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Abstract

Protein structures play key roles in determining protein functions, activ-
ities, stability and subcellular localization. However, it is extremely time-
consuming and expensive to determine experimentally the stictures for mil-
lions of proteins using current techniques. For instance,timay take months
to crystalize a single protein. In this thesis, we design comutational meth-
ods to predict protein structures from their sequencesn silico. In particular,
we focus on predicting structural topology (as opposed to seci ¢ coordi-
nates of each atom) at di erent levels in the protein structure hierarchy.
Speci cally, given a protein sequence, our goal is to predicits secondary
structure elements, how they arrange themselves in threeithensional space,
and how multiple chains associate with each other to form onestable struc-
ture. In other words, we strive to predict secondary, tertiary and quaternary
protein structures from primary sequences and biophysicatonstraints.

In structural biology, traditional approaches for protein structure predic-
tion are based on sequence similarities. They use string meting algorithms
or generate probabilistic pro le scores to nd the most similar sequences in
the protein database. These methods works well for simple stictures with
strongly conserved sequences, but fail when the structureare complex with
many long-range interactions such as hydrogen and disul debonds among
amino acids distant in sequence order. Moreover, evolutioroften preserves
structures without preserving sequences. Hence structurprediction cannot
rely just on sequence homology. These cases necessitate areexpressive
model to capture the structural properties of proteins, and therefore devel-
oping a family of such predictive models is the core of this disertation.

A new type of undirected graphical models are built based orprotein
structure graphs whose nodes represent the state of either residues or
secondary structure element and whose edges represent inéetions (e.g.
bonds) either between adjacent nodes in the sequence order tong-range
interactions among nodes in the primary sequence that fold hck to estab-
lish proximity in 3D space. A discriminative learning approach is de ned
over these graphs, where the conditional probability of thestates given the
observed sequences is de ned directly as exponential funicihs on local and
topological features, without any assumptions regarding he data generation
process. Thus our framework is able to capture the structur&properties of
proteins directly, including any overlapping or long-range interaction fea-
tures. Within this framework, we develop conditional random elds and

a



kernel conditional random elds for protein secondary structure prediction;

we extend these to create segmentation conditional randomelds and chain
graph model for tertiary fold recognition, and linked segmaentation condi-

tional random elds for quaternary fold prediction. These extensions are
new contributions to machine learning, which enable directmodeling of long-
distance interactions and enable scaling-up of conditionarandom elds to

much larger complex structural prediction tasks.

With respect to computational biology, we contribute a novel and com-
prehensive paradigm for modeling and predicting secondarnsuper-secondary,
tertiary and quaternary protein structures, surpassing the state of the art
both in expressive power and predictive accuracy, as demoirated in our
suite of experiments. Moreover, we predict a large number opreviously-
unresolved beta-helical structures from the Swissprot daa base, three of
which have been subsequently con rmed via X-ray crystallogaphy, and none
have been discon rmed. We hope that this work may shed light m the fun-
damental processes in protein structure modeling and may eable better
processes for synthetic large-molecule drug design.
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Chapter 1

Introduction

Proteins are a chain of amino acids that fold into three-dimensional struc-
tures, making up a large portion of all living organisms and performing most
of the important functions, such as catalysis of biochemichreactions, recep-
tors for hormones and other signaling molecules, and form&in of tissues
and muscular ber. It is widely believed that protein struct ures reveal im-
portant information about their functions. However, it is e xtremely time-
and labor-consuming to determine the structures of a proten via labora-
tory experiments. For instance, it may take months of conceted e orts
to crystalize a single protein in order to enable x-ray diraction methods
that determine its 3D structure. Since the amino-acid sequace of a pro-
tein ultimately determines its three-dimensional structures, it is essential to
design e ective computational methods to predict the structures from the
sequences, which is the main task of the thesis.

In order to better characterize the structural properties of proteins, bi-
ologists de ne a structure hierarchy of four levels: theprimary structure is
simply the linear chain or sequence of amino acids that make u the pro-
tein; the secondary structure is the local conformation of amino acids into
regular structures { there are three types of major seconday structures,
known as -helices, -sheets and coils or loops; thdertiary structure is the
global three-dimensional structure of an entire protein ora domain within
a protein; and sometimes, multiple protein chains unite together via hydro-
gen bonds resulting inquaternary structures. There are several challenging
subtasks in protein structure prediction, some of which hae been studied
intensively for decades (Venclovas et al., 2003; Bourne & Wssig, 2003).
In this thesis, we focus on predicting structural topology & all levels in
the protein structure hierarchy. In other words, given a protein primary

16
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sequence, we aim at predicting what the secondary structurelements are,
how they arrange themselves in three-dimensional space, drhow multiple

chains associate with each other to form stable structures.Protein struc-

tural motifs (sometimes referred to as protein folds) are iagknti able spatial

arrangements of secondary structures, which correspond ta domain within

a protein or the entire protein tertiary structure. Althoug h there are mil-
lions of distinct proteins, biologists hypothesize that there are only about a
thousand topologically distinct folds, and many folds haveone or more pro-
teins with known structural and functional properties. Hence, topological
fold prediction is a powerful tool in inferring the structur e and function of
other proteins with shared folds.

The traditional approaches for protein structure prediction are based
on sequence similarities. They use string matching algorims (e.g. PSI-
BLAST (Altschul et al., 1997)) or generate probabilistic pro les (e.g. pro-
le hidden Markov model (Durbin et al., 1998; Krogh et al., 1994; Karplus
et al., 1998)) to nd the most similar sequences in the proten database.
These methods work well for simple structures with strong sguence con-
servation, but fail when the protein structures are complexor the sequence
conservation is poor due to long-term evolutionary divergece. Therefore,
several sophisticated probabilistic models have been delmned: Delcheret al
introduce probabilistic causal networks for protein secomlary structure mod-
eling (Delcher et al., 1993); Schmidleet al propose a Bayesian segmentation
model for protein secondary structure prediction (Schmidkr et al., 2000);
Yanover and Weiss apply an undirected graphical model to sid-chain pre-
diction using various approximate inference algorithms (Yanover & Weiss,
2002); Chu et al extend segmental semi-Markov model under the Bayesian
framework to predict secondary structures (Chu et al., 2003. These models
achieve partial success; however, they are still far from fily capturing the
structural properties of proteins.

From a computational perspective, the task of protein strudure predic-
tion is an instance of a more general machine learning probia, known as the
segmentation and labeling for structured data Namely, the goal is to predict
a label or a sequence of labels given a set of observations tvitorrespond-
ing to inherent structures. For example, predicting whethe a web page is
the homepage of a student or that of a faculty given the web cotent and
hyperlinks that connect each other, segmenting the contouiof a house given
the pixel grid of an image and so on. Conditional graphical malels de ned
over undirected graphs, such as conditional random elds (QRFs) (La erty
et al., 2001) and maximum-margin Markov networks (Taskar et al., 2003),
prove to be the most e ective tools to solve this type of problem (Kumar
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& Hebert, 2003; Pinto et al., 2003; Sha & Pereira, 2003). Theefore we

follow and extend the graphical model approaches and deveioa series of
new models for protein structure prediction. These models an be seen as
a signi cant extension of CRF by joint modeling the constraints between

the structural components. The key questions we address arehow can we

represent the structural (primarily topological) propert ies of proteins using
graphical models? Given the foreseeable complexity of suamodels for en-

tire proteins (hundreds or thousands of amino acids), how ca we learn the

parameters of the model and make inferences e ciently?

1.1 Summary of Thesis Work

In this thesis, we develop a series of conditional graphicaimodels for pro-
tein structure prediction. Speci cally, we de ne a special type of undirected
graph, namely protein structure graph, whose nodes represent the topologi-
cal structural elements (either individual residues or a seondary structure
elements) and whose edges indicate either local or long rargnteractions
(chemical bonding). The conditional probability of the labels given the
observed sequences are de ned directly as exponential futions of all the
features (local properties, long-distance interaction, lio-physical constraints,
etc.). In this way, our models are able to capture the short am long-range
interactions that matter in a direct manner.
Within the framework, we develop the following models:

Conditional random elds for protein secondary structure prediction
and -sheet identi cation: we explore several combination strdaegies
to re ne the scores from multiple prediction algorithms by considering
structural properties. We achieve encouraging improvemencompared
with the state-of-art algorithms in this very-well-studie d subproblem,
with prediction accuracy improvements of 6-8% for the -sheet pre-
diction over the previous state of the art.

Kernel conditional random elds for protein secondary structure pre-
diction: we introduce the notion of kernels in CRF so that reaent
advances in classi cation theory and practice can be used ah ex-
tended to structure prediction problems. We achieve an impovement
of 30-50% in secondary-strucutre topological transition acuracy.

Segmentation conditional random elds (SCRFs) for tertiary motif
recognition and alignment prediction: since the structurd components
of a tertiary motif are the secondary structures (sequence®f amino
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acids that conform to one of the secondary structure elemers, instead
of individual amino acids), we extend the CRF model to a new smi-
Markov version. In other words, the new model assigns a labelo a
subsequence of amino acids rather than an individual one. As re-
sult, it can capture the structural constraints or associations on the
secondary structure level and have the convenience to incporate any
relevant features at this level. We apply the model to predid¢ pro-
tein folds, such as the right-handed -helix fold, an important motif

in bacterial infection of plants and binding of antigens, ard achieve
signi cantly better results than the state-of-art methods . We also hy-
pothesize new examples of the -helix proteins, three of which have
been con rmed by recent biological experiments, and none ofvhich
have been refuted.

Chain graph model for predicting tertiary motifs with structural re-
peats: based on the repetitive patterns of the target motifs we de-
compose the complex graphs from SCRFs into subgraphs, and &m
connect them using directed edges via the chain graph frameavk.
This model can be seen as a trade-o between globally optimamod-
eling and a locally optimal one. It helps to reduce the compuational
cost, while achieving a close approximation to the global opmal solu-
tions. Our experiments on the -helix motif and leucine-rich repeats
demonstrate that the chain graph model performs similarly & SCRFs
in prediction accuracy while the running time has been redued by a
factor of 50.

Linked segmentation conditional random elds for quaternary motif
recognition and alignment prediction: we extend SCRFs to jontly
model the chemical bonding between multiple sequences in der to
capture both within-sequence and cross-sequence interaots in qua-
ternary topological structures. Quaternary structure prediction has
been too challenging for earlier approaches. Therefore oumpproach
extends the state of the art to enable us to address this mucharger
predictive problem. However, since the complexity involvel with qua-
ternary structures is much greater than that with tertiary s tructures,
we derive a reversible jump MCMC sampling algorithm for e ci ent
inference in the resulting complex graphs. The experiment esults
on triple -spirals and double-barrel trimer motif demonstrate the ef
fectiveness of our model. Ours is the rst computational mehod to
successfully predict these two complex quaternary structuoes.
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1.2 Thesis Statement

We hypothesize that conditional graphical models are e ective for protein
structure prediction. Speci cally, they can provide an expressive framework
to represent the structural patterns in protein structures and enable the use
of local, long-range and background-knowledge informatig features. With
our new extensions and model parameter estimation methodsthese new
graphical models are able to solve the long-range interaatin problem in
the task of topological structural motif recognition, given basic biophysical
constraints and a limited number of structurally-resolved training examples,
despite lack of sequence homology among the proteins that ofiorm to target
structural motifs.

Based on the thesis work, we conclude that the statement holgl in gen-
eral. Speci cally, we make three strong claims and two weakeones:
Strong claims:

1. Conditional graphical models with our extensions have tke represen-
tational power to capture structural properties for accurate protein
structure prediction

2. Conditional graphical models provide the ability to incorporate any
types of informative features for better protein structure prediction,
including overlapping features, segment-level featuressawell as long-
range interaction features.

3. Although the complexity of conditional graphical models grows expo-
nentially with the e ective tree-width of the induced graph s, model
estimation can be reduced to a polynomial complexity with agoroxi-
mate inference algorithms (such as reverse-jump MCMC) or vih the
chain graph model.

Weaker claims:

1. Conditional graphical models are able to solve the longange interac-
tion problem in protein motif recognition (either tertiary or quater-
nary), if the following priors are answered by domain expers: What
are the possible structural components? How are they arraned in
three-dimensional space? Without such information, the malels only
have limited power to capture the long-range interactions.

2. To our best knowledge, conditional graphical models arelie most ex-
pressive and accuratemodels currently available for protein structure
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prediction. They also have the ability to explore alternative feature
spaces via kernels. However, the nal prediction accuracys bounded
by the availability of training data and general topological knowledge
about protein structures.

1.3 Thesis Outline

In this thesis, our primary goal is to seek e ective computational tools for
protein structure prediction. In addition, we target the de sign and valida-
tion of novel models to best capture the properties of protem structures,
rather than a naive application of existing algorithms, so that we contribute
both algorithmically and biologically. Therefore, we organize the rest of the
thesis as follows:

In Chapter 2, we give an introduction to protein structures and explain the
relevant terminology in computational biology. Next, we provide a brief
overview of some basic concepts in machine learning;

In Chapter 3, we survey the state of the art pertaining to structured pre-
diction, including variants of the CRF model, its extensions, and its appli-
cations;

In Chapter 4, we de ne a general framework for conditional gaphical mod-
els. It can be seen as a generalized model for all the algoritns we develop
in the thesis. We discuss the novelty of the framework and comment on its
relationship with other models.

In Chapter 5, we discuss possible solutions to e cient learring and infer-
ence for conditional graphical models including our extendd and scaled-up
versions.

In Chapter 6, we describe our methods for protein secondarytsucture pre-
diction, and results obtained therefrom, including: (1) a comparison study
of score combination using CRFs; (2) specialized -sheet prediction algo-
rithm using CRFs; (3) the kernel CRF model to explore alternative feature
spaces via kernels.

In Chapter 7, we describe in detail our new structure predicion method:
segmentation conditional random elds and their application in tertiary mo-

tif recognition and alignment prediction. Next, we discusshow to use chain
graph model to decompose complex graphs into subunits and deice com-
putational cost.
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In Chapter 8, we derive the new linked segmentation conditimal random
elds for quaternary motif recognition and present results from the rst
general purpose prediction method for quaternary structues.

In Chapter 9, we summarize the thesis work, state its major catributions
and limitations, and nally hint at future directions.

1.4 Related Publications

Part of the thesis work have been published in major confereces of compu-
tational biology and machine learning. Below is an incomplée list:

Related publications of Chapter 6 include:

Yan Liu, Jaime Carbonell, Judith Klein-Seetharaman, Vanathi Gopalakr-
ishnan. Comparison of Probabilistic Combination Methods for Protén
Secondary Structure Prediction. Bioinformatics. 2004 Nov 22;20(17):3099-
107.

Yan Liu, Jaime Carbonell, Judith Klein-Seetharaman, Vanathi Gopalakr-
ishnan. Prediction of Parallel and Antiparallel -sheets using Con-

ditional Random Fields. Biological Language Conference (BLC'03),

2003.

John Laerty, Xiaojin Zhu, Yan Liu. Kernel Conditional Random
Fields: Representation and Clique Selection.The Twenty-First Inter-
national Conference on Machine Learning (ICML'04), 2004.

Related publications of Chapter 7 include:

Yan Liu, Jaime Carbonell, Peter Weigele, Vanathi GopalakrishnanProtein
Fold Recognition Using Segmentation Conditional Random Félds (SCRFs).
In Journal of Computational Biology.

Yan Liu, Eric Xing, Jaime Carbonell. Predicting Protein Folds with
Structural Repeats Using a Chain Graph Model.In international con-
ference on Machine Learning (ICMLO5), 2005.

Yan Liu, Jaime Carbonell, Peter Weigele, Vanathi Gopalakrishnan.
Segmentation Conditional Random Fields (SCRFs): A New Appoach
for Protein Fold Recognition. ACM International conference on Re-
search in Computational Molecular Biology (RECOMBO05), 2006.
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Related publications of Chapter 8 include:

Yan Liu, Jaime Carbonell, Vanathi Gopalakrishnan. Linked Segmen-
tation Conditional Random Fields for Protein Quaternary Fold Recog-
nition. To appear in International Joint Conferences on Arti cial | n-
telligence (IJCAI), 2007.



Chapter 2

Background

Most of the essential structures and functions of the cells ge realized by pro-
teins, which are chains of amino acids with stable three-dirensional struc-
tures. A fundamental principle in all of the protein science is that protein
functions are determined by their structures. However, it is extremely di -
cult to experimentally solve the structures of the proteins. Therefore how to
predict the protein structures from sequences using computional methods
remains one of the most fundamental problems in structural oinformatics
and has been extensive studied for decades (Venclovas et,a2003; Bourne
& Weissig, 2003).

2.1 Introduction to Protein Structures

Before digging into the details of prediction algorithms, we start with intro-
ducing the common understanding of protein structures up tonow and the
knowledge databases built by the structure biologists overdecades.

2.1.1 Protein Structures
In this section, we review the hierarchy de nition of protein structures, do-

mains and motifs, as well as the common classi cation for preein structures.

Protein structure hierarchy Proteins are linear polymers of amino acids.
Amino acids are small molecules that contain an amino group (NH), a car-
boxyl group (COOH), a hydrogen atom (H) and a side chain (R-gmoup)
attached to a central alpha carbon C ) (Fig. 2.1). It is the side chain that

24
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Figure 2.1: Protein structures hierarchy
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distinguishes one amino acid from another, resulting in 20 ypes of stan-
dard amino acids altogether. During a protein folding process, amino acids
are connected by the chemical bonds through a reaction of thierespective
carboxyl and amino groups. These bonds are callegeptide bondsand the
amino acids linked by the peptide bonds are calledoeptides or residues .
The linear sequence of a protein is also referred to as ifgrimary structures.

The secondary structure of a protein can be thought of as the local con-
formation of the polypeptide chain, or intuitively as build ing blocks for its
three-dimensional structures. There are two types of secatary structures
dominant in this local conformation: -helix, a rod-shape peptide chain
coiled to form a helix structure, and -sheets two peptide strands aligned
in the same direction (parallel -sheet) or opposite direction (antiparallel

-sheet) and stabled by hydrogen bonds (Fig. 2.1). These twotrictures
exhibit a high degree of regularity and they are connected bythe rest irreg-
ular regions, referred to ascoil or loop.

The tertiary structure of a protein is often de ned as the global three-
dimensional structures and usually represented as a set otB coordinates for
each atoms. It is widely believed that the side-chain interations ultimately
determine how the secondary structures are combined to progace the nal
structure. An important property of the protein folding pro cess is that
protein sequences have been selected by the evolutionary gress to achieve
a reproducible and stable structure.

The quaternary structure is the stable association of multiple polypeptide
chains resulting in an active unit. Not all proteins can exhibit quaternary
structures. However, it is found that the quaternary struct ures are stabilized
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mainly by the same noncovalent interactions as tertiary struuctures, such as
hydrogen bonding, van der Walls interactions and ionic bondng. In rare

instances, disul de bonds between cysteine residues in derent polypeptide

chains are also involved.

Domains, motifs and folds Domains are subsections of a protein that
represent structurally independent regions, i.e. a domairwould maintain its
characteristic structure even if separated from the overdl protein. In addi-
tion, every domain often performs a separate function from thers. There-
fore most protein structure prediction methods are focusedon domains.

In biology, people have used the word "motif" in a humber of aras
with di erent meanings. In structural biology, motifs, or super-secondary
structures, refer to the unit made up of only a few secondary suctural
elements and appear repeatedly in di erent protein domains

Protein folds are identi able arrangement of secondary stucture ele-
ments, which appear repeatedly in di erent protein domains. The di erence
between motif and fold are subtle. Usually the motifs are sha while the
folds usually refer to the structure topology of the whole danains.

Protein structure classi cation Various ways have been proposed to
classify the protein structures. One popular classi cation is achieved by
considering the biochemical properties of the proteins. Inthis classi ca-
tion, proteins are grouped into three major groups: globula, membrane
and brous. Globular proteins fold as a compact structure with hydropho-
bic cores and polar surfaces. Most proteins with known strutures belong to
this group since they are easier to crystalize due to the cheioal properties.
Membrane proteins exist in the cell membranes surrounded by a hydropho-
bic environment. Therefore they must retain a hydrophobic surface to be
stable. Interestingly, recent research work suggests thatnembrane proteins
share the same secondary structural elements and follow theame general
folding principles as globular proteins despite their di erent properties. Fi-
brous proteins are often characterized by a number of repetitive amino acid
sequences . Some of them consist of a single type of regulaceedary struc-
tures while others are composed of repetitive atypical secwary structures.
Membrane proteins and brous proteins are also referred to a non-globular
proteins.

Another way to classify the protein structures are based on heir pre-
dominant secondary structural elements, which results in dur main groups:
all ,all , = (amixture of helixand sheetinterwoven by each other)
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and + (discrete helix and -sheet that are not interwoven). This
kind of classi cation has be well studied in SCOP and CATH databases as
described in the next section.

2.1.2 Databases of Protein Structures

The PDB (Protein Data Bank) was established in Brookhaven Naional
Laboratories in 1971 as an archive for biological macromotlar crystal
structures of proteins and nucleic acids (Berman et al., 200). Until now, it

is the single worldwide repository for the processing and ditribution of ex-
perimentally solved 3-D structure data (40354 structures ekposited by Nov,
2006).

The UniProt (Universal Protein Resource) is the world's mog comprehen-
sive catalog of information on proteins (3,656,820 entriesn Release 9.2
by Nov, 2006) (Leinonen et al., 2004). It is a central reposibry of pro-

tein sequences and their functions created by combining thenformation

from Swiss-Prot (databases of existing protein sequencesithi 243,975 en-
tries), TTEMBL (databases of proteins translated from EMBL nucleotide
sequence with 3,412,835 entries), and PIR (functional anrtation of protein

sequences).

The SCOP (Structural Classi cation of Proteins) database aims to provide
a detailed and comprehensive description of the structurabnd evolutionary
relationships between all protein structures bymanually labeling (25973 en-
tries by Jul, 2005) (Murzin et al., 1995). There are many levés de ned in
the classi cation hierarchy. The principal levels are fold for proteins with
major structural similarity, superfamily for proteins with probable common
evolutionary origin and family for proteins with clear evolutionary relation-
ship (there are 945 folds, 1539 superfamilies and 2845 faneis by Jul, 2005).

The CATH database is a semi-automatic hierarchical domain classi cation
of protein structures in PDB, whose crystal structures are ®lved to resolu-
tion better than 3.0 A together with NMR structures (Orengo et al., 1997).
There are four major levels in this hierarchy; class (by the scondary struc-
ture composition and packing), architecture (by the orientations of the sec-
ondary structures), topology (by connectivity of the secordary structures)
and homologous superfamily (by sharing common ancestors).



CHAPTER 2. BACKGROUND 28

2.2 Lab Experiments for Determining Protein Struc-
tures

There are di erent techniques to experimentally determinethe protein struc-

tures, such as X-ray crystallography, Nuclear Magnetic Resnance, circular
dichroism and Cryo-electron microscopy. However, most of hese methods
are time-consuming and labor-expensive.

In the Protein Data Bank, around 90% of the protein structures have
been determined byX-ray crystallography. It makes use of the di raction
pattern of X-rays that are shot through a crystallized object. The di raction
is the result of an interaction with the high energy X-rays and the electrons
in the atom. The pattern is determined by the electron density within the
crystal. The major bottleneck for X-ray crystallography is the growth of
protein crystals up to 1 mm in size from a highly puri ed protein source.
This process usually takes months to years, and there existso rules about
the optimal conditions for a protein solution to result in a good protein crys-
tal. X-ray structures are high resolution structures enabiing the distinction
of two points in space as close as&apart.

Roughly 9% of the known protein structures have been obtaind by Nu-
clear Magnetic ResonanceNMR) techniques. NMR measures the distances
between atomic nuclei, rather than the electron density in amolecule. With
NMR, a strong high frequency magnetic eld stimulates atomic nuclei of the
isotopes H-1, D-2, C-13, or N-15 (they have a magnetic spin)rad measures
the frequency of the magnetic eld of the atomic nuclei during its oscilla-
tion period back to the initial state. In contrast to protein crystals required
for X-ray di raction, NMR makes use of protein solutions all owing for the
determination of structures at very short time ranges. Congquently those
exible loop and domain structures could be solved successfly.

The proportion of the secondary structures can be determind via other
biochemical techniques such asircular dichroism (CD), which is the di er-
ential absorption of left- and right-handed circularly polarized light. Cryo-
electron microscopy (Cryo-EM) has recently become a means of determining
protein structures to low resolution (less than 5A) and is anticipated to in-
crease in power as a tool for high resolution work in the next écade. Unitil
then, this technique remains a valuable resource for studyig very large
protein complexes such as virus coat proteins and amyloid lers.
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2.3 Prole Analysis of Protein Sequences

Pro le analysis has long been a useful tool in nding and alignhing distantly

related sequences and in identifying known sequence domann new se-
qguences. A pro le is the description of the consensus of a mtiple sequence
alignment. It uses a position-speci ¢ scoring matrix (PSSM) to capture

information about the degree of conservation at various poiions in the

multiple alignment. Two most commonly used pro le methods are PSI-
BLAST (Altschul et al., 1997) and pro le hidden-Markov mode | (Durbin

et al., 1998).

PSI-BLAST BLAST is a program to nd high scoring local alignments
between a query sequence and a target database (Altschul el.a1990). In
PSI-BLAST, a pro le is constructed automatically from a mul tiple align-
ment of the highest scoring hits in an initial BLAST search. Then the
pro le, instead of the query sequence, is used to perform artber round
BLAST search and the results of each iteration are used to rene the pro-
le. In this way, PSI-BLAST improves the sensitivity of the s earching and
therefore is e ective at detecting sequence hits with weak bmology. On the
other hand, one or two noisy sequences misplaced in early itations might
lead to a pro le diverged far from the query sequence.

Pro le hidden-Markov model Pro le hidden-Markov model is a Markov
chain model with position speci c parameterizations of emssion probabil-
ities (Durbin et al., 1998). Specically, a prole HMM has th ree states:
\match", \delete" and \insert", in which the \match" state e mits amino
acids with probability according to the prole, the \insert " state emits
amino acids with probability according to a background distribution, and

the \delete" state is a non-emitting state corresponding to a gap in the pro-
le (see Fig. 2.2). Compared with PSI-BLAST, pro le HMMs hav e a formal
probabilistic foundation behind the gap and insertion scoes. More impor-
tantly, it solves the problem of position independent assunptions from PSI-
BLAST by explicitly considering the transition probabilit ies in the model.

2.4 Previous Work on Protein Structure Predic-
tion

The prediction of three-dimensional structures of a proten from its primary
sequence is a fundamental and well-studied area in structal bioinformatics.
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Figure 2.2: Prole hidden-Markov model: there are no transition from
\delete" state to \insert" state. The \Begin" (B) and \end" s tates (E)
are non-emitting states (Graph adapted from (Durbin et al., 1998))

Three main directions have been pursued to nd better predidcion methods
for protein structures, including ab initio prediction, ho molog modeling and
fold recognition (Bourne & Weissig, 2003).

2.4.1 Ab Initio Methods

Ab initio structure prediction seeks to predict the native conformaion of
a protein from the amino acid sequence alone. The area is basen the
beliefs that the native folding con guration of most protei ns correspond
to the lowest free energy of the sequence. Therefore the biggt chal-
lenge with regards to ab initio prediction is how to devise a fee energy
function that can distinguish native structures from incorrect non-native
ones, as well as a search method to explore the huge conforntatal space.
Rosetta is one of the most successful ab initio systems in recent year
(http://robetta.bakerlab.org/). Itis built upon accumul ated domain knowl-
edge of non-homologous sequences and their solved threenginsional struc-
tures and then applies simulated annealing to create protei tertiary struc-
tures. However, the overall prediction accuracy using ab iftio methods is
still very low and a reliable free energy function is still under debate.

2.4.2 Fold Recognition (Threading)

Despite a good qualitative understanding of the physical foces in the fold-
ing process, present knowledge is not enough for direct préction of protein
structures from the rst principle as in ab initio methods. A n easier ques-
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tion is: which of the known folds in the databases are likely b be similar
to the fold of a new protein given its primary sequence only. The problem
stems from the fact that very often apparently unrelated proteins adopt
similar folds. Therefore the main task in fold recognition is how to identify
possible structural similarities even in the absence of sampnce similarity.

In general, threading works by computing a scoring function(usually based
on free energy) that assesses the t of a sequence against avgh fold with

the consideration of a pairwise atom contact and solvation erms. Since
this is a combinatorial problem, the solutions can be extrenely elaborate
computationally, such as those involving double dynamic ppgramming, dy-
namic programming with frozen approximation, Gibbs sampling, branch
and bound heuristics, or as \simple" as a sequence alignmennethod such
as pro le hidden Markov models. The performance of fold recgnition has
been improved over years. However, in many cases the alignmeof the

guery sequence to the structures are incorrect even when thiold has been
corrected identi ed.

2.4.3 Homology Modeling

Homology modeling aims to predict the protein structures by exploiting the

fact that evolutionarily related proteins with sequence similarity, as mea-

sured by the percentage of identical residues at each posiin based on an
optimal structural superposition, share similar structures. This approach
can be applied to any proteins that have more than 25-50% sednce identity

to the proteins with known structures in the PDB. In practice , the homol-

ogy modeling is a multi-step process that can be summarizechiseven steps:
template recognition and initial alignment, alignment correction, backbone
generation, loop modeling, side-chain modeling, model ojhization and

model evaluation. At high sequence identities (60-95%), 9% of the com-
parative models can achieve an RMSD of less than & in regard to the

experimentally determined structures. However, it is unrdiable in predict-

ing the conformations of insertions or deletions (the portons of the query
sequence that do not align with the sequence of the template)as well as
the details of side-chain positions.

2.5 Background of Machine Learning

Graphical models and discriminative models are the two majo machine
learning concepts related to the thesis work. Here we give arkef review of
these two approaches.
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(A) HMM (B)MRF (C)Example

Figure 2.3: (A) graphical model representation of hidden Makov model; (B)
graphical model representation of Markov random elds; (C) an example of
undirected graph: (V1;V2;V3) and (V3; V4) are maximal cliques

2.5.1 Graphical Models

Graphical models are a natural tool to deal with conditional probability

distributions using graph theory. The nodes in the graph repesent random
variables (either observed or hidden), and the absence of as indicate con-
ditional independence between random variables. The graghal model not
only gives a compact representation of the joint probability distributions, but

also provides inferential machinery for answering questins about probabil-
ity distribution. The graph can be either directed, also known as Bayesian
Networks or Belief Networks (BNs) or undirected, also callel Markov Ran-
dom Fields (MRFs) or Markov networks.

Directed graphical model A directed graph is a pair G = hV; Ei, where
V = fVigis a set of nodes ancE = f(V;;Vj) : i 6 jg a set of edges with
directions. We assumeG is acyclic. LetV; also refers to the random variable
that the node V, represents. Each node/; has a set of parent nodepa(V,).

Since the structure of the graph de nes the conditional indggendence rela-
tionship between random variables, the joint probability over all variables
V can be calculated as the product of the conditional probabiky of each

variable conditioned on its parents, i.e.

Y
P(V) = P(Vijpa(\Vi)): (2.1)
Vi2Vv

Hidden Markov models (HMMs) are one of the most popular direted
graphical models for sequential data. Given an observablaput X = X1X2::: XN,
we want infer the state assignment (hidden) for each positiay = y1y2:::yN.
HMMs assume the rst-order Markov assumption, i.e. the value of yj+; is
independent ofy; ; give the value ofy;. It also assumes the observatiorx;
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is independent of other states given the value ofy;. The graphical model
representation of HMMs is shown in Fig.2.3 (A), and we can eag write out
the joint probability as follows:

N
P(x,y)=  PXijy)P(yilyi 1) (2.2)
i=1

Undirected graphical model An undirected graphical model can also
be represented byG = hV; Ei, except that the edges inE are undirected.
As in the case of directed graphs, it is also desirable to obia a \local"
parametrization for undirected graphical models. A potential function
is any positive real-valued function associated with the pasible realization
Ve of the maximal clique ¢, where a maximal clique of a graph is a fully-
connected subset of nodes that cannot be further extended ¢f example
see Fig.2.3 (C)). It can be shown that the joint probability of the variables
represented in the graph can be de ned as the normalized proakct of the
potential functions over all the maximal cliques in G, i.e.
1Y
P(V)= 7 c(Ve); (2.3)
c2Cg

R Q

whereZ = |, " oo, c(Vc) is the normalization factor.

Markov random eld (MRF) in a chain is an undirected graphical model
widely used for sequential data. Given the graph represention of MRF
in Fig.2.2 (B), the joint probability of the data x and the labelsy can be
de ned as

1 W
P(x,y)= 7 (isyi 1) (Xi;vi); (2.4)
i=1
By Hammersley-Cli ord theorem, the potential function can be modeled as
an exponential function of the features de ned over the cliques (Hammersley
& Cliord, 1971), i.e.

W X1 Xz
exp( f(yisyi 1))exp(  f(Xiiyi)); (2.5)
i=1 k=1 k=1

PO Y)= 5

whereK 1 and K, are the number of features over the state-state cliques and
state-observation cliques respectively.
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Inference Algorithm Given a speci ¢ graphical model, the main task
is to estimate the values of hidden (unobserved) node¥ given the values
of the observed nodesX, i.e. P(YjX). There are two major approaches
to compute the target probabilities (marginal or conditional) in graphical
models, including exact inference and approximate inferece.

The elimination algorithm is the basic method for exact inference. The
main idea is to e ciently marginalize out all the irrelevant variables using
factored representation of the joint probability distribu tion. Consider the
graph in Fig.2.2 (C), the probability P(v4) can be computed by

=
X
X
x

P (Va) (v1;V2;v3) (V3;Va)

V2 V3

fiy

X<

X
(V3;Va) (v1;V2;V3)
Vi V2

w

X<

(Va;va)  mo(vi;Va)
Vi

w

X<

(v3;v4)my(va)

<
w

= m3(Va):

Nl N|r N|r N|r N|

The intermediate factors m1, m, and m3 can be seen asnessagespassing
from the variables that have been integrated. When we want tocompute
several marginals at the same time, a dynamic programming cabe applied
to reuse some messages in the elimination algorithm. If thenderlying graph
is a tree, we can usesum-of-product, or belief propagation, which is a gener-
alization of the forward-backward algorithm in HMMs (Rabin er, 1989). For
a general graph, it has to be converted to into a clique tree bymoralization
and triangulation. After that, a local message passing algagthm can be ap-
plied, which could be either the sum-of-product algorithm a the junction
tree algorithm, a variation designed for undirected models

The computational complexity of the exact inference algorthms is expo-
nential in the size of the largest cliques in the induced grap. For many
cases, such as grids or fully connected graph, it is intractale to make
exact inferences and therefore approximate algorithms, sth as sampling,
variational methods or loopy belief propagation, have to beapplied. Sam-
pling is a well-studied eld in statistics and various sampling algorithms
have been proposed. A very e cient approach for high dimensonal data is
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Markov Chain Monte Carlo (MCMC), which includes Gibbs sampling and
Metropolis-Hastings sampling as special casesVariational methods uses
the convexity of the log function and iteratively updates the parameters
so as to minimize the KL-divergence between the approximateand true
probability distributions. Loopy belief propagationapplies the original belief
propagation algorithm to graphs even when they contain loog. There are
no theoretical guarantees for convergence or whether the &dion is opti-

mal when it converges, however, the experimental results gpear to be very
successful (Murphy et al., 1999a).

Compared with exact inference, there are also some empiric@roblems
with the approximate inference algorithm, for example, it might get trapped
in the local optimal or never converge (within an a ordable number of it-
erations). Therefore neither approach is dominant in the ral applications.
In order to make an e cient inference on a complex graph, we ca combine
these two approaches, for example, use exact inference atgbhm locally
within an overall sampling framework.

2.5.2 Generative Model v.s. Discriminative Model

For a supervised learning problem, there are two main types fomodels: gen-
erative models and discriminative models (Ng & Jordan, 200 Discrim-
inative models attempt to directly calculate the probability of the labels
given the data, i.e., P(yjx), while generative models alternatively estimate
the class-conditional probability P(xjy) as surrogates to nd the maximal
likely class based on Bayesian rules,

P(xjy)P(y) :

= P(vix) =
y argmex (yix) argmex P(x)

The success of generative models largely depends on the aty of the
model assumptions. However, these assumptions are not alys true, such
as the Markov assumption in HMMs. In contrast, a discriminative model
(e.g. logistic regression and support vector machines) tyigally makes less
assumptions about the data and \let data speak for its own". It has been
demonstrated more e ective in many domains, such as text clasi cation
and information extraction. As pointed out by Vapnik (Vapni k, 1995), \one
should solve the (classi cation) problem directly and neve solve a more
general problem (class-conditional) as an intermediate &p". There are some
empirical results showing that discriminative models tendto have a lower
asymptotic error as the training set size increases (Ng & Jatan, 2002).



Chapter 3

Review of Structured
Prediction

The breadth of tasks addressed by machine learning is expaty rapidly
with the increase of vast amount of data available. The applcations have
varied from speech recognition, computer vision to naturallanguage process-
ing, computational biology, astronomy study, nancial analysis and many
other fascinating applications that change the life of peope. With vast kinds
of applications available, the machine learning elds havebeen extended to a
number of new frontiers, one of which is theprediction problem for structured
outputs, or succinctly as structured-prediction.

Structured prediction refers to the applications in which the observed
data are sequential or with other simple structures while the output actu-
ally involve complex structures. For example, in protein structure predic-
tion, we are given the observation as a sequence of amino asidwhile the
target output involves the complicated three-dimensional structures. An-
other example is the parsing problem in natural language proessing, the
input is one sentence, i.e. a sequence of words, and the outpis a parsing
tree. By considering the constraints or associations betwen outputs, we can
achieve a better prediction performance. Those kinds of apcations raises
challenges to the L.I.D. (independently identically distributed) assumptions
made by most statistical learning models and algorithms in pevious study.
In this chapter of the thesis, we provide an overview of currat development
on this topic, including a detailed discussion on the task decription, an in-
troduction to conditional random elds as well as its recent extensions, and
nally its wide applications in di erent domains.

36
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3.1 Prediction Problem with Structured Outputs

In supervised learning, we are given a set of training data vth the obser-
vation x and the label y. Our goal is to learn a modelf so that f (x) .
There are two classical types of learning problem based on thvalue of y:
one is classi cation problem, in whichy takes discrete values in a prede ned
set (the simplest case is the binary classi cation, namelyy 2 f 0; 1g); the
other is the regression problem, in whichy is a real-valued number. In ei-
ther case, both x and y can be a vector although the dependencselations
between the scalars are typically not explored.

In the prediction problem with structural outputs, the outp ut y is a
vector. Furthermore, the scalars of the vector y are not ind@endent. They
are either associated with others based on the locations, foexample, the
value of y; is dependent on that ofy; ; and yj+1; or they are associated
based on type, for example, the value of;; must be the same with that of
Yi 3. Those types of constraints can be either deterministic (mstly referred
as \associated") or probabilistic (referred as \correlated"). The essence of
the structured prediction is to model these correlations orassociations in
one framework instead of treating them independently.

The prediction problem with structured outputs is closely related to the
relational data. The study of relational data concerns itsdf with richly struc-
tured, involving entities of multiple types, which are related to each other
through a network of di erent types of links. More speci cal ly, the labels of
di erent examples y; are associated or correlated. Relational data mining
has its roots in inductive logic programming, an area at the ntersection of
machine learning and programming languages. In addition, he structured
prediction is also related to the multi-task learning, which aims at learning
a task together with other related tasks at the same time via fiared repre-
sentation. This representation often leads to a better modéfor the main
task, because it allows the learner to use the commonality awng the tasks.

These three prediction problems are closely related, howev, they di er
signi cantly in both the task focus and principles for solutions. The struc-
tured prediction problem is initially extensively studied in speech recogni-
tion, later in computer vision, information extraction and computational
biology. As discussed above, we have prior knowledge abouhé constraints
or correlations between the elements of output vectorsy (in most appli-
cations, the dependency relations are quite regular, for exmple, a chain
or a grid). However, the outputs of di erent observations, y; and y;, are
treated independently in most algorithms for structured data. In contrast,
the major subject in the relational data mining is to discover the relations
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betweeny; and y;. In multi-task learning, existing approaches share the
basic assumption that tasks are related to each other, that$, yi(k) and yj(')
are associated, while the assumptions about how they are assiated vary
from models to models.

The structured prediction problem also di ers from the other two tasks
in terms of principles for seeking solutions. More speci cly, it usually nds
the applications where the associations or relations are deed beforehand,
either by domain knowledge or by assumptions. Then these rations can be
easily represented by statistical graphical models, from aly simple models,
such as, hidden Markov model (Rabiner, 1989) and Markov randm elds,
later to maximum entropy Markov model (MEMM) (McCallum et al ., 2000),
and recently to the conditional random elds (CRF) (Laerty et al., 2001).
Other on-going research work along the directions includehe study of alter-
native loss functions (Taskar et al., 2003; Altun et al., 20@; Tsochantaridis
et al., 2004), e cient inference algorithms (Dietterich et al., 2004; Roth &
Yih, 2005) as well as other extensions for broader applicatins (Kumar &
Hebert, 2003; Sha & Pereira, 2003). The recent trend has shiéd to imbal-
anced data and semi-supervised learning. The study of relanal data, on
the other hand, is originated from the relational database. Therefore the
symbolic methods and rst order logic algorithms are dominant in the solu-
tions for relational data. In multi-task learning, the rela tedness among tasks
is hidden and to be uncovered. Based on the assumptions abolitow each
tasks are associated, di erent models have been proposedjch as I.1.D tasks
(Baxter, 2000), a Bayesian prior over tasks (Baxter, 2000; Hskes, 2000; Yu
et al., 2005), linear mixing factors (Ghosn & Bengio, 2000; €h et al., 2005),
rotation plus shrinkage (Breiman & J, 1997) and structured regularization
in kernel methods (Evgeniou et al., 2005).

3.2 Conditional Random Fields (CRF)

Conditional Random Fields (CRFs), rst proposed by Laerty et al., are
undirected graphical models (also known agandom elds) (La erty et al.,
2001). It has been proven very e ective in many applicationswith structured
outputs, such as information extraction, image processingparsing and so on
(Pinto et al., 2003; Kumar & Hebert, 2003; Sha & Pereira, 2003. CRF has
played an essential role in the recent development of struetred prediction.
Before introducing the conditional random elds, we rstre view a simple
model, the hidden Markov model(HMM), which is widely-known and has
been applied to applications in many domains. HMM works by conputing
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(A (B) (C)

Figure 3.1: Graphical model representation of simple HMM(A), MEMM(B),
and chain-structured CRF(C)

the joint distribution of observations x and statesy, P(x;y). The graphical
model representation of HMMs is shown in Figure 3.1- (A). Twokinds of
probability distributions have to be de ned: (1) the transi tion probabilities
P(vijyi 1) and (2) the emission probabilities P (xjjy;). By taking the rst-
order Markov assumption, i.e. p(xijyi) = p(Xijyi;V¥i 1), we have the joint
probability as follows:

Y
P(x;y)=  Pijy)P(yijyi 1): (3.1)
i=1

HMM has been very successful in applications such as speechkcognition
(Rabiner, 1989), and sequence analysis in bionformatics (@rbin et al.,
1998). However, as a generative model, it has to assume a partlar tran-
sition probability and emission probability, which result s in many inconve-
niences if we use overlapping or long-range features. Thdge discrimina-
tive training models, for instance MEMM and CRF, are proposed.

The graphical model representation for a chain-structuredCRF is shown
in Figure 3.1, where we have one state assignment for each adysation in
the sequence. Speci cally the conditional probability P (yjx) is de ned as

W X
PO =5 exw( iy 1w 32)
i=1 k=1

where f can be arbitrary features, including overlapping or long-range
interaction features. As a special case, we can construct afiMM-like

model in which features can factorized as two parts, i.efy(X;i;yi 1;Vi) =

a(X;1) (Vi 1;v¥i), where (yi 1;¥i) is the indicator function over each state
pair (yi 1;¥i) and gc(x;i) for each state-observation pair &;y;).
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CRF takes on a normalizer over the whole sequence, which relisi in a
series of nice properties but at the same time introduces hugycomputational
costs. Maximum Entropy Markov Models (MEMMSs), proposed by McCal-
lum et al, can be seen as a localized version of CRF (see Fig.13(B)). The
conditional probability in MEMM is de ned as

Yoq X
P(Yjx)= Zexp( kFkOG Y 15 Y); (3.3)

i=1 ! k=1
where Z; is a normalizing factor only over thei!" position. MEMM reduces
the computational costs dramatically, but at a cost su ers from the \label
bias" problem, i.e. the total probability \received” by y; 1 must be passed on
to labelsy; at time i even if X; is completely incompatible with y; 1 (La erty
et al., 2001). Empirical results show that for most applicatons CRF is able
to outperform MEMM with either slight or signi cant improve ment (La erty
et al., 2001; Pinto et al., 2003).

3.3 Recent Development in Discriminative Graph-
ical Models

The successes of the CRF model attract the interest of many earchers
and various extensions of the model have been developed. Fothe ma-
chine learning perspective, recent enrichment of the CRF mdel includes
the following: utilizing alternative loss functions, prop osing e cient infer-
ence algorithms, extending to semi-Markov and segmented vsions as well
as Bayesian version.

3.3.1 Alternative Loss Function

The classi cation problem has been extensively studied in he past twenty
years or so and many kinds of classi ers are proposed (Hastiet al., 2001).
A uni ed view of the popular classi ers is that they belong to a generalized
linear classi er family with di erent loss functions. For e xample, logistic
regression uses the negative log-loss and support vector mta@ne adopts the
hinge loss. In the description of the original CRF model, a negative log-
loss of the training data is used as the optimization criterl. Similar to
the classi cation problem, other loss functions can be appkd to the CRF
formulation and result in various extensions, for example,the max-margin
Markov networks, Gaussian process models, perceptron-kkmodel as well as
the Bayesian CRF. The detailed descriptions of these modelare as follows:
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Figure 3.2: Loss functions of the logistic regression, suppt vector machines,
ridge regression against the target 0-1 loss (Graph adaptedrom (Hastie
et al., 2001))

Max-margin Markov networks Maximum margin Markov (M3) net-
works combines the graphical models with the discriminative setting as the
support vector machines (SVM) (Taskar et al., 2003). As we krow, SVM
is a new generation learning system based on Structural Riskinimization
instead of Empirical Risk Minimization (Vapnik, 1995). It i s both theoreti-
cally well-founded and practically e ective. The primal form of SVM with
linear kernel can be described as follows:

X0
minf C P+ %WTWg, subjecttoryi(w'xj+ b 1 jand ; 0 (3.4)
i=1

where ; is the slack variable, C is a constant parameter. By using implicit
constraints, we can transform the objective function as:

X0
w’ = arg minf% maxf0;1 vi(x"x; + b+ w "Twgg (3.5)
i=1

where max0;1 vyi(x'x; + bg can be thought as the hinge loss for one
instance, and the second termw Tw is the regularization term. Due to the
non-di erentiable loss function, the tting of SVM is usual ly solved in its
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dual form:

1
maxLp = . i JYiYi XX

subject to
i N
0 i Ci; and iyi =0:
i=1
The solution is given by w? = P iN:1 iYiXi, where ; is Lagrange multipliers
and C is a constant.

In M 3N, the goal is to learn a function h from the training data, so that
h(x) = argmax,w'f (x;y), wherew" is the model parameter andf : X Y
is the features or basis functions. Casting it into the clasgal SVM setting,
we have the objective function

max ; subjectto kwk = 1; w' fxy) h(x;y); (3.6)

where h(x;y) = i 1 1(yi 6 h(x)i)and  f(xy) = f(ch(x) f(xy).
In (Taskar et al., 2003), a coordinate descent method analogus to the se-
guential minimal optimization (SMO) is used to seek the soluions to eq
(3.6). Later, Taskar et al. formulate the estimation problem as a convex-
concave saddle-point problem and apply the extragradient nethod (Taskar
& Simon Lacoste-Julien, 2005). This yields an algorithm with linear con-
vergence using simple gradient and projection calculatios.

The M3N model has the advantage to incorporate kernels inheritedrbm
the SVM formulation, which e ciently deal with the high-dim ensional fea-
tures. Furthermore, it can capture correlations in structured data with
multiple formulations, either Markov networks, context fr ee grammars, or
combinatorial structures (Taskar, 2004) 1.

Support vector machines for structured output space In (Tsochan-

taridis et al., 2004), a support vector machine for structured outputs is de-

veloped. The idea is similar to the M 3N model discussed above, which
uses the hinge loss for optimization criterion as in SVM. Howver, these
two models di er signi cantly in the optimization algorith ms to solve the

induced quadratic-programming problems. In (Tsochantardis et al., 2004),

the problem is solved by a cutting plane algorithm that exploits the sparse-

ness and structural decomposition of the objective functio.

There is also some concern about the consistency of the framwork, that is, the solu-
tions provided to the M N model are not the same as the optimization function original ly
stated in de nition of the model.
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Gaussian Process Models In addition to the SVM-style approaches, a
Gaussian process model for segmenting and annotating sequees is devel-
oped (Altun et al., 2004). It generalizes the Gaussian Procgs (GP) classi -
cation by taking dependencies between neighboring labelsiio account. In
the de nition of the original GP classi er, we construct a tw o-stage model
for the conditional probability distribution p(yjx), by introducing an inter-
mediate, unobserved stochastic procesau(x;y)). Via some derivation, we
have the objective function as follows

X0 X0 X
R(Wjx;y) = w'Kw w'Kegyy+  log  expWw Kegyy); (3.7)
i=1 i=1 y

where K is the kernel matrix. From eq (3.7), we can see that theGP classi er
is very similar to the kernel logistic regression. In sequece labeling problem,
we need to consider the labels for one sequences jointly. Trafore in (Altun
et al., 2004), the kernel is de ned ask = k! + k?, where k! couples obser-
vations in both sequences that are classi ed with the same naro-labels at
respective positions,k? simply counts the number of consecutive label pairs
that both label sequences have in common. Two approaches adeveloped
to seek the solutions for the optimization problem de ned in eq(3.7). One is
the dense algorithm, which involves the computation of Hesisn matrix, the
other is the sparse algorithm, which is similar to the greedyclique selection
algorithm discussed in (La erty et al., 2004).

Perceptron CRF Motivated by the e ciency and consistency of the
perceptron algorithm, a perceptron-like discriminative model for predict-
ing structured outputs is introduced (Collins, 2002). The agorithm makes
inferences on chain-structured graphs via Viterbi decodig of training exam-
ples, combined with simple additive updates. A theory is al® provided to
justify the convergence of the modi ed algorithm for parameter estimation,
including both the voted version and averaged version. It ha been shown
that the perceptron-like CRF model performs similar as the aiginal CRF
empirically, while at the same time enjoys a less complex leaing algorithm.

Bayesian conditional random elds Bayesian conditional random elds
are a Bayesian approach to learn and make inferences for CRFQ et al.,
2005). The major motivation of the model is to eliminate overtting problem

of the original CRF, and to o er the full advantages of a Bayesan setting.
With the huge induced complexity, an extension of expectaton propaga-
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tion is developed for fast inferences. Bayesian CRF demonsites superior
performance over CRF in the computer vision domain.

3.3.2 E cient Inference Algorithms

The CRF model enjoys several theoretical advantages compad with HMM

and MEMM, and has demonstrated signi cant empirical improvement in
many applications. However, in the training phase we need taalculate the
expectation of the features for the iterative searching algrithms; and in the
testing phase, we search the best assignments over all pdsid segmenta-
tion spaces for the structured outputs. For simple graph stucture, such
as a chain or a tree, the forward-backward and Viterbi styled algorithms
can be used. However, the complexity increases exponentialwith the in-

duced tree-width of the graphs. As a result, exact inference are computa-
tional infeasible for complex graphs. Therefore multiple ecient inference

and learning algorithms are examined in the CRF setting, forexample, the
general approximate inference algorithms, such as loopy llief propagation,
sampling algorithm, naive mean eld and other variation methods. In ad-
dition, several speci ¢ algorithms have been developed fofast training and
testing of CRF.

Gradient Tree Boosting In (Dietterich et al., 2004), a new algorithm is
proposed for training CRFs by extending the gradient tree basting method
for classi cation (Hastie et al., 2001). Speci cally, the potential functions
de ned in CRF are represented as weighted sums of regressidrees, which
are learned by stage-wise optimizations similar to Adaboadswhile the ob-
jective function is replaced by maximizing the conditional likelihood of joint
labeling P(yjx). The algorithm successfully reduces the immense feature
space via growing regression trees so that only the combinans of fea-
tures de ned by the trees are considered. As a result, the grdient tree
boosting scaleslinearly in the order of the Markov model and the feature
interactions, rather than exponentially as those previous algorithms based
on iterative scaling and gradient descent.

Integer linear programming In (Roth & Yih, 2005), a novel inference
procedure based on integer linear programming (ILP) is propsed to replace
the Viterbi algorithm in the original CRF model. Speci call y, the Viterbi
solution can be seen as the shortest path in the graph constaied as follows:
Let n be the number of tokens in the sequence, and m be the numbef labels
each token can take. The graph consists aim+2 nodes and (0 1)m2+2m
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edges. In addition to two special nodesstart and end that denote the start
and end positions of the path, the label of each token is repiented by a
nodevj ,where0 i n 1,and0 j m 1. If the path passes node
vjj , then label j is assigned to token i. For nodes that representwo adjacent
tokensv(; 1); and vj o, there is a directed edgexj; o from v(; 1); to vj; o, with
th|e:, cost log(Mi(y; 1Vijx)). Then the path is determirejzd via minimizing

notlog(Mi(yi 1yijx)), i.e. maximizing the function <L ' Mi(yi 1yijx).
The major advantage of such formulation is the convenienced add general
constraints (e.g. NLP problems such as chunking, semanticale labeling, or
information extraction) over the output space in a natural and systematic
fashion. An e cient solution is developed to large scale apgications in (Roth
& Yih, 2005). The setting has the nice properties that when noadditional
constraints are added, the problem reduces back to one thatan be solved
e ciently by linear programming.

There are several other studies about the e ciency issues oCRF, such
as accelerated training with stochastic gradient methods Yishwanathan
et al., 2006), numerical optimization using non-linear cornugate gradient or
limited-memory variable-matric methods (Wallach, 2002). It remains a hot
topic to design feasible inference and learning algorithm$or CRF so that it
can be applied in large-scale applications with complex gnah structures.

3.3.3 Other Extensions of CRF

Conditional random elds as well as its direct extensions wth di erent loss

functions have been proven successful in multiple domainsuch as natural
language processing, computer vision, protein sequence agsis and so on.
On the other hand, there are also many applications where theriginal CRF

may not be the most appropriate due to their task-speci ¢ chaacteristics.

For example in information extraction, the segment level fatures, such as
phrase length or the segment starts with capitalized word, ae very infor-

mative but they are di cult to incorporate in the CRF setting . Therefore
many other extensions have been developed. Some examplesliude:

Semi-Markov conditional random elds Semi-Markov CRF outputs a
segmentation of an input sequence X, in which labels are aggied to segments
(i.e., subsequences) of x rather than to individual elemert x; (Sarawagi &
Cohen, 2004). Given a sequence observation = x1:::Xp, the conditional
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probability of the segmentation given the observation is dened as

_ 1 XX
P(M; fWgjx) = zexp( kf(wiswi 1;X)):
i=1 k=1

where M is the number of segments,W; = fp;j;q;sig and p;, G, S; are
the starting position, ending position and state of the i!" segment. The
biggest advantage of this revision allows features that mesure properties of
segments, and non-Markovian transitions within a segment.In spite of this
additional power, the complexity of exact learning and inference algorithms
for semi-CRFs are polynomial, often only a small constant fator slower than
conventional CRFs. The model has shown signi cant improvenent over the
original CRF in the information extraction tasks.

Hidden conditional random elds The hidden CRF is another exten-
sion of the CRF, which introduces hidden variables between hie labels and
observations for the recognition of object classes and gastes (Quattoni

et al., 2005; Wang et al., 2006). For each object class, the pbability of a
given assignment of parts to local features is modeled by a CR Then the
parameters of the CRF are estimated in a maximum likelihood famework
and recognition proceeds by nding the most likely class unar the model.
The main advantage of hidden CRF is the relaxation of the condgtional in-

dependence assumptions of the observed data (i.e. local teaes), which are
often used in generative approaches.

Other complex graph structures Up to now, the CRF model and its
variations are mostly used in applications with simple gragh structures,
such as a chain, a tree or grids. It is not hard to imagine that many real
applications might require quite complex graph structures such as protein
three-dimensional structures, or multiple layers of chairs, involving both
time and location scales. Therefore several models are ddeped along this
direction, such as layout consistent random eld (Winn & Shotton, 2006),
dynamic CRF (Sutton et al., 2004) and so on.

3.4 Applications

The elegant combination of graphical models and discrimintive settings en-
ables CRF and its extensions widely applied in multiple domans, such as
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natural language processing, computer vision, speech regoition and com-
putational biology. Below is an incomplete list of the exciting applications
of CRF:

Natural language processing In the NLP area, CRF has been applied
to shallow parsing (Sha & Pereira, 2003), word alignment (T®chantaridis
et al., 2004) and table extraction (Pinto et al.,, 2003). Someother exam-
ples include contrastive estimation, i.e. an unsupervisedrersion of CRF,
for part-of-speech (POS) tagging and grammar induction (Snith & Eisner,

2005), dynamic CRF for joint labeling of POS tagging and noun phrase
extraction (Sutton et al., 2004), semi-Markov CRF for infor mation extrac-
tion (Sarawagi & Cohen, 2004), 2-D CRF for web information exraction

(Zhu et al., 2005) and CRF for co-reference resolution (Sutbn & McCal-

lum, 2006).

Computer vision In computer vision area, CRF was initially used for
image segmentation (Kumar & Hebert, 2003); later a dynamic onditional
random eld model is proposed to capture the spatial and tempral de-
pendencies for image sequences (Wang et al.,, 2006), Smirebscu et al.
applied CRFs to classify human motion activities (i.e. walking, jumping,
etc) (Sminchisescu et al., 2005), Torralba et al. introducel boosted ran-
dom elds, a model that combines local and global image infomation for
contextual object recognition (Torralba et al., 2004), Quattoni developed
the Hidden CRFs to model spatial dependencies for object ramgnition in
unsegmented cluttered images (Quattoni et al., 2005), He eall propose the
multi-scale CRF for modeling patterns of di erent scales (He et al., 2004).

Computational biology In computational biology, the CRF model was

rst used for protein secondary structure prediction (Liu et al., 2004). Later

it has been applied to detecting overlapping elements in sagence data
(Bockhorst & Craven, 2005), disul de bond prediction (Taskar & Simon

Lacoste-Julien, 2005), RNA secondary structural alignmeh(Do et al., 2006b),
protein sequence alignment (Do et al., 2006a) and gene prettion [unpub-

lised manuscript].

3.5 Summary and Other Sources

The prediction problem with structured outputs is one of the emerging
trends in the elds of machine learning. It is closely related to the multi-task
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learning and relational learning, although they are originated from di erent
motivations and used for distinct applications. The CRF-like model has
played a central role in the solutions to predict structured outputs. Nowa-
days, many topics on the classi cation problem, such as unblnced data
and semi-supervised learning, have emerged in the study fatructured pre-
diction. However, the search for e cient inference and leaming algorithms
remain essential for wide applications of CRF.

In addition to the discussion above, there are also severalaeful infor-
mation sources and software available on this topics. Belovis an incomplete
list:

Available information sources

Website devoted for CRF:
http://www.inference.phy.cam.ac.uk/hmw26/crf/

Some tutorials include:

Hanna M. Wallach. Conditional Random Fields: An Introducti on.
Technical Report MS-CIS-04-21. Department of Computer andinfor-
mation Science, University of Pennsylvania.

Charles Sutton and Andrew McCallum. An Introduction to Cond i-

tional Random Fields for Relational Learning. In Introduction to Sta-

tistical Relational Learning. http://www.cs.umass.edu/ casutton/publications/crf-
tutorial.pdf

Ben Taskar. Large-Margin Learning of Structured Prediction Mod-
els. UAI-2005 Tutorial.

Trevor Cohn. Tutorial on Conditional Random Fields. In ALTA
Workshop. http://homepages.inf.ed.ac.uk/tcohn/talks/ crf_tutorial.pdf

Available software

mallet-CRF - http://crf.sourceforge.net/

Java implementation. An e cient implementation of CRFs whi ch ex-
tensively relies on sparse matrix operations and Quasi-Neton opti-
mization during training (including CRF and semi-Markov CR F).

exCRF - http://www.jaist.ac.jp/ hieuxuan/ excrfs/ exc rfs.html
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C/C++ implementation. It provides CRF with both rst-order and
second-order Markov assumptions.
CRF - http://www.cs.ubc.ca/ murphyk/Software/CRF/crf.h  tml

Matlab implementation. The graph structure can be 1D chain, 2D
lattice and general graph. It is also embedded with stochast meta-
descent for fast training.

CRF ++ - http://chasen.org/ taku/software/CRF++/

C++ implementation. The software can be applied to a variety of
NLP tasks, such as named entity recognition, information exraction
and text chunking.

SVMSIUCt _ nwitp://svmlight.joachims.org/

C++ C++ version. SVMstruct is a Support Vector Machine (SVM)
algorithm for predicting multivariate outputs.

A free download code in Matlab will be available soon in MatlebArser-
nal

http:// nalfantasyxi.inf.cs.cmu.edu/MATLABArsenal/M  ATLABArsenal.htm.



Chapter 4

Conditional Graphical
Models

Structural bioinformatics, as a sub eld in computational b iology, involves
di erent aspects of protein structures, including the structural representa-
tion, structural alignment and comparison, structure and function assign-
ments, and new structure design as drug targets. In this theis, we fo-
cus on predicting the general protein structural topologies (as opposed to
speci ¢ 3-D coordinates) of di erent levels, including semndary structures,
super-secondary structures and quaternary folds for homagneous multi-
mers. Given these putative structural topologies of a protén, the backbone
of the tertiary (or quaternary) structures is known and more importantly it
can serve as a key indicator for certain functional or bindirg sites.

In contrast to the traditional ii assumptions in statistics and machine
learning, one distinctive property of protein structures is that the residues at
di erent positions are not independent. For example, neigtboring residues
in the sequence are connected by peptide bonds; some residuthat are
far away from each other in the primary structures might be close in 3-
D and form chemical bonds, such as hydrogen bonds or disul dédonds.
These chemical bonds are essential to the stability of the stictures and
directly determine the functionality of the protein. In ord er to model the
long-range interactions explicitly and incorporate all our tasks into a uni ed
framework, it is desirable to have a powerful model that can apture the in-
terdependent structured properties of proteins. Recent work on conditional
graphical models shows that they are very e ective in the praliction problem
for structured data, such as information extraction, parsing, image classi -
cation and etc (Kumar & Hebert, 2003; Pinto et al., 2003; Sha & Pereira,

50
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Figure 4.1: The graphical model representation of conditimal graphical
models. Circles represent the state variables, edges rement couplings
between the corresponding variables (in particular, longrange interaction
between units are depicted by red arcs). The dashed box ovex's denote
the sets of observed sequence variables. An edge from a boxdonode is a
simpli cation of dependencies between the non-boxed nodeat all the nodes
in the box (and therefore result in a clique containing all x's).

2003). In addition, the graph representation in the model ae intuitively

similar to the protein structures, which simpli es the proc ess to incorpo-
rate domain knowledge and also helps the biologists better nderstand the
protein folding pathways.

4.1 Graphical Model Framework for Protein Struc-
ture Prediction

In this thesis, we develop a series of graphical models for ptein structure
prediction. These models can be generalized to the framewkrof condi-
tional graphical models, which directly de nes the probability distribution
over the labels (i.e., segmentation and labeling of the detieated segments)
underlying an observed protein sequence, rather than assuimg particular
data generating process as in the generative models. Specally, our model
can be represented via an undirected graptG = fV ; Eg which we refer to
as \protein structural graph” (PSG). V is the set of nodes corresponding to
the speci cities of structural units such as secondary stricture assignments,
motifs or insertions in the supersecondary structure (whit are unobserved
and to be inferred), and the amino acid residues at each posin (which
are observed and to be conditioned on). E is the set of edges denoting
dependencies between the objects represented by the nodesjch as local
constraints and/or state transitions between adjacent noces in the primary
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sequence, or long-range interactions between non-neighibiog motifs and/or
insertions (see Fig. 4.1). The latter type of dependenciessiunique to the
protein structural graph and results in much of the diculti es in solving
such graphical models.

The random variables corresponding to the nodes in PSG are dwsllows:
M denotes the number of nodes in PSG. Notice thaM can be either a con-

Mmax IS the maximal number of nodes allowed (usually de ned by thebiolo-
gists). W; is the label for the i node, i.e. the starting and ending positions
in the sequence and/or state assignment, which completely etermine the
node according to its semantics de ned in the PSG. Under thissetup, a
value instantiation of W = fM; f W;gg de nes a unique segmentation and
annotation of the observed protein sequence (see Fig. 4.1).

Let Gz denote the set of cligues in graphG. Furthermore, we use
W, to represent an arbitrary cliqgue ¢ 2 Cs. Given a protein sequence
X = X1X2:::XN Where x 2 famino acidg, and a PSG G, the probabilis-
tic distribution of the labels W given observationx can be postulated using
the potential functions de ned on the cliques in the graph (Hammersley &
Cliord, 1971), i.e.

. 1Y
P(Wjx) = > ( X3 We); (4.1)
C2CG
where Z is a normalization factor and ( ) is the potential function de ned

over a clique. Following the idea of CRFs, the clique potental can be de ned
as an exponential function of the feature functionf , i.e.

_ 1Y X
P(Wjx) = 2 exp( kfk(X; We)); (4.2)
c2Cg k=1

where K is the number of features. The de nition of the feature function f
varies, depending on the semantics of nodes in the protein gicture graph

puted by minimizing the regularized log-loss of the conditonal probability
of the training data, i.e.

b o
—argmax f  logP(w®jx0)y+ ( k k)g; (4.3)
j=1

where L is the number training sequences. Notice that the conditioral like-
lihood function is convex so that nding the global optimum i s guaranteed.
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Given a query protein, our goal is to seek the segmentation goguration
with the highest conditional probability de ned above, i.e.

woPt = arg max P(Wjx):

The major advantages of the conditional graphical model dened above
include: (1) the intuitive representation of protein structures via graphs;
(2) the ability to model dependencies between segments in aam-Markovian
way, so that the chemical-bonding between distant residuegboth inter-chain
and intra-chain bonding) can be captured; (3) the ability to use any features
that measure properties of segments or bonds that biologist have identi ed.

4.2 Protein Structure Graph Construction

In the previous section, we give the de nition of the protein structure graph
(PSG), which is an annotated graph G = fV;Eg, with V as the set of
nodes corresponding to the speci cities of structural units and E as the
set of edges denoting dependencies between the objects repented by the
nodes, such as location constraints or long-range interagins between non-
neighboring units. Our next question is how to construct the PSG for a
target structure. This usually requires basic understandng about protein
structures as well as the input from domain experts. More spei cally, we
need to address the following questions: what are the meases of a good
PSG? how to construct a PSG for protein structures using prio knowledge?
how to automatic generate a PSG for any types of protein strutures without
any prior knowledge?

As we can see, the de nition of PSG is descriptive rather thaninstruc-
tive. Given one protein structure of concern, we can usuallyconstruct several
reasonable PSG with di erent semantics for each node. Ther®re there is a
tradeo between the graph complexity, delity of model and t he real compu-
tational costs. The measures we take to evaluate a PSG is thexpressiveness,
i.e. we search for the graphs that capture most important prgerties of the
protein structures while retaining as much simplicity as possible. In other
words, the optimal PSG is the one yielding the highest scoresle ned as the
likelihood of the training data minus its graph complexity.

In many cases, our target structures have been studied by théiologists
over the years and some basic knowledge of their propertiesakie been ac-
cumulated. Most of the prediction problems addressed in thehesis belongs
to this category. The PSG of such structures can be construad easily by
communicating with the experts. The information we need to mllect is:
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(A) (B)
Figure 4.2: Graph structure of - - motif (A) 3-D structure (B) Pro-
tein structure graph: node: Green= -strand, yellow= -helix, cyan=caoil,
white=non- - - (I-node); edge: E1 = fblack edgeg and E, = fred edges.

what are the structural components? how do they associate wh each other
via chemical bonds? which chemical bonds are unique or imptant for the
stability of the structures? For example, for the - - motif, we know that
it consists of two -strands with an -helix in-between; the hydrogen bonds
connecting the two -strands uniquely identify the motif. Therefore we can
construct a PSG as shown in Figure 4.2.

In some cases, we need to handle the protein structures thatra quite
new to the biologists and no prior knowledge of their structue properties are
given. To solve the problem, we need to learn a PSG automatidly from the
data. This problem falls in the general task of structure leaning in graphical
model research. Compared with previous work in structure larning, the key
challenges are the availability of training data since manynovel structures
have only 1 or 2 positive proteins for training. On the other hand, we are
also provided additional information (i.e. the three-dimensional structures
of positive proteins) which can guide the learning. In geneal, we can follow
the systematic procedures below to construct an initial grah:

1. Build a multiple structure alignment of all the positive p roteins (among
themselves)

2. Segment the alignment into disjoint parts based on the sesndary
structures of the majority proteins

3. Draw a graph with nodes denoting the resulting secondary tsucture
elements and then add edges between neighboring nodes to nmeldocal
constraints

4. Add the long-range interaction edge between two nodes iftte average
distance between all the involved residues is below some thshold
MIN spheci ed by the user.
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After we get the initial graphs, the next step is to search forthe optimal

PSG by performing only two types of actions, merging nodes ad deleting

edges. We skip detailed discussion of the latter case as it &separate line of
research and assume that we are given a reasonably good grapter which
we perform our learning.

4.3 Specic Contribution

To address the prediction problem on di erent protein structure hierarchies,
several conditional graphical models are developed as a spal case of the
model de ned in eq(4.2) . Table 4.1 summarizes the models, wbh are
described in detail below.

4.3.1 Conditional Random Fields (CRFs)

Protein secondary structure prediction assigns the secoraty structure la-
bel, such as helix, sheet or coil, for each residue in the pretn sequence.
Therefore the nodes in the PSG represent the states of secoad/ structure
assignment and the graph structure is simply a chain as the prtein sequence.
As we can see, the model is the plain CRF with a chain structurgLa erty
et al., 2001). Its graphical model representation for a chai-structured CRF
is shown in Figure 4.3, in which we have one node for the statessignment
for each residue in the sequence. Mapping back to the generitbmework in
the previous section, we haveM = n and W; = y; 2 f helix, sheets, coilg.
The conditional probability P(Wijx) = P(yjx) is de ned as

. 1 VW X .
P(yjx) = 7 exp( kfFkOG Y 1Y) (4.4)
i=1 k=1

where fi can be arbitrary features, including overlapping or long-range
interaction features. As a special case, we can construct HM-like fea-
tures that are factored as two parts: f(X;5yi 1;Vi) = o(X;1) Vi 1;Vi),
in which (y; 1;Vi) is the indicator function over each pair of state assign-
ments (yi 1;Y;) (similar to the transition probability in HMM), and gk (X;i)
is any feature de ned over the observations X;y;) (which mimics the emis-
sion probability without any particular assumptions about the data).

CRFs take on a global normalizerZ over the whole sequence. This
results in a series of nice properties, but at the same time imoduces huge
computational costs. Maximum Entropy Markov Models (MEMMs ) can be



Table 4.1: Thesis work: conditional graphical models for potein structure prediction of all hierarchies

Hierarchy Secondary Tertiary Quaternary

Task secondary parallel/ an- || Fold (motif) | Structural re- || Quaternary fold | Quaternary fold
structure tiparallel - || recognition peats recognition (w/o | recognition (with
prediction sheet predic- sequence repeats)| sequence repeats)

tion
Target globular pro- || globular pro- -helix -helix, double barrel | triple -spiral
Proteins teins teins leucine-rich trimer
repeats

Structural || amino acid amino acid secondary structural mo- || secondary/super- sec-

modules structure tifs/ insertions || ondary structures

Module xed xed variable variable variable

length

Graphical || CRFs, CRFs SCRFs chain  graph || linked SCRFs

model kCRFs model

STAAON TVIIHAVHO TYNOILIANOD v 431dVHO

9G
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(A (B) (C)

Figure 4.3: Graphical model representation of simple HMM(A), MEMM(B),
and chain-structured CRF(C)

seen as a localized version of CRFs (see Fig. 4.3 (B)) (McCain et al.,
2000). The conditional probability in MEMMs is de ned as

_ Yo X _
P(yjx) = Zexp( KFOGEYE 1Y0); (4.5)
=1 ! k=1

where Z; is a normalizer over thei position. MEMMs reduce the compu-
tational costs dramatically, but su er from the \label bias " problem, that
is, the total probability \received" by y; 1 must be passed on to labelsy;
at time i even if x; is completely incompatible with y; 1 (Laerty et al.,
2001). Empirical results show that for most applications CRFs are able to
outperform MEMMSs with either slight or signi cant improvem ent. The de-
tailed comparison results with applications to protein se@ndary structure
prediction are discussed in Section 6.3.

4.3.2 Kernel Conditional Random Fields (KCRFs)

The original CRFs model only allows linear combination of fatures. For
protein secondary structure prediction, the state-of-art method can achieve
an accuracy of around 80% using SVM with linear kernels, whig indicates
that the current feature sets are not su cient for a linear separation.
Recent work in machine learning has shown that kernel method are
extremely e ective in a wide variety of applications (Cristianini & Shawe-
Taylor, 2000). Kernel conditional random elds, as an extersion of con-
ditional random elds, permits the use of implicit features spaces through
Mercer kernels (Laerty et al.,, 2004). Similar to CRFs, the conditional
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Figure 4.4: Kernels for structured graph: K ((x;c;yc); (x%c%y9) =
K ((%;0); (x%¢Y) (¥ei Y-

probability is de ned as

expf (X;C;Ve);

_ 1Y
P(yix)= =

C2CG

wheref () is the kernel basis function, i.e.f () = K (;(X;cC;Yc)). One way to
de ne the kernels over the structured graph can beK ((x;c; yc); (x% % y9) =
K ((x;0); (x%c9) (ye;¥9), whose rst term is the typical kernels de ned for
ii examples, and the second term is the indicator function oer each state
pair (ye;y9 (see Fig. 4.4). By the representer theorem, the minimizer b
the regularized loss has the form

X X _ .
f()= DK (x5 erye)):

j=1 CZCG(J) ye2Y jcj

Notice that the dual parameters depend on all the clique label assignments,
not limited to the true labels. The detailed algorithms and experiment
results of predicting protein secondary structures are shan in Section 6.5.

4.3.3 Segmentation Conditional Random Fields (SCRFs)

Protein folds or motifs are frequent arrangement patterns é several sec-
ondary structure elements. Therefore the layout patterns ae usually de-
scribed in secondary structure elements instead of individal residue. Since
the topologies information are known in advance, it would benatural to build

an undirected graph, with each node representing the secordy structural

elements and the edges indicating the interactions betweethe elements in
three-dimensional structures. Then, given a protein sequece, we can search
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Figure 4.5: Graphical model representation for segmentatin conditional
random elds

for the best segmentation de ned by the graph. Following theidea, a seg-
mentation conditional random elds (SCRFs) model can be deeloped for
general protein fold recognition (Liu et al., 2005).

For proteirgfold (or motif) recognition, we dene a PSG G =< V;E >,
whereV = U flg, U is the set of nodes corresponding to the secondary
structure elements within the fold and I is the node that represents the ele-
ments outside the fold. E is the set of edges between neighboring elements in
primary sequences or those indicating the potential long-ange interactions
between elements in tertiary structures (see Figure 4.5). @&en the graph G
and a protein sequencex = X1X2::: XN, We can have a possible segmentation
of the sequence, i.eW = fM; fW;gg, where M is the number of segments,
Wi = fsi;pi;gg, and s;, pi, g are the state, starting position and ending
position of the i segment. Here the states are the set of labels to distin-
guish each structural component of the fold. The conditionad probability of
W given the observationx is de ned as

P(Wjx) = exp( kfk(X;we)); (4.6)

1Y X
z c2Cg k=1
where f is the k" feature de ned over the cliquesc. In a special case, we
can consider only the pairwise cliques, i.e.

fOGwiw) = g0 pisdipsg) (siss) (G p) (9 B

where g is any feature de ned over the two segments. Note thatCs can be
a huge set, and eachW, can also include a large number of nodes due to
various levels of dependencies. Designing features for $ucliques is non-
trivial because one has to consider all the joint con gurations of all the nodes
in a clique.
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Figure 4.6: Chain graph model for predicting folds with repditive structures

Usually, the spatial ordering of most regular protein folds is known a
priori , which leads to a deterministic state dependency between gdcent
nodesw; and w;+1 . Thus we have a simpli cation of the \e ective" clique
sets (those need to be parameterized) and the relevant feate design. Es-
sentially, only pairs of segment-speci ¢ cliques that are oupled need to be
considered (e.g., those connected by the undirected \red" & in Figure 4.5)%,
which results in the following formulation:

\d X
P = 5 ep( k(Wi ); @7
i=1 k=1

where W ; denotes the spatial predecessor (i.e., with small positiorindex)
of W; determined by a \long-range interaction arc". The detailed inference
algorithm with application to regular fold recognition is d escribed in Section
7.2.

4.3.4 Chain Graph Model

SCRF is a model for regular protein fold recognition. It can be seen as an
exhaustive search over all possible segmentation con gutans of the given
protein and thus results in tremendous computational costs To alleviate the
problem, a chain graph model is proposed, which is designeaif a special
structure, i.e. protein folds with repetitive structural r epeats. They are de-
ned as repetitive structurally conserved secondary or sugrsecondary units,
such as -helices, -strands, -sheets, connected bynsertions with variable
number of residues, which are mostly short loops and sometigs -helices

Technically, neighboring nodes must satisfy the constraints on the location indexes,
i,e. g 1+1= pi. We omit it here for presentation clarity.
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orf/and -sheets. These folds are believed to be prevalent in protesnand
involve in a wide spectrum of cellular activities.

A chain graphis a graph consisting of both directed and undirected arcs
associated with probabilistic semantics. It leads to a profabilistic distri-
bution bearing the properties of both Markov random elds (i .e., allowing
potential-based local marginals that encode constraints ather than causal
dependencies) and Bayesian networks (i.e., not having a hdrto-compute
global partition function for normalization and allowing c ausal integration
of subgraphs that can be either directed or undirected) (Lauitzen & Wer-
muth, 1989; Buntine, 1995).

Back to the protein structure graph, we propose ahierarchical segmen-
tation for a protein sequence. On the top level, we de ne arenvelop i,
as a subgraph that corresponds to one repeat region in the fdl(containing
both motifs and insertions or the null regions, i.e. structures outside the
protein fold). It can be viewed as a mega node in a chain graph elned
on the entire protein sequence and its segmentation (Fig. 4). Analogous
to the SCRF model, let M denote the number of envelops in the sequence,

label of the it envelop. On the lower level, we decompose each envelop as a
regular arrangement of several motifs and insertions, whit can be modeled
using one SCRFs model. Let ; denote the internal segmentation of the
i™ envelop (determined by the local SCRF), i.e. i = fM;;Yig. Following
the notational convention in the previous section, we useV;; to represent a
segment-speci ¢ clique within envelopi that completely determines the con-
guration of the j segment in thei!™ envelop. To capture the in uence of
neighboring repeats, we also introduce a motif indicatorQ; for each repeat
i, which signals the presence or absence of sequence motifetain, based
on the sequence distribution pro les estimated from previas repeat.

Putting everything together, we arrive at a chain graph depicted in Fig.
4.6. The conditional probability of a segmentation W given a sequencex
can be de ned as

W
P(Wjx)= P(M; ;Tjx)=PM) P(Tjx;Ti 1; i )PCix;T;Ti 15 i 1)(4.8)
i=1
P(M) is the prior distribution of the number of repeats in one protein,
P(Tijx;Ti 1; i 1) is the state transition probability and we use the struc-
tural motif as an indicator for the existence of a new repeat:
. XL . .
P(Tijx;Ti 15 i 1) = P(TijQ)P(Qilx;Ti 15 i 1);
Qi=0
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where Q; is a random variable denoting whether there exists a motif in
the i" envelop andP(Qijx;Ti 1; i 1) can be computed using any motif
detection model. For the third term, a SCRFs model is employe, i.e.

. 1 XX
P(ix;Ti;Ti 15 i 1) = ?eXp( kF k(G Wig s W 0); (4.9)
! j=1 k=1

where Z; is the normalizer over all the con gurations of j, and W ; is

the spatial predecessor ofV;; de ned by long-range interactions. Similarly,

the parameters | can be estimated by minimizing the regularized negative
log-loss of the training data.

Compared with SCRFs, the chain graph model can e ectively ickentify
motifs by exploring their structural conservation and at th e same time take
into account the long-range interactions between repeat uits. In addition,
the model takes on a local normalization, which reduces theamputational
costs dramatically. Since the e ects of most chemical bondsre limited to
a small range in 3-D space without passing through the whole equence,
this model can be seen as a reasonable approximation for a ¢glal optimal
solution as SCRFs. The details of the algorithm and experimat results are
discussed in Section 7.3.

4.3.5 linked Segmentation Conditional Random Fields (I-
SCREFs)

The quaternary structure is the stable association of multiple polypeptide
chains via non-covalent bonds, resulting in a stable unit. Quaternary struc-
tures are stabilized mainly by the same non-covalent interations as tertiary
structures, such as hydrogen bonding, van der Walls interaitons and ionic
bonding. Unfortunately, previous work on fold recognition for single chains
is not directly applicable because the complexity is greaty increased both
biologically and computationally, when moving to quaternary multi-chain
structures. Therefore we propose the linked SCRF model to hadle protein
folds consisting of multiple protein chains.

The PSG for a quaternary fold can be derived similarly as the iS5G for
tertiary fold: rst construct a PSG for each component protein or a compo-
nent monomeric PSG for homo-multimer, and then add edges be&ieen the
nodes from di erent chains if there are chemical bonds, fornng a more com-
plex but similarly-structured quaternary PSG. Given a quaternary structure
graph G with C chains, i.e. fx;ji = 1:::Cg, we have a segmentation ini-
tiation of each chainy;, = (M;j;w;) de ned by the PSG, where M; is the
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number of segments in thei™ chain, and wi; = (Sij;Pij ;G ) Sij Pij
g; are the state, starting position and ending position of thej th segment.
Following similar idea as the CRFs model, we have

P(ysiihyelXeiiiiXe) = o (Ycorx) (4.10)
C2G
1Y Y
=z ( Xi;wij) ( Xa;Xpy Waiu; Why) (4.11)
Wi 2Vg hw a:u Wy i2E g
1 X X1 X X2
= zexp( ukfr(Xi; Wi ) + 2k Ok (Xa; Xb; Wau; W)
wij 2V k=1 hw gy ;Wi i2E g k=1
(4.12)

where Z is the normalizer over all possible segmentation assignménof all
component sequences (see Figure 4.7 for its graphical modelpresentation).
In eq(4.12), we decompose the potential function over the ajues (yc;X)
as a product of unary and pairwise potentials, wherdf y and gx are features,

1k and 2 are the corresponding weights for the features. Speci cay, we
factorize the features as the following way,

fr(Xis Wi ) = £ X5 pij ;G ) (Wij)
Fxispi ;i) if sij = s&g;  pi 2 length range(s)
0 otherwise,

Similarly, we can factorize g (Xa; Xp; Wau; Woy) = G2(Xa; Xb; Gau’ Pau’s Obivi Pbyv)
if Gy Pau 2 length range () and g,y Py 2 length range 9, and 0
otherwise.

The major advantages of linked SCRFs model include: (1) the hility
to encode the output structures (both inter-chain and intra-chain chemical
bonding) using the graph; (2) dependencies between segmentan be non-
Markovian so that the chemical-bonding between distant amno acids can
be captured; (3) it permits the convenient use of any featurs that measure
the property of segments the biologists have identi ed. On the other hand,
the linked SCRF model di ers signi cantly from the SCRF mode | in that
the guaternary folds with multiple chains introduce huge canplexities for
inference and learning. Therefore we develop e cient appraimation algo-
rithms that are able to nd optimal or near-optimal solution s as well as their
applications in Chapter 8.
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Figure 4.7: Graphical Model Representation of I-SCRFs modewith multiple
chains. Notice that there are long-range interactions (repesented by red
edges) within a chain and between chains

4.4 Discussion

In our previous discussion, we use the regularized log loss dhe objective
function to estimate parameters, following the original denition in CRFs
model (Laerty et al., 2001). In addition to CRFs, there are several other
discriminative methods proposed for the segmentation anddbeling problem
of structured data, such as max-margin Markov networks (M?N) (Taskar
et al., 2003) and Gaussian process sequence classi er (GPp@Iltun et al.,
2004) (see Chapter 3 for full discussion). Similar to the clasi ers for classi-
cation problem, these models can be uni ed under the exponatial model
with di erent loss functions and regularization terms.

4.4.1 Unied View via Loss Function Analysis

Classi cation problem, as a sub eld in supervised learning aims at assign-
ing one or morediscrete class labels to each example in the dataset. In
recent years, various classi ers have been proposed and stessfully applied
in lots of applications, such as logistic regression, suppbvector machines,
naive Bayes, k-Nearest neighbor and so on (Hastie et al., 2Q)Q. Discrimina-
tive classi ers, as opposed to generative models, computethe conditional
probability directly and usually assumes a linear decisionboundary in the
original feature space or in the corresponding Hilbert spae de ned by the
kernel functions. Previous research work indicate that theloss function anal-
ysis can provide a comprehensible and uni ed view of those aksi ers with
totally di erent mathematical formulation (Hastie et al., 2001).

In the following discussion, we focus on the binary classi ation problem
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and concern ourselves with three speci c classi ers, inclding regularized lo-
gistic regression (with extension to kernel logistic regresion) (Zhu & Hastie,
2001), support vector machines (SVM) (Vapnik, 1995) and Gawssian process
(GP) (Williams & Barber, 1998). All these three classi ers can be seen as
a linear classi er which permits the use of kernels. Speci ally, the decision
function f (x) has the form as

S
f(x)= i K (Xi;%); (4.13)
i=1
where are the parameters of the model andK is the kernel function.
are learned by minimizing a regularized loss function and tle general form
of the optimization function can be written as

b
= argmax a(yif (xi))+ ( kf kg); (4.14)
i=1
where the rst term is the training set error, g is speci c loss function and
the second term is the complexity penalty or regularizer.
The essence of di erent classi ers can be revealed throughheir de ni-
tions of the loss functions as follows:

Kernel logistic regression de nes the loss function as thedgistic loss,
i.e. g(z) =log(1+exp( 2z)). Inthe model described in (Zhu & Hastie,
2001), a Gaussian prior with zero mean and diagonal covariaze matrix
is applied, which equals to anL , regularizer.

Support vector machines uses the hinge loss, i.eg(z) = (1  2)+,
which results in the nice properties of sparse parameters (ost values
are equal to 0). Similar to logistic regression, anL, regularizer is
employed.

Gaussian process classi cation can be seen as a logistic $osith Gaus-
sian prior de ned over in nite dimensions over f. Since it is intractable
to integrate out all the hidden variables, maximum a posterior (MAP)

estimate has to be applied. This formulation has a very simiar loss
function expression as the kernel logistic regression expeit is more
general in terms of the de nition for mean and variance in the Gaus-
sian prior.

Previous analysis on loss functions provides a general viefor di erent
classi ers and helps us better understand the classi catim problem. For the
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prediction problem (segmentation and labeling) of structured data, a similar
analysis can be derived accordingly. As discussed in Sectiat.1, conditional
graphical models de ne the probability of the label sequene y given the
observation x directly and use exponential model to estimate the potentia
functions. The decision functionf (x) has the form as:

X X X ) )
f()= DK xDseye)):

j=1 CZCG(J) ye2Y jcj

where is the model parameters which can be learned by minimizing tk
loss over the training data. Similar to kernel logistic regression, kernel CRFs
take on a logistic loss with anL , regularizer. Max-margin Markov networks,
like SVM, employs a hinge loss. On the other hand, the Gaussiaprocess
classi cation for segmenting and labeling (GPSC) are motiated from the
gaussian process point of view, however, its nal form are v close to
kCRFs.

In summary, although our work is mostly focused on the logisic loss,
they can easily be adapted to other loss functions and regut&er, depending
on the tradeo between complexity and e ectiveness in specic applications.

4.4.2 Related Work

From machine learning perspective, our conditional graphcal model frame-
work is closely related to the semi-Markov conditional rancdbm elds (Sarawagi
& Cohen, 2004) and dynamic conditional random elds (Sutton et al.,
2004) (see Chapter for detail). All these three models are dgnsions of
the CRF model, however, ours is more representative in thatt allows both
the semi-Markov assumptions, i.e. assigning the label to aegment (i.e.
subsequence) instead of individual element, and graph strtures involving
multiple chains. Furthermore, our models are able to handlethe interactions
or associations between nodes even on di erent chains thargkto the exible
formulation and e cient inference algorithms we developed.

In structural biology, the conventional representation of a protein fold
is the use of a graph (Westhead et al., 1999), in which nodes peesent the
secondary structure components and the edges indicate thater- and intra-
chain interactions between the components in the 3-D structires. Therefore
the graph representation for protein structures is not nove from that per-
spective. However, there have been very few studies about otining the
graph representation and probability theory via graphical models for protein
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structure prediction. Furthermore, there has been no work d@out developing
discriminative training of graphical models on this topics.



Chapter 5

E cient Inference
Algorithms

In the previous chapter, we describe the general framework foconditional
graphical models. Given an observation sequence = X1X»:::Xyn, the con-
ditional probability of a possible segmentationW = fM; f W;gg according
to a protein structure graph G, is de ned as

_ 1Y X
PWiX)= - exp( il We)); (5.1)
c2Cq k=1
The parameters =( 1;:::; k) can be computed by minimizing the reg-

ularized log-loss of the training data, i.e.

b A
=argmax f  logP(w®jx0))y+ ( k k)g; (5.2)
j=1
where L is the number of training sequences. The conditional likelhood
function is convex so that nding the global optimum is guaranteed. Since
there is no closed form solution to the optimization function above, we com-

pute the rst derivative of right side of eq(5.2) with respect to and set it
to zero, resulting in the equation below:

X
fre(x; We) Epwi[fkOGWe)l+ (1 k k)=0 (5.3)
j=1 j=1

The intuition of eq (5.3) is to seek the direction of y where the model
expectation agrees with the empirical distribution.

68



CHAPTER 5. EFFICIENT INFERENCE ALGORITHMS 69

Given a testing sequence, our goal is to seek the segmentaticcon gu-
ration with the highest conditional probability de ned abo ve, i.e.

WPt = argmax XX fr G We):
=arg kFi(X; We): (5.4)
€2Cg k=1

It can be seen that we need to compute the expectation of the fures
over the models in eq(5.3) and search over all possible assigents of the
segmentation to ensure the maximum in eq(5.4). A naive exhastive search
would be prohibitively expensive due to the complex graphs nduced by
the protein structures. In addition, there are millions of sequences in the
protein sequence database. Such large-scale applicatiomemand e cient
inference and optimization algorithms. It is known that the complexity of
the inference algorithm depends on the graphs de ned by the radels. Ifitis
a simple chain, or tree-structure, we can use exact inferemcalgorithms, such
as belief propagation. For complex graphs, since computingxact marginal
distributions is in general infeasible, approximation algorithms have to be
applied. There are three major approximation approaches foinference in
graphical models, including sampling, variational methods and loopy belief
propagation. In this chapter, we focus on surveying the pogble solutions for
the inference and learning problem. In the next three chaptes, we develop
the speci ¢ learning and inference algorithms that are mostappropriate for
our models and applications.

5.1 Sampling algorithm

Sampling has been widely used in the statistics community de to its sim-
plicity. However, there is a problem if we use the naive Gibbssampling for
our conditional graphical models since the output variables Y = fM; fw;gg
may have di erent dimensions in each sampling iteration, dgoending on the
value of M; (the number of segments in thei™ sequence). The reversible
jump Markov chain Monte Carlo algorithms have been proposedo handle
the sampling from variable dimensions (Green, 1995). It hagslemonstrated
successes in various applications, such as mixture modelsjdden Markov
models for DNA sequence segmentation and phylogenetic tregHuelsenbeck
et al., 2004; Boys & Henderson, 2001).

Reversible jump MCMC sampling Given a segmentationy = ( M; w;),
our goal is propose a new moveg . To satisfy the detailed balance de ned
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by the MCMC algorithm, auxiliary random variables v and v have to be
introduced. The de nitions for v and v should guarantee the dimension-
matching requirement i.e. dim(y) + dim( v) = dim(y ) + dim( v9 and there
is a one-to-one mapping from ¥;v) to (y ;v9, i.e. there exists a function

sothat ( y;v)=(y:v)and I(y ;v =(y;v). Then the acceptance
rate for the proposed transition fromy toy is

P(y ix) P(vV) @y;;Vv9
P(yjx) P(v) @yi;V)
where the last term is the determinant of the Jacobian matrix.

To construct a Markov chain on the sequence of segmentationsve de ne
four types of Metropolis operators (Green, 1995):
(1) State switching given a segmentationy , sample a segment index
uniformly from [1; M ], and set its state to a new random assignment.
(2) Position Switching: given a segmentationy, sample the segment index
uniformly from [1; M ], and change its starting position to a number sampled
from Ulpi; 1;6G; ]
(3) Segment split given a segmentationy, propose a move withM; = M;+1
segments by splitting the j " segment, wherej is randomly sampled from
U[1;M].
(4) Segment merge given a segmentationy, sample the segment index
uniformly from [1;M], propose a move by merging thej segment and
j +1% segment.

minf 1; posterior ratio  proposal ratio Jacobiang = min f 1; o

Contrastive divergence There are two main problems if we use the sam-
pling algorithms described above, i.e. ine cient due to long \burn-in" period
and large variance in the nal estimation. To avoid the problem, contrastive
divergence (CD) was proposed in (Welling & Hinton, 2002), inwhich a single
MCMC move is made from the current empirical distribution data and thus
reduce the computational costs dramatically. More speci ally, In each step
of the gradient update, instead of computing the model expettion hip,
CD runs the Gibbs sampling for up to only a few iterations and wses the
resulting distribution gto approximate the model distribution p. It has been
proved that the nal values of the parameters by this kind of update will
converge to the maximum likelihood estimation (Welling & Hinton, 2002).

The uncorrected Langevin method The uncorrected Langevin method
(Murray & Ghahramani, 2004) is originated from the Langevin Monte Carlo
method by accepting all the proposal moves. It makes use of gdient infor-
mation and resembles noisy steepest ascent to avoid local timal. Similar
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to the gradient ascent, the uncorrected Langevin algorithmhas the following
update rule:

new > @
i = gt 5@—ij|09p(x: )+ njj (5.5)
wheren;  N(0;1) and is the parameter to control the step size. Via the
contrastive divergence algorithm, only a few iterations of Gibbs sampling

are needed to approximate the model distributionp.

5.2 Loopy belief propagation

Loopy belief propagation (Loopy BP) has been proven to be ver e ective
in multiple experimental studies (Murphy et al., 1999b). The algorithm
maintains a messagemp,q(Wa;p) between pairs of verticeswy,q and wa;p.

The update from wb;q)go Wap IS given by: v

Mp:g(Wa;p) ( Wh;g Xp) ( Whigs Wa:p; Xb; Xa) Mij (Wp;q);
Sh;q 2 S\ dpq2range(sp,q) Wij 2Thq=Wap

where Tp.q is the spanning tree ofwyq. In the experiments, tree-based al-

gorithm or random schedules can be applied to determinel . Given the

message vectom, approximate marginals can be computed as

1 Y
P(Wa;p) 70 ( Wp;g Xb) Mi;j (Wa;p)
1 Wi 2N a;p\ Wi §Wb;q
1
P(Wp:qs Wayp) 70 ( W Wap; Xp; Xa) Mij (Yb;g) Mij (Wa;p):
2 Wij 2N p,g=Wap Wij 2N a;p =W

Then the expectation of features can be computed directly uimg the ap-
proximated marginal. The Loopy BP has demonstrated successn many
empirical studies, and recently proved to minimize the Betle free energy
theoretically (Yedidia et al., 2000).

It is straightforward to use the loopy BP for CRF or KCRF model . How-
ever, it is not directly applicable to complex models, such 8 SCRF or linked
SCREF, since these models allow the number of nodes in the grapgo be also
a variable.

5.3 Variational approximation

Variational methods exploit laws of large numbers to transbrm the original
graphical model into a simpli ed graphical model in which inference is e -
cient (Jordan et al., 1999; Jaakkola, 2000). Mean eld (MF) is the simplest
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variational method that approximates the model distributi on p through a
factorized form as a product of marginals over clusters of wdables (Xing
et al., 2003). It is straightforward to derive the naive mean eld for the CRF
model, where the conditional probability in the CRF p is approximated by
an surrogate distribétion g as a product of singleton marginals over the
variables: q(yjx) =, d(yijx), where q(y;) is de ned as a multinomial dis-
tribution. By minimizing the KL divergence between q and p, we can get
a mean eld approximation of the marginals. For SCRF or linked SCRF
model, we have the long-range interaction edges that make th inferences
complicated. Structured variational approximation can be applied, where
the surrogate distribution g is de ned as a semi-Markov CRF model, i.e.

1 WX
q= zexp( kf (Wi wi 1;X)):
i=1 k=1

5.4 Pseudo point approximation

In addition to the approaches above, we can also use some naiwvhile
fast approximations by point estimation. Even though this approach is less
preferred, it does nd applications where the graph consis$ of hundreds of
nodes, for example, object recognition in computer vision.

Saddle Point Approximation A straightforward approximation method
is based on approximating the partition function (Z) using the saddle point
approximation(SPA), that is,

X X1 X X2
Z exp( kfk(Xiswi )+ kOk (Xa; X3 Wap; W)
Wi 2V k=1 |’Wa;p Wi i2E g k=1
wherey =argmax P(Y jx).This also leads to the simple approximation for
the expectations, i.e.

Efc(Xi; Wi )] = f(XYij ) Elk(Xa;Xos W aip; W big)] = Gk(Xa; Xbi W gp5 W)

Maximum Margin Approximation A further simpli cation can be
made by assuming all the mass o is concentrated on the maximum mar-
gin con guration, i.e. wi'-fj = argmax P (wjj jwny ;X). Then the normalizer
and expectation can be calculated using the value of”.
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5.5 Alternatives to maximum a posterior

Given a testing sequence, our task is to computey = argmax P (yjx).
There are several algorithms to compute the maximum a postaor (MAP),

for example, we can use the same propagation algorithm dedbed above,
except that the summation is replaced by maximization. Othe alternative
solutions include:

Maximum posterior marginal Following the idea of greedy search, we
can get the optimal y by maximizing each individual cliques, i.e.

wij =argmax P(wijjwy, ;X):

Iterated conditional modes Given an initial label con guration, iter-
ated conditional modes (ICM) maximizes the local conditioral probability

iteratively, i.e.
(t+1) _

Wi argmax P (wi; jw}\,i;j :X)

In addition, the MAP problem belongs to the general task of sarch in arti -
cial intelligence. Many searching algorithms, such as brach-and-bound and
dead-end elimination, can be applied. Several algorithmslang the direction
are developed for energy minimization in protein folding, dug design and
ab initio protein structure prediction (Desmet et al., 1992; Dahiyat & Mayo,
1997).



Chapter 6

Protein Secondary Structure
Prediction

It is widely believed that protein secondary structures cancontribute valu-
able information to discerning how proteins fold in three-dmensions. Pro-
tein secondary structure prediction, which projects primary protein sequences
onto a string of secondary assignments, such as helix, sheet coil, for each
residue, has been extensively studied for decades (Rost & Bader, 1993; King
& Sternberg, 1996; Jones, 1999; Rost, 2001). Recently the fermance of
protein secondary structure prediction has been improved ¢ as high as 78 -
79% in accuracy in general and 80-85% for predicting helix ash coils (Kim
& Park, 2003). The major bottleneck lies in the -sheets prediction, which
involves hydrogen bonding between residues that are not nessarily consec-
utive in the primary structure.

The architecture of a typical protein secondary structure prediction sys-
tem is outlined in Fig. 6.1. In the rst step, pro le generati on or feature
extraction ([A] in Fig. 6.1), converts the primary protein s equences to a set
of features that can be used to predict the labels of secondgrstructures.
Divergent pro les of multiple sequence alignments and a lage variety of
physical or biochemical features have been explored (Rost &ander, 1993;
Jones, 1999). Next, a sequence-to-structure mapping prosse ( [B] in Fig.
6.1) outputs the predicted scores for each structure type ugg the features
from [A] as input. Various machine learning algorithms havebeen applied,
including neural networks (Rost & Sander, 1993), recurrentneural networks
(Pollastri et al., 2002), Support Vector Machines (SVMs) (Hua & Sun, 2001)
and Hidden Markov Models (HMMs) (Bystro et al., 2000). Then , the out-
put scores from [B] are converted to secondary structure labls. This involves

74
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considering the in uence of neighboring structures by stricture-to-structure
mapping [C] and removing physically unlikely conformations by a Jury sys-
tem [D], also referred as \lters” or \smoothers". Some systems separate
[C] and [D] for explicit evaluation, while others keep them in one unit (Rost
& Sander, 1993; King & Sternberg, 1996). Finally, a consenslis formed by
combining predicted scores or labels from multiple indepedent systems into
a single labeled sequence. Several methods have been applie consensus
formation, such as a complex combination of neural network§Cu & Bar-
ton, 2000), multivariate linear regression (Guermeur et al, 1999), decision
trees (Selbig et al., 1999) and cascaded multiple classi er (Ouali & King,
2000).

From recent advances in protein secondary structure prediton, there
are three major approaches that have been demonstrated e dive to im-
prove the performance, including (1) incorporating features with statistical
evolutionary information, such as PSI-BLAST (Jones, 1999) (2) combin-
ing the results of multiple independent prediction methodsinto a consen-
sus prediction (Cu & Barton, 2000), and (3) extracting coup ling features
from predicted tertiary 3-D structures as long-range interaction information
(Meiler & Baker, 2003). Most existing systems employ a slidng window-
based method, i.e. constructing the output of a speci ¢ podiion using the
observations within a window size around it, or a simple hideen Markov
model approach, both of which fail to consider the long-rang interactions
in the protein structures. Therefore in this thesis, we propose to tackle
the problem from those three aspects using conditional gralpical models
(Section 6.3.1, Section 6.4, Section 6.5).

Secondary Structure Prediction system |

: n ructur ..
Profile Sequence to Structure to Jury Decision Consensus
: Structure Structure
Generation n: i n: for 4. E
onu-t' psr(?olrg: for ;ﬁdsgores orA, In: label r-- In: labels of
from Multiple M . Out: Smoothed Different Servers
hellix (H), sheets (E) Out: label per Label out: predicted

Sequence Alignment

and coil (C) residue labels

Figure 6.1: The architecture of a typical protein secondarystructure pre-
diction system (adapted from (Rost & Sander, 1993))
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6.1 Materials and Evaluation Measure

Two datasets were used to evaluate the e ectiveness of the pposed meth-
ods. One is the RS126 dataset, on which many existing secongastructure
prediction methods were developed and tested (Cu & Barton, 1999). It
is a non-homologous dataset by the de nition in (Rost & Sande, 1993),
namely no two proteins of 126 protein chains share more than%%6 sequence
identity over a length of more than 80 residues. However, Cu and Barton
found that there are 11 pairs of proteins in the RS126 set thathave an SD
score, i.e. Z score for comparison of the native sequencese@n by (V X)=,
of greater than 5 (Cu & Barton, 1999). Therefore in our experiments we
use the datasets that intentionally removed the 11 homologas proteins to
better evaluate our system. The other dataset is CB513 cread by Cu &
Barton (Cu & Barton, 1999), which most recent methods reported results
on (Hua & Sun, 2001; Kim & Park, 2003; Guo et al., 2004). It conssts
of 513 non-homologous protein chains which have an SD scord less than
5 (Cu & Barton, 1999). The dataset can be downloaded from the web
http://barton.ebi.ac.uk/. We followed the DSSP de nition for protein sec-
ondary structure assignment (Kabsch & Sander, 1983). The daition is
based on hydrogen bonding patterns and geometrical constrats. Based on
the discussion in (Cu & Barton, 1999), the 8 DSSP labels are educed to
a 3 state model as follows: H & G to Helix (H), E & B to Sheets (E), all
other states to Coail (C).

For protein secondary structure prediction, the state-of-art performance
is achieved by window-base methods using the PSI-BLAST proles (Jones,
1999). In our experiments, we apply a linear transformationf to the PSSM
matrix elements according to

8
20 if (X 5)

f(x)=>%+1’<—0 if( 5 x 5) (6.1)
"1 otherwise.

This is the same transform used by (Kim & Park, 2003) in the CASP5 (Crit-
ical Assessment of Structure Predictions) competition, whch achieved one
of the best results for protein secondary structure predicton. The window
size is set to 13 by cross-validation.

Various measures are used to evaluate the prediction accucg, includ-
ing overall per-residue accuracy Q3), Matthew's correlation coe cients per
structure type (Cq ,Cc,Ce) and segment of overlap (SOV) (Rost et al., 1994;
Zemla et al., 1999), and the per-residue accuracy for each pe of secondary
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structure (QEC; QIEC; QIEC; Qﬁre; Qgre; Qgre) (see Table 6.1 for detailed

de nition).

Table 6.1: Commonly used evaluation measures for protein sendary struc-
tures

Contingency Table

PredictednTrue +
+ 11 I12
o1 122
CA - lg+]
accuracy: Q = 7|11+|g+|§i+|22
Matthew's coe cients: C = P lu 122 l1p I
(la+l12)(Taa+121)(l22 + 112)(l22+ 121)
.Aofec—- I icinn- re— Iu
recall: Q'=%= L+ Precision: QPre - eI

P I red .gtrue red .gtrue
_ 1 minov(spred ;strue )4 delta(srred ;strue true
SOV = N S MaxoV(spred ;Strue ) Iength(s )
minov(Si1; S2): length of overlap between S; and Sy;

maxov(Si; S2): the length of extent over either S; and S,

delta(S:1, S2) = min(maxov( Si1;Sz) minov(Ss; S2); minov(S:; Sz); dien(S1)e; den(Sz)e)

6.2 Conditional Random Fields for Sequential Data

Some sequential graphical models, such as hidden Markov mets (HMMs)
or Markov random elds (MRFs), have been successfully appkd to sec-
ondary structure prediction (Bystro et al., 2000; Karplus et al.,, 1998).
These methods, as generative models, assume a particularrggrating pro-
cess of the data. It works by computing the joint distribution P(x;y) of
observation x 2 f amino acidgy and state sequencey 2 Y = fsecondary
structure assignmentg), and make predictions using Bayes rules to calculate
P (yjx). Though successfully applied to many applications with sguential
data, HMMs may not be the most appropriate for our task. First, it is
di cult to include overlapping long-range features due to t he independence
assumptions. Second, generative models as HMMs, work welhly when the
underlying assumptions are reasonable. In contrast, disaminative models
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do not make any assumptions and compute the posterior probalty di-

rectly. Conditional Random elds (CRFs), as a discriminati ve model for
structured prediction, has been successfully applied to may applications,
including information retrieval and computer vision, and achieved signi -
cant improvement over HMMs (Kumar & Hebert, 2003; Pinto et al., 2003;
Sha & Pereira, 2003).

Conditional Random Fields (CRFs), proposed by Laerty et al., are
undirected graphical models (also known agandom elds) (La erty et al.,
2001). As a discriminative model, it calculates the conditbnal probability
P (yjx) directly as follows:

_ 1 ¥ X .
PWM)=Z exp( kFOGEYi 13 Y5);
i=1 k=1

where fi can be arbitrary features, such as overlapping features oroing-
range interaction features. The feature weight i is the model parameters.
Compared with MEMMSs, CRFs takes on a global normalizerZ, which re-
sults in a convex function so that the global optimal solutions of | are
guaranteed (La erty et al., 2001). The parameters are learnt by minimiz-
ing the regularized negative log loss of the training data, .ie.

DA
= argmax f kFk(X;iyi 15yi)  logZg: (6.2)
i=1 k=1

Setting the rst derivative to be zero, we have

X
fFReOGhY 1Y) Eprjolfk(GEYi 1:Yi)]lg=0: (6.3)
i=1

There is no closed form solution to eq(6.3) and iterative seching algorithm
can be applied (Minka, 2001), among which the L-BFGS method$ shown to
be signi cantly more e cient (Sha & Pereira, 2003) (which is also con rmed
in our experiments).

Similar to HMMs and MEMMSs, there is still an e cient inferenc ing
algorithm for CRFs as long as the graph is a tree or a chain. Spz cally,
the forward probability ;(y) is de ned as the probability of being in state y
at time i given the observation up to time i; the backward probability ;(y)
is the probability of starting from state y at time i given the observation
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sequence after timei. The recursive steps are:

X X _
i (y) = iy9exp( (fkOGi+15y%y); (Y (6.4)
yo2y k=1
X X _
= exp( kfk(i+15y%y)) i (y): (6.5)
y2Y k=1

The normalizer Z can be computed viaZ = P yay n(y). The Viterbi

algorithm can be derived accordingly, where j(y) is de ned as the best
score (i.e. the highest probability) over all possible congurations of state
sequence ends at the timd in state y given the observation up to time i.
By induction, we have

X
s () =max i(yYexp( kfu(x;i+1;y%y); (6.6)
yey k=1

and i+ (y) is used to keep track of the state con guration of time i that
maximize eq(6.6).

6.3 Thesis work: CRFs for Protein Secondary Struc-
ture Prediction

Recent analysis by information theory indicates that the carelation between
neighboring secondary structures are much stronger than tht of neighbor-
ing amino acids (Crooks & Brenner, 2004). In literature, whie feature
extraction [A] and sequence-to-structure mapping [B] havebeen studied ex-
tensively, the structure-to-structure mapping and jury system [C, D] have
not been explored in detail although they are commonly usedn various
systems (Figure 6.1). From a machine learning perspectivehoth the jury
system [C, D] and the consensus [E] can be formulated as th@mbination
problem for sequencesgiven the predicted scores or labels, how should we
combine them into the nal labels, taking into account the dependencies of
neighbors and constraints of a single protein sequence?

Note that the combination problem for sequences is distinctfrom an-
other closely-related task: given the predicted scores ombels from di erent
systems for one residue, how can we combine them into the optial labels?
This task is a classical problem for machine learning known & an ensem-
ble approach and many ensemble methods have been used for sensus
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formation. The di erence between our task and the ensemble mblem is
that ensemble treats each residue as independent and doestremnsider the
extra information from neighboring structures or constraints of a single se-
qguence. Therefore our combination problem is more generalra di cult
than a classical ensemble problem.

6.3.1 Probabilistic Combination Methods

We formulate our combination problem as follows: given a préein sequence
X = X1X2:::XN, the raw output by a secondary structure prediction system
is either a label sequence = pip2:::pn, OraN 3 score matrix Q, where
Qi = Qj(xi) is the score of residue; for classj. Taking the predicted labels
p or score matrix Q, we try to predict the true label Y1Y,:::Yy. Without
loss of generality, we assume that (1) the predicted scoresr@ non-negative
and normalized; (2) for one residuex;, the higher the scoreQj; , the larger
the probability that the residue x; belongs to clasyg .

Previously proposed methods for combination are mostly widow-based,
which include:

Window-Based Method for Label Combination The standard method

for converting scores to predicted secondary structure labls is to assign the
class with the highest score. After that, many systems emplp rule-based
methods to improve upon the rst-pass assignment, i.e. thelabel combina-
tion. (Rost & Sander, 1993; King & Sternberg, 1996). The window-lased
label combination works as follows: given the labels predied by a system
pip2:::pn, and the window sizeR, let D = (R 1)=2 be the half of the win-
dow size. The input features for residuex; are the predicted labels within
the window R, i.e. pi p;pi p+1;:::;Pi+p 1;Pi+pli (& null label is assigned
if the label does not exist). Then a rule-based classi er, soh as decision tree
or CART, is applied to make the outputs easy for the biologists to interpret

(Rost & Sander, 1993). The window sizeR is a parameter with which we
can tune the trade-o between including useful information and excluding
\noisy" more remote features.

Window-Based Method for Score Combination In current secondary
structure prediction systems, score combination is used widely. Window-
based score combination works similar to label combinatiorexcept: (1) the
input features are scoresQ instead of labels; (2) more powerful classi ers,
such as neural networks andk-Nearest-Neighbor, are used instead of rule-
based classi ers. Empirically, score combination has demmstrated more
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improvement in accuracy than label combination since the sore indicates
the con dence of the prediction and thus contains more information than a
single label (Rost & Sander, 1993; Salamov & Solovyev, 1993pnes, 1999;
Guo et al., 2004).

The window-based combination approach has the disadvantags of con-
sidering the local information only. Conditional graphical models have been
proved to achieve the best performance for applications ofteuctured data
prediction (Kumar & Hebert, 2003; Pinto et al., 2003; Sha & Pereira, 2003).
In addition to CRFs, there are also alternative models, suchas MEMMs
and its extensions, that could be used for our combination tak.

Maximum Entropy Markov Models (MEMM) The graphical represen-
tation of MEMMs is shown in Figure 6.2-(A). Similar to CRFs, M EMMs
calculates the conditional probability P (Y jx) directly but uses a local nor-
malizer over each position (McCallum et al., 2000), i.e.:

Yoq X
P(Yjx) = ZeXp( kF(XG Y 1Y)
i=1 <! k=1

where Z; is a normalizing factor over positioni. Compared with CRFs,
MEMMSs can also handle arbitrary, non-independent featuresf,. There is
also an e cient dynamic programming solution to the problem of identifying
the most likely state sequencegiven an observation. In addition, MEMMs
are much cheaper computationally but su er from local optimal solutions
to parameter estimation and the label bias problem, namely he total prob-
ability \received” by y; 1 must be passed on to labels; at time i even if
Xij is completely incompatible with y; 1 (see (Laerty et al., 2001) for full

294

Figure 6.2: The graph representation of MEMM (A) and high-order MEMM
(B)
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Figure 6.3: The distribution of the segment length for di er ent structures

discussion). For score combination, we de ne the featuresd be

Qik, ifyi 1= kiandy; = ka;

) (6.7)
0 otherwise.

ki G Yi 13Yi) =

Higher-order MEMMs (HOMEMMs) MEMMs assume the rst-order
Markov assumption, i.e. P(yi+1])y;) = P(Yi+1]Yi;¥yi 1)- On one hand, it sim-
pli es the model and reduces the computational cost dramatcally; on the
other hand, this assumption is clearly inappropriate for se&ondary structure
prediction, where the structure dependencies extend overeveral residues
and even involve long-distance interactions. To solve thigoroblem, higher-
order MEMMs can be developed (Rabiner, 1989). For simplicy, we only
consider second-order MEMMSs, in which the next state depensd upon a his-
tory with two previous states (see Fig. 6.2-B). A second-orér MEMMs can
be transformed to an equivalent rst-order Markov Model by r ede ning the
state Y} asyt = hyi;yi 112Y Y = Y2 In secondary structure prediction
the set of new states isY? = fHC, HE, HH, EC, EE, EH, CC, CE, CH g
and the features can be rede ned accordingly.

Pseudo State Duration MEMMs (PSMEMMSs) Higher-order MEMMs
provide a solution to circumvent the state independence assmptions. How-
ever, the number of new states and features is an exponentidunction of
the order o, which makes the computational costs intractable wheno grows
large. To solve the problem, we devise a heuristic method whh is able to
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encompass more history information with the same computatbnal cost as
MEMMSs, namely pseudo state duration MEMM. Our heuristics are based
on the observation that the distribution of the segment lengh varies for dif-
ferent structures, as shown in Fig. 6.3 (only segments lesdhain 20 residues
are shown). From the graph, we can see that di erent segmentédngths are
preferred by di erent secondary structures. To incorporate such kind of in-
formation, we de ne P (yjy® d) as the probability that the current state is y
given the recent history of d consecutivey? i.e.

# of occurencesyQQ0: ::yd
# of occurencesyQ/9y0: ::y0"

P(yjy5d) =

Data sparsity problems might occur when d grows larger and it can be
addressed by smoothing methods, such as Laplace smoothingll the algo-
rithms and de nitions are similar as MEMMs except that we use another
kind of features as below:

Qik,P(yilyi 1;d) ifyi=kiandy; 1=k»

f L X;i; AV = .
<kukad> (GEYY 1) = otherwise

6.3.2 Experiment Results

Table 6.2 summarizes the representation power of the grapbal models dis-
cussed above. We can see that all the models except HMMs havké exibil-

ity to allow arbitrary features over the observation and therefore are good for
score combination. Table 6.3 lists the results of the windowbased methods:

Table 6.2: Summary: pros and cons of di erent conditional giaphical models

1st-order Label Bias  Flexibility Globally

Markov of Features  Optimal
HMMs + +
MEMMs + +
HOMEMMs +
PSMEMMs +

CRFs + + + +
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Generally speaking, the window-based score combination iproved the
prediction more than the label combination. This con rms our expec-
tation since the scores contain more information than a singg label.

The label combination resulted in maximum improvement for predict-
ing helices rather than other structures. King and Sternbeg reported
a similar observation and showed that the extracted rules ae most
relevant to helices (King & Sternberg, 1996).

The prediction accuracy has increased for both helices andhgets by
score combination.

In terms of the graphical models for score combination, we eamined the four
methods discussed before. To fairly compare with window-bsed methods,
only the score features are used for the prediction, althoulg we believe
incorporating other features will improve the predictions more. Table 6.4
shows the results of the four graphical models for score conation:

Generally speaking, the graphical models for score combitian are
consistently better than the window-based approaches, egzially in
SOV measure.

For the MEMMSs, the prediction accuracy using Viterbi algorithm is
better than using marginal mode. It is interesting to note that the
opposite is true for CRFs.

Compared with MEMMs, HOMEMMs and PSMEMMs improve SOV
slightly since these methods consider more history informton. How-
ever, there is little dierence in performance between HOMBEMMs
and PSMEMMs. This might indicate that higher-order MEMMs wi I
hardly add more value than second-order MEMMSs.

CRFs perform the best among the four graphical models. It exlbits
moderate improvements for predicting helices and especilgl sheets.
Global optimization and removing label bias seem to help sine these
are the only di erences between MEMMs and CRFs.

Table 6.5 summarizes our discussion above and provides a ditative esti-
mation of computational costs as well as the performance foeach method.

In this section, we surveyed current secondary structure pediction meth-
ods and identi ed the combination problem for sequences: ha to combine
the predicted scores or labels from a single or multiple sysims with the
consideration of neighbors and long-distance interactioa. Our experiments



Table 6.3: Results of protein secondary structure predictbon on CB513 dataset using window-based combination

methods
Combination SOV(%) Qs(%) Qi (%) Q& (%) QF (%) Qi (%) Q2 (%) QF (%) Cw Cc Ce
Method
None 75.6 76.7 78.0 83.2 62.7 83.6 72.1 77.2 0.71 058 0.62
Dtree 75.7 76.7 78.0 83.2 62.8 83.7 72.1 77.1 0.72 058 0.62
SVM 75.7 76.9 81.4 76.7 70.5 82.1 75.2 72.2 0.72 0.58 0.63

Table 6.4: Results on CB513 dataset using di erent combinaton strategies. MEMMP, CRFP: p refers to di erent

way to compute the labels;p = 1. marginal model; p = 2: Viterbi algorithm
Combination  SOV(%)  Q3(%) Ho (%) Qc° (%) EC(%) Qi (%) QZ°(%) Qg°(%) Cw Cc Ce

Method

None 75.6 76.7 78.0 83.2 62.7 83.6 72.1 77.2 0.71 058 0.62
MEMM 1 75.6 76.7 77.8 83.6 62.1 83.7 71.8 77.8 0.71 058 0.62
MEMM 2 76.0 76.8 78.2 83.4 62.2 83.7 72.0 78.0 0.71 058 0.62
HOMEMMs 2 76.1 76.9 78.3 83.4 62.4 83.6 72.1 77.9 0.71 059 0.62
PSMMEMMs 2 76.1 76.9 78.3 83.3 62.2 83.6 72.0 78.0 0.71 058 0.62
CRF! 76.2 77.0 78.3 83.4 63.4 83.7 72.1 78.0 0.72 058 0.63
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Table 6.5: Summary of computational costs and e ectivenesdor di erent
combination strategies. H/L/M: high/low/medium computat ional costs;
+/ : improvement/no improvement over the baseline results withhout com-
bination

Train Test | Helices Sheets Coil Segment
DTree M L +
SVM H H + +
MEMMs H L +
HOMEMMs H L +
PSMEMMs H L +
CRFs H L + + +

show that graphical models are consistently better than thewindow-based
methods. In particular, CRFs improve the predictions for both helices and
sheets, while sheets bene tted the most. Our goal is to evalate di erent

combination methods and provide a deeper understanding of ¢w to e ec-
tively improve secondary structure prediction. Although our discussion is
focused on combining predictions from a single secondary rsicture predic-
tion system, all the methods discussed above can be appliectcombine
results from di erent systems and include other physio-chenical features.
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6.4 Thesis work: CRFs for Parallel and Anti-parallel
-sheet Prediction

As discussed in the previous section, the major bottleneckdr current struc-
ture prediction systems is the -sheets, which involves long-range interac-
tions in 3-D space. Therefore designing an algorithm that eectively detects

-sheets not only will improve the prediction accuracy of seondary struc-
tures, but also helps to determine how they aggregate on eaobther to form
tertiary structures. In this section, we focus on the predidion of parallel and
antiparallel -sheets. Speci cally, we are interested in answering two ges-
tions: (1) given a residue in a protein sequence, how to accately predict
whether it belongs to -strands or not? (2) given the secondary structure
assignment of a protein, how to predict which two strands fom a parallel
or antiparallel pair and how each -strand pair is aligned?

The rst question can be seen as a standard secondary structe pre-
diction problem except that we are only concerned with a binay classi -
cation problem ( -sheet or non- -sheet). Therefore all the approaches for
general secondary structure prediction can be applied. In ddition, vari-
ous approaches have been proposed speci cally to capture ¢hlong-range
interaction properties of -sheets. Mamitsuka & Abe used stochastic tree
grammars for -sheet detection (Mamitsuka & Abe, 1994). Pollastri et al.
applied bi-directional recurrent neural networks (BRNN) t o both 3-state and
8-state secondary structure prediction (Pollastri et al., 2002). In the mean-
time, there are also a lot of attempts to address the second gestion. Baldi
et al. extracted a number of statistics informative of the -strands, then
feed them into a bi-directional recurrent neural network (BRNN). Steward
& Thornton developed a set of tables with the propensities toform -sheets
for each pair of amino acids using an information theoretic pproach (Stew-
ard & Thornton, 2002).

6.4.1 Feature extraction

Previous methods have boosted the prediction of -sheet to some extent,
however, the accuracy is still very low and the problem is farfrom being
solved. Recently Meiler & Baker improved the secondary strature predic-
tion accuracy by 7-10% on average by extending the sequencdignment
pro les to the non-local tertiary structure neighbors as an additional input
(Meiler & Baker, 2003). This demonstrates that close neighlors in three-
dimensional space contain very useful information for stricture prediction.
By knowing the alignment of the -sheets, we can directly infer most of the
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non-local close neighbors. Therefore we propose to improwbe -sheet de-
tection by combining two kinds of features in CRFs, including the predicted

alignments of -strands as long-range information, and the window-based
local information.

Long-range interaction features for -sheets Many sequence-based
statistics and physico-chemical properties have been in&igated for pre-
dicting the -sheet partnership. The features we use for detecting the -
strand pairing include: the pairwise information values (Seward & Thorn-
ton, 2002), the distances between paired strands and the lgyths of parallel
and antiparallel -strands respectively.

A pairwise information values were derived for the prefereges of an
amino acid for the residues on its pairing strand, followingan information
theory approach (Steward & Thornton, 2002). The values are he self-
information scores s-scoref 1), which accounts for the propensities of amino
acid A1 in a parallel (or antiparallel) -strand, and pair-information scores
p-scoreA1, Ao, m), which calculates the propensities of an amino acid\; to
have another amino acidA» on its pairing strand with an o set of m. The
total score for a particular alignment of XjXj+1 ::: Xj+w and XjoXjos1 :::Xjos
(w is the length of the segment) is the sum of the self-informatin value and
the pair-information value, i.e.

X
pairwise score = (s-scoreki+j) + s-score(Xjorj) +
j=1

(p-scorefXi+j; Xio+j; K) + ( Xjorj; Xj+j; K))) (6.8)
k= 2

Histograms of distances between parallel and antiparallel -strand pairs
are plotted against the non-homologous 2013 protein sequens in the train-
ing set of PSIPRED (Jones, 1999) (see Fig. 6.4-(l, I1l)). Fromthe plots,
we can see that (1) the number of antiparallel strands is mucharger than
that of parallel strands. The ratio is around 2.5:1; (2) the average distance
between parallel strand pairs is much longer than that of antparallel pairs
since the anti-parallel -strands are usually connected by a short -turn
while the other comes with a long -helix to form a motif. From
Fig. 6.4 (lll, IV), we can see that the lengths of antiparallel -strands are
generally shorter than the parallel ones.
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Figure 6.4: Histograms of the distances between paired strads in parallel
and antiparallel -strand (I, Il); Histograms of the lengths of parallel and
antiparallel -strand (l1I, 1V)

-sheet alignment prediction We formulate the problem of -sheet
alignment as follows: given a protein sequence& = Xi1X»:::Xy and the
secondary structure labels (or predicted labels)y = yiyo:::yn, Where
yi 2 fH;E;Cg, predict the -strand pairs for each residuex; if its as-
signment y; is E and the direction of the alignment for each pair (parallel
or antiparallel). Notice that by de nition the number of pai red residues for
each amino acid can be 1 or 2 only. To identify the -sheet alignment, we
use an exhaustive search over all possible alignments of gdhirs of -strands
in the sequence. The detailed algorithm is shown in Table 6.6



Table 6.6: Alignment algorithm for parallel and antiparall el -sheet prediction

Input:  a set of -strand segments in the query protein sequencéx;iXjz:::Xjw,jj = 1:::Bg,
where B is the number of segments

Output: a set of residue pairs and the alignment direction fa each pair f(x;; Xj;Rjj )9, where
Rjj 2 f parallel, antiparallelg

Step 1. Initialize the active lists A = ;, and setB = ;

Step 2: For each pair of segments, nd the alignment and its diection whose alignment score is
the highest and put it into the active list A. The alignment score is de ned as a linear
combination of the long-range features.

Step 3:  Sort the active list A

Step 4: lterate until A = ; or all the residues has more than 1 pairs irB:

Remove the alignment$ with the highest score in current A;
if any residue in$ has no more than 2 paired residues ifB, put $ in B;
Step 5:  Output the residue pairs and their alignment directions in B

06 NOILDId3dd FHNLONHLS AIVANOD3IS NIFLOdd "9 d31dVHO
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6.4.2 Experiment Results

If the true secondary structure assignments are not availake, we use the
predicted labels instead and set a threshold on the alignmenscores as ad-
ditional stopping criterion in step 4. We use the o set of the predicted

alignment from the correct register to evaluate the quality of the alignment

(Steward & Thornton, 2002). The distribution of the o set fo r those cor-

rectly predicted pairs is shown in Figure 6.5. From the resuls, we can see
that around 55% of the alignment has been predicted correcil and over 90%
percent of the alignment has an o set of less than 2. Given theencouraging
results, we can use this information as additional 3-D featwes to improve

our rst-round secondary structure prediction.

0.7 T

0.6

Percentage at Offset

0 5 10 15 20 25

Offset from the Correct Register

Figure 6.5: Histograms of O set from the correct register fa the correctly
predicted -strand pairs on CB513 dataset
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Table 6.7: Comparison results of -sheet prediction using dieren ap-
proaches on RS-126 dataset and CB513 dataset by seven-foldross-
validation

RS126 dataset CB513 dataset
Method Q2 QF QF Ce || Q2 QF QF <C
Window- 87.48 60.30 75.87 60.10] 88.30 64.73 77.00 63.51
based
method
-strand 76.56 50.34 55.10 N/A || 72.25 48.33 53.88 N/A
alignments
CRFs 88.20 64.78 74.98 61.50 || 89.43 68.93 75.68 64.49
Further improvement on general -sheet prediction Based on our

discussion in Section 6.3.1, CRFs have been proved to be mostective for

score combination and handling the long-range interactios. Therefore in
the re ned method, we have two types of features for CRFs: ones the
prediction scores using window-based method, which is theasne setting as
Section 6.3.1; the other is the long-range information, i.e the strand pairing

information de ned as follows:

1 ify; 1= kqyi = ke and x; 2 B;

ket (KB Yi 15%4) 0 otherwise.

(6.9)

whereB is output from the alignment algorithm. In this way, we can combine
both the local information and long-range interactions for better prediction.

Table 6.7 lists the results of our re ned method compared wih other ap-
proaches. From the results, we can see that our algorithm casiderably
helps the prediction for -sheets, especially in sensitivity with around 6%
improvement.



CHAPTER 6. PROTEIN SECONDARY STRUCTURE PREDICTION 93

6.5 Thesis work: Kernel CRFs for Secondary Struc-
ture Prediction

Our previous results have demonstrated that CRFs can e ectiely handle the
long-range interactions in -sheets for score combination. In all of the work,
however, conditional random elds are based on explicit feture represen-
tations. Since it is still unclear how the sequences encodéhe evolutionary
information to determine the structures and functions, it would help to im-
prove the predictions if we can explore this implicit information from the
multiple sequence alignment. In this section, an extensiorof conditional
random elds, kernel conditional random elds (KCRFs), is used to permit
the use of implicit features spaces through kernels (La ery et al., 2004).

6.5.1 Kernel Conditional Random Fields

Similar to CRFs, kernel CRFs de nes the conditional probability as the
following form:

_ 1Y
P(Yjx)= - expf (x;c;Ye); (6.10)

C2CG

where f () is the kernel basis function, i.e. f() = K (;(X;C;¥)). One
way to de ne the kernels over a structured graph is a factoriation of a
kernel over the observations and an indicator function overthe labels, i.e.
K ((X;¢;¥e); (X% yd) = K((x;0); (x% D) (ye;¥9). By representer theorem,
the minimizer of the regularized negative log-loss

X X I
R (f )= B (xieye) + Siitlik

| C
has the form

X X . .
f ()= DK G erye)): (6.11)

j =1 CZCG(j) ye2Y jci

Notice that the dual parameters depend on all the clique label assign-
ments, not limited to the true label, which results in an extr emely large num-
ber of parameters. Therefore a greedy clique selection algthm is proposed
to incrementally select cliques that reduce the regularizd risk. The algo-
rithm maintains an active set of cliques with labels, where each candidate
clique can be represented by a basis functiom() = K (;(x;;¢;¥e)) 2 Hk .
To evaluate a candidateh, one strategy is to compute thegain sup R (f)
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R (f + h), and choose the candidateh having the largest gain. This
presents an apparent di culty, since the optimal parameter cannot be
computed in closed form, and must be evaluated numericallyFor sequence
models this would involve forward-backward calculations br each candidate
h, the cost of which is prohibitive. Therefore the functional gradient descent
approach is adopted, which evaluates a small change to the ctent function.
For a given candidate h, consider addingh to the current model with small
weight "; thus f 7! f +"h. we haveR (f +"h) = R (f)+"dR (f;h)+ O("?),
where the functional derivative of R at f in the direction h is computed as

drR (f;h)= Ef[h] E[h]+ H:hik (6.12)

where E[h] = P j P h(x0);c;yc) is the empirical expectation and Es [h] is

the model expectation conditioned onx. The idea is that in directions h

where the functional gradient dR (f;h) is large, the model is mismatched
with the labeled data; this direction should be added to the npdel to make

a correction. An alternative to the greedy functional gradient descent al-
gorithm above is to estimate parameters }, for each candidate using mean
eld approximation. A quasi-Newton method can be used to esimate the

parameters to sup R (f;h).

6.5.2 Experiment Results

The expensive computational costs of KCRFs prevent us fromdrge scale
evaluation. Therefore in our experiment, we use the RS126 daset with

a subset of 5 and 10 sequences respectively as the training tdaand the
rest as testing data. For each size we perform 10 trials wherthe training

sequences are randomly sampled from the whole set. The inpdgatures to
kCRFs are PSI-BLAST pro les and 300 cliques are selected usig greedy
clique selection algorithm. We compare the results with otter state-of-art
methods using window-based method with SVM classi er. All methods use
the same RBF kernel and the results are shown in Table 6.8. Fmm the
results, we can see that kKCRFs achieve slight improvement tan SVM in

overall prediction accuracy.

Further information can be obtained by studying the transition bound-
aries, for example, the transition from \coil" to \sheet." F rom the point of
view of structural biology, these transition boundaries may provide impor-
tant information about how proteins fold in three dimension and those are
the positions where most secondary structure prediction sgtems will fail.
The transition boundary is de ned as a pair of adjacent positions (i;i + 1)



CHAPTER 6. PROTEIN SECONDARY STRUCTURE PREDICTION 95

5 protein set 10 protein set

Method Accuracy std | Accuracy std
kCRF (v) 0.6625 0.0224, 0.6933 0.0276
kCRF (v+e) 0.6562 0.0202f 0.6933 0.0272
SVM 0.6509 0.0307, 0.6875  0.0235

Table 6.8: Per-residue accuracy of di erent methods for seendary structure
prediction, with the RBF kernel. KCRFs (v) uses vertex cliques only; KCRF
(v+e) uses vertex and edge cliques.

5 protein set 10 protein set
Method Accuracy std | Accuracy std
KCRF (v) 0.1097  0.0271] 0.1462  0.0235
KCRF (v+e) 0.1114  0.0250 0.1522 0.0214

SVM 0.0667 0.0313 0.1066 0.0311

Table 6.9: Transition accuracy with di erent methods.

whose true labels di er. We have a hard boundary de nition, i.e. it is clas-
si ed correctly only if both labels are correct. This is a very hard problem,
as can be seen in Table 6.8, Table 6.9, and kCRFs are able to deke a
considerable improvement over SVM.

6.6 Summary

By now we have studied the use of conditional graphical modsl for pro-
tein secondary structure prediction from three perspecties, including score
combination, -sheet prediction and allowing kernels to explore the evolu
tionary information within the sequence. The experiment results demon-
strate improvement over the state-of-art methods and therdore con rm our
hypothesis of graphical models for protein structure predction.

As we know, protein secondary structure prediction has beemxtensively
studied for decades (Cu & Barton, 1999; Rost, 2001) and evey break-
through is directly associated with the advances of sequemcanalysis and
the accumulation of more structural data. The current prediction accuracy
is still around 80% and far from the predicted upper-bound 0f85-90% (Rost,
2001). The solutions are many-folds: one direction is to ctdct all the pos-
sible arrangements of protein folds, which are believed to & a very limited



CHAPTER 6. PROTEIN SECONDARY STRUCTURE PREDICTION 96

number, and then search against these folds when given a newgiein se-
guence; another direction is to provide a deeper understaridg of the protein

folding process and discover new informative biological fgures. We believe
the graphical models, combined with advances in these dir¢ions, will bring

a new breakthrough in this area.



Chapter 7

Protein Tertiary Structure
Prediction

It is widely believed that protein structures reveal important information
about the function, activity, stability and subcellular lo calization of the
proteins, and the mechanisms of protein-protein interactons in cells. An
important issue in inferring tertiary structures from amin o-acid sequences is
how to accurately identify supersecondary structures (als termed \protein
folds™) arising from typical spatial arrangements of well-de ned secondary
structures. In silico protein super-secondary structure prediction (or protein
fold recognition) seeks to predict whether a given protein squence contains
a putative structural fold (usually represented by a training set of instances
of this fold) and if so, locate its exact position within the sequence.

Traditional approaches for protein fold prediction either search the se-
guences in the database that are similar to the training seqgences, such as
PSI-BLAST (Altschul et al., 1997), or match against an HMM pr o le built
from sequences with the same fold, such as SAM or HMMER (Krogtet al.,
1994; Durbin et al., 1998; Karplus et al., 1998). To date, thee has been sig-
ni cant progress in predicting certain types of well-de ned supersecondary
structures, such as -hairpins and -turns, using sequence similarity based
approach. However, these methods work well for simple foldsvith strong
sequence conservations, however, fail when the sequencensarity across
proteins is poor and/or there exist long-range interactiors between elements
in the folds such as those containing -sheets. These cases necessitate a
more expressive model, which is able to capture the structua-revealing fea-
tures (e.g. the long range interactions) shared by all protens with the same
fold.

97
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7.1 Materials and Evaluation Measure

In this chapter of the thesis, we are trying to solve the probem of tertiary
fold (motif) recognition. Speci cally, our task starts wit h a target fold F
that the biologists are interested in. There are no constraits about F, which
can be either a supersecondary structure with a few number ofecondary
structure elements, or a large complex fold occupying the wble domain. All
the proteins with resolved structures deposited in the PDB @n be classi ed
into two groups, i.e. those take the target fold F and those not. These
proteins together with the labels can be used as training dad. Our goal is
to predict whether a testing protein, without resolved structures, takes the
fold F in nature or not; if they do, locate the starting and ending positions
of the subsequence that takes the fold.

Our task involves two sub-tasks: one is the classi cation poblem, that is,

(y; =0;1), predict the label of a new testing sequence& new; the other sub-
task is not that straightforward to describe in mathematical settings. We
can think of the target fold as some patterns (or motifs in bianformatics
terminology). Given a set of instances of the pattern, incluing both the
positive examples (subsequences with the patterr-) and the negative ex-
amples (sequences without the patternF), we want to predict whether the
pattern appears in any subsequence of the testing proteinsThe rst ques-
tion can be answered easily if we can solve the second one sessfully. A key
problem in the second task is how we can represent the desctipe patterns
(or motifs) using mathematical notations.

This task falls within the general studies in protein fold (or motif) clas-
si cation, but diers in two aspects: rst, the target fold ¢ omes directly
from the focused study and experiments by the biologists (inour case, the
collaborators that we worked with have been studying a partcular fold for
a long time), rather than from the databases of common folds.Usually the
positive proteins with resolved structures are quite limited, although the fold
is believed to be common in nature. Second, the problem we airto address
is much more di cult than the common fold classi cation beca use we do
not have as many positive examples and they do not share highesjuence
similarities. In other words, the patterns that we are tryin g to identify have
not been represented clearly in the training data. This is the main motiva-
tion why we want to develop a richer graphical model, rather than a simple
classi er. Notice that our models can be used in the traditional fold recog-
nition or threading setting, however, its complexities canbe paid o best in
predicting those di cult protein folds.
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To testify the e ectiveness of di erent recognition models, we choose
the right-handed -helix and leucine-rich repeats as examples in our exper-
iments:

The right-handed parallel -helix  fold is an elongated helix-like struc-
ture with a series of progressive stranded coilings (calledungs), each of
which is composed of three parallel -strands to form a triangular prism

shape (Yoder et al., 1993). The typical 3-D structure of a -helix is shown
in Figure 7.3(A-B). As we can see, each basic structural uniti.e. a rung,
has three -strands of various lengths, ranging from 3 to 5 residues. Ta
strands are connected to each other by loops with distinctie features. One
loop is a unique two-residue turn which forms an angle of appsximately

120 between two parallel -strands (called T-2 turn ). The other two loops
vary in size and conformation, which might contain helix or even -sheets.
The -helix structures are signi cant in that they include pectate lyases,
which are secreted by pathogens and initiate bacterial infetion of plants;

the phage P22 tailspike adhesion that binds the O-antigen ofSalmonella
typhimurium; and the P.69 pertactin toxin from Bordetella p ertussis, the
cause of Whooping Cough. Therefore it would be very intereshg if we can
accurately predict other unidentied -helix structure proteins.

The leucine-rich repeats are solenoid-like regular arrangement of -

strand and -helix, connected by coils. They are believed to be prevaldnn

proteins and can involve in a wide spectrum of cellular and bachemical
activities, such as various protein-protein interaction processes (Kobe &
Deisenhofer, 1994). There are 41 LLR proteins with known stucture in

PDB, covering 2 super-families and 11 families in SCOP. The LR fold is

relatively easy to detect due to its conserved motif with mary leucines in
the sequence and short insertions. Therefore it would be mar interesting
to discover new LLR proteins with much less sequence identjt to previous
known proteins.

7.2 Thesis work: Segmentation CRFs for General
Protein Fold Recognition
Protein folds or super-secondary structures are frequent mangement pat-

terns of several secondary structural components: some cgonents are
quite conserved in sequences or prefer a speci c length, ansome might
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(A) (B)
Figure 7.1. Graph structure of - - motif (A) 3-D structure (B) Pro-
tein structure graph: node: Green= -strand, yellow= -helix, cyan=caoil,
white=non- - - (I-node); edge: E1 = fblack edgeg and E, = fred edges.

form non-covalent bonds with each other, such as two -strands in a paral-
lel -sheet. To model the protein fold better, we de ne the modelsbased on
the protein structural graph, in which the nodes represent £condary struc-
ture modules of xed or various length (instead of individual residues) and
the edges between nodes indicate the interactions of the carsponding sec-
ondary structure elements in 3-D. A segmentation conditioral random elds
can be used to de ne a probability distribution over all possible structural
con gurations (i.e., segmentations and functional labelng of the delineated
segments) underlying a given protein sequence. Given a prein sequence,
we can search for the best segmentation de ned by the graph ahdetermine
if the protein has the fold.

7.2.1 Segmentation Conditional Random Fields

Before delving into the details of the model, we rst de ne the protein
structural graph, which is an annotated graph G = fV; Eg, whereV is the
set of nodes corresponding to the speci cities of structurh units such as
motifs, insertions or the regions outside the fold (which ae unobserved and
to be inferred), and the amino acid residues at each position(which are
observed and to be conditioned on).E represents the set of edges denoting
dependencies between the objects represented by the nodasich as location
constraints (e.g. state transitions between adjacent nodg in the sequence
order), or long-range interactions between non-neighborig motifs and/or
insertions (e.g. hydrogen bonding between two component -strands). The
latter type of dependencies is unique to the protein structual graph for
complex folds and causes much of the di culties in solving sich graphical
models. Figure 7.1 shows an example of- - motif.

In practice, one protein fold might correspond to several rasonable
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structural graphs given di erent semantics for one node. There is always a
tradeo between the graph complexity, delity of model and t he real com-
putational costs. Therefore a good graph is the most expresge one that

captures the properties of the protein folds while retaining as much simplic-
ity as possible. There are several ways to simplify the graphfor example we
can combine multiple nodes with similar properties into one or remove some
edges that are less important or less interesting to us (notie that currently

all the protein structural graphs are constructed manually based on domain
knowledge, although automatic generation is possible).

The random variables corresponding to the nodes in PSG are a®sllows:
M denotes the number of nodes in PSG. Notice thaM can be either a con-

Mmax IS the maximal number of nodes allowed (usually de ned by thebiol-

ogists). W; = fpi;g;sigis the label for the i™ node, wherep;, g, s; are the
starting position, ending positions and the state assignmet in the sequence,
which completely determine the node according to its semarits de ned in

the PSG. Under this setup, a value instantiation of W = fM; f W;gg de nes

a unique segmentation and annotation of the observed protei sequencex.

A probabilistic distribution on a protein structural graph can be postulated
using the potential functions de ned on the cliques of nodes induced by
the edges in the graph (Hammersley & Cliord, 1971). The condtional

probability of W given the observationx is de ned as

_ 1Y X
P(Wjx) = 2 exp( kfk(X; We)); (7.1)
c2Cs k=1

wheref is the ki feature de ned over the cliquesc, such as the secondary
structure assignment or the segment length. Note thatGs can be a huge set,
and eachW; can also include a large number of nodes due to various levels
of dependencies. Designing features for such cliques is ntnivial because
one has to consider all the joint con gurations of all the nodes in a clique.
Usually, the spatial ordering of most protein folds is known a priori,
which leads to a deterministic state dependency betweerW; and Wi.1 .
This leads to a simpli cation of the \e ective" clique sets ( those need to be
parameterized) and the relevant feature design. As a resultonly pairs of
segment-speci ¢ cliques that are coupled needs to be congded (e.g., those
connected by the undirected \red" arc in Figure 7.1, which leads to the
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following formulation:

W X
exp( kFk(X Wi W) (7.2)
i=1 k=1

. 1
P(Wjx)= =
(Wix) = 3
whereW , denotes the spatial predecessor (i.e., with small positioindex) of
W; determined by a \long-range interaction arc". Technically, neighboring
nodes must satisfy the constraints on the location indexesi,e. g 1+1= p;.
We omit it here for presentation clarity.

7.2.2 E cient Inferences via Belief Propagation

Similar to CRFs, we estimate the parameters x by minimizing the regular-
ized negative loss:

XX k K2
R ()= WFrOGwi;w ) logZ + 5
i=1 k=1

To perform the optimization, we need to seek the zero of the st derivative,
ie.
@r_X
== (fkwisw ) EpwjxgfkOGWEW DD+ (7.3)
@
where Ep sjx)[fk(X; Wi; W )] is the expectation of feature fy(x; Wi; W ;)
over the model. The convexity property guarantees that the ot corre-
sponds to the optimal solution. Since there is no closed-fon solution to
(7.3), iterative searching algorithms have to be applied.
Similar to CRFs, we still have an e cient inference algorith m as long as
the graphs do not have crossing edges. We rede ne the forwardrobability
<1y ,>(ryr) as the conditional probability that a segment of state y; ends
at position r given the observation x;+; ::: X, and a segment of statey,
ends at position|. Let\! " be the operator to get the predecessor state
and \ " for successor state (the value is known if the state transiton is
deterministic). The recursive step can be written as:

X X

ay > (hyr) = ay > (YY) <qoys (P Ly )exp( wfe(wiw ));
p; p% q° k

where w is the ending segment from position p to r with state y, and

w is the spatial predecessor segment determined by a \long-rege inter-
action arc" from p°to g° with state y® The range over the summation is
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3 sodlh S3)

a, soiP-1, S2)

0 0

Figure 7.2: An example of forward algorithm for the graph de ned in Figure

7.1 (B). x/y-axis: index of starting/end residue position; green circle: target

value; red circle: intermediate value. (Left) calculation for <g.sy>(r; S3)

for segment S3 with no direct forward neighbor; (right) calculation for
<0:Sy> (I S4) for segmentS, with direct forward neighbor S;

P

. P 1 Py 041 . . .
:):r2+‘11+1 E%H‘? L E%H , where 1 = maxlength(y), *» = minlength( y).

Then the normalizer Z =  <oyyga: > (N;Yend). Figure 7.2 shows a toy exam-
ple on how to calculate the forward probability.

Similarly, we can de ne the backward probability <., > (l;y,) as the
probability that a segment of state y, ends atl givenx;+1 :::X, and a segment
of state y; ends )%tl’. Then we have «

<y > (hy1) = <y > (P 1Y) <o 1;y>(qd, yi) exp( kFOGwiw);

@ piq k
wherew is the starting segment from I+1 to ¢®with state’ yi and w is the
spatial successor segment from p to g at state y. Given the b&evard and
forward algorithm, we can compute the expectation of each fature fy in
(7.3) accordingly. For a test sequence, we search for the segntation that
maximizes the conditional likelihood P(Wjx). Dene <.y >(ryr) as the
best score over all possible segmentation con gurations oXj+; ::: X, that
ends at statey,, then we have

X
<y > (LYY qoy> (P Lyr)exp( kfk(x;w;w )):

<ty > (ryr) = max
i R .

qO

The best segmentation can be traced back from<oy.. > (N;Yend), Where
N is the number of residues in the sequence.
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c D@

&35

Figure 7.3: 3-D structures and side-chain patterns of -helices; (A) Side view
(B) top view of one rung (C) Segmentation of 3-D structures (D) protein
structural graph. E1 = fblack edgey and E2 = fred edge (Figure (A) and
(B) are adapted from (Bradley et al., 2001))

In general, the computational cost of SCRFs for the forwardbackward
and Viterbi algorithm will be polynomial to the length of the sequenceN.
In most real applications of protein fold prediction, we cande ne the graph
so that the number of possible residues in each node is much stfer than
N or xed. Therefore the nal complexity can be reduced to approximately
O(N?).

7.2.3 Experiment Results

Protein structural graph for -helix fold  Currently there exist 14
protein sequences with -helix whose crystal structures have been known.
Those proteins belong to 9 di erent SCOP families (Murzin et al., 1995) (see
Table 7.1). Computationally, it is very dicult to detect th e -helix fold
because proteins with this fold share less than 25% similat§ in sequence
identity, which is the \twilight zone" for sequence-based methods, such as
PSI-BLAST or HMMs. Traditional methods for protein family ¢ lassi cation,
such as threading, PSI-BLAST and HMMs, fail to solve the -helix recog-
nition problem across di erent families (Bradley et al., 2001). Recently, a
computational method called BetaWrap, has been proposed tgredict the
-helix speci cally (Bradley et al., 2001). The algorithm \w raps” the un-
known sequences in all plausible ways and check the scoresdee if any wrap
makes sense. The cross-validation results in the protein da bank (PDB)
seem promising. However, the BetaWrap algorithm might su er from hand-
coding many biological heuristic rules so that it is prone toover- t the known
-helix proteins and hard to generalize for other predictiontasks.
From previous literature on -helix, there are two facts important for
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accurate prediction: 1) the -strands of each rung have patterns of pleating
and hydrogen bonding that are well conserved across the supfamily; 2) the
interaction of the strand side-chains in the buried core arecritical determi-
nants of the fold (Yoder & Jurnak, 1995; Kreisberg et al., 20@). Therefore
we de ne the protein structural graph of -helix as in Figure 7.3 (D).

There are 5 states in the graph altogether, i.e. s-B23, s-T3s-B1, s-T1
and s-I. The state s-B23 is a union of B2, T2 and B3 because thesthree
segments are all highly conserved in pleating patterns and aombination
of conserved evidence is generally much easier to detect. Wk the length
of S-B23 and S-B1 as 8 and 3 respectively for two reasons: rsthese are
the number of residues shared by all known -helices; second, it helps to
limit the search space and reduce the computational costs. fie states s-T3
and s-T1 are used to connect s-B23 and s-B1. It is known that te -helix
structures will break if the insertion is too long. Therefore we set the length
of s-T3 and s-T1 so that it varies from 1 to 80. s-l is the non- -helix state,
which refers to all those regions outside the -helix structures. The red edge
between s-B23 is used to model the long-range interaction iween adjacent

-strand pairs. For a protein without any -helix structures, we de ne the

protein structural graph as a single node of state s-I.

To determine whether a protein sequence has the -helix fold, we de ne
the score as the log ratio of the probability of the best segmentation to the

.. . _ maxs P (Sjx)

probability of the whole sequence as one state s-I, i.e. = log FRINS 1579
The higher the score , the more likely that the sequence has a -helix fold.
We did not explicitly model the long-range interactions between B1 strands
since the e ect is relatively weak given only 3 residues in 81 segments while
adding it in makes the graph much more complicated. Howeverwe do use
the B1 interactions as a lter in Viterbi algorithm: specic ally, (y) will
be the highest value whose corresponding segmentation al$@ave alignment
scores for B1 higher than some threshold set using cross-i@dation.

Feature extraction SCRFs provide an expressive framework to handle
long-range interactions for protein fold prediction. However, the choice of
feature function fy plays a key role in accurate predictions. We de ne two
types of features for -helix prediction, i.e. node featuresand pairwise fea-
tures.

Node featurescover the properties of an individual segment, including:
a) Regular expression template: Based on the side-chain alteating pat-
terns in B23 region, BetaWrap generates a regular expressiotemplate to
detect -helices, i.e. X XX X X, where matches any of the hydroph o-
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bic residues asfA, F, I, L, M, V, W, Y g, matches any amino acids ex-

cept ionisable residues adD, E, R, Kg and X matches any amino acid
(Bradley et al., 2001). Following similar idea, we de ne the feature function

frsT (X;S) equal to 1 if the segmentS matches the template, and 0 other-
wise.

b) Probabilistic HMM pro les: The regular expression template as above
is straightforward and easy to implement. However, sometines it is hard to

make a clear distinction between a true motif and a false alam. Therefore
we built a probabilistic motif pro le using HMMER (Durbin et al., 1998)
for the s-B23 and s-B1 segments respectively. We de ne the &ure func-

tion fumm 1(X;S) and fyumm 2(X; S) as the alignment scores ofS against the
s-B23 and s-B1 pro les.

c) Secondary structure prediction scores: Secondary structes reveal signif-
icant information on how a protein folds in three dimension. The state-of-art

prediction method can achieve an average accuracy of 76 - 78%% soluble
proteins. We can get fairly good prediction on alpha-helix ad coils, which

can help us locate the s-T1 and s-T3 segments. Therefore we de the

feature function fgsy (X; S), fsse(X;S) and fssc(x; S) as the average of the
predicted scores over all residues in segmel®, for helix, sheet and coil re-
spectively by PSIPRED (Jones, 1999).

d) Segment length: It is interesting to notice that the -helix structure has

strong preferences for insertions within certain length ranges. To consider
this preference in the model, we did parametric density estnation. Several
common functions are explored, including Poisson distribtion, negative-

binomial distribution and asymmetric exponential distrib ution, which con-

sists for two exponential functions meeting at one point. Weuse the latter

one since it provides a better estimator than the other two. Then we de ne
the feature function f 1(x;S) and f3(x; S) as the estimated probability of

the length of segmentS as s-T1 and s-T3 respectively.

Pairwise features capture long-range interactions between adjacent -
strand pairs, including:
a) Side chain alignment scores: BetaWrap calculates the alignent scores of
residue pairs depending on whether the side chains are budeor exposed. In
this method, the conditional probability that a residue of t ype X will align
with residue Y, given their orientation relative to the core, is estimated
from a -structure database developed from the whole PDB (Bradley gal.,
2001). Following similar idea, we de ne the feature functim fsas(x; S; S9
as the weighted sum of the side chain alignment scores f@ given S°if both
are s-B23 segments, where a weight of 1 is given to inward parand 0.5 to
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the outward pairs.

b) Parallel -sheet alignment scores: In addition to the side chain posion,

another aspect is to study the di erent preferences for pardlel and anti-

parallel -sheets. Steward & Thornton derived the \pairwise information

values" (V) for a residue of type X given the residue Y on the paring

parallel (or anti-parallel) strand and the o sets of Y from t he paired residue
Y' of X (Steward & Thornton, 2002). The alignment score for two segments
X=X1:: Xm andy=xY1>:<::Ym is de ned as

score(x;y) = fFVIXigYgsi j)+ VIYIiX50 j))e:
i

Compared with the side chain alignment scores, this score ab takes into
account the e ect of neighboring residues on the paired strad. We de ne
the feature function fpas (x; S; S9 = scorg(S; S if both S and S%are s-B23
and O otherwise.
c) Distance between adjacent s-B23 segments: There are alsoahent pref-
erences for the distance between adjacent s-B23 segmentst i$ di cult
to get an good estimation of this distribution since the range is too large.
Therefore we simply de ne the feature function as the normaized length,
i.e. fois (x;S;S9 = M where is the mean and 2 is the variance.

It is interesting to notice that some features de ned above ae quite gen-
eral, not limited to predicting -helices only. For example, an important
aspect to discriminate a specic protein fold with others is to build HMM
pro les or identify regular expression templates for conseved regions if they
exist; the secondary structure assignments are essentiahilocating the el-
ements within a protein fold; if some segments have strong mferences for
certain length range, then the lengths are also informative For pairwise
features, the -sheet alignment scores are useful for folds in-family while
hydrophobicity is important for - or  -family.

Experiment results We followed the experiment setup described in (Bradley
et al., 2001): a PDB-minus dataset was constructed from the BB protein
sequences (July 2004 version) (Berman et al., 2000) with lsghan 25% sim-
ilarity to each other and no less than 40 residues in length. Tien the -helix
proteins are removed from the dataset, resulting in 2094 sagences in total.
The proteins in PDB-minus dataset will serve as negative exmples in the
cross-family validation and discovery of new -helix proteins. Since negative
data dominate the training set, we subsample 15 negative segnces that are
most similar to the positive examples in sequence identity 8 that SCRFs
can learn a better decision boundary than randomly sampling



Table 7.1: Scores and rank for the known right-handed -helices by HMMER, BetaWrap and SCRFs. 1. the
scores and rank from BetaWrap are taken from [3] except 1ktw ad leaO; 2: the bit scores in HMMER are not
directly comparable

SCOP family PDB-id | Struct-based HMMs | Seg-based HMMs BetaWrap * SCRFs
Bit score? Rank | Bit score? Rank Score Rank | -score Rank

P.69 pertactin 1ldab -73.6 3 -163.4 75 -17.84 1 10.17 1
Chondroitinase B 1dbg -64.6 5 -171.0 55 -19.55 1 13.15 1
Glutamate synthase lea0 -85.7 65 -109.1 72 -24.87 N/A 6.21 1
Pectin methylesterase 1qjv -72.8 11 -123.3 146 -20.74 1 6.12 1
P22 tailspike 1ltyu -78.8 30 -154.7 15 -20.46 1 6.71 1
lota-carrageenase 1ktw -81.9 17 -173.3 121 -23.4 N/A 8.07 1
Pectate lyase lair -37.1 2 -133.6 35 -16.02 1 16.64 1
1bn8 180.3 1 -133.7 37 -18.42 3 13.28 2
leeb -170.8 852 -219.4 880 | -16.44 2 10.84 3
Pectin lyase lidj -78.1 14 -178.1 257 | -17.99 2 15.01 2
1qgcx -83.5 28 -181.2 263 | -17.09 1 16.43 1
Galacturonase 1lbhe -91.5 18 -183.4 108 -18.80 1 20.11 3
lczf -98.4 43 -188.1 130 | -19.32 2 40.37 1
1rmg -78.3 3 -212.2 270 | -20.12 3 23.93 2
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Table 7.2: Groups of segmentation results for the known righthanded -helix

Group Perfect match | Good match OK match
Missing rungs 0 1-2 3 or more
PDB-ID lczf lair, 1bhe, 1bn8, 1dbg,| 1dab (left), 1ea0, 1tyu (right)
lee6(right), 1lidj, 1ktw (left),

1qcx, 1qjv, 1rmg
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Figure 7.4: Histograms of protein scores of known -helix proteins against
PDB-minus dataset. Blue bar. PDB-minus dataset; green bar: known -
helix proteins. 2076 out of 2094 protein sequences in PDB-mus have a
log ratio score of 0, which means that the best segmentation is a single
segment in non- -helix state

A leave-family-out cross-validation was performed on the ime -helix
families of closely related proteins in the SCOP database (Mrzin et al.,
1995). For each cross, proteins in the one-helix family are placed in the test
set while the remainder are placed in the training set as posive examples.
Similarly, the PDB-minus was also randomly partitioned int 0 nine subsets,
one of which are placed in the test set while the rest serve ashé negative
training examples. We compare our results with BetaWrap, a $ate-of-art
algorithm for predicting -helices, and HMMER, a general motif detection
algorithm based on a simple graphical model, i.e. HMMs. Thenput to
HMMER is a multiple sequence alignment. The best multiple ailgnments
are typically generated using 3-D structural information, although this is
not strictly sequence-based method. Therefore we generaletwo kinds of
alignments for comparison: one is the multiple structural dignments using
CE-MC (Guda et al., 2004), the other is purely sequence-baskalignments
by CLUSTALW(Thompson et al., 1994).

Table 7.1 shows the output scores by di erent methods and therelative
rank for the -helix proteins in the cross-family validation. From the results,
we can see that the SCRFs model can successfully score all kmo -helices
higher than non -helices in PDB. On the other hand, there are two proteins
(i.e. 1ktw and lea0) in our validation sets that are crystallized recently and
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thus are not included in the BetaWrap system. We test these two sequences
on BetaWrap and get a score of -23.4 for 1ktw and -24.87 for 1€a These
values are signi cantly lower than the scores of other -helices and some
of the non -helix proteins, which indicates that the BetaWrap might be
overtrained. As expected, HMMER did worse than SCRFs and BeaWrap
even using the structural alignments.

Figure 7.4 plots the score histogram for known -helix sequences against
the PDB-minus dataset. Compared with the histograms in simiar exper-
iment by BetaWrap (Bradley et al., 2001), our log ratio score indicates
a clearer separation of -helix proteins v.s. non -helix proteins. Only 18
out of 2094 proteins has a score higher than 0. Among these 18&gqieins,
13 proteins belong to the -class and 5 proteins belong to the alpha-beta
class in CATH database (Orengo et al., 1997). In Table 7.2 welao cluster
the proteins into three di erent groups according to the segnentation re-
sults and show examples of the predicted segmentation in eagroup. From
the results, we can see our algorithm demonstrates success locating each
rung in the known -helix proteins, in addition to predicting membership
of -helix motif.

7.3 Thesis work: Chain Graph Model for Predict-
ing Protein Fold with Structural Repeats

Our experiment results demonstrate that SCRFs are an e ectve model for
general protein fold recognition. However, the computatical cost for the
forward-backward probabilities and the Viterbi algorithm in SCRFs is at
least O(N 2) with an averaged size ofN at around 500. This complexity is
acceptable for small-scale applications, but is prohibitvely expensive for an
iterative search algorithm with thousands of iterations. In addition, it will
increase (exponentially) with the size of the cligues. Wherthe dependencies
between the labels of immediately adjacent segments are nateterministic,
for example -sandwiches or -trefoils, larger cliques will be induced and
thus make SCRFs infeasible for genome-wide applications.

To alleviate the problem, we focus on a special class of the nwplex pro-
tein folds | those with structural repeats, such as the -helices or the leucine
rich repeats (LLR) (Figure 7.5). They are de ned as repetitive secondary
or supersecondary structural units or motifs, such as -helices, -strands,

-sheets (colored regions is Fig 7.2), connected binsertions of variable
lengths, which are mostly short loops and sometimes -helices or/and -
sheets (gray regions in Fig 7.5). These folds are believed tbe prevalent
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Figure 7.5: Typical 3-D structure of proteins with -helices (left) and
leucine-rich repeats (right). In -helices, there are three strands: B1 (green),
B2 (blue) and B3 (yellow) and the conserved T2 turn (red). In LLR, there
is one strand (yellow) and insertions with helices (red).

in proteins and can involve in a wide spectrum of cellular andbiochemical
activities, such as the initiation of bacterial infection and various protein-
protein interaction processes (Yoder et al., 1993; Kobe & Disenhofer, 1994).

The major challenges in computationally predicting these blds include
the long-range interactions between their structural repets due to unknown
number of spacers (i.e., amino acid insertions), low sequee similarities be-
tween recurring structural repeats within the same protein and also across
multiple proteins, and poor conservation of the insertionsacross di erent
proteins. Therefore it is desirable to devise a model that cotains some
sequence motif modules re ecting structural conservation and at the same
time considers the long-range interactions between such gictural elements
of each repeat (as captured in the SCRF model) and even highesrder
dependencies between recurring repeats. Note that a naiveCRFs formal-
ism would be prohibitively expensive due to such higher-orér dependencies
across repeats, and it also lacks the device to incorporateeguence motifs.
Here we propose a chain graph model that makes use of both thendirected
SCRFs and the directed sequence motif models as building bbks, and in-
tegrates them via a directed network, which captures depenedncies between
structural repeats without computing a global normalizer required in a naive
SCREF formalism.

7.3.1 Chain Graph Model

A chain graphis a graph consisting of both directed and undirected arcs as
sociated with probabilistic semantics. It leads to a probablistic distribution
bearing properties of both the Markov random elds (i.e., allowing potential-



CHAPTER 7. PROTEIN TERTIARY STRUCTURE PREDICTION 113

i) @l &

QS
(G o
’e%o \

Figure 7.6: The chain graph model for protein folds with structural repeats.
The directed edges denote conditional dependencies of théitd node on the
parental nodes. Note that each of the round-cornered boxesepresents a
repeat-speci c component as SCRFs. An edge from the box dene depen-
dencies on the joint con guration of all nodes within the box.

based local marginals that encode constraints rather than ausal dependen-
cies) and the Bayesian networks (i.e., not having a hard-toeompute global
partition function for normalization and allowing causal i ntegration of sub-
graphs that can be either directed or undirected) (Lauritzen & Wermuth,
1989). A chain graph can be represented as a hierarchical cdnmation of
conditional networks. Formally, a chain graph over the variable setV that
forms multiple @bgraphs U can be represented by the following factored
form: P(V) = =,y P(ujparents(u)), where parents(u) denotes the union
of the parents of every variable inu. P (ujparents(u)) can be de ned as a
conditional directed or undirected graph (Buntine, 1995), which needs to be
locally normalized only.

In the protein structure graph, we de ne an envelop as a subgraph that
corresponds to one repeat containing both motifs and inseibns or the re-
gions outside the protein fold (which we termnull regions). It can be viewed
as a mega node in a chain graph de ned over the entire protein equence
and its segmentation. LetM denote the number of envelops in the sequence,

bel of the i envelop. Recall that the detailed con guration of one repea or
null region can be modeled by a plain SCRF model, therefore wde ne each
envelop as a single SCRF and leW;, denote all the hidden nodes in en-
velop i, i.e. Wy = fM(;);Y (5)g. Following the notational convention in the
previous section, we uselV;y; to represent a segment-speci ¢ clique within
envelopi that completely determines the con guration of the | segment in
the i envelop. To de ne a hierarchical segmentationof a protein sequence,
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our chain graph employs a directed graph on the top layer to deermine the
labels of the envelops and then models the conditional segmtation of the
envelops by an undirected SCRFs model. Putting everything bgether, we
arrive at a chain graph depicted in Figure 7.6.

Given a sequencex, the node value initiation of W = fM; fW(i)g;Tg
in the chain graph G de nes a hierarchical segmentation of the sequence as
follows:

P(Wjx)= P(M; fW(,g; Tjx) = P(M)\M P(Tijpx;Ti ;Wi 9)P(WoHixsTis T ;Wi )8

- (7.4)
P (M) is the prior distribution of the number of repeats in one protein and
for simplicity a uniform prior is assumed. P(Tijx;Ti 1;W; 1)) is the state
transition probability and we use the structural motif as an indicator for the
existence of a new repeat, i.e).(:

P(Tijx;Ti 1; Wi 1)) = P(TijQ)P(Qijx;Ti ;Wi 1y)s (7.5)
Qi=0;1
whereQj is a random variable denoting whether there exists a motif inthe i
envelop andP (Qijx;Ti 1;W(; 1)) is computed using a pro le mixture model
described in Section 7.3.2. For the third term, we de ne the onditional
probability using SCREFs, i.e.

| 1 KOX
PWuix;Ti; Ti 1; W 1)) = 5—exp( kKF kOGS Wiy s Wy )3
z
(i) j=1 k=1
(7.6)
where Z;y is the local normalizer over all the con gurations of W, and
W, is the spatial predecessor ofV); de ned by long-range interactions.

Similar to SCRFs, the parameters can be estimated using the regularized
negative log-loss,

X R k k2
R ( ) = [ kfk(X;W(i);j W (i)i ) IOgZ(I)] + 2 ; (77)
i=1 j=1 k=1

where the last term is a Gaussian prior over the parameters aa smoothing
term. To perform the optimization, we need to compute the rst derivative

and set it to zero, i.e.

@r M %o

@ FROGWey W )5)  Beowg i FkOG Wy sw g )lg+
i=1 j=1

(7.8)
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where EP(W(i)jX)[fk(X;W(i);j ;W ), )] is the expectation of featuref « (x; Wiy, ;w ;)

over all possible segmentation assignment of theth envelop.

Given a test sequence, we need to nd the segmentation with tk highest
conditional probability. One naive way is to compute the probability for all
possible segmentations, which is computationally too expesive. To solve
the problem, we use a greedy search algorithm: de ne(r;t) as the highest
score that the last envelop has state given the observationx;x, :::x,, and
' (r;t) = fm;yg is the corresponding \argmax" segmentation of envelopi.
Then the recursive step is

(rt) = max (rStYP(T = tix;t5 (FStYPW = wix; 15" (rGt9):

(7.9)

To summarize, using a chain graph model, we can e ectively iéntify
motifs based on their structural conservation and at the sane time take
into account the long-range interactions between repeat uits. In addition,
a chain graph also reduces the computational costs by usingptal normal-
ization. Since the side-chain interactions take e ect only within a small
range in 3-D space, our model can be seen as a reasonable apimation
for a global optimal model. For most protein folds, where the number of
possible residues in motif or insertions is much smaller tha N or xed, the
complexity of our algorithm can be bounded by O(N).

7.3.2 Mixture Pro le Model for Structural Motif Detection

A commonly adopted representation for motif- nding is the p osition weight
matrix (PWM), which records the relative frequency (or a related score) of
each amino acid type at the positions of a motif (Bailey & Elkan, 1994). Sta-
tistically, a PWM de nes a product of multinomial model for t he observed
instances of a motif, which assumes that the positions withi the motif are
independent of each other.

One important observation about the repetitive structural motif is that
motif instances close to each other in 3-D are more similar thn the instances
from distance locations or on di erent sequences due to theide-chain in-
teraction constraints. In addition, for motifs in the -class, the positions
with the side-chain pointing to the core are more conserved an the ones
pointing outward. To capture these properties of structural motifs, a mix-
ture prole model is applied. Given a multi-alignment of the structural
motif from the i-th protein, A;j = Aj1Ai2::: Ay whereH is the length of
the motif, we assume that it is generated from a mixture of a madif model
shared by all the proteins ( (V') and a sequence speci ¢ background model
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i(o)). Let @) parameterizes a product of multinomial models and i(0) be
a simple multinomial vector. Suppose there exist positionspeci ¢ features
of the motif fy, for example the side-chain pointing directions (inward or
outward) for each position, we de ne hidden variablesQ = fQj; g, for which
Qjj =1 means that the j th position in the it" protein is generated by model

@ and Qj = 0 means that it is from model i(o). We assume the prior
distribution of Qj is Bernoulli with parameter . Using the EM algorithm,

we can estimate , @ and @. To calculate P(Q;jx;T, 1 Wi 1)), we do
an online updating of @ and using the motif de ned by W; j,.

7.3.3 Experiment Results

In our experiments, we test our algorithm on two important pr otein folds in
-class, including the right-handed -helices and the leucine-rich repeats.

We followed the setup described in Section 7.2.3: a PDB-minsl dataset
was constructed from the PDB protein sequences and a leavexhily-out
cross-validation was performed. Since the ratio of negati® examples to pos-
itive examples is very large, we subsample only 15 negativeequences that
are most similar to the positive examples in sequence idertti in order to nd
a better decision boundary than randomly sampling. Two types of features
are de ned: one isnode feature which covers the properties of an individual
segment, including pattern matching templates and HMM pro les for con-
served motifs, secondary structure prediction scores fronPSIPRED (Jones,
1999) and the segment length; the other igairwise feature, which captures
the long-range interactions between adjacent -strand pairs, including align-
ment scores of residue pairs in terms of the buried or exposeside chains
(Bradley et al., 2001) and preferences for parallel or antparallel -sheets
(Steward & Thornton, 2002) (see Section 7.2.3 for detail).

To determine whether a protein sequence has a particular fol, we de ne
the score as the normalized log ratio of the probability for the best sggmen-
tation to the probability of the whole sequence in a null state (non- -helix
or non-LLR). We compare our results with BetaWrap, the state-of-art algo-
rithm for predicting -helices, THREADER, a threading algorithm and HM-
MER, a general motif detection algorithm using HMMs. The input to HM-
MER can be the structural alignments using CE-MC (Guda et al., 2004) or
purely sequence-based alignments by CLUSTALW(Thompson egl., 1994).

-helices fold Table 7.3 shows the output scores by di erent methods
and the relative rank for the -helix proteins in the cross-family validation.



Table 7.3: Scores and rank for the known right-handed -helices by HMMER, Threader, BetaWrap, SCRFs and
chain graph model(CGM). 1: the scores and rank from BetaWrapare taken from [3] except 1kiw and 1leaO; The
result of sequence-based HMMs is shown in Section 7.2.3

SCOP Family PDB-ID Struct-based HMMs Threader BetaWrap T SCRFs CGM
Bit score Rank Rank Wrap-score  Rank -score  Rank -score  Rank
P.69 pertactin 1DAB -73.6 3 24 -17.84 1 10.17 1 31.69 1
Chondroitinase B 1DBG -64.6 5 47 -19.55 1 13.15 1 34.89 1
Glutamate synthase 1EAO -85.7 65 N/A -24.87 N/A 6.21 1 29.04 1
Pectin methylesterase 1QJvV -72.8 11 266 -20.74 1 6.12 1 22.69 1
P22 tailspike 1TYU -78.8 30 2 -20.46 1 6.71 1 20.59 1
lota-carrageenase 1KTW -81.9 17 10 -23.4 N/A 8.07 1 16.06 1
Pectate lyase 1AIR -37.1 2 45 -16.02 1 16.64 1 22.87 2
1BN8 180.3 1 76 -18.42 3 13.28 2 28.98 1
1EE6 -170.8 852 228 -16.44 2 10.84 3 15.16 3
Pectin lyase 1IDj -78.1 14 6 -17.99 2 15.01 2 17.50 2
1QCX -83.5 28 6 -17.09 1 16.43 1 20.67 1
Galacturonase 1BHE -91.5 18 18 -18.80 1 20.11 3 28.98 1
1CZF -98.4 43 5 -19.32 2 40.37 1 24.68 3
1RMG -78.3 3 27 -20.12 3 23.93 2 27.37 2
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1EE6 (A)

1EE6 (B) 1DAB (A) 1DAB (B)

Figure 7.7: Segmentation for protein 1IEE6 and 1DAB by SCRFsA) and
chain graph model (B). Red: B2-T2-B3 motif; blue: B1 motif; green and
yellow: insertions.

From the results, we can see that the both SCRFs and chain grap model
can successfully score all known -helices higher than non -helices in PDB,
signi cantly better than Threader, HMMER and BetaWrap, the stat-of-art
method for predicting the -helices fold.

Our algorithm also demonstrates success in locating each peat in the
known -helix proteins. Fig.7.7 shows the segmentation results fo1EE6
and 1DAB respectively. From the results, we can see: for 1IEEGCRFs can
locate two more repeats accurately than the chain graph mode however,
our model is able to span the repeats over the whole area of thteue fold for
1DAB while SCRFs can only locate part of them. We can see that here are
strength and weakness for both methods in terms of segmentain results.
On the other hand, since the computational complexity for chain graph
model is only O(N), the real running time of our model (approx. 2.5h)
is more than 50 times faster than that of SCRFs (approximatey 140h).
Therefore the chain graph model achieves a good approximain to SCRF
with much less training time.

leucine-rich repeats Based on the conservation level, we de ne thenotif
for LLR as the -strand and short loops on two sides, resulting 14 residues
in total. The length of the insertions varies from 6 to 29. There are 41
LLR proteins with known structure in PDB, covering 2 super-families and
11 families in SCOP. The LLR fold is relatively easy to detectdue to its
conserved motif with many leucines in the sequence and shoiihsertions.
Therefore it would be more interesting to discover new LLR pioteins with
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1A4Y(B) 10GQ(B)

Figure 7.8: Segmentation for protein 10GQ and 1A4Y by chain gaph
model. Green: motif; red: insertions.

much less sequence identity to previous known proteins. Weedect one
protein in each family as representative and see if our modetan identify
LLR proteins across families.

Table 7.4 lists the output scores by di erent methods and the rank for
the LLR proteins. In general, LLR is easier to identify than the -helices.
Again, the chain graph model performs much better than othermethods by
ranking all LLR proteins higher than non-LLR proteins. In ad dition, the
predicted segmentation by our model is close to prefect matcfor most LLR
proteins (some examples are shown in Figure 7.8).

7.4 Summary

In this section, we propose the segmentation conditional radom elds for
general protein fold recognition and a chain graph model to étect the pro-
tein folds with structural repeats speci cally. Both metho ds demonstrate
successes in the protein fold (or motif) recognition in our &periments, which
con rmed our hypothesis of applying conditional graphical models for pro-
tein structure prediction. In addition, they are one of the rst probabilistic
models that explicitly consider the long-range interactions in predicting pro-
tein super-secondary structures from sequences.

The chain graph model, as a localized version of SCRFs, sols¢he prob-
lem of huge computational costs and achieves good approxintian to the
original SCRFs. Although the current model is developed fora special kind
of protein folds, its divide-and-conquer idea under the chian graph frame-
work can be derived for other complex proteins accordingly.



Table 7.4: Scores and rank for the known right-handed Leucia-rich repeats (LLR) by HMMER, Threader and
chain graph model (CGM). For CGM, -score = 0 for all non-LLR proteins.

SCOP Family PDB-ID ClustalW+HMMs Struct-based HMMs Threader CGM
Bit score  Rank Bit Score Rank Rank -score  Rank

28-residue LRR 1A4Y -125.5 4 -76.7 1 457 127.8 1
Rnalp (RanGAP1) 1YRG -95.4 1 -81.1 1 181 64.3 1
Cyclin A/CDK2-associated p19 1FQV -163.3 89 -111.4 10 398 77.1 1
Internalin LRR domain 106V -62.8 1 -0.7 1 306 116.5 1
Leucine rich e ector 1JL5 -86.7 1 -26.5 1 46 187.5 1
Ngr ectodomain-like 1P9A -120.0 9 -68.6 1 16 105.0 1
Polygalacturonase inhibiting protein 10GQ -155.0 32 -18.2 1 284 66.4 1
Rab geranylgeranyltransferase alpha-subunit 1DCE -145.4 16 -59.7 1 35 17.4 1
mRNA export factor 1KOH -153.9 42 -91.7 1 177 37.1 1
U2A'-like 1A9N - 280.9 861 -151.4 478 62 55.1 1
L domain 1IGR -150.0 46 -107.1 249 67 8.2 1
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Chapter 8

Quaternary Structure
Prediction

In previous chapters, we study the tasks of protein secondarstructure pre-
diction and tertiary fold recognition. These tasks are both important and
di cult, which undoubtedly attracts extensive studies by m any researchers
in di erent domains as reviewed in Chapter 2. However, the sudy of pro-
tein quaternary structures, which consist of multiple protein chains that
form chemical bonds among the side chains of sequence-distaresidues to
reach a structurally stable domain 1, have been left far behind: on one
hand, the current understanding of quaternary structures ae quite limited
due to the di culty of resolving the structures of the large ¢ omplexes. On
the other hand, these structures play very important roles n protein func-
tions, some examples include enzymes, hemoglobin, DNA patyerase, and
ion channels. They also contribute signi cantly to evolutionary stability
in that the changes of the quaternary structures can occur tliough each
individual chain or through the reorientation relative to e ach other. Most
importantly, recent studies in virus proteins indicate the common existence
of quaternary structures in viruses, such as adenovirus andeovirus, as well
as HIV-protease. Furthermore, a deeper knowledge about howhe protein
folds into quaternary structures will inevitably help uncover the complicated
folding processes in nature.

Quaternary structures are stabilized mainly by the same noncovalent
interactions as tertiary structures, such as hydrogen bondhg, van der Walls
interactions and ionic bonding. Unfortunately, previous work on fold recog-

1In comparison, the stable three-dimension structure held by a single protein is called
the tertiary structure.
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nition for single chains is not directly applicable becauseghe complexity is
greatly increased both biologically and computationally, when moving to
quaternary multi-chain structures. First, the averaged size of the quater-
nary fold is much larger than that of single proteins, which makes it di cult
for lab experiments to resolve their structures. As a result there are only
one or two positive examples with structure annotation for most quaternary
folds. The unavailability of training data will render usel ess many machine
learning approaches. From an evolutionary point of view, the functional
sites on the complexes are more apt to change in order to adafb the en-
vironment (especially true for virus proteins), while the general structural
skeleton remains stable. Re ected in the protein sequencesve observe that
a large number of proteins share the same fold without seque® similar-
ity, which violates the assumptions of homology (sequenceimilarity-based)
methods. On the other hand, threading algorithms based on pisical forces
rely strictly on the estimation of free-energies. To nd the best conforma-
tion, we need to consider the conformation of all the proteinchains jointly
since every chain contributes to the stability of the structures. Given the
enormous search spaces in quaternary structures, it is dialt to nd an
accurate estimate of the energies, not mention problems pesl by the abun-
dant local optima for computational solutions.

Motivated by its biological importance and corresponding @mputational
challenges, we develop the linked SCRF model, another extaion of the gen-
eralized conditional graphical model, for protein quaterrary fold recognition.
The major advantage of our model is the use of discriminativeobjective func-
tions, which make it easy to incorporate any biological featrres, instead of
the free-energy functions with particular assumptions on gysical forces and
requiring complex free-energy minimization methods. It provides the feasi-
bility to capture the long-range dependencies of di erent sibunits within one
chain and between chains under one model gracefully. In adtibn, e cient
approximation algorithms we used are able to nd optimal or near-optimal
solutions, which can be directly transferred to the free-eergy minimization
settings.

8.1 Materials and Evaluation Measure

In this section, we give a brief overview of current work in protein quaternary
structure prediction, then introduce the protein quaternary fold recognition
tasks and evaluation measures.
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8.1.1 Protein Quaternary Structures

The quaternary structure is the stable association of multiple polypeptide
chains via non-covalent bonds, resulting in a stable unit. © date, there has
been signi cant progress in protein tertiary fold recognition and alignment,
ranging from sequence similarity matching (Altschul et al., 1997; Durbin
et al., 1998), to threading algorithms based on physical fotes (Jones et al.,
1992) and to machine learning methods (Cheng & Baldi, 2006; g &
Dubchak, 2000). However, few studies have addressed the frlem of pre-
dicting quaternary structures.

Recent pursuit of computational methods to determine the guaternary
structures can summarized in three research directions. Oadirection is the
simple classi cation problem: given a protein primary sequence, whether
it takes a tertiary structure of a single chain or a quaternary structures
with other proteins. Most work along this direction focuses on examin-
ing the sequence evolution information in terms of PSI-BLAS pro les or
di erent propensities of amino acids in these two structure types (Garian,
2001; Zhang et al., 2003; Chou & Cai, 2003). Then the informdbn is used
as input features for a classi er, such as support vector magines or naive
Bayes. The overall prediction accuracy is around 60-70%. Té second di-
rection is the study of domain-domain docking or interaction type in the
protein complexes (Kim & Ison, 2005; Chen & Zhou, 2005). In ths ap-
proach, the docking or interaction type are examined based m the protein
structures deposited in the PDB. The methodology is generating the asso-
ciation mechanisms of multiple proteins in the complexes tahe quaternary
structures in general. It is observed that the overall predction success rate
across the genome-wide study is poor. However, the performae can be
improved signi cantly if only those proteins that have info rmative (or re-
lated) proteins in the training set are consider. The third direction seeks the
geometric regularities and constraints to reduce the huge earching spaces
of quaternary structures (Inbar et al., 2005).

8.1.2 Quaternary Fold Recognition

In this chapter of the thesis, we are trying to solve the probkem of quaternary
fold recognition. Speci cally, our task starts with a target fold F that the
biologists are interested in. There are no constraints abouF except that it
has to be a quaternary fold, with multiple number of particip ating protein
chains (either dierent or identical). Then all the protein s with resolved
structures deposited in the PDB can be classi ed into two graups, i.e. those
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take the target fold F and those not. These proteins together with the
labels can be used as training data. Our goal is to predict whiber a testing
protein, without resolved structures, takes the fold F in nature or not; if
they do, locate the starting and ending positions of the subsquence that
adopts the fold.

It can be seen that our task involves two sub-tasks: one is thelassi-

sequenceX new; the other subtask is not that straightforward to describe in
mathematical settings. We can think of the target fold as sone patterns (or
motifs in bioinformatics terminology). Given a set of instances of the pat-
tern, including both the positive examples (subsequences ith the pattern

F) and the negative examples (sequences without the patterr), we want
to predict whether the pattern appears in any subsequence othe testing

proteins. It is easy to answer the guestions in the rst subtask if we can
solve the second one successfully, which is our focus in thest of the chapter.
A key problem in the second task is how we can represent the desptive

patterns (or motifs) using mathematical notations. The linked segmenta-
tion conditional random elds, as described in the next secton, makes very
natural use of the graphical model representations and suassfully solve the
problem.

After introducing the de ne of our task, we want to stress again its strong
biological motivation and wide applications. This task falls within the gen-
eral blueprint of previous studies in quaternary structures, but diers in
two aspects: rst, the problem comes directly from the needsof biologists in
their experiments or studies. In our case, the collaboratos that we worked
with have been studying a particular fold for a long time. The positive pro-
teins with resolved structures are quite limited, although they believe it is
a common fold in nature. By identifying more examples in the wresolved
proteins in sequence databases, such as Swiss-Prot or UniRr we can help
the biologists to verify their hypothesis about the fold. Second, the problem
we are trying to address is much more di cult than the common fold clas-
si cation because we do not have as many positive examples anthey do
not share high sequence similarities. In other words, the piéerns that we
are trying to identify have not been represented clearly in he training data.
This is the main motivation why we want to develop a relatively complex
model, rather than a simple classi er. Notice that our models can be used in
the traditional fold recognition or threading setting, how ever, its advantage
can be demonstrated best in cases for predicting those di cut protein folds.
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8.1.3 Evaluation Measures

Our goal is to identify the possible positive proteins from the whole collection
of protein sequences without resolved structures. It is sirhar to the infor-
mation retrieval tasks, where given some key words (or pattens described
in words) we want to retrieve the documents that contain similar contents
as the key words. Therefore our evaluation measure is to seéwe can rank
the positive proteins higher than the negative ones in crossalidation.

To construct negative examples in the training set, we buildthe PDB-
minus dataset as described in the previous chapter. It consis of all PDB
protein sequences (July 2006 version) (Berman et al., 2000)ith less than
25% similarity to each other and no less than 40 residues in tgth, result-
ing in 2810 chains with 430927 residues. Since we aim to sehrproteins
sharing similar structures without sequence similarity, a leave-family-out
cross-validation was performed to avoid over tting. For each cross, positive
proteins from the same protein family are placed in the test st while the
remainder are placed in the training set. Similarly, the PDB-minus was also
randomly partitioned into subsets, one of which are placed i the test set
while the rest serve as the negative training examples.

To demonstrate the e ectiveness of dierent recognition models, we
choose the triple -spirals and double-barrel trimer as examples in our ex-
periments.

The triple -Spiral fold  is a processive homotrimer consisting of three
identical interacting protein chains. It was rst identie d by Mark J. van
Raaij and collaborators in 1999 (van Raaij et al., 1999). Thefold serves as
a brous connector from the main virus capsid to a C-terminal knob that
binds to host cell-surface receptor proteins (see Figure 8). Up to now there
are three crystallized structures with this fold depositedin the Protein Data
Bank (PDB) (Berman et al., 2000), one is the adenovirus protéen (DNA
virus, PDB ID: 1qiu), another is reovirus (RNA virus, PDB ID: 1kke) and
the otheris PRD1 (PDB ID: 1yg8). The common existence in bothDNA and
RNA viruses reveals important evolution relationships in the viral proteins,
which also indicates that the triple beta-spirals might be acommon fold in
nature. The detailed description of the TBS fold can be foundin Appendix
B.3.

The double-barrel trimer is a potential protein fold, which has been
found in the coat proteins from several kinds of viruses. It onsist of two
eight-stranded jelly rolls, or -barrels. As seen in Figure 8.5, the component
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-strands are labeled as B, C, D, E, F, G, H and | respectively. The rst
strand is named as B because one example of the-barrels, the tomato
bushy stunt virus, has an extra initial strand. The fold has been found in
the major coat proteins of bacteriophage PRD1, that of humanadenovirus,
Paramecium bursaria chlorella virus (PBCV) and archaeal vrus STIV. This
amazing phenomenon raised the unexpected possibility thatiruses infecting
di erent kinds of species are related by evolution. It has ben suggested
that the occurrence of a double-barrel trimer is common all cosahedral
dsDNA viruses with large facets, irrespective of its host, ad furthermore
an indicator of common ancestor in a lineage of viruses (Bems et al.,
2004). The detailed description of the double-barrel trime can be found in
Appendix B.4.

8.2 Thesis work: Linked Segmentation Conditional
Random Fields

In the previous section, we have identi ed the key issues foguaternary fold
recognition, that is, how to represent the patterns exhibited by the fold using
mathematical models. In structural biology, the conventional representation
of a protein fold is the use of a graph (Westhead et al., 1999)jn which
nodes represent the secondary structural components and thedges indicate
the inter- and intra-chain interactions between the comporents in their 3-
D structures. This intuitive representation motivates us to use graphical
models, which is an elegant combination of graph theory and mbability
theory. Speci cally we base the work on SCRFs for single-chiaed (tertiary)
fold recognition problems. Its successful applications tahe -helixes and
leucine-rich repeats (LLR) encourages us to pursue similadirections for
gquaternary fold (or motif) recognition, albeit requiring f undamental changes:
representing and inferencing over multiple cross-chain bieds, and resolving
a graphical structure of much greater complexity, which denands entirely
new estimation methods. Therefore we propose the linked segentation
conditional random elds.

Before covering the algorithm in detail, we rst review the protein struc-
tural graph described in previous chapters. Givesn a proteirfold, a structural
graph is dened asG =< V;E>, whereV = U flg, U is the set of nodes
corresponding to the secondary structure elements within he fold and 1 is
the node to represent the elements outside the fold.E is the set of edges
between neighboring elements in primary sequences or edgeslicating the
potential long-range interactions between elements in tetiary structures.
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Figure 8.1: (A) 3-D structure of - - motif (B) PSG of - - motif. Node:
Green= -strand, yellow= -helix, cyan=coil, white=non- - - (I-node)
Figure 8.1 shows an example of the structural graph for - - motif. The

PSG for a quaternary fold can be derived similarly: rst construct a PSG
for each component protein or a component monomeric PSG for émo-
multimers, and then add edges between the nodes from di erenchains if
there are chemical bonds, forming a more complex but simildy-structured
quaternary PSG.

Given a structural graph G de ned on one chain and a protein sequence
X = X1X2:::Xn, We can have a possible segmentation of the sequence, i.e.
y = fM; wg, where M is the number of segments andv; = fsj;p;;gg, in
which sj, p; and ¢ are the state, starting position and ending position index
of the j segment, The conditional probability of a segmentationy given
the observation x can be computed as follows:

_ 1Y X
P(yjx) = Zo exp( kFk(XerYe))s
c2C6 k

where Z; is the normalization factor based on all possible con guratons.
The graphical model representation is shown in Figure 8.18).

More general, given a quaternary structure graphG with C chains,
i.e. fx;ji =1:::Cg, we have a segmentation initiation of each chainy; =
(Mj;wj) de ned by the protein structural graph, where M; is the number of
segments in thei™ chain, and wij = (sij ;pij :G;). Sij . Pij and g; are the
state, starting position and ending position of the j" segment. Following
similar idea as the CRFs model, we have

P(ysiiiyeixaiiiiXe) = zl (Yoix); (8.1)
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Figure 8.2: Graphical Model Representation of I-SCRFs modewith multiple
chains. Notice that there are long-range interactions (repesented by red
edges) within a chain and between chains

where Z is the normalizer over all possible segmentation con gureson all
the sequences (see Figure 8.2 for its graphical model repegation.)

We decompose the potential function over the cliques (yc; X) as a prod-
uct of unary and pairwise potentials, i.e.

1 Y
= 7 ( Xiswij) ( Xa; Xy Wap; Wpg)
Wi 2Vg Ma;p Whig i2E ¢
1 X X1 X X2
= zexp( ukfr(Xi;wij ) + 2.k Ok (Xa; Xb; Wazp; Whg) ;
wij 2V k=1 hwap ;Wpqi2E g k=1

wherefy and g¢ are features, 1 and . are the corresponding weights for
the features. Speci cally, we factorize the features as thdollowing way,

fre(Xi;wig) = FAXispi 56y ) (W)

foxipia)  if (sij = )& (G  pij 2 length range(s))
0 otherwise,

O (Xg; Xb; Wazu; Why)
% 92 (Xa; Xb; Pacu’; Gacus Po:vi Goov)
if (Sa:u = S)&(Spv = S(),
Oau  Pau 2 length range (s);
3 Gy Poy 2 length range (s9
0 otherwise.

Given the de nition of the protein structure graph, our next question
is how to automatically build the graph for a particular fold . The answer
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Van Raaij etal. in Nature (1999)

Figure 8.3: Demonstration graph of triple -spirals. (left) 3-D structures
view. Red block: shaft region (target fold), black block: knob region. (mid-
dle) top view. (right) maps of hydrogen bonds within a chain and between
chains.

depends on the type of protein folds of concern and how much lowledge
we can bring to bear. If it is a fold that biologists have studied over the
years and accumulated some basic knowledge of their propees (for exam-
ple - - motif), the topology of this graph can be constructed easily by
communicating with the experts. If it is a fold whose structure is totally
new to the biologists, we can follow a general procedure wittihe following
steps: rst, construct a multiple structure alignment of al | the positive pro-
teins (among themselves); second, segment the alignmenttmdisjoint parts
based on the secondary structures of the majority proteins;third, draw a
graph with nodes denoting the resulting secondary structue elements and
then add edges between neighboring nodes. Finally, add thehg-range in-
teraction edge between two nodes if the average distance begen all the
involved residues is below some threshold ™" speci ed by the user. We
skip detailed discussion of the latter case as it is a separatline of research
and assume that we are given a reasonably good graph over whiave per-
form our learning. Below are two examples of how to constructhe graphs
given some prior knowledge of the target folds.

8.2.1 L-SCRFs for Triple- Spirals

To provide a better protein structural graph for the linked S CRFs model,
we notice the following structural characteristics in the triple -spirals: the
fold consists of the three identical protein chains with a seies of repeated
structural elements (see Figure 8.3). Each of these structial elements is
composed of: 1. a -strand that runs parallel to the ber axis 2. a long
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G000 Lamy)

Figure 8.4: Protein Structural Graph of the Triple -spirals. Chain C°
is a mirror of chain C for better visual e ects. Dotted line: inter-chain
interactions; solid line: intra-chain interactions. The pairs of characters on
the edge indicate the hydrogen bonding between the residuedenoted by
the characters.

solvent-exposed loop of variable lengths, 3. a second-strand that forms
antiparallel -sheets with the rst one, and slightly skewed to the ber
axis, 4. successive structural elements along the same chaare connected
together by a tight -turn (Scanlon, 2004; Weigele et al., 2003). Among
those four components, the two -strands are quite conserved in sequences
and Green et al. characterize them by labeling each positiomsing character
‘a' to "o0'. Specically, i-o for the rst strand and a-h for th e second strand
(see Figure 8.3).

Based on the discussion above, we de ne the protein structwal graph
of the triple -spirals as in Figure 8.4. There are 5 states in the graph
altogether, i.e. B1, T1, B2 and T2, which correspond to the fair components
of each repeated structural element, and the null state I, whch refers to
the non-triple -spiral region. We x the length of B1 and B2 as 7 and
8 respectively due to their sequence conservation. In addibn, we set the
length of T1 and T2 in the range of [G 15] and [Q 8] individually since longer
insertions will bring instability to the structures. Itis e asy to notice that the
transitions between di erent states are deterministic as long as the number
of rungs (repeated structural elements) is given. The pairsof interaction
residues are marked on the edges, which will be used to de néhé pairwise
features in section 8.4.
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Figure 8.5: (Left) (A) 3-D structure of the coat protein in ba cteriophage
PRD1 (PDB id: 1CJD). (B) 3-D structure of PRD1 in trimers with the
inter-chain and intra-chain interactions in the FG loop. Color notation: In

FG1, green: residue #133, red: residue #135, purple: resida #142; In FG2,

blue: residue #335. (Right) PSG of double-barrel trimer. Th e within-chain

interacting pairs are shown in red dash line, and the inter-tiain ones are
shown in black dash line. Green node: FG1,; Blue node: FG2.

8.2.2 L-SCRF for Double-barrel Trimer

For the double-barrel trimer fold, it is not straightforwar d, or even seem-
ingly impossible, to uncover the structural conservation through sequences
since there are only four positive proteins and none of themlgre sequence
similarities. There are some general descriptive observains we can make:
(1) the lengths of the eight -strands varies, ranging from 4 to 16 residues,
but the layout of the strands is xed. The separation (insertions) between
the strands is relatively short (4- 10 residues), however,tiis interesting to
notice some exceptions, for example the long insertions bekeen the F and
G strand (20 - 202 residues); another long loops between D-Etrand (9 -
250 residues); the short -turn between E and F. (2) The chemical bonds
that stabilize the trimers are located between the FG loops. However, the
bonding type and specic locations remain unclear, which pses a major
challenge. We denote the FG loop in the rst double-barrel trimer as FG1,
and that in the second one as FG2.

Based on the discussion above, we de ne the protein structwal graph of
the double-barrel trimer as shown in Figure 8.5. There are 1l&tates in the
graph altogether, i.e. B, C, D, E, F, G, H, | as the eight -strands in the

-barrels, lgc, lcp, Ipe, ler, IrG, leu, In1, lis as the loops between the
-strands. The length of the beta-strands are in the range of3;16]. The
range of the loopslgc, lcp, and Igg are [4 10]; that of Ipe and g are
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[10; 250]; that of gy, 11, I1s are [1 30]. The within-chain interacting pairs
are shown in red dash line, and the inter-chain interacting firs are shown
in black dash line.

8.3 E cient Inference and Learning

The feature weights f 1.xg and f 2xg are the model parameters. In the
training phase, we estimate their values by maximizing the egularized joint
conditional probability of the training data, i.e

X _ k 1k2 Kk ok?
£ "g = argmax logP (y{"; 1y Mjx (M x My + 21% + —22% :
n=1

There is no closed form solution to the equation above, ther@re we apply an
iterative searching algorithm. Taking the rst derivative of the log likelihood
L( 1; 2), we have

a X X K
o ™y Epy o™ Y )+ 2 (8.2)
LK h=1 ) 1
Yij'2Ve
a _* X o v 2k
@Z;k: (O (Xa: Xbi Yap: Ybig)  Epy my[9(XaiXp: Y app: Y big)]) + %(8-3)

N=1hyapiYpqi2E G

Since PSG is a complex graph with loops and multiple chains, @ explored
e cient approximation methods to estimate the whole summation terms on
the right-hand side of eq (8.2) and eq (8.3), which are refeed tor i, and
r 1. respectively later in the paper.

8.3.1 Approximate Inference via Contrastive Divergence

There are three major approximation approaches in graphicamodels: sam-
pling, variational methods and loopy belief propagation. It is not straightfor-
ward to use the latter two due to the semi-Markov property in our L-SCRF
model (the labels are assigned to subsequences instead oflividual amino
acid), and more importantly the unique property of PSG that allows the
number of nodes to be a variable (for example, the triple -spirals have dif-
ferent number of repeats for each example). Sampling techgues have been
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Algorithm  -1: Description of Contrastive Divergence
Input: ;and ,; Output: r 1andr »
1. Sample a data vectory® from the empirical distribution P?;
2. lterate over T times:
Sample a value for each latent variablefy; = fM;;w;gg (i =

probability de ned in eq(8.1). The value is represented asg!.
4. Calculate the contrastive divergence asr 1 = Eyol[fk] Ey[fil,

r 2= Eyolok] Eglokl

widely used in the statistics community, however, there aretwo main prob-
lems, i.e. ine ciency due to the long \burn-in" periods and | arge variance
in the nal estimation. To avoid the problem, we use contrastive divergence
(CD) proposed in (Welling & Hinton, 2002). It is similar to Gi bbs sampling,
except that, instead of running Gibbs sampling until the equilibrium distri-
bution is reached, it runs the sampler up to only a few iterations and uses
the resulting distribution to approximate the true model di stribution. The
algorithm is described in Algorithm  -1.

Notice that there is a problem if we use the naive Gibbs sampiig in step
(2) since the variablesy; = f Mj; wjg may be of di erent dimensions in each
sampling iteration, depending on the value ofM; (M is a variable if the fold
has a variable number of structural repeats, e.g. the TBS fal). We use the
reversible jump MCMC algorithm (Green, 1995), which has acleved success
in various applications, such as mixture models, hidden Makov models for
sequence segmentation and phylogenetic trees.

8.3.2 Reversible Jump Markov Chain Monte Carlo

Given a segmentationy; = (M;;w;), our goal is propose a new movey; .
To satisfy the detailed balance de ned by the MCMC algorithm, auxiliary
random variablesv and v have to be introduced. The de nitions for v and
v should guarantee the dimension-matching requirement i.e. dim(y;) +
dim(v) = dim(y;) + dim( v9 and there is a one-to-one mapping from ¥;; V)
to (y;;Vv9, i.e. there exists a function so that ( yi;v) = (y;;v9 and

Yy, ;v9 = (yi;v). As a special case, we can add appropriate auxiliary
variables v only to the sample spaces with a lower dimension. We de ne fou
types of Metropolis operators to construct a Markov chain onthe sequence
of segmentations:

1. State switching given a segmentationy; = ( Mj; w;), select a segment
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j uniformly from [1; M ], and a state values® uniformly from state set
S. Sety; = y; except that s;; = s°

2. Position Switching: given a segmentationy; = ( M;; w;j), select the seg-
ment j uniformly from [1; M ] and a position assignmentd® Ulg; 1+
Lgj+ 1] Sety; =y except that ¢; = d°

3. Segment split given a segmentationy; = (M;;w;), proposey; =
(M; ;w; ) with M; = M; +1 segments by splitting the j segment,
where | is randomly sampled from U[TM]. Setw;, = wix for k =

1 1, and Wiksr = Wik for k = j +1;:::;M;. Sample a
value assignment ofv P (v), compute w; ;w;,; via (Wi ; W 4 V9 =
( Wi ;).

4. Segment merge given a segmentationy; = (M;;w;), proposeM; =
M; 1 by merging the j segment andj + 1" segment, wherej is

sampled uniformly from [L,M  1]. Setwi;k = wik fork=1;:::5] 1,
and wy, 1= wik for k=j +1;:::;M;. Sample a value assignment
of VO P (v9, compute wij via (w;;;v) = (Wi ;Wi +1; V9.

Then the acceptance rate for the proposed transition fromy; to y; is

minf 1; posterior ratio proposal ratio Jacobiang =
P(ys;yisnycifxig P(VY @y;;v9 .
P(ys:nyisiyelfxig) P(v)  @yisv) ™

where the last term is the determinant of the Jacobian matrix.

In general, we have regular arrangement of the secondary sicture ele-
ments in most protein folds so that the state transitions aredeterministic or
almost deterministic. Therefore the operator for state transition can be re-
moved andsegment split or mergecan be greatly simpli ed. There might be
some cases that the inter-chain or intra-chain interactiors are also stochas-
tic. Then two additional operators are necessary, includirg segment join
(adding an interaction edge in the protein structure graph) and segment
separate (deleting an interaction edge in the graph). The detailed seps are
similar to state transition, and we omit the detailed discussion.

minf 1;

8.3.3 Testing Phase

mate the segmentation that yields the highest conditional ikelihood. Simi-
lar to the training phase, it is an optimization problem invo lving search in
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Algorithm-2  : Reversible Jump MCMC Simulated Annealing
Input: initial value of yg, temperature reduction rate = 0.5;
Output: predicted value of y.
1. Set§ = yo.
2. Fort 1tol do:
21 T t.If T=0return ¢
2.2 Sample a valuey™" using the reversible jump MCMC algorithm as
described in Section 8.3.2r E = P(y™) P(¥)
2.3 ifr E> 0, then sety = y"®¥; otherwise sety = y™" with probability
exp(r E=T)
3. Return ¢

multiple-dimensional space. Since it is computationally pohibitive to search
over all possible solutions using traditional optimization methods, simulated
annealing with reversible jump MCMC is used. It has been show theoret-
ically and empirically to converges on the global optimum (Andrieu et al.,
2000). SeeAlgorithm-2  for details of the method.

8.3.4 An Example of triple -spirals

It is straightforward to apply the approximate inference algorithms above
for predicting triple -spiral fold except that there is a slight di erence
in the reversible jump MCMC algorithm: since the state transitions are
deterministic given the number of segments, thestate transition proposal
can be skipped. In addition, there is the concept of \rungs" n the triple-
beta spirals, i.e. the four parts of a rung must be generated deleted at
the same time for the delity of the structures. Therefore in the proposal
segment split we need randomly select a rung (instead of one segment) and
split it into two rungs, each of which contains the segmentB4, Ty, B2, T».
Similarly, in the proposal segment mergewe randomly select a rung and
merge it with the neighboring rung on the right.

Without the loss of generality, we assume that probability of the num-
ber of rungs given the data is uniformly distributed. Therefore, with equal
probability, we select one of the moves below:

Position Switching  given a segmentationy; = (M;;w;), randomly se-
lect the segmentj uniformly at [1;M] and a position assignmentd®
Ulg; 1+1;qg5+1 1]. Sety; = y; exceptthat g,; = d® The acceptance
rate for the proposal is:

P(ysyisinyelfxig)

minf 1; ’ :
P(ys :Yis o yclfxig)
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Segment split given a segmentationy; = ( M;;w;), proposey; = (M; ;w; )
with M; = M; + 4 segments by splitting the | " rung, wherej is randomly
sampled from uniform distribution over [0; xM=4y +1]. Set w;, = wiy for

we constrain the length of segmentB; and B, to be xed, represented as
Lg, and Lg,, the starting position of the following T, and T, can be inferred
easily.

If j = 0, we split the starting null segment w;.o into a shorter null segment
and a new rung of triple-beta spirals. To fully determine the position of
the new rung, we need to provide the value of two variabledg; and Ig >,
which are the lengths of segmentT1 and T2 respective. Therefore two
auxiliary random variables vy  U[0; 1] andv, UJ[0; 1] are introduced. Let
Lo= .1 1, thatis, the length of segmentw; o. Then we de ne

l1+ 12+ L1+ Lg2 = vilo;
|1 _ 1 v
P! Vo

Solving the two equations above, we have the transformatiorfunction as

l1 = va(vilo L1 Lg2)
l2=(1 wv2)(viLo Lg, Lg,);
and it is straightforward to compute the Jacobian asJ = Lo(viLo Lp,

LB »). The sampling steps are: we rst sample a value olv1, v, from UJ[0; 1]
, then set

G:1=Gi1 (Ii+ 12+ L1+ Lg,)

G2=0G1 (I1+ 12+ Lg,)

G.3= G;1 (I2+Lg,)

G.a= G1 Iz
accept the proposaly with the acceptance rate
P(ys;:5Yi; s ycifxig)
P(ys:nyisinycifxig)
Similar derivation can be developed easily wherj = xM=4y + 1, i.e. the
ending null segment is selected.

If1 | xM=4y, we splitthe j! rung into two rungs. In order to fully
determine the position of the two new rungs, we need to provié the value

minf 1; Lo(viLo Le, Ls,)o:
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of four variables |, 1,, 1?12, which are the length of segmentT; and T
in the two new rungs respectively. Letl; = G;4+3  G:4j+2, the length of
segmentTy in the old rung, and |, = G;4j+5  G;4j+4 SegmentTs in the old
rung. We introduce three auxiliary variables vy, vo, v3  UJ[0; 1], and de ne

b 1 vi 12 1 v l,=v 1 v3
I vi 1D vo 1P=w V3

L+l +12+12=11+1, Lg, Lg,: (8.4)

[

N

In order to achieve the detailed balance, i.e.P(y;y ) = P(y ;y), we need
to diverge the current topic a little bit to study its reverse proposal, that
is, merging thej™ and j + 1™ rung into one rung. The position of the new
rung can be fully determined given the value ofly, the segment length of
T1, and I, the segment length of T;. We introduce one auxiliary variable
Y U[0; 1] and de ne

|1 1 v
— . — 0 0 .
v i+ =1+, + 17+ 15+ L, + Lg,:

In this way, we satisfy the dimension matching requirement,i.e. dim (fl1;l2; v1; V2; v3Q)
=dim (flg;15;125125v 9).

Finally, solving the equations in eq (8.4), we have the tranormation
function as

b = @ wv)@ w3rL

lLb = vi(l wvarlL
12 = w1 wo)rL
12 = wvavor L
|
v = 2.
L1+ 1,

wherer L = 11+ 1, LB1 I—Bz- The Jacobian isJ = V3(1 V3)I’ L3:(|1+ |2)
The sampling steps are: we rst sample a value o1, vo, v3 from UJ[0;1] ,
then set

G:gj+2 = Gii4j+2; Ghaj+3 = Ggj+2 T L,y

O:4p+4 = G;4i+3 + Il; Gigj+5 = G444 +Lg,
G:4+6 = G;4i+5 + |2; Gi45+7 = G;4j+6 +Lle,
Gigj+8 = G;4+7 12; G.4i+9 = G444 + LBy;
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accept the proposaly with the acceptance rate

P(ys 5y ycifxig)
P(ys :Yis s ycifxig)

minf 1; va(1  va)r L3=(11 + 1)g:

Segment merge given a segmentationy; = (Mj;w;), proposeM; = M; 4
by merging the j™ rung andj +1" rung, wherej is randomly sampled from
U[O; xM=4y]. Setw;, = wix fork=1;:::74( 1)+1,and Wy, 4= Wik

become a null segment, otherwise it will be a new triple-betaspiral rung.
The detail can be derived easily based on our discussion in ¢hsegment split
proposal.

One might notice that in the description above we did not consder the
length constraints of T, and T,, which will a ect the sampling space of
the variables, such asv and v . We intentionally omit the constraints for
comprehensiveness. In practice those variables are samgldrom a more
stringent range. Again, the algorithm described above is oty one imple-
mentation of the general reversible jump MCMC approaches ad there are
many other alternatives.

8.4 Feature Extraction

The linked SCRF model provide an expressive framework to cajpre the
structural properties of quaternary folds characterized ty both inter-chain
and intra-chain interactions. Similar as the SCRF model, link SCRFs retain
all the feasibility so that we can use any type of informative features, either
overlapping or long-range correlations. Again, the choicef feature function
fk plays an essential role in accurate predictions. Two types fofeatures can
be de ned, i.e. node features which cover the properties of an individual
segment, andpairwise features which tries to model the chemical-bonding
between the pairs of segments that are close in three-dimeimal spaces.
Another view of the feature space is viacommon features which are
can be shared for all kinds of fold recognition, andsignal features which are
unique to the target fold and but require domain expertise. Qur experiments
and studies show that the signal features are usually the mdsliscriminative
of the target fold and given higher weights in the learnt modé. On the other
hand, it is time-consuming to get those signal features: geerally it takes
years for the biologists to accumulate the required knowlede. Sometimes,
the current understanding of the target fold is not enough to summarize
any reliable signal patterns, in which case the common feattes could be a
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reasonable backup. Table 8.1 summarizes the features we wuktr predicting
the TBS and DBT folds.

8.4.1 Common Features for Quaternary Fold Recognition

In general, the common features of quaternary fold recognibn are simi-
lar to those for tertiary folds. Some features, such as hydrphobicity and
iconic propensity, seem to get higher weights since the quatnary complexes
usually form a hydrophobic core. The node features that we us in our pre-
diction include:

Secondary structure prediction scores Secondary structures reveal sig-
ni cant information on how a protein folds in three dimension. There-
fore we de ne the feature function fssy (X;G;G+1), fsse(X;G;G+1) and
fssc(X;G;Gg+1) as the average of the predicted scores by PSIPRED (Jones,
1999) over all residues in the segment, for helix, sheet andod respectively.
Similarly, we also de ne the feature function using the maximal and minimal
scores.

Segment length In most cases, each state has strong preferences to a par-
ticular range of lengths. Therefore we de ne the feature furction f(X; G; G+1) =
G+1 G-

Physicochemical properties  Some physicochemical properties of the amino
acids might be informative. We use the Kyte-Doolittle hydrophobicity score,
solvent accessibility and ionizable scores in our methodsThe feature func-
tions can easily be derived accordingly.

The pairwise features we found useful for -sheet related folds include:
Side chain alignment scores For -sheets, it is observed that the amino
acids have dierent propensities to form a hydrogen bond degnding on
whether the side-chains are buried and exposed (Bradley etla 2002).
An alignment score of interacting residue pairs can be comped accord-
ingly. In the methods described in (Bradley et al., 2002), the conditional
probability that a residue of type X will align with residue Y , given their
orientation relative to the core (buried or exposed), is esimated from a

-structure database developed from the PDB database. The fgure func-
tion fégs)(xa; Xb; Oa;ps Gap+1 5 Gbigs Ob;qr1 ) Can be de ned as the weighted side-
chain alignment scores for the 1 residue in segment &;p) given the
residue in segment b; g, where (; ) are the positions of interacting pairs
marked in Figure 8.4, and a weight of 1 is given to inward pairsand 0.5 to
the outward pairs.
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Parallel  -sheet alignment scores In addition to the side chain position,
another aspect is the di erent preferences of each amino adito form par-
allel and anti-parallel -sheets. Steward & Thornton derived the \pairwise
information values" (V) for a residue of type X given the residue Y on the
pairing parallel (or anti-parallel) strand and the o sets o f Y from the paired
residue Y' of X (Steward & Thornton, 2002). The alignment scare for two
segmentsx = Xq1:::Xm andy = Yi::: Yy is de ned as

X X

score(x;y) = (VXijYjsio )+ VIYiXii )
i

Notice that this score also takes into account the e ect of néghboring
residues on the paired strand. We de ne the feature function

féks)(xa;xb; Oap; Gap+1 s Gbigp Goiqr1 ) = SCOT€(Xgup+ 5 Yapg+ )

where (; ) are the positions of interacting pairs marked as in the prokin
structural graph (for example Figure 8.4 and 8.5).

Distance between interacting pairs Mostly there is a distance constraint
between the interacting pairs of states since too long an irertion will col-
lapse the structure stabilities. To enforce such constraits, we de ne feature
function fgis (Xa; Xb; Gap; Oayp+1: Obigr D1 ) = 1 if Oaprr Gayp falls in some
range, and O otherwise.

8.4.2 Specic Features for Triple- Spirals

It is quite hard to predict the triple- spiral fold given the very limited
number of positive examples. Fortunately, there exists sora identi able se-
guence repeat patterns for both B1 and B2 states, which gredy helps to
boost the prediction accuracy. We use the regular expressiotemplate and
pro le hidden Markov model to capture those patterns:

Regular expression template Based on the alternating patterns of con-
served hydrophobic core and peripheral patches in the B1 and2 strands,
we de ne the following regular expression templates: X X XX for B1
strand and XX X X X for B2 strand, where is the conserved ti ght turn
that only matches residues infP, G, A, F, S, Lg, is the hydrophobic core
that matches any amino acid infL, I, M, V, T, S, F, A g, is the peripheral
patches which matches any amino acicexceptfC, E, H, P, Q, Wg, and X
can match any amino acid. We de ne the feature functionfrst (X;G; G+1)
equal to 1 if the segment matches the template, and 0 otherwis



Table 8.1: Feature de nition for segment w; = fs;i;pi;g9 and w; = fsj;pj; 9. Notation:

fP, G, A F, S, Lg,

2fL,I,MV,T,S, F AQqg

indicates that the string matches the regular expression.

2fC,E H, P, Q, Wg, X match any amino acid.

pi, 2
\=

N

Feature Type Semantics Examples
4 Max predicted 2"9 structure scores MaX2pipia 1P sheetfXt)
.;E Min predicted 29 structure scores MiN2(ppi 1P sheet(Xt)
; nd T —
- Node Avg predicted 2" structure scores t2ipipia 1P sheetX)=(Pisz  Pi)
g Features || segment length B+1 P
IS physicochemical properties (hydrophobicity, t20pipi+y 1 Sionic (X)=(Pi+1  Pi)
8 solvent accessibility, ionizable)
Pairwise side-chain alignment scores (buried or exposed 2007 ! (xi = buried) Sg (Xt+p;; Xt+p;) +
(Bradley et al., 2002)) H(xi = exposed)Se (Xt+p;; Xt+p; )
Features || parallel/anti-parallel -sheet alignment score 200" Sparallel (Xt+p; s Xt+p; )
(Steward & Thornton, 2002)
h’_ﬂ TBS fold B1-strand pattern expression matching Xp; 11Xpjy = X XXX
% B2-strand pattern expression matching Xpi 11 Xpiyy = XXXXX
P B1 (B2) alignment pro le matching PUMMER-B1 (Xpi % Xpisy )
< | DBT fold max -turn score (6 type:. I, 1, VI T, I, Va, MaX2 (p; ip; 41 | Stype | -turn (Xt)
5 Vlb, and IV) (Fuchs & Alix, 2005)
%)

NOILDId3dd IHNLONYLS AHYNEILVYNO '8 HALdVHO

114’
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Probabilistic HMM pro les Sometimes the regular expression template
is not preferred since it is hard to make a clear cuto betweena true motif
and a false alarm. Therefore prole HMM using probabilistic estimation
is a better resort. Initially we used the alignments of all the positive ex-
amples for B1 and B2 state, but fail to get reasonable resultsas expected
since the sequence similarity is too low to generalize a goopro le. Later
we observe that the alignments share more similar patternsni sequence if
we separate the alignments into groups based on the type of aimo acid on
conserved -turn position, that is, position °j' in Green's labeling scheme
(see Figure 8.3). Therefore we built six HMM pro les (one for each amino
acid type at position *j') using HMMER (Durbin et al., 1998) f or B1 and
B2 respectively. Then we de ne the feature functionsf ymm (X;G;G+1) as
the alignment scores of the segment against those B1 and B2 pies.

8.4.3 Specic Features for Double-barrel Trimer

The double-barrel trimer is a relatively new protein fold which attracts biol-
ogists' attention recently, due to their common existence n the coat proteins
of viruses infecting di erent kinds of species. It is claimal that the layouts
of the -barrels are quite unigue to virus proteins, but there is no ggni cant
sequence conservation either in the -strand components or the loops or
turns connecting the -strands. The only interesting observation we made
after careful study is this short -turns between strand E and F. It has
strong structural conservations without sequence similaities. Therefore we
de ne -turn features as follows:

-turn scores There has been extensive research on how to reliably predict
the -turns in the protein sequence. Up to now, the commonly accejed
nomenclature divides the -turns into six types, i.e. type I, II, VI, I,
Il Vla, VIb, and IV, as de ned by Hutchinson and Thornton (H utchin-
son & Thornton, 1994). In (Fuchs & Alix, 2005), the propensity scores of
di erent amino acids in those six type of -turns are calculated. In par-
ticular, the experiments show that a weighted propensity sore using the
PSI-BLAST pro le performs much better than using the amino acid type
that only appear in the protein sequences. Therefore we de B the feature
function f  m (X;G;G+1) as the maximal (and minimal) score of the -
turn propensity of each type over the subsequence; to gG+1 .

Maximal alignment scores The pairwise features of -sheet alignment
scores are de ned similarly as described in Section 8.4.1 e&pt that the
lengths of the -strand pair is not necessarily the same. This causes a prob-
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lem when we try to compute the alignment score since we do nothow the
interacting pairs any more. To solve the problem, we computeall possible
alignments by shifting the starting position of the longer segment and use
the highest alignment scores as the features.

Pointwise alignment scores  Another challenges in predicting the double-
barrel trimer is the incomplete understanding of the inter-chain interactions.
It is suggested that the interactions happen within the FG-loop of the two

-barrels, but the speci c location as well as the type of chental bonding
remains unclear. Following the idea of natural selection ohydrogen bonds,
we compute all the possible pairs of side-chain interactios, and use the
highest score as features. In other words, we try to model thg@ossibility of
forming hydrogen between the current pairs of segments.

8.5 Experiments

In the experiments, we test our hypothesis by examining wheter the linked
SCRFs can score the positive examples higher than the negat ones by
using the positive sequences from di erent protein families in the training
set. Here the score is de ned as the log ratio of the probabity of the best
segmentation of the sequences to the probability of the wha sequence as
one segment in a null state s-I. Since negative data, the PDBninus set,
dominates the training set, we subsample 10 negative sequees that are
most similar to the positive examples in sequence identity s that the model
can learn a better decision boundary than randomly sampling

We compare our results with PSI-BLAST (Altschul et al., 1997), Pfam
(Bateman et al., 2004), HMMER (Durbin et al., 1998), Threader (Jones
et al., 1992) and RADAR (Heger & Holm, 2000). For PSI-BLAST, we use
the positive examples in training set as query and search agrest the PDB
database to see if the testing positive protein in the hit lig. The threshold is
set as 0.001 with 10 repeated iterations. The results are sk in signi cant
score. Pfam is a large collection of protein multiple sequete alignments
and pro le hidden Markov models. We use the alignments of thetrain-
ing sequences from Pfam and build a HMM pro le. HMMER is a geneal
motif detection algorithm based on hidden markov model. Theinput to HM-
MER is a multiple sequence alignment generated by CLUSTALW({hompson
et al., 1994). Since there are sequence repeats in the TBS doproteins, we
also examine the sequence repeat detector Radar, an unsup&sed learn-
ing algorithm to detect sequence repeats. Therefore the redts may not be
directly comparable with the rest methods, but it would be interesting to
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explore if the repeats can be easily identi ed via such appraches. For the
I-SCRFs model, we stop the iterative searching algorithm wken the dier-

ences of loglikelihood is less than 1e-3 or the iterations arlarger than 5000;
the number of sampling steps T in the contrastive divergencas set to 5; and
the number of iterations in the simulated annealing algorithm is set to 500.

8.5.1 Triple -Spirals

Table 8.2 and 8.3 list the comparison results of di erent appoaches for
recognizing the triple- spirals. From the results we can see that the se-
guence similarity based methods, such as PSI-BLAST and Pfanperforms
poorly. The structure-based algorithms, such as HMMER basd on struc-
tural alignment and threading algorithm, fail to gain impro vement even
given additional information. It can be seen that the task we are trying to
tackle is dramatically di cult than the common fold classi cation tasks: the
fold involve very complex structures, yet there are only three positive ex-
amples without sequence conservation. However, our methadnot only can
score all the known triple beta-spirals higher than the negéive sequences,
but also is able to recover most of the repeats from the segméation (see
Table 8.4 and Figure 8.6).

Figure 8.7 shows the histograms of the log-ratio score of th&BS pro-
teins and the PDB-minus dataset. We can see that there is a reltively clear
separation between the positive and negative examples. Ofllathe proteins
scored higher than 0 in the PDB-minus set, there are 58 proteis from
class, 45 from class, 51 from= class, 72 from + class, 4 from and

class, 6 from membrane class. The false-alarm proteins witthe highest
scores (most confusing to L-SCRFs) are listed in Table 8.5. W also hypoth-
esize potential TBS proteins from the Swiss-Prot using L-S®Fs. The whole
list can be accessed at http://www.cs.cmu.edu/ yanliu/swissprot _list.xls.

8.5.2 Double-barrel Trimer

From Table 8.6 and 8.7, we can see that it is extremely di cult in predicting
the DBT fold. However, our method is able to give higher ranksfor 3 of the
4 known DBT proteins, although we are unable to reach a clear sparation
between the DBT proteins and the rest. The results are within our expec-
tation because the lack of signal features and unclear undstanding about
the inter-chain interactions makes the prediction signi cantly harder. We
believe more improvement can be achieved by combining the sailts from
multiple algorithms. Figure 8.8 shows the histograms of thelog-ratio score
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Figure 8.6: Segmentation results of the known triple
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Figure 8.7: Histograms of I-SCRF scores on positive tripldseta spirals (red
bar with arrow indicator) and negative set PDB-select (green bars).
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Table 8.2: Results of PSI-blast search on triple- spirals. "X" denotes that
the testing protein appears in the result hit list of the query sequence; "-"
denotes no hit.

Query Sequence Adenovirus | Reovirus | PRD1
Adenovirus X X -
Reovirus X X -
PRD1 - - X

Table 8.3: Cross-family validation results of the known triple -spirals by
PFAM, HMMER using structural alignment, Threader, RADAR an d I-
SCRFs. Notice that the scores from the HMMER and Pfam are not drectly
comparable on di erent proteins.

SCOP family Pfam HMMER Threader [-SCRFs
score rank| score rank rank score rank

Adenovirus | -3439 11 | -2255 7 26 74.1 1

Reovirus 7.9 1 -2943 2 242 11.6 1

PRD1 -6.7 7 -399.4 194 928 43.4 1

Table 8.4: # of repeats corrected predicted by di erent methods for the

triple -spiral proteins
SCOP family | Swiss-Prot ID | PDB ID # of Correct Repeats
Truth | RADAR | L-SCRF
Adenovirus FIBP _ADEO2 1qiu 22 3 21
Reovirus COA5_BPPRD 1kke 8 2 7
PRD1 VSI1_REOVD 1yqg8 2 0 2

of the double-barrel trimer proteins and the PDB-minus dataset. Of all the
proteins scored higher than 0 in the PDB-minus set, there are45 proteins
from class, 37 from class, 88 from = class, 28 from + class , 14
from and class, 7 from membrane class. The most confusing proteins
are listed in Table 8.8.

8.6 Summary

In this chapter, we develop linked segmentation condition& random elds
(I-SCRFs), for predicting complex protein folds involving multiple chains.
Following the framework of conditional graphical models, aprotein struc-
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Table 8.5: Examples of high-scored proteins in the PDB-seld dataset

PDB id | L-SCRF | SCOP Description
score Cluster #
1z7a | 12.09 - hypothetical Pseudomonas aeruginosa
PAO1
1zmb | 9.68 - Putative Acetylxylan Esterase from
Clostridium acetobutylicum
1xa7 | 9.64 e3d.1.1 beta-lactamase/transpeptidase-like
1tm0 | 9.55 d.21.1.3 Diaminopimelate epimerase-like
lkgs | 8.83 a.4.6.1 C-terminal e ector domain of the bi-
partite response regulators
1m2w | 8.77 a.100.1.9 | 6-phosphogluconate dehydrogenase C-
terminal domain-like
1p16 | 8.00 b.40.4.6 Nucleic acid-binding proteins
1itd5 | 7.94 d.110.2.2 | GAF domain-like
lyox | 7.88 - hypothetical protein PA3696 from

Pseudomonas aeruginosa

tural graph is de ned, in which the nodes represent secondar structural
components of unknown lengths and the edges indicate the iet- or intra-
chain long range interactions in the fold. As a discriminative model, I-SCRFs
have the exibility to include any types of features, such asoverlapping or
long-range interaction features. Due to the complexity of he model, ex-
act inferences are computationally prohibitive. Therefore we propose to use
the reversible jump Markov chain Monte Carlo for inferencesand optimiza-
tion. Our model is applied to predict two protein folds and the cross-family
validation shows that our method outperforms other state-d-the-art algo-
rithms. For future work, it would be interesting to combine t he I-SCRFs
model with active learning, in which we can automatically bootstrap nega-
tive features from the motif databases (e.g. Pfam or PROSITH using false
positive examples in the previous iterations.
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Table 8.6: Results of PSI-blast search on double-barrel trmer proteins (3-
iterations with cuto score of 0.05)

Adenovirus | PRD1 | PCBV-1 | STIV
Adenovirus X - - -
PRD1 - X - -
PCBV-1 - - X -
STIV - - - X

Table 8.7: Cross-family validation results of the known doible-barrel trimer
by HMMER (pro le HMM) using sequence alignment (seg-HMMER) and
structural alignment (struct-HMMER), Threader and I-SCRF s. Notice that
the scores from di erent methods are not directly comparabk on di erent

proteins.
SCOP family | Seg-HMMER | Struct-HMMER | Threader [-SCRFs
score rank | score rank rank score rank
Adenovirus | -196.4 12 | -165.1 14 > 385 38.6 87
PRD1 -457.8 84 |-381.3 107 323 75.5 8
PBCV -295.3 92 | -344.3 8 321 94.0 3
STIV -520.4 218 | -390.4 70 93 1236 2
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Figure 8.8: Histograms of L-SCRF scores on positive doublearrel trimer
(red bar with arrow indicator) and negative set PDB-select (green bars).
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Table 8.8: Examples of high-scored proteins in the PDB-seld dataset

PDB id | L-SCRF SCOP Description
score Cluster #

lqcr 136.97 f.32.1.1 a subunit of cytochrome bcl complex
1qgle 113.00 f.24.1.1 Cytochrome c oxidase subunit I-like
1g55 | 89.92 €.66.1.26 Enigmatic DNA methyltransferase homolog
1tlu 87.96 - Choline Acetyltransferase
1In6 83.07 f.13.1.2 G protein-coupled receptor-like
1he8 | 78.80 a.118.1.6 ARM repeat
1xtj 75.75 - human UAP56 in complex with ADP
4cts 71.69 a.103.1.1 Complex of citrate synthase
1kpl 66.17 f.20.1.1 Clc chloride channel
lofq 65.67 c.1.104 Aldolase in complexes with manganese

Table 8.9: L-SCRF scores of potential double-barrel trimes suggested in
(Benson et al., 2004)

Swiss-Prot ID Description L-SCRF score (prob)
P11795 Tomato bushy stunt virus (TBSV) 29.60 (40.1%)
pP22776 (p72) African swine fever virus (ASFV) 7.92 (0.00%)
Q05815 (MCP) Chilo iridescent virus (CIV) 32.09 (89.0%)

Q5UQL7 Probable capsid protein 1 - Mimivirus 41.90 (99.9%)
Q6X3V1 Bacillus thuringiensis bacteriophage Bam35c 33.53 (97.2%)
Q8JJuU8 (Fragment) Trichoplusia ni ascovirus 2a 42.86 (99.9%)
Q80QN59 Ectocarpus siliculosus virus 1 44.12 (99.9%)
Q9YW23 Poxvirus 42.88 (99.9%)




Chapter 9

Conclusion and Future Work

In this thesis, we develop a framework of conditional graphtal models for
protein structure prediction. We focus on predicting the general structural
topology of proteins, rather than specic 3-D coordinates d each atom.
Based on the structural characteristics at each level in theprotein structure
hierarchy, we can develop a corresponding conditional gradmcal model to
capture the interactions between structural components, vhich correspond
to the chemical bonding essential to the stability of the praein structures.
To our best knowledge, this approach is one of the rst probalilistic models
to capture the long-range interactions directly for protein structure predic-
tion.

In our exploration, we have demonstrated the e ectiveness bconditional
graphical models for protein secondary structure predicton, tertiary motif
recognition with two example motifs, i.e. right-handed -helix and leucine-
rich repeats, and quaternary motif recognition on two specic examples, i.e.
triple -spirals and double-barrel trimer. We con rm our thesis statement
that conditional graphical models are theoretically justi ed and empirically
e ective for protein structure prediction, independent of the structure hier-
archies of target outputs.

9.1 Contribution and Limitation

The contribution of this thesis work involves two aspects. Fom computa-
tional perspective,

1. We propose a series of conditional graphical models undex uni ed
framework. They enrich current graphical models for structured pre-
diction, in particular for handling the long-range interac tions common

151
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From

in various applications, such as information extraction ard machine
translation. They furthermore relax the iid assumption about data
with inherent structures theoretically.

. With millions of sequences in the protein databank (SwissProt or

UniProt), e cient structure prediction algorithms are req uired. There-
fore for each graphical model in the framework, we develop aarre-
sponding inference and learning algorithm. Our large scalapplica-
tions have demonstrated the e ciency of these inference algrithms
and the possibility of applying graphical models in other gemome-wide
or large-scale applications.

. In protein structure prediction, we have to handle the data with char-

acteristics well beyond the classical learning scenario: hiere are very
few positive examples for most of the motifs we work on; the lbels and
features are quite noisy; the application needs massive datprocess-
ing (millions of sequences) while computational resourceare limited.

We are able to resolve most of these challenges by incorpoiiaty prior

knowledge into graphical models. This serves as a good exarmepto

demonstrate how domain knowledge can compensate the lack o&-
liable data. Although our discussions are focused on applations in

computational biology, the methodologies are easily tranferrable to

other applications.

biological perspective,

We use CRFs and kernel CRFs for protein secondary structus pre-
diction and achieve some improvement over the state-of-artmethods
using window-based approaches.

We develop SCRFs, one of the rst probabilistic models to apture
the long-range interactions globally for protein fold recanition. It has
been proven to be e ective at identifying examples of very conplex
motifs where most traditional approaches fail. We also hypthesize
potential membership proteins of the -helix motif. We hope that the
results will provide useful guidance to the biologists in rdated areas
for their experiments.

We develop linked SCRFs, one of the rst probabilistic models speci -
cally for quaternary motif recognition. Itis also one of the early models
to successfully make predictions for viral motifs.
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4. In general, our work helps to provide a better understandng on the
mapping from protein sequences to their structures. We hopé¢hat our
prediction results will shed light on the functions of some potein folds
and aid drug design.

Until now, we have veri ed our thesis statement, i.e. conditional graph-
ical models are an e ective solution for protein structure prediction. At the
same time, there are also several limitations:

1. The models provide the convenience to use any types of infimative
features. However, there is no guideline on how to extract thse mean-
ingful features from protein sequences automatically. Masof our fea-
tures come from domain experts, who devote tremendous time rad
e orts on the study of our target motifs. We have not found an ef-
cient way to generate the features for all the motifs and structures.
We make an early e orts to examine if we can bootstrap features au-
tomatically from the motif databases (e.g. Pfam or PROSITE), but
fail to achieve further improvement. More elaborated extersions will
be part of the future work.

2. Obtaining the ground truth, i.e. the true structures of concerned pro-
teins, requires lab experiments with long waiting time (1-5 years or
more). As a result, many of our prediction results cannot be eri ed
in the near future although we do get encouraging results forseveral
proteins whose structures have been resolved recently.

3. Another limitation of our work is the computational compl exities. Our
models have a much higher complexity than the similarity-based ap-
proaches (both are polynomialO(n¢9), but d >= 3 for the former and
d=1 or 2 for the latter). The advantage of our model is a better per-
formance (in terms of prediction accuracy and sensitivity) for the most
di cult target folds (motifs). A natural solution for a geno me-wide ap-
plication is to use sequence-based methods on simple foldmd apply
our model on the more complex and challenging folds.

9.2 Future Work
For future work, we would like to examine multiple direction s, including:

E cient inference algorithms In the thesis, we have examined sev-
eral inference algorithms, such as belief propagation and KIMC sampling.
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There are some recent advances in the research of e cient irence al-
gorithms for graphical models. For example, pre-conditiorr approximation

and structured variational approximation. We have not full y examined these
alternatives since the main theme of the thesis is to develog cient models

and solve important biological problems. As future work, it will be inter-

esting to examine the e ciency and e ectiveness of di erent approximation

algorithms. On one hand, we can nd the best algorithm for the graph-
ical models we develop here; on the other hand, our experimérsettings
(complex graphs and noisy, unbalanced training data) provile an excellent
testing case for a thorough comparison of di erent inferene algorithms.

Viral protein structure prediction Viruses are a noncellular biological
entity that can reproduce only within a host cell. Most virus es consist of nu-
cleic acids covered by proteins while some animal viruses arlso surrounded
by membranes. Inside the infected cell, the virus uses the syhetic capa-
bility of the host to produce progeny virus and attack the host cell. There
are many types of viruses, either species-dependent or spes-independent.
For example, some famous viruses are known to be unique to huemn beings,
such as human immunode ciency virus (HIV), tumor virus, sudden acute
respiratory syndrome (SARS) virus.

The structures of viral proteins are very important for studying the in-
fection processes and designing drugs to stop the infectionHowever, it is
extremely di cult to acquire their structures by lab experi ments since the
genes of viruses mutate rapidly and therefore the structure of the proteins
change accordingly. Give the limited number of training indances, there are
very few computational methods that can successfully predit the structures
of viral proteins.

Many examples we use in our experiments are viral proteins, u&h as
the right-handed -helices, triple -spirals and double-barrel trimer. Our
successes in these proteins show strong indication that ounodel might be
useful for sequence analysis and structure prediction of beer viral proteins.
Therefore it would be interesting to examine this direction and verify the
generality of our model in this exciting area.

Protein function prediction Itis widely believed that protein structures
reveal important information about their functions, but it is not straightfor-
ward to map the sequences to speci c functions since most furtional sites
or active binding sites consist of only a few residues, whicimay be quite
distant in sequence order. Previous work on protein functio prediction can
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be summarized into two approaches. One approach is to colleand combine
the information from multiple resources, such as the databae of functional
motifs, microarray data, protein dynamics and so on. The other approach
is motivated by the structural properties of functional sites. For example,
TRILOGY is a system that searches all the possible triplets @ combination
of three residues) in protein sequences and selects only almet as seeds
to search for longer patterns (Bradley et al., 2002). Both agproaches have
achieved some successes, but the current prediction resslare still far from
practical use.

In the thesis, we have studied some protein families with stnctural re-
peats, such as the leucine-rich repeats and TIM barrel fold.These structures
provide a stable frame so that the active sites can perform tlir functions.
By segmenting the protein sequences against these motifs,esmanage to
know the locations of the structural frame and the active sites. Along the
direction, we choose the ankyrin repeats, one of the most comon motifs in
protein-protein interactions, as a study case. Ankyrin repeats are tandem
modules of about 33 amino acids: each repeat folds into a helloop-helix
structure with a -hairpin (or loop region) projecting out from the helices
at a 90 degree angle. The repeats stack together and form an &haped
structure. The ankyrin repeat has been found in proteins wih diverse func-
tion such as transcriptional initiators, cell-cycle regulators, cytoskeletal, ion
transporters and signal transducers. Our future plan is to gply our model
to the motifs from one or two subfamilies in the ankyrin repeds. This in-
formation, combined with other features indicative of the functions, such as
the location information and the results from the mircoarray data analysis,
may provide a reasonable solution for function identi cation.

Other applications In addition to applications in biology, there are many
other tasks involving sequential observations with long-ange interactions,
such as information extraction and video segmentation. It would be inter-
esting to apply our conditional graphical models to other applications and
testify the generality of the thesis statement. We are now puisuing the idea
on information extraction in the medical domain.
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Notation and Index

capital letter
lower-case letter
bold letter

X 2X
y2Y

OVaDT "M<OIVSENTCRZZ

constants and random variables
observed variables
vectors

input and input space

output and output space
dimension of input space
number of segments ok in segmentation space
dimension of feature space
training set size

normalizer over all possible con guration of y
segmentation and labeling ofx
loss function to be optimized

a graph

a set of nodes in graphG

a set of edges in graphG

feature function

starting position of a segment
ending position of a segment
the state of a segment or a node
a set of cliques in a graph
weight for the features

forward probability

backward probability

indicator function
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Index

-helix, 25
-sheet, 25

amino acid, 24
Bayesian conditional random eld, 43

CATH, 27

coil, 25

conditional graphical models, 52
contrastive divergence, 70

discriminative model, 35
domain, 26

brous protein, 26
fold, 26

globular protein, 26
graphical model, 32

hidden conditional random eld, 46
inference, 34

Langevin method, 70
loop, 25
loopy belief propagation, 71

max-margin Markov networks, 41
mean eld approximation, 72
membrane protein, 26

motif, 26

multi-task learning, 37

non-globular protein, 26

PDB, 27
perceptron conditional random eld,
43
prediction problem with structured-
output, 36
Pro le HMM, 29
protein, 24
primary structure, 25
quaternary structure, 26
secondary structure, 25
tertiary structure, 25
PSI-BLAST, 29

relational data, 37
residue, 25

saddle point approximation, 72

SCOP, 27

semi-Markov conditional random eld,
45

structural bioinformatics, 50

UniProt, 27
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Appendix B

Details of Example Proteins

In this appendix, we describe the details about the protein blds we select
in our experiments, including the right-handed -helix, leucine-rich repeats,
triple -spirals and double-barrel trimer. These folds are good exaples
of what most other prediction algorithms fail to predict. Th ey all exhibit

complex structures, involve in many important biological functions but have

very few positive training data. We collect the domain knowledge about
these folds from the literature, domain experts and the onlne resources. We
also make some observations by examining the structures ofhe proteins
ourselves.

B.1 Right-handed -helix

The right-handed parallel -helix fold is an elongated helix-like structure
with a series of progressive stranded coilings (calledungs), each of which
is composed of three parallel -strands to form a triangular prism shape
(Yoder et al., 1993). The typical 3-D structure of a -helix is shown in
Fig.B.1(A-B). As we can see, each basic structural unit, i.e a rung, has
three -strands of various lengths, ranging from 3 to 5 residues. Té strands
are connected to each other by loops with distinctive featues. One loop is a
unique two-residue turn which forms an angle of approximatéy 120 between
two parallel -strands (called T-2 turn). The other two loops vary in size
and conformation, which might contain helix or even -sheets.

The -helix proteins are signi cant in that they include pectate lyases,
which are secreted by pathogens and initiate bacterial infetion of plants;
the phage P22 tailspike adhesion that binds the O-antigen ofSalmonella
typhimurium; and the P.69 pertactin toxin from Bordetella p ertussis, the
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cause of Whooping Cough. Therefore it would be very interesng if we can
accurately predict other unknown -helix structure proteins.

Currently there are 14 -helix proteins whose structures have been deter-
mined. Those proteins belong to 9 di erent SCOP families (Muzin et al.,
1995). Computationally, it is very dicult to detect the -helix fold be-
cause the membership proteins do not exhibit strong sequercidentity (less
than 25%), which is the \twilight zone" for sequence-based nethods, such
as PSI-BLAST or HMMs. From previous literature on -helix, there are
two properties about the fold essential for accurate prediton: 1) the -
strands of each rung have patterns of pleating and hydrogen dnding that
are well conserved across the superfamily; 2) the interaatin of the strand
side-chains in the buried core are critical determinants otthe fold (Yoder &
Jurnak, 1995; Kreisberg et al., 2000).

Figure B.1: 3-D structures and side-chain patterns of -helices; (A) Side
view (B) top view of one rung (C) Segmentation of 3-D structures (D)
protein structural graph. E1 = fblack edgey and E2 = fred edgey (Figure
(A) and (B) are adapted from (Bradley et al., 2001))

B.2 Leucine-rich Repeats

The leucine-rich repeats are solenoid-like regular arrangment of -strand

and -helix, connected by coils (Fig.B.2). Based on the consenieon level,

we de ne the motif for LLR as the -strand and short loops on two sides,
resulting 14 residues in total. The length of theinsertions varies from 6
to 29. There are 41 LLR proteins with known structure in PDB, covering
2 super-families and 11 families in SCOP. The LLR fold is relévely easy
to detect thanks to its sequence conservation with many leuines and short
insertions. Therefore it would be more interesting to disceer new LLR

proteins less similar to the previously known ones.
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<+— Repeat | —
~—Repeat 2 —»
«~—Repeat 3 —

Figure B.2: (Left): beta helices; (Right) Leucine-rich repeats

B.3 Triple -spirals

Van Raaij etal.in Nature (1999)

Figure B.3: Demonstration graph of triple -spirals. (left) 3-D structures
view. Red block: shaft region (target fold), black block: knob region. (mid-
dle) top view. (right) maps of hydrogen bonds within a chain and between
chains.

The triple -Spiral fold is a processive homotrimer consisting of three
identical interacting protein chains. It was rst identie d by Mark J. van
Raaij and collaborators in 1999 (van Raaij et al., 1999). Thefold serves as
a brous connector from the main virus capsid to a C-terminal knob that
binds to host cell-surface receptor proteins (see Figure 8). Up to now there
are three crystallized structures with this fold depositedin the Protein Data
Bank (PDB) (Berman et al., 2000), one is the adenovirus protén (DNA
virus, PDB ID: 1qiu), another is reovirus (RNA virus, PDB ID: 1kke) and
the other is PRD1 (PDB ID: 1yg8). The common existence in bothDNA and
RNA viruses reveals important evolution relationships in the viral proteins,
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which also indicates that the triple beta-spirals might be acommon fold in
nature.

The triple- spiral fold has several structural characteristics that distin-
guish itself from others: it consists of three identical prdein chains with
a series of repeated structural elements, which is referreds \rung" in our
later discussion (see Figure 8.3). Each of these structuratlements is com-
posed of: 1. A -strand that runs parallel to the ber axis 2. A long
solvent-exposed loop of variable lengths, 3. A second-strand that forms
antiparallel -sheets with the rst one, and slightly skewed to the ber axis,
4. successive structural elements along the same chain ar@rmnected to-
gether by a tight -turn (Scanlon, 2004; Weigele et al., 2003). Among those
four components, the two beta-strands are quite conservechisequences and
Green et al. characterize them by labeling each position usig character “a'
to o' (Green, 1995). Specically, i-o for the rst strand and a-h for the
second strand (see Figure 8.3).

Figure B.4: Sequence alignment logo of the rst -strand and second -
strand.

It is extremely challenging to predict the triple- spirals with only three
positive examples. Fortunately, the structural repetitiv e patterns have been
partially re ected in the sequences conservation. The segence alignment
logo is shown in Figure B.4. More careful study suggests thatve can get
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Figure B.5: Segquence alignment of the rst -strand grouped by the '

position.

even more conserved sequence alignment if we group them bdsen the

amino acid type on the 7j' position (see Figure B.5).

The ideni cation

of this pattern play an essential role in successfully prediting the triple

-spirals. Another interesting observation about the TBS fdd is that the

three component chains interwind with each other to form a rigid ber with

a hydrophobic core. The accessibility and hydrophobic progrties might be

indicative for distinguishing TBS from others.

B.4 Double-barrel Trimer

The double-barrel trimer is a potential protein fold, which has been found
to in the coat proteins from several kinds of viruses. It consst of two eight-

stranded jelly rolls, or

-barrels. As seen in Figure B.6, the component

-strands are labeled as B, C, D, E, F, G, H and | respectively. The rst
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Figure B.6: X-Ray Crystal Structures of Viral Double-Barre | Trimeric Major

Coat Proteins (A) P3 of bacteriophage PRD1 (394 residues; PB code 1hx6;
Benson et al., 2002), (B) Hexon of adenovirus type 5 (Ad5; 95Xesidues;
PDB code 1p30; Rux et al., 2003), and (C) Vp54 of Paramecium brsaria
chlorella virus 1 (PBCV-1; 436 residues; PDB code 1m3y; Nanlagopal et
al., 2002). The eight strands and a anking -helix are displayed for the
rst (green) and second (blue) jelly rolls, and the individu al strands are

labeled (B1-11 and B2-12, respectively). Graph and captionadapted from
Benson et al, 2004.
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strand is named as B because one example of thebarrels, the tomato bushy
stunt virus, has an extra initial strand. The folded -barrel has two sheets,
each consisting of four -strands, i.e. BIDG and CHEF, with hydrogen
bonds within a sheet, but not across the edges. Notice that tere is no
hydrogen bonds between B and C, nor F and G, therefore it is nota true
-barrel like the / motif. At its native state, multiple identical protein
chains of the double-barrel timer will come together with chemical bonds
(mostly hydrogen bonds), forming trimeric hexon protein arranged on the
planes and a penton complex at each of the twelve vertices. Tdnrest of our
discussion are focused on the trimeric hexons.

The importance of studying the double-barrel trimer is far beyond sim-
ple veri cation of our proposed computational model. Biologically speaking,
the fold has been found in the major coat proteins of bacteriphage PRD1,
that of human adenovirus, Paramecium bursaria chlorella vius (PBCV)
and archaeal virus STIV. This amazing phenomenon raised thainexpected
possibility that viruses infecting di erent kinds of species are related by evo-
lution. It has been suggested that the occurrence of a doublbarrel trimer
is common to all icosahedral dsDNA viruses with large facetsirrespective
of its host, and furthermore an indicator of common ancestorin a lineage
of viruses (Benson et al., 2004). Notice that similar obserations have been
made for the triple -spirals. If we can nd more examples of the double-
barrel trimer in other viruses, the statement would be strengthened greatly
and bring more signi cant impact to the biology science via mmputational
methods.

However, it is not straightforward, or even seemingly imposible, to
uncover the structural conservation through sequences ogl There are 4
double-barrel trimer proteins altogether with resolve structures, including
adenovirus (PDB ID: 1P2Z), PRD1 (PDB ID: 1CJD), PBCV (PDB ID:
1M4X) and STIV (PDB ID: 2BBD). The sequence similarity betwe en the
positive proteins are around 7-20%, which is signi cantly lower than other
protein folds that we have studied before. Figure B.8 showshe alignment
of those 4 proteins according to structures. After careful @amination, we
nd no obvious patterns (such as regular expression templags) to uniquely
identify the double-barrel trimer. There are several geneal descriptive ob-
servations we can make: (1) the lengths of the eight -strands varies, ranging
from 4 to 16 residues, but the layout of the strands is xed. The separation
(insertions) between the strands is fairly constant (4- 10 esidues), however,
it is interesting to notice some exceptions, for example thdong insertions
between the F and G strand (20 - 202 residues), exactly wherehe inter-
chain interactions (chemical bonding) are located,; anotler long loops be-
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Figure B.7: 3-D structure of the coat protein in bacteriophage PRD1 (PDB

id: 1CJD). (left) 3-D structure of PRD1 in trimers. (right) Z oome-in view of
the inter-chain and intra-chain interactions in the FG loop. Color notation:

green: residue #133; red: residue #135; purple: residue #12; blue: residue
#335.

tween D-E strand (9 - 250 residues); the short -turn between E and F. (2)
The chemical bonds that stabilize the trimers are located béveen the FG
loops. We denote the FG loop in the rst double-barrel trimer as FG1, and
that in the second one as FG2. Figure B.7 shows the side-chaibonding in
the FG loop of PRD1 (PDB id: 1CJD). It can be seen that the there are
inter-chain interactions (chemical bonding) between someesidues in FG1 of
di erent chains and intra-chain interactions between someresidues in FG1
and FG2 of the same chain. (3) Most often, the FG loops are bued inside
the hydrophobic core. One exception is adenovirus, in whicla long -helix
anking outside the core.

Table B.1: Pairwise sequence similarity between the doubkbarrel timers

Adenovirus | PRD1 | PCBV-1 | STIV
Adenovirus - 8.40% | 850% | 7.70%
PRD1 - - 17.00% | 15.10%
PCBV-1 - - - 7.90%
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Appendix C

Feature Extraction

Conditional graphical models provide an expressive framewark to capture
the structural properties of protein folds characterized ly both local interac-
tions, inter-chain and intra-chain interactions. They enjoy the advantages of
the original CRF model so that any type of informative features, either over-
lapping or long-range correlations, can be used convenielyt However, the
choice of feature functionfy plays an essential role in accurate predictions.

From the perspective of graph topology, two types of feature can be de-
ned, i.e. node features which cover the properties of an individual segment,
and pairwise features which tries to model the chemical-bonding between
the pairs of segments that are close in three-dimensional syges. More specif-
ically, for all the models discussed in the thesis, the nodestaturesf (x;i; wj)
are factorized as follows:

fosn G wi) = £GP a) sy (wi) = F0Gpia) (6 pisL?) (si;S7XC.1)

whereL? 2 [Imin :Imax], S 2 'S and S is the set of state assignments.
The pairwise featuresg((Xa; U; Wau); (Xp; V; Wp.y)) are factorized as:

g(Lg;sg);(Lg;sg)((Xa; U; Way ); (Xpy Vs Why)) =

o¥(Xai Pau; Gau); (Xb; Povi Obiv) (Gu PawiL2) (b PowiLd) (Saw;S2) (Sowi SE):

Here is the indicator function. In this chapter, we provide a complete list
of features ¢ ®and g9 used for protein structure prediction.

As described in the thesis, four di erent types of protein fods are exam-
ined to verify the e ectiveness of the conditional graphicd models, includ-
ing right-handed -helix, leucine-rich repeats (LLR), triple -spirals and
double-barrel trimer. The features useful to predict theseprotein folds can

167
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be summarized as two types:common features which can be used for all
kinds of fold recognition, and signal features which are unique to the tar-

get fold but require domain expertise. Our experiments and tdies show
that the signal features are usually the most discriminative of the target
fold and given higher weights in the learnt model. On the othe hand, it

is time-consuming to get those signal features: generallyt itakes years for
the biologists to accumulate the required knowledge. Soménes, the cur-
rent understanding of the target fold (e.g. the double-barrel trimer) is not

enough to summarize any reliable signal patterns, in which ase the common
features could be a reasonable backup.

C.1 Common Features

The common node features we de ned to predict all folds inclde:

1. Secondary structure prediction scores Secondary structures re-
veal signi cant information on how a protein folds in three dimension.
The state-of-art prediction method can achieve an average @uracy of
76 - 78% on soluble proteins. We can get fairly good predictio on -
helix and coils, which can help us locate many structural corponents.
Therefore we de ne the feature as the averaged secondary sicture

score:
0 R_— — 1 X . .
favgn (X505 pi) = mt= ) PSlpred-scorek;t; H);
0 C e — X . .
f avge (X; G5 Pi) = mtz ) PSlpred-scorek;t; E);
and
0 R — 1 X . .
favgc (X G pi) = mt: i PSlpred-scorek;t; C);

where PSlpred-scorex;t; Y) is the probability that the t-th residue be-
longs to type Y predicted by PSIPRED (Jones, 1999).Y 2fH, E, Cg,
which represent -helix, -sheet and coil respectively.

We can also de ne the feature of maximal secondary structurescore
as |
faxr (X; G5 pi) = rt'nqéx PSlpred-scoref; t; H);
=pi
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and minimal secondary structure score as
0 a4
fminn (XG5 pi) = min PSlpred-scoref; t; H):
=P

Similarly, we can derive the de nitions for f maxe , f maxc » fmine and
f minc -

2. Segment length In many cases, each state has strong preferences to
a speci c range of the segment length, i.e. the number of redues.
Therefore we can de ne the length feature as

fix;pisg)=qg pi+1:

Notice that the length information has already been modeledvia the
indicator function in eq(C.1). Here we duplicate the information only
for the sake of completeness.

3. Physicochemical properties For some motifs or folds, the physic-
ochemical patterns of member residues are unique to themsads or
play an important role in the stability of the structures. Th erefore we
de ne the features using Kyte-Doolittle hydrophobicity score, solvent
accessibility and ionizable score'. Similar to the secondary structure
score, we also develop the averaged, maximal and minimal v&ions
for each type of physicochemical properties. The feature factions can
easily be derived accordingly, i.e.

f0 G p) = ! )@iKD e(x;t);
avgHydro (X3 G3 i) = G pel,, score(x; t);

i

f r?ﬁaxHydro (X;q;pi) = I;TlapX KD-score(x;t);
G

finyaro (X; 3 Pi) = min KD-score(x;t):

where KD-score is the Kyte-Doolittle hydrophobicity score for the t-th
amino acid.

The pairwise features we found useful for -sheet related motifs or folds
include:

1The score tables of these properties can be accessed at
http://www.cgl.ucsf.edu/chimera/1.2065/docs/UsersGu  ide/midas/hydrophob.html,
http://prowl.rockefeller.edu/aainfo/access.htm.
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1. Side chain alignment scores For -sheets, it is observed that the
amino acids have di erent propensities to form a hydrogen bad de-
pending on whether the side-chains are buried and exposed (Bdley
et al., 2002). An alignment score of interacting residue pafs can be
computed accordingly. In the methods described in (Bradleyet al.,
2002), the conditional probability that a residue of type X will align
with residue Y, given their orientation relative to the core (buried or
exposed), is estimated from a -structure database developed from the
PDB database. The feature functiong2 o5 ((Xa; Pa:u; Ga:u); (Xb; Povi Gorv))
can be de ned as

ggAS ((Xa; Pau; Ga;u)s (Xb; Po:vi Obyv)) =
Oauy Paiu
(Gau  Paus%yv  Poyw) SAS-score(Ka; Pau + 1); (Xp; Pov + 1));
t=0

where ASA-score(ka; i); (Xb; ] )) equals to Inward-scoreia;i; Xp;j) if the

side chains of two residues are pointing inward and % Outward-score(Xa;i ; Xp;j)
if the side chains pointing outwards (the side-chain orientition is de-
termined beforehand via domain knowledge).

2. Parallel -sheet alignment scores In addition to the side chain po-
sition, another aspect is the di erent preferences of each mino acid to
form parallel and anti-parallel -sheets. Steward & Thornton derived
the \pairwise information values" (V) for a residue of type X given the
residue Y on the pairing parallel (or anti-parallel) strand and the o -
sets of Y from the paired residue Y' of X (Steward & Thornton, 2002).
The alignment score for two segmentx = X1::: Xmandy = Y1::: Yy
is de ned as

X X
para-scoreg;y) = (VXijYsio )+ VIYiiXsi )
i
Notice that this score also takes into account the e ect of néghboring
residues on the paired strand. We de ne the feature functionas:

ggAS ((Xa; Paus Ga;u)s (Xb; Povi Goyv)) =
Qauy Paiu
(Gau  Pau; G Poy) para  score((Xa; Pau + t); (Xp; Py + t)):
t=0
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3. Distance between interacting pairs It is observed that the dis-
tance between the interacting pairs of segments can not exed a spe-
ci c range since otherwise the long insertions will break the structure
stabilities. To enforce such constraints, we de ne featurefunction
ggis ((X;pu;au); (X;pv;av)) =1 if jpv  quj falls in some range, and 0
otherwise.

C.2 Signal Features for -Helix

From previous literature on the right-handed -helix, there are two observa-
tions important for accurate prediction: 1) the -strands of each rung have
patterns of pleating and hydrogen bonding that are well congerved across
the superfamily; 2) the interaction of the strand side-chans in the buried
core are critical determinants of the fold (Yoder & Jurnak, 1995; Kreisberg
et al., 2000). To better capture these structural properties, we extract the
following node features:

1. Regular expression template Based on the side-chain alternating
patterns in B2-T2-B3 region, BetaWrap generates a regular gpression
template to detect -helices, i.e. X XX X X, where matches any
of the hydrophobic residues ad A, F, I, L, M, V, W, Y g, matches
any amino acids except ionizable residues agD, E, R, Kg and X
matches any amino acid (Bradley et al., 2001). Following sinlar idea,
we de ne the feature function fSST(x; i; wi) equal to 1 if the segment
w; matches the template, and 0 otherwise.

2. Probabilistic HMM pro les The regular expression template as
above is straightforward and easy to implement. However, smetimes
it is hard to make a clear distinction between a true motif and a false
alarm. Therefore we built a probabilistic motif pro le usin g HMMER
(Durbin et al., 1998) for the s-B23 and s-B1 segments respeieely. We
de ne the feature function f 3y, 1(X;i; wi) and f 8y,y 2(X:i; wi) as the
alignment scores of segmentv; against the s-B23 and s-B1 pro les.

3. Segment length It is interesting to notice that the -helix structure
has strong preferences for insertions within certain lendt ranges. Fig-
ure C.1 shows the histogram plots of the segment length for stte s-T1
and s-T3 respectively. To take into consideration the dierent pref-
erences of lengths, we did parametric density estimation, alassical
method to model the distribution of a random variable. We explored
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Figure C.1: Histograms for the length of s-T1 (top) and s-T3 (bottom)

several common functions, including Poisson distribution negative-
binomial distribution and asymmetric exponential distrib ution, which
consists for two exponential functions meeting at one point From the
gure, we can see that the asymmetric exponential model is a btter
estimator than the other two. Therefore we de ne the feature function
fRii;wi)= P(Lt, = g p)and f20i;wi)= P(Lt, = g p),
where the distribution is estimated via the asymmetric expmential
model.

C.3 Signal Features for Leucine-rich Repeats

The leucine-rich repeats are solenoid-like regular arrangment of -strand

and

-helix, connected by coils. The LLR fold is relatively easy b detect

due to its conserved motif with many leucines in the sequencand short
insertions. We de ne the following node features:

1. Regular expression template The template to identify the LLR

is XXXLXXLX[LV]XXXXX, where X matches any amino acid. We
de ne the feature function f rst (X;I1; W) equal to 1 if the subsequence
corresponding tow; matches the template, and 0 otherwise.

. Probabilistic HMM pro les Similar to the -helix, we also built a

probabilistic motif pro le using HMMER for the segment. We
de ne the feature function f 2,y (X;i; wi) as the alignment scores of
w; against the pro les.
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C.4 Signal Features for Triple- Spirals

In general, the common features of quaternary fold recognibn are similar

to those for tertiary folds. Some features, such as hydrophticity and iconic

propensity, seem to get higher weights since the quaternargomplexes usu-
ally form a hydrophobic core. It is quite hard to predict the triple- spiral

fold given the very limited number of positive examples. Fotunately, there

exists some identi able sequence repeat patterns for both B and B2 states,
which greatly helps to boost the prediction accuracy. We usethe regu-
lar expression template and pro le hidden Markov model to cgture those
patterns:

1. Regular expression template ~ Based on the alternating patterns of
conserved hydrophobic core and peripheral patches in the Band B2
strands, we de ne the following regular expression templags: X X XX
for B1 strand and XX X X X for B2 strand, where is the con-
served tight turn that only matches residues infP, G, A, F, S, Lg,

is the hydrophobic core that matches any amino acid in fL, I, M,
V, T, S, F,Ag, isthe peripheral patches which matches any amino
acid exceptfC, E, H, P, Q, Wg, and X can match any amino acid.
We de ne the feature function frst (X;i; W) equal to 1 if the segment
matches the template, and O otherwise.

2. Probabilistic HMM pro les Sometimes the regular expression tem-
plate is not preferred since it is hard to make a clear cuto bdween a
true motif and a false alarm. Therefore pro le HMM using probabilis-
tic estimation is a better resort. Initially we used the alignments of all
the positive examples for B1 and B2 state, but fail to get reasnable
results as expected since the sequence similarity is too loto gener-
alize a good pro le. Later we observe that the alignments shee more
similar patterns in sequence if we separate the alignmentsto groups
based on the type of amino acid on conserved -turn position, that
is, position 7j' in Green's labeling scheme (see Figure 8.3)Therefore
we built six HMM pro les (one for each amino acid type at position
i using HMMER (Durbin et al., 1998) for B1 and B2 respectively.
Then we de ne the feature functionsfpymm (X;i; wi) as the alignment
scores of the segment against those B1 and B2 pro les.
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C.5 Signal Features for Double-barrel Trimer

The double-barrel trimer is a relatively new protein fold which attracts biol-
ogists' attention recently, due to their common existence n the coat proteins
of viruses infecting di erent kinds of species. It is claimal that the layouts
of the -barrels are quite unique to virus proteins, but there is no sgni cant
sequence conservation either in the -strand components or the loops or
turns connecting the -strands. The only interesting observation we made
after careful study is this short -turns between strand E and F. It has
strong structural conservations without sequence similaities. Therefore we
de ne -turn features as follows:

1. -turn scores There has been extensive research on how to reliably
predict the -turns in the protein sequence. Up to now, the com-
monly accepted nomenclature divides the -turns into six types, i.e.
type I, I, VIII, I', II', Vla, VIb, and IV, as de ned by Hutchi nson
and Thornton (Hutchinson & Thornton, 1994). In (Fuchs & Alix ,
2005), the propensity scores of di erent amino acids in thoge six type
of -turns are calculated. In particular, the experiments showthat a
weighted propensity score using the PSI-BLAST pro le perfams much
better than using the amino acid type that only appear in the protein
sequences. Therefore we de ne the feature functiof ¢ (X;i; Wj)
as the maximal (and minimal) score of the -turn propensity of each
type over the subsequencel; to d;+1 .

2. Maximal alignment scores  The pairwise features of -sheet align-
ment scores are de ned similarly as described above excephat the
lengths of the -strand pair is not necessarily the same. This causes a
problem when we try to compute the alignment score since we doot
know which pairs of residues interact with each other. To sole the
problem, we compute all possible alignments by shifting thestarting
position of the longer segment and use the highest alignmergcores as
the features:

gl?/IAS ((Xa; Pajus Ga;u)s (Xbs Poyvs Goyv)) =

Cauy Pa;
Pbv + Ga;u  Paju X Fau
max

tO: pb;v

SAS-score(ka; Pau + t); (Xb;to"' t));
t=0

3. Pointwise alignment scores  Another challenges in predicting the
double-barrel trimer is the incomplete understanding of the inter-chain



APPENDIX C. FEATURE EXTRACTION 175

interactions. It is suggested that the interactions happenwithin the

FG-loop of the two -barrels, but the speci c location as well as the
type of chemical bonding remains unclear. Following the ida of nat-
ural selection of hydrogen bonds, we compute all the possiblpairs of
side-chain interactions, and use the highest score as feats.

Poyv  Gau
0B 7as (Xa Pau; Gau); (Xb; Poy: Gbiv) = tOrpbglx [max SAS-score(ka;t); (xb;1%);

= Ppv 1= Pau

In other words, we try to capture the possibility of forming hydrogen
bonds between the current pairs of segments.

It is interesting to notice that most of the features de ned above are quite
general, not limited to predicting the four protein folds only. For example,
an important aspect to discriminate a speci ¢ protein fold with others is to
build HMM pro les or identify regular expression templates for conserved
regions if they exist; the secondary structure assignmentsare essential in
locating the elements within a protein fold; if some segmerg have strong
preferences for certain length range, then the lengths arelso informative.
For pairwise features, the -sheet alignment scores are useful for folds in

-family while hydrophobicity is important for - or  -family.
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