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Abstract
The introduction of deep neural networks (DNNs) has advanced the performance

of automatic speech recognition (ASR) tremendously. On a wide range of ASR
tasks, DNN models show superior performance than the traditional Gaussian mix-
ture models (GMMs). Although making significant advances, DNN models still
suffer from data scarcity, speaker mismatch and environment variability. This thesis
resolves these challenges by fully exploiting DNNs’ ability of integrating heteroge-
neous features under the same optimization objective. We propose to improve DNN
models under these challenging conditions by incorporating context information into
DNN training.

On a new language, the amount of training data may become highly limited.
This data scarcity causes degradation on the recognition accuracy of DNN models.
A solution is to transfer knowledge from other languages to the low-resource condi-
tion. This thesis proposes a framework to build cross-language DNNs via language-
universal feature extractors (LUFEs). Convolutional neural networks (CNNs) and
deep maxout networks (DMNs) are employed to improve the quality of LUFEs,
which enables the generation of invariant and sparse feature representations. This
framework notably improves the recognition accuracy on a wide range of low-resource
languages.

The performance of DNNs degrades when the mismatch between acoustic mod-
els and testing speakers exists. A form of context information which encapsulates
speaker characteristics is i-vectors. This thesis proposes a novel framework to per-
form feature-space speaker adaptive training (SAT) for DNN models. A key com-
ponent of this approach is an adaptation network which takes i-vectors as inputs and
projects DNN inputs into a normalized feature space. The DNN model fine-tuned in
this new feature space rules out speaker variability and becomes more independent
of specific speakers. This SAT method is applicable to different feature types and
model architectures.

The proposed adaptive training framework is further extended to incorporate
distance- and video-related context information. The distance descriptors are ex-
tracted from deep learning models which are trained to distinguish distance types
on the frame level. Distance adaptive training (DAT) using these descriptors cap-
tures speaker-microphone distance dynamically on the frame level. When perform-
ing ASR on video data, we naturally have access to both the speech and the video
modality. Video- and segment-level visual features are extracted from the video
stream. Video adaptive training (VAT) with these visual features results in more
robust acoustic models that are agnostic to environment variability. Moreover, the
proposed VAT approach removes the need for frame-level visual features and thus
achieves audio-visual ASR on truly open-domain videos.



iv



Contents

1 Introduction 1
1.1 Current Challenges for DNN Acoustic Models . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Language Context: Cross-Language DNNs with Language-Universal Fea-
ture Extractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Speaker Context: Speaker Adaptive Training of DNN Models using I-
vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Distance Context: Robust Speech Recognition with Distance-Aware DNNs 5

1.2.4 Video Context: Open-Domain Audio-Visual Speech Recognition using
Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fundamentals of Automatic Speech Recognition 9
2.1 ASR Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Basic Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Acoustic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.6 Speech Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.7 Evaluation of ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The GMM-HMM Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Training of GMM-HMM . . . . . . . . . . . . . . . . . . . . . . . . . . 18

v



3 Deep Learning for Speech Recognition 19
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 DNN Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 CNN Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 RNN Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Cross-Language DNNs with Language-Universal Feature Extractors 27
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Cross-Language DNNs with LUFEs . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Improving LUFEs with Deep Convolutional and Maxout Networks . . . . . . . . 30

4.3.1 LUFEs with Convolutional Networks . . . . . . . . . . . . . . . . . . . 30

4.3.2 Sparse Feature Extraction with Maxout Networks . . . . . . . . . . . . . 31

4.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Distributed Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 DistModel: Distribution by Models . . . . . . . . . . . . . . . . . . . . 37

4.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.3 Larger-Scale Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Speaker Adaptive Training of DNN Models using I-vectors 43
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Speaker Adaptation and SAT of GMM-HMM Models . . . . . . . . . . 44

5.1.2 Speaker Adaptation and SAT of DNNs . . . . . . . . . . . . . . . . . . 46

5.1.3 I-Vector Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Speaker Adaptive Training of DNNs . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Architecture of SAT-DNNs . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 Training of the Adaptation Networks . . . . . . . . . . . . . . . . . . . 51

5.2.3 Updating of the DNN Model . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.4 Decoding of SAT-DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.2 Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.3 Bridging I-vector Extraction with DNN Training . . . . . . . . . . . . . 55

5.3.4 Variable Data Amount for I-vector Extraction . . . . . . . . . . . . . . . 56

vi



5.3.5 Application to fMLLR Features . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Extension to BNFs and CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.1 Extension to BNFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.2 Extension to CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 SAT and Speaker Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5.1 Comparing SAT and Speaker Adaptation . . . . . . . . . . . . . . . . . 60

5.5.2 Combining SAT and Model-space Adaptation . . . . . . . . . . . . . . . 61

5.6 Acceleration of SAT-DNN training . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7 Application to the Switchboard Dataset . . . . . . . . . . . . . . . . . . . . . . 63

5.7.1 Experiments on the 110-Hour Setup . . . . . . . . . . . . . . . . . . . . 63

5.7.2 Experiments on the Complete 300-Hour Setup . . . . . . . . . . . . . . 64

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Robust Speech Recognition with Distance-Aware DNNs 67
6.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Extraction of SMD Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.1 SMD Extraction with DNNs . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.2 SMD Extraction with CNNs . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.3 SMD Extraction with RNNs . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Distance-Aware DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3.1 Simple Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3.2 Distance Adaptive Training . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4.2 Experiments of SMD Extractors . . . . . . . . . . . . . . . . . . . . . . 73

6.4.3 Results of DAT-DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.4 More Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Open-Domain Audio-Visual Speech Recognition using Deep Learning 79
7.1 Related Work on Audio-Visual ASR . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Speaker Attributes and Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.1 Speaker Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2.2 Speaker Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vii



7.2.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3 Deep Image Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3.1 Extraction of Visual Features . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3.2 Incorporation of Visual Features . . . . . . . . . . . . . . . . . . . . . . 84
7.3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4 Fusion of Visual Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.5 Fusion of Speaker I-Vectors and Visual Features . . . . . . . . . . . . . . . . . . 94
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Conclusions and Future Work 97
8.1 Cross-Language DNNs with Language-Universal Feature Extractors . . . . . . . 97
8.2 Speaker Adaptive Training of DNN Models using I-vectors . . . . . . . . . . . . 98
8.3 Robust Speech Recognition with Distance-Aware DNNs . . . . . . . . . . . . . 99
8.4 Open-Domain Audio-Visual Speech Recognition using Deep Learning . . . . . . 99
8.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A Architecture of the Object-CNN Network 101

B List of Abbreviations 103

Bibliography 105

viii



List of Figures

2.1 The basic framework of ASR. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 A snippet of a dictionary. Each line contains a word (e.g., “able”) which is
followed by a sequence of phones (e.g., “ey b ax l”) corresponding to the word.
A single word is likely to have multiple different pronunciations, e.g., the two
“ab-” in the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 A snippet of a bigram language model in the ARPA format. Each line starts
with the logarithm (base 10) of the probability of the n-gram, which is followed
by the sequence of words and optionally the logarithm (base 10) of the backoff
probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 A toy example of the grammar (language model) WFST. The arc weights are the
probability of emitting the next word when given the previous word. The node 0
is the start node, and the double-circled node is the end node. . . . . . . . . . . . 14

2.5 The WFST for the phone-lexicon entry “is IH Z”. The “<eps>” symbol means
no inputs are consumed or no outputs are emitted. . . . . . . . . . . . . . . . . . 14

2.6 An example diagram of the HMM for the phone “A”. . . . . . . . . . . . . . . . 17

3.1 Pipeline of building ASR systems when deep learning is exploited for acoustic
modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Architecture of the DNN model. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Architecture of the DBNF network. . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Convolution and max-pooling layers in the CNN architecture. . . . . . . . . . . 24

3.5 A memory block of LSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Cross-language DNNs with the LUFE. . . . . . . . . . . . . . . . . . . . . . . 30

4.2 An example for (a) maxout layer and (b) non-maximum masking. . . . . . . . . 32

4.3 The DistModel distributed learning strategy for LUFEs. . . . . . . . . . . . . . 38

ix



5.1 Illustration of SAT for GMM-HMMs. . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Architecture of the SAT-DNN model. . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 The WERs of SAT-DNN models when � is reduced from 780 to 12. . . . . . . . 57
5.4 The WERs of the baseline DNN, DNN+I-vector and SAT-DNN models when

different amounts of training speech are available. . . . . . . . . . . . . . . . . 66

6.1 Visualization of the SMD variability vectors along the time axis. The variability
is quantified as the Euclidean distance of the SMD descriptors vectors for every
pair of neighboring frames. The time axis is represented by the frame index. . . 78

7.1 Incorporation of speaker attributes into DNN. . . . . . . . . . . . . . . . . . . . 82
7.2 Relative improvement (%) in terms of WER (Y axis) achieved by incorporating

the place features over the baseline DNN, across the videos in our testing data (X
axis). A negative value indicates that the place features enhanced model performs
worse than the baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Examples of videos on which incorporating the scene information gives no im-
provement. For each video, we show an image frame extracted from it. “A% !
B%” means incorporating the scene information changes the WER on this video
from A% to B%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.4 Examples of videos on which incorporating the scene information gives over
10% relative improvement. For each video, we show an image frame extracted
from it. “A% ! B%” means incorporating the scene information reduces the
WER on this video from A% to B%. . . . . . . . . . . . . . . . . . . . . . . . . 91

7.5 Comparison of the baseline DNN and the DNN with places features over the
utterances throughout a specific video. This video totally contains 21 utterances
which are indexed along the X axis. The Y axis shows the WER(%) achieved by
the two models on each utterance. . . . . . . . . . . . . . . . . . . . . . . . . . 93

x



List of Tables

4.1 Statistics of the BABEL multilingual datasets. . . . . . . . . . . . . . . . . . . . 33

4.2 WER(%) of monolingual DNN and CNN on the target language. . . . . . . . . . 34

4.3 WER(%) of various LUFEs on the target language. . . . . . . . . . . . . . . . . 34

4.4 Performance of various LUFE models trained with the FullLP sets of the source
languages. The target languages are the LimitedLP and FullLP conditions of
Tagalog respectively. For the monolingual DNN on LimitedLP Tagalog, we get a
different WER than the number in Table 4.2. This difference comes from the fact
that we use different testing sets during different stages of the BABEL project. . 37

4.5 Impact of averaging interval on WERs and training speed-up. “Epoch” here
means that model averaging is performed only at the end of every training epoch. 39

4.6 DistModel applied to monolingual Tagalog FullLP DNN training. . . . . . . . . 39

4.7 Performance of DistModel with 5 source languages. Distributed training uses 3,
4 and 5 GPUs respectively. WER(%) is reported on the Bengali 2-hour testing set. 40

4.8 Performance of DistModel by taking other languages from the BABEL corpus
as the target language. The LUFE feature extractor remains the same. WER(%)
is reported on a 2-hour testing set for each individual target language. . . . . . . 41

5.1 WERs(%) of the SI-DNN and SAT-DNN models. . . . . . . . . . . . . . . . . . 54

5.2 WERs(%) of SAT-DNN models with i-vectors from MFCC and BNF feature
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 WERs(%) of the DNN and SAT-DNN when the inptus are fMLLR features. . . . 57

5.4 WERs(%) of BMMI GMM models when the features are MFCCs, DBNF and
SAT-DBNF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Configurations (filter and pooling size) of the two convolution layers in our CNN
architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 WERs(%) of the SI-CNN and SAT-CNN models. . . . . . . . . . . . . . . . . . 60

xi



5.7 Performance comparisons between SAT-DNN and speaker adaptation methods. . 61

5.8 Performance of adapted DNNs using LHUC and different sets of first-pass hy-
potheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.9 A summary of the performance of SAT-DNNs using i-vectors extracted from
MFCCs and BNFs respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.10 Performance of SAT-DNN models when the training set is shrunk by frame skip-
ping (“Frame”) and speaker reduction (“Speaker”) respectively. The data size is
measured by the ratio of the reduced size to the original size. . . . . . . . . . . . 63

5.11 Comparisons of DNN and SAT-DNN on the Switchboard 110-Hour setup. WERs
are reported on the Switchboard part of the Hub5’00 (eval2000) testing set. . . . 64

5.12 Comparisons of DNN and SAT-DNN on the complete Switchboard 300-Hour
setup. WERs are reported on the Switchboard part of the Hub5’00 (eval2000)
testing set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Accuracy (%) of various SMD extractors on the ICSI meeting training data,
where the classes are the 2311 combinations of speakers and distance types. The
accuracy is measured on the frame level. . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Results (% WER) of the BMMI-GMM and baseline DNN models on the testing
set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Results (% WER) of the SMD extractors with different configurations and archi-
tectures. “SMD Dim” refers to the dimension of the SMD descriptors, i.e., the
size of the bottleneck layer in the SMD extractor. . . . . . . . . . . . . . . . . . 74

6.4 Results (% WER) of the adaptively trained DNN models. “Feat” means the type
of additional descriptors used in adaptive training, e.g., SMD descriptors for DAT. 75

6.5 Analysis of the correlation between DA-DNN WER improvement and the SMD
variability. “WER Improvement” refers to the relative improvement of the DA-
DNN over the baseline DNN. “Average SMD Variability” means the SMD vari-
ability averaged over the videos examined. . . . . . . . . . . . . . . . . . . . . 77

7.1 Performance of DNN models when speaker attributes and actions are incorpo-
rated. The incorporation is achieved via simple feature concatenation. . . . . . . 83

7.2 Performance of DNN models when object recognition features are incorporated.
Two approaches are adopted for the incorporation: feature concatenation and
adaptive training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xii



7.3 Performance of DNN models when place features are incorporated. Two ap-
proaches are adopted for the incorporation: feature concatenation and adaptive
training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.4 WER break down onto the two video categories: “typical indoor” and “other”,
for both the baseline DNN and also the DNN trained with the place features. The
feature concatenation approach is adopted for image feature incorporation. . . . 92

7.5 Performance of DNN models when we incorporate the combined visual features.
Two approaches, feature concatenation and adaptive training, are adopted for
visual feature incorporation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.6 Performance of DNN models when we incorporate the combined i-vector and
visual features. Two approaches, feature concatenation and adaptive training,
are adopted for feature incorporation. . . . . . . . . . . . . . . . . . . . . . . . 95

A.1 Configurations of the convolution, LRN and max-pooling layers in the AlexNet
architecture used in our experiments. The layers are listed by the order, from
bottom to top, in the architecture. “# Feature Maps”, “Kernel Size” and “Conv
Stride” represent the number of feature maps, the size of the kernels, and the
stride of the convolution operations in the convolution layers. “LRN Size” repre-
sents the size of the neighboring region over which LRN is performed. “Pooling
Size” and “Pooling Stride” represent the size and stride for the max-pooling layer. 102

xiii



xiv



Chapter 1

Introduction

In recent years, automatic speech recognition (ASR) systems have seen evident improvement
on their performance and rapid expansion on their applicability. A major driving force for this
advancement is the introduction of deep neural networks (DNNs) as acoustic models. Com-
pared to the traditional Gaussian mixture models (GMMs), the advantage of DNN models has
been confirmed on a wide variety of ASR tasks [15, 41, 105]. Applications of DNNs generally
fall into two categories. In hybrid systems, DNNs are trained to classify tied context-dependent
(CD) states and estimate their posterior probabilities. In tandem systems, we use DNNs to gen-
erate phone posteriors or bottleneck features (BNF), and build normal GMM models with the
discriminative front-end [26, 27]. In addition to DNNs, other deep structures, such as convolu-
tional neural networks (CNNs) [3, 4, 99, 100, 111, 122] and recurrent neural networks (RNNs)
[32, 65, 101, 102], have also been exploited as acoustic models. More details about these archi-
tectures will be presented in Chapter 3.

1.1 Current Challenges for DNN Acoustic Models

Although making significant advances, the performance of DNN acoustic models still suffers
from challenges such as noise, channel mismatch, speaker mismatch [46]. This thesis focuses on
alleviating the effects of the following three challenges.

• Data Scarcity. In the hybrid DNN-HMM approach, the DNN models normally consist
of a series of hidden layers. Therefore, DNN models tend to have much more parameters
than GMM models. For example, in [129], the hybrid system with a 5-hidden-layer fully-
connected DNN has 12 times more parameters than its corresponding GMM model. When
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the amount of transcribed speech becomes limited (e.g., less than 10 hours), the large
parameter space of DNNs can cause overfitting easily during DNN training. This may
degrade the recognition performance of DNN models greatly on unseen testing data.

• Speaker Mismatch. Another long-standing issue for ASR is the mismatch between the
acoustic models and testing speakers. A degradation of recognition accuracy is typically
observed when porting a recognizer to a testing set where the speakers have not been in-
cluded in the training set. An effective step to mitigate this mismatch is to perform speaker
adaptation during decoding. There are two types of speaker adaptation. Model-space
adaptation modifies the speaker-independent (SI) model towards particular testing speak-
ers, whereas feature-space adaptation transforms the features of testing speakers towards
the acoustic model.

• Environment Variability. Real-world applications require ASR systems to handle var-
ious types of environment variability such as noise and reverberation. In recent years,
DNN models have dramatically advanced the recognition accuracy on clean, close-talking
speech. However, robustness still remains to be a challenge for DNNs. It is revealed in [46]
that as with GMMs, the performance of DNNs drops significantly as the SNR decreases.
One example of environment variability is on amateur videos (e.g., YouTube videos) where
the distance between the speakers and the microphones varies frequently. Also, the scenes
(e.g., car, office, street) of the conversations may differ a lot among videos. Because of
these factors, previous work [47, 62] has reported the state-of-the-art WER of around 40%
on transcribing YouTube videos.

1.2 Thesis Statement

In comparison to the conventional GMMs acoustic models, DNN models can take input features
of large dimensions. For example, the inputs of DNNs are normally concatenation of neighboring
frames whose dimension can go easily up to hundreds. This nice property enables DNNs to
combine information from different sources.

This thesis conducts a systematic study to investigate the incorporation of heterogeneous con-
text information into DNNs acoustic models. We aim to answer two questions. First, what kind
of additional information can we leverage to resolve the aforementioned challenges? Second,
how can we incorporate the additional information into DNN models in an effective manner?
Our research can be described more specifically by the following aspects.
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1.2.1 Language Context: Cross-Language DNNs with Language-Universal
Feature Extractors

DNN models generally have more parameters than GMMs. The performance of DNNs typically
degrades when we have limited training data. From a transfer learning perspective, DNN models
under low-resource conditions can benefit from sharing knowledge among languages. Previous
work [39, 44, 71] has studied multilingual DNNs to realize knowledge transfer across languages.
The application of multilingual DNNs for cross-language acoustic modeling is also briefly in-
vestigated in [44]. The contribution of this thesis is to propose a more flexible framework for
cross-language DNN acoustic modeling. More importantly, we further extend this framework
from different aspects. These extensions are orthogonal to choices of acoustic modeling meth-
ods. Therefore, they are also applicable to previous proposals such as [44].

• We establish our framework to build cross-language DNN models via language-universal
feature extractors (LUFEs). A LUFE consists of the shared hidden layers of the multilin-
gual DNN. Given a new language, DNN models are built over the outputs from the LUFE.
Our approach differs from [44] in that on the new language, we are learning a complete
DNN model instead of a single softmax layer. This gives us greater modeling flexibility,
as well as better recognition results, on the new language.

• The quality of LUFE is improved by two techniques. First, we propose to train LUFEs
with CNNs. Due to local filters and max-pooling layers, CNNs normalize spectral varia-
tion in the speech signal more effectively than DNNs. Thus, CNN-based LUFEs give us
more invariant feature representations. Second, we introduce sparsity into the LUFE fea-
ture representations by taking advantage of the deep maxout networks (DMNs) [30]. Our
previous work [76] makes the first attempt to apply maxout networks to ASR. In a DMN,
units at each hidden layer are divided into groups, and each group generates a single output
with max-pooling. With a non-maximum masking operation, feature representations with
truly-zero sparsity can be generated from the maxout layer.

• We propose the DistModel strategy to accelerate training of LUFEs over multiple GPUs.
Learning LUFEs can be highly expensive because training data have to contain multiple
languages. In DistModel, the multilingual data are split into equally-sized partitions. A
complete LUFE is trained on a GPU and using one of the data partitions. After a particular
number of mini-batches, the different LUFE model instances are averaged to form the
starting model for the subsequent training. This time-synchronous method results in nice
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speed-up on LUFE training and negligible WER loss on the new language.

1.2.2 Speaker Context: Speaker Adaptive Training of DNN Models using
I-vectors

For GMM models, an effective procedure to alleviate the effect of speaker mismatch is speaker
adaptation [25, 56]. Model-space adaptation modifies the SI model towards particular testing
speakers, while feature-space adaptation transforms the features of testing speakers towards the
SI model. Another technique closely related with speaker adaptation is speaker adaptive training
(SAT) [5, 6]. When carried out in the feature space, SAT performs adaptation on the training set
and projects training data into a speaker-normalized space. Parameters of the acoustic models
are estimated in this new feature space. Acoustic models trained this way become independent
of specific training speakers and thus generalize better to unseen testing speakers. In practice,
SAT models generally give better recognition results than SI models, when speaker adaptation is
applied to both of them.

For DNN models, a large amount of previous work has been dedicated to speaker adapta-
tion. For example, in [58, 126], SI-DNN models are augmented with additional speaker-specific
layers which are trained on the adaptation data. Also, [96, 105] achieve adaptation of DNNs
by training DNNs using speaker-adaptive features, and [61] adapts the entire SI-DNNs to test-
ing speakers with DNN fine-tuning. In comparison to speaker adaptation, past work has made
fewer attempts on SAT of DNNs. Training DNNs with SA features [96, 105, 118] or additional
speaker-specific information [35, 103, 107] can be treated as a form of SAT. In [125], Xue et al.

append speaker codes [1, 2] to the hidden and output layers of the DNN model. SAT is achieved
by jointly learning the speaker-specific speaker codes and the SI-DNN. In [88], speaker avail-
ability is normalized by allocating certain layers of the DNN as the SD layers that are learned
on a speaker-specific basis. Over different speakers, the other layers are adaptively trained by
picking the SD layer corresponding to the current speaker. Although showing promising results,
the application of these proposals is constrained to specific feature types or model structures.
For example, the approach in [125] is not applicable to CNNs because it is infeasible to append
speaker codes to the hidden convolution layers. Also, in these methods, adaptation of the re-
sulting SAT models generally needs multiple decoding passes, which undermines the decoding
efficiency.

In this thesis, we propose a novel framework to carry out feature-space SAT for DNNs.
Building of SAT-DNN models starts from an initial SI-DNN model that has been trained over the
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entire training set. Then, our framework uses i-vectors extracted at the speaker level as a compact
representation of each speaker’s acoustic characteristics. An adaptation neural network is learned
to convert i-vectors to speaker-specific linear feature shifts. Adding the shifts to the original DNN
input vectors (e.g., MFCCs) produces a speaker-normalized feature space. The parameters of the
SI-DNN are updated in this new feature space, which finally gives us the SAT-DNN model. This
thesis explores the optimal configuration of SAT-DNNs for large vocabulary continuous speech
recognition (LVCSR) tasks. Apart from hybrid models, we demonstrate the extension of our
SAT framework to CNNs and BNF generation. Furthermore, we study the combination of SAT
and speaker adaptation for DNNs. During decoding, model-space adaptation is applied atop of
SAT-DNN models for further improved recognition results.

1.2.3 Distance Context: Robust Speech Recognition with Distance-Aware
DNNs

Environment variability such as noise and reverberation poses special challenges for ASR sys-
tems. A critical type of variability comes from the distance between speakers and microphones.
A performance degradation is typically observed when we port DNN models from close to dis-
tant speech [116]. A number of techniques have been developed to enhance the robustness of
DNN models on far-field speech. For instance, in [63, 116], DNN models are improved by
combining speech signals from multiple distant microphones via concatenation or beamform-
ing [66]. Also for DNN models, [127] evaluates the existing environmental robustness methods
on a distant-microphone meeting transcription task. A robust front-end is derived by integrat-
ing different enhancement approaches and feature types. Although showing promising results,
these techniques have the limitation that they only deal with constantly distant speech. That is,
the speaker-microphone distance (SMD) is assumed to be unchanged throughout the course of
recording. To our knowledge, no previous work has dealt with dynamic distance information.

In many real-world scenarios, the SMD can be quite dynamic. For example, a speaker is
likely to walk around when talking to a far-field microphone located at a fixed position. This
thesis proposes to construct distance-aware DNNs by explicitly incorporating the SMD infor-
mation into DNN training. The SMD descriptors are extracted dynamically on the frame level
using a SMD extractor. The extractor is a deep architecture that is trained on an external meet-
ing corpus. The adaptive training approach, which is originally proposed for SAT of DNNs, is
ported to incorporate the SMD information into DNNs models. Applying this approach enables
us to perform distance adaptive training (DAT) for DNNs. Extensive investigations are addition-
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ally conducted to optimize the DAT-DNN models from various aspects, e.g., the architectures
serving as the SMD extractor.

1.2.4 Video Context: Open-Domain Audio-Visual Speech Recognition us-
ing Deep Learning

When performed on video data, speech recognition naturally has access to two modality: audio
and video. This motivates researchers to take advantage of visual features to enhance ASR,
especially under noisy conditions [12, 23, 33, 52]. However, these previous proposals have
limitations in that they generally adopt visual features which are extracted from the speaker’s
mouth region, including lip contours and mouth shapes. Although available in highly constrained
videos, these features cannot always be obtained from open-domain videos. For example, in
a large portion of the YouTube videos, the speakers do not appear in the video frames at all.
Another limitation of traditional audio-visual ASR is the requirement for alignments between
the speech and video frames. Since the speech and video streams have different sampling rates,
aligning them may introduce inaccurate visual features into acoustic modeling.

The contribution of this thesis is to relax these constraints and extend audio-visual ASR to
open-domain videos. Instead of frame-level, highly restrictive mouth/lip features, we extract
video- or segment-level visual features. Extraction of these visual features is achieved with
computer vision models trained on external datasets. In particular, we take advantage of deep
CNN architectures to obtain informative visual features from the raw pixels of open-domain
videos. The adaptive training approach continues to be extended to incorporate visual features in
a more flexible way. Together with the speaker and distance context, we prove the generality of
this adaptive training framework in fusing different types of additional information.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews fundamentals of ASR and Chapter 3
reviews deep learning approaches/architectures for acoustic modeling. Chapters 4, 5, 6 and 7
correspond to the four statements in Section 1.2 respectively.

• Chapter 2 reviews basic principles and components for ASR.

• Chapter 3 reviews acoustic modeling using deep learning models. In addition to hybrid
models, we also review how DNNs are used for BNF extraction. Other deep learning
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architectures such as CNNs and RNNs are also explained.

• Chapter 4 presents our work on cross-language DNNs with language-universal feature
extractors.

• Chapter 5 presents our work on SAT of DNN models using i-vectors. In this chapter,
we perform feature-space SAT of DNNs by taking advantage of i-vectors as the speaker
representations.

• Chapter 6 improves the robustness of DNN models by incorporating speaker-microphone
distance information dynamically on the frame level.

• Chapter 7 describes the incorporation of visual features when our task is to transcribe video
data. We investigate what visual features are useful for ASR and how we can fuse visual
features effectively into acoustic models.

• Chapter 8 summarizes this thesis.
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Chapter 2

Fundamentals of Automatic Speech
Recognition

Given a human speech segment, the goal of automatic speech recognition (ASR) is to transcribe
the speech into texts, i.e., perform a speech-to-text task. In this chapter, we first present the
fundamentals on the ASR framework and key components in the framework. Then we describe
the GMM-HMM paradigm for acoustic modeling.

2.1 ASR Framework

2.1.1 Basic Principle

Suppose that the components required by speech recognition have been trained or constructed.
Figure 2.1 depicts the general framework for ASR. During the recognition stage, we first extract
speech features from the given speech segments (i.e., utterances). Using specific search algo-
rithms, the recognizer incorporates various components (e.g., acoustic models, language models,
dictionaries) and finds the best word hypothesis.

More formally, we denote the given speech segment as O. Based on the Bayes decision
theory, speech recognition is to find the word sequence W that maximizes Pr(W |O), i.e., the
posterior probability of the word sequence given the observations. According to the Bayes rule,
we can further derive this posterior as follows:

Pr(W |O) =

Pr(O|W )Pr(W )

Pr(O)

/ Pr(O|W )Pr(W ) (2.1)
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Figure 2.1: The basic framework of ASR.

Given the speech segment, the prior probability Pr(O) is constant with respect to W and
thus can be eliminated from Equation 2.1. Then the task of ASR can be further described as

ˆW = argmax
W

Pr(W |O) = argmax
W

Pr(O|W )Pr(W ) (2.2)

On the right-hand side of this equation, Pr(O|W ) represents the likelihood of the observa-
tions O given the word hypothesis W . This score is normally calculated from an acoustic model.
Pr(W ) represents the prior probability of the word sequence W which is computed from a lan-
guage model.

2.1.2 Acoustic Model

An acoustic model evaluates how likely a speech segment O is generated from a possible word
hypothesis W . It provides a statistical perspective into speech production with respect to word
transcripts. In the traditional Gaussian mixture model-hidden Markov model (GMM-HMM)
paradigm for acoustic modeling, the sequential property of speech is modeled by the HMM
and the likelihood of speech generation is evaluated by the GMM. In the state-of-the-art deep
learning-based acoustic modeling, deep learning models are adopted as acoustic models. More
details regarding the GMM-HMM and deep learning paradigms will be presented in Section 2.2
and Chapter 3. Acoustic models play a central role in ASR systems. This thesis focuses on how
to improve the performance of acoustic models.

2.1.3 Dictionary

During acoustic modeling, the training data usually consist of the speech segments (utterances)
and their corresponding word sequences (transcripts). For LVCSR systems, modeling the map-

10



Figure 2.2: A snippet of a dictionary. Each line contains a word (e.g., “able”) which is followed
by a sequence of phones (e.g., “ey b ax l”) corresponding to the word. A single word is likely to
have multiple different pronunciations, e.g., the two “ab-” in the figure.

ping from speech to words directly is not realistic. It is necessary to have a dictionary to convert
written words into their pronunciations in the form of phones. Phones are the smallest units to
comprise the pronunciation of a spoken word. Figure 2.2 shows a snippet of an English dic-
tionary. We can see that the mapping from phones to letters is not necessarily one-to-one. For
English, this mapping can be many-to-one or one-to-many. On some other languages such as
Spanish, this mapping displays more regularity. When used in ASR systems, dictionaries, also
known as lexicons, encode how a sequence of phone labels are mapped to a word.

2.1.4 Language Model

A language model is used to estimate the prior probability of generating any sentence. Suppose
the sentence W contains k words, i.e., W = W1,W2, ...,Wk

. Language modeling is to assign
a probability to this sentence Pr(W1,W2, ...,Wk

). Language modeling is a common problem
shared by a variety of language processing and understanding areas, such as speech recognition,
natural language processing, information retrieval, parsing, etc. The probability Pr(W ) can be
decomposed as [45]:

Pr(W ) = Pr(W1,W2, ...,Wk

)

= Pr(W1)Pr(W2|W1)Pr(W3|W1,W2)...P r(W
k

|W1,W2, ...,Wk�1)

=

kY

i=1

Pr(W
i

|W1,W2, ...,Wi�1)

(2.3)

where Pr(W
i

|W1,W2, ...,Wi�1) is the probability of the word W
i

following the word history
W1,W2, ...,Wi�1. This probability can be estimated from a text corpus by counting the co-
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occurrences of W1,W2, ...,Wi�1 and W
i

. In practice, with a large-sized vocabulary, this co-
occurrences can be none or relative rare, resulting in unreliable estimate of this probability. To
tackle this issue, we restrict the word history to at most n words, and thus construct n-gram
language models. In this case, the current word has dependency only on the past n � 1 words,
i.e., Pr(W

i

|W1,W2, ...,Wi�1) = Pr(W
i

|W
i�n+1, ...,Wi�1). The probability Pr(W ) can now

be computed as

Pr(W ) =

kY

i=1

Pr(W
i

|W
i�n+1, ...,Wi�1) (2.4)

Depending on different values we adopt for n, we can have unigram (Pr(W
i

)) where the current
word has no dependency on the word history, bigram (Pr(W

i

|W
i�1)) where the current word de-

pends only on the previous word, trigram (Pr(W
i

|W
i�2,Wi�1)) where the current word depends

on the previous two words, and even higher order. Building of n-gram language models can be
achieved by taking a text corpus as training data. For example, from a training text corpus, we
observe the count of the word pair C(W

i�1,Wi

), and the count of the singleton word C(W
i

).
Then the probability Pr(W

i

|W
i�1) can be estimated as:

Pr(W
i

|W
i�1) =

C(W
i�1,Wi

)

C(W
i

)

(2.5)

Estimating n-gram language models this way suffers from the data sparsity problem. A large
portion of the co-occurring word sequences W

i�n+1, ...,Wi�1,Wi

may have low counts or fre-
quencies in the training corpus, leaving the probability computation unreliable. This data sparsity
problem becomes more severe when the order of n-gram becomes higher. To alleviate this issue,
a large number of smoothing methods have been proposed to smooth the probabilities. A po-
tential solution is backoff smoothing, where we turn to a lower-order n-gram distribution if the
higher-order n-gram has no occurrences in the training corpus. Commonly-used backoff smooth-
ing approaches include Good-Turing smoothing, Katz smoothing, Kneser-Ney smoothing, etc.

In LVCSR systems, we usually store a backoff-smoothed language model into the ARPA
format. Figure 2.3 shows a snippet of the ARPA-formatted bigram language model. The n-
grams are grouped according to their length, and each group starts with the keyword \n-gram.
Each line starts with the logarithm (base 10) of the probability of the n-gram, which is followed
by the sequence of words in the n-gram. At the end of the line, we optionally have the logarithm
(base 10) of the backoff probability. A number of toolkits exist in the community which enable
us to build ARPA-formatted language models easily. Examples of widely-used toolkits include
the SRI Language Modeling Toolkit (SRILM) [113] and the IRST Language Modeling Toolkit
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Figure 2.3: A snippet of a bigram language model in the ARPA format. Each line starts with the
logarithm (base 10) of the probability of the n-gram, which is followed by the sequence of words
and optionally the logarithm (base 10) of the backoff probability.

(IRSTLM).

2.1.5 Decoding

After we train the acoustic model and language model, we can fuse these components in the
decoding (i.e., testing) stage. Given a testing speech segment, the goal of decoding is to find a
sequence of words whose acoustic and language model scores match the speech signal best. As
a result, the decoding process can also be viewed as a search process where the language model
defines the initial search space. ASR systems generally employ two search algorithms, i.e., the
Viterbi search and A* search.

For the experiments in this thesis, we apply the Viterbi search whose implementation is based
on weighted finite-state transducers (WFSTs). A WFST is a finite-state acceptor (FSA) in which
each transition has an input symbol, an output symbol and a weight. A path through the WFST
takes a sequence of input symbols and emits a sequence of output symbols with the corresponding
weight. WFSTs have been used widely for ASR decoding [84, 93]. In modern ASR systems,
decoding generally requires four individual components: the language model, the lexicon, the
context dependency, and the HMM structure. The idea of WFST-based decoding is to compose
these components into individual WFSTs, and then compose these WFSTs into a comprehensive
search graph. We represent the four WFSTs corresponding to the four components as G, L, C
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Figure 2.4: A toy example of the grammar (language model) WFST. The arc weights are the
probability of emitting the next word when given the previous word. The node 0 is the start
node, and the double-circled node is the end node.

Figure 2.5: The WFST for the phone-lexicon entry “is IH Z”. The “<eps>” symbol means no
inputs are consumed or no outputs are emitted.

and H respectively. Then composition of the search space can be formally denoted as:

S = min(det(H � det(C � det(L �G)))) (2.6)

where �, det and min denote composition, determinization and minimization respectively. The
search graph S encodes the mapping from a sequence of HMM states emitted on speech frames
to a sequence of words.

To exemplify WFSTs construction, we dive into the details on the language model and lexicon
WFSTs. Here we take English as the example, although the same procedures hold for other
languages. The language model WFST, also known as grammar WFST, encodes the permissible
word sequences in a language/domain. The WFST shown in Figure 2.4 represents a toy language
model which permits two sentences “how are you” and “how is it”. The WFST symbols are the
words, and the arc weights are the language model probabilities. With this WFST representation,
ASR decoding in principle can leverage any language models that can be converted into WFSTs.
This conversion can be readily achieved for the ARPA-formatted n-gram language models. A
lexicon WFST encodes the mapping from sequences of phones to words. Figure 2.5 shows an
example for a lexicon which contains a single word “is”. When containing multiple words, the
lexicon WFST can also assign different weights to different words, or different pronunciations
for the same word.
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2.1.6 Speech Front-end

So far we have represented the speech segment as a variable O. In practice, the ASR system
takes audio waveform files as the inputs. A waveform simply contains a sequence of values
which are sampled from the microphone input at a sampling rate (e.g., 8kHz, 16kHz, etc.). We
process the waveform into a sequence of feature vectors before feeding it into ASR. Specifically,
a window is applied to the samples which normally has a length of 25 milliseconds. On each
window of samples, we extract a feature vector using signal processing methods. Each time
the window is moved by a step size of 10 milliseconds, leaving an overlap of 15 milliseconds
between every pair of neighboring frames. From each of these speech frames, a feature vector
can be extracted using standard signal processing techniques. Commonly-used speech features
include mel frequency Cepstral coefficients (MFCCs) and perceptual linear prediction (PLP).

After obtaining the raw acoustic features, various processing techniques can be adopted to
enhance the feature quality towards ASR tasks. These techniques can be roughly categorized as
follows.

• Adding deltas and double-deltas. Deltas are derived as the difference between the raw
features of neighboring frames, and double-deltas are the difference between the deltas of
neighboring frames. These two sets of additional coefficients encode the temporal evolu-
tion of speech signals, and thus can be useful for ASR. The deltas and double-deltas are
normally appended to the original features.

• Mean and variance normalization. To reduce some variability, we normalize the data so
that the resulting feature vectors have zero mean and unit variance on each dimension.
This normalization can be applied to different levels, e.g., the speaker level or the utterance
level.

• Vocal tract length normalization (VTLN). The frequency bins are warped with factors
differing across speakers. With different acoustic characteristics, speakers have different
VTLN factors. VTLN helps to reduce speaker variability [133].

• Applying linear transforms. In ASR, a critical method for feature normalization is to ap-
ply linear transforms to feature vectors. Commonly-used transforms include linear dis-
criminant analysis (LDA) [36] which is intended for class separation, and feature-space
maximum likelihood linear regression (fMLLR) [25] that is meant for speaker adaptation.
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2.1.7 Evaluation of ASR

The quality of the ASR outputs can be evaluated by the word error rate (WER) metric. Given a
pair of reference and hypothesis word sequences, WER can be computed as:

word error rate =
edit distance

#reference words
(2.7)

where edit distance is the edit distance (Levenshtein distance) of the hypothesis against the
reference, and #reference words is the number of words in the reference. Edit distance means
the minimum number of substitutions, insertions and deletions required to convert the hypothesis
into the reference. A WER of 10% means that the ASR system makes 10 edit-distance errors
with respect to 100 reference words.

2.2 The GMM-HMM Paradigm

A critical component of an ASR system is the hidden Markov model (HMM). The HMM is a
powerful method to characterize the generation of sequential data (e.g., speech signals) from hid-
den states. The data samples in the sequences can be discretely or continuously distributed. Due
to its generality, the HMM has been successfully used in a wide variety of speech and language
processing tasks, including speech recognition, speech synthesis, spoken language understand-
ing, speech enhancement, language modeling, and machine translation.

2.2.1 Hidden Markov Models

The hidden states in the HMM form a Markov chain. In the context of speech recognition, the
HMM describes the stochastic process of generating a sequence of acoustic feature vectors from
the hidden states, where each state has an emission distribution function. Specifically, the HMM
consists of the following components:

• States. The set of hidden states in the HMM are denoted as S = {1, 2, 3, ..., N}. Given
a data sequence, each time step t has a state label s

t

. In the case of speech recognition,
the realization of an acoustic unit (e.g., phone) is formulated as a HMM, where the states
represent sub-units inside the acoustic unit.

• Initial probabilities. The initial state distribution describes the probability of each state
serving as the initial state for a given sequence. More formally, the initial probability ⇡

i

for state i is ⇡
i

= Pr(s0 = i) with the constraint
P

N

i=1 ⇡i

= 1.
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Figure 2.6: An example diagram of the HMM for the phone “A”.

• Transition probabilities. The transition probabilities describe the probability of one state
transitioning to another state in the state space. More formally, the transition probability
a
ij

is represented as a
ij

= Pr(s
t

= j|s
t�1 = i) with the constraint

P
N

j=1 aij = 1.

• Output distribution. The output distribution b
i

(o
t

) characterizes the probability of emitting
an observation o

t

from a state i. In the case of speech recognition, the observation is an
acoustic feature vector, and the distribution follows a continuous Gaussian or mixture of
Gaussians distribution.

In order to further illustrate the way the HMM works, we show an example for the phone
“A” in Figure 2.6. Following this topology, the HMM always starts with the state 1. Each state
(except the ending state) can either jump to the next state or stick to the current state, with
different probabilities. For example, the HMM can either jump to the state 2 with the probability
of 0.7, or self-transition to itself with the probability of 0.3. It is worth noting that the constraint
of these two branches only applies to the HMM used for speech processing. General-purpose
HMMs do not have this constraint. An exception for the transition behavior is the ending state,
e.g., state 4 in Figure 2.6. When the HMM reaches this ending state, the transition can only be
self-transitions looping over the ending state. Each state has an attached distribution function,
e.g., a Gaussian distribution as illustrated in Figure 2.6. At each step, after the state is sampled,
the observation is generated from the state according to the corresponding distribution. All the
states in Figure 2.6 have an emitting function. In practice, we may place non-emitting states in
the topology, representing entry into and exit from the HMM. The HMM topology in Figure 2.6
only models a single phone. In continuous speech recognition, an utterance contains multiple
phones which are modeled by connecting the individual HMMs into a sequence of HMMs.
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2.2.2 Gaussian Mixture Models

In the tradition GMM-HMM paradigm for ASR, the emission probability function b
i

(o
t

) is re-
alized via a Gaussian mixture model, i.e., a weighted sum of Gaussian component densities.
Specifically, b

i

(o
t

) can be computed as:

b
i

(o
t

) =

MiX

m=1

c
im

N(o
t

;µ
im

,⌃
im

) (2.8)

where M
i

is the total number of Gaussian components in the state i, c
im

is the mixture weight for
Gaussian m of state i. Since the observation o
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is a vector, N is a multivariate normal distribution
which has the mean vector µ

im

and covariance matrix ⌃

im

. The mixture weights within a state
need to sum to 1, i.e.,

P
Mi

m=1 cim = 1.
With the GMM-HMM model parameterized, we can evaluate the likelihood of an observation

sequence O, i.e., the probability of O being generated by the GMM-HMM model. For a particu-
lar observation sequence, the state sequence S is unknown. For this evaluation, we need to sum
up the probabilities with respect to all the possible state sequences. Due to the Markov property,
the likelihood can be decomposed onto the level of each step. Specifically, the likelihood of O
can now be computed as

Pr(O|⌦) =
X

S

Y

t

b
st(ot

)a
stst+1 (2.9)

where ⌦ represents all the models parameters in the GMM-HMM, including both the HMM and
GMM parameters.

2.2.3 Training of GMM-HMM

When building an ASR system, training of the acoustic model requires training data which are
collected in the form of speech segments as well as their corresponding word transcripts. With
a dictionary, the word-level transcripts can be converted into phone-level. The HMMs for indi-
vidual phones are concatenated to form the HMM sequence for the entire utterance. To train the
GMM-HMM model, we need either to estimate the posterior probability of each observation be-
ing generated from every state via the commonly-used Baum-Welch algorithm [95], or to derive
the hidden state sequence via the Viterbi algorithm [95]. With the state occupancy, statistics are
collected from the training observations. Then the parameters of the GMM model are estimated
through the standard expectation-maximization (EM) algorithm.
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Chapter 3

Deep Learning for Speech Recognition

Deep learning has become the state of the art for acoustic modeling in ASR. On a wide range of
tasks, deep learning has shown notable improvements over the traditional GMM-HMM paradigm.
In this chapter, we first give a brief review of DNN acoustic models, for both hybrid models and
BNF generation. Then, more advanced deep learning models, i.e., CNNs and RNNs, are de-
scribed for the task of acoustic modeling.

3.1 Overview

Figure 3.1 illustrates the ASR pipeline where we apply deep learning models as the acoustic mod-
els. The pipeline always starts by building an initial GMM-HMM model. On top of the GMM-
HMM, we can train deep learning models as the acoustic models. In practice, the GMM-HMM
provides frame-level alignments from which we can derive the target labels (usually context-
dependent states) for each speech frame. Generally, there are two principal ways by which deep
learning architectures can be used. First, given the training data, we treat deep learning models as
phonetic states classifiers. The models are trained to classify speech frames into phonetic states.
After training, the models can be applied during decoding directly. This approach is referred to
as the hybrid system, as it is a hybrid between the HMM and deep learning models. Second, the
deep architectures are used as discriminative feature extractors. A commonly-used manner is to
place a bottleneck layer in the architecture. After model training, activations from the bottleneck
layer are taken as new feature representations, on which the traditional GMM-HMM models are
constructed. In previous work, the resulting GMM-HMMs are referred to as tandem systems.
More details regarding these two paradigms can be found in Section 3.2.

As can be seen from Figure 3.1, the ASR pipeline, even using the deep learning models, is
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Figure 3.1: Pipeline of building ASR systems when deep learning is exploited for acoustic mod-
eling.

intrinsically complicated. The complexity comes from different levels. First of all, the pipeline
contains multiple training stages. Deep learning models can be applied only after the GMM-
HMM model has been completely built. For building the GMM-HMM, we start with building
the context-independent model, and then move on to the context-dependent model. Even within
the same stage, we might need to perform multiple sub-stages. For example, on top of the
initial GMM-HMM, more advanced training steps, e.g., speaker adaptive training (SAT) and
discriminative training (DT) may need to be adopted. Second, for acoustic modeling, we need
to prepare various resources, e.g., dictionaries and phonetic decision trees. These resources are
not always available, especially for low-resource languages. The lack of these resources can
hamper the deployment of ASR to these languages. Last but not least, we have quite a few
hyper-parameters in the pipeline, e.g., the number of HMM states and the number of Gaussian
components inside each state. Deciding the values of these hyper-parameters highly relies on the
knowledge and expertise of ASR experts.

3.2 DNN Models

The architecture of the DNN we use is shown in Figure 3.2. A DNN is an multilayer perceptron
(MLP) which consists of many hidden layers before the softmax output layer. Each hidden
layer computes the outputs of conditionally independent hidden units given the input vector. We
denote the feature vector at the t-th frame as o

t

. Normally o
t

is the concatenation of multiple
neighboring frames centered at t. The quantities shown in Figure 3.2 can be computed as:

ai

t

= W
i

xi

t

+ b
i
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t

= �(ai

t

) 1  i  L (3.1)

where L is the total number of layers, the weight matrix W
i

connects the i-1-th and i-th layers,
b
i

is the bias vector of the i-th layer, �(x) is the activation function. For 1  i < L and i = L,
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Figure 3.2: Architecture of the DNN model.

�(x) takes the form of the logistic sigmoid and softmax functions respectively. The inputs to the
i-th layer xi

t

can be formulated as:

xi

t

=

(
o
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i = 1

yi�1
t

1 < i  L
(3.2)

When applied as a hybrid model, the DNN is trained to classify each speech frame to tied CD
states. Suppose that we use the cross-entropy as the loss function and the training set contains T
frames. DNN training involves minimizing the following objective:

L = �
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t=1
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s=1

g
t

(s) log yL

t

(s) (3.3)

where S is the total number of tied CD states (classes), g
t

is the ground-truth label vector on
frame t which is obtained via forced alignment with an existing GMM/DNN model, yL

t

is the
output vector of the softmax layer. Error back-propagation is commonly adopted to optimize
this objective. The gradients of the model parameters can be derived from the derivatives of the
objective function with respect to the pre-nonlinearity outputs ai

t

. At the softmax layer, the error
vector for frame t is:
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At each of the previous layers, we have the errors as
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where � represents element-wise multiplication. In practice, we use mini-batch based stochas-
tic gradient descent (SGD) as the optimizer. In this case, model parameters are updated with
gradients accumulated over the entire mini-batches.
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Outputs from the whole DNN architecture represent the posterior probabilities of HMM
states given the input o

t

. During decoding, we in fact need the emission probability of the feature
vector with respect to each state. According to the Bayes rule, the observation probability given
each state can be computed as:

p(o
t

|s) / yL

t

(s)/p(s) (3.6)

where p(s) is the prior probability of state s which can be estimated from the alignment of the
training data.

In hybrid models, DNNs are used as classifiers with respect to phonetic states. Alternatively,
DNNs can also be employed as discriminative feature extractors. In the traditional tandem sys-
tems [40], a DNN (or MLP) is trained to classify context-independent (CI) states. The outputs
from the DNN are projected down to a low-dimensional space with principal component analysis
(PCA). The projected features are treated as the news features, over which the standard GMM
models can be built. To avoid loss of discriminative information during PCA, [98] achieves
dimension reduction by adopting a deep autoencoder following the DNN. The autoencoder net-
work takes the DNN outputs as the inputs, and is trained to minimize the difference between these
inputs and the outputs from this autoencoder. Outputs from the narrow layer of this autoencoder
network are fed to GMMs as the new features.

When the DNN outputs are used in tandem systems, each of its hidden layers has the same
number of units. A large amount of work [26, 27, 34, 128] has attempted to train the DNN with
a bottleneck layer, a hidden layer which is significantly narrower than the other hidden layers.
When training finishes, outputs from this narrow layer are taken as the new bottleneck features
(BNFs). Training of the BNF-DNN follows the same protocol as training of the standard DNN.
The bottleneck layer acts to squeeze the discriminative information into a highly low-dimensional
space.

In our previous work [27], we have established the deep BNF (DBNF) architecture for more
effective BNF extraction. Our method differs from the previous BNF proposals [34, 128] in that
the hidden layers are arranged in a non-symmetric manner around the bottleneck layer. In the
DNN architecture, we insert multiple hidden layers prior to the bottleneck layer, whereas only
one hidden layer is placed between the bottleneck and the softmax layers. As discovered in
[130], activations from the higher layers of a DNN are more robust to variations and distortions
from the speech signal. Therefore, placing the bottleneck layer at a high layer generates both
discriminative and invariant feature representations that benefit the subsequent GMM training.
Figure 3.3 depicts the architecture of our DBNF network.
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Figure 3.3: Architecture of the DBNF network.

3.3 CNN Models

CNNs have been applied widely in the areas of image processing and computer vision [54].
In the time-delay neural networks (TDNNs) for phone recognition [121, 122], the convolution
operation is applied on the time dimension of acoustic frames and then extended to the multidi-
mensional space. In recent years, CNNs have been proved to outperform DNNs on large scale
acoustic modeling tasks [3, 4, 99, 100, 111]. Instead of using fully-connected parameter matrices,
CNNs are characterized by parameter sharing and local feature filtering. The local filters help
to capture locality along the frequency bands. On top of the convolution layer, a max-pooling
layer is usually added to normalize spectral variations. As a result, the CNN hidden activations
become invariant to various types of speech and non-speech variability.

Figure 3.4 exemplifies a convolution layer, as well as a max-pooling layer applied atop. In
the convolution layer, we only consider filters along frequency, assuming that the time variability
can be modeled by HMM. Inputs into CNNs are N neighboring frames of acoustic features (e.g.,
filterbanks), where each frame v

i

is a one-dimensional feature map. The hidden outputs from
this layer contain J vectors ([h1, h2, ..., h

J

]). The trainable one-dimensional filter r
ji

connects
input feature map v

i

and output feature map h
j

, and is shared across the frequency axis along v
i

.
Outputs from this convolution layer can be computed as

h
j
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i=1

r
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⇤ v
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+ b
j

) (3.7)

where ⇤ represents the one-dimensional discrete convolution operator, and b
j

is the trainable bias
attached to h

j

. In this chapter, we use the logistic sigmoid activation function �.

Then, a max-pooling layer is added on top of the convolution layer. Max-pooling is carried
out in a vector-wise mode. More formally, for each vector h

j

, we divide its units into non-
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Figure 3.4: Convolution and max-pooling layers in the CNN architecture.

overlapping groups and output the maximum activation within each group. When the pooling
size is k, the size of each after-pooling feature map p

j

is 1/k of the size of the before-pooling
h
j

. The convolution and pooling layers together are called a convolution stage. In our setups,
CNNs stack two such stages where outputs from the lower pooling layer are propagated to the
higher convolution layer. Multiple fully-connected DNN layers and finally the softmax layer are
added over these two stages. From the feature learning perspective, the convolution and pooling
layers in this structure are trained to extract invariant features, while the fully-connected layers
use these high-level features to better classify phonetic states.

3.4 RNN Models

DNNs and the follow-up CNNs have set the state of the art for large-scale acoustic modeling
tasks. However, both DNNs and CNNs can only model the limited temporal dependency within
the fixed-size context window. To resolve this limitation, previous work [32, 65, 101, 102] has
studied the application of RNNs to acoustic modeling.

Compared to the standard feedforward architecture, RNNs have the advantage of learning
complex temporal dynamics on sequences. Given an input sequence X = (x1, ..., x

T

), a tra-
ditional recurrent layer iterates from t = 1 to T to compute the sequence of hidden states
H = (h1, ..., h

T

) via the following equations:

h
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+ W
hh

h
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h

) (3.8)

where W
hx

is the input-to-hidden weight matrix, W
hh

is the hidden-to-hidden (recurrent) weight
matrix. In addition to the inputs x

t

, the hidden activations h
t�1 from the previous time step are
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Figure 3.5: A memory block of LSTM.

fed to influence the hidden outputs at the current time step. Learning of RNNs can be done using
back-propagation through time (BPTT). However, in practice, training RNNs to learn long-term
temporal dependency can be difficult due to the well-known vanishing and exploding gradients
problem [7]. Gradients propagated though the many time steps (recurrent layers) decay or blow
up exponentially. The LSTM architecture [43] provides a solution that partially overcomes the
weakness of RNNs. LSTM contains memory cells with self-connections to store the temporal
states of the network. Additionally, multiplicative gates are added to control the flow of infor-
mation: the input gate controls the flow of inputs into the memory cells; the output gate controls
the outputs of memory cells activations; the forget gate regulates the memory cells so that their
states can be forgotten. Furthermore, as research on LSTM has progressed, the architecture is
enriched with peephole connections [28]. These connections link the memory cells to the gates
to learn precise timing of the outputs.

The structure of a LSMT memory block is illustrated in Figure 3.5. Given the input se-
quence, a LSTM layer computes the gates (input, output, forget) and memory cells activations
sequentially from t = 1 to T . The computation at the time step t can be described as:
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where i
t

, o
t

, f
t

, c
t

are the activation vectors of the input gate, output gate, forget gate and memory
cell respectively. The W

.x

terms denote the weight matrices connecting the inputs with the units.
The W

.h

terms denote the weight matrices connecting the memory cell outputs from the previous
time step t � 1 with different units. The terms W

ic

, W
oc

, W
fc

are diagonal weight matrices for
peephole connections. Also, � is the logistic sigmoid nonlinearity which squashes its inputs to
the [0,1] range, whereas � is the hyperbolic tangent nonlinearity squashing its inputs to [-1, 1].
The operation � represents element-wise multiplication of vectors.

In Section 6.2.3, we propose to perform the extraction of the speaker-microphone distance
information with RNNs. However, we only consider DNNs and CNNs as the acoustic models
when various types of context information are incorporated into acoustic modeling. Exclud-
ing RNNs as acoustic models is mainly because RNNs normally take single frames as network
inputs, whereas the inputs of DNNs and CNNs consist of concatenation of multiple neighbor-
ing frames. When combined with the single-frame inputs, the context information (e.g., 100-
dimensional i-vectors, distance and visual features) can easily outweigh the acoustic features
(e.g., 40-dimensions filterbanks). This combination disproportionately undermines the weight of
the acoustic features and eventually hurts the performance of ASR systems.
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Chapter 4

Cross-Language DNNs with
Language-Universal Feature Extractors

As discussed in Section 1.1, DNN acoustic models normally contain much more parameters
than their GMM counterparts. To get good recognition performance, training of DNN models
generally requires a large amount of training data. However, adequate transcribed speech is not
always available, e.g., when we construct ASR systems on a low-resource language or a new
domain. This data scarcity can cause overfitting easily during DNN training, which degrades the
performance of DNN models on unseen testing data. The sensitivity of DNN training to data
scarcity is experimentally demonstrated in [76], where DNNs fail to outperform GMMs with
only 10 hours of training speech.

In this chapter, we focus on improving DNN models under low-resource languages. Our
solution is to perform cross-language DNN acoustic modeling by borrowing knowledge from
other languages. Knowledge transfer across languages is achieved via language-universal feature
extractors (LUFEs) trained over a group of source languages. After reviewing related work, we
first establish our cross-language DNN framework. Then, a series of improvements are made to
enhance the quality of LUFEs and speed up the training of LUFEs. Our work described in this
chapter has been published in [71, 72, 76, 80]

4.1 Related Work

Previous work has proposed various methods to improve DNNs under low-resource conditions.
A potential solution is to build sparse DNNs [129], either through regularizing hidden layer
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parameters or through rounding tiny parameters to zero. Although speeding up model training,
sparse DNNs fail to improve recognition performance. Meanwhile, dropout is presented as a
useful strategy to prevent overfitting in DNN fine-tuning [42]. Random dropout is observed to
perform effectively on phone recognition [16] and LVCSR [71, 134], displaying special benefits
when language resources become highly limited. In [76], the maxout networks are applied as an
alternative to standard DNNs for acoustic modeling. The hidden units at the maxout layer are
divided into disjoint groups and each group outputs a single activation. This reduces the number
of hidden-layer outputs and therefore model parameters. Maxout networks are demonstrated to
be particularly effective for low-resource acoustic modeling.

Another long-standing solution is to share/borrow knowledge across languages. This knowl-
edge transfer has been traditionally realized by the use of a global phone set shared by all the
languages [104]. For GMM models, the subspace Gaussian mixture models (SGMMs) [91]
have been exploited extensively for multilingual and cross-language acoustic modeling. Instead
of learning GMM parameters, the SGMM learns low-dimensional subspaces which capture the
main phonetic and speaker variability. In a multilingual setting, the SGMM subspace parameters
can be estimated with combined statistics from multiple languages [9]. Then, these subspace
parameters are transferred to a low-resource target language on which only the non-subspace
parameters need to be estimated [64]. This effectively reduces the number of parameters on the
target language and improves the robustness of model training. Along this line of work, other
techniques [78] have been proposed to increase the flexibility of the multilingually-trained sub-
space parameters on the target language. In [86], a systematic study is conducted to investigate
the effect of adding multilingual data in different training stages, e.g., network pre-training or
network fine-tuning. Also, it is interesting to observe the impact of the selection of the languages
and the amount of training speech from each language. In order to make better use of multilingual
training data, [85] proposes to explicitly provide a language code to DNNs. With this language
information, DNN training becomes aware of various languages and learns language-specific
representation. The resulting language-adaptive DNN (LA-DNN) model gains consistent im-
provement over the baseline monolingual acoustic models.

In [130], the hidden layers of DNNs are treated as a series of nonlinear transforms that con-
vert the original input features into a high-dimensional space. The final softmax layer is added
as a linear classifier for state classification. It is revealed in [130] that the effectiveness of DNNs
comes largely from the invariance of the representations to variability such as speakers, environ-
ments and channels. Following this feature learning formulation, [44, 71] view the DNN hidden
layers as a deep feature extractor that is jointly trained over multiple languages. The resulting
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multilingual DNN outperforms the monolingual DNN trained using language-specific data.

Our work in this thesis follows the feature learning formulation and focuses on cross-language
acoustic modeling with DNNs. In [44], the authors investigate the application of multilingual
DNNs for cross-language modeling. Specifically, the feature extractor that has been trained with
multilingual data is transferred to a new language. On this new language, a softmax layer is
added atop of the feature extractor and fine-tuned with the new-language data. Although giving
nice gains [44], this approach has limitations: only fine-tuning a single softmax layer may not
give us enough modeling power. Our thesis extends this approach to a more general framework
that is characterized by greater flexibility on the new language. More importantly, we develop
our framework in different ways, from improving recognition results on the new language to
speeding up the multilingual training of DNNs.

4.2 Cross-Language DNNs with LUFEs

Our framework is illustrated in Figure 4.1. On the left of Figure 4.1, a multilingual DNN is
learned over a group of source languages. The hidden layers of the multilingual DNN are shared
across all the languages, whereas each language has its own softmax layer to classify phonetic
states specific to that language. Fine-tuning of the multilingual DNN is carried out using the
standard mini-batch based SGD. The difference is that each epoch traverses data from all the
source languages, instead of one single language. The SGD estimator loops over languages
iteratively, each time picking one mini-batch from a language. At the same time, it switches to
the softmax layers and class labels corresponding to the language from which the current mini-
batch comes. Parameters of the shared layers are updated with gradients accumulated from all
the languages.

After the multilingual DNN is trained, the shared hidden layers serve as the LUFE. Suppose
that we have a new language as shown on the right of Figure 4.1. This LUFE is applied to
this new language, transforming the raw acoustic features (e.g., MFCCs or filterbanks) to high-
level feature representations. A hybrid DNN model is trained on this new language to classify
the phonetic states. This DNN model takes feature representations generated from the LUFE
as the inputs. The LUFE is fixed during the process of new-language DNN training. That is,
the parameters of the LUFE are not re-updated on the new language. This manner of cross-
language acoustic modeling enables knowledge transfer across languages. Thus, it improves the
recognition performance on the new language, especially when the new language has limited
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Figure 4.1: Cross-language DNNs with the LUFE.

transcribed speech. This framework differs from the method in [44] in that [44] estimates a
softmax layer on the new language. In comparison, in our framework, a fully-connected DNN
model is constructed on the new language, with LUFE outputs as DNN inputs. This modification
results in greater flexibility and is empirically proved to give notable improvement on the new
language.

4.3 Improving LUFEs with Deep Convolutional and Maxout
Networks

The quality of LUFEs plays a crucial role in our cross-language DNN framework. LUFEs have
been trained conventionally with the multilingual DNNs. In this section, we explore two strate-
gies to further improve LUFEs. First, we replace the standard sigmoid nonlinearity with the
recently proposed maxout units. The resulting maxout LUFEs have the nice property of gen-
erating sparse feature representations. Second, the CNN architecture is applied to obtain more
invariant feature space.

4.3.1 LUFEs with Convolutional Networks

As discussed in Section 3.3, CNNs can normalize variability of the speech signal more effectively
than DNNs. Therefore, CNNs outperform DNNs on a variety of acoustic modeling tasks [3, 4,
99, 100, 111]. This motivates us to apply CNNs as the building block of LUFEs. Our CNN
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architecture used in LUFE training follows the previous studies [3, 99, 100, 111]. It has two
convolution layers each of which is followed immediately by a max-pooling layer. Multiple
fully-connected hidden layers are added atop of the final max-pooling layer. Finally we have the
softmax layer for classification.

When using CNNs, learning of the LUFE involves training a multilingual CNN. The training
process also exploits the parameter sharing idea. The hidden convolution and fully-connected
layers are shared and collaboratively trained over the source languages. When the training fin-
ishes, these shared hidden layers are taken as the LUFE and transferred to the new language. The
structure of the convolution and max-pooling layers have been described in Section 3.3.

4.3.2 Sparse Feature Extraction with Maxout Networks

Sparse feature learning is an active research topic in the machine learning field. On the complex
speech signal, sparse features (e.g., sparse coding) [55, 109, 110] tend to give better classification
accuracy compared with the raw, non-sparse features. Within the LUFE framework, we propose
to achieve sparse feature extraction by taking advantage of the deep maxout networks (DMNs)
[76]. Maxout networks [30] are originally presented as an alternative to DNNs for object recog-
nition. In [10, 76], first attempts are made to apply maxout networks to acoustic modeling. The
application of maxout networks (and their variants) to acoustic modeling is then further extended
in [11, 135].

Figure 4.2 depicts the i-th layer in a maxout network. The hidden units are divided into non-
overlapping groups. We denote the number of unit groups as U and the group size (how many
units each group contains) as g. Given the input feature vector o

t

, the maxout function is imposed
to generate this layer’s activation yi

t
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t

(1), yi

t

(2), ..., yi

t

(U)] that is a U -dimensional vector. By
following the notations in Section 3.2, we compute the maxout-layer outputs as:
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(j)) (u� 1)⇥ g + 1  j  u⇥ g (4.1)

We can see that the maxout function in fact applies a max-pooling operation on the pre-activation
hidden outputs ai

t

. The maximum value within each group is taken as the output from the i-th
layer. A DMN can be constructed by connecting multiple maxout layers consecutively.

In this thesis, we employ DMNs as sparse feature extractors. Sparse representations can be
generated from any of the maxout layers via a non-maximum masking operation, as exemplified
by Figure 4.2. Specifically, given an input frame, all the units within each group have their
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Figure 4.2: An example for (a) maxout layer and (b) non-maximum masking.

individual outputs, instead of being pooled together into one output. However, only the maximal
value in this group is retained. All the other non-maximal values are rounded to 0. It is worth
noting that non-maximum masking only happens during the feature extraction stage. The training
stage always applies max-pooling.

In order to measure feature sparsity quantitatively, we compute population sparsity [87] for
each feature type. If the t-th frame has the feature vector f

t

, then population sparsity

pSparsity = k f
t

kf
t

k2
k1 (4.2)

measures how sparse the features are on this example. In our experiments, we report the averaged
value of this metric over the entire new-language training set. Unless otherwise stated, population
sparsity is shortened as pSparsity throughout this thesis. A lower pSparsity means higher sparsity
of the features.

So far, we have examined CNNs and DMNs separately as LUFEs. A natural extension is to
combine DMNs and CNNs together, which enables LUFEs to generate both sparse and invariant
feature representations. The resulting LUFE is structured in the similar way as the CNN-based
LUFE. The only difference is that the fully-connected layers in CNNs are replaced with maxout
layers. In Section 4.3.3, we experimentally show that this combined feature extractor ends up to
be the best LUFE studied in this work.
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Table 4.1: Statistics of the BABEL multilingual datasets.

Target Source
TG CN TU PS

#training speakers 132 120 121 121
training (hours) 10.7 17.8 9.8 9.8
dictionary size 8k 7k 12k 8k

#classes 1920 1867 1854 1985

4.3.3 Experiments

Experimental Setup

Our experiments follow the setup in [76], using the multilingual corpus collected under the
IARPA BABEL research program [13, 14, 69]. We aim at improving ASR on the Tagalog (TG,
IARPA-babel106-v0.2f) limited language pack (LimitedLP). This is a low-resource condition
because only 10 hours of telephone conversational speech are available for system building.
Moreover, the data collection covers a variety of acoustic conditions, speaking styles and di-
alects. A large portion of the audio data are either non-speech events (e.g., breath, laughter and
cough) or non-lexical speech (e.g., hesitation and fragment). All these factors make acoustic
modeling under this condition a very difficult task. Therefore, we get higher WERs [26, 27, 76]
than on other benchmark datasets such as Switchboard.

On the target language Tagalog LimitedLP, WERs are reported on a testing set of 2 hours of
speech. The training and testing sets have no over-lapping speakers. During decoding, we use
a trigram language model built from training transcriptions. The source languages, on which
LUFEs are trained, include the LimitedLP sets of Cantonese (CN, IARPA-babel101-v0.4c),
Turkish (TU, IARPA-babel105b-v0.4) and Pashto (PS, IARPA-babel104b-v0.4aY). LimitedLP
sets of the four languages have statistics summarized in Table 4.1.

On each language, we build the GMM models with the same recipe. An initial maximum
likelihood model is first trained using 39-dimensional PLPs (plus deltas and double deltas) with
per-speaker mean normalization. Then 9 frames are spliced together and projected down to 40
dimensions with linear discriminant analysis (LDA). Then, SAT is performed based on fMLLR.
The number of triphone states for each language is shown in the last row of Table 4.1. Training
of the DNN and CNN models is performed with the PDNN framework [70].

Inputs of DNNs and CNNs include 11 consecutive frames of 30-dimensional log-scale filter-
banks with per-speaker mean and variance normalization. The DNN model has 5 hidden layers
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Table 4.2: WER(%) of monolingual DNN and CNN on the target language.

Models WER%
Monolingual DNN 70.8
Monolingual CNN 68.2

Table 4.3: WER(%) of various LUFEs on the target language.

LUFE Models WER% pSparsity
DNN-LUFE 69.6 21.3

Method in [44] 70.1 21.3
CNN-LUFE 67.1 20.4
DMN-LUFE 67.5 17.7

CNN-DMN-LUFE 65.9 16.6

and 1024 units at each layer. DNN parameters are initialized with stacked denoising autoen-
coders (SDAs) [119] using masking noise and the denoising factor of 0.2. Each layer in the
DNN corresponds to a denoising autoencoder (DA) which minimizes the difference between the
reconstruction of corrupted input and the clean version of it. Pre-training of each layer has the
learning rate of 0.01 and runs for 10 epochs. During network fine-tuning, we start from a learn-
ing rate of 0.08 which keeps unchanged for 15 epochs. Then the learning rate is halved at each
epoch until the cross-validation accuracy on a held-out set stops to improve.

The structure of the convolution layers in CNN-based LUFEs follows our description in Sec-
tion 3.3 and Figure 3.4. We adopt one-dimensional convolution only along the frequency axis.
The size of the filter vectors (r

ji

in Equation 3.7) is constantly set to 5. We use a pooling size of
2, meaning that the pooling layer shrinks convolution outputs by half. After tuning the CNN ar-
chitecture, we observe that the best setting has two convolution stages and three fully-connected
layers. The first and second convolution layers contain 100 and 200 feature maps respectively.
Each of the fully-connected hidden layers contains 1024 units. Continuing to augment the con-
volution and fully-connected layers brings no further gains. Table 4.2 shows the performance of
the monolingual DNN and CNN models on the target language. The CNN achieves 2.6% abso-
lute WER improvement over the DNN model, which verifies the advantage of CNNs for acoustic
modeling.

Results of DNN-based, CNN-based and DMN-based LUFEs

LUFEs are trained over the three source languages. For DNNs and DMNs, we take their hidden
layers together as the LUFE. For CNNs, we take the two convolution layers (together with their

34



corresponding max-pooling layers) and the lowest fully-connected layer as the LUFE. On the
target language Tagalog LimitedLP, a DNN-based hybrid model is built on the feature represen-
tations from the LUFE. For fair comparison, the identical DNN topology, i.e., 4 hidden layers
each with 1024 units, is used for hybrid model over different feature extractors. Table 4.3 shows
the results of the hybrid models when various LUFEs are applied, as well as the pSparsity values
for various feature extractors. We can see from Table 4.3 that cross-language models based on
LUFEs give consistently better results than the monolingual DNN. On the same setup, we also
show the WER obtained by the method described in [44], where a single softmax layer is fine-
tuned atop of the LUFE on the target language. We observe that our framework, which trains a
complete DNN model on the target language, performs better than this method. Compared with
the DNN-based LUFE, the CNN-based LUFE gives 2.5% absolute improvement, whereas the
improvement obtained by the DMN-based LUFE is 2.1% absolute.

As with [76], during training of DMNs, the dropout technique [42] is applied in order to
prevent overfitting. We impose dropout on each hidden layer by following the implementation
described in [71]. The drop factor, which governs the binomial distribution for hidden activation
masking, is constantly set to 0.2. For DMNs, we have 512 maxout units and the group size of
2. This configuration keeps the number of units at each hidden layer approximately to be 1024.
From Table 4.3, we can see that the DMN-based LUFE results in better WERs on the target
language than the DNN-based LUFE. Also, the application of DMNs generates features with
lower pSparsity, indicating that we are indeed extracting more sparse features from the DMN
architecture.

Results of Combining CNNs and DMNs

Finally, we examine the effectiveness of combining CNNs and DMNs for better feature extrac-
tion. The structure of the convolution layers remains the same. We replace the sigmoid fully-
connected layers with maxout layers. During multilingual training, the convolution layers and
maxout layers use the starting learning rates of 0.08 and 0.1 respectively. Features are generated
from the lowest maxout layer on top of the convolution layers. We can see from Table 4.3 that
compared with the CNN-based LUFE, the CNN+DMN based LUFE generates sparse features,
as well as reduction of target-language WER. This combined LUFE obtains 3.7% absolute WER
improvement (65.9% vs 69.6%) over the baseline DNN-based LUFE.
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More Results

For more complete evaluations, we further expand the previous experiments from the following
two aspects. First, to make our experiments consistent, we train the LUFEs by taking the FullLP
sets of Cantonese, Turkish and Pashto as the source languages. The total amount of LUFEs
training data is around 240 hours. Inputs into the LUFE networks are 11 consecutive frames of
30-dimensional log-scale filterbanks with per speaker mean and variance normalization. On the
target language, activations from the last hidden layer (which is followed by the classification
layer) are taken as the new feature representations. Second, we evaluate the LUFE framework
on both the LimitedLP and FullLP Tagalog as the target languages. This gives us insight on how
our framework performs under various levels of data availability on the target language. The
configurations for the individual LUFE models are as follows.

• DNN. The DNN-based LUFE has 6 hidden layers, each of which contains 1024 hidden
units. All the hidden layers use the sigmoid activation function.

• CNN. The CNN architecture consists of 2 convolution and 4 fully-connected (FC) lay-
ers. We apply 2-dimensional convolution over both time and frequency. The CNN inputs
are 30-dimensional filterbank features with their deltas and double-deltas features, with a
temporal context of 11 frames. The first convolution layer filters the inputs using 256x3
kernels each of which has the size of 9x9. This is followed by a max-pooling layer only
along the frequency axis, with the pooling size of 3. The second convolution layer takes
as inputs the outputs from the pooling layer and filters them with 256x256 kernels with
the size of 4x3. We then place 4 FC hidden layers and finally the softmax layer on top of
the convolution layers. Both the convolution and the FC layers use the logistic sigmoid
activation function.

• CNN+DMN. The CNN+DMN based LUFE has a similar architecture to the CNN. The
only difference is to replace the 4 FC layers with maxout layers. Each maxout layer has
512 maxout units and the group size of 2.

The results are presented in Table 4.4, from which we can get the following observations.
First, the comparisons between the LUFE models are consistent with our observations when the
LUFEs are trained with LimitedLP sets of the source languages. That is, the CNN-based LUFE
outperforms the vanilla DNN-based LUFE, and combining CNNs and maxout networks gives
us the best LUFE. Second, by comparing the two target-language conditions, we observe that
the improvement of applying LUFEs on the FullLP Tagalog becomes less significant than on
the LimitedLP Tagalog. This is understandable because the LimitedLP Tagalog is a typical low-
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Table 4.4: Performance of various LUFE models trained with the FullLP sets of the source lan-
guages. The target languages are the LimitedLP and FullLP conditions of Tagalog respectively.
For the monolingual DNN on LimitedLP Tagalog, we get a different WER than the number in
Table 4.2. This difference comes from the fact that we use different testing sets during different
stages of the BABEL project.

LUFE Models Target(LimitedLP Tagalog) WER% Target(FullLP Tagalog) WER%
None 65.8 49.3
DNN 59.6 46.7
CNN 58.1 44.9

CNN+DMN 57.0 44.6

resource condition, where incorporating knowledge from other languages via LUFEs is most
beneficial.

4.4 Distributed Training

Ideally, LUFEs are trained over multiple languages with adequate speech data. However, SGD-
based optimization is sequential and hard to be parallelized. This makes LUFE learning an
expensive task, even with the powerful GPU cards. In this section, we aim at speeding up LUFE
training with multiple GPUs, and a parallelization scheme is presented to accomplish this.

4.4.1 DistModel: Distribution by Models

Our DistModel strategy is developed based on the model averaging idea. Model averaging has
been exploited for distributed learning problems, for both convex and non-convex models [67,
135]. We port this idea to distributed training of LUFEs on GPUs. The implementation is
straightforward. Training data of each language is partitioned evenly across all the GPU threads.
In Figure 4.3, we show an example which includes 3 source languages. Each of the languages
contains 90 hours of training data. For distributing training on 3 GPUs, we assign to each GPU
90 hours of data which consist of 30 hours from each source language. Different GPUs have no
overlapping on their data. Then, each GPU trains a LUFE as described in Section 4.2. After a
specified number of mini-batches, the instances of LUFEs from the individual GPUs are averaged
into a unified model. We refer to the number of mini-batches between two consecutive averaging
operations as averaging interval. Note that both the language independent (shared hidden layers)
and the language specific (softmax layer) parameters are averaged. The averaged parameters are
sent back to each GPU as the new starting model for the subsequent training.
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Figure 4.3: The DistModel distributed learning strategy for LUFEs.

DistModel is inherently time synchronous in that the parallel threads have to wait for each
other to perform model averaging. This tends to cause delay, especially when the frequency of
model averaging is high or certain computing nodes run slowly. Compared with the more popular
asynchronous methods [17, 39], time synchronous methods generally achieve worse acceleration.
However, we discover that on this particular LUFE learning task, DistModel is robust to large
averaging interval up to 2000 mini-batches. This is partly because multi-task learning performed
by each GPU acts as strong regularization for LUFE training. This prevents the multilingual
DNN models from getting stuck into local optima. As a result, the averaged LUFE still provides
unbiased feature representations, even after SGD has processed many mini-batches of training
examples on each GPU. Because of this, delay resulting from model averaging ends up to be a
tiny fraction of the entire training time.

4.4.2 Experiments

As with Section 4.3.3, the effectiveness of the DistModel strategy is evaluated with the BA-
BEL corpus. The source languages include the FullLP sets of Cantonese (IARPA-babel101-
v0.4c), Turkish (IARPA-babel105b-v0.4) and Pashto (IARPA-babel104b-v0.4aY). Each source
language consists of approximately 80 hours of transcribed speech. Our target language is the
LimitedLP condition of Tagalog which has 10 hours of data. GMM and DNN models are built
using the same recipes as described in Section 4.3.3. On the target language, the monolingual
DNN hybrid model has a WER of 65.8% on the 2-hour testing set. Note that the WER ob-
tained by our DNN baseline differs from the WER of the DNN baseline in Section 4.3.3. This
is because we are using a different testing set and the officially-released scoring setup. With
the DNN-based LUFE, we are able to reduce the WER down to 59.6% if the LUFE is trained

38



Table 4.5: Impact of averaging interval on WERs and training speed-up. “Epoch” here means
that model averaging is performed only at the end of every training epoch.

Averaging Interval WER% Training Speed-up
300 59.4 1.32
600 60.0 1.89

1000 59.8 2.25
1500 60.5 2.49
2000 59.7 2.66
3000 60.6 2.84

Epoch 61.2 2.9

Table 4.6: DistModel applied to monolingual Tagalog FullLP DNN training.

Method WER% Training Speed-up
Single GPU (baseline) 49.3 —–

DistModel - 300 50.1 1.5
DistModel - 600 50.5 1.9

DistModel - 1000 50.5 2.2
DistModel - 2000 50.3 2.5
DistModel - 3000 50.8 2.7

on a single GPU. That is, cross-language acoustic modeling with LUFEs brings 9.4% relative
improvement (59.6% vs. 65.8%).

We evaluate DistModel over 3 GPUs. A key variable in the DistModel scheme is the averag-
ing interval. Table 4.5 shows speed-up of LUFE training and WERs of the target language when
DistModel adopts various values for averaging interval. Speed-up is measured by the ratio of
the training time taken using a single GPU to the time using 3 GPUs. As expected, with larger
averaging interval, we obtain monotonically better speed-up because of less model averagings.
The change of WER displays more fluctuation, especially for averaging interval less than 2000.
When averaging interval equals 2000, LUFE learning with 3 GPUs is 2.6⇥ faster than using a
single GPU. At the same time, the trained LUFE achieves a WER of 59.7% on the target lan-
guage. This corresponds to 0.1% absolute degradation which can be considered negligible given
the baseline 59.6%. Continuing to increase averaging interval gives further speed-up but signifi-
cantly worse WERs. Thus, setting averaging interval to 2000 is a good balance between training
efficiency and recognition performance. A contrast experiment is to train the LUFE with a single
GPU and only one third of the data. In this case, we can get perfectly 3⇥ speed-up. However,
the WER on the target language goes up to 62.2%.
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Table 4.7: Performance of DistModel with 5 source languages. Distributed training uses 3, 4 and
5 GPUs respectively. WER(%) is reported on the Bengali 2-hour testing set.

Method WER% Training Speed-up
Monolingual DNN 72.5 —–

Single GPU (baseline) 65.7 —–
DistModel with 3 GPUs 66.2 2.4
DistModel with 4 GPUs 66.7 3.1
DistModel with 5 GPUs 66.8 3.4

To investigate DistModel more closely, we apply DistModel to the Tagalog FullLP set for
the normal monolingual DNN training. The resulting DNN model is used directly as hybrid
models, rather than for feature extraction. Table 4.6 shows speed-up of DNN training and the
resulting WERs with averaging interval varying from 300 to 3000. In this scenario, DistModel
achieves similar speed-up as for multilingual DNN training. However, WER degradation caused
by parallelization becomes more significant compared with Table 4.5. This reveals that our
proposed DistModel strategy is particularly suited for the task of LUFE learning.

4.4.3 Larger-Scale Evaluations

In this section, we extend DistModel to larger-scale evaluations by adding Tagalog (IARPA-
babel106-v0.2f) and Vietnamese (IARPA-babel101-v0.4c) into the source languages. This fi-
nally gives us 460 hours of speech data for feature extractor training. Our target language now
is the LimitedLP condition of Bengali (IARPA-babel103b-v0.4b). Also, 2 hours of speech from
the Bengali decoding data are selected as the testing set. DistModel adopts the optimal configu-
ration found in Section 4.4.2. Table 4.7 shows how DistModel performs when we scale it up to 5
GPUs. We observe consistent acceleration, although the speed-up fails to improve linearly with
the number of GPUs. Meanwhile, pooling more GPUs into distributed learning causes WER
degradation, which is likely to be mitigated by further optimization (e.g., learning rate, feature
dimension) on DistModel.

Finally we select more languages released in the second-year period of BABEL as the target
languages. The LUFE feature extractor remains the same, which has been trained on 5 source
languages with 3 GPUs in parallel. Table 4.8 shows the results of the monolingual and corss-
lingual DNN models on various target languages. We can see that across the different targets,
we are able to achieve consistent improvement by transferring knowledge from source to target
languages via the LUFE feature extractors. This proves the effectiveness of our cross-lingual
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Table 4.8: Performance of DistModel by taking other languages from the BABEL corpus as the
target language. The LUFE feature extractor remains the same. WER(%) is reported on a 2-hour
testing set for each individual target language.

Target Language Monolingual WER% Cross-lingual WER%
Bengali 72.5 66.2

Assamese 69.4 63.1
Haitian 64.3 60.9

DNN training framework in improving the ASR performance on low-resource languages.

4.5 Summary

In this chapter, we have proposed a framework to perform cross-language DNN acoustic model-
ing with LUFEs. This framework is further extended from two aspects. First, we have attempted
to improve the quality of the LUFEs by applying CNNs and DMNs as the building block for
LUFEs. These two architectures have the advantage of generating invariant and sparse feature
representations respectively. Combining these two architectures gives us the best LUFE signi-
fied by the lowest WER on the target language. Second, we have proposed a distributed learning
strategy DistModel to speed up training of LUFEs. DistModel accelerates LUFE learning sig-
nificantly, while causing negligible WER loss on the target language.
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Chapter 5

Speaker Adaptive Training of DNN Models
using I-vectors

As discussed in Section 1.1, both GMMs and DNNs suffer from the mismatch between acoustic
models and testing speakers. An effective procedure to alleviate the effect of speaker mismatch is
speaker adaptation. For GMM models, speaker adaptation is generally performed by estimating
the linear MLLR/fMLLR transforms specific to testing speakers [25, 56, 77]. Recently, a large
amount of work has been dedicated to speaker adaptation of DNNs [61, 115, 126]. Another
technique closely related with speaker adaptation is speaker adaptive training (SAT) [5, 6]. SAT
performs adaptation on the training set and projects all the data into a speaker-adaptive space. In
this new feature space, parameters of the acoustic models are further estimated. Acoustic models
trained this way become independent of specific training speakers and thus generalize better to
unseen testing data.

In this thesis, we propose a novel framework to carry out feature-space SAT for DNNs.
Building of SAT-DNN models starts from an initial SI-DNN model that has been trained over
the entire training set. Then, our framework uses i-vectors extracted at the speaker level as a
compact representation of each speaker’s acoustic characteristics. An adaptation neural network
is learned to convert i-vectors to speaker-specific linear feature shifts. Adding the shifts to the
original DNN input vectors (e.g., MFCCs) produces a speaker-normalized feature space. The
parameters of the SI-DNN are updated in this new feature space, and this finally gives us the
SAT-DNN model. This thesis explores the optimal configuration of SAT-DNNs for LVCSR
tasks. Apart from hybrid models, we demonstrate the extension of our SAT framework to CNNs
and BNF generation. Furthmore, we study the combination of SAT and speaker adaptation for
DNNs. During decoding, model-space adaptation is applied on top of SAT-DNN models for
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further improved recognition results. Our work described in this chapter has been published in
[72, 81, 83]

5.1 Related Work

This section reviews previous work that is related to our work. These previous work is divided
into three aspects: speaker adaptation and SAT of the traditional GMM-HMM models, speaker
adaptation and SAT of DNNs, and extraction of i-vectors.

5.1.1 Speaker Adaptation and SAT of GMM-HMM Models

Speaker Adaptation of GMM-HMMs

An issue that acoustic models, both GMMs and DNNs, encounter is the mismatch between
acoustic models and testing speakers. Acoustic models experience a degradation of recogni-
tion accuracy when ported from training speakers to unseen testing speakers. Speaker adapta-
tion has proven to be effective in mitigating the effects of this mismatch [25, 56]. In general,
speaker adaptation modifies speaker-independent (SI) models towards particular testing speak-
ers or transforms the features of testing speakers towards the SI models. Two commonly-used
speaker adaptation methods for GMM-HMM models are maximum likelihood linear regression
(MLLR) and feature-space MLLR (fMLLR).

MLLR is originally presented as a model-space adaptation technique. MLLR applies speaker-
specific linear transforms to the mean vectors of the Gaussian components in the GMM model.
For the component m in the state i, MLLR can be described as

µ
im

! A(s)µ
im

+ b(s) (5.1)

where µ
im

is the mean vector for the Gaussian component, A(s) is a linear transform specific to
the speaker s, and b(s) is a bias vector specific to s. This can be rewritten into a more compact
form

µ
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, 1]T .
The MLLR transform is typically estimated in a maximum likelihood estimation (MLE) man-

ner. Suppose we have some adaptation data on which we either have known transcripts of a
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speaker’s utterances (supervised adaptation) or have the recognition outputs from an ASR sys-
tem (unsupervised adaptation). The likelihood of each observation from the adaptation data of
speaker s can be expressed as

b
i

(o
t

) =

MiX

m=1

c
im

N(o
t

;W(s)µ+
im

,⌃
im

) (5.3)

The adaptation parameters W(s) can be estimated by maximizing the likelihood of the adaptation
data.

In addition to model parameters, this linear transform can also be applied to feature vectors.
For the feature vector o

t

at time step t, fMLLR can be described as

o
t

! A(s)o
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+ b(s) (5.4)

where A(s) and b(s) are the transformation parameters specific to speaker s. Similarly this can be
rewritten into a more compact form

o
t

! W(s)o+
t

(5.5)

where o+
t

= [oT

t

, 1]T is an expanded form of o
t

. The adaptation parameters W(s) can be similarly
estimated on the adaptation data via MLE.

SAT of GMM-HMMs

Another technique closely related with speaker adaptation is speaker adaptive training (SAT)
[5, 6]. When carried out in the feature space, SAT performs fMLLR adaptation on the training
set and projects training data into a speaker-normalized space. Parameters of the acoustic models
are estimated in this new feature space. Acoustic models trained this way become independent
of specific training speakers and thus generalize better to unseen testing speakers. In practice,
SAT models generally give better recognition results than SI models, when speaker adaptation is
applied to both of them. For GMM-HMM models, SAT has been a well-studied, long-standing
technique. The idea of feature-space SAT for the GMM-HMM is demonstrated in Figure 5.1. The
procedures of training and decoding of the SAT model are detailed as follows. Note that during
decoding, we assume to perform unsupervised adaptation. In this case, two passes of decoding
need to be conducted. The procedures of training and decoding SAT models are summarized as
follows.
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Figure 5.1: Illustration of SAT for GMM-HMMs.

Training
1. Step 1. Train the SI GMM-HMM acoustic model over all the training data.

2. Step 2. Estimate the fMLLR transforms for the training speakers, based on the SI model.

3. Step 3. Apply the fMLLR transforms to the original features so as to obtain the fMLLR
feature space.

4. Step 4. Update the parameters of the GMM-HMM in the fMLLR feature space.

5. Repeat steps 2-4 iteratively until the training process converges.

Decoding
1. Step 1. Do a first pass of decoding using the SI model.

2. Step 2. Perform adaptation using the SAT model and the first-pass decoding outputs.

3. Step 3. Decode the SAT model in the adapted fMLLR feature space.

5.1.2 Speaker Adaptation and SAT of DNNs

Speaker adaptation acts as an effective procedure to reduce mismatch between training and test-
ing conditions. Previous work has proposed a number of techniques for speaker adaptation of
DNN models. These methods can be categorized into 3 classes. The first class augments the
SI-DNN model with additional SD layers, and the parameters of these layers are learned on the
target speakers. In [58, 105], a layer is inserted between the input features and the first hidden
layer. This additional layer plays the similar role to feature-space maximum likelihood linear re-
gression (fMLLR) transforms as estimated in GMMs. Alternatively, the SD layer can be inserted
after the last hidden layer [58]. Yao et al. [126] demonstrate that transforming the outputs of the
final hidden layer is equivalent to adapting the parameters of the softmax layer. After carrying
out singular value decomposition (SVD) over DNN weight matrices, Xue et al. [124] perform
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adaptation by learning SD matrices that are inserted between the decomposed weight matrices.
In the recently proposed learning hidden unit contributions (LHUC) approach [115], a SD vec-
tor is attached to every hidden layer of the SI-DNN and learned on a particular testing speaker.
These SD vectors are applied to the SI-DNN hidden outputs with element-wise multiplication,
regulating the contributions of hidden units. This LHUC approach is further extended to achieve
SAT for DNN models [114].

The second class of adaptation methods trains (and decodes) DNNs over SA features. For
example, features transformed with vocal tract length normalization (VTLN) and fMLLR have
been applied successfully as DNN features, showing notable advantage over non-adaptive fea-
tures [96, 105]. Another way of normalizing speaker variability is to augment the input features
with additional speaker-specific information. Speaker i-vectors [18, 19] have been explored for
this purpose. For example, Saon et al. [103] append i-vectors to the original features at each
speech frame. The effectiveness of incorporating i-vectors is further verified in [35, 107]. I-
vector based adaptation is further developed in [51, 60] where separate vectors are used to rep-
resent finer-grained acoustic factors such as speakers, environments and noise. In [1, 2], the
speaker representation (referred to as speaker codes) is learned on each speaker through network
fine-tuning, instead of being extracted prior to DNN training.

The third class adapts the parameters of the SI-DNN model directly, without changing the
architecture of the SI-DNN. For instance, [62] examines how the performance of DNN adaptation
is affected by updating different parts (the input layer, the output layer, or the entire network) of
the SI-DNN. Updating the entire DNN may suffer from overfitting, especially when the amount
of adaptation data is limited. To address this issue, Yu et al. [131] propose to regularize speaker
adaptation with the Kullback-Liebler (KL) divergence between the output distributions from
the SI and the adapted DNNs. This regularizer prevents the parameters of the adapted DNN
from deviating too much from the SI-DNN. Price et al. [94] add a softmax layer with context-
independent (CI) states on top of the softmax layer with CD states. This helps alleviate the
problem of rare CD classes having no or few examples on the adaptation data. In [108], instead
of model parameters, the shape of the activation function used in the SI-DNN is adjusted to
match the testing conditions.

In comparison to speaker adaptation, past work has made fewer attempts on SAT of DNNs.
Training DNNs with SA features [96, 105, 118] or additional speaker-specific information [35,
103, 107] can be treated as a form of SAT. In [125], Xue et al. append speaker codes [1, 2]
to the hidden and output layers of the DNN model. SAT is achieved by jointly learning the
speaker-specific speaker codes and the SI-DNN. In [37, 38], adaptive training is achieved by
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first constructing a (shallow) neural network model for each speaker. The classification outputs
from these speaker-dependent networks are fused using a Meta-Pi network. Although the low-
level classifiers are speaker-dependent, the merger network is trained in a global and speaker-
independent fashion. In [88], speaker availability is normalized by allocating certain layers of
the DNN as the SD layers that are learned on a speaker-specific basis. Over different speakers,
the other layers are adaptively trained by picking the SD layer corresponding to the current
speaker. Although showing promising results, the application of these proposals is constrained
to specific feature types or model structures. For example, the approach in [125] is not applicable
to CNNs because it is infeasible to append speaker codes to the hidden convolution layers. Also,
in these methods, adaptation of the resulting SAT models generally needs multiple decoding
passes, which undermines the decoding efficiency. This motivates us to propose a more general
solution for SAT of DNNs. The framework we present in this chapter can be applied to different
feature types and model structures. Furthermore, due to the incorporation of speaker i-vectors,
speaker adaptation of the SAT models becomes both efficient and robust.

5.1.3 I-Vector Extraction

Recently, the application of the i-vector paradigm has resulted in significant advancement in the
speaker verification community [18, 19]. The i-vector approach differs from the earlier JFA [53]
in that it has a single variability subspace to model different types of variability emerging from
the speech signal. We assume to have a GMM model, referred to as universal background model
(UBM), which consists of K Gaussian components. The t-th frame o

t

from the s-th speech
segment is formulated to be generated from the UBM model as follows:
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are the mean vector and covariance matrix of the k-th Gaussian, the total
variability matrices T

k

span a subspace for the shifts by which the UBM means are adapted
to particular segments, r

t

(k) represents the posterior probability of the k-th Gaussian given the
speech frame. The latent vector w

s

follows a standard normal distribution and describes the
coordinates of the mean shift in the total variability subspace. The maximum a posterior (MAP)
point estimate of the vector w

s

, called an i-vector, represents salient information about all types
of variability in the speech segment. The readers can refer to [18, 19] for more details.

Given a collection of speech segments, the UBM model can be trained using the standard
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MLE. To build the i-vector model, sufficient statistics are accumulated on each speech frame
based on the posteriors with respect to the UBM. These statistics are used to learn the total
variability matrices and extract the i-vectors. After the i-vectors are obtained, a scoring model,
e.g., probabilistic linear discriminant analysis (PLDA), can be applied to the i-vectors for speaker
recognition/verification. When extracted at the speaker (rather than segment) level, i-vectors
provide a low-dimensional representation of the acoustic characteristics of individual speakers.
Previous work [35, 50, 103, 107] has applied i-vectors successfully to speaker adaptation of
both GMM and DNN acoustic models. In this thesis, we leverage i-vectors to perform adaptive
training of DNNs. It is worth noting that although called SAT, adaptive training performed in this
work also pertains to acoustic conditions because i-vectors encapsulate information regarding
speakers and conditions (noise, channel, etc).

5.2 Speaker Adaptive Training of DNNs

This section introduces our SAT-DNN framework. We first present the overall architecture and
then give details about the two training steps: training the adaptation network and updating the
DNN parameters. Finally, we elaborate on how to decode the SAT-DNN models.

5.2.1 Architecture of SAT-DNNs

For GMM-based acoustic modeling, speaker-specific fMLLR transforms are estimated on the
training speakers if SAT is performed in the feature-space. The GMM parameters are then up-
dated in the fMLLR-transformed feature space. We port this idea to DNN models, and the whole
SAT-DNN architecture is shown in Figure 5.2. Suppose that an i-vector has been extracted for
each speaker as described in Section 5.1.3 where the segment now contains all the frames from
the speaker. As with SAT of GMMs, SAT of DNNs starts from a SI-DNN model (on the right
of Figure 5.2) that has been well trained over the entire training set. Two steps are then taken to
build the SAT-DNN model. First, with the SI-DNN fixed, a smaller adaptation neural network
(on the left of Figure 5.2) is learned to take i-vectors as inputs and generate speaker-specific lin-
ear shifts to the original DNN feature vectors. In Figure 5.2, the t-th input vector o

t

comes from
speaker s whose i-vector is denoted as i

s

. The layers of the adaptation network are indexed by
-I, -(I-1), ..., -2, -1, where I is the total number of hidden layers in the adaptation network. The
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Figure 5.2: Architecture of the SAT-DNN model.

values attached to the adaptation network can be computed as:

ai

s

= W
i

xi

s

+ b
i

yi

s

= �(ai

s

) � I  i  �1 (5.7)

where � is the activation function of each layer in the adaptation network, xi

s

is the inputs to the
i-th layer and can be represented as:

xi

s

=

(
i
s

i = �I

yi�1
s

�I < i  �1

(5.8)

After the adaptation network is trained, the speaker-specific output vector y�1
s

is added to each
of the original feature vector o

t

from speaker s:

z
t

= o
t

� y�1
s

(5.9)

where � represents element-wise addition. This gives us a new feature space which is expected
to be more speaker normalized.

The second step involves updating the parameters of the DNN model in the new feature
space. We keep the adaptation network unchanged, and the SI-DNN is fine-tuned by taking z

t

as
the new feature vector at each frame t. This finally generates the SAT-DNN model that is more
independent of specific speakers. Note that during this updating step, the DNN parameters use
the original SI-DNN as the initial values, instead of being learned from scratch.

The formulation of the adaptation network outputs as linear feature shifts imposes two con-
straints. First, the output layer of the adaptation network has to use the identity activation func-
tion �(x) = x by which we are not restricting the direction and value range of the feature shifts.
Second, the number of units at the output layer (i.e., the dimension of y�1

s

) has to equal the di-
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mension of the original feature vector o
t

. Both training of the adaptation network and updating
of the DNN model can be realized with the standard error back-propagation. We will give more
details in the following two subsections.

5.2.2 Training of the Adaptation Networks

The adaptation network is learned in a supervised manner, with errors back-propagated from the
SI-DNN. The objective function remains to be Equation 3.3, i.e., the cross-entropy computed
with the outputs from the DNN softmax layer and the ground-truth labels. However, the inputs
of the DNN are now the new input features z

t

, instead of the original feature o
t

. Our goal is to
optimize this objective with respect to the parameters of the adaptation network. The derivatives
of the objective function with respect to the new feature vector z

t

can be written as:

@L
@z

t

= WT

1 ✏
1
t

(5.10)

where ✏1
t

represents the error vector back-propagated to the first hidden layer of the DNN, W1

is the weight matrix connecting the input features and the first hidden layer of the DNN. At the
output layer of the adaptation network, we have y�1

s

= a�1
s

because of the identity activation
function. This output layer has the error vector:

✏�1
s

=

@L
@a�1

s

=

@L
@y�1

s

=

@L
@z

t

(5.11)

which is further back-propagated into the adaptation network. The parameters of the adaptation
network are updated with gradients derived from the error vectors. We can see that these gradi-
ents depend not only on the speaker i-vectors but also on the DNN input features o

t

. Therefore,
the training data of the adaptation network consist of the combination of i-vectors and their corre-
sponding speech frames. The number of training examples equals the number of speech frames,
rather than the number of speakers. Although we also get the gradients of the DNN parameters,
the DNN parameters are not updated.

5.2.3 Updating of the DNN Model

After the adaptation network is trained, updating of the DNN model is straightforward to ac-
complish. Parameters of the DNN are initialized with parameters of the SI-DNN model and
fine-tuned with the cross-entropy objective. The only difference is that the inputs of the DNN
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are now the speaker-normalized features z
t

. Parameters of the adaptation network are kept fixed
during this step. When fine-tuning terminates, we get the final SAT-DNN model.

From its training process, we can see that our SAT-DNN approach poses a general framework.
It does not depend on specific choices of the original DNN input features. Although called SI-
DNN, the initial DNN model can be trained on either SI features (e.g., filterbanks, MFCCs, etc)
or speaker-adapted features (e.g., fMLLRs, filterbanks with VTLN, etc). Moreover, in addition
to DNNs, the approach can be applied naturally to other types of deep learning models such as
CNNs [3, 4, 99, 100, 111] and RNNs [32, 65, 101, 102]. In our experiments, we will demonstrate
the extension of SAT-DNN to various model and feature types.

5.2.4 Decoding of SAT-DNN

Decoding of SAT models generally requires speaker adaptation on the testing data. For SAT-
DNN models, speaker adaptation simply involves extracting the i-vector for each testing speaker
and feeding the i-vector into the adaptation network. This produces the linear feature shift spe-
cific to this speaker. Adding the feature shift to the original feature vectors generates a speaker-
adapted feature space, in which the SAT-DNN model is decoded. We summarize the major steps
for training and decoding of SAT-DNN models as follows:

Training
1. Train the SI-DNN acoustic model over all the training data.

2. Re-align the training data with the SI-DNN model. The alignment align-dnn serves as new
targets.

3. Extract the i-vector i
s

for each training speaker.

4. Fix the parameters of the SI-DNN. Learn the adaptation network with the input features
o
t

, i-vectors i
s

and the supervision align-dnn.

5. Fix the parameters of the adaptation network. Update the parameters of the DNN model
with the new features z

t

and the supervision align-dnn.

Decoding
1. Extract the i-vector of each testing speaker.

2. Feed the i-vector to the adaptation network. Produce the speaker-specific feature shifts.

3. Decode the SAT-DNN model in the speaker-adapted feature space z
t

.
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5.3 Experiments

The proposed approach is evaluated on a LVCSR task of transcribing TED talks. We show our
experimental setup that is followed by results and analysis.

5.3.1 Experimental Setup

Dataset

Our experiments use the benchmark TEDLIUM dataset [97] which was released to advance ASR
on TED talks. This publicly available dataset contains 774 TED talks that amount to 118 hours
of speech data. We take this dataset as our training set and each TED talk is treated as a speaker.
Decoding is done on the dev2010 and tst2010 test sets defined by the ASR track of the previous
IWSLT evaluation campaigns. The ASR task of IWSLT aims at recognition of TED talks which
acts as a critical component in the end-to-end speech translation systems. For comprehensive
evaluation, we merge the two sets into a single test set which contains 19 TED talks, i.e., 4 hours
of speech.

GMM Models

We first train the initial MLE model using 39-dimensional MFCCs plus their deltas and double
deltas. Then 7 frames of MFCCs are spliced together and projected down to 40 dimensions
with LDA. A maximum likelihood linear transform (MLLT) is applied on the LDA features and
generates the LDA+MLLT model. Discriminative training with the boosted maximum mutual
information (BMMI) objective [90] is finally performed on top of the LDA+MLLT system. The
GMM model has 3980 clustered triphone states and an average of 20 Gaussian components per
state.

DNN Baseline

We build the DNN model using our PDNN implementation [70]. The class label on each speech
frame is generated by the GMM model through forced alignment. We use a DNN with 6 hidden
layers, each of which has 1024 units and the logistic sigmoid activation function. The last soft-
max layer has 3980 units corresponding to the states. The inputs are 11 neighboring frames of
40-dimensional log-scale filterbank coefficients with per-speaker mean and variance normaliza-
tion. The DNN parameters are initialized with the SdAs.
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Table 5.1: WERs(%) of the SI-DNN and SAT-DNN models.

Model Alignment WER(%) Rel. Imp. (%)
BMMI GMM —– 24.1 —–

SI-DNN from GMM 20.0 —–
SAT-DNN from GMM 18.1 9.5
SAT-DNN from DNN 17.7 11.5

For fine-tuning, we optimize the cross-entropy objective using the exponentially decaying
learning rate schedule. Specifically, the learning rate starts from a big value 0.08 and remains
unchanged until the increase of the frame accuracy on a cross-validation set between two con-
secutive epochs falls below 0.2%. Then the learning rate is decayed by a factor of 0.5 at each of
the subsequent epochs. The whole learning process terminates when the frame accuracy fails to
improve by 0.2% between two successive epochs. We use the mini-batch size of 256 for SGD,
and a momentum of 0.5 for gradient smoothing. During decoding, the original Kaldi tedlium
recipe relies on a generic CMU language model. In our setup, we train a lightweight trigram
language model using 180k sentences of TED talk transcripts. This in-domain language model
is pruned aggressively for decoding efficiency.

SAT-DNN Baseline

The DNN model which has been trained serves as the SI-DNN for constructing the SAT-DNN
model. The adaptation network contains 3 hidden layers each of which has 512 units and uses the
logistic sigmoid activation function. The output layer has 440 (the dimension of the DNN input
features) units and uses the identify activation function. Parameters of the adaptation network
are randomly initialized. Training of the adaptation network and updating of the DNN follow the
same fine-tuning setting as training of the SI-DNN.

I-vector extraction is conducted with Kaldi’s in-built i-vector functionality. The i-vector ex-
tractor takes 19-dimensional MFCCs and log-energy as the features. Computing deltas and ac-
celerations finally gives a 60-dimensional feature vector on each frame. Both the UBM model
and the total variability matrices are trained on the entire training set. For each training and
testing speaker, we extract a 100-dimensional i-vector which has been found to give the optimal
recognition performance in our previous studies [79, 81].
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5.3.2 Basic Results

Table 5.1 compares the WERs of the SI-DNN and SAT-DNN models on the test set. The last
column shows the relative improvement of SAT-DNNs over SI-DNN. The SI-DNN model gets
a WER of 20.0% which is significantly better than the discriminatively trained GMM model.
When training the SAT-DNN model, we can employ the frame-level alignment generated from
the GMM model, i.e., the same alignment as used by the SI-DNN training. In this case, Table
5.1 shows that the SAT-DNN has a WER of 18.1%, that is 9.5% relative improvement over the
SI-DNN. Alternatively, we can re-align the training data with the SI-DNN and use the newly-
generated alignment during SAT-DNN training (both learning of the adaptation network and
updating of the DNN). This re-alignment step improves the WER of the SAT-DNN further to
17.7%. Also, we observe that SAT-DNN training with the new DNN-generated alignment con-
verges faster than with the old GMM-generated alignment. Thus, unless otherwise stated, train-
ing of the SAT-DNN models always uses the new alignment in the rest of our experiments.

5.3.3 Bridging I-vector Extraction with DNN Training

I-vector extraction in Section 5.1.3 aims to optimize the objective of speaker modeling. The
UBM model and the total variability matrices are trained with MLE. In contrast, DNN and SAT-
DNN models try to distinguish phonetic classes and are trained in a discriminative manner. The
separate training of these two parts with respect to different objectives may hurt the performance
of the SAT-DNN models. Past work [57] has studied approaches to leveraging DNN models in
i-vector extraction. In [57], the UBM used in i-vector extraction is replaced with a DNN that has
been trained for acoustic modeling. In this case, the probabilities r

t

(k) are posteriors of states
outputted by the DNN, instead of posteriors of the Gaussians from the UBM. This manner of
incorporating DNNs into i-vector extraction results in significant improvement on a benchmark
speaker recognition task [57].

In this subsection, we bridge i-vector extraction with DNN training from the front-end per-
spective. Prior to building the i-vector extractor, we learn a DNN model that is designed for
BNF generation. Instead of MFCCs, outputs from the bottleneck layer of such a BNF-DNN are
taken as the features for training the i-vector extractor (including the UBM and total variabil-
ity matrices). Only changing the front-end enables us to take advantage of the existing i-vector
extraction pipeline, without making major modifications. The incorporation of the DNN-based
features adds phonetic discrimination ability to the extracted i-vectors, which potentially benefits
the following SAT-DNN training.
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Table 5.2: WERs(%) of SAT-DNN models with i-vectors from MFCC and BNF feature respec-
tively.

Model Features for I-vectors WER(%) Rel. Imp. (%)
SAT-DNN MFCCs 17.7 11.5
SAT-DNN BNFs 17.3 13.5

Following our DBNF architecture [26, 27], the BNF-DNN has 6 hidden layers in which
the 5th layer is a bottleneck layer. To be consistent with MFCCs, the bottleneck layer has 60
nodes whereas each of the other hidden layers has 1024 nodes. Inputs to the BNF-DNN are
11 neighboring frames of 40-dimensional filterbank features. In Table 5.2, we show the results
of SAT-DNNs using i-vectors extracted from MFCCs and BNFs respectively. The last column
shows the relative improvement of SAT-DNNs over the SI-DNN baseline. Within the SAT-DNN
framework, BNF-based i-vectors result in slight improvement (0.4% absolute) over MFCC-based
i-vectors. Applying the BNF-based i-vectors brings the WER of the SAT-DNN model down to
17.3% that is 13.5% relative improvement compared with the SI-DNN baseline.

5.3.4 Variable Data Amount for I-vector Extraction

In the thesis, our experiments use all the data to estimate i-vectors for adaptation, i.e., on average
780 seconds of speech data per speaker. In certain scenarios (e.g., online decoding), however,
the adaptation data may become highly limited. We examine how the amount of adaptation data
affects the recognition performance of SAT-DNNs. For convenience of formulation, we use the
variable � to denote the average amount of adaptation data per speaker in terms of seconds. By
tuning the maximum number of frames one speaker can have, we systematically reduce � from
780 to 12, by a factor of 2 each time. Note that we only vary the data amount for adaptation (i.e.,
i-vector estimation), keeping the data to be eventually decoded unchanged. Figure 5.3 depicts the
variation of WERs with different values of �. Reducing � up to 25 leads to either zero or minor
WER degradation. We start to observe notable degradation when � equals 12. This suggests
that SAT-DNN performs robustly to reduced amount of adaptation data, and thus is applicable to
online decoding.

5.3.5 Application to fMLLR Features

So far, we have looked at the filterbank features as the DNN inputs. This subsection examines
how the SAT-DNN model works when the DNN inputs are speaker-adapted fMLLR features.
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Figure 5.3: The WERs of SAT-DNN models when � is reduced from 780 to 12.

Table 5.3: WERs(%) of the DNN and SAT-DNN when the inptus are fMLLR features.

Model WER(%) Rel. Imp. (%)
DNN (baseline) 18.9 —–

SAT-DNN 17.4 7.9

We perform SAT over the LDA+MLLT GMM model, which produces the SAT-GMM model
and fMLLR transforms of the training speakers. DNN inputs include 11 neighboring frames of
40-dimensional fMLLR features. Training of the DNN with fMLLRs follows the same protocol
as training of the DNN with filterbanks, using alignment generated by the SAT-GMM model.
During SAT-DNN training, the frame-level class labels come from re-alignment with the new
fMLLR-based DNN model, and the i-vectors from the BNF features. Table 5.3 shows the per-
formance of the resulting SAT-DNN models. The last column shows the relative improvement
of SAT-DNNs over the DNN baseline. Compared with the DNN model, the SAT-DNN obtains
1.5% absolute improvement (17.4% vs 18.9%) in terms of WER, which is equivalent to 7.9% rel-
atively. Because speaker availability has been partly modeled by fMLLR transforms, the gains
achieved by SAT-DNN here are less significant than the gains on filterbank features.

5.4 Extension to BNFs and CNNs

In Section 5.2, we argue that our SAT approach is a general framework. To demonstrate this, we
empirically study two natural extensions of SAT-DNNs. All the experiments are based on the
same setup as in the previous section.

57



Table 5.4: WERs(%) of BMMI GMM models when the features are MFCCs, DBNF and SAT-
DBNF.

Front-end WER(%) Rel. Imp. (%)
MFCCs 24.1 —–
DBNF 17.7 —–

SAT-DBNF 16.2 8.5

5.4.1 Extension to BNFs

We have studied the application of SAT-DNNs as hybrid models. In tandem systems, DNNs can
also be used as discriminative feature extractors. A widely employed manner is to place a bottle-
neck layer in the DNN architecture. Outputs from the bottleneck layer are taken as new features
on top of which GMM models are further built. In this work, we turn to the DBNF [26, 27] ap-
proach for bottleneck feature extraction. DBNF is characterized by the asymmetric arrangement
of the layers and multiple hidden layers before the bottleneck layer. The DBNF network has 6
hidden layers in which the 5th hidden layer is a bottleneck layer. This bottleneck layer has 42
units, whereas each of the other hidden layers has 1024 nodes. The parameters of the 4 prior-
to-bottleneck layers are initialized with SdA pre-training [119]. Inputs to the DBNF network are
11 neighboring frames of 40-dimensional filterbank features. After this network is trained, we
build a LDA+MLLT GMM model following the standard Kaldi pipeline [92]. Specifically, at
each frame, the 42-dimensional bottleneck features are further normalized with mean subtrac-
tion. Then, 7 consecutive BNF frames are spliced and then projected to 40 dimensions using
LDA. On top of the LDA+MLLT model, 4 iterations of discriminative training is performed with
the BMMI objective [90].

Applying SAT to bottleneck feature extraction is straightforward. We simply replace the
DNN model in Figure 5.2 with the DBNF network. When training is finished, we obtain the
features z

t

with the adaptation network and i-vectors. Speaker-adapted bottleneck features are
generated by feeding z

t

to the SAT-DBNF network. Table 5.4 compares the performance of the
final BMMI GMM models when the bottleneck features are extracted from the DBNF and SAT-
DBNF networks respectively. The last column shows the relative improvement of SAT-DBNF
over the standard DBNF. We observe that the GMM model with bottleneck features largely out-
performs (17.7% vs 24.1%) the GMM model with MFCCs. Extracting bottleneck features from
SAT-DBNF further reduces the WER to 16.2%, i.e., 32.8% and 8.5% relative improvement over
the MFCC and the standard DBNF front-end respectively. This demonstrates the effectiveness
of the SAT technique in improving the quality of bottleneck features.
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Table 5.5: Configurations (filter and pooling size) of the two convolution layers in our CNN
architecture.

#1 conv layer #2 conv layer
frequency time frequency time

Filter 9 9 4 3
Pooling 3 1 1 1

5.4.2 Extension to CNNs

Section 5.2 claims the applicability of our SAT technique to CNNs, and we experimentally con-
firm this in this subsection. Our CNN architecture follows [111], consisting of 2 convolution and
4 fully-connected layers. We apply 2-dimensional convolution over both time and frequency.
The CNN inputs are 40-dimensional filterbank features with their 4 and 44 features, with a
temporal context of 11 frames. Detailed configurations of the convolution layers are listed in
Table 5.5. The first convolution layer filters the inputs using 256x3 kernels each of which has
the size of 9x9. This is followed by a max-pooling layer only along the frequency axis, with the
pooling size of 3. The second convolution layer takes as inputs the outputs from the pooling layer
and filters them with 256x256 kernels with the size of 4x3. All the convolution operations are
overlapping with the stride of 1 whereas the pooling is always non-overlapping. Outputs from
the convolution layers are 256 feature maps, each of which has the size of 8x1. We then place
4 fully-connected hidden layers and finally the softmax layer on top of the convolution layers.
Both the convolution and the fully-connected layers use the logistic sigmoid activation function.

As with SAT-DNNs, training of the SAT-CNN model starts from a well-trained SI-CNN
model. The i-vectors are extracted with bottleneck features as described in Section 5.3.3. We
learn the adaptation network that has the output dimension of 3x11x40. The features shifts are
added to the original features and the CNN model is updated in the new feature space. Table
5.6 presents the performance of the SI-CNN and SAT-CNN models, with the last column show-
ing the relative improvement of the SAT-CNN over the SI-CNN. We can see that our SI-CNN
model outperforms both the SI-DNN model with filterbanks and the DNN model with fMLLRs,
revealing that the SI-CNN poses a strong baseline. In comparison with this strong baseline, the
SAT-CNN model truly gives a better WER 16.8%. The 7.2% relative improvement achieved by
SAT-CNN over SI-CNN is less than the improvement achieved by SAT-DNN over SI-DNN. This
is partly because CNNs normalize speech features more effectively than DNNs, which decreases
the efficacy of the application of SAT.
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Table 5.6: WERs(%) of the SI-CNN and SAT-CNN models.

Model WER(%) Rel. Imp. (%)
SI-CNN (baseline) 18.1 —–

SAT-CNN 16.8 7.2

5.5 SAT and Speaker Adaptation

In this section, we focus on the comparisons and combinations of SAT and speaker adaptation
for DNN models. The performance of SAT is firstly compared against two competitive speaker
adaptation methods. Then, we show that model-space adaptation can further improve the recog-
nition accuracy of SAT-DNNs.

5.5.1 Comparing SAT and Speaker Adaptation

Past work [103] closely related with this chapter performs speaker adaptation of DNNs by incor-
porating i-vectors. Specifically, at each frame t, the original DNN input vector o

t

is concatenated
with the corresponding speaker i-vector i

s

. The combined feature vector [o
t

, i
s

] is treated as the
new DNN inputs, in both training and testing. For convenience of formulation, this method is
referred to as DNN+I-vector. Recently a model-space adaptation method, Learning Hidden Unit
Contributions (LHUC), was proposed in [115]. In this method, the SI-DNN model is adapted to
a specific speaker s with a SD parameter vector ri

s

at each hidden layer. The outputs of the i-th
hidden layer in the SD model now become:

yi

t

=  (ri
s

)� �(W
i

xi

t

+ b
i

) (5.12)

where � represents element-wise multiplication,  is a function to constrain the range of the
parameter vector and is set to  (x) = 2/(1 + exp(�x)) in [115]. During adaptation, only the
SD parameters [ri

s

, 1  i < I] are estimated on the adaptation data with error back-propagation,
whereas the SI-DNN parameters remain unchanged.

Our implementation of these two methods follows [103] and [115]. For DNN+I-vector, a
100-dimensional i-vector is extracted for each training or testing speaker. All the other settings
are consistent with the settings of the SI-DNN model in Section 5.3. For LHUC, the elements
of ri

s

are initialized uniformly to 0. A first pass of decoding with the SI-DNN is done to get
the frame-level supervision. Training of the SD parameters goes through 3 epochs with the
constant learning rate of 0.8. Table 5.7 shows the results of the DNN models adapted with
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Table 5.7: Performance comparisons between SAT-DNN and speaker adaptation methods.

Model/Adaptation Methods WER(%) Rel. Imp. (%)
SI-DNN (baseline) 20.0 —–

SAT-DNN 17.3 13.5
DNN+I-vector[103] 19.5 2.5
DNN+LHUC[115] 18.3 8.5

Table 5.8: Performance of adapted DNNs using LHUC and different sets of first-pass hypotheses.

1stPass System WER(%) of Hypotheses WER(%) of Adapted DNN
SI-GMM 28.1 19.3

SAT-GMM 23.3 18.4
SI-DNN 20.0 18.3

these two methods. The last column shows the relative improvement over the SI-DNN baseline.
We observe that compared with the un-adapted SI-DNN, DNN+I-vector brings 2.5% relative
improvement and DNN+LHUC gives 8.5%. However, both methods are outperformed by the
SAT-DNN model, which justifies the necessity of conducting complete SAT for DNN models.

For more complete comparison, we experiment with LHUC when different sets of supervi-
sion hypotheses are used. In particular, we perform decoding with the SI-GMM (LDA+MLLT),
SAT-GMM and SI-DNN models respectively, and employ the resulting hypotheses as supervi-
sion for LHUC-based adaptation. As shown in Table 5.8, these models have the WERs of 28.1%,
23.3% and 20.0%, simulating first-pass hypotheses of different quality levels. We observe that
when using LHUC, the performance of the adapted DNN gets worse as the WER of the super-
vision hypotheses deteriorates. This degradation results from fine-tuning on the adaptation data
where the erroneous supervision is taken as true class labels. On the contrary, the adaptation of
SAT-DNN requires no fine-tuning on the adaptation data and therefore its performance becomes
robust to supervision errors. It is more suitable for unsupervised adaptation, especially when the
first-pass decoding has high WERs.

5.5.2 Combining SAT and Model-space Adaptation

The adaptation of the SAT-DNN model is in fact feature-space adaptation because it normalizes
the DNN inputs. After getting the speaker-adapted features ( z

t

in Equation 5.9), the SAT-DNN
model can be further adapted in this new feature space, using any of the model-space adaptation
methods. We turn to LHUC for model-space adaptation. Table 5.9 provides a summary of the
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Table 5.9: A summary of the performance of SAT-DNNs using i-vectors extracted from MFCCs
and BNFs respectively.

Model WER(%) Rel. Impr.(%)
SI-DNN 20.0 —

I-vectors from MFCCs
SAT-DNN 17.7 11.5
+LHUC 16.7 16.5

I-vectors from BNFs
SAT-DNN 17.3 13.5
+LHUC 16.5 17.5

complete results of the SI-DNN and SAT-DNN models when the input features are filterbanks.
In this table, “+LHUC” means that the LHUC-based adaptation is applied over SAT-DNNs. The
last column shows the relative improvement over the SI-DNN. Applying LHUC on top of SAT-
DNN produces nice gains in terms of WERs. Combining SAT-DNN and LHUC together finally
gives us a WER of 16.5% on the test set, which is 17.5% relative improvement compared with
the SI-DNN model.

5.6 Acceleration of SAT-DNN training

A major concern for building SAT-DNN models is the additional cost it imposes to the training
pipeline. We investigate a simple but effective data reduction strategy to speed up the training of
SAT-DNNs. The intuition is that the adaptation network models mapping from the i-vectors to
the feature shifts. As a result, during training of the adaptation network, the number of distinct
i-vectors plays a more important role than the number of speech frames. Moreover, because of
taking the SI-DNN model for initialization, updating of the DNN supposedly needs less data
compared with training from scratch. Based on these intuitions, we select one example out of
every n speech frames for training of SAT-DNNs. That is, after picking a training example, we
skip the following n � 1 frames to pick the next one. By doing this, we keep the number of
training speakers (i-vectors) unchanged. However, the training set is shrunk to 1/n of its original
size, which speeds up the SAT-DNN training by n times.

In Table 5.10, we present the results of the resulting SAT-DNN models when n ranges from 1
to 4. The numbers are obtained on the LVCSR task of transcribing TED talks, as described in the
thesis. The data size is measured by the ratio of the reduced size to the original size. With n = 2,
we accelerate the training process by 2⇥ while getting 1.7% relative WER degradation (17.6%
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Table 5.10: Performance of SAT-DNN models when the training set is shrunk by frame skipping
(“Frame”) and speaker reduction (“Speaker”) respectively. The data size is measured by the ratio
of the reduced size to the original size.

Data size Speed up WER(%) Frame WER(%) Speaker
1 1⇥ 17.3

1/2 2⇥ 17.6 18.5

vs 17.3%). A direct comparison is to shrink the training set by reducing the number of speakers,
without skipping any speech frames. As shown in Table 5.10, the results of SAT-DNNs using
this speaker reduction strategy become notably worse, e.g., 7.0% relative degradation (18.5% vs
17.3%) when n is set to 2. This reveals that data reduction based on frame skipping is an effective
strategy to speed up SAT-DNN training without causing significant loss on WERs.

5.7 Application to the Switchboard Dataset

We finally evaluate our SAT-DNN framework on the Switchboard conversational telephone tran-
scription task. We use Switchboard-1 Release 2 (LDC97S62) as the training set which contains
over 300 hours of speech. For fast turnarounds, we also select 110 hours from the training set
and create a lighter setup. Our test set is the Hub5’00 (LDC2002S09) set which consists of 20
conversations from Switchboard and 20 conversations from CallHome English. To be consistent
with previous work [103, 105], we report results only on the Switchboard part. For decoding, a
trigram language model (LM) is trained on the training transcripts. This LM is then interpolated
with another trigram LM trained on the Fisher English Part1 transcripts (LDC2004T19).

5.7.1 Experiments on the 110-Hour Setup

We first report experiments on the 110-hour setup. The GMM-HMM systems are built with
the standard Kaldi Switchboard recipe [92]. We train the initial MLE model based on 39-
dimensional MFCCs (plus deltas and double deltas) features with per-speaker mean normaliza-
tion. Then 7 frames of MFCCs are spliced and projected to 40 dimensions with linear discrimi-
nant analysis (LDA). A MLLT is estimated on the LDA features and generates the LDA+MLLT
model. Over the LDA+MLLT model, SAT is performed with one fMLLR transform per speaker.
The final SAT-GMM model has 4287 clustered CD states (senones).

The baseline DNN model has 5 hidden layers each of which contains 1200 neurons. The
parameters of this DNN model are randomly initialized. DNN fine-tuning optimizes the cross-
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Table 5.11: Comparisons of DNN and SAT-DNN on the Switchboard 110-Hour setup. WERs
are reported on the Switchboard part of the Hub5’00 (eval2000) testing set.

Model WER(%) Rel. Impr.
DNN (baseline) 21.7 —

DNN+I-vector[103] 21.1 2.8%
SAT-DNN 19.3 11.1%

entropy (CE) objective using an exponentially decaying learning rate schedule. Specifically, the
learning rate starts from 0.08 and remains unchanged until the increase of the frame accuracy
on a cross-validation set between two consecutive epochs falls below 0.2%. Then the learning
rate is decayed by a factor of 0.5 at each of the subsequent epochs. The whole learning process
terminates when the frame accuracy fails to improve by 0.2% between two successive epochs. A
mini-batch size of 256 is adopted for stochastic gradient descent (SGD).

This baseline DNN is taken as the initial model during building of SAT-DNN models. When
we apply the SAT-DNN framework, the adaptation network contains 3 hidden layers, each of
which has 512 hidden units and uses the logistic sigmoid activation function. The output layer
has 440 (the dimension of the DNN input features) units and uses the identify activation func-
tion. Parameters of the adaptation network are randomly initialized. Moreover, following the
configurations in Section 5.3.1, i-vector extraction generates a 100-dimensional i-vector for each
training and testing speaker.

Our results are shown in Table 5.11. The baseline DNN achieves the WER of 21.7%, while
the SAT-DNN model gives the WER of 19.3%. That is, the SAT-DNN gets 11.1% relative
improvement over the baseline DNN. In comparison, the DNN+I-vector approach, which simply
concatenates i-vectors with the original acoustic features, is also applied, and results in the WER
of 21.1%. This translates to only 2.8% relative improvement over the baseline DNN, performing
worse than our SAT-DNN approach.

5.7.2 Experiments on the Complete 300-Hour Setup

Our SAT-DNN approach is finally evaluated with the complete 300 hours of training set. We
follow the same procedures as described in Section 5.7.1 to build the GMM and DNN models.
The number of senones in the GMM model increases from 4287 to 8929. The DNN model
has 6 hidden layers each of which contains 2048 neurons. The DNN is initialized with SdAs
that are pre-trained in a greedy layerwise fashion. When we apply the SAT-DNN framework,
the adaptation network contains 4 hidden layers, each of which has 1024 hidden units. The
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Table 5.12: Comparisons of DNN and SAT-DNN on the complete Switchboard 300-Hour setup.
WERs are reported on the Switchboard part of the Hub5’00 (eval2000) testing set.

Model WER(%) Rel. Impr.
DNN (baseline) 16.6 —

DNN+I-vector[103] 15.2 8.4%
SAT-DNN 14.6 12.0%

experimental results are shown in Table 5.12.

With the complete training set, the baseline DNN achieves the WER of 16.6%, which is
comparable to numbers reported in previous work [74]. Applying SAT-DNN reduces the WER
to 14.6%, i.e., 12.0% relative improvement compared to the baseline DNN. This improvement
reveals that our SAT-DNN framework performs effectively on larger datasets such as Switch-
board.

We also build the DNN+I-vector model on this setup. DNN+I-vector finally obtains the
WER of 15.2%, i.e., 8.4% relative improvement over the baseline DNN. A comparison between
the 300-hour and 110-hour results indicates that the DNN+I-vector approach gives noticeable
gains under large amounts of training data. These gains are largely diminished when the amount
of training data decreases. This is partly because DNN+I-vector employs a simple linear con-
catenation to incorporate the speaker i-vectors. Since the power of the linear concatenation is
relatively limited, the mapping from speaker i-vectors to SA feature space can only be achieved
when large amounts of training speech (i.e., large numbers of training speakers) become avail-
able. On the contrary, our SAT-DNN framework relies on the adaptation network to serve as the
mapping function, and thus adds great flexibility to the learning of the complex mapping. Be-
cause of this, our SAT-DNN approach achieves consistent relative improvement across different
levels of data availability.

To further prove the advantage of SAT-DNN under limited training data, we create two other
training sets: 64 hours and 200 hours. In Figure 5.4, we plot the WERs achieved by various
models across different amounts of training speech. It can be clearly seen that with smaller
training sets, DNN+I-vector achieves only minor improvement over the baseline DNN model.
This improvement becomes more significant as the amount of training speech increases. On the
contrary, the SAT-DNN model shows consistent gains across different levels of data availability,
compared to the baseline DNN.
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Figure 5.4: The WERs of the baseline DNN, DNN+I-vector and SAT-DNN models when differ-
ent amounts of training speech are available.

5.8 Summary

In this chapter, we have proposed a framework to perform SAT for DNN acoustic models. The
SAT approach relies on i-vectors and the adaptation neural network to realize feature normal-
ization. This work explores the application of SAT-DNNs to LVCSR tasks. We determine the
optimal configurations (e.g., features for i-vector extraction) for building of SAT-DNN models.
The SAT approach is proved to be a general method in that it can be extended easily to dif-
ferent feature and model types. Furthermore, we study the comparisons and combinations of
SAT and speaker adaptation in the context of DNNs. A data reduction strategy, frame skipping,
is also employed to accelerate the training process of SAT-DNNs. Our experiments show that
compared with the DNN baseline, our SAT-DNN model achieves 13.5% relative improvement in
terms of WER. This improvement is enlarged to 17.5% when the LHUC-based model adaptation
is further applied atop of SAT-DNNs. Furthermore, we evaluate our SAT-DNN approach on the
larger Switchboard dataset and study the performance of SAT-DNN under different levels of data
availability.
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Chapter 6

Robust Speech Recognition with
Distance-Aware DNNs

6.1 Background and Motivation

Robustness requires ASR systems to perform reasonably well on noisy, farfield speech and un-
der unseen environment. Robustness has been a long-standing problem for acoustic modeling
[59]. In recent years, DNN models have dramatically advanced the recognition accuracy on
clean, close-talking speech. However, robustness still remains to be a challenge for DNNs. It is
revealed in [46] that as with GMMs, the performance of DNNs drops significantly as the SNR de-
creases. Various attempts [60, 65, 106, 123] have been made to build noise-robust DNN models.
For example, [106] proposes different methods, including multi-condition training and dropout
training, to improve DNN models under low SNRs. In [65, 123], RNNs are employed for this
purpose, either as a noise-reduction autoencoder or as the hybrid model directly.

Apart from noise, another critical type of variability is the distance between speakers and
the microphones. Performance gap exists when we port ASR systems from close-talking to dis-
tant speech [116]. A number of techniques have been presented for improved DNN models on
farfield speech. For instance, in [63, 116], DNN models are improved by combining speech sig-
nals from multiple distant microphones via concatenation or beamforming [66]. Also for DNN
models, [127] evaluates the existing environmental robustness methods on a distant-microphone
meeting transcription task. A robust front-end is derived by integrating different enhancement
approaches and feature types. Although showing nice gains, these distant speech recognition
(DSR) techniques have the limitation that most of them deal with constantly distant speech. That
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is, the speaker-microphone distance (SMD) is assumed to be unchanged throughout the course of
recording. However, in many real-world scenarios, the SMD can be quite dynamic. For example,
a speaker is likely to walk around when talking to a far-field microphone located at a fixed posi-
tion. In this case, the distance between the speaker and the microphone varies a lot even within
the same utterance, which poses special difficulty to acoustic modeling. In this thesis, we solve
this problem by proposing the distance-aware DNN (DA-DNN) models. DA-DNNs capture the
SMD information dynamically at the frame level.

This thesis aims to build DNN models robust to rich SMD variability. Our solution takes
advantage of DNNs’ flexibility to integrate heterogeneous features under the same optimization
objective. We propose to construct distance-aware DNNs by explicitly incorporating the SMD
information into DNN training. Past work [33, 63, 106] has attempted to incorporate various
types of context information (e.g., noise estimate [106], speaker identity [63] and visual clues
[33]) for robust DNN acoustic modeling. However, to our knowledge, no previous work has
dealt with the explicit incorporation of dynamic distance information.

In this work, we achieve the incorporation of the SMD information by learning a universal
SMD extractor. Such an extractor is a DNN with a bottleneck layer in the architecture. It is
trained on a comprehensive meeting corpus, using SMD types as the classification targets. Then,
we apply this extractor to our target acoustic modeling task. Specifically, each speech frame
is fed into the extractor and activations of the bottleneck layer are taken as SMD descriptors.
Distance-aware DNNs are built by appending these descriptors to the acoustic features (e.g.,
filterbanks) as the DNN inputs. Based on this basic framework, we make further optimizations
from two aspects.

• Besides DNNs, we study two alternative architectures, convolutional neural networks (CNNs)
[4, 100, 111] and recurrent neural networks (RNNs) [32, 65, 101, 120], as the SMD ex-
tractor.

• A distance adaptive training (DAT) approach is proposed to utilize the SMD information
more effectively.

Our work described in this chapter has been published in [73].

6.2 Extraction of SMD Descriptors

We formulate the extraction of the SMD information as a problem of bottleneck-feature (BNF)
generation. Three architectures are investigated as the building block of the extractor.
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6.2.1 SMD Extraction with DNNs

Our first SMD extractor is a DNN that has a bottleneck layer significantly narrower than the
other hidden layers. This bottleneck layer squeezes the discriminative information into a low-
dimensional space. The network is trained on a dataset where the SMD type (close-talking,
distant, etc.) of each acoustic frame is known. For example, in the ICSI meeting corpus [48],
each meeting session is recorded with multiple microphones, and details regarding the locations
of the microphones are provided. Training of the network is to classify speech frames to the
SMD types. After network training, activations from the bottleneck layer are treated as SMD
descriptors that capture the SMD variability dynamically at the frame level.

Our previous work [27] has established the deep BNF (DBNF) architecture for better BNF
extraction. DBNF differs from the previous BNF approaches [34, 128] in that the hidden layers
are arranged in an asymmetric manner around the bottleneck layer. In particular, we insert multi-
ple hidden layers prior to the bottleneck layer, and only one hidden layer between the bottleneck
and the softmax layers. As discovered in [130], activations from higher layers of DNNs are
more invariant to acoustic distortions. In this work, we apply this DBNF structure as the SMD
extractor.

6.2.2 SMD Extraction with CNNs

Instead of fully-connected (FC) weight matrices, CNNs are characterized by local filters which
capture locality along the frequency bands. On top of the convolution layers, max-pooling layers
are usually added to improve the shift invariance in the frequency domain. Because of these
configurations, CNNs have been shown to outperform DNNs on acoustic modeling tasks [4, 72,
100, 111]. In highly challenging acoustic conditions, the quality of the SMD descriptors might be
undermined by spectral distortions such as noise and reverberation. Applying CNNs as the SMD
extractor enables us to obtain SMD descriptors robust to these distortions. Following [111], our
CNN-based extractor contains two convolution layers, on top of which multiple FC layers are
added. One of the FC layers is a bottleneck layer for SMD descriptors generation. More details
about our CNN settings are presented in Section 6.4.2.

6.2.3 SMD Extraction with RNNs

Both DNNs and CNNs can only model limited temporal dependency within the fixed-size context
window. To resolve this limitation, previous work [32, 101, 102] has studied the application
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of RNNs to acoustic modeling. Unlike the standard feedforward networks, the RNN has self-
connections on its hidden layers. These connections allow temporal information to be propagated
through many time steps. We use the more complicated Long Short-Term Memory (LSTM)
[43], which has been reviewed in Section 3.4, to construct RNNs. LSTM is a special recurrent
layer that exploits memory cells to store temporal information and purpose-built gates to control
the information flow. These modifications make RNNs particularly suited for modeling long-
range temporal dynamics. In this work, we use a deep LSTM-RNN architecture, which stacks
multiple LSTM layers, as the SMD extractor. Within each LSTM layer, following [101], we
add a linear projection layer that transforms the memory cell activations into lower-dimensional
outputs. In [101], adding this projection layer is found to reduce model parameters and generate
better recognition accuracy. Interested readers can refer to [101] for more details.

6.3 Distance-Aware DNNs

The trained SMD extractor is transferred to our target acoustic modeling task on which distance-
aware DNNs are then built. Note that the inputs to the SMD extractor and the inputs to the DNN
acoustic model are not constrained to be identical. They may be trained with different feature
types, e.g., MFCCs and filterbanks. Even with the same feature type, the SMD extractor and the
DNN model may require different normalization on their front-end. At the t-th frame, the input
vector of the DNN model is denoted as o

t

, and the inputs of the SMD extractor as r
t

. By feeding
r
t

to the extractor, we obtain its bottleneck layer activations d
t

as the SMD descriptors. Two
methods are investigated to incorporate these descriptors into DNN training.

6.3.1 Simple Concatenation

A simple way is to append these SMD descriptors to the original DNN inputs. Then, the DNN
model is built over the augmented feature vectors [o

t

, d
t

]. During fine-tuning, the bottom layers
are trained to fuse the SMD information and the acoustic features with non-linear transforma-
tions. The activations from these bottom layers become more invariant across SMD conditions,
and thus benefit the phonetic states classification performed by the upper layers.
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6.3.2 Distance Adaptive Training

In Chapter 5, we have presented a framework to perform speaker adaptive training (SAT) for
DNN models. This approach requires an i-vector [19] to be extracted for each speaker. Based on
the well-trained speaker-independent (SI) DNN, a separate adaptation neural network is learned
to convert i-vectors into speaker-specific linear feature shifts. Adding these shifts to the original
DNN inputs (i.e., o

t

) produces a speaker-normalized feature space. Parameters of the SI-DNN
are re-updated in this new space, which finally generates the SAT-DNN model.

This idea can be naturally ported to the SMD descriptors, and we conduct distance adaptive
training (DAT) for DNNs. Specifically, we replace the i-vector representations with the SMD
descriptors. A distance-normalized feature space is similarly derived by learning the adaptation
network. Note that in this case, the linear feature shifts generated by the adaptation network
are frame-specific rather than speaker-specific. Re-updating the parameters of the DNN in the
normalized feature space gives us the adaptively trained DAT-DNN model. This DAT-DNN
model becomes independent of specific SMD conditions, and thus generalizes better to unseen
distance variability.

6.4 Experiments

6.4.1 Experimental Setup

Following [79], our target acoustic modeling task is to transcribe real-world instructional videos.
To create the dataset, we download a collection of English videos from online video archives.
These videos are uploaded by social media users to share expertise on specific tasks (e.g., oil
change, sandwich making, etc.). Unlike broadcast news videos that are produced professionally,
these amateur videos are shot using various types of portable devices (e.g., cameras, cellphones,
etc.) with far-field microphones. Also, in many of the videos, the speakers frequently change
their locations relative to the microphones. For example, in a video about soccer skills, the
speaker has to move around in order to perform various actions. All these factors make the SMD
vary a lot, not only within the same video but also within a single utterance. This SMD variability
poses special challenges to acoustic modeling on this task. On average, the downloaded videos
have the duration of 90 seconds. For each video, the manual transcripts have been provided by the
uploading user. We take several steps to convert the collected data into an ASR corpus. These
steps include transcripts normalization, utterance filtering, audio downsampling, and lexicon
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Table 6.1: Accuracy (%) of various SMD extractors on the ICSI meeting training data, where the
classes are the 2311 combinations of speakers and distance types. The accuracy is measured on
the frame level.

SMD Extractor Training Accuracy (%) Validation Accuracy (%)
DNN 43.46 39.71
CNN 51.86 46.78

LSTM 65.07 48.77

expansion. We finally get 94 hours of speech, out of which 90 hours are selected for training
and 4 hours for testing. A video is taken as a speaker. For decoding, a trigram language model
(LM) is trained on the training transcripts. This LM is then interpolated with another trigram LM
trained on an additional set of 300 hours of instructional-video transcripts.

We train the SMD extractor on the ICSI meeting corpus [48]. In this corpus, each meeting
session has been recorded with microphones laid out at different distances from the speakers.
However, the total number of channels is not constant across meeting sessions. Moreover, not
enough details regarding the channels are provided in the corpus that enables us to align channels
across meetings. For instance, the channels marked with “#1” in two different meetings are not
necessarily referring to the same microphone. Therefore, instead of only distance types, the
combinations of speakers and distance types are taken as the labels, which totally results in 2311
classes. A SMD extractor can be learned by taking these classes as the targets using the standard
CE objective. In Table 6.1, we show the frame-level accuracy achieved by SMD extractors with
different architectures.

It is worth noting that in addition to distance-related information, the descriptors extracted
from the SMD extractor are likely to contain other types of information. First of all, we take
the combination of speakers and channels as the labels, which naturally injects speaker-related
information into the SMD descriptors. Second, the differentiation of the channels pertains not
only to speaker-microphone distance, but also to other types of acoustic variability such as noise
and reverberation. In other words, the features we obtain from the trained SMD extractor pose a
rich representation, in which the speaker-microphone distance is a principal component.

Our GMM models are built with the open-source Kaldi toolkit [92]. We first train the initial
MLE model using 39-dimensional MFCCs plus their detals and double deltas. Then 7 frames
of MFCCs are spliced together and projected down to 40 dimensions with linear discriminant
analysis (LDA). A MLLT is applied on the LDA features and generates the LDA+MLLT model.
Discriminative training with the boosted maximum mutual information (BMMI) objective [90]
is finally performed over the LDA+MLLT model. The GMM model has 3819 tied triphone states
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Table 6.2: Results (% WER) of the BMMI-GMM and baseline DNN models on the testing set.

Models WER(%)
BMMI-GMM 26.1

DNN 23.4

and an average of 16 Gaussian components per state.

We construct DNN models using our PDNN framework [70]. DNN inputs include 11 neigh-
boring frames (5 on each side of the center frame) of 40-dimensional log-scale filterbank coef-
ficients, with per-video mean and variance normalization. The DNN model has 6 hidden layers
each of which contains 1024 neurons. Parameters of the network are initialized randomly. DNN
fine-tuning uses frame labels generated through forced alignment with the LDA+MLLT GMM
model. The cross-entropy (CE) objective is optimized based on a decaying learning rate sched-
ule. Specifically, the learning rate starts from 0.08 and remains unchanged until the increase of
the frame accuracy on a cross-validation set between two consecutive epochs falls below 0.2%.
Then the learning rate is decayed by a factor of 0.5 at each of the subsequent epochs. The whole
learning process terminates when the frame accuracy fails to improve by 0.2% between two suc-
cessive epochs. We adopt the mini-batch size of 256 and the momentum of 0.5 for stochastic
gradient descent (SGD). Table 6.2 shows the WERs of the BMMI-GMM and DNN models on
the 4-hour testing set.

6.4.2 Experiments of SMD Extractors

In this section, we firstly investigate the optimal configurations for the SMD extractor. Training
of the extractor uses filterbanks as the features. However, instead of per-video normalization, we
apply global mean and variance normalization to preserve channel and speaker variation across
videos. The trained SMD extractor is applied to our video-transcribing dataset, generating the
SMD descriptors from its bottleneck layer. We employ the simple concatenation method for
incorporating the SMD information. When formulated as a DNN, the extractor contains 6 hidden
layers in which the 5-th layer is the bottleneck layer. All the non-bottleneck hidden layers have
1024 units. Table 6.3 shows the WERs of the resulting distance-aware DNNs when the SMD
descriptors have different dimensions. In the best case, we place 100 units at the bottleneck
layer and have the WER of 22.1%. As a comparison, we train the DNN-based SMD extractor
using the 468 speakers (instead of speaker-channel combinations) as the targets. In this case,
the distance-aware DNN gets a much worse WER 23.0%. This verifies the necessity of adding
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Table 6.3: Results (% WER) of the SMD extractors with different configurations and architec-
tures. “SMD Dim” refers to the dimension of the SMD descriptors, i.e., the size of the bottleneck
layer in the SMD extractor.

SMD Extractor SMD Dim WER(%)
DNN 50 22.4
DNN 100 22.1
DNN 150 22.3
CNN 100 22.1

LSTM-RNN 100 21.8

channel (distance) targets in SMD extractor training.

Section 6.2 presents three architectures to instantiate the SMD extractor. We compare the per-
formance of these architectures in Table 6.3. The CNN architecture follows [79, 111], consisting
of 2 convolution layers. The convolution operation is applied over both time and frequency. Atop
of the convolution layres, 4 FC hidden layers and finally the softmax layer are placed. The 5-th
hidden layer, i.e., the 3-rd FC layer, is the bottleneck layer which has 100 neurons. In our LSTM-
RNN architecture, we have 2 LSTM layers, each of which contains 800 memory cells and 512
output units. On top of these two LSTM layers, we have a bottleneck layer with 100 units which
is followed by the final softmax layer. Unlike DNNs and CNNs, the LSTM-RNN takes single
frames of filterbanks as its inputs, without any context splicing.

From Table 6.3, we observe that applying the CNN as the SMD extractor gives no improve-
ment over the DNN extractor. This is partly because although showing rich SMD variability,
our dataset is relatively clean, without much noise and reverberation. The advantage of CNNs in
normalizing spectral distortions cannot be manifested under this condition. In comparison, the
application of the LSTM-RNN results in more obvious gains (0.3% absolute). This demonstrates
the ability of LSTM-RNNs to learn more accurate SMD descriptors by exploiting long-term tem-
poral dependency. To this end, the distance-aware DNN achieves the WER of 21.8%, which
translates to 6.8% relative improvement over the DNN baseline (23.4%).

6.4.3 Results of DAT-DNNs

In addition to the simple concatenation, Section 6.3.2 proposes DAT for incorporation of the
SMD descriptors. In this section, we experimentally study the performance of DAT-DNN mod-
els. As with SAT of DNNs [79, 81], building of DAT-DNN models starts from the DNN baseline
which has been well trained in Section 6.4.1. An adaptation network is learned to convert the
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Table 6.4: Results (% WER) of the adaptively trained DNN models. “Feat” means the type of
additional descriptors used in adaptive training, e.g., SMD descriptors for DAT.

Adaptive Model Feat WER(%)
DAT-DNN SMD descriptors 21.5
SAT-DNN I-vectors 22.0

SAT+DAT-DNN SMD descriptors + I-vectors 21.3

SMD descriptors into frame-level linear features shifts. This adaptation network contains 3 hid-
den layers, each of which has 512 units and uses the sigmoid activation function. Its output layer
has 440 (the dimension of the DNN input features) units and uses the identity function f(x) = x.
After adding the shifts to the original DNN inputs, we obtain the distance-normalized feature
space, in which the DNN model is re-updated. This gives us the DAT-DNN model. Training of
the adaptation network and updating of the DNN use the standard back-propagation.

During decoding, we adapt the DAT-DNN model simply by extracting the SMD descriptors
on the testing speech frames, feedforwarding the descriptors through the adaptation network,
and adding the feature shifts to the original filterbank features. The DAT-DNN model is finally
decoded in the normalized feature space. We use the SMD descriptors generated by the LSTM-
RNN. Table 6.4 shows the results of the DAT-DNN model. Due to more complicated integration
of the SMD information, our DAT approach outperforms the simple concatenation.

For complete evaluation, we also build the SAT-DNN model by extracting a 100-dimensional
i-vector for each speaker. From Table 6.4, we observe that the improvement (22.0% vs 23.4%)
of the SAT-DNN over the baseline DNN is not as large as the improvement reported in [79]. This
is because the video-level i-vectors are insufficient to capture the rich SMD variability within
videos/utterances. In contrast, DAT can model the SMD dynamics by taking advantage of the
frame-level SMD descriptors. As a result, the DAT-DNN model ends up to achieve better results
than the SAT-DNN. Finally, we concatenate the i-vectors and SMD descriptors into an expanded
representation, which encodes both the video-level speaker characteristics and the frame-level
SMD dynamics. Adaptive training is similarly carried out over these new representations. Table
6.4 shows that the resulting SAT+DAT-DNN model obtains a better WER than both the SAT-
DNN and the DAT-DNN. Compared with the DNN baseline, the SAT+DAT-DNN results in 9.0%
relative improvement (21.3% vs 23.4%).
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6.4.4 More Analysis

So far, our experiments have shown that incorporating the SMD descriptors into DNNs brings
notable gains. Here we conduct quantitative analysis to verify the correlation between WER
gains and the SMD variability. The two models used in our analysis are: the baseline DNN
model with the WER of 23.4%, and the DA-DNN using the simple concatenation and with the
WER of 21.8%. On our decoding data, we break their WERs down to the 156 speakers (i.e.,
videos). The WER relative improvement is then computed on the per-video basis.

Meanwhile, we quantify the SMD variability by measuring the change of the extracted SMD
descriptors. Specifically, for a specific video, we obtain the SMD vector for each of the frames
from the LSTM-RNN extractor, and characterize its SMD variability by calculating the Euclidean
distance of the SMD vectors between every pair of neighboring frames. More formally, given a
video that has T speech frames, we obtain SMD descriptors after feeding the T frames into the
SMD extractor. The resulting SMD descriptors are a sequence of T vectors [d1, d2, ..., d

T

]. Then
the SMD variability is represented by a T � 1 dimensional vector [sv1, sv2, ..., svT�1], where
each element sv

t

is the Euclidean distance between the two vectors d
t

and d
t+1. Averaging the

vector [sv1, sv2, ..., svT�1] gives us an overall indicator about how the SMD information varies
within this video, which is referred to as SMD variability for this video.

As shown by Table 6.5, on 18 testing videos, the DA-DNN achieves more than 15% relative
improvement than the baseline DNN. On these 18 videos, the average SMD variability is 0.392.
For a comparison, we randomly select 18 videos on which the improvement of the DA-DNN is
between 0% and 15%, and the average SMD variability is 0.334. The variability further reduces
to 0.285 when we examine the videos on which no improvement is achieved. The overall ob-
servation from these comparisons is that the DA-DNN model gets more gains when the SMD
variability gets larger. This confirms our intuition towards distance-aware DNNs: the acous-
tic model incorporates the distance information dynamically and performs particularly well on
videos with high SMD variability.

For further qualitative analysis, we select two videos on which incorporating the SMD de-
scriptors gives significant (20% relative in this case) and no WER improvements respectively.
For each video, we plot its SMD variability vector [sv1, sv2, ..., svT�1] sequentially along the
time axis (speech frames). The visualization for the two selected videos is presented in Figure
6.1. We observe that on the video where the WER is improved by 20%, the SMD descriptors
display more variation than on the video where the WER sees no improvement. This demon-
strates that the SMD descriptors we extract truly characterize the speaker-microphone distance
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Table 6.5: Analysis of the correlation between DA-DNN WER improvement and the SMD vari-
ability. “WER Improvement” refers to the relative improvement of the DA-DNN over the base-
line DNN. “Average SMD Variability” means the SMD variability averaged over the videos
examined.

WER Improvement Average SMD Variability
greater than 15% 0.392

between 0% and 15% 0.334
equal to or smaller than 0% 0.285

information, and eventually enhance the robustness of acoustic models.

6.5 Summary

In this chapter, we have investigated the impact of dynamic SMD on the performance of DNN
acoustic models. To alleviate the effect of SMD, we build distance-aware DNN models by ex-
plicitly incorporating SMD descriptors into DNN training. Extraction of the SMD information is
achieved by a universal extractor that is learned on a meeting corpus. We study the effectiveness
of different deep learning architectures acting as the SMD extractor. Also, two approaches, fea-
ture concatenation and adaptive training, are employed to incorporate the SMD descriptors into
DNN model training. Our experiments show that distance-aware DNNs achieve 8.1% relative
WER improvement over the DNN baseline. The SMD descriptors can be combined with speaker
i-vectors into a more comprehensive representation which results in further WER reduction. In
addition to the quantitative evaluations, we also conduct qualitative analysis, revealing the reason
why incorporating the SMD information improves recognition accuracy.
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(a) On the video where the WER is improved by 20% relatively
with SMD descriptors incorporated.

(b) On the video where the WER has no improvement when
SMD descriptors are incorporated.

Figure 6.1: Visualization of the SMD variability vectors along the time axis. The variability is
quantified as the Euclidean distance of the SMD descriptors vectors for every pair of neighboring
frames. The time axis is represented by the frame index.
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Chapter 7

Open-Domain Audio-Visual Speech
Recognition using Deep Learning

The pervasive deployment of speech interfaces requires ASR systems to handle various types of
variability. In general, DNNs display superior recognition accuracy than the traditional GMMs
models. However, robustness remains to be a challenge for DNN models [59]. For example, in
[46], it is revealed that the performance of DNNs degrades significantly as the SNR drops. As
revealed in Chapter 6, an effective strategy to deal with variability is to incorporate additional
knowledge explicitly into DNN models.

When transcribing video data, in addition to the audio stream, we can also take advantage of
the video stream, which provides additional information potentially helpful for acoustic model-
ing. For instance, images extracted from a specific video may indicate the scene/environment in
which the speech data have been recorded. Also, actions (running, lifting, walking, etc.) per-
formed by the speaker may correlate with the speaker’s speaking rate or style. This chapter
investigates the incorporation of various types of visual features into DNN acoustic models. Un-
like previous work on audio-visual ASR [23, 33], we study visual features that can be extracted at
the video or segment level, and thus enable open-domain audio-visual ASR on real-world video
data. The work presented in this paper has been published in [75, 79].

7.1 Related Work on Audio-Visual ASR

ASR on video data naturally has access to two modalities: audio and video. The bimodal nature
of speech perception motivates researchers to work on audio-visual ASR. The goal of this field
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is to explore the visual modality to improve the performance of ASR, especially under noisy
acoustic conditions with low SNRs. There exist two key problems for audio-visual ASR. The
first problem is the extraction of the visual features that can potentially improve ASR. Previ-
ous work [8, 12, 23, 33, 52] has generally exploited visual features that are extracted from the
speaker’s mouth region. For example, in automatic lip-reading literatures [8, 21], areas of interest
(AOI) centered around the lips are extracted to form the image features. Facilitating lip-reading
in online recognition requires the deployment of face tracking and lip locating modules [22]. In
[23], 24 coefficients of lip shape and intensity, together with their temporal dynamics, are gener-
ated as the visual descriptors. A more straightforward feature type is the gray-scale pixel values
of the (downsampled) image covering the speaker’s mouth [132]. In [52], visual features are ob-
tained from pixel color using raster scan, i.e., 30-dimensional RGB features with 10 dimensions
from each color. In [68], a real-world system is described to automatically track and extract lip
regions, and thus alleviate the difficulty of obtaining these features. To alleviate the difficulty
of obtaining visual features surrounding lips, the second problem lies in the fusion of the audio
and visual modalities into the bimodal system. In practice, this fusion can be conducted either
on the feature level [12, 52, 89] where a bimodal front-end is constructed with the two feature
streams, or on the decision level [8, 23, 117] where outputs from classifiers are combined during
the recognition stage. A major challenge for the feature-level fusion is the asynchrony of the
audio and video streams. To solve this issue, attempts have been made to combine the classi-
fier outputs (e.g., states likelihoods) at a coarser level, for example the phone or even the word
level [23, 117]. Another useful tool to deal with this asynchrony is Dynamic Bayesian Networks
(DBNs) which allow for different levels of information fusion and have shown effectiveness in
audio-visual ASR [24, 31].

Despite these advancement, audio-visual ASR still has limitations that prevent its deployment
to real-world video data. For example, mouth/lip related visual features are not always available
in open-domain videos. In this thesis, we aim to further remove these constraints and thus achieve
truly open-domain audio-visual ASR.

7.2 Speaker Attributes and Actions

Different speakers have different acoustic characteristics which are highly correlated with speech
realization. The information revealing the speaker’s attributes (e.g., age, gender, race, etc.) is
valuable to ASR tasks. Also, actions performed by the speaker may affect the speaker’s speaking
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rate or style. This section focuses on the extraction and incorporation of speaker attributes and
actions for acoustic modeling.

7.2.1 Speaker Attributes

We first study speaker attributes that can be derived automatically from video frames. In the
instructional video dataset we have constructed, we observe that the (principal) speaker tends
to appear at the beginning for a brief introduction. Based on this observation, we extract only
the frame at the position which is immediately after the first utterance starts. Then, this image,
which is assumed to show the speaker, is submitted to the Face++ API (www.faceplusplus.com),
a platform built by Megvii Inc. for compact, powerful, and cross-platform vision services. With
Face++’s face recognition functionality, we obtain the classification results of 3 attributes: age,
gender, and race. The returned results are processed in the following manner.

• Age. The returned value of age is continuous. We categorize the age value into 6 bins:
<20, 20-30, 30-40, 40-50, 50-60, >60. These bins are represented by a 6-dimensional
vector. Each of the 6 elements is a binary variable indicating whether the speaker’s age
falls into the corresponding bin. For example, if the speaker is classified to be aged at 58,
then the age attribute is denoted by the vector [0 0 0 0 1 0]. For some videos, no speaker
attributes can be generated due to image resolution, illumination condition or timing of the
speaker’s show-up. In this case, we set the elements in the age vector uniformly, i.e., [0.16
0.16 0.16 0.16 0.16 0.16].

• Gender. The gender attribute has two categorical values: male and female. The gender
classification result is converted into a 2-dimensional vector whose binary elements denote
male and female respectively, i.e., [1 0] stands for male and [0 1] for female. If no value is
returned, then the gender attribute is represented by the vector [0.5 0.5].

• Race. The race attribute has three categorical values: White, Black, and Asian. A 3-
dimensional vector is employed to represent the 3 possible values of race, that is, [1 0 0],
[0 1 0] and [0 0 1] represent White, Black and Asian respectively. With the missing value,
the race attribute is encoded by [0.33 0.33 0.33].

The final attribute vector is assembled by concatenating these three sub-vectors. For example,
the attribute vector for a 58-year-old, male and white speaker is [0 0 0 0 1 0 | 1 0 | 1 0 0]. An
example is shown in Figure 7.1.
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Figure 7.1: Incorporation of speaker attributes into DNN.

7.2.2 Speaker Actions

The second type of visual features is the actions performed by the speaker. To obtain the action
information, in our corpus, we extract the video segments each of which corresponds to a speech
utterance. Then, each of the video segments is fed to an action recognition system. This system
has been trained with the UCF101 dataset [112]. UCF101 consists of realistic action videos
collected from YouTube, having 101 action categories (e.g., baby crawling, surfing, applying eye
makeup, sky diving). More details regarding our action recognition system can be retrieved in
[49]. After performing action recognition, on each video segment, we get a 101-dimensional
vector containing the probabilities over the 101 action classes. The dimension of these action
features are further reduced to 50 through PCA. The resulting 50-dimensional vector is taken as
the additional action information at the utterance level.

7.2.3 Experiments and Results

Following Section 6.4, our experiments are conducted on the video transcribing task where we at-
tempt to recognize real-world instructional videos. After feature extraction, the resulting speaker
attributes vector is on the video (speaker) level, and the actions vector is on the utterance level.
These features are incorporated into DNN acoustic models via simple feature concatenation.
Specifically, for the speaker attributes, the 11-dimensional attribute vector is appended to each
speech frame belonging to this speaker. For the speaker actions, the 50-dimensional vector is
appended to each frame coming from the utterance on which the action information has been
generated. The DNN acoustic models are then built over the expanded feature vectors. Table 7.1
presents the performance of the resulting DNN models when the speaker attributes and speaker
actions are incorporated. From Table 7.1, we can see that incorporating both types of visual
features results in consistent improvement. When using speaker attributes, we get the WER of
22.8% which translates to 2.6% relative improvement (22.8% vs 23.4%). Incorporating speaker
actions gives the WER of 22.9%, i.e., 2.1% relative improvement (22.9% vs 23.4%).
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Table 7.1: Performance of DNN models when speaker attributes and actions are incorporated.
The incorporation is achieved via simple feature concatenation.

Models Additional Features WER(%)
DNN (baseline) — 23.4

DNN 11-dim speaker attributes 22.8
DNN 50-dim speaker actions 22.9

7.3 Deep Image Features

So far, we have studied two types of visual features, speaker attributes and speaker actions. Their
effectiveness in helping acoustic modeling is verified on our video transcribing task. However,
the application of these visual features still has limitations. For example, these features cannot
be extracted accurately from videos where the speakers make no appearances at all. To further
remove these limitations, we propose to exploit visual features that are extracted directly from
the raw images (frames of the videos).

In this section, we aim to relax these constraints and extend audio-visual ASR to truly open-
domain videos. Our approach to achieving this is based on deep learning, and can be split into
two parts:

• We extract the visual features using deep architectures, i.e., deep convolutional neural
networks (CNNs). Depending on the type of visual features we attempt to model, these
deep architectures are trained on object recognition or scene labeling tasks. This enables
us to obtain informative visual features from the raw pixels of open-domain videos. Also,
with these deep models, we generate visual features on the segment (speech utterance)
level, rather than on the frame level, which removes the need for time synchronization of
the audio and video streams.

• We investigate audio-visual ASR in the context of DNN-based acoustic models. In ad-
dition to simple feature concatenation, we also apply an adaptive training framework to
incorporate visual features in a more flexible way. Together with Chapter 5 and Chapter
6, we prove the generality of this adaptive training framework in fusing different types of
additional information.

7.3.1 Extraction of Visual Features

Suppose we are dealing with an utterance u which has the acoustic features O = {o1, o2, ..., o
T

},
where T is the total number of speech frames. On a video transcribing task, there always exists
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a video segment corresponding to u, with the same start and end time. This video segment is
represented as V = {v1, v2, ..., v

N

}, where N is the number of video frames in the video segment.
From this video segment, we select a video frame v

n

which serves as the image representation
for the speech utterance. Two types of image features are extracted from v

n

.
Object Features. The huge success of deep learning in computer vision started from the

object recognition task. Our first type of visual information is derived from object features.
The intuition is that object features may encapsulate information regarding the acoustic envi-
ronment/condition of the speech. For example, classifying an image to the classes “computer
keyboard” and “monitor” may indicate that the speech segment has been recorded in an office.
Distilling this knowledge during model training can improve the robustness of the acoustic mod-
els. We extract this object information using a deep CNN model which has been trained on
a comprehensive object recognition dataset, e.g., ImageNet [20]. The resulting CNN model is
referred to as object-CNN. Then the video frame v

n

is fed into the CNN model, from which
we get the distribution (posterior probabilities) over the object classes. These probabilities en-
code the object-related information that are incorporated into DNN acoustic models. Due to the
high dimension of the probabilities, we may need to perform dimension reduction. More details
regarding training of the CNN networks can be found in Section 7.3.3.

Place Features. The utility of the object features comes from the “place” information that is
implicitly encoded by the object classification results. It is then natural to utilize place features
in a more explicit way. To achieve this, we train a deep CNN model meant for the scene labeling
task. Given a video frame, the classification outputs from this place-CNN encode the place
information, which is then incorporated into acoustic models. For convenience of formulation,
the resulting visual feature vector for this utterance u is represented as f

u

.

7.3.2 Incorporation of Visual Features

After obtaining the visual features, we adopt two methods to incorporate the visual features into
DNN acoustic models.

Feature Concatenation

A simple way is to append the visual features to the original DNN inputs. Then, the DNN model
is built over the augmented feature vectors. Within the utterance u, the augmented feature vector
on the t-th frame now becomes [o

t

, f
u

]. During fine-tuning, the bottom layers in the DNN are
trained to fuse the visual information and the acoustic features with non-linear transformations.
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The activations from these bottom layers become more robust to environment/place variability,
and thus benefit the phonetic states classification performed by the upper layers.

Visual Adaptive Training

In Chapter 5, we have presented a framework to perform SAT for DNN models. This approach
requires an i-vector [19] to be extracted for each speaker. Based on the well-trained initial DNN,
a separate adaptation neural network is learned to convert i-vectors into speaker-specific linear
feature shifts. Adding these shifts to the original DNN inputs produces a speaker-normalized
feature space. Parameters of the initial DNN are re-updated in this new space, which finally gen-
erates the SAT-DNN model. In Chapter 6, this framework has also been applied successfully to
descriptors of speaker-microphone distance, and thus achieves distance adaptive training (DAT)
for DNNs [73].

In this thesis, we port this idea to the visual features, which enables us to conduct visual
adaptive training (VAT) for DNNs. Specifically, in the SAT framework, we replace the i-vector
representations with the visual features. An adaptation network is learned by taking the visual
features as inputs, and then generates an adaptive feature space with respect to the visual de-
scriptors. Note that in this case, the linear feature shifts generated by the adaptation network
are utterance-specific rather than speaker-specific. Re-updating the parameters of the DNN in
the normalized feature space gives us the adaptively trained VAT-DNN model. This VAT-DNN
model takes advantage of extracted visual features as additional knowledge, and thus generalizes
better to unseen variability.

7.3.3 Experimental Setup

Extraction of Object Recognition Features

In our experiments, we train the object-CNN model and extract the object recognition features
by following the following setup.

• CNN Architecture. We turn to a deep CNN model for image feature extraction. This CNN
model follows the standard AlexNet architecture [54]. The network contains 5 convolution
layers which use the rectifier non-linearity (ReLU) [29] as the activation function. On top
of the convolution layers, we have 3 fully-connected (FC) layers. The last FC layer has the
number of neurons equal to the number of classes, which is finally followed by a softmax
layer. More details regarding the architecture can be found in Appendix A.
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• Data and Model Training. We train our CNN-based feature extractor towards an object
recognition task. Our training data come from ImageNet [20], a dataset containing over 15
million labeled images belonging to around 22,000 categories. We use the training set from
the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) held in 2012. This
ILSVRC training set is a subset of ImageNet, amounting to 1.2 million images covering
1000 classes. Each image from the training data is resized to the size of 256x256, which
is then normalized with mean and variance normalization. From this resized image, we
crop the 227x227 block from the center of the image, and feed this block as the CNN
inputs. Therefore, the inputs into the CNN model have the size of 3x227x227, where 3 is
the number of channels (RGB). Model training optimizes the standard cross-entropy (CE)
objective. After training, we use a testing set from the ILSVRC 2012 challenge to briefly
evaluate the performance of the CNN model. This testing set contains 50,000 images, i.e.,
50 images for each class. The resulting CNN model achieves 20% top-5 error rate on the
testing set.

• Feature Extraction. After obtaining the object-CNN model for object recognition, we can
transfer this model to our acoustic modeling task. In our video transcribing task, each
speech utterance corresponds to a video segment. From this video segment, we randomly
select an image frame as the image representation for this speech utterance. Feeding this
image to the trained CNN model gives us the classification results over the classes, that
is, a 1000-dimensional probabilities vector. The same image preprocessing, which has
been used in model training, is applied to the image: we resize the image to the size of
256x256, impose mean and variance normalization, and crop the 227x227 block from the
image center. The generated probabilities vectors are taken as high-level image represen-
tations which encode semantic information regarding the image content. Due to the high
dimension of these image representations, their dimension is reduced down to 100 via
PCA. Finally, we get a 100-dimensional image feature vector for each video segment and
its corresponding speech utterance. These image features are leveraged as the additional
visual information.

Extraction of Place Features

The place-CNN model is trained by adopting the following configurations.

• Data. We train the place-CNN on the MIT Places dataset [136] which contains 2.5 million
images belonging to 205 scene categories. Examples of the scenes include “dinning room”,
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Table 7.2: Performance of DNN models when object recognition features are incorporated. Two
approaches are adopted for the incorporation: feature concatenation and adaptive training.

Models Additional Features WER(%)
DNN (baseline) — 23.4

Feature Concatenation 100-dim object features 23.0
Adaptive Training 100-dim object features 22.5

“coast”, “conference center”, “courtyard”, etc. We use the complete set of 2.5 million
images to train the place-CNN model, and follow the same image preprocessing as used
on ImageNet. Each image is resized to the size of 256x256, which is then normalized
with mean and variance normalization. The center 227x227 block cropped from the image
is fed as the network inputs. The resulting place-CNN model achieves the classification
accuracy of 50% on a testing set from the same database.

• CNN Architecture. The architecture of place-CNN is almost the same as that of the object-
CNN model. The only difference is that in the final FC layer, place-CNN has 205 neurons
corresponding to the 205 scene classes, whereas object-CNN contains 1000 classes.

• Feature Extraction. After training the place-CNN model, we can apply this model to our
acoustic modeling task. Again, for each speech utterance, we select an image frame as
its image representation, and feed this image to the place-CNN model. From this model,
we get the scene classification results (e.g., a 205-dimensional probabilities vector) whose
dimension is further reduced via PCA. The resulting features are incorporated as additional
image features into DNN acoustic modeling.

7.3.4 Results

Results of Object Features

Table 7.2 shows the results of the final DNN models on our video transcribing task. When we
perform VAT, the adaptation network takes the 100-dimensional utterance-level visual features
as the inputs. The adaptation network has 3 hidden layers each of which has 512 hidden units.
From Table 7.2, we can see that incorporating object features results in moderate but consistent
improvement. In particular, when applying the VAT approach, we obtain 0.9% absolute improve-
ment over the baseline DNN (22.5% vs 23.4%), which translates to 3.8% relative improvement.
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Table 7.3: Performance of DNN models when place features are incorporated. Two approaches
are adopted for the incorporation: feature concatenation and adaptive training.

Models Additional Features WER(%)
DNN (baseline) — 23.4

Feature Concatenation 50-dim place features 23.0
Feature Concatenation 100-dim place features 22.7
Feature Concatenation 150-dim place features 22.9

Adaptive Training 100-dim place features 22.5

Results of Place Features

Table 7.3 shows the results of the final DNN models with scene features incorporated. For feature
concatenation, different configurations for the dimension of scene features are evaluated. We can
see that using 100-dimensional scene features results in the best WER 22.7%. This number is
better than the result of feature concatenation with the object recognition features extracted by
the object-CNN. This reveals that the major benefit of using image features lies in the scene/place
information encoded by the image features. Switching to the place-CNN enables us to eliminate
the information generated by the object-CNN that is unrelated to scenes/places. That is why we
are able to get superior recognition performance.

The 100-dimensional scene features are further applied to adaptive training. By doing this,
we continue to get gains, bringing the WER down to 22.5%. Compared to the baseline DNN,
we obtain 0.9% absolute improvement (i.e., 3.8% relative improvement) to this end. Moreover,
the adaptive training model with the place features gets the same WER as the adaptive training
model with the object recognition features. This means that although containing noise, the object
recognition features can be transformed into a more effective representation with the adaptation
network in the adaptive training framework.

Qualitative Analysis

In addition to the overall recognition accuracy, we also want to analyze the effects of incorporat-
ing the scene information on individual videos. For each video, we compare the WER achieved
by incorporating the place features using feature concatenation with the WER achieved by the
baseline DNN model. In Figure 7.2, we plot the relative improvement (%) of the place features
enhanced model over the baseline. We can observe that incorporating the places features brings
improvement not on every video we decode. On some of the videos, incorporating the place fea-
tures leads to degradation, revealed by the negative values in Figure 7.2. However, it is evident

88



Figure 7.2: Relative improvement (%) in terms of WER (Y axis) achieved by incorporating the
place features over the baseline DNN, across the videos in our testing data (X axis). A negative
value indicates that the place features enhanced model performs worse than the baseline.

that the videos on which incorporating the place features achieves gains outnumber the videos
on which it results in degradation.

For specific examples, Figure 7.3 exemplifies the videos on which the acoustic model with
place features incorporated ends up to have the same WER as the baseline DNN model. We
observe that most of these videos are in the typical indoor environment, e.g., in the office. In our
training data, a large majority of the videos are actually in the typical indoor environment. This
data distribution enables this environment to be sufficiently modeled by the acoustic model. This
explains why in Figure 7.3, adding the additional scene information results in either no or minor
gains on typical indoor videos.

In comparison, Figure 7.4 exemplifies the videos on which incorporating the places features
brings significant WER reduction. We observe that most of these videos are recorded either in
the outdoor environment (e.g., baseball field, airport apron, street, etc.) , or in the non-typical in-
door condition (e.g., kitchen, music studio, etc.) where music/noise may interfere with speech a
lot. These environments are minorities in the training data, and thus are not modeled sufficiently
during acoustic modeling. In this case, adding the scene descriptors helps the DNN model nor-
malize the acoustic characteristics of these rare conditions, and thus benefits the generalization
to unseen testing speech.

We go through all the 156 testing videos and annotate each video into two categories: “typical
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(a) Indoor, WER 27.55% ! 27.55% (b) Indoor, WER 22.27% ! 22.27%

(c) Indoor, WER 16.42% !
16.42%

(d) Indoor, WER 26.44% ! 26.44%

Figure 7.3: Examples of videos on which incorporating the scene information gives no im-
provement. For each video, we show an image frame extracted from it. “A% ! B%” means
incorporating the scene information changes the WER on this video from A% to B%.
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(a) Kitchen, WER 30.95% !
27.38%

(b) Baseball field, WER 18.70% !
15.65%

(c) Airport apron, WER 34.12% !
28.24%

(d) Train, WER 44.71% ! 38.24%

Figure 7.4: Examples of videos on which incorporating the scene information gives over 10%
relative improvement. For each video, we show an image frame extracted from it. “A% ! B%”
means incorporating the scene information reduces the WER on this video from A% to B%.
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Table 7.4: WER break down onto the two video categories: “typical indoor” and “other”, for both
the baseline DNN and also the DNN trained with the place features. The feature concatenation
approach is adopted for image feature incorporation.

Video Category WER% of the baseline DNN WER% of the DNN with place features
typical indoor 22.1 21.7

other 27.6 25.7

indoor” (e.g., office) and “other”. The “other” category can either be outdoor environments (e.g.,
baseball field, airport apron, street, etc.) or non-typical indoor conditions (e.g., kitchen, music
studio, etc.). This annotation process gives us 111 typical indoor videos and 45 other videos.
WERs are computed on these two types of videos, with and without the place information in-
corporated. Table 7.4 shows that on both video types, we are able to get gains by leveraging the
additional place features extracted from images. However, the improvement obtained on “other”
is more significant than the improvement on “typical indoor”. This shows that by taking advan-
tage of the place features, DNN models can smooth out the variability of acoustic environment,
and benefit recognition on the “other” category which is not sufficiently covered in training.

Finally, we analyze a specific video, i.e., the video from Figure 7.4 on which the WER is
improved from 18.70% to 15.65%. This video totally contains 21 utterances. On each of the
utterances, we compute the WER(%) achieved by the baseline DNN model and the DNN model
with places features incorporated, and compare them in Figure 7.5. We observe that compared to
the baseline DNN, the DNN model with places features achieves significant improvement only
on a small number of utterances, i.e., Utt2, Utt6 and Utt20. On other utterances, the model with
places features gives either minor or no gains. We further look into the three utterances where
notable gains are obtained. As the video is recorded on a baseball field, these utterances contain
bursts of noise (e.g., wind sounds) that can be partially normalized by the incorporation of the
places features (scene information).

7.4 Fusion of Visual Features

So far, we have investigated three types of visual features: speaker attributes, speaker actions
and image features. This section attempts to fuse these three feature types together into a com-
prehensive representation. Specifically, we concatenate the 11-dimensional speaker attributes,
50-dimensional speaker actions, and 100-dimensional places features into a combined represen-
tation. Then these combined features are incorporated into DNN models with feature concatena-
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Figure 7.5: Comparison of the baseline DNN and the DNN with places features over the utter-
ances throughout a specific video. This video totally contains 21 utterances which are indexed
along the X axis. The Y axis shows the WER(%) achieved by the two models on each utterance.
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Table 7.5: Performance of DNN models when we incorporate the combined visual features. Two
approaches, feature concatenation and adaptive training, are adopted for visual feature incorpo-
ration.

Models Additional Features WER(%)
DNN (baseline) — 23.4

Feature Concatenation 161-dim combined features 22.7
Adaptive Training 161-dim combined features 22.3

Feature Concatenation 111-dim speaker attributes + place features 22.9
Adaptive Training 111-dim speaker attributes + place features 22.5

tion or adaptive training. The results are shown in Table 7.5.

When using the 161-dimensional combined visual features, the feature concatenation ap-
proach gets the same WER as using the 100-dimensional place features. This is because with
feature concatenation, the visual features are simply concatenated with the original acoustic fea-
tures. With a larger dimension, the visual features are likely to outweigh the acoustic features,
which undermines the utility of visual feature incorporation. On the contrary, due to its flexibil-
ity of feature learning, the adaptive training approach continues to get gains, reducing the WER
down to 22.3%. Compared to the baseline DNN, this translates to 4.7% relative improvement.

Finally, we eliminate the speaker actions which have given the least improvement among
the three visual feature types. The combined features then amount to 111 dimensions, consist-
ing of the speaker attributes and the place features. From Table 7.5, we observe that shrinking
the visual features gives us worse WERs, for both the feature concatenation and adaptive train-
ing methods. This indicates that the three visual feature types are complimentary, collectively
forming a comprehensive visual representation for speech signals.

7.5 Fusion of Speaker I-Vectors and Visual Features

Finally, we combine the visual features with speaker i-vectors. Specifically, we concatenate
the 161-dimensional visual features and the 100-dimensional speaker i-vectors into a combined
representation. These combined features are utilized for DNN models with feature concatenation
or adaptive training. The results are shown in Table 7.6.

When simple concatenation is applied for feature incorporation, the 261-dimensional com-
bined features outperform the 100-dimensional i-vectors. However, they perform worse than
when only the 161-dimensional visual features are used. This is mainly because the additional

94



Table 7.6: Performance of DNN models when we incorporate the combined i-vector and visual
features. Two approaches, feature concatenation and adaptive training, are adopted for feature
incorporation.

Models Additional Features WER(%)
DNN (baseline) — 23.4

Feature Concatenation 161-dim visual features 22.7
Feature Concatenation 100-dim speaker i-vectors 23.0
Feature Concatenation 261-dim combined features 22.8

Adaptive Training 161-dim visual features 22.3
Adaptive Training 100-dim speaker i-vectors 22.0
Adaptive Training 261-dim combined features 21.5

information becomes too high-dimensional, and thus the relative weight of the original acoustic
features is reduced inappropriately in the final front-end. In contrast, when we apply the adaptive
training approach, the WER is reduced to 21.5% with the 261-dimensional combined features.
This number outperforms both the speaker i-vectors (22.0%) and the 161-dimensional visual
features (22.3%). This again demonstrates the advantage of the adaptive training framework in
transforming context information and selecting the salient elements from additional features. To
this end, compared to the baseline DNN model, our adaptive training approach gets 8.1% rela-
tive improvement, when the visual features and speaker i-vectors are fused together as additional
context information.

7.6 Summary

In this chapter, our goal is to extend the existing audio-visual ASR idea to open-domain videos.
We achieve this by taking advantage of video- or segment-level visual features, and adopting
deep learning methods. We first investigate two speaker-related visual features, the video-level
speaker attributes and the segment-level speaker actions. For DNNs acoustic models, employ-
ing these two types of visual features gives moderate but consistent improvements. To further
remove the constraints imposed by these speaker-related features, we exploit visual features ex-
tracted directly from video frames (images). A unified deep learning framework is presented to
accomplish this. First, the visual features are extracted using deep learning architectures which
have been pre-trained on computer vision tasks, e.g., object recognition and scene labeling. Sec-
ond, the visual features are incorporated into ASR under deep learning based acoustic modeling.
In addition to simple feature concatenation, we also apply an adaptive training framework to
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incorporate visual features in a more flexible way. On our video transcribing task, audio-visual
ASR using deep image features gets 3.8% relative improvement in terms of WER, compared
to ASR merely using speech features. The image features can be readily combined with the
speaker-related features, which increases the improvement of the audio-visual model to 4.7%
relative. Fusing the various types of visual features with speaker i-vectors results in further WER
reduction.
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Chapter 8

Conclusions and Future Work

The goal of this thesis is to improve speech recognition by incorporating additional context in-
formation into DNN acoustic models. Bearing the challenges faced by modern speech recogni-
tion in mind, this thesis has answered two principal questions. First, what additional informa-
tion/features are potentially useful for ASR? In response to this question, we have conducted a
systematic study about various types of additional information in enhancing ASR accuracy. De-
pending on their sources, these information are categorized into four types: language, speaker,
distance and video. Second, how can we incorporate these additional information into DNNs
acoustic models? We have presented a novel adaptive training approach to achieving this feature
incorporation effectively. This approach is applicable to different types of additional information,
and consistently outperforms the simple feature concatenation method. The major conclusions
are summarized as follows for each part of the thesis, and the future work is presented in the final
section.

8.1 Cross-Language DNNs with Language-Universal Feature
Extractors

Due to large model size, DNN acoustic models suffer from data scarcity. Under low-resource
languages, we perform cross-language DNN acoustic modeling by borrowing knowledge from
other languages. Knowledge transfer across languages is achieved via language-universal feature
extractors (LUFEs) trained over a group of source languages. The contributions of this thesis are
summarized as follows.

• We have proposed a framework to perform cross-language DNN acoustic modeling with
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language-universal feature extractors (LUFEs). The LUFE is trained over a group of source
languages in the form of multi-task learning, and then transferred to the target language.

• The quality of the LUFEs is improved by applying CNNs and DMNs as the building block
for LUFEs. These two architectures have the advantage of generating invariant and sparse
feature representations respectively. Combining these two architectures gives us the best
LUFE signified by the lowest WER on the target language.

• Training LUFEs is inherently expensive, especially with large amounts of speech from the
source languages. We have proposed a distributed learning strategy DistModel to speed
up training of LUFEs. DistModel accelerates LUFE learning significantly, while causing
negligible WER loss on the target language.

8.2 Speaker Adaptive Training of DNN Models using I-vectors

The performance of ASR systems degrades when a mismatch exists between the training and
testing speakers/conditions. An effective approach to alleviating speaker mismatch is to perform
SAT during training and speaker adaptation during testing. Meanwhile, the acoustic character-
istics of speakers can be encapsulated by compact vector representations such as i-vectors. The
contributions of this thesis are summarized as follows.

• We have proposed a framework to perform SAT for DNN acoustic models. The SAT
approach relies on i-vectors and the adaptation neural network to realize feature normal-
ization.

• Detailed empirical evidence has been presented to determine the optimal configurations
for building the SAT-DNN models.

• We have investigated the further combination of SAT and model-space speaker adaptation
during the recognition stage.

• A data reduction strategy, frame skipping, has also been employed to accelerate the training
process of SAT-DNNs.

• The value of the proposed SAT approach is that it is a general approach. It can be extended
easily to different network inputs and model architectures, and shows consistent gains.
Also, as demonstrated by Chapter 6 and Chapter 7, this framework can also be applied to
different types of additional information, and the fusion of them.
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8.3 Robust Speech Recognition with Distance-Aware DNNs

The pervasive deployment of speech interfaces requires ASR systems to handle environmental
variability effectively. A critical variability lies in the distance between the speaker and mi-
crophone. Distant speech recognition (DSR) remains to be a challenge for DNN models. This
thesis has dealt with the problem of dynamic speaker-microphone distance (SMD), and proposed
to tackle it by constructing distance-aware DNNs.

• To alleviate the effect of dynamic SMD, we have proposed to build distance-aware DNN
models by explicitly incorporating frame-level SMD descriptors into DNN training.

• Extraction of the SMD information has been achieved by a universal extractor that is
learned on a comprehensive meeting corpus. We have studied the effectiveness of different
deep learning architectures (i.e., DNNs, CNNs, and RNNs) acting as the SMD extractor.

• In addition to simple feature concatenation, a distance adaptive training (DAT) approach
has been proposed to utilize the SMD information more effectively. Within the adaptive
training framework, the SMD descriptors can be combined with speaker i-vectors into a
more comprehensive representation which results in further WER reduction.

• In addition to the quantitative evaluations, we also conduct qualitative analysis, revealing
the reason why incorporating the SMD information improves recognition accuracy.

8.4 Open-Domain Audio-Visual Speech Recognition using Deep
Learning

To further improve the robustness of ASR systems, this thesis has attempted to extend the ex-
isting audio-visual ASR idea to open-domain videos. We achieve this by taking advantage of
video- or segment-level visual features, and adopting deep learning based fusion methods. The
contributions of this thesis are as follows.

• We have investigated two speaker-related visual features, the video-level speaker attributes
and the segment-level speaker actions. Incorporating these two features consistently im-
proves the performance of DNN models.

• To further remove the constraints of speaker-related features, we have proposed to take
advantage of visual features extracted directly from raw images.

• Two types of deep image features, object and place features, have been examined as the
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additional information. These features are generated by deep architectures that have been
trained for object recognition and scene classification tasks.

• In addition to simple feature concatenation, we have applied the adaptive training frame-
work to incorporate visual features in a more flexible way.

• Combination of the visual features, and fusion of the visual features and speaker i-vectors
have been empirically studied. Also, qualitative analysis has been presented to reveal the
impact of the visual features in the ASR performance.

8.5 Future Work

In this thesis, our acoustic modeling has been based on DNNs and CNNs models. In the future,
we would like to extend the incorporation of additional context information to RNNs based
acoustic models. We would like to study how to combine the context information with single-
frame RNNs inputs. Also, how to apply the adaptive training approach to RNNs models is a
question worth examining.

Another direction we would like to pursue is the incorporation of context information into
end-to-end ASR pipelines. Our work in this thesis is constrained to the conventional ASR
pipeline, as reviewed in Chapter 3. Recently end-to-end paradigms have shown encouraging
results for speech recognition [82]. It is interesting to investigate the utility of the additional in-
formation in improving end-to-end speech recognition. Also, end-to-end ASR systems generally
employ LSTMs as the acoustic models. This complicated recurrent architecture opens up new
opportunities for feature fusion. For example, the LSTM structure can be enriched with new
gates which regulate the memory cells states based on the context information.

Lastly, we would like to study the adaptation of language models using the visual features.
This thesis has proposed to fuse the object- and place-related visual features into acoustic models.
These visual features are potentially useful also for language modeling. For example, objects
recognized from the video stream are correlated with words (presumably nouns) appearing in
the transcripts. A straightforward approach would be to train RNNs based language models and
attach the visual features to the RNNs inputs. It is also interesting to discover how the vision-
enhanced acoustic models and vision-enhanced language models interact and complement with
each other.
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Appendix A

Architecture of the Object-CNN Network

The Object-CNN network for extraction of object recognition features used in Section 7.3.3 has
the configuration listed in Table A.1. The network contains 5 convolution layers which use the
rectifier non-linearity (ReLU) [29] as the activation function. In the first and second convolution
layers, a local response normalization (LRN) layer is added after the ReLU activation, and a max-
pooling layer follows the LRN layer. In the third and fourth convolution layers, we do not apply
the LRN and pooling layers following the ReLU non-linearity. In the fifth convolution layer, we
only apply the max-pooling layer, without LRN applied. On top of the convolution layers, we
have 3 fully-connected (FC) layers. The first and second FC layers have 4096 neurons, on top of
which we apply the ReLU activation function and dropout regularization (with the dropout factor
of 0.5). The third (last) FC layer has the number of neurons equal to the number of classes, which
is finally followed by a softmax layer.
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Table A.1: Configurations of the convolution, LRN and max-pooling layers in the AlexNet ar-
chitecture used in our experiments. The layers are listed by the order, from bottom to top, in the
architecture. “# Feature Maps”, “Kernel Size” and “Conv Stride” represent the number of fea-
ture maps, the size of the kernels, and the stride of the convolution operations in the convolution
layers. “LRN Size” represents the size of the neighboring region over which LRN is performed.
“Pooling Size” and “Pooling Stride” represent the size and stride for the max-pooling layer.

Layers # Feature Maps Kernel Size Conv Stride LRN Size Pooling Size Pooling Stride
conv1 96 11 4 — — —
relu1 — — — — — —

norm1 — — — 5 — —
pool1 — — — — 3 2
conv2 256 5 1 — — —
relu2 — — — — — —

norm2 — — — 5 — —
pool2 — — — — 3 2
conv3 384 3 1 — — —
relu3 — — — — — —
conv4 384 3 1 — — —
relu4 — — — — — —
conv5 256 3 1 — — —
relu5 — — — — — —
pool5 — — — — 3 2
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Appendix B

List of Abbreviations

ASR – Automatic Speech Recognition
BMMI – Boosted Maximum Mutual Information
BNF – Bottleneck Feature
BPTT – Back-Propagation through Time
CNN – Convolutional Neural Network
CD – Context Dependent
CE – Cross Entropy
CI – Context Independent
DA-DNN – Distance-Aware DNN
DAT – Distance Adaptive Training
DBN – Dynamic Bayesian Network
DBNF – Deep Bottleneck Feature
DMN – Deep Maxout Network
DNN – Deep Neural Network
DSR – Distant Speech Recognition
DT – Discriminative Training
EM – Expectation Maximization
FSA – Finite-State Acceptor
fMLLR – Feature-space MLLR
GMM – Gaussian Mixture Model
HMM – Hidden Markov Model
ILSVRC – ImageNet Large-Scale Visual Recognition Challenge
LDA – Linear Discriminant Analysis
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LM – Language Model
LSTM – Long Short-Term Memory
LUFE – Language-Universal Feature Extractor
LVCSR – Large Vocabulary Continuous Speech Recognition
MFCC – Mel Frequency Cepstral Coefficient
MLE – Maximum Likelihood Estimation
MLLR – Maximum Likelihood Linear Regression
MLLT – Maximum Likelihood Linear Transform
MAP – Maximum A Posterior
MLP – Multilayer Perceptron
PCA – Principal Component Analysis
PLP – Perceptual Linear Prediction
RNN – Recurrent Neural Network
SAT – Speaker Adaptive Training
SDA – Stacked Denoising Autoencoder
SGD – Stochastic Gradient Descent
SGMM – Subspace Gaussian Mixture Model
SI – Speaker Independent
SMD – Speaker-Microphone Distance
SVD – Singular Value Decomposition
TDNN – Time-Delay Neural Network
WER – Word Error Rate
WFST – Weighted Finite-State Transducer
UBM – Universal Background Model
VTLN – Vocal Tract Length Normalization
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[102] Haşim Sak, Oriol Vinyals, Georg Heigold, Andrew Senior, Erik McDermott, Rajat Monga,
and Mark Mao. Sequence discriminative distributed training of long short-term memory
recurrent neural networks. In Fifteenth Annual Conference of the International Speech

Communication Association (INTERSPEECH). ISCA, 2014. 1, 3.4, 5.2.3, 6.2.3

[103] George Saon, Hagen Soltau, David Nahamoo, and Michael Picheny. Speaker adaptation
of neural network acoustic models using i-vectors. In Automatic Speech Recognition and

Understanding (ASRU), 2013 IEEE Workshop on, pages 55–59. IEEE, 2013. 1.2.2, 5.1.2,
5.1.3, 5.5.1, 5.5.1, 5.7, 5.7, 5.11, 5.12

[104] Tanja Schultz and Alex Waibel. Language-independent and language-adaptive acoustic
modeling for speech recognition. Speech Communication, 35(1):31–51, 2001. 4.1

[105] Frank Seide, Gang Li, Xie Chen, and Dong Yu. Feature engineering in context-dependent
deep neural networks for conversational speech transcription. In Automatic Speech Recog-

nition and Understanding (ASRU), 2011 IEEE Workshop on, pages 24–29. IEEE, 2011. 1,
1.2.2, 5.1.2, 5.7

[106] Michael L Seltzer, Dong Yu, and Yongqiang Wang. An investigation of deep neural net-
works for noise robust speech recognition. In Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE International Conference on, pages 7398–7402. IEEE, 2013. 6.1

[107] Andrew Senior and Ignacio Lopez-Moreno. Improving DNN speaker independence with
i-vector inputs. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE Inter-

national Conference on, pages 225–229. IEEE, 2014. 1.2.2, 5.1.2, 5.1.3

[108] Sabato Marco Siniscalchi, Jinyu Li, and Chin-Hui Lee. Hermitian polynomial for speaker
adaptation of connectionist speech recognition systems. Audio, Speech, and Language

Processing, IEEE Transactions on, 21(10):2152–2161, 2013. 5.1.2

[109] Garimella SVS Sivaram and Hynek Hermansky. Multilayer perceptron with sparse hidden
outputs for phoneme recognition. In Acoustics, Speech and Signal Processing (ICASSP),

2011 IEEE International Conference on, pages 5336–5339. IEEE, 2011. 4.3.2

[110] Garimella SVS Sivaram, Sridhar Krishna Nemala, Mounya Elhilali, Trac D Tran, and
Hynek Hermansky. Sparse coding for speech recognition. In Acoustics Speech and Signal

Processing (ICASSP), 2010 IEEE International Conference on, pages 4346–4349. IEEE,

116



2010. 4.3.2

[111] Hagen Soltau, George Saon, and Tara N Sainath. Joint training of convolutional and non-
convolutional neural networks. In Acoustics, Speech and Signal Processing (ICASSP),

2014 IEEE International Conference on, pages 5572–5576. IEEE, 2014. 1, 3.3, 4.3.1,
5.2.3, 5.4.2, 6.1, 6.2.2, 6.4.2

[112] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of 101
human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.
7.2.2

[113] Andreas Stolcke, Jing Zheng, Wen Wang, and Victor Abrash. SRILM at sixteen: Update
and outlook. In Proceedings of IEEE Automatic Speech Recognition and Understanding

Workshop, page 5, 2011. 2.1.4

[114] Pawel Swietojanski and Steve Renais. SAT-LHUC: Speaker adaptive training for learning
hidden unit contributions. In 2016 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 5010–5014. IEEE, 2016. 5.1.2

[115] Pawel Swietojanski and Steve Renals. Learning hidden unit contributions for unsupervised
speaker adaptation of neural network acoustic models. In 2014 IEEE Spoken Language

Technology Workshop (SLT). IEEE, 2014. 5, 5.1.2, 5.5.1, 5.5.1, 5.7

[116] Pawel Swietojanski, Arnab Ghoshal, and Steve Renals. Hybrid acoustic models for distant
and multichannel large vocabulary speech recognition. In Automatic Speech Recognition

and Understanding (ASRU), 2013 IEEE Workshop on, pages 285–290. IEEE, 2013. 1.2.3,
6.1

[117] Michael J Tomlinson, Martin J Russell, and NM Brooke. Integrating audio and visual
information to provide highly robust speech recognition. In Acoustics, Speech, and Signal

Processing, 1996. ICASSP-96. Conference Proceedings., 1996 IEEE International Con-

ference on, volume 2, pages 821–824. IEEE, 1996. 7.1
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