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Abstract

Protein structures play key roles in determining protein functions, activ-
ities, stability and subcellular localization. However, it is extremely time-
consuming and expensive to determine experimentally the structures for mil-
lions of proteins using current techniques. For instance, it may take months
to crystalize a single protein. In this thesis, we design computational meth-
ods to predict protein structures from their sequencesin silico . In particular,
we focus on predicting structural topology (as opposed to speci�c coordi-
nates of each atom) at di�erent levels in the protein structure hierarchy.
Speci�cally, given a protein sequence, our goal is to predict its secondary
structure elements, how they arrange themselves in three-dimensional space,
and how multiple chains associate with each other to form onestable struc-
ture. In other words, we strive to predict secondary, tertiary and quaternary
protein structures from primary sequences and biophysicalconstraints.

In structural biology, traditional approaches for protein structure predic-
tion are based on sequence similarities. They use string matching algorithms
or generate probabilistic pro�le scores to �nd the most similar sequences in
the protein database. These methods works well for simple structures with
strongly conserved sequences, but fail when the structuresare complex with
many long-range interactions such as hydrogen and disul�debonds among
amino acids distant in sequence order. Moreover, evolutionoften preserves
structures without preserving sequences. Hence structureprediction cannot
rely just on sequence homology. These cases necessitate a more expressive
model to capture the structural properties of proteins, and therefore devel-
oping a family of such predictive models is the core of this dissertation.

A new type of undirected graphical models are built based onprotein
structure graphs, whose nodes represent the state of either residues or a
secondary structure element and whose edges represent interactions (e.g.
bonds) either between adjacent nodes in the sequence order or long-range
interactions among nodes in the primary sequence that fold back to estab-
lish proximity in 3D space. A discriminative learning approach is de�ned
over these graphs, where the conditional probability of thestates given the
observed sequences is de�ned directly as exponential functions on local and
topological features, without any assumptions regarding the data generation
process. Thus our framework is able to capture the structural properties of
proteins directly, including any overlapping or long-range interaction fea-
tures. Within this framework, we develop conditional random �elds and



2

kernel conditional random �elds for protein secondary structure prediction;
we extend these to create segmentation conditional random �elds and chain
graph model for tertiary fold recognition, and linked segmentation condi-
tional random �elds for quaternary fold prediction. These extensions are
new contributions to machine learning, which enable directmodeling of long-
distance interactions and enable scaling-up of conditional random �elds to
much larger complex structural prediction tasks.

With respect to computational biology, we contribute a novel and com-
prehensive paradigm for modeling and predicting secondary, super-secondary,
tertiary and quaternary protein structures, surpassing the state of the art
both in expressive power and predictive accuracy, as demonstrated in our
suite of experiments. Moreover, we predict a large number ofpreviously-
unresolved beta-helical structures from the Swissprot data base, three of
which have been subsequently con�rmed via X-ray crystallography, and none
have been discon�rmed. We hope that this work may shed light on the fun-
damental processes in protein structure modeling and may enable better
processes for synthetic large-molecule drug design.
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Glossary

� -helix One type of protein secondary structure, a
rod-shape peptide chain coiled to form a helix
structure

25

� -sheet One type of protein secondary structure, in
which two peptide strands aligned in the same
direction (parallel � -sheet) or opposite direc-
tion (antiparallel � -sheet) and stabled by hy-
drogen bonds

25

amino acid The unit component of proteins, a small
molecule that contain an amino group (NH2),
a carboxyl group (COOH), a hydrogen atom
(H) and a side chain (R-group) attached to a
central alpha carbon (C� )

24

coil One type of protein secondary structure with
irregular regions

25

domain Subsections of a protein that represent struc-
turally independent regions

26

fold Identi�able arrangement of secondary struc-
ture elements, which appear repeatedly in dif-
ferent protein domains

26

motif The unit made up of only a few secondary
structural elements and appear repeatedly in
di�erent protein domains

26
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PDB Protein Data Bank , a worldwide repository
for the processing and distribution of experi-
mentally solved 3-D structure data

27

primary structure The linear sequence of a protein 24
protein Linear polymers of amino acids, responsible

for the essential structures and functions of
the cells

24

quaternary structure The stable association of multiple polypeptide
chains resulting in an active unit

25

residue The amino acid connected by the peptide
bonds through a reaction of their respective
carboxyl and amino groups

24

SCOP Structural Classi�cation of Proteins, a
database aims to provide a detailed and com-
prehensive description of the structural and
evolutionary relationships between all protein
structures

27

secondary structure The local conformation of the polypeptide
chain, or intuitively as building blocks for its
three-dimensional structures

25

tertiary structure Global three-dimensional structure of one
protein chain

25



Chapter 1

Introduction

Proteins are a chain of amino acids that fold into three-dimensional struc-
tures, making up a large portion of all living organisms and performing most
of the important functions, such as catalysis of biochemical reactions, recep-
tors for hormones and other signaling molecules, and formation of tissues
and muscular �ber. It is widely believed that protein struct ures reveal im-
portant information about their functions. However, it is e xtremely time-
and labor-consuming to determine the structures of a protein via labora-
tory experiments. For instance, it may take months of concerted e�orts
to crystalize a single protein in order to enable x-ray di�raction methods
that determine its 3D structure. Since the amino-acid sequence of a pro-
tein ultimately determines its three-dimensional structures, it is essential to
design e�ective computational methods to predict the structures from the
sequences, which is the main task of the thesis.

In order to better characterize the structural properties of proteins, bi-
ologists de�ne a structure hierarchy of four levels: theprimary structure is
simply the linear chain or sequence of amino acids that make up the pro-
tein; the secondary structure is the local conformation of amino acids into
regular structures { there are three types of major secondary structures,
known as � -helices,� -sheets and coils or loops; thetertiary structure is the
global three-dimensional structure of an entire protein or a domain within
a protein; and sometimes, multiple protein chains unite together via hydro-
gen bonds resulting inquaternary structures. There are several challenging
subtasks in protein structure prediction, some of which have been studied
intensively for decades (Venclovas et al., 2003; Bourne & Weissig, 2003).
In this thesis, we focus on predicting structural topology at all levels in
the protein structure hierarchy. In other words, given a protein primary

16



CHAPTER 1. INTRODUCTION 17

sequence, we aim at predicting what the secondary structureelements are,
how they arrange themselves in three-dimensional space, and how multiple
chains associate with each other to form stable structures.Protein struc-
tural motifs (sometimes referred to as protein folds) are identi�able spatial
arrangements of secondary structures, which correspond toa domain within
a protein or the entire protein tertiary structure. Althoug h there are mil-
lions of distinct proteins, biologists hypothesize that there are only about a
thousand topologically distinct folds, and many folds haveone or more pro-
teins with known structural and functional properties. Hence, topological
fold prediction is a powerful tool in inferring the structur e and function of
other proteins with shared folds.

The traditional approaches for protein structure predicti on are based
on sequence similarities. They use string matching algorithms (e.g. PSI-
BLAST (Altschul et al., 1997)) or generate probabilistic pr o�les (e.g. pro-
�le hidden Markov model (Durbin et al., 1998; Krogh et al., 1994; Karplus
et al., 1998)) to �nd the most similar sequences in the protein database.
These methods work well for simple structures with strong sequence con-
servation, but fail when the protein structures are complexor the sequence
conservation is poor due to long-term evolutionary divergence. Therefore,
several sophisticated probabilistic models have been developed: Delcheret al
introduce probabilistic causal networks for protein secondary structure mod-
eling (Delcher et al., 1993); Schmidleet al propose a Bayesian segmentation
model for protein secondary structure prediction (Schmidler et al., 2000);
Yanover and Weiss apply an undirected graphical model to side-chain pre-
diction using various approximate inference algorithms (Yanover & Weiss,
2002); Chu et al extend segmental semi-Markov model under the Bayesian
framework to predict secondary structures (Chu et al., 2004). These models
achieve partial success; however, they are still far from fully capturing the
structural properties of proteins.

From a computational perspective, the task of protein structure predic-
tion is an instance of a more general machine learning problem, known as the
segmentation and labeling for structured data. Namely, the goal is to predict
a label or a sequence of labels given a set of observations with correspond-
ing to inherent structures. For example, predicting whether a web page is
the homepage of a student or that of a faculty given the web content and
hyperlinks that connect each other, segmenting the contourof a house given
the pixel grid of an image and so on. Conditional graphical models de�ned
over undirected graphs, such as conditional random �elds (CRFs) (La�erty
et al., 2001) and maximum-margin Markov networks (Taskar et al., 2003),
prove to be the most e�ective tools to solve this type of problem (Kumar
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& Hebert, 2003; Pinto et al., 2003; Sha & Pereira, 2003). Therefore we
follow and extend the graphical model approaches and develop a series of
new models for protein structure prediction. These models can be seen as
a signi�cant extension of CRF by joint modeling the constraints between
the structural components. The key questions we address are: how can we
represent the structural (primarily topological) propert ies of proteins using
graphical models? Given the foreseeable complexity of suchmodels for en-
tire proteins (hundreds or thousands of amino acids), how can we learn the
parameters of the model and make inferences e�ciently?

1.1 Summary of Thesis Work

In this thesis, we develop a series of conditional graphicalmodels for pro-
tein structure prediction. Speci�cally, we de�ne a special type of undirected
graph, namely protein structure graph, whose nodes represent the topologi-
cal structural elements (either individual residues or a secondary structure
elements) and whose edges indicate either local or long range interactions
(chemical bonding). The conditional probability of the lab els given the
observed sequences are de�ned directly as exponential functions of all the
features (local properties, long-distance interaction, bio-physical constraints,
etc.). In this way, our models are able to capture the short and long-range
interactions that matter in a direct manner.

Within the framework, we develop the following models:

� Conditional random �elds for protein secondary structure prediction
and � -sheet identi�cation: we explore several combination strategies
to re�ne the scores from multiple prediction algorithms by considering
structural properties. We achieve encouraging improvement compared
with the state-of-art algorithms in this very-well-studie d subproblem,
with prediction accuracy improvements of 6-8% for the � -sheet pre-
diction over the previous state of the art.

� Kernel conditional random �elds for protein secondary structure pre-
diction: we introduce the notion of kernels in CRF so that recent
advances in classi�cation theory and practice can be used and ex-
tended to structure prediction problems. We achieve an improvement
of 30-50% in secondary-strucutre topological transition accuracy.

� Segmentation conditional random �elds (SCRFs) for tertiary motif
recognition and alignment prediction: since the structural components
of a tertiary motif are the secondary structures (sequencesof amino
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acids that conform to one of the secondary structure elements, instead
of individual amino acids), we extend the CRF model to a new semi-
Markov version. In other words, the new model assigns a labelto a
subsequence of amino acids rather than an individual one. Asa re-
sult, it can capture the structural constraints or associations on the
secondary structure level and have the convenience to incorporate any
relevant features at this level. We apply the model to predict pro-
tein folds, such as the right-handed� -helix fold, an important motif
in bacterial infection of plants and binding of antigens, and achieve
signi�cantly better results than the state-of-art methods . We also hy-
pothesize new examples of the� -helix proteins, three of which have
been con�rmed by recent biological experiments, and none ofwhich
have been refuted.

� Chain graph model for predicting tertiary motifs with structural re-
peats: based on the repetitive patterns of the target motifs, we de-
compose the complex graphs from SCRFs into subgraphs, and then
connect them using directed edges via the chain graph framework.
This model can be seen as a trade-o� between globally optimalmod-
eling and a locally optimal one. It helps to reduce the computational
cost, while achieving a close approximation to the global optimal solu-
tions. Our experiments on the � -helix motif and leucine-rich repeats
demonstrate that the chain graph model performs similarly as SCRFs
in prediction accuracy while the running time has been reduced by a
factor of 50.

� Linked segmentation conditional random �elds for quaternary motif
recognition and alignment prediction: we extend SCRFs to jointly
model the chemical bonding between multiple sequences in order to
capture both within-sequence and cross-sequence interactions in qua-
ternary topological structures. Quaternary structure prediction has
been too challenging for earlier approaches. Therefore ourapproach
extends the state of the art to enable us to address this much larger
predictive problem. However, since the complexity involved with qua-
ternary structures is much greater than that with tertiary s tructures,
we derive a reversible jump MCMC sampling algorithm for e�ci ent
inference in the resulting complex graphs. The experiment results
on triple � -spirals and double-barrel trimer motif demonstrate the ef-
fectiveness of our model. Ours is the �rst computational method to
successfully predict these two complex quaternary structures.
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1.2 Thesis Statement

We hypothesize that conditional graphical models are e�ective for protein
structure prediction. Speci�cally, they can provide an expressive framework
to represent the structural patterns in protein structures and enable the use
of local, long-range and background-knowledge informative features. With
our new extensions and model parameter estimation methods,these new
graphical models are able to solve the long-range interaction problem in
the task of topological structural motif recognition, given basic biophysical
constraints and a limited number of structurally-resolved training examples,
despite lack of sequence homology among the proteins that conform to target
structural motifs.

Based on the thesis work, we conclude that the statement holds in gen-
eral. Speci�cally, we make three strong claims and two weaker ones:
Strong claims:

1. Conditional graphical models with our extensions have the represen-
tational power to capture structural properties for accurate protein
structure prediction

2. Conditional graphical models provide the ability to incorporate any
types of informative features for better protein structure prediction,
including overlapping features, segment-level features as well as long-
range interaction features.

3. Although the complexity of conditional graphical models grows expo-
nentially with the e�ective tree-width of the induced graph s, model
estimation can be reduced to a polynomial complexity with approxi-
mate inference algorithms (such as reverse-jump MCMC) or with the
chain graph model.

Weaker claims:

1. Conditional graphical models are able to solve the long-range interac-
tion problem in protein motif recognition (either tertiary or quater-
nary), if the following priors are answered by domain experts: What
are the possible structural components? How are they arranged in
three-dimensional space? Without such information, the models only
have limited power to capture the long-range interactions.

2. To our best knowledge, conditional graphical models are the most ex-
pressive and accuratemodels currently available for protein structure
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prediction. They also have the ability to explore alternative feature
spaces via kernels. However, the �nal prediction accuracy is bounded
by the availability of training data and general topological knowledge
about protein structures.

1.3 Thesis Outline

In this thesis, our primary goal is to seek e�ective computational tools for
protein structure prediction. In addition, we target the de sign and valida-
tion of novel models to best capture the properties of protein structures,
rather than a naive application of existing algorithms, so that we contribute
both algorithmically and biologically. Therefore, we organize the rest of the
thesis as follows:

In Chapter 2, we give an introduction to protein structures and explain the
relevant terminology in computational biology. Next, we provide a brief
overview of some basic concepts in machine learning;

In Chapter 3, we survey the state of the art pertaining to structured pre-
diction, including variants of the CRF model, its extensions, and its appli-
cations;

In Chapter 4, we de�ne a general framework for conditional graphical mod-
els. It can be seen as a generalized model for all the algorithms we develop
in the thesis. We discuss the novelty of the framework and comment on its
relationship with other models.

In Chapter 5, we discuss possible solutions to e�cient learning and infer-
ence for conditional graphical models including our extended and scaled-up
versions.

In Chapter 6, we describe our methods for protein secondary structure pre-
diction, and results obtained therefrom, including: (1) a comparison study
of score combination using CRFs; (2) specialized� -sheet prediction algo-
rithm using CRFs; (3) the kernel CRF model to explore alternative feature
spaces via kernels.

In Chapter 7, we describe in detail our new structure prediction method:
segmentation conditional random �elds and their application in tertiary mo-
tif recognition and alignment prediction. Next, we discusshow to use chain
graph model to decompose complex graphs into subunits and reduce com-
putational cost.
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In Chapter 8, we derive the new linked segmentation conditional random
�elds for quaternary motif recognition and present results from the �rst
general purpose prediction method for quaternary structures.

In Chapter 9, we summarize the thesis work, state its major contributions
and limitations, and �nally hint at future directions.

1.4 Related Publications

Part of the thesis work have been published in major conferences of compu-
tational biology and machine learning. Below is an incomplete list:

Related publications of Chapter 6 include:

� Yan Liu, Jaime Carbonell, Judith Klein-Seetharaman, Vanathi Gopalakr-
ishnan. Comparison of Probabilistic Combination Methods for Protein
Secondary Structure Prediction. Bioinformatics. 2004 Nov 22;20(17):3099-
107.

� Yan Liu, Jaime Carbonell, Judith Klein-Seetharaman, Vanathi Gopalakr-
ishnan. Prediction of Parallel and Antiparallel � -sheets using Con-
ditional Random Fields. Biological Language Conference (BLC'03),
2003.

� John La�erty, Xiaojin Zhu, Yan Liu. Kernel Conditional Random
Fields: Representation and Clique Selection.The Twenty-First Inter-
national Conference on Machine Learning (ICML'04), 2004.

Related publications of Chapter 7 include:

� Yan Liu, Jaime Carbonell, Peter Weigele, Vanathi Gopalakrishnan.Protein
Fold Recognition Using Segmentation Conditional Random Fields (SCRFs).
In Journal of Computational Biology.

� Yan Liu, Eric Xing, Jaime Carbonell. Predicting Protein Folds with
Structural Repeats Using a Chain Graph Model.In international con-
ference on Machine Learning (ICML05), 2005.

� Yan Liu, Jaime Carbonell, Peter Weigele, Vanathi Gopalakrishnan.
Segmentation Conditional Random Fields (SCRFs): A New Approach
for Protein Fold Recognition. ACM International conference on Re-
search in Computational Molecular Biology (RECOMB05), 2005.
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Related publications of Chapter 8 include:

� Yan Liu, Jaime Carbonell, Vanathi Gopalakrishnan. Linked Segmen-
tation Conditional Random Fields for Protein Quaternary Fo ld Recog-
nition. To appear in International Joint Conferences on Arti�cial I n-
telligence (IJCAI), 2007.



Chapter 2

Background

Most of the essential structures and functions of the cells are realized by pro-
teins, which are chains of amino acids with stable three-dimensional struc-
tures. A fundamental principle in all of the protein science is that protein
functions are determined by their structures. However, it is extremely di�-
cult to experimentally solve the structures of the proteins. Therefore how to
predict the protein structures from sequences using computational methods
remains one of the most fundamental problems in structural bioinformatics
and has been extensive studied for decades (Venclovas et al., 2003; Bourne
& Weissig, 2003).

2.1 Introduction to Protein Structures

Before digging into the details of prediction algorithms, we start with intro-
ducing the common understanding of protein structures up tonow and the
knowledge databases built by the structure biologists overdecades.

2.1.1 Protein Structures

In this section, we review the hierarchy de�nition of protei n structures, do-
mains and motifs, as well as the common classi�cation for protein structures.

Protein structure hierarchy Proteins are linear polymers of amino acids.
Amino acids are small molecules that contain an amino group (NH2), a car-
boxyl group (COOH), a hydrogen atom (H) and a side chain (R-group)
attached to a central alpha carbon (C� ) (Fig. 2.1). It is the side chain that

24
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Figure 2.1: Protein structures hierarchy

Secondary Structures Tertiary Structures Quaternary StructuresAmino Acid

Alpha-helix

Anti-parallel beta-sheet

Parallel beta-sheet

distinguishes one amino acid from another, resulting in 20 types of stan-
dard amino acids altogether. During a protein folding process, amino acids
are connected by the chemical bonds through a reaction of their respective
carboxyl and amino groups. These bonds are calledpeptide bondsand the
amino acids linked by the peptide bonds are calledpeptides, or residues .
The linear sequence of a protein is also referred to as itsprimary structures .

The secondary structureof a protein can be thought of as the local con-
formation of the polypeptide chain, or intuitively as build ing blocks for its
three-dimensional structures. There are two types of secondary structures
dominant in this local conformation: � -helix, a rod-shape peptide chain
coiled to form a helix structure, and � -sheets, two peptide strands aligned
in the same direction (parallel � -sheet) or opposite direction (antiparallel
� -sheet) and stabled by hydrogen bonds (Fig. 2.1). These two structures
exhibit a high degree of regularity and they are connected bythe rest irreg-
ular regions, referred to ascoil or loop.

The tertiary structure of a protein is often de�ned as the global three-
dimensional structures and usually represented as a set of 3-D coordinates for
each atoms. It is widely believed that the side-chain interactions ultimately
determine how the secondary structures are combined to produce the �nal
structure. An important property of the protein folding pro cess is that
protein sequences have been selected by the evolutionary process to achieve
a reproducible and stable structure.

The quaternary structure is the stable association of multiple polypeptide
chains resulting in an active unit. Not all proteins can exhibit quaternary
structures. However, it is found that the quaternary struct ures are stabilized
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mainly by the same noncovalent interactions as tertiary structures, such as
hydrogen bonding, van der Walls interactions and ionic bonding. In rare
instances, disul�de bonds between cysteine residues in di�erent polypeptide
chains are also involved.

Domains, motifs and folds Domains are subsections of a protein that
represent structurally independent regions, i.e. a domainwould maintain its
characteristic structure even if separated from the overall protein. In addi-
tion, every domain often performs a separate function from others. There-
fore most protein structure prediction methods are focusedon domains.

In biology, people have used the word "motif" in a number of areas
with di�erent meanings. In structural biology, motifs, or super-secondary
structures, refer to the unit made up of only a few secondary structural
elements and appear repeatedly in di�erent protein domains.

Protein folds are identi�able arrangement of secondary structure ele-
ments, which appear repeatedly in di�erent protein domains. The di�erence
between motif and fold are subtle. Usually the motifs are short while the
folds usually refer to the structure topology of the whole domains.

Protein structure classi�cation Various ways have been proposed to
classify the protein structures. One popular classi�cation is achieved by
considering the biochemical properties of the proteins. Inthis classi�ca-
tion, proteins are grouped into three major groups: globular, membrane
and �brous. Globular proteins fold as a compact structure with hydropho-
bic cores and polar surfaces. Most proteins with known structures belong to
this group since they are easier to crystalize due to the chemical properties.
Membrane proteins exist in the cell membranes surrounded by a hydropho-
bic environment. Therefore they must retain a hydrophobic surface to be
stable. Interestingly, recent research work suggests thatmembrane proteins
share the same secondary structural elements and follow thesame general
folding principles as globular proteins despite their di�erent properties. Fi-
brous proteins are often characterized by a number of repetitive amino acid
sequences . Some of them consist of a single type of regular secondary struc-
tures while others are composed of repetitive atypical secondary structures.
Membrane proteins and �brous proteins are also referred to as non-globular
proteins.

Another way to classify the protein structures are based on their pre-
dominant secondary structural elements, which results in four main groups:
all � , all � , �=� (a mixture of � helix and � sheet interwoven by each other)
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and � + � (discrete � helix and � -sheet that are not interwoven). This
kind of classi�cation has be well studied in SCOP and CATH databases as
described in the next section.

2.1.2 Databases of Protein Structures

The PDB (Protein Data Bank) was established in Brookhaven National
Laboratories in 1971 as an archive for biological macromolecular crystal
structures of proteins and nucleic acids (Berman et al., 2000). Until now, it
is the single worldwide repository for the processing and distribution of ex-
perimentally solved 3-D structure data (40354 structures deposited by Nov,
2006).

The UniProt (Universal Protein Resource) is the world's most comprehen-
sive catalog of information on proteins (3,656,820 entriesin Release 9.2
by Nov, 2006) (Leinonen et al., 2004). It is a central repository of pro-
tein sequences and their functions created by combining theinformation
from Swiss-Prot (databases of existing protein sequences with 243,975 en-
tries), TrEMBL (databases of proteins translated from EMBL nucleotide
sequence with 3,412,835 entries), and PIR (functional annotation of protein
sequences).

The SCOP (Structural Classi�cation of Proteins) database aims to provide
a detailed and comprehensive description of the structuraland evolutionary
relationships between all protein structures bymanually labeling (25973 en-
tries by Jul, 2005) (Murzin et al., 1995). There are many levels de�ned in
the classi�cation hierarchy. The principal levels are fold for proteins with
major structural similarity, superfamily for proteins with probable common
evolutionary origin and family for proteins with clear evolutionary relation-
ship (there are 945 folds, 1539 superfamilies and 2845 families by Jul, 2005).

The CATH database is a semi-automatic hierarchical domain classi�cation
of protein structures in PDB, whose crystal structures are solved to resolu-
tion better than 3.0 �A together with NMR structures (Orengo et al., 1997).
There are four major levels in this hierarchy; class (by the secondary struc-
ture composition and packing), architecture (by the orientations of the sec-
ondary structures), topology (by connectivity of the secondary structures)
and homologous superfamily (by sharing common ancestors).
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2.2 Lab Experiments for Determining Protein Struc-
tures

There are di�erent techniques to experimentally determinethe protein struc-
tures, such as X-ray crystallography, Nuclear Magnetic Resonance, circular
dichroism and Cryo-electron microscopy. However, most of these methods
are time-consuming and labor-expensive.

In the Protein Data Bank, around 90% of the protein structures have
been determined byX-ray crystallography. It makes use of the di�raction
pattern of X-rays that are shot through a crystallized object. The di�raction
is the result of an interaction with the high energy X-rays and the electrons
in the atom. The pattern is determined by the electron density within the
crystal. The major bottleneck for X-ray crystallography is the growth of
protein crystals up to 1 mm in size from a highly puri�ed prote in source.
This process usually takes months to years, and there existsno rules about
the optimal conditions for a protein solution to result in a good protein crys-
tal. X-ray structures are high resolution structures enabling the distinction
of two points in space as close as 2�A apart.

Roughly 9% of the known protein structures have been obtained by Nu-
clear Magnetic Resonance(NMR) techniques. NMR measures the distances
between atomic nuclei, rather than the electron density in amolecule. With
NMR, a strong high frequency magnetic �eld stimulates atomic nuclei of the
isotopes H-1, D-2, C-13, or N-15 (they have a magnetic spin) and measures
the frequency of the magnetic �eld of the atomic nuclei during its oscilla-
tion period back to the initial state. In contrast to protein crystals required
for X-ray di�raction, NMR makes use of protein solutions all owing for the
determination of structures at very short time ranges. Consequently those
exible loop and domain structures could be solved successfully.

The proportion of the secondary structures can be determined via other
biochemical techniques such ascircular dichroism (CD), which is the di�er-
ential absorption of left- and right-handed circularly pol arized light. Cryo-
electron microscopy(Cryo-EM) has recently become a means of determining
protein structures to low resolution (less than 5�A) and is anticipated to in-
crease in power as a tool for high resolution work in the next decade. Until
then, this technique remains a valuable resource for studying very large
protein complexes such as virus coat proteins and amyloid �bers.
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2.3 Pro�le Analysis of Protein Sequences

Pro�le analysis has long been a useful tool in �nding and aligning distantly
related sequences and in identifying known sequence domains in new se-
quences. A pro�le is the description of the consensus of a multiple sequence
alignment. It uses a position-speci�c scoring matrix (PSSM) to capture
information about the degree of conservation at various positions in the
multiple alignment. Two most commonly used pro�le methods are PSI-
BLAST (Altschul et al., 1997) and pro�le hidden-Markov mode l (Durbin
et al., 1998).

PSI-BLAST BLAST is a program to �nd high scoring local alignments
between a query sequence and a target database (Altschul et al., 1990). In
PSI-BLAST, a pro�le is constructed automatically from a mul tiple align-
ment of the highest scoring hits in an initial BLAST search. Then the
pro�le, instead of the query sequence, is used to perform another round
BLAST search and the results of each iteration are used to re�ne the pro-
�le. In this way, PSI-BLAST improves the sensitivity of the s earching and
therefore is e�ective at detecting sequence hits with weak homology. On the
other hand, one or two noisy sequences misplaced in early iterations might
lead to a pro�le diverged far from the query sequence.

Pro�le hidden-Markov model Pro�le hidden-Markov model is a Markov
chain model with position speci�c parameterizations of emission probabil-
ities (Durbin et al., 1998). Speci�cally, a pro�le HMM has th ree states:
\match", \delete" and \insert", in which the \match" state e mits amino
acids with probability according to the pro�le, the \insert " state emits
amino acids with probability according to a background distribution, and
the \delete" state is a non-emitting state corresponding to a gap in the pro-
�le (see Fig. 2.2). Compared with PSI-BLAST, pro�le HMMs hav e a formal
probabilistic foundation behind the gap and insertion scores. More impor-
tantly, it solves the problem of position independent assumptions from PSI-
BLAST by explicitly considering the transition probabilit ies in the model.

2.4 Previous Work on Protein Structure Predic-
tion

The prediction of three-dimensional structures of a protein from its primary
sequence is a fundamental and well-studied area in structural bioinformatics.
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Figure 2.2: Pro�le hidden-Markov model: there are no transition from
\delete" state to \insert" state. The \Begin" (B) and \end" s tates (E)
are non-emitting states (Graph adapted from (Durbin et al., 1998))

Three main directions have been pursued to �nd better prediction methods
for protein structures, including ab initio prediction, ho molog modeling and
fold recognition (Bourne & Weissig, 2003).

2.4.1 Ab Initio Methods

Ab initio structure prediction seeks to predict the native conformation of
a protein from the amino acid sequence alone. The area is based on the
beliefs that the native folding con�guration of most protei ns correspond
to the lowest free energy of the sequence. Therefore the biggest chal-
lenge with regards to ab initio prediction is how to devise a free energy
function that can distinguish native structures from incor rect non-native
ones, as well as a search method to explore the huge conformational space.
Rosetta is one of the most successful ab initio systems in recent years
(http://robetta.bakerlab.org/). It is built upon accumul ated domain knowl-
edge of non-homologous sequences and their solved three-dimensional struc-
tures and then applies simulated annealing to create protein tertiary struc-
tures. However, the overall prediction accuracy using ab initio methods is
still very low and a reliable free energy function is still under debate.

2.4.2 Fold Recognition (Threading)

Despite a good qualitative understanding of the physical forces in the fold-
ing process, present knowledge is not enough for direct prediction of protein
structures from the �rst principle as in ab initio methods. A n easier ques-
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tion is: which of the known folds in the databases are likely to be similar
to the fold of a new protein given its primary sequence only. The problem
stems from the fact that very often apparently unrelated proteins adopt
similar folds. Therefore the main task in fold recognition is how to identify
possible structural similarities even in the absence of sequence similarity.
In general, threading works by computing a scoring function(usually based
on free energy) that assesses the �t of a sequence against a given fold with
the consideration of a pairwise atom contact and solvation terms. Since
this is a combinatorial problem, the solutions can be extremely elaborate
computationally, such as those involving double dynamic programming, dy-
namic programming with frozen approximation, Gibbs sampling, branch
and bound heuristics, or as \simple" as a sequence alignmentmethod such
as pro�le hidden Markov models. The performance of fold recognition has
been improved over years. However, in many cases the alignment of the
query sequence to the structures are incorrect even when thefold has been
corrected identi�ed.

2.4.3 Homology Modeling

Homology modeling aims to predict the protein structures byexploiting the
fact that evolutionarily related proteins with sequence similarity, as mea-
sured by the percentage of identical residues at each position based on an
optimal structural superposition, share similar structur es. This approach
can be applied to any proteins that have more than 25-50% sequence identity
to the proteins with known structures in the PDB. In practice , the homol-
ogy modeling is a multi-step process that can be summarized in seven steps:
template recognition and initial alignment, alignment correction, backbone
generation, loop modeling, side-chain modeling, model optimization and
model evaluation. At high sequence identities (60-95%), 90% of the com-
parative models can achieve an RMSD of less than 5�A in regard to the
experimentally determined structures. However, it is unreliable in predict-
ing the conformations of insertions or deletions (the portions of the query
sequence that do not align with the sequence of the template), as well as
the details of side-chain positions.

2.5 Background of Machine Learning

Graphical models and discriminative models are the two major machine
learning concepts related to the thesis work. Here we give a brief review of
these two approaches.
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Figure 2.3: (A) graphical model representation of hidden Markov model; (B)
graphical model representation of Markov random �elds; (C) an example of
undirected graph: (V1; V2; V3) and (V3; V4) are maximal cliques

2.5.1 Graphical Models

Graphical models are a natural tool to deal with conditional probability
distributions using graph theory. The nodes in the graph represent random
variables (either observed or hidden), and the absence of arcs indicate con-
ditional independence between random variables. The graphical model not
only gives a compact representation of the joint probability distributions, but
also provides inferential machinery for answering questions about probabil-
ity distribution. The graph can be either directed, also known as Bayesian
Networks or Belief Networks (BNs) or undirected, also called Markov Ran-
dom Fields (MRFs) or Markov networks.

Directed graphical model A directed graph is a pair G = hV; Ei , where
V = f Vi g is a set of nodes andE = f (Vi ; Vj ) : i 6= j g a set of edges with
directions. We assumeG is acyclic. Let Vi also refers to the random variable
that the node Vi represents. Each nodeVi has a set of parent nodespa(Vi ).
Since the structure of the graph de�nes the conditional independence rela-
tionship between random variables, the joint probability over all variables
V can be calculated as the product of the conditional probability of each
variable conditioned on its parents, i.e.

P(V ) =
Y

Vi 2 V

P(Vi jpa(Vi )) : (2.1)

Hidden Markov models (HMMs) are one of the most popular directed
graphical models for sequential data. Given an observable input x = x1x2 : : : xN ,
we want infer the state assignment (hidden) for each position y = y1y2 : : : yN .
HMMs assume the �rst-order Markov assumption, i.e. the value of yi +1 is
independent of yi � 1 give the value of yi . It also assumes the observationx i
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is independent of other states given the value ofyi . The graphical model
representation of HMMs is shown in Fig.2.3 (A), and we can easy write out
the joint probability as follows:

P(x, y ) =
NY

i =1

P(x i jyi )P(yi jyi � 1) (2.2)

Undirected graphical model An undirected graphical model can also
be represented byG = hV; Ei , except that the edges inE are undirected.
As in the case of directed graphs, it is also desirable to obtain a \local"
parametrization for undirected graphical models. A potential function  
is any positive real-valued function associated with the possible realization
vc of the maximal clique c, where a maximal clique of a graph is a fully-
connected subset of nodes that cannot be further extended (for example
see Fig.2.3 (C)). It can be shown that the joint probability o f the variables
represented in the graph can be de�ned as the normalized product of the
potential functions over all the maximal cliques in G, i.e.

P(V ) =
1
Z

Y

c2CG

 c(Vc); (2.3)

where Z =
R

V

Q
c2CG

 c(Vc) is the normalization factor.
Markov random �eld (MRF) in a chain is an undirected graphica l model

widely used for sequential data. Given the graph representation of MRF
in Fig.2.2 (B), the joint probability of the data x and the labels y can be
de�ned as

P(x, y ) =
1
Z

NY

i =1

 (yi ; yi � 1) (x i ; yi ); (2.4)

By Hammersley-Cli�ord theorem, the potential function can be modeled as
an exponential function of the features de�ned over the cliques (Hammersley
& Cli�ord, 1971), i.e.

P(x, y ) =
1
Z

NY

i =1

exp(
K 1X

k=1

f (yi ; yi � 1)) exp(
K 2X

k=1

f (x i ; yi )) ; (2.5)

whereK 1 and K 2 are the number of features over the state-state cliques and
state-observation cliques respectively.
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Inference Algorithm Given a speci�c graphical model, the main task
is to estimate the values of hidden (unobserved) nodesY given the values
of the observed nodesX , i.e. P(Y jX ). There are two major approaches
to compute the target probabilities (marginal or condition al) in graphical
models, including exact inference and approximate inference.

The elimination algorithm is the basic method for exact inference. The
main idea is to e�ciently marginalize out all the irrelevant variables using
factored representation of the joint probability distribu tion. Consider the
graph in Fig.2.2 (C), the probability P(v4) can be computed by

P(v4) =
1
Z

X

v1

X

v2

X

v3

 (v1; v2; v3) (v3; v4)

=
1
Z

X

v3

 (v3; v4)
X

v1

X

v2

 (v1; v2; v3)

=
1
Z

X

v3

 (v3; v4)
X

v1

m2(v1; v3)

=
1
Z

X

v3

 (v3; v4)m1(v3)

=
1
Z

m3(v4):

The intermediate factors m1, m2 and m3 can be seen asmessagespassing
from the variables that have been integrated. When we want tocompute
several marginals at the same time, a dynamic programming can be applied
to reuse some messages in the elimination algorithm. If the underlying graph
is a tree, we can usesum-of-product, or belief propagation, which is a gener-
alization of the forward-backward algorithm in HMMs (Rabin er, 1989). For
a general graph, it has to be converted to into a clique tree bymoralization
and triangulation. After that, a local message passing algorithm can be ap-
plied, which could be either the sum-of-product algorithm or the junction
tree algorithm, a variation designed for undirected models.

The computational complexity of the exact inference algorithms is expo-
nential in the size of the largest cliques in the induced graph. For many
cases, such as grids or fully connected graph, it is intractable to make
exact inferences and therefore approximate algorithms, such as sampling,
variational methods or loopy belief propagation, have to beapplied. Sam-
pling is a well-studied �eld in statistics and various sampling algorithms
have been proposed. A very e�cient approach for high dimensional data is
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Markov Chain Monte Carlo (MCMC), which includes Gibbs sampling and
Metropolis-Hastings sampling as special cases.Variational methods uses
the convexity of the log function and iteratively updates th e parameters
so as to minimize the KL-divergence between the approximateand true
probability distributions. Loopy belief propagationapplies the original belief
propagation algorithm to graphs even when they contain loops. There are
no theoretical guarantees for convergence or whether the solution is opti-
mal when it converges, however, the experimental results appear to be very
successful (Murphy et al., 1999a).

Compared with exact inference, there are also some empirical problems
with the approximate inference algorithm, for example, it might get trapped
in the local optimal or never converge (within an a�ordable number of it-
erations). Therefore neither approach is dominant in the real applications.
In order to make an e�cient inference on a complex graph, we can combine
these two approaches, for example, use exact inference algorithm locally
within an overall sampling framework.

2.5.2 Generative Model v.s. Discriminative Model

For a supervised learning problem, there are two main types of models: gen-
erative models and discriminative models (Ng & Jordan, 2002). Discrim-
inative models attempt to directly calculate the probabili ty of the labels
given the data, i.e., P(yjx), while generative models alternatively estimate
the class-conditional probability P(xjy) as surrogates to �nd the maximal
likely class based on Bayesian rules,

y� = arg max
y

P(yjx) = arg max
y

P(xjy)P(y)
P(x)

:

The success of generative models largely depends on the validity of the
model assumptions. However, these assumptions are not always true, such
as the Markov assumption in HMMs. In contrast, a discriminative model
(e.g. logistic regression and support vector machines) typically makes less
assumptions about the data and \let data speak for its own". It has been
demonstrated more e�ective in many domains, such as text classi�cation
and information extraction. As pointed out by Vapnik (Vapni k, 1995), \one
should solve the (classi�cation) problem directly and never solve a more
general problem (class-conditional) as an intermediate step". There are some
empirical results showing that discriminative models tend to have a lower
asymptotic error as the training set size increases (Ng & Jordan, 2002).



Chapter 3

Review of Structured
Prediction

The breadth of tasks addressed by machine learning is expanding rapidly
with the increase of vast amount of data available. The applications have
varied from speech recognition, computer vision to naturallanguage process-
ing, computational biology, astronomy study, �nancial analysis and many
other fascinating applications that change the life of people. With vast kinds
of applications available, the machine learning �elds havebeen extended to a
number of new frontiers, one of which is theprediction problem for structured
outputs, or succinctly as structured-prediction.

Structured prediction refers to the applications in which the observed
data are sequential or with other simple structures while the output actu-
ally involve complex structures. For example, in protein structure predic-
tion, we are given the observation as a sequence of amino acids, while the
target output involves the complicated three-dimensional structures. An-
other example is the parsing problem in natural language processing, the
input is one sentence, i.e. a sequence of words, and the output is a parsing
tree. By considering the constraints or associations between outputs, we can
achieve a better prediction performance. Those kinds of applications raises
challenges to the I.I.D. (independently identically distr ibuted) assumptions
made by most statistical learning models and algorithms in previous study.
In this chapter of the thesis, we provide an overview of current development
on this topic, including a detailed discussion on the task description, an in-
troduction to conditional random �elds as well as its recent extensions, and
�nally its wide applications in di�erent domains.

36
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3.1 Prediction Problem with Structured Outputs

In supervised learning, we are given a set of training data with the obser-
vation x and the label y. Our goal is to learn a model f so that f (x) � y.
There are two classical types of learning problem based on the value of y:
one is classi�cation problem, in which y takes discrete values in a prede�ned
set (the simplest case is the binary classi�cation, namelyy 2 f 0; 1g); the
other is the regression problem, in whichy is a real-valued number. In ei-
ther case, both x and y can be a vector although the dependencyrelations
between the scalars are typically not explored.

In the prediction problem with structural outputs, the outp ut y is a
vector. Furthermore, the scalars of the vector y are not independent. They
are either associated with others based on the locations, for example, the
value of yi is dependent on that of yi � 1 and yi +1 ; or they are associated
based on type, for example, the value ofyi must be the same with that of
yi � 3. Those types of constraints can be either deterministic (mostly referred
as \associated") or probabilistic (referred as \correlated"). The essence of
the structured prediction is to model these correlations orassociations in
one framework instead of treating them independently.

The prediction problem with structured outputs is closely related to the
relational data. The study of relational data concerns itself with richly struc-
tured, involving entities of multiple types, which are related to each other
through a network of di�erent types of links. More speci�cal ly, the labels of
di�erent examples yi are associated or correlated. Relational data mining
has its roots in inductive logic programming, an area at the intersection of
machine learning and programming languages. In addition, the structured
prediction is also related to the multi-task learning, which aims at learning
a task together with other related tasks at the same time via shared repre-
sentation. This representation often leads to a better model for the main
task, because it allows the learner to use the commonality among the tasks.

These three prediction problems are closely related, however, they di�er
signi�cantly in both the task focus and principles for solut ions. The struc-
tured prediction problem is initially extensively studied in speech recogni-
tion, later in computer vision, information extraction and computational
biology. As discussed above, we have prior knowledge about the constraints
or correlations between the elements of output vectorsy (in most appli-
cations, the dependency relations are quite regular, for example, a chain
or a grid). However, the outputs of di�erent observations, y i and y j , are
treated independently in most algorithms for structured data. In contrast,
the major subject in the relational data mining is to discover the relations
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between y i and y j . In multi-task learning, existing approaches share the

basic assumption that tasks are related to each other, that is, y(k)
i and y(l )

j
are associated, while the assumptions about how they are associated vary
from models to models.

The structured prediction problem also di�ers from the other two tasks
in terms of principles for seeking solutions. More speci�cally, it usually �nds
the applications where the associations or relations are de�ned beforehand,
either by domain knowledge or by assumptions. Then these relations can be
easily represented by statistical graphical models, from early simple models,
such as, hidden Markov model (Rabiner, 1989) and Markov random �elds,
later to maximum entropy Markov model (MEMM) (McCallum et al ., 2000),
and recently to the conditional random �elds (CRF) (La�erty et al., 2001).
Other on-going research work along the directions include the study of alter-
native loss functions (Taskar et al., 2003; Altun et al., 2004; Tsochantaridis
et al., 2004), e�cient inference algorithms (Dietterich et al., 2004; Roth &
Yih, 2005) as well as other extensions for broader applications (Kumar &
Hebert, 2003; Sha & Pereira, 2003). The recent trend has shifted to imbal-
anced data and semi-supervised learning. The study of relational data, on
the other hand, is originated from the relational database. Therefore the
symbolic methods and �rst order logic algorithms are dominant in the solu-
tions for relational data. In multi-task learning, the rela tedness among tasks
is hidden and to be uncovered. Based on the assumptions abouthow each
tasks are associated, di�erent models have been proposed, such as I.I.D tasks
(Baxter, 2000), a Bayesian prior over tasks (Baxter, 2000; Heskes, 2000; Yu
et al., 2005), linear mixing factors (Ghosn & Bengio, 2000; Teh et al., 2005),
rotation plus shrinkage (Breiman & J, 1997) and structured regularization
in kernel methods (Evgeniou et al., 2005).

3.2 Conditional Random Fields (CRF)

Conditional Random Fields (CRFs), �rst proposed by La�erty et al., are
undirected graphical models (also known asrandom �elds ) (La�erty et al.,
2001). It has been proven very e�ective in many applicationswith structured
outputs, such as information extraction, image processing, parsing and so on
(Pinto et al., 2003; Kumar & Hebert, 2003; Sha & Pereira, 2003). CRF has
played an essential role in the recent development of structured prediction.

Before introducing the conditional random �elds, we �rst re view a simple
model, the hidden Markov model(HMM), which is widely-known and has
been applied to applications in many domains. HMM works by computing



CHAPTER 3. REVIEW OF STRUCTURED PREDICTION 39

y1

x3

y3

x2

y2

x1

y1

x3

y3

x2

y2

x1

y1

x3

y3

x2

y2

x1

(A) (B) (C)

Figure 3.1: Graphical model representation of simple HMM(A), MEMM(B),
and chain-structured CRF(C)

the joint distribution of observations x and statesy, P(x ; y). The graphical
model representation of HMMs is shown in Figure 3.1- (A). Two kinds of
probability distributions have to be de�ned: (1) the transi tion probabilities
P(yi jyi � 1) and (2) the emission probabilities P(x i jyi ). By taking the �rst-
order Markov assumption, i.e. p(x i jyi ) = p(x i jyi ; yi � 1), we have the joint
probability as follows:

P(x; y ) =
nY

i =1

P(x i jyi )P(yi jyi � 1): (3.1)

HMM has been very successful in applications such as speech recognition
(Rabiner, 1989), and sequence analysis in bionformatics (Durbin et al.,
1998). However, as a generative model, it has to assume a particular tran-
sition probability and emission probability, which result s in many inconve-
niences if we use overlapping or long-range features. Therefore discrimina-
tive training models, for instance MEMM and CRF, are proposed.

The graphical model representation for a chain-structuredCRF is shown
in Figure 3.1, where we have one state assignment for each observation in
the sequence. Speci�cally the conditional probability P(y jx ) is de�ned as

P(yjx ) =
1
Z

NY

i =1

exp(
KX

k=1

� k f k(x ; i; y i � 1; yi )) ; (3.2)

where f k can be arbitrary features, including overlapping or long-range
interaction features. As a special case, we can construct anHMM-like
model in which features can factorized as two parts, i.e.f k(x ; i; y i � 1; yi ) =
gk (x ; i )� (yi � 1; yi ), where � (yi � 1; yi ) is the indicator function over each state
pair (yi � 1; yi ) and gk (x ; i ) for each state-observation pair (x; yi ).
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CRF takes on a normalizer over the whole sequence, which results in a
series of nice properties but at the same time introduces huge computational
costs. Maximum Entropy Markov Models (MEMMs), proposed by McCal-
lum et al, can be seen as a localized version of CRF (see Fig. 3.1-(B)). The
conditional probability in MEMM is de�ned as

P(Y jx) =
NY

i =1

1
Z i

exp(
KX

k=1

� k f k(x ; i; Yi � 1; Yi )) ; (3.3)

where Z i is a normalizing factor only over the i th position. MEMM reduces
the computational costs dramatically, but at a cost su�ers from the \label
bias" problem, i.e. the total probability \received" by yi � 1 must be passed on
to labels yi at time i even if x i is completely incompatible with yi � 1 (La�erty
et al., 2001). Empirical results show that for most applications CRF is able
to outperform MEMM with either slight or signi�cant improve ment (La�erty
et al., 2001; Pinto et al., 2003).

3.3 Recent Development in Discriminative Graph-
ical Models

The successes of the CRF model attract the interest of many researchers
and various extensions of the model have been developed. From the ma-
chine learning perspective, recent enrichment of the CRF model includes
the following: utilizing alternative loss functions, proposing e�cient infer-
ence algorithms, extending to semi-Markov and segmented versions as well
as Bayesian version.

3.3.1 Alternative Loss Function

The classi�cation problem has been extensively studied in the past twenty
years or so and many kinds of classi�ers are proposed (Hastieet al., 2001).
A uni�ed view of the popular classi�ers is that they belong to a generalized
linear classi�er family with di�erent loss functions. For e xample, logistic
regression uses the negative log-loss and support vector machine adopts the
hinge loss. In the description of the original CRF model, a negative log-
loss of the training data is used as the optimization criteria. Similar to
the classi�cation problem, other loss functions can be applied to the CRF
formulation and result in various extensions, for example,the max-margin
Markov networks, Gaussian process models, perceptron-like model as well as
the Bayesian CRF. The detailed descriptions of these modelsare as follows:
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Figure 3.2: Loss functions of the logistic regression, support vector machines,
ridge regression against the target 0-1 loss (Graph adaptedfrom (Hastie
et al., 2001))

Max-margin Markov networks Maximum margin Markov (M3) net-
works combines the graphical models with the discriminative setting as the
support vector machines (SVM) (Taskar et al., 2003). As we know, SVM
is a new generation learning system based on Structural RiskMinimization
instead of Empirical Risk Minimization (Vapnik, 1995). It i s both theoreti-
cally well-founded and practically e�ective. The primal fo rm of SVM with
linear kernel can be described as follows:

minf C
nX

i =1

� i +
1
2

wT W g, subject to:yi (wT x i + b) � 1 � � i and � i � 0 (3.4)

where � i is the slack variable,C is a constant parameter. By using implicit
constraints, we can transform the objective function as:

w? = arg min f
1
n

nX

i =1

maxf 0; 1 � yi (xT x i + b) + �w T wgg; (3.5)

where maxf 0; 1 � yi (xT x i + b)g can be thought as the hinge loss for one
instance, and the second term�w T w is the regularization term. Due to the
non-di�erentiable loss function, the �tting of SVM is usual ly solved in its



CHAPTER 3. REVIEW OF STRUCTURED PREDICTION 42

dual form:

maxL D =
NX

i =1

� i �
1
2

i = N;j = NX

i =1 ;j =1

� i � j yi yj � ~xi ~xj

subject to

0 � � i � Ci ; and
i = NX

i =1

� i yi = 0 :

The solution is given by w? =
P N

i =1 � i yi x i , where � i is Lagrange multipliers
and C is a constant.

In M 3N, the goal is to learn a function h from the training data, so that
h(x) = argmax ywT f (x; y), where wT is the model parameter andf : X � Y
is the features or basis functions. Casting it into the classical SVM setting,
we have the objective function

max ; subject to kwk = 1; wT � f (x; y) �  � h(x; y); (3.6)

where � h(x; y) =
P l

i =1 I (yi 6= h(x) i ) and � f (x; y) = f (x; h(x)) � f (x; y).
In (Taskar et al., 2003), a coordinate descent method analogous to the se-
quential minimal optimization (SMO) is used to seek the solutions to eq
(3.6). Later, Taskar et al. formulate the estimation problem as a convex-
concave saddle-point problem and apply the extragradient method (Taskar
& Simon Lacoste-Julien, 2005). This yields an algorithm with linear con-
vergence using simple gradient and projection calculations.

The M3N model has the advantage to incorporate kernels inherited from
the SVM formulation, which e�ciently deal with the high-dim ensional fea-
tures. Furthermore, it can capture correlations in structured data with
multiple formulations, either Markov networks, context fr ee grammars, or
combinatorial structures (Taskar, 2004) 1.

Support vector machines for structured output space In (Tsochan-
taridis et al., 2004), a support vector machine for structured outputs is de-
veloped. The idea is similar to the M 3N model discussed above, which
uses the hinge loss for optimization criterion as in SVM. However, these
two models di�er signi�cantly in the optimization algorith ms to solve the
induced quadratic-programming problems. In (Tsochantaridis et al., 2004),
the problem is solved by a cutting plane algorithm that exploits the sparse-
ness and structural decomposition of the objective function.

1There is also some concern about the consistency of the framework, that is, the solu-
tions provided to the M 3N model are not the same as the optimization function original ly
stated in de�nition of the model.
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Gaussian Process Models In addition to the SVM-style approaches, a
Gaussian process model for segmenting and annotating sequences is devel-
oped (Altun et al., 2004). It generalizes the Gaussian Process (GP) classi�-
cation by taking dependencies between neighboring labels into account. In
the de�nition of the original GP classi�er, we construct a tw o-stage model
for the conditional probability distribution p(yj~x), by introducing an inter-
mediate, unobserved stochastic process (u(~x; y)). Via some derivation, we
have the objective function as follows

R(wjx; y) = wT Kw �
nX

i =1

wT Ke (i;y i ) +
nX

i =1

log
X

y

exp(wT Ke (i;y ) ); (3.7)

where K is the kernel matrix. From eq (3.7), we can see that theGP classi�er
is very similar to the kernel logistic regression. In sequence labeling problem,
we need to consider the labels for one sequences jointly. Therefore in (Altun
et al., 2004), the kernel is de�ned ask = k1 + k2, where k1 couples obser-
vations in both sequences that are classi�ed with the same micro-labels at
respective positions,k2 simply counts the number of consecutive label pairs
that both label sequences have in common. Two approaches aredeveloped
to seek the solutions for the optimization problem de�ned in eq(3.7). One is
the dense algorithm, which involves the computation of Hessian matrix, the
other is the sparse algorithm, which is similar to the greedyclique selection
algorithm discussed in (La�erty et al., 2004).

Perceptron CRF Motivated by the e�ciency and consistency of the
perceptron algorithm, a perceptron-like discriminative model for predict-
ing structured outputs is introduced (Collins, 2002). The algorithm makes
inferences on chain-structured graphs via Viterbi decoding of training exam-
ples, combined with simple additive updates. A theory is also provided to
justify the convergence of the modi�ed algorithm for parameter estimation,
including both the voted version and averaged version. It has been shown
that the perceptron-like CRF model performs similar as the original CRF
empirically, while at the same time enjoys a less complex learning algorithm.

Bayesian conditional random �elds Bayesian conditional random �elds
are a Bayesian approach to learn and make inferences for CRF (Qi et al.,
2005). The major motivation of the model is to eliminate over�tting problem
of the original CRF, and to o�er the full advantages of a Bayesian setting.
With the huge induced complexity, an extension of expectation propaga-
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tion is developed for fast inferences. Bayesian CRF demonstrates superior
performance over CRF in the computer vision domain.

3.3.2 E�cient Inference Algorithms

The CRF model enjoys several theoretical advantages compared with HMM
and MEMM, and has demonstrated signi�cant empirical improvement in
many applications. However, in the training phase we need tocalculate the
expectation of the features for the iterative searching algorithms; and in the
testing phase, we search the best assignments over all possible segmenta-
tion spaces for the structured outputs. For simple graph structure, such
as a chain or a tree, the forward-backward and Viterbi styled algorithms
can be used. However, the complexity increases exponentially with the in-
duced tree-width of the graphs. As a result, exact inferences are computa-
tional infeasible for complex graphs. Therefore multiple e�cient inference
and learning algorithms are examined in the CRF setting, forexample, the
general approximate inference algorithms, such as loopy belief propagation,
sampling algorithm, naive mean �eld and other variation methods. In ad-
dition, several speci�c algorithms have been developed forfast training and
testing of CRF.

Gradient Tree Boosting In (Dietterich et al., 2004), a new algorithm is
proposed for training CRFs by extending the gradient tree boosting method
for classi�cation (Hastie et al., 2001). Speci�cally, the potential functions
de�ned in CRF are represented as weighted sums of regressiontrees, which
are learned by stage-wise optimizations similar to Adaboost while the ob-
jective function is replaced by maximizing the conditional likelihood of joint
labeling P(y jx). The algorithm successfully reduces the immense feature
space via growing regression trees so that only the combinations of fea-
tures de�ned by the trees are considered. As a result, the gradient tree
boosting scaleslinearly in the order of the Markov model and the feature
interactions, rather than exponentially as those previous algorithms based
on iterative scaling and gradient descent.

Integer linear programming In (Roth & Yih, 2005), a novel inference
procedure based on integer linear programming (ILP) is proposed to replace
the Viterbi algorithm in the original CRF model. Speci�call y, the Viterbi
solution can be seen as the shortest path in the graph constructed as follows:
Let n be the number of tokens in the sequence, and m be the number of labels
each token can take. The graph consists ofnm +2 nodes and (n � 1)m2 +2m
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edges. In addition to two special nodesstart and end that denote the start
and end positions of the path, the label of each token is represented by a
node vij , where 0� i � n � 1, and 0� j � m � 1. If the path passes node
vij , then label j is assigned to token i. For nodes that representtwo adjacent
tokens v(i � 1)j and vij 0, there is a directed edgex j j 0 from v(i � 1)j to vij 0, with
the cost � log(M i (yi � 1yi jx)). Then the path is determined via minimizing
�

P n� 1
i =0 log(M i (yi � 1yi jx)), i.e. maximizing the function

Q n� 1
i =0 M i (yi � 1yi jx).

The major advantage of such formulation is the convenience to add general
constraints (e.g. NLP problems such as chunking, semantic role labeling, or
information extraction) over the output space in a natural and systematic
fashion. An e�cient solution is developed to large scale applications in (Roth
& Yih, 2005). The setting has the nice properties that when noadditional
constraints are added, the problem reduces back to one that can be solved
e�ciently by linear programming.

There are several other studies about the e�ciency issues ofCRF, such
as accelerated training with stochastic gradient methods (Vishwanathan
et al., 2006), numerical optimization using non-linear conjugate gradient or
limited-memory variable-matric methods (Wallach, 2002). It remains a hot
topic to design feasible inference and learning algorithmsfor CRF so that it
can be applied in large-scale applications with complex graph structures.

3.3.3 Other Extensions of CRF

Conditional random �elds as well as its direct extensions with di�erent loss
functions have been proven successful in multiple domains,such as natural
language processing, computer vision, protein sequence analysis and so on.
On the other hand, there are also many applications where theoriginal CRF
may not be the most appropriate due to their task-speci�c characteristics.
For example in information extraction, the segment level features, such as
phrase length or the segment starts with capitalized word, are very infor-
mative but they are di�cult to incorporate in the CRF setting . Therefore
many other extensions have been developed. Some examples include:

Semi-Markov conditional random �elds Semi-Markov CRF outputs a
segmentation of an input sequence x, in which labels are assigned to segments
(i.e., subsequences) of x rather than to individual elements x i (Sarawagi &
Cohen, 2004). Given a sequence observationx = x1 : : : xn , the conditional
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probability of the segmentation given the observation is de�ned as

P(M; f Wi gjx) =
1
Z

exp(
MX

i =1

KX

k=1

� k f (wi ; wi � 1; x)) :

where M is the number of segments,Wi = f pi ; qi ; si g and pi , qi , si are
the starting position, ending position and state of the i th segment. The
biggest advantage of this revision allows features that measure properties of
segments, and non-Markovian transitions within a segment.In spite of this
additional power, the complexity of exact learning and inference algorithms
for semi-CRFs are polynomial, often only a small constant factor slower than
conventional CRFs. The model has shown signi�cant improvement over the
original CRF in the information extraction tasks.

Hidden conditional random �elds The hidden CRF is another exten-
sion of the CRF, which introduces hidden variables between the labels and
observations for the recognition of object classes and gestures (Quattoni
et al., 2005; Wang et al., 2006). For each object class, the probability of a
given assignment of parts to local features is modeled by a CRF. Then the
parameters of the CRF are estimated in a maximum likelihood framework
and recognition proceeds by �nding the most likely class under the model.
The main advantage of hidden CRF is the relaxation of the conditional in-
dependence assumptions of the observed data (i.e. local features), which are
often used in generative approaches.

Other complex graph structures Up to now, the CRF model and its
variations are mostly used in applications with simple graph structures,
such as a chain, a tree or grids. It is not hard to imagine that many real
applications might require quite complex graph structures, such as protein
three-dimensional structures, or multiple layers of chains, involving both
time and location scales. Therefore several models are developed along this
direction, such as layout consistent random �eld (Winn & Shotton, 2006),
dynamic CRF (Sutton et al., 2004) and so on.

3.4 Applications

The elegant combination of graphical models and discriminative settings en-
ables CRF and its extensions widely applied in multiple domains, such as
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natural language processing, computer vision, speech recognition and com-
putational biology. Below is an incomplete list of the exciting applications
of CRF:

Natural language processing In the NLP area, CRF has been applied
to shallow parsing (Sha & Pereira, 2003), word alignment (Tsochantaridis
et al., 2004) and table extraction (Pinto et al., 2003). Someother exam-
ples include contrastive estimation, i.e. an unsupervisedversion of CRF,
for part-of-speech (POS) tagging and grammar induction (Smith & Eisner,
2005), dynamic CRF for joint labeling of POS tagging and noun phrase
extraction (Sutton et al., 2004), semi-Markov CRF for information extrac-
tion (Sarawagi & Cohen, 2004), 2-D CRF for web information extraction
(Zhu et al., 2005) and CRF for co-reference resolution (Sutton & McCal-
lum, 2006).

Computer vision In computer vision area, CRF was initially used for
image segmentation (Kumar & Hebert, 2003); later a dynamic conditional
random �eld model is proposed to capture the spatial and temporal de-
pendencies for image sequences (Wang et al., 2006), Sminchisescu et al.
applied CRFs to classify human motion activities (i.e. walking, jumping,
etc) (Sminchisescu et al., 2005), Torralba et al. introduced boosted ran-
dom �elds, a model that combines local and global image information for
contextual object recognition (Torralba et al., 2004), Quattoni developed
the Hidden CRFs to model spatial dependencies for object recognition in
unsegmented cluttered images (Quattoni et al., 2005), He etall propose the
multi-scale CRF for modeling patterns of di�erent scales (He et al., 2004).

Computational biology In computational biology, the CRF model was
�rst used for protein secondary structure prediction (Liu e t al., 2004). Later
it has been applied to detecting overlapping elements in sequence data
(Bockhorst & Craven, 2005), disul�de bond prediction (Taskar & Simon
Lacoste-Julien, 2005), RNA secondary structural alignment (Do et al., 2006b),
protein sequence alignment (Do et al., 2006a) and gene prediction [unpub-
lised manuscript].

3.5 Summary and Other Sources

The prediction problem with structured outputs is one of the emerging
trends in the �elds of machine learning. It is closely related to the multi-task
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learning and relational learning, although they are originated from di�erent
motivations and used for distinct applications. The CRF-li ke model has
played a central role in the solutions to predict structured outputs. Nowa-
days, many topics on the classi�cation problem, such as unbalanced data
and semi-supervised learning, have emerged in the study forstructured pre-
diction. However, the search for e�cient inference and learning algorithms
remain essential for wide applications of CRF.

In addition to the discussion above, there are also several useful infor-
mation sources and software available on this topics. Belowis an incomplete
list:

Available information sources

� Website devoted for CRF:

http://www.inference.phy.cam.ac.uk/hmw26/crf/

� Some tutorials include:
Hanna M. Wallach. Conditional Random Fields: An Introducti on.
Technical Report MS-CIS-04-21. Department of Computer andInfor-
mation Science, University of Pennsylvania.

Charles Sutton and Andrew McCallum. An Introduction to Cond i-
tional Random Fields for Relational Learning. In Introduction to Sta-
tistical Relational Learning . http://www.cs.umass.edu/ casutton/publications/crf-
tutorial.pdf

Ben Taskar. Large-Margin Learning of Structured Prediction Mod-
els. UAI-2005 Tutorial.

Trevor Cohn. Tutorial on Conditional Random Fields. In ALTA
Workshop. http://homepages.inf.ed.ac.uk/tcohn/talks/ crf tutorial.pdf

Available software

� mallet-CRF - http://crf.sourceforge.net/

Java implementation. An e�cient implementation of CRFs whi ch ex-
tensively relies on sparse matrix operations and Quasi-Newton opti-
mization during training (including CRF and semi-Markov CR F).

� exCRF - http://www.jaist.ac.jp/ hieuxuan/excrfs/exc rfs.html
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C/C++ implementation. It provides CRF with both �rst-order and
second-order Markov assumptions.

� CRF - http://www.cs.ubc.ca/ murphyk/Software/CRF/crf.h tml

Matlab implementation. The graph structure can be 1D chain, 2D
lattice and general graph. It is also embedded with stochastic meta-
descent for fast training.

� CRF ++ - http://chasen.org/ taku/software/CRF++/

C++ implementation. The software can be applied to a variety of
NLP tasks, such as named entity recognition, information extraction
and text chunking.

� SVMstruct - http://svmlight.joachims.org/

C++ C++ version. SVMstruct is a Support Vector Machine (SVM)
algorithm for predicting multivariate outputs.

� A free download code in Matlab will be available soon in MatlabArser-
nal

http://�nalfantasyxi.inf.cs.cmu.edu/MATLABArsenal/M ATLABArsenal.htm.



Chapter 4

Conditional Graphical
Models

Structural bioinformatics, as a sub�eld in computational b iology, involves
di�erent aspects of protein structures, including the structural representa-
tion, structural alignment and comparison, structure and function assign-
ments, and new structure design as drug targets. In this thesis, we fo-
cus on predicting the general protein structural topologies (as opposed to
speci�c 3-D coordinates) of di�erent levels, including secondary structures,
super-secondary structures and quaternary folds for homogeneous multi-
mers. Given these putative structural topologies of a protein, the backbone
of the tertiary (or quaternary) structures is known and more importantly it
can serve as a key indicator for certain functional or binding sites.

In contrast to the traditional ii assumptions in statistics and machine
learning, one distinctive property of protein structures is that the residues at
di�erent positions are not independent. For example, neighboring residues
in the sequence are connected by peptide bonds; some residues that are
far away from each other in the primary structures might be close in 3-
D and form chemical bonds, such as hydrogen bonds or disul�debonds.
These chemical bonds are essential to the stability of the structures and
directly determine the functionality of the protein. In ord er to model the
long-range interactions explicitly and incorporate all our tasks into a uni�ed
framework, it is desirable to have a powerful model that can capture the in-
terdependent structuredproperties of proteins. Recent work on conditional
graphical models shows that they are very e�ective in the prediction problem
for structured data, such as information extraction, parsing, image classi�-
cation and etc (Kumar & Hebert, 2003; Pinto et al., 2003; Sha &Pereira,

50
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X1 X3X2 X4 X6X5 Xn
…...

W1 W2 W3 W4
…... WM

Figure 4.1: The graphical model representation of conditional graphical
models. Circles represent the state variables, edges represent couplings
between the corresponding variables (in particular, long-range interaction
between units are depicted by red arcs). The dashed box overx's denote
the sets of observed sequence variables. An edge from a box toa node is a
simpli�cation of dependencies between the non-boxed node to all the nodes
in the box (and therefore result in a clique containing all x's).

2003). In addition, the graph representation in the model are intuitively
similar to the protein structures, which simpli�es the proc ess to incorpo-
rate domain knowledge and also helps the biologists better understand the
protein folding pathways.

4.1 Graphical Model Framework for Protein Struc-
ture Prediction

In this thesis, we develop a series of graphical models for protein structure
prediction. These models can be generalized to the framework of condi-
tional graphical models, which directly de�nes the probability distribution
over the labels (i.e., segmentation and labeling of the delineated segments)
underlying an observed protein sequence, rather than assuming particular
data generating process as in the generative models. Speci�cally, our model
can be represented via an undirected graphG = fV ; Eg, which we refer to
as \protein structural graph" (PSG). V is the set of nodes corresponding to
the speci�cities of structural units such as secondary structure assignments,
motifs or insertions in the supersecondary structure (which are unobserved
and to be inferred), and the amino acid residues at each position (which
are observed and to be conditioned on). E is the set of edges denoting
dependencies between the objects represented by the nodes,such as local
constraints and/or state transitions between adjacent nodes in the primary
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sequence, or long-range interactions between non-neighboring motifs and/or
insertions (see Fig. 4.1). The latter type of dependencies is unique to the
protein structural graph and results in much of the di�culti es in solving
such graphical models.

The random variables corresponding to the nodes in PSG are asfollows:
M denotes the number of nodes in PSG. Notice thatM can be either a con-
stant or a variable taking values from a discrete setsf 1; : : : ; mmaxg, where
mmax is the maximal number of nodes allowed (usually de�ned by thebiolo-
gists). Wi is the label for the i th node, i.e. the starting and ending positions
in the sequence and/or state assignment, which completely determine the
node according to its semantics de�ned in the PSG. Under thissetup, a
value instantiation of W = f M; f Wi gg de�nes a unique segmentation and
annotation of the observed protein sequencex (see Fig. 4.1).

Let CG denote the set of cliques in graphG. Furthermore, we use
Wc to represent an arbitrary clique c 2 CG. Given a protein sequence
x = x1x2 : : : xN where x 2 f amino acidg, and a PSG G, the probabilis-
tic distribution of the labels W given observationx can be postulated using
the potential functions de�ned on the cliques in the graph (Hammersley &
Cli�ord, 1971), i.e.

P(W jx) =
1
Z

Y

c2CG

�( x ; Wc); (4.1)

where Z is a normalization factor and �( �) is the potential function de�ned
over a clique. Following the idea of CRFs, the clique potential can be de�ned
as an exponential function of the feature functionf , i.e.

P(W jx) =
1
Z

Y

c2CG

exp(
KX

k=1

� k f k(x ; Wc)) ; (4.2)

where K is the number of features. The de�nition of the feature function f
varies, depending on the semantics of nodes in the protein structure graph
(see the next section for details). The parameters� = ( � 1; : : : ; � K ) are com-
puted by minimizing the regularized log-loss of the conditional probability
of the training data, i.e.

� = argmax f
LX

j =1

logP(w (j ) jx (j ) ) + 
( k� k)g; (4.3)

where L is the number training sequences. Notice that the conditional like-
lihood function is convex so that �nding the global optimum i s guaranteed.
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Given a query protein, our goal is to seek the segmentation con�guration
with the highest conditional probability de�ned above, i.e .

wopt = arg max
W

P(W jx):

The major advantages of the conditional graphical model de�ned above
include: (1) the intuitive representation of protein struc tures via graphs;
(2) the ability to model dependencies between segments in a non-Markovian
way, so that the chemical-bonding between distant residues(both inter-chain
and intra-chain bonding) can be captured; (3) the ability to use any features
that measure properties of segments or bonds that biologists have identi�ed.

4.2 Protein Structure Graph Construction

In the previous section, we give the de�nition of the protein structure graph
(PSG), which is an annotated graph G = f V; Eg, with V as the set of
nodes corresponding to the speci�cities of structural units and E as the
set of edges denoting dependencies between the objects represented by the
nodes, such as location constraints or long-range interactions between non-
neighboring units. Our next question is how to construct the PSG for a
target structure. This usually requires basic understanding about protein
structures as well as the input from domain experts. More speci�cally, we
need to address the following questions: what are the measures of a good
PSG? how to construct a PSG for protein structures using prior knowledge?
how to automatic generate a PSG for any types of protein structures without
any prior knowledge?

As we can see, the de�nition of PSG is descriptive rather thaninstruc-
tive. Given one protein structure of concern, we can usuallyconstruct several
reasonable PSG with di�erent semantics for each node. Therefore there is a
tradeo� between the graph complexity, �delity of model and t he real compu-
tational costs. The measures we take to evaluate a PSG is the expressiveness,
i.e. we search for the graphs that capture most important properties of the
protein structures while retaining as much simplicity as possible. In other
words, the optimal PSG is the one yielding the highest scoresde�ned as the
likelihood of the training data minus its graph complexity.

In many cases, our target structures have been studied by thebiologists
over the years and some basic knowledge of their properties have been ac-
cumulated. Most of the prediction problems addressed in thethesis belongs
to this category. The PSG of such structures can be constructed easily by
communicating with the experts. The information we need to collect is:
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S2 S3

S5

S1

S1 S4 S6

(A) (B)

Figure 4.2: Graph structure of � -� -� motif (A) 3-D structure (B) Pro-
tein structure graph: node: Green=� -strand, yellow= � -helix, cyan=coil,
white=non- � -� -� (I-node); edge: E1 = f black edgesg and E2 = f red edgesg.

what are the structural components? how do they associate with each other
via chemical bonds? which chemical bonds are unique or important for the
stability of the structures? For example, for the � -� -� motif, we know that
it consists of two � -strands with an � -helix in-between; the hydrogen bonds
connecting the two � -strands uniquely identify the motif. Therefore we can
construct a PSG as shown in Figure 4.2.

In some cases, we need to handle the protein structures that are quite
new to the biologists and no prior knowledge of their structure properties are
given. To solve the problem, we need to learn a PSG automatically from the
data. This problem falls in the general task of structure learning in graphical
model research. Compared with previous work in structure learning, the key
challenges are the availability of training data since manynovel structures
have only 1 or 2 positive proteins for training. On the other hand, we are
also provided additional information (i.e. the three-dimensional structures
of positive proteins) which can guide the learning. In general, we can follow
the systematic procedures below to construct an initial graph:

1. Build a multiple structure alignment of all the positive p roteins (among
themselves)

2. Segment the alignment into disjoint parts based on the secondary
structures of the majority proteins

3. Draw a graph with nodes denoting the resulting secondary structure
elements and then add edges between neighboring nodes to model local
constraints

4. Add the long-range interaction edge between two nodes if the average
distance between all the involved residues is below some threshold
� min speci�ed by the user.
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After we get the initial graphs, the next step is to search for the optimal
PSG by performing only two types of actions, merging nodes and deleting
edges. We skip detailed discussion of the latter case as it isa separate line of
research and assume that we are given a reasonably good graphover which
we perform our learning.

4.3 Speci�c Contribution

To address the prediction problem on di�erent protein structure hierarchies,
several conditional graphical models are developed as a special case of the
model de�ned in eq(4.2) . Table 4.1 summarizes the models, which are
described in detail below.

4.3.1 Conditional Random Fields (CRFs)

Protein secondary structure prediction assigns the secondary structure la-
bel, such as helix, sheet or coil, for each residue in the protein sequence.
Therefore the nodes in the PSG represent the states of secondary structure
assignment and the graph structure is simply a chain as the protein sequence.
As we can see, the model is the plain CRF with a chain structure(La�erty
et al., 2001). Its graphical model representation for a chain-structured CRF
is shown in Figure 4.3, in which we have one node for the state assignment
for each residue in the sequence. Mapping back to the generalframework in
the previous section, we haveM = n and Wi = yi 2 f helix, sheets, coilsg.
The conditional probability P(W jx) = P(y jx) is de�ned as

P(yjx ) =
1
Z

NY

i =1

exp(
KX

k=1

� k f k(x ; i; y i � 1; yi )) ; (4.4)

where f k can be arbitrary features, including overlapping or long-range
interaction features. As a special case, we can construct HMM-like fea-
tures that are factored as two parts: f k(x ; i; y i � 1; yi ) = gk (x ; i )� (yi � 1; yi ),
in which � (yi � 1; yi ) is the indicator function over each pair of state assign-
ments (yi � 1; yi ) (similar to the transition probability in HMM), and gk (x ; i )
is any feature de�ned over the observations (x; yi ) (which mimics the emis-
sion probability without any particular assumptions about the data).

CRFs take on a global normalizer Z over the whole sequence. This
results in a series of nice properties, but at the same time introduces huge
computational costs. Maximum Entropy Markov Models (MEMMs ) can be



C
H

A
P

T
E

R
4.

C
O

N
D

IT
IO

N
A

L
G

R
A

P
H

IC
A

L
M

O
D

E
LS

56

Table 4.1: Thesis work: conditional graphical models for protein structure prediction of all hierarchies
Hierarchy Secondary Tertiary Quaternary
Task secondary

structure
prediction

parallel/ an-
tiparallel � -
sheet predic-
tion

Fold (motif)
recognition

Structural re-
peats

Quaternary fold
recognition (w/o
sequence repeats)

Quaternary fold
recognition (with
sequence repeats)

Target
Proteins

globular pro-
teins

globular pro-
teins

� -helix � -helix,
leucine-rich
repeats

double barrel
trimer

triple � -spiral

Structural
modules

amino acid amino acid secondary
structure

structural mo-
tifs/ insertions

secondary/super- sec-
ondary structures

Module
length

�xed �xed variable variable variable

Graphical
model

CRFs,
kCRFs

CRFs SCRFs chain graph
model

linked SCRFs
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Figure 4.3: Graphical model representation of simple HMM(A), MEMM(B),
and chain-structured CRF(C)

seen as a localized version of CRFs (see Fig. 4.3 (B)) (McCallum et al.,
2000). The conditional probability in MEMMs is de�ned as

P(y jx) =
NY

i =1

1
Z i

exp(
KX

k=1

� k f k(x ; i; y i � 1; yi )) ; (4.5)

where Z i is a normalizer over thei th position. MEMMs reduce the compu-
tational costs dramatically, but su�er from the \label bias " problem, that
is, the total probability \received" by yi � 1 must be passed on to labelsyi

at time i even if x i is completely incompatible with yi � 1 (La�erty et al.,
2001). Empirical results show that for most applications CRFs are able to
outperform MEMMs with either slight or signi�cant improvem ent. The de-
tailed comparison results with applications to protein secondary structure
prediction are discussed in Section 6.3.

4.3.2 Kernel Conditional Random Fields (kCRFs)

The original CRFs model only allows linear combination of features. For
protein secondary structure prediction, the state-of-art method can achieve
an accuracy of around 80% using SVM with linear kernels, which indicates
that the current feature sets are not su�cient for a linear separation.

Recent work in machine learning has shown that kernel methods are
extremely e�ective in a wide variety of applications (Crist ianini & Shawe-
Taylor, 2000). Kernel conditional random �elds, as an extension of con-
ditional random �elds, permits the use of implicit features spaces through
Mercer kernels (La�erty et al., 2004). Similar to CRFs, the conditional
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Figure 4.4: Kernels for structured graph: K ((x; c; yc); (x0; c0; y0
c)) =

K ((x; c); (x0; c0)) � (yc; y0
c).

probability is de�ned as

P(yjx ) =
1
Z

Y

c2CG

expf � (x ; c; yc);

wheref (�) is the kernel basis function, i.e. f (�) = K (�; (x ; c; yc)). One way to
de�ne the kernels over the structured graph can beK ((x; c; yc); (x0; c0; y0

c)) =
K ((x; c); (x0; c0)) � (yc; y0

c), whose �rst term is the typical kernels de�ned for
ii examples, and the second term is the indicator function over each state
pair � (yc; y0

c) (see Fig. 4.4). By the representer theorem, the minimizer of
the regularized loss has the form

f � (�) =
LX

j =1

X

c2C
G ( j )

X

yc2Y j cj

� (j )
yc

K (�; (x (j ) ; c; yc)) :

Notice that the dual parameters � depend on all the clique label assignments,
not limited to the true labels. The detailed algorithms and experiment
results of predicting protein secondary structures are shown in Section 6.5.

4.3.3 Segmentation Conditional Random Fields (SCRFs)

Protein folds or motifs are frequent arrangement patterns of several sec-
ondary structure elements. Therefore the layout patterns are usually de-
scribed in secondary structure elements instead of individual residue. Since
the topologies information are known in advance, it would benatural to build
an undirected graph, with each node representing the secondary structural
elements and the edges indicating the interactions betweenthe elements in
three-dimensional structures. Then, given a protein sequence, we can search
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Figure 4.5: Graphical model representation for segmentation conditional
random �elds

for the best segmentation de�ned by the graph. Following the idea, a seg-
mentation conditional random �elds (SCRFs) model can be developed for
general protein fold recognition (Liu et al., 2005).

For protein fold (or motif) recognition, we de�ne a PSG G = < V; E > ,
where V = U

S
f Ig, U is the set of nodes corresponding to the secondary

structure elements within the fold and I is the node that represents the ele-
ments outside the fold. E is the set of edges between neighboring elements in
primary sequences or those indicating the potential long-range interactions
between elements in tertiary structures (see Figure 4.5). Given the graph G
and a protein sequencex = x1x2 : : : xN , we can have a possible segmentation
of the sequence, i.e.W = f M; f Wi gg, where M is the number of segments,
Wi = f si ; pi ; qi g, and si , pi , qi are the state, starting position and ending
position of the i th segment. Here the states are the set of labels to distin-
guish each structural component of the fold. The conditional probability of
W given the observationx is de�ned as

P(W jx) =
1
Z

Y

c2CG

exp(
KX

k=1

� k f k(x ; wc)) ; (4.6)

where f k is the kth feature de�ned over the cliquesc. In a special case, we
can consider only the pairwise cliques, i.e.

f (x ; wi ; wj ) = g(x; pi ; qi ; pj ; qj )� (si ; sj )� (qi � pi )� (qj � pj );

where g is any feature de�ned over the two segments. Note thatCG can be
a huge set, and eachWc can also include a large number of nodes due to
various levels of dependencies. Designing features for such cliques is non-
trivial because one has to consider all the joint con�gurations of all the nodes
in a clique.



CHAPTER 4. CONDITIONAL GRAPHICAL MODELS 60

Z2

S1
S

2 S4

T1 T2 T3 T4

S3 SM

TM

...

...

...X1 X2 X3 X4 X5 X6 XN

S1
S

2 S4

T1 T2 T3 T4

S3 SM

TM

...

...

Z3 Z4

S1
S

2 S4

T1 T2 T3 T4

S3 SM

TM

...

...

T2 T3 TMT1

...

...

Figure 4.6: Chain graph model for predicting folds with repetitive structures

Usually, the spatial ordering of most regular protein folds is known a
priori , which leads to a deterministic state dependency between adjacent
nodeswi and wi +1 . Thus we have a simpli�cation of the \e�ective" clique
sets (those need to be parameterized) and the relevant feature design. Es-
sentially, only pairs of segment-speci�c cliques that are coupled need to be
considered (e.g., those connected by the undirected \red" arc in Figure 4.5)1,
which results in the following formulation:

P(W jx) =
1
Z

MY

i =1

exp(
KX

k=1

� k f k(x ; Wi ; W� i )) ; (4.7)

where W� i denotes the spatial predecessor (i.e., with small positionindex)
of Wi determined by a \long-range interaction arc". The detailed inference
algorithm with application to regular fold recognition is d escribed in Section
7.2.

4.3.4 Chain Graph Model

SCRF is a model for regular protein fold recognition. It can be seen as an
exhaustive search over all possible segmentation con�gurations of the given
protein and thus results in tremendous computational costs. To alleviate the
problem, a chain graph model is proposed, which is designed for a special
structure, i.e. protein folds with repetitive structural r epeats. They are de-
�ned as repetitive structurally conserved secondary or supersecondary units,
such as� -helices,� -strands, � -sheets, connected byinsertions with variable
number of residues, which are mostly short loops and sometimes � -helices

1Technically, neighboring nodes must satisfy the constrain ts on the location indexes,
i.e. qi � 1 + 1 = pi . We omit it here for presentation clarity.
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or/and � -sheets. These folds are believed to be prevalent in proteins and
involve in a wide spectrum of cellular activities.

A chain graph is a graph consisting of both directed and undirected arcs
associated with probabilistic semantics. It leads to a probabilistic distri-
bution bearing the properties of both Markov random �elds (i .e., allowing
potential-based local marginals that encode constraints rather than causal
dependencies) and Bayesian networks (i.e., not having a hard-to-compute
global partition function for normalization and allowing c ausal integration
of subgraphs that can be either directed or undirected) (Lauritzen & Wer-
muth, 1989; Buntine, 1995).

Back to the protein structure graph, we propose ahierarchical segmen-
tation for a protein sequence. On the top level, we de�ne anenvelop � i ,
as a subgraph that corresponds to one repeat region in the fold (containing
both motifs and insertions or the null regions, i.e. structures outside the
protein fold). It can be viewed as a mega node in a chain graph de�ned
on the entire protein sequence and its segmentation (Fig. 4.6). Analogous
to the SCRF model, let M denote the number of envelops in the sequence,
T = f T1; : : : ; TM g where Ti 2 f repeat, non-repeatg denote the structural
label of the i th envelop. On the lower level, we decompose each envelop as a
regular arrangement of several motifs and insertions, which can be modeled
using one SCRFs model. Let �i denote the internal segmentation of the
i th envelop (determined by the local SCRF), i.e. � i = f M i ; Y i g. Following
the notational convention in the previous section, we useWi;j to represent a
segment-speci�c clique within envelopi that completely determines the con-
�guration of the j th segment in thei th envelop. To capture the inuence of
neighboring repeats, we also introduce a motif indicatorQi for each repeat
i , which signals the presence or absence of sequence motifs therein, based
on the sequence distribution pro�les estimated from previous repeat.

Putting everything together, we arrive at a chain graph depicted in Fig.
4.6. The conditional probability of a segmentation W given a sequencex
can be de�ned as

P(W jx) = P(M; � ; T jx) = P(M )
MY

i =1

P(Ti jx ; Ti � 1; � i � 1)P(� i jx ; Ti ; Ti � 1; � i � 1):(4.8)

P(M ) is the prior distribution of the number of repeats in one protein,
P(Ti jx ; Ti � 1; � i � 1) is the state transition probability and we use the struc-
tural motif as an indicator for the existence of a new repeat:

P(Ti jx ; Ti � 1; � i � 1) =
1X

Q i =0

P(Ti jQi )P(Qi jx ; Ti � 1; � i � 1);
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where Qi is a random variable denoting whether there exists a motif in
the i th envelop and P(Qi jx ; Ti � 1; � i � 1) can be computed using any motif
detection model. For the third term, a SCRFs model is employed, i.e.

P(� i jx ; Ti ; Ti � 1; � i � 1) =
1
Z i

exp(
M iX

j =1

KX

k=1

� k f k(x ; Wi;j ; W� i;j )) ; (4.9)

where Z i is the normalizer over all the con�gurations of � i , and W� i;j is
the spatial predecessor ofWi;j de�ned by long-range interactions. Similarly,
the parameters � k can be estimated by minimizing the regularized negative
log-loss of the training data.

Compared with SCRFs, the chain graph model can e�ectively identify
motifs by exploring their structural conservation and at th e same time take
into account the long-range interactions between repeat units. In addition,
the model takes on a local normalization, which reduces the computational
costs dramatically. Since the e�ects of most chemical bondsare limited to
a small range in 3-D space without passing through the whole sequence,
this model can be seen as a reasonable approximation for a global optimal
solution as SCRFs. The details of the algorithm and experiment results are
discussed in Section 7.3.

4.3.5 linked Segmentation Conditional Random Fields (l-
SCRFs)

The quaternary structure is the stable association of multiple polypeptide
chains via non-covalent bonds, resulting in a stable unit. Quaternary struc-
tures are stabilized mainly by the same non-covalent interactions as tertiary
structures, such as hydrogen bonding, van der Walls interactions and ionic
bonding. Unfortunately, previous work on fold recognition for single chains
is not directly applicable because the complexity is greatly increased both
biologically and computationally, when moving to quaternary multi-chain
structures. Therefore we propose the linked SCRF model to handle protein
folds consisting of multiple protein chains.

The PSG for a quaternary fold can be derived similarly as the PSG for
tertiary fold: �rst construct a PSG for each component prote in or a compo-
nent monomeric PSG for homo-multimer, and then add edges between the
nodes from di�erent chains if there are chemical bonds, forming a more com-
plex but similarly-structured quaternary PSG. Given a quat ernary structure
graph G with C chains, i.e. f x i ji = 1 : : : Cg, we have a segmentation ini-
tiation of each chain y i = ( M i ; w i ) de�ned by the PSG, where M i is the
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number of segments in thei th chain, and w i;j = ( si;j ; pi;j ; qi;j ), si;j , pi;j ,
qi;j are the state, starting position and ending position of the j th segment.
Following similar idea as the CRFs model, we have

P(y1; : : : ; yC jx1; : : : ; xC ) =
1
Z

Y

C2G

�( yC; x ) (4.10)

=
1
Z

Y

w i;j 2V G

�( x i ; w i;j )
Y

hw a;u ;w b;v i2E G

�( xa; xb; wa;u ; wb;v) (4.11)

=
1
Z

exp(
X

w i;j 2V G

K 1X

k=1

� 1;k f k (x i ; w i;j ) +
X

hw a;u ;w b;v i2E G

K 2X

k=1

� 2;kgk (xa; xb; wa;u ; wb;v))

(4.12)

where Z is the normalizer over all possible segmentation assignments of all
component sequences (see Figure 4.7 for its graphical modelrepresentation).
In eq(4.12), we decompose the potential function over the cliques �( yC; x )
as a product of unary and pairwise potentials, wheref k and gk are features,
� 1;k and � 2;k are the corresponding weights for the features. Speci�cally, we
factorize the features as the following way,

f k(x i ; w i;j ) = f 0
k(x i ; pi;j ; qi;j )� (w i;j )

=
�

f 0
k(x i ; pi;j ; qi;j ) if si;j = s&qi;j � pi;j 2 length range(s)

0 otherwise,

Similarly, we can factorizegk (xa; xb; wa;u ; wb;v) = g0
k (xa; xb; qa;u ; pa;u ; qb;v; pb;v)

if qa;u � pa;u 2 length range (s) and qb;v � pb;v 2 length range (s0), and 0
otherwise.

The major advantages of linked SCRFs model include: (1) the ability
to encode the output structures (both inter-chain and intra-chain chemical
bonding) using the graph; (2) dependencies between segments can be non-
Markovian so that the chemical-bonding between distant amino acids can
be captured; (3) it permits the convenient use of any features that measure
the property of segments the biologists have identi�ed. On the other hand,
the linked SCRF model di�ers signi�cantly from the SCRF mode l in that
the quaternary folds with multiple chains introduce huge complexities for
inference and learning. Therefore we develop e�cient approximation algo-
rithms that are able to �nd optimal or near-optimal solution s as well as their
applications in Chapter 8.
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Figure 4.7: Graphical Model Representation of l-SCRFs model with multiple
chains. Notice that there are long-range interactions (represented by red
edges) within a chain and between chains

4.4 Discussion

In our previous discussion, we use the regularized log loss as the objective
function to estimate parameters, following the original de�nition in CRFs
model (La�erty et al., 2001). In addition to CRFs, there are several other
discriminative methods proposed for the segmentation and labeling problem
of structured data, such as max-margin Markov networks (M3N) (Taskar
et al., 2003) and Gaussian process sequence classi�er (GPSC) (Altun et al.,
2004) (see Chapter 3 for full discussion). Similar to the classi�ers for classi-
�cation problem, these models can be uni�ed under the exponential model
with di�erent loss functions and regularization terms.

4.4.1 Uni�ed View via Loss Function Analysis

Classi�cation problem, as a sub�eld in supervised learning, aims at assign-
ing one or more discrete class labels to each example in the dataset. In
recent years, various classi�ers have been proposed and successfully applied
in lots of applications, such as logistic regression, support vector machines,
naive Bayes, k-Nearest neighbor and so on (Hastie et al., 2001). Discrimina-
tive classi�ers, as opposed to generative models, computesthe conditional
probability directly and usually assumes a linear decisionboundary in the
original feature space or in the corresponding Hilbert space de�ned by the
kernel functions. Previous research work indicate that theloss function anal-
ysis can provide a comprehensible and uni�ed view of those classi�ers with
totally di�erent mathematical formulation (Hastie et al., 2001).

In the following discussion, we focus on the binary classi�cation problem
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and concern ourselves with three speci�c classi�ers, including regularized lo-
gistic regression (with extension to kernel logistic regression) (Zhu & Hastie,
2001), support vector machines (SVM) (Vapnik, 1995) and Gaussian process
(GP) (Williams & Barber, 1998). All these three classi�ers can be seen as
a linear classi�er which permits the use of kernels. Speci�cally, the decision
function f (x) has the form as

f (x) =
LX

i =1

� i K (x i ; x); (4.13)

where � are the parameters of the model andK is the kernel function. �
are learned by minimizing a regularized loss function and the general form
of the optimization function can be written as

� = argmax
LX

i =1

g(yi f (x i )) + 
( kf kF ); (4.14)

where the �rst term is the training set error, g is speci�c loss function and
the second term is the complexity penalty or regularizer.

The essence of di�erent classi�ers can be revealed through their de�ni-
tions of the loss functions as follows:

� Kernel logistic regression de�nes the loss function as the logistic loss,
i.e. g(z) = log(1+exp( � z)). In the model described in (Zhu & Hastie,
2001), a Gaussian prior with zero mean and diagonal covariance matrix
is applied, which equals to anL 2 regularizer.

� Support vector machines uses the hinge loss, i.e.g(z) = (1 � z)+ ,
which results in the nice properties of sparse parameters (most values
are equal to 0). Similar to logistic regression, anL 2 regularizer is
employed.

� Gaussian process classi�cation can be seen as a logistic loss with Gaus-
sian prior de�ned over in�nite dimensions over f. Since it is intractable
to integrate out all the hidden variables, maximum a posterior (MAP)
estimate has to be applied. This formulation has a very similar loss
function expression as the kernel logistic regression except it is more
general in terms of the de�nition for mean and variance in the Gaus-
sian prior.

Previous analysis on loss functions provides a general viewfor di�erent
classi�ers and helps us better understand the classi�cation problem. For the
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prediction problem (segmentation and labeling) of structured data, a similar
analysis can be derived accordingly. As discussed in Section 4.1, conditional
graphical models de�ne the probability of the label sequence y given the
observation x directly and use exponential model to estimate the potential
functions. The decision function f (x) has the form as:

f � (�) =
LX

j =1

X

c2C
G ( j )

X

yc2Y j cj

� (j )
yc

K (�; (x (j ) ; c; yc)) :

where � is the model parameters which can be learned by minimizing the
loss over the training data. Similar to kernel logistic regression, kernel CRFs
take on a logistic loss with anL 2 regularizer. Max-margin Markov networks,
like SVM, employs a hinge loss. On the other hand, the Gaussian process
classi�cation for segmenting and labeling (GPSC) are motivated from the
gaussian process point of view, however, its �nal form are very close to
kCRFs.

In summary, although our work is mostly focused on the logistic loss,
they can easily be adapted to other loss functions and regularizer, depending
on the tradeo� between complexity and e�ectiveness in speci�c applications.

4.4.2 Related Work

From machine learning perspective, our conditional graphical model frame-
work is closely related to the semi-Markov conditional random �elds (Sarawagi
& Cohen, 2004) and dynamic conditional random �elds (Sutton et al.,
2004) (see Chapter for detail). All these three models are extensions of
the CRF model, however, ours is more representative in that it allows both
the semi-Markov assumptions, i.e. assigning the label to a segment (i.e.
subsequence) instead of individual element, and graph structures involving
multiple chains. Furthermore, our models are able to handlethe interactions
or associations between nodes even on di�erent chains thanks to the exible
formulation and e�cient inference algorithms we developed.

In structural biology, the conventional representation of a protein fold
is the use of a graph (Westhead et al., 1999), in which nodes represent the
secondary structure components and the edges indicate the inter- and intra-
chain interactions between the components in the 3-D structures. Therefore
the graph representation for protein structures is not novel from that per-
spective. However, there have been very few studies about combining the
graph representation and probability theory via graphical models for protein
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structure prediction. Furthermore, there has been no work about developing
discriminative training of graphical models on this topics.



Chapter 5

E�cient Inference
Algorithms

In the previous chapter, we describe the general framework of conditional
graphical models. Given an observation sequencex = x1x2 : : : xN , the con-
ditional probability of a possible segmentationW = f M; f Wi gg according
to a protein structure graph G, is de�ned as

P(W jx) =
1
Z

Y

c2CG

exp(
KX

k=1

� k f k(x ; Wc)) ; (5.1)

The parameters � = ( � 1; : : : ; � K ) can be computed by minimizing the reg-
ularized log-loss of the training data, i.e.

� = argmax f
LX

j =1

logP(w (j ) jx (j ) ) + 
( k� k)g; (5.2)

where L is the number of training sequences. The conditional likelihood
function is convex so that �nding the global optimum is guaranteed. Since
there is no closed form solution to the optimization function above, we com-
pute the �rst derivative of right side of eq(5.2) with respect to � and set it
to zero, resulting in the equation below:

LX

j =1

f k(x ; Wc) �
LX

j =1

EP (W jx) [f k(x ; Wc)] + �
( k� k) = 0 (5.3)

The intuition of eq (5.3) is to seek the direction of � k where the model
expectation agrees with the empirical distribution.

68
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Given a testing sequence, our goal is to seek the segmentation con�gu-
ration with the highest conditional probability de�ned abo ve, i.e.

W opt = argmax
X

c2CG

KX

k=1

� k f k(x ; Wc): (5.4)

It can be seen that we need to compute the expectation of the features
over the models in eq(5.3) and search over all possible assignments of the
segmentation to ensure the maximum in eq(5.4). A naive exhaustive search
would be prohibitively expensive due to the complex graphs induced by
the protein structures. In addition, there are millions of sequences in the
protein sequence database. Such large-scale applicationsdemand e�cient
inference and optimization algorithms. It is known that the complexity of
the inference algorithm depends on the graphs de�ned by the models. If it is
a simple chain, or tree-structure, we can use exact inference algorithms, such
as belief propagation. For complex graphs, since computingexact marginal
distributions is in general infeasible, approximation algorithms have to be
applied. There are three major approximation approaches for inference in
graphical models, including sampling, variational methods and loopy belief
propagation. In this chapter, we focus on surveying the possible solutions for
the inference and learning problem. In the next three chapters, we develop
the speci�c learning and inference algorithms that are mostappropriate for
our models and applications.

5.1 Sampling algorithm

Sampling has been widely used in the statistics community due to its sim-
plicity. However, there is a problem if we use the naive Gibbssampling for
our conditional graphical models since the output variables Y = f M; f w i gg
may have di�erent dimensions in each sampling iteration, depending on the
value of M i (the number of segments in thei th sequence). The reversible
jump Markov chain Monte Carlo algorithms have been proposedto handle
the sampling from variable dimensions (Green, 1995). It hasdemonstrated
successes in various applications, such as mixture models,hidden Markov
models for DNA sequence segmentation and phylogenetic trees (Huelsenbeck
et al., 2004; Boys & Henderson, 2001).

Reversible jump MCMC sampling Given a segmentationy = ( M; w i ),
our goal is propose a new movey � . To satisfy the detailed balance de�ned
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by the MCMC algorithm, auxiliary random variables v and v� have to be
introduced. The de�nitions for v and v� should guarantee the dimension-
matching requirement, i.e. dim(y) + dim( v) = dim( y� ) + dim( v0) and there
is a one-to-one mapping from (y; v) to ( y� ; v0), i.e. there exists a function
	 so that 	( y; v) = ( y� ; v0) and 	 � 1(y� ; v0) = ( y; v). Then the acceptance
rate for the proposed transition from y to y� is

minf 1; posterior ratio � proposal ratio � Jacobiang = min f 1;
P(y � jx )
P(y jx)

P(v0)
P(v)

�
�
�
�
@(y �

i ; v0)
@(y i ; v)

�
�
�
�g;

where the last term is the determinant of the Jacobian matrix.
To construct a Markov chain on the sequence of segmentations, we de�ne

four types of Metropolis operators (Green, 1995):
(1) State switching: given a segmentationy , sample a segment indexj
uniformly from [1 ; M ], and set its state to a new random assignment.
(2) Position Switching: given a segmentationy, sample the segment indexj
uniformly from [1 ; M ], and change its starting position to a number sampled
from U[pi;j � 1; qi;j ].
(3) Segment split: given a segmentationy, propose a move withM �

i = M i +1
segments by splitting the j th segment, wherej is randomly sampled from
U[1; M ].
(4) Segment merge: given a segmentationy, sample the segment indexj
uniformly from [1 ; M ], propose a move by merging thej th segment and
j + 1 th segment.

Contrastive divergence There are two main problems if we use the sam-
pling algorithms described above, i.e. ine�cient due to long \burn-in" period
and large variance in the �nal estimation. To avoid the probl em, contrastive
divergence (CD) was proposed in (Welling & Hinton, 2002), inwhich a single
MCMC move is made from the current empirical distribution da ta and thus
reduce the computational costs dramatically. More speci�cally, In each step
of the gradient update, instead of computing the model expectation h�ip,
CD runs the Gibbs sampling for up to only a few iterations and uses the
resulting distribution q to approximate the model distribution p. It has been
proved that the �nal values of the parameters by this kind of update will
converge to the maximum likelihood estimation (Welling & Hinton, 2002).

The uncorrected Langevin method The uncorrected Langevin method
(Murray & Ghahramani, 2004) is originated from the Langevin Monte Carlo
method by accepting all the proposal moves. It makes use of gradient infor-
mation and resembles noisy steepest ascent to avoid local optimal. Similar
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to the gradient ascent, the uncorrected Langevin algorithmhas the following
update rule:

� new
ij = � ij +

� 2

2
@

@�ij
logp(X; � ) + �n ij (5.5)

wheren ij � N (0; 1) and � is the parameter to control the step size. Via the
contrastive divergence algorithm, only a few iterations of Gibbs sampling
are needed to approximate the model distributionp.

5.2 Loopy belief propagation

Loopy belief propagation (Loopy BP) has been proven to be very e�ective
in multiple experimental studies (Murphy et al., 1999b). Th e algorithm
maintains a messagemb;q(wa;p) between pairs of verticeswb;q and wa;p.
The update from wb;q to wa;p is given by:

mb;q(wa;p)  
X

sb;q 2 S\ db;q 2 range(sb;q )

�( wb;q; xb)�( wb;q; wa;p; xb; xa)
Y

w i;j 2T b;q =w a;p

mi;j (wb;q);

where Tb;q is the spanning tree ofwb;q. In the experiments, tree-based al-
gorithm or random schedules can be applied to determineT . Given the
message vectorm, approximate marginals can be computed as

p(wa;p)  
1

Z 0
1
�( wb;q; xb)

Y

w i;j 2N a;p \ w i;j 6= w b;q

mi;j (wa;p)

p(wb;q; wa;p)  
1

Z 0
2
�( wb;q; wa;p; xb; xa)

Y

w i;j 2N b;q =w a;p

mi;j (yb;q)
Y

w i;j 2N a;p =w b;q

mi;j (wa;p):

Then the expectation of features can be computed directly using the ap-
proximated marginal. The Loopy BP has demonstrated successin many
empirical studies, and recently proved to minimize the Bethe free energy
theoretically (Yedidia et al., 2000).

It is straightforward to use the loopy BP for CRF or kCRF model . How-
ever, it is not directly applicable to complex models, such as SCRF or linked
SCRF, since these models allow the number of nodes in the graph to be also
a variable.

5.3 Variational approximation

Variational methods exploit laws of large numbers to transform the original
graphical model into a simpli�ed graphical model in which inference is e�-
cient (Jordan et al., 1999; Jaakkola, 2000). Mean �eld (MF) is the simplest
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variational method that approximates the model distributi on p through a
factorized form as a product of marginals over clusters of variables (Xing
et al., 2003). It is straightforward to derive the naive mean�eld for the CRF
model, where the conditional probability in the CRF p is approximated by
an surrogate distribution q as a product of singleton marginals over the
variables: q(y jx ) =

Q
i q(yi jx ), where q(yi ) is de�ned as a multinomial dis-

tribution. By minimizing the KL divergence between q and p, we can get
a mean �eld approximation of the marginals. For SCRF or linked SCRF
model, we have the long-range interaction edges that make the inferences
complicated. Structured variational approximation can be applied, where
the surrogate distribution q is de�ned as a semi-Markov CRF model, i.e.

q =
1
Z

exp(
MX

i =1

KX

k=1

� k f k(wi ; wi � 1; x)) :

5.4 Pseudo point approximation

In addition to the approaches above, we can also use some naive while
fast approximations by point estimation. Even though this approach is less
preferred, it does �nd applications where the graph consists of hundreds of
nodes, for example, object recognition in computer vision.

Saddle Point Approximation A straightforward approximation method
is based on approximating the partition function (Z ) using the saddle point
approximation(SPA), that is,

Z � exp(
X

w �
i;j 2V G

K 1X

k=1

� k f k(x i ; w �
i;j )+

X

hw �
a;p ;w �

b;q i2E G

K 2X

k=1

� kgk (xa; xb; w �
a;p; w �

b;q);

wherey � = argmax P(Y jx).This also leads to the simple approximation for
the expectations, i.e.

E [f k (x i ; W i;j )] = f k(x ; y �
i;j ); E [gk (xa; xb; W a;p; W b;q)] = gk (xa; xb; w �

a;p; w �
b;q):

Maximum Margin Approximation A further simpli�cation can be
made by assuming all the mass ofZ is concentrated on the maximum mar-
gin con�guration, i.e. w ?

i;j = argmax P(w i;j jwN i;j ; x). Then the normalizer
and expectation can be calculated using the value ofy?.
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5.5 Alternatives to maximum a posterior

Given a testing sequence, our task is to computey � = argmax P(y jx).
There are several algorithms to compute the maximum a posterior (MAP),
for example, we can use the same propagation algorithm described above,
except that the summation is replaced by maximization. Other alternative
solutions include:

Maximum posterior marginal Following the idea of greedy search, we
can get the optimal y by maximizing each individual cliques, i.e.

w i;j = argmax P(w i;j jwN i;j ; x):

Iterated conditional modes Given an initial label con�guration, iter-
ated conditional modes (ICM) maximizes the local conditional probability
iteratively, i.e.

w (t+1)
i;j = argmax P(w i;j jw t

N i;j
; x)

In addition, the MAP problem belongs to the general task of search in arti�-
cial intelligence. Many searching algorithms, such as branch-and-bound and
dead-end elimination, can be applied. Several algorithms along the direction
are developed for energy minimization in protein folding, drug design and
ab initio protein structure prediction (Desmet et al., 1992; Dahiyat & Mayo,
1997).



Chapter 6

Protein Secondary Structure
Prediction

It is widely believed that protein secondary structures cancontribute valu-
able information to discerning how proteins fold in three-dimensions. Pro-
tein secondary structure prediction, which projects primary protein sequences
onto a string of secondary assignments, such as helix, sheetor coil, for each
residue, has been extensively studied for decades (Rost & Sander, 1993; King
& Sternberg, 1996; Jones, 1999; Rost, 2001). Recently the performance of
protein secondary structure prediction has been improved to as high as 78 -
79% in accuracy in general and 80-85% for predicting helix and coils (Kim
& Park, 2003). The major bottleneck lies in the � -sheets prediction, which
involves hydrogen bonding between residues that are not necessarily consec-
utive in the primary structure.

The architecture of a typical protein secondary structure prediction sys-
tem is outlined in Fig. 6.1. In the �rst step, pro�le generati on or feature
extraction ([A] in Fig. 6.1), converts the primary protein s equences to a set
of features that can be used to predict the labels of secondary structures.
Divergent pro�les of multiple sequence alignments and a large variety of
physical or biochemical features have been explored (Rost &Sander, 1993;
Jones, 1999). Next, a sequence-to-structure mapping process ( [B] in Fig.
6.1) outputs the predicted scores for each structure type using the features
from [A] as input. Various machine learning algorithms havebeen applied,
including neural networks (Rost & Sander, 1993), recurrentneural networks
(Pollastri et al., 2002), Support Vector Machines (SVMs) (Hua & Sun, 2001)
and Hidden Markov Models (HMMs) (Bystro� et al., 2000). Then , the out-
put scores from [B] are converted to secondary structure labels. This involves

74
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considering the inuence of neighboring structures by structure-to-structure
mapping [C] and removing physically unlikely conformations by a Jury sys-
tem [D], also referred as \�lters" or \smoothers". Some systems separate
[C] and [D] for explicit evaluation, while others keep them in one unit (Rost
& Sander, 1993; King & Sternberg, 1996). Finally, a consensus is formed by
combining predicted scores or labels from multiple independent systems into
a single labeled sequence. Several methods have been applied to consensus
formation, such as a complex combination of neural networks(Cu� & Bar-
ton, 2000), multivariate linear regression (Guermeur et al., 1999), decision
trees (Selbig et al., 1999) and cascaded multiple classi�ers (Ouali & King,
2000).

From recent advances in protein secondary structure prediction, there
are three major approaches that have been demonstrated e�ective to im-
prove the performance, including (1) incorporating features with statistical
evolutionary information, such as PSI-BLAST (Jones, 1999), (2) combin-
ing the results of multiple independent prediction methods into a consen-
sus prediction (Cu� & Barton, 2000), and (3) extracting coup ling features
from predicted tertiary 3-D structures as long-range interaction information
(Meiler & Baker, 2003). Most existing systems employ a sliding window-
based method, i.e. constructing the output of a speci�c position using the
observations within a window size around it, or a simple hidden Markov
model approach, both of which fail to consider the long-range interactions
in the protein structures. Therefore in this thesis, we propose to tackle
the problem from those three aspects using conditional graphical models
(Section 6.3.1, Section 6.4, Section 6.5).

Profile
Generation

 from Multiple
Sequence Alignment

Sequence  to
Structure

In:   profiles
out:  scores for
hellix (H), sheets (E)
and coil (C)

Structure to
Structure

In: scores for H,  E
and C
Out: label  per
residue

Jury Decision

In: label
Out: Smoothed
Label

Consensus

In: labels of
Different Servers
Out: predicted
labels

Secondary Structure Prediction system I

BA C D E

Figure 6.1: The architecture of a typical protein secondarystructure pre-
diction system (adapted from (Rost & Sander, 1993))
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6.1 Materials and Evaluation Measure

Two datasets were used to evaluate the e�ectiveness of the proposed meth-
ods. One is the RS126 dataset, on which many existing secondary structure
prediction methods were developed and tested (Cu� & Barton, 1999). It
is a non-homologous dataset by the de�nition in (Rost & Sander, 1993),
namely no two proteins of 126 protein chains share more than 25% sequence
identity over a length of more than 80 residues. However, Cu�and Barton
found that there are 11 pairs of proteins in the RS126 set thathave an SD
score, i.e. Z score for comparison of the native sequences given by (V � x)=� ,
of greater than 5 (Cu� & Barton, 1999). Therefore in our experiments we
use the datasets that intentionally removed the 11 homologous proteins to
better evaluate our system. The other dataset is CB513 created by Cu� &
Barton (Cu� & Barton, 1999), which most recent methods repor ted results
on (Hua & Sun, 2001; Kim & Park, 2003; Guo et al., 2004). It consists
of 513 non-homologous protein chains which have an SD score of less than
5 (Cu� & Barton, 1999). The dataset can be downloaded from the web
http://barton.ebi.ac.uk/. We followed the DSSP de�nition for protein sec-
ondary structure assignment (Kabsch & Sander, 1983). The de�nition is
based on hydrogen bonding patterns and geometrical constraints. Based on
the discussion in (Cu� & Barton, 1999), the 8 DSSP labels are reduced to
a 3 state model as follows: H & G to Helix (H), E & B to Sheets (E), all
other states to Coil (C).

For protein secondary structure prediction, the state-of-art performance
is achieved by window-base methods using the PSI-BLAST pro�les (Jones,
1999). In our experiments, we apply a linear transformationf to the PSSM
matrix elements according to

f (x) =

8
><

>:

0 if (x � � 5)
1
2 + x

10 if ( � 5 � x � 5);

1 otherwise.

(6.1)

This is the same transform used by (Kim & Park, 2003) in the CASP5 (Crit-
ical Assessment of Structure Predictions) competition, which achieved one
of the best results for protein secondary structure prediction. The window
size is set to 13 by cross-validation.

Various measures are used to evaluate the prediction accuracy, includ-
ing overall per-residue accuracy (Q3), Matthew's correlation coe�cients per
structure type ( CH ,CC ,CE ) and segment of overlap (SOV) (Rost et al., 1994;
Zemla et al., 1999), and the per-residue accuracy for each type of secondary
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structure (Qrec
H ; Qrec

E ; Qrec
C ; Qpre

H ; Qpre
E ; Qpre

C ) (see Table 6.1 for detailed
de�nition).

Table 6.1: Commonly used evaluation measures for protein secondary struc-
tures

Contingency Table

PredictednTrue + �
+ l11 l12

� l21 l22

accuracy: Q = l11 + l22
l11 + l12 + l21 + l22

Matthew's coe�cients: C = l11 � l22 � l12 � l21p
(l11 + l12 )( l11 + l21 )( l22 + l12 )( l22 + l21 )

recall: Qrec = l11
l11 + l21

precision: Qpre = l11
l11 + l12

SOV = 1
N

P
S

minov(Spred ;Strue )+ delta(Spred ;Strue )
maxov(Spred ;Strue ) � length(Strue )

minov( S1 ; S2): length of overlap between S1 and S2 ;

maxov(S1 ; S2): the length of extent over either S1 and S2

delta(S1 , S2) = min(maxov( S1 ; S2) � minov( S1 ; S2); minov( S1 ; S2); dlen(S1)e; dlen(S2)e)

6.2 Conditional Random Fields for Sequential Data

Some sequential graphical models, such as hidden Markov models (HMMs)
or Markov random �elds (MRFs), have been successfully applied to sec-
ondary structure prediction (Bystro� et al., 2000; Karplus et al., 1998).
These methods, as generative models, assume a particular generating pro-
cess of the data. It works by computing the joint distributio n P(x ; y) of
observation x 2 f amino acidsg and state sequencesy 2 Y = f secondary
structure assignmentsg, and make predictions using Bayes rules to calculate
P(y jx). Though successfully applied to many applications with sequential
data, HMMs may not be the most appropriate for our task. First , it is
di�cult to include overlapping long-range features due to t he independence
assumptions. Second, generative models as HMMs, work well only when the
underlying assumptions are reasonable. In contrast, discriminative models
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do not make any assumptions and compute the posterior probability di-
rectly. Conditional Random �elds (CRFs), as a discriminati ve model for
structured prediction, has been successfully applied to many applications,
including information retrieval and computer vision, and achieved signi�-
cant improvement over HMMs (Kumar & Hebert, 2003; Pinto et al ., 2003;
Sha & Pereira, 2003).

Conditional Random Fields (CRFs), proposed by La�erty et al ., are
undirected graphical models (also known asrandom �elds ) (La�erty et al.,
2001). As a discriminative model, it calculates the conditional probability
P(y jx) directly as follows:

P(Y jx) =
1
Z

NY

i =1

exp(
KX

k=1

� k f k (x ; i; Yi � 1; Yi )) ;

where f k can be arbitrary features, such as overlapping features or long-
range interaction features. The feature weight� k is the model parameters.
Compared with MEMMs, CRFs takes on a global normalizerZ , which re-
sults in a convex function so that the global optimal solutions of � k are
guaranteed (La�erty et al., 2001). The parameters � are learnt by minimiz-
ing the regularized negative log loss of the training data, i.e.

� = argmax f
NX

i =1

KX

k=1

� k f k(x ; i; y i � 1; yi ) � logZ g: (6.2)

Setting the �rst derivative to be zero, we have

NX

i =1

f f k (x ; i; y i � 1; yi ) � EP (Y jx) [f k(x ; i; Yi � 1; Yi )]g = 0 : (6.3)

There is no closed form solution to eq(6.3) and iterative searching algorithm
can be applied (Minka, 2001), among which the L-BFGS method is shown to
be signi�cantly more e�cient (Sha & Pereira, 2003) (which is also con�rmed
in our experiments).

Similar to HMMs and MEMMs, there is still an e�cient inferenc ing
algorithm for CRFs as long as the graph is a tree or a chain. Speci�cally,
the forward probability � i (y) is de�ned as the probability of being in state y
at time i given the observation up to time i ; the backward probability � i (y)
is the probability of starting from state y at time i given the observation
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sequence after timei . The recursive steps are:

� i +1 (y) =
X

y02Y

� i (y0) exp(
KX

k=1

� k f k(x ; i + 1 ; y0; y)) ; � i (y0) (6.4)

=
X

y2Y

exp(
KX

k=1

� k f k(x ; i + 1 ; y0; y)) � i +1 (y): (6.5)

The normalizer Z can be computed via Z =
P

y2Y � n (y). The Viterbi
algorithm can be derived accordingly, where� i (y) is de�ned as the best
score (i.e. the highest probability) over all possible con�gurations of state
sequence ends at the timei in state y given the observation up to time i .
By induction, we have

� i +1 (y) = max
y02Y

� i (y0) exp(
KX

k=1

� k f k(x ; i + 1 ; y0; y)) ; (6.6)

and � i +1 (y) is used to keep track of the state con�guration of time i that
maximize eq(6.6).

6.3 Thesis work: CRFs for Protein Secondary Struc-
ture Prediction

Recent analysis by information theory indicates that the correlation between
neighboring secondary structures are much stronger than that of neighbor-
ing amino acids (Crooks & Brenner, 2004). In literature, while feature
extraction [A] and sequence-to-structure mapping [B] havebeen studied ex-
tensively, the structure-to-structure mapping and jury system [C, D] have
not been explored in detail although they are commonly used in various
systems (Figure 6.1). From a machine learning perspective,both the jury
system [C, D] and the consensus [E] can be formulated as thecombination
problem for sequences: given the predicted scores or labels, how should we
combine them into the �nal labels, taking into account the dependencies of
neighbors and constraints of a single protein sequence?

Note that the combination problem for sequences is distinctfrom an-
other closely-related task: given the predicted scores or labels from di�erent
systems for one residue, how can we combine them into the optimal labels?
This task is a classical problem for machine learning known as an ensem-
ble approach and many ensemble methods have been used for consensus
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formation. The di�erence between our task and the ensemble problem is
that ensemble treats each residue as independent and does not consider the
extra information from neighboring structures or constraints of a single se-
quence. Therefore our combination problem is more general and di�cult
than a classical ensemble problem.

6.3.1 Probabilistic Combination Methods

We formulate our combination problem as follows: given a protein sequence
x = x1x2 : : : xN , the raw output by a secondary structure prediction system
is either a label sequencep = p1p2 : : : pN , or a N � 3 score matrix Q, where
Qij = Qj (x i ) is the score of residuex i for classj . Taking the predicted labels
p or score matrix Q, we try to predict the true label Y1Y2 : : : YN . Without
loss of generality, we assume that (1) the predicted scores are non-negative
and normalized; (2) for one residuex i , the higher the scoreQij , the larger
the probability that the residue x i belongs to classj .

Previously proposed methods for combination are mostly window-based,
which include:

Window-Based Method for Label Combination The standard method
for converting scores to predicted secondary structure labels is to assign the
class with the highest score. After that, many systems employ rule-based
methods to improve upon the �rst-pass assignment, i.e. thelabel combina-
tion. (Rost & Sander, 1993; King & Sternberg, 1996). The window-based
label combination works as follows: given the labels predicted by a system
p1p2 : : : pN , and the window sizeR, let D = ( R � 1)=2 be the half of the win-
dow size. The input features for residuex i are the predicted labels within
the window R, i.e. hpi � D ; pi � D +1 ; : : : ; pi + D � 1; pi + D i (a null label is assigned
if the label does not exist). Then a rule-based classi�er, such as decision tree
or CART, is applied to make the outputs easy for the biologists to interpret
(Rost & Sander, 1993). The window sizeR is a parameter with which we
can tune the trade-o� between including useful information and excluding
\noisy" more remote features.

Window-Based Method for Score Combination In current secondary
structure prediction systems, score combination is used widely. Window-
based score combination works similar to label combinationexcept: (1) the
input features are scoresQ instead of labels; (2) more powerful classi�ers,
such as neural networks andk-Nearest-Neighbor, are used instead of rule-
based classi�ers. Empirically, score combination has demonstrated more
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improvement in accuracy than label combination since the score indicates
the con�dence of the prediction and thus contains more information than a
single label (Rost & Sander, 1993; Salamov & Solovyev, 1995;Jones, 1999;
Guo et al., 2004).

The window-based combination approach has the disadvantages of con-
sidering the local information only. Conditional graphical models have been
proved to achieve the best performance for applications of structured data
prediction (Kumar & Hebert, 2003; Pinto et al., 2003; Sha & Pereira, 2003).
In addition to CRFs, there are also alternative models, suchas MEMMs
and its extensions, that could be used for our combination task.

Maximum Entropy Markov Models (MEMM) The graphical represen-
tation of MEMMs is shown in Figure 6.2-(A). Similar to CRFs, M EMMs
calculates the conditional probability P(Y jx) directly but uses a local nor-
malizer over each position (McCallum et al., 2000), i.e.:

P(Y jx) =
NY

i =1

1
Z i

exp(
KX

k=1

� k f k(x ; i; Yi � 1; Yi ))

where Z i is a normalizing factor over position i . Compared with CRFs,
MEMMs can also handle arbitrary, non-independent featuresf k . There is
also an e�cient dynamic programming solution to the problem of identifying
the most likely state sequencegiven an observation. In addition, MEMMs
are much cheaper computationally but su�er from local optimal solutions
to parameter estimation and the label bias problem, namely the total prob-
ability \received" by yi � 1 must be passed on to labelsyi at time i even if
x i is completely incompatible with yi � 1 (see (La�erty et al., 2001) for full
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Figure 6.2: The graph representation of MEMM (A) and high-order MEMM
(B)
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Figure 6.3: The distribution of the segment length for di�er ent structures

discussion). For score combination, we de�ne the features to be

f hk1 ;k2 i (x ; i; y i � 1; yi ) =

(
Qik 2 if yi � 1 = k1 and yi = k2;

0 otherwise.
(6.7)

Higher-order MEMMs (HOMEMMs) MEMMs assume the �rst-order
Markov assumption, i.e. P(yi +1 jyi ) = P(yi +1 jyi ; yi � 1). On one hand, it sim-
pli�es the model and reduces the computational cost dramatically; on the
other hand, this assumption is clearly inappropriate for secondary structure
prediction, where the structure dependencies extend over several residues
and even involve long-distance interactions. To solve thisproblem, higher-
order MEMMs can be developed (Rabiner, 1989). For simplicity, we only
consider second-order MEMMs, in which the next state depends upon a his-
tory with two previous states (see Fig. 6.2-B). A second-order MEMMs can
be transformed to an equivalent �rst-order Markov Model by r ede�ning the
state ŷi as ŷi = hyi ; yi � 1i 2 Y � Y = Y2: In secondary structure prediction
the set of new states isY2 = f HC, HE, HH, EC, EE, EH, CC, CE, CH g
and the features can be rede�ned accordingly.

Pseudo State Duration MEMMs (PSMEMMs) Higher-order MEMMs
provide a solution to circumvent the state independence assumptions. How-
ever, the number of new states and features is an exponentialfunction of
the order o, which makes the computational costs intractable wheno grows
large. To solve the problem, we devise a heuristic method which is able to
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encompass more history information with the same computational cost as
MEMMs, namely pseudo state duration MEMM. Our heuristics are based
on the observation that the distribution of the segment length varies for dif-
ferent structures, as shown in Fig. 6.3 (only segments less than 20 residues
are shown). From the graph, we can see that di�erent segment lengths are
preferred by di�erent secondary structures. To incorporate such kind of in-
formation, we de�ne P(yjy0; d) as the probability that the current state is y
given the recent history of d consecutivey0, i.e.

P(yjy0; d) =
# of occurences �y0y0y0: : : y0y
# of occurences �y0y0y0: : : y0

:

Data sparsity problems might occur when d grows larger and it can be
addressed by smoothing methods, such as Laplace smoothing.All the algo-
rithms and de�nitions are similar as MEMMs except that we use another
kind of features as below:

f <k 1 ;k2 ;d> (x ; i; y i ; yi � 1) =

(
Qik 2 P(yi jyi � 1; d) if yi = k1 and yi � 1 = k2

0 otherwise:

6.3.2 Experiment Results

Table 6.2 summarizes the representation power of the graphical models dis-
cussed above. We can see that all the models except HMMs have the exibil-
ity to allow arbitrary features over the observation and therefore are good for
score combination. Table 6.3 lists the results of the window-based methods:

Table 6.2: Summary: pros and cons of di�erent conditional graphical models

1st-order
Markov

Label Bias Flexibility
of Features

Globally
Optimal

HMMs + + � �
MEMMs + � + �
HOMEMMs � � + �
PSMEMMs � � + �
CRFs + + + +
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� Generally speaking, the window-based score combination improved the
prediction more than the label combination. This con�rms our expec-
tation since the scores contain more information than a single label.

� The label combination resulted in maximum improvement for predict-
ing helices rather than other structures. King and Sternberg reported
a similar observation and showed that the extracted rules are most
relevant to helices (King & Sternberg, 1996).

� The prediction accuracy has increased for both helices and sheets by
score combination.

In terms of the graphical models for score combination, we examined the four
methods discussed before. To fairly compare with window-based methods,
only the score features are used for the prediction, although we believe
incorporating other features will improve the predictions more. Table 6.4
shows the results of the four graphical models for score combination:

� Generally speaking, the graphical models for score combination are
consistently better than the window-based approaches, especially in
SOV measure.

� For the MEMMs, the prediction accuracy using Viterbi algori thm is
better than using marginal mode. It is interesting to note that the
opposite is true for CRFs.

� Compared with MEMMs, HOMEMMs and PSMEMMs improve SOV
slightly since these methods consider more history information. How-
ever, there is little di�erence in performance between HOMEMMs
and PSMEMMs. This might indicate that higher-order MEMMs wi ll
hardly add more value than second-order MEMMs.

� CRFs perform the best among the four graphical models. It exhibits
moderate improvements for predicting helices and especially sheets.
Global optimization and removing label bias seem to help since these
are the only di�erences between MEMMs and CRFs.

Table 6.5 summarizes our discussion above and provides a qualitative esti-
mation of computational costs as well as the performance foreach method.

In this section, we surveyed current secondary structure prediction meth-
ods and identi�ed the combination problem for sequences: how to combine
the predicted scores or labels from a single or multiple systems with the
consideration of neighbors and long-distance interactions. Our experiments
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Table 6.3: Results of protein secondary structure prediction on CB513 dataset using window-based combination
methods

Combination
Method

SOV(%) Q3(%) Qrec
H (%) Qrec

C (%) Qrec
E (%) Qpre

H (%) Qpre
C (%) Qpre

E (%) CH CC CE

None 75.6 76.7 78.0 83.2 62.7 83.6 72.1 77.2 0.71 0.58 0.62
Dtree 75.7 76.7 78.0 83.2 62.8 83.7 72.1 77.1 0.72 0.58 0.62
SVM 75.7 76.9 81.4 76.7 70.5 82.1 75.2 72.2 0.72 0.58 0.63

Table 6.4: Results on CB513 dataset using di�erent combination strategies. MEMMp, CRFp: p refers to di�erent
way to compute the labels;p = 1: marginal model; p = 2: Viterbi algorithm

Combination
Method

SOV(%) Q3(%) Qrec
H (%) Qrec

C (%) Qrec
E (%) Qpre

H (%) Qpre
C (%) Qpre

E (%) CH CC CE

None 75.6 76.7 78.0 83.2 62.7 83.6 72.1 77.2 0.71 0.58 0.62
MEMM 1 75.6 76.7 77.8 83.6 62.1 83.7 71.8 77.8 0.71 0.58 0.62
MEMM 2 76.0 76.8 78.2 83.4 62.2 83.7 72.0 78.0 0.71 0.58 0.62
HOMEMMs 2 76.1 76.9 78.3 83.4 62.4 83.6 72.1 77.9 0.71 0.59 0.62
PSMMEMMs 2 76.1 76.9 78.3 83.3 62.2 83.6 72.0 78.0 0.71 0.58 0.62
CRF 1 76.2 77.0 78.3 83.4 63.4 83.7 72.1 78.0 0.72 0.58 0.63
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Table 6.5: Summary of computational costs and e�ectivenessfor di�erent
combination strategies. H/L/M: high/low/medium computat ional costs;
+/ � : improvement/no improvement over the baseline results without com-
bination

Train Test Helices Sheets Coil Segment
DTree M L + � � �
SVM H H + + � �
MEMMs H L � � � +
HOMEMMs H L � � � +
PSMEMMs H L � � � +
CRFs H L + + � +

show that graphical models are consistently better than thewindow-based
methods. In particular, CRFs improve the predictions for both helices and
sheets, while sheets bene�tted the most. Our goal is to evaluate di�erent
combination methods and provide a deeper understanding of how to e�ec-
tively improve secondary structure prediction. Although our discussion is
focused on combining predictions from a single secondary structure predic-
tion system, all the methods discussed above can be applied to combine
results from di�erent systems and include other physio-chemical features.
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6.4 Thesis work: CRFs for Parallel and Anti-parallel
� -sheet Prediction

As discussed in the previous section, the major bottleneck for current struc-
ture prediction systems is the � -sheets, which involves long-range interac-
tions in 3-D space. Therefore designing an algorithm that e�ectively detects
� -sheets not only will improve the prediction accuracy of secondary struc-
tures, but also helps to determine how they aggregate on eachother to form
tertiary structures. In this section, we focus on the prediction of parallel and
antiparallel � -sheets. Speci�cally, we are interested in answering two ques-
tions: (1) given a residue in a protein sequence, how to accurately predict
whether it belongs to � -strands or not? (2) given the secondary structure
assignment of a protein, how to predict which two strands form a parallel
or antiparallel pair and how each � -strand pair is aligned?

The �rst question can be seen as a standard secondary structure pre-
diction problem except that we are only concerned with a binary classi�-
cation problem (� -sheet or non-� -sheet). Therefore all the approaches for
general secondary structure prediction can be applied. In addition, vari-
ous approaches have been proposed speci�cally to capture the long-range
interaction properties of � -sheets. Mamitsuka & Abe used stochastic tree
grammars for � -sheet detection (Mamitsuka & Abe, 1994). Pollastri et al.
applied bi-directional recurrent neural networks (BRNN) t o both 3-state and
8-state secondary structure prediction (Pollastri et al., 2002). In the mean-
time, there are also a lot of attempts to address the second question. Baldi
et al. extracted a number of statistics informative of the � -strands, then
feed them into a bi-directional recurrent neural network (BRNN). Steward
& Thornton developed a set of tables with the propensities toform � -sheets
for each pair of amino acids using an information theoretic approach (Stew-
ard & Thornton, 2002).

6.4.1 Feature extraction

Previous methods have boosted the prediction of� -sheet to some extent,
however, the accuracy is still very low and the problem is farfrom being
solved. Recently Meiler & Baker improved the secondary structure predic-
tion accuracy by 7-10% on average by extending the sequence alignment
pro�les to the non-local tertiary structure neighbors as an additional input
(Meiler & Baker, 2003). This demonstrates that close neighbors in three-
dimensional space contain very useful information for structure prediction.
By knowing the alignment of the � -sheets, we can directly infer most of the
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non-local close neighbors. Therefore we propose to improvethe � -sheet de-
tection by combining two kinds of features in CRFs, including the predicted
alignments of � -strands as long-range information, and the window-based
local information.

Long-range interaction features for � -sheets Many sequence-based
statistics and physico-chemical properties have been investigated for pre-
dicting the � -sheet partnership. The features we use for detecting the� -
strand pairing include: the pairwise information values (Steward & Thorn-
ton, 2002), the distances between paired strands and the lengths of parallel
and antiparallel � -strands respectively.

A pairwise information values were derived for the preferences of an
amino acid for the residues on its pairing strand, followingan information
theory approach (Steward & Thornton, 2002). The values are the self-
information scores s-score(A1), which accounts for the propensities of amino
acid A1 in a parallel (or antiparallel) � -strand, and pair-information scores
p-score(A1, A2, m), which calculates the propensities of an amino acidA1 to
have another amino acidA2 on its pairing strand with an o�set of m. The
total score for a particular alignment of x i x i +1 : : : x i + w and x i 0x i 0+1 : : : x i 0+ w

(w is the length of the segment) is the sum of the self-information value and
the pair-information value, i.e.

pairwise score =
wX

j =1

(s-score(x i + j ) + s-score(x i 0+ j ) +

2X

k= � 2

(p-score(x i + j ; x i 0+ j ; k) + ( x i 0+ j ; x i + j ; k))) (6.8)

Histograms of distances between parallel and antiparallel� -strand pairs
are plotted against the non-homologous 2013 protein sequences in the train-
ing set of PSIPRED (Jones, 1999) (see Fig. 6.4-(I, II)). Fromthe plots,
we can see that (1) the number of antiparallel strands is muchlarger than
that of parallel strands. The ratio is around 2.5:1; (2) the average distance
between parallel strand pairs is much longer than that of antiparallel pairs
since the anti-parallel � -strands are usually connected by a short� -turn
while the other comes with a long� -helix to form a � � � � � motif. From
Fig. 6.4 (III, IV), we can see that the lengths of antiparallel � -strands are
generally shorter than the parallel ones.
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Figure 6.4: Histograms of the distances between paired strands in parallel
and antiparallel � -strand (I, II); Histograms of the lengths of parallel and
antiparallel � -strand (III, IV)

� -sheet alignment prediction We formulate the problem of � -sheet
alignment as follows: given a protein sequencex = x1x2 : : : xN and the
secondary structure labels (or predicted labels)y = y1y2 : : : yN , where
yi 2 f H; E; C g, predict the � -strand pairs for each residuex i if its as-
signment yi is E and the direction of the alignment for each pair (parallel
or antiparallel). Notice that by de�nition the number of pai red residues for
each amino acid can be 1 or 2 only. To identify the� -sheet alignment, we
use an exhaustive search over all possible alignments of allpairs of � -strands
in the sequence. The detailed algorithm is shown in Table 6.6.
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Table 6.6: Alignment algorithm for parallel and antiparall el � -sheet prediction
Input: a set of � -strand segments in the query protein sequencef x j 1x j 2 : : : x jw j jj = 1 : : : B g,

where B is the number of segments
Output: a set of residue pairs and the alignment direction for each pair f (x i ; x j ; Rij )g, where

Rij 2 f parallel, antiparallel g
Step 1: Initialize the active lists A = ; , and set B = ;
Step 2: For each pair of segments, �nd the alignment and its direction whose alignment score is

the highest and put it into the active list A . The alignment score is de�ned as a linear
combination of the long-range features.

Step 3: Sort the active list A
Step 4: Iterate until A = ; or all the residues has more than 1 pairs inB:

Remove the alignment$ with the highest score in current A ;
if any residue in $ has no more than 2 paired residues inB, put $ in B;

Step 5: Output the residue pairs and their alignment directions in B
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6.4.2 Experiment Results

If the true secondary structure assignments are not available, we use the
predicted labels instead and set a threshold on the alignment scores as ad-
ditional stopping criterion in step 4. We use the o�set of the predicted
alignment from the correct register to evaluate the quality of the alignment
(Steward & Thornton, 2002). The distribution of the o�set fo r those cor-
rectly predicted pairs is shown in Figure 6.5. From the results, we can see
that around 55% of the alignment has been predicted correctly and over 90%
percent of the alignment has an o�set of less than 2. Given theencouraging
results, we can use this information as additional 3-D features to improve
our �rst-round secondary structure prediction.
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Figure 6.5: Histograms of O�set from the correct register for the correctly
predicted � -strand pairs on CB513 dataset
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Table 6.7: Comparison results of � -sheet prediction using di�eren ap-
proaches on RS-126 dataset and CB513 dataset by seven-fold cross-
validation

RS126 dataset CB513 dataset
Method Q2 Qrec

E Qpre
E CE Q2 Qrec

E Qpre
E CE

Window-
based
method

87.48 60.30 75.87 60.10 88.30 64.73 77.00 63.51

� -strand
alignments

76.56 50.34 55.10 N/A 72.25 48.33 53.88 N/A

CRFs 88.20 64.78 74.98 61.50 89.43 68.93 75.68 64.49

Further improvement on general � -sheet prediction Based on our
discussion in Section 6.3.1, CRFs have been proved to be moste�ective for
score combination and handling the long-range interactions. Therefore in
the re�ned method, we have two types of features for CRFs: oneis the
prediction scores using window-based method, which is the same setting as
Section 6.3.1; the other is the long-range information, i.e. the strand pairing
information de�ned as follows:

f hk1 ;k2 i (x i ; i; y i � 1; yi ) =

(
1 if yi � 1 = k1; yi = k2 and x i 2 B ;

0 otherwise.
(6.9)

whereB is output from the alignment algorithm. In this way, we can combine
both the local information and long-range interactions for better prediction.
Table 6.7 lists the results of our re�ned method compared with other ap-
proaches. From the results, we can see that our algorithm considerably
helps the prediction for � -sheets, especially in sensitivity with around 6%
improvement.
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6.5 Thesis work: Kernel CRFs for Secondary Struc-
ture Prediction

Our previous results have demonstrated that CRFs can e�ectively handle the
long-range interactions in � -sheets for score combination. In all of the work,
however, conditional random �elds are based on explicit feature represen-
tations. Since it is still unclear how the sequences encode the evolutionary
information to determine the structures and functions, it would help to im-
prove the predictions if we can explore this implicit information from the
multiple sequence alignment. In this section, an extensionof conditional
random �elds, kernel conditional random �elds (kCRFs), is u sed to permit
the use of implicit features spaces through kernels (La�erty et al., 2004).

6.5.1 Kernel Conditional Random Fields

Similar to CRFs, kernel CRFs de�nes the conditional probability as the
following form:

P(Y jx) =
1
Z

Y

c2CG

expf � (x ; c; Yc); (6.10)

where f (�) is the kernel basis function, i.e. f (�) = K (�; (x ; c; yc)). One
way to de�ne the kernels over a structured graph is a factorization of a
kernel over the observations and an indicator function overthe labels, i.e.
K ((x; c; yc); (x0; c0; y0

c)) = K ((x; c); (x0; c0)) � (yc; y0
c). By representer theorem,

the minimizer of the regularized negative log-loss

R� (f � ) =
X

l

X

c

f � (x l ; c; yc) +
�
2

jj f jj2
K

has the form

f � (�) =
LX

j =1

X

c2C
G ( j )

X

yc2Y j cj

� (j )
yc

K (�; (x (j ) ; c; yc)) : (6.11)

Notice that the dual parameters � depend on all the clique label assign-
ments, not limited to the true label, which results in an extr emely large num-
ber of parameters. Therefore a greedy clique selection algorithm is proposed
to incrementally select cliques that reduce the regularized risk. The algo-
rithm maintains an active set of cliques with labels, where each candidate
clique can be represented by a basis functionh(�) = K (�; (x l ; c; yc)) 2 HK .
To evaluate a candidateh, one strategy is to compute thegain sup� R� (f ) �
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R� (f + �h ), and choose the candidateh having the largest gain. This
presents an apparent di�culty, since the optimal parameter � cannot be
computed in closed form, and must be evaluated numerically.For sequence
models this would involve forward-backward calculations for each candidate
h, the cost of which is prohibitive. Therefore the functional gradient descent
approach is adopted, which evaluates a small change to the current function.
For a given candidateh, consider addingh to the current model with small
weight " ; thus f 7! f + "h . we haveR� (f + "h ) = R� (f )+ "dR � (f; h )+ O("2),
where the functional derivative of R� at f in the direction h is computed as

dR� (f; h ) = E f [h] � eE [h] + � hf; h i K (6.12)

where eE[h] =
P

j
P

c h(x (j ) ; c; yc) is the empirical expectation and E f [h] is
the model expectation conditioned onx. The idea is that in directions h
where the functional gradient dR� (f; h ) is large, the model is mismatched
with the labeled data; this direction should be added to the model to make
a correction. An alternative to the greedy functional gradient descent al-
gorithm above is to estimate parameters� h for each candidate using mean
�eld approximation. A quasi-Newton method can be used to estimate the
parameters to sup� � R� (f; h ).

6.5.2 Experiment Results

The expensive computational costs of kCRFs prevent us from large scale
evaluation. Therefore in our experiment, we use the RS126 dataset with
a subset of 5 and 10 sequences respectively as the training data and the
rest as testing data. For each size we perform 10 trials wherethe training
sequences are randomly sampled from the whole set. The inputfeatures to
kCRFs are PSI-BLAST pro�les and 300 cliques are selected using greedy
clique selection algorithm. We compare the results with other state-of-art
methods using window-based method with SVM classi�er. All methods use
the same RBF kernel and the results are shown in Table 6.8. From the
results, we can see that kCRFs achieve slight improvement than SVM in
overall prediction accuracy.

Further information can be obtained by studying the transit ion bound-
aries, for example, the transition from \coil" to \sheet." F rom the point of
view of structural biology, these transition boundaries may provide impor-
tant information about how proteins fold in three dimension and those are
the positions where most secondary structure prediction systems will fail.
The transition boundary is de�ned as a pair of adjacent positions (i; i + 1)
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5 protein set 10 protein set
Method Accuracy std Accuracy std

kCRF (v) 0.6625 0.0224 0.6933 0.0276
kCRF (v+e) 0.6562 0.0202 0.6933 0.0272

SVM 0.6509 0.0307 0.6875 0.0235

Table 6.8: Per-residue accuracy of di�erent methods for secondary structure
prediction, with the RBF kernel. kCRFs (v) uses vertex cliques only; KCRF
(v+e) uses vertex and edge cliques.

5 protein set 10 protein set
Method Accuracy std Accuracy std

KCRF (v) 0.1097 0.0271 0.1462 0.0235
KCRF (v+e) 0.1114 0.0250 0.1522 0.0214

SVM 0.0667 0.0313 0.1066 0.0311

Table 6.9: Transition accuracy with di�erent methods.

whose true labels di�er. We have a hard boundary de�nition, i .e. it is clas-
si�ed correctly only if both labels are correct. This is a very hard problem,
as can be seen in Table 6.8, Table 6.9, and kCRFs are able to achieve a
considerable improvement over SVM.

6.6 Summary

By now we have studied the use of conditional graphical models for pro-
tein secondary structure prediction from three perspectives, including score
combination, � -sheet prediction and allowing kernels to explore the evolu-
tionary information within the sequence. The experiment results demon-
strate improvement over the state-of-art methods and therefore con�rm our
hypothesis of graphical models for protein structure prediction.

As we know, protein secondary structure prediction has beenextensively
studied for decades (Cu� & Barton, 1999; Rost, 2001) and every break-
through is directly associated with the advances of sequence analysis and
the accumulation of more structural data. The current prediction accuracy
is still around 80% and far from the predicted upper-bound of85-90% (Rost,
2001). The solutions are many-folds: one direction is to collect all the pos-
sible arrangements of protein folds, which are believed to be a very limited
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number, and then search against these folds when given a new protein se-
quence; another direction is to provide a deeper understanding of the protein
folding process and discover new informative biological features. We believe
the graphical models, combined with advances in these directions, will bring
a new breakthrough in this area.



Chapter 7

Protein Tertiary Structure
Prediction

It is widely believed that protein structures reveal import ant information
about the function, activity, stability and subcellular lo calization of the
proteins, and the mechanisms of protein-protein interactions in cells. An
important issue in inferring tertiary structures from amin o-acid sequences is
how to accurately identify supersecondary structures (also termed \protein
folds") arising from typical spatial arrangements of well-de�ned secondary
structures. In silico protein super-secondary structure prediction (or protein
fold recognition) seeks to predict whether a given protein sequence contains
a putative structural fold (usually represented by a traini ng set of instances
of this fold) and if so, locate its exact position within the sequence.

Traditional approaches for protein fold prediction either search the se-
quences in the database that are similar to the training sequences, such as
PSI-BLAST (Altschul et al., 1997), or match against an HMM pr o�le built
from sequences with the same fold, such as SAM or HMMER (Kroghet al.,
1994; Durbin et al., 1998; Karplus et al., 1998). To date, there has been sig-
ni�cant progress in predicting certain types of well-de�ned supersecondary
structures, such as�� -hairpins and � -turns, using sequence similarity based
approach. However, these methods work well for simple foldswith strong
sequence conservations, however, fail when the sequence similarity across
proteins is poor and/or there exist long-range interactions between elements
in the folds such as those containing� -sheets. These cases necessitate a
more expressive model, which is able to capture the structure-revealing fea-
tures (e.g. the long range interactions) shared by all proteins with the same
fold.

97
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7.1 Materials and Evaluation Measure

In this chapter of the thesis, we are trying to solve the problem of tertiary
fold (motif) recognition. Speci�cally, our task starts wit h a target fold F
that the biologists are interested in. There are no constraints about F , which
can be either a supersecondary structure with a few number ofsecondary
structure elements, or a large complex fold occupying the whole domain. All
the proteins with resolved structures deposited in the PDB can be classi�ed
into two groups, i.e. those take the target fold F and those not. These
proteins together with the labels can be used as training data. Our goal is
to predict whether a testing protein, without resolved structures, takes the
fold F in nature or not; if they do, locate the starting and ending positions
of the subsequence that takes the fold.

Our task involves two sub-tasks: one is the classi�cation problem, that is,
given a set of training sequencesX 1; X 2; : : : ; X N and their labelsy1; y2; : : : ; yN

(yi = 0 ; 1), predict the label of a new testing sequenceX new ; the other sub-
task is not that straightforward to describe in mathematical settings. We
can think of the target fold as some patterns (or motifs in bioinformatics
terminology). Given a set of instances of the pattern, including both the
positive examples (subsequences with the patternF ) and the negative ex-
amples (sequences without the patternF ), we want to predict whether the
pattern appears in any subsequence of the testing proteins.The �rst ques-
tion can be answered easily if we can solve the second one successfully. A key
problem in the second task is how we can represent the descriptive patterns
(or motifs) using mathematical notations.

This task falls within the general studies in protein fold (or motif) clas-
si�cation, but di�ers in two aspects: �rst, the target fold c omes directly
from the focused study and experiments by the biologists (inour case, the
collaborators that we worked with have been studying a particular fold for
a long time), rather than from the databases of common folds.Usually the
positive proteins with resolved structures are quite limited, although the fold
is believed to be common in nature. Second, the problem we aimto address
is much more di�cult than the common fold classi�cation beca use we do
not have as many positive examples and they do not share high sequence
similarities. In other words, the patterns that we are tryin g to identify have
not been represented clearly in the training data. This is the main motiva-
tion why we want to develop a richer graphical model, rather than a simple
classi�er. Notice that our models can be used in the traditional fold recog-
nition or threading setting, however, its complexities canbe paid o� best in
predicting those di�cult protein folds.
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To testify the e�ectiveness of di�erent recognition models, we choose
the right-handed � -helix and leucine-rich repeats as examples in our exper-
iments:

The right-handed parallel � -helix fold is an elongated helix-like struc-
ture with a series of progressive stranded coilings (calledrungs), each of
which is composed of three parallel� -strands to form a triangular prism
shape (Yoder et al., 1993). The typical 3-D structure of a� -helix is shown
in Figure 7.3(A-B). As we can see, each basic structural unit, i.e. a rung,
has three � -strands of various lengths, ranging from 3 to 5 residues. The
strands are connected to each other by loops with distinctive features. One
loop is a unique two-residue turn which forms an angle of approximately
120� between two parallel � -strands (called T-2 turn ). The other two loops
vary in size and conformation, which might contain helix or even � -sheets.
The � -helix structures are signi�cant in that they include pecta te lyases,
which are secreted by pathogens and initiate bacterial infection of plants;
the phage P22 tailspike adhesion that binds the O-antigen ofSalmonella
typhimurium; and the P.69 pertactin toxin from Bordetella p ertussis, the
cause of Whooping Cough. Therefore it would be very interesting if we can
accurately predict other unidenti�ed � -helix structure proteins.

The leucine-rich repeats are solenoid-like regular arrangement of� -
strand and � -helix, connected by coils. They are believed to be prevalent in
proteins and can involve in a wide spectrum of cellular and biochemical
activities, such as various protein-protein interaction processes (Kobe &
Deisenhofer, 1994). There are 41 LLR proteins with known structure in
PDB, covering 2 super-families and 11 families in SCOP. The LLR fold is
relatively easy to detect due to its conserved motif with many leucines in
the sequence and short insertions. Therefore it would be more interesting
to discover new LLR proteins with much less sequence identity to previous
known proteins.

7.2 Thesis work: Segmentation CRFs for General
Protein Fold Recognition

Protein folds or super-secondary structures are frequent arrangement pat-
terns of several secondary structural components: some components are
quite conserved in sequences or prefer a speci�c length, andsome might
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Figure 7.1: Graph structure of � -� -� motif (A) 3-D structure (B) Pro-
tein structure graph: node: Green=� -strand, yellow= � -helix, cyan=coil,
white=non- � -� -� (I-node); edge: E1 = f black edgesg and E2 = f red edgesg.

form non-covalent bonds with each other, such as two� -strands in a paral-
lel � -sheet. To model the protein fold better, we de�ne the modelsbased on
the protein structural graph, in which the nodes represent secondary struc-
ture modules of �xed or various length (instead of individual residues) and
the edges between nodes indicate the interactions of the corresponding sec-
ondary structure elements in 3-D. A segmentation conditional random �elds
can be used to de�ne a probability distribution over all possible structural
con�gurations (i.e., segmentations and functional labeling of the delineated
segments) underlying a given protein sequence. Given a protein sequence,
we can search for the best segmentation de�ned by the graph and determine
if the protein has the fold.

7.2.1 Segmentation Conditional Random Fields

Before delving into the details of the model, we �rst de�ne th e protein
structural graph, which is an annotated graph G = f V; Eg, where V is the
set of nodes corresponding to the speci�cities of structural units such as
motifs, insertions or the regions outside the fold (which are unobserved and
to be inferred), and the amino acid residues at each position(which are
observed and to be conditioned on).E represents the set of edges denoting
dependencies between the objects represented by the nodes,such as location
constraints (e.g. state transitions between adjacent nodes in the sequence
order), or long-range interactions between non-neighboring motifs and/or
insertions (e.g. hydrogen bonding between two component� -strands). The
latter type of dependencies is unique to the protein structural graph for
complex folds and causes much of the di�culties in solving such graphical
models. Figure 7.1 shows an example of� -� -� motif.

In practice, one protein fold might correspond to several reasonable
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structural graphs given di�erent semantics for one node. There is always a
tradeo� between the graph complexity, �delity of model and t he real com-
putational costs. Therefore a good graph is the most expressive one that
captures the properties of the protein folds while retaining as much simplic-
ity as possible. There are several ways to simplify the graph, for example we
can combine multiple nodes with similar properties into one, or remove some
edges that are less important or less interesting to us (notice that currently
all the protein structural graphs are constructed manually based on domain
knowledge, although automatic generation is possible).

The random variables corresponding to the nodes in PSG are asfollows:
M denotes the number of nodes in PSG. Notice thatM can be either a con-
stant or a variable taking values from a discrete setsf 1; : : : ; mmaxg, where
mmax is the maximal number of nodes allowed (usually de�ned by thebiol-
ogists). Wi = f pi ; qi ; si g is the label for the i th node, wherepi , qi , si are the
starting position, ending positions and the state assignment in the sequence,
which completely determine the node according to its semantics de�ned in
the PSG. Under this setup, a value instantiation of W = f M; f Wi gg de�nes
a unique segmentation and annotation of the observed protein sequencex.
A probabilistic distribution on a protein structural graph can be postulated
using the potential functions de�ned on the cliques of nodes induced by
the edges in the graph (Hammersley & Cli�ord, 1971). The conditional
probability of W given the observationx is de�ned as

P(W jx) =
1
Z

Y

c2CG

exp(
KX

k=1

� k f k(x ; Wc)) ; (7.1)

where f k is the kth feature de�ned over the cliquesc, such as the secondary
structure assignment or the segment length. Note thatCG can be a huge set,
and eachWc can also include a large number of nodes due to various levels
of dependencies. Designing features for such cliques is non-trivial because
one has to consider all the joint con�gurations of all the nodes in a clique.

Usually, the spatial ordering of most protein folds is known a priori ,
which leads to a deterministic state dependency betweenWi and Wi +1 .
This leads to a simpli�cation of the \e�ective" clique sets ( those need to be
parameterized) and the relevant feature design. As a result, only pairs of
segment-speci�c cliques that are coupled needs to be considered (e.g., those
connected by the undirected \red" arc in Figure 7.1, which leads to the
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following formulation:

P(W jx) =
1
Z

MY

i =1

exp(
KX

k=1

� k f k(x ; Wi ; W� i )) ; (7.2)

whereW� i denotes the spatial predecessor (i.e., with small positionindex) of
Wi determined by a \long-range interaction arc". Technically, neighboring
nodes must satisfy the constraints on the location indexes,i.e. qi � 1 +1 = pi .
We omit it here for presentation clarity.

7.2.2 E�cient Inferences via Belief Propagation

Similar to CRFs, we estimate the parameters� k by minimizing the regular-
ized negative loss:

R� (� ) =
MX

i =1

KX

k=1

� k f k(x ; wi ; w� i ) � logZ +
� k� k2

2
:

To perform the optimization, we need to seek the zero of the �rst derivative,
i.e.

@R
@�k

=
MX

i =1

(f k (x ; wi ; w� i ) � EP (W jx) [f k(x ; Wi ; W� i )]) + �� k ; (7.3)

where EP (sjx ) [f k(x ; Wi ; W� i )] is the expectation of feature f k (x ; Wi ; W� i )
over the model. The convexity property guarantees that the root corre-
sponds to the optimal solution. Since there is no closed-form solution to
(7.3), iterative searching algorithms have to be applied.

Similar to CRFs, we still have an e�cient inference algorith m as long as
the graphs do not have crossing edges. We rede�ne the forwardprobability
� <l;y l > (r; y r ) as the conditional probability that a segment of state yr ends
at position r given the observation x l+1 : : : xr and a segment of stateyl

ends at position l . Let \ ! " be the operator to get the predecessor state
and \  " for successor state (the value is known if the state transition is
deterministic). The recursive step can be written as:

� <l;y l > (r; y r ) =
X

p; p0; q0

� <l;y l > (q0; y0)� <q 0;y> (p� 1;  � yr ) exp(
X

k

� k f k(x ; w; w� )) ;

where w is the ending segment from position p to r with state yr and
w� is the spatial predecessor segment determined by a \long-range inter-
action arc" from p0 to q0 with state y0. The range over the summation is
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a<q', s2>(p-1, S3)

Figure 7.2: An example of forward algorithm for the graph de�ned in Figure
7.1 (B). x/y-axis: index of starting/end residue position; green circle: target
value; red circle: intermediate value. (Left) calculation for � < 0;S0> (r; S3)
for segment S3 with no direct forward neighbor; (right) calculation for
� < 0;S0> (r; S4) for segmentS4 with direct forward neighbor S2

P r � `2+1
p= r � `1+1

P p� 1
q0= l+ `0

1 � 1

P q0� `0
1+1

p0= l , where`1 = max length( y), `2 = min length( y).

Then the normalizer Z = � < 0;ystart > (N; yend). Figure 7.2 shows a toy exam-
ple on how to calculate the forward probability.

Similarly, we can de�ne the backward probability � <r;y r > (l; y l ) as the
probability that a segment of state yl ends atl given x l+1 : : : xr and a segment
of state yr ends at r . Then we have

� <r;y r > (l; y l ) =
X

q0; p; q

� <r;y r > (p� 1;  � y )� <p 0� 1; � y > (q0; �! yl ) exp(
X

k

� k f k(x ; w; w� );

where w� is the starting segment from l+1 to q0 with state �! yl and w is the
spatial successor segment from p to q at state y. Given the backward and
forward algorithm, we can compute the expectation of each feature f k in
(7.3) accordingly. For a test sequence, we search for the segmentation that
maximizes the conditional likelihood P(W jx). De�ne � <l;y l > (r; y r ) as the
best score over all possible segmentation con�gurations ofx l+1 : : : xr that
ends at stateyr , then we have

� <l;y l > (r; y r ) = max
p; p0; q0

� <l;y l > (q0; y0)� <q 0;y> (p � 1;  � yr ) exp(
X

k

� k f k(x ; w; w� )) :

The best segmentation can be traced back from� < 0;ystart > (N; yend), where
N is the number of residues in the sequence.
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D

Figure 7.3: 3-D structures and side-chain patterns of� -helices; (A) Side view
(B) top view of one rung (C) Segmentation of 3-D structures (D) protein
structural graph. E1 = f black edgeg and E2 = f red edgeg (Figure (A) and
(B) are adapted from (Bradley et al., 2001))

In general, the computational cost of SCRFs for the forward-backward
and Viterbi algorithm will be polynomial to the length of the sequenceN .
In most real applications of protein fold prediction, we cande�ne the graph
so that the number of possible residues in each node is much smaller than
N or �xed. Therefore the �nal complexity can be reduced to approximately
O(N 2).

7.2.3 Experiment Results

Protein structural graph for � -helix fold Currently there exist 14
protein sequences with� -helix whose crystal structures have been known.
Those proteins belong to 9 di�erent SCOP families (Murzin et al., 1995) (see
Table 7.1). Computationally, it is very di�cult to detect th e � -helix fold
because proteins with this fold share less than 25% similarity in sequence
identity, which is the \twilight zone" for sequence-based methods, such as
PSI-BLAST or HMMs. Traditional methods for protein family c lassi�cation,
such as threading, PSI-BLAST and HMMs, fail to solve the � -helix recog-
nition problem across di�erent families (Bradley et al., 2001). Recently, a
computational method called BetaWrap, has been proposed topredict the
� -helix speci�cally (Bradley et al., 2001). The algorithm \w raps" the un-
known sequences in all plausible ways and check the scores tosee if any wrap
makes sense. The cross-validation results in the protein data bank (PDB)
seem promising. However, the BetaWrap algorithm might su�er from hand-
coding many biological heuristic rules so that it is prone toover-�t the known
� -helix proteins and hard to generalize for other predictiontasks.

From previous literature on � -helix, there are two facts important for
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accurate prediction: 1) the � -strands of each rung have patterns of pleating
and hydrogen bonding that are well conserved across the superfamily; 2) the
interaction of the strand side-chains in the buried core arecritical determi-
nants of the fold (Yoder & Jurnak, 1995; Kreisberg et al., 2000). Therefore
we de�ne the protein structural graph of � -helix as in Figure 7.3 (D).

There are 5 states in the graph altogether, i.e. s-B23, s-T3,s-B1, s-T1
and s-I. The state s-B23 is a union of B2, T2 and B3 because these three
segments are all highly conserved in pleating patterns and acombination
of conserved evidence is generally much easier to detect. We�x the length
of S-B23 and S-B1 as 8 and 3 respectively for two reasons: �rst, these are
the number of residues shared by all known� -helices; second, it helps to
limit the search space and reduce the computational costs. The states s-T3
and s-T1 are used to connect s-B23 and s-B1. It is known that the � -helix
structures will break if the insertion is too long. Therefore we set the length
of s-T3 and s-T1 so that it varies from 1 to 80. s-I is the non-� -helix state,
which refers to all those regions outside the� -helix structures. The red edge
between s-B23 is used to model the long-range interaction between adjacent
� -strand pairs. For a protein without any � -helix structures, we de�ne the
protein structural graph as a single node of state s-I.

To determine whether a protein sequence has the� -helix fold, we de�ne
the score� as the log ratio of the probability of the best segmentation to the
probability of the whole sequence as one state s-I, i.e.� = log maxs P (Sjx)

P (< 1;N;s � I> jx) .
The higher the score� , the more likely that the sequence has a� -helix fold.
We did not explicitly model the long-range interactions between B1 strands
since the e�ect is relatively weak given only 3 residues in s-B1 segments while
adding it in makes the graph much more complicated. However,we do use
the B1 interactions as a �lter in Viterbi algorithm: speci�c ally, � t (y) will
be the highest value whose corresponding segmentation alsohave alignment
scores for B1 higher than some threshold set using cross-validation.

Feature extraction SCRFs provide an expressive framework to handle
long-range interactions for protein fold prediction. However, the choice of
feature function f k plays a key role in accurate predictions. We de�ne two
types of features for� -helix prediction, i.e. node featuresand pairwise fea-
tures.

Node featurescover the properties of an individual segment, including:
a) Regular expression template: Based on the side-chain alternating pat-
terns in B23 region, BetaWrap generates a regular expression template to
detect � -helices, i.e. �X�XX	X�X, where � matches any of the hydroph o-



CHAPTER 7. PROTEIN TERTIARY STRUCTURE PREDICTION 106

bic residues asf A, F, I, L, M, V, W, Y g, 	 matches any amino acids ex-
cept ionisable residues asf D, E, R, K g and X matches any amino acid
(Bradley et al., 2001). Following similar idea, we de�ne the feature function
f RST (x; S) equal to 1 if the segmentS matches the template, and 0 other-
wise.
b) Probabilistic HMM pro�les: The regular expression templat e as above
is straightforward and easy to implement. However, sometimes it is hard to
make a clear distinction between a true motif and a false alarm. Therefore
we built a probabilistic motif pro�le using HMMER (Durbin et al., 1998)
for the s-B23 and s-B1 segments respectively. We de�ne the feature func-
tion f HMM 1(x; S) and f HMM 2(x; s) as the alignment scores ofS against the
s-B23 and s-B1 pro�les.
c) Secondary structure prediction scores: Secondary structures reveal signif-
icant information on how a protein folds in three dimension. The state-of-art
prediction method can achieve an average accuracy of 76 - 78%on soluble
proteins. We can get fairly good prediction on alpha-helix and coils, which
can help us locate the s-T1 and s-T3 segments. Therefore we de�ne the
feature function f ssH (x; S), f ssE (x; S) and f ssC(x; S) as the average of the
predicted scores over all residues in segmentS, for helix, sheet and coil re-
spectively by PSIPRED (Jones, 1999).
d) Segment length: It is interesting to notice that the � -helix structure has
strong preferences for insertions within certain length ranges. To consider
this preference in the model, we did parametric density estimation. Several
common functions are explored, including Poisson distribution, negative-
binomial distribution and asymmetric exponential distrib ution, which con-
sists for two exponential functions meeting at one point. Weuse the latter
one since it provides a better estimator than the other two. Then we de�ne
the feature function f L 1(x; S) and f L 3(x; S) as the estimated probability of
the length of segmentS as s-T1 and s-T3 respectively.

Pairwise features capture long-range interactions between adjacent� -
strand pairs, including:
a) Side chain alignment scores: BetaWrap calculates the alignment scores of
residue pairs depending on whether the side chains are buried or exposed. In
this method, the conditional probability that a residue of t ype X will align
with residue Y, given their orientation relative to the core, is estimated
from a � -structure database developed from the whole PDB (Bradley et al.,
2001). Following similar idea, we de�ne the feature function f SAS (x; S; S0)
as the weighted sum of the side chain alignment scores forS given S0 if both
are s-B23 segments, where a weight of 1 is given to inward pairs and 0.5 to
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the outward pairs.
b) Parallel � -sheet alignment scores: In addition to the side chain position,
another aspect is to study the di�erent preferences for parallel and anti-
parallel � -sheets. Steward & Thornton derived the \pairwise information
values" (V) for a residue of type X given the residue Y on the pairing
parallel (or anti-parallel) strand and the o�sets of Y from t he paired residue
Y' of X (Steward & Thornton, 2002). The alignment score for two segments
x = X 1 : : : X m and y = Y1 : : : Ym is de�ned as

score(x; y) =
X

i

X

j

f (V (X i jYj ; i � j ) + V (Yi jX j ; i � j ))g:

Compared with the side chain alignment scores, this score also takes into
account the e�ect of neighboring residues on the paired strand. We de�ne
the feature function f P AS (x; S; S0) = score(S; S0) if both S and S0 are s-B23
and 0 otherwise.
c) Distance between adjacent s-B23 segments: There are also di�erent pref-
erences for the distance between adjacent s-B23 segments. It is di�cult
to get an good estimation of this distribution since the range is too large.
Therefore we simply de�ne the feature function as the normalized length,
i.e. f DIS (x; S; S0) = dis (S;S0)� �

� , where � is the mean and� 2 is the variance.
It is interesting to notice that some features de�ned above are quite gen-

eral, not limited to predicting � -helices only. For example, an important
aspect to discriminate a speci�c protein fold with others is to build HMM
pro�les or identify regular expression templates for conserved regions if they
exist; the secondary structure assignments are essential in locating the el-
ements within a protein fold; if some segments have strong preferences for
certain length range, then the lengths are also informative. For pairwise
features, the � -sheet alignment scores are useful for folds in� -family while
hydrophobicity is important for � - or �� -family.

Experiment results We followed the experiment setup described in (Bradley
et al., 2001): a PDB-minus dataset was constructed from the PDB protein
sequences (July 2004 version) (Berman et al., 2000) with less than 25% sim-
ilarity to each other and no less than 40 residues in length. Then the � -helix
proteins are removed from the dataset, resulting in 2094 sequences in total.
The proteins in PDB-minus dataset will serve as negative examples in the
cross-family validation and discovery of new� -helix proteins. Since negative
data dominate the training set, we subsample 15 negative sequences that are
most similar to the positive examples in sequence identity so that SCRFs
can learn a better decision boundary than randomly sampling.
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Table 7.1: Scores and rank for the known right-handed� -helices by HMMER, BetaWrap and SCRFs. 1: the
scores and rank from BetaWrap are taken from [3] except 1ktw and 1ea0; 2: the bit scores in HMMER are not
directly comparable

SCOP family PDB-id Struct-based HMMs Seq-based HMMs BetaWrap 1 SCRFs
Bit score2 Rank Bit score2 Rank Score Rank � -score Rank

P.69 pertactin 1dab -73.6 3 -163.4 75 -17.84 1 10.17 1
Chondroitinase B 1dbg -64.6 5 - 171.0 55 -19.55 1 13.15 1

Glutamate synthase 1ea0 -85.7 65 -109.1 72 -24.87 N/A 6.21 1
Pectin methylesterase 1qjv -72.8 11 -123.3 146 -20.74 1 6.12 1

P22 tailspike 1tyu -78.8 30 -154.7 15 -20.46 1 6.71 1
Iota-carrageenase 1ktw -81.9 17 - 173.3 121 -23.4 N/A 8.07 1

Pectate lyase 1air -37.1 2 -133.6 35 -16.02 1 16.64 1
1bn8 180.3 1 -133.7 37 -18.42 3 13.28 2
1ee6 -170.8 852 -219.4 880 -16.44 2 10.84 3

Pectin lyase 1idj -78.1 14 -178.1 257 -17.99 2 15.01 2
1qcx -83.5 28 -181.2 263 -17.09 1 16.43 1

Galacturonase 1bhe -91.5 18 -183.4 108 -18.80 1 20.11 3
1czf -98.4 43 -188.1 130 -19.32 2 40.37 1
1rmg -78.3 3 -212.2 270 -20.12 3 23.93 2
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Table 7.2: Groups of segmentation results for the known right-handed � -helix

Group Perfect match Good match OK match
Missing rungs 0 1-2 3 or more

PDB-ID 1czf 1air, 1bhe, 1bn8, 1dbg,
1ee6(right), 1idj, 1ktw (left),
1qcx, 1qjv, 1rmg

1dab (left), 1ea0, 1tyu (right)
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Figure 7.4: Histograms of protein scores of known� -helix proteins against
PDB-minus dataset. Blue bar: PDB-minus dataset; green bar: known � -
helix proteins. 2076 out of 2094 protein sequences in PDB-minus have a
log ratio score � of 0, which means that the best segmentation is a single
segment in non-� -helix state

A leave-family-out cross-validation was performed on the nine � -helix
families of closely related proteins in the SCOP database (Murzin et al.,
1995). For each cross, proteins in the one� -helix family are placed in the test
set while the remainder are placed in the training set as positive examples.
Similarly, the PDB-minus was also randomly partitioned int o nine subsets,
one of which are placed in the test set while the rest serve as the negative
training examples. We compare our results with BetaWrap, a state-of-art
algorithm for predicting � -helices, and HMMER, a general motif detection
algorithm based on a simple graphical model, i.e. HMMs. The input to
HMMER is a multiple sequence alignment. The best multiple alignments
are typically generated using 3-D structural information, although this is
not strictly sequence-based method. Therefore we generated two kinds of
alignments for comparison: one is the multiple structural alignments using
CE-MC (Guda et al., 2004), the other is purely sequence-based alignments
by CLUSTALW(Thompson et al., 1994).

Table 7.1 shows the output scores by di�erent methods and therelative
rank for the � -helix proteins in the cross-family validation. From the results,
we can see that the SCRFs model can successfully score all known � -helices
higher than non � -helices in PDB. On the other hand, there are two proteins
(i.e. 1ktw and 1ea0) in our validation sets that are crystallized recently and
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thus are not included in the BetaWrap system. We test these two sequences
on BetaWrap and get a score of -23.4 for 1ktw and -24.87 for 1ea0. These
values are signi�cantly lower than the scores of other� -helices and some
of the non � -helix proteins, which indicates that the BetaWrap might be
overtrained. As expected, HMMER did worse than SCRFs and BetaWrap
even using the structural alignments.

Figure 7.4 plots the score histogram for known� -helix sequences against
the PDB-minus dataset. Compared with the histograms in similar exper-
iment by BetaWrap (Bradley et al., 2001), our log ratio score � indicates
a clearer separation of� -helix proteins v.s. non � -helix proteins. Only 18
out of 2094 proteins has a score higher than 0. Among these 18 proteins,
13 proteins belong to the � -class and 5 proteins belong to the alpha-beta
class in CATH database (Orengo et al., 1997). In Table 7.2 we also cluster
the proteins into three di�erent groups according to the segmentation re-
sults and show examples of the predicted segmentation in each group. From
the results, we can see our algorithm demonstrates success in locating each
rung in the known � -helix proteins, in addition to predicting membership
of � -helix motif.

7.3 Thesis work: Chain Graph Model for Predict-
ing Protein Fold with Structural Repeats

Our experiment results demonstrate that SCRFs are an e�ective model for
general protein fold recognition. However, the computational cost for the
forward-backward probabilities and the Viterbi algorithm in SCRFs is at
least O(N 2) with an averaged size ofN at around 500. This complexity is
acceptable for small-scale applications, but is prohibitively expensive for an
iterative search algorithm with thousands of iterations. In addition, it will
increase (exponentially) with the size of the cliques. Whenthe dependencies
between the labels of immediately adjacent segments are notdeterministic,
for example � -sandwiches or� -trefoils, larger cliques will be induced and
thus make SCRFs infeasible for genome-wide applications.

To alleviate the problem, we focus on a special class of the complex pro-
tein folds | those with structural repeats, such as the � -helices or the leucine
rich repeats (LLR) (Figure 7.5). They are de�ned as repetitive secondary
or supersecondary structural units or motifs, such as� -helices, � -strands,
� -sheets (colored regions is Fig 7.2), connected byinsertions of variable
lengths, which are mostly short loops and sometimes� -helices or/and � -
sheets (gray regions in Fig 7.5). These folds are believed tobe prevalent
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Repeat I

Repeat 2

Repeat 3

...

Figure 7.5: Typical 3-D structure of proteins with � -helices (left) and
leucine-rich repeats (right). In � -helices, there are three strands: B1 (green),
B2 (blue) and B3 (yellow) and the conserved T2 turn (red). In LLR, there
is one strand (yellow) and insertions with helices (red).

in proteins and can involve in a wide spectrum of cellular andbiochemical
activities, such as the initiation of bacterial infection and various protein-
protein interaction processes (Yoder et al., 1993; Kobe & Deisenhofer, 1994).

The major challenges in computationally predicting these folds include
the long-range interactions between their structural repeats due to unknown
number of spacers (i.e., amino acid insertions), low sequence similarities be-
tween recurring structural repeats within the same protein and also across
multiple proteins, and poor conservation of the insertionsacross di�erent
proteins. Therefore it is desirable to devise a model that contains some
sequence motif modules reecting structural conservation, and at the same
time considers the long-range interactions between such structural elements
of each repeat (as captured in the SCRF model) and even higher-order
dependencies between recurring repeats. Note that a naive SCRFs formal-
ism would be prohibitively expensive due to such higher-order dependencies
across repeats, and it also lacks the device to incorporate sequence motifs.
Here we propose a chain graph model that makes use of both the undirected
SCRFs and the directed sequence motif models as building blocks, and in-
tegrates them via a directed network, which captures dependencies between
structural repeats without computing a global normalizer required in a naive
SCRF formalism.

7.3.1 Chain Graph Model

A chain graph is a graph consisting of both directed and undirected arcs as-
sociated with probabilistic semantics. It leads to a probabilistic distribution
bearing properties of both the Markov random �elds (i.e., allowing potential-
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Figure 7.6: The chain graph model for protein folds with structural repeats.
The directed edges denote conditional dependencies of the child node on the
parental nodes. Note that each of the round-cornered boxes represents a
repeat-speci�c component as SCRFs. An edge from the box denote depen-
dencies on the joint con�guration of all nodes within the box.

based local marginals that encode constraints rather than causal dependen-
cies) and the Bayesian networks (i.e., not having a hard-to-compute global
partition function for normalization and allowing causal i ntegration of sub-
graphs that can be either directed or undirected) (Lauritzen & Wermuth,
1989). A chain graph can be represented as a hierarchical combination of
conditional networks. Formally, a chain graph over the variable setV that
forms multiple subgraphs U can be represented by the following factored
form: P(V ) =

Q
u2U P(ujparents(u)), where parents(u) denotes the union

of the parents of every variable inu. P(ujparents(u)) can be de�ned as a
conditional directed or undirected graph (Buntine, 1995), which needs to be
locally normalized only.

In the protein structure graph, we de�ne an envelop, as a subgraph that
corresponds to one repeat containing both motifs and insertions or the re-
gions outside the protein fold (which we termnull regions). It can be viewed
as a mega node in a chain graph de�ned over the entire protein sequence
and its segmentation. LetM denote the number of envelops in the sequence,
T = f T1; : : : ; TM g whereTi 2 f repeat, null regiong denote the structural la-
bel of the i th envelop. Recall that the detailed con�guration of one repeat or
null region can be modeled by a plain SCRF model, therefore wede�ne each
envelop as a single SCRF and letW(i ) denote all the hidden nodes in en-
velop i , i.e. W(i ) = f M (i ) ; Y (i )g. Following the notational convention in the
previous section, we useW(i );j to represent a segment-speci�c clique within
envelopi that completely determines the con�guration of the j th segment in
the i th envelop. To de�ne a hierarchical segmentationof a protein sequence,
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our chain graph employs a directed graph on the top layer to determine the
labels of the envelops and then models the conditional segmentation of the
envelops by an undirected SCRFs model. Putting everything together, we
arrive at a chain graph depicted in Figure 7.6.

Given a sequencex, the node value initiation of W = f M; f W(i )g; T g
in the chain graph G de�nes a hierarchical segmentation of the sequence as
follows:

P(W jx ) = P(M; f W( i ) g; T jx ) = P(M )
MY

i =1

P(Ti jx ; Ti � 1 ; W( i � 1) )P (W( i ) jx ; Ti ; Ti � 1 ; W( i � 1) ):

(7.4)

P(M ) is the prior distribution of the number of repeats in one protein and
for simplicity a uniform prior is assumed. P(Ti jx ; Ti � 1; W(i � 1)) is the state
transition probability and we use the structural motif as an indicator for the
existence of a new repeat, i.e.:

P(Ti jx ; Ti � 1; W(i � 1)) =
X

Q i =0 ;1

P(Ti jQi )P(Qi jx ; Ti � 1; W(i � 1)); (7.5)

whereQi is a random variable denoting whether there exists a motif inthe i th

envelop andP(Qi jx ; Ti � 1; W(i � 1) ) is computed using a pro�le mixture model
described in Section 7.3.2. For the third term, we de�ne the conditional
probability using SCRFs, i.e.

P(W(i ) jx ; Ti ; Ti � 1; W(i � 1)) =
1

Z(i )
exp(

M ( i )X

j =1

KX

k=1

� k f k(x ; W(i );j ; W� ( i ) ;j )) ;

(7.6)
where Z(i ) is the local normalizer over all the con�gurations of W(i ) , and
W� ( i ) ;j is the spatial predecessor ofW(i );j de�ned by long-range interactions.
Similar to SCRFs, the parameters� can be estimated using the regularized
negative log-loss,

R� (� ) =
MX

i =1

[

M ( i )X

j =1

KX

k=1

� k f k(x ; w(i );j ; w� ( i ) ;j ) � logZ(i ) ] +
� k� k2

2
; (7.7)

where the last term is a Gaussian prior over the parameters asa smoothing
term. To perform the optimization, we need to compute the �rs t derivative
and set it to zero, i.e.

@R
@�k

=
MX

i =1

M ( i )X

j =1

f f k (x ; w(i );j ; w� ( i ) ;j ) � EP (W( i ) jx ) [f k (x ; W(i );j ; w� ( i ) ;j )]g + �� k ;

(7.8)
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where EP (W( i ) jx ) [f k(x ; W(i );j ; w� ( i ) ;j )] is the expectation of featuref k(x ; W(i );j ; w� ( i ) ;j )

over all possible segmentation assignment of thei th envelop.
Given a test sequence, we need to �nd the segmentation with the highest

conditional probability. One naive way is to compute the probability for all
possible segmentations, which is computationally too expensive. To solve
the problem, we use a greedy search algorithm: de�ne� (r; t ) as the highest
score that the last envelop has statet given the observationx1x2 : : : xr , and
' (r; t ) = f m; yg is the corresponding \argmax" segmentation of envelopi .
Then the recursive step is

� (r; t ) = max
r 0;t0;w

� (r 0; t0)P(T = tjx ; t0; ' (r 0; t0))P(W = wjx; t; t 0; ' (r 0; t0)) :

(7.9)
To summarize, using a chain graph model, we can e�ectively identify

motifs based on their structural conservation and at the same time take
into account the long-range interactions between repeat units. In addition,
a chain graph also reduces the computational costs by using local normal-
ization. Since the side-chain interactions take e�ect only within a small
range in 3-D space, our model can be seen as a reasonable approximation
for a global optimal model. For most protein folds, where thenumber of
possible residues in motif or insertions is much smaller than N or �xed, the
complexity of our algorithm can be bounded byO(N ).

7.3.2 Mixture Pro�le Model for Structural Motif Detection

A commonly adopted representation for motif-�nding is the p osition weight
matrix (PWM), which records the relative frequency (or a related score) of
each amino acid type at the positions of a motif (Bailey & Elkan, 1994). Sta-
tistically, a PWM de�nes a product of multinomial model for t he observed
instances of a motif, which assumes that the positions within the motif are
independent of each other.

One important observation about the repetitive structural motif is that
motif instances close to each other in 3-D are more similar than the instances
from distance locations or on di�erent sequences due to the side-chain in-
teraction constraints. In addition, for motifs in the � -class, the positions
with the side-chain pointing to the core are more conserved than the ones
pointing outward. To capture these properties of structural motifs, a mix-
ture pro�le model is applied. Given a multi-alignment of the structural
motif from the i -th protein, A i = A i 1A i 2 : : : A iH where H is the length of
the motif, we assume that it is generated from a mixture of a motif model
shared by all the proteins (� (1) ) and a sequence speci�c background model
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(� (0)
i ). Let � (1) parameterizes a product of multinomial models and� (0)

i be
a simple multinomial vector. Suppose there exist position-speci�c features
of the motif fd , for example the side-chain pointing directions (inward or
outward) for each position, we de�ne hidden variablesQ = f Qij g, for which
Qij = 1 means that the j th position in the i th protein is generated by model

� (1) and Qij = 0 means that it is from model � (0)
i . We assume the prior

distribution of Qij is Bernoulli with parameter � . Using the EM algorithm,

we can estimate� , � (1) and � (0)
i . To calculate P(Qi jx ; Ti � 1; W(i � 1) ), we do

an online updating of � (0) and � using the motif de�ned by W(i � 1) .

7.3.3 Experiment Results

In our experiments, we test our algorithm on two important pr otein folds in
� -class, including the right-handed � -helices and the leucine-rich repeats.

We followed the setup described in Section 7.2.3: a PDB-minus dataset
was constructed from the PDB protein sequences and a leave-family-out
cross-validation was performed. Since the ratio of negative examples to pos-
itive examples is very large, we subsample only 15 negative sequences that
are most similar to the positive examples in sequence identity in order to �nd
a better decision boundary than randomly sampling. Two types of features
are de�ned: one isnode feature, which covers the properties of an individual
segment, including pattern matching templates and HMM pro� les for con-
served motifs, secondary structure prediction scores fromPSIPRED (Jones,
1999) and the segment length; the other ispairwise feature, which captures
the long-range interactions between adjacent� -strand pairs, including align-
ment scores of residue pairs in terms of the buried or exposedside chains
(Bradley et al., 2001) and preferences for parallel or anti-parallel � -sheets
(Steward & Thornton, 2002) (see Section 7.2.3 for detail).

To determine whether a protein sequence has a particular fold, we de�ne
the score� as the normalized log ratio of the probability for the best segmen-
tation to the probability of the whole sequence in a null state (non-� -helix
or non-LLR). We compare our results with BetaWrap, the state-of-art algo-
rithm for predicting � -helices, THREADER, a threading algorithm and HM-
MER, a general motif detection algorithm using HMMs. The input to HM-
MER can be the structural alignments using CE-MC (Guda et al., 2004) or
purely sequence-based alignments by CLUSTALW(Thompson etal., 1994).

� -helices fold Table 7.3 shows the output scores by di�erent methods
and the relative rank for the � -helix proteins in the cross-family validation.
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Table 7.3: Scores and rank for the known right-handed� -helices by HMMER, Threader, BetaWrap, SCRFs and
chain graph model(CGM). 1: the scores and rank from BetaWrapare taken from [3] except 1ktw and 1ea0; The
result of sequence-based HMMs is shown in Section 7.2.3

SCOP Family PDB-ID Struct-based HMMs Threader BetaWrap 1 SCRFs CGM
Bit score Rank Rank Wrap-score Rank � -score Rank � -score Rank

P.69 pertactin 1DAB -73.6 3 24 -17.84 1 10.17 1 31.69 1
Chondroitinase B 1DBG -64.6 5 47 -19.55 1 13.15 1 34.89 1
Glutamate synthase 1EA0 -85.7 65 N/A -24.87 N/A 6.21 1 29.04 1
Pectin methylesterase 1QJV -72.8 11 266 -20.74 1 6.12 1 22.69 1
P22 tailspike 1TYU -78.8 30 2 -20.46 1 6.71 1 20.59 1
Iota-carrageenase 1KTW -81.9 17 10 -23.4 N/A 8.07 1 16.06 1
Pectate lyase 1AIR -37.1 2 45 -16.02 1 16.64 1 22.87 2

1BN8 180.3 1 76 -18.42 3 13.28 2 28.98 1
1EE6 -170.8 852 228 -16.44 2 10.84 3 15.16 3

Pectin lyase 1IDj -78.1 14 6 -17.99 2 15.01 2 17.50 2
1QCX -83.5 28 6 -17.09 1 16.43 1 20.67 1

Galacturonase 1BHE -91.5 18 18 -18.80 1 20.11 3 28.98 1
1CZF -98.4 43 5 -19.32 2 40.37 1 24.68 3
1RMG -78.3 3 27 -20.12 3 23.93 2 27.37 2
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1EE6 (A)

1EE6 (B) 1DAB (A) 1DAB (B)

Figure 7.7: Segmentation for protein 1EE6 and 1DAB by SCRFs(A) and
chain graph model (B). Red: B2-T2-B3 motif; blue: B1 motif; green and
yellow: insertions.

From the results, we can see that the both SCRFs and chain graph model
can successfully score all known� -helices higher than non� -helices in PDB,
signi�cantly better than Threader, HMMER and BetaWrap, the stat-of-art
method for predicting the � -helices fold.

Our algorithm also demonstrates success in locating each repeat in the
known � -helix proteins. Fig.7.7 shows the segmentation results for 1EE6
and 1DAB respectively. From the results, we can see: for 1EE6SCRFs can
locate two more repeats accurately than the chain graph model; however,
our model is able to span the repeats over the whole area of thetrue fold for
1DAB while SCRFs can only locate part of them. We can see that there are
strength and weakness for both methods in terms of segmentation results.
On the other hand, since the computational complexity for chain graph
model is only O(N ), the real running time of our model (approx. 2.5h)
is more than 50 times faster than that of SCRFs (approximately 140h).
Therefore the chain graph model achieves a good approximation to SCRF
with much less training time.

leucine-rich repeats Based on the conservation level, we de�ne themotif
for LLR as the � -strand and short loops on two sides, resulting 14 residues
in total. The length of the insertions varies from 6 to 29. There are 41
LLR proteins with known structure in PDB, covering 2 super-f amilies and
11 families in SCOP. The LLR fold is relatively easy to detect due to its
conserved motif with many leucines in the sequence and shortinsertions.
Therefore it would be more interesting to discover new LLR proteins with
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1A4Y(B) 1OGQ(B)

Figure 7.8: Segmentation for protein 1OGQ and 1A4Y by chain graph
model. Green: motif; red: insertions.

much less sequence identity to previous known proteins. We select one
protein in each family as representative and see if our modelcan identify
LLR proteins across families.

Table 7.4 lists the output scores by di�erent methods and the rank for
the LLR proteins. In general, LLR is easier to identify than t he � -helices.
Again, the chain graph model performs much better than othermethods by
ranking all LLR proteins higher than non-LLR proteins. In ad dition, the
predicted segmentation by our model is close to prefect match for most LLR
proteins (some examples are shown in Figure 7.8).

7.4 Summary

In this section, we propose the segmentation conditional random �elds for
general protein fold recognition and a chain graph model to detect the pro-
tein folds with structural repeats speci�cally. Both metho ds demonstrate
successes in the protein fold (or motif) recognition in our experiments, which
con�rmed our hypothesis of applying conditional graphical models for pro-
tein structure prediction. In addition, they are one of the � rst probabilistic
models that explicitly consider the long-range interactions in predicting pro-
tein super-secondary structures from sequences.

The chain graph model, as a localized version of SCRFs, solves the prob-
lem of huge computational costs and achieves good approximation to the
original SCRFs. Although the current model is developed fora special kind
of protein folds, its divide-and-conquer idea under the chain graph frame-
work can be derived for other complex proteins accordingly.
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Table 7.4: Scores and rank for the known right-handed Leucine-rich repeats (LLR) by HMMER, Threader and
chain graph model (CGM). For CGM, � -score = 0 for all non-LLR proteins.

SCOP Family PDB-ID ClustalW+HMMs Struct-based HMMs Threader CGM
Bit score Rank Bit Score Rank Rank � -score Rank

28-residue LRR 1A4Y -125.5 4 -76.7 1 457 127.8 1
Rna1p (RanGAP1) 1YRG -95.4 1 -81.1 1 181 64.3 1

Cyclin A/CDK2-associated p19 1FQV -163.3 89 -111.4 10 398 77.1 1
Internalin LRR domain 1O6V -62.8 1 -0.7 1 306 116.5 1

Leucine rich e�ector 1JL5 -86.7 1 -26.5 1 46 187.5 1
Ngr ectodomain-like 1P9A -120.0 9 -68.6 1 16 105.0 1

Polygalacturonase inhibiting protein 1OGQ -155.0 32 -18.2 1 284 66.4 1
Rab geranylgeranyltransferase alpha-subunit 1DCE -145.4 16 -59.7 1 35 17.4 1

mRNA export factor 1KOH -153.9 42 -91.7 1 177 37.1 1
U2A'-like 1A9N - 280.9 861 -151.4 478 62 55.1 1
L domain 1IGR -150.0 46 -107.1 249 67 8.2 1



Chapter 8

Quaternary Structure
Prediction

In previous chapters, we study the tasks of protein secondary structure pre-
diction and tertiary fold recognition. These tasks are both important and
di�cult, which undoubtedly attracts extensive studies by m any researchers
in di�erent domains as reviewed in Chapter 2. However, the study of pro-
tein quaternary structures, which consist of multiple protein chains that
form chemical bonds among the side chains of sequence-distant residues to
reach a structurally stable domain 1, have been left far behind: on one
hand, the current understanding of quaternary structures are quite limited
due to the di�culty of resolving the structures of the large c omplexes. On
the other hand, these structures play very important roles in protein func-
tions, some examples include enzymes, hemoglobin, DNA polymerase, and
ion channels. They also contribute signi�cantly to evoluti onary stability
in that the changes of the quaternary structures can occur through each
individual chain or through the reorientation relative to e ach other. Most
importantly, recent studies in virus proteins indicate the common existence
of quaternary structures in viruses, such as adenovirus andreovirus, as well
as HIV-protease. Furthermore, a deeper knowledge about howthe protein
folds into quaternary structures will inevitably help uncover the complicated
folding processes in nature.

Quaternary structures are stabilized mainly by the same non-covalent
interactions as tertiary structures, such as hydrogen bonding, van der Walls
interactions and ionic bonding. Unfortunately, previous work on fold recog-

1 In comparison, the stable three-dimension structure held b y a single protein is called
the tertiary structure.
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nition for single chains is not directly applicable becausethe complexity is
greatly increased both biologically and computationally, when moving to
quaternary multi-chain structures. First, the averaged size of the quater-
nary fold is much larger than that of single proteins, which makes it di�cult
for lab experiments to resolve their structures. As a result, there are only
one or two positive examples with structure annotation for most quaternary
folds. The unavailability of training data will render usel ess many machine
learning approaches. From an evolutionary point of view, the functional
sites on the complexes are more apt to change in order to adaptto the en-
vironment (especially true for virus proteins), while the general structural
skeleton remains stable. Reected in the protein sequences, we observe that
a large number of proteins share the same fold without sequence similar-
ity, which violates the assumptions of homology (sequence similarity-based)
methods. On the other hand, threading algorithms based on physical forces
rely strictly on the estimation of free-energies. To �nd the best conforma-
tion, we need to consider the conformation of all the proteinchains jointly
since every chain contributes to the stability of the structures. Given the
enormous search spaces in quaternary structures, it is di�cult to �nd an
accurate estimate of the energies, not mention problems posed by the abun-
dant local optima for computational solutions.

Motivated by its biological importance and corresponding computational
challenges, we develop the linked SCRF model, another extension of the gen-
eralized conditional graphical model, for protein quaternary fold recognition.
The major advantage of our model is the use of discriminativeobjective func-
tions, which make it easy to incorporate any biological features, instead of
the free-energy functions with particular assumptions on physical forces and
requiring complex free-energy minimization methods. It provides the feasi-
bility to capture the long-range dependencies of di�erent subunits within one
chain and between chains under one model gracefully. In addition, e�cient
approximation algorithms we used are able to �nd optimal or near-optimal
solutions, which can be directly transferred to the free-energy minimization
settings.

8.1 Materials and Evaluation Measure

In this section, we give a brief overview of current work in protein quaternary
structure prediction, then introduce the protein quaternary fold recognition
tasks and evaluation measures.
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8.1.1 Protein Quaternary Structures

The quaternary structure is the stable association of multiple polypeptide
chains via non-covalent bonds, resulting in a stable unit. To date, there has
been signi�cant progress in protein tertiary fold recognition and alignment,
ranging from sequence similarity matching (Altschul et al., 1997; Durbin
et al., 1998), to threading algorithms based on physical forces (Jones et al.,
1992) and to machine learning methods (Cheng & Baldi, 2006; Ding &
Dubchak, 2000). However, few studies have addressed the problem of pre-
dicting quaternary structures.

Recent pursuit of computational methods to determine the quaternary
structures can summarized in three research directions. One direction is the
simple classi�cation problem: given a protein primary sequence, whether
it takes a tertiary structure of a single chain or a quaternary structures
with other proteins. Most work along this direction focuses on examin-
ing the sequence evolution information in terms of PSI-BLAST pro�les or
di�erent propensities of amino acids in these two structure types (Garian,
2001; Zhang et al., 2003; Chou & Cai, 2003). Then the information is used
as input features for a classi�er, such as support vector machines or naive
Bayes. The overall prediction accuracy is around 60-70%. The second di-
rection is the study of domain-domain docking or interaction type in the
protein complexes (Kim & Ison, 2005; Chen & Zhou, 2005). In this ap-
proach, the docking or interaction type are examined based on the protein
structures deposited in the PDB. The methodology is generalizing the asso-
ciation mechanisms of multiple proteins in the complexes tothe quaternary
structures in general. It is observed that the overall prediction success rate
across the genome-wide study is poor. However, the performance can be
improved signi�cantly if only those proteins that have info rmative (or re-
lated) proteins in the training set are consider. The third direction seeks the
geometric regularities and constraints to reduce the huge searching spaces
of quaternary structures (Inbar et al., 2005).

8.1.2 Quaternary Fold Recognition

In this chapter of the thesis, we are trying to solve the problem of quaternary
fold recognition. Speci�cally, our task starts with a targe t fold F that the
biologists are interested in. There are no constraints about F except that it
has to be a quaternary fold, with multiple number of particip ating protein
chains (either di�erent or identical). Then all the protein s with resolved
structures deposited in the PDB can be classi�ed into two groups, i.e. those
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take the target fold F and those not. These proteins together with the
labels can be used as training data. Our goal is to predict whether a testing
protein, without resolved structures, takes the fold F in nature or not; if
they do, locate the starting and ending positions of the subsequence that
adopts the fold.

It can be seen that our task involves two sub-tasks: one is theclassi-
�cation problem, that is, given a set of training sequencesX 1; X 2; : : : ; X N

and their labels y1; y2; : : : ; yN (yi = 0 ; 1), predict the label of a new testing
sequenceX new ; the other subtask is not that straightforward to describe in
mathematical settings. We can think of the target fold as some patterns (or
motifs in bioinformatics terminology). Given a set of instances of the pat-
tern, including both the positive examples (subsequences with the pattern
F ) and the negative examples (sequences without the patternF ), we want
to predict whether the pattern appears in any subsequence ofthe testing
proteins. It is easy to answer the questions in the �rst subtask if we can
solve the second one successfully, which is our focus in the rest of the chapter.
A key problem in the second task is how we can represent the descriptive
patterns (or motifs) using mathematical notations. The lin ked segmenta-
tion conditional random �elds, as described in the next section, makes very
natural use of the graphical model representations and successfully solve the
problem.

After introducing the de�ne of our task, we want to stress again its strong
biological motivation and wide applications. This task falls within the gen-
eral blueprint of previous studies in quaternary structures, but di�ers in
two aspects: �rst, the problem comes directly from the needsof biologists in
their experiments or studies. In our case, the collaborators that we worked
with have been studying a particular fold for a long time. The positive pro-
teins with resolved structures are quite limited, although they believe it is
a common fold in nature. By identifying more examples in the unresolved
proteins in sequence databases, such as Swiss-Prot or UniProt, we can help
the biologists to verify their hypothesis about the fold. Second, the problem
we are trying to address is much more di�cult than the common f old clas-
si�cation because we do not have as many positive examples and they do
not share high sequence similarities. In other words, the patterns that we
are trying to identify have not been represented clearly in the training data.
This is the main motivation why we want to develop a relatively complex
model, rather than a simple classi�er. Notice that our models can be used in
the traditional fold recognition or threading setting, how ever, its advantage
can be demonstrated best in cases for predicting those di�cult protein folds.
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8.1.3 Evaluation Measures

Our goal is to identify the possible positive proteins from the whole collection
of protein sequences without resolved structures. It is similar to the infor-
mation retrieval tasks, where given some key words (or patterns described
in words) we want to retrieve the documents that contain similar contents
as the key words. Therefore our evaluation measure is to see if we can rank
the positive proteins higher than the negative ones in cross-validation.

To construct negative examples in the training set, we buildthe PDB-
minus dataset as described in the previous chapter. It consists of all PDB
protein sequences (July 2006 version) (Berman et al., 2000)with less than
25% similarity to each other and no less than 40 residues in length, result-
ing in 2810 chains with 430927 residues. Since we aim to search proteins
sharing similar structures without sequence similarity, a leave-family-out
cross-validation was performed to avoid over�tting. For each cross, positive
proteins from the same protein family are placed in the test set while the
remainder are placed in the training set. Similarly, the PDB-minus was also
randomly partitioned into subsets, one of which are placed in the test set
while the rest serve as the negative training examples.

To demonstrate the e�ectiveness of di�erent recognition models, we
choose the triple � -spirals and double-barrel trimer as examples in our ex-
periments.

The triple � -Spiral fold is a processive homotrimer consisting of three
identical interacting protein chains. It was �rst identi�e d by Mark J. van
Raaij and collaborators in 1999 (van Raaij et al., 1999). Thefold serves as
a �brous connector from the main virus capsid to a C-terminal knob that
binds to host cell-surface receptor proteins (see Figure 8.3). Up to now there
are three crystallized structures with this fold depositedin the Protein Data
Bank (PDB) (Berman et al., 2000), one is the adenovirus protein (DNA
virus, PDB ID: 1qiu), another is reovirus (RNA virus, PDB ID: 1kke) and
the other is PRD1 (PDB ID: 1yq8). The common existence in bothDNA and
RNA viruses reveals important evolution relationships in the viral proteins,
which also indicates that the triple beta-spirals might be a common fold in
nature. The detailed description of the TBS fold can be foundin Appendix
B.3.

The double-barrel trimer is a potential protein fold, which has been
found in the coat proteins from several kinds of viruses. It consist of two
eight-stranded jelly rolls, or � -barrels. As seen in Figure 8.5, the component
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� -strands are labeled as B, C, D, E, F, G, H and I respectively. The �rst
strand is named as B because one example of the� -barrels, the tomato
bushy stunt virus, has an extra initial strand. The fold has been found in
the major coat proteins of bacteriophage PRD1, that of humanadenovirus,
Paramecium bursaria chlorella virus (PBCV) and archaeal virus STIV. This
amazing phenomenon raised the unexpected possibility thatviruses infecting
di�erent kinds of species are related by evolution. It has been suggested
that the occurrence of a double-barrel trimer is common all icosahedral
dsDNA viruses with large facets, irrespective of its host, and furthermore
an indicator of common ancestor in a lineage of viruses (Benson et al.,
2004). The detailed description of the double-barrel trimer can be found in
Appendix B.4.

8.2 Thesis work: Linked Segmentation Conditional
Random Fields

In the previous section, we have identi�ed the key issues forquaternary fold
recognition, that is, how to represent the patterns exhibited by the fold using
mathematical models. In structural biology, the conventional representation
of a protein fold is the use of a graph (Westhead et al., 1999),in which
nodes represent the secondary structural components and the edges indicate
the inter- and intra-chain interactions between the components in their 3-
D structures. This intuitive representation motivates us t o use graphical
models, which is an elegant combination of graph theory and probability
theory. Speci�cally we base the work on SCRFs for single-chained (tertiary)
fold recognition problems. Its successful applications tothe � -helixes and
leucine-rich repeats (LLR) encourages us to pursue similardirections for
quaternary fold (or motif) recognition, albeit requiring f undamental changes:
representing and inferencing over multiple cross-chain bonds, and resolving
a graphical structure of much greater complexity, which demands entirely
new estimation methods. Therefore we propose the linked segmentation
conditional random �elds.

Before covering the algorithm in detail, we �rst review the protein struc-
tural graph described in previous chapters. Given a proteinfold, a structural
graph is de�ned as G = < V; E > , where V = U

S
fIg , U is the set of nodes

corresponding to the secondary structure elements within the fold and I is
the node to represent the elements outside the fold.E is the set of edges
between neighboring elements in primary sequences or edgesindicating the
potential long-range interactions between elements in tertiary structures.
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Figure 8.1: (A) 3-D structure of � -� -� motif (B) PSG of � -� -� motif. Node:
Green=� -strand, yellow= � -helix, cyan=coil, white=non- � -� -� (I-node)

Figure 8.1 shows an example of the structural graph for� -� -� motif. The
PSG for a quaternary fold can be derived similarly: �rst construct a PSG
for each component protein or a component monomeric PSG for homo-
multimers, and then add edges between the nodes from di�erent chains if
there are chemical bonds, forming a more complex but similarly-structured
quaternary PSG.

Given a structural graph G de�ned on one chain and a protein sequence
x = x1x2 : : : xN , we can have a possible segmentation of the sequence, i.e.
y = f M; wg, where M is the number of segments andw j = f sj ; pj ; qj g, in
which sj , pj and qj are the state, starting position and ending position index
of the j th segment, The conditional probability of a segmentation y given
the observation x can be computed as follows:

P(y jx ) =
1

Z0

Y

c2CG

exp(
X

k

� k f k (xc; yc)) ;

where Z0 is the normalization factor based on all possible con�gurations.
The graphical model representation is shown in Figure 8.1-(B).

More general, given a quaternary structure graph G with C chains,
i.e. f x i ji = 1 : : : Cg, we have a segmentation initiation of each chainy i =
(M i ; w i ) de�ned by the protein structural graph, where M i is the number of
segments in thei th chain, and w i;j = ( si;j ; pi;j ; qi;j ), si;j , pi;j and qi;j are the
state, starting position and ending position of the j th segment. Following
similar idea as the CRFs model, we have

P(y1; : : : ; yC jx1; : : : ; xC ) =
1
Z

Y

C2G

�( yC; x ); (8.1)
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Figure 8.2: Graphical Model Representation of l-SCRFs model with multiple
chains. Notice that there are long-range interactions (represented by red
edges) within a chain and between chains

where Z is the normalizer over all possible segmentation con�gureson all
the sequences (see Figure 8.2 for its graphical model representation.)

We decompose the potential function over the cliques �(yC; x ) as a prod-
uct of unary and pairwise potentials, i.e.

P(y1; : : : ; yC jx1; : : : ; xC )

=
1
Z

Y

w i;j 2V G

�( x i ; w i;j )
Y

hw a;p ;w b;q i2E G

�( xa; xb; wa;p; wb;q)

=
1
Z

exp(
X

w i;j 2V G

K 1X

k=1

� 1;k f k (x i ; w i;j ) +
X

hw a;p ;w b;q i2E G

K 2X

k=1

� 2;kgk (xa; xb; wa;p; wb;q)) ;

where f k and gk are features,� 1;k and � 2;k are the corresponding weights for
the features. Speci�cally, we factorize the features as thefollowing way,

f k(x i ; w i;j ) = f 0
k(x i ; pi;j ; qi;j )� (w i;j )

=
�

f 0
k(x i ; pi;j ; qi;j ) if ( si;j = s)&( qi;j � pi;j 2 length range(s))

0 otherwise,

gk (xa; xb; wa;u ; wb;v)

=

8
>>>><

>>>>:

g0
k (xa; xb; pa;u ; qa;u ; pb;v; qb;v)

if ( sa;u = s)&( sb;v = s0),
qa;u � pa;u 2 length range (s);
qb;v � pb;v 2 length range (s0)

0 otherwise.

Given the de�nition of the protein structure graph, our next question
is how to automatically build the graph for a particular fold . The answer
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Van  Raaij et al. in Nature (1999)

Figure 8.3: Demonstration graph of triple � -spirals. (left) 3-D structures
view. Red block: shaft region (target fold), black block: knob region. (mid-
dle) top view. (right) maps of hydrogen bonds within a chain and between
chains.

depends on the type of protein folds of concern and how much knowledge
we can bring to bear. If it is a fold that biologists have studied over the
years and accumulated some basic knowledge of their properties (for exam-
ple � -� -� motif), the topology of this graph can be constructed easilyby
communicating with the experts. If it is a fold whose structure is totally
new to the biologists, we can follow a general procedure withthe following
steps: �rst, construct a multiple structure alignment of al l the positive pro-
teins (among themselves); second, segment the alignment into disjoint parts
based on the secondary structures of the majority proteins;third, draw a
graph with nodes denoting the resulting secondary structure elements and
then add edges between neighboring nodes. Finally, add the long-range in-
teraction edge between two nodes if the average distance between all the
involved residues is below some threshold� min speci�ed by the user. We
skip detailed discussion of the latter case as it is a separate line of research
and assume that we are given a reasonably good graph over which we per-
form our learning. Below are two examples of how to constructthe graphs
given some prior knowledge of the target folds.

8.2.1 L-SCRFs for Triple- � Spirals

To provide a better protein structural graph for the linked S CRFs model,
we notice the following structural characteristics in the triple � -spirals: the
fold consists of the three identical protein chains with a series of repeated
structural elements (see Figure 8.3). Each of these structural elements is
composed of: 1. a� -strand that runs parallel to the �ber axis 2. a long
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Figure 8.4: Protein Structural Graph of the Triple � -spirals. Chain C0

is a mirror of chain C for better visual e�ects. Dotted line: inter-chain
interactions; solid line: intra-chain interactions. The pairs of characters on
the edge indicate the hydrogen bonding between the residuesdenoted by
the characters.

solvent-exposed loop of variable lengths, 3. a second� -strand that forms
antiparallel � -sheets with the �rst one, and slightly skewed to the �ber
axis, 4. successive structural elements along the same chain are connected
together by a tight � -turn (Scanlon, 2004; Weigele et al., 2003). Among
those four components, the two� -strands are quite conserved in sequences
and Green et al. characterize them by labeling each positionusing character
`a' to `o'. Speci�cally, i-o for the �rst strand and a-h for th e second strand
(see Figure 8.3).

Based on the discussion above, we de�ne the protein structural graph
of the triple � -spirals as in Figure 8.4. There are 5 states in the graph
altogether, i.e. B1, T1, B2 and T2, which correspond to the four components
of each repeated structural element, and the null state I, which refers to
the non-triple � -spiral region. We �x the length of B1 and B2 as 7 and
8 respectively due to their sequence conservation. In addition, we set the
length of T1 and T2 in the range of [0; 15] and [0; 8] individually since longer
insertions will bring instability to the structures. It is e asy to notice that the
transitions between di�erent states are deterministic as long as the number
of rungs (repeated structural elements) is given. The pairsof interaction
residues are marked on the edges, which will be used to de�ne the pairwise
features in section 8.4.



CHAPTER 8. QUATERNARY STRUCTURE PREDICTION 131

C B

E D

GF

IH

B

D

G

I

C

E

F

H

LFG

GF G F

GF G F

A

B

C

GF G FA’

LEF

LED

LGH

L
HI

L
CD

L
BC

L
IB

LFG

L
EF

LED

L
GH

LHI

LCD

LBC

LFG

L
FG

LFG

LFG

LFG

LFG

Figure 8.5: (Left) (A) 3-D structure of the coat protein in ba cteriophage
PRD1 (PDB id: 1CJD). (B) 3-D structure of PRD1 in trimers with the
inter-chain and intra-chain interactions in the FG loop. Color notation: In
FG1, green: residue #133, red: residue #135, purple: residue #142; In FG2,
blue: residue #335. (Right) PSG of double-barrel trimer. The within-chain
interacting pairs are shown in red dash line, and the inter-chain ones are
shown in black dash line. Green node: FG1; Blue node: FG2.

8.2.2 L-SCRF for Double-barrel Trimer

For the double-barrel trimer fold, it is not straightforwar d, or even seem-
ingly impossible, to uncover the structural conservation through sequences
since there are only four positive proteins and none of them share sequence
similarities. There are some general descriptive observations we can make:
(1) the lengths of the eight � -strands varies, ranging from 4 to 16 residues,
but the layout of the strands is �xed. The separation (insert ions) between
the strands is relatively short (4- 10 residues), however, it is interesting to
notice some exceptions, for example the long insertions between the F and
G strand (20 - 202 residues); another long loops between D-E strand (9 -
250 residues); the short� -turn between E and F. (2) The chemical bonds
that stabilize the trimers are located between the FG loops. However, the
bonding type and speci�c locations remain unclear, which poses a major
challenge. We denote the FG loop in the �rst double-barrel trimer as FG1,
and that in the second one as FG2.

Based on the discussion above, we de�ne the protein structural graph of
the double-barrel trimer as shown in Figure 8.5. There are 17states in the
graph altogether, i.e. B, C, D, E, F, G, H, I as the eight � -strands in the
� -barrels, lBC , lCD , lDE , lEF , lF G , lGH , lHI , l IB as the loops between the
� -strands. The length of the beta-strands are in the range of [3; 16]. The
range of the loopslBC , lCD , and lEF are [4; 10]; that of lDE and lF G are
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[10; 250]; that of lGH , lHI , l IB are [1; 30]. The within-chain interacting pairs
are shown in red dash line, and the inter-chain interacting pairs are shown
in black dash line.

8.3 E�cient Inference and Learning

The feature weights f � 1;kg and f � 2;kg are the model parameters. In the
training phase, we estimate their values by maximizing the regularized joint
conditional probability of the training data, i.e

f �̂ 1; �̂ 2g = argmax
NX

n=1

logP(y (n)
1 ; ::; y (n)

C jx (n)
1 ; ::; x (n)

C ) +
k� 1k2

2� 2
1

+
k� 2k2

2� 2
2

:

There is no closed form solution to the equation above, therefore we apply an
iterative searching algorithm. Taking the �rst derivative of the log likelihood
L (� 1; � 2), we have

@L
@�1;k

=
NX

n=1

X

y ( n )
i;j 2V G

(f k (x (n)
i ; y (n)

i;j � EP (Y ( n ) ) [f k (x (n)
i ; Y (n)

i;j ]) +
� 1;k

� 2
1

; (8.2)

@L
@�2;k

=
NX

n=1

X

hy a;p ;y b;q i2E G

(gk (xa; xb; ya;p; yb;q) � EP (Y ( n ) ) [gk (xa; xb; Y a;p; Y b;q)]) +
� 2;k

� 2
2

:(8.3)

Since PSG is a complex graph with loops and multiple chains, we explored
e�cient approximation methods to estimate the whole summat ion terms on
the right-hand side of eq (8.2) and eq (8.3), which are referred to r � 1;k and
r � 1;k respectively later in the paper.

8.3.1 Approximate Inference via Contrastive Divergence

There are three major approximation approaches in graphical models: sam-
pling, variational methods and loopy belief propagation. It is not straightfor-
ward to use the latter two due to the semi-Markov property in our L-SCRF
model (the labels are assigned to subsequences instead of individual amino
acid), and more importantly the unique property of PSG that a llows the
number of nodes to be a variable (for example, the triple� -spirals have dif-
ferent number of repeats for each example). Sampling techniques have been
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Algorithm -1: Description of Contrastive Divergence
Input: � 1 and � 2; Output: r � 1 and r � 2

1. Sample a data vectory0 from the empirical distribution P0;
2. Iterate over T times:

Sample a value for each latent variablef y i = f M i ; w i gg (i =
1; : : : ; C) from its posterior
probability de�ned in eq(8.1). The value is represented asŷ t .

4. Calculate the contrastive divergence asr � 1 = Ey 0 [f k ] � E ŷ [f k ],
r � 2 = Ey 0 [gk ] � E ŷ [gk ].

widely used in the statistics community, however, there aretwo main prob-
lems, i.e. ine�ciency due to the long \burn-in" periods and l arge variance
in the �nal estimation. To avoid the problem, we use contrastive divergence
(CD) proposed in (Welling & Hinton, 2002). It is similar to Gi bbs sampling,
except that, instead of running Gibbs sampling until the equilibrium distri-
bution is reached, it runs the sampler up to only a few iterations and uses
the resulting distribution to approximate the true model di stribution. The
algorithm is described in Algorithm -1.

Notice that there is a problem if we use the naive Gibbs sampling in step
(2) since the variablesy i = f M i ; w i g may be of di�erent dimensions in each
sampling iteration, depending on the value ofM i (M is a variable if the fold
has a variable number of structural repeats, e.g. the TBS fold). We use the
reversible jump MCMC algorithm (Green, 1995), which has achieved success
in various applications, such as mixture models, hidden Markov models for
sequence segmentation and phylogenetic trees.

8.3.2 Reversible Jump Markov Chain Monte Carlo

Given a segmentation y i = ( M i ; w i ), our goal is propose a new movey �
i .

To satisfy the detailed balance de�ned by the MCMC algorithm, auxiliary
random variables v and v� have to be introduced. The de�nitions for v and
v� should guarantee the dimension-matching requirement, i.e. dim(yi ) +
dim(v) = dim( y�

i ) + dim( v0) and there is a one-to-one mapping from (yi ; v)
to (y�

i ; v0), i.e. there exists a function 	 so that 	( yi ; v) = ( y�
i ; v0) and

	 � 1(y�
i ; v0) = ( yi ; v). As a special case, we can add appropriate auxiliary

variables v only to the sample spaces with a lower dimension. We de�ne four
types of Metropolis operators to construct a Markov chain onthe sequence
of segmentations:

1. State switching: given a segmentationy i = ( M i ; w i ), select a segment
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j uniformly from [1 ; M ], and a state values0 uniformly from state set
S. Set y �

i = y i except that s�
i;j = s0.

2. Position Switching: given a segmentationy i = ( M i ; w i ), select the seg-
ment j uniformly from [1 ; M ] and a position assignmentd0 � U[qi;j � 1+
1; qi;j +1 � 1]. Set y �

i = y i except that q�
i;j = d0.

3. Segment split: given a segmentation y i = ( M i ; w i ), propose y �
i =

(M �
i ; w i

� ) with M �
i = M i + 1 segments by splitting the j th segment,

where j is randomly sampled from U[1; M ]. Set w �
i;k = w i;k for k =

1; : : : ; j � 1, and w �
i;k +1 = w i;k for k = j + 1 ; : : : ; M i . Sample a

value assignment ofv � P(v), compute w�
i ; w�

i +1 via (w�
i;j ; w�

i;j +1 ; v0) =
	( wi;j ; v).

4. Segment merge: given a segmentationy i = ( M i ; w i ), propose M i � =
M i � 1 by merging the j th segment andj + 1 th segment, wherej is
sampled uniformly from [1; M � 1]. Setw �

i;k = w i;k for k = 1 ; : : : ; j � 1,
and w �

i;k � 1 = w i;k for k = j + 1 ; : : : ; M i . Sample a value assignment
of v0 � P(v0), compute wi;j via (w�

i;j ; v) = 	 � 1(wi;j ; wi;j +1 ; v0).

Then the acceptance rate for the proposed transition fromyi to y�
i is

minf 1; posterior ratio � proposal ratio � Jacobiang =

minf 1;
P(y1; ::; y �

i ; ::; yC jf x i g)
P(y1; ::; y i ; ::; yC jf x i g)

P(v0)
P(v)

�
�
�
�
@(y �

i ; v0)
@(y i ; v)

�
�
�
�g;

where the last term is the determinant of the Jacobian matrix.
In general, we have regular arrangement of the secondary structure ele-

ments in most protein folds so that the state transitions aredeterministic or
almost deterministic. Therefore the operator for state transition can be re-
moved andsegment split or mergecan be greatly simpli�ed. There might be
some cases that the inter-chain or intra-chain interactions are also stochas-
tic. Then two additional operators are necessary, including segment join
(adding an interaction edge in the protein structure graph) and segment
separate (deleting an interaction edge in the graph). The detailed steps are
similar to state transition, and we omit the detailed discussion.

8.3.3 Testing Phase

Given a test example with multiple chains f x1; : : : ; xC g, we need to esti-
mate the segmentation that yields the highest conditional likelihood. Simi-
lar to the training phase, it is an optimization problem invo lving search in
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Algorithm-2 : Reversible Jump MCMC Simulated Annealing
Input: initial value of y0, temperature reduction rate � = 0.5;
Output: predicted value of y .
1. Set ŷ = y0.
2. For t  1 to 1 do :

2.1 T  �t . If T = 0 return ŷ
2.2 Sample a valueynew using the reversible jump MCMC algorithm as

described in Section 8.3.2.r E = P(ynew ) � P(ŷ )
2.3 if r E > 0, then set ŷ = ynew ; otherwise setŷ = ynew with probability

exp(r E=T)
3. Return ŷ

multiple-dimensional space. Since it is computationally prohibitive to search
over all possible solutions using traditional optimization methods, simulated
annealing with reversible jump MCMC is used. It has been shown theoret-
ically and empirically to converges on the global optimum (Andrieu et al.,
2000). SeeAlgorithm-2 for details of the method.

8.3.4 An Example of triple � -spirals

It is straightforward to apply the approximate inference algorithms above
for predicting triple � -spiral fold except that there is a slight di�erence
in the reversible jump MCMC algorithm: since the state transitions are
deterministic given the number of segments, thestate transition proposal
can be skipped. In addition, there is the concept of \rungs" in the triple-
beta spirals, i.e. the four parts of a rung must be generated or deleted at
the same time for the �delity of the structures. Therefore in the proposal
segment split, we need randomly select a rung (instead of one segment) and
split it into two rungs, each of which contains the segmentB1, T1, B2, T2.
Similarly, in the proposal segment mergewe randomly select a rung and
merge it with the neighboring rung on the right.

Without the loss of generality, we assume that probability of the num-
ber of rungs given the data is uniformly distributed. Therefore, with equal
probability, we select one of the moves below:

Position Switching given a segmentation y i = ( M i ; w i ), randomly se-
lect the segment j uniformly at [1 ; M ] and a position assignment d0 �
U[qi;j � 1 + 1 ; qi;j +1 � 1]. Set y �

i = y i except that q�
i;j = d0. The acceptance

rate for the proposal is:

minf 1;
P(y1; ::; y �

i ; ::; yC jf x i g)
P(y1; ::; y i ; ::; yC jf x i g)

g:
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Segment split given a segmentationy i = ( M i ; w i ), proposey �
i = ( M �

i ; w i
� )

with M �
i = M i + 4 segments by splitting the j th rung, where j is randomly

sampled from uniform distribution over [0; xM=4y + 1]. Set w �
i;k = w i;k for

k = 1 ; : : : ; 4(j � 1) + 1, and w �
i;k +4 = w i;k for k = 4( j + 1) + 2 ; : : : ; M i . Since

we constrain the length of segmentB1 and B2 to be �xed, represented as
L B 1 and L B 2 , the starting position of the following T1 and T2 can be inferred
easily.

If j = 0, we split the starting null segment wi; 0 into a shorter null segment
and a new rung of triple-beta spirals. To fully determine the position of
the new rung, we need to provide the value of two variableslB 1 and lB 2,
which are the lengths of segmentT1 and T2 respective. Therefore two
auxiliary random variables v1 � U[0; 1] and v2 � U[0; 1] are introduced. Let
L 0 = qi; 1 � 1, that is, the length of segmentwi; 0. Then we de�ne

l1 + l2 + L B 1 + L B 2 = v1L 0;
l1
l2

=
1 � v2

v2
:

Solving the two equations above, we have the transformationfunction 	 as

l1 = v2(v1L 0 � L B 1 � L B 2)

l2 = (1 � v2)(v1L 0 � L B 1 � L B 2 );

and it is straightforward to compute the Jacobian as J = L 0(v1L 0 � L B 1 �
LB 2). The sampling steps are: we �rst sample a value ofv1, v2 from U[0; 1]
, then set

q�
i; 1 = qi; 1 � (l1 + l2 + L B 1 + L B 2 )

q�
i; 2 = qi; 1 � (l1 + l2 + L B 2 )

q�
i; 3 = qi; 1 � (l2 + L B 2 )

q�
i; 4 = qi; 1 � l2;

accept the proposaly � with the acceptance rate

minf 1;
P(y1; ::; y �

i ; ::; yC jf x i g)
P(y1; ::; y i ; ::; yC jf x i g)

� L 0(v1L 0 � L B 1 � L B 2 )g:

Similar derivation can be developed easily whenj = xM=4y + 1, i.e. the
ending null segment is selected.

If 1 � j � xM=4y, we split the j th rung into two rungs. In order to fully
determine the position of the two new rungs, we need to provide the value
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of four variables l �1, l �2, l �01 l �02 , which are the length of segmentT1 and T2

in the two new rungs respectively. Let l1 = qi; 4j +3 � qi; 4j +2 , the length of
segmentT1 in the old rung, and l2 = qi; 4j +5 � qi; 4j +4 segmentT3 in the old
rung. We introduce three auxiliary variables v1, v2, v3 � U[0; 1], and de�ne

l �1
l �2

=
1 � v1

v1
;

l �01
l �02

=
1 � v2

v2
;

l �2=v
l �02 =w

=
1 � v3

v3
;

l �1 + l �2 + l �01 + l �02 = l1 + l2 � L B 1 � L B 2 : (8.4)

In order to achieve the detailed balance, i.e.P(y ; y � ) = P(y � ; y ), we need
to diverge the current topic a little bit to study its reverse proposal, that
is, merging the j th and j + 1 th rung into one rung. The position of the new
rung can be fully determined given the value ofl1, the segment length of
T1, and l2, the segment length ofT1. We introduce one auxiliary variable
v� � U[0; 1] and de�ne

l1
l2

=
1 � v�

v� ; l1 + l2 = l �1 + l �2 + l �01 + l �02 + L B 1 + L B 2 :

In this way, we satisfy the dimension matching requirement,i.e. dim (f l1; l2; v1; v2; v3g)
= dim ( f l �1; l �2; l �01 ; l �02 ; v� g).

Finally, solving the equations in eq (8.4), we have the transformation
function 	 as

l �1 = (1 � v1)(1 � v3)r L

l �2 = v1(1 � v3)r L

l �01 = v3(1 � v2)r L

l �02 = v3v2r L

v� =
l2

l1 + l2
;

wherer L = l1+ l2 � L B 1 � L B 2 . The Jacobian isJ = v3(1� v3)r L 3=(l1+ l2).
The sampling steps are: we �rst sample a value ofv1, v2, v3 from U[0; 1] ,
then set

q�
i; 4j +2 = qi; 4j +2 ; q�

i; 4j +3 = q�
i; 4j +2 + L B 1

q�
i; 4j +4 = qi; 4j +3 + l �1; q�

i; 4j +5 = q�
i; 4j +4 + L B 2

q�
i; 4j +6 = qi; 4j +5 + l �2; q�

i; 4j +7 = q�
i; 4j +6 + L B 1

q�
i; 4j +8 = qi; 4j +7 + l �01 ; q�

i; 4j +9 = q�
i; 4j +4 + L B 2 ;
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accept the proposaly � with the acceptance rate

minf 1;
P(y1; ::; y �

i ; ::; yC jf x i g)
P(y1; ::; y i ; ::; yC jf x i g)

� v3(1 � v3)r L 3=(l1 + l2)g:

Segment merge given a segmentationy i = ( M i ; w i ), proposeM i � = M i � 4
by merging the j th rung and j +1 th rung, wherej is randomly sampled from
U[0; xM=4y ]. Set w �

i;k = w i;k for k = 1 ; : : : ; 4(j � 1) + 1, and w �
i;k � 4 = w i;k

for k = 4( j + 1) + 2 ; : : : ; M i . If j = 0 or j = xM=4y, the new segment will
become a null segment, otherwise it will be a new triple-betaspiral rung.
The detail can be derived easily based on our discussion in the segment split
proposal.

One might notice that in the description above we did not consider the
length constraints of T1 and T2, which will a�ect the sampling space of
the variables, such asv and v� . We intentionally omit the constraints for
comprehensiveness. In practice those variables are sampled from a more
stringent range. Again, the algorithm described above is only one imple-
mentation of the general reversible jump MCMC approaches and there are
many other alternatives.

8.4 Feature Extraction

The linked SCRF model provide an expressive framework to capture the
structural properties of quaternary folds characterized by both inter-chain
and intra-chain interactions. Similar as the SCRF model, link SCRFs retain
all the feasibility so that we can use any type of informative features, either
overlapping or long-range correlations. Again, the choiceof feature function
f k plays an essential role in accurate predictions. Two types of features can
be de�ned, i.e. node features, which cover the properties of an individual
segment, andpairwise features, which tries to model the chemical-bonding
between the pairs of segments that are close in three-dimensional spaces.

Another view of the feature space is viacommon features, which are
can be shared for all kinds of fold recognition, andsignal features, which are
unique to the target fold and but require domain expertise. Our experiments
and studies show that the signal features are usually the most discriminative
of the target fold and given higher weights in the learnt model. On the other
hand, it is time-consuming to get those signal features: generally it takes
years for the biologists to accumulate the required knowledge. Sometimes,
the current understanding of the target fold is not enough to summarize
any reliable signal patterns, in which case the common features could be a
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reasonable backup. Table 8.1 summarizes the features we used for predicting
the TBS and DBT folds.

8.4.1 Common Features for Quaternary Fold Recognition

In general, the common features of quaternary fold recognition are simi-
lar to those for tertiary folds. Some features, such as hydrophobicity and
iconic propensity, seem to get higher weights since the quaternary complexes
usually form a hydrophobic core. The node features that we use in our pre-
diction include:
Secondary structure prediction scores Secondary structures reveal sig-
ni�cant information on how a protein folds in three dimensio n. There-
fore we de�ne the feature function f ssH (x ; qi ; qi +1 ), f ssE (x ; qi ; qi +1 ) and
f ssC(x ; qi ; qi +1 ) as the average of the predicted scores by PSIPRED (Jones,
1999) over all residues in the segment, for helix, sheet and coil respectively.
Similarly, we also de�ne the feature function using the maximal and minimal
scores.
Segment length In most cases, each state has strong preferences to a par-
ticular range of lengths. Therefore we de�ne the feature function f l (x ; qi ; qi +1 ) =
qi +1 � qi .
Physicochemical properties Some physicochemical properties of the amino
acids might be informative. We use the Kyte-Doolittle hydrophobicity score,
solvent accessibility and ionizable scores in our methods.The feature func-
tions can easily be derived accordingly.

The pairwise features we found useful for� -sheet related folds include:
Side chain alignment scores For � -sheets, it is observed that the amino
acids have di�erent propensities to form a hydrogen bond depending on
whether the side-chains are buried and exposed (Bradley et al., 2002).
An alignment score of interacting residue pairs can be computed accord-
ingly. In the methods described in (Bradley et al., 2002), the conditional
probability that a residue of type X will align with residue Y , given their
orientation relative to the core (buried or exposed), is estimated from a
� -structure database developed from the PDB database. The feature func-
tion f (�; )

SAS (xa; xb; qa;p; qa;p+1 ; qb;q; qb;q+1 ) can be de�ned as the weighted side-
chain alignment scores for the� th residue in segment (a; p) given the  th

residue in segment (b; q), where (�;  ) are the positions of interacting pairs
marked in Figure 8.4, and a weight of 1 is given to inward pairsand 0.5 to
the outward pairs.
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Parallel � -sheet alignment scores In addition to the side chain position,
another aspect is the di�erent preferences of each amino acid to form par-
allel and anti-parallel � -sheets. Steward & Thornton derived the \pairwise
information values" (V) for a residue of type X given the residue Y on the
pairing parallel (or anti-parallel) strand and the o�sets o f Y from the paired
residue Y' of X (Steward & Thornton, 2002). The alignment score for two
segmentsx = X 1 : : : X m and y = Y1 : : : Ym is de�ned as

score(x; y) =
X

i

X

j

(V (X i jYj ; i � j ) + V (Yi jX j ; i � j )) :

Notice that this score also takes into account the e�ect of neighboring
residues on the paired strand. We de�ne the feature function

f (�; )
P AS (xa; xb; qa;p; qa;p+1 ; qb;q; qb;q+1 ) = score(xqa;p + � ; yqb;q +  );

where (�;  ) are the positions of interacting pairs marked as in the protein
structural graph (for example Figure 8.4 and 8.5).

Distance between interacting pairs Mostly there is a distance constraint
between the interacting pairs of states since too long an insertion will col-
lapse the structure stabilities. To enforce such constraints, we de�ne feature
function f dis (xa; xb; qa;p; qa;p+1 ; qb;q; qb;q+1 ) = 1 if qa;p+1 � qa;p falls in some
range, and 0 otherwise.

8.4.2 Speci�c Features for Triple- � Spirals

It is quite hard to predict the triple- � spiral fold given the very limited
number of positive examples. Fortunately, there exists some identi�able se-
quence repeat patterns for both B1 and B2 states, which greatly helps to
boost the prediction accuracy. We use the regular expression template and
pro�le hidden Markov model to capture those patterns:

Regular expression template Based on the alternating patterns of con-
served hydrophobic core and peripheral patches in the B1 andB2 strands,
we de�ne the following regular expression templates: X��X	 XX for B1
strand and XX�X�X	X for B2 strand, where � is the conserved ti ght turn
that only matches residues inf P, G, A, F, S, Lg, � is the hydrophobic core
that matches any amino acid in f L, I, M, V, T, S, F, A g, � is the peripheral
patches which matches any amino acidexcept f C, E, H, P, Q, Wg, and X
can match any amino acid. We de�ne the feature function f RST (x ; qi ; qi +1 )
equal to 1 if the segment matches the template, and 0 otherwise.
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Table 8.1: Feature de�nition for segment wi = f si ; pi ; qi g and wj = f sj ; pj ; qj g. Notation: ` = qi � pi , � 2
f P, G, A, F, S, Lg, � 2 f L, I, M, V, T, S, F, A g, � =2 f C, E, H, P, Q, Wg, X match any amino acid. \= � "
indicates that the string matches the regular expression.

Feature Type Semantics Examples

C
om

m
on

Fe
at

ur
es Max predicted 2nd structure scores maxt 2 [p i ;p i +1 ] P� � sheet(x t )

Min predicted 2 nd structure scores min t 2 [p i ;p i +1 ] P� � sheet(x t )

Node Avg predicted 2nd structure scores
P

t 2 [p i ;p i +1 ] P� � sheet(x t )=(pi +1 � pi )
Features segment length pi +1 � pi

physicochemical properties (hydrophobicity,
solvent accessibility, ionizable)

P
t 2 [p i ;p i +1 ] Sionic (x t )=(pi +1 � pi )

Pairwise side-chain alignment scores (buried or exposed
(Bradley et al., 2002))

P
t 2 [0 ;` ] I (x i = buried) SB (x t + p i ; x t + p j ) +

I (x i = exposed)SE (x t + p i ; x t + p j )
Features parallel/anti-parallel � -sheet alignment score

(Steward & Thornton, 2002)

P
t 2 [0 ;` ] Sparallel (x t + p i ; x t + p j )

S
ig

na
l

Fe
at

ur
es TBS fold
B1-strand pattern expression matching xp i : : : x p i +1 = � X��X	XX
B2-strand pattern expression matching xp i : : : x p i +1 = � XX�X�X	X
B1 (B2) alignment pro�le matching PHMMER-B1 (xp i : : : x p i +1 )

DBT fold max � -turn score (6 type: I, II, VIII, I', II',VIa,
VIb, and IV) (Fuchs & Alix, 2005)

maxt 2 [p i ;p i +1 ] Stype I � -turn (x t )
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Probabilistic HMM pro�les Sometimes the regular expression template
is not preferred since it is hard to make a clear cuto� betweena true motif
and a false alarm. Therefore pro�le HMM using probabilistic estimation
is a better resort. Initially we used the alignments of all the positive ex-
amples for B1 and B2 state, but fail to get reasonable resultsas expected
since the sequence similarity is too low to generalize a goodpro�le. Later
we observe that the alignments share more similar patterns in sequence if
we separate the alignments into groups based on the type of amino acid on
conserved� -turn position, that is, position `j' in Green's labeling scheme
(see Figure 8.3). Therefore we built six HMM pro�les (one for each amino
acid type at position `j') using HMMER (Durbin et al., 1998) f or B1 and
B2 respectively. Then we de�ne the feature functionsf HMM (x ; qi ; qi +1 ) as
the alignment scores of the segment against those B1 and B2 pro�les.

8.4.3 Speci�c Features for Double-barrel Trimer

The double-barrel trimer is a relatively new protein fold which attracts biol-
ogists' attention recently, due to their common existence in the coat proteins
of viruses infecting di�erent kinds of species. It is claimed that the layouts
of the � -barrels are quite unique to virus proteins, but there is no signi�cant
sequence conservation either in the� -strand components or the loops or
turns connecting the � -strands. The only interesting observation we made
after careful study is this short � -turns between strand E and F. It has
strong structural conservations without sequence similarities. Therefore we
de�ne � -turn features as follows:

� -turn scores There has been extensive research on how to reliably predict
the � -turns in the protein sequence. Up to now, the commonly accepted
nomenclature divides the � -turns into six types, i.e. type I, II, VIII, I',
II', VIa, VIb, and IV, as de�ned by Hutchinson and Thornton (H utchin-
son & Thornton, 1994). In (Fuchs & Alix, 2005), the propensity scores of
di�erent amino acids in those six type of � -turns are calculated. In par-
ticular, the experiments show that a weighted propensity score using the
PSI-BLAST pro�le performs much better than using the amino acid type
that only appear in the protein sequences. Therefore we de�ne the feature
function f � � turn (x ; qi ; qi +1 ) as the maximal (and minimal) score of the � -
turn propensity of each type over the subsequenceqi to qi +1 .

Maximal alignment scores The pairwise features of � -sheet alignment
scores are de�ned similarly as described in Section 8.4.1 except that the
lengths of the � -strand pair is not necessarily the same. This causes a prob-
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lem when we try to compute the alignment score since we do not know the
interacting pairs any more. To solve the problem, we computeall possible
alignments by shifting the starting position of the longer segment and use
the highest alignment scores as the features.

Pointwise alignment scores Another challenges in predicting the double-
barrel trimer is the incomplete understanding of the inter-chain interactions.
It is suggested that the interactions happen within the FG-loop of the two
� -barrels, but the speci�c location as well as the type of chemical bonding
remains unclear. Following the idea of natural selection ofhydrogen bonds,
we compute all the possible pairs of side-chain interactions, and use the
highest score as features. In other words, we try to model thepossibility of
forming hydrogen between the current pairs of segments.

8.5 Experiments

In the experiments, we test our hypothesis by examining whether the linked
SCRFs can score the positive examples higher than the negative ones by
using the positive sequences from di�erent protein families in the training
set. Here the score is de�ned as the log ratio of the probability of the best
segmentation of the sequences to the probability of the whole sequence as
one segment in a null state s-I. Since negative data, the PDB-minus set,
dominates the training set, we subsample 10 negative sequences that are
most similar to the positive examples in sequence identity so that the model
can learn a better decision boundary than randomly sampling.

We compare our results with PSI-BLAST (Altschul et al., 1997), Pfam
(Bateman et al., 2004), HMMER (Durbin et al., 1998), Threader (Jones
et al., 1992) and RADAR (Heger & Holm, 2000). For PSI-BLAST, we use
the positive examples in training set as query and search against the PDB
database to see if the testing positive protein in the hit list. The threshold is
set as 0.001 with 10 repeated iterations. The results are shown in signi�cant
score. Pfam is a large collection of protein multiple sequence alignments
and pro�le hidden Markov models. We use the alignments of thetrain-
ing sequences from Pfam and build a HMM pro�le. HMMER is a general
motif detection algorithm based on hidden markov model. Theinput to HM-
MER is a multiple sequence alignment generated by CLUSTALW(Thompson
et al., 1994). Since there are sequence repeats in the TBS fold proteins, we
also examine the sequence repeat detector Radar, an unsupervised learn-
ing algorithm to detect sequence repeats. Therefore the results may not be
directly comparable with the rest methods, but it would be interesting to
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explore if the repeats can be easily identi�ed via such approaches. For the
l-SCRFs model, we stop the iterative searching algorithm when the di�er-
ences of loglikelihood is less than 1e-3 or the iterations are larger than 5000;
the number of sampling steps T in the contrastive divergenceis set to 5; and
the number of iterations in the simulated annealing algorithm is set to 500.

8.5.1 Triple � -Spirals

Table 8.2 and 8.3 list the comparison results of di�erent approaches for
recognizing the triple-� spirals. From the results we can see that the se-
quence similarity based methods, such as PSI-BLAST and Pfamperforms
poorly. The structure-based algorithms, such as HMMER based on struc-
tural alignment and threading algorithm, fail to gain impro vement even
given additional information. It can be seen that the task we are trying to
tackle is dramatically di�cult than the common fold classi� cation tasks: the
fold involve very complex structures, yet there are only three positive ex-
amples without sequence conservation. However, our methods not only can
score all the known triple beta-spirals higher than the negative sequences,
but also is able to recover most of the repeats from the segmentation (see
Table 8.4 and Figure 8.6).

Figure 8.7 shows the histograms of the log-ratio score of theTBS pro-
teins and the PDB-minus dataset. We can see that there is a relatively clear
separation between the positive and negative examples. Of all the proteins
scored higher than 0 in the PDB-minus set, there are 58 proteins from �
class, 45 from� class, 51 from�=� class, 72 from� + � class , 4 from� and
� class, 6 from membrane class. The false-alarm proteins withthe highest
scores (most confusing to L-SCRFs) are listed in Table 8.5. We also hypoth-
esize potential TBS proteins from the Swiss-Prot using L-SCRFs. The whole
list can be accessed at http://www.cs.cmu.edu/� yanliu/swissprot list.xls.

8.5.2 Double-barrel Trimer

From Table 8.6 and 8.7, we can see that it is extremely di�cult in predicting
the DBT fold. However, our method is able to give higher ranksfor 3 of the
4 known DBT proteins, although we are unable to reach a clear separation
between the DBT proteins and the rest. The results are within our expec-
tation because the lack of signal features and unclear understanding about
the inter-chain interactions makes the prediction signi�cantly harder. We
believe more improvement can be achieved by combining the results from
multiple algorithms. Figure 8.8 shows the histograms of thelog-ratio score
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Adenovirus
i j k l m n o a b c d e f g h

53 E P L D T S H - - - - - - - - G M L A L K M G - - - -
68 S G L T L D K A - - - - - - - G N L T S Q N V T T V T
88 Q P L K K T K - - - - - - - - S N I S L D T S - - - -

103 A P L T I T S - - - - - - - - G A L T V A T T A - - -
118 P L I V T S G - - - - - - - - G A L S V Q S Q - - - -
133 A P L T V Q D - - - - - - - - S K L S I A T K - - - -
148 G P I T V S D - - - - - - - - G K L A L Q T S - - - -
163 A P L S G S D S - - - - - - - D T L T V T A S - - - -
179 P P L T T A T - - - - - - - - G S L G I N M E - - - -
194 D P I Y V N N - - - - - - - - G K I G I K I S - - - -
209 G P L Q V A Q N S - - - - - - D T L T V V T G - - - -
226 P G V T V E Q - - - - - - - - N S L R T K V A - - - -
241 G A I G Y D S S - - - - - - - N N M E I K T G - - - -
257 G G M R I N N - - - - - - - - N L L I L D V D - - - -
272 Y P F D A Q T - - - - - - - - T K L R L K L G Q - - -
287 G P L Y I N A S - - - - - - - H N L D I N Y N - - - -
303 R G L Y L F N A S N N T - - - K K L E V S I K K S - -
325 S G L N F D N - - - - - - - - T A I A I N A G - - - -
340 K G L E F D T N T S E S P D I N P I K T K I G - - - -
363 S G I D Y N E N - - - - - - - G A M I T K L G - - - -
379 A G L S F D N S - - - - - - - G A I T I G N K - - - -

Reovirus
i j k l m n o a b c d e f g h

175 A P L S I R N - - - - - - - - N R M T M G L N - - - -
190 D G L T L S G N N 0 - - - - - L A I R L P G N - - - -
207 T G L N I Q N - - - - - - - - G G L Q F R F N T - - -
223 D Q F Q I V N - - - - - - - - N N L T L K T T V F - -
240 D S I N S R I G A T - - - - - E Q S Y V A S A V - - -
259 T P L R L N S S T - - - - - - K V L D M L I D S - - -
277 S T L E I N S S - - - - - - - G Q L T V R S T - - - -

PRD1
i j k l m n o a b c d e f g h

153 E S L L D T T S E P - - - - - G K I L V K R I S G G -
174 S G I T V T D Y G - - - - - - D Q V E I E A S - - - -

Figure 8.6: Segmentation results of the known triple� -spirals by SCRFs.
Yellow bar: B1 strand; red bar: B2 strand
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Figure 8.7: Histograms of l-SCRF scores on positive triple-beta spirals (red
bar with arrow indicator) and negative set PDB-select (green bars).
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Table 8.2: Results of PSI-blast search on triple-� spirals. "x" denotes that
the testing protein appears in the result hit list of the query sequence; "-"
denotes no hit.

Query Sequence Adenovirus Reovirus PRD1
Adenovirus x x -

Reovirus x x -
PRD1 - - x

Table 8.3: Cross-family validation results of the known triple � -spirals by
PFAM, HMMER using structural alignment, Threader, RADAR an d l-
SCRFs. Notice that the scores from the HMMER and Pfam are not directly
comparable on di�erent proteins.

SCOP family Pfam HMMER Threader l-SCRFs
score rank score rank rank score rank

Adenovirus -343.9 11 -225.5 7 26 74.1 1
Reovirus 7.9 1 -294.3 2 242 11.6 1
PRD1 -6.7 7 -399.4 194 928 43.4 1

Table 8.4: # of repeats corrected predicted by di�erent methods for the
triple � -spiral proteins

SCOP family Swiss-Prot ID PDB ID # of Correct Repeats
Truth RADAR L-SCRF

Adenovirus FIBP ADE02 1qiu 22 3 21
Reovirus COA5 BPPRD 1kke 8 2 7

PRD1 VSI1 REOVD 1yq8 2 0 2

of the double-barrel trimer proteins and the PDB-minus dataset. Of all the
proteins scored higher than 0 in the PDB-minus set, there are45 proteins
from � class, 37 from� class, 88 from�=� class, 28 from� + � class , 14
from � and � class, 7 from membrane class. The most confusing proteins
are listed in Table 8.8.

8.6 Summary

In this chapter, we develop linked segmentation conditional random �elds
(l-SCRFs), for predicting complex protein folds involving multiple chains.
Following the framework of conditional graphical models, aprotein struc-
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Table 8.5: Examples of high-scored proteins in the PDB-select dataset
PDB id L-SCRF

score
SCOP
Cluster #

Description

1z7a 12.09 - hypothetical Pseudomonas aeruginosa
PAO1

1zmb 9.68 - Putative Acetylxylan Esterase from
Clostridium acetobutylicum

1xa7 9.64 e.3.1.1 beta-lactamase/transpeptidase-like
1tm0 9.55 d.21.1.3 Diaminopimelate epimerase-like
1kgs 8.83 a.4.6.1 C-terminal e�ector domain of the bi-

partite response regulators
1m2w 8.77 a.100.1.9 6-phosphogluconate dehydrogenase C-

terminal domain-like
1p16 8.00 b.40.4.6 Nucleic acid-binding proteins
1td5 7.94 d.110.2.2 GAF domain-like
1yox 7.88 - hypothetical protein PA3696 from

Pseudomonas aeruginosa

tural graph is de�ned, in which the nodes represent secondary structural
components of unknown lengths and the edges indicate the inter- or intra-
chain long range interactions in the fold. As a discriminative model, l-SCRFs
have the exibility to include any types of features, such as overlapping or
long-range interaction features. Due to the complexity of the model, ex-
act inferences are computationally prohibitive. Therefore we propose to use
the reversible jump Markov chain Monte Carlo for inferencesand optimiza-
tion. Our model is applied to predict two protein folds and th e cross-family
validation shows that our method outperforms other state-of-the-art algo-
rithms. For future work, it would be interesting to combine t he l-SCRFs
model with active learning, in which we can automatically bootstrap nega-
tive features from the motif databases (e.g. Pfam or PROSITE) using false
positive examples in the previous iterations.



CHAPTER 8. QUATERNARY STRUCTURE PREDICTION 148

Table 8.6: Results of PSI-blast search on double-barrel trimer proteins (3-
iterations with cuto� score of 0.05)

Adenovirus PRD1 PCBV-1 STIV
Adenovirus x - - -

PRD1 - x - -
PCBV-1 - - x -

STIV - - - x

Table 8.7: Cross-family validation results of the known double-barrel trimer
by HMMER (pro�le HMM) using sequence alignment (seq-HMMER) and
structural alignment (struct-HMMER), Threader and l-SCRF s. Notice that
the scores from di�erent methods are not directly comparable on di�erent
proteins.

SCOP family Seq-HMMER Struct-HMMER Threader l-SCRFs
score rank score rank rank score rank

Adenovirus -196.4 12 -165.1 14 > 385 38.6 87
PRD1 -457.8 84 -381.3 107 323 75.5 8
PBCV -295.3 92 -344.3 8 321 94.0 3
STIV -520.4 218 -390.4 70 93 123.6 2
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Figure 8.8: Histograms of L-SCRF scores on positive double-barrel trimer
(red bar with arrow indicator) and negative set PDB-select (green bars).
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Table 8.8: Examples of high-scored proteins in the PDB-select dataset

PDB id L-SCRF
score

SCOP
Cluster #

Description

1qcr 136.97 f.32.1.1 a subunit of cytochrome bc1 complex
1qle 113.00 f.24.1.1 Cytochrome c oxidase subunit I-like
1g55 89.92 c.66.1.26 Enigmatic DNA methyltransferase homolog
1t1u 87.96 - Choline Acetyltransferase
1ln6 83.07 f.13.1.2 G protein-coupled receptor-like
1he8 78.80 a.118.1.6 ARM repeat
1xtj 75.75 - human UAP56 in complex with ADP
4cts 71.69 a.103.1.1 Complex of citrate synthase
1kpl 66.17 f.20.1.1 Clc chloride channel
1ofq 65.67 c.1.10.4 Aldolase in complexes with manganese

Table 8.9: L-SCRF scores of potential double-barrel trimers suggested in
(Benson et al., 2004)

Swiss-Prot ID Description L-SCRF score (prob)
P11795 Tomato bushy stunt virus (TBSV) 29.60 (40.1%)
P22776 (p72) African swine fever virus (ASFV) 7.92 (0.00%)
Q05815 (MCP) Chilo iridescent virus (CIV) 32.09 (89.0%)

Q5UQL7 Probable capsid protein 1 - Mimivirus 41.90 (99.9%)
Q6X3V1 Bacillus thuringiensis bacteriophage Bam35c 33.53 (97.2%)
Q8JJU8 (Fragment) Trichoplusia ni ascovirus 2a 42.86 (99.9%)
Q8QN59 Ectocarpus siliculosus virus 1 44.12 (99.9%)
Q9YW23 Poxvirus 42.88 (99.9%)



Chapter 9

Conclusion and Future Work

In this thesis, we develop a framework of conditional graphical models for
protein structure prediction. We focus on predicting the general structural
topology of proteins, rather than speci�c 3-D coordinates of each atom.
Based on the structural characteristics at each level in theprotein structure
hierarchy, we can develop a corresponding conditional graphical model to
capture the interactions between structural components, which correspond
to the chemical bonding essential to the stability of the protein structures.
To our best knowledge, this approach is one of the �rst probabilistic models
to capture the long-range interactions directly for protein structure predic-
tion.

In our exploration, we have demonstrated the e�ectiveness of conditional
graphical models for protein secondary structure prediction, tertiary motif
recognition with two example motifs, i.e. right-handed � -helix and leucine-
rich repeats, and quaternary motif recognition on two speci�c examples, i.e.
triple � -spirals and double-barrel trimer. We con�rm our thesis statement
that conditional graphical models are theoretically justi�ed and empirically
e�ective for protein structure prediction, independent of the structure hier-
archies of target outputs.

9.1 Contribution and Limitation

The contribution of this thesis work involves two aspects. From computa-
tional perspective,

1. We propose a series of conditional graphical models undera uni�ed
framework. They enrich current graphical models for structured pre-
diction, in particular for handling the long-range interac tions common

151
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in various applications, such as information extraction and machine
translation. They furthermore relax the iid assumption about data
with inherent structures theoretically.

2. With millions of sequences in the protein databank (Swiss-Prot or
UniProt), e�cient structure prediction algorithms are req uired. There-
fore for each graphical model in the framework, we develop a corre-
sponding inference and learning algorithm. Our large scaleapplica-
tions have demonstrated the e�ciency of these inference algorithms
and the possibility of applying graphical models in other genome-wide
or large-scale applications.

3. In protein structure prediction, we have to handle the data with char-
acteristics well beyond the classical learning scenario: there are very
few positive examples for most of the motifs we work on; the labels and
features are quite noisy; the application needs massive data process-
ing (millions of sequences) while computational resourcesare limited.
We are able to resolve most of these challenges by incorporating prior
knowledge into graphical models. This serves as a good example to
demonstrate how domain knowledge can compensate the lack ofre-
liable data. Although our discussions are focused on applications in
computational biology, the methodologies are easily transferrable to
other applications.

From biological perspective,

1. We use CRFs and kernel CRFs for protein secondary structure pre-
diction and achieve some improvement over the state-of-artmethods
using window-based approaches.

2. We develop SCRFs, one of the �rst probabilistic models to capture
the long-range interactions globally for protein fold recognition. It has
been proven to be e�ective at identifying examples of very complex
motifs where most traditional approaches fail. We also hypothesize
potential membership proteins of the � -helix motif. We hope that the
results will provide useful guidance to the biologists in related areas
for their experiments.

3. We develop linked SCRFs, one of the �rst probabilistic models speci�-
cally for quaternary motif recognition. It is also one of the early models
to successfully make predictions for viral motifs.
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4. In general, our work helps to provide a better understanding on the
mapping from protein sequences to their structures. We hopethat our
prediction results will shed light on the functions of some protein folds
and aid drug design.

Until now, we have veri�ed our thesis statement, i.e. conditional graph-
ical models are an e�ective solution for protein structure prediction. At the
same time, there are also several limitations:

1. The models provide the convenience to use any types of informative
features. However, there is no guideline on how to extract those mean-
ingful features from protein sequences automatically. Most of our fea-
tures come from domain experts, who devote tremendous time and
e�orts on the study of our target motifs. We have not found an ef-
�cient way to generate the features for all the motifs and structures.
We make an early e�orts to examine if we can bootstrap features au-
tomatically from the motif databases (e.g. Pfam or PROSITE), but
fail to achieve further improvement. More elaborated extensions will
be part of the future work.

2. Obtaining the ground truth, i.e. the true structures of concerned pro-
teins, requires lab experiments with long waiting time (1-5 years or
more). As a result, many of our prediction results cannot be veri�ed
in the near future although we do get encouraging results forseveral
proteins whose structures have been resolved recently.

3. Another limitation of our work is the computational compl exities. Our
models have a much higher complexity than the similarity-based ap-
proaches (both are polynomialO(nd), but d > = 3 for the former and
d=1 or 2 for the latter). The advantage of our model is a better per-
formance (in terms of prediction accuracy and sensitivity) for the most
di�cult target folds (motifs). A natural solution for a geno me-wide ap-
plication is to use sequence-based methods on simple folds,and apply
our model on the more complex and challenging folds.

9.2 Future Work

For future work, we would like to examine multiple direction s, including:

E�cient inference algorithms In the thesis, we have examined sev-
eral inference algorithms, such as belief propagation and MCMC sampling.
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There are some recent advances in the research of e�cient inference al-
gorithms for graphical models. For example, pre-conditioner approximation
and structured variational approximation. We have not full y examined these
alternatives since the main theme of the thesis is to develope�cient models
and solve important biological problems. As future work, it will be inter-
esting to examine the e�ciency and e�ectiveness of di�erent approximation
algorithms. On one hand, we can �nd the best algorithm for the graph-
ical models we develop here; on the other hand, our experiment settings
(complex graphs and noisy, unbalanced training data) provide an excellent
testing case for a thorough comparison of di�erent inference algorithms.

Viral protein structure prediction Viruses are a noncellular biological
entity that can reproduce only within a host cell. Most virus es consist of nu-
cleic acids covered by proteins while some animal viruses are also surrounded
by membranes. Inside the infected cell, the virus uses the synthetic capa-
bility of the host to produce progeny virus and attack the host cell. There
are many types of viruses, either species-dependent or species-independent.
For example, some famous viruses are known to be unique to human beings,
such as human immunode�ciency virus (HIV), tumor virus, sudden acute
respiratory syndrome (SARS) virus.

The structures of viral proteins are very important for stud ying the in-
fection processes and designing drugs to stop the infection. However, it is
extremely di�cult to acquire their structures by lab experi ments since the
genes of viruses mutate rapidly and therefore the structures of the proteins
change accordingly. Give the limited number of training instances, there are
very few computational methods that can successfully predict the structures
of viral proteins.

Many examples we use in our experiments are viral proteins, such as
the right-handed � -helices, triple � -spirals and double-barrel trimer. Our
successes in these proteins show strong indication that ourmodel might be
useful for sequence analysis and structure prediction of other viral proteins.
Therefore it would be interesting to examine this direction and verify the
generality of our model in this exciting area.

Protein function prediction It is widely believed that protein structures
reveal important information about their functions, but it is not straightfor-
ward to map the sequences to speci�c functions since most functional sites
or active binding sites consist of only a few residues, whichmay be quite
distant in sequence order. Previous work on protein function prediction can
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be summarized into two approaches. One approach is to collect and combine
the information from multiple resources, such as the database of functional
motifs, microarray data, protein dynamics and so on. The other approach
is motivated by the structural properties of functional sit es. For example,
TRILOGY is a system that searches all the possible triplets (a combination
of three residues) in protein sequences and selects only a subset as seeds
to search for longer patterns (Bradley et al., 2002). Both approaches have
achieved some successes, but the current prediction results are still far from
practical use.

In the thesis, we have studied some protein families with structural re-
peats, such as the leucine-rich repeats and TIM barrel fold.These structures
provide a stable frame so that the active sites can perform their functions.
By segmenting the protein sequences against these motifs, we manage to
know the locations of the structural frame and the active sites. Along the
direction, we choose the ankyrin repeats, one of the most common motifs in
protein-protein interactions, as a study case. Ankyrin repeats are tandem
modules of about 33 amino acids: each repeat folds into a helix-loop-helix
structure with a � -hairpin (or loop region) projecting out from the helices
at a 90 degree angle. The repeats stack together and form an L-shaped
structure. The ankyrin repeat has been found in proteins with diverse func-
tion such as transcriptional initiators, cell-cycle regulators, cytoskeletal, ion
transporters and signal transducers. Our future plan is to apply our model
to the motifs from one or two subfamilies in the ankyrin repeats. This in-
formation, combined with other features indicative of the functions, such as
the location information and the results from the mircoarray data analysis,
may provide a reasonable solution for function identi�cation.

Other applications In addition to applications in biology, there are many
other tasks involving sequential observations with long-range interactions,
such as information extraction and video segmentation. It would be inter-
esting to apply our conditional graphical models to other applications and
testify the generality of the thesis statement. We are now pursuing the idea
on information extraction in the medical domain.



Appendix A

Notation and Index

capital letter constants and random variables
lower-case letter observed variables
bold letter vectors

x 2 X input and input space
y 2 Y output and output space
N dimension of input space
M number of segments ofx in segmentation space
K dimension of feature space
L training set size
Z normalizer over all possible con�guration of y
W segmentation and labeling ofx
R loss function to be optimized
G a graph
V a set of nodes in graphG
E a set of edges in graphG
f feature function
p starting position of a segment
q ending position of a segment
s the state of a segment or a node
C a set of cliques in a graph
� weight for the features
� forward probability
� backward probability
� indicator function
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� -helix, 25
� -sheet, 25

amino acid, 24

Bayesian conditional random �eld, 43

CATH, 27
coil, 25
conditional graphical models, 52
contrastive divergence, 70

discriminative model, 35
domain, 26

�brous protein, 26
fold, 26

globular protein, 26
graphical model, 32

hidden conditional random �eld, 46

inference, 34

Langevin method, 70
loop, 25
loopy belief propagation, 71

max-margin Markov networks, 41
mean �eld approximation, 72
membrane protein, 26
motif, 26
multi-task learning, 37

non-globular protein, 26

PDB, 27
perceptron conditional random �eld,

43
prediction problem with structured-

output, 36
Pro�le HMM, 29
protein, 24

primary structure, 25
quaternary structure, 26
secondary structure, 25
tertiary structure, 25

PSI-BLAST, 29

relational data, 37
residue, 25

saddle point approximation, 72
SCOP, 27
semi-Markov conditional random �eld,

45
structural bioinformatics, 50

UniProt, 27
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Appendix B

Details of Example Proteins

In this appendix, we describe the details about the protein folds we select
in our experiments, including the right-handed � -helix, leucine-rich repeats,
triple � -spirals and double-barrel trimer. These folds are good examples
of what most other prediction algorithms fail to predict. Th ey all exhibit
complex structures, involve in many important biological functions but have
very few positive training data. We collect the domain knowledge about
these folds from the literature, domain experts and the online resources. We
also make some observations by examining the structures of the proteins
ourselves.

B.1 Right-handed � -helix

The right-handed parallel � -helix fold is an elongated helix-like structure
with a series of progressive stranded coilings (calledrungs), each of which
is composed of three parallel� -strands to form a triangular prism shape
(Yoder et al., 1993). The typical 3-D structure of a � -helix is shown in
Fig.B.1(A-B). As we can see, each basic structural unit, i.e. a rung, has
three � -strands of various lengths, ranging from 3 to 5 residues. The strands
are connected to each other by loops with distinctive features. One loop is a
unique two-residue turn which forms an angle of approximately 120� between
two parallel � -strands (called T-2 turn ). The other two loops vary in size
and conformation, which might contain helix or even � -sheets.

The � -helix proteins are signi�cant in that they include pectate lyases,
which are secreted by pathogens and initiate bacterial infection of plants;
the phage P22 tailspike adhesion that binds the O-antigen ofSalmonella
typhimurium; and the P.69 pertactin toxin from Bordetella p ertussis, the
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cause of Whooping Cough. Therefore it would be very interesting if we can
accurately predict other unknown � -helix structure proteins.

Currently there are 14 � -helix proteins whose structures have been deter-
mined. Those proteins belong to 9 di�erent SCOP families (Murzin et al.,
1995). Computationally, it is very di�cult to detect the � -helix fold be-
cause the membership proteins do not exhibit strong sequence identity (less
than 25%), which is the \twilight zone" for sequence-based methods, such
as PSI-BLAST or HMMs. From previous literature on � -helix, there are
two properties about the fold essential for accurate prediction: 1) the � -
strands of each rung have patterns of pleating and hydrogen bonding that
are well conserved across the superfamily; 2) the interaction of the strand
side-chains in the buried core are critical determinants ofthe fold (Yoder &
Jurnak, 1995; Kreisberg et al., 2000).

Figure B.1: 3-D structures and side-chain patterns of� -helices; (A) Side
view (B) top view of one rung (C) Segmentation of 3-D structures (D)
protein structural graph. E1 = f black edgeg and E2 = f red edgeg (Figure
(A) and (B) are adapted from (Bradley et al., 2001))

B.2 Leucine-rich Repeats

The leucine-rich repeats are solenoid-like regular arrangement of � -strand
and � -helix, connected by coils (Fig.B.2). Based on the conservation level,
we de�ne the motif for LLR as the � -strand and short loops on two sides,
resulting 14 residues in total. The length of the insertions varies from 6
to 29. There are 41 LLR proteins with known structure in PDB, covering
2 super-families and 11 families in SCOP. The LLR fold is relatively easy
to detect thanks to its sequence conservation with many leucines and short
insertions. Therefore it would be more interesting to discover new LLR
proteins less similar to the previously known ones.
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Repeat I

Repeat 2

Repeat 3

...

Figure B.2: (Left): beta helices; (Right) Leucine-rich repeats

B.3 Triple � -spirals

Van  Raaij et al. in Nature (1999)

Figure B.3: Demonstration graph of triple � -spirals. (left) 3-D structures
view. Red block: shaft region (target fold), black block: knob region. (mid-
dle) top view. (right) maps of hydrogen bonds within a chain and between
chains.

The triple � -Spiral fold is a processive homotrimer consisting of three
identical interacting protein chains. It was �rst identi�e d by Mark J. van
Raaij and collaborators in 1999 (van Raaij et al., 1999). Thefold serves as
a �brous connector from the main virus capsid to a C-terminal knob that
binds to host cell-surface receptor proteins (see Figure 8.3). Up to now there
are three crystallized structures with this fold depositedin the Protein Data
Bank (PDB) (Berman et al., 2000), one is the adenovirus protein (DNA
virus, PDB ID: 1qiu), another is reovirus (RNA virus, PDB ID: 1kke) and
the other is PRD1 (PDB ID: 1yq8). The common existence in bothDNA and
RNA viruses reveals important evolution relationships in the viral proteins,
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which also indicates that the triple beta-spirals might be a common fold in
nature.

The triple- � spiral fold has several structural characteristics that distin-
guish itself from others: it consists of three identical protein chains with
a series of repeated structural elements, which is referredas \rung" in our
later discussion (see Figure 8.3). Each of these structuralelements is com-
posed of: 1. A � -strand that runs parallel to the �ber axis 2. A long
solvent-exposed loop of variable lengths, 3. A second� -strand that forms
antiparallel � -sheets with the �rst one, and slightly skewed to the �ber axi s,
4. successive structural elements along the same chain are connected to-
gether by a tight � -turn (Scanlon, 2004; Weigele et al., 2003). Among those
four components, the two beta-strands are quite conserved in sequences and
Green et al. characterize them by labeling each position using character `a'
to `o' (Green, 1995). Speci�cally, i-o for the �rst strand an d a-h for the
second strand (see Figure 8.3).

Figure B.4: Sequence alignment logo of the �rst � -strand and second� -
strand.

It is extremely challenging to predict the triple- � spirals with only three
positive examples. Fortunately, the structural repetitiv e patterns have been
partially reected in the sequences conservation. The sequence alignment
logo is shown in Figure B.4. More careful study suggests thatwe can get
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P A F T V S N S G L T L D K A G L S I Q G A G L S F D N P P I T V E A P P L T F S L
G A I G Y D S S G L T V D T A G L S V Q N S G L Q F D S A P L A V K A P P L T F S L
G A L G F D S G G L T I D D S G L A V T E S G L Q F D N A P L S V K A P P L T F S L
S A L I M S G G G L T V D D P G M W V D Q G G L S F N D Q P V T I N A P P L T F S L

G G L T V D D P G V T V E Q G G L S F N N G P L Y I N A I P L Y T K M
P F T T T N E G G L T L Q E P G V T I N N G G L S F N N Q P V T V N A D P I A I A N
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P F I T P P F E G V D L D D D G L T F D N A G L I F D S G P L T T T A D P I V T E N
P F I T P P F N G L S L D E D G L R F D N A G H T F S S A P L T V H D S P I T L I N
G F P P P F F D G I K L N A D G L A L G G N G L R F D S A P F D V I D S P L K V I N
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P L N V V N N S G L S V N A G G L R I D S N G T L T L K D P L A I S D Y P L I K N N
P L A L Q D H G G L T A D A G G M R T S G N G S L T L K G P I T V S D Y P L I K N N
G L Q I S N N R G I R I N P G G N E T L R N G A L T L K P P F L I T D D P I Y V N N
P L Q F Q G N G G L Q L S G P G L Q M S N P P F T I T D Y P F D A Q N
G L L N V R L E G L E D E S P G L Q M S N S P L Y L D S E P L S K T D K P L A L Q N
K L S T G P G E G L E D E S P G L S H I N P P I T V E S G P L T T T D E P I Y T Q N
Q L L L G S G E G L E D E S P G L S H I N A P L V S G S A P L H V T D Y P F D A S N
K L K T G G G D G L E D E N P G L S H I N G P L F I N S A P L G L V D T P L T K S N
T L G V G R G E G L S V D H P G L S H Q N D P L T V N S A P L G L V D P P L T N S N
T L A F G G G P G L S N S E N G I K V D E K P L A L R S K P L T F D E P P L T N S N

R G L V I T N N G L E F S N T P L A V S S S P L H K I E E P L V T S N
P S L H L E E R G L V I T N T G N F V S S D P L M V S S S P L H K I E A P L D V S N
E S M Q V T E N G L Q I E Q R G L Y L F N E P L P H T S S P L H K I E P P L K K T N
E S M Q V T E P G L G T N E K G L Y L F T A P L T I T S S P L H K N E P P L Q K T N
E S M Q V T E A G L G T D E S G L N F D N E P L T N T S G P L T V S E P P L Q K T N
D S M Q V T N A G L G T N E K G L M F D A A P L S T T S E P L L E T E P P L Q K T N
Q S L D V E D S G L G L S G K G L M F S G A P L T V T S E P L L E T E A P I T K T N
S S V A A F T Q G L Q V N D K G L T F S G P P L T T A T E P L L E T E A P I T K T N
S S P G T L A S G I T V D A S G L I M S G P P L T T A T A P F D V I G P P L H L T N
S S P G T L A A G L Q N T D N G L T L T D P P L V F D T A P L Q F S G P P L Q L T N
S S P G T L A P G L R M L N K G L E F D T S P L A I E T G P F T V S G P P L Q L T N
D S G K A N T P G L G T D N D G L E F G S Y P F D A Q T G P F T V S G P P L Q L T N
E S L L D T T S G L T T D G D G L E V R D Y P F D A T T T P L V K T G P P L T Y T N

G G M R V D G S G I D Y N E K P P G V L A T P L V K T G D P I A I V N
N G A L T L K G G M R V D G H G L E F D S K P P G V L S T P L V K T G D P I A I V N
L G A I K L S R G L H V T T C G L T F N N K P P G V L S T P L T T T G G P L Q V A Q
L G A I K L S A G L A V Q D K G L A V E N K P P G V L S T P L T T T G A P L S F F Q
L G A I K L S A G L A V Q D K G L A I E N N P I E V N Q T P L T T T G
D G T G K L T A G L A V Q D A G L K F E N N P L T I S Q E P L D T S H
D G T G K L T A G L A V Q S A G L K F E N A P L S V S Q D P I T T N K
E G T G N L T Q G F Q V V A A G L K F E N T P L V V N R D P I T T N K
S G I T V T D A G L S I Q G A G L K F E N N P L T T A S P P L K K T K

A G L S I Q G Q G L E I A D S P L Y L D S Q P L K K T K

Figure B.5: Sequence alignment of the �rst � -strand grouped by the `j'
position.

even more conserved sequence alignment if we group them based on the
amino acid type on the `j' position (see Figure B.5). The identi�cation
of this pattern play an essential role in successfully predicting the triple
� -spirals. Another interesting observation about the TBS fold is that the
three component chains interwind with each other to form a rigid �ber with
a hydrophobic core. The accessibility and hydrophobic properties might be
indicative for distinguishing TBS from others.

B.4 Double-barrel Trimer

The double-barrel trimer is a potential protein fold, which has been found
to in the coat proteins from several kinds of viruses. It consist of two eight-
stranded jelly rolls, or � -barrels. As seen in Figure B.6, the component
� -strands are labeled as B, C, D, E, F, G, H and I respectively. The �rst
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Figure B.6: X-Ray Crystal Structures of Viral Double-Barre l Trimeric Major
Coat Proteins (A) P3 of bacteriophage PRD1 (394 residues; PDB code 1hx6;
Benson et al., 2002), (B) Hexon of adenovirus type 5 (Ad5; 951residues;
PDB code 1p30; Rux et al., 2003), and (C) Vp54 of Paramecium bursaria
chlorella virus 1 (PBCV-1; 436 residues; PDB code 1m3y; Nandhagopal et
al., 2002). The eight � strands and a anking � -helix are displayed for the
�rst (green) and second (blue) jelly rolls, and the individu al strands are
labeled (B1-I1 and B2-I2, respectively). Graph and captionadapted from
Benson et al, 2004.
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strand is named as B because one example of the� -barrels, the tomato bushy
stunt virus, has an extra initial strand. The folded � -barrel has two sheets,
each consisting of four� -strands, i.e. BIDG and CHEF, with hydrogen
bonds within a sheet, but not across the edges. Notice that there is no
hydrogen bonds between B and C, nor F and G, therefore it is nota true
� -barrel like the � / � motif. At its native state, multiple identical protein
chains of the double-barrel timer will come together with chemical bonds
(mostly hydrogen bonds), forming trimeric hexon protein arranged on the
planes and a penton complex at each of the twelve vertices. The rest of our
discussion are focused on the trimeric hexons.

The importance of studying the double-barrel trimer is far beyond sim-
ple veri�cation of our proposed computational model. Biologically speaking,
the fold has been found in the major coat proteins of bacteriophage PRD1,
that of human adenovirus, Paramecium bursaria chlorella virus (PBCV)
and archaeal virus STIV. This amazing phenomenon raised theunexpected
possibility that viruses infecting di�erent kinds of speci es are related by evo-
lution. It has been suggested that the occurrence of a double-barrel trimer
is common to all icosahedral dsDNA viruses with large facets, irrespective
of its host, and furthermore an indicator of common ancestorin a lineage
of viruses (Benson et al., 2004). Notice that similar observations have been
made for the triple � -spirals. If we can �nd more examples of the double-
barrel trimer in other viruses, the statement would be strengthened greatly
and bring more signi�cant impact to the biology science via computational
methods.

However, it is not straightforward, or even seemingly impossible, to
uncover the structural conservation through sequences only. There are 4
double-barrel trimer proteins altogether with resolve structures, including
adenovirus (PDB ID: 1P2Z), PRD1 (PDB ID: 1CJD), PBCV (PDB ID:
1M4X) and STIV (PDB ID: 2BBD). The sequence similarity betwe en the
positive proteins are around 7-20%, which is signi�cantly lower than other
protein folds that we have studied before. Figure B.8 shows the alignment
of those 4 proteins according to structures. After careful examination, we
�nd no obvious patterns (such as regular expression templates) to uniquely
identify the double-barrel trimer. There are several general descriptive ob-
servations we can make: (1) the lengths of the eight� -strands varies, ranging
from 4 to 16 residues, but the layout of the strands is �xed. The separation
(insertions) between the strands is fairly constant (4- 10 residues), however,
it is interesting to notice some exceptions, for example thelong insertions
between the F and G strand (20 - 202 residues), exactly where the inter-
chain interactions (chemical bonding) are located,; another long loops be-
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Figure B.7: 3-D structure of the coat protein in bacteriophage PRD1 (PDB
id: 1CJD). (left) 3-D structure of PRD1 in trimers. (right) Z oom-in view of
the inter-chain and intra-chain interactions in the FG loop . Color notation:
green: residue #133; red: residue #135; purple: residue #142; blue: residue
#335.

tween D-E strand (9 - 250 residues); the short� -turn between E and F. (2)
The chemical bonds that stabilize the trimers are located between the FG
loops. We denote the FG loop in the �rst double-barrel trimer as FG1, and
that in the second one as FG2. Figure B.7 shows the side-chainbonding in
the FG loop of PRD1 (PDB id: 1CJD). It can be seen that the there are
inter-chain interactions (chemical bonding) between someresidues in FG1 of
di�erent chains and intra-chain interactions between someresidues in FG1
and FG2 of the same chain. (3) Most often, the FG loops are buried inside
the hydrophobic core. One exception is adenovirus, in whicha long � -helix
anking outside the core.

Table B.1: Pairwise sequence similarity between the double-barrel timers

Adenovirus PRD1 PCBV-1 STIV
Adenovirus - 8.40% 8.50% 7.70%

PRD1 - - 17.00% 15.10%
PCBV-1 - - - 7.90%
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Figure B.8: Alignment of double-barrel trimer proteins based on structure annotation, including STIV (black),
Adenovirus (silver), PRD1 (red), and PBCV (blue). Each � -barrel has eight strands, labeled as B to I and
highlighted by di�erent colors respectively.



Appendix C

Feature Extraction

Conditional graphical models provide an expressive framework to capture
the structural properties of protein folds characterized by both local interac-
tions, inter-chain and intra-chain interactions. They enjoy the advantages of
the original CRF model so that any type of informative features, either over-
lapping or long-range correlations, can be used conveniently. However, the
choice of feature functionf k plays an essential role in accurate predictions.

From the perspective of graph topology, two types of features can be de-
�ned, i.e. node features, which cover the properties of an individual segment,
and pairwise features, which tries to model the chemical-bonding between
the pairs of segments that are close in three-dimensional spaces. More specif-
ically, for all the models discussed in the thesis, the node featuresf (x; i; w i )
are factorized as follows:

f (L ? ;S? ) (x ; i; w i ) = f 0
k(x ; pi ; qi )� (L ? ;S? )(w i ) = f 0

k(x ; pi ; qi )� (qi � pi ; L ?)� (si ; S?);(C.1)

where L ? 2 [lmin ; lmax ], S? 2 S and S is the set of state assignments.
The pairwise featuresg((x a; u; w a;u ); (xb; v; wb;v)) are factorized as:

g(L ?
a ;S ?

a ) ;(L ?
b ;S ?

b ) ((xa ; u; wa;u ); (xb; v; wb;v )) =

g0((xa; pa;u ; qa;u ); (xb; pb;v; qb;v)) � (qa;u � pa;u ; L ?
a)� (qb;v � pb;v; L ?

b)� (sa;u ; S?
a)� (sb;v; S?

b):

Here � is the indicator function. In this chapter, we provide a complete list
of features (f 0 and g0) used for protein structure prediction.

As described in the thesis, four di�erent types of protein folds are exam-
ined to verify the e�ectiveness of the conditional graphical models, includ-
ing right-handed � -helix, leucine-rich repeats (LLR), triple � -spirals and
double-barrel trimer. The features useful to predict theseprotein folds can

167
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be summarized as two types:common features, which can be used for all
kinds of fold recognition, and signal features, which are unique to the tar-
get fold but require domain expertise. Our experiments and studies show
that the signal features are usually the most discriminative of the target
fold and given higher weights in the learnt model. On the other hand, it
is time-consuming to get those signal features: generally it takes years for
the biologists to accumulate the required knowledge. Sometimes, the cur-
rent understanding of the target fold (e.g. the double-barrel trimer) is not
enough to summarize any reliable signal patterns, in which case the common
features could be a reasonable backup.

C.1 Common Features

The common node features we de�ned to predict all folds include:

1. Secondary structure prediction scores Secondary structures re-
veal signi�cant information on how a protein folds in three d imension.
The state-of-art prediction method can achieve an average accuracy of
76 - 78% on soluble proteins. We can get fairly good prediction on � -
helix and coils, which can help us locate many structural components.
Therefore we de�ne the feature as the averaged secondary structure
score:

f 0
avgH (x ; qi ; pi ) =

1
qi � pi + 1

qiX

t= pi

PSIpred-score(x; t; H);

f 0
avgE (x ; qi ; pi ) =

1
qi � pi + 1

qiX

t= pi

PSIpred-score(x; t; E);

and

f 0
avgC (x ; qi ; pi ) =

1
qi � pi + 1

qiX

t= pi

PSIpred-score(x; t; C);

where PSIpred-score(x; t; Y) is the probability that the t-th residue be-
longs to type Y predicted by PSIPRED (Jones, 1999).Y 2 f H, E, Cg,
which represent � -helix, � -sheet and coil respectively.

We can also de�ne the feature of maximal secondary structurescore
as

f 0
maxH (x ; qi ; pi ) =

qimax
t= pi

PSIpred-score(x; t; H);
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and minimal secondary structure score as

f 0
minH (x ; qi ; pi ) =

qi

min
t= pi

PSIpred-score(x; t; H):

Similarly, we can derive the de�nitions for f maxE , f maxC , f minE and
f minC .

2. Segment length In many cases, each state has strong preferences to
a speci�c range of the segment length, i.e. the number of residues.
Therefore we can de�ne the length feature as

f l (x ; pi ; qi ) = qi � pi + 1 :

Notice that the length information has already been modeledvia the
indicator function in eq(C.1). Here we duplicate the information only
for the sake of completeness.

3. Physicochemical properties For some motifs or folds, the physic-
ochemical patterns of member residues are unique to themselves or
play an important role in the stability of the structures. Th erefore we
de�ne the features using Kyte-Doolittle hydrophobicity score, solvent
accessibility and ionizable score1. Similar to the secondary structure
score, we also develop the averaged, maximal and minimal versions
for each type of physicochemical properties. The feature functions can
easily be derived accordingly, i.e.

f 0
avgHydro (x ; qi ; pi ) =

1
qi � pi + 1

qiX

t= pi

KD-score(x; t);

f 0
maxHydro (x ; qi ; pi ) =

qi
max
t= pi

KD-score(x; t);

f 0
minHydro (x ; qi ; pi ) =

qi

min
t= pi

KD-score(x; t):

where KD-score is the Kyte-Doolittle hydrophobicity score for the t-th
amino acid.

The pairwise features we found useful for� -sheet related motifs or folds
include:

1The score tables of these properties can be accessed at
http://www.cgl.ucsf.edu/chimera/1.2065/docs/UsersGu ide/midas/hydrophob.html,
http://prowl.rockefeller.edu/aainfo/access.htm.
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1. Side chain alignment scores For � -sheets, it is observed that the
amino acids have di�erent propensities to form a hydrogen bond de-
pending on whether the side-chains are buried and exposed (Bradley
et al., 2002). An alignment score of interacting residue pairs can be
computed accordingly. In the methods described in (Bradleyet al.,
2002), the conditional probability that a residue of type X will align
with residue Y, given their orientation relative to the core (buried or
exposed), is estimated from a� -structure database developed from the
PDB database. The feature functiong0

SAS ((xa; pa;u ; qa;u ); (xb; pb;v; qb;v))
can be de�ned as

g0
SAS ((xa; pa;u ; qa;u ); (xb; pb;v; qb;v)) =

� (qa;u � pa;u ; qb;v � pb;v) �
qa;u � pa;uX

t=0

SAS-score((xa; pa;u + t); (xb; pb;v + t)) ;

where ASA-score((xa; i ); (x b; j )) equals to Inward-score(xa;i ; xb;j ) if the
side chains of two residues are pointing inward and 0:5� Outward-score(xa;i ; xb;j )
if the side chains pointing outwards (the side-chain orientation is de-
termined beforehand via domain knowledge).

2. Parallel � -sheet alignment scores In addition to the side chain po-
sition, another aspect is the di�erent preferences of each amino acid to
form parallel and anti-parallel � -sheets. Steward & Thornton derived
the \pairwise information values" (V) for a residue of type X given the
residue Y on the pairing parallel (or anti-parallel) strand and the o�-
sets of Y from the paired residue Y' of X (Steward & Thornton, 2002).
The alignment score for two segmentsx = X 1 : : : X m and y = Y1 : : : Ym

is de�ned as

para-score(x; y) =
X

i

X

j

(V (X i jYj ; i � j ) + V (Yi jX j ; i � j )) :

Notice that this score also takes into account the e�ect of neighboring
residues on the paired strand. We de�ne the feature functionas:

g0
P AS ((xa; pa;u ; qa;u ); (xb; pb;v; qb;v)) =

� (qa;u � pa;u ; qb;v � pb;v) �
qa;u � pa;uX

t=0

para � score((xa; pa;u + t); (xb; pb;v + t)) :
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3. Distance between interacting pairs It is observed that the dis-
tance between the interacting pairs of segments can not exceed a spe-
ci�c range since otherwise the long insertions will break the structure
stabilities. To enforce such constraints, we de�ne featurefunction
g0

Dis ((x ; pu ; qu); (x ; pv ; qv)) = 1 if jpv � qu j falls in some range, and 0
otherwise.

C.2 Signal Features for � -Helix

From previous literature on the right-handed � -helix, there are two observa-
tions important for accurate prediction: 1) the � -strands of each rung have
patterns of pleating and hydrogen bonding that are well conserved across
the superfamily; 2) the interaction of the strand side-chains in the buried
core are critical determinants of the fold (Yoder & Jurnak, 1995; Kreisberg
et al., 2000). To better capture these structural properties, we extract the
following node features:

1. Regular expression template Based on the side-chain alternating
patterns in B2-T2-B3 region, BetaWrap generates a regular expression
template to detect � -helices, i.e. �X�XX	X�X, where � matches any
of the hydrophobic residues asf A, F, I, L, M, V, W, Y g, 	 matches
any amino acids except ionizable residues asf D, E, R, K g and X
matches any amino acid (Bradley et al., 2001). Following similar idea,
we de�ne the feature function f 0

RST (x ; i; w i ) equal to 1 if the segment
w i matches the template, and 0 otherwise.

2. Probabilistic HMM pro�les The regular expression template as
above is straightforward and easy to implement. However, sometimes
it is hard to make a clear distinction between a true motif and a false
alarm. Therefore we built a probabilistic motif pro�le usin g HMMER
(Durbin et al., 1998) for the s-B23 and s-B1 segments respectively. We
de�ne the feature function f 0

HMM 1(x ; i; w i ) and f 0
HMM 2(x ; i; w i ) as the

alignment scores of segmentw i against the s-B23 and s-B1 pro�les.

3. Segment length It is interesting to notice that the � -helix structure
has strong preferences for insertions within certain length ranges. Fig-
ure C.1 shows the histogram plots of the segment length for state s-T1
and s-T3 respectively. To take into consideration the di�erent pref-
erences of lengths, we did parametric density estimation, aclassical
method to model the distribution of a random variable. We explored
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Figure C.1: Histograms for the length of s-T1 (top) and s-T3 (bottom)

several common functions, including Poisson distribution, negative-
binomial distribution and asymmetric exponential distrib ution, which
consists for two exponential functions meeting at one point. From the
�gure, we can see that the asymmetric exponential model is a better
estimator than the other two. Therefore we de�ne the feature function
f 0

L 1(x ; i; w i ) = P(L T1 = qi � pi ) and f 0
L 3(x ; i; w i ) = P(L T3 = qi � pi ),

where the distribution is estimated via the asymmetric exponential
model.

C.3 Signal Features for Leucine-rich Repeats

The leucine-rich repeats are solenoid-like regular arrangement of � -strand
and � -helix, connected by coils. The LLR fold is relatively easy to detect
due to its conserved motif with many leucines in the sequenceand short
insertions. We de�ne the following node features:

1. Regular expression template The template to identify the LLR
is XXXLXXLX[LV]XXXXX, where X matches any amino acid. We
de�ne the feature function f RST (x ; i; w i ) equal to 1 if the subsequence
corresponding towi matches the template, and 0 otherwise.

2. Probabilistic HMM pro�les Similar to the � -helix, we also built a
probabilistic motif pro�le using HMMER for the � � � segment. We
de�ne the feature function f 0

HMM (x ; i; w i ) as the alignment scores of
wi against the pro�les.
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C.4 Signal Features for Triple- � Spirals

In general, the common features of quaternary fold recognition are similar
to those for tertiary folds. Some features, such as hydrophobicity and iconic
propensity, seem to get higher weights since the quaternarycomplexes usu-
ally form a hydrophobic core. It is quite hard to predict the t riple-� spiral
fold given the very limited number of positive examples. Fortunately, there
exists some identi�able sequence repeat patterns for both B1 and B2 states,
which greatly helps to boost the prediction accuracy. We usethe regu-
lar expression template and pro�le hidden Markov model to capture those
patterns:

1. Regular expression template Based on the alternating patterns of
conserved hydrophobic core and peripheral patches in the B1and B2
strands, we de�ne the following regular expression templates: X��X	XX
for B1 strand and XX�X�X	X for B2 strand, where � is the con-
served tight turn that only matches residues in f P, G, A, F, S, Lg,
� is the hydrophobic core that matches any amino acid in f L, I, M,
V, T, S, F, A g, � is the peripheral patches which matches any amino
acid except f C, E, H, P, Q, Wg, and X can match any amino acid.
We de�ne the feature function f RST (x ; i; w i ) equal to 1 if the segment
matches the template, and 0 otherwise.

2. Probabilistic HMM pro�les Sometimes the regular expression tem-
plate is not preferred since it is hard to make a clear cuto� between a
true motif and a false alarm. Therefore pro�le HMM using probabilis-
tic estimation is a better resort. Initially we used the alignments of all
the positive examples for B1 and B2 state, but fail to get reasonable
results as expected since the sequence similarity is too lowto gener-
alize a good pro�le. Later we observe that the alignments share more
similar patterns in sequence if we separate the alignments into groups
based on the type of amino acid on conserved� -turn position, that
is, position `j' in Green's labeling scheme (see Figure 8.3). Therefore
we built six HMM pro�les (one for each amino acid type at posit ion
`j') using HMMER (Durbin et al., 1998) for B1 and B2 respectively.
Then we de�ne the feature functions f HMM (x ; i; w i ) as the alignment
scores of the segment against those B1 and B2 pro�les.
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C.5 Signal Features for Double-barrel Trimer

The double-barrel trimer is a relatively new protein fold which attracts biol-
ogists' attention recently, due to their common existence in the coat proteins
of viruses infecting di�erent kinds of species. It is claimed that the layouts
of the � -barrels are quite unique to virus proteins, but there is no signi�cant
sequence conservation either in the� -strand components or the loops or
turns connecting the � -strands. The only interesting observation we made
after careful study is this short � -turns between strand E and F. It has
strong structural conservations without sequence similarities. Therefore we
de�ne � -turn features as follows:

1. � -turn scores There has been extensive research on how to reliably
predict the � -turns in the protein sequence. Up to now, the com-
monly accepted nomenclature divides the� -turns into six types, i.e.
type I, II, VIII, I', II', VIa, VIb, and IV, as de�ned by Hutchi nson
and Thornton (Hutchinson & Thornton, 1994). In (Fuchs & Alix ,
2005), the propensity scores of di�erent amino acids in those six type
of � -turns are calculated. In particular, the experiments showthat a
weighted propensity score using the PSI-BLAST pro�le performs much
better than using the amino acid type that only appear in the protein
sequences. Therefore we de�ne the feature functionf � � turn (x ; i; w i )
as the maximal (and minimal) score of the� -turn propensity of each
type over the subsequencedi to di +1 .

2. Maximal alignment scores The pairwise features of� -sheet align-
ment scores are de�ned similarly as described above except that the
lengths of the � -strand pair is not necessarily the same. This causes a
problem when we try to compute the alignment score since we donot
know which pairs of residues interact with each other. To solve the
problem, we compute all possible alignments by shifting thestarting
position of the longer segment and use the highest alignmentscores as
the features:

g0
MAS ((xa; pa;u ; qa;u ); (xb; pb;v; qb;v)) =

pb;v + qa;u � pa;u
max

t0= pb;v

qa;u � pa;uX

t=0

SAS-score((xa; pa;u + t); (xb; t0+ t)) ;

3. Pointwise alignment scores Another challenges in predicting the
double-barrel trimer is the incomplete understanding of the inter-chain
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interactions. It is suggested that the interactions happenwithin the
FG-loop of the two � -barrels, but the speci�c location as well as the
type of chemical bonding remains unclear. Following the idea of nat-
ural selection of hydrogen bonds, we compute all the possible pairs of
side-chain interactions, and use the highest score as features.

g0
P T AS ((xa; pa;u ; qa;u ); (xb; pb;v; qb;v)) =

pb;v
max

t0= pb;v

qa;u
max

t= pa;u
SAS-score((xa; t); (xb; t0)) ;

In other words, we try to capture the possibility of forming hydrogen
bonds between the current pairs of segments.

It is interesting to notice that most of the features de�ned above are quite
general, not limited to predicting the four protein folds only. For example,
an important aspect to discriminate a speci�c protein fold with others is to
build HMM pro�les or identify regular expression templates for conserved
regions if they exist; the secondary structure assignmentsare essential in
locating the elements within a protein fold; if some segments have strong
preferences for certain length range, then the lengths are also informative.
For pairwise features, the � -sheet alignment scores are useful for folds in
� -family while hydrophobicity is important for � - or �� -family.
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