
Feature Learning and Graphical Models for
Protein Sequences

Subhodeep Moitra

CMU-LTI-15-003

May 6, 2015

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:
Dr Christopher James Langmead, Chair

Dr Jaime Carbonell
Dr Bhiksha Raj

Dr Hetunandan Kamisetty

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2015 Subhodeep Moitra

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Large Scale Feature Selection, Protein Families, Markov Random Fields, Boltz-
mann Machines, G Protein Coupled Receptors

To my parents. For always being there for me. For being my harshest critics. For their
unconditional love. For raising me well. For being my parents.

iv

Abstract
Evolutionarily related proteins often share similar sequences and structures and

are grouped together into entities called protein families. The sequences in a protein
family can have complex amino acid distributions encoding evolutionary relation-
ships, physical constraints and functional attributes. Additionally, protein families
can contain large numbers of sequences (deep) as well as large number of positions
(wide). Existing models of protein sequence families make strong assumptions, re-
quire prior knowledge or severely limit the representational power of the models. In
this thesis, we study computational methods for the task of learning rich predictive
and generative models of protein families.

First, we consider the problem of large scale feature selection for predictive mod-
els. We address this in the context of a target application of designing drug cocktails
against HIV-1 infection. We work with a large dataset consisting of around 70,000
HIV-1 protease and reverse transcriptase sequences. The core challenge in this set-
ting is scaling up and selecting discriminatory features. We successfully accomplish
this and provide strategies for designing cocktails of drugs robust to mutations by
examining the fitness landscape learned by our predictive models.

Next, we present a framework for modelling protein families as a series of in-
creasingly complex models using Markov Random Fields (MRFs). We hypothesise
that by adding edges and latent variables in the MRF, we can progressively relax
model assumptions and increase representational power. We note that latent variable
models with cycles fail to learn effective models due to poor approximate inference
thus defeating their purpose. This motivates the need for special architectures which
allow efficient inference even in the company of latent variables.

Next, we extend the utility of the learned models beyond generative metrics.
We introspect and interpret the learned features for biological significance by study-
ing allostery in G Protein Coupled Receptors (GPCRs). We identify networks of
co-evolving residues, a minimal binding pocket and long range interactions all by
learning the structure of a MRF trained on the GPCR protein family.

Finally, we develop the first Restricted Boltzmann Machines (RBMs) and Deep
Boltzmann Machines (DBMs) for protein sequence families. We demonstrate that
these models significantly outperform their MRF counterparts in terms of imputa-
tion error. Additionally, we also consider Boltzmann Machines with sparse topolo-
gies and provide a strategy for learning their sparse structures. We note that the
sparse Boltzmann Machines perform similar to MRFs thus reinforcing our hypoth-
esis that non-sparse Boltzmann Machines are required for modelling the complex
relationships inherent in protein families.

vi

Acknowledgments
First and foremost, I would like to thank my advisor, Christopher Langmead. He

has always given me unrestricted freedom to pursue my research ideas. Never on
any occasion has he been unavailable for anything I wanted to discuss. I am grateful
to him both for his patience and his guidance to keep me on the right track when I
inevitably went astray. Next, I would like to thank Judith Klein Seetharaman. I was
jointly advised by her in my initial years at CMU. I am deeply indebted to her for
teaching me the value of slicing and dicing data and analyzing it for hidden treasures.
It’s a lesson I will carry forward for the rest of my life.

I would like to thank my thesis committee members, Jaime Carbonell and Bhik-
sha Raj. Their insights and critical feedback during the proposal helped me put my
work on a solid foundation. I am extremely grateful to Hetunandan Kamisetty, for
being on my thesis committee. A lot of the ideas in my thesis were built on his
earlier work. He has been a constant presence during my time at grad school, and
was always able to offer a solution whenever I was stuck on a difficult problem. I
would like to thank Kalyan Tirupula and Arvind Ramanathan, who were students in
Judith’s and Chris’s labs, respectively. It was a joy working and learning from them.

I would also like to thank the DNA team at Google, especially my mentor Sam
Gross. I had a very positive experience during my internship at Google and I learned
a lot from both an engineering and a scientific perspective. A major chunk of my
thesis work was done in my final year at CMU, and I owe it to the “get it done”
attitude that I picked up there.

My colleagues and friends at CMU have been a constant source of inspiration
and support. A special mention for Prasanna Muthukumar, Ashwati Krishnan and
Shriphani Palakodety. Several lunches, dinners and tea sessions have facilitated great
discussions and calmed nerves. Warm thanks to Saurabh Basu, my dear friend and
roommate from undergrad and grad school. Pittsburgh has been very kind to me and
my friends in the Explorers Club of Pittsburgh have greatly enriched my experience
here. Thanks to Michael Jehn for sharing his tastefully decorated house with me. I
am very lucky to have a set of loyal friends from my high school days. Thanks to
Krithika Rao, Marimuthu Ram, Rohit Ramachandran and Rose Antony for picking
up my calls and keeping in touch.

Last but not the least, I am grateful to my parents. They have always had high
expectations of me, but more importantly they always believed in me. I would never
have made it this far without the reassurance that they are always there for me.

Funding Acknowledgement: This work was supported by NSF Grant IIS-0905193
and NIH Grant US NIH P41 GM103712. Also, computational resources were pro-
vided through grants from Amazon Web Services and NVIDIA.

viii

Contents

1 Introduction 1
1.1 Summary of Thesis Work . 4
1.2 Thesis Outline . 5

2 Background 7
2.1 Proteins . 7
2.2 Protein Families and Multiple Sequence Alignments 9

2.2.1 Protein Families . 9
2.2.2 Multiple Sequence Alignments . 9

2.3 GPCRs . 10
2.4 Relevant Databases . 11

3 Feature Learning for Predictive Models of Protein Families 13
3.1 Background . 14
3.2 Methods . 15

3.2.1 Gremlin Contact Map . 16
3.2.2 Lasso Regression . 17
3.2.3 Memory and Feature Reduction . 17
3.2.4 Drug Cocktail design . 19

3.3 Experiments and Results . 20
3.3.1 Data description . 20
3.3.2 Feature Transformation - Contact Map Analysis 20
3.3.3 Lasso Regression Model . 22
3.3.4 KL divergence validation . 22
3.3.5 Cocktail Design . 25

3.4 Chapter Summary . 27

4 Markov Random Fields of Protein Families 29
4.1 Inputs and Notation . 30
4.2 Visible Markov Random Fields (VMRFs) . 32

4.2.1 Likelihood . 34
4.2.2 Parameter Learning . 34
4.2.3 Pseudo Log Likelihood Parameter Learning 35
4.2.4 Evaluation . 35

ix

4.2.5 Models . 36
4.3 Hidden Markov Random Fields (HMRFs) . 37

4.3.1 Likelihood . 38
4.3.2 Learning . 38
4.3.3 Evaluation . 39
4.3.4 Models . 39

4.4 Experimental Results . 40
4.4.1 Data Description . 41
4.4.2 Algorithms and Implementation Details 41
4.4.3 Results and Discussion . 42

4.5 Chapter Summary . 46

5 Biological Analysis of Models 49
5.1 Background . 50
5.2 Methods . 53

5.2.1 Gremlin . 53
5.2.2 Dataset Description and Preparation . 54

5.3 Results and Discussion . 56
5.3.1 Bovine Rhodopsin Analysis . 56
5.3.2 A minimal ligand binding pocket . 57
5.3.3 Residues involved in long-range interactions 61

5.4 Chapter Summary . 62

6 Boltzmann Machines of Protein Families 65
6.1 General Boltzmann Machines . 66

6.1.1 Likelihood . 68
6.1.2 Learning . 69
6.1.3 Evaluation . 70

6.2 Restricted Boltzmann Machines (RBMs) . 70
6.2.1 Learning . 71
6.2.2 Evaluation . 72

6.3 Deep Boltzmann Machines (DBMs) . 73
6.3.1 Learning . 74
6.3.2 Evaluation . 75

6.4 Sparse Boltzmann Machines . 76
6.4.1 Models . 77
6.4.2 Sparse Topology Learning using Cholesky Decomposition 80

6.5 Regularization . 85
6.6 Experiments and Results . 88

6.6.1 Data Description . 88
6.6.2 Algorithm and implementation details 89
6.6.3 Results and Discussion . 94
6.6.4 Minfill trick . 100
6.6.5 Discussion of all Generative Models . 102

x

6.6.6 Large Scale experiments . 104
6.6.7 Investigating PF11427 . 117
6.6.8 Chapter Summary . 121

7 Conclusions and Future Work 123
7.1 Summary of Contributions . 123
7.2 Future Directions . 127

A Drug Cocktail Design 129
A.1 Experiments and Results . 129

A.1.1 Data Description and Preparation . 129
A.1.2 Feature Transformation - Contact Map Analysis 133
A.1.3 Feature Reduction Strategies . 134
A.1.4 Cocktail Design . 138

B Markov Random Fields 139
B.1 Results and Discussion . 139

C Biological Analysis of GPCR Features 143
C.1 Methods . 143

C.1.1 Multiple sequence alignment . 143
C.1.2 Model Selection . 143
C.1.3 GPCR structures files . 144
C.1.4 Ligand Binding Pockets . 144
C.1.5 Control Set . 146

C.2 Results and Discussion . 146
C.2.1 Comparison with SCA and GMRC . 146

D Boltzmann Machines 149
D.1 Learning Rules for Multinomial RBM . 149
D.2 Experiments and Results . 150

D.2.1 Summary of all Generative Models . 154
D.2.2 Additional Results Large Scale Imputation Errors 154

Bibliography 159

xi

xii

List of Figures

2.1 HIV-1 Protease . 8
2.2 HIV-1 Reverse Transcriptase . 8
2.3 Protease and Reverse Transcriptase . 8
2.4 Protease Alignment . 10
2.5 Cartoon image of Rhodopsin . 11

3.1 HIV-1 Protease . 16
3.2 HIV-1 Reverse Transcriptase . 16
3.3 Protease and Reverse Transcriptase . 16
3.4 RC data boxplot . 21
3.5 Contact Map Protease . 24
3.6 Scatter plots for Elastic Net model . 25
3.7 KL divergence based validation . 26
3.8 Radius 1 Regret . 27
3.9 Radius 10 Regret . 27
3.10 Cocktail design Regret plots . 27

4.1 MSA and MRF . 31
4.2 Imputation error for ubiquitin for MRF like models 45
4.3 PCA projection hidden representations . 46

5.1 Cartoon of MSA mapped on a MRF . 54
5.2 Distribution of Gremlin edges between different domains 59
5.3 Edge distributions in the minimal ligand binding pockets 60
5.4 Persistent long-range contacts on rhodopsin . 61

6.1 Boltzmann Machines with and without visible units 68
6.2 Restricted Boltzmann Machine (RBM) . 72
6.3 Deep Boltzmann Machine (DBM) . 74
6.4 Comparison of Restricted Boltzmann Machines (RBMs) and Sparse Restricted

Boltzmann Machines (SRBMs) . 78
6.5 Sparse Semi-Restricted Boltzmann Machine (SSRBM) 78
6.6 Convolutional Neural Network . 79
6.7 Locally Connected Deep Boltzmann Machine (LC-DBM) 80
6.8 Converting MRF to RBM using Cholesky Decomposition 83

xiii

6.9 Converting MRF to RBM using min-fill Ordering 86
6.10 Sparse Boltzmann Machine Topology Learning 87
6.11 Cholesky decomposition of ubiquitin MRF param matrix with long range edges . 96
6.12 Cholesky decomposition of ubiquitin MRF param matrix with short and long

range edges . 98
6.13 Summary of MRFs and Boltzmann Machines 102
6.14 Largescale Imputation Error . 106
6.15 Gain vs Seqlen . 107
6.16 Largescale Imputation Error . 108
6.17 Largescale Random Multicolumn Imputations 109
6.18 Largescale Random Multicolumn Imputations 110
6.19 Largescale Bound Multicolumn Imputations . 114
6.20 Largescale surface Multicolumn Imputations . 115
6.21 Largescale core Multicolumn Imputations . 116
6.22 Histograms of the activation of the hidden nodes with and without dropout. The

x-axis is a measure of the activation strength. The y axis counts the number of
nodes with a particular activation strength. 118

6.23 Number of strong connections for top 500 and top 1000 edge weights. The x-axis
measures the number of interactions modelled by a hidden node. The y-axis is a
count of the number of hidden nodes that model k interactions. 119

6.24 Projecting hidden layer representations onto two dimensions using PCA and col-
oring by the number of gaps for ubiquitin. An interesting progressive coloring
pattern emerges. 120

A.1 Protease . 130
A.2 Reverse Transriptase . 130
A.3 Distribution X chars . 130
A.4 Col 71 Protease . 131
A.5 Column 90 Protease . 131
A.6 Visualizing feature Differences . 131
A.7 Zipf Protease . 132
A.8 Zipf Reverse Transcriptase . 132
A.9 Zipf plots . 132
A.10 Contact Map Reverse Transcriptase . 133
A.11 Feature Selection NNRTI Inhibitor . 134
A.12 Feature Selection Protease Inhibitor Bar . 135
A.13 Feature Selection NRTI Bar . 136
A.14 Feature Selection NNRTI Inhibitor Bar . 137
A.15 Radius 1 Accuracy . 138
A.16 Radius 10 Accuracy . 138
A.17 Cocktail design accuracy plots . 138

B.1 Negative log likelihood for ubiquitin and PDZ 139
B.2 Imputation error for PDZ for MRF like models 142

xiv

D.1 Cholesky decomposition of PDZ MRF param matrix with long range edges . . . 152
D.2 Cholesky decomposition of PDZ MRF param matrix with short and long range

edges . 153
D.3 Summary of MRFs and Boltzmann Machines 155
D.4 Largescale Bound Multicolumn Imputations . 156
D.5 Largescale surface Multicolumn Imputations . 156
D.6 Largescale core Multicolumn Imputations . 157
D.7 Largescale Random Multicolumn Imputations 157
D.8 Largescale Random Multicolumn Imputations 158

xv

xvi

List of Tables

1.1 Evolution of Generative Models from Visible MRFs to Boltzmann Machines . . . 3

3.1 Train and Test Errors for Lasso . 23

4.1 Visible and Hidden Markov Random Fields . 30
4.2 A normal caption . 33
4.3 A normal caption . 40
4.4 Imputation error ubiquitin : Models trained using log likelihood and loopy belief

propagation . 43
4.5 Imputation error ubiquitin : Models trained using log likelihood and loopy belief

propagation using 4 hidden states. Doubling the number of states in the hidden
nodes, has no significant improvement in performance 43

4.6 Imputation error ubiquitin : Models trained using pseudo log likelihood 44

5.1 Comparison of edge distribution from control set and Gremlin 55
5.2 List of top ranked residues and the most persistent edges 63

6.1 Summary of Boltzmann Machine models . 67
6.2 Hyperparameters Boltzmann Machines . 91
6.3 Imputation error ubiquitin PF00240 . 95
6.4 Imputation error ubiquitin RBM and DBM . 95
6.5 Imputation error ubiquitin SRBM and SSRBM (long edges) 97
6.6 Imputation error ubiquitin SRBM and LC-DBM (long edges) 97
6.7 Imputation error ubiquitin SRBM and SSRBM (short plus long edges) 99
6.8 Imputation error ubiquitin SRBM and LC-DBM (short plus long edges) 99
6.9 Min fill trick . 101
6.10 Thresholding Cholesky . 101
6.11 10 additional families - Variety in depth, width and structural type 105
6.12 Extracting Important Residues Positions from Protein Families. Associated PDB

structures, ligands and binding interfaces. 112
6.13 Additional Families - Number of important residues according to each category . 113
6.14 Block Imputation PDZ . 117

B.1 Imputation error PDZ : Models trained using log likelihood and loopy belief
propagation . 141

B.2 Imputation error PDZ : Models trained using pseudo log likelihood 141

xvii

C.1 Comparison of edges reported in SCA and GMRC 147

D.1 Imputation error PDZ PF00595 . 151
D.2 Imputation error PDZ RBM and DBM . 151
D.3 Imputation error PDZ SRBM and SSRBM (long edges) 152
D.4 Imputation error PDZ SRBM and LC-DBM (long edges) 153
D.5 Imputation error PDZ SRBM and SSRBM (short plus long edges) 154
D.6 Imputation error PDZ SRBM and LC-DBM (short plus long edges) 154

xviii

Chapter 1

Introduction

Proteins are tiny molecular machines and are essential for life amongst all organisms. They are

involved in signal transduction, structural components, transport, catalysis, immune response,

etc. The function of a protein is governed by its three dimensional structure which in turn is

governed by its protein sequence. A protein sequence consists of a chain of amino acids ranging

anywhere between a handful to several hundred amino acids in length. Each amino acid belongs

to an alphabet of 20 characters and this leads to an exponential number of possible protein se-

quences that can exist in nature. It is much more expensive to obtain the three dimensional crystal

structure of a protein than its protein sequence. As a result the number of protein sequences in

public databases far outnumbers the protein structures.

Evolutionarily related proteins known as a protein family, generally have similar sequences,

structures, and functions. The statistical patterns within the sequences comprising a protein

family can provide insights into the constraints that determine structure and function. These

sequences are typically arranged in a data structure known as a multiple sequence alignment

(MSA). A multiple sequence alignment will be the standard form of the data that we will deal

with in this thesis.

Generative models of protein families are often learnt from multiple sequence alignments

1

[4, 42, 49]). The popularity of generative models is due in part to the fact that they can be used

to perform important tasks such as structure and function classification (e.g., [42]) and to design

new protein sequences (e.g., [4, 84]) such as antibodies for vaccines [91].

Additionally, predictive models of protein families can also be learnt from multiple sequence

alignments. Such predictive models can be used to map sequence to vectors of real or categor-

ical values with applications ranging from predicting fitness values, predicting binding partners

to determining if a protein will fold or remain disordered. Predictive models directly learn a

function f : X → y where X are the predictors and y are the values to be predicted. Predictive

models differ from generative models in that they do not attempt to learn a joint distribution of

the data P (X , y) or do density estimation of the input data P (X).

Unfortunately, despite decades of research, such models still have limitations in terms of

predictive accuracies, possibly due to the hand-crafted features used in their construction. Ex-

isting models of protein sequence families make strong assumptions, require prior knowledge or

severely limit the representational power of the models. In this thesis, we will learn and evaluate

effective predictive and generative models of protein sequence families. We will do so by (1)

large-scale feature selection for predictive models and (2) learning rich feature representations

via undirected graphical models for generative models.

Figure 1.1 summarizes the generative models in the thesis at a quick glance. We learn in-

creasingly complex models of protein families starting with Visible Markov Random Fields con-

tinuing on to Hidden Markov Random Fields and finally culminating in Boltzmann Machines.

These models will be described in detail in subsequent chapters.

2

Visible Markov Random Fields

Independent Visible MRF
v1 v2 v3 v4

Linear Visible MRF
v1 v2 v3 v4

General Visible MRF

v1

v2

v3

v4

Hidden Markov Random Fields

Linear Hidden MRF
v1 v2 v3 v4

h1 h2 h3 h4

General Hidden MRF

v1

v2

v3

v4

h1

h2

h3

h4

Boltzmann Machines

Restricted Boltzmann Machine
v1 v2 v3 v4

h1 h2 h3 h4 h5

Deep Boltzmann Machine
v1 v2 v3 v4

h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

Locally Connected
v1 v2 v3 v4

h11 h12 h13

h21 h22 h23

Table 1.1: Evolution of Generative Models from Visible MRFs to Boltzmann Machines

3

1.1 Summary of Thesis Work

In this thesis we learn and evaluate effective predictive and generative models of protein sequence

families. The following are the principal contributions:

• Large scale feature selection for predictive models. We address this in the context of

designing drug cocktails against HIV-1 infection. We work with a large dataset consisting

of around 70,000 HIV-1 protease and reverse transcriptase sequences. We successfully

scale our regression model and provide strategies for designing cocktails of drugs robust

to mutations.

• Visible and Hidden Markov Random Fields of protein sequence families. We present a

framework for modelling protein families as a series of increasingly complex models using

Markov Random Fields (MRFs). We note that latent variable models with cycles fail

to learn effective models thus motivating the need for special architectures which allow

efficient inference even in the presence of latent variables.

• Feature interpretation of GPCRs. We extend the utility of the MRFs beyond generative

metrics by introspecting and interpreting the learned features for biological significance.

We study allostery in G Protein Coupled Receptors (GPCRs) and identify networks of

co-evolving residues, a minimal binding pocket and long range interactions.

• Restricted and Deep Boltzmann Machines of protein sequence families. We develop the

first Restricted Boltzmann Machines (RBMs) and Deep Boltzmann Machines (DBMs) for

protein sequence families. We demonstrate that these models significantly outperform their

Markov Random Field counterparts in terms of imputation error.

• Sparse Boltzmann Machines of protein sequence families. We introduce Boltzmann Ma-

chines with sparse topologies and provide a strategy for learning their sparse structures.

We note that the sparse Boltzmann Machines perform similar to MRFs thus reinforcing

our hypothesis that non-sparse Boltzmann Machines are critical for modelling the com-

4

plex relationships inherent in protein families.

1.2 Thesis Outline

Chapter 2 introduces relevant biology background for the thesis. We describe protein sequences

and their three-dimensional structures. We also define protein families, their structural and evo-

lutionary relationships. Finally we illustrate how multiple sequence alignments can be used to

store sequences belonging to a protein family.

In chapter 3, we look at a feature selection for predictive models by addressing feature selection

in the context of large scale data. We address the problem of drug cocktail design against HIV-1

infection. We work with a large dataset consisting of around 70,000 HIV-1 protease and reverse

transcriptase sequences annotated with fitness values after administering 15 anti-retroviral drugs.

We learn a regression model that models the sequence-fitness landscape. The regression model

is then used to design a personalized cocktail of drugs that is robust to mutations arising in the

viral sequence. They key challenge in this approach was scaling up our regression models to this

large dataset and selecting discriminatory features.

In chapter 4, we formally introduce unsupervised feature learning for generative models of pro-

tein sequence families. We describe undirected graphical models also known as Markov Ran-

dom Fields (MRFs). We introduce the notation, models, learning algorithms and evaluations

techniques for MRFs. We further make a distinction between Visible Markov Random Fields

(VMRFs) and Hidden Markov Random Fields (HMRFs) depending on whether they contain

latent variables. We show that despite the greater representational power of HMRFs, they are

unable to learn effective models due to poor inference properties. This sets up the motivation for

5

densely connected yet learneable generative models described in the next chapter.

In chapter 5, we study the problem of feature interpretation in an unsupervised setting. We ex-

plore signal transduction in G protein coupled receptors (GPCRs) ; which relay signals across

cell membranes. We identify networks of co-evolving residues from multiple sequence align-

ments by learning the topology of a Markov Random Field trained on GPCR sequences. We

find that pairwise interactions containing residues in the ligand binding pocket are enriched. An

analysis of these interactions reveals a minimal GPCR binding pocket containing four residues

(T1183.33, M2075.42, Y2686.51 and A2927.39). Additionally, the ten residues predicted to have

the most long-range interactions, are also part of the ligand binding pocket. This suggests that

the activation in rhodopsin (a canonical GPCR) involves these long-range interactions between

extracellular and intracellular domain residues mediated by the retinal domain.

In chapter 6, we approach the problem of learning rich feature representations using unsupervised

generative models. A good representation can be understood as one that models the posterior

distribution of the latent factors for an observed input. We focus on architectures comprising of

single or multiple layers of hidden layers which operate via non-linear transformations of the

data. We hypothesise that these architectures are good candidates for modelling protein families

given the complex factors underlying the evolutionary processes in proteins. We employ energy

based graphical models known as Boltzmann Machines and characterize them both theoretically

and experimentally.

Specifically, we employ Restricted Boltzmann Machines (RBMs), Deep Boltzmann Machines

(DBMs) and find that they outperform MRFs using a variety of generative metrics. We also in-

troduce sparse versions of Boltzmann Machines viz. Sparse Restricted Boltzmann Machines

(SRMBs) and Locally Connected Deep Boltzmann Machines (LC-DBMs) as a tradeoff between

model complexity and representational power. We introduce a sparse MRF to sparse RBM map-

ping in order to create the sparse Boltzmann Machines.

6

Chapter 2

Background

In this chapter, we introduce the relevant background material. Throughout this thesis we make

references to proteins, protein sequences, protein families, multiple sequence alignments and

protein structures. This section attempts to briefly introduce these concepts, such that the reader

can follow most of the biological terms used. Finally, we also provide a summary of the databases

referred to in this thesis.

2.1 Proteins

Proteins are organic macromolecules that function as molecular machines. They perform a vari-

ety of different functions in living beings such as catalysis, transport, signal transduction, struc-

tural support, immune response, etc. The function of a protein is determined by its structure

which in turn is determined by its sequence.

Proteins consist of long chains of amino acids. Amino acids are organic compounds contain-

ing an amino group (−NH2) and a carboxyl (−COOH) functional group along with a unique

side chain specific to the amino acid. There are 20 principal types of amino acids denoted by a

single letter. These are Alanine (A), Arginine (R), Asparagine (N), Aspartic Acid (D), Cysteine

(C), Glutamic Acid (E), Glutamine (Q), Glycine (G), Histidine (H), IsoLeucine (I), Leucine (L),

7

Lysine (K), Methionine (M), Phenyalanine (F), Proline (P), Serine (S), Threonine (T), Trypto-

phan (W), Tyrosine (Y) and Valine (V). Amino acids in the protein are also referred to as residues

and we will make this reference throughout the thesis.

The chain of amino acids is known as the primary sequence of the protein. Note that a protein

sequence consisting of N amino acids can have 20N possible combinations. The chain folds in

three dimensional space and adopts both local and global shapes. The local shapes are known

as the secondary structure of the protein consisting of α-helices, β-sheets and loops. The global

shape of the protein is known as the tertiary structure of the protein. Note that when we refer to

protein structure in this thesis we will be referring to the tertiary structure of a protein.

See Figure 2.3 for examples of two proteins. Figure 2.1 shows the structure of HIV-1 Protease,

a protein which functions as molecular scissors by cutting other proteins. Figure 2.1 shows the

structure of HIV-1 Reverse Transcriptase, a protein which functions converts RNA to DNA and

is critical for the HIV-1 infection process in humans.

Figure 2.1: HIV-1 Protease Figure 2.2: HIV-1 Reverse Transcriptase

Figure 2.3: The structures of HIV-1 Protease (pdb:1A30) and HIV-1 Reverse Transcrip-

tase(pdb:1DLO)

8

2.2 Protein Families and Multiple Sequence Alignments

2.2.1 Protein Families

Evolutionarily related proteins tend to have similar sequences, structures and functions. Similar

groups of sequences can be organized in entities known as protein families. The sequences

belonging to a protein family typically tend to have similar patterns also known as its sequence

profile. Learning predictive and generative models of protein families will be the major thrust of

study in this thesis.

2.2.2 Multiple Sequence Alignments

Groups of protein sequences, especially those belonging to a protein family are typically arranged

in a data structure known as a Multiple Sequence Alignment (MSA). A MSA resembles a matrix

where the rows correspond to the individual protein sequences whereas the columns correspond

to the amino-acid positions. See figure 2.4 for an example of a multiple sequence alignment.

Positions in the MSA which do not have any amino acids in them are represented by dashes and

are known as gaps.

In this thesis, we will download and use pre-created MSAs of protein families. Nevertheless,

it is useful to know how MSAs are created. MSAs are usually created by grouping together

similar sequences and then aligning them by a dynamic programming algorithm with a custom

insertion/deletion and substitution matrix. BLAST and PSI-BLAST [2] are common tools for

fetching sequences from protein sequence databases such as Uniprot [15].

Figure 2.4 shows a sample multiple sequence alignment (MSA) of HIV-1 Protease containing 10

sequences. The rows corresponds to the sequence and the columns correspond to the amino acid

positions in the protein sequence. This is a rather small alignment compared to the size of the

9

MSAs we will deal with in this thesis which contain thousands of sequences.

Region of sequence conservation︷ ︸︸ ︷
03-124632 LWQRPLVTIKVGGQLKEALLDTGADDTVLEDMSLPGRWKPKMIGGIGGFI 54
07-153531 LWQRPLVTIKIGGQLKEALLDTGADDTVLEDIELPGRWKPKMIGGIGGFL 54
05-150732 LWQRPIVNIKVGGQPMEALLDTGADDTVLEDISLPGKWKPKMIGGIGGFV 54
07-104836 LWQRPLVSIKVGGQLKEALLDTGADDTVLEEMNLPGRWKPKMIGGIGGFI 54
02-126463 LWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKMIGGIGGFI 54

03-124632 KVRQYDQIQVEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNF 99
07-153531 KVKQYDQIPIEICGHKAVGTVLVGPTPVNIIGRNLLTQIGCTLNF 99
05-150732 KVRQYDQVPIEICGRKILSTVLVGDTPVNVVGRNLMTQLGCTLNF 99
07-104836 KVRQYDQILIEICGHKAVGTVLVGPTPVNIIGRNLLTQIGCTLNF 99
02-126463 KVRQYDQVPIEICGHKAIGTVLVGPTPVNIIGRNLLTQLGCTLNF 99︸ ︷︷ ︸

Region of sequence diversity

Figure 2.4: A Multiple Sequence Alignment (MSA) of HIV-1 Protease containing 10 sequences.

The rows corresponds to the sequence and the columns correspond to the amino acid positions

in the protein sequence.

2.3 GPCRs

We briefly introduce G Protein Coupled Receptors (GPCRs) since they are discussed further

in Chapter 5. In particular, we are interested in Rhodopsin a light signal transmitter. GPCRs

are transmembrane proteins i.e. they are embedded in the cell membrane. They act as signal

transducers by transmitting signals from outside the cell (extracellular region) to inside the cell

(intracellular region). See figure 2.5 for an illustration of rhodopsin embedded in the cell mem-

brane.

Rhodopsin has a region near its extracellular region known as the binding pocket where small

molecules called ligands bind in order to facilitate the signal transduction. The ligand that binds

in the ligand binding pocket is called retinal.

10

Figure 2.5: Cartoon image of Rhodopsin, a GPCR. It consists of seven transmembrane helices

embedded in the cell membrane. The external face of the GPCR is known as the extracellular

domain whereas the face pointing inside the cell is known as the cytoplasmic domain

2.4 Relevant Databases

In this section we briefly describe the databases referred to in this thesis and the content stored

in them.

Gremlin Webserver (http://gremlin.bakerlab.org/) is a webserver maintained by

Baker lab at the University of Washington. It provides a curated list of alignments and predictions

of pairs of co-evolving residues identified by running the GREMLIN [4] algorithm.

PDB - Protein Data Bank (http://www.rcsb.org/) is the default repository of three di-

mensional structures of proteins and peptides. The structures are referred to by a PDBid for e.g.

the PDBid of a HIV-1 reverse transriptase structure is 1DLO.

GPCRDB (GPCR database) (http://www.gpcr.org/7tm/) is the primary resource for

information for G Protein Coupled Receptors. It includes sequence, structure, ligands, taxonomy

11

http://gremlin.bakerlab.org/
http://www.rcsb.org/
http://www.gpcr.org/7tm/

and other related information.

Uniprot (Universal Protein Resource) (http://www.uniprot.org/) is an extremely ex-

haustive resource of proteins. It contains protein sequences, taxonomies, structures, etc. It also

lists a number of cross-references of proteins to other useful databases.

12

http://www.uniprot.org/

Chapter 3

Feature Learning for Predictive Models of

Protein Families

Predictive models directly learn a function f : X → y where X are the predictors and y are

the values to be predicted. Predictive models differ from generative models in that they do not

attempt to learn a joint distribution of the data P (X, y) or do density estimation of the input

data P (X). Depending on the task, a number of different predictive models exist such as Lin-

ear Regression, Logistic Regression, Support Vector Machines, Artificial Neural Networks, etc.

Regardless of the chosen predictive model, the form of the feature space is important. In partic-

ular, the data pre-processing steps of feature transformation and feature selection are critical to

successful application of the predictive model for the machine learning application.

We will illustrate some of these feature transformation and feature selection strategies in the

context of learning predictive models of protein sequence families. We will use the problem of

drug cocktail design against HIV-1 infection both as an illustrative example and a novel appli-

cation. We focus the application of our methods on a large dataset consisting of around 70,000

HIV-1 protease and reverse transcriptase sequences annotated with fitness values after adminis-

tering each of the 15 anti-retroviral drugs. Specifically, we learn a regression model that models

the sequence-fitness landscape. The regression model is then used to design a personalized cock-

13

tail of drugs that is robust to mutations arising in the viral sequence. They key challenge in this

approach was scaling up our regression models to this large dataset and selecting discriminatory

features. We accomplish this by employing several feature reduction strategies.

3.1 Background

HIV-1 (Human Immunodeficiency virus) is a retrovirus that causes AIDS in humans. HIV-1

infects humans by attacking CD4+ T cells and then releasing the contents of its viral capsid

into the cytoplasm. These comprise a RNA payload and several helper viral proteins such as

protease and reverse transcriptase. Figure 3.1 and figure 3.2 show the structures of protease

and reverse transcriptase, respectively. Protease and reverse transcriptase are often targets of

anti-retroviral drugs. These drugs often belong to three major classes - (i) Protease Inhibitors

(PI) (ii) Nucleoside Reverse Transcriptase Inhibitors (NRTI) and (iii) Non-Nucleoside Reverse

Transcriptase Inhibitors (NNRTI). However, The HIV virus has low fidelity and mutates rapidly

upon selective pressures such as the presence of anti-retroviral drugs. A common strategy is

to administer a cocktail of drugs to account for all mutation scenarios. However, this all-out

strategy is suboptimal and has several drawbacks such as early immunity, increased dosage and

added expense.

In order to prescribe a regimen of drugs to combat HIV-1, the key resource needed is a

drug cocktail design scheme which models the viral sequence-fitness landscape. We work with

a HIV-1 sequence dataset [67] containing around 70,000 HIV-1 protease and reverse transcrip-

tase sequences from HIV-1 subtype B infected individuals undergoing routine drug resistance

testing. Each of these sequences was annotated with a replication coefficient value (RC) that

corresponds to the fitness of a viral sequence under the administration of 15 different drugs. We

then proceeded to learn a multivariate regression model that maps protein sequences to the RC

values. This subsequently allows us to create a drug cocktail design method robust to resistance

mutations.

14

Previously, Hinkley et al. [29] studied the same dataset with goal of learning a regression

model as well. They used a Generalized Kernel Regression model (GKRR) and used single

amino acid as well as intra/intergenic pairwise mutations as their features. They mention that

they would have preferred to use the sparsity inducing lasso regression model [86] had but were

unable to scale because of the size of the dataset. For validation they report the percentage-

deviance and not RMSE between predicted and actual values since their model does not optimize

for RMSE. They also report the non-normality of RC values and transform it using the square-

root transform before learning the GKRR model. They followed it up with [46, 47] where they

explore the complexity of the sequence-fitness landscape using random walks.

We solve the lasso scaling problem using a variety of strategies including sparse matrix vec-

torization and feature reduction strategies with theoretical guarantees such as strong rules [87]

(defined in section 3.2.3). Additionally, we employ the lasso regression model in a method for

designing drug cocktails robust to HIV mutations. We define a quasi-species which uses the

predicted RC values from a neighbourhood of allowed mutations to simulate a worst-case out-

come. This provides helps insure the patient against mutations using the available budget of

drugs. Previously, Kamisetty et al. [40] developed Gamut, a drug cocktail design method and

posed the drug cocktail design problem as a graphical game. We note that a regression model

is a necessary component of Gamut as well. We validate our predicted drug cocktails on a held

out test data set using regret analysis commonly used in multi-armed bandit problems [50]. We

find that our cocktail design method compares favorably against a variety of competing baseline

strategies under a limited budget setting.

3.2 Methods

In this section we expand upon the feature transformation and feature reduction strategies used.

We detail the RC value tranformation using (i) Gremlin (ii) lasso regression (iii) the various fea-

ture reduction schemes involving marginal regression (iv) El Ghaoui and strong rules (v) sparse

15

Figure 3.1: HIV-1 Protease Figure 3.2: HIV-1 Reverse Transcriptase

Figure 3.3: The structures of HIV-1 Protease (pdb:1A30) and HIV-1 Reverse Transcrip-

tase(pdb:1DLO)

matrices and (vi) the drug cocktail design strategy. The experiments and results are discussed in

3.3.

3.2.1 Gremlin Contact Map

The RC values are approximately proportional to a monontonic function of the concentration

of viral particles in the patient [46]. However, the exact form of the monotonic function is not

known. It is important to know the form of the monotonic function since it allows us to estimate

the relative abundance of viral sequences in-vivo. Additionally, this monotonic function might

define a kernel space in which deviations are Gaussian distributed, thus allowing application of

l2 loss based regression methods [86].

Gremlin [41] is an accurate method to predict the pairwise amino acid contacts also known as

the contact map of a protein, using just the sequence alignment of the protein. Given the inherent

difficulty in predicting protein contact maps [18], we can leverage Gremlin to be used as an in-

dependent validation technique for selecting amongst candidate monotonic function transforms.

16

Additionally, we also examine the Gaussianity of the transformed data using Skew and kurtosis

metrics. Based on evidence from the Gremlin contact map and the Gaussianity tests, we choose

“square root” as the appropriate monotonic transform.

3.2.2 Lasso Regression

Lasso is a shrinkage regression and selection model [86]. We used a modified version of the

lasso called an elastic net model which has an additional L2 loss term. The elastic net solves the

following optimization problem.

min
w
L(w) =

1

2ntrain
‖Xw − y‖2

2 + αρ|w|1 +
α(1− ρ)

2
‖w‖2

2

Here ntrain is the number of training sequences, X is the sparse design matrix which is

an indicator matrix consisting of single and pairwise amino acid features, w are the regression

parameters, y is the transformed RC values, α ≥ 0 is the regularization penalty, 0 ≤ ρ ≤ 1 is

the tradeoff between the L1 and L2 loss. The regularization penalty α, is chosen by 5-fold cross

validation on a held out validation set. ρ is set to 0.9 thus encouraging sparsity. We use the lasso

implementation from scikit-learn [66] since it supports sparse design matrices.

3.2.3 Memory and Feature Reduction

In this section we discuss the strategies taken towards memory footprint reduction and pre-

selecting features before the application of lasso.

Occurence Filtering

This is similar to the approach taken in the GKRR paper [29]. We restrict the possible single

and pairwise amino acid features to the ones that appeared at least 10 times in the dataset. This

shrinks the possible set of features from 35900046 to 517660.

17

Marginal Regression

Using single and pairwise amino acid features alone, a sequence s1s2 · · · sp can have 2p+(p
2)

possible feature functions. This is a prohibitively large space to enumerate. Marginal regression

is a heuristic that enumerates only
(
p
2

)
feature functions by defining the feature space to consist

of all single amino acid features and one pairwise feature {i < j ∈ (1, . . . p) : s1, s2, . . . , sp, sij}.

This restricted feature space is regressed against the output y. Pairwise sij features with large

magnitudes are then selected since they are likely to be predictive of y.

Strong Rules

El Ghaoui et al. proposed SAFE rules [26] as a technique for discarding predictors in lasso re-

gression. It involves taking dot products between each predictor and the outcome and provably

discarding predictors that don’t pass a fixed threshold. Strong Rules [87] was proposed by Tib-

shirani et al. as a technique that improves upon SAFE rules and discards several more predictors.

Consider the Lasso problem

min
w

1

2
‖Xw − y‖2

2 + α‖w‖1

where X is a N × p matrix of predictors with ith row xi and jth column xj .

The SAFE rule would discard the jth predictor if

|xTj y| < α− ‖xj‖2‖y‖2
αmax − α
αmax

where αmax = maxi |xj
Ty| is the smallest penalty value at which all the coefficient are zero.

Strong Rules would discard a predictor if

|xTj (y −Xwαk−1
)| < 2αk − αk−1

where α1 ≥ α2 ≥ · · · ≥ αm is a grid of penalty values and wαk−1
are the parameters of the

regression model at penalty αk−1.

18

We use both SAFE and strong rules for filtering out features. We use a slightly different

version of strong rules. In the original strong rules paper, the design matrix is required to be

mean-centered and normalized. However, centering would destroy the sparse matrix property

(see 3.2.3). So we build the feature set by iteratively growing the feature set starting from the

strictest penalty.

Sparse Matrices

We note that the majority of elements in the design matrix are zero. This allows us to represent

the design matrix as a sparse matrix, thus keeping the entire matrix in memory. However, the

gradient update calculations in lasso can no longer be vectorized and require an iterative update.

We feel that this is a worthwhile space-time tradeoff.

3.2.4 Drug Cocktail design

In this section, we stipulate the strategies to choose drug cocktails given a new test sequence. We

also define relevant metrics for evaluating the predicted cocktails.

Cocktail Design Strategies

• Min-Strategy - Pick drug cocktail based on predicted RC suppression from our regression

models.

• MinMax-Strategy - Pick drug cocktail based on worst case predicted RC suppression from

our regression models allowing sequence to mutate.

• MinExp-Strategy - Pick drug cocktail based on expected predicted RC suppression from

our regression models allowing sequence to mutate.

• LowestMean-Strategy - Pick drug cocktails based on overall mean RC suppression statis-

tics without using regression models.

19

• Random-Strategy - Pick a random drug cocktail.

Evaluation

• Regret - Measured as the average RC value difference between the best choice of drug

cocktail in hindsight and what our strategy chose. (The lower the better)

• Accuracy - Retrieval of the RC value presented by the best drug cocktail. (The higher the

better)

3.3 Experiments and Results

In this section, we describe the dataset and data preparation protocols. We also describe the

experimental setup and results from contact map based feature transformation, feature reduction,

lasso regression model and drug cocktail design studies.

3.3.1 Data description

The protein sequence dataset was obtained from Monogram Inc [67]. The dataset after cleaning

contains 71, 091 HIV protease and reverse transcriptase sequences. The protease alignment had a

width of 99 columns while the reverse transcriptase alignment had a width of 305 columns. Each

of the sequences is annotated with 16 real non-negative Replication Coefficient (RC) values (15

drugs + 1 non-drug).

See Appendix A.1.1 for a detailed description of the data and the data preparation protocol.

3.3.2 Feature Transformation - Contact Map Analysis

The motivation and methods for the feature transformation scheme is described in section 3.2.1.

Figure 3.5 shows the contact map precision after applying gremlin to a 10,000 protease align-

ment. The 15 different drugs on the X axis organized according to drug type (PI, NRTI, NNRTI).

20

Figure 3.4: A boxplot of the RC data distribution

The X axis lists all the monotonic function transformations used (norc - no weighting, raw-

untransformed RC, sqrt - square root, ak - RC1/k for k ∈ {1 . . . 10}, log and log log). See

Figure A.10 for the contact map precision plot for the reverse transcriptase alignment.

We make the following observations. For gremlin trained on protease : Protease Inhibitors

(PIs) are enriched (redder) as compared to NRTI and NNRTI. For gremlin trained on reverse

transcriptase: NNRTIs are enriched when compared to NRTI. A reasonable hypothesis for this

result is that NNRTIs function by binding to RT and hence depend on the 3D structure of RT.

NRTIs on the other hand do not bind to RT. They supply fake nucleotides which RT uses to

convert RNA to DNA. Hence NRTIs do not need the 3D contact information of RT in order to

be effective. This also might explain why the contact map of NNRTIs is much better predicted

than NRTIs. The contact map analysis indicates for most drugs that square root transformation

21

works fine. We note that the cube root is better in some cases but we decided to go with the

square-root transformation to stay consistent with the GKRR study and also because it reduces

the skew and kurtosis of the distribution to make it more Gaussian-like. Note, that the authors in

the GKRR study [29] do not provide an independent validation of their choice of square-root as

the monotonic RC transform.

All further analysis was done after taking the square root of the RC values.

3.3.3 Lasso Regression Model

We define s20 as the strongest 20K features selected using strong rules. The s20 pre-selected

features are used to learn elastic net models from the entire 50K training+validation dataset. We

test on the 21, 091 test sequences which have so far never been touched. Overall, 16 (15 drug +

1 drug free) regression models are learned. The train error, test error and standard deviation of

the data is shown in Table 3.1. We note that the train and test error are consistent indicating that

there is no overfitting. Also, the test error is lower than the standard deviation of the RC values.

The standard deviation itself acts as a baseline method which predicts the mean every time. See

figure 3.6 for the scatter plot of predicted vs actual RC values from the regression model.

3.3.4 KL divergence validation

The RC values can be used to compute a weighted histogram of the residue types at each posi-

tion. This gives a distribution over amino acids based on the weighting scheme. We compute

a KL divergence between pairs of distributions. See figure 3.7 for the different KL divergence

comparisons. Pred-Real(i.e. Predicted RC and Actual RC) ; Mean-Real(i.e.Mean RC and actual

RC) ; Nodrug-Real(i.e. Drug Free RC and Actual RC). A low KL divergence indicates that the

distributions agree with each other. Indeed, Pred-Real has the lowest KL divergence when com-

pared to the other cases. This further instils confidence that our models are extracting valuable

22

Drug Train Err Test Err Std. Dev

N 1.4874 1.4869 1.9298

Q 1.6573 1.6614 2.0813

E 1.5513 1.5557 2.0390

G 1.8196 1.8162 2.2759

I 1.7078 1.7242 2.2021

L 1.5800 1.5802 2.0508

A 1.8593 1.8529 2.5843

R 1.4910 1.4841 1.8949

K 1.0006 0.9999 1.2267

M 1.4011 1.3993 1.8895

F 1.1123 1.0972 1.2946

P 1.0718 1.0595 1.1816

D 2.1877 2.1809 2.9369

C 2.2190 2.2093 3.0092

H 2.2931 2.2816 3.0946

NONE 2.4816 2.4581 2.9791

Table 3.1: RMSE Training and Testing Errors using Lasso

23

Figure 3.5: Contact Map Analysis: The 15 different drugs on the X axis organized according to

drug type (PI, NRTI, NNRTI). The X axis lists all the transformations used (norc - no weighting,

raw- untransformed RC, sqrt - square root, ak - RC1/k for k ∈ {1 . . . 10}, log and log log) The

colorbar corresponds to the precision for contact map recovery using the gremlin method. The

top 200 and top 300 edges were chosen for visualization purposes. We observe that there are

distinct bands according to drug type. For Protease, PIs are enriched (redder) as compared to

NRTI and NNRTI. For RT, NNRTIs are enriched when compared to NRTI.

signal from the data and predicting the right outputs.

24

Figure 3.6: Scatter plots using test data for Elastic Net Model trained on 50K training sequences

using S20 strong rules features. The color denotes edit distance from the root of a phylogenetic

tree of the test sequences.

3.3.5 Cocktail Design

In section 3.2.4 we described the different drug cocktail design strategies. In this section, we

evaluate those predictions. We consider the following drug cocktail budgets - Each-3 refers to

a choice of a single drug from each drug type (PI,NRTI,NNRTI). Any-k refers to a choice of

any k ∈ {1, 2, 3, 4, 5} drugs from among the 15 drugs used in the study. We also consider

the following scenarios - Radius-k for k ∈ {1, 2, 5, 10}. These scenarios depict differing viral

mutational proclivities ; Radius-k stipulates that the viral sequence is allowed to mutate upto k

mutations away. The evaluation is done on held out test sequences and those within its k-radius

edit distance neigbhorhood.

Figure 3.8 shows the comparison between the different cocktail design strategies using regret

25

Figure 3.7: The RC values are used to compute a weighted histogram of the residue types at

each position. This gives a distribution over amino acids based on the weighting scheme. We

compute a KL divergence between pairs of distributions. Pred-Real:Predicted RC and Actual RC

; Mean-Real: Mean RCand actual RC ; Nodrug-Real: Drug Free RC and Actual RC. A low KL

divergence indicates that the distributions agree with each other.

analysis. The X axis contains shows the different drug cocktail choices. The plot on the left (Ra-

dius 1) allows only point mutations while plot on the right (Radius 10) allows the test sequence

to mutate up to 10 mutations. MinExp, MinMax and Min Strategies all use our lasso regression

model. We observe that for limited budgets (upto 3 drugs) our strategies outperform the com-

peting baseline. This suffers with increasing mutational load, but the trend generally holds. This

allows us to conclude that our cocktail design method can be used for personalized medicine

under a limited budget (upto 3 drugs) and is robust to viral mutations. When a greater budget of

drugs is available it makes sense to use overall drug wise statistics as opposed to personalized

sequence based suggestions.

26

See appendix figure A.15 for a comparison between the different cocktail design strategies

using accuracy as a metric.

Figure 3.8: Radius 1 Regret Figure 3.9: Radius 10 Regret

Figure 3.10: The X axis contains shows the different drug combination choices. Each-3 refers

to a choice of a single from each drug type (PI,NRTI,NNRTI). Any-k refers to a choice of any k

drugs from among the 15 drugs in the study. The Y axis shows the regret obtained in hindsight

in choosing a drug combination when compared with the best possible outcome. The plot on

the left (Radius 1) allows only point mutations while plot on the right (Radius 10) allows the test

sequence to mutate up to 10 mutations. MinExp, MinMax and Min Strategies are all derived from

our lasso regression model. We observe that for limited budgets (upto 3 drugs) our strategies

outperform the competing baseline. This suffers with increasing mutational load however the

trend generally holds.

3.4 Chapter Summary

In this chapter, we examined learning large scale predictive models of protein sequence families.

We were able to scale the Lasso regression model to the entire HIV-1 dataset which the previ-

ous authors Hinkley et.al [29] failed to address. In particular, using drug cocktail design as an

27

illustrative example we highlighted feature transformation and feature selection strategies. We

work with a HIV-1 sequence dataset [67] containing around 70, 000 HIV-1 protease and reverse

transcriptase sequences from HIV-1 subtype B infected individuals undergoing routine drug re-

sistance testing. Each of these sequences was annotated with a replication coefficient value (RC)

that corresponds to the fitness of a viral sequence. We then proceeded to learn a regression model

that maps sequences to the real RC values. We solve the Lasso scaling problem using a variety

of strategies including sparse matrix vectorization and feature reduction strategies such as strong

rules [87]. We handle the non-normality of the RC values by transforming the RC values using

contact-map prediction accuracies as an independent validation metric using Gremlin [41]. We

are able to report the RMSE and this provides a concrete measurement of the predictive utility

of our method. The previous authors do not report the RMSE, R2 or the p-values of their model

and this renders their results incomparable with standard regression models.

We further validate our model using a KL-divergence based metric to compare the distribu-

tions between actual and predicted RC values. Finally, we leverage the lasso regression model

in a method for designing drug cocktails robust to HIV mutations. We validate our predicted

drug cocktails on a held out test data set using a regret analysis. We find that our cocktail design

method can be used for personalized medicine under a limited budget (upto 3 drugs) and is robust

to viral mutations. We additionally suggest that for larger budgets it is beneficial to use overall

drug statistics than personalized cocktail approaches.

28

Chapter 4

Markov Random Fields of Protein Families

In the previous chapter, we looked at large scale feature selection for predictive models. In this

chapter, we will switch our focus to learning generative models of protein sequence families.

Similar to predictive models, generative models too depend on high quality features for learning

effective models of protein families.

We seek to learn generative graphical models of protein sequence families which can be used

to model the probability density of the input data distribution [6]. A generative model can be

useful in (1) describing the data distribution [41] (2) defining a prior for predictive tasks [33, 51]

(3) transfer and multi-task knowledge sharing [14]. The popularity of generative models in

computational biology is due in part to the fact that they can be used to perform important tasks

such as structure and function classification (e.g., [42]) and to design new protein sequences

(e.g., [4, 84]) such as antibodies for vaccines [91].

Unfortunately, despite decades of research, such models still have limitations in terms of

predictive accuracies, possibly due to the hand-crafted features used in their construction. Ex-

isting models of protein sequence families make strong assumptions, require prior knowledge or

severely limit the representational power of the models.

We will present a framework of increasingly complex models that progressively relax inde-

pendence assumptions in order to define a richer feature space. Additionally, we will also intro-

29

Visible Markov Random Fields

Independent Visible MRF
v1 v2 v3 v4

Linear Visible MRF
v1 v2 v3 v4

General Visible MRF

v1

v2

v3

v4

Hidden Markov Random Fields

Linear Hidden MRF
v1 v2 v3 v4

h1 h2 h3 h4

General Hidden MRF

v1

v2

v3

v4

h1

h2

h3

h4

Table 4.1: Visible and Hidden Markov Random Fields

duce latent variables which attempt to model aspects of amino acid distributions not represented

by visible variables alone. We will use Markov Random Fields (MRFs) as the default general

class of generative models. We shall define, learn and evaluate visible and hidden Markov Ran-

dom Fields. See figure 4.1 for a quick glance of the topology of models that shall be covered in

this chapter.

4.1 Inputs and Notation

This section introduces the inputs and notation used for generative models of protein sequence

families. This notation will be used throughout Chapter 4 and Chapter 6.

We represent a multiple sequence alignment (MSA) having N columns using a set of indices

30

V = {1, . . . , N}. Each of the positions is associated with a corresponding multinomial random

variable vi and together the MSA can be represented by the set V = {vi ; i ∈ V}. Each random

variable, vi can take one of 21 states corresponding to the twenty amino acids plus a gap character.

A variable vi taking state k ∈ {1, . . . , 21} is represented by vki .

Figure 4.1: A sample MSA mapped to a MRF. Notice that column X1 and X4 covary and hence

have a statistical dependency between them represented by an edge in the MRF

In the following part of this section, we will describe several MRF models used for generative

modelling of protein families.

Independent Model The independent model (ind) is a simple baseline model which does not

have any hidden variables and all the variables are independent of each other. See table 4.2 for an

illustration. Each of the variables encodes a well defined multinomial distribution
∑21

k=1 P (vki) =∑21
k=1 θ

k
i = 1 ∀i ∈ V .

The likelihood of a test sequence V is calculated as :

31

P (V = {vi i ∈ V}; Θ) =
∏
i∈V

P (vi; Θ) =
∏
i∈V

θvii (4.1)

The ind model makes strong assumptions about the distributions of the amino acids in a

protein family. These assumptions are too simplistic since adjacent and nearby amino acids in a

protein sequence are connected to each other via chemical bonds and affect each other. Also, a

protein molecule can fold in three dimensional space allowing distant amino acids to affect each

other. These short range and long range dependencies imply corresponding correlations between

the amino acids in the protein sequence which are observed as correlated mutations in a multiple

sequence alignment [56].

4.2 Visible Markov Random Fields (VMRFs)

We can reduce the restrictions in the ind model by allowing amino acids to affect each other

via statistical dependencies. These statistical dependencies give rise to what are referred to as

structured models. Markov random fields (MRFs) are the prototypical structured models. They

can be represented by a graph G = (V , E) corresponding to the vertices and the edges in graph

respectively . A pair of vertices (vi, vj) is said to be conditionally independent given their neigh-

bours if (i, j) /∈ E . See figure 4.1 for an illustration. Notice that column X1 and X4 covary and

hence have a statistical dependency between them represented by an edge in the MRF.

The parameters in a MRF are represented by Θ = (Φ,Ψ) which specify the affinities of

a single or a pair of amino acids to adopt a certain state. These are known as the node Φ =

{φi ; i ∈ V} and the edge potentials Ψ : {ψst ; (s, t) ∈ E} respectively. We adopt a log linear

32

Model-name Architecture Description

ind
v1 v2 v3 v4

Independent Variables

linvis
v1 v2 v3 v4

Linear Chain

12vis
v1 v2 v3 v4

Every 2 connected

123vis
v1 v2 v3 v4

Every 2 and 3 connected

gremvis, 3dvis

v1

v2

v3

v4
gremlin edges, 3D edges

Table 4.2: A normal caption

parameterization of the node and the edge potentials.

φi(vi) = [ew
1
i ew

2
i . . . ew

21
i] (4.2)

ψst(vs, vt) =

ew
1,1
st ew

1,2
st · · · ew

1,21
st

ew
2,1
st ew

2,2
st · · · ew

2,21
st

...
...

ew
21,1
st ew

21,2
st · · · ew

21,21
st

(4.3)

33

4.2.1 Likelihood

The probability of a sequence V of amino acids is represented by:

P (V; Θ) =
1

Z(Θ)

∏
i∈V

Φi(vi)
∏

(s,t)∈E

Ψst(vs, vt) (4.4)

where Z(Θ) is an intractable sum known as the partition function and is defined as.

Z(Θ) =
∑
v∈V

∏
i∈V

Φi(vi)
∏

(s,t)∈E

Ψst(vs, vt) (4.5)

Finally, we define a Visible Markov Random Field (VMRF) as a MRF which does not contain

any latent or hidden variables.

4.2.2 Parameter Learning

Parameter learning is carried out by maximizing the likelihood of the model given training se-

quences. Suppose that the training MSA contains M training sequences such that the mth se-

quence is represented by a sequence of amino acids Vm , then then MLE estimate of the param-

eters, Θ∗ is:

Θ∗ = arg max
Θ={Φ,Ψ}

M∏
m=1

P (Vm; Θ) (4.6)

= arg max
Θ={Φ,Ψ}

log
M∏
m=1

P (Vm; Θ) (4.7)

= arg max
Θ={Φ,Ψ}

M∑
m=1

logP (Vm; Θ) (4.8)

The gradient with respect to the parameters for a training sequence V is calculated as:

∇Φi
logP (V; Θ) = EV[vi]− EΘ[vi] (4.9)

∇Ψst logP (V; Θ) = EV[vsv
T
t]− EΘ[vsv

T
t] (4.10)

whereEV[vi] andEV[vsv
T
t] are the sufficient statistics of the data whereasEΘ[vi] andEΘ[vsv

T
t]

are the model expectations given the current parameters of the model. This requires inferring the

34

marginals of the variables given the parameters. Unfortunately, this is intractable for all MRFs

except for tree structured graphical models. A commonly used approach is to approximate the

partition function using a variational lower bound given by the loopy belief propagation algo-

rithm [63].

4.2.3 Pseudo Log Likelihood Parameter Learning

For visible MRFs with cycles, using the pseudo log likelihood [9] as the objective function in-

stead of the log likelihood can lead to better inference and thereby better learning [45]. The

pseudo log likelihood is an efficient and a consistent estimator of the true log likelihood of the

model.

Θ∗ = arg max
Θ={Φ,Ψ}

M∏
m=1

N∏
i=1

P (vm
i |Vm

−i; Θ) (4.11)

= arg max
Θ={Φ,Ψ}

M∑
m=1

N∑
i=1

logP (vm
i |Vm

−i; Θ) (4.12)

The gradient with respect to the parameters for a training sequence V is calculated as:

∇Φi
logP (V; Θ) = EV[vi]− EV−i

[vi] (4.13)

∇Ψst logP (V; Θ) = EV[vsv
T
t]− EV−st [vsv

T
t] (4.14)

where EV[vi] and EV[vsv
T
t] are the sufficient statistics of the data whereas EV−i

[vi] and

EV−st [vsv
T
t] are the model expectations given neighbouring variables. These expectations can

be computed exactly and this makes the objective tractable even in the presence of cycles in the

graph.

4.2.4 Evaluation

Our main metric for evaluating a MRF model is the imputation error. The imputation error

is defined as the average error in predicting a particular position in the MSA given the others.

35

This is an unbiased test that demonstrates whether the model has learned something about the

underlying probability distribution of the multiple sequence alignment. It is possible to calculate

the imputation error exactly since in a VMRF the state of a random variable only depends on

those of its neighbours.

P (vi|v−i) = P (vi| {vj ; j ∈ N (i)}

where N (i) is the set of variables in the neighbourhood of vi.

4.2.5 Models

In this section, we introduce particular instances of VMRFs in order of increasing number of

edges.

Linear MRF

A linear VMRF (linvis) is a VMRF where a random variable is connected only to its adjacent

neighbour in the MSA. See Figure 4.2 for an illustration. It allows us to inject the prior knowl-

edge about the primary sequence ofa protein. Please note that this is not the same as a Hidden

Markov Model since this does not have any hidden states.

Higher Order MRF

A Higher Order VMRF (12vis, 123vis) is a VMRF where a random variable is connected only

to its neighbours in MSA within a fixed distance. See Figure 4.2 for an illustration. These edges

try to capture secondary structure information e.g. α-helices can have a turn upto 4 amino acids

away in sequence. Note that these models have cycles in the adjacency structure and are no

longer exactly tractable.

36

General Graph MRF

A general graph VRMF can have an arbitrary topology. See table 4.2 for an illustration. We

consider two cases of general graph VMRFs (1) Gremlin VMRF (gremvis) - topology learnt by

running the GREMLIN algorithm [4] and (2) 3D VMRF (3dvis) : topology from the 3D contact

map at a cutoff of 8Å. Note that like the Higher Order VMRF, these models have cycles in the

adjacency structure and are no longer exactly tractable.

4.3 Hidden Markov Random Fields (HMRFs)

In this section we add latent variables to VMRFs and we refer to this class of models as Hidden

Markov Random Fields (HMRFs).

The probability distribution can be affected by latent factors. Introducing hidden/latent variables

in proteins can help learn rich representation arising out of evolutionary, physical and functional

constraints. Latent variable models are commonly used in machine learning and computational

biology [62]. Hidden Markov Models are an example of latent variable models used in several

fields [43].

Hidden MRFs are undirected graphical models which contain hidden variables or unobserved

states. The variable set in the graphical model is augmented with a set of hidden variables H.

We update the notation of indices of the variables to V = {VV ,VH} corresponding to the indices

of V and H respectively.

37

4.3.1 Likelihood

The likelihood of the visible variables is calculated by summing out hidden variables and is

defined as:

P (V; Θ) =
∑
h∈H

P (V, h; Θ) (4.15)

=
1

Z(Θ)

∑
h∈H

∏
i∈VV

Φi(vi)
∏
j∈VH

Φj(hj) (4.16)

∏
(s,t)∈EV

Ψst(vs, vt)
∏

(q,r)∈EH

Ψqr(hq, hr) (4.17)

∏
(l,m)∈EV H

Ψlm(vl, hm) (4.18)

=
Zv(Θ)

Z(Θ)
(4.19)

whereZ(Θ) is the model partition function andZv(Θ) is the partition function after clamping

down the visible units.

4.3.2 Learning

HMRF parameters are learned by maximizing the log likelihood of the training data.

Θ∗ = arg max
Θ={Φ,Ψ}

M∑
m=1

logP (V m; Θ) (4.20)

= arg max
Θ={Φ,Ψ}

M∑
m=1

log
∑
h∈H

P (V m, H; Θ) (4.21)

The gradient calculation is the same for the visible variables as in VMRFs. The following

changes are associated with the hidden variable parameters:

∇Φj
logP (V; Θ) = EV[hj|V]− EΘ[hj] (4.22)

∇Ψqr logP (V; Θ) = EV[hqh
T
r |V]− EΘ[hqh

T
r] (4.23)

38

whereEV[hj|v] andEV[hqh
T
r |v] are the data dependent statistics; whereasEΘ[hj] andEΘ[hqh

T
r]

are the model expectations. Similar to the VMRF, inference is intractable except for non-tree

structured graphs and we resort to loopy belief propagation algorithm in those cases [63].

4.3.3 Evaluation

Evaluation is trickier for HMRFs when compared to a VMRFs. This is because of the need to

perform inference in the hidden nodes. This calculation is tractable and exact only if the hidden

nodes form a tree structured graph. In other cases we resort to approximate inference techniques

as before. The imputation is P (vi|v−i) =
∑

h∈H P (vi,H|v−i) approximated by performing

inference using loopy BP. Whereas, the test log likelihood for a test sequence V∗ is calculated as

a ratio of partition functions ZV∗(Θ)/Z(Θ).

4.3.4 Models

In this section, we introduce particular instances of VMRFs in order of increasing number of

edges.

Linear HMRF

A Linear HMRF (linhid) is a HMRF where only adjacent hidden variables are connected to each

other. The visible units have no direct connections to each other. See Table 4.3 for an illustration.

This model is in principle the same as a traditional Hidden Markov Model with untied parameters

and undirected edges. Inference and evaluation is performed efficiently using the sum-product

algorithm [45] owing to the tree structure of a linear HMRF.

Grid HMRF

A grid HMRF (gridhid) is laid out in a grid like pattern with adjacent visible and hidden nodes

connected to each other. See Table 4.3 for an illustration. Grid HMRFs are intractable due to the

39

Model-name Architecture Description

linhid
v1 v2 v3 v4

h1 h2 h3 h4

Linear Hidden Variables

gremhid,3dhid

v1

v2

v3

v4

h1

h2

h3

h4

General Graph Hidden Layer

gridhid
v1 v2 v3 v4

h1 h2 h3 h4

Linear Chain Visible and Hidden

Table 4.3: A normal caption

introduction of cycles and we resort to loopy BP for inference in these models.

General Graph HMRF

A general graph HMRF (gremhid, 3dhid) allows for arbitrary connections in the hidden

layer but not in the visible layer. See Table 4.3 for an illustration. Similar to the graph VMRF

the hidden layer contains connections chosen with prior knowledge. Again, these models are

intractable and we resort to loopy BP for inference and learning.

4.4 Experimental Results

In this section we describe the experimental results for VMRFs and HMRFs. First, we describe

the datasets used. Next, we discuss algorithmic and implementation details and finally we discuss

40

the results from the evaluations.

4.4.1 Data Description

We obtained multiple sequences alignments (MSA) for two protein families, ubiquitin (PF00240)

and PDZ (PF00595), from the Baker-lab GREMLIN webserver http://gremlin.bakerlab.

org/. These MSAs were create using Pfam HMM(s) as seeds.The alignments were further en-

riched with additional sequences using HHblits [69] and the uniprot database [15]. The align-

ments where filtered to have 75% coverage i.e. sites that had more than 75% gaps were removed.

Also these alignments were processed to have at most 90% sequence identity.

The ubiquitin MSA contains 5538 sequences and 69 positions. The PDZ MSA contains

12887 sequences and 81 positions. The sequences in the alignment were randomized. The align-

ments were split into training, validation, and test sets using a 60%, 20% and 20% proportions,

respectively. The validation sets were used to select the optimal hyper-parameters.

4.4.2 Algorithms and Implementation Details

As discussed in section 4.3.2, training VMRFs and HMRFs involves maximizing the log-likelihood

of the training data. This requires calculating the gradients of the models with respect to the

model parameters. The calculation of the gradients is complicated by the presence of the par-

tition function Z(Θ) which makes inference hard for certain kinds of graph structures. For

tree-structured MRFs and HMRFs, the sum product algorithm can be used to perform exact

inference.

For non-tree MRFs, exact inference is not possible. We use two different approximation tech-

niques (1) loopy belief propagation (2) pseudo log likelihood. For non-tree structured HMRFs,

we cannot use the pseudo log likelihood. This is due to the presence of hidden variables and the

loopy belief propagation needs to be used. We use the UGM toolbox by Schmidt et.al [74] for

performing inference.

41

http://gremlin.bakerlab.org/
http://gremlin.bakerlab.org/

Computationally heavy components were sped up using the mex functionality of Matlab. We

used the LBFGS [94] algorithm for optimizing the parameters. The optimization routine was

run for a maximum of 1000 iterations or till a convergence tolerance was reached. We used

Wolfe line search [92] for adaptively picking the step length at each gradient step. Loopy belief

propagation was run for a maximum of 1000 iterations or till convergence of the beliefs.

Hidden variables in HMRFs were binary-valued to make them directly comparable to the

hidden states in Boltzmann Machines. We also used l2 regularization on the node and edge pa-

rameters with a penalty of 1 picked by cross-validation against other choices. For tree structured

graphs i.e. (linvis, linhid) we used exact tree inference and loopy belief propagation in all other

components. Also, the topology over the visible nodes in the (gremvis) model and in over the hid-

den variables in the (gremhid) models were computed using the GREMLIN algorithm and down-

loaded from the Baker-lab GREMLIN webserver (http://gremlin.bakerlab.org/).

4.4.3 Results and Discussion

Our primary evaluation metric was the imputation error with respect to held out test sequences.

For VMRFs imputation error calculation is exact since the markov blanket of every node is fully

specified. For HMRFs inference was carried out for every test instance. This is an expensive

calculation for non-tree structured graphs and requires approximate inference via loopy bp. We

distributed these computations over a commodity cluster.

We report the results for the ubiquitin family (PF00240) in this section. The results for PDZ

family were largely similar and can be found in appendix B.1

Models trained with Log Likelihood and Loopy BP

Table 4.4 shows the train and test imputation error for the ubiquitin dataset for models trained

with log likelihood and loopy belief propagation. All models do better than ind (completely

42

http://gremlin.bakerlab.org/

Model train-imperr±0.002 test-imperr±0.004

ind 0.7604 0.7572

3dhid 0.6443 0.6404

3dvis 0.6332 0.6371

12vis 0.6225 0.6300

gremvis 0.5879 0.6082

linhid 0.6069 0.6057

gridhid 0.0.5737 0.5857

linvis 0.5635 0.5753

Table 4.4: Imputation error ubiquitin : Models trained using log likelihood and loopy belief

propagation

Model train-imperr±0.002 test-imperr±0.004

3dhid 0.6474 0.6437

gridhid 0.6026 0.6068

linhid 0.5971 0.5976

Table 4.5: Imputation error ubiquitin : Models trained using log likelihood and loopy belief

propagation using 4 hidden states. Doubling the number of states in the hidden nodes, has no

significant improvement in performance

independent). This shows that there is contextual information to be captured and most models

are able to capture some aspect of it. The linvis and linhid models do fairly well. This can be

attributed to exact inference in tree-structured graphs. They also have similar training and testing

error, indicating that the models are not overfitting.

gremvis and gridhid are the next best. Surprisingly, gremvis which is closely related to the

GREMLIN model did not have the best scores overall when compared to linvis (0.608 vs 0.575).

We attribute this to the fact that GREMLIN internally uses pseudo log-likelihood to train the mod-

els. In the following section, we will show that pseudo log-likelihood indeed helps in better infer-

43

Model train-imperr±0.002 test-imperr±0.004

12vis-pseudo 0.5045 0.5374

gremvis-pseudo 0.4205 0.4952

3dvis-pseudo 0.4164 0.4856

Table 4.6: Imputation error ubiquitin : Models trained using pseudo log likelihood

ence properties for VMRFs. We chose to use log-likelihood as the objective function to keep our

models comparable with latent variable models. HMRFs and Boltzmann Machines (discussed in

chapter 6) contain latent variables and cannot use pseudo log-likelihood since conditioning on

the other visible variables connects the graph connected via hidden nodes.

Extremely loopy graphs such as 12vis, 3dvis and 3dhid perform poorly. They also have a

larger difference between train and test error indicating overfitting. We arrived at the conclu-

sion, the 3D topology is not sufficient to provide features for a better generative model using

log-likelihood as the objective function. The extra cycles it introduces stymies loopy belief prop-

agation from finding correct beliefs.

We also report, the imputation errors for HMRFs using hidden nodes with 4 states in table 4.5.

The models show no significant improvements when compared to the HMRFs having hidden

nodes with 2 states. This provides evidence that the number of hidden states have less of an

impact than the architecture of the models.

Models trained with Pseudo Log Likelihood

Table 4.6 shows the train and test imputation error for the ubiquitin dataset for models trained

with pseudo log likelihood. The counterparts of the 12vis, gremvis and 3dvis are referred to

as 12vis-pseudo, gremvis-pseudo and 3dvis-pseudo, respectively. We note that these models

have much better imputation error scores. This shows that pseudo log likelihood helps in better

inference and hence better learning of parameters.

44

Additionally, the gremvis-pseudo model has better scores than 12vis-pseudo (0.495 vs 0.537).

Similarly, the 3dvis-pseudo model has better scores than gremvis-pseudo (0.485 vs 0.495). This

seems to suggest that models with more features (denser edges) tend to have better imputation

error scores. Note that the gap between the training and testing error is also widening from linvis

to 3dvis-pseudo, indicating that some amount of overfitting might be occuring.

train-imperr test-imperr0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Im
pu

ta
tio

n
Er

ro
r

MRF Models ubiquitin

ind
3dhid
gridhid
linhid
linvis
12vis-pseudo
gremvis-pseudo
3dvis-pseudo

Figure 4.2: Imputation error for ubiquitin for MRF like models

We also calculated the test log-likelihood of the data. See appendix B.1 and figure B.1 for

details.

Finally, we investigated the hidden layer representations to observe any patterns that emerge.

We use Principal Components Analysis (PCA) on the hidden layer representation to visualize the

trends in the models. Figure 4.3 shows the PCA projections of the hidden layer representations

along the first two principal axes. These representations were obtained by inferring the hidden

states of the linhid model given the input instances. The projected points were colored according

to the gaps present in the sequence. A highly gapped sequence is likely to correlate with the

45

4 3 2 1 0 1 2 3 43

2

1

0

1

2

3 PCA projection ubiquitin

(a) PCA linhid ubiquitin

4 3 2 1 0 1 2 3 4 54

3

2

1

0

1

2

3

4 PCA projection PDZ

(b) PCA linhid PDZ

Figure 4.3: PCA projection of hidden representations from the linhid model. Projection colored

by count of gaps in test sequences

evolutionary distance from the protein family. Notice the coloring pattern from bottom-right to

upper-left in the case of ubiquitin ; and bottom-left to upper-right for PDZ. This suggests that the

hidden representations might be capturing higher level attributes like evolutionary distance.

4.5 Chapter Summary

In this chapter, we discuss unsupervised generative models of protein families. We note that pro-

tein families encode complex distributions arising out of structural, functional and evolutionary

constraints. Existing solutions for generative models of protein families such as PSSM matrices

and Hidden Markov Models, make too many unrealistic assumptions.

We present a framework for modelling protein families as a series of increasingly complex

models. These models belong to the class of undirected graphical models known as Markov

Random Fields (MRFs). We show that by adding edges between variables in the MRF we can

progressively relax the assumptions made about the model distribution. We present a series of

46

models linvis, 12vis, gremvis and 3dvis which add pairwise, every-2, GREMLIN and 3D edges

respectively.

Additionally, we make a distinction between MRF models that are completely visible and

those with unobserved latent variables. The introduction of latent variables offers the flexibility

of learning distributions that cannot be explained by the visible variables alone. Often, this comes

at the cost of model complexity and computational tractability. We introduce the linhid, gridhid

and 3dhid models which add linear, grid-like and 3D edges to the hidden nodes respectively.

We learn and evaluate these models using generative metrics viz. imputation error. We find

that all models beat a completely independent model and are hence able to model contextual

information. Additionally, we find that VMRFs having many features and trained with pseudo

likelihood, such as gremvis-pseudo and 3dvis-pseudo, have the best performance. However, in

general non-tree structured models trained using log likelihood as the objective function, do not

learn well suffering from poor inference properties of loopy belief propagation. This problem is

especially poignant for HMRFs which contain many cycles. They severely overfit and have poor

generative performance.

We note that HMRF architectures offer the promise of modelling complex distributions, but

are unable to do so in practice for all but tree-structured graphs. This motivates the need to

explore other latent variable architectures that offer the possibility of better inference. We shall

explore Boltzmann Machines in chapter 6, in order to tap into the potential of latent variables.

47

48

Chapter 5

Biological Analysis of Models

In chapter 4 and chapter 6 we discussed unsupervised generative models of protein families. In

particular, we discussed Markov Random Fields and Boltzmann Machines. Apart from mod-

elling the data density, these models can provide valuable insights into the data itself. This

can help us learn useful biological facts about the protein family, such as important amino acid

positions, pairwise correlation and even the contact map of the protein without providing any

structural information.

In this chapter, we consider extending the utility of the generative models beyond just improving

the test error. We do so by introspecting and interpreting the learned features beyond for biolog-

ical significance. Similar to the first part of the thesis we approach this task through the lens of a

target application. In particular, we examine signal transduction in G protein coupled receptors

(GPCRs) ; which relay signals across cell membranes.

G protein coupled receptors (GPCRs) are seven helical transmembrane proteins that function

as signal transducers. They bind ligands in their extracellular and transmembrane regions and

activate cognate G proteins at their intracellular surface at the other side of the membrane. The

relay of allosteric communication between the ligand binding site and the distant G protein

49

binding site is poorly understood. In this study, we employ Gremlin [4] ,to identify networks of

co-evolving residues from multiple sequence alignments, was used to identify those that may be

involved in communicating the activation signal across the membrane. The Gremlin-predicted

long-range interactions between amino acids were analyzed with respect to the seven GPCR

structures that have been crystallized at the time this study was undertaken. See [60] for details

regarding methods and results.

Gremlin significantly enriches the edges containing residues that are part of the ligand bind-

ing pocket, when compared to a control distribution of edges drawn from a random graph.

An analysis of these edges reveals a minimal GPCR binding pocket containing four residues

(T1183.33, M2075.42, Y2686.51 and A2927.39). Additionally, of the ten residues predicted to have

the most long-range interactions (A1173.32, A2726.55, E1133.28, H2115.46, S186EC2, A2927.39,

E1223.37, G902.57, G1143.29 and M2075.42), nine are part of the ligand binding pocket.

We demonstrate the use of Gremlin to reveal a network of statistically correlated and func-

tionally important residues in class A GPCRs. Gremlin identified that ligand binding pocket

residues are extensively correlated with distal residues. An analysis of the Gremlin edges across

multiple structures suggests that there may be a minimal binding pocket common to the seven

known GPCRs. Further, the activation of rhodopsin involves these long-range interactions be-

tween extracellular and intracellular domain residues mediated by the retinal domain.

5.1 Background

G-protein coupled receptors (GPCRs) are an important class of proteins initiating major bio-

chemical pathways sensing environmental stimuli. They are the largest protein superfamily with

an estimated 1000 genes in the human genome alone [82]. An estimated 30% of known drug

compounds target these receptors [64]. The GPCR family is divided into five distinct classes,

class A - E [23]. The class A family is the largest class and includes rhodopsin, the prototypical

GPCR, for which the first crystal structure of any GPCR was solved [65]. Its ligand is 11-cis

50

retinal (RT), covalently attached to the protein. 11-cis RT isomerizes to all-trans RT upon light

incidence, resulting in activation of the receptor. In GPCRs, the binding of a ligand in the EC or

TM domain is the signal that is propagated to the IC domain wherein different effectors bind, in

particular the G protein heterotrimer, GPCR receptor kinases (GRK) and -arrestin.

Receptor activation is an inherently allosteric process where the ligand binding signal is com-

municated to a distant site. The activation of rhodopsin and other class A GPCRs is thought

to be conserved and involves rearrangements in structural microdomains [5] . Conformational

changes of multiple “switches” in tandem activate the receptor [1] . These long-range interac-

tions between distant residues are important for the function of the receptors and are also closely

involved in their folding and structural stability [44, 68] . Identifying the residues involved in

the propagation of signals within the protein is important in understanding the mechanism of

activation. While much information can be directly extracted from crystal structures, allosteric

interactions are dynamic and implicit in nature and thus are not directly observable in static crys-

tal structures. Experimental methods for investigating dynamics, such as nuclear magnetic res-

onance, are presently incapable of resolving allosteric interactions in large membrane proteins,

such as GPCRs.

Due to the limitations of experimental methods, statistical analysis of GPCR sequences is an

alternative in identifying residues that may be involved in allosteric communication. Here, con-

siderable effort has been directed towards identifying networks of co-evolving residues from mul-

tiple sequence alignments (MSA), i.e. residues that are statistically correlated in the MSA. Such

correlations are thought to be necessary for function, and may provide insights into how signals

are propagated between different domains. A number of computational methods have been de-

veloped to identify such couplings from MSAs, including Hidden Markov Models (HMMs) [22]

, Statistical Coupling Analysis (SCA) [56, 81] , Explicit Likelihood of Subset Co-variation

(ELSC) [17] , Graphical Models for Residue Coupling (GMRC) [83] , and Generative REgular-

ized ModeLs of proteINs (Gremlin) [4]. Like the GMRC method, Gremlin learns an undirected

51

probabilistic graphical model known as a Markov Random Field (MRF). Unlike HMMs, which

are also graphical models, MRFs are well suited to modelling long-range couplings (i.e., between

non-sequential residues). The SCA and ELSC methods return a set of residue couplings (which

may include long-range couplings), but unlike MRFs, they do not distinguish between direct

(conditionally dependent) and indirect (conditionally independent) correlations. This distinction

is crucial in determining whether an observed correlation between two residues can be explained

in terms of a network of correlations involving other residues. The key difference between the

GMRC and Gremlin methods [4] is that Gremlin is statistically consistent and guaranteed to

learn an optimal MRF, whereas the GMRC uses heuristics to learn the MRF. We have previ-

ously reported detailed comparisons of the GMRC and Gremlin methods and found that Gremlin

achieved higher accuracy and superior scalability.

In accordance with the demonstrated advantages of Gremlin over other methods, we ap-

plied Gremlin to the same GPCR sequence alignment previously investigated by SCA [81] and

GMRC [83] studies for comparability . Using Gremlin we identified statistically significant long-

range couplings in class A GPCRs and analyzed the results with respect to all seven GPCRs that

had been crystallized at the time of our study. Our findings indicate that the ligand binding

residues are significantly enriched in these long-range couplings, mediating not only communi-

cation to the IC, but also to the EC side of the membrane. 9 out of the 10 residues with the largest

number of long-range couplings belong to the ligand binding domain. There a total of 34 sta-

tistically significant long-range couplings involving these 10 residues, involving experimentally

determined microdomains and activation switches in GPCRs. Our study describes a comprehen-

sive view of the network of statistical couplings across the membrane in class A GPCRs. The

details of this network are consistent with the hypothesis that the ligand-binding pocket mediates

allosteric communication. The independent identification of a crucial role of the ligand binding

pocket in mediating this communication provides the first sequence-based support for the early

notion that all three domains in GPCRs are structurally coupled [37] . Finally, the extent of en-

52

richment of edges in different GPCR structures allowed us to propose a novel minimal binding

pocket predicted to represent the common core of ligand contact residues crucial for activation

of all class A GPCRs. See [60] for details regarding methods and results.

5.2 Methods

5.2.1 Gremlin

We employed Gremlin [4] to learn a Markov Random Field (MRF) model Fig 5.1 from a MSA

of class A GPCRs (see details below). MRFs are undirected probabilistic graphical models.

We use the MRFs to model the conservation and coupling statistics observed in the MSA. In

particular, each node in the MRF corresponds to a column in the MSA. An edge between two

nodes indicates that they are coupled. Conversely, the absence of an edge between two nodes

means that they are conditionally independent given other nodes. The conservation and coupling

statistics in a MRF are encoded via node (φ) and edge potentials (ψ). Informally, these potentials

can be thought of as un-normalized probabilities. Collectively, these potentials encode the joint

probability distribution over protein sequences such that the probability of any given length p

sequence x = (x1, x2, . . . , xp) can be computed as:

PM(x) =
1

Z

∏
s∈V

φs(Xs)
∏

(s,t)∈E

φst(Xs, Xt)

Here, Z is the normalization constant, V and E are the nodes and edges in the MRF, respec-

tively. We note MRFs are generative and can thus be used to sample new sequences (as in protein

design). Fig 5.1 shows a toy example of the relationship between the input MSA and the MRF

that Gremlin learns. Here, a 7-column MSA is shown. Column 2 is completely conserved, and

is therefore statistically independent of the remaining columns. This independence is encoded in

the MRF by the absence of an edge to the variable corresponding to the second column. On the

other hand, columns 1 and 4 co-vary such that whenever there is an ‘S’ in column 1, there is a ‘H’

53

Figure 5.1: Shown in the figure is a cartoon figure of a multiple sequence alignment (MSA) and a

corresponding Markov random field (MRF). There is one node in the MRF for each column in the

MSA. The column-wise conservation statistics in the MSA are encoded by node potentials (φi).

Similarly, the co-variation statistics in the MSA (e.g., between columns 1 and 4) are encoded

by edge potentials (ψ1,4) in the MRF. The lack of an edge between two nodes means that the

corresponding columns are conditionally independent.

in column 4, and whenever there is an ‘F’ in column 1, there is a ‘W’ in column 4. This coupling

is represented in the MRF by an edge between the variables corresponding to columns 1 and

4. In this paper, we examine the topology of the learned MRF to gain insights into the network

of correlated mutations. Specifically, we are most interested in correlations that are observed

between spatially distant residues from different domains of GPCRs.

5.2.2 Dataset Description and Preparation

See Appendix C.1 for details about multiple sequence alignment creation, model selection, struc-

ture files modeling, definition of binding pockets and definition of the control set.

54

Categories
Control Set (Null) Gremlin (λ = 38) Gremlin

<Null

Gremlin

>Null
Total Edges % Edges Total Edges % Edges p-value p-value

EC-EC 4095 6.78 169 23.80 0 1

EC-TM 14833 24.57 153 21.55 0.97 0.03

EC-IC 8554 14.17 56 7.89 1 0

TM-TM 13203 21.87 145 20.42 0.84 0.16

IC-TM 15322 25.38 81 11.41 1 0

IC-IC 4371 7.24 106 14.93 0 1

TOTAL 60378 100.00 710 100.00

EC-RT 2125 3.52 114 16.06 0 1

RT-TM 3600 5.96 98 13.80 0 1

IC-RT 2350 3.89 67 9.44 0 1

RT-RT 300 0.50 51 7.18 0 1

SUB-TOTAL 8375 13.87 330 46.48

Table 5.1: Comparison of edge distribution from control set and Gremlin

55

5.3 Results and Discussion

Gremlin was used to identify a network of correlated mutations in class A GPCRs. Our anal-

ysis has three main components. First, we used bovine rhodopsin (BR) as a template to map

the edges (correlations) to the structure. Second, we identified the ligand binding pockets of all

GPCRs with known structure to consider generality of our findings. Finally, we identified min-

imal binding pockets that capture the most general aspects of ligand binding across all GPCRs

we examined. Additionally, See Appendix C.2.1 for a comparison of gremlin results with SCA

and GMRC. See [60] for details regarding methods and results.

5.3.1 Bovine Rhodopsin Analysis

Our analysis revealed that most Gremlin edges involve residues in the RT ligand pocket; as

compared to those between or within the residues belonging to EC, IC and TM domains outside

of the RT pocket Fig 5.2. The RT pocket is located in the TM domain, at the interface with

the EC domain. To quantify the observation that there were differences in the number of edges

connecting EC, IC, TM domains and RT pocket, we enumerated the Gremlin edges and compared

them to a control set, which included all possible edges (a total of 60,378 edges) involving all the

348 amino acids in rhodopsin. The results are summarized in Table 5.1. Assuming a significance

level of α = 0.05, we find that there is a significant enrichment of edges involving RT residues

compared to the control set (46.48% for Gremlin vs. 13.87% for control; p-value of∼ 0). Similar

enrichment was observed in the relative distributions of EC-EC (23.8% for Gremlin vs. 6.78%

for control; p-value of ∼ 0) and IC-IC (14.93% vs. 7.24%, p-value ∼ 0) edges. There was

significant under-representation of edges in EC-IC (7.89% versus 14.17%, p-value ∼ 0), EC-

TM (21.55% versus 24.57%, p-value ∼ 0.026) and IC-TM (11.41% versus 25.38%, p-value ∼

0). There was no significant difference in TM-TM contacts (20.42% versus 21.87%, p-value ∼

0.16).

The finding that there is significant enrichment in the EC-EC and IC-IC contacts and that

56

there is an under-representation of EC-IC domain contacts is biologically meaningful, because

EC-IC interactions would structurally be mediated via the TM domain. Interestingly, there is a

lack of significant enrichment of edges within the TM domain and a slight under-representation

of EC-TM and TM-IC edges. A lack of TM enrichment is in line with the general view of the

TM helices as rigid bodies in the GPCR field . Furthermore, an important evolutionary pressure

experienced by the amino acids in the TM region is to ensure that hydrophobic residues in the

helices face the lipid bilayer. This pressure may override the importance of specific TM-TM

contacts. However, it was puzzling that EC-TM and TM-IC contacts are under-represented since

we would expect to find long-range couplings between EC and IC domains to be mediated via

the intermediate TM domain. We therefore hypothesized that the EC-IC long-range contacts are

more specifically mediated through a subset of TM and EC residues, namely those participating

in binding RT. Indeed, 20 residues out of 27 in the RT pocket are in TM regions.

5.3.2 A minimal ligand binding pocket

We hypothesized that if there is a minimal binding pocket common to the seven known GPCRs,

then Gremlin would significantly enrich the percentage edges for this pocket of residues com-

pared to the null distribution set. To test this hypothesis we first defined ligand binding pockets

B1, B2, B3, B4, B5, B6 and B7 representing residues common to at least one, two, three, four,

five, six and seven receptor ligand binding pockets, respectively. We compared the percentage

of edges formed by the residues in these pockets to that of the null distribution set and against

each other. The percentage of edges for the null set decreased linearly from 32% to 2% with

decreasing pocket size Fig 5.3. The percentage edges over the same range for Gremlin decreased

69% to 10% as expected because of the decreasing pocket size. However, the fold enrichment of

edges for Gremlin over the null set increased from 2.2 to 5.2 for pockets B1 to B6. These results

are statistically significant at a significance level of 0.05 with p-value ∼ 0. The fold enrichment

for B7 slightly decreased to 4.3 because the pocket is small with only 4 residues.

57

The four residues in B7 are T1183.33, M2075.42, Y2686.51 and A2927.39. These residues are

uniquely positioned around the ligand (RT in rhodopsin; Fig 5.3) and make key interactions that

stabilize RT .

58

Figure 5.2: Mapping of (A) all (B) RT and (C) non RT edges identified by Gremlin (at =38)

mapped onto the bovine rhodopsin structure (PDB ID: 1U19). The edges are EC-EC (red),

EC-TM (green), EC-IC (blue), TM-TM (cyan), IC-TM (orange), IC-IC (grey40), EC-RT (red),

RT-TM (blue), IC-RT (green) and RT-RT (orange) where EC, IC, TM and RT represent residues

in extracellular, intracellular, transmembrane and RT (ligand binding) domains. In (D) The per-

centage of edges for Gremlin (squares) and null set (diamonds) are plotted against the common

ligand binding pockets sorted by their size. The bars indicate fold enrichment (values on sec-

ondary y-axis) of edges in Gremlin over the null set.

59

Figure 5.3: The spatial organization of residues in the minimal binding pocket (A) B7 and the

larger pocket (B) B6 as present in the rhodopsin structure (PDB id 1U19). Rhodopsin num-

bering along with Ballesteros-Weinstein numbering (superscript) is given for comparison with

other GPCRs. For clarity only the binding pocket residues are shown along with bound RT (in

magenta). In (C), the percentage of edges for Gremlin (squares) and null set (diamonds) are

plotted against the minimal ligand binding pockets sorted by their size. The bars indicate fold

enrichment (values on secondary y-axis) of edges in Gremlin over the null set.

60

5.3.3 Residues involved in long-range interactions

The previous section showed that Gremlin is able to shed light on the biological and structural

properties of the GPCR family. In this section we present a strategy for ranking Gremlin edges.

This strategy can be used for exploratory purposes in order to discover novel couplings and

residues that might play a key role in structure and function of the GPCR protein family.

Figure 5.4: Persistent edges at penalty 140 for the top 10 residues are mapped onto the rhodopsin

structure (PDB id 1U19). The residues forming the edges are represented as yellow spheres. The

edges are TM-TM (cyan), IC-TM (dark green), EC-RT (red), RT-TM (blue), IC-RT (green) and

RT-RT (orange), where EC, IC, TM and RT represent residues in extracellular, intracellular,

transmembrane and RT (ligand binding) domains, respectively

The strategy is based on the following two key insights. The first insight is that the residues

that have high degree in the graph of Gremlin couplings could be considered as hubs that lie

on the communication pathways in GPCRs. This is motivated by the graphical model since a

mutation/perturbation in the hub residue could affect a number of other residues. The second

insight is based on the persistence of certain couplings even under stringent model complexity

constraints. The larger the regularization parameter, λ, the sparser the Markov Random Field

61

(MRF), see Methods. Thus, each edge in the MRF can be assigned a persistence score equal to

the maximum λuntil which the coupling was retained. The persistence score is an indicator of

the importance of the couplings and the corresponding residues. See Fig 5.4.

We ranked the residues based on the number of edges at a penalty of λ = 38. The number

of edges shown in the set of top 10 residues most frequently involved in an edge is shown in

Table 5.2. Nine of these top ten residues (A1173.32, A2726.55, E1133.28, H2115.46, S186EC2,

A2927.39, E1223.37, G902.57, G1143.29 and M2075.42) are part of the RT pocket and are involved

in packing and stabilizing of RT . Of these nine residues, eight are from the TM domain while

S186EC2 is from the EC region. S186EC2 is involved in EC2 loop movement and its mutation

to alanine alters the kinetics of activation . The remaining residue G902.57 that is not part of the

RT pocket as defined by a 5Å distance cut-off is nonetheless an important residue. The naturally

occurring mutation G902.57D in the RT degeneration disease, Retinitis pigmentosa, results in the

constitutive activity of the receptor .

5.4 Chapter Summary

In this chapter, we study the problem of feature interpretation in an unsupervised setting. We

explore signal transduction in G protein coupled receptors (GPCRs) ; which relay signals across

cell membranes. We identify networks of co-evolving residues from multiple sequence align-

ments by learning the topology of a Markov Random Field trained on GPCR sequences. We

find that pairwise interactions containing residues in the ligand binding pocket are enriched. An

analysis of these interactions reveals a minimal GPCR binding pocket containing four residues

(T1183.33, M2075.42, Y2686.51 and A2927.39). Additionally, the ten residues predicted to have

the most long-range interactions, are also part of the ligand binding pocket. This suggests that

the activation in rhodopsin (a canonical GPCR) involves these long-range interactions between

extracellular and intracellular domain residues mediated by the retinal domain.

62

Rank Position Number

of

Edges

(λ = 38)

Edges at λ = 140

1 A1173.32 41 G902.57 , E247IC3, F2937.40 , K2967.43

2 A2726.55 30 L72IC1, G1143.29, S176EC2, Y178EC2

3 E1133.28 29 M441.39, L72IC1, W1263.41, Q237IC3, F2937.40

4 H2115.46 29 F912.58, C140IC2, F148IC2

5 A2927.39 28 Y29EC(N−term)

6 S186EC2 27 K67IC1, Q244IC3, P2917.38

7 E1223.37 26 I481.43, G902.57, E196EC3, M2075.42, A2696.52, F2937.40,

C316IC(C−term)

8 G902.57 23 A1173.32, G1203.35, E1223.37, M2075.42, Q237IC3, A2696.52,

F2937.40

9 G1143.29 22 S176EC2, A2726.55, Y178EC2

10 M2075.42 22 G902.57, E1223.37, C316IC(C−term)

Table 5.2: List of top ranked residues and the most persistent edges : Residues in bold

are part of the RT binding pocket extracted from the rhodopsin structure (PDB ID: 1U19). The

Ballesteros-Weinstein numbering (superscript) is given for comparison with other GPCRs. Only

long-range edges are reported i.e. the edges formed with neighboring residues (8 amino acids on

either side) are filtered out

63

64

Chapter 6

Boltzmann Machines of Protein Families

In chapter 4, we introduced a framework of visible and hidden Markov Random Fields for gener-

ative modelling of protein families. We noted that, latent variable models with cycles performed

poorly due to bad inference using loopy belief propagation. As a consequence, these models

were not able to take advantage of the additional representational power afforded through the

latent variables. In this chapter, we will correct the problems of the latent variable models by

considering special architectures of Boltzmann Machines.

Protein sequence families have traditionally been modelled with PSSM matrices [80] and

Hidden Markov Models (HMMs) [43]. These models make strong assumptions about the statis-

tical independencies inherent in the data. For e.g. PSSM matrices require independence, while

HMMs only allow linear dependence. Recently Balakrishnan et.al [4] introduced the GREM-

LIN VMRF model. This extended the list of allowed statistical dependencies by inserting edges

between arbitrary pairs of variables.

While these models perform satisfactorily in practice, their representational power is lim-

ited. Complicated evolutionary and biological relationships necessitate more expressive models.

However, greater representative power comes at a cost ; usually in the form of computational

intractability and unlearneable models. In chapter 4 we introduced Hidden Markov Random

Fields (HMRFs) which contain latent variables in order to increase the representational power

65

of the MRF models. However, they suffered from badly learned models due to poor inference

properties of loopy belief propagation in graphs with many cycles [38]. Additionally, the HMRF

models need a prior specification of the statistical dependencies among the hidden layer units

which might not be available.

In this chapter, we introduce Boltzmann Machines for learning generative models of pro-

tein sequence families. Boltzmann Machines are undirected graphical models with dense inter-

connections. Latent variables can also be added to Boltzmann Machines for greater modelling

power. We show that by making very few restrictions to the structure of the Boltzmann Machines

we can get models that are (1) expressive (2) learneable and (3) agnostic with respect to features.

In particular, we consider Boltzmann Machines with p-partite structures. These are known

as Restricted Boltzmann Machines and Deep Boltzmann Machines. In addition, we also propose

Sparse Boltzmann Machines and an algorithm for learning their sparsity structure.

See figure 6.1 for a quick glance at the architecture of models that shall be covered in this chapter.

6.1 General Boltzmann Machines

Boltzmann Machines were first proposed by Hinton and Sejnowski [32]. They are similar to

Hopfield networks [35] which were contemporarily proposed. They are also known as energy

based models [53] since the log-likelihood of model can be represented by an energy function

which simplifies into a log-linear form [53].

Essentially, Boltzmann Machines are undirected graphical models and belong to the class of

Markov Random Fields with pairwise potential functions that describe the interactions between

the different variables. Boltzmann Machines can be fully observed in which case they belong to

the class of Visible Markov Random Fields (VMRFs) as discussed in Section 4.2. They could

also contain hidden units in which case they belong to the class of Hidden Markov Random

Fields (HMRFs) as discussed in Section 4.3. See figure 6.1a and figure 6.1b for an illustration of

66

Boltzmann Machines

Restricted Boltzmann Machine
v1 v2 v3 v4

h1 h2 h3 h4 h5

Deep Boltzmann Machine
v1 v2 v3 v4

h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

Locally Connected
v1 v2 v3 v4

h11 h12 h13

h21 h22 h23

Table 6.1: Summary of Boltzmann Machine models

a visible and a hidden Boltzmann Machine respectively. Also, note that we will refer to Visible

General Boltzmann Machines with the acronym VBMs.

The distinguishing factor of Boltzmann Machines when compared to general MRFs is that

in general they tend to be much more densely connected. Hinton and Sejnowski, mention that

their motivations for modelling with dense connections are rooted in Hebbian Learning and the

connectionist interpretations of the brain [32]. The dense connections allow for the possibility

of modelling much more complex relationships. Also, Boltzmann Machines tend to be agnostic

with respect to the connections between the nodes, thus allowing for a larger hypothesis space

for unsupervised learning. By allowing all visible variables to connect to all hidden nodes, the

end-user remains agnostic about choosing any statistical edge over the other.

Despite the greater representational power these models tend to be largely computationally

intractable [31]. The dense connections make exact inference impossible and approximate in-

ference techniques inaccurate [6]. Typically, certain constraints are placed upon the topology of

67

v1 v2 v3 v4

(a) A completely observed Boltzmann Machine

v1 v2 v3 v4

h1 h2 h3 h4 h5

(b) A Boltzmann Machine with hidden units

Figure 6.1: Boltzmann Machines with and without visible units

the Boltzmann Machines in order to make them more tractable. As we shall see in the following

sections, special cases of Boltzmann Machines such as Restricted Boltzmann Machines (RBMs),

Deep Boltzmann Machines (DBMs), Sparse Restricted Boltzmann Machines (SRBMs), Sparse

Semi Restricted Boltzmann Machines (SSRBMs) and Locally Connected Deep Boltzmann Ma-

chines (LC-DBMs) can offer good tradeoffs between representational power and computational

tractability.

6.1.1 Likelihood

As discussed above, Boltzmann Machines have a visible as well as a hidden formulation. In this

thesis, we will mainly concern ourselves with the hidden formulation since hidden nodes let us

go beyond pairwise potentials and model truly rich representations. Similar to section 4.3 on

HMRFs, the probability of an input sequence V is represented by :

68

P (V; Θ) =
∑
h∈H

P (V, h; Θ) (6.1)

=
1

Z(Θ)

∑
h∈H

∏
i∈VV

Φi(vi)
∏
j∈VH

Φj(hj) (6.2)

∏
(s,t)∈EV

Ψst(vs, vt)
∏

(q,r)∈EH

Ψqr(hq, hr) (6.3)

∏
(l,m)∈EVH

Ψlm(vl, hm) (6.4)

=
ZV(Θ)

Z(Θ)
(6.5)

where Z(Θ) is the partition function of the full model, while ZV(Θ) is the partition function

of the model clamped with the input sequence V.

6.1.2 Learning

Parameters of the model are learned by maximizing the log likelihood of the data.

Θ∗ = arg max
Θ={Φ,Ψ}

M∑
m=1

logP (V m; Θ) (6.6)

= arg max
Θ={Φ,Ψ}

M∑
m=1

log
∑
h∈H

P (V m, H; Θ) (6.7)

Gradient calculation is similar to HMRFs:

∇Φi
logP (V; Θ) = EV[vi]− EΘ[vi] (6.8)

∇Ψst logP (V; Θ) = EV[vsv
T
t]− EΘ[vsv

T
t] (6.9)

∇Φj
logP (V; Θ) = EV[hj|V]− EΘ[hj] (6.10)

∇Ψqr logP (V; Θ) = EV[hqh
T
r |V]− EΘ[hqh

T
r] (6.11)

69

where EV[vi] and EV[vsv
T
t] are sufficient statistics of the visible variables; EV[hj|v] and

EV[hqh
T
r |v] are the data dependent statistics; EΘ[vi], EΘ[hj], EΘ[vsv

T
t] and EΘ[hqh

T
r] are the

model expectations. The calculation of the model expectations are intractable in general unless

certain restrictions are imposed upon the structure of these models [70].

6.1.3 Evaluation

We will use generative metrics in order to evaluate the Boltzmann Machines. Generative metrics

test the probability density estimate of held out data under the model. Our main evaluation metric

is the imputation error / pseudo Log-likelihood [9]. Imputation error is relevant for modelling

protein sequence families [4] as it is directly related to the task of protein design.

Another generative metric that will be used with Restricted Boltzmann Machines and Deep

Boltzmann Machines is the reconstruction error, but only as a proxy for test log likelihood for

model selection purposes. Reconstruction error is discussed in Section 6.2 on RBMs.

Pseudo Log Likelihood/Imputation Error

Imputation error is defined as the average error when predicting the amino acid type at each

position in the sequence, when conditioning on the other amino acids in the sequence.

P (vi|v−i) = P (vi| {vj ; j ∈ N (i)})

where N (i) is the set of random variables in the neighborhood of vi.

6.2 Restricted Boltzmann Machines (RBMs)

Restricted Boltzmann Machines are a special type of Boltzmann Machines. The “restriction” in

RBM comes from the fact that certain constraints are imposed upon the topology of the model.

This allows tractability properties which are not otherwise enjoyed by other members of Boltz-

70

mann Machines. In particular, an RBM has a visible and a hidden layer arranged in a bipartite

graph. See Figure 6.2 for an illustration. The shaded nodes v correspond to the visible layer.

The lighter nodes h corresponds to the hidden layer. Unlike a VMRF/HMRF discussed in Sec-

tion 4.2 4.3, the RBM does not contain any direct connections between the visible units. Instead

all information is communicated via the hidden layer. The motivation behind this is that the

potentials encoded by the hidden layers capture higher order interactions [24].

The bipartite nature of the graph allows the hidden nodes to factorize given the visible units

and vice versa. This allows for efficient inference of the hidden node beliefs given the visible

units. It also allows for efficient sequential parallel Gibbs sampling [12].

RBMs have been used extensively in the deep learning community as basic units in larger

models such as Deep Neural Networks [33]. RBMs were first described by Smolensky et.al [76]

as Harmoniums. They have been used in varied applications such as classification [51], collabo-

rative filtering [73] and modelling documents [71]. They have even been used in computational

biology applications such as predicting drug target interactions [89].

The hidden layer in RBMs can have an arbitrary number of nodes and each hidden variable

has two states (logistic units) though it is not mandatory. Even though RBMs only have a single

hidden layer, they can be very expressive and possess superior modelling power. Coates et.al [13]

perform a detailed comparison of the hyperparameters involved in learning a RBM model. They

find that the number of hidden nodes can play a critical role. When pushed to the limit i.e. very

large number of hidden nodes ; the RBMs can have near state of the art performance.

6.2.1 Learning

Learning in the RBM is somewhat simplified owing to the bipartite nature of the connections be-

tween the visible and the hidden layer. Conditioned on the visible variables the hidden variables

factorize. This leads to the equations 6.13 for conditional inference. Specifically calculation of

EV[hj|v] is exact and there is no need to calculate EV[hqh
T
r |v] since there are no direct connec-

71

v1 v2 v3 v4

h1 h2 h3 h4 h5

Figure 6.2: A Restricted Boltzmann Machine (RBM) is a Boltzmann Machine which consists

of single hidden layer.The shaded nodes v correspond the visible layer. The lighter nodes h

corresponds to the hidden layer.

tions within the hidden layer.

P (hj = 1|V) =
φj(h

1
j)
∏

i∈VV ψij(vi, h
1
j)

1 + φj(h1
j)
∏

i∈VV ψij(vi, h
1
j)

(6.12)

P (vi = a|H) =
φi(v

a
i)
∏

j∈VH ψij(v
a
i , hj)∑21

b=1 φi(v
b
i)
∏

j∈VH ψij(v
b
i , hj)

(6.13)

On the other hand, calculation of EΘ[hj] and EΘ[vi] is still intractable and requires approx-

imate inference. Loopy belief propagation is not an effective choice in the case of RBMs and

is known to perform very poorly in dense graph structures [38]. However, due to the bipartite

graph structure, mixing of the markov chains can be fairly rapid when Gibbs sampling the layers

consecutively. This is known as the contrastive divergence algorithm [30] and is a form of ap-

proximate gradient descent. Additionally, it has been shown that it is sufficient in practice to run

just a few Gibbs steps to get an effective estimate of the model expectation [34] and is known as

the CD-k algorithm.

6.2.2 Evaluation

Restricted Boltzmann Machines are evaluated using generative metrics for Boltzmann Machines

as discussed in section 6.1.3. As in learning, the computation complexity of the evaluation

metrics is simplified owing to the special structure of RBMs.

72

Cross entropy / Reconstruction error: is the easiest to calculate since it involves two Gibbs

sampling passes ; once for each layer conditioned on the test input instance. In fact it is the default

metric that is used to track the progress of learning since the other metrics can be computationally

very expensive. Calculating the cross entropy is a two step process. First, the marginals of the

hidden layer are inferred by conditioning on a sequence in the visible layer using equations 6.13.

Second, the marginals of the visible layer are inferred by conditioning on the marginals of the

hidden layer using equations 6.13. The cross entropy between the data distribution and the

inferred distribution in the visible layer is defined as the reconstruction error.

Pseudo log-likelihood / Imputation error: is our primary evaluation metric. It is possible to

calculate the pseudo log likelihood of an RBM exactly since the it is possible to calculate the

conditional partition function efficiently.

P (vai |v−i) =
Za(Θ)∑21
k=1Zk(Θ)

(6.14)

where Za(Θ) is the partition function of the RBM conditioned on the input sequence V =

{vai , v−i}. This calculation is exact since the hidden layer factorizes conditioned on the visible

layer.

6.3 Deep Boltzmann Machines (DBMs)

Deep Boltzmann Machines(DBMs) first introduced by Salakhutdinov et.al [71]. They generalize

the RBM architecture to multiple layers. See Figure 6.3 for an illustration. The darker nodes

V correspond to the visible layer while the lighter nodes H1 and H2 correspond to the hidden

layers. Note the p-partite structure of the graph. RBMs can in theory represent arbitrary binary

functions [24] and are universal approximators but they might need exponential number of units

in order to do so [52]. DBMs have higher expressive power than RBMs due the connections

between the hidden layer units. Bengio et.al [7] showed that deep networks need exponentially

73

v1 v2 v3 v4

h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

Figure 6.3: A Deep Boltzmann Machine (DBM) : Generalizes the architecture of a RBM to

multiple hidden layers

less units than shallower networks when expressed as sum-product networks. DBMs have also

shown to have better generative performance when compared to RBMs [71].

Unfortunately, this greater representative power comes at a cost. The tractability benefits

present in the RBM are lost. With multiple hidden layers the factorization property present in the

RBMs no longer holds and makes exact inference intractable. Despite the computational diffi-

culties, state of the art models can be learned in practice, using approximate inference techniques

such as Gibbs sampling and variational mean field inference [71, 72]. Deep Boltzmann Machines

have been applied for modelling text [78], images [71] and even multiple modalities [77].

Note that a DBM is not the same as a Deep Belief Network (DBN). A DBN is a hybrid di-

rected/undirected graphical model [33] and does not belong to the class of Boltzmann Machines.

Conditioned on the visible nodes a DBN does not factorize. Also it cannot take both top down

and bottom up influences during inference unlike a DBM.

6.3.1 Learning

Training Deep Boltzmann Machines is much more challenging than Restricted Boltzmann Ma-

chines due to the presence of a second hidden layer. As a consequence, the hidden layer units

no longer factorize given the visible layer. The quantities EV[hj|v], EV[hqh
T
r |v], EΘ[vi], EΘ[hj]

and EΘ[hqh
T
r] are not efficiently computable. Hence, directly applying stochastic gradient de-

74

scent using Boltzmann Machine equations 6.11 is not possible.

Instead approximate inference techniques must be used. We used persistent contrastive di-

vergence [88] to calculate the model expectations EΘ[vi], EΘ[hj] and EΘ[hqh
T
r] ; and varia-

tional mean field inference equations 6.16 to calculate training data expectations EV[hj|v] and

EV[hqh
T
r |v]. This is similar to the approach taken by Salakhutdinov et.al [71] for training their

DBMs.

P (hj = 1|V,H2) =
φj(h

1
j)
∏

i∈VV ψij(vi, h
1
j)
∏

k∈VH2
ψkj(hk, h

1
j)

1 + φj(h1
j)
∏

i∈VV ψij(vi, h
1
j)
∏

k∈VH2
ψkj(hk, h1

j)
(6.15)

P (hk = 1|H1) =
φk(h

1
k)
∏

j∈VH1
ψjk(hj, h

1
k)

1 + φk(h1
k)
∏

j∈VH1
ψjk(hj, h1

k)
(6.16)

Unfortunately, it has been empirically observed that even the approximate approach does not

work very well in practice unless the initial set of parameters are already in a favorable location

in parameter space [27, 71]. Greedy pretraining using RBMs is a common technique to warm

start and initialize the parameters [8, 33]. Pretraining is a three step process. In the first step, an

RBM model is trained on the input data. In the second step, the hidden layer representations of

the RBM are extracted and are used to train a second RBM. In the third step the parameters are

stitched together from the two RBMs to create a joint Deep Boltzmann Machine (DBM). This

model is fine tuned using the variational inference update Equations 6.16, 6.17 and PCD-k [88]

as discussed before.

P (vi = a|H1) =
φi(v

a
i)
∏

j∈VH1
ψij(v

a
i , hj)∑21

b=1 φi(v
b
i)
∏

j∈VH1
ψij(vbi , hj)

(6.17)

6.3.2 Evaluation

Similar to a RBM, evaluation on the DBM is done using two generative metrics. (1) Imputation

Error and (2) Reconstruction Error. The evaluation metrics are largely similar to RBMs, however

75

the additional computational difficulties necessitate certain modifications:

• Imputation error: calculation is no longer exact since the hidden layer is non-factorial. So

we must resort to approximation inference. We have used variational mean field inference

using Equation 6.17.

• Reconstruction error: calculation is no longer exact since exact inference is not possible

on the hidden layer given the visible layer. We have used variational mean field inference

using Equation 6.16 and equation 6.17.

6.4 Sparse Boltzmann Machines

In the previous section, we described the RBM and the DBM architectures. These models contain

a very large number of parameters. We wondered if such a large number of parameters was

actually necessary. Specifically, is it possible to (1) get similar performance with far lesser

parameters (2) prevent overfitting and (3) inject prior knowledge into Boltzmann Machines by

using fewer parameters. In this section, we attempt to address these question by introducing a

new type of Boltzmann Machine.

We present a sparse variant of Boltzmann Machines. Sparsity in this context refers to sparsity

in the parameters and topology of the Boltzmann Machine. Sparsity prevents overfitting by

reducing the hypothesis space of the model. It also leads to data efficiency such that lesser data

is needed to train the model by reducing the number of parameters. Sparse structure learning

can also be useful for descriptive analysis in decoding the statistical relationships present in the

data [4].

Sparse structure learning has been previously discussed in the context of MRFs [75] and

Gaussian Graphical Models [25]. However, the problem is much harder for Boltzmann Machines

such as RBMs and DBMs due to the presence of hidden variables. Sparse Boltzmann Machines

have been conceptually proposed in the literature [61]. However, they have not been used in

76

practice owing to the difficulty of sparse structure learning for hidden variable models. Previous

approaches using sparse Boltzmann Machines assume that the connections are known apriori.

The shape Boltzmann Machine [21] is an example of a sparse Boltzmann Machine which uses

the spatial proximity of adjacent pixels to specify the connections allowed.

In this section, we present a method for learning the sparsity structure of Boltzmann Machines

without using any prior information. This is important in the context in protein sequence families

wherein long distance relationships can have important modelling consequences. We present

three kinds of sparse Boltzmann Machines (1) Sparse Restricted Boltzmann Machines (SRBMs)

(2) Sparse Semi Restricted Boltzmann Machines (SSRBMs) and (3) Locally Connected Deep

Boltzmann Machines (LC-DBMs).

6.4.1 Models

In the following sections we describe the three sparse Boltzmann Machines:

Sparse Restricted Boltzmann Machine (SRBMs)

These are RBMs with sparse edges. See figure 6.4 for an illustration. Figure 6.4a shows a non-

sparse RBM which is a fully connected bipartite graph ; while figure 6.4b shows a SRBM with

several edges and some nodes missing.

Learning and Evaluation for the SRBM is the same as a RBM (See Section 6.2.1) once the

original topology and parameters have been learned (See Section 6.4.2).

Sparse Semi-Restricted Boltzmann Machines (SSRBM)

A Sparse Semi-Restricted Boltzmann Machines (SSRBM) is a SRBM with an added hidden layer

attached to the visible layer. See Figure 6.5 for an illustration. An SRBM with its sparse edges

is likely to have limited modelling power especially if it was created using a MRF to RBM map

77

v1 v2 v3 v4

h1 h2 h3 h4 h5

(a) Restricted Boltzmann Machine (RBM)

v1 v2 v3 v4

h1 h2 h3

(b) Sparse Restricted Boltzmann Machine (SRBM)

Figure 6.4: Comparison of Restricted Boltzmann Machines (RBMs) and Sparse Restricted Boltz-

mann Machines (SRBMs)

v1 v2 v3 v4

h11 h12 h13

h21 h22

Figure 6.5: A Sparse Semi-Restricted Boltzmann Machine (SSRBM) is a Boltzmann Machine

which consists of a sparse hidden layer (H1) attached to the visible layer and a dense hidden

layer (H2) attached to the same visible layer. The dense layer (H2) boosts the modelling capacity

of the model without adding too many variables

(see section 6.4.2). The motivation behind the additional hidden layer is that it boosts modelling

capacity without adding too many variables.

Learning and Evaluation for the SSRBM is the same as a RBM (See Section 6.2.1) once the

original topology and parameters have been learned (See Section 6.4.2). The additional hidden

layer does not make the RBM intractable since it still factorizes given the visible layer.

Locally Connected Deep Boltzmann Machines

A Locally Connected Deep Boltzmann Machine (LC-DBM) is similar to a DBM but has ad-

ditional restrictions. The connections between the visible layer and the first hidden layer are

78

required to be sparse. Compare figure 6.3, a Deep Boltzmann Machine with figure 6.7, a Locally

Connected DBM. Notice that the connections to the first hidden layer are sparse. The moti-

vation for sparsifying the lower layers is to inject prior knowledge into the lower layers while

letting the higher layers deal with the modelling load of complex data distributions. This acts

as a trade-off between allowing rich representations and statistical/computational efficiency. The

shape Boltzmann Machine proposed by Eslami et.al [21] is a LC-DBM with the sparsity struc-

ture pre-defined. In section 6.4.2 we will show how to learn the sparsity structure automatically

from the data.

Analogous to LC-DBMs are the concepts of convolution and pooling which take advantage

of the topological structure of the input dimensions. Examples of topological structure are 2D

layouts of pixels in images, 3D structures of videos and proteins, the 1D sequential structures

of text or protein sequences. This is a commonly used approach in Convolutional Neural Net-

works [54] (CNN). The LC-DBM draws motivation from this idea in the context of DBMs. See

figure 6.6 for an illustration of a CNN applied to a 2D image patch.

Figure 6.6: A Convolutional Neural Network used in computer vision has a local structure prop-

erty at the lower layers and dense connections at higher layers. This approach allows incorporat-

ing spatial coherence into the statistical structure, an injection of prior knowledge.

79

v1 v2 v3 v4

h11 h12 h13

h21 h22 h23

Figure 6.7: A Locally Connected Deep Boltzmann Machine (LC-DBM) : A DBM with sparse

edges between the visible layer and the first hidden layer. Can be thought of as a SRBM with an

additional RBM layer on top.

Learning and Evaluation for the LC-DBM is the same as a DBM (See Section 6.3.1) once the

original topology and parameters have been learned (See Section 6.4.2). The additional hidden

layer makes the SRBM intractable and only approximate inference techniques can be applied

such as variational mean field inference.

6.4.2 Sparse Topology Learning using Cholesky Decomposition

Learning the sparsity structure is much harder for the case of latent variable models. In a sense

the problem is ill-defined because the of non-identifiability of hidden nodes. For e.g. the sparsity

structure of two hidden nodes hi and hj could be swapped without changing the objective func-

tion of the model. Previous sparsity inducing approaches do not enforce sparsity at the topology

level [55] or enforce sparsity in the context of predictive networks such as auto-encoders [10, 57].

Our approach is based on three key insights (1) Sparse structure learning for MRFs (2) Mapping

MRF parameters to a Gaussian RBM (3) Sparsity structure preservation in Cholesky decompo-

sitions. See Figure 6.10 for an illustration of the steps involved in creating the difference Sparse

Boltzmann Machines. We describe these steps in greater detail below:

80

Sparse MRF structure learning: Balakrishnan et.al [4] introduce GREMLIN, a method for l1

regularized structure learning to learn a sparse visible MRF for a protein sequence alignment.

Usually this method creates O(N) edges, where N is the number of columns in the multiple

sequence alignment. We use this method to learn a sparse MRF (figure 6.10b) from a fully

connected MRF (figure 6.10a). Gremlin induces l1 group sparsity on the pseudo log-likelihood

and learns a sparse set of edges.

Θ∗ =

(
arg max
Θ={Φ,Ψ}

M∑
m=1

N∑
i=1

logP (vm
i |Vm

−i; Θ)

)
−MλΦ||Φ||22 −MλΨ||Ψ||1

MRF to Gaussian RBM Mapping: Martens et.al [58] introduced a method to convert a visible

MRF to a Gaussian RBM using a Cholesky decomposition of the MRF parameter matrix. They

use the fact that the energies of the Gaussian RBM and a visible MRF factorize to linear terms

and can therefore be equated with each other.

Consider a RBM with gaussian hidden units such that the energy of the RBM is represented as

E(h, v) =
1

2
hTh− hTWv − f(v) (6.18)

where h and v are the hidden and visible units respectively, W is the RBM parameter matrix

and f(v) is any arbitrary function of the visible variables alone.

We can rewrite the energy function E(h, v) as:

E(h, v) =
1

2
(h−Wv)T (h−Wv)− 1

2
vTW TWv − f(v) (6.19)

81

We can calculate the marginal probability of the visible variables as

p(v; Θ) = exp

(
1

2
vTW TWv + f(v)

)∫
1

Z
exp

(
−1

2
(h−Wv)T (h−Wv)

)
dh (6.20)

=
(2π)N/2

Z(Θ)
exp

(
1

2
vTW TWv + f(v)

)
(6.21)

∝ exp

(
1

2
vTW TWv + f(v)

)
(6.22)

Now, suppose the parameters of a VMRF were represented via the matrix M . We can then

calculate the probability of the VMRF as

p(v; Θ) =
1

Z(Θ)
exp

(
1

2
vTMv

)
(6.23)

The Gaussian RBM can be made to represent the same distribution as the MRF by equating the

energy terms of equation 6.20 and equation 6.23.

− 1

2
vTMv = −1

2
vTW TWv − f(v) (6.24)

and this will be satisfied iff M = W TW + f(v). Importantly, W can be calculated as the

Cholesky decomposition of M ; W ← chol(M)

Note that if M is positive definite, then f(v) can be set to zero. If on the other hand, M is not

positive definite we can consider a special form of f(v) = 1/2vTdiag(d)v. We can choose any d

that makes A− diag(d) positive definite. One such d is d = α~1 where α = (1 + ε) min(λmin, 0)

and ε is a small positive value and λmin is the smallest eigen value of M .

The Gaussian units can also be thought as linear units since their activations are a linear com-

bination of the input units with some Gaussian noise. We empirically observed that performing

82

(a) The original MRF parameter matrix M for ubiq-

uitin family (PF00240).

(b) Cholesky decomposition of the original MRF pa-

rameter matrix M

Figure 6.8: Converting MRF to RBM using Cholesky Decomposition

learning on the Gaussian hidden units tends to be unstable The instability can be countered by

applying l2 regularization penalties, however the strong regularization prevents useful models

from being learnt. As an alternative, we substitute the Gaussian units with regular bernoulli hid-

den units without much deterioration in performance. This helps in model stability and provides

a warm parameter bootstrap despite losing the the 1-to-1 map between the MRF and the RBM.

Sparse Cholesky decomposition: The above MRF to RBM map uses a Cholesky decompo-

sition. An interesting property of the Cholesky decomposition is that if the input matrix M is

sparse then the factored matrix W tends to be sparse as well [16]. For most protein sequence

families, Gremlin [41] produces a sparse set of edges that resemble the protein contact map (See

http://gremlin.bakerlab.org/). So the input MRFs are likely to sparse and the spar-

sity is transferred to the RBM via the Cholesky decomposition. See Figure 6.8 for an example

with the ubiquitin family (PF00240).

The Cholesky decomposition in the above step creates a SRBM (See Section 6.4.1). Hidden

83

http://gremlin.bakerlab.org/

layers can be added to the SRBM to provide added representational power with minimal param-

eters. Adding a hidden layer to the visible layer creates a SSRBM (See Section 6.4.1) whereas

adding a second hidden layer to the first hidden layer creates a LC-DBM (See Section 6.4.1)

Min fill permutations

The sparse Cholesky decomposition can be further sparsified by performing a min fill permuta-

tion on the input matrix [16]. We first show that any permutation matrix P , that permutes the

rows of the positive definite MRF matrix M ′ can be used to get the same result as equation 6.24.

1

2
vTMv − 1

2
vTdiag(d)v =

1

2
vT (M − diag(d))v (6.25)

=
1

2
vTM ′v (6.26)

=
1

2
vTP TPM ′P TPv (6.27)

=
1

2
vTP T

(
XTX

)
Pv (6.28)

=
1

2
vT (XP)T (XP)v (6.29)

=
1

2
vTY TY v (6.30)

(6.31)

where Y = PX and X ← chol(P (M − diag(d))P T) and P is a permutation matrix.

Therefore we have the result that Y is the new RBM matrix.

− 1

2
vTMv = −1

2
vTY TY v − 1

2
vTdiag(d)v (6.32)

P can be chosen such that it causes minimum fill in the corresponding Cholesky factor X .

The problem of finding the best ordering is in general, NP-complete. Instead heursitics must be

used and we use the approximate minimum degree (AMD) heuristic due to Amestoy et.al [3].

This AMD algorithm has a tight upper bound of O(nm) [28] where n and m are the number

84

of vertices and edges in a graph respectively. See figure 6.9 for an example with the ubiquitin

family (PF00240).

6.5 Regularization

Regularization describes a set of techniques used to prevent overfitting in machine learning mod-

els. This is especially important in models like Boltzmann Machines which are heavily overpa-

rameterized. A consequence of overfitting is low training error but high validation and test error.

In this section, we discuss some commonly used regularization strategies that we tried.

l2 regularization

This technique modifies the objective function of the Boltzmann Machines by penalizing the

parameter weights. The objective and the gradients are modified according to Equations 6.33

and 6.37. This discourages very strong activations in the hidden and the visible units. It also

helps in keeping the learning algorithm stable and prevents numerical instability issues [34].

Θ∗ = arg max
Θ={Φ,Ψ}

(
M∑
m=1

logP (V m; Θ)

)
−MλΦ||Φ||22 −MλΨ||Ψ||22 (6.33)

With the modification in the objective, the gradients become.

∇Φi
logP (V; Θ) = EV[vi]− EΘ[vi]− λΦΦi (6.34)

∇Ψst logP (V; Θ) = EV[vsv
T
t]− EΘ[vsv

T
t]− λΨΨst (6.35)

∇Φj
logP (V; Θ) = EV[hj|V]− EΘ[hj]− λΦΦj (6.36)

∇Ψqr logP (V; Θ) = EV[hqh
T
r |V]− EΘ[hqh

T
r]− λΨΨqr (6.37)

Dropout

Dropout is a regularization technique introduced by Srivastava et.al [79] and has been previously

used to regularize the parameters of a deep network. It involves randomly dropping some of

85

(a) The original MRF parameter matrix M for ubiq-

uitin family (PF00240).

(b) A minfill ordering of the MRF param matrix M

for ubiquitin family (PF00240)

(c) Cholesky decomposition of minfill MRF 6.9b is

sparser than 6.8b

Figure 6.9: Converting MRF to RBM using min-fill Ordering

86

v1 v2 v3 v4

(a) Fully Connected MRF

v1 v2 v3 v4

(b) Sparse MRF

v1 v2 v3 v4

h1 h2 h3

(c) Sparse Restricted Boltzmann Machine (SRBM)

v1 v2 v3 v4

h11 h12 h13

h21 h22

(d) Sparse Semi-Restricted Boltzmann Machine (SS-

RBM)

v1 v2 v3 v4

h11 h12 h13

h21 h22 h23

(e) Locally Connected Deep Boltzmann Machine

(LC-DBM)

Figure 6.10: Sparse Boltzmann Machine Topology Learning: The different steps involved

in learning a Sparse Boltzmann Machine. 6.10a) A fully connected MRF is used to model the

protein sequence family. 6.10b) A sparse MRF structure is learned by l1 regularized structure

learning. 6.10c) A Cholesky decomposition is performed to convert the sparse MRF to a sparse

RBM using equation 6.24. 6.10d) A hidden layer is added to the visible to convert the SRBM

to a SSRBM. 6.10e) A second hidden layer is added to the first hidden layer in the SRBM to

convert it to a LC-DBM

87

hidden and visible nodes during an iteration of training. The central idea behind this is similar

to the concept of bagging and boosting. It is a mechanism to sample several smaller submodels,

train them and subsequently stitch them together at test time. While this may not optimize the log

likelihood of the data it still forces the model to learn useful representations. We apply dropout

to our models with great success.

6.6 Experiments and Results

The experiments will be divided into three main parts. In the first part, our goal was to ascertain

if standard Boltzmann Machines such as RBMs and DBMs can learn superior generative models

of protein sequence families. In the second part, our goal was to investigate the efficacy of sparse

Boltzmann Machines. Finally, in the third part, we perform a large scale study with additional

datasets using a diverse set of evaluation metrics.

6.6.1 Data Description

We obtained multiple sequences alignments for two protein families, ubiquitin (PF00240) and

PDZ (PF00595), from the Baker-lab GREMLIN webserver http://gremlin.bakerlab.

org/. These MSAs were create using HMMs from Pfam hmm(s) as seeds.The alignments were

further enriched with additional sequences using HHblits [69] and the uniprot database [15].

The alignments where filtered to have 75% coverage i.e. sites that had more than 75% gaps were

removed. Also these alignments were processed to have at most 90% sequence identity.

The ubiquitin MSA contains 5538 sequences and 69 positions. The PDZ MSA contains

12887 sequences and 81 positions. The sequences in the alignment were randomized. The align-

ments were split into training, validation, and test sets using a 60%, 20% and 20% proportion

split, respectively. The validation sets were used to select the optimal hyper-parameters.

This is the same dataset as in chapter 4 to allow comparison with MRF models.

88

http://gremlin.bakerlab.org/
http://gremlin.bakerlab.org/

6.6.2 Algorithm and implementation details

In this section, we describe the experimental setup for Boltzmann Machine experiments. As

with the MRFs 4.4, our task will be to test the generative performance of Boltzmann Machines

and compare them against the MRF models. We undertake an extensive hyperparameter scan to

figure out best practices for Boltzmann Machines when applied to protein families.

The “deepnet” package provided by Srivastava (https://github.com/nitishsrivastava/

deepnet) was used for training the Boltzmann Machines. To speed up our calculations, we

used Amazon EC2 cloud-computing and GPU-acceleration using the CUDAmat [59] library.

Depending on the number of visible and hidden nodes and size of the training data, each model

can take anywhere from 30 minutes to 12 hours to train.

RBMs and DBMs

This section corresponds to the first part of the experiments i.e. to ascertain if standard Boltzmann

Machines such as RBMs and DBMs can learn superior generative models of protein sequence

families

We describe the experimental setup for training and evaluating RBMs and DBMs. We also

describe the hyperparameter scans associated with these models. These models use hidden layers

that have binary or logistic units. The input visible layer has softmax units consisting of 21

states. DBM architectures were implemented using the template I −H1 −H2 corresponding to

the input layer, the first hidden layer and the second hidden layer respectively. I contains 69 and

81 softmax units corresponding to ubiquitin and PDZ respectively. H1 and H2 take 100, 500 and

1000 logistic units each. This gives rise to a total of 9 architectures for each protein family.

We employed the Persistent Contrastive Divergence (PCD) [88] algorithm for training our

Boltzmann models. Optimization was accelerated using momentum acceleration. We used five

Gibbs sampling steps to calculate model expectations, thereby leading to the PCD-5 algorithm.

Additionally, we used five variational mean field inference steps for calculating the data depen-

89

https://github.com/nitishsrivastava/deepnet
https://github.com/nitishsrivastava/deepnet

dent expectations.

Data was split into mini-batches of 200 sequences each. The weights were updated after each

mini-batch was evaluated. We scanned over learning rates ε of 0.5, 0.1 and 0.01. The learning

rate was decayed according to two schedules (1) linear ε/(2000+t) (2) exponential - ε exp−t. We

trained our RBMs for a total of 100,000 epochs and our DBM models for an additional 200,000

epochs after the RBM pretraining. Models were dumped every 1000 epochs.

We employed pre-training to initialize the parameters of the DBMs. Pre-training involves

learning a single-layer RBM and then using the representations from the first RBM to train a

second RBM. The parameters of these two RBMs are used to initialize a joint model which is

then trained using variational mean field inference, as previously mentioned.

To prevent overfitting, we regularized our models. Our primary means of regularization was

applying a l2 penalty to the parameters. We did not regularize the node biases, but applied it

to edge parameters. Additionally, we investigated the use of “dropout” technique [79] for some

models. We used a dropout probability of 0.5.

Visible General Boltzmann Machine (VBMs)

We train a visible general Boltzmann Machine (vbm) for comparison with RBMs and DBMs.

This is also the same as a fully connected VMRF. We use pseudo log likelihood for training

(see section 4.2.3). We used the LBFGS [94] algorithm for optimizing the parameters. The

optimization routine was run for a maximum of 1000 iterations or till a convergence tolerance

was reached. We used Wolfe line search [92] for adaptively picking the step length at each

gradient step. We applied l2 regularization penalty of 1 on the nodes and edges similar to other

VMRF models.

Training these models was much more computationally expensive than other visible MRFs.

90

Hyper parameters Options Description

ε (.5, .1, .01) Learning Rate

ε-decay yes/no Use ε decay with inverse time

l2-decay (0.01, 0.001) Apply L2 decay on parameter weights

dropout yes/no Use dropout

momentum yes/no Use momentum acceleration

hwidth (69/81, 100, 500, 1000) Width of the hidden layer

Gibbs-steps 5 Number of Gibbs iterations

mf-steps 5 Number of mean field iterations

epochs (100K-RBM, 200K-DBM) Number of epochs to run training

dropout probs 0.5 Drop node with probability

Table 6.2: Hyperparameters Boltzmann Machines

Hyperparameters and Model Selection: We follow similar practices adopted in the deep

learning community for hyper-parameter selection [34]. We divide the hyperparameters into

three categories (1) Exhaustive - scan over all variations (2) Randomize - randomly sample these

(3) Fixed - best guesses based on prior experience (see Table 6.2). We exhaustively scan over

the use of dropout and the number of hidden nodes. We randomly sample the learning rate, the

decay schedule, the l2 penalty and the gradient momentum from a small set of candidate values.

Additionally we fix other hyperparameters such as number of Gibbs sampling steps, variational

inference steps, and dropout probabilities based on several quick experiments with these models.

Altogether, we ran a total of 300 different experiments for different values of hyperparame-

ters.

We used cross-entropy on the validation set as the model selection metric. It is to be noted

that the log likelihood and the imputation error are superior metrics. However, given the com-

putational expense associated with computing them, we resort to validation cross entropy as an

91

acceptable surrogate. In general, we find that low validation cross entropy is correlated with

having low imputation error.

Sparse Boltzmann Machines

In this section we proceed to the second part of the experiments. We describe the setup for eval-

uating and comparing sparse Boltzmann Machines. In light of the computationally expensive

nature of hyperparameter scanning, we fix the hyperparameters based on our prior experience.

We then proceed to learn and evaluate different sparse Boltzmann Machines using these fixed hy-

perparameters. Additionally, we also train RBMs and DBMs using these same hyperparameters

in order to allow for comparison with their sparse counterparts.

We obtain the sparse parameter matrix by performing a Cholesky decomposition on associ-

ated MRF parameters. The MRF parameters were obtained from the gremvis models for ubiqui-

tin and PDZ which in turn obtained their sparse edges by running the GREMLIN algorithm. We

consider two versions of these sparse edges (1) long edges (2) long plus short edges. The long

edges correspond to GREMLIN connections between amino acids greater than 3 residue positions

away. The short edges correspond to all pairs of edges within 3 residue positions away. To ensure

that the MRF parameter matrix is positive definite we add the minimum eigenvalue of along the

diagonal using a weight of 1.01.

The Sparse Restricted Boltzmann Machine (SRBM) (see section 6.4.1) model is an RBM

with a sparse topology. We use logistic units for the hidden units instead of Gaussian unit as we

find that it leads to better stability in learning. As a consequence of the Cholesky factorization,

the hidden layer has the same number of nodes as the corresponding MRF. The ubiquitin SRBM

has 1449 hidden nodes while the PDZ SRBM has 1701 hidden nodes.

The Sparse Semi Restricted Boltzmann Machine (SSRBM) (see section 6.4.1) model tur-

bocharges the SRBM model described previously. It does so by adding additional logistic nodes

to the first hidden layer. The model is still a RBM albeit with greater sparsity in its parameters.

92

We add 10, 50, 100 and 500 hidden nodes respectively to create four different SSRBM models

for each protein family.

The Locally Connected Deep Boltzmann Machine (LC-DBM)(see section 6.4.1) also at-

tempts to enhance the SRBM model. However it does so by adding an additional hidden layer

above the first hidden layer. This makes the model more akin to a DBM with added computa-

tional difficulties. The hope is that the multilayer model allows for richer representation to be

captured. We introduce 50, 100, 250, 500 and 1000 additional hidden nodes to create different

LC-DBM models.

To compare the sparse Boltzmann Machines against RBMs and DBMs, we additionally

trained vanilla RBMs and DBMs. The RBMs contained 50, 100, 500, 1000 and 1449/1701

hidden logistic units. The DBMs contained 1449 and 1701 units in the first hidden layer and 10,

50 and 100 in the second hidden layer.

In all the above models, we employed Contrastive Divergence (CD) [30] algorithm for train-

ing. Gradients were accelerated using momentum acceleration. We used five Gibbs sampling

steps to calculate model expectations (CD-5). Additionally, we used five variational mean field

inference steps for calculating data dependent expectations for the LC-DBM.

Data was split into mini-batches of 500 sequences each. The weights were updated after each

mini-batch was evaluated. The learning rate ε was fixed at 0.1. The learning rate was decayed

according to linear decay ε/(5000+t). We trained our RBMs, SRBMs and SSRBMs for a total of

100,000 epochs and our DBM and LC-DBM models for an additional 100,000 epochs. Models

were dumped every 1000 epochs.

We employed pre-training to initialize the parameters of the DBMs. To prevent overfitting,

we regularized our models using an l2 regularization penalty of 0.01. We did not regularize the

node biases, but applied it to edge parameters. We did not use dropout on any of the models.

Evaluation was carried out by computing the imputation error. The calculations for RBMs,

SRBMs and SSRBMs is exact whereas approximate inference is needed for DBMS and LC-

93

DBMs. Computation was sped up using GPUs.

6.6.3 Results and Discussion

In this section, we discuss the results from the two part experiments.

RBMs, DBMs and VBMs

This section contains the results from the experiments of the first part. We will present the results

for the ubiquitin protein family (PF00240). The results for PDZ (PF00595) were largely similar

and are discussed in appendix D.2.

We report the imputation errors calculated on the training and the test sets in Table 6.3. We

also list the MRF results from section 4.4 for comparison. The results show that both Boltz-

mann Machines outperform the next-best models by around 13% points. This strongly suggests

that these architectures are capable of extracting more information from the MSAs than the

other models — including other latent variable models. In contrast, the difference in accuracies

amongst the other structured models (excluding the straw-man model, ind) is at most 11%.

The General Boltzmann machine represented by vbm, has significantly better test error than

gremvis (0.398 vs 0.495). However, it’s training error is abysmally low (0.028) indicating that it

has almost memorized the training data.

The other Boltzmann Machines also exhibit a large increase in test error, when compared

to training error. This suggests that the models have over-fit their training data. However, our

results demonstrate that the Boltzmann Machines still have far better generative performance

than the other models.

Sparse Boltzmann Machines

In this section we discuss the results from the next set of experiments pertaining to the Sparse

Boltzmann Machines. We discuss evaluation metrics for sparse Boltzmann machines boot-

94

Model train-imperr±0.002 test-imperr±0.004

ind 0.7604 0.7572

linhid 0.5870 0.5922

linvis 0.5635 0.5753

12vis-pseudo 0.5046 0.5374

gremvis-pseudo 0.4205 0.4952

3dvis-pseudo 0.4164 0.4856

vbm 0.0283 0.3979

rbm-hyp-scan 0.0501 0.3553

dbm-hyp-scan 0.1587 0.3510

Table 6.3: Imputation error ubiquitin PF00240

Model train-imperr±0.002 test-imperr±0.004

rbm-50 0.4764 0.4947

rbm-100 0.3757 0.4335

rbm-500 0.2765 0.3946

rbm-1000 0.2770 0.3999

rbm-1449 0.2790 0.3984

dbm-1449-50 0.2344 0.3857

dbm-1449-100 0.2309 0.3819

Table 6.4: Imputation error ubiquitin RBM and DBM

strapped from sparse MRFs. Figure 6.11 shows the edges for the ubuiquitin family and subse-

quent mapping to a RBM. Notice the sparsity preservation in the map from MRF (figure 6.11a)

to RBM (figure 6.11b).

Table 6.4 shows the imputation errors calculated for baseline models of RBMs and DBMs.

Note that even an RBM with 50 units (rbm-50) has a similar imputation error to the gremvis-

pseudo MRF models (0.49) . As the number of hidden units is increased from 50 to 1449, the

95

(a) ubiquitin MRF param matrix with long range

edges

(b) SRBM bootstrapped from ubiquitin MRF param

matrix with long range edges

Figure 6.11: Cholesky decomposition of ubiquitin MRF param matrix with long range edges

imputation error drops sharply initially but levels off around 500 units. Further addition of units

does not lead to more gains in modelling power. Note the difference in the training and testing

error. The large gap suggests that the model is over-fitting to the training sequences but the

generalization performance is still superior. Stricter l2 penalties could potentially help alleviate

this while retaining the same test error. Additionally, the DBM model dbm-1449-100 had the

best test error.

Bootstrap from Long Range Interactions

This section discusses the results from long range interactions MRF bootstrap. Figure 6.11 shows

the edges for the ubuiquitin family and subsequent mapping to a RBM. Note the absence of any

edges within three residue positions.

Table 6.5 shows imputation errors for SRBM and SSRBM models. The number of additional

hidden nodes in the SSRBM layer are varied. Our hypothesis is that SSRBMs turbocharge the

SRBM models and improve the test error. Even the addition of 10 hidden units dramatically

decreases the test error.

96

Model train-imperr±0.002 test-imperr±0.004

srbm-1449 0.5484 0.5671

10-ssrbm-1449 0.4917 0.5203

50-ssrbm-1449 0.4251 0.4656

100-ssrbm-1449 0.3830 0.4355

500-ssrbm-1449 0.3212 0.4052

Table 6.5: Imputation error ubiquitin SRBM and SSRBM (long edges)

Model train-imperr±0.002 test-imperr±0.004

srbm-1449 0.5484 0.5671

lcdbm-1449-50 0.5319 0.5657

lcdbm-1449-100 0.5095 0.5494

lcdbm-1449-250 0.5004 0.5399

lcdbm-1449-500 0.5032 0.5435

lcdbm-1449-1000 0.5052 0.5456

Table 6.6: Imputation error ubiquitin SRBM and LC-DBM (long edges)

This shows that the additional nodes help in modelling aspects which the SRBM and corre-

spondingly, the MRF alone cannot model. However, note that the SSRBM models are about the

same or slightly worse than the corresponding RBM models (see table 6.4). For e.g. rbm-500

has a test error of 0.394 whereas 500-ssrbm-1449 has a test error of 0.405. This might suggest

that RBMs by themselves are easily capable of learning the representations represented by MRFs

and more. The sparse layer bootstrapped from the MRF biases the model towards distributions

that the MRF represents and this interferes with other high level representations that a vanilla

RBM is trying to learn.

Table 6.6 shows the imputation errors for the LC-DBM model when varying the number of

hidden nodes in the second hidden layer. We expect to see the imputation error improve when

adding additional hidden units in a second layer. However the test error improves for models

97

(a) ubiquitin MRF param matrix with short and long

range edges

(b) SRBM bootstrapped from ubiquitin MRF param

matrix with short and long range edges

Figure 6.12: Cholesky decomposition of ubiquitin MRF param matrix with short and long range

edges

with additional nodes but these are only modest gains (only a drop of about 0.02 w.r.t SRBMs).

lcdbm-1449-50 has a similar test error of 0.565 while lcdbm-1449-250 has a test error of 0.5399.

Additional hidden units do not improver performance.

Bootstrap from Short Plus Long Range Interactions

This section discusses the results for sparse Boltzmann machines bootstrapped from short plus

long range edges. Figure 6.12 shows the edges for the ubuiquitin family and subsequent map-

ping to a RBM. The RBM has many more parameters than the long range bootstrapped RBM

(figure 6.11).

Table 6.7 shows imputation errors for SRBM and SSRBM models. The number of additional

hidden nodes in the SSRBM layer are varied. Similar to the case with long range edges alone, the

error drops with additional hidden nodes. However, the drop is less precipitous and it levels off

around 500 additional hidden units. Also, note that short plus long range edge bootstrap SRBM

has lower error than the long range SRBM alone (0.484 vs 0.567). This goes to show that the

additional parameters help in reducing the error. The same holds for SSRBMs as well, wherein

98

Model train-imperr±0.002 test-imperr±0.004

srbm-1449 0.4392 0.4843

10-ssrbm-1449 0.4208 0.4703

50-ssrbm-1449 0.3864 0.4453

100-ssrbm-1449 0.3621 0.4270

500-ssrbm-1449 0.3471 0.4202

Table 6.7: Imputation error ubiquitin SRBM and SSRBM (short plus long edges)

Model train-imperr±0.002 test-imperr±0.004

srbm-1449 0.4392 0.4843

lcdbm-1449-50 0.4398 0.5081

lcdbm-1449-100 0.4223 0.4929

lcdbm-1449-250 0.4228 0.4925

lcdbm-1449-500 0.4226 0.4908

lcdbm-1449-1000 0.4207 0.4896

Table 6.8: Imputation error ubiquitin SRBM and LC-DBM (short plus long edges)

the addition of the short range edges reduces the error further. However, note that the short plus

long 500-ssrbm-1449 model is worse than the long 500-ssrbm-1449 model alone ; indicating that

the MRF bias is stronger for the short plus long model.

Table 6.8 shows the imputation errors for the LC-DBM model when varying the number of

hidden nodes in the second hidden layer. These models do no better than the corresponding

SRBMs and can in even hurt the performance by a tiny amount. We suspect that the addition

of additional hidden nodes unsettles the already tuned SRBM without aiding recovery to vanilla

RBM performance.

SSRBM and LC-DBM results summary

The LC-DBM results give rise to the following conclusions:

99

• SSRBMs turbocharge the SRBM models with much needed additional features and reduce

the error significantly with even modest addition of hidden units.

• SSRBMs are biased depending on the MRF they were bootstrapped from, and cannot better

the performance of vanilla RBMs with the same number of dense hidden units.

• LC-DBMs appear to have very little effect in reducing the imputation error. A second

hidden layer can reduce the test error of a SRBM by (0.567 to 0.539) in the case of long-

range edge bootstrap. Though these gains are fairly modest. For the case of short plus long

range edge bootstrap the LC-DBM seems not to help at all.

• Adding additional hidden units in the second layer also does not lead to further improve-

ment. This suggests that the features are bottlenecked at the first hidden layer.

• In conjunction with SSRBMs, we note that even a small addition of dense connections

greatly reduces the test error. This suggests that protein families might have k-ary depen-

dencies which a MRF and a SRBM fail to model.

6.6.4 Minfill trick

In this section we compare the performance of the minfill trick with the direct Cholesky decom-

position. We also examine the effect of thresholding the decomposed Cholesky matrix, to check

if dropping lower weight parameters can be an effective surrogate to the minfill trick.

We learn an SRBM model, srbm-1449 by converting the gremvis-pseudo with short plus

long range edges using equation 6.24. We also learn a SRBM using the minfill trick, srbm-

minfill-1449 from the same MRF using the minfill trick, equation 6.25. We report the imputation

errors in table 6.9. Note that the test errors for SRBM models are largely similar to the original

gremvis-pseudo model from which these sparse RBMs were bootstrapped. There is a jitter of ±

1 percentage points, which can be attributed to a Gaussian to Bernoulli approximation.

As an alternative to the minfill trick, we checked if dropping the lower weight parame-

100

Model train-imperr±0.002 test-imperr±0.004

gremvis-pseudo 0.4205 0.4952

srbm-1449 0.4392 0.4843

srbm-minfill-1449 0.4398 0.5081

Table 6.9: Imputation error ubiquitin: SRBM models with and without the minfill trick have

similar imputation errors to gremvis-pseudo with a slight jitter due to the Gaussian to Bernoulli

approximation

Model train-imperr±0.002 test-imperr±0.004

srbm-1449-thresh-0.00 0.4392 0.4843

srbm-1449-thresh-0.25 0.4840 0.5298

srbm-1449-thresh-0.50 0.4785 0.5312

srbm-1449-thresh-0.75 0.4936 0.5427

srbm-1449-thresh-1.00 0.4942 0.5380

Table 6.10: Imputation error ubiquitin SRBM using direct Cholesky, minfill trick and thresholded

Cholesky. We note that the thresholded Cholesky loses about 4 to 5 percentage points when

compared to srbm-1449. It is also worse than the srbm-minfill-1449.

ters in the direct Cholesky decomposition could lead to similar performance. We interpolated

between models containing the same number of paramters as the srbm-minfill and the srbm-

minfill-1449 models. The thresholded models are referred to as srbm-1449-thresh-p where p ∈

{0.25, 0.5, 0.75, 1.0} corresponds to the percentage of parameters dropped. We report the results

in table 6.10. The thresholded models lose about 4 percentage points just by dropping 25% of

the parameters. Also, the srbm-1449-thresh-1.00 model which has the same number of parame-

ters as the srbm-minfill-1449, is about 4 percentage points worse. This goes to show that simply

thresholding lower weight parameters is not an effective strategy to achieve greater sparsity.

101

Figure 6.13: Comparing MRFs and Boltzmann Machines for ubiquitin: Imputation error im-

proves with relaxations in model assumptions and addition of latent variables

6.6.5 Discussion of all Generative Models

Figure 6.13 shows a summary of the MRF models discussed in chapter 4 and the different Boltz-

mann machines discussed in this chapter.

We note that all models have better training and testing errors when compared to the strawman

independent model ind. This shows that all models are able to discover contextual information

present in the protein family. Tree structured graphical models, linvis and linhid have the next

best performance. Exact inference is possible in these models using the sum-product inference

algorithm. Additionally these models have similar training and test errors showing very little

102

over-fitting.

The GREMLIN algorithm represented by gremvis-pseudo extends the above models to general

graph features, significantly boosting the modelling capacity. Long distance features are now

enabled. Due to the presence of cycles, inference is no longer exact and pseudo log likelihood is

used as an approximation.

SRBMs are direct maps from general MRFs to RBMs. Not surprisingly, the SRBM model repre-

sented by srbm-1449-pseudo model has very similar performance to gremvis-pseudo. LC-DBMs

and SSRBMs are models that attempt to rescue SRBMs with additional hidden nodes. The LC-

DBM model adds a second hidden layer to the hidden layer of the SRBM. Unfortunately, the

LC-DBM (lcdbm-1449-100-pseudo) model fails to make an improvement and has similar per-

formance to the srbm-1449-pseudo and gremvis-pseudo. This might suggest the existence of an

information bottleneck in the representations of the first hidden layer in a SRBM.

The SSRBM represented by 100-ssrbm-1449-pseudo also attempts to rescue SRBMs but unlike

an LC-DBM it adds a hidden layer directly to the visible layer. These models are successful in

turbo-charging the SRBMs with even modest number of hidden units. Along with evidence from

the LC-DBMs, this suggests that dense connections are imperative for gain in imputation error.

RBMs and DBMs have the best overall performance. They allow arbitrary combinations of fea-

tures and have efficient inference algorithms. However, the gap between training and testing

error continues to widen indicating some over-fitting. The VBM (Visible General Boltzmann

Machine) model represented by vbm trained using pseudo log likelihood has comparable perfor-

mance to RBMs and DBMs. However, it has an abysmally low training error, indicating a near

perfect memorization of the training data. This is evidence of severe over-fitting. Also, it goes to

103

show that an over-abundance of parameters can bring down the test error.

The absolute best imputation error was reported by a DBM model represented by dbm-hyp-

scan obtained by hyper-parameter scanning. It had a 1000-500 architecture and uses “dropout”

among others. In general, the best hyper-parameters are not predictable across datasets. This

necessitates expensive hyperparameter scanning which maybe computationally infeasible given

a limited budget.

To summarize, by relaxing model assumptions and adding latent variables, we can learn increas-

ingly complex generative models that continue to improve the imputation error with increments

in representational power.

Similarly, a summary of all generative models for PDZ family is provided in appendix D.2.1.

6.6.6 Large Scale experiments

In the third part, we study 10 additional protein families. These protein families were selected

to have variety in the structural type of the family. See table 6.11 for a list of the protein fam-

ilies. Two extreme cases were also studied. PF12569 contained a 517 residue protein family.

PF11427 had the largest number of sequences (54866 sequences) and is additionally discussed

in section 6.6.7. The datasets were split according to 60%, 20% and 20%; train, valid and test

split, respectively.

We learned RBM and DBM models for all these protein families. A rbm-1000 and a dbm-

1000-500 was chosen for all the families. We used the Contrastive Divergence (CD) [30] algo-

rithm for training all the models. The other hyperparameters were the fixed as in section 6.6.2.

We report the test imputation error of all datasets in figure 6.14. The Boltzmann Machines beat

the sparse MRF model in all datasets except PF11427 with about a 6% gain averaged across

104

Pfam id Sequences Length Clan Scop description

PF12569 7321 517 CL0020 Alpha-alpha-superhelix

PF11427 54866 50 CL0123 Helix-turn-helix

PF03459 10264 64 CL0021 All-beta + barrel

PF13693 10626 78 CL0123 Helix-turn-helix

PF13710 10688 63 CL0070 Ferrodoxin like

PF13899 17321 82 CL0172 Thioredoxin like

PF13920 15588 50 CL0229 Zinc finger

PF13459 19491 65 CL0344 Dehydrogenase like

PF13927 21858 75 CL0011 Immunoglobulin

PF13833 15426 54 CL0220 EF hand

Table 6.11: 10 additional families - Variety in depth, width and structural type

datasets. The gain is dataset dependent with about a standard deviation of about 2% points. The

maximum gain was observed for the ubiquitin protein family (PF12569) with about 12% points.

We compared the gain in imputation error for Boltzmann Machines over the Gremlin (MRF)

model as a function of sequence/length. Figure 6.15 shows a scatter plot of these two variables.

A higher gain is observed in the lower sequence/length region and this manifests itself it as an

inverse correlation between these two variables. PF11427 was observed in figure 6.14 to have

no improvement in performance when compared to Gremlin. It also happens to be the rightmost

point in the scatter plot with a very high sequence/length ratio of 1097 sequences per residue.

On the other hand PF12569 had the maximum gain and it has the lowest sequence/length ratio

of around 14 sequences per residue.

We also investigated if the imputation errors were important from a biophysical/evolutionary

perspective. Blosum matrices [19] encode such information in a substitution matrix. Higher

scores correspond to successful matches. We chose the Blosum90 matrix since our MSAs have a

maximum of 90% sequence similarity. We report the test Blosum90 of all datasets in figure 6.16.

105

PF00240 PF00595 PF03459 PF11427 PF12569 PF13459 PF13693 PF13710 PF13833 PF13899 PF13920 PF139270.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 im
pe

rr

Largescale experiments imperr

gremlin
rbm
dbm

Figure 6.14: Largescale Imputations: Imputation error for all datasets comparing Sparse MRFs

(Gremlin), RBMs and DBMs. Boltzmann machines beat Gremlin by about 6 percentage points

The Boltzmann Machines beat the sparse MRF model in all datasets with about 0.5 blosum90

units averaged across datasets. Interestingly, the Blosum90 scores for the PF11427 dataset were

partially higher using the Blosum90 metric, indicating the imputation mistakes that were made

were less important from a biophysical/evolutionary perspective.

The imputation error and Blosum90 metrics across different protein families provide further

evidence of the superior performance of Boltzmann Machines over sparse MRFs.

106

Figure 6.15: Scatter plot of Gain vs Seq/Len ratio. The gain is defined as difference in the impu-

tation error between the top Boltzmann machine and the gremlin model. The inverse relationship

shows that Boltzmann Machines outperform MRFs in the low sequence count region.

107

PF00240 PF00595 PF03459 PF11427 PF12569 PF13459 PF13693 PF13710 PF13833 PF13899 PF13920 PF139270.0

0.5

1.0

1.5

2.0

2.5

3.0

Te
st

 b
l9

0

Largescale experiments bl90

gremlin
rbm
dbm

Figure 6.16: Largescale Imputations using Blosum90 scoring matrix: for all datasets comparing

Sparse MRFs (Gremlin), RBMs and DBMs. Boltzmann machines beat Gremlin by about 0.5

blosum90 units

108

Multicolumn Imputation Metrics

We examined if the RBM and DBM models are robust to multicolumn imputations. We examine

two cases :

• Missing Completely at Random (MCAR): Pick multiple columns at random.

• Missing with Structure (Block): Sweep blocks of adjacent columns in the MSA.

PF00240 PF00595 PF03459 PF11427 PF12569 PF13459 PF13693 PF13710 PF13833 PF13899 PF13920 PF139270.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 Im
pu

ta
tio

n
Er

ro
r

Imperr rand 3 cols

gremlin
rbm
dbm

Figure 6.17: Largescale Random Multicolumn Imputations: Multicolumn imputations for all

datasets holding out 3 columns chosen at random. Boltzmann machines beat Gremlin by about

5 percentage points

We report the test imputation error of all datasets under the MCAR scenario holding out 3

columns in figure 6.17. The Boltzmann Machines beat the sparse MRF model in all datasets

except PF11427 with about a 5% gain averaged across datasets. The gain is dataset dependent

109

with about a standard deviation of about 2% points. Further imputation errors were also run

holding out 2,5 and 10 columns and showed similar trends. Scores deteriorated with increas-

ingly held out columns but gain over Sparse MRFs were largely observed. See appendix D.2.2

for details.

PF00240 PF00595 PF03459 PF11427 PF12569 PF13459 PF13693 PF13710 PF13833 PF13899 PF13920 PF139270.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 Im
pu

ta
tio

n
Er

ro
r

Imperr block 3 cols

gremlin
rbm
dbm

Figure 6.18: Largescale Block Multicolumn Imputations: Multicolumn imputations for all

datasets holding out 3 adjacent columns in a block and sweeping the MSA. Boltzmann machines

beat Gremlin by about 5 percentage points

We report the test imputation error of all datasets under the block scenario holding out 3 columns

in figure 6.18. The Boltzmann Machines beat the sparse MRF model in all datasets except

PF11427 with about a 6% gain averaged across datasets. The gain is dataset dependent with

about a standard deviation of about 2% points. Further imputation errors were also run holding

out 2,5 and 10 columns and showed similar trends. Scores deteriorated with increasingly held

110

out columns but gain over Sparse MRFs were largely observed. See appendix D.2.2 for details.

The multicolumn imputation errors across different protein families demonstrate the robustness

of Boltzmann Machines for designing and imputing chunks of amino acids.

Imputation of Important Residues

In the previous sections we evaluated the Boltzmann Machines using single and multicolumn

imputation error for any residue in the MSA. Here we consider functionally important residues.

We consider three types of functionally important residues:

• Surface Residues: The solvent exposed surface of the protein.

• Core Residues: In the hydrophobic interior/core of the protein in complex.

• Binding Residues: Found at the binding interface of the protein multimer or those residues

bound to a ligand.

We extracted the structural information from PDB structures associated with these families

(http://gremlin.bakerlab.org/). The surface and core residues were chosen using a

solvent exposure cutoff of 2.5Å2. The ligand residues were chosen using a 10Å radius from the

pocket. The extracted PDB residues were mapped onto the pfam columns by running ClustalW2

with default parameters for protein alignments [85]. Table 6.12 lists the protein families and the

associated pdbids and ligands. Table 6.13 lists the protein families and the number of residues

extracted according to each category. In some cases, the number of core residues were very

limited (PF11427, 13693) had only 3 residues according to this threshold.

We report the test imputation error of all datasets for the bound, core and surface residues holding

out 3 columns in figures 6.19, 6.21 and 6.20 . The Boltzmann Machines beat the sparse MRF

model in all datasets except PF11427 with about a 5% gain averaged across datasets. The gain is

dataset dependent with about a standard deviation of about 2% points. Further imputation errors

111

http://gremlin.bakerlab.org/

Pfamid Pdbid Chain BindingChains Ligands

PF12569 2XPI A E AUC

PF03459 1H9M A B MOO

PF13693 4ICH A B B3P;BMR;BR;EDO

PF13710 2F1F A B 1PE;MG;P33

PF13899 3F9U A B EDO;NO3

PF11427 1TC3 C A;B None

PF13920 4AYC A B CL;CPQ;GOL;SO4;ZN

PF13459 1IQZ A None SF4; SO4

PF13927 2ID5 A B;D MAN;NAG

PF13833 3TZ1 A B CA

PF00240 3V6C B A CL;GOL;ZN

PF00595 4F8K A B None

Table 6.12: Extracting Important Residues Positions from Protein Families. Associated PDB

structures, ligands and binding interfaces.

were also run holding out 2,5 and 10 columns and showed similar trends. Scores deteriorated

with increasingly held out columns but gain over Sparse MRFs were largely observed. See

appendix D.2.2 for details.

112

dataset core bound surface

PF00240 8 44 51

PF00595 15 3 66

PF03459 10 30 54

PF11427 2 20 48

PF12569 76 61 100

PF13459 10 51 55

PF13693 8 44 70

PF13710 7 34 56

PF13833 2 38 51

PF13899 7 56 75

PF13920 7 48 42

PF13927 7 30 68

Table 6.13: Additional Families - Number of important residues according to each category

113

PF00240 PF00595 PF03459 PF11427 PF12569 PF13459 PF13693 PF13710 PF13833 PF13899 PF13920 PF139270.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 Im
pu

ta
tio

n
Er

ro
r

Imperr bound 3 cols

gremlin
rbm
dbm

Figure 6.19: Largescale Bound Residues Multicolumn Imputations: Multicolumn imputations

for all datasets holding out 3 columns using binding residues. Boltzmann machines beat Gremlin

by about 5 percentage points

114

PF00240 PF00595 PF03459 PF11427 PF12569 PF13459 PF13693 PF13710 PF13833 PF13899 PF13920 PF139270.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 Im
pu

ta
tio

n
Er

ro
r

Imperr surface 3 cols

gremlin
rbm
dbm

Figure 6.20: Largescale surface Residues Multicolumn Imputations: Multicolumn imputations

for all datasets holding out 3 columns using binding residues. Boltzmann machines beat Gremlin

by about 5 percentage points

115

PF00240 PF00595 PF03459 PF11427 PF12569 PF13459 PF13693 PF13710 PF13833 PF13899 PF13920 PF139270.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 Im
pu

ta
tio

n
Er

ro
r

Imperr core 3 cols

gremlin
rbm
dbm

Figure 6.21: Largescale core Residues Multicolumn Imputations: Multicolumn imputations for

all datasets holding out 3 columns using binding residues. Boltzmann machines beat Gremlin by

about 5 percentage points

116

metric gremlin rbm dbm rbmhyp dbmhyp

imp 0.4736 0.4835 0.4884 0.4609 0.4573

imp2 0.4941 0.5287 0.5317 0.4840 0.4845

imp3 0.5147 0.5507 0.5544 0.4993 0.4995

imp5 0.5595 0.5857 0.5917 0.5247 0.5244

imp10 0.6042 0.6269 0.6347 0.5564 0.5551

Table 6.14: Block Imputation for PF11427. RBM and DBM models using default hyperparam-

eters are represented by rbm and dbm. An alternate RBM and DBM model with a different

architecture, represented by rbmhyp and dbmhyp, is able to obtain moderate gains over the grem-

lin model.

6.6.7 Investigating PF11427

The Boltzmann Machine models beat the Gremlin model in all datasets except for the PF11427

dataset. This was the dataset with the largest number of sequences (54866 sequences). It also has

the highest sequence/length ratio of 1097 sequences per residue. We investigated if an alternate

Boltzmann Machine topology could help improve the performance. We tried a rbm-100 and a

dbm-100-100 architecture. We report the results of block imputations for PF11427 in table 6.14

using blocks of 1,2,3,5 and 10.

In all cases, the rbm and dbm with the newer architecture represented by rbm-hyp and dbm-hyp

modestly beat the gremlin model. We conjecture that with more detailed hyperparameter scan-

ning it might be possible to obtain other Boltzmann Machines that might beat the Gremlin model

by a larger margin. However, the computational costs associated with such a hyperparameter

scans might outweigh the benefits of the obtained gains. If the best model is indeed desired,

then alternate hyperparameter search techniques using Bayesian Optimization might be more

appropriate than exhaustive scanning.

117

0

100000

200000

300000

400000

500000

600000
Ubq dropout PDZ dropout

0.0 0.2 0.4 0.6 0.8 1.0
Activation Strength

0

100000

200000

300000

400000

500000

600000
Ubq w/o dropout

0.0 0.2 0.4 0.6 0.8 1.0
Activation Strength

PDZ w/o dropout

Figure 6.22: Histograms of the activation of the hidden nodes with and without dropout. The

x-axis is a measure of the activation strength. The y axis counts the number of nodes with a

particular activation strength.

Model Analysis

We introspect the properties of our models to gather insights into the parameters and properties

of the latent representations.

Dropout: We calculated the average activations of the models with and without dropout. We

see in the histograms in Figure 6.22 that without dropout (bottom row) the vast majority of nodes

have very low activation strengths. That is, a small minority of the nodes are responsible for

representing the features of the distribution. In contrast, when dropout is used (upper row), there

118

3.0 3.5 4.0 4.5 5.0
0

1

2

3

4

5

6

7

8

9
U

B
Q

Top 500

3.0 3.5 4.0 4.5 5.0
0

10

20

30

40

50
Top 1000

3.0 3.2 3.4 3.6 3.8 4.0
couplings

0

2

4

6

8

10

12

14

16

18

P
D

Z

3.0 3.5 4.0 4.5 5.0
couplings

0

10

20

30

40

50

60

Figure 6.23: Number of strong connections for top 500 and top 1000 edge weights. The x-axis

measures the number of interactions modelled by a hidden node. The y-axis is a count of the

number of hidden nodes that model k interactions.

are many more nodes with high activation strengths. This demonstrates that dropout has a role to

play in regularizing the activations, and reducing the model’s tendency to over-fit (although not

eliminating it).

Strong Activations: Markov Random fields have limited representative power, since they are

limited to pairwise edge potentials between visible variables. HMRFs and Boltzmann Machines

allow for more subtle interactions via the hidden nodes. We extracted the top 500 and top 1000

weights from our models (� 1% of the total number of weights) to see if they show evidence that

some hidden nodes are learning k-ary interactions. As seen in Figure 6.23, there are a significant

119

Figure 6.24: Projecting hidden layer representations onto two dimensions using PCA and color-

ing by the number of gaps for ubiquitin. An interesting progressive coloring pattern emerges.

number of 3,4, and 5-way couplings (couplings < 3 are not shown). The ability for Boltzmann

Machines to capture these k-ary interactions explains their superior performance over HMRFs.

Hidden representation analysis: We extracted the representations of the ubiquitin training

data from the hidden layers of our models and then perform Principal Components Analysis to

examine the main patterns in the data (Figure 6.24). We colored the projected instances via the

number of gaps in the aligned sequence (a measure of evolutionary distance from the consensus

sequence). The projected sequences show evidence of clustering that roughly corresponds to the

percentage of gaps.

120

6.6.8 Chapter Summary

In chapter 4, we introduced a framework for unsupervised learning of protein families using

Markov Random Fields. We made a distinction between Visible Markov Random Fields and

those with latent variables also known as Hidden Markov Random Fields. We observed that

despite the promise of latent variables in modelling complex distributions, they empirically fail

to learn good models due to poor inference in non-tree structured graphs.

In this chapter, we introduced a different way to model latent variables by using Boltzmann

Machines. In particular, we examine specific architectures of Boltzmann Machines characterized

by layers of visible and hidden variables arranged in a p-partite graph structure. These architec-

tures allow for efficient inference due their ability to factorize given adjacent layers. These ar-

chitectures are known as Restricted Boltzmann Machines (RBM) which contain a single hidden

layer and Deep Boltzmann Machines (DBMs) which contain multiple layers.

We train and evaluate RBMs and DBMs for the ubiquitin and the PDZ protein family using a

number of different architectures and hyperparameter settings. We also employ the dropout tech-

nique, a model averaging technique which works by dropping nodes at random at each learning

step and stitches them together at test time. We find that the RBM and DBM models far outper-

form the Markov Random Fields described in the previous chapters with respect to test metrics.

Additionally, the dropout technique has a pronounced effect on the test error with the best models

being obtained thusly.

RBMs and DBMs are densely connected Boltzmann Machines with a very large number of

parameters. We hypothesise that it might be possible to learn Boltzmann Machines that have

comparable performance without needing excessive parameters. Towards this end, we introduce

an approach to learn Boltzmann Machines with sparse edge topologies. This is achieved by

bootstrapping a RBM from a sparse MRF via a Cholesky decomposition. The corresponding

RBM model is known as a Sparse Restricted Boltzmann Machine (SRBM)

SRBMs have similar test error as MRFs showing a successful mapping of MRF parame-

121

ters to RBMs. Additional hidden nodes are added to the SRBM to create a Sparse Semi Re-

stricted Boltzmann Machine (SSRBM). This causes the test error to drop sharply and hence it

turbocharges the SRBM. This shows that the additional nodes help in modelling aspects which

the SRBM alone cannot model. However, the SSRBMs perform perform slightly worse that their

corresponding RBMs. This might suggest that RBMs by themselves can learn good representa-

tions and additional MRF prior information is not needed.

We introduced the Locally Connected Deep Boltzmann Machine (LC-DBM) which adds a

second hidden layer to the sparse SRBM hidden layer. The LC-DBM model was motivated by

the hypothesis that higher layers can model complex aspects of the distribution. We note that

test error of LC-DBM model is lower than the corresponding SRBM in some cases. However

these gains are fairly modest. In general, it appears that the second hidden layer has no net

positive effect. Moreover, continually adding units to the second hidden layer does not improve

the test error. This suggests that there is a fundamental information bottleneck in the first hidden

layer created by a sparse edge matrix. This theory is given further credibility when taken in

conjunction with SSRBM results; wherein the test error drops sharply after adding even a few

dense hidden units.

Finally, we run a large scale study with ten additional protein families selected to belong

to variety of structural folds. We also test two extreme cases of protein families with large

number of sequences and length. We test these models with additional multicolumn imputation

metrics and also over functionally important regions of these proteins. We note that for almost

all models, the Boltzmann Machines outperform the MRFs using these battery of metrics. We

also note that there is an inverse relationship between the gain obtained and the sequence/length

ratio of the protein family suggesting that Boltzmann Machines can be especially effective in the

low sequence count regime.

122

Chapter 7

Conclusions and Future Work

7.1 Summary of Contributions

The aim of this thesis was to learn and evaluate effective predictive and generative models of

protein sequence families. We achieve this by (1) effective large-scale feature selection for pre-

dictive models and (2) learning rich feature representations via undirected graphical models for

generative models.

Predictive models via drug design: In the first part of the thesis (chapter 3), we focused

on large scale feature selection for learning predictive models of protein sequence families. We

did so through the lens of drug cocktail design against HIV-1 infection. The core of the cocktail

design problem relied on scaling a lasso regression model to large multiple sequence alignment

containing 70,000 sequences. In the context of this application, we evaluated and discussed

several large scale feature selection strategies for predictive models of protein sequence families.

We were able to scale the lasso regression model to the entire HIV-1 dataset which the pre-

vious authors Hinkley et.al [29] failed to address. We solved the lasso scaling problem using a

variety of strategies including sparse matrix vectorization and feature reduction strategies such

as strong rules [87]. We were able to report the RMSE and provided a concrete measurement

123

of the predictive utility of our method. The previous authors do not report the RMSE, R2 or

the p-values of their model and this renders their results incomparable with standard regression

models.

Finally, we leveraged the lasso regression model in a method for designing drug cocktails

robust to HIV mutations. We validated our predicted drug cocktails on a held out test data set

using regret analysis. We found that our cocktail design method can be used for personalized

medicine under a limited budget (upto 3 drugs) and is robust to viral mutations. We additionally

suggested that for larger budgets it is beneficial to use overall drug statistics than personalized

cocktail approaches.

Generative models via Markov Random Fields: In the second part of the thesis (chapter 4

) we switched our focus to generative models of protein sequence families. Generative models

model the probability density of the data through the features in its model. Good features leads to

better models. The crux of the problem is allowing the generative models to have a rich enough

feature representation space such that they can model arbitrary distributions of protein sequence

families, yet remain computationally tractable and learneable.

We presented a framework for modelling protein families as a series of increasingly com-

plex generative models. These models belong to the class of undirected graphical models known

as Markov Random Fields (MRFs). We show that by adding edges between variables in the

MRF we can relax the assumptions made about the model distribution. Additionally, we made

a distinction between MRF models that are completely visible and those with unobserved la-

tent variables. The introduction of latent variables offers the flexibility of learning distributions

that cannot be explained by the visible variables alone. Often, this comes at the cost of model

complexity and computational tractability.

We evaluated these models using generative metrics such as imputation error and test log

likelihood. It was observed that all MRF models beat a completely independent model and were

hence able to model contextual information. Also, VMRFs trained with pseudo log likelihood

124

had the best imputation error scores, showing further gains with added edges. However, we find

that non-tree HMRFs do not learn well and suffer from poor inference. We note that Hidden

Markov Random Fields offer the promise of modelling complex distributions, but are unable to

do so in practice for all but tree-structured graphs. This motivated the need to commission other

latent variable architectures. This led us to explore Boltzmann Machines, in the next chapter.

Feature Interpretation via GPCRs In the third part of the thesis (chapter 5), we considered

extending the utility of the generative models beyond just improving the test error. We did so

by introspecting and interpreting the learned features beyond for biological significance. Similar

to the first part of the thesis we approach this task through the lens of a target application. In

particular, we examine signal transduction in G protein coupled receptors (GPCRs) ; which relay

signals across cell membranes.

We identify networks of co-evolving residues from multiple sequence alignments by learn-

ing the topology of a Markov Random Field trained on GPCR sequences. We find that pair-

wise interactions containing residues in the ligand binding pocket are enriched. An analysis

of these interactions reveals a minimal GPCR binding pocket containing four residues (T1183.33,

M2075.42, Y2686.51 and A2927.39). Additionally, the ten residues predicted to have the most long-

range interactions, are also part of the ligand binding pocket. This suggests that the activation in

rhodopsin (a canonical GPCR) involves these long-range interactions between extracellular and

intracellular domain residues mediated by the retinal domain.

Generative models via Boltzmann Machines : In the last part of the thesis (chapter 6), we

introduced a different way to model latent variable models by using Boltzmann Machines. In

particular, we examine specific architectures of Boltzmann Machines characterized by layers of

visible and hidden variables arranged in a p-partite graph structure. These architectures allow

for efficient inference due their ability to factorize given adjacent layers. These architectures are

known as Restricted Boltzmann Machines (RBM) which contain a single hidden layer and Deep

125

Boltzmann Machines (DBMs) which contain multiple layers.

We evaluated RBMs and DBMs using a number of different architectures and hyperparameter

settings. We also employed “dropout” , a model averaging technique which works by dropping

nodes at random and stitches them together at test time. We found that the RBM and DBM

models far outperformed the Markov Random Fields described in the previous chapter with

respect to test metrics. Additionally, the dropout technique helps in learning the best models.

RBMs and DBMs are densely connected Boltzmann Machines with a very large number of

parameters. We hypothesise that it might be possible to learn Boltzmann Machines that have

comparable performance without needing excessive parameters. Towards this end, we introduce

an approach to learn Boltzmann Machines with sparse edge topologies. This is achieved by

bootstrapping a RBM from a sparse MRF via a Cholesky decomposition. The corresponding

RBM model is known as a Sparse Restricted Boltzmann Machine (SRBM)

SRBMs have similar test error as MRFs showing a successful mapping of MRF parame-

ters to RBMs. Additional hidden nodes are added to the SRBM to create a Sparse Semi Re-

stricted Boltzmann Machine (SSRBM). This causes the test error to drop sharply and hence it

turbocharges the SRBM. This shows that the additional nodes help in modelling aspects which

the SRBM alone cannot model. However, the SSRBMs perform perform slightly worse that their

corresponding RBMs. This might suggest that RBMs by themselves can learn good representa-

tions and additional MRF prior information is not needed.

Finally, we introduced the Locally Connected Deep Boltzmann Machine (LC-DBM) which

adds a second hidden layer to the sparse SRBM hidden layer. The LC-DBM model was motivated

by the hypothesis that higher layers can model complex aspects of the distribution. We note that

test error of LC-DBM model is lower than the corresponding SRBM in some cases. However

these gains are fairly modest. In general, it appears that the second hidden layer has no net

positive effect. Moreover, continually adding units to the second hidden layer does not improve

the test error. This suggests that there is a fundamental information bottleneck in the first hidden

126

layer created by a sparse edge matrix. This theory is given further credibility when taken in

conjunction with SSRBM results; wherein the test error drops sharply after adding even a few

dense hidden units.

7.2 Future Directions

There are several ways the ideas mentioned in this thesis can be extended and developed upon,

particularly related to Boltzmann Machines.

Protein Design : In this thesis we demonstrated that Boltzmann Machines such as RBMs and

DBMs can be used to learn effective generative models of protein sequence families. A useful

property of generative models is that it is possible to sample from these models. Novel protein

sequences can be generated from the model by running Gibbs sampling chains. This can be

useful for the task of protein design. Constraints can be specified which fix certain amino acid

positions while sampling the other positions to “design” a novel sequence subject to constraints.

A real world example is the design of an influenza vaccine, wherein the stem of an antibody is

constrained to be fairly conserved while other positions can be designed for.

Boltzmann Machines of protein structures: So far we have only discussed generative models

of protein sequences. Markov random fields with fixed physical force fields [39, 93] can be used

to model protein structure. The quantities to be modelled are backbone (φ) and side chain (ψ)

angles. We can envision modelling these angles using the different Boltzmann Machines as well.

The angles can be discretized into rotamers [11] and modelled via softmax visible units. If on the

other hand, real valued angles are desired, we can use Gaussian visible units to model the angles.

The partition function of this distribution can also be calculated using Annealed Importance

Sampling (AIS) and can be instrumental in determining physical quantities such as the enthalpy

and the entropy of the equilibrium protein distribution.

127

Multimodal joint sequence and structure model : Srivastava et.al [77] learned a joint image

and text Deep Boltzmann Machine using flickr data. The images were modelled using Gaussian

visible units whereas the text was modelled using replicated softmax units. These Boltzmann

Machines were tied together using higher level hidden layers to form a Deep Boltzmann Ma-

chine. Similarly, we can learn a joint sequence and structure of proteins with the higher levels

acting as a bridge between the two modalities.

Universal protein family model : A particularly ambitious goal is to have a single univer-

sal model of all protein sequence families. So far our sequence models have fixed lengths. As

a consequence a separate model needs to be learned for every new protein family. A univer-

sal protein family should allow for variable length protein families. This can be achieved by

considering template based models which share parameters. Another approach is to have Convo-

lutional Max-Pooling units [48]. The universal protein family is likely to learn useful high level

representations that are common across all proteins.

128

Appendix A

Drug Cocktail Design

A.1 Experiments and Results

In this section we describe the dataset and data preparation protocols. We also describe the

experimental setup and results from contact map based feature transformation, feature reduction,

lasso regression model and drug cocktail design studies.

A.1.1 Data Description and Preparation

The dataset obtained from Monogram Inc [67] contained 71727 sequences in total. The protease

alignment had a width of 99 columns while the reverse transcriptase alignment had a width of 305

columns. The sequences were annotated with Replication Coefficient (RC) values in presence

and absence of drugs. RC is a non-negative real value denoting approximately the infectivity of

a viral sequence. See [29] for clinical methods to generate the RC values. In total there were

20 drugs. Not all sequences had all the drugs. We consider only the 15 drugs as used in GKRR

study [29]. See 3.4 for the distribution of RC values.

On analyzing the sequences, we found 9 sequences that were badly aligned. 618 had long

indels. Addditionally, 9 sequences did not have all the 15 drug used in the GKRR study. These

129

anomalous sequences were removed from the dataset to keep the dataset consistent with the

GKRR study. After cleaning, there were 71,091 HIV protease and RT sequences each annotated

with 16 real values (15 drugs + 1 non-drug).

We additionally note that a large number of sequences (> 67,000) had X characters in them ;

most likely arising out of inaccuracies in the next-gen sequencing method. Figure A.1 and A.2

show the distribution of X characters in the protease and RT alignments respectively. Most of

these positions have X character occurrence rate of <5% even though there are some ∼15%.

These X characters are considered as missing values that need to be imputed, further discussed

in section A.1.1.

Figure A.1: Protease Figure A.2: Reverse Transriptase

Figure A.3: Distributions of X characters in the raw alignments of protease and reverse transcrip-

tase. These X characters correspond to undetermined amino acids at a position usually arising

out of inaccuracies with the next gen sequencing process.

The dataset was split into a training + validation set of 50,000 sequences and a test set of

21,091 sequences. The test set was not touched until after all regression models were learned.

130

Figure A.4: Col 71 Protease Figure A.5: Column 90 Protease

Figure A.6: Visualizing the differences in single amino acid features. Each Gaussian corresponds

to the RC value distribution conditioned on the amino acid at a particular column in the Protease

MSA. The shade depth corresponds to the abundance of the particular amino acid type at that

position. Column 71 and Column 90 have especially strong signals.

Imputation of X characters

X characters were replaced using a careful imputation protocol. The imputation protocol in-

volved taking a k-NN vote using edit distance around a candidate sequence. k was set at 5 based

on empirical evidence. If all neighbours also had X characters, we defaulted to using the canon-

ical NL4-3 sequence. Figure A.7 and A.8 show a log-log zipf plot of the duplicate count of the

imputed sequences. The X axis shows the duplicate count. The Y axis shows the frequency

of occurrence of that duplicate. The axes are log-log. We can see that protease has atleast one

duplicate which occurs 1000 times(rightmost point on X axis). Whereas RT has much fewer

duplicates. When Protease and RT are combined into a joint alignment the number of duplicates

becomes zero . Additionally, we also considered a simpler imputation protocol by replacing all

the X characters with the consensus NL4-3 sequence, however we found that it introduced a lot

of duplicates in the alignment and hence this approach was rejected.

131

Figure A.7: Zipf Protease Figure A.8: Zipf Reverse Transcriptase

Figure A.9: Zipf Plots of duplicates in protease and reverse transcriptase. The X axis shows the

duplicate count. The Y axis shows the frequency of occurrence of that duplicate. We can see that

protease. The axes are log-log. We can see that protease has atleast one duplicate which occurs

1000 times(rightmost point on X axis). Whereas RT has much fewer duplicates. When Protease

and RT are combined into a joint alignment the number of duplicates becomes zero

132

A.1.2 Feature Transformation - Contact Map Analysis

Figure A.10: Contact Map Analysis Reverse Transcriptase: The 15 different drugs on the

X axis organized according to drug type (PI, NRTI, NNRTI). The X axis lists all the transfor-

mations used (norc - no weighting,raw- Untransformed RC, sqrt - square root, ak - RC1/k for

k ∈ {1 . . . 10},log and loglog). The colorbar corresponds to the precision for contact map

recovery using the Gremlin method. The top 300 edges were chosen for visualization purposes.

133

A.1.3 Feature Reduction Strategies

Figure A.11: Feature Selection plots for Non Nucleoside Reverse Transcriptase Inhibitor: X

axis contains the different feature selection schemes(e-elghaoui,n-new gremlin,s-strong rules,m-

marginal regression) and their combinations. Y axis has lasso regression models trained on a

PR, RT and PR+RT alignment. The colorbar is the validation RMSE. The plots are grouped

according to the different drugs

134

Figure A.12: Feature Selection plots for Protease Inhibitor: X axis contains the different fea-

ture selection schemes(e-elghaoui,n-new gremlin,s-strong rules,m-marginal regression) and their

combinations. Y axis has lasso regression models trained on a PR, RT and PR+RT alignment.

The colorbar is the validation RMSE. The plots are grouped according to the different drugs

135

Figure A.13: Feature Selection plots for Nucleoside Reverse Transcriptase Inhibitor: X

axis contains the different feature selection schemes(e-elghaoui,n-new gremlin,s-strong rules,m-

marginal regression) and their combinations. Y axis has lasso regression models trained on a

PR, RT and PR+RT alignment. The colorbar is the validation RMSE. The plots are grouped

according to the different drugs

136

Figure A.14: Feature Selection plots for Non Nucleoside Reverse Transcriptase Inhibitor: X

axis contains the different feature selection schemes(e-elghaoui,n-new gremlin,s-strong rules,m-

marginal regression) and their combinations. Y axis has lasso regression models trained on a

PR, RT and PR+RT alignment. The colorbar is the validation RMSE. The plots are grouped

according to the different drugs

137

A.1.4 Cocktail Design

Figure A.15: Radius 1 Accuracy Figure A.16: Radius 10 Accuracy

Figure A.17: The X axis contains shows the different drug combination choices. Each-3 refers

to a choice of a single from each drug type (PI,NRTI,NNRTI). Any-k refers to a choice of any

k drugs from among the 15 drugs in the study. The Y axis hows the accuracy in retrieving a

drug combination with the best possible outcome. The plot on the left (Radius 1) allows only

point mutations while plot on the right (Radius 10) allows the test sequence to mutate up to 10

mutations. MinExp, MinMax and Min Strategies are all derived from our lasso regression model.

We observe that for limited budgets (upto 3 drugs) our strategies outperform the competing

baseline. This suffers with increasing mutational load however the trend more or less holds.

138

Appendix B

Markov Random Fields

B.1 Results and Discussion

Includes additional results for Markov Random fields.

train-nll test-nll0

20

40

60

80

100

120

140

160

Ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

Ubiquitin log-likelihood

ind
linvis
12vis
l1vis
3dvis
linhid
gridhid
3dhid

(a) Test negative log likelihood for ubiquitin

train-nll test-nll0

50

100

150

200

Ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

Ubiquitin log-likelihood

ind
linvis
12vis
l1vis
3dvis
linhid
gridhid
3dhid

(b) Test negative log likelihood for PDZ

Figure B.1: Negative log likelihood for ubiquitin and PDZ

Figure B.1 shows the negative log likelihood for ubiquitin and PDZ respectively. Similar

to imputation error 4.2, tree-structured models such as linvis and l1hid have the best per-

139

formance. On the other hand, loopy models such as l1vis, 12vis and 3dvis do poorly.

This is likely due to the poor convergence of loopy belief propagation in these graphs. Also

note the large difference in training and testing error for loopy graphs showing that the model

has overfitted. This suggests that optimizing the log-likelihood directly for loopy graphs is diffi-

cult and motivates the need for latent variable models with special structures such as Boltzmann

Machines.

Models trained with Log Likelihood and Loopy BP

We report the results for the PDZ family (PF00595) in this section.

Table B.1 shows the train and test imputation error for the PDZ dataset for models trained with

log likelihood and loopy belief propagation. All models do better than ind (completely indepen-

dent). This shows that there is contextual information to be captured and most models are able

to capture some aspect of it. The linvis and linhid models do fairly well. This can be attributed

to exact inference in tree-structured graphs. They also have similar training and testing error,

indicating that the models are not overfitting.

gremvis and gridhid are the next best. Surprisingly, gremvis which is closely related to the

GREMLIN model did not have the best scores overall when compared to linvis (0.592 vs 0.567).

We attribute this to the fact that GREMLIN internally uses pseudo log-likelihood to train the mod-

els. In the following section, we will show that pseudo log-likelihood indeed helps in better infer-

ence properties for VMRFs. We chose to use log-likelihood as the objective function to keep our

models comparable with latent variable models. HMRFs and Boltzmann Machines (discussed in

chapter 6) contain latent variables and cannot use pseudo log-likelihood since conditioning on

the other visible variables connects the graph connected via hidden nodes.

Extremely loopy graphs such as 12vis, 3dvis and 3dhid perform poorly. They also have a

larger difference between train and test error indicating overfitting. We arrived at the conclu-

sion, the 3D topology is not sufficient to provide features for a better generative model using

140

model-name train-imperr test-imperr

ind 0.7007 0.7019

3dhid 0.6298 0.6315

3dvis 0.6099 0.6178

12vis 0.5966 0.6035

gridhid 0.5874 0.5978

gremvis 0.5823 0.5926

linhid 0.5805 0.5838

linvis 0.5585 0.5672

Table B.1: Imputation error PDZ : Models trained using log likelihood and loopy belief propa-

gation

model-name train-imperr test-imperr

12vis-pseudo 0.5188 0.5378

gremvis-pseudo 0.4657 0.5035

3dvis-pseudo 0.4449 0.4873

Table B.2: Imputation error PDZ : Models trained using pseudo log likelihood

log-likelihood as the objective function. The extra cycles it introduces stymies loopy belief prop-

agation from finding correct beliefs.

Models trained with Pseudo Log Likelihood

Table B.2 shows the train and test imputation error for the PDZ dataset for models trained with

pseudo log likelihood. The counterparts of the 12vis, gremvis and 3dvis are referred to as 12vis-

pseudo, gremvis-pseudo and 3dvis-pseudo, respectively. We note that these models have much

better imputation error scores. This shows that pseudo log likelihood helps in better inference

and hence better learning of parameters.

Additionally, the gremvis-pseudo model has better scores than 12vis-pseudo (0.503 vs 0.537).

141

Similarly, the 3dvis-pseudo model has better scores than gremvis-pseudo (0.487 vs 0.503). This

seems to suggest that models with more features (denser edges) tend to have better imputation

error scores. Note that the gap between the training and testing error is also widening from linvis

to 3dvis-pseudo, indicating that some amount of overfitting might be occuring.

train-imperr test-imperr0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Im
pu

ta
tio

n
Er

ro
r

MRF Models PDZ

ind
3dhid
gridhid
linhid
linvis
12vis-pseudo
gremvis-pseudo
3dvis-pseudo

Figure B.2: Imputation error for PDZ for MRF like models

142

Appendix C

Biological Analysis of GPCR Features

C.1 Methods

C.1.1 Multiple sequence alignment

The authors of the SCA study [81] obtained the class A GPCR alignment from GPCRDB [36] and

TinyGRAP [20] databases and manually adjusted the sequences using structure-based sequence

alignments. The final MSA has 940 sequences and 348 residue positions covering the entire

length of bovine rhodopsin without any gaps. We used this MSA here. As a pre-processing

step, we selected the top 1000 candidate edges using a mutual information metric on which

the structure learning approach would be subsequently run. This pre-processing step was done

purely for computational reasons. Later versions of GREMLIN can avoid this pre-processing

step by scaling up to larger sized proteins by parallelizing the computations using a Map-Reduce

framework .

C.1.2 Model Selection

GREMLIN uses a single parameter λ which determines the sparsity of the MRF (i.e. the number

of edges) and the likelihood of the sequences in the MSA under the model. Higher values of

143

λ will produce sparser models. In general, a dense graph will yield higher likelihoods than a

sparse graph. However, maximizing the likelihood of the MSA is likely to over-fit the data.

Thus, the regularization parameter,λ, controls the trade-off between goodness-of-fit to the data

and the tendency to over-fit. As in previous work, we used a permutation-based method to select

λ. Briefly, we randomly permute the columns of the MSA in order to destroy all correlations

between columns while retaining the column-wise distribution of amino acids. We then run

GREMLIN on the permutated MSA using different values of λ. The smallest λ yielding zero

edges on the permuted MSA is selected. This is a conservative estimate designed to minimize

the number of false positive edges. In our experiments the optimal λvalue was 38. We used

GREMLIN to learn models from the un-permuted MSA using penalties of 38, or higher. We

consider such edges as the most “robust”. The analysis of GPCRs described here is based on

these robust edges unless otherwise stated.

C.1.3 GPCR structures files

As of January 2011, there were a total of 43 structures representing seven different GPCRs

deposited in the PDB. Only class A GPCRs have been crystallized so far. The GPCRs for which

structural information is available are bovine rhodopsin (BR; 18 structures including opsin),

squid rhodopsin (SR; 2 structures) turkey β1 adrenergic receptor (β1AR; 6 structures), human β2

adrenergic receptor (β2AR; 10 structures), human A2A adenosine receptor (A2A; 1 structure),

human chemokine receptor CXCR4 (5 structures) and human dopamine D3 receptor (D3R; 1

structure).

C.1.4 Ligand Binding Pockets

The residues in the ligand pocket of the different GPCR crystal structures available to date were

defined as those which have at least one atom within 5Å of the respective ligand. Scripts were

written to extract residues within a ligand binding pocket using this cut-off distance from crystal

144

structures. We mapped the ligand binding pockets of the different GPCRs onto bovine rhodopsin

for comparison. Pair-wise sequence/structure based alignments between rhodopsin (PDB ID:

1U19) and other GPCR structures were generated using the ‘salign’ module in the MODELLER

software. All ligand binding pockets discussed in this paper are mapped onto the structure of

bovine rhodopsin.

In addition to comparing ligand binding pockets directly (i.e. extracting 5Å residues in PDB

ID: 1F88 for rhodopsin to identify the RT ligand binding pocket), we also generated the fol-

lowing combined sets of pocket residues to investigate similarities and differences between lig-

and binding pockets of different GPCRs . For each of the 7 GPCRs, we defined a common

ligand binding pocket by combining the ligand binding pockets from all available crystal struc-

tures for the respective receptor (Table 5.1). Thus, for bovine rhodopsin, the common ligand

pocket is the combination of all RT binding pockets of 12 different structures. [Note: Rhodopsin

PDBs excluded are 1JFP and 1LN6, because these represent structure models from NMR struc-

tures of protein fragments. 2I36, 2I37, 3CAP and 3DQB were also excluded because these are

opsin structures and have no RT in them.] In analogous fashion, common pockets were cre-

ated for squid rhodopsin (SR), turkey 1 adrenergic receptor (1AR), human 2 adrenergic receptor

(2AR), human A2A adenosine receptor (A2A), human chemokine receptor CXCR4 and human

dopamine D3 receptor (D3R).

Finally, to generalize across different GPCRs, we derived additional ligand pockets B1, B2,

B3, B4, B5, B6 and B7 representing common sets of residues present in at least one, two, three,

four, five, six and seven receptor ligand binding pockets, respectively.

Definition of long-range interactions: A long-range interaction is defined as a statistical cou-

pling between two amino acids that are separated by at least 8 amino acids in the sequence (a

definition used in CASP [17]).

145

C.1.5 Control Set

GREMLIN derived robust edges were checked for statistically over- or under-represented pat-

terns amongst couplings observed. These tests were not done to validate the efficacy of GREM-

LIN in terms of modelling the protein family, but to get structural and biological insights into the

nature of couplings that the model learns. For this purpose we compared the edges that GREM-

LIN returns against a control distribution of edges. The control distribution is created by drawing

edges from a random graph. We classified the edges into one of the following categories: EC-EC,

EC-IC, EC-TM, EC-RT, IC-IC, IC-RT, IC-TM, TM-TM, RT-TM and RT-RT. Here, RT stands for

the ligand binding domain in rhodopsin (PDB ID: 1F88). To define the control distribution, we

enumerated all possible edges coupling any two amino acids in rhodopsin (PDB ID: 1U19) and

assigned these edges into the previously defined categories. We defined a control distribution

of a category as the probability of randomly picking an edge in that category from the control

dataset. To check for statistical significance, we enumerated the edges returned by GREMLIN in

each category and compared the fraction of edges in this category against the control distribution.

A p-value was calculated by a one-sided binomial test for statistical significance of GREMLIN

categories against categories of the control distribution.

C.2 Results and Discussion

C.2.1 Comparison with SCA and GMRC

Since we applied GREMLIN to the same MSA previously studied by the SCA and GMRC meth-

ods, we can directly compare the residues predicted by the three methods. There are listed in

Table C.1. The GREMLIN residues correspond to those obtained at a penalty of λ = 38. In

the SCA study, the authors focused on K2967.43, since this is moderately conserved residue and

a key determinant of ligand interaction in GPCRs. The common residues between GREMLIN

and SCA forming edges with K2967.43 are T932.60, A1173.32, G1213.36 and F2937.40. There are

146

GREMLIN SCA GMRC
M44, L72, N73, G90, T93,

G114, A117, G121, W175,

Y178, C185, D190, S202,

H211, A269, P291, A292,

F293

I54, T58, N73, N78, F91,

T92, T93, E113, A117, G121,

E122, I123, L125, V129,

E134, Y136, F148, A164,

F212, I213, I219, M257,

F261, W265, Y268, F293,

F294, A295, S298, A299,

N302, F313, M317

L57 - A82, F313 - R314, I305

- Y306, N302 - I304, C264 -

A299

Table C.1: Comparison of edges reported in SCA and GMRC studies with GREMLIN. Short

range edges are italicized while bold residues are common edges between SCA and GREMLIN.

Edges from GRMC are not shared by SCA or GREMLIN.

no statistically coupled residues involving K2967.43 in the GMRC study (Table C.1). There are

only 5 edges in GMRC that are identified to be statistically significant and none of the residues

that are identified have any edges in GREMLIN at a penalty of λ = 38. GMRC also shares no

common edges with SCA. Only two out of five edges in GMRC study qualify as long-range and

the residues involved (A822.49, C2646.47 and A2997.46) are strategically located in the middle of

TM helices. This might be an artefact of the topology learning heuristic used by GMRC when

compared with the other methods. It is important to note that in the GMRC study, the authors

considered a sub-class of the original MSA involving only amine (196 sequences), peptide (333

sequences) and rhodopsin (143 sequences) that represents the bulk of the sequences (672 out of

a total of 948 sequences).

In the SCA study, the residues statistically coupled to K2967.43 were classified further into

three classes: (1) Immediate neighbours - F2937.40, L2947.41, A2957.42, A2997.46, F912.56, E1133.28,

(2) Linked network - F2616.44, W2656.48, Y2686.51, F2125.47 and (3) Sparse but contiguous net-

work - G1213.36, I1233.38, L1253.40, I2195.54, F2616.44, S2987.45, A2997.46, N30267.49. These

147

categories were formulated on mapping the residues onto the rhodopsin structure. Residues in

the immediate neighbour category are in the vicinity of K2967.43 and are mainly involved in he-

lix packing interactions except for E1133.28. E1133.28 forms a salt bridge interaction with the

protonated Schiff base on K2967.43 and is an important interaction identified by SCA. In the

GREMLIN model, E1133.28 and K2967.43 arent connected by an edge, but they do share three

common neighbours: M44, L72, and F293, and are thus indirectly correlated.

The linked network residues in SCA are parallel to the membrane and form an aromatic

cluster around the β-ionone ring of RT in rhodopsin. The residues in the sparse but contiguous

network are distant from K2967.43 and form helix packing interactions toward the IC side. The

SCA method performs a perturbation on a particular amino acid only if the corresponding sub-

alignment size is beyond a certain cutoff in order to calculate 44Gstat values. GREMLIN on

the other hand makes no such distinction. Hence it is possible that SCA detects edges even

if a position is fairly conserved whereas GREMLIN ignores them. This could be a source of

difference between GREMLIN and SCA edge couplings. Overall, compared to SCA and GMRC,

GREMLIN seems to identify couplings that are more extensive (i.e., involving EC, TM, RT and

IC) and are part of experimentally functional switches and structural micro-domains that are

critical of activation as discussed above.

148

Appendix D

Boltzmann Machines

D.1 Learning Rules for Multinomial RBM

Figure 6.2 illustrates a typical RBM. Let V = {V1, ..., VM} and H = {H1, ..., HN} be sets of

variables comprising the visible/observed and hidden layers of the RBM, respectively. V and H

form a bipartite graph. Each variable can take on multiple values: Vi ∈ {1..K} and Hi ∈ {1..L}.

The energy of a configuration E(V,H) is defined as:

E(V = v,H = h; θ = {W, b, c}) = −
M∑
i=1

bvii −
N∑
j=1

c
hj
j −

∑
i,j

W
vihj
ij (D.1)

Where the parameters are θ = {W, b, c} . The distribution factorizes according to the Boltzmann

distribution:

p(v, h) =
exp−E(v,h)∑
v,h e

−E(v,h)

Note that not all parameters are free; some parameters must be zero to keep the model iden-

tifiable. Without loss of generality, let bK = ck = WK.
ij = W .L

ij = 0. Also note that the structure

of the RBM implies the following conditional factorization: P (h|v) =
∏N

j=1 P (hj|v). This

conditional independence lets us write the conditional probability as:

P (hj|v) =
ec

hj
j +

∑
iW

vihj
ij∑

hj
ec

hj
j +

∑
iW

vihj
ij

149

which is known as the ”softmax function”. The softmax has been successfully used in the deep

learning community in the past in several contexts such as in language models. Further, [90]

shows that RBM model factorizes cleanly for any exponential distribution.

Training the softmax RBM is done via Contrastive Divergence (CD), which is a form of ap-

proximate gradient descent. Specifically, we wish to minimize the negative log-likelihood cost

function− log(P (v)). Define the ”Free Energy” of a visible sample asF (v) = − log
∑

h e
−E(v,h) =

− logZv. Then the gradient of the cost function can be written as:

−∂ logP (v)

∂θ
= Eṽ

[
∂F (ṽ)

∂θ

]
− ∂F (v)

∂θ

This results in the following update rules for the parameters θ:

−∂ logP (v)

∂W kl
ij

= Eṽ
[
P (hj = l|ṽ)1 ˜vi=k

]
− P (hj = l|v)1vi = k

= Eṽ [softmax(hj = l|ṽ)1ṽi=k]− softmax(hj = l|v)1vi=k

−∂ logP (v)

∂clj
= Eṽ [softmax(hj = l|ṽ)]− softmax(hj = l|v)

−∂ logP (v)

∂bkj
= Eṽ [1ṽi=k]− 1vi=k

where 1x is the indicator variable for condition x and ṽ is a sample from the model.

D.2 Experiments and Results

We report the imputation errors calculated on the training and the test sets in Table D.1. We

also list the MRF results from section 4.4 for comparison. The results show that both Boltzmann

Machines outperform the next-best models by around 10% points.

Sparse Boltzmann Machines

In this section we discuss the results from the next set of experiments pertaining to the Sparse

Boltzmann Machines. We discuss evaluation metrics for sparse Boltzmann machines boot-

150

model-name train-imperr test-imperr

ind 0.7007 0.7019

linhid 0.5805 0.5838

linvis 0.5585 0.5672

12vis-pseudo 0.5188 0.5378

gremvis-pseudo 0.4657 0.5035

3dvis-pseudo 0.4449 0.4873

rbm-hyp-scan 0.1736 0.3813

dbm-hyp-scan 0.2690 0.3843

Table D.1: Imputation error PDZ PF00595

Model train-imperr test-imperr

rbm-50 0.5288 0.5386

rbm-100 0.4827 0.5015

rbm-500 0.4681 0.4908

rbm-1000 0.4577 0.4849

rbm-1701 0.4456 0.4719

vbm 0.1143 0.4127

dbm-1701-50 0.3724 0.4318

dbm-1701-100 0.3770 0.4343

Table D.2: Imputation error PDZ RBM and DBM

strapped from MRFs containing sparse edges.

Table D.2 shows the imputation errors calculated for baseline models of RBMs and DBMs.

The DBM model dbm-1701-50 has the best test error.

Bootstrap from Long Range Interactions

This section discusses the results from long range interactions MRF bootstrap. Figure D.1 shows

the edges for the PDZ family and subsequent mapping to a RBM. Note the absence of any edges

151

(a) PDZ MRF param matrix with long range edges
(b) SRBM bootstrapped from PDZ MRF param ma-

trix with long range edges

Figure D.1: Cholesky decomposition of PDZ MRF param matrix with long range edges

Model train-imperr test-imperr

srbm-1701 0.5706 0.5826

10-ssrbm-1701 0.5404 0.5533

50-ssrbm-1701 0.5323 0.5448

100-ssrbm-1701 0.5309 0.5431

500-ssrbm-1701 0.4969 0.5138

Table D.3: Imputation error PDZ SRBM and SSRBM (long edges)

within three residue positions.

Table D.3 shows imputation errors for SRBM and SSRBM models. The number of additional

hidden nodes in the SSRBM layer are varied.

Table D.4 shows the imputation errors for the LC-DBM model when varying the number of

hidden nodes in the second hidden layer.

152

Model train-imperr test-imperr

srbm-1701 0.5706 0.5826

lcdbm-1701-50 0.5801 0.5992

lcdbm-1701-100 0.5663 0.5852

lcdbm-1701-250 0.5543 0.5725

lcdbm-1701-500 0.5635 0.5834

lcdbm-1701-1000 0.5597 0.5797

Table D.4: Imputation error PDZ SRBM and LC-DBM (long edges)

(a) PDZ MRF param matrix with short and long

range edges

(b) SRBM bootstrapped from PDZ MRF param ma-

trix with short and long range edges

Figure D.2: Cholesky decomposition of PDZ MRF param matrix with short and long range edges

Bootstrap from Short Plus Long Range Interactions

This section discusses the results for sparse Boltzmann machines bootstrapped from short plus

long range edges. Figure D.2 shows the edges for the PDZ family and subsequent mapping to a

RBM. The RBM has many more parameters than the long range bootstrapped RBM (figure D.1).

Table D.5 shows imputation errors for SRBM and SSRBM models. The number of additional

hidden nodes in the SSRBM layer are varied.

Table D.6 shows the imputation errors for the LC-DBM model when varying the number of

153

Model train-imperr test-imperr

srbm-1701 0.5001 0.5203

10-ssrbm-1701 0.4916 0.5118

50-ssrbm-1701 0.4907 0.5132

100-ssrbm-1701 0.4872 0.5085

500-ssrbm-1701 0.4832 0.5056

Table D.5: Imputation error PDZ SRBM and SSRBM (short plus long edges)

Model train-imperr test-imperr

srbm-1701 0.5001 0.5203

lcdbm-1701-50 0.5097 0.5397

lcdbm-1701-100 0.5050 0.5348

lcdbm-1701-250 0.4968 0.5262

lcdbm-1701-500 0.4993 0.5299

lcdbm-1701-1000 0.4979 0.5288

Table D.6: Imputation error PDZ SRBM and LC-DBM (short plus long edges)

hidden nodes in the second hidden layer.

D.2.1 Summary of all Generative Models

In this section we provide a summary of all MRFs and Boltzmann Machines for the PDZ fam-

ily. Figure D.3 shows a summary of the MRF models discussed in chapter 4 and the different

Boltzmann machines discussed in this chapter for the PDZ family.

D.2.2 Additional Results Large Scale Imputation Errors

Additional results from largescale experiments holding out 10 columns at a time are shown in

figures D.8, D.4, D.6, D.7 and D.5 respectively.

154

train-imperr test-imperr0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Im
pu

ta
tio

n
Er

ro
r

PDZ All Models

ind
linhid
linvis
lcdbm-1701-100-pseudo
srbm-1701-pseudo
100-ssrbm-1701-pseudo
gremvis-pseudo
rbm-1701
dbm-1701-100
vbm
dbm-hyp-scan

Figure D.3: Comparing MRFs and Boltzmann Machines for PDZ: Imputation error improves

with relaxations in model assumptions and addition of latent variables

155

PF03459 PF12569 PF13459 PF13693 PF13710 PF13833 PF13899 PF13920 PF139270.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 Im
pu

ta
tio

n
Er

ro
r

Imperr bound 10 cols

gremlin
rbm
dbm

Figure D.4: Largescale Bound Residues Multicolumn Imputations: Multicolumn imputations for

all datasets holding out 10 columns using binding residues. Boltzmann machines beat Gremlin

by about 5 percentage points

PF03459 PF12569 PF13459 PF13693 PF13710 PF13833 PF13899 PF13920 PF139270.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 Im
pu

ta
tio

n
Er

ro
r

Imperr surface 10 cols

gremlin
rbm
dbm

Figure D.5: Largescale surface Residues Multicolumn Imputations: Multicolumn imputations

for all datasets holding out 10 columns using binding residues. Boltzmann machines beat Grem-

lin by about 5 percentage points

156

PF03459 PF12569 PF13459 PF13693 PF13710 PF13833 PF13899 PF13920 PF139270.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 Im
pu

ta
tio

n
Er

ro
r

Imperr core 10 cols

gremlin
rbm
dbm

Figure D.6: Largescale core Residues Multicolumn Imputations: Multicolumn imputations for

all datasets holding out 10 columns using binding residues. Boltzmann machines beat Gremlin

by about 5 percentage points

PF00240 PF00595 PF03459 PF13459 PF13693 PF13710 PF13833 PF13899 PF13920 PF139270.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 Im
pu

ta
tio

n
Er

ro
r

Imperr rand 10 cols

gremlin
rbm
dbm

Figure D.7: Largescale Random Multicolumn Imputations: Multicolumn imputations for all

datasets holding out 10 columns chosen at random. Boltzmann machines beat Gremlin by about

5 percentage points

157

PF00240 PF00595 PF03459 PF13459 PF13693 PF13710 PF13833 PF13899 PF13920 PF139270.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 Im
pu

ta
tio

n
Er

ro
r

Imperr block 10 cols

gremlin
rbm
dbm

Figure D.8: Largescale Block Multicolumn Imputations: Multicolumn imputations for all

datasets holding out 10 adjacent columns in a block and sweeping the MSA. Boltzmann ma-

chines beat Gremlin by about 5 percentage points

158

Bibliography

[1] S. Ahuja and S. O. Smith. Multiple switches in G protein-coupled receptor activation.

Trends Pharmacol. Sci., 30(9):494–502, Sep 2009. 5.1

[2] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng

Zhang, Webb Miller, and David J Lipman. Gapped blast and psi-blast: a new generation of

protein database search programs. Nucleic acids research, 25(17):3389–3402, 1997. 2.2.2

[3] Patrick R Amestoy, Timothy A Davis, and Iain S Duff. An approximate minimum degree

ordering algorithm. SIAM Journal on Matrix Analysis and Applications, 17(4):886–905,

1996. 6.4.2

[4] S. Balakrishnan, H. Kamisetty, J.C. Carbonell, S.I. Lee, and Langmead C.J. Learning

Generative Models for Protein Fold Families. Proteins: Structure, Function, and Bioinfor-

matics, 79(6):1061?1078, 2011. 1, 2.4, 4, 4.2.5, 5, 5.1, 5.2.1, 6, 6.1.3, 6.4, 6.4.2

[5] J. A. Ballesteros, L. Shi, and J. A. Javitch. Structural mimicry in G protein-coupled re-

ceptors: implications of the high-resolution structure of rhodopsin for structure-function

analysis of rhodopsin-like receptors. Mol. Pharmacol., 60(1):1–19, Jul 2001. 5.1

[6] Yoshua Bengio. Learning deep architectures for ai. Foundations and trends R© in Machine

Learning, 2(1):1–127, 2009. 4, 6.1

[7] Yoshua Bengio and Olivier Delalleau. On the expressive power of deep architectures. In

Algorithmic Learning Theory, pages 18–36. Springer, 2011. 6.3

159

[8] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. Greedy layer-wise

training of deep networks. Advances in neural information processing systems, 19:153,

2007. 6.3.1

[9] Julian Besag. Statistical analysis of non-lattice data. The statistician, pages 179–195, 1975.

4.2.3, 6.1.3

[10] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and

locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013. 6.4.2

[11] Adrian A Canutescu, Andrew A Shelenkov, and Roland L Dunbrack. A graph-theory al-

gorithm for rapid protein side-chain prediction. Protein science, 12(9):2001–2014, 2003.

7.2

[12] KyungHyun Cho, Tapani Raiko, and Alexander Ilin. Parallel tempering is efficient for

learning restricted boltzmann machines. In IJCNN, pages 1–8. Citeseer, 2010. 6.2

[13] Adam Coates, Andrew Y Ng, and Honglak Lee. An analysis of single-layer networks in

unsupervised feature learning. In International Conference on Artificial Intelligence and

Statistics, pages 215–223, 2011. 6.2

[14] Ronan Collobert and Jason Weston. A unified architecture for natural language processing:

Deep neural networks with multitask learning. In Proceedings of the 25th international

conference on Machine learning, pages 160–167. ACM, 2008. 4

[15] UniProt Consortium et al. The universal protein resource (uniprot). Nucleic acids research,

36(suppl 1):D190–D195, 2008. 2.2.2, 4.4.1, 6.6.1

[16] Timothy A Davis and William W Hager. Modifying a sparse cholesky factorization. SIAM

Journal on Matrix Analysis and Applications, 20(3):606–627, 1999. 6.4.2, 6.4.2

[17] J. P. Dekker, A. Fodor, R. W. Aldrich, and G. Yellen. A perturbation-based method for

calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments.

Bioinformatics, 20(10):1565–1572, Jul 2004. 5.1, C.1.4

160

[18] Ken A Dill and Justin L MacCallum. The protein-folding problem, 50 years on. Science,

338(6110):1042–1046, 2012. 3.2.1

[19] Sean R Eddy. Where did the blosum62 alignment score matrix come from? Nature biotech-

nology, 22(8):1035–1036, 2004. 6.6.6

[20] Øyvind Edvardsen, Anne Lise Reiersen, Margot W Beukers, and Kurt Kristiansen. tgrap,

the g-protein coupled receptors mutant database. Nucleic acids research, 30(1):361–363,

2002. C.1.1

[21] SM Ali Eslami, Nicolas Heess, Christopher KI Williams, and John Winn. The shape boltz-

mann machine: a strong model of object shape. International Journal of Computer Vision,

107(2):155–176, 2014. 6.4, 6.4.1

[22] R. D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J. E. Pollington, O. L. Gavin, P. Gu-

nasekaran, G. Ceric, K. Forslund, L. Holm, E. L. Sonnhammer, S. R. Eddy, and A. Bateman.

The Pfam protein families database. Nucleic Acids Res., 38(Database issue):D211–222, Jan

2010. 5.1

[23] R. Fredriksson, M. C. Lagerstrom, L. G. Lundin, and H. B. Schioth. The G-protein-coupled

receptors in the human genome form five main families. Phylogenetic analysis, paralogon

groups, and fingerprints. Mol. Pharmacol., 63(6):1256–1272, Jun 2003. 5.1

[24] Yoav Freund and David Haussler. Unsupervised learning of distributions of binary vectors

using two layer networks. Computer Research Laboratory [University of California, Santa

Cruz], 1994. 6.2, 6.3

[25] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estima-

tion with the graphical lasso. Biostatistics, 9(3):432–441, 2008. 6.4

[26] Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani. Safe feature elimination for the

lasso and sparse supervised learning problems. arXiv preprint arXiv:1009.4219, 2010.

3.2.3

161

[27] Ian Goodfellow, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Multi-prediction deep

boltzmann machines. In Advances in Neural Information Processing Systems, pages 548–

556, 2013. 6.3.1

[28] Pinar Heggernes, SC Eisestat, Gary Kumfert, and Alex Pothen. The computational com-

plexity of the minimum degree algorithm. Technical report, DTIC Document, 2001. 6.4.2

[29] T. Hinkley, J. Martins, C. Chappey, M. Haddad, E. Stawiski, J. M. Whitcomb, C. J.

Petropoulos, and S. Bonhoeffer. A systems analysis of mutational effects in HIV-1 pro-

tease and reverse transcriptase. Nat. Genet., 43(5):487–489, May 2011. 3.1, 3.2.3, 3.3.2,

3.4, 7.1, A.1.1

[30] Geoffrey E. Hinton. Training products of experts by minimizing contrastive di-

vergence. Neural Comput., 14(8):1771–1800, August 2002. ISSN 0899-7667.

doi: 10.1162/089976602760128018. URL http://dx.doi.org/10.1162/

089976602760128018. 6.2.1, 6.6.2, 6.6.6

[31] Geoffrey E Hinton and Terrance J Sejnowski. Learning and relearning in boltzmann ma-

chines. Cambridge, MA: MIT Press, 1:282–317, 1986. 6.1

[32] Geoffrey E Hinton and Terrence J Sejnowski. Optimal perceptual inference. In Proceedings

of the IEEE conference on Computer Vision and Pattern Recognition, pages 448–453. IEEE

New York, 1983. 6.1

[33] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for

deep belief nets. Neural Comput., 18(7):1527–1554, July 2006. ISSN 0899-7667. doi:

10.1162/neco.2006.18.7.1527. URL http://dx.doi.org/10.1162/neco.2006.

18.7.1527. 4, 6.2, 6.3, 6.3.1

[34] Georey Hinton. A Practical Guide to Training Restricted Boltzmann Machines. Tech-

nical report, 2010. URL http://www.cs.toronto.edu/˜{}hinton/absps/

guideTR.pdf. 6.2.1, 6.5, 6.6.2

162

http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1162/089976602760128018
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://www.cs.toronto.edu/~{}hinton/absps/guideTR.pdf
http://www.cs.toronto.edu/~{}hinton/absps/guideTR.pdf

[35] John J Hopfield. Neural networks and physical systems with emergent collective computa-

tional abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

6.1

[36] Florence Horn, J Weare, Margot W. Beukers, S Hörsch, Amos Bairoch, W Chen, Øyvind

Edvardsen, Fabien Campagne, and Gert Vriend. Gpcrdb: an information system for g

protein-coupled receptors. Nucleic Acids Research, 26(1):275–279, 1998. C.1.1

[37] J. Hwa, P. Garriga, X. Liu, and H. G. Khorana. Structure and function in rhodopsin: pack-

ing of the helices in the transmembrane domain and folding to a tertiary structure in the

intradiscal domain are coupled. Proc. Natl. Acad. Sci. U.S.A., 94(20):10571–10576, Sep

1997. 5.1

[38] Alexander T Ihler, John Iii, and Alan S Willsky. Loopy belief propagation: Convergence

and effects of message errors. In Journal of Machine Learning Research, pages 905–936,

2005. 6, 6.2.1

[39] Hetunandan Kamisetty, Arvind Ramanathan, Chris Bailey-Kellogg, and Christopher James

Langmead. Accounting for conformational entropy in predicting binding free energies of

protein-protein interactions. Proteins: Structure, Function, and Bioinformatics, 79(2):444–

462, 2011. 7.2

[40] Hetunandan Kamisetty, Eric P Xing, and Christopher J Langmead. Approximating cor-

related equilibria using relaxations on the marginal polytope. In Proceedings of the 28th

International Conference on Machine Learning (ICML-11), pages 1153–1160, 2011. 3.1

[41] Hetunandan Kamisetty, Sergey Ovchinnikov, and David Baker. Assessing the utility of

coevolution-based residue–residue contact predictions in a sequence-and structure-rich era.

Proceedings of the National Academy of Sciences, 110(39):15674–15679, 2013. 3.2.1, 3.4,

4, 6.4.2

[42] Kevin Karplus, Kimmen Sjlander, Christian Barrett, Melissa Cline, David Haussler,

163

Richard Hughey, Liisa Holm, Chris Sander, Ebi England, and Ebi England. Predicting

protein structure using hidden markov models. In Proteins: Structure, Function, and Ge-

netics, pages 134–139, 1997. 1, 4

[43] Kevin Karplus, Christian Barrett, and Richard Hughey. Hidden markov models for detect-

ing remote protein homologies. Bioinformatics, 14:846–856, 1998. 4.3, 6

[44] J. Klein-Seetharaman. Dual role of interactions between membranous and soluble portions

of helical membrane receptors for folding and signaling. Trends Pharmacol. Sci., 26(4):

183–189, Apr 2005. 5.1

[45] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-

niques. MIT press, 2009. 4.2.3, 4.3.4

[46] R. D. Kouyos, V. von Wyl, T. Hinkley, C. J. Petropoulos, M. Haddad, J. M. Whitcomb,

J. Boni, S. Yerly, C. Cellerai, T. Klimkait, H. F. Gunthard, and S. Bonhoeffer. Assessing

predicted HIV-1 replicative capacity in a clinical setting. PLoS Pathog., 7(11):e1002321,

Nov 2011. 3.1, 3.2.1

[47] R. D. Kouyos, G. E. Leventhal, T. Hinkley, M. Haddad, J. M. Whitcomb, C. J. Petropoulos,

and S. Bonhoeffer. Exploring the complexity of the HIV-1 fitness landscape. PLoS Genet.,

8(3):e1002551, 2012. 3.1

[48] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems,

pages 1097–1105, 2012. 7.2

[49] Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjlander, and David Haussler. Hid-

den markov models in computational biology: applications to protein modeling. Journal of

Molecular Biology, 235:1501–1531, 1994. 1

[50] Volodymyr Kuleshov and Doina Precup. Algorithms for the multi-armed bandit problem.

Journal of Machine Learning, 2010. 3.1

164

[51] Hugo Larochelle and Yoshua Bengio. Classification using discriminative restricted boltz-

mann machines. In Proceedings of the 25th international conference on Machine learning,

pages 536–543. ACM, 2008. 4, 6.2

[52] Nicolas Le Roux and Yoshua Bengio. Representational power of restricted boltzmann ma-

chines and deep belief networks. Neural Computation, 20(6):1631–1649, 2008. 6.3

[53] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and F Huang. A tutorial on energy-

based learning. Predicting structured data, 1:0, 2006. 6.1

[54] Yann LeCun et al. Generalization and network design strategies. Connections in Perspec-

tive. North-Holland, Amsterdam, pages 143–55, 1989. 6.4.1

[55] Honglak Lee, Chaitanya Ekanadham, and Andrew Y Ng. Sparse deep belief net model for

visual area v2. In NIPS, volume 7, pages 873–880, 2007. 6.4.2

[56] S. W. Lockless and R. Ranganathan. Evolutionarily conserved pathways of energetic con-

nectivity in protein families. Science, 286(5438):295–299, Oct 1999. 4.1, 5.1

[57] Alireza Makhzani and Brendan Frey. k-sparse autoencoders. arXiv preprint

arXiv:1312.5663, 2013. 6.4.2

[58] James Martens and Ilya Sutskever. Parallelizable sampling of markov random fields. In

International Conference on Artificial Intelligence and Statistics, pages 517–524, 2010.

6.4.2

[59] Volodymyr Mnih. Cudamat: a cuda-based matrix class for python. Department of Com-

puter Science, University of Toronto, Tech. Rep. UTML TR, 4, 2009. 6.6.2

[60] Subhodeep Moitra, Kalyan C Tirupula, Judith Klein-Seetharaman, and Christopher J Lang-

mead. A minimal ligand binding pocket within a network of correlated mutations identified

by multiple sequence and structural analysis of g protein coupled receptors. BMC bio-

physics, 5(1):13, 2012. 5, 5.1, 5.3

[61] Grégoire Montavon and Klaus-Robert Müller. Deep boltzmann machines and the centering

165

trick. In Neural Networks: Tricks of the Trade, pages 621–637. Springer, 2012. 6.4

[62] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012. 4.3

[63] Kevin P Murphy, Yair Weiss, and Michael I Jordan. Loopy belief propagation for ap-

proximate inference: An empirical study. In Proceedings of the Fifteenth conference on

Uncertainty in artificial intelligence, pages 467–475. Morgan Kaufmann Publishers Inc.,

1999. 4.2.2, 4.3.2

[64] J. P. Overington, B. Al-Lazikani, and A. L. Hopkins. How many drug targets are there?

Nat Rev Drug Discov, 5(12):993–996, Dec 2006. 5.1

[65] K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong,

D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto, and M. Miyano. Crystal structure

of rhodopsin: A G protein-coupled receptor. Science, 289(5480):739–745, Aug 2000. 5.1

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python .

Journal of Machine Learning Research, 12:2825–2830, 2011. 3.2.2

[67] Christos Petropoulos. Data management plan for monogram bioscience. Nature Precedings,

2011. URL http://dx.doi.org/10.1038/npre.2011.5668.1. 3.1, 3.3.1, 3.4,

A.1.1

[68] A. J. Rader, G. Anderson, B. Isin, H. G. Khorana, I. Bahar, and J. Klein-Seetharaman.

Identification of core amino acids stabilizing rhodopsin. Proc. Natl. Acad. Sci. U.S.A., 101

(19):7246–7251, May 2004. 5.1

[69] Michael Remmert, Andreas Biegert, Andreas Hauser, and Johannes Söding. Hhblits:

lightning-fast iterative protein sequence searching by hmm-hmm alignment. Nature meth-

ods, 9(2):173–175, 2012. 4.4.1, 6.6.1

[70] Ruslan Salakhutdinov. Learning and evaluating boltzmann machines. Technical report,

166

http://dx.doi.org/10.1038/npre.2011.5668.1

Technical Report UTML TR 2008-002, Department of Computer Science, University of

Toronto, 2008. 6.1.2

[71] Ruslan Salakhutdinov and Geoffrey E Hinton. Deep boltzmann machines. In International

Conference on Artificial Intelligence and Statistics, pages 448–455, 2009. 6.2, 6.3, 6.3.1,

6.3.1

[72] Ruslan Salakhutdinov and Hugo Larochelle. Efficient learning of deep boltzmann ma-

chines. In International Conference on Artificial Intelligence and Statistics, pages 693–700,

2010. 6.3

[73] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann machines

for collaborative filtering. In Proceedings of the 24th international conference on Machine

learning, pages 791–798. ACM, 2007. 6.2

[74] Mark Schmidt. Ugm: Matlab code for undirected graphical models, 2008. 4.4.2

[75] Mark Schmidt. Graphical model structure learning with l1-regularization. PhD thesis,

UNIVERSITY OF BRITISH COLUMBIA (Vancouver, 2010. 6.4

[76] Paul Smolensky. Information processing in dynamical systems: Foundations of harmony

theory. 1986. 6.2

[77] Nitish Srivastava and Ruslan Salakhutdinov. Multimodal learning with deep boltzmann

machines. In NIPS, pages 2231–2239, 2012. 6.3, 7.2

[78] Nitish Srivastava, Ruslan R Salakhutdinov, and Geoffrey E Hinton. Modeling documents

with deep boltzmann machines. arXiv preprint arXiv:1309.6865, 2013. 6.3

[79] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of

Machine Learning Research, 15(1):1929–1958, 2014. 6.5, 6.6.2

[80] Gary D Stormo, Thomas D Schneider, Larry Gold, and Andrzej Ehrenfeucht. Use of the

perceptronalgorithm to distinguish translational initiation sites in e. coli. Nucleic Acids

167

Research, 10(9):2997–3011, 1982. 6

[81] G. M. Suel, S. W. Lockless, M. A. Wall, and R. Ranganathan. Evolutionarily conserved

networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol., 10

(1):59–69, Jan 2003. 5.1, C.1.1

[82] Shigeki Takeda, Shiro Kadowaki, Tatsuya Haga, Hirotomo Takaesu, and Shigeki Mi-

taku. Identification of g protein-coupled receptor genes from the human genome se-

quence. {FEBS} Letters, 520(13):97 – 101, 2002. ISSN 0014-5793. doi: http://dx.doi.

org/10.1016/S0014-5793(02)02775-8. URL http://www.sciencedirect.com/

science/article/pii/S0014579302027758. 5.1

[83] J. Thomas, N. Ramakrishnan, and C. Bailey-Kellogg. Graphical models of residue coupling

in protein families. IEEE/ACM Trans Comput Biol Bioinform, 5(2):183–197, 2008. 5.1

[84] J. Thomas, N. Ramakrishnan, and C. Bailey-Kellogg. Protein design by sampling an undi-

rected graphical model of residue constraints. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 6(3):506–516, 2009. 1, 4

[85] Julie D Thompson, Toby Gibson, Des G Higgins, et al. Multiple sequence alignment using

clustalw and clustalx. Current protocols in bioinformatics, pages 2–3, 2002. 6.6.6

[86] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), pages 267–288, 1996. 3.1, 3.2.1, 3.2.2

[87] Robert Tibshirani, Jacob Bien, Jerome Friedman, Trevor Hastie, Noah Simon, Jonathan

Taylor, and Ryan J Tibshirani. Strong rules for discarding predictors in lasso-type problems.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(2):245–266,

2012. 3.1, 3.2.3, 3.4, 7.1

[88] Tijmen Tieleman. Training restricted boltzmann machines using approximations to the like-

lihood gradient. In Proceedings of the 25th international conference on Machine learning,

pages 1064–1071. ACM, 2008. 6.3.1, 6.3.1, 6.6.2

168

http://www.sciencedirect.com/science/article/pii/S0014579302027758
http://www.sciencedirect.com/science/article/pii/S0014579302027758

[89] Yuhao Wang and Jianyang Zeng. Predicting drug-target interactions using restricted boltz-

mann machines. Bioinformatics, 29(13):i126–i134, 2013. 6.2

[90] Max Welling, Michal Rosen-Zvi, and Geoffrey E Hinton. Exponential family harmoniums

with an application to information retrieval. In Nips, volume 17, pages 1481–1488, 2004.

D.1

[91] Timothy A Whitehead, Aaron Chevalier, Yifan Song, Cyrille Dreyfus, Sarel J Fleishman,

Cecilia De Mattos, Chris A Myers, Hetunandan Kamisetty, Patrick Blair, Ian A Wilson,

et al. Optimization of affinity, specificity and function of designed influenza inhibitors

using deep sequencing. Nature biotechnology, 30(6):543–548, 2012. 1, 4

[92] Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–235,

1969. 4.4.2, 6.6.2

[93] Chen Yanover and Yair Weiss. Approximate inference and protein-folding. In Advances in

neural information processing systems, pages 1457–1464, 2002. 7.2

[94] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b:

Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on

Mathematical Software (TOMS), 23(4):550–560, 1997. 4.4.2, 6.6.2

169

	1 Introduction
	1.1 Summary of Thesis Work
	1.2 Thesis Outline

	2 Background
	2.1 Proteins
	2.2 Protein Families and Multiple Sequence Alignments
	2.2.1 Protein Families
	2.2.2 Multiple Sequence Alignments

	2.3 GPCRs
	2.4 Relevant Databases

	3 Feature Learning for Predictive Models of Protein Families
	3.1 Background
	3.2 Methods
	3.2.1 Gremlin Contact Map
	3.2.2 Lasso Regression
	3.2.3 Memory and Feature Reduction
	3.2.4 Drug Cocktail design

	3.3 Experiments and Results
	3.3.1 Data description
	3.3.2 Feature Transformation - Contact Map Analysis
	3.3.3 Lasso Regression Model
	3.3.4 KL divergence validation
	3.3.5 Cocktail Design

	3.4 Chapter Summary

	4 Markov Random Fields of Protein Families
	4.1 Inputs and Notation
	4.2 Visible Markov Random Fields (VMRFs)
	4.2.1 Likelihood
	4.2.2 Parameter Learning
	4.2.3 Pseudo Log Likelihood Parameter Learning
	4.2.4 Evaluation
	4.2.5 Models

	4.3 Hidden Markov Random Fields (HMRFs)
	4.3.1 Likelihood
	4.3.2 Learning
	4.3.3 Evaluation
	4.3.4 Models

	4.4 Experimental Results
	4.4.1 Data Description
	4.4.2 Algorithms and Implementation Details
	4.4.3 Results and Discussion

	4.5 Chapter Summary

	5 Biological Analysis of Models
	5.1 Background
	5.2 Methods
	5.2.1 Gremlin
	5.2.2 Dataset Description and Preparation

	5.3 Results and Discussion
	5.3.1 Bovine Rhodopsin Analysis
	5.3.2 A minimal ligand binding pocket
	5.3.3 Residues involved in long-range interactions

	5.4 Chapter Summary

	6 Boltzmann Machines of Protein Families
	6.1 General Boltzmann Machines
	6.1.1 Likelihood
	6.1.2 Learning
	6.1.3 Evaluation

	6.2 Restricted Boltzmann Machines (RBMs)
	6.2.1 Learning
	6.2.2 Evaluation

	6.3 Deep Boltzmann Machines (DBMs)
	6.3.1 Learning
	6.3.2 Evaluation

	6.4 Sparse Boltzmann Machines
	6.4.1 Models
	6.4.2 Sparse Topology Learning using Cholesky Decomposition

	6.5 Regularization
	6.6 Experiments and Results
	6.6.1 Data Description
	6.6.2 Algorithm and implementation details
	6.6.3 Results and Discussion
	6.6.4 Minfill trick
	6.6.5 Discussion of all Generative Models
	6.6.6 Large Scale experiments
	6.6.7 Investigating PF11427
	6.6.8 Chapter Summary

	7 Conclusions and Future Work
	7.1 Summary of Contributions
	7.2 Future Directions

	A Drug Cocktail Design
	A.1 Experiments and Results
	A.1.1 Data Description and Preparation
	A.1.2 Feature Transformation - Contact Map Analysis
	A.1.3 Feature Reduction Strategies
	A.1.4 Cocktail Design

	B Markov Random Fields
	B.1 Results and Discussion

	C Biological Analysis of GPCR Features
	C.1 Methods
	C.1.1 Multiple sequence alignment
	C.1.2 Model Selection
	C.1.3 GPCR structures files
	C.1.4 Ligand Binding Pockets
	C.1.5 Control Set

	C.2 Results and Discussion
	C.2.1 Comparison with SCA and GMRC

	D Boltzmann Machines
	D.1 Learning Rules for Multinomial RBM
	D.2 Experiments and Results
	D.2.1 Summary of all Generative Models
	D.2.2 Additional Results Large Scale Imputation Errors

	Bibliography

