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A B S T R A C T

Recurrent neural networks (RNNs) are exceptionally good models of distributions over

natural language sentences, and they are deployed in a wide range of applications that

require the generation of natural language outputs. However, RNNs are general-purpose

function learners that, given sufficient capacity, are capable of representing any distribu-

tion, whereas the space of possible natural languages is narrowly constrained. Linguistic

theory has been concerned with characterizing these constraints, with a particular eye to-

ward explaining the uniformity with which children acquire their first languages, despite

receiving relatively little linguistic input. This thesis uses insights from linguistic theory to

inform the neural architectures and generation processes used to model natural language,

seeking models that make more effective use of limited amounts of training data. Since lin-

guistic theories are incomplete, a central goal is developing models that are able to exploit

explicit linguistic knowledge while still retaining the generality and flexibility of the neural

network models they augment.

This thesis examines two linguistic domains: word formation and sentence structure.

First, in the word formation domain, we introduce a language model that captures sub-

word word formation using linguistic knowledge about morphological processes via finite

state analyzers hand-crafted by linguistic experts. Our model is capable of using several

levels of granularity, including the raw word-, character- and morpheme-levels to encode

and condition on previous words as well as to construct its predicted next word. As a result,

it is fully open vocabulary, capable of producing any token admitted by a language’s alpha-

bet. These properties make it ideal for modelling languages with potentially unbounded

vocabulary size, such as Turkish and Finnish.

Second, in the sentence structure domain, we present a pair of dependency-based

language models, leveraging syntactic theories that construct sequences of words as the

outputs of hierarchical branching processes. Our models construct syntax trees either top-

down or bottom-up, jointly learning language modelling and parsing. We find that these

dependency-based models make good parsers, but that dependencies are less effective than

phrase-structure trees for modelling language.
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Finally, again looking at sentence structure, we investigate the application of syntax

to the task of conditional language modelling, where data scarcity exacerbates the need

for more sample efficient models. We develop a fully neural tree-to-tree translation sys-

tem, leveraging syntax in both the source and target languages to do conditional language

modelling. We then ablate the model, demonstrating the effects of a source-side syntax-

based encoder and a target-side syntax-based decoder separately. We find that source-side

syntax to hold good promise, and show that inference under neural models is trapped in

a local optimum wherein biased models perversely synergize with poor inference proce-

dures. This interaction means improvements in modelling and in decoding algorithms do

not necessarily lead to improved quality metrics.

These models demonstrate the effectiveness of hybrid techniques that marry the ex-

pressive power of neural networks with explicit linguistic structure derived from human

analyses. This synergy allows models to be both more sample efficient and more inter-

pretable.
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1
I N T R O D U C T I O N

Language generation, the task of having a computer automatically output text in a natural

language (such as English) is a crucial step towards natural human–computer interaction. It

is a essential part of many NLP tasks including summarization, image captioning, dialogue

systems, and translation. Most existing methods (with a few notable exceptions, e.g. byte-

pair encoding (Sennrich et al., 2015)) for language generation treat text as a linear sequence

of atomic words. Such methods model a sentence (or document, etc.) as a string of words

that is generated stochastically from left to right and they do not attempt to understand or

break down words into any smaller pieces.

Humans, on the other hand, seem to generate sentences in a much more hierarchical

manner (Chomsky and Lightfoot, 2002). For example, a typical English sentence might be

composed of a subject, a verb phrase, and optionally a direct object. A subject may itself

be composed into e.g. a determiner, a series of zero or more adjectives, and a noun, among

other possibilities. The verb phrase may similarly be composed of one or more auxiliary

verbs, a main verb, and zero or more adverbs. This hierarchical decomposition is central

to the infinite expressive power of human language, and our ability as humans to both

generate and understand novel sentences, the content of which we have never heard before.

Linguists call the study of these hierarchical structures syntax, and the structures themselves

syntax trees, an example of which is shown in Figure 1.

The leaves of a syntax tree are typically words, yet it is often possible to further de-

compose words into smaller pieces called morphemes (Haspelmath and Sims, 2013). For

example, the word “denuclearization” can be broken down into the morpheme sequence

de+nuclear+ize+ation. The study of such analyses of sub-word units is called morphology.

Understanding these smaller components of words allows humans to create and under-

stand entirely new words on the fly. For computer models it also allows for much greater

statistical sharing. For example, a model should not have to separately learn that “eat”,

“eats”, “eating”, “ate”, and “eaten” all have something to do with food, nor that (almost)

all words that end in -ation are nouns. If a model treats words as non-decomposable fixed

entities such abstractions are not possible, but morphologically aware models allow words

9
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the young boy walked to school .

NN

NP

PREP PUNCVBDNNJJDT

NP

VP

S

PP

Figure 1: An example of an English syntax tree.

to share knowledge learned about their morphemes. Furthermore, such models have an

open vocabulary – they can understand and emit rare words, never before seen by the model,

like “unacrimoniousness” or “drinkability”, in much the same way that a human can.

Model architectures encode biases, desired or undesired, that affect the distributions

they learn. In theory, if given infinite data, language models should be able to overcome

these biases and converge to a distribution that perfectly models human language. Unfor-

tunately human language is capable of producing an infinity of utterances and has com-

plexity far exceeding the limits of any finite data set. Humans, of course, consistently learn

language from a finite amount of exposure, indicating that our minds share a set of biases

for language learning (Chomsky, 2014). As such our models should ideally encode the same

set of biases that humans hold so that their biases help, rather than hinder, convergence to

models that generalize in the same way as humans do. Incorporating syntactic knowledge

into our model architectures has been shown to aid this type of generalization, improving

fluency of language models (Kuncoro et al., 2018; Maillard et al., 2019).

The task of (natural) language modelling is to be able to generate novel sentences

in a way that appears human-like. A good language model is one that produces fluent,

natural-sounding output. This requires, of course, that output sentences be grammatical

and correctly handle phenomena like subject-verb agreement. In addition, we desire that

the distribution of sentences and sub-sentential processes matches what a human might

produce. For example, certain grammatical structures are extremely common (e.g. passive

voice) while others only occur very infrequently (e.g. subjunctive mood). Moreover, humans

invent new words all the time. While a few new words stick around to be added to our

formal dictionaries, most of these are casual one-off words, used and then forgotten. For
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example, one might discuss the “thesisiness” of this work, or ask if a recent film has been

“blurayed” yet. A good language model captures these types of phenomena and is able to

use them to recombine smaller pieces to form novel words, structures, and sentences.

Unconditional language models underpin technologies such as grammatical error de-

tection (Kann et al., 2018) and spelling correction (Brill and Moore, 2000). More recently

they have frequently been used to provide representations for other natural language tasks

(Devlin et al., 2019; Peters et al., 2018; Yang et al., 2019). Language modelling offers a con-

venient and controlled sandbox in which to explore new techniques. Once settled upon a

successful model, the learned representations can be applied to other tasks or the language

models can be transformed into conditional models to directly complete a down stream

task.

Many applications of text generation are conditional, indicating that they receive (“con-

dition on”) some existing information in order to choose what sentence to output. For

example, a dialogue system might condition on what the interlocutors have said during

previous turns, an image captioning system should obviously look at the image whose cap-

tion it is to generate, and a machine translation system should pay attention to the input

(“source”) sentence when generating its translation. Neural models make this type of ex-

ternal conditioning very easy. At each time step, instead of looking only at the generator’s

current state (typically a vector which encodes all the information it has previously gener-

ated) we also look at a vector embedding of all or part (e.g. by using attention) of the input

data. By modelling the next generation event probability as a function of both these vectors

both kinds of context are used.

But why should our models emulate humans’ methods of language generation? Our

primary motivation is one of sample efficiency. RNNs are great general function learners

and, given infinite data, a simple left-to-right RNN model with atomic words could, in

theory, learn to produce fluent language. Human children, however, are able to learn their

native language fluently with just tens of millions of words of input (Hart and Risley, 2003).

Large quantities of monolingual text data are available in many languages (the 2019 WMT

data1 contains over 60 billion words of English), but even with so much data available no

models yet exist that can understand and generate language at the level of humans. Fur-

thermore, many problems reliant on text generation have much more limited data sets. For

example, the 2018 WMT English–Turkish translation task bitext provides only 4.4 million

words of English data, necessitating either much more sample efficient learning methods,

1 http://www.statmt.org/wmt19/
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methods to transfer knowledge from systems trained on monolingual data, or both. Lin-

guistic theory gives us insights into the processes that underpin human languages, and

incorporating this knowledge into our models can help restrict the hypothesis space, lead-

ing to faster learning and more human-like output.

In this thesis we explore methods to incorporate morphological and syntactic knowl-

edge into unconditional neural models of language. Furthermore, we examine the effect

of incorporating syntax into machine translation, a conditional language modelling task.

We present methods for incorporating syntax on the source side, the target side, or both,

yielding the first published neural quasi-synchronous translation model. These methods

contribute an overall theme and lead to the following thesis statement: Explicit linguistic

structure can be used to design neural architectures that learn more rapidly and make

better generalizations than linguistically naïve architectures.

The remainder of this thesis is structured as follows. In Chapter 2 we present back-

ground knowledge essential to understanding the new models and results presented in

this thesis. We review morphology and syntax in detail before moving on to formally de-

scribe the tasks of language modelling and machine translation.

In Chapter 3 we explore a method to incorporate morphological knowledge in a text

generation system. Most prior work simply ignores morphology, treating each surface-form

word as a unique token. One notable exception, Byte-Pair Encoding (Sennrich et al., 2015,

BPE), does not make any attempt to capture the linguistic processes that form words, in-

stead relying on surface-level character n-gram statistics (Papli, 2017). Furthermore, BPE-

based vocabularies are not truly open — there remain word forms and morphological vari-

ants unproducable by such sytems. Our morphologically-aware language model, however,

explicitly captures linguistic knowledge encoded in morphological analyzers to correctly

segment text and is able to produce any output string possible within a language’s alpha-

bet.

In our morphology-aware model, we generate text left-to-right, as in most RNN-based

models. At each step, we choose the next word conditioned on all the previously generated

words. Unlike most previous work, however, we create embeddings for each word in the

conditioning context by combining word-, morpheme-, and character-level representations

instead of relying on embeddings of words as atomic units. We use an LSTM over the

context to generate a single context vector, from which we will predict the next word. The

model may then choose to generate the next word via one of three methods: as a single

atomic word, as a sequence of morphemes, or as a sequence of characters. We marginal-
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ize the probability of generating a given word under each of these three methods to get a

single final probability for each candidate word. The resulting mixture model has the learn-

ability advantages of being morphologically aware, and is also open vocabulary – it is able

to produce any word possible given a language’s alphabet, including novel word forms

that were not present in its training data. These theoretical advantages also show empiri-

cal improvements in language model perplexity on three morphologically rich languages

that are traditionally difficult for standard language models, as well as improvements in

English-to-Turkish statistical machine translation.

In Chapter 4 we explore a method to incorporate syntactic knowledge into a language

model. Previous work (Dyer et al., 2016) has shown that constituency structures help lan-

guage modelling and parsing performance and that the resulting model also functions as a

high-quality parser. We explore a complementary question: does dependency-based syntax

similarly help language model performance? We operationalize the process of building a

parse tree, converting it into a series of actions. These actions affect a stack of partially built

dependency structures, which in the end will contain exactly one item: a fully constructed

parse tree for the output sentence. At each time step our model examines the current stack

and predicts the next action to take. We propose two models that build trees using differ-

ent construction orders. The first builds the tree top-down, starting from the root and ending

with the terminals. The second constructs the tree bottom-up, starting with the terminals

and iteratively building tree structure atop them. These two models impose different hier-

archical biases on the learner. Information that may be local in the partial tree structures

built by one model may be farther away, and thus more difficult for the neural network to

exploit, than in structures built by the other. We find that the two resulting models both

exhibit competitive parsing performance but do not outperform baseline language models.

Furthermore, we find that despite the wildly different biases, the two models perform very

similarly, implying that they have learned different ways of capturing similar information.

In Chapter 5 we turn to conditional language modelling and seek to incorporate the

syntax-based ideas of Eriguchi et al. (2016) and Dyer et al. (2016) into a tree-to-tree neu-

ral translation system. The former follows Tai et al. (2015) in embedding a source syntax

tree, rather than relying solely on the flat text representation. The latter describes a tree-

structured language-model, able to better capture grammatically of a sentence than a linear

language model can. These additions mirror extensions to traditional statistical machine

translation, including quasi-synchronous (Smith and Eisner, 2006) tree-to-tree models and

factored models (Koehn and Hoang, 2007). These extensions to symbolic MT systems often
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improved quality but were brittle and often involved hard combinatorial search problems.

By incorporating them into a neural system we both simplify them and increase their power.

We explore the performance of this syntax-aware system on translation from several typo-

logically diverse languages into English and perform an ablation to uncover which particu-

lar modules are most responsible for translation quality gains.

We find that syntax can be helpful to translation, particularly on the source side. Fur-

thermore we show that improvements to model design together with improvements in

inference algorithms do not necessarily translate into improved quality metrics (e.g. BLEU

(Papineni et al., 2002) or METEOR (Denkowski and Lavie, 2014)). We attribute this to the

existence of a perverse conspiracy between neural models and greedy inference algorithms.

Stahlberg and Byrne (2019) show that virtually all neural translation models have an ex-

treme bias towards shorter hypotheses. In order to have our systems output translations

with high metric scores we must purposefully use extremely limited decoding algorithms

(Koehn and Knowles, 2017). This interaction renders decoding for MT very unstable —

neither improvements in modelling nor improvements in search algorithms ensure gains

on translation metrics. We observe this effect on our tree-based decoders. RNNGs improve

sample complexity and models’ ability to capture natural language distributions, and we

introduce decoding algorithms with demonstrably fewer search errors, yet observe no gains

in metric scores.

The major contributions of this thesis are as follows: (i) a morphologically-aware open-vo-

cabulary language model optionally leveraging hand-crafted morphological analyzers (ii) two

dependency-based language models for generation and parsing without independence as-

sumptions (iii) a neural quasi-synchronous tree-to-tree translation system (iv) empirical

comparisons of string-to-string, string-to-tree, tree-to-string, and tree-to-tree models across

several languages (v) a novel batching algorithm for encoding syntax trees (vi) two new de-

coding algorithms for decoding with syntax-aware decoders (vii) analysis of the instability

that arises from the interaction between neural models and inference algorithms.



2
B A C K G R O U N D

In this chapter we will review some background that will be helpful in understanding the

body of this thesis.

morphology

Morphology is the linguistic study of how words are formed from smaller parts. For ex-

ample, the English noun “dogs” is composed of two parts: dog and s, which indicates the

plural. These parts are called morphemes. Some words consist of only a single morpheme.

For example “cat” cannot be further broken down into ca+t or c+at. Other words, such as

“unimaginatively” (un+imagine+itive + ly) are composed of many morphemes. Morphemes

may be recombined in novel ways to create entirely new words. One may describe their

commute as too “traffic-lighty”, an android’s behavior as “unrobotlike”, or themselves as

a “antitechnologian”. Such words are immediately understandable by any English speaker,

even if he or she has never heard them before.

Most other languages have much more rich morphology than does English. In English

most verbs have five forms (e.g. eat, eats, eating, ate, eaten), and most nouns have four (e.g.

cat, cats, cat’s, cats’). In Finnish, on the other hand, verbs have at least twelve tenses/moods,

each of which conjugates for person and number, to ninety or more unique surface forms.

Nouns also change their form, using fifteen differents endings to encode information that

English encodes with prepositions. Languages across the globe, from Hungarian to Tamil,

Turkish to Japanese, and German to Inuktitut use constantly use their wildly productive

morphology to coin new words. As such, proper handling of morphology is a must for any

language technology system for these languages since their vocabularies are of practically

infinite size.

There are three ways that morphemes combine to form new words. Inflectional mor-

phology is the process that allows “eat” and “-s” to combine to form “eats”. Inflection

combines a meaning-bearing stem, and an affix with no referential meaning, into a new

word. The new word has the same part of speech as the root word, and its meaning is

15
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fundamentally the same as that of the stem, but the affix provides some sort of syntactic

specification, such as the number, person, case, or tense. Derivational morphology simi-

larly combines a stem with an affix, but this time the affix effects a change in meaning

and possibly part of speech. For example, “happy” (an adjective) and “-ness” combine to

yield “happiness” (a noun). Compounding is the process that allows two meaning-bearing

morphemes to combine into a novel word. For example “dish” and “washer” combine to

give “dishwasher”.

Languages fall into one of three types, according to the structure of their morphol-

ogy. First, isolating (or analytic) languages have little to no morphological derivation at all.

Words are usually composed of just one morpheme (i.e. a free standing root). Functions

that are carried by morphology in other languages are instead performed by either adding

independent words or by strict word order. Second, agglutinative languages have many

morphemes per word. Each morpheme will handle one grammatical function, and multi-

ple affix morphemes can be stacked on one root, yielding very long words. Third, fusional

languages have fewer affixes, but each one may carry more than one grammatical mean-

ing. For example, the “-s” verb suffix in English simultaneously specifies that the verb is

singular, third person, and present tense.

Examples of these three language types can seen in Table 1. Notice that each word in

Chinese translates to a single English word with no morphological annotations at all. In

Japanese, on the other hand, each word contains multiple morphemes. This creates sen-

tences with few words, but with each word being quite long. Finally in Russian each con-

tent word is marked with exactly one morphological suffix. Each suffix, however, indicates

both the case and number of its root. For example, the very short suffix -a on the word

zloumyshlennik (“attacker”) indicates both genitive case and singular number (hence “of the

attacker”).

Most NLP models assume the existance of an atomic word and a fixed vocabulary. This

assumption works well in isolating languages where words are indeed more or less atomic.

For other languages, however, such models are forced to independently learn the mean-

ing of each word. For example, such a naïve model of Russian would be unaware of the

relation between the words motiv (“motive”, singular nominative) and motivah (“motive”,

prepositional plural). In fusional languages this isn’t ideal, but since an individual root in

a fusional language has a limited number of morphological variants (for example, Russian

nouns have twelve), learning them all individually is still tractable. In agglutinative lan-

guages like Japanese and Turkish, however, the number of possible morphological variants
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(a) 世界上有一半人口正住在城市里。

shìjiè shàng yǒu yı̄ bàn rènkǒu zhèngzhù zài chéngshì lı̌.
world on exist one half population live at city place

Half of the global population now lives in cities.

(b) 手を出したくなっても自分を抑えることができます。

te-wo dasi-ta-ku-na-tte-mo jibun-wo osaeru-koto-ga deki-ma-su.
hand-acc put:out-want-adv-become-cont-even self-acc supress-nmz-nom can-pol-pres

Even when you want to lash out, you can stop yourself.

(c) У следствия нет версий о мотивах злоумышленника.
u cledstvi-ya net versi-y o motiv-ah zloumyshlennik-a.

at investigation-sg.gen neg theory-pl.gen about motive-pl.prep attacker-sg.gen

The investigation does not theorize about the attacker’s motives.

Table 1: Example sentences in (a) Chinese, an isolating language, (b) Japanese, an agglutinative lan-
guage, and (c) Russian, a fusional language.

is nearly limitless, certainly beyond what is tractable to learn using a naïve approach. Some

NLP models attempt to handle these phenomena using greedy chunking of common char-

acter n-grams (Sennrich et al., 2015), but even these models lack a full open vocabulary and

often mis-segment rarely used words and endings. In Chapter 3 we propose a language

model capable of handling morphological variations in a linguistically principled way and

apply it to fusional and agglutinative languages.

syntax

Syntax is the linguistic study of how sentences are structurally formed from words. At

a surface level, syntax describes which order(s) the words in a sentence are considered

grammatical or ungrammatical. Nearly all theories of syntax, however, describe sentences

hierarchically, with linear word order arising as a product of the underlying tree structure.

There are numerous syntactic formalisms, many of which have been used in compu-

tational linguistics to great effect. In this thesis we will employ two of the most popular

formalisms: dependency grammars and phrase structure grammars. We focus on these two

formalisms due to their popularity and the availability of parsed data under these schemes.

While this thesis derives models based on these two formalisms, similar models could be

derived for other formalisms such as combinatorial categorical grammars (Steedman, 1987,

CCGs), lexical functional grammars (Kaplan et al., 1982, LFGs), head-driven phrase struc-

ture grammars (Pollard and Sag, 1994, HPSGs) and more.
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the young boy walked to school$

AMOD

DET

NSUBJ

PUNCT

PREP POBJ

.

ROOT

$ a hearing on the issueis scheduled today .

Figure 2: An example of a projective labeled dependency parse (top) and a non-projective unlabelled
dependency parse (bottom)1.

Dependency Grammars

Dependency grammars (Tesnière, 1959) are a syntactic formalism based around the notion

of dependency relations between words. A dependency relation is a link between a pair of

words: a head word being described and a dependent word doing the describing. A relation

may optionally be annotated with the type of relationship between the head word and its

dependent. For example, a dependency arc may be notated as “direct object”, “subject”, or

“object of preposition”, etc.

The dependency parse of a sentence is a collection of dependency relations such that

each word in the sentence has exactly one head word that it describes. The one exception

is the main finite verb, whose head is typically a special “root” symbol, frequently notated

as $.

In English, most dependency trees are projective, i.e. drawable in two dimensions with-

out crossing edges, and their structure mirrors that of the phrase structure parse (see §2.2.2)

of the same sentence. Some rare sentences, are non-projective, and are not drawable without

crossing edges. Non-projectivity occurs in about 0.5% of English sentences (Straka et al.,

2015), but is much more common in some other languages (Buchholz and Marsi, 2006).

In this thesis we follow most previous dependency parsing approaches, particularly those

focusing on English, in ignoring non-projectivities due to their uncommon nature in the

languages we focus on.

Figure 2 shows some examples of dependency trees. The top tree is a simple sentence

and has its dependency arcs annotated to show relations. The bottom tree is unlabelled and
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exhibits non-projectivity, which manifests itself as crossing lines. Each relation is depicted

as a line with its tail at the headword pointing towards the dependent word. Note that each

word has exactly one arrow head pointing to it, though a word may have multiple arrows

emenating from it. Also note that dependency parses do not use part-of-speech information,

either for terminals or non-terminal interior nodes.

In Chapter 4 we will look at generative language models using dependency grammars.

Phrase Structure Grammars

Phrase-structure trees are another syntactic representation, this time highlighting the tree-

structured hierarchy underpinning sentences. Unlike dependency trees, phrase-structure

trees typically use part-of-speech labels for terminals and also label internal nodes with

similar labels. Some theories of phrase structure grammar (for example the popular X̄ (pro-

nounced “X bar”) theory (Jackendoff, 1977)) require trees to be strictly binary branching,

but in general phrase structure trees can contain nodes of any arity.

A phrase structure parse of a sentence is a tree structure with a singular root, typi-

cally labeled S (for “sentence”) or IP (for “inflectional phrase”), and whose terminals are

the words in the sentence annotated with their part-of-speech labels. Internal nodes are

labelled with phrase labels (e.g. VP for “verb phrase”). See Figure 3 for an example. Well-

formed subtrees, such as the noun phrase spanning the phrase “the young boy”, or the

prepositional phrase spanning the phrase “to school”, are called constituents. Note that not

all spans correspond to constituents. For example, the substring “young boy walked” is not

dominatated by any tree node that does not contain any other terminals.

In Chapter 5 we will look at the problem of machine translation, using phrase structure

trees in one or both languages.

language modelling

The goal of (unconditional) language modelling is to describe, usually probabilistically,

which strings of words belong to a language. Most language models map strings of words

to a probability p(S). Since the probabilities of all strings in a language must sum to one,

and there are infinitely many sentences in all natural languages, it follows that these prob-

abilities are tiny for all but the most common sentences. (For example one could imagine
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the young boy walked to school .

NN

NP

PREP PUNCVBDNNJJDT

NP

VP

S

PP

Figure 3: An example of a constituency tree.

that “How are you?” constitutes more than 0.01% of all English utterances, quite a large

probability compared to that of e.g. “How might I get to Schenley Park?”)

Traditionally language models have decomposed the probability of a sentence S using

the chain rule, examining one word at a time in a left-to-right fashion: p(S) =
∏|S|

i=1 p(Si |

S1:i−1). Nevertheless, other decompositions are possible, such as generating words hierar-

chically.

There are many ways of modelling p(Si | S1:i−1). Perhaps the simplest way is to make

a Markov assumption that the ith word depends only on the preceeding n words, and is

independent of the history before that: p(Si | S1:i−1)
.
= p(Si | Si−n:i−1). If n = 0 this is a

unigram model; p(Si) is independent of all history. If n = 1, this corresponds to a bigram

model: p(Si | S1:i−1)
.
= p(Si | Si−1). If n = 2 we would have a trigram model, and so

on. Traditionally these types of n-gram based models are estimated by simply normalizing

n-gram counts from a large corpus, possibly with some amount of smoothing (e.g. Ney

et al. (1994)). Later n-gram models use neural networks to estimate the distribution p(Si |

Si−n:i−1) (Bengio et al., 2003).

More recent models have forgone Markov assumptions entirely. Such models rely either

on recurrent neural networks (Elman, 1990; Mikolov et al., 2010, RNNs) or self-attention

(Vaswani et al., 2017) to model p(Si | S1:i−1) without independence assumptions.

In this thesis we primarily use RNN-based language models so we will examine them

in more detail here. Like most LMs, RNNLMs decompose the probability of a sentence

using the chain rule from left to right: p(S) =
∏|S|

i=1 p(Si | S1:i−1). Unlike other models,

however, RNNLMs encode the sequence of previously seen words S1:i−1 as a vector hi.

The initial state h0, from which all sentences begin, represents the state of having seen no
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e1

h1

α2

e2

h2

α3

e3

h3

α4

e4

h4

α5

h0

S1 S2 S3 S4

α1

α1, S1 α2, S2 α3, S3 α4, S4 α5, S5

Figure 4: The architecture of an RNN language model. The red arrows represent the E function, teal
arrows represent the f function, and gold arrows represent the p function.

words yet. It is treated as a learnable parameter of the model. Each individual word Si

in the sentence is passed through an embedding function E, which turns a word into a

dense vector ei = E(Si). The other his are then computed in a recurrent fashion from the

previous state hi−1 and the embedding ith word of the input sentence ei: hi = f(hi−1, ei).

This allows us to rewrite p(S) as
∏|S|

i=1 p(Si | ht−1).

While this general formulation underlies all RNNLMs, the particular choice of imple-

mentation of the functions E, f, p(Si | ht−1) leads to many different variants. Given a finite

vocabulary V , the simplest and most common implementation of E is to simply use an

embedding matrix with |V | rows and d columns. The embedding of the jth word in the

vocabulary is then simply the jth row of this matrix, which yields a d-dimensional vector.

The probability of a word given a hidden state is typically modelled with a simple

affine transform followed by a softmax. For example, one could define a =Whi + b, where

W and b are learned parameters, and then write p(w | hi) = αi,w = eaw∑|V |
j=1 e

aj
. Here a is a

|V |-dimensional vector that gives a raw score aj to the jth word in the vocabulary. To ensure

that the probability distribution is well-formed (i.e. that it’s positive and sums to one), we

exponentiate (to ensure positivity) and normalize (to ensure the distribution sums to one).

This produces a probability distribution αi over the |V | vocabulary words, and we can write

the probability p(Si | hi) = αi,Si
.

The function f(hi−1, ei) is more intricate. Early work used f(hi−1, ei) = σ(Whi−1 +

Vei +b) where W, V , and b are learned parameters and σ is the sigmoid function (Mikolov

et al., 2010). Subsequently more complex models such as LSTMs (Hochreiter and Schmid-
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huber, 1997) and GRUs (Cho et al., 2014) have been developed, mostly focusing on ensuring

proper flow of gradient information over long time scales.

In Chapter 3 we explore how to do language modelling for morphologically complex

languages by introducing a novel E function. In Chapter 4 we investigate whether depen-

dency trees can help us model language by changing the chain rule decomposition to be

not strictly left-to-right and by introducing a new f function that captures syntactic infor-

mation.

machine translation

Machine translation is the process of automatically translating text (or perhaps speech)

from one language into another. The study of machine translation goes back to the 1950s,

when Warren Weaver famously wrote “One naturally wonders if the problem of translation

could conceivably be treated as a problem in cryptography. When I look at an article in

Russian, I say: ‘This is really written in English, but it has been coded in some strange

symbols. I will now proceed to decode.’ ” (Weaver, 1955). For the next sixty years machine

virtually all translation approaches would follow this cryptography-inspired paradigm.

Formally machine translation systems define a model of p(T | S), where S is a sentence

in the source langauge and T is a sentence in the target language. Given an input sentence

S, the system then seeks to find T∗ = arg maxT p(T | S). The cryptography-inspired systems

then rewrite p(T | S) using Bayes’ Rule: p(T | S) =
p(S|T)·p(T)

p(S) Since the denominator does

not depend on T one may note that T∗ = arg maxT p(T | S) = arg maxT
p(S|T)·p(T)

p(S) =

arg maxT p(S | T) · p(T). This formulation allows us to split the modelling of p(T | S) into

two pieces: a reverse translation model p(S | T) and a language model p(T). But does

this reformulation really buy us anything? Isn’t modelling p(S | T) just as hard as the

original problem of modelling p(T | S)? In addition we have added a language model as an

additional component! In fact the addition of a language model is the big advantage of this

reformulation. By introducing a language model we take a large amount of the modelling

load off of the translation model, allowing us to use simpler techniques with better effect.

Furthermore, the language model allows us to use monolingual training data, which is far

more plentiful than the sentence-aligned bitexts needed to train the translation model.

When looking at a source sentence S (say French) that we would like to translate into a

target language T (say English), this model captures a generative story that goes as follow.

Following the above quote by Weaver, we think this sentence was originally in English! We
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have a prior p(T) on what types of sentences English speakers are likely to produce. After

selecting an English sentence to utter, however, the sentence goes through a corruption

process, becoming a French sentence along the way. The probability of a French sentence

S arising from an English sentence T is the translation model probability p(S | T). We then

multiply these two probabilities together to get the overall probability of a French sentence

and its “underlying” English: p(S, T) = p(S | T) · p(T).

The language model assigns a probability p(T) to each possible sentence T in the target

language. Traditionally LMs in statistical MT systems have been implemented using n-

gram language models (with n between 3 and 5) smoothed with improved Kneser-Ney

smoothing (Ney et al., 1994) due to their simplicity, and speed. While their fixed-length

memories make n-gram language models generally inferior to recurrent ones, they allow

hypothesis recombination, allowing for faster decoding. The LM could, of course also use

any of the other techniques descrbed in §2.3. Such a change would likely produce gains in

translation quality while making inference take substantially longer. Hybrid systems with

symbolic translation models and neural language models did see some popularity during

the transition from symbolic to fully neural systems (Baltescu et al., 2014).

The translation model assigns a conditional probability p(S | T) to a source sentence S

conditioned on a target sentence T . How can we estimate such a complicated distribution?

We might naïvely think we can just gather a big corpus and count and normalize to get the

required probabilities. With such a simple model, however, what do we do when presented

a sentence not in our corpus? No matter how large our corpus may be, given the infinite

complexity of human language we’re certain to encounter many new sentences.

Since we can’t directly model translation using entire sentences we might next think to

model it using words. In this case we can write p(T | S) as the product of word-level trans-

lation probabilities:
∏|T |

i=0 p(Ti | Sai
). Here a is a latent variable indicating the alignment

between the source and target sentences. The alignment assigns exactly one source index ai

to each target word Ti indicating that Ti is a translation of Sai
. Note that this scheme allows

one source word to translate zero times, one time, or indeed many times. In order to allow

for target words with no equivalent in the source sentence to appear it is common to add a

special null token to the source side. In this way we maintain the property that each target

word aligns to exactly one source word. Figure 5 shows an example alignment between a

Japanese source sentence and an English target sentence. Naturally we can simply reverse

this model to compute p(S | T) rather than p(T midS).
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男の子

the boy walked to school .

は 学校 に 歩いて 行った 。

young

NULL

Figure 5: An example alignment between a Japanese source sentence (with a special null token)
and an English target sentence.

Given an alignment for each sentence in a corpus, it becomes fairly straight forward

to estimate a probabilistic translation dictionary from the corpus via simple counting and

normalizing. Given such a dictionary we can produce a maximum likelihood estimate of

the alignment for each sentence. This chicken and egg style problem lends itself nicely to

the EM algorithm. We initialize by assuming a uniform translation dictionary, use it to

construct our best estimate of the alignments, then use those alignments to re-estimate the

probabilities in the translation dictionary. Then we repeat these two steps until convergence.

At inference time we can use this translation model and a language model to decode.

For each word in a new source sentence we simply look up their top few target side transla-

tions. We then look through all combinations of these translations and all possible reorder-

ings of the target words and score each with our language model. The overall translation

that maximizes p(S | T) · p(T) is the winner. Exhaustively listing out all the possible com-

binations and reorderings would, of course, be infeasible, so decoders use a combination

of clever heuristics (e.g. hypothesis recombination) and pruning schemes (e.g. threshold

pruning) to make this inference tractable.

What we have described here is an overview of how a statistical machine translation sys-

tem works. Naturally there have been many extensions over the years that have increased

performance at the cost of complexity. For example, more complex word alignment models

have been used (Brown et al., 1993; Dyer et al., 2013), and phrase-level dictionaries can be

used in place of word-level ones (Koehn et al., 2003).
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neural machine translation

Naturally one may also use neural networks to model the complex probability distributions

involved in machine translation. While one could continue to use the noisy channel model

and model p(S | T) and p(T) with neural nets (Yu et al., 2016), the decoding problem

of finding T∗ = arg maxT p(S | T) · p(T) becomes intractable. As such, neural machine

translation (NMT) models focus on modelling p(T | S) directly, relying on the high capacity

of neural models instead of offloading the burden to a language model.

One intuitive approach to NMT is to use an RNN or similar to encode a source sentence

a single vector h, and then use a separate RNN-based decoder to expand h into a target

sentence (Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014).

While this encoder-decoder framework underpins all popular NMT models, the addi-

tion of attention (Bahdanau et al., 2015) led to substantially improved performance. The

idea is that instead of forcing the model to encode the entire source sentence, which could

be arbitrarily long and complicated, into just one vector, we instead allow the decoder to

choose a single source word (or perhaps a few source words) to look at before emitting

each target word. Formally, we write that the encoder takes a sentence S = s1, s2, . . . , sN

and produces a sequence of context-aware vectors, H = h1,h2, . . . ,hN, one for each source

word. The decoder is an RNN that begins in some initial state d0. At the ith time step, the

model uses the source word vectors and the decoder’s state to compute a score for each

source word representing how much it wants to look at that word next. Those scores are

then passed through a softmax, yielding a distribution over source word positions. The

in-context source vectors are combined using a weighted sum according to this attention

distribution, creating a single context vector ct. The decoder then receives its own previous

state dt and the context vector ct and chooses one target word t̂t to emit. Finally dt and t̂t

are used to update the decoder’s internal state, yielding a new decoder state vector dt+1,

and the process repeats.



3
N E U R A L M O R P H O L O G Y F O R O P E N - V O C A B U L A RY L A N G U A G E

M O D E L S

Language modelling of morphologically rich languages is particularly challenging due to

the vast set of potential word forms and the sparsity with which they appear in corpora.

Traditional closed vocabulary models treat words as atomic units and as such they are unable

to produce word forms unseen in training data or to generalize from sub-word patterns

found in data.

The most straightforward solution is to treat language as a sequence of characters

(Sutskever et al., 2011). However, models that operate at two levels—a character level and

a word level—have better performance (Chung et al., 2017; Kawakami et al., 2017). Byte-

pair Encoding (Sennrich et al., 2015, BPE) offers a technique to break words into frequent

character n-grams and translate those instead of full words. While this approach does

allow for pieces to recombine, yielding an infinite vocabulary size, there are still words it

cannot emit so it is not truly open vocabulary. Another solution is to use morphological

information from hand-crafted analyzers, which has shown benefits in non-neural models

(Chahuneau et al., 2013b). In this chapter, we present a model that combines character-,

morpheme-, and word-level information in a fully neural framework.

Our model incorporates explicit morphological knowledge (e.g. from a finite-state mor-

phological analyzer/generator) into a neural language model, combining it with existing

word- and character-level modelling techniques, in order to create a model capable of suc-

cessfully modelling morphologically complex languages. In particular, our model achieves

three desirable properties.

First, it conditions on all available (intra-sentential) context, allowing it, in principle,

to capture long-range dependencies, such as the verb agreement between “students” and

“are” in the sentence “The students who studied the hardest are getting the highest grades”.

While traditional n-gram based language models lack this property, RNN-based language

models fulfill it.

This chapter was previously published at NAACL 2018.
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Second, it explicitly captures morphological variation, allowing sharing of information

between variants of the same word. This allows faster, smoother training as well as im-

proved predictive generalization. For example, if the model sees the phrase “gorped the

ball” in data, it is able to infer that “gorping the ball” is also likely to be valid. Similarly, the

model is capable of understanding that morphological consistency within noun phrases is

important. For example in Russian, one might say malen’kaya chërniya koshka ("small black

cat", nominative), or malen’kuyu chërniyu koshku (accusative), but malen’kiy chërnuyu koshke

(mixing nominative, accusative and dative) would have much lower probability.

Third, the language model seamlessly handles out of vocabulary items and their mor-

phological variants. For example, even if the word Obama was never seen in a Russian

corpus, we expect Ya dal eto prezidentu Obame (“I gave it to president Obama”) to have

higher probability using the dative Obame than Ya dal eto prezidentu Obama, which uses the

nominative Obama. The model can also learn to decline proper nouns, including OOVs.

Here it can recognize that dal (“gave”) requires a dative, and that nouns ending with -a

generally do not meet that requirement while nouns ending with -e do.

In order to capture these properties, our model combines two pieces: an alternative em-

bedding module that uses sub-word information such as character and morpheme-level in-

formation, and a generation module that allows us to output words at the word, morpheme,

or character-level. The embedding module allows for the model to share information be-

tween morphological variants of surface forms and produce sensible word embeddings for

tokens never seen during training. The generation model allows us to emit tokens never

seen during training, either by combining a lemma and a sequence of affixes to create a

novel surface form, or by directly spelling out the desired word character by character. We

then demonstrate the effectiveness both intrinsically, showing reduced perplexity on several

morphologically rich languages, and extrinsically on machine translation and morphologi-

cal disambiguation tasks.

multi-level rnnlms

Recurrent neural network language models are composed of three parts: (a) an encoder,

which turns a context word into a vector, (b) a recurrent backbone that turns a sequence

of word vectors that represent the ordered sequence of context vectors into a single vector,

and (c) a generator, which assigns a probability to each word that could follow the given

context.



3.1 multi-level rnnlms 28

d o g s

dog

dogs

+ᴘʟ

p(mi | hi)

p(wi | hi, mi)

hi
</w>

</w>

dog +3ᴘ +sɢ </w>

sum]
Figure 6: We allow the model to generate an output word at the word, morpheme, or character level,

and marginalize over these three options to find the total probability of a word.

RNNLMs often use the same process for (a) and (c), but there is no reason why these

processes cannot be decoupled. For example, Kim et al. (2016) and Ling et al. (2015) com-

pose character-level representations for their word encoder, but generate words using a

softmax whose probabilities rely on inner products between the current context vector and

type-specific word embeddings.

In our model both the word generator (§3.1.1) and the word encoder (§3.1.2) compute

representations that leverage three different views of words: frequent words have their

own parameters, words that can be analyzed/generated by an analyzer are represented in

terms of sequences of abstract morphemes, and all words are represented as a sequence of

characters.

Word generation mixture model

In typical RNNLMs the probability of the ith word in a sentence, wi given the preceding

words is computed by using an RNN to encode the context followed by a softmax:

p(wi | w<i) = p(wi | hi = ϕRNN(w1, . . . ,wi−1))

= softmax(Whi + b)
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where ϕRNN is an RNN that reads a sequence of words and returns a fixed sized vector

encoding, W is a weight matrix, and b is a bias.

In this work, we will use a mixture model over M different models for generating

words in place of the single softmax over words (Miyamoto and Cho, 2016; Neubig and

Dyer, 2016):

p(wi | hi) =

M∑
mi=1

p(wi,mi | hi)

=

M∑
mi=1

p(mi | hi)p(wi | hi,mi),

where mi ∈ [1,M] indicates the model used to generate word wi. To ensure tractability for

training and inference, we assume that mi is conditionally independent of all m<i, given

the sequence of word forms w<i.

We use three (M = 3) component models: (1) directly sampling a word from a finite vo-

cabulary (mi = word), (2) generating a word as a sequence of characters (mi = chars), and

(3) generating as a sequence of (abstract) morphemes which are then stitched together using

a hand-written morphological transducer that maps from abstract morpheme sequences to

surface forms (mi = morphs). Figure 6 illustrates the model components, and we describe

in more detail here:

word generator . Select a word by directly sampling from a multinomial distribu-

tion over surface form words. Here the vocabulary is the |Vw| most common full-form

words seen during training. All less frequent words are assigned zero probability by this

model, and must be generated by one of the remaining models.

character sequence generator . Generate a word as a sequence of characters.

Each character is predicted conditioned on the LM hidden state hi and the partial word

generated so far, encoded with an RNN. The product of these per-character probabilities is

the total probability assigned to a full word form.

morpheme sequence generator . Similarly to the character sequence generator,

we can generate a word as a sequence of morphemes. We first generate a root r, followed

by a sequence of affixes a1,a2, . . . . For example the word “devours” might be generated as

devour+3p+sg+eow.
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d o g s

dog

dogs

+ ᴘʟ </w>

</w>

dog +3ᴘ +sɢ

max

</w>

Figure 7: We concatenate word- morpheme- and character-level vectors to build a better input vector
for our RNNLM.

Since multiple sequences of abstract morphemes may in general give rise to a single

output form,1 we marginalize these, i.e.,

p(wi | hi,mi = morphs) =∑
ai∈{a|gen(a)=wi}

pmorphs(ai | hi).

where gen(a) gives the surface word form produced from the morpheme sequence a.

Due to the model’s ability to produce output at the character level, it is able to pro-

duce any output sequence at all within the language’s alphabet. This is critical as it allows

the model to generate unknown words, such as novel names or declensions thereof. Fur-

thermore, the morphological level facilitates the model’s generation of word forms whose

lemmas may be known, but whose surface form was nevertheless unattested in the training

data. Finally the word-level generation model handles generating words that the model has

seen many times during training.
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Morphologically aware context vectors

Word vectors are typically learned with a single, independent vector for each word type.

This independence means, for example, that the vectors for the word “apple” and the word

“apples” are completely unrelated. Seeing the word “apple” gives no information at all

about the word “apples”.

Ideally we would like to share information between such related words. Nevertheless,

sometimes words have idiomatic usage, so we’d like not to tie them together too tightly.

We accomplish this by again using three different types of word vectors for each word

in the vocabulary. The first is a standard per-type word vector. The second is the output

of a character-level RNN using Long Short-Term Memory (LSTM) units (Hochreiter and

Schmidhuber, 1997). The third is the output of a morphology-level LSTM over a lemma

and a sequence of affixes, as output by a morphological analyzer.

Typically language models first generate a word wi given some (initially empty) prior

context ci−1, and then that word is combined with the context to generate a new context

ci that includes the new word. Since we have just used one or more of our three modes

to generate each word, intuitively we would like to use the same mode(s) to generate the

embedding used to progress the context.

Unfortunately, doing so introduces dependencies among the latent variables p(mode |

ci) in our model, making exact inference intractable. As such, we instead drop the depen-

dency on how a word was generated and instead represent the word at all three levels,

regardless of the mode(s) actually used to generate it, and combine them by concatenating

the three representations. A visual representation of the embedding process is shown in

Figure 7.

Additionally, should a morphological analyzer produce more than one valid analysis

for a surface form, we independently produce embeddings for each candidate analysis,

and combine them using a per-dimension maximum operation. Mathematically, the ith

dimension of the morphological embedding em is given by

emi = max
j
eaji

1 In general analyzers encode many-to-many relations, but our model assumes that any sequence of morphs
in the underlying language generates a single surface form. This is generally true, although free spelling
variants of a morph (e.g., American -ize vs. British -ise as well as alternative realizations like shined/shone and
learned/learnt) violate this assumption.
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where eaj
is the embedding of the jth possible analysis, as computed by the LSTM over the

lemma and its sequence of affixes.

The intuition behind the use of all analyses plus a pooling operation can be seen by

observing the case of the word “does”, which could be do+3-person+singular or doe+plural.

If this word appears after the word “he”, what we care about more is whether “does” could

feasibly be a third person singular verb, thus agreeing with the subject. The max-pooling

operation captures this intuition by ensuring that if a feature is active for one of these two

analyses, it will also be active in the pooled representation. This procedure affords us the

capability to efficiently marginalize over all three possible values of the latent variable at

each step, and compute the full marginal of the word wi given the context ci−1 during

generation.

This formulation allows words with the same stem to share vector information through

the character or morphological embeddings, but still affords each word the ability to cap-

ture idiomatic usages of individual words though the word embeddings. Furthermore, it

allows a language model to explicitly capture morphological information, for example that

third person singular subjects should co-occur with third person singular verbs. Finally, the

character-level segment of the embedding allows the model to at least attempt to build sen-

sible embeddings for completely unknown words. For example in Russian where names

can decline with case this formulation allows the model to know that Obame is probably

dative, even if it’s an OOV at the word level, and even if the morphological analyzer is

unable to produce any valid analyses.

We combine our three-layer input vectors, our factored output model, and a standard

LSTM backbone to create a morphologically-enabled RNNLM that, as we will see in the

next section, performs well on morphologically complex languages.

intrinsic evaluation

We demonstrate the effectiveness of our model by experimenting on three languages: Finnish,

Turkish, and Russian. We use varying amounts of News Commentary data provided by the

Workshop on Machine Translation (WMT) for each of the three languages. Statistics of our

experimental corpora can be found in Table 2.

Each data set was pre-processed by unking all but the top ≈20k words and lemmas

by frequency. No characters or affixes were unked. This step is not strictly required—our

model is, after all, capable of producing arbitrary words— but it speeds up training im-
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bu yıl sadece UNK iki ders UNK .

i n t e r n e t t e n

</s>

</w>

v e r i y o r d u </w>

Figure 8: An example of our 4-gram Kneser-Ney baseline that backs off to an additional character-
level model for out of vocabulary words generating a Turkish sentence that contains two
out-of-vocabulary items.

mensely by reducing the size of the word and lemma softmaxes. Since the morphology

and/or character-level embeddings can still capture information about the original forms

of these words, the degradation in modelling performance is minimal.

For morphological analysis we use Omorfi2 (Pirinen, 2015) for Finnish, the analyzer

of Oflazer (1994) for Turkish, and PyMorphy3 (Korobov, 2015) for Russian. PyMorphy and

Omorfi were created by inducing DAFSA from morphological analyses crowd sourced from

native speakers using a series of questions designed by linguists. The Turkish analyzer is

based on a context-free grammar applied to a curated dictionary of Turkish words (ank,

1981).

Baseline Models

Since models are not accurately comparable unless they share output vocabularies, our

baselines must also allow for the generation of arbitrary word forms, including out-of-

vocabulary items. We compare to three such models: an improved Kneser-Ney (Kneser and

Ney, 1995) 4-gram baseline, with an additional character-level backoff model for OOVs, an

RNNLM with character-level backoff, and a pure character-based RNN language model

(Sutskever et al., 2011).

Since Kneser-Ney language models (and other count-based models) are typically word-

level and do not model out-of-vocabulary items, we employ a two-level approach with

separate Kneser-Ney models at the word and character levels. We train the word-level

model after unking low frequency words, and we train the character-level model on the

same list of low frequency words. Now when we want to predict a word wi given some

2 https://github.com/flammie/omorfi
3 https://github.com/kmike/pymorphy

https://github.com/flammie/omorfi
https://github.com/kmike/pymorphy
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context c we can use the word-level model to directly predict p(wi|c) unless wi is an out-

of-vocabulary item. In that case we model p(wi | c) as

p(wi | c) = p(unk | c) · p(wi | unk)

where the first factor is the probability of the word-level model emitting unk, and the

second is the probability of the actual out-of-vocabulary word form under the character-

level model. See Figure 8.

Secondly we compare to a similar hybrid RNN model that first predicts the word-

level probability for each word, and if it predicted unk then also predicts a sequence of

characters using a separate network. This model uses 256-dimensional character and word

embeddings, and a 1024-dimensional recurrent hidden layer.

Finally we also compare to a standard RNN language model trained purely on the

character level. For this baseline we also use 256-dimensional character embeddings and a

1024-dimensional recurrent hidden layer.

Multi-factored Models

For our model we use 128-dimensional word and root embeddings, 64-dimensional af-

fix and character embeddings, 128-dimensional word-internal recurrent hidden layers for

characters and morphemes, and a 256-dimensional recurrent hidden layer for the main

inter-word LSTM.

The network is trained to stochastically optimize the log likelihood of the training data

using Adam (Kingma and Ba, 2015). After each 10k training examples (Finnish, Turkish) or

100k training examples (Russian) we evaluate the model on a development set. (We evaluate

less frequently on Russian since the dev set is much larger.) At the end of training we revert

the model to the version that scored the best on the development set, thereby mitigating

overfitting via early stopping. No other regularization is used.

For each language we run four variants of our model. In order to preserve the abil-

ity to model and emit any word in the modelled language, it is essential that we keep

the character-level part of our model intact. The morpheme- and word-level models, how-

ever, may be removed without compromising the generality of the model. As such, we

present our model using only character-level input and outputs (C), using character- and
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Finnish Russian Turkish

Train Sents 2.1M 1.1M 188K
Train Words 38M 26M 3.9M

Dev Sents 1K 38K 1K
Dev Words 16K 705K 16K

Test Sents 500 91K 3K
Test Words 7.6K 1.6M 51K

Word Vocab 20K 21K 42K
Lemma Vocab 20K 20K 13K

Affix Vocab 140 34 180

Char Vocab 229 150 80

Table 2: Details of our data sets. Each cell indicates the number of sentences and the number of
words in each set.

(a) Finnish

Model Dev Test

KN4+OOV 2.04 1.94

RNN+OOV 2.03 1.92

PureC 2.69 2.63

C 2.40 2.32

CM 1.95 1.85

CW 2.03 1.94

CWM 1.91 1.81

(b) Turkish

Model Dev Test

KN4+OOV 2.01 2.06

RNN+OOV 1.99 2.05

PureC 2.21 2.30

C 2.05 2.16

CM 1.88 1.99

CW 1.78 1.85

CWM 1.74 1.82

(c) Russian

Model Dev Test

KN4+OOV 1.68 1.70

RNN+OOV 1.62 1.66

PureC 1.91 2.05

C 1.85 1.87

CM 1.47 1.50

CW 1.44 1.47
CWM 1.49 1.52

Table 3: Intrinsic evaluation of language models for three morphologically rich languages. Entropy
for each test set is given in bits per character. Lower is better, with 1.0 being perfect.

morpheme-level inputs and outputs (CM), using character- and word-level inputs, but no

morphology (CW), and using all three levels as per the full model (CMW).

Results and Analysis

Our experimental results (Table 3) show that our multi-modal model significantly outper-

forms all three baselines: a naïve n-gram model, a purely character-level RNNLM, and

a hybrid RNNLM for open-vocabulary language models. Furthermore, they confirm that

morphological analyzers can improve performance of such language models on particularly

morphologically rich languages. We observe that across all three languages the space-aware

character-level model outperforms the purely character-based model that treats spaces just

as any other character. We additionally find that the relative success of the n-gram model
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Finnish: “Russian President Vladimir Putin has an ace up his sleeve in the Ukrainian relationship.”
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Turkish: “He gave only two lectures on the internet this year.”

.0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

p
(m

o
d
e
 |

 c
o
n
te

x
t)

.0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

p
(m

o
d
e
 |

 c
o
n
te

x
t,

 w
)

Russian: “The investigation does not theorize about the attacker’s motives.”

Figure 9: Some examples of the priors (left) and posteriors (right) over modes used to generate each
word in some sample sentences. Probability given to the word-, morpheme-, and character-
level models are shown in red, blue, and gold respectively.
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and the hybrid model over the character only models underscores the importance of access

to word-level information, even when using a less sophisticated model.

Our methods outperform the n-gram model in all languages with either set of just

two models, CM or CW. The same models outperform the hybrid baseline in Turkish and

Russian, and achieves comparable results in Finnish. Finally, in the agglutinative languages,

using all three modes performs best, while in Russian, a fusional language, characters and

words alone edge out the model with morphology. We hypothesize that our morphology

model is better able to model the long strings of morphemes found in Turkish and Finnish,

but gains little from the more idiosyncratic fusional morphemes of Russians.

Some examples of the priors and posteriors of the modes used to generate some ran-

domly selected sentences from the held out test set can be seen in Figure 9. The figures

show that all of the models tend a priori to prefer to generate words directly when possible,

but that context can certainly influence its priors. In Finnish, after seeing the word Vladmir,

the model suddenly assigns significantly more weight to the character-level model to gen-

erate the following word, which is likely to be a surname. In Russian, after the preposition

o, the following noun is required to be in a rare case. As such, the model suddenly assigns

more probability mass to the following word being generated using the morpheme-level

model.

The posteriors tell a similarly encouraging story. In Finnish we see that the word pres-

identilläa is overwhelmingly likely to be produced by the morphology model due to its

peculiar adessive (“at”) case marking. Vladmir is common enough in the data that it can be

generated wholly, but the last name Putin is again inflected into the adessive case, form-

ing Putinilla. Unfortunately the morphological analyzer is unfamiliar with the stem Putin,

forcing the word to be generated by the character-level model. In our Turkish example, all

of the short words are generated at the word level, while the primary nouns internetten

(“internet”) and ders (“lecture”) are possible to generate either as words or as a sequence of

morphemes. The verb, which has much more complex morphology (progressive past tense

with a third person singular agent), is generated via the morphological model.

extrinsic evaluation

In addition to evaluating our model intrinsically using perplexity, we evaluate it on two

downstream tasks. The first is machine translation between English and Turkish. The sec-

ond is Turkish morphological analysis disambiguation.
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Lang. Pair System BLEU

TR-EN Baseline 15.0
Morph. Input 15.2

EN-TR Baseline 10.1
Morph. Output 10.5

Table 4: Machine Translation Results

Model Supervised? Ambiguous Words All words

Random Chance no 34.08% 52.66%
Unidirectional no 55.15% 80.28%
Bidirectional no 63.85% 84.11%

Shen et. al yes 91.03% 96.43%

Table 5: Morphological disambiguation accuracy results for Turkish.

Machine Translation

We introduce the score of our LM as an additional feature to a cdec (Dyer et al., 2010)

hierarchical MT system trained on the WMT 2016 Turkish–English data set, and perform n-

best reranking after retuning weights with the new feature. In these experiments we focus

our efforts on modelling the Turkish morphology, and do not assume access to an English

analyzer.

The results, shown in Table 4 demonstrate small but significant gains in both directions,

particularly into Turkish, where modelling productive morphologically should be more

important.

Morphological Disambiguation

Our model is a joint model over words and the latent processes giving rise to those words

(i.e., which generation process was selected and, for the morpheme process, which mor-

pheme sequence was generated). While our model is not directly trained to perform mor-

phological disambiguation, it still performs this task quite admirably. Given a trained mor-

phological language model, a sentence s, and a set of morphological analyses z, we can

query the model to find p(s, z) = p(w1,w2, . . . ,wN) for a given sentence. Most notably,

each wi may have a set of possible morphological analyses {a1,a2, . . . aMi
} from which we

would like to choose the most likely a posteriori. To perform this task, we simply query the
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model Mi times, each time hiding all but the jth possible analysis from the model. We can

then re-normalize the resulting probabilities to find p(aj|s) for each j ∈ 1 . . .Mi.

To make training and inference with our model tractable, we have assumed indepen-

dence between previous adjacent events and the next word generation given the previous

surface word forms (§3.1.1). Thus, the posterior probability over the analysis is only de-

termined by the left context—subsequent decisions are independent of the process used

to generate a word at time t. However, since disambiguating information may be present

in either direction, we introduce a model variant that conditions on information in both

directions. Bidirectional dependencies mean that we can no longer use the chain rule to

factor the probability distribution from left-to-right. Rather we have to switch to a glob-

ally normalized, undirected model (i.e., a Markov random field) to define the probabilities

of selecting the mode of generation and generation probability (conditional on the mode).

The factors used to parameterize the model are defined in terms of two LSTMs, one en-

coding from left-to-right the prefix of the ith word (hi, defined exactly as above), and a

second encoding from right-to-left its suffix (h ′i). These two vector representations are used

to compute a score using a locally normalized mixture model for each word. Intuitively,

the morphological analysis generated at each time step should be compatible with both the

preceding words and the following words.

Optimizing this model with the same MLE criterion we used in the direct model is,

unfortunately, intractable since a normalizer would need to be computed. Instead, we use

a pseudo-likelihood objective (Besag, 1975).

LPL =
∏
i

p(wi | w−i)

=
∏
i

∑
m

p(mi = m | w−i)p(wi | m,w−i)

We note that although this model has a very different semantics from the directed one, the

PL training objective is identical to the directed model’s, the only difference is that features

are based both on the past and future, rather than only the past.

Although evaluating sentence likelihoods in this model is intractable (a normalization

factor would need to be computed), posterior inference over mi and ai is feasible since the

normalization factors cancel and therefore do not need to be computed.

For our experiments we use the data set of Yuret and Türe (2006) who manually disam-

biguated from among the possible forms identified by an FST. We significantly out-perform

the simple baseline of randomly guessing, and our results are competitive with Yatbaz and
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Yuret (2009), although they evaluated on a different dataset so they are not directly com-

parable. Furthermore, we also compare to a supervised model (Shen et al., 2016). While

unsupervised techniques can’t hope to exceed supervised accuracies, this comparison pro-

vides insight into the difficulty of the problem.

related work

purely character-based or subword-based lms have a rich history going all

the way back to Markov (1906)’s work modelling Russian character-by-character with his

namesake models. More recently Sutskever et al. (2011) were the first to apply RNNs to

character-level language modelling, leveraging their ability to handle the long-range de-

pendencies required to model language at the character level. It is also possible to alleviate

the closed vocabulary problem by training models on automatically acquired subword units

(Mikolov et al., 2012; Sennrich et al., 2015). Neubig and Duh (2013) also studied character-

level LMs on a variety of languages, including many morphologically rich ones, but used

more traditional count-based language models. Character-level models are also used in

morphological re-inflection, either with weighted FSTs (Rastogi et al., 2016) or in a fully

neural sequence-to-sequence framework (Faruqui et al., 2016). While these approaches al-

low for an open vocabulary (or nearly open, in the case of subwords) they discard a large

amount of higher-level information, inhibiting learning.

character-aware language models , which combine character- and word-level

information have shown promise (Kang et al., 2011; Ling et al., 2015; Kim et al., 2016).

Unsupervised morphology has also been shown to improve the representations used by a

log-bilinear LM (Botha and Blunsom, 2014). Jozefowicz et al. (2016) explore many interest-

ing such architectures, and compare with fully character-based models. While these models

allow for the elegant encoding of novel word forms they lack an open vocabulary.

open-vocabulary hybrid models alleviate this problem, extending the benefits

of character-level representations to the generation. Such hybrid models with open vo-

cabularies have been around since Brown et al. (1992). More recently, Chung et al. (2017)

and Hwang and Sung (2017) describe methods of modelling sentences at both the word

and character levels, using mechanisms to allow both a word-internal model that captures

short-range dependencies and a word-external model to capture longer-range dependen-
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cies. These models have been successfully applied to machine translation by Luong and

Manning (2016), who use a character-level model to predict translations of out of vocab-

ulary words. Our work falls in this category—we combine multiple representation levels

while maintaining the ability to generate any character sequence. In contrast to these previ-

ous works, we demonstrate the utility of incorporating morphological information in these

open-vocabulary models.

mixture model language generation where the mixture coefficients are pre-

dicted by a neural net are becoming quite common. Neubig and Dyer (2016) use this strat-

egy to combine a count-based model and a neural language model. Ling et al. (2016) inter-

polate between character- and word-based models to translate between natural language

text and computer code. Merity et al. (2017) also use multiple output models, allowing a

word to either be generated by a standard softmax or by copying a word from earlier in the

input sentence.

Vilar et al. (2007) were among the first to explore the idea of using both word and

character information for machine translation. The idea of doing machine translation at

the morpheme level, using a lemma and series of affixes, was explored by Chahuneau

et al. (2013a). They use a conditional random field to learn to translate source language

lemmas, part of speech tags, dependency trees, and a host of other linguistically-motivated

features into a target language lemma and set of morphological tags. Finally, they use a

morphological analyzer to combine the lemmas and affixes into surface form words. More

recently Liu et al. (2018) use character-level recurrent models to predict translations of OOV

tokens in a statistical MT framework.

conclusion

This chapter demonstrated that morphological information can be used to inform both

the input representation and word generation processes. We introduced a technique for

language modelling that works particularly well on morphologically rich languages where

having an open vocabulary is desirable. We achieve this by using a multi-modal architecture

that allows words to be input and output at the word, morpheme, or character levels. We

show that knowledge of the existence of word boundaries is of critical importance for

language modelling tasks, even when otherwise operating entirely at the character level,
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resulting in a surprisingly large reduction in per-character entropy across all languages

studied.

Furthermore, we demonstrate that information from hand-crafted morphological ana-

lyzers combined with neural networks are able to out-perform linguistically naïve models.

This indicates that the linguistic knowledge imbued by the analyzers is able to aid the

learning and generalization of neural models, providing strong evidence for the thesis

statement.



4
N E U R A L D E P E N D E N C Y G E N E R AT I O N

In the previous chapter we examined the formation of words via morphological processes.

In this chapter we look at the formation of sentences via syntactic processes. Recurrent

neural network grammars (Dyer et al., 2016, RNNGs) are syntactic language models that

use predicted syntactic structures to determine the topology of the recurrent networks they

use to predict subsequent words. Not only do these models learn to model language better

than non-syntactic language models, but the conditional distributions over parse trees given

sentences produce excellent parsers (Fried et al., 2017). The downside of these models is

that they use phrase structure parses, which are expensive to annotate and only available

in a small number of languages. In this chapter we investigate whether similar gains can be

obtained using dependency trees, which exist in many more languages (Nivre et al., 2017).

In this chapter, we introduce and evaluate two new dependency syntax language mod-

els which are based on a recurrent neural network (RNN) backbone (§4.1).1 Dependency

syntax is particularly appealing as many more languages have dependency treebanks (e.g.

the Universal Dependencies Project (Nivre et al., 2017)) than have large numbers of phrase

structure annotations.

Like RNNGs, our proposed models predict structure and words jointly, and the pre-

dicted syntactic structure is used to determine the structure of the neural network that is

used to represent the history of actions taken by the model and to make a better estimate of

the distribution over subsequent structure-building and word-generating actions. Because

we use RNNs to encode the derivation history, our models do not make any explicit inde-

pendence assumptions, but instead condition on the complete history of actions. The two

proposed models do, however, differ in the order that they construct the trees. The first

model operates top-down (§4.1.1), starting at the root and recursively generating depen-

dents until the last modifier has been generated. The second operates bottom-up (§4.1.2),

generating words from left to right and interleaving decisions about how they fit together

to form tree fragments and finally a fully formed dependency tree.2

This chapter is to be presented at CoNLL 2019.
1 We release code for these two models, which can be found at https://github.com/armatthews/dependency-lm.
2 In this chapter we limit ourselves to models that are capable only of generating projective dependency trees.
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Figure 10: Generation process for the same dependency tree under the top-down and bottom-up
models. As the indices of the generation events show, the top-down model generates
recursively from the root, whereas the bottom-up model generates from left to right.

Because neither model makes explicit independence assumptions, given enough capac-

ity, infinite data, and a perfect learner, both models would converge to the same estimate.

However, in our limited, finite, and imperfect world, these two models will impose differ-

ent biases on the learner: in one order, relevant conditioning information may be more local

(which could mean the neural networks have an easier time learning to exploit the relevant

information rather than becoming distracted by accidental correlations), while in the other

it may be more distant. These differences thus imply that the two models will have differ-

ent structural biases, but it is not at all clear whether one should outperform the other. We

therefore explore to what extent this choice of construction order affects performance, and

we evaluate the proposed models on language modelling and parsing tasks across three

typologically different languages (§4.2).

Our findings (§4.3) show that, like RNNGs, generative dependency models make good

parsers. Given the small scale of the Universal Dependency corpora, this result is also in line

with previous work which shows that joint generative models offer very sample-efficient

estimates of conditional distributions (Yogatama et al., 2017). Second, we find that both de-

pendency models are less effective as language models than phrase structure RNNGs or than

standard LSTM language models. This negative result is not entirely surprising. Although

information about syntactic dependencies seems intuitively that it would be helpful for

defining good conditioning contexts for language models, since its earliest days (Tesnière,

1959), work on dependency syntax has largely focused on discriminative models of existing
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sentences. In contrast, the phrase structure annotations found in, e.g., the Penn Treebank

that were used to demonstrate improved language modelling performance with RNNGs are

indebted to linguistic theories (e.g. government and binding theory, X-bar theory) which

are broadly concerned with determining which sentences are grammatical and which are

not—a crucial aspect of language modelling (Marcus et al., 1993). Finally, we observe only

minimal differences in language modelling performance for top-down and bottom-up mod-

els. This result is surprising in light of how different the estimation problems are, but it is

a clear demonstration of the ability of RNNs to learn to extract relevant features from data

presented in any different but consistent orders.

models

We present two models for jointly generating projective dependency trees and sentences.

The processes are illustrated in Fig. 10. The first is a top-down model (§4.1.1), which starts

by generating the root of the sentence, and then recursively generating its left and right

modifiers. The second is a bottom-up model (§4.1.2), which generates terminals in a left to

right order. In both cases, there is a deterministic mapping from well-formed sequences of

generation actions into dependency trees. Following convention in parsing literature, we

refer to such action sequences as oracles.

Both models both are parameterized with recursively structured neural networks that

have access to the complete history of generation events. Thus, the factorization of the tree

probability is justified by the chain rule. However, because of the difference in build orders,

the conditional probabilities being estimated are quite different, and we thus expect these

models might be more or less effective at either language modelling or (when used in

conjunction with Bayes’ rule) parsing.

To illustrate the different estimation problems posed by the two models, consider the

first generation event in both cases. In the top-down model, the root word (usually the

main verb of the sentence) is generated first; whereas in the bottom-up model, the first

probability modelled is the probability of the first word in the sentence. Also, in the top-

down model a verb always generates its dependentents (which has implications for how

agreement is modelled), whereas in the bottom-up model, it the left dependents (whatever

their function) will be generated first, and then the verb generation will be conditional on

them. Again, we emphasize that these differences potentially result in differences in the
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Before Action After

Alice gave the tall$ man giftstall gen Alice gave the tall$ man giftstall

Alice gave the tall$ man giftstall stop-l Alice gave the tall$ man giftstall

Alice gave the tall$ man giftstall stop-r Alice gave the tall$ man giftstall

Figure 11: Examples of the three actions of our top-down model. The dotted arrow indicates where
the new word will go if the gen action is chosen next. gen creates a new terminal node
and moves the dotted arrow to point to the left of the new token. stop-l moves the
dotted arrow from the left of the current token to the right thereof. stop-r moves the
dotted arrow from the right of the current token back up to its parent node.

difficulty of the estimation problem (or how much capacity the model needs to represent

accurate conditionals), but do not impact the expressivity or correctness of the models.

Top Down

Our first model is a top-down model. The model begins with an empty root node 3 Starting

from the root the model recursively generates child nodes using its gen action. When the

model chooses the gen action it then selects a new head word from its vocabulary and

creates a new node descended from the most recent open constituent. Each node created in

this way is pushed onto a stack of open constituents, and begins creating its left children.

To indicate that the current node (i.e. the top node in the stack) is done generating left

children the model takes its stop-l (“stop left”) action, after which the current node begins

generating its right children. Analogously, to indicate that the current node is done gener-

ating right children the model selects its stop-r (“stop right”) action. With this the current

constituent is complete and thus popped off the stack and attached as a child of the new

top-most constituent. See Figure 11 for examples of the effects of each of these three actions

on a partially built tree structure and Algorithm 1 for a sketch of their implementation.

At each decision point the model conditions on the output of an LSTM over the partially

completed constituents on the stack, beginning with the root and ending with the top-most

constituent. The result is passed through an MLP and then a softmax that decides which

3 The root node may never have left children. In this way it is though the root node has already generated its
stop-l, though this step is not explicitly modelled
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Figure 12: To encode the history of generation events in the top-down process, we use an LSTM over
subtree embeddings (See Figure 13). The LSTM proceeds from the root of the tree down to
the most recent open node. Each item in the LSTM is an embedding of a word and its
already generated descendants. stop symbols have been suppressed for clarity.
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Figure 13: Examples of embedding two subtrees in the top-down model. A subtree is embedded
using an LSTM over its child subtrees (solid lines) with a gated residual connection from
the root word to the final embedding (dotted lines).
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Algorithm 1 Top-Down Tree Generation

1: procedure EmbedTree(node)
2: state = lstm_initial_state
3: for child in node do
4: if child is terminal then
5: state.append(WordEmbs[child])
6: else
7: state.append(EmbedTree(child))
8: return state
9: procedure PickNextAction(stack)

10: h = MLPaction(EmbedTree(stack))
11: action ∼ softmax(h)
12: return action
13: procedure PickWord(stack)
14: h = MLPword(EmbedTree(stack))
15: word ∼ softmax(h)
16: return word
17: procedure GenerateNode(stack)
18: action = PickNextAction(stack)
19: if action == gen then
20: word = PickWord(stack)
21: stack.push(new Node(word))
22: else if action == stop-l then
23: stack.back().add_child(stop-l)
24: else if action == stop-r then
25: stack.back().add_child(stop-r)
26: child_emb = stack.pop()
27: stack.back().add_child(child_emb)

action to take next (Figure 12). If the model chooses the gen action, the hidden vector from

the MLP is used to separately choose a terminal.

To embed each subtree on the stack we use another LSTM. First we feed in the head

word of the constituent, followed by the embeddings of each of the constituent’s children,

including the special stop-l and stop-r symbols. We then additionally add a gated residual

connection from the head word to final subtree representation to allow salient information

of the head word to be captured without needing to pass through an arbitrary number of

LSTM steps (Figure 13).

Bottom-Up

Our second model generates sentences bottom-up, in the same manner as a shift-reduce

parser. A sentence is modelled as a series of actions (related to the arc-standard transitions

used in parsing (Nivre, 2013)) that manipulate a stack of embedded tree fragments. There
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Figure 14: Examples of the three actions of our bottom-up model and their effects on the internal
stack. shift adds a new terminal to the top of the stack. reduce-l combines the top two
elements of the stack with a left arc from the head of the top-most element to the head of
the second element. reduce-r combines the top two elements with a right arc from the
head of the second element to the head of the top-most element.

Alice gave
$

the

L
S
T
M

Stack
Embedding

Action Softmax

REDUCE(LEFT)

very tall

old man

Figure 15: Our bottom-up model emulates a shift-reduce parser and maintains an explicit stack. At
each timestep, we use the output of an LSTM over the stack to choose the next action,
which is then executed to produce a new stack state.
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are three types of actions: shift(x), which pushes a new terminal x onto the stack, reduce-

l, which combines the two top elements on the stack into one single subtree with the left of

the two as the head (i.e. with a leftward arrow), and reduce-r which again combines the

top two elements of the stack, this time making the right one the head. See Figure 14 for

examples of how these three actions affect the stack of partially built tree structures during

the parsing of an example sentence.

At each time step the model conditions on the state of the stack using an LSTM running

over entries from oldest (bottom) to newest (top). The resulting vector h is then passed

through an MLP, and then a softmax over the three possible action types. If the shift action

is taken, the vector h is re-used and passed through a separate MLP and softmax over the

vocabulary to choose an individual word to generate. If one of the two reduce actions is

chosen, the top two elements from the stack are popped, concatenated (with the head-to-be

first, followed by the child), and passed through an MLP. The result is a vector representing

a new subtree that is then pushed onto the stack. Kuncoro et al. (2016) showed that this

type of stack-based representation alone is sufficient for language modelling and parsing,

and indeed that more involved models actually damage model performance. See Figure 15

for an example of how this bottom-up model chooses an action.

Marginalization

Traditionally a language model takes a sentence x and assigns it a probability p(x). Since

our syntax-based language models jointly predicts the probability p(x,y) of a sequence of

terminals x and a tree y, we must marginalize over trees to get the total probability assigned

to a sentence x, p(x) =
∑

y∈T(x) p(x,y), where T(x) represents the set of all possible

dependency trees over a sentence x. Unfortunately the size of T(x) grows exponentially in

the length of x, making explicit marginalization infeasible.

Instead we use importance sampling to approximate the marginal (Dyer et al., 2016).

We use the parser of Dyer et al. (2015), a discriminative neural stack-LSTM-based bottom-up

parser, as our proposal distribution q(x,y) and compute the approximate marginal using

N = 1000 samples per sentence: p(x) ≈ 1
N

∑N
i=1

p(x,y)
q(x,y) .
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Train Dev Test Vocab

Language Words Sents Words Sents Words Sents Singletons Non-S’tons

English 204585 12543 25148 2002 25096 2077 9799 9873

Japanese 161900 7164 11556 511 12615 557 13091 9222

Arabic 223881 6075 30239 909 28264 680 9907 13242

Table 6: Statistics of the universal dependency data sets used in this chapter. Size of the train, dev,
and test sets are given in tokens. Vocabulary information is number of types.

Parsing Evaluation through Reranking

In order to evaluate our model as a parser we would ideally like to efficiently find the MAP

parse tree given an input sentence. Unfortunately, due to the unbounded dependencies

across the sequences of actions used by our models this inference is infeasible. As such,

we instead rerank a list of 1000 samples produced by the baseline discriminative parser,

a model combination process that has been shown to improve performance by combining

the different knowledge learned by the discriminative and generative models (Fried et al.,

2017).

For each hypothesis parse in the sample list we query the discriminative parser, our

top-down model, and our bottom-up model to obtain a score for the parse from each. We

can then either simply output the best-scoring hypothesis from any one model, or we can

learn a set of weights that optimizes performance on the dev set by combining the scores

of two or more of these models. While we could conceivably optimize these weights using

simple grid search, we are able to find good solutions much more quickly by employing

Minimum Error Rate Training (MERT) (Och, 2003) to this end. MERT is particularly suitable

for our task since we have a metric (number of correct arcs) that decomposes cleanly across

sentences, and a small number of weights. Indeed in the case where we use only two

models, MERT is guaranteed to find a set of weights that is globally optimal on the dev set

in just one iteration. For experiments involving all three models we initialize the weights to

all be negative one, and then perform 20 iterations of MERT, each starting from the output

of the last, and searching in the direction of a randomly chosen three-dimensional vector.
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experimental setup

Our primary goal is to discover whether dependency-based generative neural models are

able to improve the performance of their discriminative brethren, as measured on parsing

and language modelling tasks. We also seek to determine the effect construction order

and the biases implicit therein has on performance on these two tasks. To this end, we

test a baseline discriminative parser, our two models, and all combinations of these three

models on a parsing task in several languages, and we test a baseline and our two models’

performance on a language modelling task on the same set of languages.

Data Sets

We use the Universal Dependency (UD) corpora (Nivre et al., 2017) for three languages with

very different structures: English, Japanese, and Arabic, as provided for the 2017 CoNLL

shared task on universal dependency parsing. In all languages we convert all singleton

terminal symbols to a special unk token. See Table 6 for details regarding the size of these

data sets.

For Arabic and Japanese the dependency trees were hand-annotated in language-specific

formats and then converted automatically to the UD format as part of the UD project. Sen-

tences in the English UD corpus had their POS tags and dependency relations manually

annotated natively in the UD format. While these annotations certainly contain some er-

rors and are not precisely aligned with the most recent research on syntax (e.g. Chomsky,

1993b), they are still based on well-principled models (e.g. Chomsky, 1993a) and encode

biases that are likely beneficial to the task of language modelling.

For language modelling we evaluate using the gold sentence segmentations, word tok-

enizations, and part of speech tags given in the data. For parsing, we evaluate in two sce-

narios. In the first, we train and test on the same gold-standard data using in our language

modelling experiments. In the second, we again train on gold data, but we use UDPipe

(Straka and Straková, 2017) to segment, tokenize, and POS tag the dev and test sets start-

ing from raw text, following the default scenario and most participants in the CoNLL 2017

shared task.



4.3 results 53

Baseline Models

On the language modelling task we compare against a standard LSTM-based language

model baseline (Mikolov et al., 2010), using 1024-dimensional 2-layer LSTM cells, and opti-

mized using Adam (Kingma and Ba, 2015).

For the parsing task we compare against the discriminative parser of Dyer et al. (2015),

a bottom-up transition-based parser that uses stack-LSTMs, as well as the overall top sys-

tem (Dozat et al., 2017) from the 2017 CoNLL shared task on multilingual dependency

parsing (Zeman et al., 2017). That work uses a discriminative graph-based parser that uses

a biaffine scoring function to score each potential arc. Moreover, it uses character-level rep-

resentations to deal with morphology and a PoS tagger more sophisticated than UDPipe

– two major changes from the shared task’s default pipeline. These two differences afford

them a substantial advantage over our approach which only modifies the parsing step of

the pipeline.

Finally, we show the results of an oracle system looking at the 1000-best lists used for

our reranking experiments. Note that since this oracle system is constrained to using only

this list of samples it is not able to achieve 100% parsing accuracy.

Hyperparameters

All models use two-layer 1024-unit LSTMs and 1024-dimensional word/action embeddings.

All other MLPs have a single hidden layer, again with 1024 hidden units. We implement all

models using DyNet (Neubig et al., 2017a), and train using Adam (Kingma and Ba, 2015)

with a learning rate of 0.001, dropout with p = 0.5, and minibatches of 32 sentences. We

evaluate the model on a held out dev set after 150 updates, and save the model to disk

whenever the score is a new best. All other settings use DyNet defaults.

results

Results on the parsing task can be found in Table 7.

We observe that in English with the gold-standard preprocessing our models perform

particularly well, showing an improvement of 1.16% UAS F1 for the top-down and 0.82%

UAS F1 for the bottom-up model when individually combined with our discriminative
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English Japanese Arabic

Gold→ Gold Gold→ UDPipe Gold→ Gold Gold→ UDPipe Gold→ Gold Gold→ UDPipe

Model Reranked? Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

CoNLL Baseline 7 - - - 79.24 - - - 74.40 - - - 70.14

Dozat et al. (2017) 7 - - - 84.74 - - - 75.42 - - - 76.59

Disc (Greedy) 7 87.00 85.92 78.85 78.12 96.16 95.20 76.67 75.70 82.14 82.39 69.74 70.34

Disc (Reranked) 3 87.48 86.30 78.99 78.23 96.04 95.17 76.66 75.58 81.70 81.34 69.20 68.79

Top-Down 3 82.94 82.48 76.73 76.88 92.99 92.51 74.84 74.18 80.99 80.85 69.78 69.64

Bottom-Up 3 83.11 82.70 76.79 77.13 94.56 93.25 75.85 74.18 80.61 80.70 69.30 69.24

Disc + TD 3 88.47 87.46 80.46 79.56 96.07 95.43 76.59 74.62 82.87 82.37 70.35 70.25

Disc + BU 3 88.29 87.12 80.09 79.33 96.17 95.54 76.82 75.92 82.48 82.18 70.18 69.99

TD + BU 3 84.93 84.56 78.71 78.72 94.87 94.03 76.15 75.30 81.84 81.56 70.52 70.03

Disc + TD + BU 3 88.74 87.76 80.49 80.22 96.18 95.58 76.86 75.98 83.06 82.58 70.85 70.40

Oracle 3 97.68 97.27 91.07 90.24 99.39 99.25 79.67 80.34 91.20 89.06 77.75 76.17

Table 7: Results of parsing using our baseline discriminative parser, our two generative models,
combinations thereof, and two contrastive systems from the CoNLL 2017 shared task. Scores
in bold are the highest of our models. Note that Dozat et al. (2017) use substantially different
preprocessing. See §4.2.2 for details.

p(x,y) p(x)

Lang. Model Dev Test Dev Test

EN RNNLM - - 5.24 5.18
Top-Down 5.80 5.72 5.73 5.66

Bottom-Up 5.63 5.56 5.53 5.47

JA RNNLM - - 4.41 4.58
Top-Down 4.82 5.00 4.73 4.93

Bottom-Up 4.83 5.03 4.75 4.95

AR RNNLM - - 5.42 4.34
Top-Down 6.08 6.23 5.98 4.79

Bottom-Up 6.11 6.21 5.94 4.75

Table 8: Language modelling cross entropy of our model and an RNNLM baseline. Lower is better.
All scores are expressed in nats.
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parser. Combining all three models together gives a total of 1.46% absolute improvement

over the baseline, indicating that the models are able to capture knowledge lacking in the

baseline model, and knowledge that is complementary to each other.

The story is similar in Japanese and Arabic, though the gains are smaller in Japanese.

We hypothesize that this is due to the fact that parsing Japanese is relatively easy because of

its strict head-final and left-branching nature, and thus our baseline is already a remarkably

strong parser. This hypothesis is backed up by the fact that the baseline parser alone is only

3-4% UAS away from the oracle by itself, compared to about 10% away on English and

Arabic. Thus our relative improvement, measured in terms of the percentage of possible

improvement achieved, is quite consistent across the three languages, at roughly 13%.

Results on the test set using UDPipe’s noisy preprocessing also saw encouraging results

from the three-model ensemble gaining 1.99%, 0.40%, and 1.61% on English, Japanese, and

Arabic respectively, solidly outperforming the 2017 CoNLL shared task baselines across

the board, and beating Dozat et al. (2017), the overall shared task winner’s, submission on

Japanese.

Of particular note is that on both the gold and non-gold data, and across all three

languages, the performance of the top-down and bottom-up models is quite similar; neither

model consistently outperforms the other. In Japanese we do find the bottom-up parser

beats the top-down one when used alone, but when combined with the discriminative

model the lead evaporates, and in both of the other languages there is no clear trend.

We hypothesize that the bottom-up model benefits from the strictly head-final nature of

Japanese, which offers a clear signal as to the end of a constitent. English and Arabic, on

the other hand, have mixed headedness, allowing the top-down model to outperform the

incrementally building bottom-up model.

Overall these results are consistent with Fried et al. (2017) that has shown that gener-

ative models are particularly good at improving discriminative models through reranking,

as they have an effect similar to ensembling dissimilar models.

We find that despite successes on parsing, our dependency models are not empirically

suitable for language modelling. Table 8 shows the performance of our models on the

language modelling task. Across all three languages, both of our models underperform a

baseline RNNLM by a consistent margin of about 0.5 nats per word.

Again we note that the two models perform remarkably similarly, despite their com-

pletely different construction orders, and thus the completely different sets of information
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they condition on at each time step. Again neither model is a clear overall victor, and in

each individual language the models are extremely close in performance.

analysis

One of our most intriguing findings is that our two proposed models perform remarkably

similarly in spite of their differing construction orders. One would naturally assume that

the differing orders, as well as the wildly different history information available at each

decision point, would lead to performance differences. We seek to hone in on why the two

models’ performances are so similar.

Unfortunately the fact that the models use different conditioning contexts makes direct

comparison of sub-sentential scores impossible. The top-down model, which generates the

verb before its subject noun, may have large entropy when choosing the verb, but an easier

time choosing the subject since it can condition on the verb limiting its choices to appropri-

ate semantic classes, person, number, et cetera. The bottom-up model, on the other hand,

will generate the subject noun from the entire list of possible nouns first, and then will

focus its probability on relevant and agreeing verb forms when generating the verb.

To this end we plot the scores (i.e. the negative log probabilities) the models assign to

each gold tree in the English dev set. The raw scores between the top-down and bottom-

up models are highly correlated (Pearson’s r = 0.995), largely due to the fact that longer

sentences naturally have lower probabilities than shorter sentences. As such, we examine

length-normalized scores, dividing each sentence’s score by its length. The results are still

largely correlated (r = 0.88), with a few outliers, all of which are very short (<3 tokens)

sentences.

We hypothesize that much of this correlation stems from the fact that for a given sen-

tence both models must generate the same sequence of terminal symbols. Some sentences

will have rare sequences of terminals while others have more common words, leading to

an obvious, but perhaps uninformative, correlation. To examine this possibility we factor

our models’ scores into a terminal component and a structure component so that the overall

negative log likelihood of a sentence is decomposed as NLL = NLLterminals + NLLstructure.

We then examine the correlation between the two models’ scores’ terminal components

and their structure components separately. We find that the terminal components are still

strongly correlated (r = 0.91), while the structure components are largely uncorrelated

(r = 0.09), hinting that information the two models learned about the correct structure of
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Structure Terminals

Top-Down 4.97 67.9
Bottom-Up 7.42 63.3

Table 9: Our models’ average negative log likelihoods on the English dev set broken down into
structure and terminal components

English sentences differs. See Figure 16 for a visual representation of these data. Overall

the top-down model also assigns much higher probabilities to correct structures, but lower

probabilities to the correct terminal sequences (Table 9).

related work

Most work on discriminative dependency parsing follows the bottom-up paradigm (Nivre,

2003; Nivre et al., 2007; Dyer et al., 2015; Kiperwasser and Goldberg, 2016), but top-down

models have also shown some promise (Zhang et al., 2015).

Most existing generative dependency models whether used for parsing, unsupervised

dependency induction, or language modelling (Buys and Blunsom, 2015; Jiang et al., 2016)

have relied on independence assumptions. Buys and Blunsom (2015) also describe a genera-

tive bottom-up neural parser, but they use hand-crafted input features and limit the model

to third-order features. They show that their model is able to out-perform several previous

generative parsers (though lagging behind the discriminative Stanford Parser (Chen and

Manning, 2014)), and is able to out-perform n-gram language models. Titov and Hender-

son (2010) is perhaps closest to the models explored in this paper in that define a genera-

tive parsing model that makes no independence assumptions. However, rather than using

RNNs to encode history, they use incremental sigmoid belief networks (Neal, 1992), which

use stochastic latent variables to represent unbounded histories. In their model, trees are

generated in a hybrid bottom-up and top-down build order. While their model could, in

theory, be applied to language modelling (although the latent variables in the ISBNs make

marginalization even more difficult), they do not test their model on that task.

The CoNLL 2017 shared task saw many different models succeed at parsing Univer-

sal Dependencies. Most of the top contenders, including the best scoring systems on the

languages discussed in this chapter, use discriminative models.

Kanayama et al. (2017) had tremendous success on Japanese using a wildly different

approach. They train a model to identify likely syntactic heads, then assume that all other
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Figure 16: Analysis of the structure (top) and terminal (bottom) scores of our two models’ perfor-
mance on the English development set. We find that the structure scores are not corre-
lated, while the terminal scores of the two models are highly correlated.
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words simply attach in a left-branching structure, an assumption that works out well due

to the strictly head-final nature of Japanese.

Dozat et al. (2017) train a discriminative neural parser which uses a BiLSTM to generate

hidden representations of each word (Kiperwasser and Goldberg, 2016). These representa-

tions are then transformed to produce a pair of hidden states – one that represents the word

as a dependent seeking its head, and the other that represents the word as a head seeking

all its dependents.

Björkelund et al. (2017) perform best on Arabic, using an ensemble of many different

types of bottom-up discriminative parsers. They have each of twelve parsers score potential

arcs, learn a weighting function to combine them, and use the Chu-Liu-Edmonds algorithm

(Chu, 1965; Edmonds, 1967) to output final parses.

All three of these discriminative models are very effective for analysis of a sentence,

none of them are able to be converted into a similar generative model. At best, the biaffine

model of Dozat et al. (2017) could generate a bag of dependencies without order informa-

tion, which makes it impractical as the basis for a generative model.

There has been past work on building recurrent neural models that condition on the

buffer to make parsing decisions in a shift-reduce parser. Henderson (2004) was among the

first to introduce such a model. They introduce both a generative and discriminative model

based on Simple Synchrony Networks (Lane and Henderson, 1998), and use a pre-cursor

to attention mechanisms to choose which previous states are most relevant at the current

timestep. More recently Dyer et al. (2015) created a similar model based on stack LSTMs.

There has also been past work on language modelling with generation orders other

than the typical left-to-right. Ford et al. (2018) examine a variety of possibilities, but stop

short of syntax-aware orderings. Buys and Blunsom (2018) investigate neural language

models with latent dependency structure, also concluding that while dependencies perform

well on parsing they underperform for language modelling.

conclusion

In this chapter we test our hypothesis that dependency structures can improve performance

on language modelling and machine translation tasks, in the same way that constituency

parsers have been shown to help. We developed two new dependency-based models and

test their effectiveness on language modelling and parsing tasks. We conclude that gen-

erative dependency models do indeed make very good parsing models and, as has been
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observed in phrase structure parsing, combining a generative dependency parser with a

traditional discriminative one does indeed improve parsing performance. We however also

find that using dependency information to structure the intermediate representations in

language modelling does not easily lead to better outcomes than using linguistically naïve

models.

This pattern of results has a more complicated interaction with the thesis statement. We

know that phrase-structure trees improve language modelling, and thus that that kind of

syntactic knowledge does indeed provide good biases to improve generalization. The biases

learned from dependencies, on the other hand, do not help. We conclude that the biases

inherent to dependencies may be a useful tool for text analysis, but are less suited to char-

acterizing a generation process of sentences than phrase structure grammars are. Finally,

we find that the choice of top-down or bottom-up construction order affects performance

minimally on both the parsing and language modelling tasks despite the large differences

in the local conditioning contexts of each action choice.



5
S Y N TA X A N D N E U R A L M A C H I N E T R A N S L AT I O N

In the previous chapter we introduced syntax into language models for various languages.

We will now turn our attention to conditional modelling of language using syntax. We exam-

ine the problem of machine translation (MT) from a variety of languages into English and

the effects of syntax-aware models thereupon. This task is particularly interesting due to

its inherent multilingualism, allowing us to model two languages’ syntax simultaneously.

This exposes our models to more varied syntactic structures and forces them to learn corre-

lations between potentially very different structures.

We posit that syntax-aware models should excel at machine translation for two reasons.

The first is that sentence-aligned parallel data is much more scarce than monolingual data.

We know that linguistics-aware models are more sample efficient than naïve models for

unconditional language modelling (Dyer et al., 2016; Eriguchi et al., 2017), and thus suspect

that the same would hold true for conditional language modelling. Furthermore, while

monolingual data suitable for language modelling is passively produced by billions of

people in thousands of languages every day, parallel data for machine translation is a much

more limited resource. The sample efficiency gains brought by syntax should thus be even

more impactful on this problem.

The second reason is that we have seen historically that syntax-based statistical transla-

tion models were able to out-perform naïve phrase-based machine translation (Galley et al.,

2004; Chiang, 2005; Lavie et al., 2008; Hanneman et al., 2011). Most previous tree-to-tree

approaches, however, make an unrealistic assumption that the source- and target-language

trees are fully isomorphic. Quasi-synchronous grammars (Smith and Eisner, 2006; Gimpel

and Smith, 2011) offer a solution by learning to use well-aligned subtrees while still al-

lowing for some disparity between the overall tree structures. They permit a more direct

account of the fact that there may be large syntactic divergences (e.g. head swapping) be-

tween languages. Symbolic syntax-based systems (both fully- and quasi-synchronous) were

slow and brittle, relying on sparse statistics and complex combinatorial global search algo-

rithms. Neural models, on the other hand, are able to capture complex distributions found

in the data by allowing, but not requiring, the model to look at some or all of a source

61
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tree while generating a target tree. Furthermore these neural models yet admit decoding

algorithms based on beam search. They promise to harness the power of syntax while more

easily generalizing from limited data and side-stepping the need for slow heuristic search.

To this end, we propose syntax-aware input and output models to perform quasi-

synchronous translation, in which one loosely conditions on a source language syntax tree

while producing a target language syntax tree. We use bidirectional TreeGRUs to embed

the source tree as they have been shown to be outperform several other models as trans-

lation encoders (Chen et al., 2017a). We expect that a syntax-aware encoder will allow the

model to better understand long-distance dependencies in the source sentence, more eas-

ily understanding the input sentence’s meaning. In the previous chapter we saw that our

dependency-based models underform on language modelling tasks. As such, we use RN-

NGs (Dyer et al., 2016), as our target-side syntactic language model. RNNGs have been

shown to be strong language models, capable of capturing the grammaticality of sentences,

ensuring the validity of our translation output. We experiment with syntax on one side, the

other, or both.

While our quasi-synchronous tree-to-tree translation system represents a novel ap-

proach to neural MT there has been much prior work on incorporating various types of

syntax into NMT. Most work focuses primarily on using syntax to do source-language

encodings either using dependencies (Wu et al., 2017b; Chen et al., 2017b; Bastings et al.,

2017) or phrase-structure trees (Eriguchi et al., 2016; Chen et al., 2017a). Target-side syn-

tax represents a much further departure from baseline models. Some work has focused on

the less ambitious task of generating linearized trees (Aharoni and Goldberg, 2017; Nade-

jde et al., 2017a), but more recent work has explored fully neural dependency (Wu et al.,

2017a) and phrase-structure models (Eriguchi et al., 2017). This chapter takes the best of

both worlds, combining the approaches of Eriguchi et al. (2016) and Eriguchi et al. (2017)

to do end-to-end tree-to-tree NMT.

This chapter examines the effects of syntactic knowledge on machine translation be-

tween English and several typologically different languages, including Arabic, Chinese,

French, and German.

model

Our model is based on the attention model (Bahdanau et al., 2015), which consists of three

parts: an encoder, a decoder, and an attention mechanism. We replace the baseline RNN-
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Figure 17: Our syntax-aware machine translation system runs a BiLSTM over input word vectors
to create a set of context-aware word embeddings, followed by a TreeGRU to get a final
set of embeddings for each node in the source-side tree. Simultaneously a stack LSTM
is used to embed the partial target syntax tree, and produce the decoder’s hidden state.
The decoder’s hidden state is compared to each context-aware word embedding to get an
attention score. The attention scores are then passed through a softmax to get an attention
distribution. The context-aware embeddings are then dotted with the attention distribu-
tion to get a context vector. The context vector and decoder state are then combined to
create the full conditioning context, used to predict the next action in the construction
of the target side syntax tree. Here the model predicts the gen action, indicating that it
wishes to generate a terminal. The model re-uses the single conditioning context vector
to predict a single terminal word. Departures from the baseline encoder are marked in
salmon. The RNNG that encodes the partially built target-language trees is marked in
teal. The factored RNNG action prediction output layer is marked in light blue. Together
the teal and light blue components represent the departures from the baseline decoder.
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based encoder and decoder with syntax-based alternatives. Below we outline each piece of

this system in turn.

Syntactically-Aware Encoder Models

The baseline encoder model uses a BiLSTM to encode the source sentence. Words are em-

bedded in a vector space (using either raw word embeddings or our morphological model

from Chapter 3), and then passed through both a forward and backwards LSTM. This pro-

duces a pair of hidden states for each word, one from the forward LSTM and one from the

backward LSTM, which are then combined to create a single encoded vector representation

for each word.

The syntax-aware encoder uses a syntax tree rather than a linear ordering to combine

terminal embeddings. Furthermore, it produces an embedding for every node in the syntax

tree, rather than just the terminals. The final embedding of each node is a combination of

two parts: an inside embedding, which encodes all the information about the node and its

descendants, and an outside embedding, which encodes the rest of the syntax tree.

The inside embeddings are created bottom-up, starting at the leaves. Each leaf of the

syntax tree is a terminal, and since it has no descendants it suffices to have the inside

embedding simply be the encoding of the terminal (either the raw word embedding or the

output of the BiLSTM over terminals). For each other node in the tree, its inside embedding

is computed using a GRU whose inputs are the embedding of the node’s label (e.g. NP, VBZ,

etc.) and the embeddings of its children.

The outside embeddings are created top-down, starting at the root. The root node’s

outside embedding is created using a non-linear transform of its inside embedding. For

each other node, its outside embedding is a GRU whose inputs are its own inside vector

and its parent’s outside vector.

Finally, the inside and outside embeddings are summed to produce a single vector for

each node in the syntax tree. All of these embeddings, including those representing non-

terminals, are available for the attention model to attend to, allowing the decoder to focus

on a whole constituent, rather than just terminals.

This encoder model is based on the work of Chen et al. (2017a), but is extended to use

non-terminals labels in both the inside and outside embeddings.
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Syntactically-Aware Decoder Models

The baseline decoder model uses a single (foward) LSTM that additionally conditions on the

context vector output by the attention mechanism. At each time step the model conditions

on the hidden state of the LSTM (thus indirectly conditioning on all previously generated

output words) and the context vector in order to predict (a distribution over) the next

output word.

The syntax-aware decoder model uses an RNNG to construct a parse tree of the target

sentence in a top-down fashion. Instead of directly predicting individual words, the RNNG

decoder constructions each sentence as a series of actions.

In the original RNNG framework there are three types of actions: The shift(w) action

takes a word w and pushes it on to the stack. The nt(n) action takes a non-terminal label

n and pushes it on to the stack. The reduce action pops items off the stack up until (and

including) the first non-terminal label it encounters. It then combines all these elements

into one subtree and pushes the result back on to the stack.

In this work, we modify the above framework to better fit our use case of labelled

binary trees. To this end, we make the reduce action implicit. Whenever the top-most open

non-terminal has two completed children we automatically perform the reduce action. This

means that each shift action may be followed by any number of implicit reduce actions.

This also means that the reduce action is never explicitly used, except for in the case of

sentences containing just one word.

At each time step the decoder gives a distribution over subsequent actions p(at|a1 . . . at−1)

factored as

p(at = shift|a1 . . . at−1) · p(w|a1 . . . at−1,at = shift) if at = shift

p(at = nt|a1 . . . at−1) · p(n|a1 . . . at−1,at = nt) if at = nt

p(at = reduce|a1 . . . at−1) if at = reduce

The distribution over the three action types, p(at | a1 . . . at−1) is computed as softmax(W ·

s+ V · c+ b), where s is an embedding of the decoder’s current state, as shown below, c is

the context vector from the attention mechanism, and W, V , and b are learned parameters.

The distributions p(w | ·) and p(n | ·) are implemented similarly as a softmax over the

relevant vocabulary following a linear transform.
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The state vector is the sum of three component vectors: 1. The output of an LSTM over

previous actions 2. The output of an LSTM over previously generated terminals 3. The

output of an LSTM over the elements on the stack, from oldest to newest.

When an action a is executed, any required stack manipulations are performed and it

is added to the end of the action LSTM. If a is a shift action, its word is added to the end

of the terminal LSTM. For reduce actions (be they implicit or explicit), elements up to and

including the most recent non-terminal are popped from the stack. They are then combined

via a BiLSTM. In each direction, the LSTM is seeded with the embedding of the most recent

non-terminal n, and then passed the vectors representing each child in term. The output

of the forward and backward LSTMs are summed, and the result is pushed back onto the

stack. For nt(n) actions, the only stack manipulation is to push the embedding of the non-

terminal n onto the stack. For shift(w) actions, the embedding of the word w is pushed

onto the stack. Then implicit reduce actions are triggered until the stack no longer has two

complete constituents on top.

batching

Modern graphics cards have the ability to perform the same computation in parallel on

many different inputs. Neural networks benefit greatly from leveraging this capability dur-

ing training (Oh and Jung, 2004). For example, say a network needs to compute a matrix-

vector product Wxi for each input example i. Given a batch of b input examples, one may

stack the vectors x1 . . . xb into one matrix X and then compute one easily parallelizable

matrix-matrix product WX.

While optimally performing this batching on a given computation graph is NP-hard

(Neubig et al., 2017b), several neural network toolkits have used heuristics to automat-

ically optimize computation graphs (Neubig et al., 2017b; Bradbury and Fu, 2018). While

these tools offer low-effort approximate solutions practitioners typically achieve substantial

speed-ups with hand-engineered batching schemes specific to their particular computation

graphs (Junczys-Dowmunt et al., 2018, e.g.). This is usually done by combining the largest

groups of like computation nodes, while still respecting the topological ordering of the

graph.

When using a simple RNN the topology of the computation graph is a simple left-to-

right flow from timestep 1 to timestep T . Since the computations to advance from timestep t

to timestep t+ 1 use the same operators and parameter matrices across all input examples,
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Figure 18: Batching in a typical RNN.
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Figure 19: Bottom-up encoder batching.

it is relatively straight forward to stack the b input vectors xi into one input matrix X

and perform even relatively complicated computations (e.g. the computations required to

advance an LSTM by one step) in parallel for all b examples (Figure 18).

Given a minibatch of b input sentences, each of which has a maximum length of N,

computation for a simple RNN proceeds as follows. First, any sentences with length less

than N are padded with a special <pad> token. Next the RNN’s initial state vector s0 (of

dimension d is duplicated b times to form a b × d matrix. Then, instead of performing

computations on each of the b state vectors individually, the system can perform the com-

putations to advance from step t to t+ 1 (e.g. st+1 = tanh(Wst + b)) on the entire matrix

at once, resulting in a matrix whose ith row represents the RNN state of the ith of the

b inputs after t+ 1 words. Finally, a mask is typically applied, multiplying outputs corre-

sponding to <pad> tokens by 0, thereby resetting them and indicating that they are not

used downstream.

Syntax trees, however, lack this nice topological structure since each input sentence

will have a different tree structure. For example, one sentence may have its first two words

directly combining into a constituent (Figure 19, left), but another sentence may have the

second and third word combine, with the first word attaching higher up in the tree (Fig-
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Figure 20: Top-down encoder batching.

ure 19, right). As such, naïve batching schemes do not work well for syntax trees, leading

us to seek an alternative.

In our syntax-based encoder, however, nodes are not encoded linearly. In general it is

not the case that the ith word in each of the b input sentences will attach to the same place

in the overall tree structure. Nevertheless there does exist substructure in the input syntax

trees that we can exploit to perform batching. For one, if we topologically sort input trees

such that nodes always succeed their children (Figure 19) then the bottom-up pass of our

tree encoder model can be efficiently batched. In fact, not only can we batch multiple input

examples together, but we can additionally do a surprising amount of batching within a

single input tree! Given b > 1 trees all the pre-terminals, for example, can be batched

together, their states computed in parallel given the terminals beneath them.

Figure 19 shows how this scheme works on a batch of two input sentences. Notice

that the computation of all eight pre-terminal nodes can happen in parallel, with batching

happening both intra- ane inter-sententially. Similarly, all the binary nodes at level 3© (for

example) can be computed together.

Formally, we define the distance-to-leaf (DTL) of a node to be 0 if that node is a terminal

and one more than the maximum of it’s childrens’ DTLs otherwise.

DTL(n) =


0 if n is a terminal

maxc∈children(n)DTL(c) + 1 otherwise
Now we can sort nodes primarily by their distance-to-leaves and then secondarily by

their arity. Then (in the bottom-up pass), we can batch all tree nodes that share these two

properties.

For the top-down pass we can perform a similar trick, this time sorting by distance-

to-root instead of distance-to-leaf (Figure 20). Note that for the top-down pass we needn’t
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Train Dev Test

Lang. Pair Sents Src Words Trg Words Sents Src Words Trg Words Sents Src Words Trg Words

Ar–En 214K 14.7M 14.9M 4711 315K 325K 5950 393K 397K
De–En 168K 10.1M 11.4M 4148 250K 281K 4489 261K 289K
Fr–En 192K 13.5M 13.1M 4317 304K 292K 4864 327K 314K
Zh–En 200K 13.8M 13.8M 4558 299K 313K 5251 345K 344K

Table 10: Statistics about the WIT3 corpus used in our translation experiments.

sub-sort by arity since each node’s top-down embedding is a function of only its parent’s

top-down embedding and the node’s own bottom-up embedding.

Note that while the experiments in this chapter focus exclusively on binarized trees,

our batching approach is more general. It can be applied to trees of any mixed arity.

Our approach has several advantages over the type of batching used for simple RNNs.

First, note that no padding is required in either the top-down or bottom-up passes. Second,

we are able to batch computations both across multiple input trees and within individual

input trees. Third, note that to encode a sentence of length n an RNN must perform n steps

while our model need only perform dA steps, where d is the depth of the tree and A is

the number of unique node arities within the tree. Since on average d ≈ log(n) this is a

significant benefit.

experiments

We compare systems with and without our syntax-enhanced encoder and decoder across

four language pairs: Arabic–English, German–English, French–English, and Chinese–English.

We use the WIT3 corpus of TED talks 1, statistics about which can be found in Table 10. We

use the Berkeley Parser (Kummerfeld et al., 2012, 2013) (with its --binarize flag) to parse

both sides of the corpora, discarding any sentences that fail to parse. We use the pre-trained

models packaged with the Berkeley Parser, which are trained on per-language treebanks

created by automatically annotationg news articles and manually correcting the results.

Models are implemented using xnmt (Neubig et al., 2018) and DyNet (Neubig et al.,

2017a). They are trained using Adam (Kingma and Ba, 2015) with a learning rate of 0.001,

dropout with p = 0.2 and minibatches of 64 sentences, and use 512-dimensional hidden

states and 128-dimensional words embeddings. Models are trained end-to-end to optimize

maximum likelihood of the gold trees produced by the Berkeley Parser. Each time perfor-

1 https://wit3.fbk.eu/

https://wit3.fbk.eu/
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Ar–En De–En Fr–En Zh–En
Enc. Dec. BLEU MTR Len BLEU MTR Len BLEU MTR Len BLEU MTR Len

str str 30.23 31.32 99.26 27.02 28.59 96.10 36.33 34.61 97.04 16.76 23.00 91.93

str tree 21.34 25.05 83.29 15.18 25.57 81.79 28.75 29.75 87.28 11.23 17.88 79.35

tree str 26.87 28.77 97.51 27.24 29.03 94.61 32.09 31.73 95.69 15.09 21.72 96.54
tree tree 21.14 24.72 91.52 11.60 13.05 93.67 25.72 27.27 91.24 11.77 18.56 85.60

Table 11: Machine translation ablation results on our dev set, ablating use of the syntactic encoder
(Enc.) and syntactic decoder (Dec.).

mance on the held-out dev set fails to improve three epochs in a row the learning rate is

halved. This process is repeated until the learning rate would be halved a fourth time. The

final models are chosen via early stopping, optimizing performance on the dev set. During

decoding we use standard beam search with a beam width of 5, a maximum length of 500,

and no length normalization, unless otherwise noted. System outputs are evaluated using

BLEU (Papineni et al., 2002), METEOR (Denkowski and Lavie, 2014), and length ratio. Pre-

liminary results on our held out dev sets can be found in Table 11. The results (and their

shortcomings) inspire the investigations and solutions described in the remainder of this

chapter.

syntax and length effects

Table 11 shows that our string-to-string baseline beats our syntax-informed models by a

substantial margin in three of the four languages, and is only narrowly edged out by a tree-

to-string system in German. The length ratios in Table 11 show one big reason why: the

syntax-based systems tend to severely undergenerate terminals, leading to a hard-hitting

BLEU length penalty.

We see that all the systems undergenerate to some extent, and that the systems that

output trees undergenerate to a much worse extent. Neural MT models undergenerating is

a known phenomenon (Murray and Chiang, 2018), and in fact Stahlberg and Byrne (2019)

experiment with three popular NMT architectures and find that for more than half of the

time the best output by model score is the empty string. While all standard NMT systems

undergenerate, our syntax-based models exhibit this effect to a greater extent. We investi-

gate several techniques to combat this undergeneration effect. First, we try standard length

normalization models, including both additive and multiplicative normalization schemes.

Second, we demonstrate the effects of changing the maximum legnth parameter during
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decoding, as well as the effect of capping the depth allowed in generated trees. Third, we

use a modified search algorithm when decoding using RNNGs.

Additive and Multiplicative Normalization

Two simple and widely used techniques for correcting length bias in translation output are

additive and multiplicative normalization.

Additive normalization (also known as a “word bonus” or “word penalty”) simply

adds a score bonus proportional to the length of the output: s ′ = s+ cL, where s is the

original score of a given sentence, L is the sentence’s length, s ′ is the normalized score, and

c is a constant that controls the strength of the normalization (Neubig, 2016).

Multiplicative normalization modifies the score by dividing it by the length of the

sentence raised to some power: s ′ = s
Lc (Wu et al., 2016). One popular choice is to use c = 1

(Koehn and Knowles, 2017), which corresponds to comparing hypotheses based on their

average per-word score.

While both of these approaches have similar overall effects, Murray and Chiang (2018)

show that additive normalization has a small empirical edge in addition to being more

theoretically justifiable.

Length and Depth Constraints

Since certain quirks of our trained models result in repetition of open non-terminals we

examine a very simple and pragmatic way to alleviate length issues: limiting the sentence

length and/or depth of the output trees. For sentence length limits we institute a hard cap

on the number of actions an output tree can contain. For tree depth we limit the number of

non-terminals that can be open at any given time.

Results using length and depth caps can be seen in Figure 21. We find that both of these

values have large impact on translation quality, with poor settings performing extremely

badly and only slight changes resulting in swings of half a BLEU or more. Good settings

of either parameter can bring the system’s length ratio very close to one, but the optimal

setting of the depth parameter results in nearly +2 BLEU over the optimal setting of the

maximum length.

Though these two settings both accomplish the same task, controlling the length ratio,

one might naturally ask if these two approaches could be combined to yield further im-
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(a) (b)

Figure 21: The effect of changing (a) maximum length and (b) maximum depth at decoding time in
our German–English string-to-tree system. Note: 99.7% of training trees have depth 6 40.

provements. Unfortunately, combining the two techniques caps out at 25.02 BLEU, yielding

no further gains over using either one alone.

In addition to simply capping the maximum length at some arbitrary (if empirically

chosen) depth, we also experiment with predicting the maximum depth. We experiment

with three such models. The first simply uses the training data to fit a logistic curve that

predicts tree depth given source length. Other types of curves, including linear, polynomial,

and exponential curves were considered, but the logistic curve was used because it had the

best r2. The second model bins the training sentences by their source length and computes

the mean and standard deviation of the tree depths within each bin. Finally, we fit a linear

model to the means and a logistic model to the standard deviations, allowing us to predict

depths for source sentences of unseen lengths. We then set the maximum depth to be µ+kσ

for k ∈ {1, 2, 3}. Finally, we trained two neural networks that look at the whole source

sentence and attempt to predict the target tree’s depth. The first network (“NN MSE”) is

trained to minimize squared error. The second network (“NN Asym”)’s loss function is

quadratic if the predicted depth is too small but only linear if the predicted depth is too

large. This loss function encodes the intuition that too small a limit is very bad, since the

reference tree may become unreachable. Too large a limit, on the other hand, is much less

severe a problem, just allowing the model to overgenerate a bit.

Results of these approaches are found in Table 12. We find that our second neural

model is the best of the lot, but even that one is no stronger than the stubbornly strong

baseline of using a fixed maximum depth.
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Model BLEU METEOR Length

Logistic 24.62 27.33 96.79

Gauss (σ = 1) 24.56 27.83 102.98

Gauss (σ = 2) 23.78 27.71 106.21

Gauss (σ = 3) 23.00 27.64 109.86

NN/MSE 24.48 27.20 96.13

NN/Asym. 25.02 27.68 100.73

Table 12: Comparison of different models of tree depth given source sentence on our German–
English string-to-tree system.

Better Beam Search for Syntactic Output

Generative models are notoriously hard to decode with, and RNNGs are no different. First,

we would ideally like to find the best translation string, marginalizing out the tree structure:

ê = arg maxe
∑

t∈T(e) p(t, e | s), where T(e) gives the set of all possible tree structures over

a sentence e. Since the number of possible tree structures is exponential in sentence length

this computation is intractable, we note that most sentences have one parse tree that is much

more likely that the others and thus approximate
∑

t∈T(e) p(t, e | s) ≈ maxt∈T(e) p(t, e | s).

Second, when decoding with an RNNG the nt actions almost always have probabilities

much higher than the shift actions, simply because there are several orders of magnitude

more possible shift actions (one per terminal type) than nt actions (one per non-terminal

type) (Fried et al., 2017). This leads to the model vastly over-producing non-terminals and

under-producing terminals. In fact, in preliminary experiments for this chapter, we found

many English output “sentences” where the system had simply repeatedly output nt(S)

over and over until the maximum decoding length was reached.

Fried et al. (2017)’s solution to this issue on their parsing task is Word-Synchronous

Beam Search. Normal action-level beam search bins hypotheses by the number of actions

taken so far, and keeps only the top k from each bin. Word-Synchronous Beam Search

instead bins hypotheses by the number of terminals, and again keeps only the top k.

Algorithmically, they label each bin (|W|, |Aw|), where W is the set of terminals gener-

ated thusfar and Aw is the set of non-terminal actions taken since the most recent shift

action. The algorithm begins with the empty hypothesis in bin (0, 0). Just like in standard

beam search, the algorithm expands each of the (up to) k hypotheses in a bin with the top

k continuations each, producing k2 new candidates. In standard beam search the candidate

continuations based on hypotheses from bin i are put into bin i+ 1. In Word-Synchronous
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beam search, when expanding hypotheses in bin (i, j), expansions ending with a shift ac-

tion are placed into bin (i+ 1, 0), reflecting the fact that have one more terminal than before,

and zero nt actions since the most recent shift. Expansions from bin (i, j) that end in an nt

action, however, are placed into bin (i, j+ 1), because they have the same number of termi-

nals as before but one more nt action since the most recent shift. This means that in each

bin we are comparing hypotheses with a strictly equal number of shift actions, negating

the advantage the nts have in terms of local probability.

Algorithm 2 Word-Level Beam Search (Fried et al., 2017)

1: procedure WordLevelBeamSearch(initial_state, beam_size)
2: # A hypothesis is (score, state, word, parent)
3: hyps = [(0, initial_state, <s>, none]
4: complete_hyps = ∅
5: for length in range(max_length) do
6: if len(complete_hyps) > beam_size then
7: complete_hyps = sorted(complete_hyps, reverse = true)[: beam_size]
8: hyps = filter(hyps, λ hyp : hyp.score > complete_hyps[−1].score)
9: if len(hyps) == 0 then

10: break
11: new_shift_hyps = []
12: for num_struct_actions in range(max_length - length + 1) do
13: new_nt_hyps = []
14: fasttrack = (len(num_shift_hyps) == 0)
15: for hyp in hyps do
16: new_state = translator.add_word(hyp.state, hyp.word)
17: if new_state.is_complete() then
18: complete_hyps.append(hyp)
19: continue
20: candidates = translator.k_best(new_state, beam_size)
21: if fasttrack then
22: candidates += translator.best_shifts(new_state, beam_size)
23: for (word, score) in candidates do
24: new_hyp = (hyp.score + score, new_state, word, hyp)
25: if word.is_shift() then
26: new_shift_hyps.append(new_hyp)
27: else
28: new_nt_hyps.append(new_hyp)
29: hyps = sorted(new_nt_hyps, reverse = true)[: beam_size]
30: hyps = sorted(new_shift_hyps, reverse = true)[: beam_size]
31: return sorted(complete_hyps)[−1]

One other technique employed by Fried et al. (2017) is “fast-tracking” the top k shift

continuations from bin (i, j) to bin (i+ 1, j). This ensures that even if all of the top k overall

actions are nt actions at least some shift actions are explored and that infinite chains of nt

actions are impossible.
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Algorithm 3 Bag-Level Beam Search (Mabona et al., 2019)

1: procedure BagLevelBeamSearch(initial_state, beam_size)
2: # A hypothesis is (score, state, word, parent)
3: bins[0,0] = [(0, initial_state, <s>, none]
4: complete_hyps = ∅
5: for num_nts in range((max_length + 1) / 2) do
6: for num_shifts in range(num_nts + 2) do
7: bin = bins[num_shifts, num_nts]
8: if len(complete_hyps) > beam_size then
9: complete_hyps = sorted(complete_hyps, reverse = true)[: beam_size]

10: bin = filter(bin, λ hyp : hyp.score > complete_hyps[−1].score)
11: bin = sorted(bin, reverse = true)[: beam_size]
12: for hyp in bin do
13: new_state = translator.add_word(hyp.state, hyp.word)
14: if new_state.is_complete() then
15: complete_hyps.append(hyp)
16: continue
17: candidates = translator.k_best(new_state, beam_size)
18: for (word, score) in candidates do
19: new_hyp = (hyp.score + score, new_state, word, hyp)
20: if word.is_shift() then
21: bins[num_shifts + 1, num_nts].append(new_hyp)
22: else
23: bins[num_shifts, num_nts + 1].append(new_hyp)
24: return sorted(complete_hyps)[−1]

More recently Mabona et al. (2019) discuss a left-branching bias in the word-level de-

coding algorithm described above and propose Bag-Level Beam Search as a solution. This

is of particular concern when decoding into English, a language with a tendancy towards

right-branching structures (Van Riemsdijk and Williams, 1986). Where Word-Synchronous

Beam Searched binned hypotheses by the number of shift actions and the number of nt ac-

tions since the most recent shift, Bag-Level Beam Search simply bins them by the number

of shift actions and the number of nt actions.

A visual comparison of word- and bag-level beam search is shown in Figure 22.

We note that both Fried et al. (2017) and Mabona et al. (2019) examine the problem of

decoding with RNNGs in the context of parsing. As such, they are able to know the length

of the input string a priori, and avoid dealing with length effects.

To test the effectiveness of the methods we focus on our German–English string-to-tree

system and report development BLEU scores using additive length normalization, mul-
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Figure 22: A comparison of word-level (left) and bag-level (right) beam search algorithms. Transi-
tions taken by a left-branching tree structure are shown in blue dot-dashed lines. Transi-
tions taken by a right-branching tree structure are shown in red dashed lines. Transitions
belonging to both are shown in solid purple lines. Other possible transitions are shown
in grey dotted lines. Figure inspired by Mabona et al. (2019).

Technique BLEU METEOR Length Ratio

(None) 15.18 25.57 159.52

Max Length 23.21 25.93 100.77

Max Depth 25.03 27.63 99.93
Additive Length Norm 25.69 27.71 92.53

Multiplicative LN 16.12 27.67 159.15

Word-Level Search 22.95 26.11 83.30

Word-Level Search + ALN 25.74 27.92 99.83

Bag-Level Search 8.47 15.68 42.63

Bag-Level Search + ALN 25.94 27.98 98.48

Table 13: Effects of techniques aimed at fixing the length ratio of our German–English string-to-tree
system.

tiplicative length normalization, word-level beam search, and bag-level beam search 2 in

Table 13.

These results show that the search procedure used has a drastic effect on the quality of

the resulting translations. Stahlberg and Byrne (2019) show that nearly all translation mod-

els are woefully biased towards short translations and that it is only through interactions

with imperfect search that reasonable translations can be produced. Adding target side

structure increases the complexity of decoding and exacerbates the effects of short-sighted

decoding, necessitating the use of specialized inference algorithms. We note that Bag-Level

2 Due to the O(n2) complexity of bag-level beam search, we use a maximum length of 100 for bag-level search
experiments.
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Ar–En De–En Fr–En Zh–En
Enc. Dec. BLEU MTR Len BLEU MTR Len BLEU MTR Len BLEU MTR Len

str str 30.37 31.47 100.23 27.50 28.67 99.79 36.85 34.93 100.01 17.54 23.70 99.37

str tree 25.88 28.64 100.08 25.94 27.98 98.48 32.13 32.20 100.01 14.63 21.39 99.59
tree str 28.67 30.42 99.79 28.63 30.24 100.04 37.23 35.06 99.91 16.96 23.33 99.26

tree tree 24.79 27.90 100.33 25.01 27.66 99.44 30.58 31.59 100.92 14.14 21.02 101.51

Table 14: Translation results on the dev set using additive length normalization and, where relevant,
bag-level decoding.

Ar–En De–En Fr–En Zh–En
Enc. Dec. BLEU MTR Len BLEU MTR Len BLEU MTR Len BLEU MTR Len

str str 29.20 30.92 101.29 29.76 29.89 100.60 37.47 35.30 100.21 18.05 24.49 100.05
str tree 24.81 28.24 102.61 27.12 29.12 100.33 32.21 32.99 102.59 14.48 22.04 103.01

tree str 27.76 29.92 100.39 30.12 31.24 101.12 37.33 35.30 100.01 17.43 24.01 99.50

tree tree 23.75 27.69 103.05 25.69 28.81 102.08 31.66 32.20 102.08 13.81 21.74 105.46

Table 15: Translation results on the test set using additive length normalization and, where relevant,
bag-level decoding.

Search achieves a rather low BLEU score by itself, but it is indeed this low scoring output

that achieves the best model scores. Furthermore, Bag-Level Search seems to combine par-

ticularly well with length normalization, allowing it to find high-BLEU hypotheses despite

its relatively fewer search errors.

After applying additive normalization for all systems, and combining it with bag-

level search for our systems with syntactic output, we arrive at the final results in Ta-

bles 14 and 15.

qualitative analysis

In addition to the quantitative analysis of BLEU and METEOR scores, we find qualitatively

that there are certain types of sentences on which string-based or tree-based systems over-

or under-perform. To that end we perform a manual analysis of the output of our four

systems on the German–English task.

First, we find that syntax-based systems produce far fewer unk tokens than the baseline

system. On our development set our baseline string-to-string system produced a total of

7871 unks, compared to 2072 for the string-to-tree, 2420 for the tree-to-string, and 1824

for the tree-to-tree system. A large part of this seems to be sequences of multiple unks,

sometimes repeating a dozen or more times in the translation of a single sentence.
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src Man muss sie sich selbst erschaffen .
ref You have to make it yourself .
s2s You have to make it yourself .
s2t You have to create them .
t2s You ’ve got to make them yourself .
t2t You ’ve got to make them out of themselves .

src “ Jetzt kannst du auf eine richtige Schule gehen , ” sagte er .
ref “ You can go to a real school now , ” he said .
s2s unk unk unk , you can go to a real school , unk unk , he said .
s2t “ Now , you can go to a real school . ”
t2s “ Now you can go to a really high school , ” he said . ”
t2t “ Now you can go to a real school , ” he said .

src Stattdessen stehe ich heute hier , als stolze Absolventin des Middlebury College .
ref Instead , I stand here a proud graduate of Middlebury College .
s2s Instead , I stand here today , as proud unk of the unk College .
s2t Instead , I am standing here , as a proud unk of the unk college .
t2s So , instead of today , I stand here as a proud unk of the unk College .
t2t Instead , I ’m standing here today as a proud student of college college .

Table 16: Examples of the phenomena identified in our qualtiative analysis. Syntax systems para-
phrase more (top). Our string-to-string overproduces unks (middle). Our syntax-based
decoder confuses continous aspect (bottom).

Second, we find that our tree-based decoder seems to confuse progressive aspect. It fre-

quently uses the continuous aspect when the reference (and string-based decoder systems)

do not, and chooses not to use it when the reference does. We hypothesize this is because

of the tree-based decoder having more access to nearby adverbs as it builds the target sen-

tence. Since German lacks continous aspect (Mair, 2012), the existence of adverbs such as

heute (“today”) or jetzt (“now”) is used to disambiguate. The tree-based decoder seems to

have learned to over-rely on this type of rule, generating the progressive almost exclusively

in the presence of such adverbs.

Third, we find that our syntax-based systems in general have a tendency to paraphrase

more than the string-to-string system, which is often more literal. This tendency explains

the fact that the gap between our systems is much smaller according to METEOR (which is

aware of paraphrasing and morphological variation) than according to BLEU (which relies

soley on strict n-gram matching).

Examples of these phenomena on sentences from our German–English development

set can be found in Table 16.
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discussion

Comparing the length ratios in these two results tables we can see that the length normal-

ization coefficients chosen to maximize BLEU on our dev sets do indeed generalize quite

well, causing the length on the test set to be quite close to 100%.

We see that overall our tree-to-string systems perform about as well as our string-

to-string baseline. Surprisingly source-side syntax seems to do best on German–English

and French–English, language pairs that have less divergent syntax than Arabic–English or

Chinese–English.

Target-side syntax is still underperforming string-to-string baselines, despite the new

bag-level decoding algorithm providing gains of +3 BLEU or more. It seems that the under-

lying models are extremely biased towards very short hypotheses. In our experiments with

bag-level decoding and no length normalization, we saw outputs with great model scores,

but with very low length ratios and hence very low BLEU scores.

This observation underscores the perverse nature of NMT decoding. Traditional string-

to-string models have been shown to favor very short hypotheses over ones prefered by

humans or standard metrics (Stahlberg and Byrne, 2019). We observe a similar bias in our

syntax-aware models. The difference, however, lies in how the models interact with the

decoding algorithm.

String-to-string models are known to only produce good results with small beam sizes

(Koehn and Knowles, 2017). Larger beam sizes continue to improve model score, yet BLEU

scores nosedive as the search algorithm starts to explore the very short hypotheses to which

the MT model assigns the best scores. One reason for this behavior is that the </s> token

is unlikely to be in the top few preferred words until the model has output a more or less

complete sentence. However since each word strictly decreases a sentence’s model score, a

full sentence followed by a reasonably likely </s> may well still have a worse model score

than a 0-word hypothesis that generates the end of sentence symbol first thing (Stahlberg

and Byrne, 2019). It is due to a happy irony that this conspiracy between a bad model and

a bad inference algorithm is able to produce reasonable results.

Our syntax-output systems, on the other hand, do not share the benefits of this conspir-

acy. In our model the end of sentence symbol is not a separate action. Instead the model

ends a sentence with a shift like any other. This means that very short hypotheses (e.g. one

nt followed by two shifts) are likely to be visible to a standard beam search and indeed

are guaranteed to be visible to the bag-level decoding algorithm proposed.
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10% 25% 50% 75% 100%
BLEU MTR Len BLEU MTR Len BLEU MTR Len BLEU MTR Len BLEU MTR Len

string string 7.51 13.84 102.50 12.05 18.70 101.05 15.27 22.00 99.41 15.06 21.66 100.13 18.05 24.49 100.05
string tree 6.05 12.61 104.63 9.46 16.62 103.21 12.26 19.75 102.66 13.20 21.00 104.60 14.48 22.04 103.01

tree string 2.74 8.93 115.26 8.99 16.70 111.37 15.22 21.93 100.35 12.27 19.58 99.23 17.43 24.01 99.50

tree tree 3.69 8.60 98.15 7.47 14.16 105.34 9.19 16.23 105.57 11.26 18.67 102.84 13.81 21.74 105.46

Table 17: Results of data ablation on our Chinese–English systems using length normalization and,
where relevant, bag-level decoding. Systems were trained on the first {10, 25, 50, 75, 100}%
of the training data. Length normalization strength was chosen to optimize dev set BLEU.
Results shown are on the held out test set.

With these deficiencies in our models (be they syntax-based or not) and our decoding

algorithms the art of decoding with neural models is in a very unstable state. Improvements

to our search algorithms counter-intuitively hurt performance. A bad model with a bad

decoding algorithm may outperform (according to BLEU, METEOR, or human evaluations)

a better model with a better inference procedure.

data ablation

To further investigate our hypothesis that linguistic information can help sample efficiency

we perform a data ablation on our Chinese–English translation systems. We run each of our

four systems (string-to-string, string-to-tree, tree-to-string, and tree-to-tree) with varying

amounts of training data, from just 10% up to 75% of the whole corpus. We then optimize

the length normalization constant on the same dev set and test on the full test as the full

systems. Table 17 shows the results.

We find that the string-to-string system still performs best overall across all data sizes

and the tree-to-tree system performs worst. The two intermediate systems, however, exhibit

some interesting behaviors. We see that the string-to-tree system outperforms the tree-to-

string system with low data quantities, but the opposite as true at higher data sizes.

future directions

Our ultimate goal is to correct the model error inherent to the current generation of trans-

lation models such that advances in search techniques once again lead to improved transla-

tion quality.

There are several promising avenues toward this end. One is training models to max-

imize metric scores directly, e.g. with reinforcement learning (Shen et al., 2015; Wu et al.,
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2016). Another method is to explicit incorporate a notion of coverage into the model (Tu

et al., 2016; Chen et al., 2017a), allowing it to understand that it should translate all of the

content in the source sentence and punishing it if it fails to do so.

Once we remove the effect of length bias from MT models we believe the power of

RNNGs to capture the processes that underlie human sentence generation and judgements

of grammaticality will be able to shine.

Finally, we leave to future work the integration of the syntax-based translation ideas

contained in this chapter and the morphology-based advances made in Chapter 3. We pre-

dict that such a fully linstically-structured translation system would be very successful

on many traditionally difficult language pairs. In addition its improved sample efficiency

would improve the state of translation for low-resource languages, the overwhelming ma-

jority of which are far more morphologically complex than English.

related work

Syntax in Symbolic MT Systems

Shortly after the first statistical translation systems saw success many authors began incor-

porating syntactic information into SMT. Alshawi et al. (2000) was among the first, using

dependency transducers to turn a source-side depdency tree into a target language one. Ya-

mada and Knight (2001) created a tree-to-tree system using phrase-structure trees. They use

a multi-step approach wherein nodes in a source-side tree are reordered, then unaligned

target words are allowed to be inserted into the tree structure, and finally the remaining

terminals are translated using a dictionary.

Later Galley et al. (2004) introduced a string-to-tree system. They use a tree-based word

alignments to extract rules and proposed a decoding algorithm wherein source-language

substrings are iterative replace with target-language tree fragments. More recently Pust et al.

(2015) modified the former approach to use AMR parses (Banarescu et al., 2013) rather than

standard phrase structure trees.

The Hiero system of Chiang (2007) generalizes phrase-based translation by introducing

the concept of hierarchical phrases. The result can be thought of as a tree-to-tree system

using unlabeled phrase structure trees. Hanneman et al. (2011) introduce a full tree-to-tree

system using phrase-structure trees by learning a probabilistic synchronous context free

grammar directly from aligned, parsed, parallel sentences.
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Syntax in Neural MT Systems

Perhaps the simplest method explored to shoehorn syntax into the existing encoder-decoder

framework is to simply use a linearize a tree structure and then feed it into the system as if

it were a string. Li et al. (2017) and (Aharoni and Goldberg, 2017) explore this approach on

the source and target sides respectively. Nadejde et al. (2017b) employ a similar approach,

introducing words’ CCG tags as extra tokens in the source and target sentences.

Chen et al. (2018a) use source-side syntax trees to compute pair-wise distances between

words and use this information to inform the attention model. They encourage the attention

distribution at time step t+ 1 to be similar, according to this distance metric, to the attention

distribution at time step t.

Several authors have introduces variants of source-side syntax into their NMT systems.

Wu et al. (2017b) enrich the embeddings of each source word with head- and child-based

information gleaned from dependency trees. Bastings et al. (2017) use graph convolutional

networks to encode source-side dependency trees. Eriguchi et al. (2016) generalize LSTMs

to admit tree structures rather than just linear sequences. They apply their TreeLSTMs to

source-language phrase-structure trees and demonstrate improved translation performance.

Similarly, Chen et al. (2017a) generalize GRUs to tree structures and run them through the

source syntax tree in both top-down and bottom-up fashions, analogous to how BiLSTMs

traverse terminals in both directions. They additionally introduce an attention mechanism

that incorporates source-side syntax, as well as the notion of coverage, to nice effect.

Target-side syntax has proven more elusive, but Eriguchi et al. (2017) take the first

steps in that direction. They show that by training a model to perform both translation

and RNNG-based parsing they achieve superior translation models. While the underlying

translation system is still string-to-string, they plug the output stream of the translation

system into the buffer of the RNNG model, thus yielding a target-language tree. At infer-

ence time, however, they are free to drop the parsing task entirely and emit strings from

their translation model directly. Wang et al. (2018) learn a CFG from training data and

then allow a neural decoder to generate a parse tree using those CFG rules. While they

experiment with phrase structure and dependency trees, they actually conclude that sim-

ply dividing the words into a balanced binary tree without using any linguistic knowledge

actually outperforms using trees produced by parsers.
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conclusions

This chapter focuses on using syntax-infused neural networks to model conditional genera-

tion of sentences, a more practical and more difficult goal than the unconditional generation

models described in Chapter 4. This task is particularly interesting because not only can

we use syntax to govern generation, but we can also use it to modulate how sentences are

represented in the source language and how the model draws connections between the

two languages. Furthermore, it also follows up on historical work by testing whether the

syntax-based improvements added into statistical models continue to have practical value

in the age of neural networks.

We introduce a novel batching scheme capable of handling source-side syntax, making

syntactic encoders much more palettable.

Our experiments here show mixed support for the thesis statement. On the one hand,

we show that source-side syntax can improve translation performance for some langauge

pairs. On the other, we find that the decoding problem syntax-based decoders is more

difficult than that of tradition string-emitting decoders. We examine several simple methods

to encourage adequacy and propose two novel decoding algorithms that outperform beam

search by quite some margin, yet a gap remains between our baseline and target-side syntax

systems. Since RNNGs are known to encode helpful biases for modelling language (Dyer

et al., 2016) we conclude that the harmful biases of teacher forcing and maximum likelihood

training offset any gains the extra linguistic knowledge provides.
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C O N C L U S I O N

summary of contributions

In this thesis we have explored and incorporated several types of linguistic information into

models (both conditional and unconditional) of human language.

First, we investigated a language model that uses knowledge of the morphological

processes that turn morphemes, fundamental units of meaning, into words. Our model

makes use of the knowledge encoded in morphological analyzers and constructs its output

by combining word-, character-, and morpheme-level information. We demonstrated the

effectiveness of this new language model on several morphologically rich languages for

which traditional language modelling techniques struggle.

Second, we devised two different dependency-based language models. With the success

of phrase-structure language models and the relatively large amount of human-annotated

dependency data available we hoped to produce similarly strong language models extend-

able to more language pairs. Instead we discovered that while dependencies are a wonder-

ful tool for analyzing sentences, they seem less able to provide models with the grammati-

cality judgement style of knowledge required to make great language models. Nonetheless

we show that generative neural dependency models improve the performance of a strong

discriminative baseline parser.

Third, we introduce phrase-structure syntax into neural machine translation systems

on both the source and target sides. We present a new syntax-based decoder that outputs

a tree encoded using RNNG actions rather than a linear sequence of words. We use this

decoder, along with TreeGRUs, to create the first neural quasi-synchronous tree-to-tree

translation system. We ablate this system, producing an empirical comparison of string-

to-string, string-to-tree, tree-to-string, and tree-to-tree translation paradigms. In addition,

we unveil a novel batching scheme for source-side syntax and propose two new decoding

algorithms for tackling the challenging problem of inference with target-side syntax.

84
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conclusions

This thesis demonstrates that explicit knowledge of linguistic structure can be used to en-

code helpful biases to neural models. By imbuing neural language models with knowledge

from human experts we can speed their learning and improve their ability to generalize in

a matter similar to humans.

Knowledge of word formation morphology allowed us to create a fully open-vocabulary

word model capable of elegantly understanding how to successfully conjugate verbs and

decline nouns. This capablility even includes generating new forms of never-before-seen

tokens such as personal names, a crucial ability in languages with case marking.

We demonstrated that although phrase structure trees improve the performance of

unconditional language models (Dyer et al., 2016), the more plentiful dependency trees

are unable to offer similar advances. Neural generative models of dependency syntax can,

however, improve the accuracy of discriminative dependency parsers. This contrast demon-

strates that phrase structure grammars better capture the notion of grammaticality and

fluency in a language, while dependency models are better able to analyze the relation-

ship between words. While the former may thus be preferable for language modelling, the

latter may be preferred for downstream NLP tasks such as summarization (Barzilay and

McKeown, 2005) and sentiment classification (Zou et al., 2015).

We also learned that construction order does not play a large role in the performance of

our dependency-based language models. The top-down and bottom-up models presented

in Chapter 4 encode very different structural biases, providing the model with very dif-

ferent conditioning contexts at each time step. Nonetheless, the models converge to very

similar solutions, demonstrating the power of neural language models to capture arbitrary

and complex corelations given sufficient training data.

We also highlight the complicated interaction between neural translation models and

inference algorithms. Neural models assign dramatically better model scores to short (or

even empty) hypotheses (Stahlberg and Byrne, 2019), a flaw only masked by greedy infer-

ence algorithms that commit egregious search errors. This interaction means that even if

one improves both the translation model and the decoding algorithm the overall perfor-

mance, according to standard translation metrics, may actually decrease. We observe this

effect when we use RNNGs (Dyer et al., 2016), which have been shown to perform better

than RNNs, as our target-language model and decode with an inference algorithm that

commits fewer search errors. Nevertheless we observe decreased translation performance
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across all four language pairs tested, regardless of whether we use syntax-enhanced en-

coders or not. This interaction proves that it is critical that we endevour to understand the

biases that go into our neural models, be they explicit or implicit, hurtful or helpful.

future directions

Morphology in Translation

In this thesis we have demonstrated that morphological knowledge and syntactic knowl-

edge can both improve the effectiveness of language models. The integration of both into

one language model, be it conditional or unconditional is left to future work. Chahuneau

et al. (2013a) showed the power of morphology in symbolic machine translation. We posit

that integration of morphological knowledge into our machine translation model would

similarly yield a neural system that excels on languages with very different word order

than English as well as highly productive morphology such as Turkish or Japanese.

Eliminating Harmful Biases in NMT Models

We have identified a key deficiency in neural models’ interaction with beam search that

occurs to the models’ harmful bias towards short sentences. While the two new decoding

procedures introduced in this thesis offer improved decoding with RNNG-based language

models, much work remains to stablize generation from neural models. In particular, we

believe it will be necessary to depart from teacher forcing (Williams and Zipser, 1989) in

favor of training schemes that allow a model more room for exploration.

Syntax-aware Attention Mechanisms

The attention model used in most translation system has no intrinsic notion of word order

at all. The model is free to jump around the sentence arbitrarily, translating whatever bits

and pieces it sees fit. As humans, however, we know a priori that some word orders are more

likely than others, even without knowing which languages we’re translating between.

For example, we know that if we just translated the nth source word, we are more

likely to translate the n+ 1th source word, or perhaps the n− 1th source word, then a word
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distant in the sentence (Markovian prior) (Cohn et al., 2016). We probably think that the

more times a word has been translated, the less likely it is to be chosen again in the future

(Coverage prior) (Mi et al., 2016; Sankaran et al., 2016). We might suppose that a word that

occurs early in the source sentence is more likely to occur early in the target sentence, and

similar for words towards the middle or later in the source sentence (Diagonal prior).

We propose that syntactic constituents in the source sentence should be translated as

a whole. It seems fine to translate the verb phrase and then the subject noun phrase, or

the subject noun phrase and then the verb phrase, but it should be very unlikely to, say,

translate half of the subject noun phrase, then the verb phrase, and then the rest of the

subject noun phrase. We could encode this idea into an attention mechanism that takes

into consideration the sequence of attention distributions and encourages the model to

stick to translating the current constituent until completion thereof. While using phrase

structure trees from a parser in the attention mechanism is yet untested, the ideas of using

a Markovian-style prior in dependency space (Chen et al., 2018b) and the idea of using

syntax as a latent variable to inform the attention mechanism (Bradbury and Socher, 2017)

has shown the potential of syntax-aware models.

Linguistics without Human Knowledge

In this thesis we use syntactic parsers trained on human-annotated data and morphological

analyzers hand-crafted by expert linguists. The creation of the tools may be prohibitively

expensive, requiring many hours of labor by trained specialists. While these tools exist for

many of the most widely spoken languages they do not exist for smaller languages. Fur-

thermore, smaller languages usually lack large amounts of training data making the helpful

biases and increased sample efficiency of linguistically aware models all the more impor-

tant. As such it would be helpful to understand whether automated tools such as Morfessor

(Smit et al., 2014) (for morphology), the system of Han et al. (2019) (for dependency trees),

or the system of Maillard et al. (2019) (for phrase structure trees), could be used as drop-in

replacements for the analyzers used in this thesis. While we might anticipate some drop in

performance on large languages for discarding human knowledge, the ability to reap the

benefits of syntax on smaller languages makes this effort a promising direction.
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Document-level Language Modelling

In this thesis we injected word- and sentence-level linguitics into language models but

humans’ linguistic knowledge does not stop there. Recently work has improved the state

of intersential discourse parsing (Jia et al., 2018; Morey et al., 2018), opening the door to

document-level modelling to further improve the fluency and cohesion of the output of our

language models. Document-level machine translation has been tried before (Zhang et al.,

2018; Junczys-Dowmunt, 2019) with mixed success, though (to our knowledge) never using

high-level parsers or human knowledge of discourse structure.

Other Sources of Human Knowledge

We have shown that it is possible to imbue neural models with biases based on human

knowledge. In this thesis we focus on using morphology and syntax, well-studied areas

of linguistics with clear applications to human language. There are, however, many other

sources of human knowledge that can be introduced to language modelling and/or trans-

lation. For example, WordNet (Fellbaum, 2010) is a database of English words, their def-

initions, synonyms, senses, adn more. This knowledge could be used to speed language

learning by encouraging e.g. synonyms to have similar word vectors. Furthermore, hu-

mans have invested much time and effort into creating bilingual dictionaries for language

learners. While such dictionaries are imperfect they could be incorporated as priors into

translation systems (e.g. using the method Arthur et al. (2016) apply to induced lexicons)

to again propel learning. Naturally there are any number of other source of human knowl-

edge that could be similarly integrated to improve sample complexity or naturalness of our

models.
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