced embeddings (see §3.4); (iii) One baseline relying on large external data
resources in addition to the provided training set. . . . . . . . . . . . . . . . . . 34

3.3 MRR and Hits@{1,3} of a subset of representative models on WN18 and FB15K.
The performance scores of TransE and REACAL are cf. the results published in
(Trouillon et al., 2016) and (Nickel et al., 2016), respectively. . . . . . . . . . . . 35

4.1 Speed comparison of different methods on MNIST when l = 128 given the top-
50 eigenvalues/eigenvectors. We use convergence tolerance ε = 10−3 for AST.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Classification results on the CIFAR-10 test set and ILSVRC validation set ob-
tained using the architectures found using various representations and search
methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Classification error on the CIFAR-10 test set obtained using state-of-the-art mod-
els as well as the best-performing architecture found using the proposed archi-
tecture search framework. Existing models are grouped as (from top to bottom):
handcrafted architectures, architectures found using reinforcement learning, and
architectures found using random or evolutionary search. . . . . . . . . . . . . . 65

5.3 Classification error on the ImageNet validation set obtained using state-of-the-art
models as well as the best-performing architecture found using our framework. . 65

6.1 Comparison with state-of-the-art image classifiers on CIFAR-10. Results marked
with † were obtained by training the corresponding architectures using our setup. 76

6.2 Comparison with state-of-the-art language models on Penn Treebank. Results
marked with † were obtained by training the corresponding architectures using
our setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Comparison with state-of-the-art image classifiers on ImageNet in the mobile
setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xvii



6.4 Comparison with state-of-the-art language models on WT2. Results marked with
† were obtained by training the corresponding architectures using our setup. . . . 78

xviii



Chapter 1

Introduction

1.1 Thesis Overview
The thesis is organized into three parts. Part I focuses on scalable learning algorithms within or
across heterogeneous graphs. Part II focuses on learning an unknown or partially specified graph
from the data. Part III focuses on learning computation graphs, i.e., neural network architectures.

The motivations and contributions of the individual chapters are summarized as follows:

1.1.1 Learning over Heterogeneous Graphs
1.1.1.1 Relational Learning across Heterogeneous Graphs (Liu and Yang, 2015, 2016a)

Cross-graph relational learning refers to the task of predicting the strengths or labels of multi-
relational tuples of heterogeneous object types, through the joint inference over multiple graphs
which specify the internal connections among each type of the object. This is an open challenge
in machine learning due to the combinatorially large number of all possible tuples to deal with
and the usually extremely sparse labeled data.

In this chapter, we propose a convex formulation which enables transductive learning using
both labeled and unlabeled tuples, and a scalable algorithm that enjoys a linear time complexity
over the sizes of input graphs. Our method can be regarded as an extension of the classic spectral
graph analysis developed for a single homogeneous graph to the case of multiple heterogeneous
graphs. Experiments over citation networks and compound-protein interactions show that the
proposed method can successfully scale to large cross-graph inference problems, outperforming
other representative approaches significantly.

1.1.1.2 Analogical Inference for Knowledge Graphs (Liu et al., 2017c)

Large-scale relational embedding refers to the task of learning the latent representations for enti-
ties their relations in large knowledge graphs. An effective and scalable solution for this problem
is crucial for the true success of knowledge-based inference in a broad range of applications.

In this chapter, we propose a novel framework for optimizing the latent representations with
respect to the analogical properties of the embedded entities and relations. The proposed ana-

1



logical inference can be viewed as the generalization of the widely studied analogical reasoning
in classic AI to the continuous vector space. By formulating the learning task in a differentiable
fashion, our model enjoys both theoretical power and computational scalability, and significantly
outperformed a large number of representative baselines on benchmark datasets. The model fur-
ther offers a unification of several well-known methods in relational embedding, which can be
proven to be special instantiations of our framework.

1.1.2 Learning with Graph Induction
1.1.2.1 Nonparametric Learning of Graph Diffusions (Liu and Yang, 2016b)

Graph-based semi-supervised learning (SSL) aims to leverage the intrinsic graph structure among
both the labeled and unlabeled data when only limited supervision is available. A fundamental
limitation of existing algorithms, however, is that the graph has to be fully specified based on
some suboptimal metric independent of the data.

In this chapter, we propose a novel nonparametric graph-based SSL method which adapts
the graph spectrum (that characterizes the label diffusion process) based on the underlying data
manifold. Our formulation leads to a convex optimization problem that can be efficiently solved
using the bundle method, and can be interpreted as to asymptotically minimize the generalization
error bound of SSL with respect to the graph. Experiments over benchmark datasets in a variety
of domains show advantageous performance of the proposed method over strong baselines.

1.1.3 Learning Neural Network Architectures
1.1.3.1 Architecture Search with Hierarchical Representations (Liu et al., 2017a)

In this chapter, we explore efficient neural architecture search methods and show that a simple yet
powerful evolutionary algorithm can discover new architectures with excellent performance. Our
approach combines a novel hierarchical genetic representation scheme that imitates the modu-
larized design pattern commonly adopted by human experts, and an expressive search space that
supports complex topologies. Our algorithm efficiently discovers architectures that outperform
a large number of manually designed models for image classification, obtaining top-1 error of
3.6% on CIFAR-10 and 20.3% when transferred to ImageNet, which is competitive with the best
existing neural architecture search approaches.

1.1.3.2 Differentiable Architecture Search (Liu et al., 2018)

In this chapter, we address the scalability challenge of architecture search by formulating the task
in a differentiable manner. Unlike conventional approaches of applying evolution or reinforce-
ment learning over a discrete and non-differentiable search space, our method is based on the
continuous relaxation of the architecture representation, allowing efficient search of the archi-
tecture using gradient descent. Extensive experiments on CIFAR-10, ImageNet, Penn Treebank
and WikiText-2 show that our algorithm excels in discovering high-performance convolutional
architectures for image classification and recurrent architectures for language modeling, while
being orders of magnitude faster than state-of-the-art non-differentiable techniques.
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1.2 Thesis Publications
The cross-graph learning algorithms in Chapter 2 were published at ICML 2015 (Liu and Yang,
2015) (for two graphs) and ICML 2016 (Liu and Yang, 2016a) (for arbitrary number of graphs).
The analogical inference algorithm, described in Chapter 3, was published at ICML 2017 (Liu
et al., 2017c). The semi-supervised graph induction method in Chapter 4 was published at AIS-
TATS 2016 (Liu and Yang, 2016b). The two architecture search algorithms, including evolution-
ary architecture search (Liu et al., 2017b) and differentiable architecture search (Liu et al., 2018),
were published at ICLR 2018 and submitted to NIPS 2018, respectively.

The thesis also led to several other related works not listed as individual chapters, including
a concept graph learning algorithm presented at JAIR 2016 (Liu et al., 2016a) and a graph-based
multi-task learning algorithm published at NIPS 2016 (Liu et al., 2016b).
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Part I

Learning over Heterogeneous Graphs
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Chapter 2

Relational Learning across Heterogeneous
Graphs

2.1 Background

Many important problems in multi-source relational learning could be cast as joint learning over
multiple graphs about how heterogeneous types of objects interact with each other. In literature
data analysis, for example, publication records provide rich information about how authors col-
laborate with each other in a co-authoring graph, how papers are linked in citation networks, how
keywords are related via ontology, and so on. The challenging question is about how to combine
such heterogeneous information in individual graphs for the labeling or scoring of the multi-
relational associations in tuples like (author,paper,keyword), given some observed in-
stances of such tuples as the labeled training set. Automated labeling or scoring of unobserved
tuples allows us to discover who have been active in the literature on what areas of research,
and to predict who would become influential in which areas in the future. In protein data anal-
ysis, as another example, a graph of proteins with pairwise sequence similarities is often jointly
studied with a graph of chemical compounds with their structural similarities for the discovery
of interesting patterns in (compound,protein) pairs. We call the prediction problem in
both examples cross-graph learning of multi-relational associations, or simply cross-graph re-
lational learning (CGRL), where the multi-relational associations are defined by the tuples of
heterogeneous types of objects, and each object type has its own graph with type-specific rela-
tional structure as a part of the provided data. The task is to predict the labels or the scores of
unobserved multi-relational tuples, conditioned on a relatively small set of labeled instances.

CGRL is an open challenge in machine learning for several reasons. Firstly, the number
of multi-relational tuples grows combinatorially in the numbers of individual graphs and the
number of nodes in each graph. How to make cross-graph inference computationally tractable for
large graphs is a tough challenge. Secondly, how to combine the internal structures or relations
in individual graphs for joint inference in a principled manner is an open question. Thirdly,
supervised information (labeled instances) is typically extremely sparse in CGRL due to the
very large number of all possible combinations of heterogeneous objects in individual graphs.
Consequently, the success of cross-graph learning crucially depends on effectively leveraging
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the massively available unlabeled tuples (and the latent relations among them) in addition to the
labeled training data. In other words, how to make the learning transductive is crucial for the true
success of CGRL. Research on transductive CGRL has been quite limited, to our knowledge.

Existing approaches in CGRL or CGRL-related areas can be outlined as those using tensors
or graph-regularized tensors, and kernel machines that combine multiple kernels.

Tensor methods have been commonly used for combining multi-source evidence of the in-
teractions among multiple types of objects (Nickel et al., 2011; Rendle et al., 2009; Kolda and
Bader, 2009) as the combined evidence can be naturally represented as tuples. However, most of
the tensor methods do not explicitly model the internal graph structure for each type of objects,
although some of those methods implicitly leverage such information via graph-based regular-
ization terms in their objective function that encourage similar objects within each graph to share
similar latent factors (Narita et al., 2012; Cai et al., 2011). A major weakness in such tensor
methods is the lack of convexity in their models, which leads to ill-posed optimization problems
particularly in high-order scenarios. It has also been observed that tensor factorization models
suffer from label-sparsity issue, which is typically severe in CGRL.

Kernel machines have been widely studied for supervised classifiers, where a kernel matrix
corresponds to a similarity graph among a single type of objects. Multiple kernels can be com-
bined, for example, by taking the tensor product of each individual kernel matrix, which results
in a desired kernel matrix among cross-graph multi-relational tuples. The idea has been explored
in relational learning combined with SVMs (Ben-Hur and Noble, 2005), perceptions (Basilico
and Hofmann, 2004) or Gaussian process (Yu and Chu, 2008) for two types of objects and is gen-
eralizable to the multi-type scenario of CGRL. Although being generic, the complexity of such
kernel-based methods grows exponentially in the number of individual kernels (graphs) and the
size of each individual graph. As a result, kernel machines suffer from poor scalability in gen-
eral. In addition, kernel machines are purely supervised (not for transductive learning), i.e., they
cannot leverage the massive number of available non-observed tuples induced from individual
graphs and the latent connections among them. Those limitations make existing kernel meth-
ods less powerful for solving the CGRL problem in large scale and under severely data-sparse
conditions.

We propose a novel framework for CGRL which can be characterized as follows: (i) It uses
graph products to map heterogeneous sources of information and the link structures in individual
graphs onto a single homogeneous graph; (ii) It provides a convex formulation and approximation
of the CGRL problem that ensure robust optimization and efficient computation; and (iii) It
enables transductive learning in the form of label propagation over the induced homogeneous
graph so that the massively available non-observed tuples and the latent connections among them
can play an important role in effectively addressing the label-sparsity issue.

Our method in this chapter is most related to Liu and Yang (2015), where the authors formu-
lated graph products for learning the edges of a bipartite graph. Our framework is fundamentally
different in two aspects. First, our formulation and algorithms allow arbitrary number of individ-
ual graphs, while method in Liu and Yang (2015) is only applicable to two graphs. Secondly, the
algorithms in Liu and Yang (2015) suffer from cubic complexity over the graphs sizes (quadratic
by using a non-convex approximation), while our new algorithm enjoys both the convexity of the
formulation and the low time complexity which is linear over the graph sizes.

Our method also shares the high-level goal with Statistical Relational Learning (SRL) (Getoor,
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P

(
︸ ︷︷ ︸

G(1)

,

︸ ︷︷ ︸
G(2)

,

︸ ︷︷ ︸
G(3)

)
=

Figure 2.1: Product of three graphsG(1),G(2) andG(3). Each vertex in the resulting product graph
P
(
G(1), G(2), G(3)

)
corresponds to a multi-relation across the original graphs. For instance,

vertex 3.II.B in P corresponds to multi-relation (3,II,B) across G(1), G(2) and G(3).

2007) and Inductive Logic Programming (ILP) (Lavrac and Dzeroski, 1994) in terms of multire-
lational learning. However, both of our problem setting and formulation differ substantially from
existing SRL/ILP approaches focusing on first-order logic and/or probabilistic reasoning over
graphical models.

2.2 Spectral Graph Product

2.2.1 Notations

We are given J heterogeneous graphs where the j-th graph contains nj vertices and is associated
with an adjacency matrix G(j) ∈ Rnj×nj . We use ij to index the ij-th vertex of graph j, and use
a tuple (i1, . . . , iJ) to index each multi-relation across the J graphs. The system predictions over
all possible

∏J
j=1 nj multi-relations is summarized in an order-J tensor f ∈ Rn1×···×nJ , where

fi1,i2,...,iJ corresponds to the prediction about tuple (i1, . . . , iJ).

Denote by ⊗ the Kronecker (Tensor) product. We use
⊗J

j=1 xj (or simply
⊗

j xj) as the
shorthand for x1 ⊗ · · · ⊗ xJ . Denote by ×j the j-mode product between tensors. We refer the
readers to (Kolda and Bader, 2009) for a thorough introduction about tensor mode product.
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2.2.2 Graph Product
In a nutshell, graph product (GP) 1 is a mapping from each cross-graph multi-relation to each
vertex in a new graph P , whose edges encode similarities among the multi-relations (illustrated
in Fig. 2.1). A desirable property of GP is it provides a natural reduction from the original multi-
relational learning problem over heterogeneous information sources (Task 2.2.1) to an equivalent
graph-based learning problem over a homogeneous graph (Task 2.2.2).
Task 2.2.1. Given J graphs G(1), . . . , G(J) with a small set of labeled multi-relations O =
{(i1, . . . , iJ)}, predict labels of the unlabeled multi-relations.
Task 2.2.2. Given the product graph P

(
G(1), . . . , G(J)

)
with a small set of labeled vertices

O = {(i1, . . . , iJ)}, predict labels of its unlabeled vertices.

2.2.3 Spectral Graph Product
We define a parametric family of GP operators named the spectral graph product (SGP), which
is of particular interest as it subsumes the well-known Tensor GP and Cartesian GP (Table 2.1),
is well behaved (Theorem 2.2.1) and allows efficient optimization routines (Section 2.3).

Let λ(j)
ij

and v(j)
ij

be the ij-th eigenvalue and eigenvector for the graph j, respectively. We
construct SGP by defining the eigensystem of its adjacency matrix based on the provided J
heterogeneous eigensystems of G(1), . . . , G(J).
Definition 2.2.1. The SGP of G(1), . . . , G(J) is a graph consisting of

∏
j nj vertices, with its

adjacency matrix Pκ := Pκ

(
G(1), . . . , G(J)

)
defined by the following eigensystem{

κ
(
λ

(1)
i1
, . . . , λ

(J)
iJ

)
,
⊗
j

v
(j)
ij

}
i1,...,iJ

(2.1)

where κ is a pre-specified nonnegative nondecreasing function over λ(j)
ij
,∀j = 1, 2, . . . , J .

In other words, the (i1, . . . , iJ)-th eigenvalue of Pκ is defined by coupling the λ(1)
i1
, . . . , λ

(J)
iJ

with function κ, and the (i1, . . . , iJ)-th eigenvector of Pκ is defined by coupling v(1)
i1
, . . . , v

(J)
iJ

via tensor (outer) product.
Remark 2.2.1. If each individual

{
v

(j)
ij

}nj
ij=1

forms an orthogonal basis in Rnj , ∀j ∈ 1, . . . , J ,

then
{⊗

j v
(j)
ij

}
i1,...,iJ

forms an orthogonal basis in R
∏J
j=1 nj .

In the following examples, we introduce two special kinds of SGPs, assuming J = 2 for
brevity. Higher-order cases are later summarized in Table 2.1.
Example 2.2.1. Tensor GP defines κ(λi1 , λi2) = λi1λi2 , and is equivalent to Kronecker product:

PTensor
(
G(1), G(2)

)
=
∑
i1,i2

(λi1λi2)
(
v

(1)
i1
⊗ v(2)

i2

)(
v

(1)
i1
⊗ v(2)

i2

)> ≡ G(1) ⊗G(2)

Example 2.2.2. Cartesian GP defines κ(λi1 , λi2) = λi1 +λi2 , which gives us the Kronecker sum:

PCartesian
(
G(1), G(2)

)
=
∑
i1,i2

(λi1 + λi2)
(
v

(1)
i1
⊗ v(2)

i2

)(
v

(1)
i1
⊗ v(2)

i2

)> ≡ G(1) ⊕G(2)
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SGP Type κ
(
λ

(1)
i1
, · · · , λ(J)

iJ

)
[Pκ](i1,···iJ ),(i′1,···i′J )

Tensor
∏
j λ

(j)
ij

∏
j G

(j)
ij ,i′j

Cartesian
∑

j λ
(j)
ij

∑
j G

(j)
ij ,i′j

∏
j′ 6=j δij′=i′j′

Table 2.1: Tensor GP and Cartesian GP in higher-orders.

While Tensor GP and Cartesian GP provide mechanisms to associate multiple graphs in a
multiplicative/additive manner, more complex cross-graph association patterns can be modeled
by specifying κ. E.g., κ (λi1 , λi2 , λi3) = λi1λi2 + λi2λi3 + λi3λi1 indicates pairwise associations
are allowed among three graphs, but no triple-wise association is allowed as term λi1λi2λi3 is
not involved. Including higher order polynomials in κ amounts to incorporating higher-order
associations among the graphs, which can be achieved by simply exponentiating κ.

Since what the product graph P offers is a similarity measure among multi-relations, shuf-
fling the order of input graphs G(1), . . . , G(J) should not affect P’s topological structure. For
SGP, this property is guaranteed by the following theorem:
Theorem 2.2.1. SGP is commutative (up to graph isomorphism) when κ is commutative.

We omit the proof. The theorem suggests that a SGP is well-behaved as long as its associated
κ is commutative, which is true for both Tensor GP and Cartesian GP as both multiplication and
addition operations are order-insensitive.

2.2.4 Optimization Objective

It is often more convenient to equivalently write tensor f as a multi-linear map. E.g., when J = 2,
tensor (matrix) f ∈ Rn1×n2 defines a bilinear map from Rn1 × Rn2 to R via f(x1, x2) := x>1 fx2

and we have fi1,i2 = f(ei1 , ei2). Such equivalence is analogous to high-order cases where f
defines a multi-linear map from Rn1 × · · · × RnJ to R.

To carry out transductive learning over Pκ (Task 2.2.2), we inject the structure of the product
graph into f via a Gaussian random fields prior (Zhu et al., 2003). The negative log-likelihood
of the prior − log p (f |Pκ) is the same (up to constant) as the following squared semi-norm

‖f‖2
Pκ

= vec(f)>P−1
κ vec(f) =

∑
i1,i2,...,iJ

f
(
v

(1)
i1
, . . . , v

(J)
iJ

)2

κ
(
λ

(1)
i1
, . . . , λ

(J)
iJ

) (2.2)

Our optimization objective is therefore defined as

min
f∈Rn1×···×nJ

`O (f) +
γ

2
‖f‖2

Pκ
(2.3)

where `O(·) is a loss function to be defined later (Section 2.4),O is the set of training tuples, and
γ is a tuning parameter controlling the strength of graph regularization.

1 While traditional GP only applies to two graphs, we generalize it to the case of multiple graphs.
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Figure 2.2: An illustration of the eigenvectors of G(1), G(2) and P
(
G(1), G(2)

)
. The leading

nontrivial eigenvectors of G(1) and G(2) are denoted by blue and red curves, respectively. The
induced leading nontrivial eigenvectors of P

(
G(1), G(2)

)
are illustrated in 3D. If G(1) and G(2)

are symmetrically normalized, their eigenvectors (corresponding to eigenvectors of the graph
Laplacian) will be ordered by smoothness w.r.t. the graph structures. As a result, eigenvectors of
P
(
G(1), G(2)

)
will also be ordered by smoothness.

2.3 Approximation
The computational bottleneck for optimization (2.3) lies in evaluating ‖f‖2

Pκ
and its first-order

derivative, due to the extremely large size of Pκ. In the following, we first identify the com-
putation bottleneck of using the exact formulation, based on which we propose our convex ap-
proximation scheme that reduces the time complexity of evaluating the semi-norm ‖f‖2

Pκ
from

O
((∑

j nj
)(∏

j nj
))

to O
(∏

j dj
)
, where dj � nj for j = 1, . . . , J .

2.3.1 Complexity Analysis

The brute-force evaluation of ‖f‖2
Pκ

according to (2.2) costs O
((∏

j nj
)2), as one has to eval-

uate O
(∏

j nj
)

terms inside the summation where each term costs O
(∏

j nj
)
. However, redun-

dancies exist and the minimum complexity for the exact evaluation is given as follows
Proposition 2.3.1. The exact evaluation of semi-norm ‖f‖Pκ takes O

((∑
j nj
)(∏

j nj
))

flops.

Proof. Notice that the collection of all numerators in (2.2), namely
[
f
(
v

(1)
i1
, . . . , v

(J)
iJ

)]
i1,··· ,iJ

, is
a tensor in Rn1×···×nJ that can be precomputed via((

f ×1 V
(1)
)
×2 V

(2)
)
· · · ×J V (J) (2.4)

where×j stands for the j-mode product between a tensor in Rn1×···×nj×···×nJ and V (j) ∈ Rnj×nj .
The conclusion follows as the j-th mode product in (2.4) takesO

(
nj
∏

j nj
)

flops, and one has to
do this for each j = 1, . . . , J . When J = 2, (2.4) reduces to the multiplication of three matrices
V (1)>fV (2) at the complexity of O ((n1 + n2)n1n2).
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2.3.2 Approximation via Tucker Decomposition
Equation (2.4) implies the key for complexity reduction is to reduce the cost of the j-mode
multiplications · ×j V (j). Such multiplication costs O

(
nj
∏

j nj
)

in general, but can be carried
out more efficiently if f is structured.

Our solution is twofold: First, we include only the top-dj eigenvectors in V (j) for each graph
G(i), where dj � nj . Hence each V (j) becomes a thin matrix in Rnj×dj . Second, we restrict
tensor f to be within the linear span of the top

∏J
j=1 dj eigenvectors of the product graph Pκ

f =

d1,··· ,dJ∑
k1,··· ,kJ=1

αk1,··· ,kJ

⊗
j

v
(j)
kj

(2.5)

= α×1 V
(1) ×2 V

(2) ×3 · · · ×J V (J) (2.6)

The combination coefficients α ∈ Rd1×···×dJ is known as the core tensor of Tucker decomposi-
tion. In the case where J = 2, the above is equivalent to saying f ∈ Rn1×n2 is a low-rank matrix

parametrized by α ∈ Rd1×d2 such that f =
∑

k1,k2
αk1,k2v

(1)
k1
v

(2)
k2

>
= V (1)αV (2)>.

Combining (2.5) with the orthogonality property of eigenvectors leads to the fact that f
(
v

(1)
k1
, . . . , v

(J)
kJ

)
=

αk1,··· ,kJ . To see this for J = 2, notice f
(
v

(1)
k1
, v

(2)
k2

)
= v

(1)
k1

>
fv

(2)
k1

= v
(1)
k1

>
V (1)αV (2)>v

(2)
k1

=
e>k1
αek2 = αk1,k2 . Therefore the semi-norm in (2.2) can be simplified as

‖f‖2
Pκ

= ‖α‖2
Pκ

=

d1,··· ,dJ∑
k1,...,kJ=1

α2
k1,··· ,kJ

κ
(
λ

(1)
k1
, . . . , λ

(J)
kJ

) (2.7)

Comparing (2.7) with (2.2), the number of inside-summation terms is reduced fromO
(∏

j nj
)

to O
(∏

j dj
)

where dj � nj . In addition, the cost for evaluating each term inside summation is
reduced from O

(∏
j nj
)

to O(1).

Denote by V (j)
ij
∈ Rdj the ij-th row of V (j), we obtain the following optimization by replacing

f with α in (2.3)
min

α∈Rd1×···×dJ
`O (f) +

γ

2
‖α‖2

Pκ

s.t. f = α×1 V
(1) ×2 · · · ×J V (J)

(2.8)

Optimization above has intuitive interpretations. In principle, it is natural to emphasis bases in
f that are “smooth” w.r.t. the manifold structure of Pκ, and de-emphasis those that are “non-
smooth” in order to obtain a parsimonious hypothesis with strong generalization ability. We
claim this is exactly the role of regularizer (2.7). To see this, note any nonsmooth basis

⊗
j v

(j)
kj

of Pκ is likely to be associated with small a eigenvalue κ
(
λ

(1)
k1
, . . . , λ

(J)
kJ

)
(illustrated in Fig.

2.2). The conclusion follows by noticing that αk1,...,kJ is essentially the activation strength of⊗
j v

(j)
kj

in f (implied by (2.5)), and that (2.7) is going to give any αk1,...,kJ associated with a

small κ
(
λ

(1)
k1
, . . . , λ

(J)
kJ

)
a stronger penalty.

(2.8) is a convex optimization problem over α with any convex `O(·). Spectral approximation
techniques for graph-based learning has been found successful in standard classification tasks
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(Fergus et al., 2009), which are special cases under our framework when J = 1. We introduce
this technique for multi-relational learning, which is particularly desirable as the complexity
reduction will be much more significant for high-order cases (J >= 2).

While f in (2.5) is assumed to be in the Tucker form, other low-rank tensor representation
schemes are potentially applicable. E.g., the Candecomp/Parafac (CP) form that further restricts
α to be diagonal, which is more aggressive but substantially less expressive. The Tensor-Train
decomposition (Oseledets, 2011) offers an alternative representation scheme in the middle of
Tucker and CP, but the resulting optimization problem will suffer from non-convexity.

2.4 Optimization
We define `O(f) to be the ranking `2-hinge loss

`O(f) =

∑
(i1, . . . , iJ ) ∈ O
(i′1, . . . , i

′
J ) ∈ Ō

(
fi1...iJ − fi′1...i′J

)2

+

|O × Ō|
(2.9)

where (x)+ = max (0, 1− x), Ō is the complement of O w.r.t. all possible multi-relations. Eq.
(2.9) encourages the valid tuples in our training set O to be ranked higher than those corrupted
ones in Ō, and is known to be a surrogate of AUC.

We use stochastic gradient descent for optimization as |O| is usually large. In each itera-
tion, a random valid multirelation (i1, . . . , iJ) is uniformly drawn from O, a random corrupted
multirelation (i′1, . . . , i

′
J) is uniformly drawn from Ō. Each noisy gradient is computed as

∇α =
∂`O
∂f

(
∂fi1,...,iJ
∂α

−
∂fi′1,...,i′J
∂α

)
+ γα� κ (2.10)

where we abuse the notation by defining κ ∈ Rd1×···×dJ , κk1,...,kJ := κ
(
λ

(1)
k1
, . . . , λ

(J)
kJ

)
; � is the

element-wise division between tensors. The gradient w.r.t. α in (2.10) is

∂fi1,...,iJ
∂α

=
∂
(
α×1 V

(1)
i1
×2 · · · ×J V (J)

iJ

)
∂α

(2.11)

=
⊗
j

V
(j)
ij

∈ Rd1×...dJ (2.12)

Each SGD iteration costs O
(∏

j dj
)

flops, which is independent from n1, n2, . . . , nJ . After
obtaining the solution α̂(κ) of optimization (2.8) for any given SGP Pκ, our final predictions in
f̂(κ) can be recovered via (2.5).

Following AdaGrad (Duchi et al., 2011), we allow adaptive step sizes for each element in α.
That is, in the t-th iteration we use

η
(t)
k1,...,kJ

= η0

/[ t∑
τ=1

∇α
(τ)
k1,...,kJ

2
] 1

2
(2.13)
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as the step size for αk1,...,kJ , where
{
∇α

(τ)
k1,...,kJ

}t
τ=0

are the historical gradients associated with
αk1,...,kJ and η0 = 1 is the initial step size. AdaGrad is particularly efficient with highly redundant
gradients (Duchi et al., 2011), which is our case where the gradient is a regularized rank-2 tensor,
according to (2.10) and (2.12).

In practice (especially for large J), the computation cost of tensor operations involving⊗J
j=1 V

(j)
ij
∈ Rd1,...,dJ is not ignorable even if d1, d2, . . . , dJ are small. Fortunately, such medium-

sized tensor operations in our algorithm are highly parallelable over GPU.

2.5 Experiments and Results

2.5.1 Datasets
We evaluate our method on real-world data in two different domains: the Enzyme dataset (Ya-
manishi et al., 2008) for compound-protein interaction and the DBLP dataset of scientific publi-
cation records. Fig. 2.3 illustrates their heterogeneous objects and relational structures.

ProteinCompound

Structure Similarity Sequence Similarity

Interact

Paper

Author Venue

Coauthorship

Citation

Shared Foci

Write
Publish

Attend

Figure 2.3: The heterogeneous types of objects (the circles) and the relational structures in En-
zyme (left) and DBLP (right). The blue edges represent the within-graph relations and the red
edges represent the cross-graph interactions. The corresponding tuples in Enzyme is in the form
of (Compound,Protein), and in DBLP is in the form of (Author,Paper,Venue).

The Enzyme dataset has been used for modeling and predicting drug-target interactions,
which contains a graph of 445 chemical compounds (drugs) and a graph of 664 proteins (tar-
gets). The prediction task is to label the unknown compound-protein interactions based on both
the graph structures and a small set of 2,926 known interactions. The graph of compounds is
constructed based on the SIMCOMP score (Hattori et al., 2003), and the graph of proteins is
constructed based on the normalized SmithWaterman score (Smith and Waterman, 1981). While
both graphs are provided in the dense form, we converted them into sparse kNN graphs where
each vertex is connected with its top 1% neighbors.

As for the DBLP dataset, we use a subset of 34,340 DBLP publication records in the domain
of Artificial Intelligence (Tang et al., 2008), from which 3 graphs are constructed as:
• For the author graph (G(1)) we draw an edge between two authors if they have coauthored

an overlapping set of papers, and remove the isolated authors using a DFS algorithm. We
then obtain a symmetric kNN graph by connecting each author with her top 0.5% nearest
neighbors using the count of co-authored papers as the proximity measure. The resulting
graph has 5,517 vertices with 17 links per vertex on average.
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Figure 2.4: Performance of TOP with different SGPs.

Name κ(x, y) (J = 2) κ(x, y, z) (J = 3)

Tensor xy xyz
Cartesian x+ y x+ y + z

Exponential ex+y exy+yz+xz

Flat 1 1

• For the paper graph (G(2)) we connect two papers if both of them cite another paper, or
are cited by another paper. Like G(1), we remove isolated papers using DFS and construct
a symmetric 0.5%-NN graph. To measure the similarity of any given pair of papers, we
represent each paper as a bag-of-citations and compute their cosine similarity. The resulted
graph has 11,879 vertices and has an average degree of 50.

• For the venue graph (G(3)) we connect two venues if they share similar research focus.
The venue-venue similarity is measured by the total number of cross-citations in between,
normalized by the size of the two venues involved. The symmetric venue graph has 22
vertices and an average degree of 7.

Tuples in the form of (Author,Paper,Venue) are extracted from the publication records,
and there are 15,514 tuples (cross-graph interactions) after preprocessing.

2.5.2 Methods for Comparison
• Transductive Learning over Product Graph (TOP).

The proposed method. We explore different choices of κ’s for parametrizing the spectral
graph product as in Table 2.5.2.

• Tensor Factorization (TF) and Graph-regularized TF (GRTF). In TF we factorize f ∈
Rn1×···×nJ as a set of dimensionality-reduced latent factors Cd1,×···×dJ , Un1×d1

1 , . . . , UJ ∈

16



RnJ×dJ . In GRTF, we further enhanced the traditional TF by adding graph regularizations
to the objective function, which enforce the model to be aware of the context information
in G(j)’s (Narita et al., 2012; Cai et al., 2011);

• One-class Nearest Neighbor (NN). We score each tuple (i1, . . . , iJ) in the test set with
f̂(i1, . . . , iJ) = max(i′1,...,i′J)∈O

∏J
j=1Giji′j

. That is, we assume the tuple-tuple similarity
can be factorized as the product of vertex-level similarities across different graphs. We ex-
perimented with several other similarity measures and empirically found the multiplicative
similarity leads to the best overall performance. Note it does not rely on the presence of
any negative examples.

• Ranking Support Vector Machines (Joachims, 2002) (RSVM). For the task of complet-
ing the missing paper in (Author,?,Venue), we use a Learning-to-Rank strategy by
treating (Author,Venue) as the query and Paper as the document to be retrieved. The
query feature is constructed by concatenating the eigen-features of Author and Venue,
where we define the eigen-feature of vertex ij in graph j as V (j)

ij
∈ Rdj . The feature for

each query-document pair is obtained by taking the tensor product of the query feature and
document eigen-feature.

• Low-rank Tensor Kernel Machines (LTKM). While traditional tensor-based kernel con-
struction methods for tuples suffer from poor scalability. We propose to speedup by replac-
ing each individual kernel with its low-rank approximation before tensor product, leading
to a low-rank kernel of tuples which allows more efficient optimization routines.
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Figure 2.5: Test-set performance of different methods on Enzyme.

For fair comparison, TF, GRTF, RSVM and LTKM use exactly the same loss as that for TOP,
i.e. e.q. (2.9). All algorithms are trained using a mini-batched stochastic gradient descent. We
use the same eigensystems (eigenvectors and eigenvalues) of the G(j)’s as the input for TOP,
RSVM and LTKM. The number of top-eigenvalues/eigenvectors dj for graph j is chosen such
that λ(j)

1 , . . . , λ
(j)
dj

approximately cover 80% of the total spectral energy of G(j). Under this crite-
rion, we use d1 = 1, 281, d2 = 2, 170, d3 = 6 for DBLP; d1 = 150, d2 = 159 for Enzyme.

17



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

12.5 25 50 100

M
AP

Training Size (%)

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

12.5 25 50 100

AU
C

Training Size (%)

TOP
LTKM

NN
RSVM

TF
GRTF

 0

 2

 4

 6

 8

 10

 12

12.5 25 50 100

H
its

@
5 

(%
)

Training Size (%)

Figure 2.6: Test-set performance of different methods on DBLP.

2.5.3 Experiment Setups
For both datasets, we randomly sample one third of known interactions for training (denoted by
O), one third for validation and use the remaining ones for testing. Known interactions in the
test set, denoted by T , are treated as positive examples. All tuples not in T , denoted by T̄ , are
treated as negative. Tuples present inO are removed from T̄ to avoid misleading results (Bordes
et al., 2013).

We measure algorithm performance on Enzyme based on the quality of inferred target pro-
teins given each compound, namely by the ability of completing (Compound,?). For DBLP,
the performance is measured by the quality of inferred papers given author and venue, namely
by the ability of completing (Author,?,Venue). We use Mean Average Prevision (MAP),
Area Under the Curve (AUC) and Hits at Top 5 (Hits@5) as our evaluation metrics.

2.5.4 Results
Fig. 2.4 compares the results of TOP with various parameterizations of the spectral graph product
(SGP). Among those, Exponential κ works better on average.

Figs. 2.5 and 2.6 show the main results, comparing TOP (with Exponential κ) with other
representative baselines. Clearly, TOP outperforms all the other methods on both datasets in all
the evaluation metrics of MAP 2, AUC and Hit@5.

Fig. 2.7 shows the performance curves of TOP on Enzyme over different model sizes (by
varying the dj’s). With a relatively small model size compared with using the full spectrum,
TOP’s performance converges to the optimal point.

2.6 Summary
In this chapter, we presented a novel convex optimization framework for transductive CGRL and
a scalable algorithmic solution with guaranteed global optimum and a time complexity that does
not depend on the sizes of input graphs. Our experiments on multi-graph data sets provide strong

2MAP scores for random guessing are 0.014 on Enzyme and 0.00072 on DBLP, respectively.
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Figure 2.7: Performance of TOP v.s. model size on Enzyme.

evidence for the superior power of the proposed approach in modeling cross-graph inference and
large-scale optimization.
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Chapter 3

Analogical Inference for Knowledge
Graphs

3.1 Background

Multi-relational embedding, or knowledge graph embedding, is the task of finding the latent rep-
resentations of entities and relations for better inference over knowledge graphs. This problem
has become increasingly important in recent machine learning due to the broad range of im-
portant applications of large-scale knowledge bases, such as Freebase (Bollacker et al., 2008),
DBpedia (Auer et al., 2007) and Google’s Knowledge Graph (Singhal, 2012), including question-
answering (Ferrucci et al., 2010), information retrieval (Dalton et al., 2014) and natural language
processing (Gabrilovich and Markovitch, 2009).

A knowledge base (KB) typically stores factual information as subject-relation-object triplets.
The collection of such triplets forms a directed graph whose nodes are entities and whose edges
are the relations among entities. Real-world knowledge graph is both extremely large and highly
incomplete by nature (Min et al., 2013). How can we use the observed triplets in an incom-
plete graph to induce the unobserved triples in the graph presents a tough challenge for machine
learning research.

Various statistical relational learning methods (Getoor, 2007; Nickel et al., 2015) have been
proposed for this task, among which vector-space embedding models are most particular due
to their advantageous performance and scalability (Bordes et al., 2013). The key idea in those
approaches is to find dimensionality reduced representations for both the entities and the rela-
tions, and hence force the models to generalize during the course of compression. Representative
models of this kind include tensor factorization (Singhal, 2012; Nickel et al., 2011), neural ten-
sor networks (Socher et al., 2013; Chen et al., 2013), translation-based models (Bordes et al.,
2013; Wang et al., 2014; Lin et al., 2015b), bilinear models and its variants (Yang et al., 2014;
Trouillon et al., 2016), pathwise methods (Guu et al., 2015), embeddings based on holographic
representations (Nickel et al., 2016), and product graphs that utilizes additional site information
for the predictions of unseen edges in a semi-supervised manner (Liu and Yang, 2015, 2016a).
Learning the embeddings of entities and relations can be viewed as a knowledge induction pro-
cess, as those induced latent representations can be used to make inference about new triplets
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Figure 3.1: Commutative diagram for the analogy between the Solar System (blue) and the
Rutherford-Bohr Model (red) (atom system). By viewing the atom system as a “miniature” of
the solar system (via the scale down relation), one is able to complete missing facts (triplets)
about the latter by mirroring the facts about the former. The analogy is built upon three basic
analogical structures (parallelograms): “sun is to planets as nucleus is to electrons”, “sun is
to mass as nucleus is to charge” and “planets are to mass as eletrons are to charge”.

that have not been seen before.
Despite the substantial efforts and great successes so far in the research on multi-relational

embedding, one important aspect is missing, i.e., to study the solutions of the problem from
the analogical inference point of view, by which we mean to rigorously define the desirable
analogical properties for multi-relational embedding of entities and relations, and to provide
algorithmic solution for optimizing the embeddings w.r.t. the analogical properties. We argue that
analogical inference is particularly desirable for knowledge base completion, since for instance if
system A (a subset of entities and relations) is analogous to system B (another subset of entities
and relations), then the unobserved triples in B could be inferred by mirroring their counterparts
in A. Figure 3.1 uses a toy example to illustrate the intuition, where system A corresponds to
the solar system with three concepts (entities), and system B corresponds the atom system with
another three concepts. An analogy exists between the two systems because B is a “miniature”
of A. As a result, knowing how the entities are related to each other in system A allows us to
make inference about how the entities are related to each other in system B by analogy.

Although analogical reasoning was an active research topic in classic AI (artificial intelli-
gence), early computational models mainly focused on non-differentiable rule-based reasoning
(Gentner, 1983; Falkenhainer et al., 1989; Turney, 2008), which can hardly scale to very large
KBs such as Freebase or Google’s Knowledge Graph. How to leverage the intuition of analogical
reasoning via statistical inference for automated embedding of very large knowledge graphs has
not been studied so far, to our knowledge.

It is worth mentioning that analogical structures have been observed in the output of several
word/entity embedding models (Mikolov et al., 2013; Pennington et al., 2014). However, those
observations stopped there as merely empirical observations. Can we mathematically formulate
the desirable analogical structures and leverage them in our objective functions to improve multi-
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relational embedding? In this case, can we develop new algorithms for tractable inference for the
embedding of very large knowledge graphs? These questions present a fundamental challenge
which has not been addressed by existing work, and answering these questions are the main
contributions we aim in this section. We name this open challenge as the analogical inference
problem, for the distinction from rule-based analogical reasoning in classic AI.

Our specific novel contributions are the following:
1. A new framework that, for the first time, explicitly models analogical structures in multi-

relational embedding, and state-of-the-art performance on benchmark datasets;

2. The algorithmic solution for conducting analogical inference in a differentiable manner,
whose implementation is as scalable as the fastest known relational embedding algorithms;

3. The theoretical insights on how our framework provides a unified view of several repre-
sentative methods as its special (and restricted) cases, and why the generalization of such
cases lead to the advantageous performance of our method as empirically observed.

3.2 Analogical Inference
Analogical reasoning is known to play a central role in human induction about knowledge (Gen-
tner, 1983; Minsky, 1988; Holyoak et al., 1996; Hofstadter, 2001). Here we provide a mathemat-
ical formulation of the analogical structures of interest in multi-relational embedding in a latent
semantic space, to support algorithmic inference about the embeddings of entities and relations
in a knowledge graph.

3.2.1 Notations

Let E and R be the space of all entities and their relations. A knowledge base K is a collection
of triplets (s, r, o) ∈ K where s ∈ E , o ∈ E , r ∈ R stand for the subject, object and their relation,
respectively. Denote by v ∈ R|E|×m a look-up table where ve ∈ Rm is the vector embedding for
entity e, and denote by tensor W ∈ R|R|×m×m another look-up table where Wr ∈ Rm×m is the
matrix embedding for relation r. Both v and W are to be learned from K.

3.2.2 Relations as Linear Maps

We formulate each relation r as a linear map that, for any given (s, r, o) ∈ K, transforms the
subject s from its original position in the vector space to somewhere near the object o. In other
words, we expect the latent representations for any valid (s, r, o) to satisfy

v>s Wr ≈ v>o (3.1)

The degree of satisfaction in the approximated form of (3.1) can be quantified using the inner
product of v>s Wr and vo. That is, we define a bilinear score function as:

φ(s, r, o) = 〈v>s Wr, vo〉 = v>s Wrvo (3.2)
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Our goal is to learn v and W such that φ(s, r, o) gives high scores to valid triples, and low scores
to the invalid ones. In contrast to some previous models (Bordes et al., 2013) where relations are
modeled as additive translating operators, namely vs+wr ≈ vo, the multiplicative formulation in
(3.1) offers a natural analogy to the first-order logic where each relation is treated as a predicate
operator over input arguments (subject and object in our case). Clearly, the linear transformation
defined by a matrix is a richer operator than the additive transformation defined by a vector.
Multiplicative models are also found to substantially outperform additive models empirically
(Nickel et al., 2011; Yang et al., 2014).

3.2.3 Normal Transformations
Instead using arbitrary matrices to implement linear maps, a particular family of matrices has
been studied for “well-behaved” linear maps. This family is named as the normal matrices.
Definition 3.2.1 (Normal Matrix). A real matrix A is normal if and only if A>A = AA>.

Normal matrices have nice theoretical properties which are often desirable form relational
modeling, e.g., they are unitarily diagonalizable and hence can be conveniently analyzed by the
spectral theorem (Dunford et al., 1971). Representative members of the normal family include:
• Symmetric Matrices for which WrW

>
r = W>

r Wr = W 2
r . These includes all diagonal ma-

trices and positive semi-definite matrices, and the symmetry implies φ(s, r, o) = φ(o, r, s).
They are suitable for modeling symmetric relations such as is identical.

• Skew-/Anti-symmetric Matrices for which WrW
>
r = W>

r Wr = −W 2
r , which implies

φ(s, r, o) = −φ(o, r, s). These matrices are suitable for modeling asymmetric relations
such as is parent of .

• Rotation Matrices for which WrW
>
r = W>

r Wr = Im, which suggests that the relation
r is invertible as W−1

r always exists. Rotation matrices are suitable for modeling 1-to-1
relationships (bijections).

• Circulant Matrices (Gray et al., 2006), which have been implicitly used in recent work on
holographic representations (Nickel et al., 2016). These matrices are usually related to the
learning of latent representations in the Fourier domain.

In the remaining parts, we denote all the real normal matrices in Rm×m as Nm(R).

3.2.4 Analogical Structures
Consider the famous example in the word embedding literature (Mikolov et al., 2013; Pennington
et al., 2014), for the following entities and relations among them:

“man is to king as woman is to queen”
In an abstract notion we denote the entities by a (as man) , b (as king), c (as woman) and d (as
queen), and the relations by r (as crown) and r′ (as male 7→ female), respectively. These give
us the subject-relation-object triplets as follows:

a
r→ b, c

r→ d, a
r′→ c, b

r′→ d (3.3)

For multi-relational embeddings, r and r′ are members ofR and are modeled as linear maps.
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The relational maps in (3.3) can be visualized using a commutative diagram (Adámek et al.,
2004; Brown and Porter, 2006) from the Category Theory, as shown in Figure 3.2, where each
node denotes an entity and each edge denotes a linear map that transforms one entity to the
other. We also refer to such a diagram as a “parallelogram” to highlight its particular algebraic
structure1.

Figure 3.2: Parallelogram diagram for the analogy of “a is to b as c is to d”, where each edge
denotes a linear map.

The parallelogram in Figure 3.2 represents a very basic analogical structure which could be
informative for the inference about unknown facts (triplets). To get a sense about why analogies
would help in the inference about unobserved facts, we notice that for entities a, b, c, d which
form an analogical structure in our example, the parallelogram structure is fully determined by
symmetry. This means that if we know a

r→ b and a r′→ c, then we can induce the remaining
triplets of c r→ d and b r′→ d. In other words, understanding the relation between man and king
helps us to fill up the unknown relation between woman and queen.

Analogical structures are not limited to parallelograms, of course, though parallelograms
often serve as the building blocks for more complex analogical structures. As an example, in
Figure 3.1 of §3.1 we show a compound analogical structure in the form of a triangular prism,
for mirroring the correspondent entities/relations between the atom system and the solar system.
Formally define the desirable analogical structures in a computationally tractable objective for
optimization is the key for solving our problem, which we will introduce next.

3.2.5 Commutative Constraints
Although it is tempting to explore all potentially interesting parallelograms in the modeling of
analogical structure, it is computationally intractable to examine the entire powerset of entities
as the candidate space of analogical structures. A more reasonable strategy is to identify some
desirable properties of the analogical structures we want to model, and use those properties as
constraints for reducing the candidate space.

An desirable property of the linear maps we want is that all the directed paths with the same
starting node and end node form the compositional equivalence. Denoting by “◦” the compo-
sition operator between two relations, the parallelogram in Figure 3.2 contains two equivalent
compositions as:

r ◦ r′ = r′ ◦ r (3.4)

which means that a is connected to d via either path. We call this the commutativity property
of the linear maps, which is a necessary condition for forming commutative parallelograms and

1Notice that this is different from parallelograms in the geometric sense because each edge here is a linear map
instead of the difference between two nodes in the vector space.
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therefore the corresponding analogical structures. Yet another example is given by Figure 3.1,
where sun can traverse to charge along multiple alternative paths of length three, implying the
commutativity of relations surrounded by, made of , scale down.

The composition of two relations (linear maps) is naturally implemented via matrix multipli-
cation (Yang et al., 2014; Guu et al., 2015), hence equation (3.4) indicates

Wr◦r′ = WrWr′ = Wr′Wr (3.5)

One may further require the commutative constraint (3.5) to be satisfied for any pair of relations
in R because they may be simultaneously present in the same commutative parallelogram for
certain subsets of entities. In this case, we say the relations inR form a commuting family.

It is worth mentioning thatNm(R) is not closed under matrix multiplication. As the result, the
composition rule in eq. (3.5) may not always yield a legal new relation—Wr◦r′ may no longer be
normal. However, any commuting family in Nm(R) is indeed closed under multiplication. This
explains the necessity of having a commuting family of relations from an alternative perspective.

3.2.6 Optimization
The generic goal for multi-relational embedding is to find entity and relation representations such
that positive triples labeled as y = +1 receive higher score than the negative triples labeled as
y = −1. This can be formulated as

min
v,W

Es,r,o,y∼D ` (φv,W (s, r, o), y) (3.6)

where φv,W (s, r, o) = v>s Wrvo is our score function based on the embeddings, ` is our loss
function, and D is the data distribution constructed based on the training set K.

To impose analogical structures among the representations, we in addition require the linear
maps associated with relations to form a commuting family of normal matrices.

This gives us the objective function for ANALOGY:

min
v,W

Es,r,o,y∼D ` (φv,W (s, r, o), y) (3.7)

s.t. WrW
>
r = W>

r Wr ∀r ∈ R (3.8)
WrWr′ = Wr′Wr ∀r, r′ ∈ R (3.9)

where constraints (3.8) and (3.9) are corresponding to the normality and commutativity require-
ments, respectively. Such a constrained optimization may appear to be computationally expen-
sive at the first glance. In §3.3, however, we will recast it as a simple lightweight problem for
which each SGD update can be carried out efficiently in O(m) time.

3.3 An Efficient Algorithm
The constrained optimization (3.7) is computationally challenging due to the large number of
model parameters in tensor W , the matrix normality constraints, and the quadratic number of
pairwise commutative constraints in (3.9).
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Interestingly, by exploiting the special properties of commuting normal matrices, we will
show in Corollary 3.3.2.1 that ANALOGY can be alternatively solved via an another formulation
of substantially lower complexity. Our findings are based on the following lemma and theorem:
Lemma 3.3.1. (Wilkinson and Wilkinson, 1965) For any real normal matrix A, there exists a
real orthogonal matrix Q and a block-diagonal matrix B such that A = QBQ>, where each
diagonal block of B is either

1. A real valued scalar.

2. A 2-dimensional real matrix in the form of
[
x −y
y x

]
, where both x, y are real scalars.

The lemma suggests any real normal matrix can be block-diagonalized into an almost-diagonal
canonical form. In the following, we use Bnm to denote all m×m almost-diagonal matrices with
n < m real scalars on the diagonal.
Theorem 3.3.2. (Adapted from (Grone et al., 1987)) If a set of real normal matrices A1, A2, ...
form a commuting family, namely

AiAj = AjAi ∀i, j (3.10)

then they can be block-diagonalized by the same real orthogonal basis Q.
The theorem implies that the set of dense relational matrices {Wr}r∈R, if mutually commuta-

tive, can always be simultaneously block-diagonalized into another set of sparse almost-diagonal
matrices {Br}r∈R.
Corollary 3.3.2.1. For any given solution (v∗,W ∗) of optimization (3.7), there always exists an
alternative set of embeddings (u∗, B∗) such that φv∗,W ∗(s, r, o) ≡ φu∗,B∗(s, r, o), ∀(s, r, o), and
(u∗, B∗) is given by the solution of:

min
u,B

Es,r,o,y∼D ` (φu,B(s, r, o), y) (3.11)

Br ∈ Bnm ∀r ∈ R (3.12)

The corollary offers a equivalent but highly efficient formulation for ANALOGY.

proof sketch. With commutative constraints, there must exist some orthogonal matrix Q such
that Wr = QBrQ

>, Br ∈ Bnm, ∀r ∈ R. We can plug-in these expressions into optimization (3.7)
and let u = vQ, obtaining

φv,W (s, r, o) =v>s Wrvo (3.13)

=v>s QBrQ
>vo (3.14)

=u>s Bruo = φu,B(s, r, o) (3.15)

In addition, it is not hard to verify that constraints (3.8) and (3.9) are automatically satisfied by
exploiting the facts that Q is orthogonal and Bnm is a commutative normal family.

Constraints (3.12) in the alternative optimization problem can be handled by simply binding
together the coefficients within each of those 2× 2 blocks in Br. Note each Br consists of only
m free parameters, allowing efficient evaluation of the gradient w.r.t. any given triple in O(m).
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3.4 A Unified View of Representative Methods
Here we provide a unified view of several embedding models (Yang et al., 2014; Trouillon et al.,
2016; Nickel et al., 2016), by showing that they are restricted versions under our framework,
hence are implicitly imposing analogical properties. This explains their strong empirical perfor-
mance as compared to other baselines (§3.5).

3.4.1 DistMult
DistMult (Yang et al., 2014) embeds both entities and relations as vectors, and defines the score
function as

φ(s, r, o) = 〈vs, vr, vo〉 (3.16)
where vs, vr, vo ∈ Rm, ∀s, r, o (3.17)

where 〈·, ·, ·〉 denotes the generalized inner product.
Proposition 3.4.1. DistMult embeddings can be fully recovered by ANALOGY embeddings when
n = m.

Proof. This is trivial to verify as the score function (3.17) can be rewritten as φ(s, r, o) = v>s Brvo
where Br is a diagonal matrix given by Br = diag(vr).

Entity analogies are encouraged in DistMult as the diagonal matrices diag(vr)’s are both
normal and mutually commutative. However, DistMult is restricted to model symmetric relations
only, since φ(s, r, o) ≡ φ(o, r, s).

3.4.2 Complex Embeddings (ComplEx)
ComplEx (Trouillon et al., 2016) extends the embeddings to the complex domain C, where

φ(s, r, o) = < (〈vs, vr, vo〉) (3.18)
where vs, vr, vo ∈ Cm,∀s, r, o (3.19)

where x denotes the complex conjugate of x.
Proposition 3.4.2. ComplEx embeddings of embedding size m can be fully recovered by ANAL-
OGY embeddings of embedding size 2m when n = 0.

Proof. Let <(x) and =(x) be the real and imaginary parts of any complex vector x. We recast φ
in (3.18) as

φ(r, s, o) = +
〈
<(vr),<(vs),<(vo)

〉
(3.20)

+
〈
<(vr),=(vs),=(vo)

〉
(3.21)

+
〈
=(vr),<(vs),=(vo)

〉
(3.22)

−
〈
=(vr),=(vs),<(vo)

〉
= v′s

>
Brv

′
o (3.23)
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The last equality is obtained via a change of variables: For any complex entity embedding v ∈
Cm, we define a new real embedding v′ ∈ R2m such that{

(v′)2k = <(v)k

(v′)2k−1 = =(v)k
∀k = 1, 2, . . .m (3.24)

The corresponding Br is a block-diagonal matrix in B0
2m with its k-th block given by[

<(vr)k −=(vr)k
=(vr)k <(vr)k

]
(3.25)

3.4.3 Holographic Embeddings (HolE)
HolE (Nickel et al., 2016) defines the score function as

φ(s, r, o) = 〈vr, vs ∗ vo〉 (3.26)
where vs, vr, vo ∈ Rm,∀s, r, o (3.27)

where the association of s and o is implemented via circular correlation denoted by ∗. This
formulation is motivated by the holographic reduced representation (Plate, 2003).

To relate HolE with ANALOGY, we rewrite (3.27) in a bilinear form with a circulant matrix
C(vr) in the middle

φ(r, s, o) = v>s C(vr)vo (3.28)

where entries of a circulant matrix are defined as

C(x) =


x1 xm · · · x3 x2

x2 x1 xm x3
... x2 x1

. . . ...

xm−1
. . . . . . xm

xm xm−1 · · · x2 x1

 (3.29)

It is not hard to verify that circulant matrices are normal and commute (Gray et al., 2006),
hence entity analogies are encouraged in HolE, for which optimization (3.7) reduces to an un-
constrained problem as equalities (3.8) and (3.9) are automatically satisfied when all Wr’s are
circulant.

We further reveal the equivalence between HolE and ComplEx with minor relaxation:
Proposition 3.4.3. HolE embeddings can be obtained via the following score function

φ(s, r, o) = < (〈vs, vr, vo〉) (3.30)
where vs, vr, vo ∈ F(Rm),∀s, r, o (3.31)

where F(Rm) denotes the image of Rm in Cm through the Discrete Fourier Transform (DFT). In
particular, the above reduces to ComplEx by relaxing F(Rm) to Cm.
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Proof. Let F be the DFT operator defined by F(x) = Fx where F ∈ Cm×m is called the Fourier
basis of DFT. A well-known property for circulant matrices is that any C(x) can always be
diagonalized by F , and its eigenvalues are given by Fx (Gray et al., 2006).

Hence the score function can be further recast as

φ(r, s, o) = v>s F
−1 diag(Fvr)Fvo (3.32)

=
1

m
(Fvs)

>
diag(Fvr)(Fvo) (3.33)

=
1

m
〈F(vs),F(vr),F(vo)〉 (3.34)

= <
[

1

m
〈F(vs),F(vr),F(vo)〉

]
(3.35)

Let v′s = F(vs), v
′
o = F(vo) and v′r = 1

m
F(vr), we obtain exactly the same score function as used

in ComplEx
φ(s, r, o) = <

(
〈v′s, v′r, v′o〉

)
(3.36)

(3.36) is equivalent to (3.18) apart from an additional constraint that v′s, v
′
r, v
′
o are the image of R

in the Fourier domain.

3.5 Experiments and Results

3.5.1 Datasets
We evaluate ANALOGY and the baselines over two benchmark datasets for multi-relational em-
bedding released by previous work (Bordes et al., 2013), namely a subset of Freebase (FB15K)
for generic facts and WordNet (WN18) for lexical relationships between words.

The dataset statistics are summarized in Table 3.1.

Dataset |E| |R| #train #valid #test

FB15K 14,951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000

Table 3.1: Dataset statistics for FB15K and WN18.

3.5.2 Methods for Comparison
We compare the performance of ANALOGY against a variety types of multi-relational embed-
ding models developed in recent years. Those models can be categorized as:
• Translation-based models where relations are modeled as translation operators in the em-

bedding space, including TransE (Bordes et al., 2013) and its variants TransH (Wang et al.,
2014), TransR (Lin et al., 2015b), TransD (Ji et al., 2015), STransE (Nguyen et al., 2016)
and RTransE (Garcia-Duran et al., 2015).
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• Multi-relational latent factor models including LFM (Jenatton et al., 2012) and RESCAL
(Nickel et al., 2011) based collective matrix factorization.

• Models involving neural network components such as neural tensor networks (Socher
et al., 2013) and PTransE-RNN (Lin et al., 2015b), where RNN stands for recurrent neural
networks.

• Pathwise models including three different variants of PTransE (Lin et al., 2015a) which
extend TransE by explicitly taking into account indirect connections (relational paths) be-
tween entities.

• Models subsumed under our proposed framework (§3.4), including DistMult (Yang et al.,
2014) based simple multiplicative interactions, ComplEx (Trouillon et al., 2016) using
complex coefficients and HolE (Nickel et al., 2016) based on holographic representations.
Those models are implicitly leveraging analogical structures per our previous analysis.

• Models enhanced by external information. We use Node+LinkFeat (NLF) (Toutanova and
Chen, 2015) as a representative example, which leverages textual mentions derived from
the ClueWeb corpus.

3.5.3 Evaluation Metrics
Following the literature of multi-relational embedding, we use the conventional metrics of Hits@k
and Mean Reciprocal Rank (MRR) which evaluate each system-produced ranked list for each test
instance and average the scores over all ranked lists for the entire test set of instances.

The two metrics would be flawed for the negative instances created in the test phase as a
ranked list may contain some positive instances in the training and validation sets (Bordes et al.,
2013). A recommended remedy, which we followed, is to remove all training- and validation-set
triples from all ranked lists during testing. We use “filt.” and “raw” to indicate the evaluation
metrics with or without filtering, respectively.

In the first set of our experiments, we used on Hits@k with k=10, which has been reported
for most methods in the literature. We also provide additional results of ANALOGY and a subset
of representative baseline methods using MRR, Hits@1 and Hits@3, to enable the comparison
with the methods whose published results are in those metrics.

3.5.4 Implementation Details
Loss Function: We use the logistic loss for ANALOGY throughout all experiments, namely
`(φ(s, r, o), y) = − log σ(yφ(s, r, o)), where σ is the sigmoid activation function. We empirically
found this simple loss function to perform reasonably well as compared to more sophisticated
ranking loss functions.

Asynchronous AdaGrad: Our C++ implementation2 runs over a CPU, as ANALOGY only
requires lightweight linear algebra routines. We use asynchronous stochastic gradient descent
(SGD) for optimization, where the gradients w.r.t. different mini-batches are simultaneously eval-
uated in multiple threads, and the gradient updates for the shared model parameters are carried

2Code available at https://github.com/quark0/ANALOGY.
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out without synchronization. While being efficient, asynchronous SGD causes little performance
drop when parameters associated with different mini-batches are mutually disjoint with a high
probability (Recht et al., 2011). The learning rate is adapted based on historical gradients as in
AdaGrad (Duchi et al., 2011).

Creation of Negative Samples: Since only valid triples (positive instances) are explicitly
given in the training set, invalid triples (negative instances) need to be artificially created. Specifi-
cally, for every positive example (s, r, o), we generate three negative instances (s′, r, o), (s, r′, o),
(s, r, o′) by corrupting s, r, o with random entities/relations s′ ∈ E , r′ ∈ R, o′ ∈ E . The union of
all positive and negative instances defines our data distribution D for SGD updates.

Model Selection: We conducted a grid search to find the hyperparameters of ANALOGY
which maximize the filtered MRR on the validation set, by enumerating all combinations of the
embedding size m ∈ {100, 150, 200}, `2 weight decay factor λ ∈ {10−1, 10−2, 10−3} of model
coefficients v and W , and the ratio of negative over positive samples α ∈ {3, 6}. The resulting
hyperparameters for the WN18 dataset are m = 200, λ = 10−2, α = 3, and those for the FB15K
dataset are m = 200, λ = 10−3, α = 6. The number of scalars (1× 1 blocks) on the diagonal of
Br is a hyperparameter manually set to be m

2
. We set the initial learning rate to be 0.1 for both

datasets and adjust it using AdaGrad during optimization. All models are trained for 500 epochs.

3.5.5 Results

Table 3.2 compares the Hits@10 score of ANALOGY with that of 23 competing methods using
the published scores for these methods in the literature on the WN18 and FB15K datasets. For
the methods not having both scores, the missing slots are indicated by “–”. The best score on
each dataset is marked in the bold face; if the differences among the top second or third scores
are not statistically significant from the top one, then these scores are also bold faced. We used
one-sample proportion test (Yang and Liu, 1999) at the 5% p-value level for testing the statistical
significances3.

Table 3.3 compares the methods (including ours) whose results in additional metrics are
available. The usage of the bold faces is the same as those in Table 3.2.

In both tables, ANALOGY performs either the best or the 2nd best which is in the equivalent
class with the best score in each case according statistical significance test. Specifically, on the
harder FB15K dataset in Table 3.2, which has a very large number of relations, our model out-
performs all baseline methods. These results provide a good evidence for the effective modeling
of analogical structures in our approach. We are pleased to see in Table 3.3 that ANALOGY
outperforms DistMult, ComplEx and HolE in all the metrics, as the latter three can be viewed as
more constrained versions of our method (as discussed in (§3.4)). Furthermore, our assertion on
HolE for being a special case of ComplEx (§3.4) is justified in the same table by the fact that the
performance of HolE is dominated by ComplEx.

In Figure 3.3 we show the empirical scalability of ANALOGY, which not only completes
one epoch in a few seconds on both datasets, but also scales linearly in the size of the embedding
problem. As compared to single-threaded AdaGrad, our asynchronous AdaGrad over 16 CPU

3Note proportion tests only apply to performance scores as proportions, including Hits@k, but are not applicable
to non-proportional scores such as MRR. Hence we only conducted the proportion tests on the Hits@k scores.
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Figure 3.3: CPU run time per epoch (secs) of ANALOGY. The left figure shows the run time
over increasing embedding sizes with 16 CPU threads; The right figure shows the run time over
increasing number of CPU threads with embedding size 200.

threads offers 11.4x and 8.3x speedup on FB15K and WN18, respectively, on a single commer-
cial desktop.

3.6 Summary
We presented a novel framework for explicitly modeling analogical structures in multi-relational
embedding, along with a differentiable objective function and a linear-time inference algorithm
for large-scale embedding of knowledge graphs. The proposed approach obtains the state-of-the-
art results on two popular benchmark datasets, outperforming a large number of strong baselines
in most cases. Although we only focused on the multi-relational inference for knowledge-base
embedding, we believe that analogical structures exist in many other machine learning problems
beyond the scope of this section. We hope this work shed light on a broad range of impor-
tant problems where scalable inference for analogical analysis would make an impact, such as
machine translation and image captioning (both require modeling cross-domain analogies).
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Table 3.2: Hits@10 (filt.) of all models on WN18 and FB15K categories into three groups: (i)
19 baselines without modeling analogies; (ii) 3 baselines and our proposed ANALOGY which
implicitly or explicitly enforce analogical properties over the induced embeddings (see §3.4);
(iii) One baseline relying on large external data resources in addition to the provided training set.

Models WN18 FB15K

Unstructured (Bordes et al., 2013) 38.2 6.3
RESCAL (Nickel et al., 2011) 52.8 44.1
NTN (Socher et al., 2013) 66.1 41.4
SME (Bordes et al., 2012) 74.1 41.3
SE (Bordes et al., 2011) 80.5 39.8
LFM (Jenatton et al., 2012) 81.6 33.1
TransH (Wang et al., 2014) 86.7 64.4
TransE (Bordes et al., 2013) 89.2 47.1
TransR (Lin et al., 2015b) 92.0 68.7
TKRL (Xie et al., 2016a) – 73.4
RTransE (Garcia-Duran et al., 2015) – 76.2
TransD (Ji et al., 2015) 92.2 77.3
CTransR (Lin et al., 2015b) 92.3 70.2
KG2E (He et al., 2015) 93.2 74.0
STransE (Nguyen et al., 2016) 93.4 79.7
DistMult (Yang et al., 2014) 93.6 82.4
TransSparse (Ji et al., 2016) 93.9 78.3
PTransE-MUL (Lin et al., 2015a) – 77.7
PTransE-RNN (Lin et al., 2015a) – 82.2
PTransE-ADD (Lin et al., 2015a) – 84.6
NLF (with external cor-
pus)
(Toutanova and Chen,
2015)

94.3 87.0

ComplEx (Trouillon et al., 2016) 94.7 84.0
HolE (Nickel et al., 2016) 94.9 73.9

Our ANALOGY 94.7 85.4
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Table 3.3: MRR and Hits@{1,3} of a subset of representative models on WN18 and FB15K.
The performance scores of TransE and REACAL are cf. the results published in (Trouillon et al.,
2016) and (Nickel et al., 2016), respectively.

WN18 FB15

Models
MRR
(filt.)

MRR
(raw)

Hits@1
(filt.)

Hits@3
(filt.)

MRR
(filt.)

MRR
(raw)

Hits@1
(filt.)

Hits@3
(filt.)

RESCAL (Nickel et al., 2011) 89.0 60.3 84.2 90.4 35.4 18.9 23.5 40.9
TransE (Bordes et al., 2013) 45.4 33.5 8.9 82.3 38.0 22.1 23.1 47.2
DistMult (Yang et al., 2014) 82.2 53.2 72.8 91.4 65.4 24.2 54.6 73.3
HolE (Nickel et al., 2016) 93.8 61.6 93.0 94.5 52.4 23.2 40.2 61.3
ComplEx (Trouillon et al., 2016) 94.1 58.7 93.6 94.5 69.2 24.2 59.9 75.9

Our ANALOGY 94.2 65.7 93.9 94.4 72.5 25.3 64.6 78.5
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Part II

Learning with Graph Induction
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Chapter 4

Nonparametric Learning of Graph
Diffusions

4.1 Background
Graph representation of data is ubiquitous in machine learning. In many scenarios, we are given
a partially labeled graph with only a small number of labeled vertices, and the task is to predict
the missing labels of the large number of unlabeled vertices.

With limited supervision, it is often crucial to leverage the intrinsic manifold structure of
both the labeled and unlabeled vertices during the training phase. A variety of graph-based
semi-supervised learning (SSL) algorithms have been proposed under this motivation, including
label propagation (Zhu and Ghahramani, 2002), Gaussian random fields (Zhu et al., 2003) and
Laplacian Support Vector Machines (Melacci and Belkin, 2011). Many of those approaches rely
on the assumption that strongly connected vertices are likely to share the same labels, and fall
under the manifold regularization framework (Belkin et al., 2006) where the graph Laplacian
(Chung, 1997) plays a key role.

Given a graph, the graph Laplacian characterizes how the label of each vertex diffuses (prop-
agates) from itself to its direct neighbors. While the graph Laplacian in its original form may
not be sufficiently expressive for modeling complex graph transduction patterns, it has been
shown that a rich family of important graph transduction patterns under various assumptions, in-
cluding multi-step random walk, heat diffusion (Kondor and Lafferty, 2002) and von-Neumann
diffusion (Ito et al., 2005), can be incorporated into SSL by transforming the spectrum1 of the
graph Laplacian with nonnegative nondecreasing functions (Smola and Kondor, 2003; Zhu et al.,
2004; Johnson and Zhang, 2008). The collection of those functions are referred to as the Spectral
Transformation (ST) family.

Despite of the expressiveness of the ST family, how to find the optimal ST for any problem
in hand is an open challenge. While manual specification (Smola and Kondor, 2003; Johnson
and Zhang, 2008) is clearly suboptimal, various approaches have been proposed to automatically
find the optimal ST. Among the existing works, parametric approaches assume the optimal ST
belongs some pre-specified function family (e.g. the polynomial or exponential), and then find

1In this chapter, we refer to the spectrum of a matrix as the multiset of its eigenvalues.

39



the function hyperparameter via grid search or curve-fitting (Kunegis and Lommatzsch, 2009).
However, the fundamental question about how to choose the function family is left unanswered,
and it is not clear whether commonly used parametric function families are rich enough to sub-
sume the true optimal ST. On the other hand, a more flexible nonparametric framework based
on kernel-target alignment has been studied in (Zhu et al., 2004), where the optimization of ST
is efficiently solved via quadratically constrained quadratic programming (QCQP). However, the
target matrix itself may be unreliable as it is constructed based a very small number of observed
labels, and it is not conclusive whether a better alignment score always leads to a better prediction
performance.

Note all the above approaches adopt two-step procedures, where the optimal ST is empiri-
cally estimated in some preprocessing step before SSL is carried out (with the ST obtained in the
previous step). We argue that the separation of ST optimization from SSL may result in subopti-
mal performance, as combining the two steps together will allow the learned ST to better adapt
to the problem structure.

This section addresses the aforementioned challenge by proposing a principled optimization
framework which simultaneously conducts SSL and finds the optimal ST for the graph Laplacian
used in SSL. Starting with the natural formulation of the joint optimization, we show how it can
be reformulated as an equivalent convex optimization problem via Lagrangian duality, and then
derive an efficient algorithm using the bundle method. We refer to our new approach as Adaptive
Spectral Transform (AST), meaning that the ST is automatically adapted to the problem in hand
and its target domain.

Besides improved performance over benchmark datasets across various domains, insights are
provided regarding the advantageous performance of AST by revisiting an existing theorem on
SSL from a new angle. Specifically, we show that AST actually aims to asymptotically minimize
the generalization error bound of SSL.

4.2 Nonparametric Adaptation of Graph Spectrum

4.2.1 Manifold Regularization
Given a graph G of m vertices, where each vertex denotes an instance and each edge encodes
the affinity between a pair of instances. Suppose only a very small set T of l vertices has been
labeled where l � m, our task is to predict the missing labels of the remaining m − l vertices
based on both the l labeled vertices and the intrinsic manifold structure of G.

Denote by yi the true label and by fi ∈ R the system-estimated score for vertex i, resp. In
order to leverage the labels, we hope fi and yi to be as close as possible for all i ∈ T . Meanwhile,
to leverage the large amount of unlabeled vertices, we want the scores for all (both labeled and
unlabeled) vertices to be smooth w.r.t. the graph structure of G. The two desired properties entail
the following optimization problem:

min
f∈Rm

1

l

∑
i∈T

`(fi, yi) + γf>Lf (4.1)

where the first term is the empirical loss of the system-predicted scores f ∈ Rm, L in the second
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term is the normalized graph Laplacian matrix associated with G characterizing G’s manifold
structure. Specifically, denote byA the adjacency matrix ofG, byD a diagonal matrix of degrees
with dii =

∑
j aij and by L = D − A the graph Laplacian. The normalized graph Laplacian is

defined as L = D−
1
2LD−

1
2 , with its eigensystem denoted by {(λi, φi)}mi=1. For convenience, we

assume the eigenvalues of L are in the increasing order: λ1 ≤ λ2 . . . ≤ λm. It is well known that
the smallest eigenvalue λ1 is always zero, and that φi’s with small indices tend to be “smoother”
over the data manifold than those with large indices (Chung, 1997).

In (4.1), the label information is encoded in the empirical loss `(fi, yi). E.g., one could
specify `(fi, yi) to be (fi − yi)2. The manifold assumption is encoded in the second term (a.k.a.
the manifold regularizer) involving the graph Laplacian, satisfying

f>Lf =
1

2

∑
i∼j

aij

(
fi√
dii
− fj√

djj

)2

(4.2)

=
m∑
i=1

λi 〈φi, f〉2 (4.3)

Eq. (4.2) suggests that the regularizer essentially encourages scores fi, fj (normalized by the
squared root of degrees) to be close when vertices i, j are strongly connected in G, namely
when aij is large. An alternative perspective, as implied by (4.3), is to think of the regularizer
as penalizing the projection of f onto different bases (the φ′is) with different weights (the λ′is),
where the smooth components in f are going to receive lighter penalty than the nonsmooth ones.

4.2.2 Spectral Transform

Although the graph Laplacian gives a nice characterization about how vertices in G influence
their direct neighbors, it is not sufficiently expressive for modeling complex label propagation
patterns, such as multi-step influence from a given vertex to its indirect neighbors and the decay
of such influence. As a simple remedy to incorporate a richer family of label propagation patterns
over the manifold, various methods have been proposed based on transforming the spectrum of
L using some nonnegative nondecreasing function, known as the spectral transformation (Smola
and Kondor, 2003; Zhu et al., 2004; Johnson and Zhang, 2008).

As an example, by taking the exponential of the Laplacian spectrum, one gets
∑m

i=1 e
βλiφiφ

>
i =

eβL where β is a nonnegative scalar. The transformed Laplacian has a neat physical interpreta-
tion in terms of heat diffusion process, and is closely related to infinite random walk with decay
over the manifold (Kondor and Lafferty, 2002). From (4.3)’s perspective, the replacement of λi
with eλi can be viewed as a way to exaggerate the difference in weighing the bases. That is, the
nonsmooth components in f are going to receive a larger relative penalty during the optimization
after the exponential transformation.

Formally, we define the Spectral Transformation (ST) over L as σ(L) :=
∑m

i=1 σ(λi)φiφ
>
i ,

where σ : R+ 7→ R+ is a nondecreasing function which transforms each Laplacian eigenvalue
to a nonnegative scalar. Besides the aforementioned diffusion kernel where σ(x) = eβx, other
commonly used STs include σ(x) = x + β (Gaussian field), σ(x) = 1

(α−x)β
(multi-step random
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walk), σ(x) =
[
cos
(
π
4
x
)]−1 (inverse cosine) (Smola and Kondor, 2003; Kunegis and Lom-

matzsch, 2009), etc.
The ST-enhanced SSL is formulated as

min
f∈Rm

1

l

∑
i∈T

`(fi, yi) + γf>σ(L)f (4.4)

4.2.3 Adapting the Spectral Transform
The nature of SSL described in (4.4) crucially depends our choice of ST. It is a common practice
to manually specify σ (Smola and Kondor, 2003; Johnson and Zhang, 2008) or to learn the
hyperparameter of σ within a pre-specified function family (Shawe-Taylor and Kandola, 2002;
Kunegis and Lommatzsch, 2009). Both methods are suboptimal when the true σ∗ lies in a broader
function space.

In this section, we focus on automatically learning σ∗ from data with no prior assumption on
its function form. In terms of SSL, we argue it suffices to learn {σ∗(λi)}mi=1 instead of the ana-
lytical expression of σ∗, as the objective in (4.4) is uniquely determined by these m transformed
eigenvalues. Therefore, in the following we switch our focus from the task of making σ adaptive
to the equivalent task of making each σ(λi) adaptive.

Define θ ∈ Rm where θi := σ(λi)
−1. We are going to focus on learning θ as notation-wise it

is more convenient to work with the reciprocals. After substituting the ST σ with θ in (4.4), the
optimization becomes

min
f∈Rm

1

l

∑
i∈T

`(fi, yi) + γ
m∑
i=1

θ−1
i 〈φi, f〉

2

︸ ︷︷ ︸
¯
C(f;θ)

(4.5)

When θi = 0, we define θ−1
i := 0 as its pseudo-inverse. For brevity, in the following we assume

all the θi’s are strictly positive. The singular case where some θi’s are exactly zero will be studied
specifically in Section 4.3.4.

To determine θ for (4.5), Zhu et al. (Zhu et al., 2004) proposed a two-step procedure based on
empirical kernel-target alignment. In the first step, an empirical estimation about θ is obtained
by maximizing the alignment score between the kernel matrix implied by θ, i.e.

∑
i θiφiφ

>
i , and

a target kernel matrix induced from a small amount of observed labels. In the second step, the
estimated θ̂ is plugged-into the SSL objective (4.5) for learning f.

Different from existing (manual/parametric/two-step) approaches, we argue that it is benefi-
cial to put the task of finding the optimal θ∗ and the task of SSL into a unified optimization frame-
work, as the two procedures can mutually reinforce each other, thus making θ∗ more adapted to
the problem structure.

It may appear straightforward to approach the aforementioned goal by minimizing (4.5) w.r.t.
f and w.r.t. θ in an alternating manner. Unfortunately, the resulting optimization is non-convex,
and a meaningless solution can be obtained by simply setting all the θ−1

i ’s to zero.
Instead, we propose to achieve this goal by solving the following optimization problem (AST)

min
θ∈Θ

(
min
f∈Rm ¯

C(f, θ)

)
+ τ‖θ‖1 (4.6)
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where
¯
C(f; θ) is the SSL objective defined in (4.5), τ is a positive scalar-valued tuning parameter,

and Θ denotes the set of all possible reciprocals of the transformed Laplacian spectrum

Θ =
{
θ : θi = σ(λi)

−1,∀i = 1, 2 . . .m, σ is a valid ST
}

= {θ : θ1 ≥ θ2, . . . ≥ θm ≥ 0}
(4.7)

The second equality is derived based on the facts that (i) the λi’s are in the increasing order (ii)
σ can be any nonnegative nondecreasing function.

The intuition behind optimization (4.6) is that we want the optimal θ∗ (and the associated
optimal ST) to simultaneously satisfy the following criteria:
(a) It should tend to minimize the SSL objective (4.5). As in multiple kernel learning (Lanckriet

et al., 2004; Bach et al., 2004), this is arguably the most natural and effective way to make
θ∗ adaptive to the problem structure.

(b) It should have a moderate `1-norm. Namely the “transformed” data manifold should have
a moderate total effective resistance (Boyd, 2006). As we will see later, this additional
requirement is crucial as it precludes degenerate solutions. It also makes our bundle method
more efficient by sparsifying θ (Section 4.3).

4.3 Optimization
Let us present our optimization strategies for solving (4.6), starting with the following theorem
Theorem 4.3.1 (Convexity of AST).
(4.6) is a convex optimization problem over θ.

After presenting the proof for Theorem 4.3.1 (Section 4.3.1), we propose our method to
compute the gradient for (4.6)’s structured objective function in Section 4.3.2, and offer a bundle
method for efficient optimization in Section 4.3.3. We will study the singular case where some
θi’s are allowed to be exactly zero in Section 4.3.4, which can be particularly useful in large-scale
scenarios. The SSL subroutine for AST is discussed in Section 4.3.5.

4.3.1 Convexity
We proof Theorem 4.3.1 by first reformulating optimization (4.6)’s objective function into an
equivalent minimax-type function via Lagrangian duality, and then showing the convexity of the
equivalent optimization problem.

The Lagrangian dual for
¯
C(f; θ) is

−ω(−u)− 1

4γ

m∑
i=1

θi 〈φi, u〉2︸ ︷︷ ︸
C̄(u;θ)

(4.8)

where ω(·) is the conjugate function for
∑

i∈T `(fi, yi). It is not hard to verify that the Slater’s
condition holds for optimization (4.5), i.e. minf∈Rm

¯
C(f; θ), thus strong duality ensures that

min
f∈Rm ¯

C(f; θ) = max
u∈Rm

C̄(u; θ) (4.9)
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and optimization (4.6) for AST can be recast as

min
θ∈Θ

(
max
u∈Rm

C̄(u; θ)

)
︸ ︷︷ ︸

g(θ)

+τ‖θ‖1 (4.10)

We claim the resulting equivalent problem (4.10) is convex over θ. To see this, notice that C̄(u; θ)
defined in (4.8) is an affine over θ for each given u, and recall that the pointwise maximum of
any set of convex functions (affines) is still convex, the first structured term g(θ) in optimization
(4.10), i.e. maxu∈Rm C̄(u; θ), is hence convex over θ. The conclusion follows by further noticing
the second term ‖θ‖1 in (4.10) is also a convex function, and that Θ in (4.7) is a convex domain.

4.3.2 Deriving the Structured Gradient
In this section, we discuss our method to compute the gradient of g(θ) := maxu C̄(u; θ) in
(4.10), denoted by∇θg(θ), as a prerequisite for subsequent optimization algorithms. We rely on
Danskin’s Theorem (Danskin, 1966) as g(θ) is the maximum of infinite number of functions:
Theorem 4.3.2 (Danskin’s Theorem). If function g(θ) is in the form of g(θ) := maxu∈U C̄(u; θ)
where U is a compact space and C̄(·; θ) is a differentiable function with C̄(u; θ) and∇C̄(u; θ) de-
pending continuously on u and θ, then the subgradient of g(θ), i.e. ∂θg(θ), is given by ∂θC̄(û; θ)
where û ∈ argmaxu∈U C̄(u; θ).

For our case U := Rm and the subgradient ∂θg(θ) can be substituted with gradient ∇θg(θ)
as the function of interest is differentiable. Recall that we have assumed all θi’s to be positive,
C̄(u; θ) is strictly convex over u and therefore û := argmaxu C̄(u; θ) is always unique.

Suppose û is given, following Theorem 4.3.2 we have

∇θg(θ) = ∇θC̄(û; θ) = −
(
〈φ1, û〉2 , . . . , 〈φm, û〉2

)>
4γ

(4.11)

To compute the R.H.S. of (4.11), we have to get û in advance via solving maxu C̄(u; θ). In case
the conjugate function involved in C̄(u; θ) is hard to work with, it is more convenient to first
obtain the primal solution f̂ by solving the corresponding primal problem minf

¯
C(f; θ) described

in (4.5), and then recover the dual solution û from f̂ via the K.K.T. condition.
According to the stationarity condition, û and f̂ must satisfy

û = 2γ

(
m∑
i=1

θ−1
i φiφ

>
i

)
f̂ (4.12)

This suggests an alternative to (4.11), i.e. to compute the gradient of g(θ) directly based on the
primal variable via

∇θg(θ) = −γ

(
〈φ1, f̂〉2

θ2
1

, . . . ,
〈φm, f̂〉2

θ2
m

)>
(4.13)

where f̂ := argminf ¯
C(f, θ) is obtained by applying any SSL algorithm2 to (4.5).

2Many off-the-shelf SSL solvers can be easily modified for solving the primal problem (4.5).
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Figure 4.1: A visual interpretation of Danskin’s theo-
rem. Computing the derivative of∇g(θ) is equivalent to
solving for û and computing the derivative of C̄(û; θ).

Figure 4.2: We maintain a piecewise
lowerbound g̃(θ), which keeps being
refined during optimization to better
approximate g(θ).

4.3.3 Bundle Method
After obtaining ∇θg(θ) according to section 4.3.2, it is straightforward to minimize the AST
objective in (4.10): g(θ) + γ‖θ‖1 via the subgradient method or proximal gradient method.
However, both algorithms have slow convergence rate, and it can be tricky to choose a suitable
step size to ensure efficient convergence.

We propose to use the bundle method for (4.10) (equivalently, (4.6)), which has been found
particularly efficient in solving problems involving structured loss functions (Kloft et al., 2009;
Sra et al., 2012). Our method is a variant of bundle method for regularized risk minimization
(BMRM) (Teo et al., 2010), and subsumes the semi-infinite linear programming (SILP) for large-
scale multiple kernel learning (Sonnenburg et al., 2006).

The key idea is to replace the “tough” part in (4.10), i.e. g(θ), with an “easy” piecewise linear
function g̃(θ) that lowerbounds the original g(θ), as shown in Figure 4.2. After the replacement,
optimization (4.10) becomes

min
θ∈Θ

g̃(θ) + τ‖θ‖1 (4.14)

We then alternate between solving the surrogate problem (4.14) and refining the lowerbound
g̃(θ) until convergence. Note (4.14) is a Linear Programming (LP), as its objective function is
piecewise linear and its feasible set Θ defined in (4.7) is a polyhedron.

To obtain a piecewise lowerbound g̃(θ) for g(θ), recall any convex function can be lower-
bounded by its tangents. Hence it suffices to let g̃(θ) be the supremum of a set of tangents
associated with historical iterations. Specifically, we define g̃(θ) at the t-th iteration as

g̃(t)(θ) := max
0≤i≤t−1

g(θ(i)) +
〈
∇g
(
θ(i)
)
, θ − θ(i)

〉
(4.15)

where superscript “(i)” indexes the quantity associated with the i-th iteration. It is not hard to
verify that g(t)(θ) ≤ g(θ) always holds, and that g(t)(θ) tends to better approximate g(θ) as t
increases.

Details of the bundle method for AST is presented in Algorithm 1.
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Algorithm 1: Bundle Method for AST
Input
ε desired convergence accuracy
L normalized graph Laplacian of G
` loss function based on available labels
γ tuning parameter for manifold regularization in (4.5)
τ tuning parameter for the `1-norm in (4.6)

Output
f system-inferred vertex labels
θ system-inferred reciprocals of

the transformed Laplacian eigenvalues
Initialization
t← 0;
/*take pseudo-inverse when necessary*/;
{λi, φi}mi=1 ← eig(L),

{
θ

(0)
i ← λ−1

i

}m
i=1

;
do

/*solve (4.5) via standard SSL*/;
f(t) ← argminf∈Rm ¯

C(f; θ(t));
g(θ(t))←

¯
C(f(t); θ(t));

/*according to (4.13)*/;

∇g(θ(t))← −γ
(
〈φ1,f(t)〉2

θ
(t)
1

2 , . . . , 〈φm,f
(t)〉2

θ
(t)
m

2

)>
;

t← t+ 1;
/*update the piecewise-linear lowerbound*/;
g̃(t)(θ)← max0≤i≤t−1 g(θ(i)) +

〈
∇g(θ(i)), θ − θ(i)

〉
;

/*solve the linear programming*/;
θ(t) ← argminθ∈{θ|θ1≥θ2≥...≥θm≥0} g̃

(t)(θ) + τ‖θ‖1;
while g(θ(t−1)) + ‖θ(t−1)‖1 − g̃(t)(θ(t))− ‖θ(t)‖1 > ε;
/*terminate when the piecewise-linear lowerbound is sufficiently close to the original
function*/;

4.3.4 Exploiting Singularity

Now let us focus on the singular cases where some θi’s (and their pseudo-inverse θ−1
i ’s) are

exactly zero. This may happen in two scenarios:

(a) During the bundle method, some θi’s are shrunk to zero after solving the LP (4.14) due to
the presence of the `1-regularization over θ.

(b) Small-valued θi’s associated with those nonsmooth φi’s are truncated to be zero for the sake
of scalability. This strategy will substantially reduce the parameter size of SSL, and has been
successfully applied to large-scale problems (Fergus et al., 2009).
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In the following, we will assume θi > 0 for 1 ≤ i ≤ k and θi = 0 for k < i ≤ m, where k � m.
To handle the singular case, we modify

¯
C(f; θ) in (4.5) as

1

l

∑
i∈T

`(fi, yi) + γ
∑

1≤i≤k

θ−1
i 〈φi, f〉

2 +
∑
k<i≤m

1{〈φi,f〉=0} (4.16)

where 1{·} equals zero if the inside-bracket condition is satisfied and equals +∞ otherwise. The
third term in (4.16) is crucial in that otherwise the projection of f onto φi for any k < i ≤ m will
be left unregularized and the resulting model can easily over-fit.

The solution f∗ for minimizing (4.16) must lie in the span of {φi}ki=1 as otherwise the indica-
tor function will go to infinity. Let f :=

∑
1≤j≤k αjφj . (4.16) can be reduced to consist of only k

(k � m) parameters
1

l

∑
i∈T

`

(
e>i
∑

1≤j≤k

αjφj, yi

)
+ γ

∑
1≤i≤k

θ−1
i α2

i (4.17)

where ei stands for the i-th unit vector in Rm.
Applying similar analysis3 in the previous subsections to the modified

¯
C(f; θ) in (4.16), for

singular cases the gradient of g(θ) during bundle method is given by

∇θg(θ) = −γ
(
〈φ1, f̂〉2

θ2
1

, . . .
〈φk, f̂〉2

θ2
k

, 0, . . . 0

)>
(4.18)

≡ −γ
(
α̂1

2

θ2
1

, . . .
α̂k

2

θ2
k

, 0, . . . 0

)>
(4.19)

where f̂ and α̂ are solutions for minimizing (4.16) and minimizing (4.17), respectively. Eq. (4.19)
holds because 〈φi, f̂〉 =

∑
1≤j≤k α̂j〈φi, φj〉 = α̂i.

To carry out bundle method for the singular case, we need to compute ∇θg(θ) via (4.19),
which requires α̂ as the solution of minimizing (4.17). Compared to solving optimization (4.5)
w.r.t. f ∈ Rm for the non-singular case, minimizing (4.17) w.r.t. α ∈ Rk can be performed much
more efficiently due to the substantially reduced parameter size (recall k � m). In fact, once
the top-k eigenvalues/eigenvectors {λj, φj}kj=1 of L is obtained, the time/space complexity for
both the LP subroutine and the SSL subroutine (4.17) in AST will become independent from m,
which is desirable for large problems.

4.3.5 Inner Optimization
Both the original and the singular AST involve solving a standard SSL problem as their inter-
mediate subroutines, i.e. minimizing (4.5) w.r.t. f or minimizing (4.17) w.r.t. α. Here we use
the later to demonstrate how existing off-the-self machine learning toolkits can be conveniently
leveraged for this purpose.

We specify `(·, ·) as the squared hinge loss. Besides large-margin property, its smoothness
often leads to efficient optimization (Chang et al., 2008). In this case, minimizing (4.17) can be

3The analysis follows Sections 4.3.1, 4.3.3 and 4.3.2. We omit the details due to the space limit.
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formulated as

min
α∈Rk

1

l

∑
i∈T

max
(
1− yie>i Φα, 0

)2
+ γα>diag(θ−1

1 , θ−1
2 , . . . θ−1

k )α (4.20)

where Φ = [φ1, φ2, . . . φk] ∈ Rm×k. By defining C := (γl)−1 and

wj := αj

√
2

θj
1 ≤ j ≤ k (4.21)

xi := diag

(√
θ1

2
,

√
θ2

2
. . .

√
θk
2

)
Φ>ei ∀i ∈ T (4.22)

optimization (4.20) can be recast as

min
w∈Rk

C
∑
i∈T

max
(
1− yi〈xi, w〉, 0

)2
+

1

2
‖w‖2

2 (4.23)

Note that (4.23) is the standard formulation of L2-SVM and can be efficiently solved via existing
solvers such as LIBLINEAR (Fan et al., 2008). After obtaining the solution ŵ for (4.23), the
solution α̂ for (4.20) can be easily recovered by rescaling ŵ, and then be plugged-into (4.18) to
compute∇θg(θ) required by the bundle method.

4.4 Generalization Bound

In this section we provide theoretical intuitions to justify the proposed method. We are going to
show that AST can be interpreted as an automatic procedure to asymptotically minimize the SSL
generalization error bound w.r.t. different STs.

Our analysis is based an existing theorem on the relationship between the generalization per-
formance of SSL and any given (fixed) graph-Laplacian spectrum (Johnson and Zhang, 2008).
While proving the theorem is not the contribution of this section, our method provides a new
angle to utilize the theorem. To the best of our knowledge, none of the previous work, includ-
ing (Johnson and Zhang, 2008), have formulated or provided any algorithmic solution to au-
tomatically determine the optimal spectrum among all candidate spectrums in this manner (i.e.
formulating and solving optimization (4.6)).
Theorem 4.4.1 (Adapted from (Johnson and Zhang, 2008)). Suppose indices of the labeled ver-
tices in T are sampled from {1, 2, . . . ,m} uniformly at random. Let f̂(T ) be the system-predicted
scores in Rm obtained via solving optimization (4.4) for any given T , and let ` be a convex loss
function such that |∇`| ≤ b. We have

1

m− l
ET
∑
i 6∈T

`
(̂

fi(T ), yi

)
≤

(
min
f∈Rm

1

m

m∑
i=1

` (fi, yi) + γf>σ(L)f

)
+
b2tr (σ(L)−1)

2γlm
(4.24)
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The L.H.S. of (4.24) stands for the empirical risk of SSL for any given ST σ.
To see the connections between AST and Theorem 4.4.1, let τ = b2

2γlm
and recall that σ(L) =∑m

i=1 σ(λi)φiφ
>
i =

∑m
i=1 θ

−1
i φiφ

>
i , we rewrite the R.H.S. of (4.24) as(

min
f∈Rm

1

m

m∑
i=1

` (fi, yi) + γ

m∑
i=1

θ−1
i 〈φi, f〉

2

)
+ τ‖θ‖1 (4.25)

By comparing the AST objective function in (4.6) with (4.25), we see that AST is essentially
trying to minimize a surrogate of (4.25) where the true loss 1

m

∑m
i=1 ` (fi, yi) based on all the m

vertex labels is substituted by the empirical loss 1
l

∑
i∈T ` (fi, yi) based on l partially observed

vertex labels. The two loss functions are asymptotically equivalent as l → m. This substitution
is necessary since in practice it is impossible for us to access all of the m vertex labels during the
training phase.

Notice there is an additional isotonic constraint θ1 ≥ θ2 . . . θm ≥ 0 for AST when mini-
mizing the generalization error bound (4.25) w.r.t. θ, indicating AST always favours the smooth
components over the non-smooth ones in the final prediction f̂.

4.5 Experiments and Results

4.5.1 Methods for Comparison

We compare the performance of the following methods in our experiments:
(a) SSL is the standard SSL in (4.1) with squared hinge loss. This amounts to taking the ST in

(4.4) to be the identity function σ(x) = x.

(b) Diffusion is the ST-enhanced SSL described in (4.4), where σ is parametrized as σ(x) = eβx

a.k.a. the heat diffusion kernel. Prior to SSL, β is empirically estimated by maximizing the
kernel alignment score (Shawe-Taylor and Kandola, 2002) via grid search over [10−4, 104].

(c) GRF is another ST-enhanced SSL algorithm with σ(x) = x+β, a.k.a. the kernel of Gaussian
random field. As in Diffusion, β is empirically estimated before SSL via kernel alignment
over [10−5, 103].

(d) NKTA is nonparametric kernel-target alignment (Zhu et al., 2004), a two-step procedure
for ST-enhanced SSL. Prior to SSL, we find σ that maximizes the kernel alignment score
without assuming its parametric form. Then, we solve (4.4) with the empirically estimated
ST. We follow the formulation of (Zhu et al., 2004) and solve the QCQP subroutine using
SeDuMi4.

(e) AST is our proposed method of Adaptive Spectral Transform. Different from the aforemen-
tioned two-step kernel alignment approaches, the optimal ST is obtained along with SSL by
solving the convex optimization problem (4.6) via bundle method.

4http://sedumi.ie.lehigh.edu/downloads
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4.5.2 Experimental Setup
We compare AST against the baselines on benchmark datasets in three different domains:

1. 20NewsGroup for document classification. We use the PC-vs-Mac subset consisting of
1,993 documents with binary labels. Following (Zhu et al., 2004), a symmetrized un-
weighted 10-nearest neighbor (10NN) graph is constructed based on the cosine similarity
between documents.

2. Isolet for spoken letter recognition consisting of 7,797 instances from 26 classes 5. We
construct a 10NN graph using the Euclidean distance between the audio features.

3. MNIST for pattern recognition of the handwritten digits. We use the full training set
consisting of 60,000 images from 10 classes (digits 0-9). A 10NN graph is constructed
based on the Euclidean distance among the images.

For all datasets, parameter γ for manifold regularization is fixed to be 10−3 for all methods
as we find the results are not sensitive to the choice of γ. Instead of tuning the hyperparameter
τ for our method AST, we simply fix it to be 10−2 across all experiments. For all datasets, only
the top-50 Laplacian eigenvectors are used for SSL. For AST we use the singular version as
described in Section 4.3.4 with k = 50.

Given a dataset of m data points, we randomly sample l labeled vertices and predict the
remaining unlabeled m − l vertices with methods for comparison. The training size l gradually
increases from 24 to 27, and the experiment is repeated for 30 times for each given training size.
The mean and standard variance of the prediction accuracy are reported.

4.5.3 Results
Results are presented in Figure 4.3. For all aforementioned baselines, the prediction accuracy
improves and the variance tends to decrease as we gradually enlarge the training size.

First, it is evident that all ST-enhanced methods outperform the traditional SSL on average,
which justifies the effectiveness of allowing richer graph transduction patterns over the data
manifold.

Secondly, among two-step methods based on empirical kernel-target alignment, it is evident
that the nonparametric method NKTA outperforms the two parametric methods Diffusion and
GRF, which justifies our previous argument that pre-specifying ST to be within some common
function family is too restrictive to accurately capture the “true” graph transduction pattern.

Finally, between nonparametric methods, we observe that the performance of AST dominates
NKTA over all datasets. This confirms our intuition that ST-finding and SSL are able to mutually
reinforce each other during the joint optimization. The advantageous empirical performance of
AST also justifies our previous theoretical analysis in Section 4.4.

We also notice AST yields much more stable performance than NKTA. We conjecture that
NKTA might be subject to noise as it is trying to fit the target kernel matrix—a quantity induced
from only a very limited amount of labels. On the other hand, AST is designed to be adaptive to
the problem structure—an arguably more robust reference.

5All the algorithms for comparison can be trivially extended to the multi-class case by decomposing the original
problem into multiple binary SSL tasks.
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Figure 4.3: Classification accuracy on 20NewsGroup, Isolet and MNIST

We plotted out the STs produced by different baseline methods over MNIST when l = 128
in Figure 4.4. Each sub-figure contains 30 curves in total corresponding to the 30 different runs.
From the figure we see that while the STs produced by Diffusion and GRF are restricted to
specific parametric forms, STs produced by NKTA and AST are more flexible. Figure 4.4 also
shows that STs produced by AST tend to be have lower variance than those produced by NKTA,
which justifies our previous stability claim about AST.

An empirical comparison of the speed of all the baseline methods is presented in Table 4.1.

Table 4.1: Speed comparison of different methods on MNIST when l = 128 given the top-50
eigenvalues/eigenvectors. We use convergence tolerance ε = 10−3 for AST.

Method SSL Diffusion GRF NKTA AST

Time (secs) 0.148 0.564 0.738 24.152 2.556

4.6 Summary
In this chapter, we proposed a new nonparametric framework for carrying out SSL and finding
the Laplacian spectrum of the data manifold simultaneously. Different from existing two-step
approaches based on manual specification or kernel-target alignment, our approach unifies both
tasks into a joint optimization problem and is naturally adaptive to the problem structure. Our
formulation enjoys convexity and can be efficiently solved using the bundle method. Theoretical
insights are provided to show that the proposed algorithm attempts to asymptotically minimize
the SSL generalization error bound w.r.t. the Laplacian spectrum. The merits of our framework
are verified by its advantageous empirical performance over strong baselines.
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Figure 4.4: STs produced by all methods on the MNIST dataset (each sub-figure contains the
results of 30 different runs), where the x-axis and y-axis (log-scale) correspond to the original
spectrum λi’s and the transformed spectrum σ(λi)’s, resp.
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Part III

Learning Neural Network Architectures
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Chapter 5

Architecture Search with Hierarchical
Representations

5.1 Background

Discovering high-performance neural network architectures required years of extensive research
by human experts through trial and error. As far as the image classification task is concerned,
state-of-the-art convolutional neural networks are going beyond deep, chain-structured layout
(Simonyan and Zisserman, 2014; He et al., 2016a) towards increasingly more complex, graph-
structured topologies (Szegedy et al., 2015, 2016, 2017; Larsson et al., 2016; Xie et al., 2016b;
Huang et al., 2016). The combinatorial explosion in the design space makes handcrafted archi-
tectures not only expensive to obtain, but also likely to be suboptimal in performance.

Recently, there has been a surge of interest in using algorithms to automate the manual pro-
cess of architecture design. Their goal can be described as finding the optimal architecture in
a given search space such that the validation accuracy is maximized on the given task. Repre-
sentative architecture search algorithms can be categorized as random with weights prediction
(Brock et al., 2017), Monte Carlo Tree Search (Negrinho and Gordon, 2017), evolution (Stan-
ley and Miikkulainen, 2002; Xie and Yuille, 2017; Miikkulainen et al., 2017; Real et al., 2017),
and reinforcement learning (Baker et al., 2016; Zoph and Le, 2016; Zoph et al., 2017; Zhong
et al., 2017), among which reinforcement learning approaches have demonstrated the strongest
empirical performance so far.

Architecture search can be computationally very intensive as each evaluation typically re-
quires training a neural network. Therefore, it is common to restrict the search space to reduce
complexity and increase efficiency of architecture search. Various constraints that have been
used include: growing a convolutional “backbone” with skip connections (Real et al., 2017), a
linear sequence of filter banks (Brock et al., 2017), or a directed graph where every node has
exactly two predecessors (Zoph et al., 2017). In this work we constrain the search space by
imposing a hierarchical network structure, while allowing flexible network topologies (directed
acyclic graphs) at each level of the hierarchy. Starting from a small set of primitives such as
convolutional and pooling operations at the bottom level of the hierarchy, higher-level compu-
tation graphs, or motifs, are formed by using lower-level motifs as their building blocks. The
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motifs at the top of the hierarchy are stacked multiple times to form the final neural network.
This approach enables search algorithms to implement powerful hierarchical modules where any
change in the motifs is propagated across the whole network immediately. This is analogous
to the modularized design patterns used in many hand-crafted architectures, e.g. VGGNet (Si-
monyan and Zisserman, 2014), ResNet (He et al., 2016a), and Inception (Szegedy et al., 2016)
are all comprised of building blocks. In our case, a hierarchical architecture is discovered through
evolutionary or random search.

The evolution of neural architectures was studied as a sub-task of neuroevolution (Holland,
1975; Miller et al., 1989; Yao, 1999; Stanley and Miikkulainen, 2002; Floreano et al., 2008),
where the topology of a neural network is simultaneously evolved along with its weights and
hyperparameters. The benefits of indirect encoding schemes, such as multi-scale representations,
have historically been discussed in Gruau et al. (1994); Kitano (1990); Stanley (2007); Stanley
et al. (2009). Despite these pioneer studies, evolutionary or random architecture search has not
been investigated at larger scale on image classification benchmarks until recently (Real et al.,
2017; Miikkulainen et al., 2017; Xie and Yuille, 2017; Brock et al., 2017; Negrinho and Gordon,
2017). Our work shows that the power of simple search methods can be substantially enhanced
using well-designed search spaces.

Our experimental setup resembles Zoph et al. (2017), where an architecture found using re-
inforcement learning obtained the state-of-the-art performance on ImageNet. Our work reveals
that random or evolutionary methods, which so far have been seen as less efficient, can scale and
achieve competitive performance on this task if combined with a powerful architecture represen-
tation, whilst utilizing significantly less computational resources.

To summarize, our main contributions are:
1. We introduce hierarchical representations for describing neural network architectures.

2. We show that competitive architectures for image classification can be obtained even with
simplistic random search, which demonstrates the importance of search space construction.

3. We present a scalable variant of evolutionary search which further improves the results and
achieves the best published results1 among evolutionary architecture search techniques.

5.2 Architecture Representations
We first describe flat representations of neural architectures (Sect. 5.2.1), where each architecture
is represented as a single directed acyclic graph of primitive operations. Then we move on to
hierarchical representations (Sect. 5.2.2) where smaller graph motifs are used as building blocks
to form larger motifs. Primitive operations are discussed in Sect. 5.2.3.

5.2.1 Flat Architecture Representation
We consider a family of neural network architectures represented by a single-source, single-sink
computation graph that transforms the input at the source to the output at the sink. Each node of
the graph corresponds to a feature map, and each directed edge is associated with some primitive

1See Real et al. (2018) for a more recent study of evolutionary methods for architecture search.
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Figure 5.1: An example of a three-level hierarchical architecture representation. The bottom row
shows how level-1 primitive operations o(1)

1 , o
(1)
2 , o

(1)
3 are assembled into a level-2 motif o(2)

1 . The
top row shows how level-2 motifs o(2)

1 , o
(2)
2 , o

(2)
3 are then assembled into a level-3 motif o(3)

1 .

operation (e.g. convolution, pooling, etc.) that transforms the feature map in the input node and
passes it to the output node.

Formally, an architecture is defined by the representation (G,o), consisting of two ingredi-
ents:

1. A set of available operations o = {o1, o2, . . . }.
2. An adjacency matrix G specifying the neural network graph of operations, where Gij = k

means that the k-th operation ok is to be placed between nodes i and j.
The architecture is obtained by assembling operations o according to the adjacency matrix G:

arch = assemble(G,o) (5.1)

in a way that the resulting neural network sequentially computes the feature map xi of each node
i from the feature maps xj of its predecessor nodes j following the topological ordering:

xi = merge
[
{oGij(xj)}j<i

]
, i = 2, . . . , |G| (5.2)

Here, |G| is the number of nodes in a graph, and merge is an operation combining multiple
feature maps into one, which in our experiments was implemented as depthwise concatenation.
An alternative option of element-wise addition is less flexible as it requires the incoming feature
maps to contain the same number of channels, and is strictly subsumed by concatenation if the
resulting xi is immediately followed by a 1× 1 convolution.

5.2.2 Hierarchical Architecture Representation
The key idea of the hierarchical architecture representation is to have several motifs at different
levels of hierarchy, where lower-level motifs are used as building blocks (operations) during the
construction of higher-level motifs.
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Consider a hierarchy of L levels where the `-th level contains M` motifs. The highest-level
` = L contains only a single motif corresponding to the full architecture, and the lowest level
` = 1 is the set of primitive operations. We recursively define o(`)

m , the m-th motif in level `,
as the composition of lower-level motifs o(`−1) =

{
o

(`−1)
1 , o

(`−1)
2 , ..., o

(`−1)
M(`−1)

}
according to its

network structure G(`)
m :

o(`)
m = assemble

(
G(`)
m ,o

(`−1)
)
, ∀` = 2, . . . , L (5.3)

A hierarchical architecture representation is therefore defined by
({
{G(`)

m }M`
m=1

}L
`=2
,o(1)

)
, as it

is determined by network structures of motifs at all levels and the set of bottom-level primitives.
The assembly process is illustrated in Fig. 5.1.

5.2.3 Primitive Operations

We consider the following six primitives at the bottom level of the hierarchy (` = 1,M` = 6):
• 1× 1 convolution of C channels
• 3× 3 depthwise convolution
• 3× 3 separable convolution of C channels
• 3× 3 max-pooling
• 3× 3 average-pooling
• identity

If applicable, all primitives are of stride one and the convolved feature maps are padded to pre-
serve their spatial resolution. All convolutional operations are followed by batch normalization
and ReLU activation (Ioffe and Szegedy, 2015); their number of channels is fixed to a constant
C. We note that convolutions with larger receptive fields and more channels can be expressed as
motifs of such primitives. Indeed, large receptive fields can be obtained by stacking 3×3 convo-
lutions in a chain structure (Simonyan and Zisserman, 2014), and wider convolutions with more
channels can be obtained by merging the outputs of multiple convolutions through depthwise
concatenation.

We also introduce a special none op, which indicates that there is no edge between nodes i
and j. It is added to the pool of operations at each level.

5.3 Evolutionary Architecture Search

Evolutionary search over neural network architectures can be performed by treating the repre-
sentations of Sect. 5.2 as genotypes. We first introduce an action space for mutating hierarchical
genotypes (Sect. 5.3.1), as well as a diversification-based scheme to obtain the initial population
(Sect. 5.3.2). We then describe tournament selection and random search in Sect. 5.3.3, and our
distributed implementation in Sect. 5.3.4.
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5.3.1 Mutation

A single mutation of a hierarchical genotype consists of the following sequence of actions:
1. Sample a target non-primitive level ` ≥ 2.

2. Sample a target motif m in the target level.

3. Sample a random successor node i in the target motif.

4. Sample a random predecessor node j in the target motif.

5. Replace the current operation o(`−1)
k between j and i with a randomly sampled operation

o
(`−1)
k′ .

In the case of flat genotypes which consist of two levels (one of which is the fixed level of
primitives), the first step is omitted and ` is set to 2. The mutation can be summarized as:

[G(`)
m ]ij = k′ (5.4)

where `,m, i, j, k′ are randomly sampled from uniform distributions over their respective do-
mains. Notably, the above mutation process is powerful enough to perform various modifications
on the target motif, such as:

1. Add a new edge: if o(`−1)
k = none and o(`−1)

k′ 6= none.

2. Alter an existing edge: if o(`−1)
k 6= none and o(`−1)

k′ 6= none and o(`−1)
k′ 6= o

(`−1)
k .

3. Remove an existing edge: if o(`−1)
k 6= none and if o(`−1)

k′ = none.

5.3.2 Initialization

To initialize the population of genotypes, we use the following strategy:
1. Create a “trivial” genotype where each motif is set to a chain of identity mappings.

2. Diversify the genotype by applying a large number (e.g. 1000) of random mutations.
In contrast to several previous works where genotypes are initialized by trivial networks (Stan-
ley and Miikkulainen, 2002; Real et al., 2017), the above diversification-based scheme not only
offers a good initial coverage of the search space with non-trivial architectures, but also helps to
avoid an additional bias introduced by handcrafted initialization routines. In fact, this strategy en-
sures initial architectures are reasonably well-performing even without any search, as suggested
by our random sample results in Table 5.1.

5.3.3 Search Algorithms

Our evolutionary search algorithm is based on tournament selection (Goldberg and Deb, 1991).
Starting from an initial population of random genotypes, tournament selection provides a mech-
anism to pick promising genotypes from the population, and to place its mutated offspring back
into the population. By repeating this process, the quality of the population keeps being refined
over time. We always train a model from scratch for a fixed number of iterations, and we refer to
the training and evaluation of a single model as an evolution step. The genotype with the highest
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Algorithm 2: ASYNCEVO Asynchronous Evolution (Controller)
Input: Data queue Q containing initial genotypes; Memory tableM recording evaluated

genotypes and their fitness.
while True do

if HASIDLEWORKER() then
genotype← ASYNCTOURNAMENTSELECT(M)
genotype′ ← MUTATE(genotype)
Q ← Q∪ genotype′

Algorithm 3: ASYNCEVO Asynchronous Evolution (Worker)
Input: Training set T , validation set V; Shared memory tableM and data queue Q.
while True do

if |Q| > 0 then
genotype← Q.pop()
arch← ASSEMBLE(genotype)
model← TRAIN(arch, T )
fitness← EVALUATE(model,V)
M←M∪ (genotype, fitness)

fitness (validation accuracy) among the entire population is selected as the final output after a
fixed amount of time.

A tournament is formed by a random set of genotypes sampled from the current effective
population, among which the individual with the highest fitness value wins the tournament. The
selection pressure is controlled by the tournament size, which is set to 5% of the population size
in our case. We do not remove any genotypes from the population, allowing it to grow with time,
maintaining architecture diversity. Our evolution algorithm is similar to the binary tournament
selection used in a recent large-scale evolutionary method (Real et al., 2017).

We also investigated random search, a simpler strategy which has not been sufficiently ex-
plored in the literature, as an alternative to evolution. In this case, a population of genotypes is
generated randomly, the fitness is computed for each genotype in the same way as done in evolu-
tion, and the genotype with the highest fitness is selected as the final output. The main advantage
of this method is that it can be run in parallel over the entire population, substantially reducing
the search time.

5.3.4 Implementation
Our distributed implementation is asynchronous, consisting of a single controller responsible for
performing evolution over the genotypes, and a set of workers responsible for their evaluation.
Both parties have access to a shared tabular memoryM recording the population of genotypes
and their fitness, as well as a data queueQ containing the genotypes with unknown fitness which
should be evaluated.
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Specifically, the controller will perform tournament selection of a genotype fromM when-
ever a worker becomes available, followed by the mutation of the selected genotype and its inser-
tion into Q for fitness evaluation (Algorithm 2). A worker will pick up an unevaluated genotype
from Q whenever there is one available, assemble it into an architecture, carry out training and
validation, and then record the validation accuracy (fitness) inM (Algorithm 3). Architectures
are trained from scratch for a fixed number of steps with random weight initialization. We do
not rely on weight inheritance as in (Real et al., 2017), though incorporating it into our system is
possible. Note that during architecture evolution no synchronization is required, and all workers
are fully occupied.

5.4 Experiments and Results

5.4.1 Experimental Setup

In our experiments, we use the proposed search framework to learn the architecture of a convo-
lutional cell, rather than the entire model. The reason is that we would like to be able to quickly
compute the fitness of the candidate architecture and then transfer it to a larger model, which is
achieved by using less cells for fitness computation and more cells for full model evaluation. A
similar approach has recently been used in (Zoph et al., 2017; Zhong et al., 2017).

Architecture search is carried out entirely on the CIFAR-10 training set, which we split into
two sub-sets of 40K training and 10K validation images. Candidate models are trained on the
training subset, and evaluated on the validation subset to obtain the fitness. Once the search pro-
cess is over, the selected cell is plugged into a large model which is trained on the combination
of training and validation sub-sets, and the accuracy is reported on the CIFAR-10 test set. We
note that the test set is never used for model selection, and it is only used for final model evalu-
ation. We also evaluate the cells, learned on CIFAR-10, in a large-scale setting on the ImageNet
challenge dataset (Sect. 5.4.3).

For CIFAR-10 experiments we use a model which consists of 3 × 3 convolution with c0

channels, followed by 3 groups of learned convolutional cells, each group containing N cells.
After each cell (with c input channels) we insert 3 × 3 separable convolution which has stride
2 and 2c channels if it is the last cell of the group, and stride 1 and c channels otherwise. The
purpose of these convolutions is to control the number of channels as well as reduce the spatial
resolution. The last cell is followed by global average pooling and a linear softmax layer.

For fitness computation we use a smaller model with c0 = 16 and N = 1, shown in Fig. 5.2
(top-left). It is trained using SGD with 0.9 momentum for 5000 steps, starting with the learning
rate 0.1, which is reduced by 10x after 4000 and 4500 steps. The batch size is 256, and the
weight decay value is 3 · 10−4. We employ standard training data augmentation where a 24× 24
crop is randomly sampled from a 32 × 32 image, followed by random horizontal flipping. The
evaluation is performed on the full size 32× 32 image.

A note on variance. We found that the variance due to optimization was non-negligible, and
we believe that reporting it is important for performing a fair comparison and assessing model
capabilities. When training CIFAR models, we have observed standard deviation of up to 0.2%
using the exact same setup. The solution we adopted was to compute the fitness as the average
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Figure 5.2: Image classification models constructed using the cells optimized with architecture
search. Top-left: small model used during architecture search on CIFAR-10. Top-right: large
CIFAR-10 model used for learned cell evaluation. Bottom: ImageNet model used for learned
cell evaluation.

accuracy over 4 training-evaluation runs.
For the evaluation of the learned cell architecture on CIFAR-10, we use a larger model with

c0 = 64 and N = 2, shown in Fig. 5.2 (top-right). The larger model is trained for 80K steps,
starting with a learning rate 0.1, which is reduced by 10x after 40K, 60K, and 70K steps. The
rest of the training settings are the same as used for fitness computation. We report mean and
standard deviation computed over 5 training-evaluation runs.

For the evaluation on the ILSVRC ImageNet challenge dataset (Russakovsky et al., 2015),
we use an architecture similar to the one used for CIFAR, with the following changes. An input
299×299 image is passed through two convolutional layers with 32 and 64 channels and stride 2
each. It is followed by 4 groups of convolutional cells where the first group contains a single cell
(and has c0 = 64 input channels), and the remaining three groups haveN = 2 cells each (Fig. 5.2,
bottom). We use SGD with momentum which is run for 200K steps, starting with a learning rate
of 0.1, which is reduced by 10x after 100K, 150K, and 175K steps. The batch size is 1024, and
weight decay is 10−4. We did not use auxiliary losses, weight averaging, label smoothing or path
dropout empirically found effective in (Zoph et al., 2017). The training augmentation is the same
as in (Szegedy et al., 2016), and consists in random crops, horizontal flips and brightness and
contrast changes. We report the single-crop top-1 and top-5 error on the ILSVRC validation set.

5.4.2 Architecture Search on CIFAR-10

We run the evolution on flat and hierarchical genotypes for 7000 steps using 200 GPU workers.
The initial size of the randomly initialized population is 200, which later grows as a result of
tournament selection and mutation (Sect. 5.3). For the hierarchical representation, we use three
levels (L = 3), with M1 = 6,M2 = 6,M3 = 1. Each of the level-2 motifs is a graph with
|G(2)| = 4 nodes, and the level-3 motif is a graph with |G(3)| = 5 nodes. Each level-2 motif
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Figure 5.3: Fitness and number of parameters vs evolution step for flat and hierarchical rep-
resentations. Left: fitness of a genotype generated at each evolution step. Middle: maximum
fitness across all genotypes generated before each evolution step. Right: number of parameters
in the small CIFAR-10 model constructed using the genotype generated at each evolution step.

is followed by a 1 × 1 convolution with the same number of channels as on the motif input to
reduce the number of parameters. For the flat representation, we used a graph with 11 nodes to
achieve a comparable number of edges.

The evolution process is visualized in Fig. 5.3. The left plot shows the fitness of the genotype
generated at each step of evolution: the fitness grows fast initially, and plateaus over time. The
middle plot shows the best fitness observed by each evolution step. Since the first 200 steps
correspond to a random initialization and mutation starts after that, the best architecture found at
step 200 corresponds to the output of random search over 200 architectures.

Fig. 5.3 (right) shows the number of parameters in the small network (used for fitness com-
putation), constructed using the genotype produced at each step. Notably, flat genotypes achieve
higher fitness, but at the cost of larger parameter count. We thus also consider a parameter-
constrained variant of the flat genotype, where only the genotypes with the number of parameters
under a fixed threshold are permitted; the threshold is chosen so that the flat genotype has a sim-
ilar number of parameters to the hierarchical one. In this setting hierarchical and flat genotypes
achieve similar fitness.

To demonstrate that improvement in fitness of the hierarchical architecture is correlated with
the improvement in the accuracy of the corresponding large model trained till convergence, we
plot the relative accuracy improvements in Fig. 5.4.

As far as the search cost is concerned, it takes 1 hour to compute the fitness of one architecture
on a single P100 GPU (which involves 4 rounds of training and evaluation). Using 200 GPUs,
it thus takes 1 hour to perform random search over 200 architectures and 1.5 days to do the
evolutionary search with 7000 steps. This is significantly faster than 11 days using 250 GPUs
reported by Real et al. (2017) and 4 days using 450 GPUs reported by Zoph et al. (2017).
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Figure 5.4: Accuracy improvement over the course of evolution, measured with respect to the
first random genotype. The small model is the model used for fitness computation during evolu-
tion (its absolute fitness value is shown with the red curve in Fig. 5.3 (middle)). The large model
is the model where the evolved cell architecture is deployed for training and evaluation.

Search Method CIFAR-10 error (%) ImageNet
Top-1/Top-5 error (%)

Flat repr-n, random architecture 4.56± 0.11 21.4/5.8
Flat repr-n, random search (200 samples) 4.02± 0.11 20.8/5.7
Flat repr-n, evolution (7000 samples) 3.92± 0.06 20.6/5.6
Flat repr-n, parameter-constrained, evolution (7000 samples) 4.17± 0.08 21.2/5.8

Hier. repr-n, random architecture 4.21± 0.11 21.5/5.8
Hier. repr-n, random search (200 samples) 4.04± 0.2 20.4/5.3
Hier. repr-n, random search (7000 samples) 3.91± 0.15 21.0/5.5
Hier. repr-n, evolution (7000 samples) 3.75 ± 0.12 20.3/5.2

Table 5.1: Classification results on the CIFAR-10 test set and ILSVRC validation set obtained
using the architectures found using various representations and search methods.

5.4.3 Architecture Evaluation on CIFAR-10 and ImageNet

We now turn to the evaluation of architectures found using random and evolutionary search on
CIFAR-10 and ImageNet. The results are presented in Table 5.1.

First, we note that randomly sampled architectures already perform surprisingly well, which
we attribute to the representation power of our architecture spaces. Second, random search over
200 architectures achieves very competitive results on both CIFAR-10 and ImageNet, which is
remarkable considering it took 1 hour to carry out. This demonstrates that well-constructed
architecture representations, coupled with diversified sampling and simple search form a simple
but strong baseline for architecture search. Our best results are achieved using evolution over
hierarchical representations: 3.75%± 0.12% classification error on the CIFAR-10 test set (using
c0 = 64 channels), which is further improved to 3.63%± 0.10% with more channels (c0 = 128).
On the ImageNet validation set, we achieve 20.3% top-1 classification error and 5.2% top-5
error. We put these results in the context of the state of the art in Tables 5.2 and 5.3. We
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achieve the best published results on CIFAR-10 using evolutionary architecture search, and also
demonstrate competitive performance compared to the best published methods on both CIFAR-
10 and ImageNet. Our ImageNet model has 64M parameters, which is comparable to Inception-
ResNet-v2 (55.8M) but larger than NASNet-A (22.6M).

Model Error (%)

ResNet-1001 + pre-activation (He et al., 2016b) 4.62
Wide ResNet-40-10 + dropout (Zagoruyko and Komodakis, 2016) 3.8
DenseNet (k=24) (Huang et al., 2016) 3.74
DenseNet-BC (k=40) (Huang et al., 2016) 3.46

MetaQNN (Baker et al., 2016) 6.92
NAS v3 (Zoph and Le, 2016) 3.65
Block-QNN-A (Zhong et al., 2017) 3.60
NASNet-A (Zoph et al., 2017) 3.41

Evolving DNN (Miikkulainen et al., 2017) 7.3
Genetic CNN (Xie and Yuille, 2017) 7.10
Large-scale Evolution (Real et al., 2017) 5.4
SMASH (Brock et al., 2017) 4.03

Evolutionary search, hier. repr., c0 = 64 3.75± 0.12
Evolutionary search, hier. repr., c0 = 128 3.63± 0.10

Table 5.2: Classification error on the CIFAR-10 test set obtained using state-of-the-art models
as well as the best-performing architecture found using the proposed architecture search frame-
work. Existing models are grouped as (from top to bottom): handcrafted architectures, architec-
tures found using reinforcement learning, and architectures found using random or evolutionary
search.

Model Top-1 error (%) Top-5 error (%)

Inception-v3 (Szegedy et al., 2016) 21.2 5.6
Xception (Chollet, 2016) 21.0 5.5
Inception-ResNet-v2 (Szegedy et al., 2017) 19.9 4.9
NASNet-A (Zoph et al., 2017) 19.2 4.7

Evolutionary search, hier. repr., c0 = 64 20.3 5.2

Table 5.3: Classification error on the ImageNet validation set obtained using state-of-the-art
models as well as the best-performing architecture found using our framework.

5.5 Summary
In this chapter, we presented an efficient evolutionary method that identifies high-performing
neural architectures based on a novel hierarchical representation scheme, where smaller oper-
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ations are used as the building blocks to form the larger ones. Notably, we show that strong
results can be obtained even using simplistic search algorithms, such as evolution or random
search, when coupled with a well-designed architecture representation. Our best architecture
yields the state-of-the-art result on CIFAR-10 among evolutionary methods and successfully
scales to ImageNet with highly competitive performance. In the future, we are interested in com-
bining hierarchical representations with search algorithms beyond evolution and random search,
such as simulated annealing and gradient-based optimization (Chapter 6).
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Chapter 6

Differentiable Architecture Search

6.1 Background

Discovering state-of-the-art neural network architectures requires substantial effort of human
experts. Recently, there has been a growing interest in developing algorithmic solutions to auto-
mate the manual process of architecture design. The automatically searched architectures have
achieved highly competitive performance in tasks such as image classification (Zoph and Le,
2016; Zoph et al., 2017; Liu et al., 2017b,a; Real et al., 2018) and object detection (Zoph et al.,
2017).

The best existing architecture search algorithms are computationally demanding despite their
remarkable performance. For example, obtaining a state-of-the-art architecture for CIFAR-10
and ImageNet required 1800 GPU days of reinforcement learning (RL) (Zoph et al., 2017) or
3150 GPU days of evolution (Real et al., 2018). Several approaches for speeding up have been
proposed, such as imposing a particular structure of the search space (Liu et al., 2017b,a), weights
or performance prediction for each individual architecture (Brock et al., 2017; Baker et al., 2018)
and weight sharing across multiple architectures (Pham et al., 2018b; Cai et al., 2018), but the
fundamental challenge of scalability remains. An inherent cause of inefficiency for the dominant
approaches, e.g. based on RL, evolution, MCTS (Negrinho and Gordon, 2017), SMBO (Liu
et al., 2017a) or Bayesian optimization (Kandasamy et al., 2018), is the fact that architecture
search is treated as a black-box optimization problem over a discrete domain, which leads to a
large number of architecture evaluations required.

In this work, we approach the problem from a different angle, and propose a method for
efficient architecture search called DARTS (Differentiable ARchiTecture Search). Instead of
searching over a discrete set of candidate architectures, we relax the search space to be contin-
uous, so that the architecture can be optimized with respect to its validation set performance by
gradient descent. The data efficiency of gradient-based optimization, as opposed to inefficient
black-box search, allows DARTS to achieve competitive performance with the state of the art us-
ing orders of magnitude less computation resources. It also outperforms another recent efficient
architecture search method, ENAS (Pham et al., 2018b). Notably, DARTS is simpler than many
existing approaches as it does not involve any controllers (Zoph and Le, 2016; Baker et al., 2016;
Zoph et al., 2017; Pham et al., 2018b), hypernetworks (Brock et al., 2017) or performance pre-
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dictors (Liu et al., 2017a), yet it is generic enough to search for both convolutional and recurrent
architectures.

The idea of searching architectures within a continuous domain is not new (Saxena and Ver-
beek, 2016; Ahmed and Torresani, 2017; Shin et al., 2018), but there are several major distinc-
tions. While prior works seek to fine-tune a specific aspect of an architecture, such as filter shapes
or branching patterns in a convolutional network, DARTS is able to discover high-performance
architectures with complex graph topologies within a rich search space. Moreover, DARTS is
not restricted to any specific architecture family, and is able to discover both convolutional and
recurrent networks.

In our experiments (Sect. 6.3) we show that DARTS is able to design a convolutional cell that
achieves 2.83± 0.06% test error on CIFAR-10 for image classification, which is competitive with
the state-of-the-art result by regularized evolution (Real et al., 2018) obtained using three orders
of magnitude more computation resources. The same convolutional cell also achieves 26.9%
top-1 error when transferred to ImageNet (mobile setting), which is comparable to the best RL
method (Zoph et al., 2017). On the language modeling task, DARTS discovers a recurrent cell
that achieves 56.1 perplexity on Penn Treebank (PTB) in a single GPU day, outperforming both
extensively tuned LSTM (Melis et al., 2017) and all the existing automatically searched cells
based on NAS (Zoph and Le, 2016) and ENAS (Pham et al., 2018b).

Our contributions can be summarized as follows:
• We introduce a novel algorithm for differentiable network architecture search that is appli-

cable to both convolutional and recurrent architectures.
• Through extensive experiments on image classification and language modeling tasks we

show that gradient-based architecture search achieves highly competitive results on CIFAR-10
and outperforms the state of the art on PTB. This is a very interesting result, considering
that so far the best architecture search methods used non-differentiable search techniques,
e.g. based on RL (Zoph et al., 2017) or evolution (Real et al., 2018; Liu et al., 2017b).

• We achieve remarkable architecture search efficiency (with 4 GPUs: 2.83% error on CIFAR-
10 in 1 day; 56.1 perplexity on PTB in 6 hours) which we attribute to the use of gradient-
based optimization as opposed to non-differentiable search techniques.

• We show that the architectures learned by DARTS on CIFAR-10 and PTB are transferable
to ImageNet and WikiText-2, respectively.

The implementation of DARTS is available at https://github.com/quark0/darts

6.2 Differentiable Architecture Search

We describe our search space in general form in Sect. 6.2.1, where the computation procedure
for an architecture (or a cell in it) is represented as a directed acyclic graph. We then introduce a
simple continuous relaxation scheme for our search space which leads to a differentiable learning
objective for the joint optimization of the architecture and its weights (Sect. 6.2.2). Finally, we
propose an approximation technique to make the algorithm computationally feasible and efficient
(Sect. 6.2.3).

68

https://github.com/quark0/darts


6.2.1 Search Space
Following Zoph et al. (2017); Real et al. (2018); Liu et al. (2017a,b), we search for a computation
cell as the building block of the final architecture. The learned cell could either be stacked to
form a convolutional network or recursively connected to form a recurrent network.

A cell is a directed acyclic graph consisting of an ordered sequence of N nodes. Each node
x(i) is a latent representation (e.g. a feature map in convolutional networks) and each directed
edge (i, j) is associated with some operation o(i,j) that transforms x(i). We assume the cell to have
two input nodes and a single output node. For convolutional cells, the input nodes are defined
as the cell outputs in the previous two layers (Zoph et al., 2017). For recurrent cells, these are
defined as the input at the current step and the state carried from the previous step. The output of
the cell is obtained by applying a reduction operation (e.g. concatenation) to all the intermediate
nodes.

Each intermediate node is computed based on all of its predecessors:

x(i) =
∑
j<i

o(i,j)(x(j)) (6.1)

A special zero operation is also included to indicate a lack of connection between two nodes.
The task of learning the cell therefore reduces to learning the operations on its edges.

6.2.2 Continuous Relaxation and Optimization
Let O be a set of candidate operations (e.g., convolution, max pooling, zero) where each opera-
tion represents some function o(·) to be applied to x(i). To make the search space continuous, we
relax the categorical choice of a particular operation as a softmax over all possible operations:

ō(i,j)(x) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(x) (6.2)

where the operation mixing weights for a pair of nodes (i, j) are parameterized by a vector α(i,j)

of dimension |O|. The task of architecture search then reduces to learning a set of continuous
variables α =

{
α(i,j)

}
, as illustrated in Fig. 6.1. At the end of search, a discrete architecture

is obtained by replacing each mixed operation ō(i,j) with the most likely operation, i.e., o(i,j) =

argmaxo∈O α
(i,j)
o . In the following, we refer to α as the (encoding of the) architecture.

After relaxation, our goal is to jointly learn the architecture α and the weights w within all
the mixed operations (e.g. weights of the convolution filters). Analogous to architecture search
using RL (Zoph and Le, 2016; Zoph et al., 2017; Pham et al., 2018b) or evolution (Liu et al.,
2017b; Real et al., 2018) where the validation set performance is treated as the reward or fitness,
DARTS aims to optimize the validation loss, but using gradient descent.

Denote by Ltrain and Lval the training and the validation loss, respectively. Both losses
are determined not only by the architecture α, but also the weights w in the network. The
goal for architecture search is to find α∗ that minimizes the validation loss Lval(w∗, α∗), where
the weights w∗ associated with the architecture are obtained by minimizing the training loss
w∗ = argminw Ltrain(w, α∗).
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Figure 6.1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Con-
tinuous relaxation of the search space by placing a mixture of candidate operations on each edge.
(c) Joint optimization of the mixing probabilities and the network weights by solving a bilevel
optimization problem. (d) Inducing the final architecture from the learned mixing probabilities.

Algorithm 4: DARTS – Differentiable Architecture Search
Create a mixed operation ō(i,j) parametrized by α(i,j) for each edge (i, j)
while not converged do

1. Update weights w by descending∇wLtrain(w, α)
2. Update architecture α by descending∇αLval(w − ξ∇wLtrain(w, α), α)

Replace ō(i,j) with o(i,j) = argmaxo∈O α
(i,j)
o for each edge (i, j)

This implies a bilevel optimization problem (Anandalingam and Friesz, 1992; Colson et al.,
2007) with α as the upper-level variable and w as the lower-level variable:

min
α

Lval(w∗(α), α) (6.3)

s.t. w∗(α) = argminw Ltrain(w, α) (6.4)

The nested formulation also arises in gradient-based hyperparameter optimization (Maclaurin
et al., 2015; Pedregosa, 2016; Franceschi et al., 2018), which is related in a sense that the ar-
chitecture α could be viewed as a special type of hyperparameter, although its dimension is
substantially higher than scalar-valued hyperparameters such as the learning rate, and it is harder
to optimize.

6.2.3 Approximation
Solving the bilevel optimization exactly is prohibitive, as it would require recomputing w∗(α)
by solving the inner problem (6.4) whenever there is any change in α. We thus propose an ap-
proximate iterative optimization procedure where w and α are optimized by alternating between
gradient descent steps in the weight and architecture spaces respectively (Alg. 4). At step k,
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given the current architecture αk−1, we obtain wk by moving wk−1 in the direction of minimising
the training loss Ltrain(wk−1, αk−1). Then, keeping the weights wk fixed, we update the archi-
tecture so as to minimize the the validation loss after a single step of gradient descent w.r.t. the
weights:

Lval(wk − ξ∇wLtrain(wk, αk−1), αk−1) (6.5)

where ξ is the learning rate for this virtual gradient step. The motivation behind (6.5) is that we
would like to find an architecture which has a low validation loss when its weights are optimized
by (a single step of) gradient descent, where the one-step unrolled weights serve as the surrogate
for w∗(α). Related approaches have been used in meta-learning for model transfer (Finn et al.,
2017) and gradient-based hyperparameter tuning (Luketina et al., 2016). Notably, the dynamics
of our iterative algorithm define a Stackelberg game (Von Stackelberg, 1934) between α’s opti-
mizer (leader) and w’s optimizer (follower), which typically requires the leader to anticipate the
follower’s next-step move in order to achieve an equilibrium. While we are not currently aware
of the convergence guarantees for our optimization algorithm, in practice it is able to converge
with a suitable choice of ξ1. We also note that when momentum is enabled for weight optimisa-
tion, the one-step forward learning objective (6.5) is modified accordingly and all of our analysis
still applies.

The architecture gradient is given by differentiating (6.5) w.r.t. α (we omit the step index k
for brevity):

∇αLval(w′, α)− ξ∇2
α,wLtrain(w, α)∇w′Lval(w′, α) (6.6)

where w′ = w − ξ∇wLtrain(w, α) denotes the weights for a one-step forward model. The gra-
dient (6.6) contains a matrix-vector product in its second term, which is expensive to compute.
Fortunately, the complexity can be substantially reduced using the finite difference approxima-
tion. Let ε be a small scalar 2 and w± = w ± ε∇w′Lval(w′, α). Then:

∇2
α,wLtrain(w, α)∇w′Lval(w′, α) ≈ ∇αLtrain(w+, α)−∇αLtrain(w−, α)

2ε
(6.7)

Evaluating the finite difference requires only two forward passes for the weights and two back-
ward passes for α, and the complexity is reduced from O(|α||w|) to O(|α|+ |w|).

First-order Approximation: When ξ = 0, the second-order derivative in (6.6) will then
disappear. In this case, the architecture gradient is given by ∇αLval(w, α), corresponding to
the simple heuristic of optimizing the validation loss by assuming α and w are independent of
each other. This leads to some speed-up but empirically worse performance, according to our
experimental results in Table 6.1 and Table 6.2. In the following, we refer to the case of ξ = 0
as the first-order approximation, and refer to the gradient formulation with ξ > 0 as the second-
order approximation.

6.2.4 Deriving Discrete Architectures
After obtaining the continuous architecture encoding α, the discrete architecture is derived by

1A simple working strategy is to set ξ equal to the learning rate for w’s optimizer.
2We found ε = 0.01/‖∇w′Lval(w

′, α)‖2 to be sufficiently accurate in all of our experiments.

71



0.5 1.0 1.5 2.0 2.5 3.0 3.5
Architecture ( )

2

1

0

1

2

3

W
ei

gh
ts

 (w
)

= 0.7
= 0.5
= 0.3
= 0

Figure 6.2: Learning dynamics of our iterative al-
gorithm when Lval(w, α) = αw − 2α + 1 and
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1. Retaining k strongest predecessors for each intermediate node, where the strength of an
edge is defined as maxo∈O,o 6=zero

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)

o′ )
. To make our derived architecture com-

parable with those in the existing works, we use k = 2 for convolutional cells (Zoph et al.,
2017; Real et al., 2018) and k = 1 for recurrent cells (Pham et al., 2018b).

2. Replacing every mixed operation as the most likely operation by taking the argmax.

6.3 Experiments and Results
Our experiments on CIFAR-10 and PTB consist of two stages, architecture search (Sect. 6.3.1)
and architecture evaluation (Sect. 6.3.2). In the first stage, we search for the cell architectures
using DARTS, and determine the best cells based on their validation performance. In the sec-
ond stage, we use these cells to construct larger architectures, which we train from scratch and
report their performance on the test set. Finally, we investigate the transferability of the best
cells learned on CIFAR-10 and PTB by evaluating them on ImageNet and WikiText-2 (WT2)
respectively (Sect. 6.3.4).

6.3.1 Architecture Search
6.3.1.1 Searching for Convolutional Cells on CIFAR-10

We include the following operations inO: 3×3 and 5×5 separable convolutions, 3×3 and 5×5
dilated separable convolutions, 3× 3 max pooling, 3× 3 average pooling, identity, and zero. All
operations are of stride one (if applicable) and the convolved feature maps are padded to preserve
their spatial resolution. We use the ReLU-Conv-BN order for convolutional operations, and each
separable convolution is always applied twice (Zoph et al., 2017; Real et al., 2018; Liu et al.,
2017a).

Our convolutional cell consists of N = 7 nodes, among which the output node is defined as
the depthwise concatenation of all the intermediate nodes (input nodes excluded). The rest of the
setup follows Zoph et al. (2017); Liu et al. (2017a); Real et al. (2018), where a network is then
formed by stacking multiple cells together. The first and second nodes of cell k are set equal
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to the outputs of cell k − 2 and cell k − 1, respectively, and 1 × 1 convolutions are inserted as
necessary. Cells located at the 1/3 and 2/3 of the total depth of the network are reduction cells, in
which all the operations adjacent to the input nodes are of stride two. The architecture encoding
therefore is (αnormal, αreduce), where αnormal is shared by all the normal cells and αreduce is
shared by all the reduction cells.

Since the architecture will be varying throughout the search process, we always use batch-
specific statistics for batch normalization rather than the global moving average. Learnable affine
parameters in all batch normalizations are disabled during the search process to avoid rescaling
the outputs of the candidate operations.

To carry out architecture search, we hold out half of the CIFAR-10 training data as the val-
idation set. A small network consisting of 8 cells is trained using DARTS for 50 epochs, with
batch size 64 (for both the training and validation sets) and the initial number of channels 16.
The numbers were chosen to ensure the network can fit into a single GPU. We use momentum
SGD to optimize the weights w, with initial learning rate ηw = 0.025 (annealed down to zero
following a cosine schedule), momentum 0.9, and weight decay 3 × 10−4. We use Adam as
the optimizer for the architecture variables (the α’s in both the normal and reduction cells), with
initial learning rate ηα = 3 × 10−4, momentum β = (0.5, 0.999) and weight decay 10−3. The
search takes one day on a single GPU3.

6.3.1.2 Searching for Recurrent Cells on Penn Treebank

Our set of available operations includes the special zero operation, as well as linear transforma-
tions followed by tanh, relu, sigmoid, and identity mapping, respectively. The choice of these
candidate operations follows Zoph and Le (2016); Pham et al. (2018b).

Our recurrent cell consists of N = 12 nodes. The very first intermediate node is obtained by
linearly transforming the two input nodes, adding up the results and then passing through a tanh
activation function, as done in the ENAS cell (Pham et al., 2018b). The rest of the cell is learned.
Other settings are similar to ENAS, where each operation is enhanced with a highway bypass
(Zilly et al., 2016) and the cell output is defined as the average of all the intermediate nodes.
As in ENAS, we enable batch normalization in each node to prevent gradient explosion during
architecture search, and disable it during architecture evaluation. Learnable affine parameters
in batch normalization are disabled, as we did for convolutional cells. Our recurrent network
consists of only a single cell. Namely, we do not assume any repetitive patterns within the
architecture by vertically stacking the cells.

For architecture search, both the embedding and the hidden sizes are 300. The linear trans-
formation parameters across all candidate operations on the same edge are shared (their shapes
are all 300 × 300). This allows us to fit the continuous architecture within a single GPU. The
network is then trained for 50 epochs using SGD without momentum, with learning rate ηw = 20,
batch size 256, BPTT length 35, and weight decay 5× 10−7. We apply variational dropout (Gal
and Ghahramani, 2016) of 0.2 to word embeddings, 0.75 to the cell input, and 0.25 to all the
hidden nodes. A dropout of 0.75 is also applied to the output layer. Other training settings are

3All of our experiments were performed using NVIDIA GTX 1080Ti GPUs.
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Figure 6.3: Search progress of DARTS for convolutional cells on CIFAR-10 and recurrent cells
on PTB. We keep track of the most recent architectures over time. Each architecture snapshot is
re-trained from scratch using the training set (for 100 epochs on CIFAR-10 and for 300 epochs
on PTB) and then evaluated on the validation set. For each task, we repeat the experiments for
4 times with different random seeds, and report the median and the best (per run) validation per-
formance of the architectures over time. As references, we also report the results (with the same
evaluation setup and comparable number of parameters) of the best existing cells discovered us-
ing RL or evolution, including NASNet-A (Zoph et al., 2017) (1800 GPU days), AmoebaNet-A
(3150 GPU days) (Real et al., 2018) and ENAS (0.5 GPU day) (Pham et al., 2018b).

identical to those in Merity et al. (2017); Yang et al. (2017). Similarly to the convolutional ar-
chitectures, we use Adam for the optimization of α, with initial learning rate ηα = 3 × 10−3,
momentum β = (0.9, 0.999) and weight decay 10−3. The search takes 6 hours on a single GPU.

6.3.2 Architecture Evaluation

To select the architecture for evaluation, we run DARTS four times with different random seeds
and pick the best cell based on the validation performance. This is particularly important for
recurrent cells, as the optimization outcomes can be initialization-sensitive (Fig. 6.3).

To evaluate the selected architecture, we randomly initialize its weights (weights learned
during the search process are discarded), train it from scratch, and report its performance on the
test set. We note the test set is never used for architecture search or architecture selection.

6.3.2.1 CIFAR-10

A large network of 20 cells is trained for 600 epochs with batch size 96. Other hyperparameters
remain the same as the ones used for architecture search. Following existing works (Pham et al.,
2018b; Zoph et al., 2017; Liu et al., 2017a; Real et al., 2018), additional enhancements include
cutout (DeVries and Taylor, 2017), path dropout of probability 0.3 and auxiliary towers with
weight 0.4. The training takes 1.5 days on a single GPU with our implementation in PyTorch
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(Paszke et al., 2017). Since the CIFAR results are subject to high variance even with exactly the
same setup (Liu et al., 2017b), we report the mean and standard deviation of 4 independent runs
for our full model.

To avoid any discrepancy between different implementations and/or training settings (e.g. the
batch sizes), we incorporated the NASNet-A cell (Zoph et al., 2017) and the AmoebaNet-A cell
(Real et al., 2018) into our training framework and reported their results under the same settings
as our cells.

6.3.2.2 Penn Treebank

A single-layer recurrent network with the discovered cell is trained for 1600 epochs with batch
size 64 using averaged SGD (Polyak and Juditsky, 1992) (ASGD), with learning rate ηw = 20
and weight decay 8 × 10−7. To speedup, we start with SGD and trigger ASGD using the same
protocol as in Yang et al. (2017); Merity et al. (2017). Both the embedding and the hidden sizes
are set to 850 to ensure our model size is comparable with other baselines. Other hyperparame-
ters, including dropouts, remain the same as those for architecture search. For fair comparison,
we do not finetune our model at the end of the optimization, nor do we use any additional en-
hancements such as dynamic evaluation (Krause et al., 2017) or continuous cache (Grave et al.,
2016). The training takes 1.5 days on a 1080Ti GPU with our PyTorch implementation. To ac-
count for implementation discrepancies, we also incorporated the ENAS cell (Pham et al., 2018b)
into our codebase and trained their network under the same setup as our discovered cells.
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Table 6.1: Comparison with state-of-the-art image classifiers on CIFAR-10. Results marked with
† were obtained by training the corresponding architectures using our setup.

Architecture Test Error Params Search Cost Search
(%) (M) (GPU days) Method

DenseNet-BC (Huang et al., 2017) 3.46 25.6 – manual

NASNet-A + cutout (Zoph et al., 2017) 2.65 3.3 1800 RL
NASNet-A + cutout (Zoph et al., 2017)† 2.83 3.1 1800 RL
AmoebaNet-A + cutout (Real et al., 2018) 3.34 ± 0.06 3.2 3150 evolution
AmoebaNet-A + cutout (Real et al., 2018)† 3.12 3.1 3150 evolution
AmoebaNet-B + cutout (Real et al., 2018) 2.55 ± 0.05 2.8 3150 evolution
Hierarchical evolution (Liu et al., 2017b) 3.75 ± 0.12 15.7 300 evolution
PNAS (Liu et al., 2017a) 3.41 ± 0.09 3.2 225 SMBO
ENAS + cutout (Pham et al., 2018b) 2.89 4.6 0.5 RL

Random search baseline‡ + cutout 3.41 ± 0.08 2.9 4 random
DARTS (first order) + cutout 2.95 ± 0.07 3.0 1.5 gradient-based
DARTS (second order) + cutout 2.83 ± 0.06 3.4 4 gradient-based

‡ Best architecture among 24 samples according to the validation error after 100 training epochs.

6.3.3 Results Analysis

The CIFAR-10 results for convolutional architectures are presented in Table 6.1. Notably, DARTS
achieved comparable results with the state of the art (Zoph et al., 2017; Real et al., 2018) while
using three orders of magnitude less computation resources (i.e. 1.5 or 4 GPU days vs 1800 GPU
days for NASNet and 3150 GPU days for AmoebaNet). Moreover, with slightly longer search
time, DARTS outperformed ENAS (Pham et al., 2018b) by discovering cells with comparable
error rates but less parameters. The longer search time is due to the fact that we have repeated the
search process for four times for cell selection. This practice is less important for convolutional
cells however, because the performance of discovered architectures does not strongly depend on
initialization (Fig. 6.3).

Table 6.2 presents the results for recurrent architectures on PTB, where a cell discovered by
DARTS achieved the test perplexity of 56.1. This is competitive with the state-of-the-art model
enhanced by a mixture of softmaxes (Yang et al., 2017), and better than all the rest of the existing
architectures that are either manually or automatically discovered. To the best of our knowledge,
this is the first time an automatically searched architecture outperforms the extensively tuned
LSTM (Melis et al., 2017), demonstrating the importance of architecture search in addition to
hyperparameter search. In terms of efficiency, the overall cost (4 runs in total) is within 1 GPU
day, which is comparable to ENAS and significantly faster than NAS (Zoph and Le, 2016).

It is interesting to note that random search is competitive for both convolutional and recurrent
models, which reflects the importance of the search space design. Nevertheless, with comparable
or less search cost, DARTS is able to significantly improve upon random search in both cases
(2.83 ± 0.06 vs 3.41 ± 0.08 on CIFAR-10; 56.6 vs 59.4 on PTB).

To understand the necessity of bilevel optimization, we also investigated joint optimization of
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Table 6.2: Comparison with state-of-the-art language models on Penn Treebank. Results marked
with † were obtained by training the corresponding architectures using our setup.

Architecture Perplexity Params Search Cost Search
valid test (M) (GPU days) Method

Variational RHN (Zilly et al., 2016) 67.9 65.4 23 – manual
LSTM (Merity et al., 2017) 60.7 58.8 24 – manual
LSTM + skip connections (Melis et al., 2017) 60.9 58.3 24 – manual
LSTM + 5 softmax experts (Yang et al., 2017) – 57.4 – – manual
LSTM + 15 softmax experts (Yang et al., 2017) 58.1 56.0 22 – manual

NAS (Zoph and Le, 2016) – 64.0 25 1e4 CPU days RL
ENAS (Pham et al., 2018b)* 68.3 63.1 24 0.5 RL
ENAS (Pham et al., 2018b)† 60.8 58.6 24 0.5 RL

Random search baseline‡ 61.8 59.4 23 2 random
DARTS (first order) 60.2 57.6 23 0.5 gradient-based
DARTS (second order) 58.8 56.6 23 1 gradient-based
DARTS (second order) + 1e3 more training epochs 58.3 56.1 23 1 gradient-based

* The results were obtained using the code (Pham et al., 2018a) publicly released by the authors.
‡ Best architecture among 8 samples according to the validation perplexity after 300 training epochs.

α andw over the union of the training and validation set, namely by solving minα,w Ltrain+val(w, α)
using coordinate descent. The best cell among 4 runs yielded 4.16± 0.16% error rate on CIFAR-
10 test set with 3.1M parameters, which is worse than the cell obtained using random search. We
hypothesize that this simplistic optimization heuristic would cause α to overfit the training data,
leading to poor generalization to the validation and test sets.

6.3.4 Transferability of Learned Architectures
6.3.4.1 ImageNet

We consider the mobile setting where the input size is 224×224 and the number of multiply-add
operations in the model is restricted to be less than 600M. A network of 14 cells is trained for 250
epochs with batch size 128, weight decay 3×10−5 and initial SGD learning rate 0.1 (decayed by
a factor of 0.97 after each epoch). Other hyperparameters follow Zoph et al. (2017); Real et al.
(2018); Liu et al. (2017a)4. The training takes 12 days on a single GPU.

Table 6.3 shows that the cell learned on CIFAR-10 is indeed transferable to ImageNet. It
is worth noticing that DARTS achieves competitive performance with the state-of-the-art RL
method (Zoph et al., 2017) while using three orders of magnitude less computation resources.

6.3.4.2 WikiText-2

We use embedding and hidden sizes 700, weight decay 5 × 10−7, and hidden-node variational
dropout 0.15. Other hyperparameters remain the same as those for PTB.

4We did not conduct extensive hyperparameter tuning due to limited computation resources.
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Table 6.3: Comparison with state-of-the-art image classifiers on ImageNet in the mobile setting.

Architecture Test Error (%) Params +× Search Cost Search
top-1 top-5 (M) (M) (GPU days) Method

Inception-v1 (Szegedy et al., 2015) 30.2 10.1 6.6 1448 – manual
MobileNet (Howard et al., 2017) 29.4 10.5 4.2 569 – manual
ShuffleNet 2× (v1) (Zhang et al., 2017) 29.1 10.2 ∼5 524 – manual
ShuffleNet 2× (v2) (Zhang et al., 2017) 26.3 – ∼5 524 – manual

NASNet-A (Zoph et al., 2017) 26.0 8.4 5.3 564 1800 RL
NASNet-B (Zoph et al., 2017) 27.2 8.7 5.3 488 1800 RL
NASNet-C (Zoph et al., 2017) 27.5 9.0 4.9 558 1800 RL
AmoebaNet-A (Real et al., 2018) 25.5 8.0 5.1 555 3150 evolution
AmoebaNet-B (Real et al., 2018) 26.0 8.5 5.3 555 3150 evolution
AmoebaNet-C (Real et al., 2018) 24.3 7.6 6.4 570 3150 evolution
PNAS (Liu et al., 2017a) 25.8 8.1 5.1 588 ∼225 SMBO

DARTS (searched on CIFAR-10) 26.9 9.0 4.9 595 4 gradient-based

Table 6.4: Comparison with state-of-the-art language models on WT2. Results marked with †
were obtained by training the corresponding architectures using our setup.

Architecture Perplexity Params Search Cost Search
valid test (M) (GPU days) Method

LSTM + augmented loss (Inan et al., 2017) 91.5 87.0 28 – manual
LSTM + continuous cache pointer (Grave et al., 2016) – 68.9 – – manual
LSTM (Merity et al., 2017) 69.1 66.0 33 – manual
LSTM + skip connections (Melis et al., 2017) 69.1 65.9 24 – manual
LSTM + 15 softmax experts (Yang et al., 2017) 66.0 63.3 33 – manual

ENAS (Pham et al., 2018b)† (searched on PTB) 72.4 70.4 33 0.5 RL

DARTS (searched on PTB) 69.5 66.9 33 1 gradient-based

Table 6.4 shows that the cell identified by DARTS transfers better than ENAS on WT2,
though the overall results are less strong than those presented in Table 6.2 for PTB. The weaker
transferability between PTB and WT2 (as compared to that between CIFAR-10 and ImageNet)
could be explained by the relatively small size of the source dataset (PTB) for architecture search.
The issue of transferability could potentially be circumvented by directly optimizing the archi-
tecture on the task of interest.

6.4 Summary

In this chapter, we presented the first differentiable architecture search algorithm for both convo-
lutional and recurrent networks. By searching in a continuous space, our method is able to match
or outperform the state-of-the-art non-differentiable architecture search methods on image classi-
fication and language modeling tasks with remarkable efficiency improvement by several orders
of magnitude. Note the differentiable search technique is orthogonal to the hierarchical represen-
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tation that we developed in Chapter 5. For example, one could assign a continuous architecture
encoding α to each motif in the hierarchy, hence the hierarchical architecture can be optimized
using gradient descent instead of evolution for improved efficiency.
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Chapter 7

Conclusion and Future Work

We have investigated several complementary directions related to learning over graphs, including
principled methods for incorporating the structural information over heterogeneous graphs (part
I), efficient induction of data-dependent graphs (Part II) and scalable optimization of computation
graphs (Part III). While the advancement in each of the above direction is of great significance
for a variety of applications, we are unable to cover all the important topics related to graphs.
Some of them will be left as the future work.

• Graphical Models: In the aforementioned chapters, links in the graphs either refer to sim-
ilarities (Chapter 2, 4), predicates (Chapter 3) or learnable functions (Chapter 5, 6). How-
ever, links may also carry the meaning of statistical dependencies or causalities in the field
of probabilistic graphical models (Wainwright et al., 2008; Koller and Friedman, 2009).
We note there has been an intensive literature on the scalable inference over the graph of
random variables, beyond the scope of this thesis.

• Graph Networks: There has been a surge of recent interest in developing deep learning
architectures with graph-structured/relational inductive biases. Many of these works, such
as graph convolution networks in various forms (Kipf and Welling, 2016; Veličković et al.,
2017; Gilmer et al., 2017; Lai et al., 2017), can be viewed as nonlinear extensions of the
classic label propagation algorithm (Zhu et al., 2003) or manifold regularization (Belkin
et al., 2006), and can be potentially combined with the techniques developed in Chapter 2,
3 and 4. A comprehensive review of this topic can be found at Battaglia et al. (2018).

• Graph Generation: While we have mostly focused on discriminative learning, there has
been a growing body of research on the generative modeling over graphs. Related works
include earliest schemes based on random graph models (Erdos and Rényi, 1960; Barabási
and Albert, 1999), as well as more recent efforts using deep generative models (Wang
et al., 2017; Johnson; Li et al., 2018). Incorporating generative models (e.g. as prior) into
discriminative learning should help further improve the robustness and generalization.

• Meta-Learning: Most graph-based algorithms are restricted to in-sample nodes provided at
training. Out-of-sample nodes or sub-graphs are traditionally handled using the Nyström
method (Bengio et al., 2004; Fowlkes et al., 2004), which usually relies on strong as-
sumptions. Meanwhile, the recent development of meta-learning has enabled deep neural
networks to better generalize to unseen tasks by the explicitly training over the distribu-
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tion of tasks (Koch et al., 2015; Vinyals et al., 2016; Andrychowicz et al., 2016; Santoro
et al., 2016; Finn et al., 2017). Similar ideas of this kind could potentially help address the
out-of-sample issue for graph-based approaches.

• Improved Architecture Search Methods: Although the traditional paradigm of architecture
design has been factorized as search space design plus search algorithm design (Chapter 5,
6), both still require nontrivial amount of prior knowledge to obtain state-of-the-art results
(Zoph et al., 2017; Liu et al., 2017b; Real et al., 2018; Pham et al., 2018b; Liu et al., 2018).
There are several interesting directions to explore:

Large Search Spaces: It would be interesting to investigate how far we can achieve in
a substantially enriched search space. This could be achieved in at least three ways:
(1) One may learn the connections among the cells instead of manually stacking them
according to a chain-structured topology, namely by removing prior assumptions on
the top of the architecture hierarchy; (2) One may further decompose our current
handcrafted convolutional primitives as batchnorms, activation functions and basic
(linear) convolution operations. This means less prior assumptions on the bottom of
the hierarchy. (3) Besides addition and concatenation, one may also consider multi-
plicative interactions among the operations (Hu et al., 2017).

Improved Optimization Algorithms: The performance of DARTS may suffer form ap-
proximation discrepancies due to single-step unrolling during the optimization, and
the argmax in the last step. It would be interesting to implement multi-step unrolling
(assuming sufficient memory), which can be formulated as back-propagation over
time wrt the architecture encoding. It would also be very interesting to anneal the
temperature of the softmaxes, allowing the continuous architecture to exactly reduce
to a discrete architecture at the end of search. The memory relatively high con-
sumption of DARTS (due to the fully connected graph) could be alleviated by doing
sampling according to α in the forward/backward passes, combined with Gumbel-
Softmax (Jang et al., 2016; Maddison et al., 2016) or the REINFORCE trick.
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92



Complex embeddings for simple link prediction. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
pages 2071–2080, 2016. URL http://jmlr.org/proceedings/papers/v48/
trouillon16.html. (document), 3.1, 3.4, 3.4.2, 3.5.2, 3.2, 3.3

Peter D Turney. The latent relation mapping engine: Algorithm and experiments. Journal of
Artificial Intelligence Research, 33:615–655, 2008. 3.1
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