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Abstract

Linguistic structured prediction, such as sequence labeling, syntactic and seman-

tic parsing, and coreference resolution, is one of the first stages in deep language

understanding and its importance has been well recognized in the natural language

processing community, and has been applied to a wide range of down-stream tasks.

Most traditional high performance linguistic structured prediction models are

linear statistical models, including Hidden Markov Models (HMM) and Conditional

Random Fields (CRF), which rely heavily on hand-crafted features and task-specific

resources. However, such task-specific knowledge is costly to develop, making struc-

tured prediction models difficult to adapt to new tasks or new domains. In the past few

years, non-linear neural networks with as input distributed word representations have

been broadly applied to NLP problems with great success. By utilizing distributed

representations as inputs, these systems are capable of learning hidden representations

directly from data instead of manually designing hand-crafted features.

Despite the impressive empirical successes of applying neural networks to linguis-

tic structured prediction tasks, there are at least two major problems: 1) there is no a

consistent architecture for, at least of components of, different structured prediction

tasks that is able to be trained in a truely end-to-end setting. 2) The end-to-end train-

ing paradigm, however, comes at the expense of model interpretability: understanding

the role of different parts of the deep neural network is difficult.

In this thesis, we will discuss the two of the major problems in current neural

models, and attempt to provide solutions to address them. In the first part of this thesis,

we introduce a consistent neural architecture for the encoding component, named

BLSTM-CNNs, across different structured prediction tasks. It is a truly end-to-end

model requiring no task-specific resources, feature engineering, or data pre-processing

beyond pre-trained word embeddings on unlabeled corpora. Thus, our model can be

easily applied to a wide range of structured prediction tasks on different languages and

domains. We apply this encoding architecture to different tasks including sequence

labeling and graph and transition-based dependency parsing, combined with different



structured output layers, achieving state-of-the-art performance.

In the second part of this thesis, we use probing methods to investigate learning

properties of deep neural networks with dependency parsing as a test bed. We first

apply probes to neural dependency parsing models and demonstrate that using probes

with different expressiveness leads to inconsistent observations. Based on our find-

ings, we propose to interpret performance of probing tasks with two separate metrics,

capacity and accessibility, which are associated with probe expressiveness. Specifi-

cally, capacity measures how much information has been encoded, while accessibility

measures how easily the information can be detected. Then, we conduct systematic

experiments to illustrate two learning properties of deep neural networks: (i) laziness –

storing information in a way that requires minimal efforts; (ii) targetedness – filtering

out from internal representations information that is unnecessary for the target task.
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Chapter 1

Introduction

Teaching machines to understand human language documents is one of the most elusive and

long-standing challenges in Artificial Intelligence. Linguistic structured prediction, such as

sequence labeling (Lafferty et al., 2001; Ratinov and Roth, 2009; Passos et al., 2014; Luo et al.,

2015), syntactic and semantic parsing Nivre and Scholz (2004); McDonald et al. (2005a); Koo

and Collins (2010); Ma and Zhao (2012a,b); Chen and Manning (2014); Ma and Hovy (2015),

and coreference resolution (Ng, 2010; Durrett and Klein, 2013; Ma et al., 2016), is one of the first

stages in deep language understanding and its importance has been well recognized in the natural

language processing (NLP) community.

Many problems in machine learning involve structured prediction, i.e., predicting a group

of outputs that depend on each other. Many NLP systems, sentiment analysis (Tai et al., 2015),

machine translation (Xie et al., 2011; Bastings et al., 2017), information extraction (Nguyen et al.,

2009; Angeli et al., 2015; Peng et al., 2017), word sense disambiguation (Fauceglia et al., 2015),

and low-resource languages processing (McDonald et al., 2013; Ma and Xia, 2014), are becoming

more sophisticated, in part because of utilizing structured knowledge such as part-of-speech (POS)

tags, dependency parsing trees, and entity/event coreference information. Figure 1.1 illustrates

examples for three classic linguistic structured prediction tasks:

• part-of-speech tagging: to assign to each word in a sentence its part-of-speech (POS) tag

to represent the syntax function. For example, in the sentence I saw a girl with a telescope.

in Figure 1.1, I is a pronoun, saw is a verb is its past tense, a is a determiner, girl and
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Part-of-Speech Tagging

Named Entity Recognition

Dependency Parsing

Figure 1.1: Examples for three linguistic structured prediction tasks: Part-of-speech tagging,

named entity recognition and dependency parsing.

telescope are common nouns, and with is a preposition.

• named entity recognition: to recognize the spans of named entities in a sentence. For

example, Arsène Wegner is a person’s name, while Arsenal is an organization.

• dependency parsing: to analyze the syntactic dependency structure of a given sentence

to represent syntactic relations between words. Taking the first sentence I saw a girl with

a telescope. as an example again, I is the subject and a girl is the object of the verb saw,

while with a telescope as a while is a prepositional phrase which describes a preposition of

manner for the verb.

1.1 Feature Engineering in Traditional Structured Predictions

As to the classical techniques applied in structured prediction, there are three main streams: i)

rule-based approaches; ii) unsupervised learning approaches; and iii) feature-based supervised

learning approaches. Among these approaches, feature-based supervised learning approaches,

such as Hidden Markov Models (HMM) and Conditional Random Fields (CRF) (Ratinov and

Roth, 2009; Passos et al., 2014; Luo et al., 2015), have stood out for the impressive performance

across several linguistic structured prediction tasks.

One of the main challenges of these feature-based approaches is that they rely heavily on
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hand-crafted features and task-specific resources. For example, English POS taggers benefit

from carefully designed word spelling features; orthographic features and external resources

such as gazetteers are widely used in NER; carefully selected combinations of head and context

words, and their corresponding morphological features, significantly improve the performance of

dependency parsers. However, such task-specific knowledge is costly to develop (Ma and Xia,

2014), making structured prediction models difficult to adapt to new tasks or new domains. More

discussions on feature representations are in Section 2.4.

1.2 Research Objectives

Representation learning techniques based on deep neural networks (LeCun et al., 2015) has re-

emerged as one viable solution to this challenge, and fundamentally transformed the conventional

feature engineering paradigm. Representation learning, in principle, enables automatic extraction

of dense, continuous feature representations for downstream tasks via the end-to-end learning

paradigm (Bengio et al., 2013; LeCun et al., 2015). Unlike traditional linear models that rely on

manual feature engineering, deep neural models are able to learn complex and intricate features

from data via non-linear activation functions. The expressive power of these representations has

led to a number of impressive empirical successes in natural language processing (NLP) and

other spheres of artificial intelligence (AI), such as computer vision (Krizhevsky et al., 2012),

control (Mnih et al., 2015), robotics (Levine et al., 2016) and several sub-fields in machine

learning (Goodfellow et al., 2016). In particular, deep learning has revolutionized natural language

processing (NLP), with the primary advancement that words, concepts and contexts which were

previously represented as a set of sparse discrete features can be represented as dense, real-valued

vectors (Mikolov et al., 2013; Pennington et al., 2014; Graves et al., 2013). Compared to discrete

representations which are sparse and can only attain coarse relationships, continuous represen-

tations can capture fine-grained similarities between objects. Furthermore, these continuous

representations can be updated via the end-to-end representation learning paradigm to optimize

the entire neural networks towards the ultimate tasks, such as machine translation (Sutskever et al.,

2014; Bahdanau et al., 2015), structured prediction (Graves, 2008; Collobert et al., 2011) and
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language generation (Mikolov et al., 2010; Graves, 2013).

Various facets of the problem statement underlying this dissertation are addressed in the

scientific articles (either published or accepted for publication) that constitute this dissertation.

These articles deal with two distinct research questions.

Question 1: How to design a consistent neural network architecture that can be applied to

different structured prediction tasks?

Despite the impressive empirical successes of applying neural networks to linguistic structured

prediction tasks, there is no a consistent architecture for, at least components of, different structured

prediction tasks. For different tasks, we have to design specific neural architectures. Therefore, in

this thesis, we aim to introduce a consistent neural network architectures that not only support

truly end-to-end learning of features from task-oriented (labeled) data, but also be applicable to

different tasks. Specifically, the first part of the thesis concentrates on introducing a consistent

neural architecture to encode a sentence into its continuous feature representations (one vector for

each word), and further applying this neural encoder to linguistic structured prediction tasks.

Question 2: In what way can deep neural structured prediction models memorize and

process linguistic information in their internal representations?

From the perspective of model interpretability, understanding the role of different parts of the deep

neural network is difficult. The end-to-end training paradigm significantly simplifies the hand-

crafted feature engineering process in traditional feature-based machine learning (ML) systems.

This, however, often comes at the expense of model interpretability. Unlike traditional feature-

engineered NLP systems whose features, e.g. morphological properties, syntactic categories or

semantic relations, are more easily understood by humans, it is more difficult to understand what

happens in the internal components of an end-to-end neural network. Such deep neural models

are sometimes perceived as “black-box”, hindering research efforts and limiting their utility to

society (Belinkov, 2018). Therefore, the second part of this thesis focuses on the interpretability of

neural networks by investigating the learning properties of neural networks that help us understand

the behaviors of the representation learning procedure. In particular, in the second part, we try to

design experiments to probe the internal representations of neural networks to understand how

deep neural structured prediction models memorize and process linguistic information.
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1.3 Summary of Contributions

The contributions of this thesis are manifold, summarized as follows:

• We introduced a consistent neural architecture for sentence encoding, which is among the

first to research end-to-end neural networks on linguistic structured prediction. In particular,

this encoder is capable of capturing both word- and character-level information, and is

truly end-to-end, entirely getting rid of feature engineering. Based on this encoder, we

proposed three neural networks — one for sequence labeling and two for dependency

parsing, demonstrating superior performance on various datasets in different languages.

It is an important step towards end-to-end representation learning for texts and inspires

following works such as deep contextualized representations (Devlin et al., 2019).

• We made the effort to better understand what linguistic knowledge neural dependency

parsing models have actually learned, with probing methods. We concluded that the

accuracy of probes with different expressiveness does not consistently reflect the quantity of

the encoded information, and further explicitly propose to measure the information encoded

in representations instead using two complementary metrics, by taking a prediction view of

probing accuracy.

• Finally, we pioneered a new research direction in using probing methods to investigate the

learning behaviors of deep neural networks. Specifically, we formally define two learning

properties of deep neural networks: laziness — information, if already been encoded in

some components of a neural network, will not be propagated to other components; and

targetedness — — information that is unnecessary for the ultimate objective will be filtered

out, and conduct systematic experiments to illustrate them.

1.4 Thesis Outline

Following the two central themes that we just discussed, this thesis consists of two parts — PART

I neural architectures and PART II interpretability.

Part I of this thesis focuses on developing neural networks for linguistic structured prediction
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tasks. In Chapter 2, we first visit some background of linguistic structured prediction, end-to-

end learning paradigm and give an overview of the history and recent development of neural

representation learning on linguistic structured prediction. In the last section of this chapter, we

propose a consistent neural architecture, named BLSTM-CNNs, for the encoding component

(encoder) across different structured prediction tasks. Next, by stacking different structured

decoding layers on top of this encoder, we proposed deep neural models for different linguistic

structured prediction tasks.

In Chapter 3, we apply BLSTM-CNNs to sequence labeling tasks, by combining a sequential

CRF on top of it, to jointly decode labels for the whole sentence. With no feature engineering

and data pre-processing, our model surpassed the performance of all prior models, achieving

state-of-the-art performance on two classic sequence labeling tasks — part-of-speech (POS)

tagging and named entity recognition (NER). This work was published as Ma and Hovy (2016).

In Chapter 4 and 5, we demonstrate applications of LSTM-CNNs to graph-based and transition-

based dependency parsers. For graph-based dependency parsing, we proposed the NeuroMST

parser, which constructs a probabilistic structured layer on top of BLSTM-CNNs to define the

conditional distribution over all dependency trees. Benefiting from the probabilistic structured

output layer, we can use negative log-likelihood as the training objective, where the partition

function and marginals can be computed via Kirchhoff’s Matrix-Tree Theorem (Tutte, 1984;

Smith and Smith, 2007). For transition-based dependency parsing, we proposed a novel neural

architecture, stack-pointer networks (STACKPTR). Unlike traditional transition-based parser

with left-to-right shift-reduce actions, the STACKPTR parser performs parsing in an incremental,

top-down, depth-first fashion. This architecture makes it possible to capture information from the

whole sentence and all the previously derived subtrees, while maintaining a number of parsing

steps linear in the sentence length. We evaluate our two parsers on 29 treebanks across 20

languages and different dependency annotation schemas, achieving state-of-the-art performance

on most of them. This work is presented in Ma and Hovy (2017) and Ma et al. (2018).

Part II of this thesis focuses on how to interpret the learning behaviors of neural networks.

In Chapter 6, we first briefly discuss the terminological issues regarding analysis and interpre-

tation in machine learning. Then we revisit the probing method (Ettinger et al., 2016; Shi et al.,
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2016; Belinkov, 2018), and apply it to investigate how part-of-speech information are memorized

in neural dependency parsers.

In Chapter 7, we conduct systematic experiments to illustrate two learning properties of deep

neural networks: (i) laziness – modules of a neural network will not actively learn information

that is already learned by other modules; (ii) targetedness – information, if unnecessary for the

end task, will be filtered out from the internal representations.

In Chapter 8, we finally conclude and discuss future work and open questions in this field.
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Part I

Neural Models for End-to-end Linguistic

Structured Prediction
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Chapter 2

Background

2.1 General Framework of Structured Prediction

Supervised computational methods for the linguistic structured prediction of sentences have been

at the forefront of natural language processing research since its inception (Rabiner and Juang,

1986; Eisner, 1996; Tjong Kim Sang and Veenstra, 1999; Charniak, 2000; Lafferty et al., 2001;

Collins, 2003). Figure 2.1 graphically displays the framework we will assume for a linguistic

structured prediction system.

First, a system should define a feature extractor, which takes as input raw sentences and

outputs representations of each word that are mathematically and computationally convenient to

process for machine learning algorithms. Second, the system should have a learning algorithm

that takes the training data as input to compute the loss function. Then an optimization algorithm

associated with the learning algorithm updates the parameters of the system according to the loss

function. This process of producing a structured prediction model from a training set is usually

called training or learning. At last, the model consists of a decoding algorithm, a.k.a inference

algorithm, which specifies how to use the model for prediction. That is , when a new sentence

is given to the model, the decoding algorithm uses the parameter specifications in the model to

produce a structured output.
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Figure 2.1: Outline of generic framework of structured prediction.

2.1.1 Formal Definition

In the rest of this thesis, we use the following notations: x = {w1, . . . , wn} represents a generic

input sentence, where wi is the ith word. y represents a generic structured output, e.g. a

sequence of tags or a dependency tree. T (x) is used to denote the set of all valid structured

outputs y for sentence x. D = {(x1,y1) . . . , (xN ,yN)} denotes our training sample, where

(xi,yi), i = 1, . . . , N, are usually i.i.d. samples.

2.1.2 Feature Extractor

φ(x) denotes the feature representation of x, output from the feature extractor (φ(wi) is the

corresponding representation for wi). For traditional feature-based models, φ(x) is an abstraction

over text where a word is represented by one or many Boolean, numeric, or nominal values (φ(wi)).

For deep learning models, φ(x) is no longer pre-defined vectors, but continuous vectors output

from neural networks. More discussions about feature representations are in Section 2.4.

2.1.3 Learning Algorithms

This thesis considers probabilistic models for structured prediction, which defines a family of

conditional probability Pθ(y|x) over all y given sentence x, where θ ∈ Θ is the set of parameters

of this model. In the context of maximal likelihood estimation (MLE), parameters θ is optimized
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to minimize the negative log-likelihood:

min
θ∈Θ

L(D; θ) = min
θ∈Θ

1

N

N∑
i=1

− logPθ(yi|xi) = min
θ∈Θ

EP̃ (y|x)[− logPθ(y|x)] (2.1)

where P̃ (y|x) is the empirical distribution derived from training data D. The learning algorithm

is to accomplish the computation of Pθ(y|x) for each sentence x and its structured output y, and

its gradients for parameter updates:

θ(t+1) = θ(t) − η∇θL(D; θ(t)) (2.2)

where η is the learning rate of the gradient decent update in (2.2). For example, in conditional

random fields (CRF) (Lafferty et al., 2001), the computation of L(D; θ) and its gradient can be

solved using the Viterbi algorithm (Forney, 1973).

Besides MLE with gradient decent, several researchers developed alternative learning algo-

rithms. Collins (2002) presented the averaged perceptron algorithm for discriminative structured

learning. One problem with the perceptron algorithm is that it does not optimize any notion

of classification margin, which is widely accepted to reduce generalization error (Boser et al.,

1992), leading to a several margin-based learning algorithms. In particular, Crammer and Singer

(2001) presented a natural approach to large-margin multi-class classification. Taskar et al. (2004)

extended it to structured classification by introducing the Maximum Margin Markov networks

(M3N ) algorithm. The margin infused relaxed algirithm (MIRA) (Crammer and Singer, 2003;

Crammer et al., 2006) employs this optimization within a online framework. McDonald et al.

(2005a) applied it to the training of dependency parsers. Daumé et al. (2009) proposed the SEARN

algorithm for integrating search and learning to solve structured prediction problems.

2.1.4 Decoding Algorithms

The decoding algorithm, on the other hand, is to search for the output y∗ with the highest

conditional probability:

y∗ = argmax
y∈T (x)

Pθ(y|x) (2.3)

Since the cardinality of T (x) grows exponentially with the length of the sentence x, it is infeasible

to perform exhaustive search directly to sovle Eq. (2.3). Observe that both the learning and
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I saw a girl with a telescope

PRP VBD DT DTNN NNIN

Part-of-Speech Tagging

Arsene Wenger was named manager of Arsenal in 1996

B-PER I-PER O O B-TTL O OB-ORG B-DATE

Named Entity Recognition

Figure 2.2: Sequence labeling formulation of Part-of-speech tagging and named entity recognition.

For NER, we use the BIO tagging schema.

decoding algorithms rely on the formulation of the probabilistic model Pθ(y|x), and for certain

formulations, efficient algorithms exist for solving Eq. (2.1) and (2.3).

Unlike probabilistic structured prediction models, some models are trained by online learning

algorithms such as averaged structured perceptron (Freund and Schapire, 1999; Collins, 2002) or

margin infused relaxed algorithm (Crammer and Singer, 2003; Crammer et al., 2006; McDonald

and Pereira, 2006). For these models, only the algorithm for decoding is required.

2.2 Sequence Labeling

The task of sequence labeling is to find the best way to assign a categorical label to each token

of a sequence. Formally, for a generatic input sentence x = {w1, · · · , wn}, y = {y1, · · · , yn}

represents a generic sequence of labels for x.

Two classic tasks in sequence labeling, which are also the tasks considered in this thesis, are

part-of-speech (POS) tagging and named entity recognition (NER). These tasks are one of the

first stages in deep language understanding, whose importance has been well recognized in the

natural language processing (NLP) community. As mentioned in Chapter 1, POS tagging is to

assign to each word in a sentence its part-of-speech tag to represent its syntac function, while

NER is to recognize the spans of named entities in the given sentence. For POS tagging, it is

straight-froward to formulate it as a sequence labeling problem. For NER, a typical way to set this

14



up as sequence labeling is to use the BIO tagging schema (as shown in Figure 2.2). Each word is

labeled B (beginning) if it is the first word in a named entity, I (inside) if it is a subsequent word

in a named entity, or O (outside) otherwise.

As to the techniques applied in sequence labeling, there are four main streams: 1) Rule-based

approaches, which rely on hand-crafted rules; 2) Unsupervised learning approaches which rely on

unsupervised algorithms without hand-labeled training instances; 3) Feature-based supervised

learning approaches, which rely on supervised learning algorithms with carefully designed

features; 4) Deep learning approaches, which automatically discover feature representations from

raw input in an end-to-end manner. The first three categories of approaches, which are also called

traditional or classical approaches, rely on expertise on specific tasks (either in the form of manual

feature engineering or hand-crafted rules). Deep learning approaches, on the other hand, is able to

automatically extract salient features for downstream tasks but require large amount of training

instances. In this section, we briefly describe the traditional approaches for sequence labeling,

leaving the discussion of deep learning approaches to Section 2.4.3.

2.2.1 Rule-based Approaches

Rule-based sequence labeling systems rely on hand-crafted rules that are designed based on

syntactic-lexical patterns (Brill, 1992; Sekine and Nobata, 2004; Etzioni et al., 2005) and domain-

specific gazetteers (Zhang and Elhadad, 2013). Kim and Woodland (2000) proposed a system that

generates rules automatically based on Brill’s par-tof-speech tagger (Brill, 1992). In biomedical

domain, Hanisch et al. (2005) proposed ProMiner, which leverages a pre-processed synonym

dictionary to identify protein mentions and potential gene in biomedical text. Quimbaya et al.

(2016) developed a dictionary-based approach for NER in electronic health records. Some other

well-known rule-based NER systems, which are mainly based on hand-crafted syntactic and

semantic rules to recognize entities, include LaSIE-II (Humphreys et al., 1998), LTG (Mikheev

et al., 1999), and NewOwl (Krupka and IsoQuest, 2005). Rule-based systems work very well when

lexicon is exhaustive. Due to domain-specific rules and incomplete dictionaries, high precision

and low recall are often observed from such systems, and the systems cannot be transferred to

other domains (Li et al., 2020).
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2.2.2 Unsupervised Learning Approaches

Unsupervised sequence labeling is a classic problem in unsupervised learning that has been

explored with various approaches. For unsupervised POS tagging, Haghighi and Klein (2006)

assumed a set of prototypical words for each tag and report high accuracy. Johnson (2007)

investigated why the hidden Markov models (HMMs) estimated by Expectation-Maximization

(EM) produce poor results as POS taggers. Berg-Kirkpatrick et al. (2010) proposed an HMM

in which probabilties are given by log-linear models. Stratos et al. (2016) tackled unsupervised

POS tagging with HMMs by imposing an assumption that each hidden state is associated with an

observation state that can appear under no other state. Some other methods leverage additional

results. For example, Das and Petrov (2011) and Täckström et al. (2013) utilized parallel data to

project POS tags from a source language. Li et al. (2012) used tag dictionaries from Wiktionary.

For NER, a typical approach of unsupervised learning is clustering (Nadeau and Sekine,

2007), where clustering-based systems extract labels from the clustered groups based on context

similarity. The key idea is that lexical resources, lexical patterns, and statistics computed on a large

corpus can be used to infer mentions of named entities (Li et al., 2020). Collins and Singer (1999)

used unlabeled data to reduce the requirements for supervision and presented two unsupervised

algorithms for named entity classification. Nadeau et al. (2006) proposed an unsupervised system

for gazetteer building and named entity ambiguity resolution. Zhang and Elhadad (2013) proposed

an unsupervised approach to extract named entities from biomedical text. Instead of supervision,

their model resorts to terminologies, corpus statistics and shallow syntactic knowledge.

2.2.3 Feature-based Supervised Learning Approaches

Applying supervised learning, feature engineering is critical in supervised sequence labeling

systems. Given annotated data samples, features are carefully designed to represent each training

example. Machine learning algorithms are then utilized to learn a model to recognize similar

patterns from unseen data. Feature vector representation is an abstraction over text where a word

is represented by one or many Boolean, numeric, or nominal values (Nadeau and Sekine, 2007).

Word-level features, dictionary lookup features, and document and corpus features have been
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widely used in various supervised sequence labeling systems. More feature designs are discussed

in (Nadeau and Sekine, 2007; Manning, 2011; Campos et al., 2012; Sharnagat, 2014).

Based on these features, many machine learning algorithms have been applied in supervised

sequence labeling models. Crammer and Singer (2001) proposed the multiclass SVM method that

casts to a multi-class classification task. HMMs (Rabiner, 1989) are a traditional statistical tool

for modeling sequences and have been widely applied to linguistic sequence labeling tasks, such

as POS tagging and NER (Bikel et al., 1997, 1999). Lafferty et al. (2001) introduced conditional

random fields (CRF) to sequence labeling. Since then, CRF-based models have been widely

applied to sequence labeling tasks in various domains, including biomedical text(Settles, 2004;

Liu et al., 2019b), chemical text (Rocktäschel et al., 2012) and tweets (Ritter et al., 2011; Liu

et al., 2011), and spawned many variants (McCallum and Li, 2003; Krishnan and Manning, 2006).

2.3 Dependency Parsing

Syntactic dependency representations have a long history in descriptive and theoretical linguistics

and many formal models have been advanced, most notably Word Grammar (Hudson, 1984),

Functional Generative Description (Sgall et al., 1986), Meaning-Text Theory (Melćuk et al., 1988),

and Constraint Dependency Grammar (Maruyama, 1990). Syntactic dependency graphs have

gained a wide interest in the computational linguistics community and have been successfully

employed for a wide range of NLP applications such as entity coreference resolution (Ng,

2010; Durrett and Klein, 2013; Ma et al., 2016), sentiment analysis(Tai et al., 2015), machine

translation (Bastings et al., 2017), and information extraction (Nguyen et al., 2009; Angeli et al.,

2015; Peng et al., 2017).

Dependency trees represent syntactic relationships between words in the sentences through

labeled directed edges between head words and their dependents (modifiers). The task of depen-

dency parsing is to automatically analyze the dependency structure for a given sentence. Figure 2.3

shows a dependency tree for the sentence I saw a girl with a telescope., with the symbol $ as its

root. Dependency trees are often typed with labels for each edge to represent additional syntactic

information, such as sbj and dobj for verb-subject and verb-object head-modifier interactions,
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I saw a girl with a telescope

subj

$

root

det

dobj

prep

pobj

det

Figure 2.3: An example of dependency tree structure with dependency labels on edges.

respectively. Sometimes, however, the dependency labels are omitted. Dependency trees are

defined as labeled or unlabeled according to whether the dependency labels are included or

dropped. In the remainder of this thesis, we will focus on labeled dependency parsing, i.e. jointly

predicting the dependency tree structures and the dependency labels in a single parsing model.

By considering the item of crossing dependencies, dependency trees fall into two categories —

projective and non-projective dependency trees. An equivalent and more convenient formulation of

the projectivity constrain is that if a dependency tree can be written with all words in a predefined

linear order and all edges (including the edge for root) drawn on the plane without crossing edges.

The example in Figure 2.3 belongs to the class of projective dependency trees. Previous studies

illustrate that projective dependency trees are sufficient to analyze most English sentences, due to

English’s rigid word order (Yamada and Matsumoto, 2003; McDonald et al., 2005a). However,

for languages with flexible word orders, non-projective dependency tree is preferable. In this

thesis, we consider non-projective dependency parsing, where we develop dependency parsers

that is not restricted by the projective constraint. More detailed discussion on dependency parsing

can be found in (McDonald, 2006).

In this thesis, we focus on data-driven dependency parsing supported by supervised learning

algorithms. According to the CoNLL-X shared tasks on dependency parsing (Buchholz and Marsi,

2006; Nivre et al., 2007), there are two dominant approaches to dependency parsing (Buchholz

and Marsi, 2006; Nivre et al., 2007): local and greedy transition-based algorithms (Yamada and

Matsumoto, 2003; Nivre and Scholz, 2004; Zhang and Nivre, 2011; Chen and Manning, 2014),

and the globally optimized graph-based algorithms (Eisner, 1996; McDonald et al., 2005a,b; Koo

and Collins, 2010). However, as discussed in McDonald and Nivre (2011), there is no a priori
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reason why a graph-based parameterization should require global learning and inference,and a

transition-based parameterization would necessitate local learning and greedy inference. In the

following of this section, we will briefly review these two parsing models.

2.3.1 Graph-based Dependency Parsing

Formally, for a given sentence x = {w1, . . . , wn}, the complete dependency graph G(x) =<

V (x), E(x) > represent words and their relationship to syntactic modifiers using directed edges.

V (x) and E(x) are the sets of vertex and edges of the graph G(x). A valid dependency tree y of x

can be seen as a subgraph of G(x) that build up a tree structure. We write (wi → wj) ∈ y if there

is a dependency in y from word wi to word wj . Graph-based dependency parsers learn scoring

functions for parse trees and perform exhaustive search over all possible trees for a sentence to

find the globally highest scoring tree.

This category of models parameterize over dependency subgraphs and learns these parameters

to globally score correct graphs above incorrect ones. Inference is also global,in that systems

attempt to find the highest scoring graph among the set of all graphs. We call such systems

graph-based parsing models to reflect the fact that parameterization is over the dependency

graph. Eisner (1996) gave a generative model with a cubic parsing algorithm based on a graph

factorization that inspired the core algorithms for graph-based dependency parsing. Following

this pioneering work, several graph-based dependency parsing models are proposed, together with

associated learning and decoding algorithms (McDonald et al., 2005a,b; McDonald and Pereira,

2006; Koo et al., 2007; Smith and Smith, 2007).

Edge-Factored Parsing Model. A common method is to factorize the score of a dependency

tree as the sum of the scores of all edges in the tree:

ψ(x,y; θ) =
∑

(wh,wm)∈y

ψ(wh, wm; θ)

where θ is the parameter and ψ(x,y; θ) is the score function of the parse tree y, which is factorized

as the sum of the scores of each edge ψ(wh, wm; θ).
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Maximum Spanning Tree Decoding. The decoding problem of this parsing model can be

formulated as:
y∗ = argmax

y∈T (x)

ψ(y|x; θ)

= argmax
y∈T (x)

∑
(wh,wm)∈y

ψ(wh, wm; θ)

which can be solved by using the Maximum Spanning Tree (MST) algorithm described in

McDonald et al. (2005b).

Higher-order Factorizations. A common strategy to improve the edge-factorization is to utilize

high-order factorization:

ψ(x,y; θ) =
∑
p∈y

ψ(p; θ)

where p is a part of the dependency tree y.

Insiders must report purchases and immediatelysales * 

Figure 1: An example dependency structure.

selection of the sentential head to be modeled as if
it were a dependency.

For a sentence x, we define dependency parsing
as a search for the highest-scoring analysis of x:

y∗(x) = argmax
y∈Y(x)

SCORE(x, y) (1)

Here, Y(x) is the set of all trees compatible with
x and SCORE(x, y) evaluates the event that tree y
is the analysis of sentence x. Since the cardinal-
ity of Y(x) grows exponentially with the length of
the sentence, directly solving Eq. 1 is impractical.
A common strategy, and one which forms the fo-
cus of this paper, is to factor each dependency tree
into small parts, which can be scored in isolation.
Factored parsing can be formalized as follows:

SCORE(x, y) =
∑
p∈y

SCOREPART(x, p)

That is, we treat the dependency tree y as a set
of parts p, each of which makes a separate contri-
bution to the score of y. For certain factorizations,
efficient parsing algorithms exist for solving Eq. 1.

We define the order of a part according to the
number of dependencies it contains, with analo-
gous terminology for factorizations and parsing al-
gorithms. In the remainder of this paper, we focus
on factorizations utilizing the following parts:

g

g

hh

h h h

mm

m mm

ss

s

t

dependency sibling grandchild

tri-siblinggrand-sibling

Specifically, Sections 4.1, 4.2, and 4.3 describe
parsers that, respectively, factor trees into grand-
child parts, grand-sibling parts, and a mixture of
grand-sibling and tri-sibling parts.

3 Existing parsing algorithms

Our new third-order dependency parsers build on
ideas from existing parsing algorithms. In this
section, we provide background on two relevant
parsers from previous work.

(a) +=

h h mm ee

(b) +=

h h mm r r+1

Figure 2: The dynamic-programming structures
and derivations of the Eisner (2000) algorithm.
Complete spans are depicted as triangles and in-
complete spans as trapezoids. For brevity, we elide
the symmetric right-headed versions.

3.1 First-order factorization

The first type of parser we describe uses a “first-
order” factorization, which decomposes a depen-
dency tree into its individual dependencies. Eis-
ner (2000) introduced a widely-used dynamic-
programming algorithm for first-order parsing; as
it is the basis for many parsers, including our new
algorithms, we summarize its design here.

The Eisner (2000) algorithm is based on two
interrelated types of dynamic-programming struc-
tures: complete spans, which consist of a head-
word and its descendents on one side, and incom-
plete spans, which consist of a dependency and the
region between the head and modifier.

Formally, we denote a complete span as Ch,e

where h and e are the indices of the span’s head-
word and endpoint. An incomplete span is de-
noted as Ih,m where h and m are the index of the
head and modifier of a dependency. Intuitively,
a complete span represents a “half-constituent”
headed by h, whereas an incomplete span is only
a partial half-constituent, since the constituent can
be extended by adding more modifiers to m.

Each type of span is created by recursively
combining two smaller, adjacent spans; the con-
structions are specified graphically in Figure 2.
An incomplete span is constructed from a pair
of complete spans, indicating the division of the
range [h, m] into constituents headed by h and
m. A complete span is created by “complet-
ing” an incomplete span with the other half of
m’s constituent. The point of concatenation in
each construction—m in Figure 2(a) or r in Fig-
ure 2(b)—is the split point, a free index that must
be enumerated to find the optimal construction.

In order to parse a sentence x, it suffices to
find optimal constructions for all complete and
incomplete spans defined on x. This can be

2

McDonald and Pereira (2006) proposed to factorize each tree into second-order sibling

parts — parts of dependencis consists of a triple of indices (h,m, s) where (h,m) and (h, s)

are dependencies, and where s and m are successive modifiers to the same side of h. Carreras

(2007) first proposed to use a second-order grandchild part — pairs of dependencies connected

head-to-tail. Koo and Collins (2010) introduced a third-order grand-sibling part — combinations

of sibling parts and grandchild parts. Further, Ma and Zhao (2012a) combined grand-sibling and

tri-sibling parts to propose the fourth-order grand-tri-sibling part.

2.3.2 Transition-based Dependency Parsing

The transition-based parsing systems parameterize over transitions from one state to another in an

abstract state-machine. Formally, a transition system for dependency parsing defines
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• Parser configurations: a set C contains a (partially built) dependency graph G.

• Transitions: a set T of transitions, each of which is a partial function t : C → C.

• Initial and terminal configurations: for every sentence x, a unique initial configuration

cx and a set of terminal configurations Cx.

Transition-based parsers learn scoring functions s : C × T → R that represent the likelihood of

taking transition t out of configuration c in a transition sequence leading to the optimal dependency

graph for the given sentence. Parameters in these score functions are typically learned using

standard classification techniques that learn to predict one transition from a set of permissible

transitions given a state history. We call such systems transition-based parsing models to reflect

the fact that parameterization is over possible state transitions.

Inference is local, in that systems start in a fixed initial configuration cx and greedily construct

the graph by taking the highest scoring transitions at each state entered until a termination

configuration cm ∈ Cx is met:

t∗ = argmax
t∈T

s(c, t) (2.4)

This can be seen as a greedy search for the optimal dependency graph,based on a sequence of

locally optimal decisions in terms of the transition system.

Nivre (2003) introduced the arc-eager transition system that can derive any projective depen-

dency tree for an input sentence. When coupled with the greedy deterministic parsing strategy (Ya-

mada and Matsumoto, 2003; Nivre and Scholz, 2004), the system guarantees termination after at

most 2n transitions (linear w.r.t the sentence length n). Nivre et al. (2004) extended this system

to labeled dependency graphs, and Nivre and Nilsson (2005) showed how to lift the restriction

of projective dependency graphs by using the pseudo-projective parsing technique. Transition

systems that derive non-projective trees directly have been explored by Attardi (2006); Nivre

(2007, 2009).

2.4 Feature Engineering vs. Representation Learning

To make task-oriented predictions, the development of machine learning systems heavily rely on

extracting abstract informative features from real-world data that are represented in raw digital
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Figure 2.4: Features used by the MST-Parser (McDonald and Pereira, 2006) for a single depen-

dency edge.

formats. For example, syntactic, semantic and contextual information are essentially important

for a wide range of NLP tasks such as information extraction (IE). Text documents, however, are

stored by individual tokens of words or characters, upon which these abstract information is hard

to represent. Similar scenarios happen in image data — digital images are made up of pixels, from

which it is difficult to extract abstract features such as edge or shape that are crucial for tasks, for

instance, image classification.

2.4.1 Feature Engineering

Feature engineering is critical in traditional supervised machine learning systems. In the literature

of linguistic structured prediction, most traditional high performance structured prediction models

extract instructive features using the hand-crafted feature-engineering process, which mainly relies

on task-specific expertise and heuristically designed hand-crafted features, in an iterative feature-

selection process. Word-level features (e.g., case, morphology, and part-of-speech tag) (Zhou and

Su, 2002; Settles, 2004; Liao and Veeramachaneni, 2009), list lookup features (e.g., Wikipedia

gazetteer and DBpedia gazetteer) (Mikheev, 1999; Torisawa et al., 2007; Hoffart et al., 2011),

and document and corpus features (e.g., local syntax and multiple occurrences) (Ravin and

Wacholder, 1997; Krishnan and Manning, 2006) have been widely used in various structured

prediction systems. For example, English POS taggers benefit from carefully designed word

spelling features; orthographic features and external resources such as gazetteers are widely used

in NER. Figure 2.4 lists the concrete features used in the MST-Parser (McDonald and Pereira,

2006) to represent a single dependency edge wi → wj . Table (a) and (b) show the basic set of

features, which are over head-modifier pairs in the tree. These features provide back-off from
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very specific features over words and part-of-speech (POS) tags to less sparse features over just

POS tags. These features are added for both the entire words as well as the 5-gram prefix if the

word is longer than 5 characters (McDonald et al., 2005a). In addition to the basic set of features,

McDonald and Pereira (2006) added two more types of features, listed in Table (c). The first

new feature class recognizes word types that occur between the head and modifier words in an

attachment decision and the second class of additional features represents the local context of

the attachment, that is, the words before and after the head-modifier pair. All these features are

carefully designed with linguistic knowledge and selected using the iterative selection process.

Despite the successes of feature-based approaches on linguistic structured prediction, there

are two problems with that brute-force methodology: 1) the combinatorial nature of empirical

feature selection process makes it expensive to hand-craft features; 2) The development of these

features is commonly task-, domain-, or even language-specific, preventing it from adapting to

new tasks or domains.

2.4.2 End-to-end Representation Learning

In the past few years, deep neural networks, together with end-to-end learning paradigm, have

been applied to a wide range of NLP tasks with great successes. Unlike traditional linear models

that rely on manual feature engineering, deep neural models are able to learn complex and

intricate features from data via non-linear activation functions. The feature representation φ(wi)

is no longer binary vectors, but continuous vectors output from neural networks. Furthermore,

deep neural models can be trained in an end-to-end paradigm, by back-propagation. This saves

significant effort on designing task-specific features.

Formally, we use φθ′(x) to denote the neural representation of x output from a neural network

Mθ′ , where θ′ are the parameters of the neural network M. So in deep learning models, the model

parameters are the union of the parameters of the machine learning model and the neural network:

θ ∪ θ′. During model training the two sets of parameters are updated simultaneously to optimize

the loss function in an end-to-end learning paradigm:

min
θ,θ′∈Θ

1

N

N∑
i=1

− logPθ(yi|φθ′(xi))
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In the rest of this thesis, we use θ to denote the set of all the parameters of a deep learning model,

when there is no ambiguity.

The end-to-end training paradigm significantly simplifies the hand-crafted feature engineering

process in traditional feature-based machine learning systems, while giving the neural models

flexibility to be optimized towards the ultimate tasks.

2.4.3 A Brief History of Neural Representation Learning on Linguistic

Structured Prediction

Distributed representations for input. Distributed representation represents words in low

dimensional real-valued dense vectors where each dimension represents a latent feature. Automat-

ically learned from text, distributed representation captures semantic and syntactic properties of

word. Next, we first review neural structured predictions models with distributed representations.

Henderson (2004) first attempted to use neural networks to predict parse decisions in a

constituency parser. Titov and Henderson (2007a) developed a generative dependency parser

with latent variable models. Titov and Henderson (2007b) applied Incremental Sigmoid Belief

Networks to constituency parsing and then Garg and Henderson (2011) extended this work to

transition-based dependency parsers using a Temporal Restricted Boltzman Machine. More

recently, Chen and Manning (2014) proposed to use feed-forward neural networks to model the

transition states. For sequence labeling, Collobert et al. (2011) proposed a simple but effective

feed-forward neutral network that independently classifies labels for each word by using contexts

within a window with fixed size. This model achieved impressive performance on sequence

labeling tasks, including POS tagging and NER.

RNN-based context encoding architecture. Recurrent neural networks (RNNs), together with

its variants such as gated recurrent unit (GRU) and long-short term memory (LSTM), have

demonstrated remarkable achievements in modeling sequential data. Graves and Schmidhuber

(2005) first attempted to apply LSTM to phoneme classification and Graves (2008) applied RNNs

to sequence labeling. Recently, several RNN-based neural network models have been proposed to

solve sequence labeling tasks like speech recognition (Graves et al., 2013), POS tagging (Santos
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and Zadrozny, 2014; Huang et al., 2015; Labeau et al., 2015) and NER (dos Santos et al., 2015;

Hu et al., 2016; Peng and Dredze, 2016; Lample et al., 2016; Chiu and Nichols, 2016), achieving

competitive performance against traditional models.

For graph-based dependency parsing, Kiperwasser and Goldberg (2016) and Wang and Chang

(2016) replaced the linear scoring function of each arc in traditional models with neural networks

and used a margin-based objective McDonald et al. (2005a) for model training. Kiperwasser and

Goldberg (2016)proposed a graph-based dependency parser which uses bidirectional LSTM for

word-level representations. Wang and Chang (2016) used a similar model with a way to learn

sentence segment embedding based on an extra forward LSTM network. Both of these two parsers

trained the parsing models by optimizing margin-based objectives. Zhang et al. (2016) and Dozat

and Manning (2017) formalized dependency parsing as independently selecting the head of each

word with cross-entropy objective, without the guarantee of a non-projective structure.

For transition-based dependency parsing, neural continuous states have been explored, in

which the transition state is embedded as a neural continuous vector. Dyer et al. (2015) introduced

transtion-based parser using Stack LSTMs whose continuous-state embeddings were constructed

using LSTM recurrent neural networks which are capable of learning representations of the

parser state that are sensitive to the complete contents of the parser’s state. Ballesteros et al.

(2015) improved the Stack-LSTM parser by replacing word representations with representations

constructed from the orthographic representations of the words, and Ballesteros et al. (2016)

adapted the Stack-LSTM parser to support training-with-exploration procedure using dynamic

oracles. Weiss et al. (2015a) presented structured perceptron training for neural network transition-

based dependency parsing. Andor et al. (2016) proposed a globally normalized transition model

to replace the locally normalized classifier.

Pre-trained contextualized word representations. Recently, deep contextualized representa-

tions pre-trained on large scale corpus with language-model-based objectives have been empiri-

cally verified to be helpful in numerous structured prediction tasks. Peters et al. (2017) proposed

TagLM, a language model augmented sequence tagger. This tagger considers both pre-trained

word embeddings and bidirectional language model embeddings for every token in the input

sequence for sequence labeling task. Following this work, Peters et al. (2018) proposed a new
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type of deep contextualized word representation, named ELMo, which is capable of capturing

both complex characteristics of word usage (e.g., syntax and semantics), and usage variations

across linguistic contexts (e.g., polysemy). Based-on transformer architecture (Vaswani et al.,

2017), Devlin et al. (2019) proposed bidirectional encoder representations (BERT). Several stud-

ies (Clark et al., 2018; Luo et al., 2019; Liu et al., 2019c) have achieved promising performance

via leveraging deep contextualized representations.

2.5 BLSTM-CNNs

In this section, we describe our BLSTM-CNNs neural encoding architecture which consistently

obtains impressive performance across different structured prediction tasks. Specificiially, we

first use convolutional neural networks (CNNs) LeCun et al. (1989) to encode character-level

information of a word into its character-level representation. Then we combine character- and

word-level representations and feed them into bi-directional LSTM (BLSTM) to model context

information of each word. It is a truly end-to-end model requiring no task-specific resources,

feature engineering, or data pre-processing beyond pre-trained word embeddings on unlabeled

corpora. Thus, our model can be easily applied to a wide range of structured prediction tasks on

different languages and domains (see Chapter 3 and 4).

The main contribution of BLSTM encoder is that it is one of the first neural architecture for

encoding sentences, which captures both word- and character-level information. Furthermore,

it is truly end-to-end, entirely getting rid of feature engineering, and achieved state-of-the-art

or comparable performance across various structured prediction tasks. It is an important step

towards end-to-end representation learning for texts and inspires following works such as deep

contextualized representations (Peters et al., 2018). In the following sections, we describe the

components (layers) of our neural network architecture one-by-one from bottom to top.

2.5.1 CNN for Character-level Representation

Previous studies (Santos and Zadrozny, 2014; Chiu and Nichols, 2016) have shown that CNN is

an effective approach to extract morphological information (like the prefix or suffix of a word)
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Figure 2.5: The convolution neural network for extracting character-level representations of words.

Dashed arrows indicate a dropout layer applied before character embeddings are input to CNN.

from characters of words and encode it into neural representations. Figure 2.5 shows the CNN we

use to extract character-level representation of a given word.

The CNN is similar to the one in Chiu and Nichols (2016), except that we use only character

embeddings as the inputs to CNN, without character type features. A dropout layer (Srivastava

et al., 2014b) is applied before character embeddings are input to CNN.

2.5.2 Bi-directional LSTM

LSTM Unit

Recurrent neural networks (RNNs) are a powerful family of connectionist models that capture

time dynamics via cycles in the graph, and are capable of dealing with variable-length sequence

input. It uses a recurrent hidden state whose activation is dependent on that of the one immediate

before. Though, in theory, RNNs are capable to capturing long-distance dependencies, in practice,

they fail due to the gradient vanishing/exploding problems (Bengio et al., 1994; Pascanu et al.,
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2012). In order to mitigate this weak point in conventional RNNs, specially designed activation

functions have been introduced. LSTMs (Hochreiter and Schmidhuber, 1997) are variants of

RNNs designed to cope with these gradient vanishing problems. Basically, a LSTM unit is

composed of three multiplicative gates which control the proportions of information to forget and

to pass on to the next time step. Figure 2.6 gives the basic structure of an LSTM unit.

Figure 2.6: Schematic of LSTM unit.

Formally, the formulas to update an LSTM unit at time t are:

it = σ(W iht−1 + U ixt + bi)

ft = σ(W fht−1 + U fxt + bf )

c̃t = tanh(W cht−1 + U cxt + bc)

ct = ft � ct−1 + it � c̃t

ot = σ(W oht−1 + U oxt + bo)

ht = ot � tanh(ct)

where σ is the element-wise sigmoid function and � is the element-wise product. xt is the input

vector (e.g. word embedding) at time t, and ht is the hidden state (also called output) vector storing

all the useful information at (and before) time t. U i,U f ,U c,U o denote the weight matrices of

different gates for input xt, and W i,W f ,W c,W o are the weight matrices for hidden state ht.

bi, bf , bc, bo denote the bias vectors.

28



We are playing soccer
Output 

Representation

Bi-LSTM Layer

Word Representations

Char Representations

P l a y i n gpad pad

Max Pooling

Convolution

Char  
Embedding

We are playing soccer

Convolution Layers LSTM Layers

P l a y i n gpad pad

Max Pooling

Convolution

Character  
Embedding

Character  
Representations

Figure 2.7: The main architecture of our encoding neural network. The character representation

for each word is computed by the CNN in Figure 2.5. Then the character representation vector is

concatenated with the word embedding before feeding into the BLSTM network. Dashed arrows

indicate dropout layers applied on both the input and output vectors of BLSTM.

LSTM uses input and output gates to control the flow of information through the cell. The input

gate should be kept sufficiently active to allow the signals in. Same rule applies to the output gate.

The forget gate is used to reset the cell’s own state. In Gers et al. (2003), peephole connections

are usually used to connect gates to the cell in tasks requiring precise timing and counting of the

internal states. It should be noted that we do not include peephole connections (Gers et al., 2003)

in the our LSTM formulation because the precise timing does not seem to be required.

BLSTM

Another weak point of conventional RNNs is their utilization of only previous context with no

exploitation of future context. While for many linguistic structured prediction tasks it is beneficial

to have access to both past (left) and future (right) contexts. However, the LSTM’s hidden state

ht takes information only from past, knowing nothing about the future. An elegant solution

whose effectiveness has been proven by previous work (Dyer et al., 2015) is bi-directional LSTM
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(BLSTM). The basic idea is to present each sequence forwards and backwards to separate hidden

states to capture both past and future information. Then the two hidden states are concatenated to

form the final output.

2.5.3 BLSTM-CNNs Encoding Architecture

For each word, the character-level representation is computed by the CNN in Figure 2.5 with

character embeddings as inputs. Then the character-level representation vector is concatenated

with the word embedding vector to feed into the BLSTM network. Figure 2.7 illustrates the

architecture of our network in detail.

30



Chapter 3

Sequence Labeling via

BLSTM-CNNs-CRF

This chapter describes the BLSTM-CNNs-CRF model for linguistic sequence labeling.

3.1 Neural CRF Model

Following the notations defined in Section 2.1, we use x = {w1, · · · , wn} to represent a generic

input sequence where wi is the input vector of the ith word. y = {y1, · · · , yn} represents a

generic sequence of labels for x. T (x) denotes the set of possible label sequences for x.

A simple and straight-forward solution to model the conditional probability Pθ(y|x) over all

y is to assume that each token of label sequence is independent given the input sentence x:

Pθ(y|x) =
n∏
i=1

Pθ(yi|x)

For sequence labeling (or general structured prediction) tasks, however, it is beneficial to consider

the correlations between labels in neighborhoods and jointly decode the best chain of labels for a

given input sentence. For example, in POS tagging an adjective is more likely to be followed by a

noun than a verb, and in NER with standard BIO2 annotation (Tjong Kim Sang and Veenstra,

1999) I-ORG cannot follow I-PER. Therefore, we model label sequence jointly using a conditional

random field (CRF) (Lafferty et al., 2001), instead of decoding each label independently.
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3.1.1 Conditional Random Fields (CRF)

The probabilistic model for sequence CRF (Lafferty et al., 2001) defines a family of conditional

probability p(y|x;W,b) over all possible label sequences y given x with the following form:

Pθ(y|x) =

n∏
i=1

ψi(yi−1, yi,x)∑
y′∈T (x)

n∏
i=1

ψi(y′i−1, y
′
i,x)

where ψi(y′, y,x) = exp(WT
y′,yφ(wi) + by′,y) are potential functions. φ(wi) is the feature

representation of word wi. WT
y′,y and by′,y are the weight vector and bias corresponding to label

pair (y′, y), respectively. They are learnable parameters of the model, WT
y′,y,by′,y ∈ θ.

For a sequence CRF model (only interactions between two successive labels are considered),

training and decoding can be solved efficiently by adopting the Viterbi algorithm (Forney, 1973;

Lafferty et al., 2001).

3.1.2 BLSTM-CNNs-CRF

To construct our neural network model for sequence labeling, we feed the output vectors of

BLSTM-CNNs into a CRF layer. Figure 3.1 illustrates the architecture of our network in detail.

For each word, the character-level representation is computed by the CNN in Figure 2.5 with

character embeddings as inputs. Then the character-level representation vector is concatenated

with the word embedding vector to feed into the BLSTM network. Finally, the output vectors of

BLSTM (φ(wi), i = 1, . . . , n) are fed to the CRF layer to jointly decode the best label sequence.

As shown in Figure 3.1, dropout layers are applied on both the input and output vectors of BLSTM.

Experimental results show that using dropout significantly improve the performance of our model

(see Section 3.4.4 for details).

3.2 Network Training

In this section, we provide details about training the neural network. We implement the neural

network using the Theano library (Bergstra et al., 2010). The computations for a single model are
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Figure 3.1: The main architecture of our neural network. The character representation for

each word is computed by the CNN in Figure 2.5. Then the character representation vector is

concatenated with the word embedding before feeding into the BLSTM network. Dashed arrows

indicate dropout layers applied on both the input and output vectors of BLSTM.

run on a GeForce GTX TITAN X GPU. Using the settings discussed in this section, the model

training requires about 12 hours for POS tagging and 8 hours for NER.

3.2.1 Parameter Initialization

Word Embeddings. We use Stanford’s publicly available GloVe 100-dimensional embeddings1

trained on 6 billion words from Wikipedia and web text (Pennington et al., 2014)

We also run experiments on two other sets of published embeddings, namely Senna 50-

dimensional embeddings2 trained on Wikipedia and Reuters RCV-1 corpus (Collobert et al.,

1http://nlp.stanford.edu/projects/glove/
2http://ronan.collobert.com/senna/
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2011), and Google’s Word2Vec 300-dimensional embeddings3 trained on 100 billion words from

Google News (Mikolov et al., 2013). To test the effectiveness of pretrained word embeddings, we

experimented with randomly initialized embeddings with 100 dimensions, where embeddings are

uniformly sampled from range [−
√

3
dim

,+
√

3
dim

] where dim is the dimension of embeddings (He

et al., 2015). The performance of different word embeddings is discussed in Section 3.4.3.

Character Embeddings. Character embeddings are initialized with uniform samples from

[−
√

3
dim

,+
√

3
dim

], where we set dim = 30.

Weight Matrices and Bias Vectors. Matrix parameters are randomly initialized with uniform

samples from [−
√

6
r+c

,+
√

6
r+c

], where r and c are the number of of rows and columns in the

structure (Glorot and Bengio, 2010). Bias vectors are initialized to zero, except the bias bf for the

forget gate in LSTM , which is initialized to 1.0 (Jozefowicz et al., 2015).

3.2.2 Optimization Algorithm

Parameter optimization is performed with mini-batch stochastic gradient descent (SGD) with

batch size 10 and momentum 0.9. We choose an initial learning rate of η0 (η0 = 0.01 for POS

tagging, and 0.015 for NER, see Section 3.2.3.), and the learning rate is updated on each epoch of

training as ηt = η0/(1 +ρt), with decay rate ρ = 0.05 and t is the number of epoch completed. To

reduce the effects of “gradient exploding”, we use a gradient clipping of 5.0 (Pascanu et al., 2012).

We explored other more sophisticated optimization algorithms such as AdaDelta (Zeiler, 2012),

Adam (Kingma and Ba, 2014) or RMSProp (Dauphin et al., 2015), but none of them meaningfully

improve upon SGD with momentum and gradient clipping in our preliminary experiments.

Early Stopping. We use early stopping (Giles, 2001; Graves et al., 2013) based on perfor-

mance on validation sets. The “best” parameters appear at around 50 epochs, according to our

experiments.

3https://code.google.com/archive/p/word2vec/
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Layer Hyper-parameter POS NER

CNN
window size 3 3

number of filters 30 30

LSTM

state size 200 200

initial state 0.0 0.0

peepholes no no

Dropout dropout rate 0.5 0.5

batch size 10 10

initial learning rate 0.01 0.015

decay rate 0.05 0.05

gradient clipping 5.0 5.0

Table 3.1: Hyper-parameters for all experiments.

Fine Tuning. For each of the embeddings, we fine-tune initial embeddings, modifying them

during gradient updates of the neural network model by back-propagating gradients. The ef-

fectiveness of this method has been previously explored in sequential and structured prediction

problems (Collobert et al., 2011; Peng and Dredze, 2015).

Dropout Training. To mitigate overfitting, we apply the dropout method (Srivastava et al.,

2014b) to regularize our model. As shown in Figure 2.5 and 3.1, we apply dropout on character

embeddings before inputting to CNN, and on both the input and output vectors of BLSTM. We

fix dropout rate at 0.5 for all dropout layers through all the experiments. We obtain significant

improvements on model performance after using dropout (see Section 3.4.4).

3.2.3 Tuning Hyper-Parameters

Table 3.1 summarizes the chosen hyper-parameters for all experiments. We tune the hyper-

parameters on the development sets by random search. Due to time constrains it is infeasible to

do a random search across the full hyper-parameter space. Thus, for the tasks of POS tagging and

NER we try to share as many hyper-parameters as possible. Note that the final hyper-parameters
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Dataset WSJ CoNLL2003

Train
SENT 38,219 14,987

TOKEN 912,344 204,567

Dev
SENT 5,527 3,466

TOKEN 131,768 51,578

Test
SENT 5,462 3,684

TOKEN 129,654 46,666

Table 3.2: Corpora statistics. SENT and TOKEN refer to the number of sentences and tokens.

for these two tasks are almost the same, except the initial learning rate. We set the state size of

LSTM to 200. Tuning this parameter did not significantly impact the performance of our model.

For CNN, we use 30 filters with window length 3.

3.3 Experiment Setup

3.3.1 Data Sets

As mentioned before, we evaluate our neural network model on two sequence labeling tasks:

POS tagging and NER. The corpora statistics are shown in Table 3.2. We did not perform any

pre-processing for data sets, leaving our system truly end-to-end.

POS Tagging. For English POS tagging, we use the Wall Street Journal (WSJ) portion of Penn

Treebank (PTB) (Marcus et al., 1993), which contains 45 different POS tags. In order to compare

with previous work, we adopt the standard splits — section 0–18 as training data, section 19–21

as development data and section 22–24 as test data (Manning, 2011; Søgaard, 2011).

NER. For NER, We perform experiments on the English data from CoNLL 2003 shared

task (Tjong Kim Sang and De Meulder, 2003). This data set contains four different types of

named entities: PERSON, LOCATION, ORGANIZATION, and MISC. We use the BIOES tagging

scheme instead of standard BIO2, as previous studies have reported meaningful improvement

with this scheme (Ratinov and Roth, 2009; Dai et al., 2015; Lample et al., 2016).
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POS NER

Dev Test Dev Test

Model Acc. Acc. Prec. Recall F1 Prec. Recall F1

BRNN 96.56 96.76 92.04 89.13 90.56 87.05 83.88 85.44

BLSTM 96.88 96.93 92.31 90.85 91.57 87.77 86.23 87.00

BLSTM-CNN 97.34 97.33 92.52 93.64 93.07 88.53 90.21 89.36

BRNN-CNN-CRF 97.46 97.55 94.85 94.63 94.74 91.35 91.06 91.21

Table 3.3: Performance of our model on both the development and test sets of the two tasks,

together with three baseline systems.

3.4 Experimental Results

3.4.1 Main Results

We first run experiments to dissect the effectiveness of each component (layer) of our neural

network architecture by ablation studies. We compare the performance with three baseline

systems — BRNN, the bi-direction RNN; BLSTM, the bi-direction LSTM, and BLSTM-CNNs,

the combination of BLSTM with CNN to model character-level information. All these models are

run using Stanford’s GloVe 100 dimensional word embeddings and the same hyper-parameters

as shown in Table 3.1. According to the results shown in Table 3.3, BLSTM obtains better

performance than BRNN on all evaluation metrics of both the two tasks. BLSTM-CNN models

significantly 4 outperform the BLSTM model, showing that character-level representations are

important for linguistic sequence labeling tasks. This is consistent with results reported by

previous work (Santos and Zadrozny, 2014; Chiu and Nichols, 2016). Finally, by adding CRF

layer for joint decoding we achieve significant improvements over BLSTM-CNN models for both

POS tagging and NER on all metrics. This demonstrates that jointly decoding label sequences

can significantly benefit the final performance of neural network models.

4We did not perform statistical significance test in this thesis. The significance of results is based on intuitive

assessment of the magnitude of the difference.
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Model Acc.

Giménez and Màrquez (2004) 97.16

Toutanova et al. (2003) 97.27

Manning (2011) 97.28

Collobert et al. (2011)‡ 97.29

Santos and Zadrozny (2014)‡ 97.32

Shen et al. (2007) 97.33

Sun (2014) 97.36

Søgaard (2011) 97.50

This paper 97.55

Model F1

Chieu and Ng (2002) 88.31

Florian et al. (2003) 88.76

Ando and Zhang (2005) 89.31

Collobert et al. (2011)‡ 89.59

Huang et al. (2015)‡ 90.10

Chiu and Nichols (2016)‡ 90.77

Ratinov and Roth (2009) 90.80

Lin and Wu (2009) 90.90

Passos et al. (2014) 90.90

Lample et al. (2016)‡ 90.94

Luo et al. (2015) 91.20

This paper 91.21

Table 3.4: Left: POS tagging accuracy of our model on test data from WSJ proportion of PTB,

together with top-performance systems. Right: NER F1 score of our model on test data set from

CoNLL-2003. For the purpose of comparison, we also list F1 scores of previous top-performance

systems. The neural network based models are marked with ‡.

3.4.2 Comparison with Previous Work

POS Tagging. Table 3.4 (left) illustrates the results of our model for POS tagging, together with

seven previous top-performance systems for comparison. Our model significantly outperform

Senna (Collobert et al., 2011), which is a feed-forward neural network model using capitalization

and discrete suffix features, and data pre-processing. Moreover, our model achieves 0.23%

improvements on accuracy over the “CharWNN” (Santos and Zadrozny, 2014), which is a neural

network model based on Senna and also uses CNNs to model character-level representations. This

demonstrates the effectiveness of BLSTM for modeling sequential data and the importance of

joint decoding with structured prediction model.

Comparing with traditional statistical models, our system achieves state-of-the-art accuracy,
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obtaining 0.05% improvement over the previously best reported results by Søgaard (2011). It

should be noted that Huang et al. (2015) also evaluated their BLSTM-CRF model for POS tagging

on WSJ corpus. But they used a different splitting of the training/dev/test data sets. Thus, their

results are not directly comparable with ours.

NER. Table 3.4 (right) shows the F1 scores of previous models for NER on the test data set

from CoNLL-2003 shared task. For the purpose of comparison, we list their results together with

ours. Similar to the observations of POS tagging, our model achieves significant improvements

over Senna and the other three neural models, namely the LSTM-CRF proposed by Huang et al.

(2015), LSTM-CNNs proposed by Chiu and Nichols (2016), and the LSTM-CRF by Lample

et al. (2016). Huang et al. (2015) utilized discrete spelling, POS and context features, Chiu and

Nichols (2016) used character-type, capitalization, and lexicon features, and all the three model

used some task-specific data pre-processing, while our model does not require any carefully

designed features or data pre-processing. We have to point out that the result (90.77%) reported

by Chiu and Nichols (2016) is incomparable with ours, because their final model was trained on

the combination of the training and development data sets5.

To our knowledge, the previous best F1 score (91.20)6 reported on CoNLL 2003 data set is by

the joint NER and entity linking model (Luo et al., 2015). This model used many hand-crafted

features including stemming and spelling features, POS and chunks tags, WordNet clusters, Brown

Clusters, as well as external knowledge bases such as Freebase and Wikipedia. Our end-to-end

model slightly improves this model by 0.01%, yielding a state-of-the-art performance.

3.4.3 Word Embeddings

As mentioned in Section 3.2.1, in order to test the importance of pretrained word embeddings,

we performed experiments with different sets of publicly published word embeddings, as well

as a random sampling method, to initialize our model. Table 3.5 gives the performance of three

different word embeddings, as well as the randomly sampled one. According to the results in

5We run experiments using the same setting and get 91.37% F1 score.
6Numbers are taken from the Table 3 of the original paper (Luo et al., 2015). While there is clearly inconsistency

among the precision (91.5%), recall (91.4%) and F1 scores (91.2%), it is unclear in which way they are incorrect.
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Embedding Dimension POS NER

Random 100 97.13 80.76

Senna 50 97.44 90.28

Word2Vec 300 97.40 84.91

GloVe 100 97.55 91.21

Table 3.5: Results with different choices of word embeddings on the two tasks (accuracy for POS

tagging and F1 for NER).

POS NER

Train Dev Test Train Dev Test

No 98.46 97.06 97.11 99.97 93.51 89.25

Yes 97.86 97.46 97.55 99.63 94.74 91.21

Table 3.6: Results with and without dropout on two tasks.

Table 3.5, models using pretrained word embeddings obtain a significant improvement as opposed

to the ones using random embeddings. Comparing the two tasks, NER relies more heavily on

pretrained embeddings than POS tagging. This is consistent with results reported by previous

work (Collobert et al., 2011; Huang et al., 2015; Chiu and Nichols, 2016).

For different pretrained embeddings, Stanford’s GloVe 100 dimensional embeddings achieve

best results on both tasks, about 0.1% better on POS accuracy and 0.9% better on NER F1 score

than the Senna 50 dimensional one. This is different from the results reported by Chiu and

Nichols (2016), where Senna achieved slightly better performance on NER than other embeddings.

Google’s Word2Vec 300 dimensional embeddings obtain similar performance with Senna on

POS tagging, still slightly behind GloVe. But for NER, the performance on Word2Vec is far

behind GloVe and Senna. One possible reason that Word2Vec is not as good as the other two

embeddings on NER is because of vocabulary mismatch — Word2Vec embeddings were trained

in case-sensitive manner, excluding many common symbols such as punctuations and digits. Since

we do not use any data pre-processing to deal with such common symbols or rare words, it might

be an issue for using Word2Vec.

40



POS NER

Dev Test Dev Test

IV 127,247 125,826 4,616 3,773

OOTV 2,960 2,412 1,087 1,597

OOEV 659 588 44 8

OOBV 902 828 195 270

Table 3.7: Statistics of the partition on each corpus. It lists the number of tokens of each subset

for POS tagging and the number of entities for NER.

3.4.4 Effect of Dropout

Table 3.6 compares the results with and without dropout layers for each data set. All other

hyper-parameters remain the same as in Table 3.1. We observe a essential improvement for both

the two tasks. It demonstrates the effectiveness of dropout in reducing overfitting.

3.4.5 OOV Error Analysis

To better understand the behavior of our model, we perform error analysis on Out-of-Vocabulary

words (OOV). Specifically, we partition each data set into four subsets — in-vocabulary words

(IV), out-of-training-vocabulary words (OOTV), out-of-embedding-vocabulary words (OOEV)

and out-of-both-vocabulary words (OOBV). A word is considered IV if it appears in both the

training and embedding vocabulary, while OOBV if neither. OOTV words are the ones do not

appear in training set but in embedding vocabulary, while OOEV are the ones do not appear in

embedding vocabulary but in training set. For NER, an entity is considered as OOBV if there

exists at lease one word not in training set and at least one word not in embedding vocabulary,

and the other three subsets can be done in similar manner. Table 3.7 informs the statistics of the

partition on each corpus. The embedding we used is Stanford’s GloVe with dimension 100, the

same as Section 3.4.1.

Table 3.8 illustrates the performance of our model on different subsets of words, together with

the baseline LSTM-CNN model for comparison. The largest improvements appear on the OOBV
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POS

Dev Test

IV OOTV OOEV OOBV IV OOTV OOEV OOBV

LSTM-CNN 97.57 93.75 90.29 80.27 97.55 93.45 90.14 80.07

LSTM-CNN-CRF 97.68 93.65 91.05 82.71 97.77 93.16 90.65 82.49

NER

Dev Test

IV OOTV OOEV OOBV IV OOTV OOEV OOBV

LSTM-CNN 94.83 87.28 96.55 82.90 90.07 89.45 100.00 78.44

LSTM-CNN-CRF 96.49 88.63 97.67 86.91 92.14 90.73 100.00 80.60

Table 3.8: Comparison of performance on different subsets of words.

subsets of both the two corpora. This demonstrates that by adding CRF for joint decoding, our

model is more powerful on words that are out of both the training and embedding sets.

3.5 Discussions

In this chapter, we equipped the LSTM-CNNs encoding architecture with a CRF output layer for

sequence labeling task. The evaluation results show that our truly end-to-end BLSTM-CNNs-

CRF model achieved state-of-the-art performance on two linguistic sequence labeling tasks,

comparing with previous state-of-the-art systems. The ablation studies analyzed the impact of

each components of the model, indicating that the improvements come from both the encoding

architecture and the CRF decoding mechanism.
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Chapter 4

Neural Networks for Dependency Parsing

In this chapter, we introduce our NeuroMST parser for graph-based approach in Section 4.1 and

leave the Stack-Pointer parser for transition-based approach in next chapter.

4.1 Neural Probabilistic Model for MST Parsing

4.1.1 Edge-Factored Probabilistic Model

The probabilistic model of NeuroMST parser defines a family of conditional probability Pθ(y|x)

over all valid parse trees y given a sentence x, with a log-linear form:

Pθ(y|x) =

exp

( ∑
(wh,wm)∈y

ψ(wh, wm; θ)

)
Z(x; θ)

where Z(x; θ) is the partition function.

Z(x; θ) =
∑

y∈T (x)

exp

 ∑
(wh,wm)∈y

ψ(wh, wm; θ)


Bi-Linear Score Function. In our model, we adopt a bi-linear form score function:

ψ(wh, wm; θ) = φ(wh)
TWφ(wm) + UTφ(wh) + VTφ(wm) + b
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where {W,U,V,b} ⊂ θ, φ(xi) is the representation vector of wi, W,U,V denote the weight

matrix of the bi-linear term and the two weight vectors of the linear terms in ψ, and b denotes the

bias vector.

As discussed in Dozat and Manning (2017), the bi-linear form of score function is related

to the bi-linear attention mechanism (Luong et al., 2015). The bi-linear score function differs

from the traditional score function proposed in Kiperwasser and Goldberg (2016) by adding

the bi-linear term. A similar score function is proposed in Dozat and Manning (2017). The

difference between their and our score function is that they only used the linear term for head

words (UTφ(xh)) while use them for both heads and modifiers.

Matrix-Tree Theorem. In order to train the probabilistic parsing model, as discussed in Koo

et al. (2007), we have to compute the partition function and the marginals, requiring summation

over the set T (x):

Z(x; θ) =
∑

y∈T (x)

exp

( ∑
(wh,wm)∈y

ψ(wh, wm; θ)

)
µh,m(x; θ) =

∑
y∈T (x):(wh,wm)∈y

P (y|x; θ)

where µh,m(x; Θ) is the marginal for edge from hth word to mth word for x.

Previous studies (Koo et al., 2007; Smith and Smith, 2007) have presented how a variant of

Kirchhoff’s Matrix-Tree Theorem (Tutte, 1984) can be used to evaluate the partition function and

marginals efficiently. In this section, we briefly revisit this method.

For a sentence x with n words, we denote x = {w0, w1, . . . , wn}, where w0 is the root-symbol.

We define a complete graph G on n+ 1 nodes (including the root-symbol x0), where each node

corresponds to a word in x and each edge corresponds to a dependency arc between two words.

Then, we assign non-negative weights to the edges of this complete graph with n + 1 nodes,

yielding the weighted adjacency matrix A(θ) ∈ Rn+1×n+1, for h,m = 0, . . . , n:

Ah,m(θ) = exp (ψ(wh, wm; θ))

Based on the adjacency matrix A(θ), we have the Laplacian matrix:

L(θ) = D(θ)−A(θ)
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where D(θ) is the weighted degree matrix:

Dh,m(θ) =


n∑

h′=0

Ah′,m(θ) if h = m

0 otherwise

Then, according to Theorem 1 in Koo et al. (2007), the partition function is equal to the minor of

L(θ) w.r.t row 0 and column 0:

Z(x; θ) = L(0,0)(θ)

where for a matrix A, A(h,m) denotes the minor of A w.r.t row h and column m; i.e., the

determinant of the submatrix formed by deleting the hth row and mth column.

The marginals can be computed by calculating the matrix inversion of the matrix corresponding

to L(0,0)(θ). The time complexity of computing the partition function and marginals is O(n3).

Labeled Parsing Model. Though it is originally designed for unlabeled parsing, our probabilis-

tic parsing model is easily extended to include dependency labels.

In labeled dependency trees, each edge is represented by a tuple (wh, wm, l), where wh and

wm are the head word and modifier, respectively, and l is the label of dependency type of this

edge. Then we can extend the original model for labeled dependency parsing by extending the

score function to include dependency labels:

ψ(wh, wm, l; θ) = φ(wh)
TWlφ(wm) + UT

l φ(wh) + VT
l φ(wm) + bl

where Wl,Ul,Vl,bl are the weights and bias corresponding to dependency label l. Suppose

that there are L different dependency labels, it suffices to define the new adjacency matrix by

assigning the weight of a edge with the sum of weights over different dependency labels:

A′h,m(θ) =
L∑
l=1

exp (ψ(wh, wm, l; θ))

The partition function and marginals over labeled dependency trees are obtained by operating on

the new adjacency matrix A′(θ). The time complexity becomes O(n3 + Ln2). In practice, L is

probably large. For English, the number of edge labels in Stanford Basic Dependencies (De Marn-

effe et al., 2006) is 45, and the number in the treebank of CoNLL-2008 shared task (Surdeanu
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et al., 2008) is 70, while the average length of sentences in English Penn Treebank (Marcus et al.,

1993) is around 23. Thus, L is not negligible to n.

It should be noticed that in our labeled model, for different dependency label l we use the

same vector representation φ(wi) for each word wi. The dependency labels are distinguished

(only) by the parameters (weights and bias) corresponding to each of them. One advantage of

this is that it significantly reduces the memory requirement comparing to the model in Dozat and

Manning (2017) which distinguishes φl(wi) for different label l.

4.1.2 Neural Representation Encoding

The encoder of our parsing model is based on the bi-directional LSTM-CNN architecture (BLSTM-

CNNs) (Ma and Hovy, 2016) where CNNs encode character-level information of a word into its

character-level representation and BLSTM models context information of each word. Formally,

for each word, the CNN, with character embeddings as inputs, encodes the character-level

representation. Then the character-level representation vector is concatenated with the word

embedding vector to feed into the BLSTM network. To enrich word-level information, we also

use POS embeddings. Figure 4.1 illustrates the architecture of our network in detail.

4.1.3 Neural Network Training

Word Embeddings. For all the parsing models on different languages, we initialize word

vectors with pretrained word embeddings. For Chinese, Dutch, English, German and Spanish, we

use the structured-skipgram (Ling et al., 2015) embeddings, and for other languages we use the

Polyglot (Al-Rfou et al., 2013) embeddings. The dimensions of embeddings are 100 for English,

50 for Chinese and 64 for other languages.

Character Embeddings. Following Ma and Hovy (2016), character embeddings are initialized

with uniform samples from [−
√

3
dim

,+
√

3
dim

], where we set dim = 50.

POS Embedding. Our model also includes POS embeddings. The same as character embed-

dings, POS embeddings are also 50-dimensional, initialized uniformly from [−
√

3
dim

,+
√

3
dim

].
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Word
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Forward

LSTM

Backward

LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

We are soccerplayingParsing

Layer

subj

aux dobj

POS

Embedding

Figure 4.1: The main architecture of our parsing model. The character representation for each word

is computed by the CNN in Figure 2.5. Then the character representation vector is concatenated

with the word and pos embedding before feeding into the BLSTM network. Dashed arrows

indicate dropout layers applied on the input, hidden and output vectors of BLSTM.

Weights Matrices and Bias Vectors. Matrix parameters are randomly initialized with uniform

samples from [−
√

6
r+c

,+
√

6
r+c

], where r and c are the number of of rows and columns in the

structure (Glorot and Bengio, 2010). Bias vectors are initialized to zero, except the bias bf for the

forget gate in LSTM , which is initialized to 1.0 (Jozefowicz et al., 2015).

Optimization Algorithm Parameter optimization is performed with the Adam optimizer (Kingma

and Ba, 2014) with β1 = β2 = 0.9. We choose an initial learning rate of η0 = 0.002. The learn-

ing rate η was adapted using a schedule S = [e1, e2, . . . , es], in which the learning rate η is

annealed by multiplying a fixed decay rate ρ = 0.5 after ei ∈ S epochs respectively. We used

S = [10, 30, 50, 70, 100] and trained all networks for a total of 120 epochs. While the Adam
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English Chinese German

Dev Test Dev Test Dev Test

Model UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Basic 94.51 92.23 94.62 92.54 84.33 81.65 84.35 81.63 90.46 87.77 90.69 88.42

+Char 94.74 92.55 94.73 92.75 85.07 82.63 85.24 82.46 92.16 89.82 92.24 90.18

+POS 94.71 92.60 94.83 92.96 88.98 87.55 89.05 87.74 91.94 89.51 92.19 90.05

Full 94.77 92.66 94.88 92.98 88.51 87.16 88.79 87.47 92.37 90.09 92.58 90.54

Table 4.1: Parsing performance (UAS and LAS) of different versions of our model on both the

development and test sets for three languages.

optimizer automatically adjusts the global learning rate according to past gradient magnitudes,

we find that this additional decay consistently improves model performance across all settings

and languages. To reduce the effects of “gradient exploding”, we use a gradient clipping of

5.0 (Pascanu et al., 2013). We explored other optimization algorithms such as stochastic gradient

descent (SGD) with momentum, AdaDelta (Zeiler, 2012), or RMSProp (Dauphin et al., 2015), but

none of them meaningfully improve upon Adam with learning rate annealing in our preliminary

experiments. Meanwhile, Adam significantly accelerates the training procedure.

Dropout Training. To mitigate overfitting, we apply the dropout method (Srivastava et al.,

2014b; Ma et al., 2017) to regularize our model. As shown in 4.1, we apply dropout on character

embeddings before inputting to CNN, and on the input, hidden and output vectors of BLSTM. We

apply dropout rate of 0.15 to all the embeddings. For BLSTM, we use the recurrent dropout (Gal

and Ghahramani, 2016) with 0.25 dropout rate between hidden states and 0.33 between layers.

We found that the model using the new recurrent dropout converged much faster than standard

dropout, while achiving similar performance.

4.1.4 Experiments Setup

We evaluate our neural probabilistic parser on the same data setup as Kuncoro et al. (2016),

namely the English Penn Treebank (PTB version 3.0) (Marcus et al., 1993), the Penn Chinese

Treebank (CTB version 5.1) (Xue et al., 2002), and the German CoNLL 2009 corpus (Hajič et al.,
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2009). Following previous work, all experiments are evaluated on the metrics of unlabeled and

labeled attachment score (UAS and LAS).

4.1.5 Main Results

We first construct experiments to dissect the effectiveness of each input information (embeddings)

of our neural network architecture by ablation studies. We compare the performance of four

versions of our model with different inputs — Basic, +POS, +Char and Full — where the Basic

model utilizes only the pretrained word embeddings as inputs, while the +POS and +Char models

augments the basic one with POS embedding and character information, respectively. The Full

model includes all the three information as inputs. According to the results shown in Table 4.1,

+Char model obtains better performance than the Basic model on all the three languages, showing

that character-level representations are important for dependency parsing. Second, on English

and German, +Char and +POS achieves comparable performance, while on Chinese +POS

significantly outperforms +Char model. Finally, it should be noted that the Full model achieves

the best accuracy among the four models on English and German, but on Chinese +POS obtains

the best. We guess that the POS information is more useful for Chinese than English and German.

Dev Test

UAS LAS UAS LAS

cross-entropy 94.10 91.52 93.77 91.57

global-likelihood 94.77 92.66 94.88 92.98

Table 4.2: Parsing performance on PTB with different training objective functions.

Table 4.2 gives the performance on PTB of the parsers trained with two different objective

functions — the cross-entropy objective of each word, and our objective based on likelihood

for an entire tree. The parser with global likelihood objective outperforms the one with simple

cross-entropy objective, demonstrating the effectiveness of the global structured objective.
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English Chinese German

System UAS LAS UAS LAS UAS LAS

Bohnet and Nivre (2012) – – 87.3 85.9 91.4 89.4

Chen and Manning (2014) 91.8 89.6 83.9 82.4 – –

Ballesteros et al. (2015) 91.6 89.4 85.3 83.7 88.8 86.1

Dyer et al. (2015) 93.1 90.9 87.2 85.7 – –

Kiperwasser and Goldberg (2016): graph 93.1 91.0 86.6 85.1 – –

Ballesteros et al. (2016) 93.6 91.4 87.7 86.2 – –

Wang and Chang (2016) 94.1 91.8 87.6 86.2 – –

Zhang et al. (2016) 94.1 91.9 87.8 86.2 – –

Cheng et al. (2016) 94.1 91.5 88.1 85.7 – –

Andor et al. (2016) 94.6 92.8 – – 90.9 89.2

Kuncoro et al. (2016) 94.3 92.1 88.9 87.3 91.6 89.2

Dozat and Manning (2017) 95.7 94.1 89.3 88.2 93.5 91.4

This work: Basic 94.6 92.5 84.4 81.6 90.7 88.4

This work: +Char 94.7 92.8 85.2 82.5 92.2 90.2

This work: +POS 94.8 93.0 89.1 87.7 92.2 90.1

This work: Full 94.9 93.0 88.8 87.5 92.6 90.5

Table 4.3: UAS and LAS of four versions of our model on test sets for three languages, together

with top-performance parsing systems.

4.1.6 Comparison with Previous Work

Table 4.3 illustrates the results of the four versions of our model on the three languages, together

with twelve previous top-performance systems for comparison. Our Full model significantly

outperforms the graph-based parser proposed in Kiperwasser and Goldberg (2016) which used

similar neural network architecture for representation learning. Moreover, our model achieves

better results than the parser distillation method (Kuncoro et al., 2016) on all the three languages.

The results of our parser are slightly worse than the scores reported in Dozat and Manning (2017).

One possible reason is that for labeled dependency parsing Dozat and Manning (2017) used

different vectors for different dependency labels to represent each word.
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Turbo Tensor RGB In-Out Bi-Att +POS Full Best

UAS UAS UAS UAS [LAS] UAS [LAS] UAS [LAS] UAS [LAS] UAS

ar 79.64 79.95 80.24 79.60 [67.09] 80.34 [68.58] 80.05 [67.80] 80.80 [69.40] 81.12

bg 93.10 93.50 93.72 92.68 [87.79] 93.96 [89.55] 93.66 [89.79] 94.28 [90.60] 94.02

zh 89.98 92.68 93.04 92.58 [88.51] – 93.44 [90.04] 93.40 [90.10] 93.04

cs 90.32 90.50 90.77 88.01 [79.31] 91.16 [85.14] 91.04 [85.82] 91.18 [85.92] 91.16

da 91.48 91.39 91.86 91.44 [85.55] 91.56 [85.53] 91.52 [86.57] 91.86 [87.07] 92.00

nl 86.19 86.41 87.39 84.45 [80.31] 87.15 [82.41] 87.41 [84.17] 87.85 [84.82] 87.39

en 93.22 93.02 93.25 92.45 [89.43] – 94.43 [92.31] 94.66 [92.52] 93.25

de 92.41 91.97 92.67 90.79 [87.74] 92.71 [89.80] 93.53 [91.55] 93.62 [91.90] 92.71

ja 93.52 93.71 93.56 93.54 [91.80] 93.44 [90.67] 93.82 [92.34] 94.02 [92.60] 93.80

pt 92.69 91.92 92.36 91.54 [87.68] 92.77 [88.44] 92.59 [89.12] 92.71 [88.92] 93.03

sl 86.01 86.24 86.72 84.39 [73.74] 86.01 [75.90] 85.73 [76.48] 86.73 [77.56] 87.06

es 85.59 88.00 88.75 86.44 [83.29] 88.74 [84.03] 88.58 [85.03] 89.20 [85.77] 88.75

sv 91.14 91.00 91.08 89.94 [83.09] 90.50 [84.05] 90.89 [86.58] 91.22 [86.92] 91.85

tr 76.90 76.84 76.68 75.32 [60.39] 78.43 [66.16] 75.88 [61.72] 77.71 [65.81] 78.43

av 88.73 89.08 89.44 88.08 [81.84] – 89.47 [84.24] 89.95 [84.99] 89.83

Table 4.4: UAS and LAS on 14 treebanks from CoNLL shared tasks, together with several

state-of-the-art parsers. “Best Published” includes the most accurate parsers in term of UAS

among Koo et al. (2010), Martins et al. (2011), Martins et al. (2013), Lei et al. (2014), Zhang et al.

(2014), Zhang and McDonald (2014), Pitler and McDonald (2015), and Ma and Hovy (2015).

4.1.7 Experiments on CoNLL Treebanks

Datasets. To make a thorough empirical comparison with previous studies, we also evaluate

our system on treebanks from CoNLL shared task on dependency parsing — the English treebank

from CoNLL-2008 shared task (Surdeanu et al., 2008) and all 13 treebanks from CoNLL-2006

shared task (Buchholz and Marsi, 2006). For the treebanks from CoNLL-2006 shared task,

following Cheng et al. (2016), we randomly select 5% of the training data as the development set.

UAS and LAS are evaluated using the official scorer1 of CoNLL-2006 shared task.

1http://ilk.uvt.nl/conll/software.html
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Baselines. We compare our model with the third-order Turbo parser (Martins et al., 2013), the

low-rank tensor based model (Tensor) (Lei et al., 2014), the randomized greedy inference based

(RGB) model (Zhang et al., 2014), the labeled dependency parser with inner-to-outer greedy

decoding algorithm (In-Out) (Ma and Hovy, 2015), and the bi-direction attention based parser

(Bi-Att) (Cheng et al., 2016). We also compare our parser against the best published results

for individual languages. This comparison includes four additional systems: Koo et al. (2010),

Martins et al. (2011), Zhang and McDonald (2014) and Pitler and McDonald (2015).

Results. Table 4.4 summarizes the results of our model, along with the state-of-the-art baselines.

On average across 14 languages, our approach significantly outperforms all the baseline systems.

It should be noted that the average UAS of our parser over the 14 languages is better than that

of the “best published”, which are from different systems that achieved best results for different

languages.

For individual languages, our parser achieves state-of-the-art performance on both UAS and

LAS on 8 languages — Bulgarian, Chinese, Czech, Dutch, English, German, Japanese and

Spanish. On Arabic, Danish, Portuguese, Slovene and Swedish, our parser obtains the best

LAS. Another interesting observation is that the Full model outperforms the +POS model on 13

languages. The only exception is Chinese, which matches the observation in Section 4.1.5.

4.2 Discussions

In this chapter, we proposed a neural probabilistic model for non-projective dependency parsing,

which combined the BLSTM-CNNs architecture for representation learning with a probabilistic

structured output layer on top. Experimental results on 17 treebanks across 14 languages show

that our parser significantly improves the accuracy of both dependency structures (UAS) and edge

labels (LAS), over several previously state-of-the-art systems.

In the next chapter, we will consider neural networks for transition-based dependency parsing,

where we introduce our stack-pointer network.
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Chapter 5

Stack-Pointer Networks for Dependency

Parsing

In the last chapter, we showed that incorporating this global search algorithm with distributed

representations learned from neural networks, neural graph-based parsers (Kiperwasser and

Goldberg, 2016; Wang and Chang, 2016; Kuncoro et al., 2016; Dozat and Manning, 2017)

have achieved the state-of-the-art accuracies on a number of treebanks in different languages.

Nevertheless, these models, while accurate, are usually slow (e.g. decoding is O(n3) time

complexity for first-order models McDonald et al. (2005a,b) and higher polynomials for higher-

order models (McDonald and Pereira, 2006; Koo and Collins, 2010; Ma and Zhao, 2012b,a)).

Transition-based dependency parsers, on the other hand, read words sequentially (commonly

from left-to-right) and build dependency trees incrementally by making series of multiple choice

decisions. A classifier is trained to score the possible decisions at each state of the process and

guide the parsing process. The advantage of this formalism is that the number of operations

required to build any projective parse tree is linear with respect to the length of the sentence.

The challenge, however, is that the decision made at each step is based on local information,

leading to error propagation and worse performance compared to graph-based parsers on root

and long dependencies (McDonald and Nivre, 2011). Previous studies have explored solutions

to address this challenge. Stack LSTMs (Dyer et al., 2015; Ballesteros et al., 2015, 2016) are

capable of learning representations of the parser state that are sensitive to the complete contents of
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the parser’s state. Andor et al. (2016) proposed a globally normalized transition model to replace

the locally normalized classifier. However, the parsing accuracy is still behind state-of-the-art

graph-based parsers (Dozat and Manning, 2017).

In this chapter, we propose a novel neural network architecture for dependency parsing,

stack-pointer networks (STACKPTR). STACKPTR is a transition-based architecture, with the

corresponding asymptotic efficiency, but still maintains a global view of the sentence that proves

essential for achieving competitive accuracy. Our STACKPTR parser has a pointer network (Vinyals

et al., 2015) as its backbone, and is equipped with an internal stack to maintain the order of head

words in tree structures. The STACKPTR parser performs parsing in an incremental, top-down,

depth-first fashion; at each step, it generates an arc by assigning a child for the head word at

the top of the internal stack. This architecture makes it possible to capture information from the

whole sentence and all the previously derived subtrees, while maintaining a number of parsing

steps linear in the sentence length.

We evaluate our parser on 29 treebanks across 20 languages and different dependency annota-

tion schemas, and achieve state-of-the-art performance on 21 of them. The contributions of this

work are summarized as follows:

(i) We propose a neural network architecture for dependency parsing that is simple, effective,

and efficient.

(ii) Empirical evaluations on benchmark datasets over 20 languages show that our method

achieves state-of-the-art performance on 21 different treebanks.

(iii) Comprehensive error analysis is conducted to compare the proposed method to a strong

graph-based baseline using biaffine attention (Dozat and Manning, 2017).

Source code for the implementation is publicly available at https://github.com/XuezheMax/

NeuroNLP2.
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5.1 Background

5.1.1 Notations

Dependency trees represent syntactic relationships between words in the sentences through labeled

directed edges between head words and their dependents. Figure 5.1 (a) shows a dependency tree

for the sentence, “But there were no buyers”. In this paper, we will use the following notation:

Input: x = {w1, . . . , wn} represents a generic sentence, where wi is the ith word.

Output: y = {p1, p2, · · · , pk} represents a generic (possibly non-projective) dependency tree,

where each path pi = $, wi,1, wi,2, · · · , wi,li is a sequence of words from the root to a leaf. “$” is

an universal virtual root that is added to each tree.

Stack: σ denotes a stack configuration, which is a sequence of words. We use σ|w to represent a

stack configuration that pushes word w into the stack σ.

Children: ch(wi) denotes the list of all the children (modifiers) of word wi.

5.1.2 Pointer Networks

Pointer Networks (PTR-NET) (Vinyals et al., 2015) are a variety of neural network capable of

learning the conditional probability of an output sequence with elements that are discrete tokens

corresponding to positions in an input sequence. This model cannot be trivially expressed by

standard sequence-to-sequence networks (Sutskever et al., 2014) due to the variable number of

input positions in each sentence. PTR-NET solves the problem by using attention (Bahdanau et al.,

2015; Luong et al., 2015) as a pointer to select a member of the input sequence as the output.

Formally, the words of the sentence x are fed one-by-one into the encoder (a multiple-layer

bi-directional RNN), producing a sequence of encoder hidden states si. At each time step t, the

decoder (a uni-directional RNN) receives the input from last step and outputs decoder hidden

state ht. The attention vector at is calculated as follows:

eti = score(ht, si)

at = softmax (et)
(5.1)

where score(·, ·) is the attention scoring function, which has several variations such as dot-product,
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Figure 5.1: Neural architecture for the STACKPTR network, together with the decoding procedure

of an example sentence. The BiRNN of the encoder is elided for brevity. For the inputs of decoder

at each time step, vectors in red and blue boxes indicate the sibling and grandparent.

concatenation, and biaffine (Luong et al., 2015). PTR-NET regards the attention vector at as a

probability distribution over the source words, i.e. it uses ati as pointers to select input elements.

5.2 Stack-Pointer Networks

5.2.1 Overview

Similarly to PTR-NET, STACKPTR first reads the whole sentence and encodes each word into

the encoder hidden state si. The internal stack σ is always initialized with the root symbol $. At

each time step t, the decoder receives the input vector corresponding to the top element of the

stack σ (the head word wp where p is the word index), generates the hidden state ht, and computes

the attention vector at using Eq. (5.1). The parser chooses a specific position c according to the

attention scores in at to generate a new dependency arc (wh, wc) by selecting wc as a child of wh.

Then the parser pushes wc onto the stack, i.e. σ → σ|wc, and goes to the next step. At one step if

the parser points wh to itself, i.e. c = h, it indicates that all children of the head word wh have
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already been selected. Then the parser goes to the next step by popping wh out of σ.

At test time, in order to guarantee a valid dependency tree containing all the words in the

input sentences exactly once, the decoder maintains a list of “available” words. At each decoding

step, the parser selects a child for the current head word, and removes the child from the list of

available words to make sure that it cannot be selected as a child of other head words.

For head words with multiple children, it is possible that there is more than one valid selection

for each time step. In order to define a deterministic decoding process to make sure that there is

only one ground-truth choice at each step (which is necessary for simple maximum likelihood

estimation), a predefined order for each ch(wi) needs to be introduced. The predefined order of

children can have different alternatives, such as left-to-right or inside-out1. In this paper, we adopt

the inside-out order2 since it enables us to utilize second-order sibling information, which has

been proven beneficial for parsing performance (McDonald and Pereira, 2006; Koo and Collins,

2010) (see § 5.2.4 for details). Figure 5.1 (b) depicts the architecture of STACKPTR and the

decoding procedure for the example sentence in Figure 5.1 (a).

5.2.2 Encoder

The encoder of our parsing model is based on the bi-directional LSTM-CNN architecture (BLSTM-

CNNs) (Ma and Hovy, 2016) where CNNs encode character-level information of a word into its

character-level representation and BLSTM models context information of each word. Formally,

for each word, the CNN, with character embeddings as inputs, encodes the character-level

representation. Then the character-level representation vector is concatenated with the word

embedding vector to feed into the BLSTM network. To enrich word-level information, we also

use POS embeddings. Finally, the encoder outputs a sequence of hidden states si.

5.2.3 Decoder

The decoder for our parser is a uni-directional LSTM. Different from previous work (Bahdanau

et al., 2015; Vinyals et al., 2015) which uses word embeddings of the previous word as the input

1Order the children by the distances to the head word on the left side, then the right side.
2We also tried left-to-right order which obtained worse parsing accuracy than inside-out.
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to the decoder, our decoder receives the encoder hidden state vector (si) of the top element in the

stack σ (see Figure 5.1 (b)). Compared to word embeddings, the encoder hidden states contain

more contextual information, benefiting both the training and decoding procedures. The decoder

produces a sequence of decoder hidden states hi, one for each decoding step.

5.2.4 Higher-order Information

As mentioned before, our parser is capable of utilizing higher-order information. In this paper, we

incorporate two kinds of higher-order structures — grandparent and sibling. A sibling structure is

a head word with two successive modifiers, and a grandparent structure is a pair of dependencies

connected head-to-tail:
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To utilize higher-order information, the decoder’s input at each step is the sum of the encoder

hidden states of three words:

βt = sh + sg + ss

where βt is the input vector of decoder at time t and h, g, s are the indices of the head word and

its grandparent and sibling, respectively. Figure 5.1 (b) illustrates the details. Here we use the

element-wise sum operation instead of concatenation because it does not increase the dimension

of the input vector βt, thus introducing no additional model parameters.

5.2.5 Biaffine Attention Mechanism

For attention score function (Eq. (5.1)), we adopt the biaffine attention mechanism (Luong et al.,

2015; Dozat and Manning, 2017):

eti = hTt Wsi + UTht + VT si + b

where W,U,V, b are parameters, denoting the weight matrix of the bi-linear term, the two

weight vectors of the linear terms, and the bias vector.
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As discussed in Dozat and Manning (2017), applying a multilayer perceptron (MLP) to the

output vectors of the BLSTM before the score function can both reduce the dimensionality and

overfitting of the model. We follow this work by using a one-layer perceptron to si and hi with

ELU Clevert et al. (2015) as its activation function. Similarly, the dependency label classifier also

uses a biaffine function to score each label, given the head word vector ht and child vector si as

inputs. Again, we use MLPs to transform ht and si before feeding them into the classifier.

5.2.6 Training Objectives

The STACKPTR parser is trained to optimize the probability of the dependency trees given

sentences: Pθ(y|x), which can be factorized as:

Pθ(y|x) =
k∏
i=1

Pθ(pi|p<i,x) =
k∏
i=1

li∏
j=1

Pθ(ci,j |ci,<j , p<i,x), (5.2)

where θ represents model parameters. p<i denotes the preceding paths that have already been

generated. ci,j represents the jth word in pi and ci,<j denotes all the proceeding words on the path

pi. Thus, the STACKPTR parser is an autoregressive model, like sequence-to-sequence models,

but it factors the distribution according to a top-down tree structure as opposed to a left-to-right

chain. We define Pθ(ci,j|ci,<j, p<i,x) = at, where attention vector at (of dimension n) is used as

the distribution over the indices of words in a sentence.

Arc Prediction Our parser is trained by optimizing the conditional likelihood in Eq (5.2), which

is implemented as the cross-entropy loss.

Label Prediction We train a separated multi-class classifier in parallel to predict the dependency

labels. Following Dozat and Manning (2017), the classifier takes the information of the head

word and its child as features. The label classifier is trained simultaneously with the parser by

optimizing the sum of their objectives.

5.2.7 Discussion

Time Complexity. The number of decoding steps to build a parse tree for a sentence of length

n is 2n− 1, linear in n. Together with the attention mechanism (at each step, we need to compute
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the attention vector at, whose runtime is O(n)), the time complexity of decoding algorithm is

O(n2), which is more efficient than graph-based parsers that have O(n3) or worse complexity

when using dynamic programming or maximum spanning tree (MST) decoding algorithms.

Top-down Parsing. When humans comprehend a natural language sentence, they arguably do

it in an incremental, left-to-right manner. However, when humans consciously annotate a sentence

with syntactic structure, they rarely ever process in fixed left-to-right order. Rather, they start by

reading the whole sentence, then seeking the main predicates, jumping back-and-forth over the

sentence and recursively proceeding to the sub-tree structures governed by certain head words.

Our parser follows a similar kind of annotation process: starting from reading the whole sentence,

and processing in a top-down manner by finding the main predicates first and only then search for

sub-trees governed by them. When making latter decisions, the parser has access to the entire

structure built in earlier steps.

5.2.8 Implementation Details

Pre-trained Word Embeddings. For all the parsing models in different languages, we initialize

word vectors with pretrained word embeddings. For Chinese, Dutch, English, German and

Spanish, we use the structured-skipgram Ling et al. (2015) embeddings. For other languages we

use Polyglot embeddings Al-Rfou et al. (2013).

Optimization. Parameter optimization is performed with the Adam optimizer Kingma and Ba

(2014) with β1 = β2 = 0.9. We choose an initial learning rate of η0 = 0.001. The learning rate η

is annealed by multiplying a fixed decay rate ρ = 0.75 when parsing performance stops increasing

on validation sets. To reduce the effects of “gradient exploding”, we use gradient clipping of

5.0 Pascanu et al. (2013).

Dropout Training. To mitigate overfitting, we apply dropout Srivastava et al. (2014b); Ma et al.

(2017). For BLSTM, we use recurrent dropout Gal and Ghahramani (2016) with a drop rate of

0.33 between hidden states and 0.33 between layers. Following Dozat and Manning (2017), we

also use embedding dropout with a rate of 0.33 on all word, character, and POS embeddings.
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5.3 Experiments

5.3.1 Setup

We evaluate our STACKPTR parser mainly on three treebanks: the English Penn Treebank (PTB

version 3.0) (Marcus et al., 1993), the Penn Chinese Treebank (CTB version 5.1) Xue et al. (2002),

and the German CoNLL 2009 corpus Hajič et al. (2009). We use the same experimental settings

as Kuncoro et al. (2016).

To make a thorough empirical comparison with previous studies, we also evaluate our system

on treebanks from CoNLL shared task and the Universal Dependency (UD) Treebanks3. For the

CoNLL Treebanks, we use the English treebank from CoNLL-2008 shared task Surdeanu et al.

(2008) and all 13 treebanks from CoNLL-2006 shared task Buchholz and Marsi (2006). The

experimental settings are the same as Ma and Hovy (2015). For UD Treebanks, we select 12 lan-

guages. The details of the treebanks and experimental settings are in § 5.3.6 and Appendix A.1.2.

Evaluation Metrics Parsing performance is measured with five metrics: unlabeled attachment

score (UAS), labeled attachment score (LAS), unlabeled complete match (UCM), labeled complete

match (LCM), and root accuracy (RA). Following previous work (Kuncoro et al., 2016; Dozat

and Manning, 2017), we report results excluding punctuations for Chinese and English. For each

experiment, we report the mean values with corresponding standard deviations over 5 repetitions.

Baseline For fair comparison of the parsing performance, we re-implemented the graph-based

Deep Biaffine (BIAF) parser (Dozat and Manning, 2017), which achieved state-of-the-art results

on a wide range of languages. Our re-implementation adds character-level information using the

same LSTM-CNN encoder as our model (§ 5.2.2) to the original BIAF model, which boosts its

performance on all languages.

5.3.2 Main Results

We first conduct experiments to demonstrate the effectiveness of our neural architecture by

comparing with the strong baseline BIAF. We compare the performance of four variations of

3http://universaldependencies.org/
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Figure 5.2: Parsing performance of different variations of our model on the test sets for three

languages, together with baseline BIAF. For each of our STACKPTR models, we perform decoding

with beam size equal to 1 and 10. The improvements of decoding with beam size 10 over 1 are

presented by stacked bars with light colors.

our model with different decoder inputs — Org, +gpar, +sib and Full — where the Org model

utilizes only the encoder hidden states of head words, while the +gpar and +sib models augments

the original one with grandparent and sibling information, respectively. The Full model includes

all the three information as inputs.

Figure 5.2 illustrates the performance (five metrics) of different variations of our STACKPTR

parser together with the results of baseline BIAF re-implemented by us, on the test sets of the

three languages. On UAS and LAS, the Full variation of STACKPTR with decoding beam size

10 outperforms BIAF on Chinese, and obtains competitive performance on English and German.

An interesting observation is that the Full model achieves the best accuracy on English and

Chinese, while performs slightly worse than +sib on German. This shows that the importance

of higher-order information varies in languages. On LCM and UCM, STACKPTR significantly
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English Chinese German
System UAS LAS UAS LAS UAS LAS
Chen and Manning (2014) T 91.8 89.6 83.9 82.4 – –
Ballesteros et al. (2015) T 91.63 89.44 85.30 83.72 88.83 86.10
Dyer et al. (2015) T 93.1 90.9 87.2 85.7 – –
Bohnet and Nivre (2012) T 93.33 91.22 87.3 85.9 91.4 89.4
Ballesteros et al. (2016) T 93.56 91.42 87.65 86.21 – –
Kiperwasser and Goldberg (2016) T 93.9 91.9 87.6 86.1 – –
Weiss et al. (2015b) T 94.26 92.41 – – – –
Andor et al. (2016) T 94.61 92.79 – – 90.91 89.15
Kiperwasser and Goldberg (2016) G 93.1 91.0 86.6 85.1 – –
Wang and Chang (2016) G 94.08 91.82 87.55 86.23 – –
Cheng et al. (2016) G 94.10 91.49 88.1 85.7 – –
Kuncoro et al. (2016) G 94.26 92.06 88.87 87.30 91.60 89.24
Ma and Hovy (2017) G 94.88 92.98 89.05 87.74 92.58 90.54
BIAF: Dozat and Manning (2017) G 95.74 94.08 89.30 88.23 93.46 91.44
BIAF: re-impl G 95.84 94.21 90.43 89.14 93.85 92.32
STACKPTR: Org T 95.77 94.12 90.48 89.19 93.59 92.06
STACKPTR: +gpar T 95.78 94.12 90.49 89.19 93.65 92.12
STACKPTR: +sib T 95.85 94.18 90.43 89.15 93.76 92.21
STACKPTR: Full T 95.87 94.19 90.59 89.29 93.65 92.11

Table 5.1: UAS and LAS of four versions of our model on test sets for three languages, together

with top-performing parsing systems. “T” and “G” indicate transition- and graph-based models,

respectively. For BIAF, we provide the original results reported in Dozat and Manning (2017)

and our re-implementation.

outperforms BIAF on all languages, showing the superiority of our parser on complete sentence

parsing. The results of our parser on RA are slightly worse than BIAF. More details of results are

provided in Appendix A.1.2.

5.3.3 Comparison with Previous Work

Table 5.1 illustrates the UAS and LAS of the four versions of our model (with decoding beam

size 10) on the three treebanks, together with previous top-performing systems for comparison.

Note that the results of STACKPTR and our re-implementation of BIAF are the average of 5

repetitions instead of a single run. Our Full model significantly outperforms all the transition-
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Figure 5.3: Performance of BIAF and STACKPTR parsers relative to length and graph factors.

based parsers on all three languages, and achieves better results than most graph-based parsers.

Our re-implementation of BIAF obtains better performance than the original one in Dozat and

Manning (2017), demonstrating the effectiveness of the character-level information. Our model

achieves state-of-the-art performance on both UAS and LAS on Chinese, and best UAS on English.

On German, the performance is competitive with BIAF, and significantly better than other models.

5.3.4 Error Analysis

In this section, we characterize the errors made by BIAF and STACKPTR by presenting a number

of experiments that relate parsing errors to a set of linguistic and structural properties. For

simplicity, we follow McDonald and Nivre (2011) and report labeled parsing metrics (either

accuracy, precision, or recall) for all experiments.

Length and Graph Factors

Following McDonald and Nivre (2011), we analyze parsing errors related to structural factors.

Sentence Length. Figure 5.3 (a) shows the accuracy of both parsing models relative to sentence

lengths. Consistent with the analysis in McDonald and Nivre (2011), STACKPTR tends to perform
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POS UAS LAS UCM LCM

Gold 96.12±0.03 95.06±0.05 62.22±0.33 55.74±0.44

Pred 95.87±0.04 94.19±0.04 61.43±0.49 49.68±0.47

None 95.90±0.05 94.21±0.04 61.58±0.39 49.87±0.46

Table 5.2: Parsing performance on the test data of PTB with different versions of POS tags.

better on shorter sentences, which make fewer parsing decisions, significantly reducing the chance

of error propagation.

Dependency Length. Figure 5.3 (b) measures the precision and recall relative to dependency

lengths. While the graph-based BIAF parser still performs better for longer dependency arcs

and transition-based STACKPTR parser does better for shorter ones, the gap between the two

systems is marginal, much smaller than that shown in McDonald and Nivre (2011). One possible

reason is that, unlike traditional transition-based parsers that scan the sentence from left to right,

STACKPTR processes in a top-down manner, unnecessarily creating shorter dependencies first.

Root Distance. Figure 5.3 (c) plots the precision and recall of each system for arcs of varying

distance to the root. Different from the observation in McDonald and Nivre (2011), STACKPTR

does not show an obvious advantage on the precision for arcs further away from the root. Further-

more, the STACKPTR parser does not have the tendency to over-predict root modifiers reported in

McDonald and Nivre (2011). This behavior can be explained using the same reasoning as above:

the fact that arcs further away from the root are usually constructed early in the parsing algorithm

of traditional transition-based parsers is not true for the STACKPTR parser.

Effect of POS Embedding

The only prerequisite information that our parsing model relies on is POS tags. With the goal of

achieving an end-to-end parser, we explore the effect of POS tags on parsing performance. We

run experiments on PTB using our STACKPTR parser with gold-standard and predicted POS tags,

and without tags, respectively. STACKPTR in these experiments is the Full model with beam=10.

Table 5.2 gives results of the parsers with different versions of POS tags on the test data of

PTB. The parser with gold-standard POS tags significantly outperforms the other two parsers,
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Bi-Att NeuroMST BIAF STACKPTR Best Published

UAS [LAS] UAS [LAS] UAS [LAS] UAS [LAS] UAS LAS

ar 80.34 [68.58] 80.80 [69.40] 82.15±0.34 [71.32±0.36] 83.04±0.29 [72.94±0.31] 81.12 –

bg 93.96 [89.55] 94.28 [90.60] 94.62±0.14 [91.56±0.24] 94.66±0.10 [91.40±0.08] 94.02 –

zh – 93.40 [90.10] 94.05±0.27 [90.89±0.22] 93.88±0.24 [90.81±0.55] 93.04 –

cs 91.16 [85.14] 91.18 [85.92] 92.24±0.22 [87.85±0.21] 92.83±0.13 [88.75±0.16] 91.16 85.14

da 91.56 [85.53] 91.86 [87.07] 92.80±0.26 [88.36±0.18] 92.08±0.15 [87.29±0.21] 92.00 –

nl 87.15 [82.41] 87.85 [84.82] 90.07±0.18 [87.24±0.17] 90.10±0.27 [87.05±0.26] 87.39 –

en – 94.66 [92.52] 95.19±0.05 [93.14±0.05] 93.25±0.05 [93.17±0.05] 93.25 –

de 92.71 [89.80] 93.62 [91.90] 94.52±0.11 [93.06±0.11] 94.77±0.05 [93.21±0.10] 92.71 89.80

ja 93.44 [90.67] 94.02 [92.60] 93.95±0.06 [92.46±0.07] 93.38±0.08 [91.92±0.16] 93.80 –

pt 92.77 [88.44] 92.71 [88.92] 93.41±0.08 [89.96±0.24] 93.57±0.12 [90.07±0.20] 93.03 –

sl 86.01 [75.90] 86.73 [77.56] 87.55±0.17 [78.52±0.35] 87.59±0.36 [78.85±0.53] 87.06 –

es 88.74 [84.03] 89.20 [85.77] 90.43±0.13 [87.08±0.14] 90.87±0.26 [87.80±0.31] 88.75 84.03

sv 90.50 [84.05] 91.22 [86.92] 92.22±0.15 [88.44±0.17] 92.49±0.21 [89.01±0.22] 91.85 85.26

tr 78.43 [66.16] 77.71 [65.81] 79.84±0.23 [68.63±0.29] 79.56±0.22 [68.03±0.15] 78.43 66.16

Table 5.3: UAS and LAS on 14 treebanks from CoNLL shared tasks, together with several

state-of-the-art parsers. Bi-Att is the bi-directional attention based parser (Cheng et al., 2016), and

NeuroMST is the neural MST parser (Ma and Hovy, 2017). “Best Published” includes the most

accurate parsers in term of UAS among Koo et al. (2010), Martins et al. (2011), Martins et al.

(2013), Lei et al. (2014), Zhang et al. (2014), Zhang and McDonald (2014), Pitler and McDonald

(2015), and Cheng et al. (2016).

showing that dependency parsers can still benefit from accurate POS information. The parser with

predicted (imperfect) POS tags, however, performs even slightly worse than the parser without

using POS tags. It illustrates that an end-to-end parser that doesn’t rely on POS information can

obtain competitive (or even better) performance than parsers using imperfect predicted POS tags,

even if the POS tagger is relative high accuracy (accuracy > 97% in this experiment on PTB).

5.3.5 Experiments on CoNLL Treebanks
Table 5.3 summarizes the parsing results of our model on the test sets of 14 treebanks from the

CoNLL shared task, along with the state-of-the-art baselines. Along with BIAF, we also list
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Dev Test

BIAF STACKPTR BIAF STACKPTR

UAS LAS UAS LAS UAS LAS UAS LAS

bg 93.92±0.13 89.05±0.11 94.09±0.16 89.17±0.14 94.30±0.16 90.04±0.16 94.31±0.06 89.96±0.07

ca 94.21±0.05 91.97±0.06 94.47±0.02 92.51±0.05 94.36±0.06 92.05±0.07 94.47±0.02 92.39±0.02

cs 94.14±0.03 90.89±0.04 94.33±0.04 91.24±0.05 94.06±0.04 90.60±0.05 94.21±0.06 90.94±0.07

de 91.89±0.11 88.39±0.17 92.26±0.11 88.79±0.15 90.26±0.19 86.11±0.25 90.26±0.07 86.16±0.01

en 92.51±0.08 90.50±0.07 92.47±0.03 90.46±0.02 91.91±0.17 89.82±0.16 91.93±0.07 89.83±0.06

es 93.46±0.05 91.13±0.07 93.54±0.06 91.34±0.05 93.72±0.07 91.33±0.08 93.77±0.07 91.52±0.07

fr 95.05±0.04 92.76±0.07 94.97±0.04 92.57±0.06 92.62±0.15 89.51±0.14 92.90±0.20 89.88±0.23

it 94.89±0.12 92.58±0.12 94.93±0.09 92.90±0.10 94.75±0.12 92.72±0.12 94.70±0.07 92.55±0.09

nl 93.39±0.08 90.90±0.07 93.94±0.11 91.67±0.08 93.44±0.09 91.04±0.06 93.98±0.05 91.73±0.07

no 95.44±0.05 93.73±0.05 95.52±0.08 93.80±0.08 95.28±0.05 93.58±0.05 95.33±0.03 93.62±0.03

ro 91.97±0.13 85.38±0.03 92.06±0.08 85.58±0.12 91.94±0.07 85.61±0.13 91.80±0.11 85.34±0.21

ru 93.81±0.05 91.85±0.06 94.11±0.07 92.29±0.10 94.40±0.03 92.68±0.04 94.69±0.04 93.07±0.03

Table 5.4: UAS and LAS on both the development and test datasets of 12 treebanks from UD

Treebanks, together with BIAF for comparison.

the performance of the bi-directional attention based Parser (Bi-Att) (Cheng et al., 2016) and the

neural MST parser (NeuroMST) (Ma and Hovy, 2017) for comparison. Our parser achieves

state-of-the-art performance on both UAS and LAS on eight languages — Arabic, Czech, English,

German, Portuguese, Slovene, Spanish, and Swedish. On Bulgarian and Dutch, our parser obtains

the best UAS. On other languages, the performance of our parser is competitive with BIAF, and

significantly better than others. The only exception is Japanese, on which NeuroMST obtains the

best scores.

5.3.6 Experiments on UD Treebanks

For UD Treebanks, we select 12 languages — Bulgarian, Catalan, Czech, Dutch, English, French,

German, Italian, Norwegian, Romanian, Russian and Spanish. For all the languages, we adopt the

standard training/dev/test splits, and use the universal POS tags (Petrov et al., 2012) provided in

each treebank. The statistics of these corpora are provided in Appendix A.2. For evaluation, we
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report results excluding punctuation, which is any tokens with POS tags “PUNCT” or “SYM”.

Table 5.4 summarizes the results of the STACKPTR parser, along with BIAF for comparison,

on both the development and test datasets for each language. First, both BIAF and STACKPTR

parsers achieve relatively high parsing accuracies on all the 12 languages — all with UAS are

higher than 90%. On nine languages — Catalan, Czech, Dutch, English, French, German,

Norwegian, Russian and Spanish — STACKPTR outperforms BIAF for both UAS and LAS. On

Bulgarian, STACKPTR achieves slightly better UAS while LAS is slightly worse than BIAF. On

Italian and Romanian, BIAF obtains marginally better parsing performance than STACKPTR.

5.4 Discussions

In this chapter, we proposed STACKPTR, a transition-based neural network architecture, for

dependency parsing. Combining pointer networks with an internal stack to track the status of

the top-down, depth-first search in the decoding procedure, the STACKPTR parser is able to

capture information from the whole sentence and all the previously derived subtrees, removing the

left-to-right restriction in classical transition-based parsers, while maintaining linear parsing steps,

w.r.t the length of the sentences. Experimental results on 29 treebanks show the effectiveness of

our parser across 20 languages, by achieving state-of-the-art performance on 21 corpora.
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Part II

Interpretability of Neural Structured

Prediction Models
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Chapter 6

Interpretability of Deep Neural Networks

and the Probing Method

The end-to-end training paradigm significantly simplifies the hand-crafted feature engineering

process in traditional feature-based machine learning (ML) systems, while giving the neural

models flexibility to be optimized towards the ultimate tasks. This simplicity, however, comes

at the expense of model interpretability (Shi et al., 2016; Lipton, 2018; Belinkov et al., 2019).

Unlike traditional feature-engineered NLP systems whose features, e.g. morphological properties,

syntactic categories or semantic relations, are more easily understood by humans, it is more

difficult to understand what happens in the internal components of an end-to-end neural network.

It is not clear what the role of different components is, how they interact, and what kind of

information they learn during the training process. Consequently, such deep neural models

are sometimes perceived as “black-box”, hindering research efforts and limiting their utility to

society (Belinkov, 2018).

The lack of interpretability has major implications for the adoption and further development

of AI systems. Gaining a better understanding of these AI systems is necessary not only for

improving their design and performance, but also for guaranteeing fairness and accountability

them. Thus, the second part of this thesis focuses on model interpretability of deep neural

networks. In this chapter, I first review terminologial issues regarding analysis and interpretation

in machine learning (Section 6.1). Then I briefly describe the methodological approach of probing,
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which is used throughout the following chapters for analyzing deep learning models (Section 6.2),

and survey related work on applying probing method to analyze neural networks. Section 6.3

surveys related work on applying probing method to analyze neural networks, together with a brief

summary of other analysis methods that have been considered in this literature. In the last section

(Section 6.4), we revisit the probing accuracy on reflecting the quality of linguistic properties

given representations in a view of prediction. I apply probes to neural dependency paring models

to analyze the part-of-speech (POS) information encoded in their internal representations. We

argue that, without considering the expressiveness of probing classifiers, the accuracy of probes

does not consistently reflect the quality of the encoded information. Based on the experimental

results of a case study on probing neural dependency parsers, we propose to interpret performance

of probing tasks with two separate metrics, capacity and accessibility, which are associated with

probe expressiveness.

6.1 Terminological Issues on Interpretability

As discussed in Belinkov (2018), terms such as interpretability, explainability, transparency,

explainable AI (XAI) have been interchangeably used in the context of work on deep learning,

and more broadly machine learning and AI. At present there seems to be no consensus on their

precise definition and application to the study of AI systems. I think a short review of aspects

of terminology is helpful to clarify the questions this thesis considers in the broader work on

interpretability in AI. For detailed discussions, please see (Doshi-Velez and Kim, 2017; Lipton,

2018; Belinkov, 2018), as well as the online book by Christoph Molnar1, for more references.

Interpretability from explaining decisions.

Miller (2019) defined interpretability, from the perspective of explanation in social sciences,

as “the degree to which an observer can understand the cause of a decision”. In this definition,

interpretability is the same as explainability. While explaining specific model predictions is

obviously important in work on deep learning and is recognized as a desideratum for increasing

the accountability of machine learning systems (Doshi-Velez et al., 2017), it is different from

1https://christophm.github.io/interpretable-ml-book/
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interpretability on explicitly explaining decisions for given examples. Doshi-Velez and Kim

(2017) defined interpretability as “the ability to explain or to present in understandable terms to

human”, not referring to decisions. More relevant work along these lines is mentioned in Belinkov

(2018).

Interpretability from Transparency.

Lipton (2018) related interpretability transparency, which is concerned with how the model works.

One important criterion is the level of analysis. Transparency can operate at the level of the entire

model (simulatability), at the level of individual components (decomposability), and at the level

of the training algorithm (algorithmic transparency).

From a global level, simulatability considers the transparency of the entire model by asking if a

person can contemplate it at once. This definition is , however, too conservative and favors simple

models with limited expressiveness such as sparse linear models. Similar notion is adopted in

(Ribeiro et al., 2016), suggesting that an interpretable model is one that “can be readily presented

to the user with visual or textual artifacts”.

From a local level, decomposability requires that each part of the model — input, parameter,

and calculation – admits an intuitive explanation. This accords with the property of intelligibility

as presented in Lou et al. (2012).

From the level of learning algorithms, algorithmic transparency might provide us confidence

on what solution the model converge to and/or what the model will behave on unseen data. Most

modern deep learning methods lack this sort of algorithmic transparency.

Interpretability from post-hoc explanations.

Lipton (2018) also contrasts transparency with post-hoc explanation, which is what else can the

model tell us. Post hoc interpretability represents a distinct approach to extracting information

from learned models. While post hoc interpretations often do not elucidate precisely how a

model works, they may nonetheless confer useful information for practitioners and end users of

machine learning. Some common approaches to post-hoc explanations include natural language

explanations, visualizations of learned representations or models, and probing the internal layers

of deep neural networks.
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Figure 6.1: Framework of the methodology of probing method.

6.1.1 What This Dissertation Is About

From the perspective of methodology, this thesis provides post-hoc explanations for neural

linguistic structured prediction models, by adopting probing methods to analyze the internal

representations. From the perspective of motivation, this thesis aims to use probing methods

to investigate in what way these neural models memorize and process linguiscit information

across their hidden representations. It provides a better understanding of the learning properties of

different parts and modules in deep learning models (striving for decomposibility and algorithmic

transparency, in the sense of (Lipton, 2018)).

6.2 Methodology of Probing

The key idea of probing method is to utilize supervised learning algorithms to probe internal

representations in end-to-end neural models, to predict linguistic properties, such as part-of-speech

or morphology. Specifically, the method consists of three steps:

1. train an end-to-end model on a complex task, such as machine translation.

2. use the trained model to generate feature representations of different layers.

3. train a classifier using the generated features to make predictions for a relevant auxiliary

task, such as POS tagging.

This process is illustrated in Figure 6.1

Formally, let Mθ denote a deep neural network with L hidden layers, indexed by l ∈

{1, . . . , L}. Let h(l) denote the output vector from layer l. As usual, h(0) = x is the input,

and h(L) is the output of the neural network. Denote θ = {θl : l = 1, . . . , L} as the set of

parameters in the network Mθ, where θl assembles the parameters in layer l. Define a separate

classifier gφ(·) that takes a internal representation h(l) of Mθ as input and maps it to an output
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label z. After the first step that Mθ is trained on the complex task such as machine translation, the

parameters θ are fixed. At the second step, Mθ generates internal feature representations like h(l).

At the last step, gφ(·) is trained on examples {h(l), z} to optimize φ. Crucially, at this step θ is

fixed in order to maintain the original generated representation h(l). More detailed description of

probing method is in Belinkov (2018).

6.3 Related Work of Probing

Probing classifiers are the most common approach for associating neural network representations

with linguistic properties (see Belinkov et al. (2019) for a survey). In their pioneering work,

Ettinger et al. (2016) and Shi et al. (2016) investigated intermediate layers of deep neural models

in NLP and Alain and Bengio (2016) in computer vision. Both of them used linear classifiers as

their probes. Subsequently, extensive applications of probing method have been explored. For the

feature representations, probing analysis has been conducted on word embeddings (Köhn, 2015;

Qian et al., 2016b) sentence embeddings (Adi et al., 2017; Ganesh et al., 2017; Conneau et al.,

2018), and RNN hidden states (Qian et al., 2016a; Wu and King, 2016; Wang et al., 2017). Liu

et al. (2019a) and Tenney et al. (2019) focused on contextual word representations, evaluating

CoVe (McCann et al., 2017), ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019) on a

variety of linguistic tasks. Recently studies carried a more fine-grained neuron-level analysis for

neural machine translation and language modeling (Bau et al., 2018; Dalvi et al., 2019; Lakretz

et al., 2019). For the language properties, analysis is performed mainly on morphology (Qian

et al., 2016b; Vylomova et al., 2017; Belinkov et al., 2017a; Dalvi et al., 2017), syntax (Köhn,

2015; Tran et al., 2018; Conneau et al., 2018; Smith et al., 2018) and semantics (Qian et al.,

2016b; Belinkov et al., 2017b). These research attempted to answer the natural question: what

linguistic information is captured in the internal representations, with the basic assumption

that the performance of the commonly used probes such as linear classifiers and multiple layer

perceptron (MLP) reflects the quality of representations (Belinkov, 2018; Liu et al., 2019a).

Despite widespread adoption of probes, recent studies illustrated that differences in the

accuracy of these commonly used probes accurately fail to adequately reflect the differences in
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quantity of the information encoded in the representations. For example, they do not substantially

favor pretrained representations over randomly initialized ones (Zhang and Bowman, 2018).

Analogously, their accuracy can be similar when probing genuine linguistic labels and probing

for random synthetic control tasks (Hewitt and Manning, 2019). To see differences in the

accuracy with respect to these random baselines, previous work has examined how the choice

of probing tasks and models, and comparing baselines affect the probing conclusion. Some

studies (Belinkov et al., 2017a; Tenney et al., 2019; Hewitt and Manning, 2019) used non-

contextual word embeddings or models with random weights as baselines. Zhang and Bowman

(2018) presented experiments for understanding the roles probe training sample size have on

linguistic task accuracy. Hewitt and Liang (2019) designed control tasks to explore the relationship

between representations, probes and task accuracies. Saphra and Lopez (2019) showed that

diagnostic classifiers are not suitable for understanding learning dynamics.

In addition to task performance of linguistic properties, Yogatama et al. (2019) used learn-

ing curves to evaluate how quickly a model learns a new task. Talmor et al. (2019) explored

whether the performance of a language model on a task should be attributed to the pre-trained

representations or to the process of fine-tuning on the task data.

Information-theoretic view of measuring relations between representations and labels is

an alternative to the standard probing. Belinkov (2018) first presented the association of the

probabilistic probing classifiers with mutual information between internal representation h(l) and

label z. Voita et al. (2019) attempted to explain how representations in the Transformer (Vaswani

et al., 2017) evolve between layers under different training objectives. Voita and Titov (2020)

proposed information-theoretic probing with minimum description length to evaluate the amount

of effort needed to achieve the quality given representations.

6.4 Revisit Probing Performance in A View of Prediction

6.4.1 Capacity vs. Accessibility

In this section, we revisit this problem by taking a prediction view of the probing accuracy on

reflecting the quality of linguistic properties given representations. We argue that we cannot
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meaningfully compare the linguistic properties of internal representations of neural networks

using only linguistic task accuracy, since probing classifiers with different expressiveness may

obtain inconsistent observations. This leads us to re-think about how to interpret performance

of probing tasks. on one hand, as long as one representation is a lossless mapping of the other

one, a sufficiently expressive probe with sufficient amount of training data can obtain the same

accuracy on top of them. However, it fails to take into account differences in ease of memorization

between them. On the other hand, if the probe is too weak, then the representations may contain

information that cannot be extracted by the classifier, leading to negative results on the quality

of Mθ. Specifically, we propose to analyze representations with two separate metrics that are

associated with the expressiveness of the probe families:

Capacity: the best prediction performance of linguistic task with arbitrary probes.

Accessibility: the best prediction performance of linguistic task with linear probes.

Formally, let G denotes the set of all classifiers and Glinear is the classifiers of linear model family.

R(·, ·) is a metric to evaluate the prediction performance of the linguistic task. Then we define

Capacity = max
g∈G

EP (h,z) [R(g(h), z)]

Accessibility = max
g∈Glinear

EP (h,z) [R(g(h), z)]
(6.1)

As two separate metrics, capacity intuitively measures how much knowledge associated with

the linguistic property has been encoded in the representation, while accessibility measures how

easily the encoded knowledge can be detected by a linear probe.

Previous studies (Zhang and Bowman, 2018; Hewitt and Manning, 2019; Voita and Titov,

2020) have discussed the problem on the association between probing performance and linguistic

property given representations in different aspects and explored the solutions (see Section 6.3). For

example, Belinkov (2018) discussed the potential limitations of the standard probing methodology.

The standard probing approach relies on the assumption that the performance of the probing

classifier g reflects the quality of the end-to-end neural model Mθ. One potential concern is that

the classifier is either too weak or too strong. If it is too weak, then the representations may

contain information that cannot be extracted by the classifier, leading to negative results on the

quality of Mθ. If the classifier is too strong, it may be able to discover patterns that Mθ cannot
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utilize. Different from it, capacity measures how much knowledge has been encoded, not caring

whether this knowledge is utilizable by the neural networks. The probe selectivity associated with

control tasks (Hewitt and Liang, 2019), which is a metric of the probe, gives us indirect intuition

for the ease of information memorization across different representations. Different from it, our

proposed two metrics provide direct insight into how much information has been encoded and

how easily the information can be accessed by ML models. Voita and Titov (2020) proposed to

use minimum description length to evaluate the “amount of effort” needed to achieve the quality

given representations.

6.4.2 Probing POS Information in Neural Dependency Parsers

To verify the importance of associating probing accuracy with classifier expressiveness and

the necessity of the introduced two metrics, we use probing methods to analyze the part-of-

speech (POS) information encoded in the internal representation of three state-of-the-art neural

dependency parsing models — Deep Biaffine Parser, NeuroMST parser and Stack-Pointer Parser,

. In all experiments, we use SVM-RBF as the probe to approximate capacity and linear logistic

regression for accessibility.

We first explore the consistency of using probes with different expressiveness: Do probing

classifiers with different expressiveness lead to consistent observations? Then we conduct a battery

of experiments to investigate the POS information in neural dependency parsers by answering the

following questions:

• What is the division of labor between word and character embeddings?

• Which parts of the neural architecture capture POS information?

• Does the addition of accurate POS information impact the learned representations in terms

of POS information?

• What impact does the choice of parsing algorithms (graph-based vs. transition-based) have

on the learned representations?

All experiments are performed on PTB with the same settings in Ma et al. (2018).

We select dependency parsing as the test bed primarily because of the accessibility to annotated
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Figure 6.2: Architecture of the BLSTM-CNN encoder in the three neural parsers. The “char”

embedding is the output representation from the CNN layer.

data across a broad spectrum of languages (Nivre et al., 2018) and the sufficiently sophisticated

performance of state-of-the-art dependency parsers (Dozat and Manning, 2017; Ma and Hovy,

2017; Ma et al., 2018). we conduct probing experiments on three neural dependency parsing

models — Deep Biaffine Parser (Dozat and Manning, 2017), NeuroMST parser (Ma and Hovy,

2017) (in Chapter 4 and Stack-Pointer Parser (Ma et al., 2018) (in Chapter 5). All the three parsing

models are implemented with the bi-directional LSTM-CNN architecture (BLSTM-CNN) (Chiu

and Nichols, 2016; Ma and Hovy, 2016) as encoder to incorporate both word-level and character-

level information. For Deep Biaffine parser we use the re-implemented version in Ma et al. (2018).

The BLSTM-CNN encoder consists of three bi-directional LSTM layers (see the architecture

depicted in Figure 6.2).

Motivation: a case study on the effect of POS embedding From the results in Section 5.3.4

we observed that end-to-end neural parsers without POS information can obtain even better

performance than parsers using imperfect predicted POS tags. To verify this, we performed

similar experiments on English Penn Treebank (PTB) (Marcus et al., 1993) using the three parsing

models. For each parsing model, we evaluate the parser with gold-standard and predicted POS
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Figure 6.3: UAS on the test data of PTB with different versions of POS tags.

tags, and without POS tags, respectively. For predicted POS tags, we used a pretrained POS tagger

with 97.3% accuracy.

Figure 6.3 lists the unlabeled attachment score (UAS) of the three parsers with different

versions of POS tags on PTB. Consistent with the observation in Ma et al. (2018), the parsers

with gold-standard POS tags achieve the best UAS, while the parsers with predicted (imperfect)

POS tags perform slightly worse than the parsers that do not use explicit POS tags at all. This

observation raises a question: how much POS information is captured implicitly (if anything) by

neural parsing models and where this information is stored, which motivates us to investigate the

information encoded in the internal representations of these parsers.

6.4.3 Word and Character Embeddings

We evaluate the POS tagging performance with three probing classifiers — linear logistic regres-

sion (Linear), multiple layer perceptron with one hidden layer (MLP) and Support Vector Machine

with RBF kernel (SVM-RBF) — on the word and character embeddings. For comprehensive

analysis, we also evaluate the concatenations word and character embeddings (W⊕C).

Table 6.1 shows the probing results with three classifiers, together with MFT, which is the

most frequent tag baseline on word types. For out-of-vocabulary (OOV) words, we assign them

the most common POS tags. For each classifier, we present the accuracy of both the POS tagging

and its control task (Hewitt and Liang, 2019), which associates word types with random outputs to

complement linguistic tasks, together with the corresponding selectivity which is the gap between
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Linear MLP SVM-RBF MFT
Layers POS Ctl. Sel. POS Ctl. Sel. POS Ctl. Sel. POS Ctl Sel.
Word 91.9 58.0 33.9 92.0 65.1 26.9 92.8 94.0 -1.2 92.6 96.0 -3.4
Char 90.3 58.3 32.0 90.5 70.6 19.9 93.5 96.1 -2.6 – – –
W⊕C 93.4 65.9 27.5 93.5 74.8 18.7 93.7 96.2 -2.5 – – –

Table 6.1: Performance of three probing classifiers on word and character embeddings, and their

concatenation of a DeepBiaf parser trained on PTB without POS tags as input. MFT is the most

frequent tag baseline. Clt. is the perfomance of the POS tagging control task and Sel. is the

corresponding selectivity.

the accuracies of the linguistic task and its control task. Note that MFT can be regarded as an

upper bound for non-contextual representations, such as word and character embeddings, for both

POS tagging and its control task. The observations of Linear and MLP classifiers on the three

representations are similar, with the difference on the selectivity of the two probes. According

to the performance of Linear and MLP classifiers, the word representation encodes more POS

information than the character one, while the concatenated representation obtains much better

accuracy, even better than the MFT upper bound. It demonstrates that character embedding

encodes more POS information than the word embedding. But the POS information in the word

embedding is easier to be detected by probes — a simple linear probing classifier obtains higher

accuracy on top of the word embedding. If we only consider those results from Linear and MLP

classifiers, we may conclude that the POS information encoded in word and character embeddings

are complementary to each other. However, the performance of SVM-RBF classifier provides

significantly different observations: (i) the character embedding achieves better accuracy than

the word embedding (93.5% vs. 92.8%); (ii) the concatenated representation achieves similar

accuracy with the character embedding (93.7% vs. 93.5%), leading to the conclusion that POS

information in the word embedding is mostly covered by the character embedding.

6.4.4 Effects of POS Embedding as Input

Table 6.2 illustrates the accessibility and capacity on representations from different layers of

DeepBiaf parsers trained w./wo. POS tags as input. We observe that POS embedding has
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Word Char W⊕C LSTM 1 LSTM 2 LSTM 3

POS Acces. Cap. Acces. Cap. Acces. Cap. Acces. Cap. Acces. Cap. Acces. Cap.

WO. 91.9 92.8 90.3 93.5 93.4 93.7 97.5 97.7 97.4 97.8 95.7 96.8

W. 91.8 92.8 89.5 93.5 93.5 93.7 100.0 100.0 99.7 99.7 97.3 98.4

Table 6.2: Accessibility (Acces.) and Capacity (Cap.) on representations from different layers of

DeepBiaf parsers trained on PTB w./wo. POS tags as input. Qualities on character embeddings

are highlighted because of the significant difference.

Word Char W⊕C LSTM 1 LSTM 2 LSTM 3

Parsers Acces. Cap. Acces. Cap. Acces. Cap. Acces. Cap. Acces. Cap. Acces. Cap.

DeepBiaf 91.9 92.8 90.3 93.5 93.4 93.7 97.5 97.7 97.4 97.8 95.7 96.8

NeuroMST 91.9 92.8 90.1 93.5 93.4 93.7 97.5 97.6 97.4 97.8 96.0 96.9

StackPtr 91.8 92.9 90.1 93.5 93.4 93.7 97.5 97.7 97.1 97.7 94.0 96.1

Table 6.3: Accessibility (Acces.) and Capacity (Cap.) on representations from the layers of three

parsers. Results that are significantly different from that of the same layers of other parsers are

highlighted.

no significant impact on word or character embeddings, except the accessibility of character

embedding — without using POS embedding the accessibility of character embedding on POS

information improves.

We also observe that even without using POS embedding, the LSTM layers of the encoder

capture a large amount of POS information. Both the accessibility and capacity of the first and

second LSTM layers are better than the accuracy (97.3%) of the predicted POS tags, explaining

why the parsers without using POS tags achieved better performance than those using predicted

POS tags. In fact, the POS tagging accuracy of 97.8% (the capacity of the second LSTM layer) is

competitive or even better than the state-of-the-art neural POS tagging systems (Ma and Hovy,

2016; Cui and Zhang, 2019). It verifies that learning a more complex task (dependency parsing)

benefits the simpler upstream tasks (POS tagging).

Another interesting observation is that, for both parsers trained w./wo. POS embedding, the

POS information captured in the top LSTM layer (LSTM 3) declines in both accessibility and
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capacity comparing with the first two layers. One possible explanation for the discrepancy is that

the top LSTM layer, which is directly used for the parsing, pays more attention to parsing task.

6.4.5 Effects of Parsing Algorithms

Table 6.3 presents the results on representations from layers of three dependency parsers. For

the two graph-based parsers with different training objectives (edge-factored loss of DeepBiaf vs.

global structured loss of NeuroMST), there is no significant difference on either the accessibility or

the capacity of the representations.

When comparing the transition-based StackPtr with the two graph-based parsers (DeepBiaf and

NeuroMST), we observe that for non-contextual representations (word and character embeddings)

and the first two LSTM layers, the capacity and accessibility are similar. But when the depth

increases, both the capacity and accessibility of the POS information in the transition-based

StackPtr parser declines more rapidly than the two graph-based parsers, demonstrating that

different decoding algorithms indeed impact the output representations of the encoder.

6.5 Discussions

In this chapter, we probed the internal representations of three neural dependency parsers. Through

analyzing the results of probes in different expressive families, we found that these probes

obtained significant different accuracies. Based on this, we proposed two complementary metrics:

Capacity and Accessibility, to enhance the interpretation of results from probing methods.

In the next chapter, we will introduce how to use probes to investigate learning properties

of deep neural networks, rather than analyzing what linguistic information is captured in their

internal layers.
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Chapter 7

Probing Learning Properties of Neural

Networks

As discussed in the previous chapter, the research of probing methods attempts to answer the

natural question: what linguistic information is captured in the internal representations of neural

networks. Moreover, besides using probes to analyze what linguistic information is captured

in neural networks, can we use probes to understand the way deep neural networks memorize

and process linguistic information? To answer this question, Shi et al. (2016) conducted probing

experiments to explore what types of information are learned with different training objectives.

Saphra and Lopez (2019) presented the analysis on learning dynamics of neural language models

to compare learned representations across time and models, without the evaluation directly on

annotated data. Learning curves have also been used by Yogatama et al. (2019) to evaluate

how quickly a model learns a new task, and by Talmor et al. (2019) to understand whether the

performance of a language model on a task should be attributed to the pre-trained representations

or to the process of fine-tuning on the task data. Despite these previous attempts, this question

still remains unclear.

In this chapter, we use probing methods to investigate the learning properties of deep neural

networks with dependency parsing as a test bed. By conducting systematic experiments, we

illustrate two learning properties of deep neural networks: (i) laziness — modules of a neural

network will not actively learn information that is already learned by other modules (Section 7.1);
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Figure 7.1: An example for the illustration of our designed experiments to examine the laziness of

deep neural networks.

(ii) targetedness — information, if unnecessary for the target task, will be filtered out from the

internal representations (Section 7.2).

7.1 Laziness: Information Propagation through Deep Neural

Networks

In this section, we investigate one learning property of neural networks by analyzing the infor-

mation propagation during neural network training. Results from carefully designed probing

experiments illustrate that deep neural networks exhibit the learning property of laziness — infor-

mation, if already encoded in some components of a neural network, will not be propagated to the

network’s other components.

7.1.1 Laziness vs. Redundancy

In this work, laziness, or the opposite redundancy, is defined on the pattern of how neural networks

distribute information across their components — do they store one kind of information/knowledge

in a single module or multiple ones?

86



Figure 7.2: The heatmap of capacity and accessibility of DeepBiaf parsers with POS tags as input

to different layers. pos1, pos2 and pos3 refer to the parser with gold-standard POS tags as input

to the 1st, 2nd and 3rd LSTM layers. none indicates the parser without POS tags as input.

As discussed in the pioneering of Dropout (Srivastava et al., 2014a), redundancy is commonly

a desired property and one of the primary motivations of the dropout approach. Redundancy is

closely related to robustness, because a system that stores redundant information has better chance

to work robustly under non-stationary conditions. Laziness, on the other hand, is probably the

way that requires minimal amount of efforts to learn knowledge or to fullfil target tasks. Dividing

the target task into smaller individual sub-tasks, though might not be robust, may be the most

efficient way to complete the ultimate goal.

7.1.2 Experiment Design

The key idea of the experiments is to examine the learning behaviors of neural parsers by placing

the gold-standard POS tags as input to different encoder layers. Suppose that the gold-standard

POS tags are fed as the input of the third LSTM layer (see Figure 7.1 for illustration). Then, during

the forward pass to compute the parsing objective, the gold-standard POS information will be

passed to the third LSTM layer and the layers on top of it, but not the layers below it. During the

backward pass in training, however, the gradients that might carry gold-standard POS information

will be back-propagated to the entire neural network. By probing the layers of this neural parser,
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we can examine if the gold-standard POS information has been stored in the layers below the one

that gold-standard POS tags are fed into or not. If the gold-standard POS information has been

propagated to the lower layers, as illustrated in the second case in the right side of Figure 7.1,

the POS accuracy of probes should be significantly better than the one without using POS tags,

showing the redundancy. Otherwise, it demonstrates the laziness.

In this experiment, we train DeepBiaf parsers on PTB with gold-standard POS tags as input

to different LSTM layers. Dropout (Srivastava et al., 2014a) is applied everywhere (see Ma

et al. (2018) for details). Figure 7.2 shows the heatmap of the capacity and accessibility. From

the heatmap, we can see clearly that the probing accuracies in the layers below the one that

POS tags are fed into are significantly worse than that of the above layers. It implies that the

POS information has not been propagated into those lower layers through back propagation,

verifying the laziness of neural networks. Importantly, dropout, which is introduced to enhance

the redundancy of neural networks, does not as expected prevent the laziness learning of the

neural parsers in our experiments. What the real impact dropout has on neural network training

remains an open problem and might be an interesting direction for future work (Ma et al., 2017).

7.2 Targetedness: Semantic Information in Syntactic Parsers

In this section, we explore another learning property of neural networks, targetedness, by asking

the question how deep neural networks process information that is unnecessary for their ultimate

tasks — will this information be retained in their internal layers or filtered out?

7.2.1 Lexical Semantic Tagging

To answer the above question, we conduct experiments to probe neural dependency parsers with

lexical semantic tagging (SEM) (Bjerva et al., 2016) as the linguistic probing task. SEM is a

sequence labeling task: given a sentence, the goal is to assign to each word a tag representing

a semantic class. Figure 7.3 gives an example of SEM. Linguistically, some lexical semantic

information is unnecessary for syntactic parsing. For instance, w.r.t dependency parsing, the

semantic tag PER (for person) of the token “Tom” provides no more useful information than its
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Tom does not drink much beer .
NNP VBZ RB VB JJ NN .

PER NOW NOT EXS QUV CON .
POS
SEM

Figure 7.3: An example of lexical semantic tagging.

POS tag NNP (for proper noun). With SEM as the probing task, we want to examine if these

unnecessary lexical semantic information will be filtered out from dependency parsing models

trained with only syntactic supervision.

For the annotated data of lexical semantic tagging, we use the Groningen Parallel Meaning

Bank (PMB) (Abzianidze et al., 2017) which includes 66 fine-grained semantic tags grouped in 13

coarse categories. The experiments are conducted on the silver part of the dataset — we randomly

split the data into training, validation and test sets with the proportion of [8, 1, 1].

7.2.2 Baselines

In order to analyze the lexical semantic information memorized in the neural networks, we need

reasonable baselines for comparison. In Belinkov (2018), the authors proposed two baselines: (i)

assigning to each word the most frequent tag (MFT) according to the training data, with the global

majority tag for unseen words; (ii) training with unsupervised word embeddings as features for the

classifier. However, these two baselines are arguably unsuitable for our experiments, since they

are based on non-contextual features. Comparing these two baselines with the internal contextual

representations in neural dependency parsers is unfair and cannot lead to reliable conclusions. In

other words, even if the probes on the internal representations achieve significant better accuracy

than the two baselines, we cannot conclude that the neural dependency parser has learned lexical

semantics. The reason is that neural parsers are able to learn POS information (as shown in

Section 6.4.2), which is highly correlated with lexical semantic information (assigning to each

word the most frequent tag based on its POS tag obtains 75.2% accuracy). Thus, to claim that the

neural parsers cant capture lexical semantic information, we need to proof that the representations

capture more information than that provided by POS tags.

In this paper, we propose two new baselines: (i) assigning to each word the most frequent
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SEM Accuracy

MFT (word) 85.0

MFT (word + POS) 89.9

BF-Linear 93.4

BLSTM-CNN-CRF 94.9

Acces. Cap.

Layers

Word 82.3 83.8

Char 80.3 85.2

W⊕C 85.4 85.3

LSTM 1 91.5 91.7

LSTM 2 90.1 91.6

LSTM 3 86.8 89.5

Table 7.1: Accessibility and Capacity of lexical semantic tagging on representations from layers

of DeepBiaf dependency parsers, together with MFT baselines, the linear classifier on binary

features (BF-Linear) and the upper bound accuracy of the sequence labeling model.

SEM tag based on the combination of its word type and POS tag; (ii) a linear classifiers trained

on binary features of word type of each token and context of POS tags in a small neighborhood

(window of 3). The POS tags are automatically labeled with Standford POS Tagger1. Note that

neither of these two baselines utilize contextual information beyond POS tags. We also include an

upper bound of training a BLSTM-CNN-CRF sequence labeling model (Ma and Hovy, 2016) for

SEM tagging.

7.2.3 Experimental Results

The experiments are conducted on DeepBiaf parsers trained on PTB without using POS tags as in-

put. Table 7.1 summarizes the results of training probes to predict SEM tags using representations

generated by different encoding layers of the DeepBiaf parser. Comparing representations from

1https://nlp.stanford.edu/software/tagger.shtml
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LSTM layers 1 through 3, SEM tagging accuracy peaks at layer 1 and does not improve at higher

layers. The best capacity score from LSTM layer 1 is 91.7%, slightly worse than the baseline of

linear classifier with binary features, far below the upper bound from the sequence labeling model.

It indicates that the internal representations do not learn more contextual information that benefits

SEM prediction than POS tags.

7.2.4 Discussion

Extensive studies investigated the requested semantic information in syntactic parsing, such as

selectional restrictions (Katz and Fodor, 1963; Wilks, 1975; Jurafsky and Martin, 2000; Asher,

2014). Lexical semantic categories, in some cases, are indeed relevant for selectional restrictions

and in turn can be used for disambiguation in syntactic parsing. One possible reason that neural

dependency parsers are not able to learn relevant semantic information is that there are few such

cases in the training data. Another possible reason might be due to the SEM data. The PMB

data used in our experiments do not support analysis on specific case studies, but only an average

accuracy on all the semantic categories. Fine-grained investigation on specific categories of

semantic information learned by neural parsers is an interesting direction for future work.

One previous work that is closely related to the property of targetedness is Shi et al. (2016),

which demonstrated that when training with different objectives, neural networks capture different

types of information. This observation is relevant to targetedness, but not exactly the same. This

dissertation first (to our best knowledge) explicitly demonstrates that neural networkss filter out

unnecessary information, by specifically control the modifications to neural architectures.

7.3 Conclusion

In this chapter, using the the two metrics proposed in Section 6.4.1, we have conducted experiments

to investigate the learning properties of neural networks. Experimental results illustrate two

learning behaviors of neural networks: (i) laziness — modules of a neural network will not actively

learn information that is already learned by other modules; (ii) targetedness — information that is

unnecessary for the ultimate objective will be filtered out.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

The work presented in the first part of this dissertation explores how the deep representation

learning approach, particularly the end-to-end learning paradigm, can be applied to linguistic

structured predictions to effectively improve model performance and entirely get rid of feature

engineering in traditional feature-based models. In PART I of this dissertation, we gave readers a

thorough overview of neural networks for linguistic structured prediction: three neural models

for sequence and tree structured prediction tasks. These neural models are all base on the

proposed BLSTM-CNN architecture for sentence encoding. BLSTM-CNNs provide sentence

representations that are applicable across different structured prediction tasks, while supporting

the kind of end-to-end learning, saving us from hand-crafted feature engineering (Chapter 2).

By stacking different structured decoding layers on top of BLSTM-CNNs, we proposed deep

neural models for linguistic structured prediction tasks including sequence labeling (BLSTM-

CNNs-CRF in Chapter 3), graph-based dependency parsing (NeuraoMST Parser in Chapter 4) and

transition-based dependency parsing (Stack-Pointer Parser in Chapter 5). Experimental results

demonstrate that these BLSTM-CNNs based models have achieved significant improvements over

traditional feature-based models, and state-of-the-art or comparable performance across different

languages and corpus.

In PART II of this dissertation, we focused the interpretability of neural dependency parsing
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models . We first revisit the problem of standard probing method on the reflection of probing

performance on linguistic properties. Then, we explicitly proposed two separate metrics, capac-

ity and accessibility, by taking a prediction view of probing accuracy. Experimental results on

probing how part-of-speech information in neural dependency parsers illustrate the necessity of

the two metrics (Chapter 6). We further we conducted systematic experiments to illustrate two

learning properties of deep neural networks: (i) laziness – modules of a neural network will not

actively learn information that is already learned by other modules; (ii) targetedness – information,

if unnecessary for the end task, will be filtered out from the internal representations. These two

properties help us better understand how deep neural structured prediction models memorize and

process linguistic information (Chapter 7).

8.2 Future Work

This thesis opens up several questions for future research.

Encoding Structured Dependencies in Representations: No Structured Algorithms in Struc-

tured Predictions

Although the neural networks proposed in this thesis obtained outstanding performance for a wide

range of tasks and languages, they still suffer some problems: (i) the design and combination

of the structured output layers with the end-to-end neural representation encoders is not easy.

Every step of the structured algorithms must be ensured differentiable so that the gradients can be

back-propagated to the entire network to achieve end-to-end learning; (ii) most of the decoding

algorithms are inefficient in practice because they are not parallelizable.

To fundamentally solve these problems, one potential direction is to encode the underlying

dependencies of the structured outputs into intermediate representations to get rid of structured

training and decoding algorithms. Ma et al. (2019) proposed to a non-autoregressive sequence

generation model to avoid sequential decoding algorithm. On direction of future research is to

extend this framework to general structured prediction tasks.

Investigating Information Encoding Schema in Representations

Another interesting direction of future research is to investigate the information encoding schema
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of different neural architectures. From the observations in our probing experiments, different

representations, even encoding the same knowledge, may encode them in different format. The

different information encoding schema is highly correlated with the learning properties of the

neural architecture. Therefore, figuring out the relation between encoding schema and the neural

architectures is useful for us to better understand different neural architectures.

Inductive Bias from Learning Properties of Different Neural Architectures

Finally, on promising direction of future research is to explore useful inductive bias from inves-

tigating the learning properties of different neural architectures. By investigating the learning

properties, such as the two learning properties of we investigated in Chapter 7, we can conclude

architectural inductive biases and attempt to apply them to advanced representation learning, such

as disentanglement, to get rid of explicit supervision.
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Appendix A

Dependency Parsing Experiments

A.1 Hyper-parameters

A.1.1 NeuroMST Parser

Table A.1 summarizes the chosen hyper-parameters for NeuroMST parser. We tune the hyper-

parameters on the development sets by random search. Due to time constrains it is infeasible to do

a random search across the full hyper-parameter space. Thus, we use the same hyper-parameters

across the models on different treebanks and languages. It also demonstrates the robustness of our

parsing model. Note that we use 2-layer BLSTM followed with 1-layer MLP. We set the state

size of LSTM to 256 and the dimension of MLP to 100. Tuning these two parameters did not

significantly impact the performance of our model.
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Layer Hyper-parameter Value

CNN
window size 3

number of filters 50

LSTM

number of layers 2

state size 256

initial state 0.0

peepholes Hadamard

MLP
number of layers 1

dimension 100

Dropout

embeddings 0.15

LSTM hidden states 0.25

LSTM layers 0.33

Learning

optimizer Adam

initial learning rate 0.002

decay rate 0.5

gradient clipping 5.0

Table A.1: Hyper-parameters for NeuroMST parser.
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Layer Hyper-parameter Value

CNN
window size 3

number of filters 50

LSTM

encoder layers 3

encoder size 512

decoder layers 1

decoder size 512

MLP
arc MLP size 512

label MLP size 128

Dropout

embeddings 0.33

LSTM hidden states 0.33

LSTM layers 0.33

Learning

optimizer Adam

initial learning rate 0.001

(β1, β2) (0.9, 0.9)

decay rate 0.75

gradient clipping 5.0

Table A.2: Hyper-parameters for StackPtr parser.

A.1.2 StackPtr Parser

Table A.2 summarizes the chosen hyper-parameters used for all the experiments in this paper.

Some parameters are chosen directly or similarly from those reported in Dozat and Manning

(2017). We use the same hyper-parameters across the models on different treebanks and languages,

due to time constraints.
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A.2 UD Treebanks

The statistics of these corpora are provided in Table A.3.

Corpora #Sent #Token (w.o punct)

Bulgarian

Training 8,907 124,336 (106,813)

BTB Dev 1,115 16,089 (13,822)

Test 1,116 15,724 (13,456)

Catalan

Training 13,123 417,587 (371,981)

AnCora Dev 1,709 56,482 (50,452)

Test 1,846 57,738 (51,324)

Czech

PDT, CAC Training 102,993 1,806,230 (1,542,805)

CLTT Dev 11,311 191,679 (163,387)

FicTree Test 12,203 205,597 (174,771)

Dutch

Alpino Training 18,310 267,289 (234,104)

LassySmall Dev 1,518 22,091 (19,042)

Test 1,396 21,126 (18,310)

English

Training 12,543 204,585 (180,308)

EWT Dev 2,002 25,148 (21,998)

Test 2,077 25,096 (21,898)

French

Training 14,554 356,638 (316,780)

GSD Dev 1,478 35,768 (31,896)

Test 416 10,020 (8,795)

German

Training 13,841 263,536 (229,204)

GSD Dev 799 12,348 (10,727)

Test 977 16,268 (13,929)

Italian

Training 12,838 270,703 (239,836)

ISDT Dev 564 11,908 (10,490)

Test 482 10,417 (9,237)

Norwegian

Bokmaal Training 29,870 48,9217 (43,2597)

Nynorsk Dev 4,300 67,619 (59,784)

Test 3,450 54,739 (48,588)

Romanian

Training 8,043 185,113 (161,429)

RRT Dev 752 17,074 (14,851)

Test 729 16,324 (14,241)

Russian

Training 48,814 870,034 (711,184)

SynTagRus Dev 6,584 118,426 (95,676)

Test 6,491 117,276 (95,745)

Spanish

GSD Training 28,492 827,053 (730,062)

AnCora Dev 4,300 89,487 (78,951)

Test 2,174 64,617 (56,973)

Table A.3: Corpora statistics of UD Treebanks for 12 languages. #Sent and #Token refer to the

number of sentences and the number of words (w./w.o punctuations) in each data set, respectively.

A.3 Detailed Results of Stack-Pointer Parser

Table A.4 illustrates the details of the experimental results. For each STACKPRT parsing model,

we ran experiments with decoding beam size equals to 1, 5, and 10. For each experiment, we

report the mean values with corresponding standard deviations over 5 runs.
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English

Dev Test

Model beam UAS LAS UCM LCM UAS LAS UCM LCM

BiAF – 95.73±0.04 93.97±0.06 60.58±0.77 47.47±0.63 95.84±0.06 94.21±0.04 59.49±0.23 49.07±0.34

Basic

1 95.71±0.02 93.88±0.03 62.33±0.33 47.75±0.32 95.71±0.06 94.07±0.06 60.91±0.35 49.54±0.48

5 95.71±0.04 93.88±0.05 62.40±0.45 47.80±0.44 95.76±0.11 94.12±0.11 61.09±0.43 49.67±0.41

10 95.72±0.03 93.89±0.04 62.40±0.45 47.80±0.44 95.77±0.11 94.12±0.11 61.09±0.43 49.67±0.41

+gpar

1 95.68±0.04 93.82±0.02 61.82±0.36 47.32±0.14 95.73±0.04 94.07±0.05 60.99±0.46 49.83±0.59

5 95.67±0.01 93.83±0.02 61.93±0.32 47.44±0.20 95.76±0.06 94.11±0.06 61.23±0.47 50.07±0.59

10 95.69±0.02 93.83±0.02 61.95±0.32 47.44±0.20 95.78±0.05 94.12±0.06 61.24±0.46 50.07±0.59

+sib

1 95.75±0.03 93.93±0.04 61.93±0.49 47.66±0.48 95.77±0.15 94.11±0.06 61.32±0.37 49.75±0.29

5 95.74±0.02 93.93±0.05 62.16±0.22 47.68±0.54 95.84±0.09 94.17±0.09 61.52±0.57 49.91±0.76

10 95.75±0.02 93.94±0.06 62.17±0.20 47.68±0.54 95.85±0.10 94.18±0.09 61.52±0.57 49.91±0.76

Full

1 95.63±0.08 93.78±0.08 61.56±0.63 47.12±0.36 95.79±0.06 94.11±0.06 61.02±0.31 49.45±0.23

5 95.75±0.06 93.90±0.08 62.06±0.42 47.43±0.36 95.87±0.04 94.20±0.03 61.43±0.49 49.68±0.47

10 95.75±0.06 93.90±0.08 62.08±0.39 47.43±0.36 95.87±0.04 94.19±0.04 61.43±0.49 49.68±0.47

Chinese

Dev Test

Model beam UAS LAS UCM LCM UAS LAS UCM LCM

BiAF – 90.20±0.17 88.94±0.13 43.41±0.83 38.42±0.79 90.43±0.08 89.14±0.09 42.92±0.29 38.68±0.25

Basic

1 89.76±0.32 88.44±0.28 45.18±0.80 40.13±0.63 90.04±0.32 88.74±0.40 45.00±0.47 40.12±0.42

5 89.97±0.13 88.67±0.14 45.33±0.58 40.25±0.65 90.46±0.15 89.17±0.18 45.41±0.48 40.53±0.48

10 89.97±0.14 88.68±0.14 45.33±0.58 40.25±0.65 90.48±0.11 89.19±0.15 45.44±0.44 40.56±0.43

+gpar

1 90.05±0.14 88.71±0.16 45.63±0.52 40.45±0.61 90.28±0.10 88.96±0.10 45.26±0.59 40.38±0.43

5 90.17±0.14 88.85±0.13 46.03±0.53 40.69±0.55 90.45±0.15 89.14±0.14 45.71±0.46 40.80±0.26

10 90.18±0.16 88.87±0.14 46.05±0.58 40.69±0.55 90.46±0.16 89.16±0.15 45.71±0.46 40.80±0.26

+sib

1 89.91±0.07 88.59±0.10 45.50±0.50 40.40±0.48 90.25±0.10 88.94±0.12 45.42±0.52 40.54±0.69

5 89.99±0.05 88.70±0.09 45.55±0.36 40.37±0.14 90.41±0.07 89.12±0.07 45.76±0.46 40.69±0.52

10 90.00±0.04 88.72±0.09 45.58±0.32 40.37±0.14 90.43±0.09 89.15±0.10 45.75±0.44 40.68±0.50

Full

1 90.21±0.15 88.85±0.15 45.83±0.52 40.54±0.60 90.36±0.16 89.05±0.15 45.60±0.33 40.73±0.23

5 90.23±0.13 88.89±0.14 46.00±0.54 40.75±0.64 90.58±0.12 89.27±0.11 46.20±0.26 41.25±0.22

10 90.29±0.13 88.95±0.13 46.03±0.54 40.75±0.64 90.59±0.12 89.29±0.11 46.20±0.26 41.25±0.22

German

Dev Test

Model beam UAS LAS UCM LCM UAS LAS UCM LCM

BiAF – 93.60±0.13 91.96±0.13 58.79±0.25 49.59±0.19 93.85±0.07 92.32±0.06 60.60±0.38 52.46±0.24

Basic

1 93.35±0.14 91.58±0.17 59.64±0.78 49.75±0.64 93.39±0.09 91.85±0.09 61.08±0.31 52.21±0.53

5 93.49±0.14 91.72±0.16 59.99±0.69 49.82±0.54 93.61±0.09 92.07±0.08 61.38±0.30 52.51±0.43

10 93.48±0.14 91.71±0.17 60.02±0.69 49.84±0.54 93.59±0.09 92.06±0.08 61.38±0.30 52.51±0.43

+gpar

1 93.39±0.07 91.66±0.13 59.59±0.54 49.81±0.42 93.44±0.07 91.91±0.11 61.73±0.47 52.84±0.48

5 93.47±0.09 91.75±0.10 59.81±0.55 50.05±0.39 93.68±0.04 92.16±0.04 62.09±0.44 53.13±0.42

10 93.48±0.08 91.76±0.09 59.89±0.59 50.09±0.40 93.68±0.05 92.16±0.03 62.10±0.42 53.14±0.4

+sib

1 93.43±0.07 91.73±0.08 59.68±0.25 49.93±0.30 93.55±0.07 92.00±0.08 61.90±0.50 52.79±0.22

5 93.53±0.05 91.83±0.07 59.95±0.23 50.14±0.39 93.75±0.09 92.20±0.08 62.21±0.38 53.03±0.18

10 93.55±0.06 91.84±0.07 59.96±0.24 50.15±0.40 93.76±0.09 92.21±0.08 62.21±0.38 53.03±0.18

Full

1 93.33±0.13 91.60±0.16 59.78±0.32 49.78±0.29 93.50±0.04 91.91±0.11 61.80±0.28 52.95±0.37

5 93.42±0.11 91.69±0.12 59.90±0.27 49.94±0.35 93.64±0.03 92.10±0.06 61.89±0.21 53.06±0.36

10 93.40±0.11 91.67±0.12 59.90±0.27 49.94±0.35 93.64±0.03 92.11±0.05 61.89±0.21 53.06±0.36

Table A.4: Parsing performance of different variations of our model on both the development and

test sets for three languages, together with the BIAF parser as the baseline.
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