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Abstract

In a number of applications, one often has access to distinct but overlapping views over the

same information. For instance, a lecture may be supported by slides, a TV series may be

accompanied by subtitles, or a conference in one language may be interpreted into another.

Since most useful speech and language processing technologies such as speech recognition are

not perfect, it would be desirable to be able to fuse these different perspectives in order to

obtain improved performance.

In this thesis, a general method for combining multiple information streams which are, in

part or as a whole, translations of each other, is presented. The algorithms developed for

this purpose rely both on word lattices, representing posterior probability distributions over

word sequences, and phrase tables, which map word sequences to their respective translations,

to generate an alignment of the different streams. From this alignment, we extract phrase

pairs, and use them to compute a new most likely decoding of each stream, biased towards

phrases in the alignment. This method was used in two different applications : transcription

of simultaneously interpreted speeches in the European Parliament and of lectures supported

by slides. In both of these scenarios, we achieved performance improvements when compared

with speech recognition only baselines. We also demonstrate how recovering acronyms and

words that cannot be found in the lattices can be used to enhance overall speech recognition

performance, and propose a scheme to add new pronunciations to the recognition lexicon.

Both of these techniques are also based on cross-stream information.

We also explored how rich transcription techniques, namely sentence segmentation and detec-

tion / recovery of disfluencies (filled pauses, hesitations, repetitions, etc.), can benefit from

the information contained in parallel streams. Cues extracted from other streams were used

to supplement currently existing methods to help solve each of these problems.





Resumo

Em muitas aplicações é possivel ter-se acesso a diferentes perspectivas sobre a mesma in-

formação, as quais se sobrepõem parcialmente entre si. Por exemplo, uma aula pode ser

acompanhada por slides, uma série de televisão numa ĺıngua estrangeira pode ter legendas

associadas, ou uma conferencia pode ser interpretada simultaneamente em múltiplas ĺınguas.

Neste sentido, e dado que as tecnologias de processamento de lingua natural não são normal-

mente perfeitas, seria desejável poder combinar estas diferentes perspectivas, com o objectivo

de melhorar a qualidade do resultado produzido.

Nesta tese apresenta-se um metodo genérico para integrar múltiplas fontes sequenciais de

informação as quais podem ser vistas, no todo ou em parte, como traduções umas das outras.

Os algoritmos que foram desenvolvidos para o efeito utilizam lattices (grafos dirigidos aćıclicos

que representam distribuições de probabilidades posteriores sobre sequências de palavras e

que são gerados por um reconhecedor de fala) e phrase tables, que são tabelas que relacionam

sequências de palavras e as suas respectivas traduções. Utilizando estas estruturas de dados,

é gerado um alinhamento entre as diferentes fontes de informação, o qual é utilizado para

produzir uma nova descodificação das fontes de informação consideradas. Este método foi

especializado para duas aplicações: a transcrição de discursos do Parlamento Europeu com

interpretação simultânea, bem como de aulas complementadas por slides. Em ambos os

cenários, foram obtidos resultados superiores àqueles que são produzidos utilizando apenas

um reconhecedor de fala. Para além disso, demonstra-se de que forma a recuperação de

acrónimos e palavras que não se encontram nas lattices geradas pelo reconhecedor de fala

pode melhorar a qualidade do reconhecimento, e propõe-se um método para introduzir novas

pronúncias no léxico. Ambas as técnicas são tambem baseadas em informação extráıda de

múltiplas fontes paralelas.



Nesta tese, investigou-se igualmente de que forma é posśıvel utilizar a informação contida em

múltiplas fontes de informção paralelas de modo a melhorar técnicas existentes de deteção e

recuperação de disfluências (fenómenos de fala que incluem pausas preenchidas, repetições e

hesitações).
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LM Language Model
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NLP Natural Language Processing

OCR Optical Character Recognition
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SGD Stochastic Gradient Descent
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1Introduction
1.1 Introduction

There is a growing number of applications with multiple parallel streams, such that the

content of each of these streams corresponds to the content of the others. For example,

in the European Parliament, all of the speeches, both of the plenary sessions and of the

committees, are interpreted into the different languages of the 28 member states of the EU.

In the United Nations, speeches must also be interpreted into the six official languages.

Worldwide, both official and private actors increasingly recognize the importance of providing

simultaneous interpretation as well as translation services in a globalized world. TV shows,

movies and series are often dubbed in different languages. Sports events are broadcast in

multiple languages simultaneously. The recurring element in all of these situations is that a

similar message is transmitted multiple times, perhaps in a translated or otherwise modified

form, leading to redundancy which could potentially be used to improve the performance of

several speech processing tasks.

The simultaneous interpretation scenario of the European Parliament inspired the develop-

ment of a parallel combination algorithm, where multiple hypotheses from recognizers in

different streams are combined in order to recover from errors. This is accomplished through

the use of phrase tables that connect each of the language pairs, and the use of lattices which

encode multiple hypotheses compactly. We experimented with recognizers in five different

languages, namely Portuguese, Spanish, English, Italian and German. We found that not

only is it possible to obtain significant improvements in recognition results in each of the

four languages considered, but also that the improvements increase with the number of lan-

guages used, as expected. In this way, it is possible to produce automatic transcriptions
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under conditions that make it hard for speech recognizers to work effectively. This method

was also extended in order to improve the detection of sentence boundaries in Automatic

Speech Recognition (ASR) transcripts, using, again, this multistream information: sentence

boundaries in interpreted speech are hard to locate, due to frequent speaker pauses, but their

correct placement contributes to output readability. Lectures are also an important resource,

encompassing a significant body of knowledge which includes, for example, conference talks or

academic courses. For this reason, there has been a growing interest in technologies that might

assist their efficient dissemination in multiple languages, such as automatic transcription and

translation. This, in turn, motivated the extension of our parallel combination algorithm to

different types of streams (other than speech streams), thus enabling it to improve the speech

recognition performance of lectures which are complemented by slides. In what concerns

the rich transcription of speech, we show how it is possible to improve the performance of

the punctuation of speech transcripts, by using information gathered from streams in dif-

ferent languages. Similarly, we demonstrate improvements in the detection of disfluencies,

phenomena which are know to occur in spontaneous speech. We use the alignments from

multiple streams, in different languages, in order to better identify and remove these disfluen-

cies, therefore improving the output quality. Finally, we explore the unsupervised or lightly

supervised learning of speech recognition models (i.e., with reduced human intervention in

the process) in two ways. We developed an algorithm to iteratively improve transcriptions,

by trying to correct common errors that are found in them. We also developed a system that

uses fast human corrections to automatically recognized speech, with the goal of minimizing

human effort while obtaining high-quality human transcripts, and observe how it is possible

to propagate user-input information to update our recognition models and further reduce the

necessary effort.

1.2 Previous Work

In this section we present a general overview of related work on the topics of speech recogni-

tion, machine translation and system combination, and how they relate to the thesis topic.
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An analysis of previous work for specific topics will be provided in each chapter, where ap-

propriate.

1.2.1 Automatic Speech Recognition

In ASR, a computer is presented with a speech signal containing one or more sentences uttered

by a speaker and is expected to produce the word sequence that was spoken. Although

usually straightforward for humans, this is a complex task for computer systems due to the

high variability in speech production. Phenomena such as co-articulation, different accents,

or disfluencies (filled pauses, filler words, hesitations, etc.) all contribute to this variability,

making speech recognition an unsolved problem under several conditions.

Despite significant advances in recent years, humans still outperform machines in speech

recognition performance, especially in noisy environments. This is partly due to human

superiority in recovering information from multiple sources: not only from the speech signal,

but also from conversation context, visual cues such as the movement of the speaker’s lips,

gestures, or common sense knowledge. In fact, state-of-the-art ASR systems working with

clean, well articulated speech often have word accuracies in excess of 95%, but this accuracy

tends to degrade in a noisy environment, in the presence of spontaneous speech, or when

transcribing speakers with non-native accents.

1.2.1.1 Applications

ASR systems are used in a wide range of applications, including:

• In dictation systems, an user dictates a text to the computer using spoken language in-

stead of typing it in the keyboard. Usually, these systems have large vocabulary models.

They can be invaluable for inexperienced computer users or in small embedded devices.

The latter are often equipped with input interfaces which, due to size constraints, are

not as easy to handle as a regular keyboard.
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• The automatic transcription of broadcast news is useful, for instance, to the hearing

impaired, or to search for news that have appeared in the past. Since it is a relatively

open-ended ASR application, it requires large vocabulary models to achieve a good

coverage. Audimus [69] is an example of an ASR system which has been used for

Broadcast News Recognition.

• Speech-to-Speech (S2S) translation systems [4, 76] ideally enable two-way communi-

cation between two speakers of different languages. They usually consist of an ASR

system which converts speech in the source language into text, which is then passed on

to a translation module which translates this text into the target language. Finally, a

text-to-speech module is used to generate speech in the target language. The develop-

ment of an S2S system must take steps to limit the propagation of errors generated by

the ASR and Statistical Machine Translation (SMT) modules, in order to reduce their

impact on the quality of the synthesized output.

• Spoken document retrieval systems [36, 45] index multimedia content (containing spoken

data), allowing users to directly search for information that has not been transformed

into text. They use an ASR system to transcribe the documents to be indexed as well

as the query (if it is a spoken query rather than a text one), combining this with a

retrieval engine to locate the most relevant documents.

• Spoken dialog systems [91, 57] may collaborate with a user in spoken language to com-

plete a certain task. Alternatively, they may interact with users in a more open-ended

manner, without a fixed, well-defined goal. In some cases, they can replace human

operators that would otherwise be necessary or that are currently unavailable. In other

situations, namely when the user is unfamiliar with the task at hand, or needs to have

their hands free, dialog systems can be more natural and efficient than other interfaces.

The complexity of the task an ASR system has to solve also depends on the type of speech

that it encounters. In read or planned speech, the speaker is able to anticipate the sequence of

words they have to say, which usually leads to the production of a coherent utterance, without
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interruptions or disfluencies. This contrasts with spontaneous or conversational speech, in

which the speaker generates the message as they go, and often has to increase the speaking

rate or to backtrack to correct the utterance. Since the sentences in read speech are better

formed and articulated than those in spontaneous speech, they usually match better with the

statistical speech recognition models, and are therefore easier to recognize. Additionally, ASR

systems dealing with spontaneous speech should find an efficient way to detect and remove

disfluencies, since these do not directly contribute to the message being transmitted.

1.2.1.2 Speech Recognition Fundamentals

In this section, an overview of the state-of-the-art of speech recognition is presented. The

reader can find a more thorough review in [114]. Essentially, the task of a speech recognition

system is to transform a set of acoustic observations into a word sequence that is as close

as possible to what has been said. This problem can be recast as finding the word sequence

W ∗ which maximizes the probability that the observations O were generated by it; in other

words, we wish to determine the word sequence W ∗ that maximizes P (W |O). Calculating

this probability directly is not easy, but by using Bayes’ theorem it is possible to write:

W ∗ = arg max
W

P (W |O) = arg max
W

P (O|W )P (W )

P (O)
(1.1)

This equation immediately separates the key components of a modern Automatic Speech

Recognition System. While term P (O) can be dropped, since it does not depend on the word

sequence, term P (W ) assigns a probability to a given word sequence W and is known as the

Language Model (LM). Finally, the term P (O|W ) corresponds to the acoustic model. The

process through which these models are integrated to find W ∗ is known as decoding.

Instead of estimating parameters directly from the speech signal, the observations O corre-

spond to a sequence of vectors obtained through feature extraction. Most feature extraction

techniques convert the time domain waveforms into the frequency domain using the Fast

Fourier Transform (FFT), and then perform processing to compensate for interspeaker vari-
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ability or environmental factors such as channel properties, reverberation or noise. The output

of this feature extraction step is a low-dimensional vector which represents a frame of speech

(in the order of 10 ms in duration); often, delta coefficients are also included in order to pro-

vide the subsequent processing steps with context from the surrounding frames. Commonly

used feature extraction methods include Mel-Frequency Cepstral Coefficients (MFCC) [23]

and Perceptive Linear Prediction (PLP) [39].

Each phone in the speech signal is now usually modeled as an HMM. An introduction to

HMMs and their use in speech recognition can be found in [89]. An HMM corresponds to a

first-order Markov process where the states are not directly observable, but can be inferred

through the sequence of outputs, which are generated by the states. Therefore, the probability

of being at a given state xi at time i depends exclusively on the state xi−1. Each state has a

distribution over the output space, conditioned only on the state itself. In an HMM model,

states are hidden in that one only has access to the observations - that is, it is not possible to

know which sequence of states generated a given set of observations. In the particular case of

speech recognition, the observations are the feature vectors and states represent, for example,

the phones that were spoken or sub-phone units.

HMMs are widely used in speech recognition due to the existence of efficient algorithms for

training (Forward-Backward) and decoding (Viterbi), and because they work well in practice.

However, they impose independence assumptions which fail to hold true for speech, such as

requiring that the acoustic observations depend only on the current phone, without taking

the surrounding context into account. For this reason, many ASR systems use triphones (the

current phone concatenated with the previous and following phones) or even quintphones, as

their basic HMM units, in order to be able to model some of this context within the HMM

framework.

The emission probabilities are calculated using an acoustic model. The acoustic model can be

an Multilayer Perceptron (MLP). In that case, the MLP estimates the posterior probabilities

of each of the output phones given the feature vectors, which are then converted to scaled

likelihoods. This is known as the hybrid HMM-MLP approach [11]. Recent advances have



1.2. PREVIOUS WORK 11

led to the use of pre-trained deep neural networks, leading to the HMM-DNN concept [22],

with significant improvements in recognition accuracy. An alternative way to implement the

acoustic model is through the use of a Gaussian Mixture Model (GMM) [38], which models

the emission distribution of a given state with a linear combination of Gaussian distributions.

In the tandem approach [41], a neural network is trained to produce posterior probabilities

that are then used as features for GMM modeling.

The acoustic model P (O|W ) also contains another component, the lexicon or pronunciation

dictionary, which is necessary in order to convert each word w into a sequence of phones

p, since the acoustic models described above estimate P (O|p), where p = p1...pj . Indeed,

the lexicon lists the possible pronunciations of each word w in the dictionary and therefore

defines the probability distribution P (p1 . . . pj |w). It is usually generated from a list of words

manually, by a rule-based or data-driven system or a combination of these methods. Rule-

based methods take advantage of the fact that, in many languages, there is a systematic

relation between the surface form of a word and its pronunciation.

Language models assign a probability P (w1 . . . wj) to each word sequence w1 . . . wj . This

biases the recognizer against word sequences that are ungrammatical or unnatural in a given

language. When designing a language model, a common goal is to minimize perplexity, which

represents a measure of how hard it is to predict the next word given the language model.

For example, having an LM with a perplexity of 100 in a broadcast news task is equivalent

to having to choose among 100 equally probable words.

Many current speech recognizers employ n-gram models, which use a context consisting of the

n− 1 most recent words to condition the probability of the current word. In other words, n-

gram models make the simplifying assumption that only the n−1 previous words can have an

impact on the identity of the current word. While this is not true in general, many syntactic

dependencies such as gender, number or tense agreement are usually short-ranged and can be

efficiently captured by n-gram models. The probability of a word sequence in this model can

be computed using Equation 1.2:
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P (w1 . . . wj) = P (w1)P (w2|w1) . . . P (wn−1|w1 . . . wn−2)

j∏
i=n

P (wi|wi−n+1 . . . wi−1) (1.2)

The most straightforward way to estimate n-gram probabilities would be through a maximum

likelihood estimate obtained from the occurrence counts in the data:

P (wn|w1 . . . wn−1) =
count(w1 . . . wn)

count(w1 . . . wn−1)
(1.3)

However, this would fail to account for the fact that most n-gram sequences have not been

observed in the training data. It would lead the model to assign zero probability to certain

word sequences that do not occur in the training data, which is certainly undesirable. Instead,

smoothing techniques [115], which redistribute some of the probability mass to unseen n-gram

occurrences, are used. These include interpolation with lower-order models and back-off

techniques, where a lower order model is only used if a word cannot be found in the current

n-gram order.

N-gram models are limited in that they are unable to capture long-range dependencies between

words, created by the syntactic or semantic properties of the language. They cannot take

advantage of properties of the words themselves, such as part-of-speech, prefixes and suffixes,

etc. However, they are usually preferred to other more complex alternatives because they can

be efficiently trained from large amounts of data to achieve performance competitive with,

or superior to, other, more sophisticated approaches to language modeling. N-gram language

models also have the advantage of being easily representable as finite state machines.

The integration of all the knowledge sources (acoustic models, lexica, and language models)

is performed by the decoder, in order to find the most likely word sequence according to the

models. The unifying idea behind most decoders is to concatenate HMMs from sub-word

units to form word HMMs, and then these to form sentence HMMs, while applying language

model and lexicon weights. Then, the decoder performs a Viterbi or A∗ search on the space
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that was so generated. Several pruning techniques are applied to reduce search complexity

and keep running time under control, most notably beam pruning, which discards the partial

hypotheses outside a beam centered around the current best hypothesis.

The Weighted Finite State Transducer (WFST) [74] approach to search space modeling is a

principled solution to the problem of combining all the information sources uniformly. In this

approach, all the resources such as the lexicon, the language model, and the acoustic model

are encoded as WFSTs and combined through well-defined operations. Such an approach

has the advantage of decoupling the search algorithm from the search space, while, at the

same time, being able to benefit from efficient determinization, minimization and composition

algorithms developed in the finite state automata literature. Its main drawback is the need to

represent all the knowledge sources as WFSTs, which may be difficult or unnatural in certain

cases.

Apart from the best hypothesis, many ASR decoders also provide alternative hypotheses in the

form of N-best lists (that contain the N most likely hypotheses), lattices, which are directed

acyclic graphs that compactly represent a set of competing paths, or confusion networks [66],

lattices with the property that every path goes through the same state sequence. The main

advantage of having multiple alternatives rather than just the single-best hypothesis is that

it enables downstream processing methods (machine translation, spoken document retrieval,

dialog systems, etc.) to recover from ASR errors, if different information sources are available

at that time.

Speech recognition systems are usually evaluated by computing the minimum number of oper-

ations (insertions, deletions, and substitutions) that are required to transform the transcript

generated by the recognizer into the gold standard created by human annotators. This is

achieved by first aligning the reference and the hypothesis, as in Figure 1.1. Word Error

Rate (WER) is computed by adding the number of insertions, deletions and substitutions

and dividing it by the number of words in the reference.
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REF and the nagoya --- protocol requires

HYP in --- nagoya the protocol requires

SUB DEL INS

Figure 1.1: An alignment between the sentence “And the Nagoya protocol requires” and an
ASR hypothesis. This alignment corresponds to three errors (1 substitution, 1 deletion and 1
insertion). Since there are 5 reference words in the transcription, the WER for this alignment
would be 60%.

1.2.1.3 Rich Transcription

Rich Transcription is concerned with automatically annotating speech transcripts with infor-

mation that can be extracted from speech transcripts, but which cannot be found in the word

sequence output by the speech recognizer. For instance, most ASR systems do not insert

any punctuation in the transcripts they generate, and they output all the words in the same

case, regardless of the appropriate case for a given word. This makes it harder for the user

to understand and is unacceptable for several applications.

A number of approaches have been developed which recover punctuation and perform true-

casing [60, 6] (i.e, recover the correct case of each letter in a word, such as turning mcdonalds

into McDonalds) as a post-processing technique.

The occurrence of disfluencies is usually not detected by ASR systems, apart from the presence

of filled pauses. In spontaneous and conversational speech, filler words and false starts may

greatly impair the performance of an ASR system, both by disrupting its language model

context and by adding spurious words. In order to mitigate this problem, several methods

have been developed to automatically detect, and if possible, remove such disfluencies. This is

specially important in spontaneous speech. In particular, interpreted speech often has highly

disfluent speech (also depending on the interpreter’s skill).

There are different types of disfluencies. One possible categorization is as follows [97]:
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• filled pauses: interruptions in the normal flow of speech which are marked by a uh or

uhm sound.

• discourse markers: words with no information content, used by the speaker while gen-

erating the actual message (you know or well in English, or bom in Portuguese). Of

course, these are also speaker specific, since different speakers will use different discourse

markers, with different frequencies.

• edit disfluencies: these are the most complex, and depending on the source, are usually

composed of a deletable part, followed by an interruption point and an edit. Often

they are further subdivided into repetitions, if the edit does not correct but simply re-

peats what was in the deletable part, e.g, I think I think that ..., repairs, where

the deletable part is replaced by a different phrase but with a similar meaning, e.g., I

believe I think that ... and false starts, where the deletable part is abandoned

altogether in the edit. One of the biggest challenges in disfluency detection is to ac-

curately locate the beginning of the disfluency and the interruption point, that is, to

determine which part should be removed in order to recover fluent speech.

Disfluencies can either be simple, if only one of the above types occurs, or complex, if a

sequence of the above types occurs. For instance, the edit disfluency <If a If there are

...uh...>* I think that if there are contains a sub-disfluency, as well as a filled pause,

in its edit part.

A number of methods have been proposed that identify and remove disfluencies, with a view

to reduce word error rate and to increase the quality and readability of the output. Some

of these methods consider only prosody-based features [98]. Other methods use lexical-based

features [99]. Some of the proposed classifiers are the Conditional Random Field (CRF),

Maximum Entropy, and HMM-based [61]. Hidden Event Language Model (HELM) [103]

are also used, encoding disfluencies as events that are not directly observable. Yet other

methods [42] consider the disfluency-containing text to be a noisy version of the clean text,

and learn a system which translates from the former to the latter. Recently, Integer Linear
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Programming (ILP) was used with a view to adapt disfluency detection methods to out-of-

domain data [33].

A key advantage of removing disfluencies is that their presence is also detrimental to language

modeling and further downstream processing techniques, such as natural language under-

standing methods. For instance, disfluencies hamper parsing techniques [31], since sentences

are no longer well-formed.

In general, more information can be extracted from the speech signal to enrich the tran-

scription. A few examples are detecting overlapped speech [10], background music [43], or

identifying which speaker is talking at a given segment [106]. Some of this information can

also be used to further improve speech recognition results by discarding non-speech segments

and by adapting the acoustic models to the appropriate speaker or group of speakers.

1.2.2 Machine Translation

Machine Translation, the problem of automatically translating a sentence or text from one

language to another, is considerably hard, specially between languages which are not closely

related. One of the most significant challenges faced by MT is that natural language is

intrinsically ambiguous, at the lexical, syntactic and semantic levels. Another issue are the

differences in the mapping between concepts and structures in different languages.

There is a wide range of approaches to machine translation, concerning the complexity and

abstraction level of the representations built by the systems. At one end of the spectrum

are interlingua-based approaches [26]. Here, a language independent representation of a

sentence’s meaning is constructed through several analysis steps, and then a natural language

generation engine is used to generate the output in the target language. At the opposite end

of the spectrum are direct translation methods where words or phrases are translated directly

into the target language without regard for morphological, syntactic or semantic information.

In between these two extremes are transfer-based systems, which create representations at

intermediate levels of abstraction (at the syntactic or semantic levels, but with some language
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dependencies). The level of abstraction at which each system is built also impacts the ease

with which new language pairs can be added to the system, which is usually easier for higher-

level systems.

Most early systems used rule-based approaches, not only because they seemed to have a

stronger foundation in linguistic processes, but also because statistical approaches require

parallel corpora, which did not exist then. However, the design of rules and grammars for

these systems is expensive, since it requires the work of trained linguists, and it is necessary

to obtain a good coverage of language constructs. The availability of large multilingual

corpora led to the advent of high quality SMT systems. SMT systems learn how to translate

from one language to another from data, usually from corpora of aligned sentence pairs that

have been created manually. Here, one can use the noisy-channel paradigm to describe the

translation problem. This approach assumes that the sentence in the source language, s, is a

noise-distorted version of the sentence in the target language, t, which we seek to recover:

t∗ = arg max
t

P (t|s) = arg max
t

P (s|t)P (t)

P (s)
= arg max

t
P (s|t)P (t) (1.4)

In the above equation, P (t) is a language model, usually an n-gram language model, as

described in Section 1.2.1, whereas P (s|t) represents the translation model. Finally, the

maximization corresponds to the search or decoding step.

Word alignments, which allow us to determine an estimate of the translation probability

P (s|t), are normally created by applying a generative model, which describes how to generate

a target sentence from a source sentence. Probably the best known word alignment models

are the IBM 1-5 models [12]. IBM models of increasingly higher number include distortion

models, which explain the different word orders in different languages, as well as fertility

models (a word is said to be fertile if it tends to map into multiple words in the other

language). The usual way to estimate parameters for these models (training) is to use the

Expectation-Maximization (EM) algorithm [24], although higher number IBM models must

use an approximate E-step, since there is no closed form solution for models 3, 4 and 5. Lower
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number IBM models are often used to initialize parameters for higher number models.

Phrase Based Statistical Machine Translation (PBSMT) systems [51] incorporate context into

the translation model, capitalizing on the fact that the translation of a word is influenced by

the surrounding words. In a PBSMT system, heuristics are used to extract plausible phrase

pairs from a bidirectional word alignment (two unidirectional word alignments combined).

Taken together, along with estimated translation probabilities, these phrase pairs constitute

what is known as a phrase table.

A PBSMT decoder has a similar function as an ASR decoder, integrating all the information

sources and possibly reordering phrases in order to generate the output in the target language.

It scores each hypothesis using features such as phrase length, the translation probabilities

from the phrase table, distortion probabilities for reordering, the language model probabilities,

among others. Pruning techniques are also used to keep the complexity of the search space

in check, namely beam pruning or restrictions to reodering to maintain tractability.

Recently, syntactic approaches to SMT try to overcome the syntactic gap between languages

with different syntactic structures. Some of these approaches do not actually require parsing

the source or target languages, whereas others do. These systems can also be categorized

based on whether the translation rules are learnt from an aligned string-to-string corpus [20],

tree-to-tree [25] or tree-to-string [32]. In general, these systems tend to be superior when

compared with phrase based SMT systems for distant language pairs such as Arabic-English

or Chinese-English, or when there is a scarcity of resources that leads to data sparsity problems

in PBSMT systems.

Instead of the Maximum Likelihood (ML) approach, modern SMT systems often use the

maximum entropy framework to express the translation problem:

t∗ = arg max
t

logP (t|s) = arg max
t

n∑
i=1

λifi(s, t) (1.5)

This enables one to incorporate arbitrary knowledge sources, in the form of the features fi,
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into the translation process. Commonly used features include:

• the translation model P (s|t) and the target language model P (t), also used in the ML

model.

• the inverse translation model P (t|s).

• the lexical and inverse lexical translation models, which take into account the probabil-

ities of individual words within the context of the source and target sentences.

• the phrase and word features, which penalize producing sentences with large numbers

of words or phrases.

• the distortion model, which considers the reorderings between phrases in the source and

target sentences. Examples of distortion models include simple distance-based models

and lexicalized reordering models [59].

1.2.3 System combination in ASR and MT

Researchers in both ASR and MT have observed that combining several systems, with different

strenghts and weaknesses, often outperforms the best individual system that it is possible to

create. It is possible to either combine several systems of the same type (e.g. several ASR

systems) as well as several systems of different types (e.g. an MT system with an ASR

system).

When combining multiple ASR systems, system integration can occur at the different pro-

cessing stages: at the feature extraction level [100], where the outputs from multiple feature

extraction methods are concatenated to form a larger vector; at the acoustic model level,

where the posterior probabilities from different acoustic models are combined, using a weight-

ing scheme, to yield a potentially more accurate posterior distribution over phones [73]; and

at the output level [66], where the outputs of several systems (either in the form of N-best

lists, confusion networks or lattices) are aligned and rescored.
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In MT, the simplest combination method consists of only rescoring hypotheses without merg-

ing them, and selecting the optimal one, according to a set of models [77, 15]. However, in

this case, the output of the system for a given sentence will not be better than that of the

best system for that sentence.

Consequently, other methods for system combination have been developed that try to select

the best parts of each system’s output and produce a better sentence than any of the systems

individually [30, 5, 44]. One of the most successful methods for this type of combination is

confusion network decoding [67], which involves aligning the different hypotheses and search-

ing for the best path in the resulting confusion network. MT system combination is often

most effective when applied to different system types, such as syntactic and PBSMT systems,

because there is less overlap between the types of errors that they produce.

An important special case of MT system combination is multi-source translation [80, 96]. In

this application, multiple versions of the same sentences are combined to produce a single

target translation. For example, in the cases in which a single document must be translated

into several different languages, existing translations of the document in some languages can

be used to help improve translation into other languages.

ASR system
system output

phrase tables
trans. modules

MT system
n-best lists
lattices
conf nets

speech

Figure 1.2: Sequential combination of an ASR system with an MT system.

Broadly, we can divide the combination of ASR and MT systems into two categories:

• sequential combination (Figure 1.2) - which is the most common type of combination,

where an MT system is pipelined after an ASR system, and it is used in S2S and

Speech-to-Text (S2T) systems.
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Figure 1.3: Parallel combination of multiple ASR systems. The outputs of different ASR
systems (1-best, lattices, etc.) are combined together via phrase tables or translation modules
to obtain improved ASR transcripts.

• parallel combination (Figure 1.3) - in this type of combination, a number of ASR systems

in different languages, known to contain redundant information, are combined through

a translation module or phrase table [83, 82].

1.2.3.1 Sequential combination

Much work has been developed regarding sequentially combining two systems, mainly for use

in a speech translation system. It mostly focuses on integrating ASR and SMT systems as

tightly as possible, in order to mitigate their weaknesses.

One of the lines of work is to find a segmentation of the input speech into utterances that

are optimized for efficient translation rather than accuracy at the source language level [68].

Another idea is to widen the interface between the ASR and SMT components, which can

be done by passing more than just the top recognizer hypothesis - usually lattices [95] or

confusion networks [8]. The latter have the advantage of simpler topology leading to simpler

and efficient decoding algorithms, but they may also contain paths which are not part of

the original lattices. The tightest coupling between ASR and SMT modules can be achieved

through WFST composition of the ASR and MT transducers to create a global search space

[85]. The idea behind these techniques is that the translation models may be able to recover

from recognition errors by implicitly selecting those hypotheses that are the most suitable for
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translation.

Tighter integration between modules often leads to better translation quality, but it is also

more computationally expensive, due to the need to integrate over the different hypotheses

that are generated by the ASR system. This sometimes requires approximations for tractabil-

ity.

Since most MT systems are trained and optimized with written data, techniques have been

developed that try to adapt the ASR output to make it more similar to the texts the MT

system was trained with. True-casing, punctuation [84], and disfluency removal [90, 112]

have all been applied for this purpose. A related approach, which can be used even when

the ASR system is a black box, consists of applying machine translation to the output of the

ASR system. This method uses an SMT system trained from a parallel corpus that contains

ASR-transcribed sentences, together with the respective manually generated transcriptions.

1.2.3.2 Parallel combination

A number of authors have sought to combine ASR and MT in a parallel fashion. Some of

these methods are used to combine speech with redundant information contained in a text

stream, usually for an application such as Computer Assisted Translation (CAT) [13, 48, 92].

In CAT, the idea is to have a human translator dictate, rather than type, the translation to

a given source document, since the former is usually more efficient. Therefore we transcribe,

using a speech recognizer, the target document which is being dictated by the translator, and

take advantage of the information contained in the source language text in order to improve

our decoding of the translator’s speech.

One of the ways proposed to achieve this is to have the ASR system generate an N-best list,

and rescore it with a translation model, such as one of the IBM models [13]. An alternative

is to use arbitrary word lattices instead of N-best lists for rescoring; however, in this case, the

rescoring model must be implemented as a finite-state machine for efficient rescoring. A few

works have considered combining multiple ASR streams in different languages [83, 81]. Using
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speech recognizers in two languages, a pair of speech streams is initially transcribed. Then,

the method proposed is to iteratively translate, with an SMT system, the ASR generated

transcriptions from one language to another. At each iteration, a new pair of transcriptions

is produced, and new phrases are added to the translation model. This is done by applying

what the authors call n-gram hints - discounting the cost, in the ASR system, of n-grams

that appear in the top translations, and doing the same in relation to the MT system. Large

improvements are demonstrated in the Basic Travel Expression Corpus (BTEC) corpus [83],

and smaller improvements in the European Parliament data [81].

In Chapter 3, we therefore propose a method that combines the information in multiple

languages to yield improved recognition results. In order to connect the language pairs, we

use phrase tables trained for an SMT [63] system, which use, as one of their knowledge

sources, a phrase table consisting of pairs of the form (source phrase, target phrase). Using

these phrase pairs, it is possible to find potential correspondences between speech in different

languages, and to bias the speech recognition models towards these correspondences. We

then generalize this technique to sets of arbitrary streams, which can be considered to be

approximate pairwise translations of each other.

1.3 Contributions

The main contribution of this thesis is a generic algorithm for combining multiple parallel

information streams, which are approximate translations of each other. These information

streams can be of different types (e.g., speech, text or slides), and can encode different un-

certainty types (e.g. the uncertainty generated by a speech recognizer by virtue of being less

than perfect, or that which is present in the different ways of expanding abbreviations in

slides). This enables its application to a variety of scenarios in which parallel information

from multiple streams can be obtained. The methods developed in this thesis are applied not

only to improve speech recognition accuracy, but also to enhance several other speech process-

ing aspects, including the rich transcription of speech. In this thesis, we preferentially used

speech as the stream type from which to recover information, but the algorithms presented
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here can be applied in a straightforward manner to deal with uncertainty in other stream

types. This work improves upon some of the previous work on related topics in several ways:

• It does not directly depend on a translation engine decoder, but rather finds phrase

pairs that appear both in a phrase table and in lattice pairs. Using lattices instead of

N-best lists or 1-best recognizer outputs allows for greater flexibility in the selection of

different hypotheses. This allows us to cope effectively with simultaneously interpreted

speech, or with lower resource languages, which often lead to reductions in recognition

performance.

• No prior alignment between speech segments generated by the recognizers in the dif-

ferent streams is required or assumed, since one is implicitly constructed during the

execution of our algorithm.

• Through the tuning of a maximum delay parameter it is, in certain cases, possible to

integrate the improvements into a low latency system, by breaking up the input streams

into several chunks that can be processed immediately.

• Time stamps are used to ensure that the language model scores are not modified for

words other than those belonging to phrase pairs in the generated alignment, avoiding

errors which could otherwise arise.

• It enables the combination of a mixture of text and speech streams, or other types of

information that may be available and representable as lattices over word sequences,

therefore generalizing the idea of language combination to arbitrary streams.

• It scales to the combination of an arbitrary number of streams, whenever more than

two streams are available.

This work has led to the following publications:

• J. Miranda, J. P. Neto and A. W. Black. “Parallel combination of speech streams for

improved ASR”, in Proceedings of Interspeech, Portland, USA, September 2012.
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• J. Miranda, J. P. Neto and A. W. Black. “Recovery of acronyms, out-of-lattice words

and pronunciations from parallel multilingual speech”, in Proceedings of SLT, Miami

Beach, USA, December 2012.

• J. Miranda, J. P. Neto and A. W. Black. “Improving ASR by integrating lecture audio

and slides”, in Proceedings of ICASSP, Vancouver, Canada, May 2013.

• J. Miranda, J. P. Neto and A. W. Black. “Improved punctuation recovery through

combination of multiple speech streams”, in Proceedings of ASRU, Olomouc, Czech

Republic, December 2013.

1.4 Document Structure

In this chapter we have presented a review of previous work on the topics of speech recognition,

machine translation, and system combination. The remainder of the document is organized

as follows.

• Chapter 2 explains the initial work on unsupervised learning of acoustic models us-

ing the TED Talks as an application, by using an iterative procedure to recover filled

pauses and by correcting other problems with the transcriptions. It also discusses a sys-

tem that updates speech recognition models using fast human corrections to automatic

transcripts, in order to minimize the human effort required to produce high-quality

results.

• Chapter 3 focuses on improving speech recognition by combining streams, possibly in

different languages, and presents the lattice-phrase table intersection algorithms, as well

as the alignment construction techniques that were developed in order to accomplish

this. The chapter also describes recovery of acronyms and of words that are not in any of

the generated lattices, in order to improve on the results of the baseline algorithm. Two

application scenarios are explored: simultaneous interpretation in the European Parlia-

ment Committees, and combination of slides with lecture speech to improve automatic
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speech recognition of lectures.

• Chapter 4 describes improvements that can be obtained in the topic of rich transcription

of speech, when one considers multiple parallel information streams. We discuss the

improvements that have been obtained in automatic punctuation recovery, as well as

disfluency detection in the European Parliament Committee domain, when compared

to methods that do not use information in multiple streams.



2Lightly supervised

acoustic model training

2.1 Introduction

The performance of automatic speech recognition systems is closely related to the quality

of their training data, since the presence of errors in transcripts will contribute to increase

the probability of similar errors in the testing data. Usually, the process of creating acoustic

models for automatic speech recognition involves intensive manual labor. Transcribing large

amounts of audio data with the appropriate level of detail can, therefore, quickly become

prohibitive. Therefore, it would be desirable to be able to leverage other types of training

data, including errorful or incomplete transcriptions.

The present chapter is organized as follows. In Section 2.2, we discuss some previous work

in the topic of lightly supervised acoustic model training. In Section 2.3, we describe an

unsupervised method for iteratively improving imperfect transcriptions, which contain errors,

such as insertions, omissions or substitutions of words. Examples of such transcriptions

include subtitled television shows or films, which do not contain annotations indicating the

locations of disfluencies or other background events. These totally unsupervised methods do

not correct all of the errors in the transcriptions, and are not suitable for applications in which

no initial transcription is available. Therefore, in Section 2.4, we discuss a semi-supervised

method which uses crowd-sourced user corrections of speech transcriptions. This technique

minimizes user effort by combining an optimized interface for efficient option selection with

user feedback to update the speech recognition models. This is used to complement the

method described in Section 2.3. In Section 2.5, we draw conclusions and lay out future

work.
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2.2 Related work

The need to avoid the detailed manual transcription of large amounts of speech data has led to

a considerable amount of research into techniques that take advantage of imperfect transcrip-

tions, which are less accurate but also produced at a lower cost. In [55], a lightly supervised

training technique was developed where the output produced by a speech recognition system

is compared to closed captions (which are simplified text versions of speech in a television

presentation), which contain errors, in order to identify regions that agree. These are then

selected for training an initial model, which is then used to iterate this process, hopefully

enlarging the training set at each step (i.e each successive model is potentially more accurate

than the previous one, so it is expected that a larger proportion of the ASR output agrees

with the manual transcriptions). However, simply discarding segments where the audio does

not agree with the transcription corresponds to removing the sentences that are the hardest to

recognize with the existing models, leading to a limited potential improvement in recognition

performance. In [17], this problem is addressed by using confusion networks to compactly rep-

resent a set of plausible alternatives. These, and not just the best hypothesis, are compared

against the closed captions, and a sentence is accepted if any of the generated alternatives

match. In [86], closed captions are interpreted as distortions of the correct transcriptions in

the context of the noisy-channel model, and a probabilistic translation model is designed in

order to attempt to recover them. In [37], a method was proposed to automatically correct

human generated transcripts by using “pseudo-forced alignments”, which is defined by the

author as being a relaxed version of forced aligment, where a number of editions, encoded as

FSTs, are allowed. A related approach was suggested in [108], where missing disfluencies and

words are corrected using lattices constructed for that purpose. In [110], speech recognizers in

multiple languages combined with a multilingual confidence measure are used to select data

for training an acoustic model for a different language, in a completely unsupervised manner.

Another class of approaches to obtain speech transcriptions considers the use of crowdsourcing

techniques [28], which can be defined as the collaboration of multiple non-experts to solve

a task. This can be perfomed through general purpose platforms such as Mechanical Turk
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[14], or Crowd Flower1. There are a number of challenges that need to be addressed when

using crowdsourcing for speech transcription, in particular in what concerns the quality of

the result.

Some of the proposed techniques consist of finding a consensus among the task solutions

generated by several different users. In [2], both supervised and unsupervised methods to

determine the reliability of the crowdsourced transcription are investigated. In [3], a similar

approach is utilized to deal with noisy speech transcriptions. Both papers employ Recognizer

Output Voting Error Reduction (ROVER) [29] to combine multiple transcriptions which were

obtained using the Mechanical Turk platform. This allows the system to be robust to errors

introduced by the human transcribers, as long as the majority of the users agree on the

correct solution, but it has the drawback of requiring that multiple versions of the same

speech transcript be produced.

An alternative are post-editing approaches to crowdsourcing, which consist of automatically

generating an initial solution to a problem, which is then corrected by human annotators.

These have been applied to different tasks, ranging from MT [9, 56] to ASR [109, 111] as well

as Optical Character Recognition (OCR) [75], among other tasks. The work of Section 2.4

fits into this general framework: our focus is on reducing user intervention in the process,

which in our system is limited to post-editing automatically generated transcriptions. For

that reason, we employ a custom crowdsourcing platform with a small set of high quality

editors and we only produce a single transcription for each utterance, which precludes the

use of ROVER. Instead, user effort is minimized by the use of both acoustic and language

model adaptation, rather than the fusion of multiple hypotheses.

1http://www.crowdflower.com/
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2.3 Acoustic model generation from imperfect tran-

scripts

2.3.1 Proposed Method

We propose an iterative technique for automatically correcting speech transcripts. The general

control flow of this algorithm is depicted in Figure 2.1.

Figure 2.1: Flow diagram illustrating the transcription improvement algorithm.

The algorithm is initialized by force-aligning the subtitles and the audio, using a baseline

acoustic model. At its core, it consists of a number of iterations (we used a fixed number of

iterations as the stopping criterion, but others, such as the number of sentences that change

between iterations, are equally valid). At the beginning of each iteration, we estimate a set

of models using the transcriptions obtained in the previous step. We then generate a set of

alternatives for each sentence in the transcription. These alternatives are then rescored using

a separate set of models for each iteration, as features. These are generated at the beginning

of the iteration, from the current best transcriptions. Our method may be seen as similar to

the well-known EM algorithm [24], in that it alternates between estimating model parameters

and transcriptions. However, our algorithm does not integrate over the space of all possible

transcriptions; rather, it only considers the best transcription, according to the models which
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were generated at the beginning of the iteration, when re-estimating model parameters. There

is also no guarantee of convergence to a local maximum.

For computational convenience, we further subdivide each iteration into a sequence of steps.

In each step, only modifications in one of the classes described in Figure 2.2 are made to

each of the sentences in the transcription. These classes were designed to cover the most

frequent errors found in the transcriptions, which we would like to fix. So, in each step, we

generate a set of alternative transcriptions for each sentence, which are force aligned to the

corresponding speech, and this alignment is used to compute each of the individual model

scores. We compute an overall score for a sentence in the transcript by linearly combining the

individual model scores, with the weights for each model assigned through manual tuning.

Finally, for each sentence, we select the transcription with the best overall score.

In this work, we used the following models for rescoring:

• N-gram language models: we used 5-gram models to predict the probability of a given

sentence, including both filler and non-filler words. However, these models were not

trained directly on the transcriptions. Instead, we tied all the non-filler words together

except for those high-frequency words, to try to prevent the model from learning pecu-

liarities of the transcription, instead of important properties of the filler distribution.

The idea is to learn what words are usually followed or preceded by fillers.

• Rule-based models: these apply a number of hand crafted rules that reflect prior human

knowledge about the filler distribution in sentences. For instance, long alternating

sequences of fillers and non-fillers are considered unlikely and thus penalized by this

model.

• Phone duration models: we modeled the phone durations as Gaussian, conditioned on

the identity of the current and last two phones [53]; for phone combinations for which

not enough data is available, however, we condition only on the current and last phones.

• Acoustic model: this corresponds to the score output by the force aligner for the baseline

acoustic model used.
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Class I - Filler swaps

• In this class, we allow swapping the position of a filled pause and
the word that immediately precedes or follows it. Often, the force
aligner incorrectly places the filler before the word or vice-versa,
usually in the case of small words that are acoustically confusable
with filled pauses.

Class II - Filler insertion

• Sometimes, silences, breathing noises, and filled pauses that are
relatively short are ignored by the force aligner. A number of
potential locations for their insertion are identified by using confi-
dence scores (words with low alignment scores or with extra long
initial or final phones are good candidates for having absorbed one
of these noises into their pronunciation).

Class III - Garbage word insertion

• Repetitions and a number of filler words or expressions (“so”, “you
know”) are often overlooked in fast transcriptions of speech. In this
class, we create an alternative hypothesis which consists of replac-
ing such phrases with a garbage filler, which avoids them being
merged with adjacent words in the transcription during acoustic
model training.

Class IV - Filler deletion

• One of the problems of the force aligner is that it tends to insert
a large number of spurious noise and garbage fillers, usually with
short durations. This is because the acoustic models for these usu-
ally have very large variance and so will often match regular words
as well. Here we generate alternatives to remove short duration
fillers.

Class V - Word deletion

• In a small number of cases, the human transcriber adds words that
were not in the original speech, in order to make the transcription
easier to understand. This creates a mismatch between the acous-
tic signal and the transcription. In order to address this issue, we
allow very low confidence words to be deleted.

Figure 2.2: Classes of rules for sentence alternative generation
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At the beginning of each iteration of the algorithm, these models are reestimated from the

currently-best transcriptions using Maximum Likelihood estimates, except the rule-based

model and the acoustic model, which remain unchanged throughout the process. The acoustic

model was not re-trained after every iteration due to the computational complexity of the

training process. The SRILM toolkit was used for language model reestimation.

2.3.2 Experimental Setup

2.3.2.1 Dataset

We selected the TED talks as a dataset for experimenting with our algorithm. The TED

talks concentrate on topics as diverse as entertainment, science, design or politics, and are

in the English language (although some satellite events have talks in other languages). The

speakers are mostly fluent, although some of them are not native, and a wide variety of accents

is represented. The talks are subtitled in English, as well as translated to over 40 different

languages (both these tasks are performed by volunteers, so availability may vary). The main

purpose of the subtitles is to convey the meaning of what is being said by the speaker; in this

sense, disfluencies such as filled pauses or other non-speech noises are not annotated (although

some events like laughter and applause occasionally are). Also, it is not uncommon for the

subtitles to lack words or invert their order. This makes the dataset ideal for the application

of our algorithm. In total, 525 talks, with a duration of 180 hours, were collected from

http://www.ted.com. They were pre-processed by first manually removing talks containing

very little speech (such as musical performances). Talks containing background music or other

noises were not discarded. We randomly selected 12 of the talks for our held-out validation

set, and 31 of the remaining talks as our test set. One speaker, Al Gore, has talks in both

sets; all the other speakers are represented only either in the training or the testing set. Since

the subtitles in our test set were also not manually annotated, they contain the same types of

errors as those found in our training set. In this way, the word error rates that we measured

in the test set are artificially high, since for example a word that is repeated in the test speech

will be recognized twice, but appear in the subtitles only once. However, we expect the effects
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Complete Half 1 Half 2

Iteration 3 35.2% 39.4% 39.5%

Iteration 4 34.9% 39.0% 39.3%

Iteration 5 36.0% 39.9% 40.1%

ROVER 33.8% 37.6% 37.8%

Table 2.1: N-best rover results (as well as results for 3 different iterations) for the whole
dataset and each of the two halves

of this distortion not to impact our model comparisons significantly, since the word error rate

of all the models will be similarly affected.

2.3.2.2 Corpus preprocessing

In order to have appropriate segments for training and testing, it is desirable to segment the

audio of each talk into chunks of reasonable duration (about 30 seconds), since the timings

provided with the subtitles are only approximations which are unusable for segmentation

purposes. We first break the audio in the locations of silent pauses with durations greater

than 0.50s. We then decode these chunks using an acoustic model trained on the Hub4 data

[34], and a biased language model, estimated using the transcriptions, and use the words for

which both the decoder and the subtitles agree, as the locations where we split the audio

into segments. To prepare our data for training, it was also necessary to expand numbers

into sequences of words. There is often more than one way to do this, depending on speaker

and context. Our approach consisted in building a FST for the transcriptions containing the

various alternative ways of spelling a number, and another FST encoding the decoder output

(obtained while segmenting the data), and then finding the best path through the transducer

resulting from the composition of the two.

2.3.3 Results

All the acoustic models were trained using SphinxTrain, using 4,000 senones and 16 Gaussians

per density. All the recognition experiments were carried out using the Sphinx3 decoder

[87]. The language model used for the recognition experiments reported below was built
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Figure 2.3: Error rate on the test set for acoustic models trained on each iteration of the
transcriptions, compared with the WER achieved by the Hub4 model.

by interpolating the subtitles with a Gigaword trigram language model, using the held-out

validation set to optimize interpolation weights. The baseline acoustic model used for the

sentence rescoring described in Section 2.3.1 was trained using the existing transcriptions

(i.e, at iteration 0).

Figure 2.3 shows the WER of each of the acoustic models, measured after the end of each iter-

ation, compared with the WER of the Hub4 acoustic model measured on the same testing set.

At iteration 0, we use the acoustic model trained directly on the force-aligned transcriptions;

in subsequent iterations, we use the transcription output by the algorithm at that iteration to

train the acoustic model for recognition. We found that the WER increases again after reach-

ing a minimum at the end of the fourth iteration. We hypothesize this may be because our

algorithm is introducing a number of errors in the transcriptions as well as correcting them,

and after the fourth iteration the errors introduced outweigh the corrections, thus increasing

the WER.

We observed that the types of recognition errors made by each of the three acoustic models -

corresponding to the third, fourth and fifth iterations respectively - were considerably differ-
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ent. This motivated combining the outputs of the different decoding runs by using the N-best

ROVER [104] implementation in the SRILM toolkit, and observed a 1.1% absolute improve-

ment in WER. To test the reproducibility of this result, we randomly split the training data

into two halves of approximately equal size. We repeated the iterative model / transcrip-

tion reestimation process on each of the halves, and then performed N-best ROVER on the

third, fourth and fifth iteration results for each of the halves. We obtained absolute WER

improvements of 1.4% and 1.5% when compared to the best result in each of the two halves.

The results are summarized in Table 2.1. The transcriptions for each iteration have different

errors, since they represent different stages of the transcription correction process. So acoustic

models built from transcriptions corresponding to different iterations of the process will tend

to make different errors, owing to the different errors in the transcriptions they were trained

from, and therefore benefit from system combination.

2.4 Semi-supervised human acquistion of transcriptions

In this Section, we explore a different path for obtaining speech transcriptions, which can

be applied without the need for an existing transcription. We developed a post-editing sys-

tem, where an initial transcription is generated by an automatic speech recognizer, and then

corrected by users, with minimal human intervention in the process.

Our system is divided into essentially two parts: a front-end or interface where users can

correct the output generated by an automatic speech recognizer, together with a back-end

which propagates user changes to sections not yet corrected by users. This improves the

recognizer output for the remaining sentences, therefore reducing the human workload that

is required to correct the transcripts.

The interface allows users to choose among a small number of alternatives to that which the

ASR system has considered to be the most likely hypothesis. The user also has the possibility

of manually entering a different option from the ones that are displayed, if he or she finds that

none of those is correct. Preferably, the alternatives that are generated should minimize the
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need for manual insertion of words, since this is more time-consuming than simply clicking

on an alternative, and our goal is to minimize the overall time spent by human editors.

2.4.1 Confusion network generation

Recognition lattices cannot be easily displayed to users, since these are non-linear and usually

have far too many redundant paths to be presented. Therefore, we begin by converting the

ASR lattices to confusion networks, which are graphs in which the only arcs are between two

consecutive nodes.

1 2 3 4 5 6

ε/0.7

the / 0.3

results / 1.0 are / 1.0

ε/0.8

an / 0.2

uninteresting / 0.8

interesting / 0.2

Figure 2.4: Example of a confusion network with two ε-dominated slots

The traditional method to generate these confusion networks, however, creates a significant

number of “ε-dominated slots” : those for which either the most likely or the correct hypothesis

is the absence of any word, as can be seen in Figure 2.4. The main reason for this is that the

confusion network has to encode many competing hypotheses of different lengths. Such slots,

however, are cumbersome because they tend to distract the user from the sentence being

corrected, and may require a larger number of steps to correct a given utterance.

We propose an algorithm which aims to minimize the number of slots that are generated for

a given utterance, by merging together words in contiguous slots to create phrases.

Our method for generating compact option lists from confusion networks consists of the

following steps:

• We identify which slots are to be merged into one. This is done greedily, by selecting

sequences of at most four slots, in which at least one of those slots is not epsilon-

dominated, i.e. the highest probability arc does not have an epsilon label.
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• We generate a candidate list of phrases by considering all possible combinations of words

in the slots that are to be merged. For each of the candidate phrases, we compute its

posterior probability according to the recognition word lattice.

• The option list consists of the selected phrases, sorted in decreasing order of their

posterior probabilities.

• If the resulting list has a larger number of options than a predefined threshold, the

phrases beyond that threshold are discarded, in order to keep the list size manageable.

1 2 3 4

results / 0.7

the results/ 0.3

are / 1.0

uninteresting / 0.8

an interesting/ 0.2

Figure 2.5: Example of a compact confusion network with no ε-dominated slots

The result of applying this method to the confusion network of Figure 2.4 can be seen in

Figure 2.5.

2.4.2 Model adaptation

In order to reduce unnecessary human intervention in the transcription process, we update

the parameters of each of the three main ASR system components: the acoustic model, the

language model and the lexicon. We use the corrected sentences returned by users to adapt

each of these components.

2.4.2.1 Acoustic model adaptation

It is possible to use the corrected sentences that were returned from users to adapt the

recognizer’s acoustic models and improve accuracy for the speaker’s remaining utterances. Of

course, since the humans are not guaranteed to produce optimal transcriptions, there may still
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be errors in the corrected sentences. To try to mitigate the errors that this would potentially

introduce into the acoustic model adaptation process, the regions with a confidence measure

value (as given by the recognizer) below a given threshold are skipped during acoustic model

adaptation.

We used Stochastic Gradient Descent (SGD) [93] to adapt our neural network based acoustic

models.

The targets for adapting the models were generated by force aligning the corrected sentences

with the audio. To avoid overfitting on the adaptation data, we kept 10% of it to use as a

validation set, and selected the best performing model on this set, over 50 training iterations.

2.4.2.2 Language model adaptation

We also adapt the language model using user-corrected segments, in order to improve recog-

nition in the remaining uncorrected utterances. In this context, we desire to be able to work

with small amounts of data (as small as a few utterances) and, as a result, methods such as

simple linear interpolation are not very effective in improving recognition accuracy.

Instead, we explore the use of a cache-based language model which assigns a larger weight to

n-grams that occur in human-corrected utterances.

The idea behind the use of such a language model is to capture speaker and topic specific

expressions, and reinforce their probability of occurrence without affecting the probabilities

of other n-grams significantly. The conditional probability of a word under this model is given

by Equation 2.1:

P (wi|wi−n+1...wi−1) = αPng(wi|wi−n+1...wi−1) + (1− α)Pc(wi|wi−n+1...wi−1) (2.1)

Pc(wi|wi−n+1...wi−1) =

∑
j∈occur(wi−n+1...wi)

d(j, i)∑
k∈occur(wi−n+1...wi−1)

d(k, i)
(2.2)
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In Equation 2.1, Png represents the background n-gram probability, whereas in Equation 2.2,

d(i, j) = a−|i−j| represents the distance function between two word positions i and j, and

occur(n) is the set of positions where n-gram n occurred. The term d gives emphasis to

occurrences of an n-gram closer to the current word position.

The language model defined by Equations 2.1 and 2.2 depends on the position of the current

word, and therefore cannot be used directly in our WFST decoder. We approximate it with a

set of n-gram models, one for each sentence, which can be used efficiently in our recognizer. In

order to do this, each n-gram probability is kept fixed within each sentence. This is achieved

by setting the position i, of each n-gram, in Equation 2.2 to the beginning of that sentence.

This language model is then used when rescoring uncorrected human sentences, in place of

the background n-gram language model.

2.4.2.3 Pronunciation learning

Since the words that can be input by users are unrestricted, they can, in particular, be out-of-

vocabulary (OOV) words, for which we would like to learn the pronunciations. Pronunciation

learning enables the ASR system to recognize further instances of a previously OOV word,

thus eliminating the need for the user to correct the same word repeatedly. It is also applied

to other words which we suspect have missing or incorrect pronunciations, in particular those

words which have been added manually by users, without being part of any of the system

generated options.

We use a modified version of our recognizer to automatically learn pronunciations for these

words. During alignment, the decoding graph is constructed with an expanded lexicon, which

consists of the pronunciations in the original lexicon merged (with a union operation) with

transducers representing the pronunciations of the words that we wish to learn. The idea is to

use the information present in the speech signal to guide the Grapheme-to-Phoneme (G2P)

process for words with missing pronunciations.

The language specific transducers encode the phonotactic constraints of the language and
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therefore improve the quality of the learned phone sequences by ruling out implausible pro-

nunciations. The transducers are constructed by viewing G2P as a monotonic machine trans-

lation task [47], in which we map from the set of words to the set of pronunciations, and

enumerating possible translations for each letter or letter sequence that compose a given

word. These phone sequences are those that a given letter sequence is usually mapped to in

the pre-existing lexicon. They are obtained from a model trained with Phonetisaurus [79] on

the existing pronunciation dictionary for the language.

When the force aligner is run, the pronunciation which is learned for a word corresponds to

the path chosen by the decoder in the augmented lexicon transducer, whenever that word

occurs in the alignment reference text. If the word occurs more than once in the alignment,

the most common pronunciation found for that word is kept.

2.4.3 Results

2.4.3.1 Data set

We experimented with a data set of 20 TED talks, randomly drawn from the TED data set,

which was described in Section 2.3.2.1.

Of these, two were set aside as a held-out validation set, and eighteen were used for testing.

The talks were uploaded to the Unbabel system [107], which was modified for the purpose of

correcting speech transcripts, and they were corrected by users.

2.4.3.2 Baseline Systems

The recognizer used for these experiments was Audimus [69], a hybrid WFST-based rec-

ognizer. We considered two different baseline systems based on Audimus, for comparison

purposes: an MLP-based system and a DNN-based system.

For the MLP system, we generated multiple feature streams - Relative Spectral Transform

(RASTA) [40], PLP [39] and Modulation-filtered Spectrogram (MSG) [49], from the input
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audio, which are combined at the MLP posterior level. We used our existing English acoustic

models and lexica [71]. The language model was trained using the SRILM toolkit [102]

using the TED talk subtitles, excluding those of the selected data set, interpolated with the

Gigaword language model.

For the HMM-DNN system, it was necessary to modify the Audimus decoder to enable the

use of DNN acoustic models for senone posterior computation. This required composing with

a WFST to map between the context dependent triphones and the language monophones. It

was also necessary to modify the force aligner, so that it would generate a senone for each

frame for training and adaptation purposes.

We adapted a 5-layer, 4000 senone DNN which was initially trained on broadcast news data

using approximately 170 hours of subtitled TED talk data. The initial model was trained

using the Kaldi toolkit [88]. In contrast with the MLP system, in which we combined models

trained on different feature streams, we found that concatenating PLP, RASTA and MSG

features into a single DNN input vector leads to better results. The language model for this

system was created by interpolating the TED talk subtitles for the training set talks, the

English texts of the Europarl parallel corpus, and the News Crawl text from WMT 2012.

The lexicon was the same as the one used for the MLP-based system.

2.4.3.3 Experiments

We designed and executed three different sets of experiments. First, we sought to analyze to

what extent the human correction of an increasing fraction of the talks led to an improvement

in recognition performance in the uncorrected portion, through the application of the previ-

ously described adaptation techniques. The second set of experiments was designed to assess

how close the human corrections are from the best possible corrections, in terms of the im-

provements that can be obtained through model adaptation. In the third set of experiments,

we looked into the impact of pronunciation learning in recognition accuracy in the remaining

uncorrected data.

João Miranda
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For the proposed experiments, we considered three different types of adaptation: language

model adaptation (Section 2.4.2.2), acoustic model adaptation (Section 2.4.2.1) and both

applied simultaneously. Besides these adaptation types, we tested how learning new pronun-

ciations would influence our results (Section 2.4.2.3).

We also considered three different correction types: human corrected transcriptions, which

are obtained directly from the users, reference oracle transcriptions, which correspond to the

gold-standard transcriptions, and lattice oracle transcriptions, which are intended to measure

the extent to which users can improve the automatically generated transcriptions if they could

not manually insert new words.

CN oracle transcriptions are created by selecting the slots in the generated confusion networks

in a way that minimizes the word error rate between them and the reference transcriptions.

For the first set of experiments, we simulated the scenario where users had only corrected a

random sample of the utterances in each talk. We varied the sample size, as a percentage of

the talk size, from 10% up to 60% of the total number of utterances, and selected the utterance

sets such that the smaller samples are proper subsets of the larger samples. Additionally, we

tested each of the different adaptation types (LM, Acoustic Model (AM) and both). The

results can be seen in Figure 2.6.

We can observe from the graph that acoustic model adaptation seems to outperform language

model adaptation, across all tested sample sizes. Similarly, combining both acoustic and

language model adaptation is superior to acoustic model adaptation, but by a small margin.

A second observation is that the absolute WER improvement varies between 2.5% and 3.6%.

The overall improvement in accuracy is largest in samples corresponding to 20% and 30% of

the talk’s size. The reason for this appears to be that for larger sample sizes, the number of

remaining errors that can be corrected by these techniques is also smaller, while for smaller

sample sizes there is usually not as much data available, so the proposed adaptation methods

are not as effective.

From another perspective, it can be seen in Figure 2.6 that correcting 30% of the data without
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Figure 2.6: Results (% WER) for the adaptation of the acoustic and language models using
transcription samples of increasing sizes, as a fraction of the total talk size. The original line
represents the WER when replacing the sentences in the sample with the reference, without
performing any adaptation.

using any type of adaptation, is roughly equivalent to correcting 15% of the data using both

adaptation types. In other words, using adaptation eliminates the need to correct 15% of the

data, while still achieving the same recognition accuracy.

For the second set of experiments, we compared the adaptation impact of human corrected

transcriptions with that of lattice oracle transcriptions and reference oracle transcriptions,

using a fixed sample size corresponding to 40% of the talk size.

The results from the second experiment can be seen in Table 2.2:

It is possible to see from Table 2.2 that human corrected transcriptions were not very far from

the reference transcriptions. Indeed, less than 1% of the errors are left uncorrected in the

human transcriptions, when compared to the reference, which is our gold standard. Also, a

similar number of errors in the remaining utterances is corrected using both the reference and

the human corrected transcriptions as input data for our adaptation methods. This seems

to indicate that the additional errors present in the human transcriptions do not adversely
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Type Reference CN oracle Human

ASR (baseline) 28.55 28.55 28.55

40% corrected 17.23 22.12 17.81

+AM adapted 13.36 18.99 14.49

+LM adapted 14.68 19.93 15.72

+Both adapted 13.20 18.91 14.30

Table 2.2: Results (% WER) for system adaptation when using the reference transcription,
the user selections and the confusion network oracle. The first row indicates the baseline
ASR WER. The second row indicates the WER after replacing the corrected sentences
with the appropriate type of feedback. On the last three rows, we display the results of
additionally performing acoustic model adaptation, language model adaptation or both, and
then recognizing with the adapted models.

affect the effectiveness of our adaptation techniques. By analyzing the results for the confusion

network oracle presented in Table 2.2, we note that roughly half of the errors in this sample

could be corrected by selecting options from the generated confusion networks. This implies

that correcting the remaining errors required the manual insertion of additional words, and

suggests that there may still be room for improvement in terms of how the options which are

presented to the user are generated.

Finally, we used a fixed sample size corresponding to 45% of the talk size to test the effec-

tiveness of our pronunciation learning techniques. The results are displayed in Table 2.3.

Type AM adapt LM adapt Both adapt

ASR (baseline) 28.55 28.55 28.55

PL 14.08 15.07 13.74

No PL 14.19 15.13 13.95

Table 2.3: Results (% WER) for pronunciation learning (PL), for a human-corrected sample
with 45% of the talk’s utterances. The first row indicates the baseline ASR WER. In the
second row pronunciation learning is used, whereas in the third row it is not. The columns
represent the different types of adaptation used (acoustic model, language model and both
simultaneously).

We observe a small improvement in recognition accuracy, in the condition where new pronun-

ciations are learned. This improvement is seen across the different adaptation types used, but

is slightly larger when acoustic model adaptation is used. We hypothesize that this may be

because the new pronunciations learned lead to more precise alignments, which are then used

as a basis for acoustic model adaptation. Overall, the improvements in recognition accuracy
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are limited, because the words for which pronunciations are learned tend to not re-occur many

times in the remaining uncorrected utterances.

2.4.3.4 Experiments using deep models

In order to observe to what extent the adaptation improvements obtained carry out to systems

with a different recognition accuracy, we repeated some of the adaptation experiments of the

previous section using the DNN-based system described in Section 2.4.3.1, using the same

test set as in the previous section. This system has a 20.91% WER on the test set, which

represents a 27% WER reduction compared to the MLP-based system (28.55%).

As before, we began by simulating the scenario in which users had only corrected a random

sample of the utterances in each talk. We similarly varied the sample size, as a percentage of

the talk size, from 10% up to 60% of the total number of utterances. Additionally, we tested

each of the different adaptation types (LM, AM and both). The results can be seen in Figure

2.7.

As in Section 2.4.3.3, it is clear that acoustic model adaptation is more effective than language

model adaptation across all tested sample sizes. It is also the case that combining the two

adaptation methods outperforms using only acoustic model adaptation, but by a small margin.

We observe that the relative WER improvement of the best adaptation method over the

corrected version increases with sample size, varying between 9% and 20%.

Figure 2.7 also demonstrates that correcting 60% of the data without using adaptation, results

in an overall recognition accuracy which is equivalent to correcting 50% of the data and then

using both adaptation types. Therefore, in this case, the use of the proposed adaptation

techniques eliminates the need to manually correct 10% of the data.

Subsequently, we also used a fixed sample size corresponding to 40% of the talk size to compare

the impact of the different types of “correction” - human, lattice oracle and reference oracle

- on adaptation effectiveness.

The results from this second experiment can be seen in Table 2.4:
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Figure 2.7: Results (% WER) for the adaptation of the acoustic and language models using
transcription samples of increasing sizes, as a fraction of the total talk size, using the baseline
DNN system.

It can be seen from Table 2.4 that human corrected transcriptions are still close to the reference

transcriptions, by introducing an additional WER of approximately 1.5%, regardless of the

adaptation method used. This confirms our previous result that the small number of errors

introduced by human corrections does not adversely affect the effectiveness of the developed

adaptation techniques.

2.5 Conclusions and Future Work

We presented a technique with the aim of improving fast human transcriptions of audio for

acoustic models. Our technique consisted of force-aligning the transcriptions using existing

acoustic models, and then exploring alternatives to repair errors in these alignments. The

most promising resulting transcriptions are then selected, and the process is repeated. Our

algorithm demonstrated an absolute improvement in WER of 2.5%, when compared to using

the initial force-aligned subtitles for training. By combining the decoder output for the three
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Type Reference CN oracle Human

ASR (baseline) 20.91 20.91 20.91

40% corrected 12.58 17.81 14.19

+AM adapted 10.78 17.00 12.29

+LM adapted 12.09 17.62 13.76

+Both adapted 10.59 16.92 12.11

Table 2.4: Results (% WER) for system adaptation when using the reference transcription,
the user selections and the confusion network oracle. The table’s structure is identical to that
of Table 2.2

best acoustic models we had generated, using n-best ROVER, we were able to improve WER

by an additional 1.1%. Possible future work on this topic includes exploring different infor-

mation sources for rescoring alternatives, as well as different model combination functions,

and alternative ways of decoder output combination.

We also presented a complementary technique which tries to minimize user correction effort by

first dividing sentences into slots and providing a set of alternate options for each slot, and then

updating the recognition models in order to improve recognition accuracy for the remaining,

uncorrected sentences. We developed a pronunciation recovery algorithm which automatically

adapts the pronunciation lexicon of the ASR system to the acoustic observations.

We experimented with both different adaptation types (acoustic model adaptation, language

model adaptation or both) and sample sizes. We showed that it is possible to improve

recognition accuracy (between 2.5% and 3.6% absolute) across different sample sizes ranging

from 10% to 60% of the size of the talk being corrected, and that both acoustic model and

language model adaptation are beneficial. We repeated these experiments with a new baseline

HMM-DNN system, which yielded a 27% relative WER improvement when compared to the

initial HMM-MLP recognizer. Despite a lower baseline system WER, the main conclusions

still hold: it is beneficial, in terms of recognition accuracy, to apply each of the different

adaptation types proposed (acoustic model and language model adaptation). Furthermore,

there is an overall WER improvement which varies between 10% and 20% relative, which is

larger with increasing sample size.

In the experiments presented here, we selected a random subset of each talk’s utterances for
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adaptation. However, there is no guarantee that this is the optimal strategy. In future work,

we would like to experiment with different sample selection techniques. In fact, it is possible

that, by selecting sentences which are in some way representative of the talk’s content, while

at the same time not too difficult to correct, we could improve performance over the random

sampling strategy described in this chapter.
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3Multistream Combination

3.1 Introduction

There are a number of applications where we have access to multiple, parallel streams, carrying

the same or a closely related information content. In the European Parliament, as well as in

other multilingual or supranational bodies such as the United Nations, interpreters translate

a speech into multiple languages. In Computer Assisted Translation (CAT), a translator

dictates the translation for a given text, instead of typing it. Since speech is more natural

than text input, this reduces the overall translation effort and, consequently, also translation

cost. CAT techniques therefore take advantage of the two parallel streams that are available

(the speech and the original text) in order to produce a more accurate transcription of the

translator’s speech. In respeaking applications [54], whether offline or online, spontaneous

speech is repeated by a different person under controlled conditions, thus creating two parallel

streams. This is done to improve the accuracy of transcripts produced by speech recognizers,

but the information present in the original speech is usually discarded.

Naturally, it is possible to generate automatic transcripts for those speeches using a standalone

speech recognizer, but due to the challenge presented by interpreter speech or low-resourced

languages, we would like to find a way to use the additional information that is available.

In this chapter, we propose a method that takes advantage of the redundant information

present in parallel, partially or totally redundant streams that may exist, in order to improve

the quality of the automatic transcripts of these speeches. Our method is generic, allowing

for encoding the variability in different stream types as probability distributions over word

sequences, and it is extensible, for it allows an arbitrary number of streams to be combined

together.
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We explore how our method can be applied to two tasks: simultaneous interpretation in the

European Parliament, and lectures supported by slides. The developed system can trivially be

extended to other applications, such as combining the lattice outputs of multiple recognizers

of the same speech. It can also easily be applied to situations where multiple copies of the

same speech input are available [58, 101], spoken by either the same or different speakers, of

which respeaking is a particular case.

The remainder of the current chapter covers the work done in the scope of multistream

combination. We begin by describing the overall system architecture, which is used in all of

the multistream combination applications described. We then identify a number of problems

with our original algorithm, namely the lack of certain words in the recognition lattices, that

led to the development of a number of techniques to mitigate this problem: acronym, out-of-

lattice (OOL) word and pronunciation recovery. Finally, we demonstrate that text streams

can also be used as an information stream by combining speech and slides to obtain improved

recognition performance.

3.2 System architecture

The overall system architecture can be seen in Figure 3.1. Our baseline system for combining

multiple streams consists of the following steps :

• Depending on the stream type, which may be speech, text, or other information source,

collect or generate phrase tables for each combination of streams (not all combinations

of phrase tables need to be generated for this to work). This step is usually performed

offline, before the actual combination takes place, and only needs to be done once for

each system setup.

• Generate lattices for each stream, which represent a set of alternative hypotheses for

that stream. Again, the manner in which lattices are generated depends on the type

of stream. For a speech stream, for instance, lattices can be generated by running that

stream through an appropriate ASR system.
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S1 Lattices S2 Lattices S3 Lattices

Stream 1 (S1)

Speech

Stream 2 (S2)

Text

Stream 3 (S3)

Speech

Alignment generation

S1 Transcription S3 Transcription

ASR Lattice Generation ASR

Lattice Rescoring Lattice Rescoring

Phrase
tables

Figure 3.1: The proposed system architecture for combining three parallel streams (two speech
streams and one text stream).
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• From the generated lattices, obtain posterior n-gram distributions, in order to estimate

the probability of each word sequence compared to the other word sequences in the

lattice.

• For each pairwise combination of two streams (stream pair), intersect the lattices for

each of these streams with the phrase table that maps one of the streams to the other.

This generates a set of phrase pairs that are common to both the lattices and the phrase

table.

• Score the obtained phrase pairs, and select a subset of these that is consistent (i.e. does

not have conflicts among phrase pairs), therefore creating an alignment across streams.

• The alignment thus created is then used to rescore the lattices. This consists of finding

new optimal paths through these, which may have changed compared to when they were

generated due to the new information that is available in the alignment. This is done for

all streams containing speech, leading to a new, hopefully more accurate transcription

for these streams. Note that in Figure 3.1, this step is not performed for stream 2, since

it is a text stream.

Figure 3.2 depicts a simplified version of this method, for a concrete example using two

streams.

3.2.1 Lattice and phrase table generation

Lattices are directed acyclic graphs which can encode an exponential number of different paths

using polynomial space. This compactness makes them suitable for our algorithm, in which

they are used to represent a posterior probability distribution over word sequences induced

by an underlying stream. In such a graph, exemplified in Figure 3.3, the words are edge labels

and the weights correspond to the scores - usually separated into acoustic scores and language

model scores - assigned to each word, and each node is associated with a time stamp. There

is also an initial and a final state. Lattices can be generated in different ways, depending on
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Figure 3.2: An example of the system for two streams, one in English and the other in
Portuguese. An ASR system generated lattices for each of the two streams; words or phrases
that are translations extracted from the phrase table are connected with dotted lines. These
are used to create an alignment of phrase pairs, shown below, which is used to rescore the
lattices and obtain a new decoding for each of the streams. In the alignment, the middle
column represents the time stamps, and the right column represents the posterior probability
for the extracted phrase pairs.
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Figure 3.3: A possible lattice or word graph generated by a speech recognizer for the sentence
“The dog jumps over the cat”. The numbers inside parentheses represent, respectively, the
language model and acoustic scores, in the log domain, for the word in that edge.

the type of the stream that they originate from. If it is a speech stream, then these lattices

are usually output by a speech recognizer - while decoding the speech, the recognizer will

keep track of the multiple possible ways of reaching a given partial hypothesis, rather than

only the best one. If, instead, it is a text stream, a possible way of generating the lattices

would be to create a “linear path” representing them, or in the event that there are multiple

ways of tokenizing or normalizing a given sentence, one could build a lattice encoding those

alternatives. Of course, a number of text streams do not have any associated time stamps

(subtitles being an exception), meaning that these will need to be determined at a later stage

of the combination process.

One of the most significant pieces of information that can be extracted from the lattices are

n-gram posteriors. They provide information about the relative importance of different word

sequences, and are used as features in subsequent steps of our method. Consider all the

lattice paths from the initial to the final state. If we take all those that contain a particular

n-gram, sum their scores and divide by the sum of the scores of all lattice paths, we obtain the

posterior. Of course, since there can be an exponential number of paths in a lattice, it is not

practical to sum over all possible paths directly. Instead, we apply a dynamic programming

algorithm, the forward-backward algorithm, to compute them in polynomial time.
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...

a actividade ||| the work of ||| 0.003 0.002 0.004 0.001 2.718

||| 1-1 2-2 2-3 ||| 546 509

a actividade ||| the work ||| 0.013 0.002 0.081 0.021 2.718

||| 1-1 2-2 ||| 3243 509

a actividade agricola ||| agricultural activities ||| 0.091 0.003 0.048 0.057 2.718

||| 1-2 2-2 3-1 ||| 11 21

a actividade agricola ||| agricultural activity ||| 0.108 0.044 0.190 0.311 2.718

||| 1-2 2-2 3-1 ||| 37 21

a actividade criminosa ||| criminal activity ||| 0.018 0.004 0.333 0.290 2.718

||| 1-2 2-2 3-1 ||| 114 6

a actividade das ||| operation of ||| 0.0038 0.001 0.027 0.002

||| 1-0 2-1 ||| 290 36

a actividade das ||| the activities of ||| 0.0189 0.0007 0.1111 0.0096

||| 0-0 1-1 2-2 ||| 211 36

...

Figure 3.4: A sample of phrase pairs from a Portuguese - English phrase table, indicating the
source phrases, the target phrases, the translation probabilities, the alignments of the words
in the phrases and the phrase counts, respectively.

Phrase tables map word sequences in a given stream to word sequences in a different stream.

They were first used in PBSMT, where they yielded more robust results than single-word

translation models. In order to build phrase tables connecting two languages, we need a

parallel training corpus that contains a sentence in the first language aligned to the corre-

sponding sentence in the second language. Then we run GIZA++, which iterates through

increasingly complex models (IBM1, HMM, IBM2, IBM3 and IBM4), which progressively

relax assumptions imposed by the lower-order models, in order to generate bidirectional word

alignments. From these alignments, using an heuristic, Moses [52] is executed to generate

the target phrase table. The generated phrase tables are often very large, so we apply a

further pruning step, removing phrase pairs that are not very frequent in the corpus or have

low probability. An example of such a phrase table can be seen in Figure 3.4. It consists

of a sequence of phrase pairs, where each phrase pair contains, delimited by “|||”, each of

the source and target phrases, followed by the direct and inverse translation probabilities,

word-by-word alignments within the phrase, and finally, the number of occurrences of each

phrase in the training corpus. Note that, while this is the most straightforward method to

build phrase tables to be used in our method, it is not the only possible one.

For certain stream pairs, parallel training data may not be available, but information about
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the domain in the form of a set of rules may be possible to obtain, as in Rule-Based Machine

Translation (RBMT). A way of integrating this information within the PBSMT framework

is to generate a set of aligned sentence pairs, where the target sentences are generated by

applying the rules to the source sentences, and the resulting parallel corpus is used to train

the phrase table [19, 27].

3.2.2 Baseline systems

We selected Audimus [69], a hybrid WFST-based recognizer, that combines the temporal

modeling power of HMMs with the pattern discrimination ability of multilayer perceptrons,

as our baseline ASR system. Our feature extraction setup consists of generating multiple

feature streams - RASTA [40], PLP [39] and MSG [49] - which are then combined at the

MLP posterior level. We used our existing English, Italian, Portuguese, Spanish and German

acoustic models and lexica [71]. The acoustic models that were used are diphone models that

consider the preceding phone as context. Note, however, that all context modeling occurs

at the intraword level (the system does not consider interword diphones). The language

models needed for each of the languages were trained using SRILM [102] from the monolingual

versions of the Europarl Parallel Corpus texts [50].

Finally, and in order to measure the robustness of our system to different speech recognizers,

we modified Audimus to support a hybrid HMM-DNN architecture. For each of the four

languages considered - English, Italian, Portuguese and Spanish - we reused the lexica and

the language models which were created for the system described in the previous paragraph.

Context-dependent deep acoustic models for English, Italian, Portuguese and Spanish were

trained on broadcast news data, with the Kaldi framework [88], using approximately 4000

senones for each. These models were then converted into the Audimus format to be used by

our decoder.

A survey of existing speech recognition systems in the European Parliament domain led to the

use of the RWTH European Parliament Plenary Speech (EPPS) one-pass recognition system

[62, 94], in order to create an additional baseline against which to compare our results. The
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system’s front end consists of extracting MFCC features. It uses a triphone acoustic model

with 900,000 Gaussian densities, trained on the TC-Star data. The language model is a 4-

gram with a vocabulary of 60,000 words, which was estimated using the transcriptions of the

TC-Star data and the Final Text Editions of the European Parliament. All the recognition

experiments with this system were run using the default parameters of the demo system [62].

3.2.3 Data sets

We next describe the two data sets used for testing our approach.

3.2.3.1 Multiple interpreted streams in the European Parliament

The official texts produced by the European Parliament are translated into each of the lan-

guages of the EU Member States. Similarly, speeches both in the Plenary Sessions and in the

Committees are intepreted into the official languages of the EU, depending on the availability

of interpreters. Although politicians are allowed to speak in their native language, they often

prefer to speak in English, which means that a significant proportion of the English speech in

the European Parliament is non-native. Also, many of the interpreters are non-native speak-

ers of the language or variety that they are interpreting into; one example are the Brazilian

interpreters for the European Portuguese language. In addition to that, and depending on

interpreter skill and the complexity of the original speech, interpreter speech can be highly

disfluent.

For this data set, we collected and manually transcribed two sets of English speeches (both

from native and non-native speakers) from the Environment, Public Health and Food Safety

(ENVI), Development (DEVE), Internal Market and Consumer Protection (IMCO) and Legal

Affairs (LEGAL) committees. The first of these sets, consisting of 2 speeches, was used for

tuning the parameters for phrase pair selection mentioned in Section 3.3.2, whereas the other,

consisting of 4 speeches, was used for testing. We then collected the interpreted versions of

these speeches in the German, Italian, Spanish and Portuguese languages. These versions
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were also manually transcribed, except for the German version of the speeches. In addition

to the transcription, we also annotated the occurrence of punctuation marks and the location

of disfluencies in all of the collected speeches.

For this scenario, we used the Europarl Parallel Data [50], to train phrase tables for the

various language pairs with the Moses toolkit [52].

3.2.3.2 Lecture speech and slides

The other data set was extracted from the Stanford online Natural Language Processing

(NLP) course. Our test set consisted of 8 lectures from the course, together with the slides

for each of the lectures. Four other lectures constituted a held-out development set used for

parameter tuning. All of the lectures, both in the development and testing sets, were given

by the same speaker. As reference transcripts for computing WER, we used the subtitles that

were manually created for the course, although these contained a number of errors, since they

were created by volunteers (so the computed WER may be artificially high).

3.3 Baseline algorithm

In this section, we describe each of the system components depicted in Figure 3.1, and evaluate

the resulting system in the European Parliament simultaneous interpretation task, comparing

it with a baseline that uses speech recognition only.

3.3.1 Lattice - phrase table intersection

The intersection between the lattices representing a pair of streams through the phrase table

connecting them lies at the core of the multistream integration algorithms described. It con-

sists of finding those phrase pairs source ||| target which simultaneously belong to the phrase

table, for which source can be found in the source lattice and target in the target lattice.

Additionally, the source and target phrases must be found ’close’ together in the respective
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lattices. The notion of close depends on the type of stream that is being used. For instance,

if one is using a pair of speech streams in which one of the streams is a simultaneously inter-

preted version of the other, one might set a fixed parameter, for instance δ = 10s, controlling

the maximum expected delay from the interpreter. If, instead, we know how different speech

streams are segmented into sentences, we can set δ in such a way that only phrases from

equivalent sentences are grouped together. Alternatively, if one of the stream consists of

subtitles along with time stamps for another speech stream, one could set δ appropriately to

account for the maximum period of time during which subtitles are displayed on the screen.

Of course, in the case of interpreted streams, the interpreted version of a phrase is required

to appear, in time, after the original version, so in those cases the maximum distance δ is

one-sided.

The intersection step is potentially computationally expensive since, depending on the type of

streams used, the generated lattices can be extremely large. For instance, lattices produced

for a few minutes of speech can have millions of nodes and edges. Simply enumerating and

comparing phrases in the lattices and phrase tables would not be feasible. So, we developed

a number of techniques to alleviate this problem. Our approach consists of a three step

algorithm. It is composed of preprocessing, intersection and post-pruning steps which we

describe next.

In the preprocessing step we first convert each lattice into a forest (a set of trees, one for

each lattice node) and each phrase table into a tree. To convert a phrase table into a tree, we

sequentially insert each of its phrase pairs into it. In order to do so, we first insert each word

of the source phrase, starting at the root and following existing tree branches, and then each

word of the target phrase. Then, we process each of the lattice nodes into a tree of depth

k, where k is the length of the longest phrase to be considered, by adding to the tree all the

sequences of k words or less that can be reached from that node. We also annotate each node

n of the tree with the posterior probability of the phrase corresponding to the path from the

root to n, together with the end time of that phrase. This information is used by later stages

of the multistream combination pipeline, namely to extract features for phrase pair scoring.
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function intersect source(ni, pti)
rt← new result tree()
for (w, t) ∈ common children(ni, pti) do

if is source node(child(pti, w)) then
rti ← intersect target(child(ni), child(pti))
add child(rt, rti)

else
rti ← intersect source(child(ni), child(pti))
add child(rt, rti)

end if
end for
return rt
end function

function intersect target(ni, pti)
rt← new result tree()
for (w, t) ∈ common children(ni, pti) do
rti ← intersect target(child(ni), child(pti))
add child(rt, rti)

end for
return rt
end function

Figure 3.5: Pseudo-code for generating the intersection between a phrase table and two trees
representing the source and the target lattices, respectively.
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side
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t = {1.2, 3.5}
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Figure 3.6: Intersection between an EN-PT phrase table, a EN source lattice, with phrases
“IMF” and “INF”, and a PT target lattice, with phrases “FMI” and “FME”. The phrase
table contains the pairs ‘IMF ||| FMI’, ‘European Union ||| UE’, and ‘European Union |||
União Europeia’. The dashed arrows represent tree branches matched during the intersection
process.

Figure 3.5 describes the intersection process in pseudo-code after both the lattices and the

phrase table have been converted into trees, as described above. At this point, the intersection

process can be recast as simply walking down the phrase table tree, and the lattice trees,

simultaneously. On the source side of the phrase table tree, we keep only those paths that

are also in the source lattice tree, and on the target side those which are also in the target

lattice tree.

Finally, we perform the post-pruning step. Due to the way in which the intersection is

constructed, some of the resulting nodes and branches may not be productive. In other

words, there is no guarantee that, starting from any node in the result tree, we will find a

path to a completed phrase pair. These nodes and branches are therefore pruned in a post-

processing step, which consists of a post-order depth-first traversal of the intersection tree.

The process removes nodes which do not correspond to completed phrase pairs and for which

no child has a path leading to a completed phrase pair node.

Figure 3.6 illustrates the preprocessing and intersection for a simple phrase table, containing

the phrase pairs ‘IMF ||| FMI’, ‘European Union ||| UE’, and ‘European Union ||| União
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Europeia’, a source lattice with ‘IMF’ and ‘INF’, and a target lattice with ‘FMI’ and ‘FME’.

We begin by considering the branches at the root of the source lattice that match with those at

the root of the phrase table; only ’IMF’ matches, so that is added to the intersection, including

the times of occurrence. A leaf of the tree that represents the source lattice has been reached,

so the algorithm switches to the root of the tree that represents the target lattice. The only

branch that matches with the outgoing branches of the phrase table’s current node is the one

labeled ‘FMI’, so that is added to the intersection - note that the target entry at time 14.5

is dropped because the source entries are at times 1.2 and 3.5 and therefore too far apart for

a δ = 10 - and the algorithm terminates. Again, we reached a lattice leaf, and there are no

remaining pending decisions to backtrack to. Also, the post-pruning process does not change

the resulting tree, since all the created nodes are productive.

3.3.2 Phrase pair selection and rescoring

Clearly, we should not add all the phrase pairs to the calculated intersection, since some of

these might have occurred out of chance. For instance, a phrase pair such as ‘and ||| y’ (in an

English-Spanish speech stream pair) occurs very often in the lattice-phrase table intersection,

but not in the streams themselves, i.e., in what has actually been said. These words are both

frequent in their respective languages, and acoustically confusable with other small words,

and so they will often be contained in the lattices generated for each of the streams. If

they appear within a sufficiently short time interval, the corresponding phrase pair will be

extracted by the proposed method.

In light of the problem described above, we train a simple linear model to predict whether

a generated phrase pair pp is actually present in the speech streams. We compute its score

according to the expression SC(pp) = a0 +
∑N

i=1 aifi(pp) where N is the number of features,

the fi are feature functions, the ai are feature weights and we select those pairs which have

SC > 0.

The features used were the following:
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• posterior probability – the posterior probabilities of each of the phrases in the phrase

pair, obtained from the lattices generated for each stream, as described in Section 3.2.1.

• phrase table features – the phrase pairs are extracted from Moses format phrase tables,

which include both direct and inverse translation and lexical probabilities. We expect

phrase pairs with high translation probabilities to be more relevant than those with

lower probabilities.

• language model scores – the n-gram language model probabilities of each of the phrases,

as well as individual words in the phrases are also included. Phrases with high language

model probabilities are relatively common and therefore should have a lower overall

score.

• word counts – the number of words in each phrase of the phrase pair. For example,

the phrase pair ‘european parliament ||| parlamento europeu’ has a word count of four.

The higher the total number of words in a phrase pair is, the lower the likelihood that

it has not appeared in the respective streams.

• frequency features – the number of times each of the phrases in the phrase pair appears

in the initial transcription, the idea being that phrases that have occurred frequently in

the transcriptions are likely to occur again, and therefore should be assigned a higher

score compared to phrases that never occurred.

The feature weights (ai) used for computing the SC function are selected by using a line

search method to optimize the WER, averaged across each of the streams being rescored, on

the development set. The direct evaluation of this objective function would, however, be very

expensive, since it would require performing the whole process including lattice rescoring for

each parameter setting. Instead, we optimize a closely related function: the total number

of errors corrected by the constructed alignment (alignment words that are in the reference

but that were not correctly recognized in the initial decoding step), from which we deduct

the total number of errors introduced by the alignment (alignment words that are incorrect,

i.e, that are not in the reference transcription). This function is less expensive to compute,
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parlamento 12.2–12.9 -0.5 parliament 11.3–12.3 -6.5

lamento 12.4–12.9 -5.6 lo siento 10.2–10.7 -0.2

exige 12.9–13.3 -0.0 demands 12.3–12.6 0.0

demanda 13.8–13.8 -0.6 demands 12.3–12.6 0.0

Figure 3.7: Example of a subset of an inconsistent alignment. The alignment is inconsistent
because both phrase pairs ‘parlamento/parliament’ and ‘lamento/lo siento’ have a phrase
drawn from the Portuguese stream, those phrases ‘parlamento’ and ‘lamento’ are incompatible
and they overlap in time.

since no lattice rescoring step is necessary. It is sufficient to run the alignment construction

algorithm (Section 3.3.3) once for each evaluation.

3.3.3 Alignment construction

In Section 3.3.2, we select a subset of the extracted phrase pairs that we expect to be correct.

However, we cannot use this set as our generated alignment directly, since some of these

phrase pairs may overlap with each other. In particular, consider the case where we extracted

two distinct phrase pairs, based on the same stream pair but overlapping time spans. Figure

3.7 illustrates such a scenario. In such a case, a conflict will arise since it is not possible to

include both phrase pairs in the output, which means it will be necessary to discard one of

them.

Therefore, instead of using the extracted phrase pairs directly, we set our target alignment

to be the subset S of those phrase pairs that maximizes function f , defined in Equation 3.1,

while being internally consistent.

f(S) =
n∑

i=1

αSC(ppi) + β
n∑

i=1

n∑
j=1

(−dist(ppi, ppj) + adj(ppi, ppj)) (3.1)

A phrase pair ppi is considered to be adjacent to a phrase pair ppj (adj(ppi, ppj) in Equation

3.1) if they have at least two phrases in the same stream and the start time of one of the

phrases is equal to the end time of the other. By assigning a bonus to adjacent phrase pairs,
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we acknowledge the fact that sequences of matched phrases are unlikely to occur by chance.

Furthermore, the distance (dist(ppi, ppj)) between two phrase pairs ppi and ppj is computed

as follows:

• If the two phrase pairs do not correspond to exactly the same streams r and s, then the

distance is zero, since we do not wish to compare phrase pairs in different streams.

• If the time difference between the two phrase pairs, in either of the streams, is greater

than a previously set threshold, the influence radius for phrase pairs, then dist(ppi, ppj)

is set to zero.

• Otherwise the distance is set to be dist(ppi, ppj) = |(stir − stis)− (stjr − stjs))|, where

stir indicates the starting time of the phrase of phrase pair ppi that corresponds to

stream r.

The idea behind computing this distance is that we expect stream pairs to be locally syn-

chronized. In other words, given two phrase pairs ppi and ppj that are in the alignment, with

phrases on the same streams r and s, if we extract the phrases from each phrase pair that

correspond to stream r, we would expect them to have approximately the same time distance

than those that correspond to stream s.

The alignment construction process may be best understood as a subset selection problem.

In fact, among all the consistent subsets S of the generated phrase pairs, we search for an

S that maximizes f(S), defined in Equation 3.1, and satisfies the consistency constraint. A

subset S = {pp1, . . . , ppn} is said to be consistent iff ∀ppi∈S,ppj∈S¬overlap(ppi, ppj) or, in other

words, if it is not possible to find two overlapping phrase pairs in the subset S. We define

overlap(ppi, ppj) to be true if and only if the following conditions are cumulatively satisfied:

• Phrase pairs ppi and ppj share two phrases ppis and ppjs belonging to a stream s.

• ppis and ppjs occur at overlapping time spans.
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há 10.4–10.5 -0.0 there are 11.3–12.3 -6.5

há várias 10.4–10.8 -0.1 hay muchas 10.2–10.7 -0.2

Figure 3.8: Example of a subset of a consistent alignment. The alignment is consistent,
despite the overlap in the Portuguese stream, because the phrase ‘há’ is contained in the
phrase ‘há várias’, rendering them compatible.

• ppis and ppjs are incompatible, that is, neither ppis is a substring of ppjs , nor ppjs is a

subset of ppis . In Figure 3.8, the alignment is consistent because, although phrases ‘há’

and ‘há várias’ overlap in time, the former is contained in the latter.

There is an exponential number of subsets of the extracted phrase pairs, which makes it

intractable to perform an exhaustive search of all the subsets to find S that maximizes f .

Furthermore, due to Equation 3.1, adding or removing a given phrase pair to the alignment

causes more than simply a local impact in the computation of function f : it influences all the

distance terms involving that phrase pair.

A possible way to build the aligment would be to add phrase pairs pp in the decreasing order of

their scores, SC(pp), skipping those phrase pairs that conflict with the ones that are already

in the alignment. That would, however, not lead to the optimal solution. In certain cases,

adding two phrase pairs to S might increase the value of f more than adding one, but if the

former conflict with the latter, the two phrase pairs would not be added to the alignment.

This led us to consider a procedure in which we maximize f(S) using steepest-ascent hill

climbing, but with a modified successor generating function. Therefore, we take an alignment

S and generate a list of successors S′ of S, by applying one of the following heuristics to S:

• Adding any phrase pair that is not already in S.

• Adding a sequence of adjacent (as defined for 3.1) phrase pairs (Figure 3.9).

• Adding a set of consistent phrase pairs spanning multiple languages (Figure 3.10).
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há 2.4–2.7 -0.5 there are 5.5–5.9 -18.5

muitas 2.7–3.1 -5.6 many 5.9–6.1 -1.2

hipóteses 3.1–3.7 -0.0 possibilities 6.1–7.0 0.0

Figure 3.9: Example of an adjacent phrase pair sequence, consisting of three phrase pairs.
The ending time for each phrase corresponds to the starting time of the next phrase in the
sequence, thus forming a connected phrase chain.

desenvolvimento 5.6–6.4 -0.0 desarrollo 7.3–7.8 -0.0

desenvolvimento 5.6–6.4 -0.0 development 4.3–5.0 -0.0

desenvolvimento 5.6–6.4 -0.0 sviluppo 6.8–7.6 -0.0

Figure 3.10: Example of a phrase spanning multiple languages, in this case four. In this
alignment subset, the phrase “desenvolvimento” in Portuguese matches with its respective
translation in Spanish, English and Italian.

If any phrase pairs in the original alignment are in conflict with the phrase pairs being added,

then these are removed from the successor alignment to ensure that it is still consistent and

therefore a valid alignment. By adding multiple phrase pairs at a time to S, it is possible to

obtain an alignment with a higher score, even if adding each of these phrase pairs individually

decreased the score, because it required the removal from the alignment of a conflicting phrase

pair.

3.3.4 Lattice rescoring / decoding

The final step consists of a rescoring of the lattices associated with each of the rescorable

streams, which in this work are limited to speech streams. Other types of rescorable streams

could be considered, if a suitable rescoring algorithm were to be defined. Such an algorithm

would be specific to that particular stream type.

At this point, the streams are again decoupled and lattice rescoring proceeds independently

for each of the rescorable streams. First, the obtained alignment is projected into each of

the streams being rescored, an operation that preserves the unique phrases in that stream

together with their time stamps. For example, the alignment in Figure 3.8 would yield “there
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are / 11.3–12.3” if projected into the English stream.

For speech streams, the rescoring is carried out using the A* algorithm. Each of the phrases

in the projection is assigned an additive bonus (in the log-score domain), which is applied

to the language model scores of these phrases during rescoring, whereas the original acoustic

scores are left unmodified. This biases the decoder towards these phrases, making them more

likely to be recognized. This bonus is only a function of the number of words of the phrase,

and is determined empirically on the development set. The time stamps derived during the

intersection step are used to ensure that we only assign a bonus to occurrences of phrases at

the appropriate times. In this way, the language model scores are modified only in the vicinity

of the location where a given phrase pair occurs, rather than for a whole utterance or speech.

This is more precise, since it limits the scope of the LM changes created by a phrase pair, and

reduces the number of errors that can be introduced by the modified LM. This is especially

important for long sentences and phrases that occur frequently. For instance, considering the

alignment of Figure 3.7, if the phrase “there are” occurs at times 9.5 and 11.3, only at time

11.3 will it be assigned an LM score bonus. Of course, the resulting language model is no

longer an n-gram model. However, we can still apply hypothesis recombination to speed up

the search, and no modifications are required if the extracted phrases are not longer than the

n-gram context length.

3.3.5 Evaluation

For each of the two baseline ASR systems (HMM-MLP and HMM-DNN), described in Section

3.2.2, we executed the proposed method, using the same data set described in Section 3.2.3.1.

Table 3.1 summarizes the main results for the HMM-MLP baseline systems, when combining

English (the original language of the speeches) with several subsets of the remaining four

languages. We observe improvements in the English WER, relative to the baseline, when

using just one, two, three or four languages to combine with the original (English versions).

We can also see that the improvements, on average, increase with the addition of further

languages. There are different improvements, depending on the sets of languages used to
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Speech EN +PT +ES +IT +PT+ES +ES+IT +PT+ES+IT All

DEVE 18.70 16.87 16.63 17.15 16.81 15.78 15.43 15.61

ENVI 19.70 18.19 18.78 16.08 17.49 15.41 15.34 14.40

IMCO 30.73 27.90 25.79 27.77 26.33 26.42 25.18 24.31

LEGAL 29.18 27.81 28.95 26.54 24.78 24.45 23.60 23.22

Average 25.51 23.60 23.40 22.70 22.09 21.32 20.63 20.05

Table 3.1: WER (%) for the 4 speeches. The 1st column is the error of the baseline system,
the 2nd and represents the WER of the original English speech after combining with Spanish,
and so on for different language combinations. The last column represents the WER obtained
when combining with all the languages (PT, ES, IT and DE).

Speech EN +PT +ES +IT +PT+ES +ES+IT +PT+ES+IT All

DEVE 18.58 16.98 18.87 17.72 16.81 17.15 16.12 16.12

ENVI 16.97 16.02 16.13 13.56 15.04 13.60 13.14 13.00

IMCO 25.58 23.20 24.13 24.28 22.62 23.41 21.63 21.42

LEGAL 25.79 23.48 21.98 22.14 21.16 21.13 20.11 19.66

Average 22.29 20.42 20.29 19.86 19.32 19.23 18.13 17.90

Table 3.2: WER (%) for the 4 speeches, using the hybrid HMM-DNN baseline systems. The
1st column is the error of the baseline system, the 2nd represents the WER obtained when
combining with Portuguese, and so on, for different language combinations. The last column
represents the WER obtained when combining with all the other languages (PT, ES, IT and
DE).

perform the combination. Some of these variations are naturally caused by differences in

the interpretation quality - an interpretation that is closer to the target language will have

a larger number of phrase pairs available for matching with other streams, and therefore

will improve the results to a larger extent than an interpretation that has a large number of

errors and omissions. We can also see that the improvement in WER of the best combination

increases with the number of languages, although the improvement decreases, in terms of

absolute WER delta. This suggests that using a larger number of languages helps, but that

the improvements will tend to saturate after adding a few languages.

Table 3.2 contains the results when applying our system to the results of the HMM-DNN

baseline systems described in Section 3.2.2. We observe that the best relative improvement

in WER is about 20%, which is comparable to the improvement obtained with all the other

languages in Table 3.1. Also, with the proposed method, it is still possible to obtain im-

provements in English WER relative to the baseline using one, two, three or four streams in
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different languages to combine with the original. Finally, note that, similarly to the HMM-

MLP baseline, the English WER tends to decrease with the addition of more languages to

the combination.

3.3.6 Evaluation for the interpreted streams

Although the main goal of the proposed method is to improve speech recognition of the

original stream, by rescoring the remaining streams we are also able to improve ASR for the

interpreted versions of the speech. Table 3.3 presents the results for the Portuguese, Spanish

and Italian streams (no German reference transcription was available).

Speech PT PT + All ES ES + All IT IT + All

DEVE 24.60 23.11 14.76 15.27 29.13 28.35

ENVI 25.08 22.61 9.90 7.95 23.36 21.47

IMCO 22.17 21.24 33.57 28.87 30.79 28.67

LEGAL 31.06 27.69 17.52 13.14 33.88 31.61

Average 25.62 23.57 18.66 16.09 29.27 27.37

Table 3.3: WER (%) for Portuguese, Spanish and Italian, before and after combining with
the other four languages, for each of the speeches in the test set.

We observe that there was an overall improvement in recognition accuracy across the three

considered languages. In fact, the relative improvement in WER varies between 6.5% (for

Italian) and 14% (for Spanish). These values are smaller than those obtained for the original

language of the speeches (English). This is to be expected because the redundancy between

a pair of interpreted streams is smaller than that between an interpreted stream and the

original stream, and therefore less information is available to improve the recognition of

the interpreted streams. Also, the magnitude of the improvements depends on a variety of

factors, most notably the extent to which the interpretation follows the original speech. If

there are large differences between the interpreted version and the original version, then it is

not possible to improve recognition accuracy significantly.
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3.3.7 Oracles

In order to obtain an assessment of the maximum improvement achievable and therefore

situate the improvements achieved by the proposed method, we developed two oracles. Both

of these oracles rely on forced alignments of the test set to the reference transcripts, which

provide information not only about the words that were actually said but also about the times

at which they occur.

The first oracle (oracle A) evaluates the maximum improvement that could be expected from

the proposed system, if the generated alignments were perfect. In other words, given the

phrase pairs extracted from the intersection between the lattices through the phrase tables, we

build the optimal alignment. Here, optimal is defined with respect to the reference transcripts

- it refers to an alignment for which all phrase pairs are grounded in the references, meaning

that both phrases of each phrase pair actually occur in the respective references.

In order to build oracle A, we only add to its alignment those phrase pairs that agree with

the reference transcripts. For each phrase of every generated phrase pair, we check if that

phrase appears in the reference transcript, with the same time stamp. If that is the case, we

add the phrase to the optimal alignment and proceed with the remainder of the algorithm,

which consists of rescoring the lattices with this alignment.

The second oracle (oracle B) evaluates the maximum improvement that could theoretically be

obtained from the lattices, regardless of any restrictions imposed by the phrase pair extraction

process. In other words, oracle B considers all the phrases in the stream lattices, even those

that do not have a correspondence in other streams. If we consider all the lattices for a

given stream concatenated together sequentially, to form one large lattice that represents

the entire stream, then the second oracle consists of finding the path through the lattice

(word sequence) which minimizes the word error rate or, alternatively, the edit distance to

the reference transcript. From this definition it becomes apparent that oracle B performs at

least as well as oracle A, since the former selects optimal lattice paths and the alignments are

built using words from the lattices.
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Speech Baseline Best RWTH Oracle A Oracle B

DEVE 18.70 15.61 18.23 12.58 9.15

ENVI 19.70 14.40 22.05 9.34 6.11

IMCO 30.73 24.31 26.26 16.57 10.89

LEGAL 29.18 23.22 25.60 13.38 9.62

Average 25.51 20.05 23.70 13.17 9.02

Table 3.4: WER (%) for the English versions of the 4 speeches. The 1st column is the error of
our baseline ASR system. The 2nd column is the error of the system that combines English
with the other languages. The third and fourth columns represent the error of oracles A and
B, respectively.

We implemented the two oracles (oracle A and B) mentioned above. We then contrasted them

with the developed system, on the test set described in Section 3.2.3.1. Table 3.4 summarizes

these results.

We see that both oracles clearly improve on the performance achieved by our baseline system,

in some cases by over 50% relative, which indicates the existence of a significant margin for

the proposed system to decrease word error rates. It is also the case that, as expected, oracle

B is always at least as good as oracle A.

We inspected the alignments produced by oracle A, so as to try to determine the reason for

the differences in performance between the proposed system and oracle A. We observe that

the majority of the differences between the alignments generated by the two systems were

phrase pairs consisting of function words or phrases and their respective translations. An

example of such phrase pairs, with phrases in the Portuguese and English streams, would

be de ||| of or que ||| that. These are often the hardest to add correctly to the generated

alignments, because there are often multiple possible matches for a function word in each of

the streams, and not always enough information to decide which (if any) of these matches

is correct. Naturally, oracle A has a much better performance in these cases because, by

construction, it knows exactly which of these pairs to include in the final alignment.

Finally, it can be seen, from the error rate of oracle B, which is not zero, that there is a

considerable number of words that cannot be found in the generated lattices (which we call

OOL words). This motivates the recovery of these words, which is the subject of Section 3.4.
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3.4 Out-of-lattice word recovery

Lattices generated for speech streams often contain a large number of alternative hypotheses

for a given utterance, but in most cases, due to a high degree of mismatch between the

acoustic models and the actual pronunciations, they do not contain all the words that were

actually said. Equivalently, when the lattice oracle B WER is greater than zero, which is the

case in the results of Table 3.4, there are words and phrases that cannot be recovered by the

method presented in Section 3.3.

In light of this, in the current section we extend the algorithms presented in Section 3.3 to

account for words and phrases that, for a number of reasons such as a pronunciation mis-

match with the lexicon, were not present in the original ASR generated lattices, but which if

recovered could lead to improved performance. We explore this topic by both recovering OOL

words and acronyms, and trying to use the information we gathered to recover pronuncia-

tions in order to improve our pronunciation dictionaries. Note that, although we only recover

OOL words and acronyms in speech streams, because this operation is not well-defined for

other stream types, streams of all types can be used, whenever appropriate, as supporting

information to help in the recovery of these words.

3.4.1 Acronym recovery

Acronyms are very common in parliamentary speech or in technical talks. However, their

correct recognition presents a number of challenges, since many of them are not present in

the vocabulary. Also, acronyms can usually be pronounced in one of two different ways: either

as a regular word, or by spelling out each of its constituent letters in sequence. Our acronym

recovery method focuses on the latter. Additionally, our acronym recovery techniques assume

that the acronym has the same form in the original and interpreted streams - often, due to

time constraints, interpreters are unable to reorder the letters in an uncommon acronym and

they leave it as in the original. An example of this is the acronym IPOA (Istanbul Programme

of Action); Portuguese interpreters will often say IPOA when the correct acronym would be
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Figure 3.11: An FST to detect and recover acronyms (matches only one letter of the acronym,
it would have to be repeated to recover the complete acronym).

PAI (Programa de Acção de Istambul).

To recover acronyms, we first search for candidates 3 to 5 letters in length in the streams, such

as IPOA (Istanbul Programme of Action) or EBA (European Banking Authority). We also

group together plural versions of the candidate acronyms, for instance, LDC (Least Developed

Country) and LDCS (Least Developed Countries).

To search for the acronyms, we build a finite state automaton which encodes all possible

acronym sequences (as depicted in Figure 3.11), and compose it with a previously generated

phone lattice. We therefore select the most plausible acronyms at each time step, together

with their acoustic score, thus generating a candidate list. Most of the generated acronyms are

not useful, so only a subset of these is selected for further processing. To rank the candidates

according to the likelihood that they are actually present in the speech, we extract a number

of features, namely:

• The number of different streams in which the acronym appears and its total number of

occurrences in all of the streams.

• The number of letters in the acronym.

• Whether the acronym had been spelled out before its occurrences. It is often the case,

when introducing an acronym with which the audience may be unfamiliar, that the
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speaker will explain its meaning by spelling it out. For example, to introduce the

acronym UNSC, the speaker might say “The United Nations Security Council (UNSC)

has decided ...”. We guess whether that happened by comparing potential acronyms to

word sequences in the transcriptions, and use this information as a feature.

• The average score of the acronym occurrence and the acronym’s language model score.

The language model used for acronym recovery is a trigram language model trained from a

list containing 500 acronyms using SRILM [102].

The feature values are linearly combined to form a score, and the top k (where we fixed

k = 10) acronyms according to this score are selected and added to the phrase table / lattice

intersection result before the alignment is rebuilt, using the method described in Section 3.3.2.

Once we obtain the new alignment, we proceed with the rescoring of the streams described

in Section 3.3.4. Before we do this, we have to modify the original lattices for each of the

streams for which we have recovered acronyms. For each such acronym, we find all the pairs

of states in the respective lattice that have the same start and end times as the acronym,

and add an arc to the lattice that connects these two states and has the acronym as label.

The acoustic score of this arc is that which was determined when generating the candidate

acronym list.

3.4.2 Out-of-lattice word recovery

Although our method considers multiple alternatives in the form of lattices, these are finite

and therefore cannot contain all of the possible word sequences. In several cases it may

be desirable to recover these words that do not appear in the output lattice, since this can

improve transcription accuracy. We generate a list of locations (time intervals) where these

OOL words could potentially appear, according to the following criteria:

• If a certain word appears in two or more streams, its translation is predicted to appear

in the third and subsequent streams as well, around the corresponding time in these
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other streams. For example, suppose that the word “Aarhus” appears close in time in

the most likely decodings of the Spanish and Portuguese speech streams, but not in

the English stream lattice. We therefore hypothesize that “Aarhus” is an OOL word

in the English stream, which did not appear in the generated English lattice due to an

acoustic model or pronunciation mismatch.

• If two words are aligned in a given stream pair, then the surrounding words are also

predicted to be translations of each other. For instance, if “European”, in English, is

aligned with “Europeia” in Portuguese, and the word “Commission” follows the word

“European” in the English transcription, then it is natural to assume that the word

“Comissão” will precede or follow the word “Europeia” in Portuguese, even if it cannot

be found in the corresponding lattice. We therefore hypothesize the occurrence of an

OOL word ending near the beginning of “Europeia”.

When selecting the potential translations of a given phrase to a target language, we use

the translations in the appropriate phrase table that score above a manually pre-selected

threshold. We then intersect an FST representing the possible pronunciations of the phrase

that we are trying to recover with the phone lattice which represents a phone decoding of the

target stream. The obtained acoustic score is subsequently compared to a fixed threshold; if

it is below, this potential OOL word occurrence is discarded. Otherwise, it is carried on to

the next step where it is added to the phrase pairs that originate from the phrase-table-lattice

intersection process. The phrase pair scoring method described in Section 3.3.2 is augmented

to use an extra feature, which indicates whether the current pair is an OOL pair. In this way,

we can have OOL phrase pairs compete in a balanced way with regularly extracted pairs.

At this point, we generate a new alignment using the method described in Section 3.3.2.

Finally, and in a way comparable with what is done for the recovery of acronyms, recovered

words are added to the lattices as new edges at the appropriate locations, before the execution

of the lattice rescoring step.



3.4. OUT-OF-LATTICE WORD RECOVERY 79

3.4.3 Pronunciation recovery

Pronunciation lexica are key components of ASR systems - if the correct pronunciation is not

in the lexicon, recognition performance degrades substantially - and can be notoriously hard

to build. Manually creating these dictionaries is a very laborious and expensive task, and

most languages have an open vocabulary, in the sense that new words are continuously added

or imported from other languages. This means that a combination of manual and automatic

methods is often used to generate these pronunciations. However, in many languages, such

as English, the pronunciation of a word is very hard to predict from its ortography alone.

Words imported from foreign languages, as well as names of people and locations, also pose

important challenges.

In this section, we capitalize on the multi-stream alignment that we generated, described in

Section 3.3.3. The idea is that the words that we were able to recover by way of increasing

their language model scores are more likely to have been pronounced in a manner which

differs from their dictionary pronunciation than words that were recognized correctly in the

first pass. From the alignment, we select high-confidence words - those that are part of one or

more phrase pairs with scores that sum to a value greater than a manually selected threshold.

For each of the selected words, and given their occurrence times, we compute the most likely

phonetic transcription by performing a Viterbi search on the phone lattice. This process

yields a set of potential pronunciations for each word.

At this point we compute, using a string edit-distance algorithm, the number of insertions,

deletions and substitutions required to transform each of the potential pronunciations to the

closest among the reference (dictionary) pronunciations. The alignment of the two strings

defines a sequence of operations (deletions, insertions and substitutions) that one would have

to apply in order to transform the reference pronunciation into the potential pronunciation.

We select the subset of the potential pronunciations that can be obtained by performing at

most two such operations, creating a candidate pronunciation set p1...pk. Each of p1..pk is

assigned a score by Equation 3.2, where p0 is the original pronunciation:
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SC(pi) = αL(pi1 ..pin) + β

∑v
j=1Ai(oj)

v
+ γδ(p0, pi) (3.2)

In Equation 3.2, v stands for the number of occurrences of the word, L(pi1 ..pin) denotes a 5-

gram language model over phone sequences, whereas Ai(oj) indicates the acoustic score of the

jth occurrence of the word assuming pronunciation i, and δ(p0, pi) is the edit distance between

the dictionary pronunciation and pronunciation pi. The idea behind this computation is to

select a pronunciation that acoustically agrees with most occurrences, while at the same time

avoiding unlikely phone sequences through the use of a language model, as well as avoiding

adding new lexicon entries due to minor pronunciation variations.

We then select p∗ = arg maxi SC(pi) as the pronunciation to be recovered and add it to the

lexicon, if it is not one of the existing dictionary pronunciations.

The language models, one for each different language, are trained with the SRILM toolkit

[102] with modified Kneser-Ney smoothing [18]. As training data, one can use manually

generated lexica for a given language, which is usually preferable if these are available, or

automatically generated lexica.

3.5 Experimental evaluation

In this subsection, we evaluate the impact of the proposed improvements - OOL words,

acronyms, and pronunciation recovery, on the recognition results, by comparing these with

the results obtained in Section 3.3.5.

At this point we integrate the out-of-lattice word recovery improvements into our system.

In order to take the impact of pronunciation recovery into account, we added the recovered

pronunciations into the recognition lexicon after the baseline algorithm had completed, and

executed another iteration of the process. Table 3.5 shows the results of our experiments for

these two cases (where we apply, and do not apply the pronunciation recovery algorithm in

order to analyze its impact).
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No pron. recovery Pron. recovery

Speech Base +acr +acr+ool Base +acr +acr+ool

DEVE 15.61 14.63 14.29 15.37 14.14 14.04

ENVI 14.40 14.15 13.54 13.94 13.69 13.07

IMCO 24.31 24.20 23.93 23.91 23.80 23.45

LEGAL 23.22 22.80 22.68 22.81 22.39 22.22

Average 20.05 19.68 19.35 19.65 19.24 18.92

Table 3.5: WER (%) for the system improvements. The factor that differs between the left
and the right half of the table is whether pronunciation recovery is applied. The leftmost
column of each half represents the WER after the baseline method has been applied, but
with no acronym (acr) or OOL word recovery; the middle column indicates the WER with
acronym recovery; and the last column presents the WER with both acronym and OOL word
recovery.

In Table 3.5, we see that the recovery of acronyms only seems to significantly improve results

in the talk from the DEVE committee. In fact, of the four tested talks this is the one with

the largest proportion of acronyms. In other talks, results are also slightly improved, which

suggests that we are not recovering many spurious acronyms. On average, acronym recovery

improves recognition accuracy 2.4% relative. Also, the results of Table 3.5 demonstrate

improvements in performance with OOL word recovery, in a more uniform way across all of

the different speeches. The average relative improvement from OOL word recovery is 1.3%

relative. Finally, the presence of pronunciation recovery appears to affect results in an additive

manner relative to the other factors, and has a positive impact of 1.5% relative. Combining

all the methods, we achieved an overall relative WER improvement of 5.0%, when compared

to the second iteration of the baseline system. This translates to a cumulative 24.8% when

compared with speech recognition only (without running the baseline system).

3.5.1 Running time analysis

In this section we empirically analyze the computational overhead, in terms of running time,

incurred by the algorithms described in this chapter, for the case of N = 4 speech streams

(corresponding to one original and three interpreted languages).

We measured the overhead of each of the developed components. Table 3.6 summarizes the
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Operation Parallel RTF Sequential RTF

PT - lattice intersections 0.69 1.96

Init. align. generation 0.18 0.18

Acronym recovery 0.23 0.23

OOL word recovery 0.42 0.42

Pronunciation recovery 0.51 1.34

Alignment generation 0.19 0.19

Final decoding 0.86 2.12

Total 3.08 6.44

Table 3.6: Average RTF, over the four testing talks, of each of the main operations of the
algorithm (for a single iteration). The first column indicates the parallel RTF whereas the
second column indicates the sequential RTF.

real time factors of the algorithm, averaged over the four testing speeches, for one full iteration.

We distinguish the sequential RTF from the parallel RTF. The latter assumes that a number

of operations can be executed in parallel, since they are independent of each other and non-

overlapping, and considers only the running time of the longest among these operations. The

operations that can be executed in parallel are intersecting multiple phrase table - lattice

pairs, the final decoding steps - obtaining improved transcriptions is parallelizable for the

various streams since there do not exist any dependencies between the instances of the search

algorithm - and pronunciation recovery, which is done separately for each of the languages.

Note that no additional effort is required to parallelize these operations, since they are already

independent from each other. Table 3.6 shows that the methods presented in this work are

responsible for 1.99 xRT sequential, whereas a full iteration of the algorithm takes 6.44 xRT

sequentially, but only 3.08 xRT if it can be executed in parallel.

The total time complexity grows quadratically with the number of different streams N , which

would be intractable for large N . However, the most time-consuming part of the algorithm

- running a series of phrase table-lattice intersections - can be paralellized, and so given

sufficient computational resources this would not slow the system down. Furthermore, the

number of phrase table-lattice intersections can be kept to a minimum by selecting a subset

of the
(
N
2

)
possible intersections, in such a way as to minimize the impact in result quality.

A possible way of doing this would be to select phrase tables for language pairs that we
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believe have close linguistic connections, particularly in what concerns word order, since this

will probably increase the number of phrase pairs extracted when compared to more distant

languages, and therefore improve the quality of the generated alignments.

3.6 Combination of lecture speech and slides

In applications such as multimedia indexing and retrieval, one often encounters the problem

of aligning lecture speech with the slides that were used to support its presentation. Previous

work [72, 46, 21] has focused on this problem, using similarity measures such as the cosine

distance between the automatically generated speech transcripts and the slides, or through

the use of dynamic programming algorithms. Recently, the problem of correcting ASR tran-

scripts of lectures with slides has been addressed [105]. In this work, the authors view the

phonemes output by the ASR system as distortions of the slide words, and seek to recover

the true phoneme sequence using an HMM model with different states for slide and non-slide

phonemes. Other researchers created a different language model for each slide containing

the text in that slide [113]; such an approach, however, requires the availability of an align-

ment between speech and slides. OCR techniques have also been applied to extract text for

adaptation from slides in a non-machine readable format [1].

A problem with these techniques is that the lecture slides often do not contain sufficient

data to enable an effective language model adaptation. Therefore, an alternative approach to

improve recognition accuracy of lectures has been proposed in the literature [64]. It consists

of retrieving a set of documents from a large corpus such as the World Wide Web, using

a query-based approach, which increases the amount of data available for vocabulary and

language model adaptation. The documents from which the queries are extracted are often

the lecture slides. These documents are then used to adapt the recognizer’s vocabulary and

language model to the lecture topic. This approach is, to a certain extent, complementary to

our method, in which we construct an alignment between the lecture speech and the slides,

in that it could be used to create an adapted language model for the initial recognition step.

However, it cannot easily take advantage of local correlations between speech and slides (e.g.
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words in the same slide are more likely to co-occur in speech), or of information contained in

any additional streams that may be available.

In this Section, we show how we adapted the method described in Section 3.3 for the purpose of

improving the speech recognition of lectures supported by slides. Compared to the previously

mentioned work, our method has the advantage that it is more extensible: it can, in principle,

use slides that are in a different language from the speech, and it allows speech to be combined

not only with slides but also with other streams such as speech in a different language. It also

enables the words in a particular slide to affect the language model with higher precision, i.e.,

only when the speaker is using that slide as supporting material. Finally, our method can

be used in real-time, with only a small delay to perform the slide-speech combination, which

could potentially be useful in a scenario where the slides are not available a priori.

We considered the lecture speech to be one of the streams and the slides to be the other

stream, and we dropped the initial decoding and rescoring steps for the slide stream, since

we were not interested in recovering information from this stream. Note, however, that

if that were our goal, we could have considered the slide stream as rescorable, and used the

multistream combination process to learn, for instance, expansions for different abbreviations.

The input to our system consists of the lecture audio files and the slides in Portable Document

Format (PDF) format (which may contain slides from other lectures as well). Therefore, the

slides have to be converted into lattices and we need to generate a phrase table connecting

the two streams before our method can be applied. We next describe these modifications in

detail.

3.6.1 Converting from slides to lattices

The slides are first pre-processed by extracting the unnormalized text from the slides, using

the pdftotext tool of XPdf [78]. The output produced by this tool contains some errors, such as

replacing ligatures with unrelated characters, and the sentences do not necessarily appear in

a sequence that is consistent with the slide layout. Also, an important limitation of pdftotext

is that it is unable to extract text that is embedded in graphs or tables.

João Miranda
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Figure 3.12: Lattice generated for the sample sentence “We’ve obtained .45”. The alternatives
“we have” and “we’ve” have been generated for the first word, whereas “point four five” and
“point forty five” were generated for the third word.

This text from the slides is then used to build a lattice which is used as input to the phrase

table-lattice pair combination algorithm described in Section 3.3.1. To build the lattice, we

keep a pointer to the most recently added node r. When processing a token t from the text,

we create a node n and add an edge labeled t to the lattice, which connects r and n. Certain

tokens, such as numbers, are spelled out as multiple words. For instance, 12000 is spelled as

twelve thousand, so in this case an additional intermediate node is added to the lattice. Still

other tokens have multiple possible normalizations, depending on the speaker and context.

In an equation, for example, the token < can be spelled as lower than, smaller than, or

less than. Since, in the absence of disambiguating information, we have no obvious way of

choosing among them, we encode all of these as alternative paths between the nodes r and

n, and use the flexibility present in the lattices, to allow the information in other streams

to decide which of the alternatives to use. Figure 3.12 illustrates a lattice generated by this

process for the sentence “We’ve obtained .45”.

3.6.2 Modified alignment generation

As described in Section 3.3.1, our algorithm requests that we associate time stamps to each of

the lattice nodes. However, the adaptation for lecture recognition means that this requirement

must be relaxed since, unlike for speech streams, there is no time information directly available

for slide words. On the other hand, we observe that lecturers usually proceed through the

slides sequentially, with the occasional exception when it is necessary to revisit a topic. Under

this assumption, it is logical to assign an approximate timing to the words in a slide. This
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would correspond to the time at which this slide was displayed by the speaker.

Therefore, our modified alignment generation procedure jointly computes the aligment and

the time stamps of words and phrases in the slides. To do that, it ignores the time differences

involving a slide stream in the first iteration. In particular, no phrase pairs are pruned during

phrase-table / lattice intersection or the first iteration of the alignment generation process.

Instead, at the end of the first iteration, we calculate the time stamps for the slides as follows:

we take the speech-slide phrase pairs that were added to the alignment as anchor points, and

to estimate time stamps for the remaining slide words and phrases, we linearly interpolate

between the two closest such anchor points. We subsequently run a number of iterations of

the algorithm, until the time stamps for the slide words converge or a predefined maximum

number of iterations is reached. The (progressively refined) time stamps, computed at the

beginning of each iteration, are used as in the original procedure to calculate time distance

features.

3.6.3 Phrase Table generation

The obvious way of generating a phrase table to serve as input to our algorithm would be to

create identical phrase pairs for all of the phrases in the slides with less than a fixed number

of words, and then to add these phrase pairs to the phrase table. However, this ignores the

fact that the lecturer will often substitute the words in the slides with morphologically related

words. Generating all the morphological variants of a word is beyond the scope of the present

work, so we attempt to generate only the most common among these. Our approach consists

of first obtaining the part-of-speech and lemma for each of the words in the slides. Then,

for a singular noun such as probability we include its plural probabilities as a translation of

probability in the generated phrase table. Analogously, we include the singular form for plural

nouns. Similarly, for a verb such as to work, we add the past participle form worked as well as

the gerund working. If we encounter, for example, the gerund form, then we add the infinitive

and past participle forms, to the generated phrase table, as possible translations.
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3.6.4 ASR baseline

In order to test the performance of our algorithm, we compared the baseline, which consists

of speech recognition only, with the proposed method. For evaluation purposes, we used the

data set described in Section 3.2.3.2.

We then trained a domain-specific 4-gram language model using text extracted from a set

of 10 computer science books. This language model was linearly interpolated with a 4-gram

language model trained on the Hub4 text data, where the interpolation weight was estimated

so as to optimize perplexity on our held out development set, creating language model A. We

also trained a language model (language model B) that included both the computer science

books and the supporting slides for all of the lectures in the development and testing sets.

The text from the slides was extracted using the pdftotext tool and the resulting language

model was interpolated with the 4-gram language model trained on the Hub4 data. By using

a language model (language model B) which was trained on the same data as is available to

our method, we are able to assess the improvement that is obtained by assigning a higher

weight to words or phrases that are in the same or neighboring slides.

Both language model estimation and interpolation were carried out using the SRILM toolkit

[102].

3.6.5 Evaluation

For each of the talks in the testing set, we ran the baseline speech recognition system with

the two language models previously mentioned. We compared the results with the system

developed to integrate the lecture speech with the slides, as shown in Figure 3.13. We observe

an overall improvement in the results by using the proposed method, from a baseline WER

of 35% to 32.9%, with an average relative WER improvement of 5.9%, when using language

model A. If we use language model B, the impact of our method is smaller, as would be

expected but there is still a relative WER reduction of 3.6%.

However, the obtained improvements vary significantly from lecture to lecture, and in lectures
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Figure 3.13: WER for each of the lectures in the test set, both when using speech recognition
only and when combining the speech with presentation slides, for the two language models
(LM A and LM B) used in the experiments.

2 and 6 our method slightly degrades performance, when compared to the original ASR

transcripts. We attribute this to differences between the lectures and their supporting slides:

some of the slides contained less text or a larger number of images, which our text extraction

method is not able to process, and in other cases the lecturer deviated from the slides to

discuss a topic not covered by these. In those cases, our method seems to have introduced

a small number of errors by trying to combine the speech with unrelated slide words. An

interesting possible line of future work would be to find ways to recover text and equations

contained in images, in order to increase the amount of information for combination purposes.

3.7 Conclusions

In this chapter we proposed a generic approach for integrating multiple parallel streams

of information. We combine sequences of words in the different streams (which can be of

different types, such as speech or text) in order to improve speech recognition performance.

The relations between the word sequences are encoded in the form of phrase tables, as are used

in Statistical Machine Translation. The relations extracted from different pairs of streams, in



3.7. CONCLUSIONS 89

the form of phrase pairs, are used to build an alignment across the different streams which is

then used to rescore the streams containing speech.

This method is evaluated in two different scenarios: improving the recognition of simultane-

ously interpreted speech from the European Parliament Committees and using the information

contained in slides used to support a lecture to improve the speech recognition of that lec-

ture. We were able to achieve improvements in recognition accuracy in both scenarios. The

magnitude of these improvements can optionally be improved, if one applies the OOL word

and acronym recovery techniques that were described in this chapter.

In the future, we would like to extend this technique to further application areas. A possible

application would be audio-visual speech recognition, where we would need to establish a

mapping between sequences of visual features and words. Also, it would be interesting to

apply this work to mutually assisted automatic speech recognition and handwriting recogni-

tion. In this case, we could, for instance, use the speech recognition output to inform better

handwriting recognition about the same topic, and vice-versa. We would also like to explore

the adaptation of the translation components of the system, for instance by automatically

learning new phrase pairs from the generated alignments. These could have a positive impact

on the overall system performance, if added to the system phrase tables, by leading to higher

quality alignments.
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4
Improved Rich

Transcription across

Multiple Streams

4.1 Introduction

In this Chapter, we consider the problem of enriching speech transcripts with meta-

information, using the multistream alignments discussed in Chapter 3. We therefore discuss

a method to place final marks in ASR output which takes advantage of the information given

by an alignment of multiple parallel streams, and apply it to the simultaneous interpretation

scenario of the European Parliament. Similarly, we propose a technique which capitalizes on

the information available in these alignments, created from multiple parallel streams, in order

to improve the detection of which of the words output by an ASR system are part of disfluent

speech phenomena.

4.2 Improved Punctuation Recovery

In this section, we propose a method to recover punctuation that uses the information in the

multistream alignments to do this more accurately. We do this by combining the probabilities

given by a baseline classifier with the information that is extracted from the alignment, which

constrains the possible sentence boundary locations.

4.2.1 Baseline systems

4.2.1.1 ASR and SMT systems description

We used four languages - English, Italian, Portuguese and Spanish - to develop our ASR

and SMT systems. We used Audimus [69], a hybrid ANN-MLP WFST-based recognizer,
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as the speech recognizer for this work. We trained 4-gram language models for each of the

languages using the Europarl Parallel Corpus [50], and used our existing acoustic models and

lexica for these four languages [71]. Phrase tables were created for the six possible language

combinations (Portuguese-Spanish, Portuguese-English, Portuguese-Italian, Spanish-English,

Spanish-Italian and English-Italian). We used the Moses toolkit [52] to train these phrase

tables on the European Parliament Parallel data.

4.2.1.2 Punctuation System

The baseline punctuation system [7] consists of a maximum entropy classifier, which combines

a number of features that are extracted from the region surrounding each potential sentence

boundary (which corresponds to each word boundary).

These include word features, which capture information about which words or word bigrams

are likely to occur close to a sentence boundary; speaker identity features, which use the

information provided by a speaker clustering system to detect if the speaker has changed;

part-of-speech (POS) features, which consider the tags assigned to words by a part-of-speech

tagger; the segments produced by an acoustic segmenter, and the duration of the intervals

between consecutive neighbouring words.

When recovering punctuation, most of these features are obtained from the automatically

generated speech transcripts or from the output of the audio pre-processor module. The Por-

tuguese and English punctuation systems were trained using manually annotated broadcast

news data.

4.2.2 Proposed Method

The main insight behind the proposed method is that we can find an approximate correspon-

dence between sentences in different streams. That is, we expect to find, for a sentence in

one stream, a sentence containing equivalent information in each of the other streams. Of

course, this may not always be true, but we expect it to be a reasonable approximation. For
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example, in the case of simultaneous translation of speech, the interpreter may drop a part

of a sentence due to being unable to keep up with the speaker, or they may split a sentence

into several sentences. In the latter case, there would no longer be a one-to-one equivalence

between sentences in the two streams, so in our method we assume this to be a relatively rare

occurrence.

In light of this assumption, our method consists of minimizing the function f in Equation

4.1, where the binary vector si = wi1 . . . wim represents the segmentation for stream i, such

that wij = 1 if there is a full stop before the jth word of stream i, and wij = 0 otherwise, and

pij , when available, is the probability that there is a full stop before the jth word of stream

i, given by the baseline classifier.

f(s1 . . . sn) = α1δ(s1 . . . sn) + α2τ(s1 . . . sn) + α3γ(s1 . . . sn) + α4

 ∑
wij=1

pij +
∑
wij=0

(1− pij)


(4.1)

The function δ(s1 . . . sn) tries to incorporate the information that we obtained from the mul-

tistream alignment. It does so by computing the number of distinct conflicts in the sentence

segmentation s1 . . . sn. Consider two phrase pairs, pp1 and pp2, which are in the streams s

and t. Then pp1 and pp2 are said to be in conflict, if there is a sentence boundary between the

corresponding phrases in one of the streams but not in the other. For example, suppose we

have the two phrase pairs pp1 = “eles tinham || they had” and pp2 = “tentado || tried”, in

the English and Portuguese streams, and that, in the current segmentation, pp1 and pp2 are

in different sentences in one of the streams but not in the other. Then the function δ(s1 . . . sn)

penalizes this fact, trying to bring the phrase pairs to equivalent sentences in the two streams.

Also, the component τ(s1 . . . sn) assigns a penalty which is proportional to the duration of

an interword pause (the difference between the start time of the current word and the end

time of the previous word) to word boundaries that are not preceded by a full stop in the
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current segmentation. The component γ(s1 . . . sn) represents, for each stream, the n-gram

score variation introduced by adding full stops at the locations defined by segmentation

s1 . . . sn. For example, if the original sentence for stream i is “Thank you chair we will now

proceed.” and the suggested punctuation is “Thank you chair. We will now proceed.”, then

the contribution of stream i to γ(s1 . . . sn) is the difference between the language model scores

of the second and the first punctuations. Finally, the last component assigns a higher score

to punctuations that agree with the baseline classifier (when its information is available).

To optimize function f , we start with some initial joint sentence segmentation s1 . . . sn, and

perform an applicable local operation - a valid operation which improves the total punc-

tuation score given by function f - in order to produce a new sentence segmentation. We

then iteratively apply one of these operations until reaching a local minimum (none of the

operations can be applied) or a predefined maximum number of iterations. We therefore

jointly optimize the punctuations of the streams, in a hill-climbing manner. The two types

of applicable operations are the following:

• Merging two or more sentences in the same stream - two or more consecutive sentences

are merged into one, therefore implicitly removing the full stops between them.

• Splitting a sentence, in a given stream, into two sentences, where the possible splitting

locations are the word boundaries inside that sentence. This operation corresponds to

inserting a full stop in the corresponding punctuation.

All the instantiations of the above operations are sorted by decreasing order of ∆f . If more

than one operation decreasing f is available, then the one which decreases it the most is

selected at each step.

The parameters αi > 0 of Equation 4.1 are manually selected to minimize SER, averaged over

the resulting segmentations s∗1 . . . s
∗
n, in a held-out development set.
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4.2.3 Experimental evaluation

4.2.3.1 Experimental Setup

We collected and manually transcribed four speeches, in English, from the DEVE, ENVI,

LEGAL and IMCO Commitees of the European Parliament, as well as their respective inter-

preted versions in three other languages (Italian, Portuguese and Spanish). Our development

set consists of two other speeches, in the same four languages, that we also collected and

transcribed from the European Parliament Comittees.

We automatically transcribed and generated ASR lattices for each of the speeches, and then

executed the multistream combination algorithm of Section 3.3, in order to generate an align-

ment of the four streams. This alignment was subsequently used as input to the proposed

method.

4.2.3.2 Results

To evaluate the impact of our proposed method on punctuation recovery performance, we

computed four different performance metrics: SER [65], which represents the number of

insertions, deletions and substitutions of punctuation marks divided by the total number of

reference punctuation marks, precision (P), recall (R) and F-measure (F1). In order to be

able to do this, we first align the automatic transcripts with the manual reference, using a

dynamic-programming edit distance algorithm. Note that this alignment may be non-trivial

due to the fact that there may be recognition errors close to the sentence boundaries, making

it unclear to which hypothesis words we should assign the punctuation marks in the reference.

The values of these metrics for the proposed method were compared with our two baselines.

The first baseline was our Speech / Non-Speech (SNS) component [70], which splits speech into

segments passed to the speech recognizer, based mostly on speech activity; we considered these

segments to be implicitly delimited by full stops. The second baseline was the punctuation and

capitalization system described in Section 4.2.1.2; we add a full stop to the output wherever
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SNS Baseline Prop. method
P R F1 SER P R F1 SER P R F1 SER

PT 0.259 0.817 0.393 2.540 0.372 0.365 0.365 1.281 0.632 0.604 0.616 0.761

ES 0.209 0.762 0.323 3.259 - - - - 0.618 0.575 0.587 0.819

EN 0.338 0.946 0.489 2.205 0.558 0.693 0.614 0.897 0.710 0.718 0.710 0.608

IT 0.323 0.828 0.455 2.172 - - - - 0.557 0.609 0.574 0.943

All 0.283 0.838 0.415 2.544 0.465 0.529 0.490 1.089 0.629 0.626 0.622 0.783

Table 4.1: The different performance metrics that were evaluated, for each of the tested
methods, across Portuguese (PT), Spanish (ES), English (EN) and Italian (IT), and averaged
over the four speeches in the test set. The table entries corresponding to Spanish and Italian
are not available, since we lacked training data to generate instances of the classifier for these
two languages. Therefore, the values in the “All” row are not directly comparable between
the Baseline method and the other techniques.

the probability generated by this system is greater than 0.5. This baseline was only available

for the Portuguese and English languages. The output of the SNS component was also used

to initialize the search algorithm described in Section 4.2.2. All the comparisons were carried

out for each of the four languages considered (English, Italian, Portuguese and Spanish).

The main results are summarized in Table 4.1. Overall, the method that produced the

poorest results was - unsurprisingly, since it was not designed for the purpose of punctuation

- the SNS component. It had the highest average recall among all the three tested methods

together with the highest SER, which suggests that it split speech into a very large number

of sentences, creating many spurious insertions of full stops. Also, the proposed method has

the best results across all of the languages that we considered. Compared with the baseline

method in Portuguese, there is a 40% reduction in SER and a 68% improvement in F1, and

in English there is a 32% reduction in SER and a 15% improvement in F1.

We observe that all of the three compared methods are more effective in the original speech

(always given in English), across all the considered metrics, than in the interpreted versions.

Not only do the interpreters often pause at locations that are unrelated to the sentence bound-

aries, they sometimes also produce larger numbers of disfluencies which may be confusing as

to the location of sentence boundaries. Also, the spontaneous speech they produce is usually

recognized at a higher word error rate, and this disrupts features that are based on word
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SER (no baseline prob.) SER (with baseline prob.)

PT 0.780 0.761

ES 0.832 0.819

EN 0.652 0.608

IT 0.966 0.943

All 0.807 0.783

Table 4.2: Comparison between the average SER of the different languages. The factor
that varies between the columns is whether or not the baseline classifier probabilities, for
Portuguese and English, are used as features.

identities, such as language model scores.

It is also interesting to note that the proposed method performs slightly worse in the inter-

preted languages (Spanish and Italian) for which the probabilities from the baseline classifier

are unavailable, when compared to Portuguese, which suggests that including these as fea-

tures had a positive impact on the proposed method. In fact, by inspecting Table 4.2, we find

that this is actually the case: the use of these probabilities improves SER about 2.4% absolute

and, while the improvements of the greatest magnitude are for the English language, all the

languages show improvements, even those (Spanish and Italian) for which the probabilities

of the baseline classifier were not available.

The proposed method does not require any training data, apart from a small development set

which is used to tune a number of parameters of the algorithm. We evaluated our method in

a test set consisting of European Parliament Committee speeches, in four languages (English,

Italian, Spanish and Portuguese). We obtained an average 37% improvement in SER, when

compared with a maximum entropy baseline, considering the two languages (Portuguese and

English) for which this baseline was available.

4.3 Disuency Detection with multiple streams

The occurrence of disfluencies is usually not detected directly by ASR systems, apart from

the presence of filled pauses, which many systems model as specific entries in their pronuncia-

tion dictionaries. In spontaneous and conversational speech, filler words and false starts may
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greatly impair the performance of an ASR system, both by disrupting its language model con-

text and by adding spurious words. Their presence also contributes to reduce the performance

of natural language understanding tasks that depend on the accuracy of the automatically

generated transcripts. In fact, disfluencies have been found to hamper parsing techniques

[31], since in their presence sentences are no longer well-formed.

In order to mitigate this problem, several methods have been developed to automatically

detect and, if possible, remove such disfluencies. This is specially important in spontaneous

or conversational speech.

An important problem with a number of disfluency detection methods is that they assume

that an error-free transcription of the speech is available. As a result, their performance

degrades significantly when working with automatic speech transcripts which contain errors,

which is the case in practice. Our technique aims to be robust to the presence of speech

recognition errors, as these will be present in most realistic situations.

In order to improve disfluency detection, we will again make use of redundant information

that may be available across multiple streams. From these data we may be able to infer, for

example, that a given word sequence is a phrase fragment corresponding to an edit disfluency,

or detect a filled pause surrounded by a pair of aligned words.

In the remainder of this section, we first propose a disfluency detection framework upon which

we build a disfluency detection system for the Portuguese language. We then show how the

performance of this system can be improved by drawing upon information present in multiple

parallel streams, in the context of the European Parliament Committee data.

4.3.1 Baseline systems

4.3.1.1 Disfluency detection system for Portuguese

Deciding whether words are part of a disfluency is an imbalanced classification problem, since

even in highly spontaneous speech only 5-15% of the words correspond to disfluencies. Classi-
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...na realidade penso <enfim> [] que teremos <de da de> [de] refocar...

...verdade que <a sua> [as suas] formas de luta neste problema ficam...

...<mas %fp> [mas] esse erro impede <%fp> que se obtenham muitas das...

...<eu gostaria> [eu gostaria] que se pudesse chegar a um acordo nos...

...de acordo com a ideia <das das> [dos] deputados terem de analisar...

...<este digamos> [estas] perguntas essenciais que asseguram a nossa...

...a serem verdade <o o a os> os factos teremos de extrair destes as...

Figure 4.1: Examples of candidate disfluencies generated for the second stage classifier. The
reparandum is inside the angled brackets, and the rectangular brackets contain the proposed
repair of each candidate disfluency.

fiers are often learned in a way that minimizes the number of incorrectly classified instances.

Under these circumstances, simply assigning the majority class to every instance leads to a

high accuracy, but does not separate instances of the minority class from those of the majority

class, as intended. This results in a low recall in the detection of the underrepresented class.

The most common approaches to this problem include under and over sampling techniques,

such as Synthetic Minority Over-sampling Technique (SMOTE) [16], or cost-sensitive learn-

ers, which assign different costs to different types of errors, in order to ensure that the recall

is increased.

In order to overcome the problem of label imbalance, our baseline system uses a problem-

specific approach consisting of two classifiers applied in sequence. The first classifier assigns

a label to each word, indicating whether that word is part of a disfluency, by examining only

local context. In the second stage, we use a set of rules, described below, to find candidate

word sequences that are likely to be part of disfluencies in the recognized text. Figure 4.1

shows some candidate disfluencies generated by this method.

These candidate disfluencies are then validated in a second classifier, which assigns a label

to each proposed disfluency, indicating whether all the words in its deletable part actually

correspond to disfluencies. The second stage classifier is effectively presented with a much

more balanced problem, because these rule-generated candidates are much more likely to

contain disfluencies than arbitrary text spans. The resulting system sets as disfluencies the

words that are classified as disfluencies by either the first or the second classifier (or both).
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This hopefully leads to an increase in recall without a decrease in precision.

Both of the classifiers use, where applicable, several sets of features:

• Duration features: we compute the duration of silent pauses before and after the

reparandum and the repair, the duration of words around the interruption point, the

duration of phones in the reparandum and the repair. We also measure the duration

differential between identical pairs of phrases in the reparandum and repair, since in

repetitions there is often a prolongation of the former.

• Language model features: these determine to what extent removing the deletable part

of a potential disfluency impacts the sentence’s likelihood under an n-gram language

model. An increase in likelihood may signal the presence of a disfluency.

• Sentence segmentation features: we use a sentence segmentation classifier [7] to estimate

the probability that a word boundary corresponds to a sentence boundary. If the two

parts of a candidate disfluency effectively correspond to different sentences, then it

cannot be a disfluency.

• Lexical features: these capture common word sequences that often signal the occurrence

of a disfluency. The repetition of words, for instance, often indicates the occurrence of

a disfluency (but not always, since they are sometimes used for emphasis). Several

other patterns, such as the repetition of function words but in different number (e.g.

plural rather than singular) and / or gender also indicate the occurrence of disfluencies,

because they imply a revision of the message being transmitted by the speaker.

• Lattice-based features: due to the fact that there are misrecognized words in the auto-

matic transcripts, we also include features measuring the confidence of each word in the

disfluency, extracted from lattices generated by the speech recognizer. For each word

in the disfluency, we compute its posterior probability given the lattice, as well as the

number of alternative hypotheses, and its average acoustic score.
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• Speaker ID features: if there is a speaker change within the scope of a potential disflu-

ency, then that provides indication that this is probably not a disfluency.

• First classifier probabilities: the probabilities assigned to each word inside a candidate

disfluency by the first stage classifier are also used as features in the second stage

classifier.

We use a number of rules in order to generate candidate disfluencies for the second classifier,

as exemplified in Figure 4.1. Among the generated disfluencies, we include all the repetitions

of single words (unigrams), pairs of words (bigrams), sets of three words (trigrams) and of four

words (quadrigrams). We allow other morphological variants of these words to be included,

such as words that differ only in the gender. An arbitrary number of filled pauses are also

allowed to appear inside the disfluency. Words known to be often used as fillers, such as

digamos, enfim in Portuguese, are also allowed in the generated candidate list. Finally, we

include pairs of word sequences which, while not being identical, are close enough in terms of

an edit distance between their respective pronunciations. The idea behind this is to capture

small word fragments which do not significantly change the disfluency structure. For instance,

the disfluency <os nossos que> os nossos would be added to the candidate disfluency list.

As the first classifier, we used a Multilayer Perceptron and as the second classifier we used a

decision tree, trained using the C4.5 algorithm with the Weka machine learning toolkit [35].

4.3.2 Proposed Method

In multiple parallel streams that are approximate translations of each other, disfluencies

should in principle be randomly distributed. In other words, the locations where disfluencies

occur in different streams should not be correlated. Therefore, unmatched words or phrases in

an alignment of multiple streams are more likely to be part of disfluencies, such as filled pauses

or edits, which were misrecognized as words. However, the existence of unmatched words or

phrases may only indicate that a rephrasing which is not captured by the translation model

has taken place. Therefore, we wish to incorporate this information, in a principled manner,
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Foram criados vários comités < secto- > sectoriais para a implementação

For the implementation, we created a number of sectoral committees

Figure 4.2: In this diagram, a word fragment “secto-” in a Portuguese stream occurs between
two words which are aligned to consecutive words in an English stream. Because, in this case,
the English stream contains the original speech, and the word fragment is not aligned to any
words in other streams, this indicates that it is likely part of a disfluency.

within the framework of our disfluency detection classifier, in order to improve disfluency

detection in the multistream framework.

Our approach consists of first running the baseline disfluency classifier, described in Section

4.3.1.1. From the output of this classifier, we obtain, for each word, the posterior probability

that it is part of a disfluency. We then proceed by extracting alignment related features for

each word in the transcription:

• The total score of the phrase pairs in the alignment which overlap with the current

word, both partially and completely. The idea is that if a word is matched with words

in one or several other streams, then that decreases the probability that this word is

part of a disfluency in that stream. On the other hand, if the only existing matches

with phrase pairs are partial, it may still be the case that part of the word is unmatched

and therefore corresponds to a word fragment or a filled pause.

• If a word is unmatched, then we investigate whether the words or phrases that precede or

follow it are matched to phrases in the same stream, and if those phrases are consecutive.

If that is the case, as can be seen in Figure 4.2, then it is more likely that such a word

is part of a disfluency.

• We also try to detect repetitions, or substitutions with similar phrases, by looking at

whether there is more than one phrase that could be aligned with a given set of phrases
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Existem muitas soluções  < para este > para esse problema. 

Hay muchas y variadas soluciones  para ese problema.

There are a number of solutions for that problem.

Figure 4.3: The diagram shows three parallel streams in three different languages. The solid
arrows represent phrase pairs which are part of the alignment built for these streams, while
the dashed arrows link together phrase pairs that were extracted during phrase table-lattice
intersection, but which did not make it to the final alignment. A phrase pair which is on the
end of only dashed arrows is probably part of an edited out word sequence.

in different streams. Figure 4.3 illustrates this situation. Note that the edited phrase

“para este”, as well as the following reparandum, in Portuguese, can both potentially be

aligned to the same Spanish and English phrases. This is what allows us to determine

that “<para este> para esse” is a potential repetition.

• The probability that this word is part of a disfluency, as obtained from the baseline

disfluency classifier.

We train a logistic regression classifier, using the abovementioned features and a small amount

of training data, in order to better separate words that are part of disfluencies from those

which are not.

4.3.3 Experimental evaluation

4.3.3.1 Dataset

The dataset we used for training and testing the baseline classifier consists of about 40 hours

of conversational speech, extracted from 40 Portuguese TV shows. The corpus was manually

transcribed, including information about the location of disfluencies as well as the different
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TV Shows European Parliament Committee (PT)
Words Disf Baseline WER Words Disf Baseline WER

Training 227284 18355 39.60% - - -

Development 24391 2449 36.40% 2888 142 31.62%

Testing 76923 5925 38.94% 11183 790 29.15%

Total 328598 26729 38.31% 14071 932 29.70%

Table 4.3: Statistics for the used corpora, in terms of the number of words (left column of
each half), number of words corresponding to disfluencies (center column of each half) and
ASR WER (right column of each half) for the training, development and test sets.

speakers in each turn. Most of these programs are political debates, and so there are many

regions containing overlapping speech. Those segments without a predominant speaker or

containing words which could not be transcribed were excluded from further processing. We

randomly split the corpus into three parts: 70% of the programs were used for training each

of the classifiers described in Section 4.3.1.1, 10% for evaluation and 20% for testing.

We force aligned the corpus to the reference transcription in order to obtain the time intervals

at which disfluencies occur. Subsequently, we decoded each of the training, evaluation and

test sets with our speech recognizer and labeled each word in the automatic transcripts as

whether it is part of a disfluency or not. To do that, we marked a word in the automatic

transcripts as a disfluency if its time interval overlapped with that of any word marked as a

disfluency in the force aligned transcripts.

Table 4.3 summarizes the statistics of the corpus used.

For evaluating the proposed method, we have used the European Parliament Committee

dataset described in Section 3.2.3.1. This dataset was manually annotated to include infor-

mation about which words are part of disfluencies, and it was only split into development

and testing subsets, since it is not used to train the baseline classifier. We followed a sim-

ilar procedure as for the Portuguese TV show dataset previously described: we first force

aligned the corpus to the disfluency annotated transcriptions to obtain disfluency time loca-

tions, and then transferred this information to the automatic transcripts generated for these

speechs. Additionally, we automatically transcribed and generated ASR lattices for each of

the speeches, and then executed the multistream combination algorithm of Section 3.3, in
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TV Shows European Parliament Committee
Auto. transcript Manual transcript Auto. transcript Manual transcript

Precision 79.8% 85.5% 74.0% 81.2%

Recall 46.5% 56.1% 45.9% 52.6%

F1 58.8% 67.7% 56.7% 63.8%

SER 65.3% 53.4% 70.2% 59.5%

Table 4.4: Results for classifying the words as whether or not they are part of disfluencies,
both using the automatic transcripts and the reference. The left half of the table refers to the
test set of the Portuguese TV corpus, whereas the right half refers to the European Parliament
Commitee corpus.

order to generate an alignment of the four streams. This alignment was subsequently used as

input to the proposed method described in Section 4.3.2. Although we use information from

four available streams (the Portuguese, Spanish, English and Italian versions of the speech)

to construct this alignment, throughout the remainder of the current chapter all the results

reported for disfluency detection refer exclusively to the Portuguese stream.

4.3.3.2 Results

First, we applied the baseline method described in the previous section to both corpora, and

computed the precision, recall, F1 and SER (equivalent to the NIST error rate) on the test

set, using both the reference and automatic transcripts. These results are displayed in Table

4.4.

We observe that the classification performance is better, as expected, when we have access

to the reference transcripts, than when we rely on the ASR output, in the TV shows as well

as in the European Parliament. However, the degradation in both F1 and SER is about

10% absolute, which indicates that our method is relatively robust to errors in the automatic

speech transcripts. In both cases, the obtained precision is significantly higher than the recall.

This can be justified by the fact that a considerable fraction of the disfluencies are very hard

to identify, since in many cases the reparandum has no obvious similarity with the repair and

can easily be mistaken for a fluent phrase.

In order to evaluate the impact of removing the disfluencies on the accuracy of our recognizer,
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TV Shows European Parliament Committee

Baseline Oracle Proposed Baseline Oracle Proposed

38.9% 32.4% 37.3% 29.2% 23.7% 28.0%

Table 4.5: Testing set WER before removing disfluencies, on the left column, compared with
the WER using the oracle to determine disfluency locations, on the center column, and using
the proposed method to generate disfluency locations, on the right column.

we took the automatically generated information concerning the disfluency locations and used

it to perform a new ASR step, again considering both corpora. We modified our Viterbi based

decoder in order to have it ignore the time regions corresponding to words that were identified

as disfluencies. To do that, whenever a disfluency is encountered, the tokens corresponding

to a word end that are active in the last frame before the disfluency are copied directly to the

frame after the end of the disfluency, therefore effectively “ignoring” the acoustic observations

in between. We compared this to the best achievable results, assuming that we had access to

an oracle that provided the exact disfluency locations. This comparison can be seen in Table

4.5.

The absolute reduction in WER (1.6%) is, in this case, considerably smaller than the reduction

obtained with the oracle version (6.5%). To a certain extent, this would be expected since

the oracle is perfect, i.e, it corresponds to a precision and recall of 100%. However, some

of the difference can also be attributed to the fact that, during decoding, some of the filled

pauses are “absorbed” by words that begin or end with similar sounds. For instance, in the

phrase “tentativa de %fp golpe de estado”, the filled pause often has the same sound as the

last phone of the word “de”, and therefore the recognizer just interprets it as a lengthening of

that word. Since the word as a whole is marked as a disfluency, then all of it, rather than just

the filled pause, is removed. Another problem are word fragments which are of sufficiently

small duration to be incorporated into the beginning or end of neighboring words. Both of

these issues lead to deletion errors in the updated ASR output. They also interfere with the

language model context of the recognizer, therefore reducing the improvement achieved by

correctly detecting other disfluencies.

Also, the improvement in WER using the oracle (6.5%) is not as large as the proportion of
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words marked as disfluencies in the testing set (7.7%). The main reason for this is connected

with the words which absorb filled pauses or word fragments, but are otherwise recognized

correctly by the ASR system, and therefore do not count as ASR errors.

Subsequently, we used the multistream alignments, with four different languages (Portuguese,

English, Italian and Spanish), available for the European Parliament Committee corpus, to

test our proposed method described in Section 4.3.2.

We obtained a recall of 53.4% and a precision of 73.6% (F1 = 61.9%, SER = 65.7%) in

detecting which words are part of disfluencies. We observe that there was a considerable

increase in recall, with the corresponding decrease in SER. From this, it can be seen that

most of the recovered errors were deletions, i.e, sequences of words that had not previously

been labeled as disfluencies. In particular, we were able to correctly identify many word

fragments, as well as word sequences that are part of the reparandum of disfluencies, because

these represented gaps in the alignment. These are often very hard to distinguish from fluent

word sequences, since for example word fragments are often misrecognized as small words.

We also wanted to assess the impact of recovering from these disfluencies on the ASR WER,

using the method that takes advantage of multiple parallel streams. There is an improvement

in terms of WER of 0.3% absolute (1.1% relative), compared with the baseline disfluency

detection method and of 1.5% absolute (5.1% relative) when we consider no disfluency detec-

tion.

It appears that we are closer to the WER improvement provided by an oracle than it would

be expected if one extrapolates directly from the recall. As previously noted, some of the

disfluencies have no direct impact on the WER, since they are short duration filled pauses

which are confused with silences by the recognizer. These constitute most of the disfluencies

that we were unable to detect.
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4.4 Conclusions and Future Work

In this chapter, we have presented a method that can be used to combine multiple information

streams, in order to improve automatic punctuation recovery in these streams. Our method

extracts the information contained in an alignment that joins phrases in the various streams,

and uses it to guide the better placement of end-of-sentence marks. We have shown that,

in the Europarl Committee domain, it is possible to improve significantly over an existing

maximum-entropy baseline, and to provide results even for languages for which such a baseline

system is not available. In future work, we would like to extend this work to incorporate the

recovery of different punctuation marks, such as the comma, question mark or exclamation

mark. For example, recovery of the question mark, which tends to be easier in languages

in which interrogatives are identified by cues such as subject-verb inversion, could be made

significantly more effective by sharing this information across different languages.

We have also explored how to increase the performance of disfluency detection techniques,

using the information available in multiple parallel streams. The alignments across phrases

in different streams are taken as evidence, which helps us determine whether a given word

should be considered part of a disfluency. In the European Parliament domain, it is possible

to improve disfluency detection accuracy, when compared to a baseline disfluency classifier.

In the future, we would like to expand the current work to propagate bidirectional feedback to

the alignment building algorithm: the information gathered about the locations of disfluencies

can be used to guide the alignment building process, since spurious phrase pairs containing a

phrase that overlaps with a disfluent region no longer need to be considered. In a similar way,

the information recovered by the punctuation recovery techniques developed in this chapter

could be used to exclude cross-sentence phrase pairs from the alignment, which in turn could

lead to better results.
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In this thesis, we have presented a method for combining multiple parallel information

streams, which can be applied to take advantage of redundant information in a number

of Natural Language Processing tasks, such as simultaneous or consecutive interpretation,

Computer Aided Translation, or recognition of lecture speech supported by slides. For the

purposes of this thesis, we defined streams as symbol sequences, associated with time infor-

mation that indicates where these symbol sequences occur, so that is possible to model the

locality of redundancy across streams. Such streams may not be fully observable, containing

a certain degree of uncertainty which reflects the imperfect methods used in their processing.

Therefore, we proposed encoding the variability of each stream, as given, for example, by an

automatic speech recognizer, as word lattices, and bridging the gap between different streams

by using phrase tables, which map word sequences from one stream to another.

The main contribution of this thesis is, therefore, a technique to generate alignments of

multiple parallel streams, which are then used to improve speech processing of those streams.

These multistream alignments are non-conflicting sets of phrase pairs which indicate which

symbol sequences in a given stream correspond to which symbol sequences in the others. We

created an algorithm to generate an alignment out of several streams, which first performs a

pairwise intersection of all the possible stream combinations, and then selects a non-conflicting

subset of the generated phrase pairs, so as to maximize the expected quality of the alignment.

This multistream alignment was used as a basis for improving speech recognition, punctuation

recovery and disfluency detection in the speech streams considered, by extracting different

sets of constraints from it. Our algorithm is also able to recover words that are not present in

the generated lattices (out-of-lattice words), which is an important feature since lattices are

finite. In the case of streams containing speech, that leads to increased robustness, enabling
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one to deal with variability beyond that which can be handled by the recognizer.

In order to explore the applicability of the developed multistream combination algorithms,

we applied them to two different domains: the simultaneously interpreted sessions of the

European Parliament Committees and lectures in English supported by slides. In the first

case, we integrated the original speeches in English with interpreted versions in Portuguese,

Spanish, Italian and German and we were able to obtain improvements in recognition accuracy

that increased with the number of languages used. For the latter application, the algorithms

used to create the alignment were modified so as to work with the slide streams, which do

not have explicit time information associated. We observed that this led to improvements

in lecture recognition accuracy, both when compared with the baseline recognizer and with

a recognizer using a language model which was trained on the slides texts. This result

demonstrates that the information in the time alignments can be used to better constrain the

slide words which match with a given speech segment.

We also considered how the method presented in this thesis can be applied to other speech

processing tasks, such as rich transcription. In this way, we were able to improve the effective-

ness of punctuation recovery and disfluency detection, when compared to baseline classifiers,

by harnessing the information present in the multistream alignment. Full stop placement is

improved by noting that sentence boundaries should be equivalent across streams, i.e., the

phrases of a phrase pair should be in equivalent sentences in the respective streams. Sim-

ilarly, disfluency detection is made more accurate by the observation that the disfluencies

are independent events which are, in principle, not matched in streams other than the one

in which they occur. These methods were applied to the simultaneously interpreted speech

in the European Parliament committee speeches and we observed improvements, in terms of

precision and recall, in both punctuation recovery and disfluency detection.
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5.1 Future Work

The work in this thesis has led to a number of interesting open problems, which can be

explored in future research.

Regarding the combination of multiple streams of information, it would be interesting to

analyze the potential application of our method to sets of streams which have a looser coupling

than the quasi-parallel relation that was defined in this thesis. Rather than considering that

two streams are a translation of each other, we could extend the acceptable stream pairs

to include streams that are simply referring to the same event. For instance, if several

TV and radio stations are simultaneously broadcasting a sports event, in a different or the

same language, they will be describing the same occurrences, using a set of expressions and

linguistic constructions that are expected to overlap. Therefore, it can be expected that, using

the methods that were presented in Chapter 3, it will be possible to obtain speech processing

improvements by harnessing names and other expressions expected to be present across the

different streams. However, additional techniques will probably be needed to avoid degrading

performance significantly in the situations in which the streams contain unrelated information.

In fact, to a certain extent this problem was observed in this thesis when combining speech

with certain slides which content was more loosely coupled to the speech.

In the case of simultaneous or consecutive interpreted streams, the generated multistream

alignments can be used to obtain information about the quality of the interpretation. For

instance, it is possible to measure the average delay of interpreters, by computing the average

delay between phrase pairs in the original and interpreted streams. It is also possible to

compute how close the interpreted versions are to the original speech, by analyzing the fraction

of the original speech which is covered by the phrase pairs in the alignment.

A potential area of research which was not fully explored in this thesis is the adaptation

of the MT systems used in the developed multistream combination algorithms. In fact,

the information contained in the generated alignments could be used to extract new phrase

pairs and therefore complement the existing phrase tables. This could also conceivably be
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incorporated into the alignment generation process, so that the new learned phrases would

be integrated in later iterations.

Finally, in this thesis, we focused on recovering information from speech streams. However,

the streams used by the methods proposed in this thesis are not, in any way, restricted to

speech or text and can be used whenever the variability or uncertainty present in the streams is

representable in the form of a lattice. Therefore, an interesting direction for further research

would be to use these techniques in other applications, with different stream types, which

could be combined with speech streams. An example of this would be to enhance OCR with

speech corrections, which would mutually benefit both tasks: not only would the latter be

used to correct the output of the OCR system, but there would be a bidirectional information

flow between the two streams, therefore improving the ASR system results as well.
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