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ABSTRACT

The Knowledge-Based Machine Translation paradigm requires a comprehensive
analysis of input texts into an unambiguous machine-tractable representation of
the propositional and meta-propositional meaning of that text, for which we use a
particular framework referred to as ontological semantics. The work presented
here begins with a definition of a representation language for lexical semantic
specification (and syntax/semantics interface) to support such an analysis, as well
as a generalized algorithm for building the meaning representation from these lex-
ical semantic specifications, utilizing the ontology and a syntactic parse as knowl-
edge sources. The core of the algorithm is an algorithm for semantic constraint
satisfaction and relaxation, involving finding the best path over the ontology be-
tween a candidate filler of a relation and semantic constraints on that relation. The
ontology is viewed as a multi-dimensional graph, with distinct topologies in each
dimension reflecting specific semantic relations between nodes (representing con-
cepts), where weights or arc distance reflects strength of semantic relatedness in
context (where the path-so-far context is maintained in a state transition table).
Simulated annealing is used for acquiring these weights from training corpora. The
selectional restriction satisfaction algorithm is imbedded within a framework
which traverses the search space of all possible semantic interpretations, using
both a data-driven operator and an expectation-driven operator.

This algorithm and framework for meaning interpretation are applied in the gener-
ic semantic dependency structure-building case (involving satisfaction and relax-
ation of semantic constraints), word sense disambiguation (WSD), as well as
metonymy processing. WSD relies on this very rich set of constraints (generalized
from traditional selectional restrictions) where any concept in the ontology can
serve as a constraint; using this notion of constraints and the ontological graph
search for checking constraint satisfaction (which combines traditional syntagmat-
ic and paradigmatic approaches) provides encouraging results for WSD. The ap-
proach to metonymy processing uses both an extensive language-specific invento-
ry of frequent metonymic relations and a mechanism for allowing any other
semantic relation or chain of relations which exist in the ontology to provide the
metonymic relation that is recovered from text.
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1. Introduction
The history of Machine Translation reflects an exploration of the trade-offs between the ne-

cessity of “deep” understanding of the meaning of the input text, as reflected in the interlingual
MT paradigm, and the pragmatic considerations of knowledge acquisition and processing speed,
as espoused by the various flavors of the transfer and statistical MT paradigms (see, for example,
Hutchins (1986)). Although we are far from the point where both considerations can be fully sat-
isfied, it appears clear that it will not be possible to achieve practical high-quality machine transla-
tion without addressing the issues of primary concern to both approaches. The work described
here addresses the formalisms, knowledge sources and processing algorithms necessary for effec-
tive representation, resolution, and processing of the meaning of text in the interlingual Knowl-
edge-Based Machine Translation paradigm, using a particular framework for computational
semantics dubbed ontological semantics, while attempting to favorably position this paradigm rel-
ative to the pragmatic concerns of the latter paradigm.

1.1  Project Background

The research described here stems from the DIANA project at CMU/CMT in 1987-1988; dur-
ing the course of that project, an initial specification of the knowledge sources and formalisms
was developed, and an initial toy implementation was built. This work resumed in earnest in 1993
as the core of the MIKROKOSMOS effort. That project, jointly worked by NMSU/CRL, CMU/
CMT, and a US DoD research lab, funded by the US DoD, is an effort to push these lexical se-
mantic theories, both for core semantic analysis and for development of specific microtheories,
i.e., processing specialists which focus on a particular component of language analysis (such as
aspect, time, or coreference). Also within the scope of the MIKROKOSMOS effort is system
building, which includes large-scale knowledge acquisition (the ontology and lexicons for Japa-
nese and Spanish), as well as development of a full-scale implementation of the semantic analysis
algorithms and disambiguation mechanisms, as described in the remainder of this document. To
support the knowledge acquisition aspect of MIKROKOSMOS, a set of tools is being developed
for use by lexicographers to facilitate lexical and ontological entry, as well as for corpus analysis
and induction of information from MRDs. The expected products of the MIKROKOSMOS effort
include Japanese-to-English and Spanish-to-English machine translation system prototypes, uti-
lizing components of the PANGLOSS system from ISI, CMU, and NMSU, funded by DoD and
ARPA.

The components of the DIANA and MIKROKOSMOS efforts that are within the scope of the
research described in this document include: definition of the syntax/semantics interface, develop-
ment of the lexical semantic specification language, definition of the overall semantic analysis
search space (see Figure 2A), and definition of two operators for traversing the search space. Oth-
er contributions of the author, such as definition of the lexicon format and content (jointly with
others), is outside the scope of this work. The core of the effort described here, however, is the use
of the graph search over the ontology as the mechanism for constraint satisfaction and relaxation,
and the application of that search to building the Semantic Dependency Structure (SDS) that is the
basis of the meaning representation that is built be the semantic analysis process. This constraint
satisfaction process is generalizable well beyond straightforward constraint satisfaction and mod-
est relaxation, in that it can also be used for resolution of metonymy and word sense disambigua-
tion in general.



— 2 —

1.2  Setting the Stage

Using terminology from Lakoff (1988), the paradigm within which the current work is framed
is in the experientialist cognition camp, as opposed to the objectivist cognition camp which in-
cludes all logic-based or set-theoretic approaches to semantics; although both models commit to
links between human conceptual structures and a real world (i.e., basic realism), the experiential-
ist approach “accounts for what meaning is to human beings, rather then trying to replace human-
ly meaningful thought by reference to a metaphysical account of a reality external to human
experience” (p. 120). Instead of arbitrary symbols associated with things in the real world, manip-
ulable by logical processes and as set-theoretic constructs (perhaps including defining, typical,
necessary, or sufficient properties), the experientialist approach assumes the following mecha-
nisms: internal structure to the symbols which represent basic-level concepts; some relations (im-
age-schemas) defined on these concepts such as containers, paths, links, part-wholes; some set of
imaginative processes for forming abstract cognitive models, such as schematization, metaphor,
metonymy, and categorization. (p121). Lakoff argues that such a schema is not an “internal repre-
sentation of external reality”, but a representation of a reality that exists in the minds of humans,
which is a conceptualization of the real world. Under Lakoff’s definitions, the paradigm within
which this work is framed could be considered experientialist:

• The symbols of the representation (i.e., the concepts in our ontology) are not defined in iso-
lation, but are defined in a hierarchy which reflects relations between these concepts.

• The internal structure of our symbols identifies attributes, properties, and relations (i.e., each
symbol, or concept in our ontology, has a defined set of differentia which distinguish it
from its siblings).

• This model has image-schemas, reflected by the relations defined over the ontology, such as
part-whole relations.

• The system has imaginative processes (complex events, metonymy, categorization).

Adopting a model which parallels Lakoff’s experientialist view allows the meaning representation
and reasoning processes to be capable of handling metonymy and metaphor, capturing the rela-
tionships between senses inherent in regular polysemy, in addition to performing an elaborate
range of lexical, syntactic, semantic, and pragmatic disambiguation by use of constraint satisfac-
tion over the ontology.

In fact, the basic premise of the KBMT approach is that handling all of these issues (and
more) is necessary for achieving high-quality MT, and that the only way of ensuring that all such
complexities and ambiguities have been resolved is by producing an unambiguous meaning repre-
sentation. The depth of the meaning representation is a matter of debate within the interlingual
community, with some allowances given to practical (system-building) considerations. We rely on
a comprehensive well-defined ontology both to define the primitives of semantic meaning repre-
sentation and to define the search space for constraint satisfaction and relaxation.

The motivation for performing full meaning disambiguation in translation has been debated
for years. In addition to explicit arguments for the need for language-neutral meaning representa-
tions, such as those presented in Levin and Nirenburg (1994b), the MT literature is full of indirect
arguments which support such a position. The experience of the transfer (and, more recently, of
the “purely” statistical) MT paradigm researchers is that, although moderate quality of output
isn’t (intellectually) difficult to achieve, in order to improve quality, the approaches have to wres-
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tle with problems with lexical gaps, lexical misalignment, divergences, one-to-many and many-to-
one transfer rules, idioms, differences in predicate/argument structures, etc. (for example, Dorr
(1994) expends considerable effort mapping out and classifying such divergences). All of these
problems stem from the faulty premise that there is sufficient parallelism in lexical items, predi-
cate/argument structure, and syntactic structure between source and target language texts. Al-
though the KBMT paradigm and the ontological semantics framework are plagued with other
difficulties, none of those issues is ever a problem — they are all intrinsically dispensed with by
the language-neutral intermediate meaning representation of the ontological semantics model.

In Figure 1A, various approaches to interlinguae, semantic representation, and related knowl-

edge bases (referenced in detail in subsequent chapters) are rendered against two dimensions. The
first dimension, language-independence, plots the degree to which the primitives of the ontology
or language are bound to or reflect a particular language. This can be difficult to establish, because
terms from one language may be used to label the primitives even if they do not strictly mirror the
one language. The second dimension identifies the granularity of the primitives, hence their num-
ber. At the decompositional end of the spectrum, few primitives are compositionally combined to
form the meanings of all the lexemes of the language; at the other extreme, a one-to-one mapping
exists between every word in the language and a primitive in the representation or ontology.

The MIKROKOSMOS approach adopts maximal language-independence in the ontology, be-
cause of the observation that using language-specific concepts will lead to misalignment of sens-
es, lexical gaps, and all the other problems that plague the transfer-based paradigms. Our ontology
includes concepts which are maximally specific while still being valid cross-linguistically, mean-
ing that they are typically lexically (or conventionally phrasally) renderable. The specific set of
concepts can be adjusted to accommodate new languages or domains (although recent experience

Figure 1A. Classification of approaches to interlinguas or meaning
representation
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in adding English, after extensive acquisition of Spanish, required only 0.2 of 1% of the ontology
to be changed).

Recent work in using statistical models for lexical correspondences (i.e., transfer rules) would
fall in the maximally promiscuous extreme of the granularity dimension, and in the minimally
language-independent extreme. Since the discriminatory power of a statistical model of lexical
correspondences is equivalent to a Markov chain, is seems clear that this approach, in isolation,
will not be able to perform discrimination which requires the larger contexts that structures such
as syntactic parse trees (not to mention semantic dependency structures) can provide. As men-
tioned above, the premise of the KBMT approach is that it is necessary to resolve metonymy, ref-
erence, metaphor, and a host of other phenomena to be able to produce accurate translations. In
fact, the statistical transfer approach has had significant difficulty with the same sorts of problems
of divergences (outlined above) as the transfer approach. Statistical MT systems, such as Brown et
al. (1991), are increasingly incorporating symbolic techniques to address the accuracy concerns.

Where the statistical work can be useful for KBMT is in providing certain knowledge sources
or processing approaches for microtheories. Even something as basic as word frequency over a
corpus can be used to adjust the preferences to slightly favor a more-likely interpretation; other
microtheories could overcome this factor, based on other evidence. Other statistical modeling
techniques could be useful for knowledge acquisition. For example, in acquiring the ontology,
techniques which provide clusters of word that appear related, based on their contextual distribu-
tion over a corpus, could be helpful in identifying concepts and their breakdown; applying this
technique over corpora from multiple languages can provide the sort of comparative material that
would be useful in identifying language-neutral concepts for the ontology. Additionally, statistical
techniques can be exploited in generation components of KBMT, for example, in a collocation-
based lexical selection microtheory.

1.3  Practical Computational Semantics

As pointed out in King (1992), semantics researchers can have various goals, and practitioners
of semantics pursue a model of research that addresses their goals: there are computational lin-
guists whose goal is AI or NLP, there are the psycholinguists, and then there are the formal se-
manticists (in the sense of logic-based semantics). Our goals place us squarely in the first of these
three categories. That isn’t to say, however, that psycholinguistic and formal semantic theory is-
sues are of no concern to us, just that they play a significantly secondary role to the practical goal
of building a working NLP application. Raskin (1990) suggests that “no significant progress in
NLP semantics is possible without a comprehensive formal theory”, an opinion which we share,
since Raskin’s notion of a formal theory is aligned with that outlined below, as opposed to the for-
mal model-theoretic logic-based semantic theories espoused by numerous other researchers.

Thus, we need to concern ourselves with the nature and content of a practical computational
semantic theory. We find that such a theory needs to address the following four desiderata:

• Adequate expressiveness of meaning representation.

• Machine-tractable representation language.

• Explicit procedure for mapping between utterances and the meaning representation.

• Recovery procedures to map and express unexpected and non-literal input.

We feel that any system or framework that meets these requirements should be considered a com-
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plete practical computational semantic theory; these are not merely engineering considerations,
but formal and structural concerns that reflect the practical and computational aspects of the struc-
ture of a semantic theory, as discussed by Katz and Fodor (1963). They ask what the descriptive
and explanatory goals of a semantic theory are, and we readily identify that for a practical compu-
tational one, the goals are supporting the computational application, and nothing else. This points
out an obvious assumption of the above list of four desiderata: the existence of a representation of
meaning. Regardless of the form of the representation, whether a set of statements in a meta-lan-
guage, a procedure, or a state of an abstract model, representation of meaning is necessary for all
NLP applications of interest (otherwise the applications wouldn’t be concerned with computation-
al semantics); without a representation of meaning, the NLP application wouldn’t have available
to it the information content of the input/output natural language.

1.3.1  First Desideratum

This brings us to the first desideratum, namely that the meaning representation needs to be
sufficiently expressive to represent all the elements of meaning that the NLP application needs to
respond to, whether by rendering the same content in another language, or expressing the infor-
mation in a data-base format, or executing a natural language command. Jackendoff (1988) sees
that any semantic theory “must be rich enough to express all the distinctions of meaning available
to the intuitions of speakers of the language”; we qualify that, somewhat, for the computational
semantic theory to only require the distinctions of meaning required for the practical application.
Note that we aren’t necessarily requiring that the practical computational semantic theory support
representing the “full” or “deep” meaning of an utterance, only what is required for a particular
application, which will vary widely from case to case.

This desideratum immediately points out the differences between our goals and that of the for-
mal model-theoretic, truth-conditional semanticists, in whose number we include a wide range of
semantic practitioners, including Charniak and Goldman (1988), Barwise and Perry (1983), Bar-
wise (1989), McDermott (1978), and Johnson-Laird (1988), in addition to the other obvious can-
didates like Lewis, Tarski, Davidson, or Montague. We agree with the observations of King
(1992), Sowa (1993), or Wilks (1992b) that the sort of logical formalisms pursued by these logical
semanticists are unlikely to be developed to the point where they will capture the range of propo-
sitional and non-propositional meaning that, we believe, is necessary for higher-quality MT or for
supporting complex inferences, including aspects of meaning such as stylistics, attitudes, various
nuances, the range of tropes and rhetorical devices, differences of meaning due to super-sentential
context or discourse setting, etc. That isn’t to say that it is impossible to define a logical system
that can capture all these aspects of meaning (although it certainly won’t be first order); we just
observe that these practitioners aren’t interested in addressing the sorts of problems that practical
computational linguists building systems need to worry about, such as word-sense disambigua-
tion, ill-formed input, PP-attachment, etc., not to mention the fine-grained distinctions of meaning
that speakers intend. King (1992) characterizes the goals of this groups of researchers:

The task is to describe, in precise and rigorous terms, a relation between the sentences of a
natural language and a semantic representation, where the semantic representation will in
its turn provide a link between the sentence and a set of possible worlds in truth
conditional terms, so the sentences are seen as truth value denoting entities, and a possible
world is a model of the theory captured by the formal description of the relation between
sentences and semantic representation if and only if all the sentences which evaluate to
true in the theory correspond to true states of affairs of the world. (p. 287)
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Practical computational applications do not, as a rule, concern themselves with truth conditions or
possible worlds as an end result; it remains to be demonstrated that reliance on inferencing with
truth conditional logic can add practical capabilities to a computational NLP system that “com-
mon-sense” semantics cannot (see Wilks (1992b)). As mentioned above in Section 1.2, in our ap-
plication we don’t worry about the state of the world, but about representing the intended meaning
of speaker utterances.

Of the approaches that aren’t logic-based, however, there are still problems with expressive-
ness. As discussed in Wilks (1992b), Onyshkevych and Nirenburg (1994), or Arnold (1996), the
LCS model of Dorr (1993), Dorr et al. (1994), and Jackendoff (1983, 1988, 1990) and colleague
is nowhere near expressive enough for full representation of meaning needed for KBMT, since
they focus mostly on lexical semantic aspects of verb predication and argument structure. The ear-
ly work of Katz and Fodor (1963), although perhaps headed in the direction of expressiveness, re-
mained inadequate (Raskin (1990) criticizes that they don’t distinguish, in meaning, between man
and bachelor).

Certain efforts in semantics or computational semantics do, in fact, concerns themselves with
adequate expressiveness, and, in fact, focus on expanding their meaning representations or for-
malisms to handle certain non-core aspects of meaning. Mel’chuk and Zholkovsky (1984), for ex-
ample, identify (without developing a full semantic theory) a wide range of semantic relations that
may exist between elements of meaning, however, in a different context and despite their interest
in their Meaning-Text Model as a “logical device which associates with any given meaning M the
set of all the texts in this language which are expressions of M (and which are consequently syn-
onymous with one another)”. Hovy (1988) developed a structure for representing stylistics as an
aspect of meaning, an approach we follow in our framework. Other frameworks, such as Sowa
(1993), Hirst (1987), Kamp (1981), Carbonell and Tomita (1987), or Dyer and Zernik (1986), do
attempt to capture a range of aspects of meanings, but haven’t achieved the full expressiveness
that we find necessary for high-quality KBMT; in fact, we believe that we have one of the most
expressive meaning representation mechanisms for computational semantics to date (but note that
expressiveness does not necessarily correlate with granularity of primitives).

1.3.2  Second Desideratum

Competing with the issue of expressiveness of a meaning representation, perhaps, is the sec-
ond desideratum, namely that the representational formalism be machine-tractable. The reasons
for including this desideratum also lie in the practical computational nature of the theories or
frameworks under discussion, in that meaning representations need to support inferencing (as part
of the process of capturing the range of meaning) as part of the overall application in question. Al-
though the meaning representation language may need to support vagueness, if the meaning rep-
resentation language is ambiguous, then the inference mechanisms (either as part of the analysis
process or as back-end application processes) aren’t able to function deterministically without
completing the disambiguation of the meaning. Although Wilks (1996) points out that some am-
biguity doesn’t hurt the tractability of a formal language (e.g., NIL in LISP), it is clear that unre-
stricted natural language involves too much ambiguity to be machine tractable in the manner
specified above.

Although not the only way of approaching the issue of machine tractability, we choose to em-
ploy a formally defined meta-language with a concrete syntactic specification (see Section 3.3).
The atoms (or primitives) of this meta-language are unambiguous and with a defined semantics
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(see Section 3.1). We define a set of primitives by means of a taxonomy of atoms (representing
“concepts”), augmented with a network of relations, as well as features or properties on each at-
om. Johnson-Laird (1988) (although arguing against decomposition, an issue addressed in detail
in Section 4.1), finds that “by itself, the symbol WOMAN is meaningless, but it becomes more
meaningful if the specific values of a number of properties are attached to it.” Our approach, as
does his, has numerous types of associations, which can be used in combinations.

A group of practitioners, including Fass (1986, 1988) and the work in Boguraev and Briscoe
(1989), relies on words of English as elements of the meaning representation language. As dis-
cussed at greater length in Section 4.1.1, this approach clearly doesn’t satisfy the requirement of
machine tractability outlined above, thus wouldn’t support the range of inferencing and applica-
tions that a set of non-linguistic primitives would. However, we don’t find the objections of “up-
per-case semantics” (see McDermott (1978)), “markerese” vs. “mentalese” (see Lewis (1972) and
Wilks (1975a)) necessarily relevant to all of the computational (i.e., non-logic-based) approaches
that define their own set of primitives; that is, although some of these approaches use English-lan-
guage-inspired names for their concepts, we are comfortable with words as atoms, so long as the
names are unambiguous (i.e., only relate to one of the English word senses of the word) and aren’t
interpreted by English lexical semantics (instead, are formally defined, as in the network-based
model above, or are interpreted by means of the procedures that can apply to these primitives, as
in Wilks (1975a)), and aren’t combined by rules of English syntax (but by the syntax and seman-
tics of a formal meta-language). For further discussion of this issue, refer to Nirenburg et al.
(1995).

One of the points above needs further discussion here, and that is the issue of enumeration and
definition of the primitives. Without some mechanism of definition (such as the network model
approach, which is isomorphic, for this purpose, to the Wilks procedural interpretation approach),
the primitives of a semantic representation do not have a semantics of their own, and thus the
meaning representation does not convey meaning; those approaches that rely on the English deno-
tation of their primitives alone run into the same difficulties encountered by the circular word-
based semantics described above. In order to build a practical computational semantics, therefore,
we find it necessary to enumerate and define all the primitives of the meta-language. A wide range
of work fails to do this, resulting in incomplete semantic theories and problems in practical appli-
cations; this group includes the generative lexicon practitioners such as Pustejovsky (1991, 1995),
Pustejovsky and Bouillon (1995), or Buitelaar (1997), the conceptual graphs work of Sowa (1993)
and others, the lexical-conceptual structures of Dorr (1993), Jackendoff (1983, 1988, 1990) and
colleagues, the naive semantics work of Dahlgren et al. (1989), and many others.

1.3.3  Third Desideratum

The third desideratum is an explicit discovery or construction procedure for mapping between
the surface form or string and the meaning representation addressed by the former two desiderata.
In some sense, it isn’t the nature of such a procedure that is part of the semantic theory, merely the
existence of the procedure to validate that the meaning representation is producible from the
string (or v.v.) Although falling short on the first two desiderata, efforts such as the abductive rea-
soning models of Hobbs and Martin (1987) or Hobbs (1991), or the conceptual graph models of
Sowa (1993), or Hirst (1987) make a significant effort to demonstrate the existence of such a pro-
cedure. In fact, if we used the model of Evans and Scott (1986), these procedures not only validate
the representation of meaning at a sentential or propositional level, but also at a lexical level.
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Another group of frameworks, including Wilks (1975a), Woods (1970), Winograd (1983), and
Small and Rieger (1982), also define significant mapping procedures; their procedures effectively
define (or are) the semantics of the meaning representation language, per the second desideratum,
but fail to scale nearly enough to achieve sufficient expressiveness in meaning representation.
Some of these approaches such as Small and Rieger (1982) or Schank (1973) require mapping
procedures or lexical knowledge so complex as to defy any possible hope of scaling up to a real
application.

This issue is a significant one for our work, and is addressed in Section 7 and Section 8.

In discussing the issue of mapping procedures, we need to address the question of composi-
tionality. Because of the extent of meaning that we envision being represented, per the first desid-
eratum, it seems unlikely that any model following strong Montagovian compositionality could
achieve necessary levels of meaning representation. This follows from the lack of syntax/seman-
tics parallelism in the cases of non-propositional meaning (and also some propositional meaning).
We essentially require either no compositionality or weak compositionality, exemplified in Jack-
endoff (1988) by “interpretation of a noun phrase is scattered widely through the interpretation of
the sentence as a whole”. In fact, Wilks (1992b) finds that, in all practical cases, compositionality
is either trivial or non-existent. We find that in our model, our weak degree of compositionality is
often flouted, especially in the cases that the last desideratum addresses.

1.3.4  Fourth Desideratum

The fourth of our desiderata addresses the need of a mapping procedure and meaning repre-
sentation for unexpected input and non-literal language. We treat this as a core desideratum and
not as an engineering concern because the nature of real natural-language data that is encountered
outside of the laboratory is such that one cannot avoid absolute ill-formedness in the form of ty-
pos, grammatical mistakes, incomplete constructions, etc., or, even more importantly, input in the
form of non-literal language such as idioms, conventional expressions, metonymy, metaphor, iro-
ny, and a range of tropes, among other phenomena. The move from well-formed laboratory texts
to real-world data is so drastic that any practical computational semantic theory needs to include a
battery of procedures and representational vehicles to handle the meaning of real data. No frame-
work that doesn’t address these issues could be called a practical computational one.

Certain research efforts, in fact, focus almost exclusively on addressing issues raised by this
desideratum (at the expense of the other desiderata, by the way). Fass (1986, 1988) almost exclu-
sively focuses on metonymy, metaphor, and other such phenomena. Carbonell (1981) addresses
metaphor. Fillmore et al. (1988) address the issue of idioms and set expressions or constructions.
Grosz et al. (1986), Hobbs and Martin (1987), Fauconnier (1985), Kamei and Wakao (1992), Stal-
lard (1993), and others referenced in Section 9.2, focus to various extents on the issue of metony-
my.

On the other hand, a host of other frameworks that haven’t addressed the issue of real corpora
to any significant extent haven’t yet considered the implications of all these types of unexpected
input. Among them are Schank (1973), Cullingford (1981), Cullingford and Onyshkevych (1987),
Pustejovsky (1991, 1995), Pustejovsky and Bouillon (1995), Buitelaar (1997), Sowa (1993), Dorr
(1993), Dorr and Voss (1994), Jackendoff (1983, 1988, 1990), Dahlgren et al. (1989).

The approach described here has begun addressing the concerns expressed in this desidera-
tum. For example, Section 3.4.2 addresses idioms, Section 9 addresses metonymy (a significant
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focus of this work), and Section 5 considers the general case of semantically unexpected input.
However, to date, we haven’t addressed at all the issue of absolute ill-formedness, not have we ad-
dressed any of the other tropes to any depth, other than an initial effort to address metaphor.

1.3.5  Other Considerations of a Theory

There are a few potential concerns that are conspicuously absent from the above list of four
desiderata. As addressed at length in Nirenburg et al. (1995) and Nirenburg and Raskin (1996),
the issue of reproducibility isn’t relevant to practical approaches to computational semantics; in
short, reproducibility addresses discovery of existing entities or phenomena, while practical com-
putational work is concerned with construction of a meaning representation. These representa-
tions aren’t evaluated on the basis of canonicality or reproducibility, but sufficiency and accuracy
for the application at hand.

As alluded to in Section 1.3.1 above, we don’t feel that formal logical or denotational specifi-
cation of the theory or its components is necessary; however, there is certainly no reason why for-
mal axiomatization shouldn’t follow the development of a practical computational theory once it
has demonstrated success.

Another concern of scientific theory is falsifiability. In the case described here, application
success suggests an existence proof of the success of a theory, while application failure might sug-
gest (but doesn’t necessarily demonstrate) failure of the underlying practical computational se-
mantic theory. More direct falsification would be demonstrated by presentation of relevant corpus
data that couldn’t be represented by the meaning representation language or procedurally pro-
duced by the application. This engineering-failure approach to falsifiability may not be satisfying,
but reflects the practical nature of the frameworks under consideration.

1.4  KBMT and Ontological Semantics

The Knowledge-Based Machine Translation model assumes a rather “deep” analysis of the in-
put text, with a representation of the meaning in a machine-tractable meaning representation lan-
guage; the particular language used in the work described here is called Text Meaning
Representation (TMR). In addition to reflecting the contribution of the (often complex) lexical se-
mantic specification of the lexemes in the input text, the TMR attempts to capture other informa-
tion which contributes to the meaning of the input text, and which might need to be rendered in
the target language string in the process of Machine Translation; thus, in addition to the lexemes
from the input text, semantic information encoded in the morphology, syntax, relationships be-
tween words, and discourse structure of the input text is also rendered.

In addition to basic propositional content of the input text (sometimes referred to as the who-
did-what-to-whom component), we find it necessary to capture a range of other components of the
semantics of text in order to render felicitous and accurate translations. In the approach described
here, these other components of meaning include aspect, focus, modality, reference, speaker atti-
tudes, speech acts, time, stylistics, and other pragmatic factors. Notice, however, that the invento-
ry does not include any syntactic manifestations, such as tense. The information present in the
syntax and predicate/argument structure of the input text, in addition to contributing to the mean-
ing in some cases (such as identifying focus), contributes substantially to the disambiguation and
semantic dependency structure building process, via the syntax/semantic interface. No strictly
syntactic (or source text predicate/argument structure) information from the input text per se is
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represented in the meaning representation itself.

The meaning representation, i.e., the TMR, conforms to the ontological semantics approach,
as first suggested (under another name) in Nirenburg and Levin (1992). In other words, the basic
propositional component of the meaning is often represented by reference to an ontology. Our on-
tology knowledge source reflects a speaker’s model of the world, which, in addition to a taxonom-
ic organization of concepts which are the atoms of the meaning representation, also includes a
variety of properties, attributes, and relations among these concepts.

The intent in building this ontology is that it be language-neutral. Although the concepts in the
ontology may be labelled by one or more words from a particular language, those labels are for
the convenience of the developers, but should not be interpreted using the full lexicon and seman-
tics of the natural language from which the labels were taken. Each concept unambiguously (but
possibly vaguely) represents one specific concept (or natural kind) from the world being modeled.
The granularity of the ontology is pragmatically determined, although, roughly, it is intermediate
between the full-decompositional approach (such as Schank (1973)) and the one-concept-per-
wordsense approach (such as the SENSUS ontology assembled at ISI). The granularity of the
working ontology will be as fine as necessary to discriminate between word senses in each of the
languages being considered (currently Spanish, Japanese, and English). Since the concepts can be
further constrained (by adding information), composed, or augmented by non-ontological struc-
tures (such as speaker attitudes, stylistics, and relations) in the lexical semantic specification, it is
possible to use a smaller set of ontological concepts and still achieve a high degree of meaning
discrimination.

The basic form-to-meaning correspondence in our approach is produced by a processing
mechanism which consists of a cluster of microtheories, each of which is a specialist on a particu-
lar language phenomenon or processing issue (see Nirenburg and Levin (1992), Levin and Niren-
burg (1994b)). Many of these microtheories are responsible for enhancing or refining the TMR in
regard to specific language phenomena, such as aspect, definite reference, stylistics, discourse
structure, metonymy, etc. While many of these microtheories are distinct processing modules
which operate on private as well as shared knowledge sources, others are reflected by specific in-
formation in static or dynamic knowledge sources that are available to all microtheories (such as
the microtheory of adjectival meaning described in Raskin and Nirenburg (1995)). Basic Seman-
tic Dependency Structure (SDS) building is performed by one such microtheory, which relies on
another microtheory of constraint satisfaction/relaxation. Metonymy resolution actually takes the
form of knowledge which is available to the SDS and constraint-satisfaction microtheories, but
without requiring an additional processing module.

In this microtheory approach, all available clues (including syntax, morphology, lexical items,
etc.) from the input text (as well as expectations about human communication) can contribute to
the construction of meaning. The processing of idioms, conventional language, and other con-
structions (using a term from Fillmore et al. (1988)), as well as handling of metonymy and meta-
phor, is done in a non-compositional manner. Even with productive language use, the analysis
process is not necessarily strictly compositional, and context (syntactic, lexical, or previous TMR
constructions) can affect the way in which various elements of meaning are resolved. Contradicto-
ry information could be provided by various microtheories, based on different input clues or static
knowledge sources. Multiple interpretations can exist in parallel, each with a cumulative indica-
tion of likelihood of that reading. Thus the overall semantic analysis process (i.e., the construction
of the meaning representation) can be viewed as an abduction process, as described in Hobbs
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(1991); the construction of a TMR involves identifying the most plausible (yet defeasible) hy-
pothesis that is compatible with the input. This conforms with the Hobbs and Martin (1987) strat-
egy: “Language does not give us meanings. Rather, it gives us problems to be solved by reasoning
about the sentence, using general knowledge. We get meaning only by solving these problems.”

The overall strategy for MT, both the analysis and generation components, in our ontological
semantics framework involves the use of all available sources of knowledge, hence the appellation
KBMT. The availability of a diverse range of evidence, however, raises the issue of combining
that evidence to produce a single result. This issue is a more general one that just a concern for
KBMT, and has been recently addressed in other NLP-related sources such as McRoy (1992),
Levin and Nirenburg (1994b), Harley and Glennon (1997), Wilks and Stevenson (1997), or Jones
and Onyshkevych (1997); Section 7.5.4 below addresses this issue in more detail.

One of the motivating factors for differences in depth of analysis and granularity of various
MT models is the intended use of the system and the concept of operations. For example, the
KANT system, described in Nyberg and Mitamura (1992) or Carbonell et al. (1992), is designed
to work in an environment with substantial control over the grammar and vocabulary of the input
text (the controlled language is even grammar-checked, resulting in no ungrammatical or non-lit-
eral input, and most metonymic and metaphorical expressions in the sublanguage are lexicalized),
in a specific domain, therefor is less concerned with word sense disambiguation, and does not
need the expensive mechanisms for trope resolution, stylistic analysis, etc. that might be required
in a system that is addressing unrestricted text in a general domain (as is the intended application
of the work described here).

1.5  Scope of this Work

There are numerous knowledge sources, formalisms, and inference mechanisms that are re-
quired to implement the mechanism described here in a working semantic analyzer for a KBMT
system. The definition of some of these knowledge sources is within the scope of the work pre-
sented here, while a number of others (although described as background information) fall outside
the scope of this work, which focuses on the lexical semantics, building SDS, and, most impor-
tantly, a certain approach to constraint satisfaction which involves viewing the ontology as a
searchable multi-dimensional graph, and the application of this approach to a certain model of
metonymy resolution and word sense disambiguation. The definition of lexical semantic specifi-
cation also includes the syntax/semantics interface, which provides expectations for building the
SDS.

The SDS-building mechanism, implementable under a variety of control structures, is best un-
derstood as a search through a space whose states are partial TMRs, along with other parameters.
The operators for traversing this state reflect both data-driven instantiation of partial TMR struc-
tures as well as expectation-driven attempts to combine various partial structures, according to ex-
pectations either from the syntax/semantics interface or from the syntactic parse itself. In the
combination operator, before two TMR fragments can be combined, the constraints on the poten-
tial relation between the fragments needs to be checked.

The fundamental heuristic for constraining the search space is a particular view on the con-
straint satisfaction process. Each type of relation in the ontology specifies a dimension of the on-
tology, with a certain cost for traversing arcs in each dimension. Viewing the entire ontology (with
all the arcs) as a multi-dimensional graph, it is possible to view constraint satisfaction as a best-
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path problem between the constraint and the candidate concept (or instantiation) that is being
judged against the constraint. The core of basic SDS-building is verifying that candidate argu-
ments satisfy selectional restrictions on the role; this constraint satisfaction process is performed
by this ontological graph search process.

In order to demonstrate that the SDS-building algorithm, with constraint satisfaction via the
ontological graph search, can be used to address traditionally distinct phenomena in addition to
basic selectional restrictions, several issues are treated below: relaxation of such constraints for
unexpected semantic arguments (such as in the baby ate a penny), metonymy resolution, and
word-sense disambiguation. In other words, basic semantic dependency structure building, me-
tonymy resolution mechanisms, and word-sense disambiguation mechanisms all have at their core
the same fundamental constraint satisfaction/relaxation requirement which can be addressed by
the same algorithm. Metonymy resolution has specific triggering mechanisms; other phenomena
which might be addressed (but not necessarily completely solved, of course) by the same funda-
mental mechanism, including metaphor processing, nominal compounding, and reference resolu-
tion, as well as some problems in generation, would have their own set of triggering conditions.

1.6  Outline

The organization of this document is as follows. Section 2 presents a shallow overview of the
paradigm, the key knowledge sources, and the base semantic analysis process (but it does not cov-
er the application of the ontological graph search process to constraint relaxation, to metonymy
processing, or to word-sense disambiguation). The various knowledge sources that are used in the
analysis process, namely the ontology, the lexicon, the meaning representation language, and syn-
tactic representation, are described in much more depth in Section 3; the subsequent section fo-
cuses on the lexical semantic specification language, since it is so crucial to semantic analysis and
the representation of text meaning. Section 5 presents the actual core of the approach: the ontolog-
ical graph search, the central heuristic which underlies semantic constraint satisfaction and relax-
ation. Section 6 discusses the traversal of the search space of possible text meaning representation
in a somewhat abstracted manner, whereas Section 7 discusses SDS-building, specifically, as a
traversal of the search space. This generalized SDS-building process, using the ontological graph
search, is applied to the general problem of Word Sense Disambiguation (WSD) in Section 8, to
the processing of metonymy in Section 9, and Section 11.1 speculates on the application of the
process to the resolution of N-N compounds as well. Since the subtask that is common to many
task in NLP is WSD, whether in a meaning-based approach or not, Section 8 also incorporates a
discussion comparing the general SDS-building and constraint-satisfaction approach to other
work, on the basis of their model of WSD. The ontology is the knowledge source which provides
both the primitives for lexical semantic specifications, and provides the graph over which con-
straint satisfaction is determined; one of the most frequent criticisms of the knowledge-based ap-
proach to Machine Translation is the difficulty in building the ontology, so Section 10 briefly
suggests some ways of automating ontology acquisition, along with some acquisition methodolo-
gy directions.
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2. Overview of the Semantic Analysis Process
This section outlines our overall approach to semantic analysis, as discussed in the rest of the

document. Section 2.3 outlines the various knowledge sources detailed in Section 3 as well as the
discussion of lexical semantic specification from Section 4. The state space search is outlined in
Section 2.2, and discussed in more detail in Section 6 and Section 7, with a discussion of the onto-
logical graph traversal component in Section 2.4, and in more detail in Section 5. A brief example
is presented in Section 2.5.

2.1  Introduction

This section overviews the foundations and methodology of the approach to semantic analysis
espoused in this work, where semantic analysis is viewed as an embedded element of a knowl-
edge-based machine translation (KBMT) system. The overall goal of this work has been called
“deep” semantic analysis, because of our attempt to capture as much as possible of the linguistic
meaning of an input text stream (what is meant by “meaning” is discussed in Section 3.3), and to
represent that meaning by using a set of well-formed structures in an unambiguous machine-trac-
table knowledge representation language. A basic premise of the approach taken here is that in or-
der to perform such analysis, it is necessary to have substantial knowledge about the language and
about the world, hence the appellation knowledge-based.

We consider semantic analysis to combine the construction of a basic semantic dependency
structure (SDS) and the augmentation of this structure (by specialist processes called microtheo-
ries) with additional constraints and other information (such as reference, resolution of deixis,
etc.) gleaned from the available lexical, syntactic and other evidence in the input. In its most
straightforward incarnation, the SDS-building process relies on meanings of atomic lexical units,
as defined through links to the ontology and by non-propositional meaning elements; the SDS-
building process is guided by the syntax-semantics interface manifested in the lexical syntactic
and lexical semantic specification of lexical entries.

The bulk of the work described here falls in the category of SDS-building; a brief description
of microtheory-based augmentation follows. Each microtheory treats a particular language phe-
nomenon, whether language-specific or general; a working machine translation system in this par-
adigm would need to have a battery of such microtheories to handle such phenomena as definite
reference and aspect. In the process of adding information to (thus further constraining) the se-
mantic analysis produced by the SDS-building process, the microtheories also assist in traversing
the search space (described below) by selecting from among candidate analyses generated by the
SDS process or other microtheories, by pruning out certain readings entirely, or by adjusting the
preference (defined below) of a particular reading or set of readings. The remaining discussion
will treat the basic SDS-building process and the treatment of language phenomena covered with-
in its general framework (e.g., metonymy, word-sense disambiguation).

The readings or semantic interpretations generated by the SDS-building process (both as in-
termediate and as final results) are expressed in terms of a meaning representation language. The
particular language that is used is not of critical importance, as long as it meets a number of crite-
ria regarding its expressiveness and deterministic properties; a more detailed discussion of this
representation language can be found in Section 3.3. Regardless of the language, the meaning is
represented as an augmented network of instantiations of concepts from the ontology. The partic-
ular language used for illustrative purposes in this discussion is called TMR (in an earlier incarna-
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tion: TAMERLAN), reflecting the language used in the experimental implementation of this
approach. Since the meaning representation language is necessarily unambiguous, a particular
meaning representation can serve as input to a language generation mechanism (as would be the
case in Machine Translation), or could be used as input to an inference, analytic, or fusion appli-
cation.

The goal of the SDS-building process is to find the most appropriate semantic interpretation of
the input text. Candidate readings are ranked according to their preference values, a cumulative
measure of evidence or likelihood that is used to order competing interpretations (the use of this
term is different from its familiar meaning introduced by Wilks (1975b)). If the assignment of
preferences by the search process is appropriate, then the interpretation with the highest prefer-
ence value at the end of processing should indeed be the one which human translators would
choose. Preference values are used by the search heuristic both for pruning paths with low prefer-
ences, and for guiding a best-first search method. The preference in the current implementation is
a value in the interval [0.0, 1.0], with adjustments to the preference typically made by a multiplier.

Both incrementing and decrementing adjustments are possible, reflecting an increased likeli-
hood on that reading (for example, if the reading reflects the use of a typical collocation or idiom)
or a decreased likelihood on that reading (as is the case when any constraint violation occurs). De-
termining how to adjust preference values in a particular case is an issue of critical importance to
the success of this approach, and a variety of factors influence this decision (our current imple-
mentation actually only uses decrementing adjustments).

The process of building semantic dependency structure is considered here from the point of
view of traversing a search space of all possible semantic constructions (both well-formed and in-
complete) in order to find the semantic construction that best represents the meaning of the input
text. Each state in the search space is referred to as a reading, and has an associated preference re-
flecting the likelihood of that reading. A particular state may be final (i.e., well-formed and com-
plete), or incomplete (where portions of the meaning of the text have not been incorporated into
the reading yet). Some further information on the search process is given in Section 2.2 below.

The two operators for expanding or traversing nodes in the search space (i.e., the processes
which actually build the SDS) are instantiation and combination. Section 2.4 discusses in some
detail the process by which a step in building the SDS from component pieces (i.e., the combina-
tion process) uses knowledge from the lexicon and the ontology to determine the likelihood of
that step.

2.2  The Semantic Dependency Structure Building Process

In the abstract view, the SDS-building process is a state-space search process. Each state in the
state space is characterized by a TMR structure and a syntactic parse structure. The initial states
of the search all have a null TMR structure and one of the parse structures from the parse forest.
The goal states in the search space are characterized by a fully-consumed parse forest (i.e., com-
plete), and a fully-connected TMR structure with no unfilled obligatory argument positions (i.e.,
well-formed). The state-to-state transitions in the state space are over either instantiation arcs or
over combination arcs. When applied to a state, both the combination and the instantiation pro-
cess can result in multiple succeeding states (branching the search graph).

The flow diagram in Figure 2A illustrates the top-level data flow in the semantic analysis pro-
cess. The input to the process is a text string, initially segmented into sentences. The sentences are
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parsed by a syntactic parser to produce a forest of full or fragment parses (if a single full parse is
not available). If there are multiple parse paths, using a packed forest representation allows effi-
cient processing of that set of parses. The forest of parses is passed to the overall SDS-building
control process.

Given one parse or parse fragment, the instantiation process instantiates each syntactically ap-
propriate word sense from the input syntactic structure according to the lexical semantic specifi-
cation of that word sense. Note that the final TMR does not include any syntactic information
about the input string. Syntactic information is used as a set of clues necessary (though, certainly,
not sufficient!) to guide the semantic analysis process. The syntactic parse identifies the lexemes
corresponding to words, idioms, or morphemes in the input string, and eliminates those lexemes
which do not meet basic syntactic constraints. The MORPH, CAT, and SYN-STRUC zones of the
lexicon entry for each lexeme are utilized during the course of the syntactic parsing process; the

Figure 2A. Overall data flow of the architecture, showing knowledge sources and flow of processing:
parsed input undergoes instantiation and combination, and the resulting partial TMRs are
augmented by microtheories.
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SYN-STRUC zone provides the most information about the local syntactic context in which the
lexeme appears.

If there are multiple senses of a lexical item in the source text which are not eliminated by cat-
egorial or subcategorization constraints in the parse, then each sense is instantiated (thus produc-
ing branching arcs from that state in the search). Each instantiation of a lexical item is, essentially,
a TMR fragment; combining such fragments produces a (proto-)TMR for the source text.

The local syntactic information in each lexical entry contains reference variables in each argu-
ment or head position; the lexical semantic definition references those variables in the appropriate
head or argument positions in the lexical semantic definition. Together, these elements form the
syntax-semantics interface (without the use of other explicit mapping rules).

The combination component (described in more detail in Section 2.4 below), utilizes this syn-
tax-semantics interface to indicate in what capacity to combine two TMR fragments; in many cas-
es, the syntax-semantic interface indicates that the semantic head of one lexical unit is to fill a
specific role of the other. In addition, the lexical semantic definition specifies constraints that the
filler of the role must meet, or constraints that the head must satisfy in order for a unit to partici-
pate in its representation. In some cases (for example, many English prepositions) the lexical se-
mantics of a lexical unit instantiate no head, but just indicate what role one local argument would
play in the semantics of another.

The SDS-building control process iterates through each instantiated lexical-semantic unit,
walking through the lexical-semantic information, and combining it with other instantiated lexi-
cal-semantic units or TMR fragments, according to the information in the syntax-semantic inter-
face. Thus the instantiation process always results in one or more subsequent states in the search
space, whereas the combination process can result in the termination of that path (in either a final,
successful state, or in a non-final failure state if the combination fails). The combination process
could also result in one or more subsequent states, reflecting the one or more ways in which the
combination process could succeed (typically with different preferences).

2.3  Knowledge Sources

Before proceeding to discuss the heart of the semantic analysis process, the combination pro-
cess, we need to briefly overview the knowledge sources that are used in the semantic analysis
process. The lexical semantic specification found in each entry in the lexicon is the repository of
low-level semantic information. The syntax-semantics interface (see Section 3.4.2 and Section
4.2) links into that specification, guiding the search process by suggesting what element is a can-
didate for combination with what other element, and in what relation (i.e., what slot). The syntax-
semantics interface as a knowledge source is sketched out above, and is not further detailed here.
Most lexical semantic specifications call for the instantiation of one or more concepts from the
ontology, which is the grounding of the entire semantic representation. There are other knowledge
sources that are used in the semantic analysis process, but they are not reviewed here in this over-
view section.

2.3.1  The Ontology

The concepts in the ontological world model include objects (such as airplanes, ideas, or gi-
raffes), events (such as buying or eating) and properties (such as has-as-part or temperature). The
ontology is organized as a tangled taxonomy (an IS-A hierarchy) for reasons of storage and access
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efficiency. Thus, the concept HAMMER may be a child (i.e., a specialization) of the concept of
HAND_TOOL, while concepts of BALL_PEEN_HAMMER and CLAW_HAMMER could be children of
HAMMER (CLAW_HAMMER IS-A HAMMER IS-A HAND_TOOL). Ontological entities could also
be understood as the perception of Platonic ideals or natural kinds, as represented in a speaker’s
model of the world. In other words, the HAMMER concept does not refer to a particular hammer,
but to a speaker’s generic notion of a hammer. Ontological concepts can be instantiated, that is, a
representation of a specific instance of the concept is produced to signify a particular mention of
this concept in a text or discourse (but does not necessarily correlate to an existing real-world en-
tity). Thus, CONTRACT-132 may refer to the contract counterfactually referred to in the seventh
sentence of the text that a semantic analyzer is processing at the moment.

In addition to the organization into a taxonomy via IS-A links, the ontology also contains nu-
merous other links between concepts. These additional properties are used as background knowl-
edge for building and disambiguating semantic dependency structures in TMRs. Figure 2B

illustrates a fragment of a hypothetical ontology, with mostly taxonomic (IS-A) links shown. An
ontology that will actually be used in an application will include such properties as, for instance,
IS-PART-OF, IS-AN-OCCUPANT-OF, MANUFACTURED-BY as well as semantic dependency relations
that have been traditionally referred to as case roles in Case Grammar and its many practical ap-
plications. In our system, we represent ontological concepts as frames (see Section 3.1.1), while
properties are represented as slots in FRAMEKIT or FRAMEPAC frame languages, described in
Nyberg (1988) and Brown (1996), respectively. Graphically, concepts are represented as nodes,
and properties as labelled links between nodes. For example, the EAT concept may have case role
slots such as AGENT and THEME (reflecting the eater and what is being eaten), as well as slots that
are more general, such as LOCATION (probably inherited from an ancestor of EAT in the ontology
and not directly acquired for the concept EAT). The properties themselves represent concepts from
the ontology, and appear in the hierarchy and inherit slots and properties from their ancestors.
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Figure 2B. An ontology fragment
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All the above properties are, in fact, relations between ontological concepts. Another kind of
property in our system is called attribute and signifies a link between a concept and a specially de-
fined set of values (numerical, literal or scalar). Properties like ENGINE_TYPE or TEMPERATURE
are attributes.

Properties are defined in frames for particular concepts and, in accordance with the semantics
of the representation language, apply to all concepts below them in the hierarchy. Constraints are
placed in the definition of a property on domain and its range; these constraints are also concepts
from the ontology. When the property appears as a particular slot in the frame for a concept, addi-
tional semantic constraints may be locally defined in this frame. These will be more specific than
the constraints already specified in the definition of the property. For example, there might be a
LOCATION relation defined in the ontology. The domain of this relation might be specified as any
EVENT or any PHYSICAL_OBJECT (in other words, events and physical objects may have loca-
tions). The range of the relation might be PLACE (that is, only places can be the locations of events
or physical objects). The concept of an AIRPLANE_LANDING_EVENT would have a LOCATION slot
(being, presumably, a descendent of EVENT, this concept is within the domain of the relation).
However, it may be useful to further constrain the range of the relation (i.e., the allowed value of
the slot) in this particular concept to be, say, LANDING_STRIP, a descendent of PLACE. This further
constraint may be overridden in some text occurrences (as in texts about forced or crash landings),
and the algorithm discussed in Section 2.4 incorporates a constraint relaxation technique to take
care of such situations. In FRAMEKIT and FRAMEPAC, the constraints on the allowed fillers of
various slots are maintained in the SEM facet of the slot, whereas the fillers themselves are in the
VALUE facet.

2.3.2  Lexical Semantic Specification

Each lexical entry (i.e., each word sense) includes a lexical semantic specification. The base
case of this specification is an indication that the word refers to a concept from the ontology, and
in the process of semantic analysis, the word would result in an instantiation of that concept. In
many cases that concept has further constraints on the allowable fillers for various slots (in the
same manner as the local constraints in the ontology, as discussed above) or specific values filled
in for literal (non-relational) slots. Some lexical semantic specifications include multiple concepts
to be instantiated in a particular structure (i.e., one instantiation will be specified to be the head,
and another as a filler of a particular slot). Other lexical semantic specifications might not invoke
the instantiation of a concept, but just provide filler information for another concept (the adjective
blue, for example) or relate two other concepts to be instantiated by other words (the preposition
in might just specify that something is to be in the LOCATION slot of something else).

Interwoven with these semantic specifications is the syntax-semantics interface component.
Particular slots in the specification may have a reference variable as the filler; the variable is
bound to a headed syntactic structure during processing, and the instantiated concepts that result
from the semantic processing of that syntactic structure are inserted into the indicated slot’s value.
For example, in the specification for eat, the concept EAT may be called for, and the AGENT slot
of that concept may dereference the syntactic subject head; thus the resulting construction after
the SDS-building process would result in an instantiated EAT concept, with its AGENT slot filled
by an instantiation which refers to the eater, for example, DOG23.
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2.4   Constraint Satisfaction in Combining Semantic Elements

The basic premise of the SDS-building approach is that constraint satisfaction controls the
combination of any two elements of meaning representation (initially instantiated lexical semantic
definitions, which are incrementally combined to form the meaning of the entire utterance). Given
the meanings of individual words (possibly augmented instantiations of ontological concepts), the
combination operator attempts to combine such structures into the meaning of a phrase.   For ex-
ample, the syntactic specification for a sense of eat may subcategorize for an object, and the syn-
tax-semantics interface (i.e., the $vars) indicates that the meaning associated with the object
serves as the THEME of the meaning of eat. Thus the combination operator builds a semantic
structure by attempting to insert the meaning representation produced by instantiating the syntac-
tic object into the THEME role in the meaning representation of eat.

In the example illustrated in Figure 2C, the constraining concept for the filler of the AGENT

slot is ANIMAL, and a candidate filler might be an instantiation of DOG (for example, the DOG323
instantiation in the figure). Similarly, the THEME slot is constrained to be filled by a concept in-
stantiation which is an INGESTIBLE. Details of this figure aren’t important at this point, and will
be revisited in the longer example in Section 2.5 below.

The combination operator can be applied recursively to phrases; it is expected that, after a se-
ries of applications, the (proto-)meaning of a complete utterance will be produced (in practice,
this process in actually implemented in a bottom-up manner). The combination operator is not
typically applied at the supersentential levels of semantic analysis. This SDS processing is, in

DOG323

INGEST17

VAR1 VAR2

Chihuahua

SUBSPECIES

AGENT THEME

*ANIMAL *INGESTIBLE
SEM

SEM

*DOG

INSTANCE-OF

*INGEST

INSTANCE-OF

Figure 2C. Illustration of slot constraints and filler types

TMR
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practice, augmented by additional microtheories which take the proto-TMR and add specific in-
formation which is gleaned from non-lexical sources.

Technically, the combination process creates relations between two concepts. These relations
are made manifest in the formalism by allowing a slot in one concept to point to another concept
as its VALUE. A number of constraints guides this linking — a) the constraints on the range (and
domain) of the relation in the ontology, b) possible further constraints on the relation’s range ap-
pearing in the head concept’s entry in the ontology, and c) the lexical semantics specifying idio-
syncratic constraints on the head concept. For example, the case role AGENT has a constrained
range (animals or other animate entities may be agents); the concept INGEST constrains the agent
to be ANIMAL; the German word freßen maps to the concept INGEST and further constrains the
AGENT to be non-human.

The SDS-building process is also expected to determine which slot will contain a link to the
meaning of a dependent element (i.e., the specific relation that holds between the two instantiated
meanings) as well as which element is to be the head and which is to be the filler. Three eventual-
ities can be distinguished in this process:

• The syntax-semantics interface explicitly identifies the slot (e.g., the meaning representation
of the syntactic subject of eat is directed by the content of the lexicon entry for the verb to
be inserted into the AGENT slot of the head concept representation).

• An explicit syntactic indicator of the filler’s role is available, indicating which element is to
be the head, which is to be the filler, and what relation holds between them (e.g., the prep-
osition in may indicate that the meaning produced by the object of the preposition fills the
LOCATION slot of the meaning produced by the syntactic head to which the prepositional
phrase attaches.)

• When no syntactic clue is available as to the nature of the relation between the two elements
(in fact, no indication may be available as to which is the head), the SDS-building process
undertakes a search over all candidate slots. The head concept of a meaning representation
will have a number of allowable ontological properties. The SDS building process in-
cludes attempting the slot-filling constraint-satisfaction process over each of these. (This
case occurs, for example, in noun-noun compounding in English.)

As mentioned above, the constraint on a candidate slot filler can be specified in one of three
locations. Constraints on slot fillers are defined in terms of ontological concepts. Thus, since the
candidate filler is a constrained ontological concept, and the constraint is marked by an ontologi-
cal concept, too, the constraint satisfaction process can be a matter of verifying that the filler is
subsumed by the concept marking the constraint. In other cases, the constraint satisfaction process
involves exploring other (non-taxonomic) paths between the candidate filler and the constraint
over the ontology. These other paths may define a metaphorical or metonymic relationship be-
tween the candidate filler and the constraining concept.

Given this view of semantic composition as a constraint satisfaction problem, and given also
that the candidate filler and the constraints are both ontological concepts, thus, representable as
nodes in a connected graph, this process can be interpreted as the problem of finding a low-cost
path through a graph, well-known in the graph theory literature. Although any of a variety of
shortest-path graph search algorithms could be used, we use an A*-style modification of the Dijk-
stra algorithm with heap-based priority queues. This algorithm gives us the desired expected-case
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complexity, with worst-case complexity of only O(|E|log2|N|), where |E| is the number of
edges and |N| is the number of nodes, and |E| << |N|2.

The cost of graph traversal is a function of arc traversal costs, whose relative values are empir-
ically determined. Seeking a low-cost path becomes, then, the control strategy for the process.
Conceptually, this process determines an abstract distance between two ontological concepts. The
more ontologically related two concepts are, the “cheaper” the path between them. The relation
between the two concepts can be vertically taxonomic, or any of a variety of other relations that
reflect conceptual relatedness between two concepts (such as a composer and his work, sword and
scabbard, a part and the whole, to taxi and airplane, landing strip and airplane).

Arcs in the graph are directional; the cost of traversing the inverse of a link (and all links have
inverse links associated with them) is typically different from the cost of traversing the link itself.
Graph traversal is typically computed as originating at the candidate filler, and ending at the con-
straining concept. In the example in Figure 2C above, the ontology must be traversed to find the
best path from DOG to ANIMAL (in this case a trivial hierarchical traversal) in order to verify that
the candidate DOG323 may indeed fill the AGENT slot of the event. In the trivial case of verifying
that the candidate filler is in a subtree headed by the constraint, the graph is treated as a tree (i.e.,
non-taxonomic links are ignored); the cost of an IS-A arc is set to be very low, and the cost of a
SUBLASSES arc (the inverse of the IS-A arc), as well as all other links, is set higher. Thus the con-
straint satisfaction test is treated trivially. Section 8 below describes how this framework is used to
disambiguate among multiple senses of words in an input utterance.

In many cases, however, the simple IS-A test will fail, because the base constraints are estab-
lished for literal meaning, whereas the input contains a meaning shift or unexpected input. Thus,
in metonymic or metaphoric text the IS-A constraints fail. Then the graph traversal is expanded to
include other, appropriately weighted, arcs (relations) in the ontology. The sorts of relations that
are used in treating the cases of metonymy and (some) metaphor are identified by those additional
relations in the ontology (in fact, they are included in the ontology often with the express purpose
of helping to treat metaphors and/or metonymies). For example, in The White House said yester-
day... the AGENT for say is a metonym; since the constraint for AGENT on the appropriate word
sense of say is HUMAN, White House does not satisfy the trivial hierarchical constraint. Thus the
shortest path that the graph search finds includes an OCCUPANT arc (inherited by all concepts be-
low RESIDENCE in the ontology); traversing this arc identifies the likely existence of a occupied-
for-occupant (or institution-for-member) metonymy. The traversal of this arc has a greater cost
than the traversal of vertical hierarchical arcs, thus it wouldn’t be preferred unless there were no
uni-directional vertical path available. Section 9 below focuses on metonymy resolution using the
overall framework described above.

Additionally, a variety of words are subject to regular polysemy (see, e.g., Pustejovsky (1991),
Apresjan (1974)), namely systematic and productive formation of secondary senses of words
from base forms of certain classes, such as duck or rabbit as a food (vs. a creature), door as an
opening (vs. the device that covers the opening), and so on. Instead of attempting to cover each
sense of such words (as reflected by lexical semantic definitions incorporating concepts from the
ontology), these regular polysemies are reflected (generatively) by appropriate arcs in the ontolo-
gy.

For any two concepts in the ontology, there will be many possible paths between them, how-
ever, typically with different weights. The processing paradigm espoused here postulates that the
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best path between the two concepts will identify the correct relationship between them (if the
weighting mechanism is appropriate and the relative weights are appropriately assigned). The ex-
ample in Figure 2D illustrates how two paths over the ontology can have different weights. In the

sentence Fred drove his dual-cam V8 down Main street, the phrase referring to the engine is used
metonymically for the vehicle; in the semantic representation for drive, the constraint on what
could be driven would specify the VEHICLE concept from the ontology. The two paths illustrated
in this figure show how different weights on individual arcs lead to differing path weights (name-
ly, 1.0 * 1.0 * 1.0 * 0.9 * 0.9 * 1.0 = 0.81 for the left view, and 0.85 * 1.0 = 0.85 for the right view).
If the arc weights are set appropriately, the shortest path from the filler to the constraint will re-
flect the metonymy, by traversing the arc capturing the part-for-whole relation embodied in the
metonymic expression. It is clear from this example that the success of this approach is dependent
on the richness of the ontology (not just in terms of concepts, but in terms of links as well) and on
appropriate determination of weights.

In cases where the syntax-semantics interface provides no clue as to the appropriate slot (the
third case above) as is the case in noun-noun compounding, the search originates at one of the two
noun’s resulting concept, and attempts to traverse from there to the other noun’s head concept. Ei-
ther locally or at an ancestor of the originating concept, all the relations that the concept may par-
ticipate in are available to the search. In other words, an attempt is made to link the two concepts
over any relation that they, or their ancestors, can participate in.

The weights that are in the transition table are critical to the success of the heuristic. The cost
assessed for traversing a metonymic (or other) arc may be dependent on the previous arcs tra-
versed in a candidate path, because some arc types should not be repeatedly traversed, while other
arcs should not be traversed if certain other arcs have already been seen. We use a state transition
table to assess the appropriate cost for traversing an arc (based on the current path state) and to as-
sign the next state for each candidate path being considered. Our weight assignment transition ta-
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ble has 40+ states, and has individual treatment for 40 types of arcs; the other arcs (of the 350
total arc types) are treated by a default arc cost mechanism.

The arc weights are learned by an automatic training method. After building a training set of
inputs (candidate fillers and constraints) and desired outputs (the “correct” paths over the ontolo-
gy, i.e., the preferred relation), a simulated annealing numerical optimization method identifies
the set of arc costs that results in the optimal set of solutions for the training data. A similar ap-
proach is used to optimize the arc costs so that the cheapest cost reflects the preferred word sense
from a set of candidates.

2.5  An Example

Before launching into a more detailed discussion (in subsequent chapters) of the processing
paradigm, the lexicon, or its support knowledge sources and reference formalisms (i.e., the ontol-
ogy, the syntactic f-structure, and the TMR), a simple illustration is in order. As our research con-
centrates on semantics, we do not emphasize the syntactic information in the examples. Suffice it
to say that we assume a syntactic parse as a tree structure with heads projecting constituents (this
will be significant in the syntax-semantics interface).

The lexemes from the example sentence The chihuahua ate the apple are presented in abbrevi-
ated form below (this example ignores tense, aspect, determiners, etc.) Figure 2E presents a

graphical view of the lexical-semantic representation for the nouns and the verb.1 The simplest is

1. The heavy vertical links represent slots (case roles) on a concept, while lighter horizontal links represent
constraints on the expected/possible fillers of those slots. Note that there are three distinct structures,
one for each of the three words.

%DOG

%APPLE

%INGEST

VAR1 VAR2

Chihuahua

SUBSPECIES

AGENT THEME

*ANIMAL *INGESTIBLE
SEM

SEM

Figure 2E. Graphical representation of lexical semantics for chihuahua, eat, and apple.

LEX-MAP LEX-MAP

LEX-MAP
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for apple: the semantics zone of this lexicon entry (for simplicity, we ignore polysemy for the
time being and refer to the basic “fruit” sense of apple) simply indicates that there is a concept in
the ontology equivalent to the meaning of this lexeme. The % marks an ontological concept
which is to be instantiated as part of the SDS-building process.

The representation of the other noun is somewhat different. It so happens that the ontology
used to support our sample dictionary does not have a concept for chihuahuas (the question of the
grain-size trade-off in designing ontologies and lexicons is far from settled; for further discussion
see Section 4.1). Thus, our lexicon entry for chihuahua contains in its SEM-STRUC zone a re-
quest to instantiate a DOG concept, but with further (lexicon-stipulated) specification that the dog
is of the subspecies called Chihuahua.

The representation for eat has different complexity, as it is an argument-taking lexical unit
whose semantic description must include information about building a semantic dependency
structure comprising the meaning of the unit itself and the meanings of its arguments. This struc-
ture-building operation, with a concomitant disambiguation process, is supported by listing se-
mantic constraints on the meanings of arguments of the argument-taking lexical unit. In this case,
the INGEST concept has (at least) two slots, named AGENT and THEME. The semantic constraints
on those slots are represented in “facets” of those slots, specifically SEM facets, represented by the
lighter arrows. The semantic constraints are themselves concepts from the ontology; any concept
(or instantiation of a concept) which falls below the constraint in the ontology tree satisfies the
constraint.

During semantic analysis, all the lexical semantic specifications are instantiated, as illustrated
in Figure 2F. A uniquely numbered instance of each relevant concept is created. Each instantiated
concept has in its frame representation the slot INSTANCE-OF whose filler indicates from what
concept this instance was produced. The instantiations are combined in well-defined ways to pro-
duce the initial TMR for the text, as illustrated in Figure 2G. In the system-internal representation,
each instantiation remains an independent structure, with pointers (in the form of the structure
name) as the filler of the relevant slot:

(DOG323
(INSTANCE-OF *DOG)
(SUBSPECIES “CHIHUAHUA”)))

(APPLE23
(INSTANCE-OF *APPLE))

(INGEST17
(INSTANCE-OF *INGEST)
(AGENT (VALUE DOG323)

(SEM *ANIMAL))
(THEME (VALUE APPLE23)

(SEM *INGESTIBLE)))

If more properties of a concept were known, for example if we knew that its color was white,
there would be another slot in the DOG323 structure called COLOR with a value of WHITE. The
graph notation represents pointers as direct links to the node (instance structure).1
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A structure may participate in multiple other structures, which would be illustrated in the
graph by having multiple arrows pointing to a node. For example, if chihuahua were modified by
the adjective horrible, a structure (of type ATTITUDE) would be added to the graph which would
point to DOG323 in the same fashion as the pointer from the INGEST17 concept instance. The de-
tails of the TMR notation or the illustrative graph are not salient for our current purpose which is
to illustrate how semantic patterns found in lexicon entries are instantiated combined in order to
produce the initial TMR.

1. This leads to a bit of confusion between facets of slots vs. slots of concepts (e.g., the SEM facet in the
graph). Also note that some liberties were taken with the VALUE facet in the text structure; in the
graph, the VALUE facet is represented by the label on the nodes.

Figure 2F. Graphical representation of instantiated lexemes (3
discrete structures)
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Figure 2G. Graphical representation of initial TMR (one network
of structures
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3. Background: Knowledge Structures1

This section identifies the primary knowledge sources, representation formalisms, and prelim-
inary processing necessary for the knowledge-based semantic analysis approach treated in the fol-
lowing sections.

The term knowledge source is used to refer to a static data source, representing some regular-
ized machine-tractable body of knowledge or data, coupled with routines for accessing and ma-
nipulating this knowledge (see Nirenburg et al. (1992) for further discussion of knowledge
sources). The separation of static knowledge from the algorithm of a system is a well-known soft-
ware engineering principle needing no further motivation here. The primary knowledge sources
used in the approach to semantic analysis presented in this paper are the ontology (outlined in
Section 3.1) and the lexicon (discussed in Section 3.2); the interaction between these two knowl-
edge sources takes place in the lexical semantic specification within the lexicon, and is discussed
in detail in Section 4. The representation of each lexical unit’s meaning is a building block of the
sentential semantic dependency structure (SDS), that is, the core of the representation of the
meaning of the sentence.

 As mentioned above, the goal of semantic analysis is to capture the meaning of input text in
an unambiguous machine-tractable representation; Section 3.3 introduces the formalism used here
for this representation language, called TMR, in which that unambiguous machine tractable repre-
sentation of meaning is rendered.

Syntactic parsing, whether performed prior to or concurrently with semantic analysis, needs to
be surveyed (in Section 3.4) before proceeding to the exposition of the semantic analysis ap-
proach, for the reason that syntactic parsing functions as a dynamic knowledge source, producing
knowledge (i.e., parse trees) used by heuristics in the semantic analysis below.

3.1  Ontological Knowledge

The formalism for lexical semantic definitions of lexemes (as described in Section 4), and, by
construction, the meaning representation of a text (as rendered in the TMR meaning representa-
tion language defined in Section 3.3) both need to have a semantics for the respective languages.
In order for a semantic specification to have explanatory power, the atoms or primitives of the
meaning representation language must be interpreted in terms of an independently motivated
model of the world as perceived by a speaker. Our approach to semantics shares this tenet with
logical semantic theories (e.g., Kamp’s DRT, in Kamp (1981)). However, we differ from the logi-
cal semanticists in that we believe that for any realistic experiments to be performed with an NLP
system using the algorithms and formalisms suggested by a semantic theory, this world model
must be actually built, not just defined algebraically. The issue of grounding symbols which form
the primitives of such a language has been widely debated in AI, linguistics, philosophy of lan-
guage, and cognitive science (e.g., McDermott (1978)). Although we do not address this problem
directly here, it is relevant to mention that a different paradigm of KBMT attempts to ground the
representation of the semantics of a language in the language itself, by using numbered word
senses as primitives in meaning representation, thus equating the description language and the
language being described, as in Farwell et al. (1993). In some cases, this is augmented with a

1. Much of this section has appeared in Onyshkevych and Nirenburg (1991), Onyshkevych and Nirenburg
(1994), Meyer et al. (1990), or Nirenburg et al. (1990)
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small number of special predicates (e.g., Jackendoff (1983, 1990)). The resulting semantic de-
scriptions are language-dependent, which necessitates extra work in building multilingual appli-
cation. Nirenburg and Levin (1992) and Levin and Nirenburg (1994b) call this approach to
semantics syntax-driven, while the semantics advocated in this paradigm is called ontology-driv-
en.

The term ontology is used here to denote a body of knowledge about the world. Our ontolo-
gies (see Carlson and Nirenburg (1990), Skuce and Monarch (1990), or Monarch (1989) for an
earlier exposition) are structured as directed graphs, or, more specifically, tangled trees. The
knowledge in the world model is separated into two (interconnected) knowledge bases. The first
knowledge base, referred to as the ontology proper, contains knowledge about concepts, or natural
kinds or Platonic ideals. The second knowledge base, which we call the onomasticon, is a collec-
tion of specific instantiations of ontological concepts “remembered” by the system. Thus, the con-
cept “U.S. President” will be found in the ontology, while the knowledge that the system may
have about Harry Truman will be found in the onomasticon.

Section 10 and Section 3.1.3 below discuss some issues regarding the mechanism for acquisi-
tion of the ontology, but it should be noted here that in encoding ontological knowledge, we are
acquiring a practical resource, not defining a merely theoretical construct. Nor are we attempting
to merely discover a natural construct or entity (see Mahesh and Nirenburg (1995)). In fact, the
feasibility of building the ontological resource is validated by an existence proof, in that the ontol-
ogy that has been acquired for the Mikrokosmos project exists and satisfies pragmatic needs of the
overall effort, as stated; currently the ontology consists of almost 5000 concepts. The top level
distinguishes between OBJECT, EVENT, and PROPERTY, with a maximum depth of 15 concepts.

Both the ontological knowledge described in the second and third parts of this section, and the
TMR representation language (described in Section 3.3) use a frame-based representation lan-
guage, which is described first.

3.1.1  The Frame-based Formalisms

FRAMEKIT and FRAMEPAC are implementations of a generic frame-based knowledge rep-
resentation language (in LISP and C++, respectively). Knowledge bases in these frame formal-
isms take the form of a collection of frames. A frame is a named set of slots. A slot is a named set
of facets. A facet is a named set of fillers1. A filler can be any symbol or expression (such as a
string or list). This structure defines the basic set of constraints and features of FRAMEKIT and
FRAMEPAC. Although these formalisms specify some extensions to this basic expressive power,
such as inheritance, they are still quite general and semantically underspecified. The actual inter-
pretation and typing of the basic entities is generally relegated to the particular application, for ex-
ample, the ontology or the TMR representation language. The constraint languages of the
ontology and of TMR are built on top of the frame representation. These languages’ approach of
semantic and functional underspecification is different from many other knowledge representation
languages and environments, in which the basic representation language is made much more ex-
pressive at the expense of its relative awkwardness, difficulty in learning, and some format-related
constraints on application development. Details of FRAMEKIT and FRAMEPAC may be ob-
tained from Nyberg (1988) and Brown (1996), respectively.

1.  There is actually another layer between the facet and the filler (the view), which is ignored here as an un-
necessary complication for present purposes.
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A typical example of a frame with specified slots, facets, and fillers might be:

(MACINTOSH
(IS-A (VALUE PERSONAL-COMPUTER))
(PRODUCED-BY (VALUE APPLE))
(SUBCLASSES (SEM PLUS CLASSIC POWERBOOK165

 POWER_PC6001 II ...))
(HAS-AS-PART (SEM DISK-DRIVE SYSTEM-UNIT

 MONITOR CPU MEMORY HARD-DRIVE ...)))

In the above example, MACINTOSH is a frame name, IS-A is a slot name, VALUE and SEM are ex-
amples of facet names, and APPLE and MEMORY are fillers (although they, themselves, may be
names of other slots), for example. The semantics of the structure needs to be defined by the ap-
plication. Once a frame is defined within FRAMEKIT or FRAMEPAC, it may be instantiated.
The semantics of an instantiation will vary with the model intended by the knowledge base, but, in
general, an instantiation is meant to refer to a specific instance of the concept represented by the
frame. For example, an instantiation of the MACINTOSH frame from the above example might be
used to model or refer to a specific Mac in the real world. So, for example, the instance
MACINTOSH23 might be produced by the instantiation process (instantiations are usually identi-
fied by frame name followed by a unique number). An instantiation may be given specific infor-
mation, i.e., specific fillers for given slots. In the case of TMR representations, each instantiation
refers to an individual entity in the discourse, which might or might not refer to a real-world enti-
ty.

Other slot values inherit from PERSONAL-COMPUTER (e.g., MAXIMUM-NUMBER-OF-USERS),
or from COMPUTER (which might be the parent of PERSONAL-COMPUTER), INDEPENDENT-DE-
VICE, DEVICE, ARTIFACT, etc. Just as slots may be inherited through IS-A links to parents, slots
are inherited by an instantiated frame from its frame “parent”. So if MACINTOSH23 were asked to
provide the PRODUCED-BY slot in the VALUE facet, the response would be APPLE. This inherited
information may be overridden; a specific filler for any slot and facet may be stored in an instanti-
ation (which is itself a frame), and that filler would be returned in a query for that information;
typically, information is inherited only if no local specific information is available, for a given slot
and facet, but this parameter is configurable.

3.1.2  Slot Specification at the Facet level

The full set of facets used in the lexicon representation consists of:

• VALUE - a specific value (e.g., number of sides for a triangle = 3, sex of a man = male). This
is the facet where actual information is represented; typically, the other facets are con-
straints on what may be a legal (or likely) filler of the VALUE facet. Typically, in the ontol-
ogy, this facet is not specified. This facet is used for recording a) constrained mappings
within lexical semantic specification, or b) semantic dependency structure links. In our
lexical semantic specification language, fillers of this facet are often symbols consisting of
“^” appended to a variable name, e.g.,(%visit (AGENT (VALUE ^$var1))...) The
caret is an operator (akin to an intension operator) which dereferences the variable (re-
trieves the lexeme to which the variable gets bound during the syntactic parsing process
within the f-structure) and then retrieves the concepts which are instantiated by that lex-
eme's lexical semantic specification. So any place where a ^$var# appears is an indica-
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tion to the semantic dependency-building algorithm of how to attempt to build the
sentential semantic dependency structure (see Section 7). In simple terms, ^$var1 means
“the meaning of the syntactic unit referenced by $var1.”

• DEFAULT - typical, expected value (e.g., color of diapers = white). If a VALUE is needed by
some inference process operating on a TMR representation, and the VALUE is unspecified,
the DEFAULT is used; this usage is consistent with standard Artificial Intelligence and
logic default mechanisms.

• SEM - akin to a traditional selectional restriction (e.g., the agent of a cognitive event has to be
a HUMAN). This is essentially a constraint on what the VALUE may be. Instead of using
some small set of binary features, we allow any concept (or boolean combination of con-
cepts) from the ontology to be a semantic constraint; any VALUE then needs to be a de-
scendent of one of the concepts listed in SEM. All slots have SEM facets in the ontology,
but often these need to be modified (typically, constrained further) for a specific lexeme.
This semantic restriction is not absolute; it may be relaxed or violated in specific ways, as
in cases of metonymy or metaphor.

• RELAXABLE-TO - maximum relaxability, if any, of SEM restrictions; used in cases of selec-
tional restriction violation processing (treatment of unexpected input, including metony-
my and metaphor).

• SALIENCE - a scalar value in the range [0.0, 1.0] designating the significance of a specific
attribute slot or role (partly reflecting the notion of “defining properties” vs. “incidental
properties”).

Table 3A identifies the availability and use of the five facets in entries in the ontology, TMR
frames that are instantiations of ontological concepts, and LEX-MAP specifications of additional
constraints to be added to instantiated concepts; specifics of these knowledge sources can be
found in Section 3.1.3, Section 3.3, and Section 4, respectively. Note that the full inventory of fac-
ets is utilized in the lexical semantic specification, but only reduced sets are available in the other
two knowledge sources. Table 3B defines the filler types that are used in the former table. Notice
that the VALUE facet has some restricted occurrences in each of the four data types, namely that
VALUE can only be filled for a concept in the ontology for a slot which is one of the hierarchical/
instantiation indicators: IS-A, INSTANCE-OF, SUBCLASSES.

3.1.3  The Ontology

In formal semantics, one of the most widely accepted methodologies is that of model-theoret-
ic semantics in which syntactically correct utterances in a language are given semantic interpreta-
tion in terms of truth values with respect to a certain model (in Montague semantics, a “possible
world”) of reality. Such models are in practice never constructed in detail but rather delineated
through a typically underspecifying set of constraints. We are committed to actually building such
a model for any large-scale experimentation. Lexical semantic definitions of units in the lexicon
(and, by construction, sentential semantics as represented in TMR) are linked to this detailed
world model by the lexical semantic specification language defined in Section 4. Elements of this
world model are densely interconnected through a large set of well-defined ontological links
which enable the world modeler to build descriptions of complex objects and processes in a com-
positional fashion, without excessive proliferation of concepts.
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Although the ontology bears superficial similarity to semantic networks, such as those de-

Table 3A. Head and Facet Use in Ontology, TMR, and Lexical Semantics

ONTOLOGY
ONOMAS-
TICON

LEXICAL
SEMAN-
TICS

TMR

HEAD
TYPES •concept •instance •inst. request •instance

EXAMPLES *contract $person23 %contract %person23

FA
C

E
T

VALUE

TYPES

•(concept,
only in IS-A
or SUB-
CLASSES
slots)

•instance
•number: any
•symbol
•gen. instance
•(concept,

only in
INSTANCE
-OF slot)

•inst. request
•gen. inst. req.
•name
•number: any
•symbol
•variable
•(concept

only in IS-A
slot)

•instance
•number: any
•symbol
•gen. instance
•(concept,

only in
INSTANCE
-OF slot

EXAMPLES

*object %war23
4
&blue
%%bottle2
*human

%contract
%%engine
$John
7
&blue
$VAR1
*object

%war23
4
&blue
%%bottle2
*human

SEM

TYPES
•concept
•symbol-set
•number range

— •concept
•symbol-set
•number range

—

EXAMPLES

*object
{&red,
&blue}
(<> 1 8)

— *object
{&red,
&blue}
(<> 1 8)

—

DEFAULT

TYPES
•symbol
•concept
•number: any

•symbol
•concept
•number: any

•symbol
•concept
•number: any

•symbol
•concept
•number: any

EXAMPLES
&blue
*engine
4

&blue
*engine
4

&blue
*engine
4

&blue
*engine
4

RELAX-TO
TYPES •concept — •concept —

EXAMPLES *object — *object —

SALIENCE
TYPES •number: [0,1] •number: [0,1] •number: [0,1] •number: [0,1]

EXAMPLES .5 .5 .5 .5
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scribed in Quillian (1968), Woods (1975), or Fahlman (1982), there are some differences that
make the comparison not quite exact. Most semantic networks used for NLP contain a mix of
types of information, including word tokens, word senses, syntactic category information, con-
cepts, propositions, intensions, etc., while our ontology is restricted to concepts as nodes, with a
limited type of proposition represented by relational slots (or by the links to instantiations). We
differentiate ontological knowledge from knowledge about instances or tokens, which is repre-
sented in our onomasticon or TMR (described below). Woods (1975) insists that semantic net-
works represent intensional objects and propositions without regard to their truth conditions. We
represent no truth conditional information at all in the ontology; that sort of information, in addi-
tion to attitudes and proposition-level constructs reside in our TMR representations, not in the on-
tology per se.

The granularity (therefore the detail and the extent) of the ontology is an open issue, with the

Table 3B. Filler Types

Filler Type Description of Type

concept any concept (entry) from the ontology

instance any instantiation of a concept from the ontology, to include entries
from the onomasticon

generic instance an instantiation which doesn’t refer to a particular entity or element
in the world or discourse model, but to the generic

instantiation request a request to instantiate the named concept (only used in the lexical
semantics)

generic instance request an indication that the SDS-building process is not to produce a spe-
cific instantiation (which refers to a specific entity in the world or
discourse model), but a generic instance of a concept.

number: any any number in any range (integer or float)

number: [0, 1] any float between 0.0 and 1.0, inclusive

number range a specification of the allowable numerical values, represented as a
range (using unary operators >, >=, <, or <=), the binary operator <>,
or a set of allowable numbers, such as {2,3,4}.

name a string; only to be used for names of named entities

symbol a literal value taken from an exactly specified set of allowable literal
fillers

symbol set a finite enumerated set of symbols, any of which can be used as the
filler

variable a variable from the syntax/semantic interface, in the form $VAR#,
where # is replaced by a natural number

— an indication that this facet is not properly used in the specified data
structure
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extremes being concepts reflecting the meaning of each and every word in the lexicon, on the one
hand, and just enough primitive concepts to allow construction of any desired meaning, on the
other. This issue of granularity is discussed further in the context of the linkage of lexical meaning
to the ontology (Section 4.1).

In the ontology, frames are used to represent concepts, which are the basic building blocks of
the ontology. Examples of concepts might be house, automobile, voluntary-olfactory-event, and
specific-gravity. Most concepts have properties, which are represented as frame slots on the con-
cept frame; the properties are also well-defined concepts within the ontology. Some concept prop-
erties actually do not relate to the domain model, just capture administrative and explanatory
material for the human users (see examples below). Fillers of slots (i.e., values of properties of the
concept) are constrained to be names of atomic elements of the ontology, expressions referring to
elements of the ontology with additional constraints, properties, or modifications, collections of
atomic or modified concepts, or special-purpose symbols and strings. The top-level distinction in
the ontology is between EVENT (which captures actions and processes), ENTITY, and PROPERTY
(which includes ATTRIBUTE and RELATION, thus captures all states, all relational information be-
tween events or things, as well as features). Note that the ontology does not make a distinction be-
tween individuals and sets, leaving that to a meta-ontological mechanism that is orthogonal to the
ontology, unlike the approach taken in Dahlgren et al. (1989), who make a top-level distinction
between individuals and collections, which results in two mirror sub-hierarchies.

The example concepts below serve to illustrate some aspects of the constraint language used.

ONTOLOGY:
(AUTOMOBILE

(IS-A  (VALUE LAND-VEHICLE))
(SUBCLASSES  (VALUE RACING-CAR PASSENGER-CAR))
(HAS-AS-PART (SEM ENGINE TRANSMISSION...)))

The above concept is for a generic automobile. The IS-A slot indicates that the parent concept is
LAND-VEHICLE, which means that an AUTOMOBILE inherits all properties (i.e., slots) of its parent.
LAND-VEHICLE, in turn, would have IS-A VEHICLE, indicating that it inherits all of VEHICLE’s
properties; the inheritance is recursive, so AUTOMOBILE also inherits VEHICLE properties. The
SUBCLASSES slot lists those concepts from the ontology that AUTOMOBILE is the parent of. The
HAS-AS-PART slot list some basic components of an automobile; note that the list is in the SEM
facet of the slot where semantic constraints on possible fillers of the VALUE facet are specified.
Table 3A above itemizes the availability of facets in the ontology; note that the VALUE facet is
typically not used in the ontology at all, except for the slots that place the concept in the ontology:
the IS-A slot (identifying the parent) and the SUBCLASSES slot (identifying the children).

This concept may be instantiated, meaning that a particular instance of an AUTOMOBILE has
been mentioned (implicitly or explicitly) in the discourse being modeled, and that instance is be-
ing associated with that instantiation. Instantiations are identified, for example, as
AUTOMOBILE23, that is, typically the name of the concept from which the instantiation is being
made, followed by a unique identifier to distinguish that particular instantiation from all others. A
list of all instantiations is maintained in the instantiating concept. As an example of instantiation,
the AUTOMOBILE concept and a particular instantiation for Lynn’s Saab might appear as:
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ONTOLOGY:
(AUTOMOBILE

(IS-A (VALUE LAND-VEHICLE))
(SUBCLASSES           (VALUE RACING-CAR PASSENGER-CAR))
(INSTANCES (VALUE AUTOMOBILE23))
...)

INSTANCE:
(AUTOMOBILE23

(INSTANCE-OF (VALUE AUTOMOBILE))
(MANUFACTURER (VALUE SAAB))
(COLOR (VALUE &MAROON))
...)

What this indicates is that the particular automobile being modeled by this instantiation is maroon
and is manufactured by Saab (more properly, the VALUE in MANUFACTURER might be CORPO-
RATION 44 or SAAB, that is, a pointer to the instantiation of a CORPORATION concept for Saab-
Scania, either derived from the onomasticon (see below) or built from current information). These
two slots are not defined locally in the AUTOMOBILE concept, but inherited. MANUFACTURER
might be inherited from ARTIFACT (and defined as MANUFACTURER (SEM HUMAN ORGANIZA-
TION), indicating that whatever fills that slot needs to have as an ancestor HUMAN or ORGANIZA-
TION, as is the case for the instantiation for Saab). The COLOR property (slot) might be inherited
from PHYSICAL-OBJECT, which might have a list of literals indicating possible colors in the SEM
facet of the COLOR slot; alternately, a more sophisticated model of color may be used, which
might include concepts for various colors, or color-wheel/hue indicators, etc.

In addition to the SEM and VALUE facets, the ontology uses the DEFAULT facet, where defea-
sible knowledge about the expected fillers of a slot may be represented. For example, for the con-
cept *AUTOMOBILE, the slot HAS-AS-PARTS could have a DEFAULT facet filled in the ontology to
represent general knowledge about expected auto components, such as *ENGINE, *WHEELS,
*TRANSMISSION, and so on. This list of default fillers could be augmented or overridden in a lexi-
cal semantic specification that calls for an instantiation of this concept. Thus an instantiation of
this concept may have specific VALUEs in the HAS-AS-PARTS slot such as ENGINE423. The SA-
LIENCE facet can also be specified on a slot in an ontology entry, in order to highlight a slot as
being particularly significant.

Another concept might be for the notion of smelling (in the voluntary verbal sense):

ONTOLOGY:
(VOLUNTARY-OLFACTORY-EVENT

(IS-A (VALUE VOLUNTARY-PERCEPTUAL-EVENT))
(AGENT (SEM MAMMAL BIRD REPTILE AMPHIBIAN))
(INSTRUMENT (SEM OLFACTORY-ORGAN)))

Additional slots such as EXPERIENCER and BENEFICIARY would be inherited from among the an-
cestors of this concept, e.g., VOLUNTARY-PERCEPTUAL-EVENT or EVENT. Note that concepts also
exist for all properties (i.e., slot names) and non-literal fillers (therefore, the ontology for this
world model include concepts for AGENT, INSTRUMENT, VOLUNTARY-PERCEPTUAL-EVENT, MAM-
MAL, BIRD, OLFACTORY-ORGAN, EXPERIENCER, EVENT,...)
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 As stated above, since ontological concepts are (or at least are supposed to be) language-inde-
pendent, their names should be seen only as labels (which happen to be expressed in English for
our mnemonic purposes, although random symbols would serve just as well) and are not intended
to be interpreted in terms of the semantics of English. In naming our ontological concepts, we use
the following conventions to reduce naming ambiguity:

• Whenever possible, we use scientific, rather than lay terms.

• We try to be consistent in the names of ontological concepts going down a subtree: EVENT
has subclasses MENTAL-EVENT, PHYSICAL-EVENT, and SOCIAL-EVENT.

• Whenever possible, we attempt to include in the name an indication of some distinguishing
characteristic of the ontological concept (i.e., a characteristic distinguishing the concept
from its sister-concepts). For example, VOLUNTARY-VISUAL-EVENT and INVOLUNTARY-VI-
SUAL-EVENT indicate events that involve vision, with voluntary or involuntary participa-
tion, perhaps corresponding to the English words look and see, respectively.

• Consistently throughout the ontology, we use English words in one sense only as names of
ontological concepts. We therefore provide definitions for all concepts, so that when the
name of a concept (e.g. STORE) corresponds to a polysemous word, the intended meaning
will be clear.

In addition to greater organization and understandability, the chief advantage of the taxonomic
organization of the ontology is in the use of inheritance in specifying the attributes of concepts in
the ontology without extreme redundancy (see, for example, Touretzky (1986) for discussion of
such inheritance mechanisms). Although we make no claims as to the cognitive or psychological
plausibility of the specific model or its organization, we do find that some sort of model is, in fact,
necessary in order to apply our semantic analysis paradigm, as is described in subsequent chap-
ters.

3.1.4  The Onomasticon

In addition to the ontology, which essentially stores information about Platonic ideals, natural
kinds, or concepts, it is also useful to have a knowledge base of particular instantiations of those
concepts. The extent of such a knowledge base is debatable; a guiding principle in determining
the contents of such a knowledge base may be to include such instantiations which the speaker of
an utterance (or the writer of a text) would reasonably expect the hearer (reader) to know. This ex-
pectation would naturally vary from context to context, domain to domain (although some core
subset may be common to most contexts.)

 We are introducing the term onomasticon to refer to a knowledge base of instantiated con-
cepts, typically with names, generally statically (but possibly dynamically) acquired.1 Instances
produced earlier in a discourse don’t enter into the onomasticon, but remain in a context or dis-
course store.

Often the instantiations of this knowledge base will have names, and may be referred to as
named instances. Typical named instances include instances of COUNTRY, CITY, HUMAN, for ex-
ample, for Japan, Paris, and Abraham Lincoln, respectively. These names would necessarily be in

1. The Oxford English Dictionary defines onomasticon as “a vocabulary or alphabetic list of proper nouns,
esp. of persons. Formerly used more widely of a vocabulary of names, or even of a general lexicon”
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a particular language; however, these names are for the convenience of the knowledge base acqui-
sition and maintenance process, just as the symbols attached to concepts in the ontology are just
mnemonics for convenience of use. These named instances could be referenced in whatever lan-
guage as appropriate. Thus such a knowledge base would have an entry for Germany, and this en-
try might be called GERMANY if it were convenient for the knowledge base maintainer to use
English names; however, the lexicon for any language would reference that instantiation and give
it that language’s name, such as Allemagne in a French lexicon.

In addition to instantiations of entities, it may also be useful to encode, in a knowledge base,
instantiations of events or other concepts from the ontology. The Battle of Gettysburg may be
such an event that could be useful for some domains, and hence may be included in the static
knowledge base for a particular application or domain.

Knowledge bases of instantiations of concepts may be either static or dynamic. Instantiations
of countries and cities, for example, would fall into a static knowledge base, because this type of
information would be obtained from gazetteers or from similar references. Instantiations may also
be of a more dynamic nature, along the lines of what used to be called instance memory or episod-
ic memory in cognitive science, for example, in Tulving (1985). Concepts which were instantiated
by a system using the approach described here would be retained and archived if they appeared
particularly useful. This dynamic acquisition of instances would typically be performed while
transferring to a new domain.

Any of the onomasticon entries could be referenced from within the lexicon of any language.
Just like a specific concept from the ontology would be referenced (see Section 4), a lexicon entry
would reference an instantiation instead. Thus for a given language there would be lexicon entries
for Japan, Paris, and John F. Kennedy, pointing to the appropriate instantiated concept from with-
in the onomasticon, and with the appropriate name for that language forming the lexeme.

In addition to the onomasticon as a static knowledge source, the identification of any addition-
al named instances (typically people, places, organizations, or products) can be accomplished by
shallow Information Extraction techniques, namely named-entity taggers, such as those described
in Sundheim (1995). As a recovery mechanism when a name is missing from the onomasticon and
language lexicons, such named-entity taggers can provide a semantic type estimate for aid in dis-
ambiguation of the rest of the sentence, and in the MT context a transliteration mechanism would
complete error recovery for unknown names.

3.2  The Lexicon

The lexicon for a given language is a collection of superentries (see Meyer and Steele (1990))
which are indexed by the citation form of the word (represented in the ORTH-FORM field). With-
in a superentry, individual lexemes are represented in the frame-based formalism described in
Section 3.1.1. A superentry includes all the lexemes which have the same dictionary form, regard-
less of syntactic category, pronunciation, or sense. Thus, a given superentry might include any
number of lexemes that are nouns, verbs, adjectives, etc.

Lexemes (“entries”) inside a superentry are given names which are formatted using the char-
acter “+”, followed by the citation form (the lemma), followed by “-” and an indication of the syn-
tactic category (e.g., v, n, adj) of the entry and its sense number (for practical reasons, for
languages that use non-Roman alphabets, the citation form is encoded to be renderable in Roman
alpha-numeric characters; this encoding is invisible to the lexicographers). For example, +eat-v2
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introduces the entry for the second verbal sense of eat.

Proper names in the lexicon reference an entry in an onomasticon (the list of named instances,
see Section 3.1.4) in their lexical-semantic description (see below), but otherwise are similar to
other lexicon entries. For example, +Paris-n1 might be the label for the lexical item Paris which
names the city Paris, France. This arrangement allows language-independent world knowledge to
be maintained independently of language-specific nomenclature (which, in turn, affects its pho-
nology, morphology, syntactic behavior, etc.)

Each lexicon entry is comprised of a number of zones corresponding to the various levels of
lexical information. The zones are CAT (syntactic category), ORTH (orthography -- abbreviations
and variants), PHON (phonology), MORPH (morphological irregular forms, class or paradigm, and
stem variants or “principle parts”), APPL (dialect or other sublanguage indicators), SYN-STRUC
(indication of sentence- or phrase-level syntactic dependency, centrally including subcategoriza-
tion), SEM-STRUC (lexical semantics, meaning representation), LEXICAL-RELATIONS (collo-
cations, etc.), LEXICAL-RULES (listing of true positive and false positive lexical rules that
appear to apply to the lexeme), and PRAGM (information related to pragmatics as well as stylistic
factors). A special ANNOTATIONS zone contains ancillary information for the user or lexicogra-
pher, in addition to administrative information, such as modification audit trail, example sentenc-
es, printed dictionary definitions, cross-references (what other lexemes is this one referenced by),
etc. Below is a fuller specification of the structure of the lexicon entry, starting with the superentry
(such as bark which is then broken down into categories and senses, such as +bark-v1) and fur-
ther specifying the zones and fields in each zone, in a BNF-like notation (bold text is used to iden-
tify the short forms of the zone/field names as used in the discussion):

<superentry> :=
ORTHOGRAPHIC-FORM: “form”
({syn-cat}: <lexeme> * ) *

<lexeme> :=
CATEGORY: {syn-cat}
ORTHOGRAPHY:

VARIANTS: “variants”*
ABBREVIATIONS: “abbs”*

PHONOLOGY: “phonology”*
MORPHOLOGY:

IRREGULAR-FORMS: (“form”
        {irreg-form-name})*

PARADIGM: {paradigm-name}
STEM-VARIANTS: (“form” {variant-name})*

ANNOTATIONS:
DEFINITION: “definition in NL” *
EXAMPLES: “example”*
COMMENTS: “lexicographer comment”*
TIME-STAMP: date-of-entry lexicog-id
DATE-LAST-MODIFIED: date lexicog-id
CROSS-REFERENCES: lexeme *

APPLICABILITY:
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LOCALITY: “locale”*
FIELD: “field”*
LANGUAGE: “language”*
CURRENCY: “era”*

SYNTACTIC-STRUCTURE:
SYNTACTIC-STRUCTURE-CLASS: class
SYNTACTIC-STRUCTURE-LOCAL: fs-pattern

SEMANTIC-STRUCTURE:
SEMANTICS-CLASS: class
LEXICAL-MAPPING: lex-sem-specification
MEANING-PROCEDURE: meaning-specialist

LEXICAL-RELATIONS:
PARADIGMATIC-RELS: ({p-r-type} lexeme)*
SYNTAGMATIC-RELS: ({s-r-type}

          f-struct | lexeme)*
LEXICAL-RULES:

LR-CLASS: class *
LR-LOCAL: (LR# (lexeme | OK | NO)) *

PRAGMATICS:
STYLISTICS: ({FORMALITY, SIMPLICITY,

    COLOR, FORCE, DIRECTNESS,
    RESPECT} value) *

ANALYSIS-TRIGGERS: trigger *
GENERATION-TRIGGERS: trigger *

The CAT, ORTH, MORPH, and SYN-STRUC zones are used primarily during syntactic parsing
stage (which in our paradigm also includes segmentation, tokenization, and morphological analy-
sis). This stage precedes semantic analysis in the simplest implementation, but may be interleaved
with semantic processing in future experiments. The SYN-STRUC zone, discussed in further de-
tail in Section 3.4.2, specifies local syntactic context for the lexeme for use in syntactic parsing,
but also plays a crucial role in establishing bindings in the syntax-semantics interface. The APPL
zone provides information in analysis that may be used in preferring one word sense over another
(depending on the expected or identified sublanguage), and in generation in selecting from among
synonyms.

The LEX-REL zone, currently still in preliminary development, is intended to provide refer-
ence to primarily collocational information; each collocation is categorized, e.g., using Mel’chuk-
style categories (Mel’chuk and Zholkovsky (1984), Apresjan et al. (1969)), and represented in a
partially-specified f-structure (of the same style as the SYN-STRUC specification). Since colloca-
tions are compositional in meaning (have transparent “decoding” despite the idiosyncratic “en-
coding”), particularly when the word senses are identified, there is typically no need to represent
the semantics or pragmatics of the collocations further; if there is need, the relation is instead rep-
resented by direct reference to another lexeme. The PAR-RELS slot of the LEX-REL zone is
used to represent such relations as synonymy, antonymy, or hyponymy, but primarily only as an
indexing convenience; these relations are primarily reflected by the relative ontological positions
of the concepts used to define each lexeme.

As our primary current research interests center on issues in semantics (in particular, lexical
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semantics) the SEM-STRUC zone attracts central attention. Through this zone the lexicon con-
nects with the ontology and the onomasticon, thus becoming the locus of the atomic links be-
tween lexical units in texts and the language-neutral text meaning representation, or TMR. The
formalism for the lexical semantic specification in the SEM-STRUC zone (specifically, the LEX-
MAP field) is discussed in detail in Section 4, while the utilization of that specification is discussed
in subsequent sections. The SEM-CLASS field actually doesn’t specify a specific lexical semantic
representation for the lexeme, but presents a template for the semantic side of the syntax/seman-
tics interface. For example, a class might be EVENT-AGENT-THEME, where an event would link
the AGENT to ^$VAR1 and THEME to ^$VAR2; then the LEX-MAP for the verb could just specify
(%ingest), for example, and rely on the class to fill in the syntax-semantics interface. Details of
lexical-semantic specification are found in Section 4.

Since the meaning of some lexemes is not representable by the instantiation of a LEX-MAP
template, alternative mechanisms are provided: the MEAN-PROC in the SEM-STRUC zone, and
the TRIGGER slots in the PRAGM zone. These mechanisms allow for the invocation of functions
or procedures that modulate or modify the meaning representation of an utterance, in a manner
somewhat akin to Word Expert Parser specialists in Small and Rieger (1982), but intended to be
used as a last resort, typically on closed-class words, not as a mechanism to be used for most
open-class words. The MEAN-PROC allows for functions that modulate the meaning representa-
tion, as in the case of the adverbial very, where the function intensifies the value of a scalar at-
tribute towards one or the other extreme. The trigger mechanisms in the PRAGM zone allow for the
invocation of procedures or microtheories that have a particular mission; the A-TRIG for the, for
example, invokes a definite reference resolution mechanism during semantic analysis.

Specific details of the lexicon format used are available in Meyer et al. (1990); no philosophi-
cal or general adequacy claims are made about the format.

Among the central issues in current computational lexicography are “packing” information in
the lexicons and facilitating acquisition. Two (connected) approaches have been followed. First,
attempts have been made to cross-index information in the entries, for instance, by building lexi-
cons as hierarchical structures, with a variety of features inherited from parents to children. Sec-
ond, certain word senses might not be overtly listed in the lexicon as separate entries, instead,
instructions are supplied of how to create such entries when an application program requires
them. For various pragmatic reasons, some of these senses are generated not on an as-needed ba-
sis but at acquisition time (thus nullifying the space savings in favor of improved lexicon quality
by reducing overgeneration).

3.2.1  Cross-Indexing and Inheritance

A variety of cross-indexing mechanisms can be used to minimize redundancy within the lexi-
con. Inheritance is one type of cross-indexing used, for example, to indicate that a particular verb
is of syntactic class basic-bitransitive, thus avoiding the need for a syntactic specification or syn-
tactic features to be specified locally in the corresponding entry: the information will be inherited
from the specification in the definition of the class. Inheritance is used explicitly in our lexicon in
the MORPH (paradigm), SYN-STRUC, and LEX-RULES zones. “Horizontal” cross-reference can
be used to indicate that, say, the third and fourth verb sense of eat share the same SYN-STRUC,
zone or that all verbal senses of eat share the same PHON and MORPH; this is accomplished by
simple reference pointers in the underlying data structures.
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3.2.2  Lexical Rules

In the interests of efficiency in knowledge acquisition and to capture generalizations about
productive lexical alternations and derivations, lexical rules (LRs) are used to generate lexical en-
tries dynamically from lexical entries encoded statically in the lexicon. In our model LRs can be
used to cover a broad spectrum of phenomena, including syntactic alternations such as passiviza-
tion and dative, regular non-metonymic and non-metaphoric meaning alternations (such as those
described in Apresjan (1974) and Pustejovsky (1991)), as well as some productive derivational
processes such as formation of deverbal nominals or deverbal adjectives. Thus the LRs in this par-
adigm include the phenomena covered by LRs in LFG in Bresnan (1982), but also many of the
Lexical Inference Rules (LIRs) from Ostler and Atkins (1992), which necessarily include seman-
tic shifts. When LRs are added to the lexicographer’s arsenal, the lexicon as a whole becomes a
list of (super)entries plus a list of LRs. The discussion below highlights some a priori restrictions
on the scope and content of LRs.

LRs in our model apply to only one lexical entry at a time and, thus, do not cover phenomena
which involve two or more senses (such as compounding in German and other languages). Also
not covered (by the mechanism of LRs) is the treatment of metonymy, seen procedurally as the
situation when there is a violation of selectional restrictions for an entire set of senses of two or
more lexical units that have to be combined in a single semantic dependency structure. We dele-
gate the treatment of metonymy and similar phenomena to the processing component of the appli-
cation system: a dynamic knowledge source such as a semantic interpreter or a lexical selector in
generation; however, the knowledge required for these processes is in fact encoded into the ontol-
ogy’s network of relations or links, as well as in weights for those links (see Section 5 for a de-
scription of ontological graph search – our central mechanism for carrying out semantic analysis,
and Section 9 for a discussion of metonymy processing in our model).1 A useful rule of thumb for
deciding whether a phenomenon should be treated in a static knowledge source (e.g., through
LRs) or in a dynamic knowledge source (a processor module) is whether the phenomenon is lan-
guage-specific (go with LRs) or language-neutral (treat it using processing-related rules). Thus
the scope of our LRs differs slightly from Ostler and Atkins’ LIRs, where they capture both lan-
guage-dependent and language-independent derivations in the LIRs, while we focus our LRs on
language-dependent derivations; they do exclude alternations strictly based on pragmatics or
world knowledge, as we do.

LRs consist of a left-hand side (LHS) which constrains the lexical entries to which the rule
can apply and a right-hand side (RHS) which stipulates how the new lexical entry will differ from
the original. Lexical entries which are produced by a LR are themselves eligible to match the LHS
of an LR. Both sides of the LR can reference any zone of the lexical entry; typically the RHS
modifies the local syntactic information and the lexical semantic specification (or at least the syn-
tax-semantic interface). Often, however, the syntactic category, syntactic features, and orthogra-
phy are affected as well (in derivational cases).

All of the lexicon zones are available to the LRs, both to the LHS for constraining the applica-
tion of the rules, as well as to the RHS for modification as part of the alternation or derivation that
the LR reflects. The syntactic category (i.e., the CAT zone) is often modified in derivational rules,

1.  Some simple metonymies might be handled by LRs (with equivalent results) in a more economical man-
ner than the semantic analysis processing provides, and thus may be “cached” by encoding them into
LRs; this will be addressed by further experimentation.
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e.g., in those LRs which produce nominal or adjectival forms from verbs. The syntactic features
and syntactic structure (in the SYN-STRUC) of a lexeme would be affected in most LRs. Particu-
larly in derivational LRs, the word form itself changes, thus the ORTHography, PHONology, and
MORPHology of the lexeme would change. The lexical semantic representation (LEX-MAP) can
be used to constrain the application of rules in the LHS: in the passive rule (see above), an AGENT
is required in the lexical semantic specification on the LHS. Regular alternations such as those de-
scribed by Beth Levin and others, for example in Levin (1989, 1991), would be constrained to ap-
ply to only those lexemes with a particular concept (or descendant of that concept) as semantic
head (e.g., LOAD-EVENT) in the LEX-MAP. Some LRs cause the semantic representation itself to
change. In other cases, however, there is no actual semantic reflection of derivational LRs, be-
cause, for example, deverbal nouns and adjectives (such as abuse and abusive) are typically repre-
sented in the identical fashion as the base forms in this paradigm (perhaps only with a different
syntax-semantics interface; see Raskin and Nirenburg (1995)). Ostler and Atkins require changes
in the semantics in the RHS of their LIRs, but the nature of the semantic representation used in
this paradigm (tending to diverge substantially in predicate/argument structure from that of the
surface syntax) results in no semantic change for some derivations.

The simplest mechanism of rule triggering is to include in each lexicon entry an explicit list of
applicable rules. LR application can be chained, so that the rule chains must be expanded, either
statically, in the specification, or dynamically, at application time. This approach avoids any inap-
propriate application of the rules (overgeneration), though at the expense of tedious work at lexi-
con acquisition time. The other approach is to maintain a bank of LRs, and rely on the left-hand
sides to constrain the application of the rules to only the appropriate cases; in practice, however, it
is difficult to set up the constraints in such a way as to avoid over- and undergeneration. For exam-
ple, it is difficult to constrain the LHS to select exactly the set of verbs to which -able derivation
applies. As another example, to prevent the passivization of idioms such as kick the bucket (but al-
low it on spill the beans) it is necessary to set up constraints to block application in inappropriate
cases; in this case, requiring both an AGENT and a THEME (or BENEFICIARY, etc.) in the lexical se-
mantics appropriately constrains the passive rule and prevents overgeneration. Related mecha-
nisms for restricting the application of LRs to avoid overgeneration, such as blocking and
preemption, have reduced effectiveness in practical situations where the lexicon is incomplete or
is under construction (because the form that is supposed to block or preempt may not have been
entered yet).

The reliance on rule application at run-time (vs. listing in the lexicon) does not allow explicit
ordering of word senses, a practice preferred by many lexicographers to indicate relative frequen-
cy or salience; this sort of information can be captured by other mechanisms (e.g., using frequen-
cy-of-occurrence statistics). This approach does, however, capture the paradigmatic
generalization that is represented by the rule, and simplifies lexical acquisition.

The approach adopted in Mikrokosmos (although still under development) is a hybrid ap-
proach, as a compromise of linguistic generality, processing considerations, and acquisition con-
siderations (the full space of related issues is addressed in Viegas (1996)). The LRs are written
with the LHS attempting to constrain the forms to which the rule applies as tightly as possible (to
include preemption in addition to constraints in SYN-STRUCs, SEM-STRUCs, etc.) At lexicon
acquisition time, all applicable LRs are applied to the base form, producing full lexical entries for
the derived forms. For any rules that successfully apply, the acquisition tool checks for the exist-
ence of the resulting orthographic form in a corpus; this only helps in the cases where a new dic-
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tionary form is created, and does not apply in the cases of meaning-only or subcategorization
shifts. Any new senses with orthographic forms that do not appear in the corpus are summarily re-
jected; all the remaining senses are presented to the lexicographer for verification and/or augmen-
tation. Additionally, the occurrences in the corpus are retained by the lexicographer as examples
(in the ANNOTATIONS field). The lexicographer needs to review the corpus examples and deter-
mine the distribution of senses for that form, as is usual in lexicography. The base form maintains
an inventory of LRs which apply (in the LR-LOCAL facet), along with either an indication of that
the result was rejected by the lexicographer (‘NO’), or the lexeme name of the resulting form; for
some LRs which are productive and fairly regular (such as passivization), instead of storing all the
derived lexical entries, the LR fields in the base forms merely indicate ‘OK’, and the lexical entries
are produced at run time on an as-needed basis. In syntactic parsing of texts (normal processing),
for any word form in the text which is not found in the lexicon, all the LRs can be attempted to try
to generate the novel form, as a recovery procedure; some rules (such as passivization) are explic-
itly invoked by the syntactic parsing processes. As the lexicon grows, more of the highly produc-
tive LRs will be restrained from application at acquisition time, and only applied at run time, for
purposes of storage economy.

3.3  Text Meaning Representation Language

The goal of semantic analysis in the current model is to take a natural language utterance (or a
set of natural language utterances) and to capture the meaning of that utterance in a machine-trac-
table formalism. TMR is the meaning representation language in which output is represented in
our paradigm. A TMR expression captures the explicit and some of the implicit information of a
natural language utterance using a well-defined language-independent formalism. In addition to
the basic semantic content of the utterance, TMR attempts to capture the pragmatics of the utter-
ance, including focus, textual relation, speaker attitudes, and stylistic factors.

A TMR expression is a network of case frames of various types, potentially including instanti-
ated ontological concepts (often with additional slots in the case frame filled), entries from the on-
omasticon, a frame representing information about the context of the speech act or utterance,
frames representing relations among other frames in the network, and frames representing atti-
tudes that the speaker may have conveyed about elements of the content of the utterance. The
TMR expression does not, however, capture linguistic knowledge in the form of syntax or any
kind of lexical information such as word senses, subcategorization, etc. (although all of these
sources might be used in the process of building the TMR); in general, there is no information in
the TMR that directly identifies the input string, syntactic dependency structure, lexical elements,
or even the source language. In this way, the TMR differs substantially from Sowa (1993), whose
Conceptual Graphs blur linguistic language-related information with the underlying meaning or
content; despite Sowa’s improperly generalized objections about the expressiveness of frame-
based approaches, the TMR can handle more types of represented meaning and interrelationships
than the CG formalism, partly because the augmentation of the underlying case-frame with the
additional mechanisms discussed in the subsections below extends the expressiveness to higher
orders, unlike the first-order nature of CG. In contrast, the frameworks that rely on a fundamental-
ly first-order-logic-based approach to representing meaning, such as Dahlgren et al. (1989) or
Charniak and Goldman (1988), would have an unmanageably complex set of interrelated proposi-
tions and axioms if they attempted to represent the depth of knowledge expressible in a TMR
(even though the two systems might be formally equivalent), assuming they could resolve any re-
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maining difficulties in soundness and completeness of the denotational semantics that would inev-
itably be encountered in switching to the necessary higher-order logic and in formalizing their
logical system.

The term TMR refers to both the formal representation language specified below and specific
representations of the meaning of texts using that language. In the discussions below, TMR will
be used to refer to either the former or the latter, and context will clarify which is being referred
to.

3.3.1  TMR Definition

The notation below defines the syntax of TMRs in a BNF-like notation. The notation ::= is
used to define the structure of frames; the notation --> identifies a rewrite rule or expansion. Ex-
planations of many of the structures in the BNF below are found in subsequent sections.

<TMR> ::=
propositions: <proposition> +
speech-acts: <speech-act> +
stylistics: <stylistic-factors> *
relations: (<text-relation> | <coreference>

| <temporal-relation>
| <quantifier-relation>
| <domain-relation> ) *

<proposition> ::=
head: (<concept-instance> | <attitude> |
<set>)
aspect: <aspect>
time: <time>*
modality: <modality>*
attitude: <attitude>*

<concept-instance> ::=
instance-of: <<concept>>

;the frame is actually usually named by a gensym
; of the concept name

[<<property-name>> :(<<concept>> | <concept-instance>
 <<value>> | <set>)* ]*

;case roles and physical properties are among the most
;typical properties of concepts; all of those we
;expect to have been defined in the ontology

<<concept>> --> ONTOSUBTREE-OR(all)

;ONTOSUBTREE-OR is a function which returns a DISJUNCTIVE
;SET of all the elements in the ontological network
;rooted at its argument(s)
;Note that this function is not part of TMR, only of our
; description of it.
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<<property-name>>--> ONTOSUBTREE(property)

;ONTOSUBTREE returns a single terminal element of the
;subtree specified by its argument; in this case, returns
;tree of all possible properties

<aspect> ::=
aspect-scope: <<scope>>
phase: begin | continue | end
duration: momentary | prolonged
telic: <<boolean>>
iteration: <numerical-value> | multiple

; the number of iterations can be explicitly stated (e.g.
; “twice”) or just known to be multiple (e.g. “John hopped
; around on one foot”).

<time> ::=
at: <<time-expression>>
start: <<time-expression>>
end: <<time-expression>>
duration: <<numerical-value>> {unit}

<<time-expression>> --> (< | > | >= | <= | ) YYMMDD

<attitude> ::=
attitude-type: <<attitude-type>>
attitude-value: [0.0, 1.0]
attitude-scope: <<scope>>
attributed-to: <<attributed-to>>
attitude-time: <time>

<attitude-type>::= evaluative | saliency

;the number of attitude types may change

<<scope>> --> any TMR expression or set of such

<<attributed-to>> --> ONTOSUBTREE-OR(intelligent-agent)

;any instance of the ontological type intelligent-agent

<modality> ::=
modality-type: <<modality-type>>
modality-value: [0.0,1.0]
modality-scope: <<scope>>
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<<modality-type>>:--> epistemic | deontic | volitive
| potential

<speech-act> ::=
speech-act-type: <<speech-act-type>>
speech-act-scope: <<scope>> ;;usually a proposition
speaker: <<speaker-hearer>>
hearer: <<speaker-hearer>>
time: <time>

<<speech-act-type>>:--> statement | question | ...

<<speaker-hearer>> --> *speaker* | *hearer*
| ONTOSUBTREE-OR(intelligent-agent)

<stylistic-factors>::=
[ <<style-factor>>: [0.0,1.0] ]*

<<style-factor>>--> formality | politeness | respect
| force | simplicity | color |
directness

<<value>> --> <<numerical-value>> | <<literal-value>>

<<numerical-value>> --> any numerical expression

<<literal-value>> --> “string”

<set> ::=
member-type: <<concept>> | <concept-instance>
cardinality: (< | > | >= | <= | ) <<numerical-expr>>
elements: <concept-instance> *
complete: <<boolean>>
excluding: <<concept>> | <concept-instance>
subset-of <set>
multiple: <<boolean>>
indeterminate: <<boolean>>
proper: <<boolean>>

<<boolean>> --> true | false

<coreference> ::= <concept-instance> <concept-instance>+

<time-relation>::=
type: after | during
arg1: <time>
arg2: <time>
value: [0.0, 1.0]
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<text-relation>::=
type: <<text-relation-type>>
arg1: <<text-relation-argument>>
arg2: <<text-relation-argument>>

;text relations are non-ontological relations which
; reflect relevant text structure (eventually to include
; discourse relations)

<<text-relation-type>>-->particular | reformulation
| progression | conclusion

<<text-relation-argument>> --> <proposition> +

<domain-relation>::=
;; actually, in implementation the type is usually prepended to the object name
type: <<domain-relation-type>>
arg1: <<domain-relation-argument>>
arg2: <<domain-relation-argument>>

<<domain-relation-argument>>--> (<concept-instance>
| <attitude> | <domain-relation> )*

<<domain-relation-type>> --> ONTOSUBTREE(domain-relation)

This BNF specification glosses over the frame facet level of representation — a detailed dis-
cussion of the uses of the frame facets is found in Section 3.1.2 and summarized in Table 3A
there. In short, all TMR slots have the VALUE facet filled in (the right-hand-side of the slot/filler
pairs in the BNF actually refer to the VALUE facet of the slot). TMRs carry DEFAULT facets as
specified in the ontology and/or lexical semantics, to be available for use if the VALUE facet is
not filled in. Although the SEM and RELAXABLE-TO facets aren’t meaningful in TMRs proper,
sometimes they are carried along from the semantic analysis process just for human debugging/
readability purposes.

3.3.2  Propositional Content

Basic semantic content or meaning of an utterance (sometimes called the propositional con-
tent or) is represented in a TMR representation as a network of instantiated concepts from the on-
tology (or imported instances from the onomasticon), combined and constrained in various ways.
The semantic analysis processes (see Section 7) crucially rely on lexical-semantic information
(defined in Section 4) from the appropriate lexicon entries. To obtain the semantic content of com-
plex structures with dependencies, information about the argument structure of lexical units (also
stored in the lexicon) is used. This information relates not only to ambiguity resolution in “regu-
lar” compositional semantics (i.e., straightforward monotonic dependency structure building), but
also the identification of idioms, treatment of metonymy and metaphor, and resolution of refer-
ence ambiguities.

In general, each instantiated concept in a TMR reflects an individual (e.g., thing or event) in
the world or in the speakers’ discourse model, whether the instantiation is produced from the on-
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tology or retrieved from the onomasticon; however, when considering the TMRs for entire texts,
this characterization must be amended to refer to each mention of individuals. Thus when a partic-
ular individual is referred to in various portions of the text, multiple instantiations reflect the mul-
tiple mentions; an explicit set of coreference structures track the relationship among those
instantiations. The motivation for this approach (vs. referring to the same instantiation throughout
the text) reflects the fact that as a text progresses, new attitudes or properties may become known
about the individual; but in generation, it is appropriate to make these new properties known not
all at once, at the first mention, but at the appropriate point in the text (i.e., mirroring the source).
However, the coreferences do make the cumulative information available, if necessary, for lexical
selection or morphology (e.g., gender) in generation.

As mentioned above, the basic semantic content (the propositional content) is obtained by in-
stantiating relevant ontological concepts, based on the mappings between word senses and onto-
logical concepts indicated in the corresponding lexicon entries. In order to carry out the mappings
of complex structures with dependencies, information about the argument structure of lexical
units (also stored in the lexicon) is used. This argument structure information is an integral part of
the lexical semantic representation (as defined in Section 4), and is dependent on the syntax-se-
mantics interface integrated into the lexical-syntactic information (see Section 3.4.2).

It is well known, however, that the intent of a text is typically not capturable by representing
propositional content alone (in our case, just instantiating ontological concepts); what is addition-
ally needed is the representation of pragmatic and discourse-related aspects of language, that is,
speech acts, deictic references, speaker attitudes and intentions, relations among text units, the
prior context, the physical context, etc. As most of the knowledge underlying realizations of these
phenomena is not society-general, universal, or constant but is rather dependent on a particular
cognitive agent (a particular speaker/hearer) in a particular speech situation and context, the prag-
matic and discourse knowledge units are not included in the ontology (which is supposed to re-
flect, with some variability, a relatively static model of the world). The representation of this
“meta-ontological” information is thus added to the representation of meaning proper to yield a
representation of text meaning.

The structures for many of the nonpropositional (therefore non-ontological) components of
text meaning are also derived from lexicon entries, where appropriate patterns are stored (see ex-
ample lexicon entries below). Some of the most important non-ontological components of the
TMR representation formalism are reviewed below (for more detailed discussion see Nirenburg
and Defrise (1991)), specifically speaker attitudes, stylistic features, and rhetorical relations.

3.3.3  Attitudes and Modalities

A critical aspect of capturing the intent of a speaker in a meaning representation is rendering
the attitudes that the speaker holds toward the objects or situations which are represented in the
propositional (ontology-based) component of text meaning representation. The speaker may also
convey attitudes about the speech act which in which the utterance was produced, about elements
of the speech context, or even about other attitudes. Similarly, the speaker may convey events, cer-
tain relations (and sometimes other constructions) in a particular modality.

These attitudes and modalities are conveyed in TMR by a quintuple (either an ATTITUDE or
a MODALITY) consisting of a type, a value in the interval [0, 1], an attributed-to slot
(identifying the person who holds the attitude, typically the speaker), a scope (identifying the
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entity towards which the attitude is expressed or the event etc. for which the modality is ex-
pressed), and a time (representing the absolute time at which the attitude was held). As is the
case with all TMR constructs, attitudes and modalities may be either lexically triggered (i.e., ex-
plicitly specified in the LEX-MAP of a lexeme) or triggered by other (non-lexical) phenomena,
such as syntax or morphology.

The following attitudes and modalities are among those used in TMR (for present purposes,
the distinction between attitudes and modalities isn’t relevant):

• Epistemic, ranging from speaker does not believe that X to speaker believes that X.

• Evaluative, ranging from worst for the speaker to best for the speaker.

• Deontic, ranging from speaker believes that the possessor of the attitude must do X to
speaker believes that the possessor of the attitude does not have to do X.

• Potential, ranging from the possessor of the attitude believes that X is not possible to the
possessor of the attitude expects that X is possible

• Volitive, ranging from the possessor of the attitude does not desire that X to the possess-
or of the attitude desires that X.

• Salient, ranging from unimportant to very important. This varies with the importance the
user attaches to a text component, thus has some overlap with the notion of focus.

3.3.4  Stylistics

Even when the stylistic overtones or nuances of a lexical entry do not contribute directly to the
propositional semantics of a text, they can still convey some element of meaning, whether it be in
conveying attitudes, setting a mood, or using rhetorical devices such as irony. Thus we identify
that the stylistics of a lexeme needs to be encoded in a lexicon entry, in addition to the lexical se-
mantic information. In encoding lexicons for languages with rich social deictics, such as Japa-
nese, the issue of stylistics becomes even more acute.

The TMR representation includes a set of style indicators which is a modification of the set of
pragmatic goals from Hovy (1988). This set consists of six stylistic indicators: formality, simplic-
ity, color, force, directness, and respect. In order to obtain this resulting TMR stylistic representa-
tion (essentially a set of overall values for the entire utterance, or multiple sets scoping over
substrings of the utterance) it is necessary to label various lexical entries (including idioms, collo-
cations, conventional utterances, etc.) with appropriate representations of values for these stylistic
indicators. Values for these factors are represented as in the interval [0,1], where 0.0 is low, 1.0 is
high, and 0.5 represents a default, neutral value. In the semantic analysis process, the values are
available for assisting in disambiguation (relying on expected values for the factors and utilizing
the heuristic that typically the stylistics will be consistent across words in an utterance). The re-
sulting values in the TMR representation help guide generation, etc.

Some examples of English lexical entries that might include style features are:

upside: formality - low
color - high

delicious: formality - somewhat high
color - high
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great: formality - low

one (pronominal sense): formality - high
force - low

3.3.5  Relations

Relational structures are used in TMRs to capture the relationships and connections between
structures in the TMR, between real-world entities, elements of text, etc. Relations which repre-
sent real-world connections are defined in the ontology, whereas other relations (such as rhetorical
relations, e.g., conjunction and contrast) refer to properties of text itself (and are reflected in the
TMR) and are, therefore, not a part of the world model.

Formally, a TMR relation is a triple consisting of a relation-type, a set of arguments (either a
set of TMR expressions, or the set {first-i, second-i, third-i}, third-i being an optional member),
and a value (which is optional, but when present is a numerical value taken from the interval [0.0,
1.0]). The following types of relations are used in TMR (the difference in type face signals wheth-
er the relation is metaontological or ontological, as distinguished above):

• TEXTUAL Relations: such as rhetorical relations, e.g., conjunction and contrast, referring to
properties of text itself

••Particular Text Relations. Relation connecting two elements of text where one is an
example of the other

••Reformulation Text Relation. Relation connecting two elements of text similar in
meaning, but expressed in different ways

••Conclusion Text Relation. Relation where a textual element marks the end of a seg-
ment of discourse

• TEMPORAL Relations: expressing a partial ordering between TIME structures, which are as-
sociated with PROPOSITIONs, thus establishing (partial) temporal ordering of events.

• COREFERENCE Relations: identify that two instantiations in fact refer to the same real-
world entity (although, possibly, at different time intervals)

• QUANTIFIER Relations: which are used for comparison of numerical quantities

• DOMAIN Relations: represent real-world connections (and, therefore, are instantiations of on-
tological relations) between objects or events.

••CAUSAL: Relations of dependence among events, states, and objects; can be either Voli-
tional (the relation between a deliberate, intentional action of an intelligent agent, and
its consequence) or Non-volitional (the relation between a non-intentional action or a
state of an intelligent agent and its consequence. Subtypes: REASON, ENABLEMENT,
PURPOSE, CONDITION

••CONJUNCTION Domain Relations. Relations among adjacent elements that are compo-
nents of a larger textual element. Subtypes: ADDITION, ENUMERATION, CONTRAST,
CONCESSION, COMPARISON

••PARTICULAR/REPRESENTATIVE Domain Relations. Relations which identify that one el-
ement is an example, or a special case, of the other element. Subtypes: PARTICULAR,
REPRESENTATIVE

••ALTERNATION Domain Relations.    Relations that are used in situations of choice, paral-
lel to the logical connector “OR.” Subtypes: INCLUSIVE-OR, EXCLUSIVE-OR
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••TEMPORAL Domain Relations. Identify when one event (or object instance/snapshot)
happened relative to another. Subtypes: AT, AFTER, DURING

••SPATIAL Domain Relations. Identify relations between objects and/or events in space.
Subtypes: IN-FRONT-OF, ABOVE, ON, LEFT-OF, for example (exact inventory remains to
be determined).

Recent inventories of relations, such as those in Hovy et al. (1992) and Hovy and Maier (1994)
may allow us to restructure and complete our domain (and textual) relation inventory; our current
inventory has been developed as necessary, based on examples from our corpora. More specific
discussions of relation inventories for our model exist in Carlson et al. (1994), for example.

 By definition of DOMAIN relations, the arguments need be instantiations of ontological con-
cepts, for example, to indicate that a causal enablement relation exists between a particular con-
tractual agreement and a sales event:

TMR:
(CONTRACT23 ...)
(SALES44 ...)
(DOMAIN_ENABLEMENT46

ARG1: CONTRACT23
ARG2: SALES44)

COREFERENCE relations typically take as arguments instances of ontological concepts. The oth-
er relation types usually relate non-ontological TMR constructs such as ATTITUDEs, PROPOSI-
TIONs, other RELATIONs, TIME objects, etc.

TMR:
(PROPOSITION89

HEAD: CONTRACT23 ...)
(PROPOSITION94

HEAD: TIE_UP69 ...)
(TEXTUAL_PARTICULAR47

ARG1: PROPOSITION89
ARG2: TIE_UP69)

This textual relation identifies that a discourse relation exists between the portion of the input text
that discusses the contractual agreement and the portion that discusses the joint venture, and that
the discourse relation is of general/particular.

3.4  Syntax and Syntactic Parsing

As mentioned above, the syntactic component operates as a dynamic knowledge source, pro-
ducing knowledge in the form of parse trees which is used as input for heuristics in the semantic
analysis component. The discussions below will only sketch components of one possible model
for a syntactic processing module and associated knowledge sources, as necessary for further ex-
position in this paper; for more detailed discussion of this particular syntactic parser, a bidirec-
tional chart parser which dynamically builds grammar rules from the SYN-STRUCs of lexemes in
the input, see Gibson (1990), Gibson (1991a), and Gibson (1991b), and for more detailed discus-
sion of the position of syntactic information in the lexicon see Section 3.2 and Meyer et al.
(1990).



— 51 —

As discussed in Section 3.3, the result of the analysis process is a TMR interlingual represen-
tation; a point that bears repeating here is that the TMR does not represent syntactic information
about the input string. However, the approach taken here is consistent with the mainstream seman-
tic analysis approaches in that it does involve syntactic analysis. The syntactic parse produced in
the early stage of analysis is considered to be one type of knowledge produced by a dynamic
knowledge source; this knowledge is used as input to the heuristics which help guide the two
phases of the semantic analysis process. The syntactic parse identifies the lexemes corresponding
to words, idioms, or morphemes in the input string, and eliminates those lexemes which do not
meet basic syntactic constraints; this information is used by the instantiation process in semantic
analysis (see Section 6.2 and Section 7.3). The syntactic parse structure is used by a heuristic
(Heuristic VI) to help guide the application of the combination operator (see Section 6.3 and Sec-
tion 7.4). In some combination processes (Section 6.3.2) the syntactic parse is a significant source
of knowledge for the heuristic guiding the order of application.

The model presented here does not stipulate a specific syntactic theory, syntactic parser, or
syntactic representation. There are only a few assumptions made about the syntactic representa-
tion and structure. A parse imbeds specific lexemes (entries from our lexicon) in the structure,
typically as heads projecting structure; each lexeme that matches the orthographic, morphologi-
cal, and syntactic constraints (including subcategorization frames) is imbedded in the parse struc-
ture (or in the forest of possible parse structures). Lexemes of any syntactic category can select for
other constituents in this model, although this isn’t obligatory. To handle conventional and idiom-
atic language, we allow heads to select for specific lexemes; these heads can then bear (in their
lexical entries) the semantics of selected-for lexemes, phrasal constituents, or entire constructions.
This is in line with the construction grammar discussed in Fillmore et al. (1988). Furthermore, we
allow constructions or idioms to be broken into two or more meaning-bearing units, which allow
us to handle idiomatic expressions such as his goose is thoroughly cooked or she pulled many
many strings to get that agreement signed (see further discussion of this issue below).

3.4.1  The F-Structure

The syntactic structure used in the implementation of the model being presented here is a
modification of a Lexical-Functional Grammar (LFG) f-structure representation (we will still re-
fer to it as an f-structure). The traditional LFG f-structure is augmented by a ROOT identifier (akin
to the labelling of a node in a tree structure); at each level, the ROOT identifier is followed by the
word sense identifier (lexeme name) for the relevant word. The representation can be thought of
as a list representation of a (possibly recursive) feature structure, where each attribute name is fol-
lowed by either a symbol value or another (imbedded) f-structure. For example, the f-structure be-
low is the preferred parse of the sentence The old man ate a doughnut in the shop.

F-STRUCTURE:
((ROOT +eat-v1)
  (MOOD DECL) (VOICE ACTIVE) (NUMBER S3)
  (CAT V) (TENSE PAST) (FORM FINITE)
  (SUBJ ((ROOT +man-n1)
         (NUMBER S3) (CAT N)
         (PROPER -) (COUNT +) (CASE NOM)
         (DET ((ROOT +THE-DET1) (CAT DET)))
         (MODS ((ROOT +old-adj1) (CAT ADJ)
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                (ATTRIBUTIVE + -))))
  (OBJ ((ROOT +donut-n1)
        (NUMBER S3) (CAT N) (PROPER -) (COUNT +)
        (DET ((ROOT +a-det1) (CAT DET)))))
  (PP-ADJUNCT ((ROOT +in-prep1)
               (CAT PREP)
               (OBJ ((ROOT +shop-n1)
                     (NUMBER S3) (CAT N)
                     (PROPER -) (COUNT +)
                     (DET ((ROOT +the-det1)
                           (CAT DET))))))))

The same structure may also be viewed in the (perhaps more familiar) typed feature structure ma-
trix shown in Figure 3C.

3.4.2  Lexical Syntactic Specification

The contents of the SYN-STRUC zone of a lexicon entry is an indication of how the lexeme
fits into parses of sentences. In addition, this zone provides the basis of the syntax-semantics in-
terface. Thus a brief specification of this zone is necessary to present the foundation of the seman-
tic analysis process, which relies on the syntax-semantics interface as one of the dynamic
knowledge sources used in constructing a semantic representation (i.e., the TMR) for input text.

The information contained in the SYN-STRUC zone essentially amounts to an underspecified
piece of an f-structure parse of a typical sentence using the lexeme (as specified in Section 3.4.1);
this piece, called an fs-pattern, contains the lexeme in question, and may include information
from, typically, one or two levels of structure above and/or below the current lexeme.

Since f-structures do not indicate linear order, the fs-pattern is essentially a dependency struc-
ture. In the simple case, the fs-pattern for a verb will indicate the arguments for which the verb
subcategorizes. In LFG f-structures, all arguments (including subjects) are immediate children of
the verb node, so the selection in the fs-pattern is for elements which are descendants of the cur-
rent lexeme in the f-structure tree. We use the same mechanism for syntactic relationships other
than arguments. So adjectives and prepositions, for example, select (in their respective fs-patterns)
for the syntactic head which they modify (in addition, prepositions select for their arguments.)

In the fs-patterns, we place variables at the ROOT positions selected for by the lexeme in ques-
tion, which is identified by the variable $VAR0; this allows the fs-patterns to be inherited (using
the SYN-S-CLASS syntactic class mechanism described below). Subsequently numbered vari-
ables ($VAR1, $VAR2, ...) identify other nodes in the f-structure with which the current lexeme
has syntactic or semantic dependencies. For example, the fs-pattern below is appropriate for a reg-
ular monotransitive verb:

SYN-STRUC:
((ROOT $VAR0)
 (SUBJ ((ROOT $VAR1) (CAT N)))
 (OBJ ((ROOT $VAR2) (CAT N))))
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Or, viewed as a feature structure:

The exact syntactic relationship of words in a sentence may vary due to syntactic transforma-
tions, valency changes, or movement rules; the variables support a level of indirection in the fs-
patterns. Additional advantages of this mechanism include the ability to inherit fs-patterns from a
hierarchy, as well as reducing the work in assigning correspondences between lexical functions

MOOD DECL
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NUMBER S3
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FORM FINITE

SUBJ
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PROPER -

COUNT +

CASE NOM
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and case roles.

In cases of lexicon entries for idioms, verbs with particles, non-compositional collocations,
etc., the ROOT attribute in an fs-pattern may be followed by a specific lexeme instead of the vari-
able. For example, the special sense of kick which defines the idiom kick the bucket will select for
an OBJect with ROOT +bucket-n1, where +bucket-n1 is a lexeme identifier for a standard sense
of the word bucket. Additionally, in the fs-pattern, the attribute-value pair will be followed by the
symbol null-sem as follows: (ROOT +bucket-n1 null-sem) to indicate that this word
sense does not contribute to the semantics of the phrase. In cases of idioms such as spill the beans,
spill will select for an OBJect which will specify (ROOT +beans-n3), meaning that this special
sense of beans (meaning information) does contribute its meaning as an idiom chunk to the entire
idiom. In both of these cases it is obligatory to specify the root, so the special sense in question
will fail the syntactic parse (in analysis) if the selected root does not appear in the utterance. In
generation, any special sense will get selected in the lexical selection process only if the meaning
is appropriate. This approach to multi-word lexical entries resembles the Construction Grammar
approach of Fillmore et al. (1988) or as discussed in Levin and Nirenburg (1994a) or used in
Oflazer and Yilmaz (1996) and McRoy (1992), but augmented with the semantic chunk approach
for internal structure for some idioms (which also, at least partially, addresses the idiom frozen-
ness issue) which have internal semantic structure (unlike Dyer and Zernik (1986), for example,
who insist on a single concept per phrasal entry).

The SYN-STRUC zone has two facets. If the word is syntactically regular, non-idiomatic, has
no particles, etc., then the SYN-S-CLASS facet is used to indicate which fs-pattern to inherit
from the class hierarchy of fs-patterns (see, e.g., Mitamura (1990) for an early description of this
kind of mechanism). If none of the class fs-patterns are appropriate for the lexeme in question, an
fs-pattern may be locally specified in the SYN-S-LOCAL facet; in fact, both a class and local in-
formation may be specified, and the two fs-patterns are unified.

In addition to specifying syntactic dependency structure, the fs-pattern also indicates an inter-
action with the meaning pattern from the SEM-STRUC zone (as described in Section 4), in that
certain portions of the meaning pattern for a phrase or clause are regularly and compositionally
determined by the semantics of the components (Principle of Compositionality); the structure of
the resulting meaning pattern is determined not only by the semantic meaning patterns of each of
the components, but also by their syntactic relationship in the f-structure.

3.4.3  Syntactic Processing

Semantic processing is initiated by invoking the appropriate module with the augmented f-
structure representation of the text (one sentence at a time, currently) which the syntactic parser
produces; the augmentation of the base LFG-like f-structure involves the binding of the variables
(such as $VAR1), if any, found in the SYN-STRUC of each of the lexemes in the f-structure. For
example, the SYN-STRUC for the transitive sense of eat is:

SYN-STRUC:
((ROOT $VAR0) ;$VAR0 gets bound to lexeme +eat-v1
 (SUBJ ((ROOT $VAR1);$VAR1 gets bound to head lexeme
        (CAT n))) ;this phrase is headed by N
 (OBJ ((ROOT $VAR2); $VAR2 gets bound to head lexeme
       (CAT n)))) ;this is also a noun phrase
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This segment of an LFG f-structure-like pattern acts as a template in the syntactic parsing process,
providing the subcategorization frame. The pattern indicates that the word eat is the head (root) of
a piece of f-structure, and that it has two arguments. The structure of the formalism allows senten-
tial modifiers or prepositional phrases, for example, but disallows additional arguments (this will
become clearer below). So during parsing, the subject gets identified, and the f-structure piece af-
ter SUBJ gets unified, in effect, with the f-structure of the possible subject argument to the verb.
This constrains the subject to be a noun phrase (i.e., an f-structure whose ROOT (meaning head) is
of CATegory noun). Similarly, the ROOT value itself gets unified with the $VAR1, thereby binding
the $VAR1 to be the lexeme head of the subject noun phrase f-structure. Thus if the sentence were
The dog ate the rabbit, $VAR1 would be unified with (bound to) the lexeme +dog-n1 (which is
the lexeme of the appropriate sense of dog.) Likewise, $VAR2 would be bound to +rabbit-n1.

In some cases the SYN-STRUC of a lexeme does not subcategorize, in the usual sense, but se-
lects where it may fit in an f-structure of a sentence. This is the case for prepositions, adjectives,
adverbs, among others. The SYN-STRUC below is for the basic location sense of the preposition
in (+in-prep1):

SYN-STRUC:
((ROOT $VAR1)
 (CAT N)
 (PP-ADJUNCT ((ROOT $VAR0)
              (OBJ ((ROOT $VAR2)
                    (CAT N))))))

In this example, the lexeme in whose entry this pattern appears, namely +in-prep1, appears in the
middle, not at the top, of the f-structure piece ($VAR0 is always used to identify the lexeme to
which the pattern belongs). In a sense, this lexeme “selects” down the f-structure tree for its argu-
ment (in this case an NP whose noun head gets bound to $VAR2), as well as “selecting” up the f-
structure tree, thus identifying where this structure may attach itself too. In this case, the con-
straint on the ROOT which specifies the category to be a noun restricts this f-structure pattern from
identifying non-nominal PP-adjuncts; this pattern will only unify if the attachment point is an NP,
not a sentence or VP. Thus $VAR1 gets bound to the noun head lexeme of the NP which is the at-
tachment point of the PP.

This same formalism, by the way, allows the handling of verb-particle pairs and idioms with-
out any change. Both idioms and verb-particle pairs are entered in the lexicon as special senses of
the head of the expression, typically the verb. For example, the SYN-STRUC below is for the
verb-particle pair drop by, in the sense of coming to visit:

SYN-STRUC:
((ROOT $VAR0)
 (SUBJ ((ROOT $VAR1) (CAT N)))
 (OBLIQUE1 ((ROOT +by-prep2)

  (NULL-SEM +)
            (CAT PREP)
            (OBJ ((ROOT $VAR2) (CAT n))))))

Here the lexeme +drop-v17 selects for a subject, whose head lexeme gets unified with $VAR1, as
well as an oblique argument which is a prepositional phrase, whose ROOT head is the preposition
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+by-prep2. The verb head discounts the semantic contribution of the particle (i.e., by the NULL-
SEM structure). That preposition or particle has an object, and $VAR2 gets bound to the lexical
head of that noun phrase argument. Thus, as a result of syntactic processing, the variables $VAR1
and $VAR2 end up with the same bindings for the sentences The girl dropped by the store and The
girl visited the store: $VAR1 is bound to +girl-n1, and $VAR2 to +store-n1, and the particle no
longer plays a role.

In other words, all multi-word expressions whose meaning is conventional, idiosyncratic, idi-
omatic, or otherwise not immediately compositionally derivable from the literal meaning of the
constituents are handled the same way, with a head which selects for the particular lexemes which
constitute the expression, and with the head specifying the nature and content of the semantic con-
tribution of each component lexeme.



— 57 —

4. Representation of Lexical Semantic Knowledge
The lexicon used in this discussion is based on work on the DIANA system (described in de-

tail in Meyer et al. (1990)), subsequent work on the MIKROKOSMOS lexicon, and builds on a
discussion focussing on some of the lexical semantic issues found in Onyshkevych and Nirenburg
(1991, 1995).

As described in Section 3.3, the semantic representation used in TMR is a connected network
of frame structures; the type of these frames can be identified as being either ontological or non-
ontological. The non-ontological structures in the TMR representation arise from one of two
sources: either lexical triggers (i.e., they are instantiated from the LEX-MAP definition in the lexi-
cal entries of the word sense of a word in the text), or from pragmatic knowledge sources (includ-
ing discourse structure interpretation/expectation mechanisms). The non-ontological structures
which arise from lexical triggers behave similarly to the ontological ones in the basic instantiation
and structure-building process, and will be so treated below in the discussion of that process in
Section 7. The ontological graph-search processes described in subsequent sections do not apply
to these non-ontological structures; none of the discussions in Section 5, Section 8, or after apply
to the latter type of non-ontological structures.

The lexical semantics of a lexical unit is typically represented in the LEX-MAP field of the
SEM-STRUC zone of a lexical entry. In the simplest case, the LEX-MAP links the lexical unit with
an ontological concept; thus, the essence of the lexical meaning is referring to an ontological con-
cept. Viewed procedurally, the link in the LEX-MAP field is an instruction to the semantic analyz-
er to add an instance of the ontological concept in question to the nascent TMR. So, for example,
one sense of the English word dog might be treated in our system as a link to the concept DOG in
the ontology, or, in other words, a command to create an instance of it (e.g., DOG34). The meaning
assignment mechanism works this simply only in the case of one-to-one mapping between word
senses and ontological concepts, which is not necessarily the case for many lexical units, as is dis-
cussed below. More complex mappings are required for most lexical units in a realistic lexicon.

4.1  Issues in Lexical Semantic Representation

4.1.1  Elements of the Language of Lexical Semantic Representation

As mentioned in the introductory chapters above, our framework requires meaning representa-
tion, using a metalanguage — in our case, the lexical semantic specification language and the
TMR. We find that, in order to provide a coherent computational semantic theory in addition to
supporting practical application of that theory to real-world tasks (in our case, translation), that
metalanguage needs to be defined. We concern ourselves with one aspect of the definition of this
language here: the set of primitives; another aspect, the syntax and semantics of the language for
specifying lexical meaning, is explored in this chapter below, while the syntax, semantics, and
lexicon for the language for representing sentential/propositional meaning are treated in Section
3.3 above. More detailed discussion of this issue can be found in Onyshkevych and Nirenburg
(1994), Levin and Nirenburg (1994), Nirenburg et al. (1995).

The status of primitives in many other approaches to lexical or computational semantics re-
mains unclear. One group of computational frameworks, including Fass (1986, 1988), as well as
MRDs for human use, relies on words of the language defining each other, namely lexical seman-
tic specification via other words or word senses (only a small subset of MRDs, namely Procter et
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al. (1978) and Procter (1995), use a fixed inventory of defining terms, albeit in the same language
and without word sense tags). Although this may support moderate word sense disambiguation, as
described in Section 8.1, applications such as KBMT which require inference, resolution of non-
literal relations, etc. need more of a lexical representation than an ambiguous circular definition
using word senses.

Another group of practitioners of computational semantics use primitives of a metalanguage
which is claimed to be something other than English or any other language, but, when pressed,
they are unable to define the inventory or vocabulary of this metalanguage. We take, as an exam-
ple, the generative lexicon work of Pustejovsky (1991, 1995), Pustejovsky and Bouillon (1995),
or Buitelaar (1997). The ‘qualia’ structure introduced in this work is populated with supposedly
metalanguage-based terms, such as physobj or read, but with no definition for those terms.

Dorr (1993) and colleagues rely on Jackendoff’s Lexical Conceptual Structures, as discussed
in Jackendoff (1983, 1988, 1990), which are, however, still somewhat reflective of syntactic infor-
mation (predicate structure, for the most part), and are, thereby, somewhat language-dependent.
These LCS constructions do allow some decomposition (see Section 4.1.2 below) by a small num-
ber of underdefined semantic primitives, used for limited (compared to the framework discussed
in Section 8.1.2) selectional restrictions. As discussed in Wilks (1992a), Onyshkevych and Niren-
burg (1994), or Arnold (1996), LCS is nowhere near expressive enough for full representation of
meaning needed for KBMT, focussing mostly on verb/argument structure. Although the approach
has traditionally relied on a limited number of primitives, the practitioners don’t seem concerned
about increasing the inventory and defining those primitives in a well-founded manner, but use
“upper-case semantics”, resulting in primitives that have no grounding, no definition relative to
other primitives, and no semantics (such as the recent addition of a spate of “primitives” such as
runningly, swimmingly, etc.) As explored in Levin and Nirenburg (1994b), as a result of this choice
regarding lexical semantic specification (in addition to others), LCS are sometimes the same
across languages, but cause a significant problem for MT when they’re not. These and other prob-
lems arise when there are translation equivalents which have different lexical semantics, as partly
recognized in Dorr (1994). This range of problems (including cases where an argument-taking
predicate in one language corresponds with one which doesn’t in another, like German gern)
would be avoided by predefining a complete inventory of primitives for meaning representation,
and the redefinition of LCS to be less reflective of the predicative structure of each language treat-
ed.

Having a defined inventory of ontological primitives, however, isn’t sufficient for supporting
interlingual MT — a syntax and semantics for the metalanguage, using the primitives, is required.
McRoy (1992), for example, uses an ontology (or, rather, a taxonomy) of 1000 concepts for use
by selectional restrictions, but not for use in defining the specific lexical semantics of each word
sense. Although adequate for her purposes and experiments in word sense disambiguation, this
structure wouldn’t be sufficient for MT, since many dozens of word senses map to single concept,
with no discrimination between them (e.g., the 65 siblings for issue, in the magazine sense, also
include all other published documents).

4.1.2  Ontology vs. Lexicon Trade-Off: Granularity

As suggested in Section 3.1, there is no consensus in the semantics or knowledge representa-
tion fields about the granularity of an ontology or world model; the granularity decision has a pro-
found impact on the lexical semantics zone in the lexicon. One view of the ontology is to have a
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one-to-one correspondence between every word-sense in the lexicon and a concept in the ontolo-
gy. This word-sense view of the ontology, in addition to the obvious disadvantage of rampant pro-
liferation of ontological concepts (related to what Hobbs (1985) calls ontological promiscuity),
leads to problems in multilingual applications — often roughly comparable words in different lan-
guages do not “line up” the same way; this, in turn, leads to further proliferation of new concepts
with every new language, as well as inaccurate lexical mappings, problems that have plagued
transfer approaches to MT, as suggested by the categorization of divergences in MT in Dorr
(1994). These and other problems make this approach impractical for those applications which re-
quire significant inferencing of any sort, as would be the case for MT with fine word-sense dis-
crimination. Practitioners of this word-sense approach to KBMT include Knight and Luk (1994)
and Farwell et al. (1993), among others.

Another well-known approach, which may be called the decompositional approach, utilizes a
small restricted set of primitives which are combined or constrained in an attempt to render the
meaning of any lexical unit. This approach leads to other difficulties in building large-scale world
models and capturing shades of meaning; it is not clear that it is possible to derive a set of a priori
primitives and a compositional formalism which would be expressively adequate to capture the
meanings of all desired word senses. This gets even more complicated when insisting that each
primitive be lexicalized in every world language (Wierzbicka (1992)). Additionally, this approach
can yield enormous, unmaintainable lexicon entries for complex concepts; Wilks (1975a) required
14 primitives in a three-deep structure to represent drink, and Small and Rieger (1982) required
pages of code for each lexical entry. In the Conceptual Dependency paradigm of Schank (see
Schank and Abelson (1977), Schank (1975)), the number of primitives for representing events
numbered in the teens, resulting in large complexes for simple events, not unlike Wilks (1975a).

The approach taken in the model adopted here lies somewhere in between the word-sense and
the decompositional approaches, as expressed in Nirenburg and Goodman (1990):

“Viewed as an object, developed in a concrete project, an interlingua should be judged by
the quality of the translations that it supports between all the languages for which the
corresponding SL-interlingua and interlingua-TL dictionaries have been built. As a
process, its success should be judged in terms of the ease with which new concepts can be
added to it and existing concepts modified in view of new textual evidence (either from
new languages or from those already treated in the system.)” (p. 9).

The notion of “completeness as proof of feasibility for interlinguae” (p. 10) is rejected in the de-
sign of the ontology; the ontology is not determined a priori, but rather, is updated and revised as
new lexemes are entered into the lexicon, as new cross-linguistic evidence of shared concepts aris-
es, and as the domain of the ontology is shifted. The TMR therefore reflects this decision as to the
scope of the ontology. We do agree, in principle, with Wilks (1975a):

It is a hypothesis of this work that we can build up a finite but useful inventory of bare
templates adequate for the analysis of ordinary language: a list that can be interpreted as
the messages that people want to convey at some fairly high level of granularity”.

However, we have a different model of the nature and number of the elements that enter into this
inventory; while Wilks used an inventory of 70 simple primitives and an inventory of unspecified
size of “bare templates” (essentially very sketchy scripts, such as MAN GIVE THING) that repre-
sent primitive events, we build an ontology, consisting of under ten thousand frames that we use
compositionally.

Sowa (1993), Dahlgren et al. (1989), and even Lakoff (1987) object to an effort to decompose



— 60 —

meaning using an inventory of primitives, citing essentially Wittgensteinian arguments against
Platonic categories, under the assumption that decompositional efforts such as Schank and Abel-
son (1973), Jackendoff (1988), or the work described here needed to concern itself with essential-
ly extensional concerns of exact specification of class membership for real-world entities.
However, even without recourse to prototypes, as described in Rosch et al. (1976), Givón (1986)
and others, decompositional approaches to computational or practical lexical semantics are able to
continue using discrete semantic categories.1 The reason for this lies in the goal of the enterprise:
many of these decompositional approaches to computational semantics are only concerned with
representing the intended meaning of an utterance, and not with truth conditions or categorization
of real world entities (see the first desideratum in Section 1.3). As discussed in Section 1.2, this
corresponds to the general approach of experientialist cognition of Lakoff (1987), among others,
that we implicitly adopt. Thus the primitives used in decompositional meaning representation cor-
respond to choices made by the human speaker of the utterance about class membership. Thus if a
speaker chooses to call his pet with one wolf parent, only three legs, and no fur a dog, then for
purposes of communication it is exactly a dog, even using Platonic categories. Thus any objec-
tions on the basis of category membership (vs. gradient), necessary and sufficient conditions, de-
fining features, or truth-conditions are not relevant, because of the nature of our enterprise.

Dahlgren et al. (1989) cite further objections to lexical meaning representation via ontology-
based decomposition, in that not all categories can be decomposed into primitives. In fact, we
benefit from any such cases in that those categories are then natural candidates for elements of the
ontology. As mentioned above, the ontology serves to provide exactly the level of granularity of
description of meaning necessary for differential representation of meaning over the languages of
interest.

Our ontology serves multiple functions, as suggested in Mahesh and Nirenburg (1995). The
primary purpose is to define the semantic primitives used to define lexical meaning and, from
there, sentential/discourse meaning. Each concept in the ontology can also serve as a selectional
constraint on a concept; this alone does not drive the addition of concepts (unlike Dahlgren et al.
(1989), who build ontologies, despite the above objections, on the basis of the needs of (and for
use by) selectional restrictions), but merely allows the full generality of reusing the same resource
for both primitives and constraints. Our ontology is designed to be language-independent, but not
necessarily in an absolute sense, but relative to the languages under investigation at any given
time; in fact, to add an English lexicon after acquiring Spanish, we needed to change or augment
less than 0.2 of 1% of the ontology.

4.1.3  Ontology vs. Lexicon Trade-Off: Enumerability of Senses

Our approach to lexicography assumes that some substantial degree of enumeration of senses
has taken place in the lexicon acquisition process. Directly related to the issue of the existence and
the cardinality of primitives is the question of whether or not a word can only have only one sense,
as in Wierzbicka (1992), a finite and enumerable number of senses (our approach), or an infinite
number of senses that arise contextual and cannot be predicted, such as what Pustejovsky (1991)

1. Although we find no purpose in entering the debate, at this point, on the nature of our concepts (Platonic
vs. Wittgensteinian vs. prototypical, etc.), we find it instructive that Jackendoff (1988) believes that nat-
ural language types are “assembled from a finite innate set of primitives and principles of combination -
in other words, a decompositional view of word meaning”, since “a type without internal structure can-
not be compared with novel tokens to yield categorization judgements”.
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claims is required.

Sowa (1993) suggests that “a unified semantic basis along classical lines is not possible for
any natural language. Instead of assigning a single meaning or even a fixed set of meanings to
each word, a theory of semantics must permit an open-ended number of meanings for each word.”
This follows, he claims, from the Wittgensteinian notion of language games, where the meaning
of a word is determined by its use. Additionally, Nunberg (1978) suggests that there is an infinite
number of contexts that can generate referring functions that affect the meaning of a word. Gibbs
(1993) suggests that “understanding contextual expressions involving metonymy requires that a
process of sense creation must operate to supplement ordinary sense selection”. This line of rea-
soning, however, appears to be conflating the notion of word sense and meaning of a word in con-
text, which would follow from applying the Principle of Compositionality strictly. Approaches
such as Buitelaar (1997), Ostler and Atkins (1992), or Pustejovsky (1991, 1995) also don’t seem
to make this distinction between senses of a word and meaning of a word in context, and argue
that sense enumeration is impossible; they rely on contextual rules, interacting with pre-specified
lexical information in the otherwise underspecified lexical semantic representations, to generate
new senses dynamically in a given context. Nunberg (1978) effectively suggests that pragmatic
contextual schemata generate meanings to conform to the context.

But since such approaches have access to only a limited range of such contextual mechanisms,
and Nunberg (1978) demonstrates that an inventory of all possible contexts isn’t possible, what
these supposedly underspecified approaches actually achieve is merely economy of disk storage:
the limited set of contexts that these approaches can capture (and which are enumerable in a com-
putational application) could be applied iteratively, using the sense refinement mechanisms, in an
a priori method, resulting in a full enumeration of all senses that their mechanisms are able to
produce, as discussed in Viegas et al. (1997) or Nirenburg and Raskin (1996), who show that “A
good enumerative lexicon can be seen as at least weakly — and, in fact, strongly — equivalent
(see Chomsky 1965:60) to a generative lexicon after all the lexical rules have fired”.

Our approach does involve enumeration of basic senses (but requires far fewer sense distinc-
tions than an MRD), and is coupled with a contextual meaning refinement mechanism at the prop-
ositional level (as opposed to sense refinement or sense creation at the word level)1. This meaning
refinement is achieved by the application of all available constraints, resulting in inference of ap-
propriate expected meanings (resulting in the addition of additional concepts or links to a TMR;
see Section 9.3), in addition to the information made explicit in the text; this is addressed through
an essentially abductive process, namely the SDS-building process outlined in Section 7 and Sec-
tion 5. Since our approach encourages compositionality in lexical semantic representation and in
propositional meaning representation, we can represent novel uses for words in context, in effect,
by either combining or further constraining meaning elements to form a meaning complex not
represented by any one lexical entry; for example, metonymy introduces new entities into a TMR
that are related to mentioned entities through specific relations.

Yamanashi (1987) effectively adopts a similar position by suggesting enumeration of core

1. Strictly speaking, we reject the assumption in Wittgenstein (1921) that “when translating one language
into another, we do not proceed by translating each proposition of one into a proposition of the other,
but merely by translating the constituents of propositions”. Although we certainly make extensive use of
the constituents of propositions, we also introduce elements of meaning into the target language propo-
sition that were conveyed by the proposition as a whole, but not by any individual lexical elements.
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senses only, then dynamic implication processes to represent sense coercion in cases of metony-
my or other mechanisms. On the other hand, Sowa (1993), who relies on the Wittgensteinian no-
tion of language games (see Wittgenstein (1953)) to motivate his approach, assigns to each word a
finite number of lexical patterns “that determine the rules that are common to all the language
games that use the word” (thus are not truly dynamic, since they are enumerated, thus only offer
economy of storage). These are linked, however, to conceptual patterns, which are language inde-
pendent; in his model, the meaning component can be dynamically embedded in a meaning com-
plex to represent shifts of meaning in a given context.

In short, the approach we adopt involves enumeration of all core (literal) senses of a word, and
then use of inference mechanisms, applied to semantic expectations encoded in the lexicon and
ontology, in addition to the expectations deriving from the model of communication, to produce
meaning complexes to capture the combined propositional meaning. However, this does not in-
volve either the coercion of a word sense into a new meaning nor the generation of new senses,
only the representation of the overall meaning of an utterance by means of inferred meaning ele-
ments in addition to the sum of lexical semantic meanings.

4.1.4  Metalanguage for Lexical Semantic Representation

Apresjan (1973) enumerates a set of conditions which he feels are necessary for any metalan-
guage used for defining or representing semantic knowledge. His basic concern is for lack of am-
biguity in the set of semantic primitives: “each word in the vocabulary of the semantic language
should express exactly one meaning”, and “in the dictionary of the semantic language there
should be neither synonymy, nor homonymy of the names of the meanings”; the lexical semantic
specification language defined below certainly conforms to this condition. However, Apresjan as-
sumes a one-to-one correspondence between words in the language and defining terms in the met-
alanguage: “each meaning should be expressed by exactly one word of the semantic language,
irrespective of the definition in which it occurs (meanings and their names should be in a one-to-
one correspondence)”; while this approach is appropriate for frameworks such as Farwell et al.
(1993), it is rejected here because of concerns regarding fine granularity discussed above. Other
concerns that he has regarding the metalanguage stem from this decision, and since the approach
described below makes use of compositional representation of meaning in lexicon entries, his oth-
er concerns regarding syntactic and semantic structure being bearers of meanings are addressed.
There is one issue that he raises and we agree with, in principle, but have difficulty conforming to,
and that is canonicality of representation; because of the expressiveness of the metalanguage, we
find that there are often multiple ways of representing lexical meaning, never mind sentential
meaning, which could only be avoided at great expense and loss of perspicuity in the notation.

4.2  Sense Mapping

It is possible to find, in some cases, one-to-one correspondences between the meaning of a
lexical unit and concept, as in the simple example of dog. Unfortunately, in the majority of cases,
this is not possible without developing the problems discussed above in relation to the “word-
sense” approach. Therefore, mappings are allowed to the most appropriate concept, that is, to the
most specific concept that is still more general than (i.e., that subsumes) the meaning of the lex-
eme in question. Once the most directly corresponding concept is determined, additional informa-
tion may be specified, thus constraining the primary concept, within the lexical semantic
specification in the lexicon entry. This modified mapping may either add information to the con-
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cept as it is specified in the ontology, override certain constraints (e.g., a selectional restriction), or
indicate relationships with other concepts expected in the sentence. The subsections below deal
with these two basic cases: simple one-to-one mapping, which we are calling univocal mapping,
and then complex, or constrained mapping (see Meyer et al. (1990)).

4.2.1  Univocal Mapping

 As illustrated above with dog, this is the simplest kind of mapping, used when there is a one-
to-one correspondence between a lexeme and an ontological concept. In the “word-sense” ap-
proach to ontology granularity, the bulk of all lexical semantic specifications would be of this type
(modulo the semantic dependency structure hooks discussed below). However, as stated, the ap-
proach here is somewhere between the “word-sense” and the “decompositional” approaches, so
this type of mapping ends up being the case in less than a majority of all entries.

The univocal mapping of exactly one concept to lexeme is utilized when the concept denoted
by the lexeme is rather universal (essentially, universal has come to mean “common to the lan-
guages we, or our informants, know”). As additional languages are treated and cross-cultural con-
cepts come to be reflected in the ontology, the share of univocal entries may increase or decrease.
Examples of universal concepts might include the meaning of +die-v1 (in the most literal sense of
“cease to live”), natural kinds such as tree, dog, artifacts or terms in technical sublanguages, etc.
Clearly, when constructing a practical lexicon and ontology, these universal concepts are derived
somewhat intuitively, and may reflect the pragmatics of the textual domain in question; for exam-
ple, technical domains tend to have a high percentage of such concepts.

In a terminological lexicon (i.e., a lexicon for the nomenclature of an expert domain, e.g., the
sublanguage of a particular scientific or technical field), the share of univocal mappings will in-
crease, reflecting the higher tendency for terminological nomenclature which corresponds to con-
ceptual objects or objects in the onomasticon precisely (e.g., chemical compounds, machinery,
electronic components, etc.).

Our notation for a univocal lexical semantic mapping is straightforward. Thus, the primary
noun sense of the word dog: +dog-n1 will have the following SEM-STRUC zone:

SEM-STRUC:
LEX-MAP:

(%DOG)

The “%” indicates an ontological concept that is to be instantiated when the meaning in question is
included in the overall semantic dependency structure of a sentence in which dog appears. Note
that the name of the concept from the ontology (or onomasticon) need not be the same as that of
the lexeme in question. A univocal mapping between lexeme and ontological concept merely im-
plies that all constraints on an ontological concept (i.e., all information provided within the frame
for that concept in the ontology) are consistent with the meaning of the lexeme.

4.2.2  Constrained Mapping

As mentioned above, in many cases the univocal mappings are not possible, so a complex
mapping must be undertaken. Complex mappings may either involve multiple structures in the
mapping (for example, a mapping to a concept is often accompanied by an ATTITUDE structure),
or a set of constraints added to a mapping to a concept from the ontology (both types of complex-
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ity may also be found together in a lexical semantic mapping). In a constrained mapping, linkages
are allowed to the most appropriate concept, that is, to the most specific concept that is still more
general than (i.e., that subsumes) the meaning of the lexeme in question. Once the most directly
corresponding concept is determined, additional information may be specified, thus constraining
the primary concept, within the lexical semantic specification in the lexicon entry. This modified
mapping may either add information to the concept as it is specified in the ontology, override cer-
tain constraints (e.g., selectional restrictions), or indicate relationships with other concepts in the
sentence.

Once the “closest” concept is determined, constraints and further information (including pos-
sible reference to other concepts from the ontology) are recorded in the appropriate slots in the
lexicon entry. The facet facility of FRAMEKIT and FRAMEPAC is invoked to encode values,
constraints on concepts in a constrained mapping of a semantic specification, and other informa-
tion; Table 3A, “Head and Facet Use in Ontology, TMR, and Lexical Semantics,” on page 31
identifies the facets that are available to the lexical semantic specification — note that they are all
used.

The following example illustrates a simple case of lexical semantic mapping, (the lexeme is
the lexeme +eat-v1, the primary sense of eat). The SYN-STRUC lexicon zone contains the lexical
syntactic specification of the lexical entry, in which the subcategorization pattern of the verb is de-
scribed:

SYN-STRUC:
((ROOT $VAR0)               ;$VAR0 gets bound to +eat-v1
 (SUBJ ((ROOT $VAR1)$VAR1 gets bound to head lexeme
        (CAT n))) ;whose lexical category is N
 (OBJ ((ROOT $VAR2) ;$VAR2 gets bound to head lexeme
       (CAT n)))))) ;this is also a noun phrase

During analysis, the variables $VAR1 and $VAR2 are initially bound to “placeholders” for the
lexical semantics of the subject and object of the verb, respectively. Once the lexical semantics of
those syntactic roles is determined, the semantic composition process gets under way. If this pro-
cess is successful, a semantic representation for a higher-level text component is produced. The
SEM-STRUC zone of the lexicon entry for +eat-v1 contains linking information as well as selec-
tional restrictions, constraints on the properties of the meanings of the verb’s syntactic arguments:

SEM-STRUC:
LEX-MAP:

(%ingest      ;+eat-v1 maps into %ingest
   (AGENT (VALUE ^$VAR1) ;subject maps into AGENT
          (SEM *ANIMAL))  ;filler should be a descendent

;of ontological concept *ANIMAL
   (THEME (VALUE ^$VAR2) ;object maps into THEME
          (SEM *INGESTIBLE)
          (RELAXABLE-TO *PHYSICAL-OBJECT))))))
             ;theme’s meaning should be a descendent of *INGESTIBLE
             ;or at least of a *PHYSICAL-OBJECT
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This structure can also be represented as a feature structure matrix:

Traditionally, selectional restrictions are defined in terms of a small fixed set of concepts or
features; we have found that it is often useful to use arbitrary concepts from the ontology as “se-
lectional restrictions”. These constraints are represented in the SEM facet, and can be arbitrary
concepts from the ontology:

+taxi-v1 (sense of ‘move-on-surface’, said only of aircraft, e.g., The plane taxied to the
                       terminal; The pontoon plane taxied to the end of the lake)

SEM-STRUC:
LEX-MAP:

(%MOVE-ON-SURFACE
(THEME

(SEM *AIRCRAFT)
(RELAXABLE-TO *VEHICLE))))

Note that there may also be “second-order” constraints (i.e., constraints on constraints):

+jet-v1(literal sense of 'to travel by jet', e.g., The presidential candidate spent most
                of the year jetting across the country from one campaign rally to another

SEM-STRUC:
LEX-MAP:

(%MOVE
(THEME

(SEM *AIRCRAFT))
(PROPELLED-BY

(VALUE %JET-ENGINE))))))

Thus we see that semantic constraints in this approach can be any arbitrary concept, constrained
concept, or even set of concepts from the ontology; this substantially extends the traditional no-
tion of selectional restriction to more fully utilize the knowledge available (from the ontology) for
disambiguation.

It is not expected that the meaning of verbs will always be a link to an ontological concept of
type EVENT; or that meanings of nouns will uniformly be descendents of the ontological concept
OBJECT. There is a great deal of variance in the correspondences between ontological subtrees
and parts of speech. For example, many adjectives and nouns (such as abusive or destruction in
English) may be represented as events, whereas many verbs map to attitudes or properties (e.g.,
own or reek).

AGENT VALUE ^ 1

SEM *animal

THEME
VALUE ^ 2

SEM *ingestible

RELAXABLE TO– *physical-object
ingest
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4.2.3  Non-Propositional Mapping

In addition to the direct or modified mapping into ontological concepts as outlined above, four
other scenarios can occur in lexical semantic definitions (and represented in SEM-STRUC zones
of corresponding lexicon entries), either in conjunction with a propositional mapping (and/or each
other) or without such a mapping.

• The first case involves situations where the meaning of a lexeme corresponds not to a con-
cept, but to a particular filler of a slot defined in another concept; for example, the basic at-
tributive sense of the adjective hot maps to a particular value of the TEMPERATURE slot
(property) of the meaning of the noun it modifies. In some cases, the semantics of the lex-
eme indicate the name of the property which connects the meaning of two other lexemes.
For example, the locative sense of in suggests LOCATION as the property on which the
meanings of the prepositional object and its attachment point are linked; thus, the meaning
of in within the phrase the dog in the park is that the meaning of the park fills the LOCA-
TION slot of the meaning of the dog. Many syntactic morphemes (including many case
markings) exhibit this kind of semantic behavior.

• The second case involves mapping to TMR constructs which are non-propositional, hence
non-ontological, in nature — speaker attitudes, stylistic factors, etc. The representation of
this “metaontological” information is thus added to the representation of propositional
meaning to yield a full TMR. As is the case with propositional information, lexical entries
may specify which specific constructs those entries trigger as contributions to TMRs of
entire texts. The example below illustrates both of the cases mentioned above. The lexical
semantics of the lexeme +delicious-adj1 contains the following two structures:

     SEM-STRUC:
    LEX-MAP:

(^$var1
(INSTANCE-OF (SEM (value *INGESTIBLE))))

(ATTITUDE
(type (value evaluative))
(attitude-value (value 0.8))
(scope (value ^$VAR1))
(attributed-to (value *speaker*))))))

The first construct places a semantic constraint (i.e., must be a descendent of *INGEST-
IBLE) on the meaning of what the adjective modifies (referred to by the variable
^$VAR1). The evaluative ATTITUDE scopes over this same meaning. The attitude is at-
tributed to the speaker, which is a default value.

An outstanding issue in this approach to mapping is identifying the particular feature or at-
tribute of the scoped object that is being addressed; it is not the general existence of a food
item that is being evaluated highly by delicious, but the taste of that food item. The general
solution to this issue is to scope over a particular attribute, not the entire object (e.g.,
(scope (value ^$VAR1.TASTE)).

Note that lexicalizing such information explicitly contrasts with the general attitude taken
in frameworks such as Dyer and Zernik (1986), who rely on the success or failure of goals
and plans in the text at large to provide evidence for emotions and attitudes. While we
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could make use of such a mechanism (although we have no current microtheory to handle
goals and plans), we also make extensive use of lexicalized information about goals and
plans as well.

• The third case involves special treatment, different from the usual instantiation/combination
processing. For example, the meaning of the definite article the in English, at least in one
of its senses, involves reviewing the discourse or deictic contexts for entities of a particular
semantic type. The meaning of that sense of the article would not involve the instantiation
of any new concepts, but will rather serve as a clue for the identification of previously-in-
stantiated concepts for reference.

• The fourth case addresses the lexicalization of information which is typically expressed
through morphological or syntactic means. For example, certain verbs contain inherent as-
pectual markers, or are themselves explicit aspectual markers (such as begin). Thus the
lexical semantic specification of these verbs consist primarily (or entirely) of a mapping to
an ASPECT structure, but no EVENT concept. Unlike Dahlgren et al. (1989), aspect is not
a source of distinction within the ontology, but is represented by a meta-ontological mech-
anism that is orthogonal to the EVENT hierarchy in the ontology. Thus a TMR may have an
ASPECT structure, even if there is no EVENT in the TMR.

4.3  Mapping / Category Correlation

Although, at first glance, it appears that there is substantial parallelism between syntactic cat-
egories and the general high-level ontological partition into which the corresponding head con-
cept mapping falls, this apparent correlation is very frequently violated and therefor unreliable;
the syntactic categories verbs, nouns, and adjectives or prepositions only sometimes map onto
concepts in the subtrees headed by EVENT, OBJECT and PROPERTY (the latter being partitioned
into ATTRIBUTE and RELATION) respectively. Some of the points below highlight the many types
of exceptions to this generalization.

• Equivalent lexical semantic mapping of verbs and deverbal nouns (or nouns and verbaliza-
tions) are frequent; since nouns and verbs select for different (subcategorization) frames,
the syntax/semantic mapping will be different, however. For example, the lexical semantic
specification for both destroy and destruction are headed by the same concept from the
EVENT portion of the ontology. Further discussion of this set of issues can be found in
Carlson et al. (1994).

• Some verbs (for example, in The rose smells sweet), and nouns (such as the object in The
rose has a sweet smell) map into attributes of other concepts (the semantic mapping of
rose, in these examples), not EVENTs or OBJECTs.

• Many adjectives map into ATTITUDEs, not ATTRIBUTEs (such as delicious).

• Since the ontology EVENT subtree avoids stative verbs, such verbs tend to map into RELA-
TIONs or ATTRIBUTEs of OBJECTs. Own or possess would be mapped onto the relation
OWNER-OF, for example, and contain maps onto the relation CONTAINS.

See Meyer et al. (1990) and Meyer and Steele (1990) for further discussion of this set of issues.
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5. The Underlying Heuristic: Ontological Graph Search
Subsequent sections define and illustrate the architecture of the overall semantic analysis pro-

cess, namely the state-space search. We precede those discussions, however, with an explanation
of a major strength of the approach, namely, that within the framework of that architecture, essen-
tially all facets of core semantic analysis are guided by one central heuristic, the ontological graph
search mechanism (Heuristic I). This graph search mechanism applies to usual selectional-restric-
tion satisfaction cases as well as to cases requiring some relaxation of tight constraints (see Sec-
tion 7), thus it centrally supports word sense disambiguation (WSD), as described in detail in
Section 8. However, the method also applies to linguistic constructions which are typically trou-
blesome for semantic analysis approaches: the same mechanism applies to cases of metonymy
resolution (see Section 9), as well as some cases of reference resolution. With some additional
mechanisms to handle the bracketing problem, the same mechanism may be applicable to the is-
sue of resolving noun-noun compounding (see speculation on this in Section 11.1). The nature of
the control architecture, the state-space search, and the heuristic (the ontological graph search) en-
able these constructions to be addressed within the same framework, without separate modules or
special treatment.

In brief, the heuristic attempts to find the best match between i) semantic constraints on case
roles or relations of a concept and ii) the candidate fillers for those roles or relations. As described
in Section 3.3, any concept in the ontology may be instantiated and included in a TMR represen-
tation; all instantiated concepts are linked to other concepts through roles or relations. Attempting
to satisfy constraints on roles or relations is the central mechanism of the WSD and semantic de-
pendency structure (SDS) building activities of semantic analysis.

All concepts have relations (including arguments or case-roles in the case of events and at-
tributes in the case of entities). Each relation may have a constraint or a set of constraints on what
concepts (or complexes of concepts) may fill that slot. (In fact, relations in the ontology have up to
three levels of selectional constraints: an overall constraint, an expected (default) filler that meets
the constraint, and a limit to allowed relaxation of the constraint.) The constraints are themselves
also concepts from the ontology (or Boolean combinations of concepts).

Thus by identifying the “best” path in the ontology between a constraining concept and the
candidate filler, it is possible to determine the degree to which the candidate filler satisfies the
constraint. The heuristic attempts to find the best path, i.e., the shortest distance (if arc weights
were thought of as having some inverse relationship to arc distance), between the constraint and
the candidate in the ontology graph.

Heuristic I. Semantic constraint satisfaction and relaxation corresponds to finding
the best path over weighted arcs in an ontological graph from the candidate
filler to the constraint.

Section 5.1 presents the algorithm for the ontological graph search per se, Section 5.2 focuses
on the arc weights, and Section 5.3 explores how the arc weights are acquired. Subsequent chap-
ters apply this heuristic specifically to semantic analysis.

5.1  The Graph Search

Because natural language use is not literal or precise (because of vagueness, metonymy, etc.),
we often need to relax constraints because strict semantic restrictions do not apply as expected;
however, relaxing or discarding semantic constraints unrestrictedly would result in egregious pro-
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liferation of readings in semantic analysis (and no success at word sense disambiguation). On the
other hand, limiting the relaxation of constraints results in lack of successful analysis of non-liter-
al input.

The approach taken in Fass (1986), (1988), or (1991), for example, is to have a limited set of
patterns over an ontology-like hierarchy in identifying where semantic constraint relaxation may
be licensed. We find that having a fixed set of patterns is too restrictive to account for a wide vari-
ety of language constructs; the richness of the ontology in the current model allows paths of virtu-
ally unrestricted topologies between constraint and filler. Thus this model allows a path of any
topology (instead of one of several topologies as in Fass) over the ontology, so long as the arcs in
the path collectively are deemed most appropriate.

5.1.1  The Ontology as a Graph

The premise of our heuristic is that some number of semantic relations between the source
concept (the candidate filler) and target concept (the constraint) must exist, and the task of the se-
mantic constraint mechanism is to find the most plausible relation or combination of relations.
The relation may be too remote for the purpose at hand, hence a cost threshold; if no relation is
found within the cost threshold, the ontological graph search algorithm, as a heuristic, identifies to
the overall control architecture of the system (the state-space search) that there is no appropriate
semantic relation between the two concepts, hence the interpretation or reading which is being in-
vestigated must be considered implausible and thus rejected.

In our method, controlled constraint satisfaction is managed by considering all relations, not
just IS-A arcs, and by levying a cost for traversing any of those relations, especially non-taxonom-
ic ones. We treat the ontology as a directed (possibly cyclic) graph, with concepts as nodes and re-
lations as arcs. Thus constraint satisfaction is treated as a cheapest path problem, between the
candidate concept node and the constraint nodes; the best path thus reflects the most likely under-
lying semantic relation, whether it be metonymic or literal.

In the easiest case, the selectional constraints on the correct set of senses are all satisfied, and
are violated for incorrect combinations of senses. Satisfied selectional constraints appear in the
method as a simple taxonomic path over the IS-A hierarchy between the candidate concept and the
constraint.

But other slots define arcs as well. For example, an *INGEST concept may have an AGENT slot
which is to be filled (in the VALUE facet) with the concept instantiation identifying the eater, and
an THEME slot which gets filled with the instantiated concept representing what is being eaten.
Similarly, a concept such as *AUTOMOBILE would have slots (either locally or inherited) labelled
HAS-AS-PARTS and OWNER, for example, which also would get filled with the names of concepts,
either instantiations or from the ontology.

The SEM facet (see Table 3A, “Head and Facet Use in Ontology, TMR, and Lexical Seman-
tics,” on page 31 for discussion of the facet definitions) is the most prominently used facet in the
ontological graph search algorithm, because it contains a concept (or a Boolean combination of
concepts) which acts as the semantic constraint on possible fillers of the slot (which would be in-
serted into the VALUE facet). Taking the example from above, *INGEST would have, in the AGENT
slot, a SEM facet whose filler is *ANIMATE. Viewing the ontology as a graph, there exists an arc la-
beled AGENT from *EAT to *ANIMATE.1 The slots which are inherited by a concept from parent
concepts do not correspond to direct arcs in the graph. The reason why it is valuable to include the
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VALUE facets of slots is to access fillers which are either defined values in the ontology (which is
where the vertical hierarchical relations defining the ontology as a network or tree actually reside,
specifically in IS-A and SUBCLASSES slots) or to access instantiations (accessed through the VAL-
UE facet of the INSTANCES slot) and their internal structure (for example, for reference resolu-
tion).

When we are discussing the ontology as a graph, we will treat the fillers of the VALUE facets
(on IS-A and SUBCLASSES slots) and fillers of the SEM facets (on all other slots) equally. In dia-
grams of the ontology (such as Figure 5A below) there is no distinction between the contents of
these facets; in figure of lexical semantic specifications or TMRs, on the other hand (such as Fig-
ure 2E and Figure 2G, respectively), a vertical arc (labelled with the slot name) connects the con-
cept with a node (labelled with the filler of the VALUE facet), while other facet fillers are
identified by labels on nodes connected by labelled horizontal arcs.

We also treat the fillers of the DEFAULT facet. In fact, although these facets aren’t as frequent
as SEM facets, they contain more informative constraints, in that they reflect the typical fillers of
that slot. For that reason, we make the arc cost cheaper (by using an exponent of 0.5) to suggest
that the relation to a concept in a DEFAULT facet is more plausible (hence cheaper) than the rela-
tion to the concept in the corresponding SEM.

In addition to the actual ontology itself, “ontological knowledge” in the current context in-
cludes instantiations of concepts from the ontology, as mentioned above. At any point in analysis,
there may be “available” concepts instantiated by the current or previous sentences (the tenure of
past concepts is controlled by other microtheories, specifically discourse processing mecha-
nisms). The ontological concept which is used as a “template” for instantiation acquires a pointer
to the instantiation (via the frame instantiation mechanisms) in the INSTANCES slot, which satis-
fies the criterion for an arc (above). The graph being traversed by the ontological graph search al-
gorithm is therefore populated with instantiations as well as ontological concepts. This allows
entities instantiated elsewhere to be identified in the graph search process described below; in par-
ticular, this allows the reference resolution mechanisms to access instantiations from elsewhere in
the discourse structure.

In the ontological graph search, arcs that are traversed impose a cost; the cost will typically be
discussed below as a weight on an arc. Many graph search approaches simply use the same unit
cost for each arch; that approach was discarded as inadequate, as discussed below in Section 8.1.
The simplest effective model of arc costs that we used in our experiments is to consider them mul-
tipliers within [0.0, 1.0], so an arc cost of 1.0 would result in no cost being assessed for a path tra-
versing the arc, whereas an arc cost of 0.0 would indicate an infinitely expensive arc, that is, one
that is not allowed in the desired path. The optimal path is thus the maximal one, i.e., closest to
1.0. Section 5.2 below contains a discussion of the mechanisms and approaches to assigning costs
to individual arcs traversed by the ontological graph search.

Figure 5A presents an (unrealistic and oversimplified) example of a segment of an ontology,
with the arcs labelled. Note, however, that all arcs have an inverse:

1.  many of the examples here are for illustrative purposes only, and do not necessarily reflect the current
ontology
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SLOT INVERSE
IS-A SUBCLASSES
SUBCLASSES IS-A
HAS-AS-PART PART-OF
PART-OF HAS-AS-PART
INSTANCES INSTANCE-OF
...

The inverse arcs are not indicated in the figure; the arc label will be associated with the direction
of the arc. In the mechanism that provides a weight for each arc described in Section 5.2, the
weight returned for an arc is often different from the weight returned for its inverse. The reason
for that will become clear from the examples below.

 Figure 5B illustrates two paths over the same ontology, along with indications of sample arc
weights (not necessarily those in actual use) that might be returned for each particular arc for the
indicated direction, using the simplest table-lookup arc-weight mechanism for a simple con-
straint-satisfaction case. If an example were Billy drove his V8 at 60 m.p.h. down Main Street,
there would be a need to fill some slot for the event concept with the automobile (assume, for the
sake of example, that the sense of drive being used only allowed cars) being driven; V8 would be
identified (maybe after discarding vegetable juices as having unacceptably low preference) as a
type of engine (possibly using the onomasticon knowledge source). The ontological graph search
mechanism would be invoked in an attempt to identify whether ENGINE242 meets the constraint
of *AUTOMOBILE. The path through the *ARTIFACT node would have a preference of 0.81, as illus-
trated in the left view in Figure 5B, whereas the path over the HAS-AS-PART arc (right view) would
have a better preference metric of 0.85 so would be preferred.

Note that this approach does not correspond to semantic distance or semantic relatedness ap-
proaches (typically over semantic networks) that have been used in word sense disambiguation ef-

Figure 5A. Toy illustration of arcs.

IS-A

IS-A

IS-A

IS-A IS-A

IS-A

HAS-AS-PART

ARTIFACT

DEVICE

ENGINE
   LAND WATER

AUTOMOBILE

VEHICLE

ONTOLOGY

VEHICLE VEHICLE



— 72 —

forts; see a detailed discussion of this issue in Section 8 of this distinction.

5.1.2  Search Algorithms

One way of viewing the same cheapest path graph search is as a shortest path problem, where
the lengths of the arcs are set to the absolute value of the natural logarithm of the (multiplier)
weight:

Equation (1)

Since all of the weights are in (0.0, 1.0], all of the natural logarithms are nonpositive, thus allow-
ing minimization of the sums of the absolute values to yield shortest paths (arcs with weights 0.0
are not considered). Performing a standard shortest path search on the converted costs, adding the
arc costs, will identify the same path as finding the path with the best (i.e., closest to 1.0) cost.
Well-known complexity results on the shortest-path problem (directed or undirected arcs, nonneg-
ative lengths) identify it as solvable in polynomial time, as discussed below in detail in Section
5.1.3.1 Because of this isomorphism, throughout this discussion, best cost or cheapest cost path
will be used interchangeably with shortest path or best path; the figures and text will continue to
treat the search as a best-cost problem, particularly since drawing examples with variable-length
arcs makes for very confusing topologies, where possible in two dimensions. Figure 5C illustrates
what type of topology this perspective on the ontological graph would produce. The nodes that are
touching have paths of length 0.0 (equivalent to arc weights of 1.0), but the graph is perverted by
the fact that the nodes do not have null size. The non-zero-length paths have indications of the
path length, as computed by Equation 1. If many more non-zero paths were to be added to Figure
5C, it would probably be impossible to render in two dimensions.

The search is invoked with a set of parameters including a search threshold, the source node

1.  See Garey and Johnson (1979).
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of the search (typically, the potential filler), the target node(s) of the search (typically, the con-
straints), and an arc weight determination mechanism. The search threshold is used to terminate
the search by indicating a bound on the acceptable total cost of a path returned by the search.

Another parameter which is given to the search program is the number of allowed answers
(i.e., paths resulting from the search); in some cases only the one single best path (or k best paths)
is required, while in other situations all of the possible paths above the cost threshold need to be
returned (to a large extent, this depends on the overall control structure, and whether it follows a
backtracking or a multiple-parallel-hypothesis model). The setting of the cost threshold (a matter
for empirical exploration) is a function of numerous parameters such as computational power
available and the expected literalness of the text (see Section 9 for discussion of metonymy and
non-literal text). Given that the overall semantic analysis strategy is a state-space search, the pref-
erence of the reading that invoked the semantic constraint check is also a factor; if a reading has
low preference already, then the cost threshold for a graph search will be set appropriately very
high (no point in pursuing an unlikely interpretation for a reading which is already unlikely).
When the search is done in an approximately best-first manner, the fact that the shared data struc-
ture scheme could allow other readings to benefit from the same search and possible combination
process is not a problem (since the other readings would have a lower preferences anyway, or they
would have been attempted already.)

Any of a number of graph search algorithms could be utilized for the purpose of identifying
the cheapest path from source node to target node. A best-first heuristic search algorithm is
sketched here for illustration. The search proceeds by taking the most promising node, as identi-
fied by a heuristic (where “most promising” may be simply as identified by Equation 2 below, i.e.,
lowest combined cost of path-so-far and cheapest next arc), and examining the node to which the
identified arc (from the node at the head of the path) leads. If that new node is the target node,
then a shortest path is identified. If at any point a path cost exceeds the cost threshold, it is re-
moved from consideration, because costs cannot improve (i.e., multipliers cannot exceed 1.0).
Details of basic best-first search techniques and shortest path algorithms are well-described in the
literature, and will not be presented any further here (see Nilsson (1980), Pearl (1984), van Leeu-
wen (1990), etc. for example discussions.) The specific heuristic and a comparison of this ap-

Figure 5C. Same ontology, but represented with
different arc lengths for shortest-path
search
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proach to some of the standard best-path algorithms are discussed in more detail in Section 5.1.3
below.

Other shortest path search algorithms that have been implemented for the application being
described include an iterative deepening A*, as described in Korf (1988), and a best-first bidirec-
tional search (akin to the ones described in de Champeaux and Sint (1977) or Nilsson (1980), or a
bidirectional version of best-first heuristic searches described in Pearl (1984)), using Heuristic II
as the search heuristic:

Heuristic II. Use Equation (2) as the search heuristic in the graph search over the on-
tology.

where the equation referenced appears as:

for all relevant i Equation (2)

This heuristic computes scores for nodes by identifying the cheapest (i.e., lowest-scoring) sum of
node cost and weight of arc to that node from the current node, over all other nodes in the ontolo-
gy graph. In practice, the minimum is taken over only those nodes with explicit arcs leading to
them, since undefined arcs have infinite weights. The best-first search algorithm uses the node
with the cheapest cost as the next node to be explored.

5.1.3  Computational Complexity

As mentioned above, any number of single-source shortest path algorithms could be invoked
for this purpose. The first of the algorithms described above in Section 5.1.2 was used most often
in the experiments described here. The algorithm can be viewed as an A* version of Dijkstra’s
well-known Single-Source Shortest Path algorithm (Dijkstra (1959), Aho et al. (1974), etc.), opti-
mized by using a (heap structure-based) priority queue and an association list (these two optimi-
zations are similar to those described in Gibbons (1985), using code similar to Sedgewick (1983)
or Budd (1994)). The algorithm is implemented with an A* flavor, where the heuristic h* is a
weak one: the combined cost of the cheapest next arc out and current node cost, as described
above in Section 5.1.2. So g(n) h*(n) is, in fact, the next cheapest path. Admissibility holds, since
the h*(n) returns a cost that is always ≤ the cost of the path to the goal node from node n.

A number of factors led to the experimental selection of the algorithm used, of which compu-
tational complexity order was not the main one, because other factors overwhelmed the complex-
ity order in the average case. But we will discuss the complexity of the algorithm for purposes of
comparison and illustration.

The upper bound for graph search algorithms is the Shortest Weight-Constrained Path prob-
lem, defined in Garey and Johnson (1979) as:

Graph G=(V,E), length l(e) ∈ Z+, and weight w(e) ∈ Z+ for each e ∈ E, specified vertices
s,t ∈ V, positive integers K, W. Is there a simple path from s to t with total weight W or
less and total length K or less?

Since we only use an arc weight, but no arc length (or vice versa, see discussion above), hence
only W or K but not both (so either weights or lengths are all equal), and only positive lengths and
weights, we can compute our results in polynomial time, unlike this NP-Complete problem. A
number of other constraints on the problem definition, as well as constraints based on the actual
data, end up reducing the complexity of the algorithm used to solve this problem substantially.

tcos current-node( ) min weight arc current-node nodei[ , ]( ) tcos nodei( )+( )+
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One such constraint or factor that affects the selection of the algorithms is the sparseness of
edges. Algorithms such as those given in Wagner (1976) are optimized for sparse graphs (but may
have other constraints that make them inappropriate). The ontology used in the experiments de-
scribed here is far from being fully connected; viewed as a graph G, the number of nodes n (or

) is 4742, while the number of edges is about 14,861. So we see that << n2 (which is
22,486,564). In fact, << n2/log2n (about 1.8 million; the importance of this will become ap-
parent below).

The ontology graph does not have negative edges at all; in the multiplier approach, this trans-
lates to having no factors greater than 1.0. While most of the efficient algorithms can handle neg-
ative edges, none of them can handle graphs with negative cycles efficiently. We are assured of no
negative cycles. Other efficient algorithms are rejected because of weights on arcs at all (vs. arcs
all having weight 1.0), or because the set of allowable weights does not consist solely of a small
number of small integers (Wagner (1976)).

In the algorithm used here, the “outer loop” effectively considers each edge (at most) once, by
exploring each node multiple times until no unexplored edges are found, contributing a factor to
the complexity of . Inside the loop, the priority queue mechanism1 (using a binary heap struc-
ture) provides the next node at a cost of log2n, and at a cost of log2n for adding a node to the
queue. Thus the overall complexity of the algorithm is thus O( log2n).

An additional term B (for the maximum branching factor) was ignored above, because it is
bounded by a small constant, in practice, not by log2n as it would be in the general case (by the
complexity of an heap priority queue): while generating a new node in the A* search, the “out”
arcs are assembled and sorted by cost. In practice, the maximum branching factor for any node in
the real ontology is 21, with average of about 2.5. That the graph is not fully connected, but only
very sparsely, isn’t an arbitrary assumption, but reflects a fundamental design decision of the on-
tology. All edges in the ontology (except IS-A and its inverse) are binary relations that are defined
as concepts in the ontology themselves. The theoretical maximum number of edges for a node is
limited by the number of relations in the relation portion of the ontology (357 in the actual case).
Furthermore, many of the relations are mutually exclusive, so we end up with a severely con-
strained number for the even worst case. For this reason, and because n<<  and B<<n, the term
nlog2B is dropped from the overall complexity O( log2n), because log2n+nlog2B <<

log2n+ log2n = 2 log2n and constant terms are dropped from the complexity measure.

The above complexity was calculated for the static arc weight assignment mechanism, de-
scribed in Section 5.2.1. An additional constant factor affects the complexity for the transition-ta-
ble-based arc weight mechanism described in Section 5.2.3. In the latter case, the out-arcs for
each node may be considered more than once, since the path-so-far for the node may result in var-
ious states. Thus, an additional constant factor, accounts for the number of possible states (no
more than 20-some for the experiments described here).

For a number of reasons, the search does not run to worst case. The ontology is not a random-
ly-connected graph, and the searches do not, in fact, tend to reflect random source and target
nodes. Furthermore, by using a threshold value to prune expensive paths, the search is con-

1. In the average successful case, the entire graph-search program, including start-up overhead, takes about
40% of the total CPU time when using the priority queue mechanism, as compared to total CPU time
when using a sorted list; in cases of search failure, the priority queue implementation takes less than
10% of the CPU time of the sorted list time.
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strained, and most edges and nodes do not, in fact, get explored. In the experiments run, the num-
ber of nodes explored in successful runs of the algorithm (i.e., ones where a constraint is satisfied
or a metonymy is found) averages below 100, and rarely exceeds 300. For searches where no path
is found above a threshold of 0.5, the number of nodes rarely exceeds 1000.

Although a more efficient algorithm, at the limit, could be constructed or selected, it was not
useful to do so here. Because the typical runs of the algorithm only explore a small fraction of
nodes and arcs, as described above, any algorithm which requires an overhead (for initialization
of costs) of size n or  was rejected. The best case for a number of other algorithms, including
Dijkstra’s, is 2n, while in the algorithm described here it is B.

5.1.4  Ontology Search as Abduction

Another way to consider the ontology graph search problem is as cost-based abductive infer-
ence problem, as described, for example, in Hobbs et al. (1988) or Charniak and Shimony (1994).
In this view, the constraints and candidate fillers are the observations that abduction is supposed to
explain by constructing a proof (the path from the latter to the former). We assign a zero cost to
ontology nodes and treat them as assumptions. The arcs can be considered to be abduction rules
with two conjuncts (the from node and the to node), and the arc cost thus becomes the rule cost.

The point of identifying this isomorphism is the discussion of problems and availability of
techniques in this other paradigm that may be of use in our context. Charniak and Shimony (1990)
identify a fault in the Hobbs-Stickel model of cost-based abduction (Hobbs et al. (1988)) in that
the costs are essentially pulled out of a hat, and they suggest a probabilistic semantics for the
weights that could be used in a discovery procedure. The graph search algorithm described above
also relies on a set of weights; the Charniak and Shimony probabilistic semantics could be extend-
ed to address the semantics of both of the weight-assignment mechanisms described below in
Section 5.2.1 and Section 5.2.3. Charniak and Husain (1991) describe an admissible heuristic for
the graph search that is more informative than just best-path-so-far; their heuristic is richer than
what is used in out work, but the essential element is the same, namely rely on passing back costs
of nodes subsequent to the one being explored. Both the cost-based abduction efforts described
above rely on more complex problem sets than required in the current context (including three-
valued logics, AND/OR DAGs) so have complexity far worse than what we encounter.

Another area that may merit exploration in future work is a linear constraint satisfaction ap-
proach to cost-based abduction, described in Santos (1994). Because of the problem of finding
good admissible graph search heuristics, he approaches the cost-based abduction problem by us-
ing linear programming optimization tools.

5.2  Determination of Arc Weights

The arc costs are the locus for heuristic knowledge for the search, thus are the core of the en-
tire approach being presented here. The approach relies on the premise that an arc identifies a se-
mantic relationship between the source and the target of the arc, and that the semantic
relationships identified by various arcs are not uniform. Indeed, the label on the arc identifies the
nature of that relationship. Some relationships are more salient or integral than others; these rela-
tionships result in arcs with cheaper cost (i.e., higher values) than the arcs identifying relation-
ships which are more peripheral or incidental (which will be more expensive, i.e., higher costs).
Heuristic III identifies this central premise.

E
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Heuristic III. The weight on an arc from node A to node B in the ontology is propor-
tional to the semantic affinity that node A has for node B.

Some of the arcs identify obviously central semantic relationships, such as IS-A arcs and the
arcs which define metonymic relations (as discussed in Section 9.)

5.2.1  Static Arc Weight Assignment

The simplest mechanism for identifying the weight of an arc is a simple look-up table:

IS-A: 1.0
INSTANCE-OF: 0.99
SUBCLASSES: 0.9
PART-OF: 0.85
...

Given a particular state in the ontological graph search, the search control structure will request
the weight of an arc with a given label; the arc weight mechanism simply returns the value identi-
fied with that arc label in the table. In this model, each time an arc type occurs in the ontology, it
is assigned the same cost. The acquisition of the weights for the table is discussed in Section 5.3
below. In the case of a bidirectional search, the arc weight mechanism is passed a flag which indi-
cates which frontier is being explored: the one arising from the source node (the candidate filler)
or the one arising from the target node (the constraint). The arc weight mechanism then utilizes
the appropriate look-up table; the table for the target node frontier is derived from the source node
table (used for the basic best-first search described above) by replacing the arc labels with the la-
bel of the inverse relationship:

SUBCLASSES: 1.0
INSTANCES: 0.99
IS-A: 0.9
HAS-AS-PARTS: 0.85
...

Regardless of the viewing direction, the two tables identify that the path from a potential filler up
the tree (up only IS-A links) to the constraining concept as an ancestor results in a no-penalty (i.e.,
weight 1.0) path, thus is to be preferred. For example, the direct path from BANANA33 to *IN-
GESTIBLE (which would be the preferred path in the man ate a banana), would traverse an IN-
STANCE-OF arc from BANANA33 to *BANANA (at a cost of 0.99), then up an IS-A link to
*TROPICAL-FRUIT at cost 1.0, another IS-A link to *FRUIT, and so on, until *INGESTIBLE is reached,
at combined path cost of 0.99 * 1.0 * 1.0 *... * 1.0 = 0.99.

In cases of relaxation of constraints because of unusual circumstances (such as babies eating
pennies or pebbles), the path from the potential filler to the constraint may need to change direc-
tion and traverse the ontology in the other direction (i.e., down a SUBCLASSES arc) to the con-
straint. For example, as illustrated in Figure 5D, in the baby ate a penny, the path from PENNY33
to *PENNY (across an INSTANCE-OF arc at cost 0.99) would then traverse up the tree over no-pen-
alty IS-A links to *ARTIFACT, then down a few SUBCLASSES slots (i.e., inverse direction of IS-A) to
the constraint, *INGESTIBLE. In this example, the concept *INGESTIBLE has two IS-A links leading
from it: to *NATURAL-OBJECT to account for things such as bananas, and to *ARTIFACT for such
things as Twinkies (pastries), as well as covering many food products somewhere in between.
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As illustrated in Figure 5B, the path that is traversed in cases of metonymic relations (such as
PART-OF) is computed, resulting a weight (returned from the look-up table, since the path is of
unit length) of 0.85. Various metonymic relations, as well as other relations given as examples in
the text below, have similar costs, which are acceptable, but are less preferred to straight con-
straint satisfaction over IS-A links or minimal constraint relaxation. The issue of determining the
actual weights to use is a difficult one, and is touched upon in Section 5.3 and other sections be-
low.

The arc weights, in essence, encode various types of rules about the behavior of semantic rela-
tions. One might be tempted to try to categorize arcs and their associated weights as metonymic
arcs, search-space-reduction arcs, N-N compound arcs, and so on. On the other hand, arcs and
their weights reflect semantic relations, and there have been observations in the literature about
overlap between the relations that exist for derivational word formation (as reflected in Lexical
Rules), in N-N compounds, in regular polysemy, in collocations, and in metonymy (usually these
observations are on specific pairs from the above list). There are inventories in the literature for
each these phenomena (e.g., Mel’chuk and Zholkovsky (1984), Lakoff and Johnson (1980),
Apresjan (1974), Stern (1965), Ostler and Atkins (1992), among others); those inventories can be
exhaustively reflected by sets of relations in the ontology. Additional useful arcs are defined in the
ontology based on ontology acquisition guidelines, lexicon acquisition experience, or empirical
evidence. Thus it seems doubtful that it would be possible to partition the set of arcs with their as-
sociated weights.

5.2.2  Dynamic Arc Weight Assignment

In cases where this static arc weight assignment is insufficient, it is possible to define a dy-
namic arc weight assignment scheme, where the weight given to an arc is sensitive to the context
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of prior arcs in the path; thus it is possible to have a weight of 0.9 on the first occurrence of arc
FOO in a given path, and weights of 0.2 on subsequent occurrences, for example. Such a mecha-
nism is passed the entire path, in addition to the parameters passed to the basic static arc-weight
mechanism described above.

This mechanism restricts the number of times that a particular relation can be traversed in one
path. For example, in the case of the metonymic relation of Container-for-Contents, the onto-
logical relation (i.e., slot or arc) that is traversed might be CONTENTS on concepts with *CONTAIN-
ER as an ancestor. However, in identifying this metonymic relation when talking about picking up
soda in a store, we only want to traverse one CONTAINED-IN arc once to the container (some sort
of *VESSEL-FOR-LIQUIDS) and stop there, instead of traversing another CONTAINED-IN arc to the
store (which IS-A *BUILDING, which IS-A *CONTAINER because it can contain things like soda
cans). Thus in our dynamic arc weight determination mechanism, once an arc such as CON-
TAINED-IN is traversed at a low cost (say 0.85), any subsequent traversals become substantially
more expensive (say 0.5). In this case the second transition of that particular arc, although identi-
fying a valid relation, is not desirable in the given context.

In other cases, the second transition is in fact incorrect in principle, not just inappropriate in
context — any non-transitive relation cannot be chained in such a way (unless direct evidence for
each arc appears in the source). A general example of such a relation is the “is friends with” rela-
tion, where even though A is-friends-with B, and B with C, it is incorrect to believe that A is
friends with C unless there is evidence to support such a belief. Relations in the ontology which
fall in this category include such relations as USED-FOR-MANUFACTURING (if system X is for
manufacturing machine Y, and machine Y is for manufacturing widget Z, X does not manufacture
Z), or SUBSISTS-ON (if *SPARROW-HAWK SUBSISTS-ON *SPARROW, and *SPARROW SUBSISTS-
ON *INSECT, it is not appropriate to infer that *SPARROW-HAWK SUBSISTS-ON *INSECT). These
sorts of relations exist as slots on entities, and could define the relations that exist in cases of
Noun-Noun compounding, for example. The point of the dynamic weight mechanism is to avoid
paths with such multiple arcs when not appropriate.

5.2.3  Transition Table Arc Weight Assignment

An implementation of the dynamic arc weight assignment mechanism which also provides
clean control is arc weight assignment by a transition table mechanism. By using a general dy-
namic weight assignment mechanism, monotonicity in the graph search paths can be ensured. In
addition to the problematic cases described in Section 5.2.2 above, this mechanism avoids exces-
sive change of gradient. For example, after a series of IS-A arc traversals, and a SUBCLASS travers-
al, this mechanism would block resuming IS-A traversals (or at least at the low arc cost). For
example, in Figure 5D, this mechanism would introduce high cost if, at the end of the path high-
lighted in bold, the IS-A arc from *INGESTIBLE to *NATURAL-OBJECT were attempted (assuming a
different destination node). This would be accomplished by remaining in one state while the arcs
are of one gradient (up, via the IS-A links), would transition to a different state upon a SUBCLASS-
ES arc (i.e., the change in gradient), from which a transition over an IS-A arc would be very expen-
sive.

The transition table consists of rows, labelled by state numbers, and columns, labelled by one
or more ontology arcs. A given entry in the table is an ordered pair, <cost, next_state>, where cost
is the associated return value that reflects the cost of the input arc. Each node on the frontier of the
graph search, that is, the last node of each path being explored, would also store the new state in
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the transition table. A request for an arc cost would be handled by finding the appropriately la-
belled column for the input arc, given the beginning state. For example, in Table 5E, the path be-
low results in the following chain of transitions and cumulative weight:

(-, 1.0) --INSTANCE-OF--> 1.0/A
(A, 1.0) --IS-A--> 0.999/B
(B, 0.999) --IS-A--> 0.999/B
(B, 0.998) --MEMBER-OF--> 0.9/E
(E, 0.898) --SUBCLASSES--> 0.85/F
(F, 0.763) --HAS-MEMBER--> 0.3/F
(F, 0.229) --IS-A--> 0.3/E
(E, 0.069)

This rather unlikely path is correctly scored low for reversing the gradient on the MEMBER-OF
arcs, and lowered for resuming the gradient of IS-A arcs after changing directions to SUBCLASSES.
Although this convoluted path would not likely be chosen, regardless, the transition table mecha-
nism produces a very low score of 0.069, as opposed to 0.64, which would have been produced by
the static mechanism (straight look up table as illustrated in Section 5.2 above).

The table given above is for illustration only; the discussion in Section 9.8 below and the ac-
companying table illustrate one of the transition tables that was built to handle both the general
word-sense disambiguation problem and metonymy.

5.3  Acquisition of the Arc Weights

Regardless of the mechanism used by the search to return the arc weights, the knowledge base
of weights and the algorithm of picking or calculating them are of critical importance in the graph

a. Note: Unmarked cells = Default cost (0.4) / same slot
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search and thus need to be meticulously derived. Since weights are used to eliminate or prefer
paths through the ontology graph, inappropriate weights can defeat the purpose of the ontology
graph search — identifying the most appropriate semantic relation between the candidate filler
and the constraining concept.

5.3.1  Manual Arc Weight Acquisition

In the initial stages of this effort, the weight tables used by both the static and dynamic mech-
anisms (Section 5.2) were manually built. The first step in the manual process involved collecting
an inventory of arcs that are known to require special weights:

• Hierarchical links (IS-A and SUBCLASSES)

• Instantiation links (INSTANCE-OF, NAMED-INSTANCE-OF, and their inverses)

• Common metonymic links (see Section 9.6)

In addition, a default category was created to handle all other cases of relaxation and metonymy
that were not covered by the inventories above, which are not expected to be complete. For each
of these, a weight was determined by manual examination of a (small) number of sentences, aug-
mented by expectation of certain sets of metonymic and other non-literal/unexpected expressions
in text. This initial set of weights, although built essentially by introspection, was sufficient as
starting point for experimentation, and supported a non-trivial amount of word-sense disambigua-
tion and metonymy resolution (see Section 9 and Section 8 for evaluation results).

5.3.2  Automated Learning of Arc Weights by Simulated Annealing

Despite the (modest) success of the manually-determined arc weight set, clearly a method was
needed to optimize this process and to automate it for different languages, domains, and text
types. A variety of approaches could be used for this process, including machine learning, genetic
algorithms, connectionism, and combinatorial or non-linear optimization techniques. During the
course of work described here, experiments using simulated annealing were sufficiently success-
ful that other approaches were abandoned.

Given an inventory of the arcs that need special weights (such as the list outlined in Section
5.3.1 above), the task of any of these training approaches is to find the best weight in [0.0, 1.0] for
each arc such that the highest possible total score is achieved across the entire training/test data
set. The individual scores reflect whether or not the ontology graph search, using the set of
weights, returns the exactly correct best path. This process can be viewed as an optimization pro-
cess over p parameters, where p is the number of arcs (including a “wildcard” arc) receiving spe-
cial weights.

The training set consists of a number of problem statements coupled with the desired solu-
tions. The problem statements consist of an ontology concept (representing the semantic head of a
putative filler of an argument position) and a set of constraints (representing the extended selec-
tional restrictions or slot constraints on the argument position that the putative filler is attempting
to fill). The desired solution is a path from the filler to one of the constraining concepts; these
paths are manually produced, reflecting the nature of the relationship between the filler and the
constraints (such as a metonymic relationship). For example, if a putative filler is an ORGANIZA-
TION, and it is acting in an AGENT position, which requires a HUMAN (the set of constraints is just
the unary set containing this one concept), the correct path is ((ORGANIZATION -) (HUMAN
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HEADED-BY)), meaning that the organization is actually being used as a metonym for the hu-
mans that control it.

The entire training set is compiled from a variety of sources. For each case of metonymy de-
scribed in Section 9.6, there is at least one training set data element reflecting the fillers and con-
straints, along with the associated metonymic arcs (Section 9.7) reflected in the correct path. Most
of the training examples, however, are collected from examining corpora. An examination of the
correct word senses for a text reveals any violations of the literal constraints on argument posi-
tions; each such example is then entered into data set, along with a manually-produced correct
path. A slightly different process of building the training set is needed for word sense disambigu-
ation, because there not only is the best path important, but also the weight of the best path for the
correct set of word senses needs to be better than the weight of the best path for combinations of
incorrect word senses.

Simulated annealing is an approximation algorithm for non-linear optimization of continuous
parameters, or for combinatorial optimization of discrete variables. Based on work by Metropolis
et al. (1953), the algorithm was suggested, among others, by Kirkpatrick et al. (1983) as “efficient
techniques for finding minimum or maximum values of a function of very many independent vari-
ables”, since which time it has become popular for a range of optimization problems (see, for ex-
ample, van Laarhoven and Aarts (1987) or Davis (1987)). The underlying metaphor for simulated
annealing is a metallurgical process where metal is heated to the melting point then cooled very
gradually, allowing optimal (low-energy) alignment of molecules. As as approximation algorithm
for optimization, it builds on traditional refinement techniques, but avoids the risk of settling in a
local minimum solution, from which iterative refinement cannot escape. By introducing random-
ization techniques, locally optimal but globally suboptimal energy states can be avoided.

Simulated annealing has not been used extensively in natural language applications. One nota-
ble exception is word sense disambiguation work by Wilks et al. (1992) or Cowie et al. (1992),
where simulated annealing is used to approximate the optimal combination of selected word sens-
es, using a Lesk (1986)-like approach of optimizing the intersection of words in LDOCE defini-
tions for each token in the input sentence. Another application of simulated annealing to NLP is
work by Sampson (1986) and Selman and Hirst (1987), involving simulated annealing to optimize
parsing. Unlike these two efforts, the work described here involves using simulated annealing not
at run time, but for training purposes, namely acquiring a knowledge source for use by another al-
gorithm; word sense disambiguation in our approach is primarily based the lexical semantic spec-
ifications of the words and the ontology, but the arc weight knowledge source, acquired by
simulated annealing, informs the use of those two knowledge sources.

The version of simulated annealing applied here, using public-domain code from the Naval
Postgraduate Institute described in Carter (1995), is a straightforward application of the Kirk-
patrick et al. (1983) algorithm. An “annealing schedule” is set up, where the parameters are first
“melted” (essentially randomized) into a high-energy equilibrium, then annealing proceeds. Es-
sentially an iterative refinement process, the annealing involves a number of sub-steps, iterating
with the temperature parameter T decreasing at a Cauchy rate (at iteration i) of Ti = Ti-1/(1+0.1i):

• Perturbing each parameter at a rate proportional to T

• Measuring the energy state E of the resulting system; in this context, E reflects 1 minus the
fraction of paths correctly found by the ontology search over the training data. For exam-
ple, if 99 out of 100 paths in the training set were correctly found, the energy state E
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would be 1.0 - 99/100 = 0.01.

• If the new parameter set results in a lower energy state (better scores), the parameter changes
are accepted.

• If the energy is higher (the scores are worse), the new state may still be accepted, with prob-
ability P(ΔE) = exp(-ΔE/kbT). The constant kb is the Boltzmann constant, and was set to
1.0 for these experiments. So if rand[0.0, 1.0] is less than P(ΔE), the new worse configura-
tion is accepted. This equation simulates the Boltzmann distribution.

The iterations terminate when either an equilibrium is reached (a certain number of iterations
without any change in energy state) or a maximum number of iterations are accomplished (here,
400).

5.3.3  Success of Training

The simulated annealing was able to train successfully on the training data used, using a Bolt-
zmann constant of 1.0 and a learning rate of 0.5 when training for 20 parameters, with a maxi-
mum cap of 800 cooling iterations, with a cap of 20 adjustments per parameter per cooling
iteration. At this setting, the system usually converged to within 95% correctness on the training
data. In cases where 100% was not achieved, it was usually pretty easy to manually adjust one pa-
rameter to achieve 100%; this one parameter would be stuck in a local minimum very far from the
value that achieved success (for example, the parameter might get stuck below 0.1). This little bit
of manual intervention was not completely necessary; with more iterations and a slower annealing
schedule, the system was able to achieve 100% precision on the training data. The annealing
schedule mentioned above reflected the best trade-off of precision vs. wall-clock time required for
the training run.

Below is an example of the results of a successful simulated annealing training run. The in-
ventory of arcs is manually determined (as described above). The last arc is a wildcard, and covers
all arcs not inventoried.

IS-A 0.957719
SUBCLASSES 0.771272
HAS-MEMBER 0.931212
PRODUCER-OF 0.447723
PRODUCED-BY 0.876912
INSTRUMENT-OF 0.809355
REPRESENTS 0.796348
HEADED-BY 0.998862
LOCATION 0.8062
OWNED-BY 0.754007
MADE-OF 0.896587
ACTIVITY-FOR-ROLE 0.899341
NAME-OF 0.971266
AGENT 0.65
THEME 0.773466
THEME-OF 0.609619
SOURCE 0.799949
AREA-OF-ACTIVITY 0.88442
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CONTAINS 0.99894
CONVEYS 0.83
ELEMENT 0.978201
HAS-AS-PART 0.969287
LOCATION-OF 0.683668
SYMBOL-OF 0.90624
INSTANCE-OF 1.0
NAMED-INSTANCE-OF 1.0
* 0.695308

Some arcs end up with fairly small weights (below 0.6), indicating that there weren’t any exam-
ples of paths requiring that particular arc in the training data used for the training run that resulted
in this data set. The results for SDS-building, disambiguation, and metonymy resolution that were
achieved using this training method are discussed in Section 8.3 and Section 9.9.

5.4  Issues involving the Ontology Search Algorithm

The Artificial Intelligence search literature suggests a variety of algorithms for traversing a
search space, but they rely on having a good heuristic for choosing one path or frontier in the
search space over the other. Using Heuristic II in selecting the next node/path to explore is fairly
straightforward, and it worked adequately, if inefficiently, in early implementations of this ap-
proach. However, if a better heuristic could be found, the ontology search process could be sub-
stantially improved.

Thus the focus in improving the search becomes finding some way of determining how
“warm” a particular node on the search frontier is to the goal node, i.e., the constraint. Topological
closeness over the ontological hierarchy would only help us, in the base case, if all links between
nodes were of the same cost, and the ontology could be evaluated as a two-dimensional space over
which distance could be easily calculated. However, the variety of relations, the various costs on
arcs, and the denseness of graph connections rule out such simple heuristics.

The use of a dynamic arc weight determination algorithm, as in the model in Section 5.2.2,
significantly complicates the work involved in the heuristic; entire paths need to be assessed in or-
der to identify a single arc cost, as opposed to just simple lookup. That is why in the transition ta-
ble approach from Section 5.2.3, a state variable is used to simplify the work in calculating the arc
cost. Furthermore, if a bi-directional search is being used, the dynamic arc weight mechanisms
complicate matters even further, since goal-frontier path costs aren’t absolute, but are subject to
change when they meet up with source-frontier paths.

There are some questions that, if answerable at reasonable cost, could contribute to an infor-
mative heuristic. If it can be determined that some regions of the ontology are unlikely to be tra-
versed in a successful path between specified nodes, some paths can be determined less likely
than their cost suggests; for example, if it turned out to be the case that a path where both end
nodes (i.e., source and goal nodes) are *PHYSICAL-OBJECTs is unlikely to cross through the *MEN-
TAL-OBJECT ontology subtree, certain paths could be down-graded in likelihood. Similarly, there
might be arcs which are unlikely to appear in successful paths involving certain other arcs, which
could either contribute to the heuristic or to the weight determination mechanisms.

Another potential contributing factor to developing a good heuristic is the SALIENCE facet in
ontological concepts. It is reasonable to assume that slots with higher salience are more likely to
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define a semantic relation between two concepts than low salience slots, thus helping prefer possi-
ble paths over others.

Each of these ideas could contribute to the development of a good heuristic; experimentation
with possible heuristics and review of appropriate paths (perhaps manually selected) that account
for the semantic relation between concepts, based on a corpus, will be involved in developing
such a heuristic.

The number of returned paths is an issue that could increase the effectiveness of the algorithm.
If the overall control strategy of the semantic analyzer supported multiple parallel hypotheses, the
algorithm, described here could easily be parametrized to return the k best paths for any search. In
the multiple microtheory model of processing, as briefly described in Section 1.4, various other
microtheories would contribute to the structure and preference values of the alternative hypothe-
ses, instead of relying on the just the one dynamic knowledge source, described here, to perform
complete semantic disambiguation.
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6. Semantic Dependency Structure Building as a Search Problem
The semantic interpretation process (specifically, the process of building a semantic depen-

dency structure or SDS) is treated as a somewhat abstracted state-space search in this section. In
this view, each state represents a possible reading being pursued, where a reading consists of a)
the partial (or complete) TMR configuration, b) the remaining lexemes not yet processed, and c)
the cumulative preference cost for the reading to date (see below for definition). The goal of the
search is to find the minimum-cost state which satisfies final well-formedness conditions (i.e., no
remaining lexemes, and connectedness of all structures in the TMR configuration). The operators
for traversing the search space are a) instantiation (of concepts or non-ontological TMR struc-
tures) as prompted by lexemes, discussed in Section 6.2, and b) combination of these structures to
form appropriately connected structures, as discussed in Section 6.3. The application of the com-
bination operator is guided by a set of heuristics, of which the central one is the ontological graph
search operation (see Section 5.1 for discussion).

In general, the goal of the SDS-building process is to find the most appropriate semantic inter-
pretation of the input text. Candidate readings are ranked according to their preference value, a
cumulative measure of evidence or likelihood that is used to order competing interpretations (the
use of this term is different from its familiar meaning introduced by Wilks (1975b)). If the assign-
ment of preferences by the search process is appropriate, then the interpretation with the highest
preference value at the end of processing should indeed be the one which human translators would
choose. Preference values are used by the search heuristic both for pruning paths with low prefer-
ences, and for guiding a best-first search method (see Section 6.5). The preference in the current
implementation is a value in the interval [0.0, 1.0], with adjustments to the preference made by a
multiplier (or by root-mean-square in the MIKROKOSMOS implementation, described in Beale
(1997)).

The discussions below will discuss the SDS-building process as a search, considering the
search space, the search operators, etc. from a generalized or abstracted perspective, while de-
tailed discussions of the application of the combination and instantiation operators as semantic in-
terpretation (SDS building) can be found in Section 7. Discussion of efficiency in the search is
delayed until Section 7.

6.1  Search States

The search space consists of states σ which are triples: (Τ, ι, Π). Π is the cumulative prefer-
ence (accumulated over the path-so-far) score or cost for the path through the search space repre-
sented by the current state, in the interval [0.0, 1.0], with 1.0 being the most preferable and 0.0 a
rejected reading. The score is calculated by applying a multiplier at each branch in the search tree
(i.e., the application of one of the two operators), where the multiplier is less than 1.0 if the appli-
cation of the operator is less than preferred, and equal to 1.0 if the operator’s effect is very proba-
ble or appropriate (examples throughout the text below).

The variable ι represents a structure which contains the input lexemes which have not yet un-
dergone the instantiation process — this is the remaining input string. In practice, this structure is
carried not in list or string form, but in the LFG f-structure form which the syntactic parser pro-
duces. In representing a state in the search space, either the symbol ι will be used, or a string such
as ι3ι4ι5ι6ι7 may be used to discriminate the individual lexemes of which ι is comprised.

The Τ is a TMR configuration, consisting of zero or more unconnected or partially connected
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structures. Each structure is in the form of a directed graph, where the nodes of the graph repre-
sent frame structures. The structures may be either ontological or non-ontological, as defined in
Section 3.3. Both the ontological and the non-ontological structures in the text arise from one of
two sources: either lexical triggers from one of the lexemes in the input structure ι (i.e., they are
instantiated from the LEX-MAP definition in the SEM-STRUC zone of the lexical entries of the
word sense of a word in the text), or from other knowledge sources (including discourse structure
interpretation/expectation mechanisms) or processing specialists (microtheories).1 Thus an appli-
cation of the instantiation operator produces an additional graph (consisting of one or more
nodes), and the combination operator either adds arcs between nodes already in the same graph,
or links together two or more graphs into one by the addition of one or more arcs or the replace-
ment of a node in one graph by a node from another graph, thereby connecting them. In represent-
ing a state in the search space, either the symbol Τ will be used to designate a TMR
representation, or a set notation, such as {Τ7, Τ8}, may be used to identify the structures which
comprise the TMR Τ.

6.2  The Instantiation Operator

The discussion of the instantiation operator as it applies to semantic analysis (SDS building) is
found in Section 7.3; this section treats instantiation as an operator over the search space. As guid-
ed by a traversal of the remaining input ι for the current state, the instantiation process identifies
the next appropriate lexeme to undergo the instantiation process, removes it from the remaining
input ι, and then retrieves the contents of the LEX-MAP zone of the lexeme’s lexical entry (as
specified in Section 4). The contents of that zone will be a combination of zero or more of each of
three types of data structures.

• Ontology Nodes (Ontological concepts). A concept can be thought of as a node from the on-
tology (as defined in Section 3.1). Considering the IS-A arcs alone, the graph is a directed
acyclic graph, specifically a tangled tree. Since each node is actually a frame, the tangled
tree provides for (multiple) inheritance of frame slots. Additionally, however, there are
arcs with numerous other labels interconnecting nodes in this graph; these arcs identify
other relations that may exist between the two concepts, and correspond to slot names; the
nodes reached by the arcs correspond to fillers of slots. Figure 6A illustrates what a
(small) ontology may look like.2 A LEX-MAP reference to ontological nodes may appear
as illustrated in Figure 6B, which illustrates a template for instantiating a TMR fragment,
as might be found in the lexical entry for a particular lexeme. Note that information may
be added (locally) to what was presented in the ontology in Figure 6A. The arc on the left
identifies a COMPOSED-OF relation to a node which has an unknown ontological type, that
is, it is unknown at this point what the filler of the slot will be, since that information

1. The non-ontological structures which arise from lexical triggers behave similarly to the ontological ones
in the search (i.e., the basic instantiation and combination process), and will be so treated below in the
appropriate discussion in Section 7.

2. These figures will use the following symbols:  to designate nodes from the ontology (with an arbi-
trary letter as a node identifier or name),  to designate instances of nodes from the ontology (typically
followed by an identifier such as D3),  to designate non-ontological TMR construct nodes,
to designate non-ontological TMR node instances (also followed by an identifier, typically of the form
FU7), and  to indicate as-yet unresolved $VARs, i.e., links to/from unspecified nodes. Additionally,
the following conventions for arrows will be used: solid arrows  for IS-A links, grayed
for INSTANCE-OF links, and broken  for other ontological arcs.

Y

FOO
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would be specified in the LEX-MAP of some other lexeme. So in this LEX-MAP, the
^$VAR2 acts as a place-holder until the combination process (below) replaces it appropri-
ately.

• Ontology Arcs. In some cases, instead of calling for the instantiation of a concept (or non-on-
tological TMR construct), the LEX-MAP template or specification calls for the instantia-
tion of an arc alone, or an arc with a termination node, but without a specification of the
origination node. Note that in Figure 6C, there is no origination node, just the place-holder
^$VAR1.

• Non-ontological Nodes. As described in Section 3.3, the representation language TMR in-
cludes structures which are not derived from the ontology. These structures also corre-
spond to nodes, which, however, are not part of the ontology graph (Figure 6D).

The contents of LEX-MAP, once retrieved from the lexical entry, then undergo the instantia-
tion proper. The process of instantiation involves producing an instance of each of the nodes in the

IS-A

IS-A

IS-A

IS-A IS-A

IS-A

IS-A

COMPOSED-OF
HAS-AS-PART

Figure 6A. Example Ontology

A

B

D E J

G H

C

ONTOLOGY

Figure 6B. LEX-MAP reference to ontological node

C

D

HAS-AS-PART

LEX-MAP

^$VAR2

COMPOSED-OF
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retrieved combination of structures. An instance is a structure with a unique identifier which rep-
resents a specific single case of the node; the concept in the ontology essentially acts as a tem-
plate, which can be viewed as a type definition for producing another node which represents a
particular instance of the concept in the current discussion. These instances are identified by con-
catenating a unique number to the name of the concept from which the instance was produced:
FOO3, G89, A1, etc.

If the LEX-MAP of a lexeme ι3 contained the contents of Figure 6B, Figure 6C, and Figure
6D, then the result of instantiation would produce instances (for example) C2, D4, J7, and BAR3,
represented in Figure 6E.

The process of instantiation results in the addition of an (as-yet) unconnected graph to the
TMR representation graph. So if a search-space state representation is:

 ({Τ2, Τ3}, ι3ι4ι5ι6ι7, Π)
(where {Τ2, Τ3} is a set notation representation of the elements of the TMR Τ, and ι3ι4ι5ι6ι7 is
the remaining input ι represented as a concatenation of its components, i.e., words or morphemes)
then the application of the instantiation operator may produce

Figure 6C. Origination-node-less LEX-MAP specification

LEX-MAP

J

COMPOSED-OF

^$VAR1

Figure 6D. Non-ontological node reference

BAR

LEX-MAP

Figure 6E. Example of instance structures produced by instantiation.

BAR3

COMPOSED-OFHAS-AS-PART

J7

C2

D4

TMR
^$VAR1
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({Τ2, Τ3, Τ4, Τ5, Τ6}, ι4ι5ι6ι7, κΠ)
with the changes to the TMR represented in Figure 6F.

Those nodes in the TMR representation which were instantiated from ontological concepts
have INSTANCE-OF links back to the nodes from which they were instantiated. These arcs are
“para-ontological”, and essentially provide the link from a TMR representation to the ontology, as
depicted in Figure 6G. The ontology and the TMR are depicted as different planes, and the IN-

STANCE-OF links as directed arcs between nodes on the two planes.

The instantiation operator always succeeds, and either increases the cardinality of the set Τ or

Figure 6F.  Example of instantiation operator with input and output TMR forms.
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Figure 6G. Interrelationship of TMR structure and the ontology where concepts are defined (shaded arcs
are INSTANCE-OF links).
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it doesn’t affect it (if the particular ιi to which the operator was applied had a null LEX-SEM). The
operator can no longer be applied to a search-state representation (Τ, ι, Π) when ι = ε (empty
string). An application of the instantiation operator produces at most one arc in the state-space
search tree. In other words, the application of this operator is deterministic, in that it can only pro-
duce one result on a given lexeme, regardless of the context.

6.3  Combination Operator

The application of the combination operator takes two TMR fragments (either the result of in-
stantiation or the product of a previous application of the combination operator), and attempts to
produce a single, larger TMR fragment. This is the core of the SDS-building process, as discussed
in Section 7.4.

There are preconditions on the application of this operator which are described below. The op-
erator takes as input any two TMR fragments, call them Τi and Τj (such as those illustrated in Fig-
ure 6F). The two subsections below discuss the two conditions which trigger the application of
this operator, thereby identifying how the two input TMR fragments are identified, along with
(possibly) an indication of the instance and slot through which the two fragments are to be com-
bined. This operator does not affect the element ι of the search-space state; however, it may mod-
ify the value of Π. (See the discussions in the subsections below for discussion of the effects on Τ.)
The application of this operator may fail, thereby terminating that path in the search space.

6.3.1   Triggered by Syntax/Semantics Interface

The locus, and therefore the two input TMR fragments, can be explicitly identified by the syn-
tax/semantics interface: the appearance of a ^$VAR in one of the elements of Τ licenses the appli-
cation of the combination operator. Essentially, the combination operator’s job is to replace
occurrences of ^$VAR with elements from the set T. The set Τ may be reduced in cardinality, with
a consequent modification (typically an increase) in the size/structure of one or more elements of
the set Τ. The operator essentially replaces a ^$VAR in one element of T, say Τi, with a node (typ-
ically the ROOT) of another element of Τ, say Τj. Therefore Τj is imbedded in Τi, and is no longer
unconnected, so is no longer a separate element of Τ (in Figure 6H below, Τ7 replaces the ^$VAR
of Τ8).

The application of this operator is guided by a heuristic (essentially the syntax-semantics in-
terface) which identifies the TMR structures to which the ^$VAR pointers are bound.

Heuristic IV. The syntax/semantics interface identifies the correlation between ele-
ments in the syntactic argument structure and semantic dependency structure
by means of parallel variable structures.

In the syntactic parsing process, (locally) prior to the initiation of the state-space search, the $VAR
are bound to other lexemes according to the SYN-STRUCs (see Section 3.4.2). In the example im-
plementation of this approach, a table is kept with pointers from each occurrence of the $VAR to
their syntactic references. The ^ operator then “dereferences” that binding, retrieving an element
ιi, and identifies which element of T, say Τj, was produced by the application of the instantiation
operator to that symbol ιi. Section 7.4 below provides examples of this syntax-semantics interface
and the way it selects the meaning structures (TMR fragments) to be combined.

There is a precondition on the application of this operator. This process cannot apply if the el-
ement of Τ which is to be imbedded, say Τi, still has any ^$VARs which haven’t been resolved yet
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(via the combination operator). Essentially, this enforces an element of bottom-up processing on
the semantic analysis process; depending on the semantic dependencies, this may not necessarily
correspond to processing lexemes bottom-up in the syntactic parse tree, however. Care is taken to
avoid dependency loops in processing scheduling if a series of two or more elements of T have in-
terdependent references (i.e., the resulting structure Τ has cycles).

In Figure 6H, the TMR representation on the left may represent the Τ from the search-space

state representation

 ({Τ7, Τ8}, ι3ι4ι5ι6ι7, Π)
The application of the combination operator may produce the state

({Τ8}, ι3ι4ι5ι6ι7,  κΠ)
with the TMR represented as on the right in Figure 6H. Notice also that the input string is not af-
fected, and that the preference factor Π is affected.

In cases where the ^$VAR appears at the source of an arc in the LEX-MAP, the concept in-
stance inserted into the variable position becomes the head of the structure. This situation arises
when the meaning of a lexeme is an attribute value of some other lexeme, or a relation between
two other lexemes (see Section 4 for examples of such LEX-MAP representations, and Section 7.4
for examples of how this contributes to the SDS-building process). Figure 6I illustrates the change
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Figure 6H. Example of combination operator with input and output TMR forms.

D4

TMR

combination

TMR

COMPOSED-OF
HAS-AS-PART

J7

C2

D4

^$VAR1

COMPOSED-OF

HAS-AS-PART

J7

C2Τ9

Τ10
Τ10

Figure 6I. Example of combination operator, in the case of an origination-node-less
structure.
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in the TMR which results from the successful application of the combination operator. In this ex-
ample, the ^$VAR1 is resolved by the combination operator to be the node D4. Thus the arc which
had originated from ^$VAR1 now originates at D4. Note that the resulting TMR representation has
one structure.

The heart of combination procedure is determining the factor which affects the cost or prefer-
ence term Π of the search state. This is accomplished by the other major search process in the se-
mantic analysis procedure, and that is the ontological graph search process, described in Section
5.1. This procedure directly affects the combination operator, in that if the ontological graph
search process returns a preference factor of 0.0, the combination is disallowed and the applica-
tion of the combination operator fails. There is a threshold factor which may be set which also
causes the application of the combination operator to fail if the resulting preference factor (e.g.,
.9Π) falls below that threshold. This effectively terminates or prunes some paths in the search
space traversed by means of the combination and instantiation operators.

The ontological graph search attempts to find the lowest-cost (i.e., highest preference) match
between the structure being inserted in the stead if the ^$VAR and a) the constraints that the re-
ceiving structure may have on the legal filler of the slot in the case illustrated in Figure 6H, or b)
the constraints that the node which is replacing the ^$VAR1 may have on its substructure (i.e.,
slots and fillers), in the case illustrated in Figure 6I. For discussion of the constraint satisfaction
search process see Section 5.

6.3.2   Licensed by Underlying Syntactic Cues

There are cases where the semantic combination operator is triggered to apply in the absence
of the overt trigger ^$VAR from the syntax-semantics interface. The application of the operator
may be licensed by a particular syntactic construction in the parse tree from which the lexeme se-
quence ι and the $VAR bindings stem. The clearest and most prevalent syntactic construction oc-
curring in English which licenses this application of the combination operator in this manner is
the Noun-Noun compound.

Essentially, after instantiating the lexemes in question, this case corresponds to a TMR struc-
ture where the origination and termination nodes of an arc are known, but the arc label is unknown
(in terms of frame structure, this corresponds to the frame name and the filler being known, but
the slot name is not.)   Figure 6J illustrates this case. Although the two TMR structures (Τ12 and

Τ13) are shown linked by an arc, since the arc label is unknown, the two structures are still consid-
ered to be distinct.

That the two concepts are related is inferred from the fact that they participate in a syntactic
relationship which implies such a semantic relation. In the case of English, furthermore, we know

TMR

?
C2 D4

Τ12 Τ13

Figure 6J. Example TMR with unlabeled arc.
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that in most cases N-N compounds are pair-wise right-headed (the few that are left-headed are
fixed expressions and are therefore entered into the lexicon intact, eliminating the need for this
process); this translates, in the semantic dependency structure, to the selection of the right ele-
ment’s meaning representation as the head, and the left element’s meaning representation as the
filler of the (as-yet unknown) slot. Thus in the example in Figure 6J, if the compound is ι6ι7, ι7
produced Τ12 and ι6 Τ13. This issue is independent of the bracketing question for compounds of
length greater than two.

The same ontological graph search process described above is also central to this process, and
it provides even more critical information: the name of the arc relating the two concepts. Addi-
tionally, as before, it provides us with the cost (thus the factor of Π). Figure 6K illustrates how the

application of the combination operator might affect the TMR structure of

 ({Τ12, Τ13}, ι3ι4ι5ι6ι7, Π)
to the TMR structure of the search-space state representation

({Τ12}, ι3ι4ι5ι6ι7, κΠ).
The ontological graph search returns a path from the filler to the constraining concept, which is
the meaning representation (TMR fragment) for the right element of the compound. The inverse
of the last non-hierarchical (i.e., not IS-A, INSTANCE-OF, INSTANCES, or SUBCLASSES) arc in the
path identifies the slot name. For example (using Figure 6K), if the returned path is something like

(D4 INSTANCE-OF --> D)
(D IS-A --> H)
(H PART-OF --> B)
(B IS-A --> C)
(C INSTANCES --> C2)

then the slot that relates the two is HAS-AS-PART, since it is the inverse of PART-OF. The ontological
graph search is invoked with a slightly different set of weights for the weight determination mech-
anism; see Section 11.1 for some speculation on the N-N compounding issue and processing strat-
egies.

6.4  Search Parameters

The search described may begin from the initial state σ0

 ({}, ι1ι2ι3ι4ι5ι6ι7, 1.0)
in the case where the input string consisted of seven lexemes. A final state σfinal of the search may
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Figure 6K. Example of combination operator, in case of unlabeled arc.
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be

(Τ, ε, Π)

where Τ ≠ {}, ε is the empty string, and Π is a preference cost where Π > 0.0 necessarily. The
TMR T will, in fact, have cardinality 1: |T| = 11. These conditions are the final well-formedness
conditions.

A search path may terminate at a state σallow where |T| > 1, Π > 0, and ι = ε, and the state may
be termed allowable; an allowable state is one to which the combination operator cannot apply
successfully (the instantiation operator can not apply because ι=ε). Allowable states are consid-
ered only if there are no final states, in which cases the best allowable state (where best means
greatest P and min(|Τ(σallow)|), that is, the smallest number of unconnected structures in the TMR
Τ. The allowable states would be passed to processes outside of the state-space search algorithm
for further processing (i.e., ill-formed input handlers or other microtheories).

State well-formedness conditions also include Π ≥ threshold, where the threshold may be set
anywhere in the interval (0,1].

6.5  Search Flow and Control Structure

The overall search space traversal process is illustrated in Figure 6L below. Note that there is
no explicit ordering of application of the operators. The combination and instantiation operators
are free to apply to any state which meets the preconditions of that operator, described in the sec-
tions above. If the preconditions are met, the application of the instantiation operator is always
successful, and results in the current state originating a single arc to a single next state, whereas
the application of the combination operator may fail, or may result in one arc (or more than one
arcs) to a next state, as exemplified by Figure 6M. Of course, any given implementation will im-
pose constraints on the traversal of the search space, namely the overall control structure.

In the diagram, the blocked application of operators (where preconditions are not met) is not
represented. Also, this diagram only represents possible paths to the final preferred paths, there-
fore does not represent proliferation of next states as a result of the combination operator (or the
instantiation operator, in cases where lexical ambiguity is not resolvable at a syntactic level); Fig-
ure 6O and Section 6.5.2 illustrate the proliferation of search paths. In Figure 6M, however, notice
that even though there are multiple possible paths in the search space, they all reach the same final
state. In other examples, where certain paths are pruned because of thresholds being exceeded, the
judicious selection of paths (i.e., node expansion) can result in different efficiencies in the search.
The search heuristic attempts to chose a best-first path through the search space, otherwise it is
guided by a bottom-up left-to-right approach (which best matches the preconditions); in this case,
the left-most path in the search space is the one that would be followed by the implementation of
this approach. All the paths shown in Figure 6M are equally efficient, because all non-successful
paths are not shown.

6.5.1  Flow of Control

The overall control structure of the state space search is open. In fact, what is described above
is more of a theoretical description of the main elements of SDS-building than a description of a

1. The notation |T| is being used to indicate the cardinality of (or number of disjoint graphs
in) T
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specific method. Above, we described the initial state, search operators, and the halting condi-
tions, and leave it to particular implementations to determine appropriate control structures and
strategies. The overall framework presented here does, however, impose some constraints on the
control flow. Due to the density of lexical information and the use of syntactic structure to inform
binding of the variables, a certain element of bottom-up (or data-driven) processing is inevitable.
On the other hand, other top-down expectations are introduced by linguistic assumptions and as-
sumptions about human communication; these assumptions informed the definition of the TMR
format and introduced the expectation of a proposition, of aspectual information, of stylistic infor-
mation, etc. for each sentence in the surface structure. Any implementation would necessarily re-
flect those two constraints.

The first implementation for the framework described here, called the DIANA project at
CMU/CMT, involves a blackboard-based architecture and a recursive descent through the syntac-
tic parse tree. Each possible instantiation or combination opportunity is represented by a process,
which is entered into the process queue of the blackboard control structure. Each process has pre-
conditions, mirroring the preconditions on the application of the two operators, as outlined above.
If the scheduling of the process queue were non-deterministic, any of the paths in Figure 6M

Figure 6L.  Data flow and process interaction in the SDS-building search
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Figure 6M. Example search space for SDS-building, showing multiple possible paths to the goal state.
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would be possible. This strategy produced multiple possible TMRs, each with an associated pref-
erence value ranking them.

The second implementation of this framework was part of the MIKROKOSMOS project at
NMSU/CRL and DoD. The semantic analyzer was implemented using a branch-and-bound/con-
straint-satisfaction/solution-synthesis approach, as described in Beale (1997). This implementa-
tion focussed significantly on the problem of the very large search space defined by the
framework, and produced one best TMR reading for each input, also with a preference value.

6.5.2  Proliferation of Search Paths

The application of the combination operator in cases such as N-N resolution (but actually in
most other cases as well), the ontological graph search process may suggest a number of possible
arcs, with different costs or preferences. This may result in a number of different resulting TMRs
Τ and costs Π; this would spawn multiple nodes and paths in the state-space search process. Fig-

ure 6N illustrates a possible result of the application of the combination operator to the TMR state
represented in Figure 6J. If the initial search-space state representation were

 ({Τ12, Τ13}, ι3ι4ι5ι6ι7, Π)
the resulting state representations might be

 ({Τ12}, ι3ι4ι5ι6ι7, .9Π) and  ({Τ12}, ι3ι4ι5ι6ι7, .85Π).
Note that the two structures Τ12 would be different in the two states. Typically a threshold would
restrict the maximum number of paths which the ontological graph search process may return
(this operates in addition to the preference factor threshold which also constrains the number of
paths returned in that the paths are ordered from best to worst); otherwise the proliferation of
states in the search space would be excessive and unproductive.

In some cases of the application of the combination operator, the ontological graph search op-
erator may indicate the instantiation of additional nodes or that the arc whose endpoint was being

TMR

?
C2 D4

Τ12 Τ13 combination

TMR

COMPOSED-OF

C2

D4

Τ12

TMR

HAS-AS-PART

C2

D4

Τ12

Figure 6N. Example of combination operator, in case where alternate TMRs result from identifying
arc label.
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resolved be replaced by a series of arcs. One such case might occur in the handling of metonymy;
see Section 9 for detailed discussion of this process; for example, if the ontological graph search
returns a path such as

(D4 INSTANCE-OF --> D)
(D IS-A --> H)
(H PART-OF --> B)
(B IS-A --> C)

where C is the constraint on slot FU of instance G1, the control structure may call for the instanti-
ation of B, resulting in a TMR such as:

TMR:
D4:

PART-OF: B3
B3:

HAS-AS-PART:D4
G1:

FU: B3

The example in Figure 6O illustrates a small example of the usual scenario in traversing the
search space — many paths are suggested by the instantiation and combination operators, only to
be pruned by the threshold mechanism in the ontology graph search (i.e., constraints cannot be
satisfied), or in the overall control flow, where the cumulative preference of a path falls below a
threshold value.
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Figure 6O. Example of search space, showing multiple paths, both successful (reaching a state marked by
double circles) and unsuccessful (which reach a FAIL state).
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7. Basic Semantic Analysis as a Search Problem
The process of building the SDS (semantic dependency structure), which represents the se-

mantic meaning of the text in the TMR formalism, is a state-space search process as described
somewhat abstractly in Section 6, and discussed more specifically in terms of semantic analysis in
this section. After an initial higher-level discussion and framing of the semantic analysis process
as a search problem (Section 7.1 and Section 7.2), each of the two search operators are discussed
in turn (in Section 7.3 and Section 7.4). Further subsections discuss the parameters of this search
process as applied to semantic analysis (Section 7.5.1).

For the purpose of exposition, the discussion of the semantic processing mechanism in the
early sub-sections initially proceeds on the (almost universally incorrect) assumption that there is
no lexical, syntactic, semantic, or referential ambiguity found during processing; treatment of am-
biguity, which is the focus of this approach, is discussed in later subsections (Section 7.5) and
Section 8.

7.1  The Semantic Analysis Process

Figure 7A below illustrates the overall flow of the semantic analysis process. This process is
initiated by the input of an f-structure tree, which is augmented with a ROOT node indicating the
specific lexemes from the lexicon which satisfy all orthographic (ORTH-FORM or ORTH zones),
categorial (CAT zone), and syntactic constraints (from SYN-STRUC zones). As indicated in the
figure, the syntactic parser uses the lexical syntactic specification in the lexical entries, from the
SYN-STRUC zone. The information that this zone provides enables the parser to perform two
functions in addition to standard syntactic parsing: by unifying the sometimes extensive local syn-
tactic constraints in the SYN-STRUC with the parse tree, the parser is able to eliminate many lex-
emes which don’t meet simple valence subcategorization constraints. Secondly, the parser
establishes the syntax/semantics interface by binding the variables that are specified in the SYN-
STRUC with the values in the ROOT nodes of the specified structures.

When multiple parses are found by the parser, instead of returning an inventory of all such
parses, the parser can return a packed forest of such parses, which shares common fragments of
the parse trees.

This dynamic knowledge source (the f-structure) is utilized by both of the operators in the
search process (combination and instantiation, described below).

Heuristic V. Semantic Dependency Structure Building is accomplished by iterative
application of the Instantiation and Combination operators.

The instantiation operator takes as input that string of lexemes found at the ROOT nodes of the f-
structure. In the combination operator, this dynamic knowledge source feeds the primary data-
flow heuristic (Heuristic VI below), by indicating to the operator what is to be combined with
what, as the SDS-building process traverses that parse tree. For these two reasons, the SDS-build-
ing process is not initiated until after the syntactic parse has finished; the interleaving of the syn-
tactic parsing and the SDS building could be easily managed, if efficiency considerations
indicated that such an approach would be prudent.

Given an f-structure, a recursive descent process (using either a blackboard for control, in the
DIANA implementation, or a branch and bound mechanism (described in Beale (1997) in the
MIKROKOSMOS implementation) proceeds by first taking the head lexeme(s) at each level, as
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identified by the value of the ROOT feature in each phrase or maximal projection. The SEM-
STRUC and PRAGM zones of the lexeme’s entry are retrieved and instantiated, as described in de-
tail in Section 7.3 below. All of the instantiated fragments are combined together by the combina-
tion operator (as described in Section 7.4); this process forms the initial TMR structure,
representing the essence of the compositional meaning (as well as some of the lexically-triggered
non-compositional meaning) of the utterance.

Heuristic VI. The semantic analysis process proceeds by recursive descent down the
syntactic parse tree.

The PRAGM zone yields two items of information at this stage of processing. The STYLs of the
lexeme are added to the cumulative pragmatic factor representation for the entire text, as repre-
sented in a STYLISTICS frame for the entire PROPOSITION (or, perhaps, at a lower granulari-
ty). The PRAGM zone also contains special-purpose procedural triggers which may be needed in
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analysis or generation; an example of an analysis procedural trigger would appear in a sense of
the, as a reference-resolution procedure call.

The rest of this section and following sections will consider the state-space search and its op-
erators, but this time with a focus on the application of the search and its operators on the seman-
tics of the search space, which is the semantic analysis process.

7.2  Semantic Analysis States

 The state-space search is conducted over the space of structurally possible combinations of
the lexical semantics of feasible lexemes (i.e., polysemes, homographs, and morphologically or
syntactically ambiguous forms). The representation of the explored states of this search are repre-
sented as different possible overall “readings” or semantic interpretations of the text, each with a
preference or measure of relative plausibility of that reading; see Section 7.5.2 for a discussion of
the ambiguity representation and resolution mechanisms.

The expansion of a given state typically corresponds to a call to the instantiation or combina-
tion operators as outlined in Section 7.3 and Section 7.4. The combination process essentially cor-
responds to linking two (or more) concept instantiations (rather, the structures representing them)
in some way. The manner of combination is dictated by the syntax (as specified above) and/or the
lexical semantics, and essentially corresponds to making a structural dependency link. In the
meaning representation, this kind of link is indicated by having one object (the subordinate in the
dependency relation) be the filler of a slot and facet of the other structure (the superordinate struc-
ture). Typically the superordinate concept will have some indication of semantic constraints on
the possible fillers for the slot and facet — either (a) locally defined in the ontological definition
of that superordinate concept; (b) inherited from concepts higher than the superordinate concept
in the ontology; or (c) defined in the lexical semantic specification of the lexeme in question. The
subordinate concept may also have semantic constraints on the superordinate concepts with which
it may stand in a dependency relationship. Either way, the application of semantic constraints onto
the dependency structure building is the heart of the semantic analysis process, as it prefers se-
mantically more plausible matches and avoids semantic violations where possible.

Each state in the state-space is a complete or partial semantic interpretation of the text or por-
tions of the text, and each state has a relative plausibility metric (the preference) which reflects the
cumulative effects of heuristics which applied in the analysis process, including constraint relax-
ation, stylistic matches, expectations satisfied or violated, frequency statistics, etc. The search
roughly corresponds to a best-first search over the state-spaces; because of the shared data struc-
tures utilized in the state representations, a the processing of a leading state may also affect other
sibling nodes (i.e., expand them by providing new information or split them into new readings).

7.3  The Instantiation Process

The SEM-STRUC zone reflects the lexical semantics of the lexeme, as described in Section 4.
The lexical semantic specification in the LEX-MAP facet of the zone undergoes an instantiation
process. As described in the more abstract discussion in Section 6.2, instantiation is the process of
producing an instance of a concept. In terms of the SDS, an instantiation reflects a particular enti-
ty or event in the model of discourse, or, in some cases, a particular mention of such an entity or
event.
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Heuristic VII. The instantiation operator produces a meaning representation for a
specific or generic instance of an entity, event, etc., as specified in the SEM-
STRUC zone of a particular lexeme; these fragmentary meaning representa-
tions constitute fundamental building blocks of the TMR.

Any non-ontological structure undergoes straightforward instantiation. For example the lexi-
cal semantic specification of the lexeme +delicious-adj1 in the LEX-MAP field of the SEM-
STRUC zone contains the following two structures:

LEX-MAP:
(^$VAR1

(INSTANCE-OF
(SEM *INGESTIBLE)))

(ATTITUDE
(TYPE (VALUE EVALUATIVE))
(ATTITUDE-VALUE (VALUE 0.8))
(SCOPE (VALUE ^$VAR1))
(ATTRIBUTED-TO (VALUE *SPEAKER*)))

In this example, the second expression, the ATTITUDE, is a non-ontological structure which con-
veys the attitude of the speaker of the text (as represented by the representation *SPEAKER*).
The ^$VAR1 is an indication of how semantic dependency structure is to be built up (see Section
7.4 below). In the example above, the first structure does not have a structural head at this point,
i.e., the structure is rooted at1 ^$VAR1, since the particular ontological or non-ontological con-
cept or frame name is not known yet. This first (underspecified) structure passes through the in-
stantiation process intact, since there is no request for the instantiation of a particular concept or
TMR structure. The second expression, however, calls for the instantiation of a specific ATTI-
TUDE structure.

The results of passing the lexical semantics form above through the instantiation process may
be of the following form:

TMR:
(^$VAR1 ; not affected
 (INSTANCE-OF (SEM (VALUE *INGESTIBLE))))
(ATTITUDE647 ;One-up number for uniqueness
  (TYPE (VALUE EVALUATIVE))
  (ATTITUDE-VALUE (VALUE 0.8))
  (SCOPE (VALUE ^$VAR1))
  (ATTRIBUTED-TO (VALUE *SPEAKER*)))

Any structure where the head type is known, whether ontological or non-ontological, will result in
an instance; the only expression in a SYN-STRUC which does not result in an instantiation is the
unspecified head structure, that is, an expression where the head is a $VAR. The ATTITUDE647 is a
frame structure which is an “entity”, and is available to other processes (via the blackboard struc-
tures). The numeric suffix on the frame name is generated merely to distinguish this “entity” (or
instantiation of the frame structure) from other instantiations; the number is generated to insure

1. “rooted at” is used to mean that if the structure were to be viewed as a tree, the root node of the tree -- as
reflected by the frame name when the structure is viewed as a frame
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uniqueness and is not meaningful of itself.

In cases where the lexical semantics indicates that an ontological object is to be instantiated,
there may be other interacting processes which affect the instantiation process. For example, the
LEX-MAP zone for the lexeme +doughnut-n1 may appear as:

LEX-MAP:
(%DOUGHNUT)

The % sign here indicates that the following symbol identifies an ontological concept to be instan-
tiated. In the basic default case, the instantiation process will retrieve the *DOUGHNUT concept
from the ontology and instantiate a copy of it (perhaps producing a frame by the name of
DOUGHNUT648 on the blackboard).

In other cases, however, pragmatics processing triggered by other relevant lexical units in the
sentence may either block this instantiation process or may initiate reference resolution (or other
pragmatics processing) which identifies which instantiations are coreferential and merges them as
necessary. For example, consider the text The man bought a doughnut and three danishes. The
doughnut was soggy. The second sentence’s reference to the doughnut ultimately shouldn’t result
in another doughnut concept instance, but should identify the entity or instantiation from the first
sentence. The correct sense of the word the will have a trigger in the PRAGM zone which performs
the reference resolution.

The approach being taken here is that, for the purpose of preserving the presentation order of
information, multiple instances will in fact be created for multiple mentions of the same entity in
multiple sentences, but that these instantiations will be coreferenced by the COREFERENCE-RE-
LATION mechanism. If we just had the instantiation process invoke the reference resolution
mechanism, which would return the instance from a previous mention, we wouldn’t be able to dis-
tinguish the presentation order; for example, The man bought a doughnut and three danishes. The
doughnut was soggy. would be indistinguishable from The man bought a soggy doughnut and
three danishes. Thus, in a somewhat arbitrary distinction, the instantiation operator produces a
new instance for multiple mentions in discrete sentences, but it returns the same instance for mul-
tiple mentions in the same sentence or clause (on the assumption that presentation order within a
sentence or proposition will be identified by such mechanisms as FOCUS).

For cases of lexical semantic specifications which require the instantiation of an ontological
concept with further constraints or information (which occurs more often than the univocal map-
ping case), the process is similar. For the lexical entry +visit-v1, for example, the SEM-STRUC
specification may appear as:

SEM-STRUC:
(%VISIT
   (AGENT (VALUE ^$VAR1))
   (THEME (VALUE ^$VAR2)
          (SEM *BUILDING)
          (RELAXABLE-TO *PLACE)))

The instantiation of this pattern will result in an concept entity instance (e.g., VISIT670), which
will have all the other information from the pattern included in the frame. This information may
be adding constraints or knowledge to the *VISIT concept from the ontology, or may be overriding
constraints or information from the ontology, as described in Section 4.
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As described in Section 4, the lexical semantics of a lexeme may appear as a MEAN-PAT in-
stead of the usual notation in the LEX-MAP facet of the SEM-STRUC zone; these might or might
not result in the instantiation of any entities.

7.4  The Combination Process

Once a lexeme’s lexical semantic specification undergoes the instantiation process, it is avail-
able to participate in the combination process. The instantiation-combination process is a recur-
sive one, as mentioned above, thus is finished in cases where the lexeme‘s syntax and lexical
semantics are unitary, as is the case in the +doughnut-n1 example above (there are no semantic
dependencies indicated in the lexical semantics of the word). In other words, the combination op-
erator does not apply if there are no dependencies indicated by ^$VAR within the structure or by
syntactic cues.

In more complex cases, the lexical semantics will indicate the pattern of semantic dependen-
cies. Although it is not the case that semantic and syntactic dependencies are necessarily in paral-
lel, at the level of lexical semantics and semantic dependency structure building the semantic
dependencies are triggered, in some fashion, by syntactic dependencies, as reflected in the f-struc-
ture representation of a sentence. Take an example sentence The man ate the doughnut. For now,
we shall ignore issues of tense, aspect, definiteness (i.e., the determiners), lexical ambiguity, refer-
ential ambiguity, etc. A simplified form of the f-structure for the sentence would appear as:

F-STRUCTURE:
((ROOT +eat-v1) ;$VAR0 gets bound to +eat-v1
 (SUBJ ((ROOT +man-n1) ;$VAR1 gets bound to +man-n1
        (CAT n)))
 (OBJ ((ROOT +doughnut-n1) ;$VAR2 gets bound to +doughnut-n1
       (CAT n))))

In comparing this structure with the SYN-STRUC given for the lexeme +eat-v1 in Section 3.4, the
most evident difference is that the $VAR forms have been replaced by actual lexemes. During the
syntactic parsing process, these “variables” are set to reference the ROOT position in the f-struc-
ture parse where the lexemes for the arguments (and other selected-for elements) are identified.
Thus along with the f-structure, the syntactic parser also produces a table for each lexeme in the
entire f-structure, reflecting the variable bindings for $VAR1 on up, if any; actually, to avoid con-
fusion if a lexeme appears twice or more in a sentence, the table contains pointers to other loca-
tions in the f-structure tree rather than lexeme names.1 Thus, for example, the f-structure above
would actually appear as:

F-STRUCTURE:
((#11:ROOT +eat-v1)
 (SUBJ ((#12:ROOT +man-n1)
        (CAT n)))
 (OBJ ((#13:ROOT +donut-n1)
       (CAT N)
       (DET ((#14:ROOT +a-det1) (CAT DET)))))

1. The actual mechanism for this is slightly different in the MIKROKOSMOS implementation, and is de-
scribed in Beale (1997).
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The binding table would appear as:

#11: VAR1: #12
VAR2: #13

#14: VAR1: #13

This table lists those ROOT positions whose lexemes define variable bindings (i.e., select for
something); here, only the lexemes at the ROOT position indexed by #11 (i.e., +eat-v1) and #14
(i.e., +a-det1) select for anything. After each such listing, all the variables mentioned in the SYN-
STRUC of those lexemes are listed, along with what index position they are bound to. For exam-
ple, in the table above, the VAR1 for index #11 (+eat-v1) is bound to the lexeme at index position
#12 (namely, +man-n1).

In processing the semantics of the above example, the instantiation-combination process is in-
voked, using the f-structure to guide the order of application of the cycle. The instantiation pro-
cess is called on the ROOT, then a recursive call is made to the instantiation-combination process
on each branch of the f-structure (in this case, on the SUBJ and OBJ structures). Instantiating the
ROOT lexeme produces a structure of the following form

TMR:
(INGEST661

(AGENT (VALUE ^$VAR1))
(THEME (VALUE ^$VAR2)))

(The details of the lexical semantic representation are glossed over here for brevity.) The instanti-
ation-combination process, called on the branches of the f-structure, return the objects MAN663
and DOUGHNUT664 (ignoring details of definite article meaning, etc.) The combination process
then traverses the instantiated lexical semantic structure starting from the root form. The first (and
only in this call) object passed to the instantiation process is INGEST661. Since the object itself is
an instantiation, a traversal of its slots begins. The AGENT slot has a VALUE facet with a variable
as a filler: ^$VAR1. The variable itself is bound to the lexeme in the SUBJECT position in the f-
structure; the effect of the caret operator is to identify the “intension” of the reference. In other
words, the caret operator, when invoked on the variable, returns the results of the instantiation-
combination processing on the SUBJECT branch of the f-structure, i.e., a list containing only
MAN663. The combination process then searches this list, and retrieves the semantic “head”: the
head is the first occurrence of an ontological concept instantiation, or if none, the first non-onto-
logical structure instantiation. The combination process then checks to see whether any semantic
constraints are satisfied (see Section 8.2) and inserts the concept into the place of the variable,
yielding:

TMR:
(INGEST661

(AGENT (VALUE MAN663))
(THEME (VALUE ^$VAR2)))

Since the data structures here are frames, the value MAN663 is actually the name of (i.e., a pointer
to) another frame. A similar process is then invoked on the THEME slot of the frame. The resulting
meaning representation for the text will include the following objects:
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TMR:
(INGEST661

(INSTANCE-OF (VALUE *INGEST))
(AGENT (VALUE MAN663))
(THEME (VALUE DOUGHNUT664)))

(MAN663
(INSTANCE-OF (VALUE *MAN)))

(DOUGHNUT664
(INSTANCE-OF (VALUE *DOUGHNUT)))

The INSTANCE-OF slot (often left out because the frame name implies the contents of this slot)
merely represents the ontological concept from which the structure was instantiated.

A similar process is invoked on non-ontological structures which may be instantiated based on
the lexical semantics of a lexeme. For example, consider the phrase delicious doughnut, which
may result in an f-structure such as:

F-STRUCTURE:
((ROOT +doughnut-n1)
 (CAT n)
 (MODS ((ROOT +delicious-adj1)
        (CAT adj))))

The instantiation-combination procedure first instantiates the ROOT of the structure, yielding
DOUGHNUT642, then traverses the branches of the structure. Note, however, that the lexical se-
mantics of the semantic head here (i.e., +doughnut-n1) does not have any indications of how to
combine any other concepts with that head — that information will be extracted from the lexical
semantics of the “subordinate” concepts (although this process could result in the head concept
becoming subordinate and v.v.) The only branch of the structure (other than ROOT) which yields
any semantics in this process is the adjective modifier delicious. The SYN-STRUC of the lexeme
+delicious-adj1 appears as:

SYN-STRUC:
((ROOT $VAR1)
 (CAT N)
 (MODS ((ROOT $VAR0)
        (CAT ADJ))))

Note that (not coincidentally) this is similar to the f-structure produced for the phrase. The vari-
able bindings for the lexeme +doughnut-n1 are empty (we ignore the $VAR0 binding which
points to the lexeme we are looking at), and the variable bindings for the adjective are: VAR1:
+doughnut-n1. The instantiated structures below would result from calling the instantiation pro-
cess on the lexical semantics of +delicious-adj1:
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TMR:
(^$VAR1

(INSTANCE-OF (SEM (VALUE *INGESTIBLE))))
(ATTITUDE647

(TYPE (VALUE EVALUATIVE))
(ATTITUDE-VALUE (VALUE 0.8))
(SCOPE (VALUE ^$VAR1))
(ATTRIBUTED-TO (VALUE *SPEAKER*)))

Now the combination process is called on the list of returned structures. The first structure is es-
sentially a constraint on what the semantic head (i.e., the concept which is associated with what
the adjective modifies) can be ontologically — the semantic constraint checking (again, see Sec-
tion 8.2) verifies that DOUGHNUT642 is of type *INGESTIBLE, which it is. In this case no new in-
formation is added; however, the entire process would have failed if the semantic constraint
checking failed outright. The second structure returned from instantiating the lexical semantics of
+delicious-adj1 is the ATTITUDE647 structure. Here the combination process (as in the above ex-
ample) inserts the head concept resulting from instantiating (and, had it been relevant, recursively
calling the instantiation-combination procedure on it) the lexeme bound to $VAR1 (i.e.,
DOUGHNUT642) into the place of the variable-operator sequence ^$VAR1. The ATTRIBUTED-
TO slot takes on as VALUE a pointer to the actual frame which has been instantiated to represent
the speech act representation data structure in this processing example pass. The resulting data
structures for the phrase (stripped to show only relevant information) ends up as:

TMR:
(DOUGHNUT642)
(ATTITUDE647
  (TYPE (VALUE EVALUATIVE))
  (ATTITUDE-VALUE (VALUE 0.8))
  (SCOPE (VALUE DOUGHNUT642))
  (ATTRIBUTED-TO (VALUE *SPEAKER*)))

In cases such as the phrase the man in the store, the syntactic and semantic representations fit
the description languages as informally defined here, and the combination process proceeds along
the same algorithm; a brief overview of the processing of this phrase shows no new mechanisms,
only a more general (but perhaps less perspicuous) application of the above processes. As shown
in Section 3.4 above, the SYN-STRUC for the preposition in is:

SYN-STRUC:
((ROOT $VAR1)
 (CAT N)
 (PP-ADJUNCT ((ROOT $VAR0)
              (OBJ ((ROOT $VAR2)
                    (CAT N))))))

Note that the OBJECT of the preposition is bound to $VAR2, and the noun phrase head to which
the PP is attached to $VAR1. The semantics for the basic physical-object location sense lexeme
appears as:
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LEX-MAP:
(^$VAR1

(INSTANCE-OF (SEM *OBJECT))
(LOCATION (VALUE ^$VAR2)

(SEM *PHYSICAL-OBJECT)))

Here the INSTANCE-OF slot serves to constrain the object in question. The SEM constraint
on the LOCATION slot restricts locations to be of the *PHYSICAL-OBJECT ontological type (with
these restrictions, however, the process of relaxation may apply — see Section 8.2 and Section 9.)
The instantiation process yields the following structures:

TMR:
(MAN721
   (INSTANCE-OF (VALUE *MAN)))
(STORE722
   (INSTANCE-OF (VALUE *STORE)))
(^$VAR1
   (INSTANCE-OF (SEM *OBJECT))
   (LOCATION (VALUE ^$VAR2)
             (SEM *PHYSICAL-OBJECT)))

The combination process produces the following structures:

TMR:
(MAN721
   (INSTANCE-OF (VALUE *MAN))
   (LOCATION (VALUE STORE722)
             (SEM *PHYSICAL-OBJECT)))
(STORE722
   (INSTANCE-OF (VALUE *STORE)))

Notice that the combination process, via unification, combined (INSTANCE-OF (VALUE
*MAN)) (as it appeared in MAN721) and (INSTANCE-OF (SEM *OBJECT)) (as it appears in the
semantics of the lexeme for in) to the most informative (i.e., most specific) of the two, that is, (IN-
STANCE-OF (VALUE *MAN)) in the usual manner of unification; this unification process is part
of the constraint satisfaction (and constraint relaxation) process described in Section 8.2 (which
utilizes a mechanism introduced in Section 5.1.) Since it is “unheaded”, the lexical semantic rep-
resentation for in does not appear as a separate data structure in the final combined form; it only
serves to combine other semantic structures in appropriate ways. In some cases these “unheaded”
structures do add information per se — many attributive adjectives in English would have lexical
semantic representations of this nature.

The combination process is typically guided by the lexical semantic representations of the lex-
emes in the text. In some cases, however, there is no predefined or expected semantic structure
which can be identified as lexicalized. In the case of Noun-Noun compounding in English, each of
the nouns involved may have simple lexical semantic structure, with no overt indication of how to
combine them; some speculation on the application of the instantiation-combination process to
this construct is found in Section 11.1.
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Heuristic VIII. The Combination operator attempts to combine TMR fragments ac-
cording to either expectations from the syntax/semantics interface or as indi-
cated by syntactic clues; the success of the operator is contingent on the
successful application of the constraint satisfaction check, as embodied by the
ontological graph search mechanism.

7.5 Semantic Analysis Flow and Control

The control flow of semantic analysis process is left open to any of a variety of architectural
control structures; although the choice of control structure affects efficiency substantially, it can
also affect the final outcome in a complete model, specifically in committing to either a backtrack-
ing approach vs. a multiple-parallel-hypotheses approach. We implemented an agenda-driven
blackboard system in the DIANA effort, and a branch-and-bound implementation for the MIK-
ROKOSMOS effort is described in Beale (1997). In the blackboard version of the architecture,
each instantiation and combination operator is a separate process on the agenda. The example il-
lustrated in Figure 7B demonstrates a very simple example of a traversal through the search space;
note that this example assumes a list of lexemes (vs. lexemes embedded within an f-structure), no
lexical ambiguity, and no search paths that are attempted then abandoned. Essentially, all the fig-
ure shows is that there are multiple possible control flows that can lead to the same final state; the
agenda handler in the blackboard approach or the control flow mechanism for other control archi-
tectures have the liberty to traverse any of the possible paths through the search space, because the
preconditions on the application of the operators are well-defined.

7.5.1  Parameters of Semantic Analysis

The main parameter which controls the selection of the next node to explore from the search
threshold is the preference value (assuming any sort of best-first or derivative search algorithm). A
number of threshold values can be set to prune search paths. First, within the ontological graph
search itself, a threshold can be set to quit if there are no possible paths at or above the threshold
value; the search will return a FAIL state to specify that the constraint cannot be met. In the state-
space search, if the combined preference for the node at the tip of the path dips below a different
threshold value (or if a specific operator fails), then that path is pruned.

7.5.2  Ambiguity Representation

In actual semantic processing, there may be numerous intermediate and final states; it may be
possible to represent the various states in a shared packed forest of TMR representations. Addi-
tionally, by sharing portions of the TMR structure between states in the search space, it is possible
to expedite the search process by caching the results of a particular instantiation or combination
that was already calculated in a previously evaluated state.

The search process may produce any number of final states, each reflecting a somewhat differ-
ent semantic analysis through a different TMR structure. Each such representation would have an
associated preference value. Any of these TMR alternatives can be modified, or the preference ad-
justed, by one or more of the microtheory processing modules that can operate on the TMR after
it is produced by the SDS-building process. The assumption taken in this approach is that between
the constraint satisfaction process and the microtheories which consider context and other knowl-
edge sources, one TMR would have a better preference value than the competing readings.

Thus, ambiguity is represented as a disjunction of possible TMRs (or fragments of TMRs).
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Figure 7B. Search states for “the man in the shop”, assuming no ambiguity or abandoned
search paths
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Vagueness, on the other hand, is represented in the TMR structure by instantiating an appropriate-
ly vague concept from the ontology.

7.5.3  The Introduction of Additional Nodes

In some cases, when the application of the combination operator invokes the ontological graph
search, it may indicate the instantiation of additional nodes is necessary, or that the arc whose
endpoint was being resolved be replaced by a series of arcs. One such case might occur in the han-
dling of metonymy; see Section 9 for detailed discussion of this process. As a brief example, in a
Composer-for-Composed metonymy (e.g., he played Bach), where the putative interpretation
would be “he played some music composed by Bach”, an additional node would be instantiated in
the path between the instantiation of *PERFORM-MUSIC concept and the $J-S-BACH instance
(from the onomasticon):

TMR:
%PERFORM-MUSIC23:

(THEME %MUSIC-PIECE44)
%MUSIC-PIECE44:

(COMPOSED-BY $J-S-BACH)
$J-S-BACH:

(INSTANCE-OF *COMPOSER)

In some cases, the additional concept that is instantiated results in a specific instance, while in
other cases a generic instance is required. Further discussion of these issues is found in Section 9
below.

7.5.4  Combination of Evidence from Multiple Sources

Since the framework described above produces multiple preferences measures (one from each
constraint, in addition to other microtheories, such as a domain model, phrasal/idiom preference
mechanism, frequency information, and so on), the issue arises of combination of evidence. Syn-
tactic sources of evidence (syntactic category and subcategorization frames) in both our imple-
mentations act to prune out senses or readings that aren’t compliant with the constraint. But all the
other sources of disambiguating and SDS-building knowledge merely calculate a preference in
[0.0, 1.0].

A range of possible ways of combining evidence could be applied to producing an overall re-
sult, as discussed in Jones and Onyshkevych (1997). For example, McRoy (1992) accumulates
preferences additively. She uses a “specificity”-based measure (in [-10, 10]) for weighting each
individual preference, then adds the preferences. The more specific a constraint that is met, the
higher the preference (closer to +10). But the inverse holds for failed constraints, i.e., a failed
weak constraint gives -10. Harley and Glennon (1997) also use additive weights, as do Alshawi
and Carter (1994).

In our model, however, the number of constraints that apply to competing word senses can
vary significantly, and an additive model would prefer the sense with the most constraints. Addi-
tionally, we found that some failures of constraints should absolutely eliminate a sense. For these
reasons, it was most convenient to use a multiplicative approach for combining preferences in the
DIANA model. A root-mean-square approach was adopted in the MIKROKOSMOS implementa-
tion (sum the squares of the individual scores, produce an average of the squared sums, and com-
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pare the square roots of the averaged sums for competing hypotheses). This approach was found
to avoid some of the penalties imposed by higher numbers of constraints. We aren’t entirely satis-
fied with this approach, however, and a subject for further research is exploring various competing
models of combination of evidence.
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8. Application of the SDS-Building Mechanism: Word Sense Disambiguation
The core application of the SDS-building mechanism for semantic analysis (as discussed in

Section 7), using the ontological graph search mechanism for semantic constraint satisfaction (see
Section 5), involves selection from among many potential semantic representations (TMRs) in the
search space. Perhaps the most important process in traversing that search space is Word Sense
Disambiguation (WSD), or the selection of the correct sense of each word that appears in the in-
put (assuming, as we do, that an enumeration approach is taken to lexicon construction, as dis-
cussed in Section 4.1.2). This section uses the WSD approach to differentiate the overall
framework from related work, and focuses on issues involving the application of the SDS-build-
ing and semantic constraint satisfaction process to WSD.

8.1  Background and Related Work

Except for very limited situations where raw word sense frequency can be used, such as in
very restricted, fixed domain settings, all approaches to WSD make use of the words in a sentence
to mutually disambiguate each other. The distinctions between the various approaches, however,
lie in the source and type of knowledge that is made available by the lexical units in the sentence.
We restructure the traditional top-level distinction between paradigmatic and syntagmatic ap-
proaches somewhat in order to differentiate the framework described in this document from other,
perhaps superficially similar, approaches in the literature. We identify paradigmatic approaches as
being based on knowledge of concepts and semantic relations among those concepts. Thus the
knowledge base used by the WSD algorithm generally identifies the relations among word senses
or, preferably, among the semantic primitives used to define those senses (often only through an
IS-A hierarchy, but also sometimes using other semantic relations). In contrast, what we are call-
ing syntagmatic approaches are based on expectations about how words are used in structure and
what other words they appear with in an input sentence. Thus, the knowledge base allows the al-
gorithm to relate each word to other words that appear in some linguistic relation to the word in
question. This distinction should be taken as a caricature for expository purposes, and it will be-
come clear that the distinction often becomes fuzzy.

8.1.1  Related Paradigmatic Approaches

Tversky (1977) popularized perhaps the simplest approach to comparing word senses, via
comparing features of a word’s senses with the features of the senses of another word in the sen-
tence. By picking the subset of senses (one per word) that was maximally similar, sentence-level
WSD can be achieved. This requires that all word senses have a set of predefined features or prop-
erties (at great acquisition expense, usually), and it assumes that sharing features (or, rather, fea-
ture values) signifies semantic relatedness or conceptual similarity, and that words in a sentence
tend to be conceptually similar (two assumptions that still need validation). Other work, such as
Waltz and Pollack (1985), also use this fundamental feature comparison approach, typically in
conjunction with other mechanisms described below.

The canonical paradigmatic approach uses a relational structure of some sort, whether a se-
mantic network stemming from the work of Quillian (1968), or a taxonomic hierarchy of word
senses or concepts, such as WordNet (Miller et al. (1993)), or an ontology, such as Knight and
Luk (1994) or our ontology, described in Section 3.1.3 above. Each sense of words in the input
sentence typically correlates with elements of the tree or network, typically one or more nodes per
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word sense. These nodes can either represent the word senses directly (as in Quillian (1968),
much of the work in Evens (1988), or in Charniak (1985, 1986), or the nodes may represent con-
cepts or primitives that are used to construct meaning representations for word senses, as in our
approach (see Section 4).

One way to utilize such relational structures for WSD is to consider the distance in the rela-
tional structure between nodes. Rada et al. (1989) define a semantic distance metric on a seman-
tic net, using only the IS-A links defined in the network. The basic assumption of this approach is
that the semantic net is organized according to similarity (again, an assumption that needs valida-
tion). By considering all senses of all words in an input sentence pair-wise, they are able to pick
the set of senses that has the minimum semantic distance, therefor, supposedly, are most similar.
Distance is computed by simply counting the minimum number of links or edges that need to be
traversed over the tree structure between two word senses. In fact, Rada et al. (1989) also con-
ducted human experiments that show that path length is reasonable measure of semantic similari-
ty. Their distance metric approach did not fare well when they considered other sorts of relations,
not just IS-A; we speculate that results would be more interesting if using the more elaborate
mechanisms for weighting edges that is described in Section 5 (even though we use that mecha-
nism to compute constraint-to-filler paths, not sense-to-sense paths).

Rada compares the semantic distance metric to semantic relatedness, which reflects all the
interconnections between concepts (see above). So “Because ‘is-a’ relations are based on similar-
ity between defining features, we hypothesize that when only is-a relations are used in semantic
nets, semantic relatedness and semantic distance is equivalent” (Rada et al. (1989)).

Agirre and Rigau (1995) and Agirre and Rigau (1996) also use the Rada semantic distance ap-
proach, using WordNet as the taxonomy. Their distance measure factors in the depth of hierarchy
(deeper concepts are closer together, so shorter distance) and density (the more siblings at a par-
ticular node, the closer they are). This approach does best on distinguishing homography, not the
fine senses in WordNet. Not surprisingly, they intend to combine their method with other ap-
proaches to do real WSD, as they don’t think their approach can solve the whole WSD problem,
although they do believe that they could do much better with a richer ontology. Our approach, in
fact, provides supporting evidence for the utility of a distance-related metric on a richer ontology
for WSD, although there are important distinctions between our ontology graph search and this
simplistic distance measure, stemming from the fact that we use the graph distance mechanism to
compute constraint-to-filler paths, not similarity of word senses over the taxonomy.

Our approach also bears superficial similarity to a group of methods for calculating paths over
a relational structure using spreading activation. We use the distinction in Waltz and Pollack
(1985) between two kinds of spreading activation: digital (also known as marker passing), and an-
alog.

In the marker passing approaches, such as Quillian (1968), Norvig (1989), Fahlman (1982),
Hirst (1987), and others, the idea is to start paths at all senses of words in the input sentence
(somewhere in the network), and to propagate the “markers” until they collide, identifying prox-
imity, relatedness, or making other inferences. These networks typically have a much richer set of
links between nodes than the semantic distance taxonomies; however, this approach, as a class,
suffers from the problem of overgeneration of false paths (Norvig (1989) finds only one good path
per 10). To overcome this overgeneration problem, Fahlman (1982) types his network connections
and his markers, allowing only certain markers to pass in certain links, in addition to preventing
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certain combinations of markers to coexist. Norvig has the marker strengths decay at each step (to
prevent over-long paths), and uses a finite state machine to post-filter his paths to eliminate obvi-
ously bad paths and to prevent combinatorial explosion of the search space.

This decay mechanism (called a gradient) is one of many typically used in the “analog” ap-
proach to prevent search space explosion. In this type of spreading activation, nodes in the net-
work are initially activated to reflect possible senses of the words in the sentence. This activation
then spreads over (weighted) links to neighboring nodes until equilibrium is reached, and certain
senses are activated, reflecting the high level of activation they receive from their neighborhood.
This algorithm, too, suffers from overgeneration (in the form of too many nodes becoming active),
so a range of mechanisms is used to restrict the search space. Collins and Loftus (1975) use “cri-
teriality” to identify importance of links to their originating nodes, and also filter resulting paths
based on the surface syntax of the sentence (since their net consisted of words from the sentence
itself). Charniak (1985, 1986) does path-checking over all found paths for the most “reasonable”
path (as Hirst (1987) does), and divides the activation energy (or the marker weight) by the
branching factor at each node, in addition to an exponential time decay of activation energy (for
him, only one of 20 paths was good). Granger et al. (1984) too filter out potential paths before try-
ing, based on “parsimony, cohesion, and specificity”. Waltz and Pollack (1985) used a mechanism
called lateral inhibition to reduce over-activation, and used a vector of 1000 micro-features for
each node, causing a serious knowledge acquisition burden. As Rada et al. (1989) note, their se-
mantic distance metric could be considered a special case of spreading activation, if only IS-A
links are allowed, with only positive activation (no inhibition etc.)

Of these approaches, only Charniak (1985, 1986) actually bears some similarity to our frame-
work, in that he checks for paths between selectional restrictions and potential fillers of those
roles (among other things); given a path, he looks for elements of that path to provide an explana-
tion of the relationship, in an abductive manner. However, the ontology we use consists of a con-
nected network of concepts (not words or predicate calculus terms and expressions) which are
used in a compositional manner to represent the lexical semantics of a word. Since we have a
complex arc weighting scheme, and perform a best-path search, we obtain significantly better re-
sults. In general, since we don’t spread positive and negative activation energy (only pursue, in a
best-first manner, paths that reflect a monotonically-increasing cost), we avoid the combinatorial
explosion expense or a necessity of a post-filter, inhibition, damping, etc. Spreading activation re-
flects semantic relatedness, in that if two nodes have multiple links connecting them, they will be
very “close”, while for our application we are looking (abductively) for the single cheapest path
that reflects the best relation between a constraint and a filler (in time linear to the number of
links, without any combinatorial explosion caused by lack of equilibrium or over-activation). Ad-
ditionally, most efforts that use spreading activation (including Charniak) use the mechanism it-
self for the control structure, while we use the ontology graph search to consider constraints pair-
wise, and rely on the SDS-building process to provide overall control.

One severely constraining factor on the use of network-based approaches (whether semantic
distance or spreading activation) is the availability of the network resource, and the mapping of
lexical items to nodes in the network. One potentially appealing source is the Machine Readable
Dictionary (MRD), since the natural language dictionary definition can be used as a set of links
to other words in the dictionary. However, the words in the definitions are themselves words (not
word senses), and therefore need to be disambiguated themselves. Lesk (1986) approaches this
difficulty by considering the overlaps of dictionary definitions of all senses of words in a sentence.
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In other words, he attempts to find the subset of word senses (one per word) for which the dictio-
nary definitions share the most words in common. The search space for this approach, however, is
very large. To address this as an optimization of parameters problem, Cowie et al. (1992), Wilks
et al. (1992), and Wilks and Stevenson (1997) use a simulated annealing approach (see Section
5.3.2 for an explanation of simulated annealing) with strong results. Veronis and Ide (1990), on
the other hand, attempted a similar experiment using a neural net approach, however, on much
smaller scale.

In addition to the definition, some MRDs provide another source of potential (paradigmatic)
disambiguation knowledge, in the form of domain or subject codes. For example, the electronic
form of the LDOCE dictionary (Procter et al. (1978)) provides about 500 subject tags. A number
of approaches, such as much of the work described in Boguraev and Briscoe (1989) or, more re-
cently, Wilks and Stevenson (1997), make use of these codes as a weak source of information for
WSD, generally in conjunction with other methods. If the subject domain of a text is known a pri-
ori, then word senses in that domain can be preferred over other senses. In the absence of knowl-
edge about the domain, it is sometimes possible to determine it automatically by tallying “votes”
for each domain by taking the code from each sense for each word in the text; then WSD is per-
formed by taking the sense that appears in the most frequent domain (or is closest to it). Harley
and Glennon (1997) use the subject codes in the CIDE resource (Procter (1995)) in much the
same way. Of course, this approach requires that an appropriate resource be available, which isn’t
the case for most of the world languages. And even for English, the coverage of these resources is
such that many word senses (or entire words) have no domain information, resulting in no evi-
dence for WSD.

As an alternative to domain codes, McRoy (1992), Morris and Hirst (1991), and others apply
similar WSD methods using domain clusters of semantically associated words. The association
or relationship between words can be (using McRoy’s terms) either categorial (for synonyms or
near-synonyms, like WordNet syn-sets), functional (reflecting relations such as part/whole), or sit-
uational for clusters of terms in the same domain, but with thematic role or more distant relation-
ships, like lawyer/court/testify/... Although these clusters can be acquired relatively economically,
neither this method nor the subject code or dictionary definition approaches provide any informa-
tion about how the terms are related in a way specific enough to facilitate SDS building; despite
the drawbacks of the semantic network methods, they are able to offer information which pro-
vides structure for the SDS process. In fact, the ontological graph search mechanism (described in
Section 5) can be used for this cluster approach, in that synonymous words are mapped to the
same (or sibling) ontological concepts, and semantic relations are uncovered by the search pro-
cess, so long as they are represented in the ontology; the ontology is weakest, however, on the sit-
uational relational information. The cluster and other non-structure-providing methods could be
used to provide secondary weak WSD information in our approach.

8.1.2  Related Syntagmatic Approaches

The central premise of the syntagmatic approaches is summarized in a slogan, attributed to
Firth: “a word is known by the company it keeps”. So for the immediate context of WSD, this
suggests that the knowledge needed for disambiguation of a word sense should reflect the context
in which it is expected to appear. We differentiate two approaches to acquiring and structuring
such information. One general class of approaches, which has regained popularity in the past 5
years, involves the statistical acquisition of information identifying words that appear together in
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a corpus, generally in the form of uninterpreted frequencies, information measures, or language
models. The other general approach involves (typically manual) acquisition of specific syntactic,
semantic, or pragmatic expectations of what other classes of words are expected to appear in a
specific linguistically motivated relationship to the word in question.

All the statistical approaches, for example Church and Hanks (1989), Gale et al. (1992),
Alshawi and Carter (1994), Yarowsky (1995), Dagan et al. (1991), Dagan et al. (1993), Leacock
et al. (1993a,b), or Brown et al. (1991), are corpus-based in that they require corpora of substan-
tial size for each particular language, domain, and text type. In fact, much of this type of work (ex-
cept some of the work by Yarowsky (1995) and relatively few others) requires that the texts be
tagged or annotated in some way, whether with word senses relative to a fixed resource, such as
WordNet, or with translations of running text, as in Melamed (1997). Building such annotated re-
sources is very difficult, labor-intensive, and not very reliable (manual annotation isn’t very accu-
rate or consistent); even the premise of Melamed (1997), that bilingual corpora will soon be
prevalent, won’t necessarily prove as fruitful as expected (he has the further complication that his
word senses are defined only relative to another language, which won’t necessarily support the
sort of reasoning necessary for resolution of metonymy, reference, or lexical divergences).

We agree with Wilks and Stevenson (1997) and Lehman (1994) that such statistical methods,
based on corpus co-occurrence, are unlikely to achieve WSD (not to mention SDS-building) on
running text with high accuracy, if used alone. None of these methods has been demonstrated on
WSD of running text with any accuracy, if at all. It should be expected that such methods could
typically be augmented and improved by the addition of well-understood linguistic knowledge;
however, statistical models are typically virtually impossible to interpret and modify in a linguis-
tically informed manner. In fact, Lehman (1994) finds that, for the statistical co-occurrence ap-
proaches, the frequency model doesn’t add much value, and that most of the discriminating power
comes from the inventory of word pairs (which was, albeit, discovered by the statistical tech-
niques).

An additional problem with the range of collocational approaches (whether statistical or sym-
bolic), as identified by McRoy (1992), is that many of these approaches, such as Smadja and
McKeown (1990) (but not the McRoy (1992) or Dyer and Zernik (1986) symbolic approaches),
aren’t able to identify collocations between word senses, but between word strings, which still
leaves much work to be done for using the results for WSD in support of Machine Translation in
our framework (and other models, except for Brown et al. (1991)).

Despite the acquisition burden and inaccuracy, the symbolic expectation-based approaches
have the advantage of allowing (or requiring) interpretability of the knowledge source by humans.
Information with specific linguistic information content can be evaluated and generalized by hu-
man acquirers. Straightforward linguistic information, such as syntactic category and subcate-
gorization has been used extensively, for example, recently by Wilks and Stevenson (1997),
McRoy (1992), Harley and Glennon (1997), and the MikroKosmos system described in this docu-
ment; although not achieving full WSD for fine-grained senses, this sort of knowledge is sufficient
for disambiguating at the homograph level, and for pruning out a substantial percentage of fine-
grained senses (at least a third, in our work). In fact, Wilks and Stevenson (1996) show surprising
results on pruning homographs just using syntactic category information.

Perhaps the most widely-used type of expectation for WSD relies on selectional restrictions
or semantic constraints, ever since Katz and Fodor (1963). This approach involves an expectation
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that a word of a specified semantic class will fill an argument position of a verb. The set of seman-
tic classes may be small, involving only half a dozen binary distinctions, or could use a large on-
tology (as in our case). WSD then relies on selecting the combination of verb and argument senses
for which the selectional restrictions are satisfied, for example in Charniak and Goldman (1988),
Oflazer and Yilmaz (1996), Harley and Glennon (1997), and many others.

Selectional restriction approaches since Wilks (1975a,b) and his notion of preferences, in-
cluding Fass (1986) or Fass (1988), have not required that selectional restrictions be completely
satisfied (i.e., allowing some kind of relaxation), nor have they required that 100% of all con-
straints be satisfied in order for a sense to be picked. The complication then is how to control the
relaxation of the constraints. If relaxation is too extensive (or if the constraints are too coarse-
grained to begin with), then the restrictions lose all discrimination ability; if the mechanism is too
restrictive in that it doesn’t relax sufficiently or in the correct way, then too many correct senses
are filtered out, particularly in the case of metaphor or metonymy. McRoy (1992), for example,
finds that constraint-based discrimination isn’t very effective; this probably results from the very
limited relaxation of constraints (one level in her hierarchy) supported by her approach. One of
the goals of the ontological graph search mechanism (described in Section 5) is overcoming ex-
actly this problem: exerting tight, informed control over relaxation, sufficient to allow metonymic
arguments, but restrictive enough for correct WSD.

Another problem with the selectional restriction approach is the knowledge acquisition ex-
pense, since not only do verbs need to be marked with constraints on each argument, but each
noun also needs to be marked with a semantic class (or features). Wilks (1975a) identified that “it
is a hypothesis of this work that we can build up a finite but useful inventory of bare templates ad-
equate for the analysis of ordinary language: a list that can be interpreted as the messages that
people want to convey at some fairly high level of granularity”. But this acquisition is expensive
and subject to human error, especially when exacerbated by lack of methodology. Zernik and Ja-
cobs (1990) attempted, in a small-scale experiment, to use a statistical training technique to ac-
quire information that amounted to selectional preferences, but with inventories of words (found
in a corpus) in the place of semantic classes and constraints. Resnik (1997) extended that ap-
proach, but in an unsupervised training context (unsupervised in the sense of not requiring a
tagged corpus, not in the sense of not using a pre-defined set of senses). He looked for words
which appear after a verb with higher frequency than their general distribution over the corpus,
then abstracted up the WordNet tree to identify a syn-set as a selectional category (since the nouns
were undisambiguated, he simply gave credit to each syn-set having a sense of the noun). His re-
sults weren’t great, however, possibly because metonymic language causes abstraction too far up
the hierarchy, or maybe because he needs to disambiguate better during the training.

The use of coherent semantic classes is a common element of virtually all approaches to selec-
tional restrictions. Spreading activation over semantic nets, however, (including Waltz and Pol-
lack (1985)), mixes semantic and lexical knowledge in the same network. Although some IS-A
relations may exist in these semantic networks, they are intermixed with other syntactic informa-
tion (parse structures, syntactic categories) and other semantic relations. The activation then
spreads over all types of information for all competing word senses for all words in a sentence,
while selectional restriction tests are typically pair-wise. Although some selectional constraint in-
formation may exist in such semantic networks, they tend to be overshadowed by other semantic
relations, more like the situational domain relations mentioned above. Other approaches to
spreading activation, such as those using WordNet, don’t even have semantic argument informa-
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tion available.

Although based on the traditional Katz and Fodor (1963) notion of selectional restrictions, our
framework uses a significant generalization of the approach, taking advantage of the knowledge-
based paradigm to address practical concerns of the application, namely supporting SDS-build-
ing.

• We use a finer granularity of constraints, in that any of the 5000 concepts in the ontology are
available for use as a semantic constraint.

• Our framework provides multiple levels of constraint: a basic constraint (the SEM facet), a
DEFAULT (always a subtype or specialization of the basic constraint, which, if matched,
is stronger than satisfaction of the basic constraint), and a relaxation limit RELAXABLE-
TO, which is a generalization of the basic constraint, which bounds how far vertical (taxo-
nomic link-only) relaxation can proceed in the ontological graph search process.

• We rely on a relaxation method which not only relaxes along IS-A links, but also along any
other links, especially metonymic ones, as described in Section 5 and Section 9. Previous
WSD efforts that relied on selectional constraints were often weakened because of an in-
ability to handle metonymy in an integrated way; they either had to weaken their con-
straints to the point of uselessness or they would fail to resolve upon encountering a
metonymy.

• We generalize selectional constraints beyond case roles to various other semantic relations
as well. Each EVENT and ENTITY in the ontology, on average, has 14 relational links to
other concepts, each with a “selectional restriction” on the destination concepts of the
links.

• We employ multiple sources of semantic constraints on each candidate filler of a relational
slot: a) the definition of the RELATION itself has constraints on DOMAIN and RANGE; b)
each concept in the ontology can have constraints on any relation for which it appears in
the DOMAIN; c) (multiple) inheritance of constraints from parent concepts; d) the lexical
entry for a given word, via the syntax-semantics interface, can further constrain relations,
roles, or slots beyond the constraint that is in the ontology (see Section 4).

• We allow a much broader notion of what can be “selected for”: prepositions “select” both up
and down (i.e,. object and attachment position), nouns can select (e.g., what it can be an
AGENT of or what its LOCATION is likely to be), adjectives select for their attachment, as
well as v.v., verbs select not only for “inner arguments”, “thematic roles”, or “case roles”,
but can also impose constraints on “outer arguments” or incidental relations that they may
have to other concepts via prepositional phrases, relative clauses, etc.

As an example of the large number of constraints available in this model, on the training data dis-
cussed in Section 8.3 below, in the first text an average of 231 constraint were checked per sen-
tence, which amounts to 14 constraints per word!

Critical to our approach is an explicit separation of information between the semantic (onto-
logical) level and the strictly linguistic (lexical) level. Fass (1988), however, doesn’t appear to
make this distinction: “In our view, semantic relations between terms are complex systems of
mappings or structural relationships between linguistic descriptions of these terms”. Our approach
to WSD and SDS-building involves identifying the ontological relationships between the concepts
that are used to define the meaning of each word sense, then actually producing a full meaning
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representation for running text.

The scripts developed by Schank and Abelson (1977) and Cullingford (1981) could be seen
as a generalization of selectional constraints. Instead of providing information just about argu-
ment roles of a verb in any context, the scripts provide expectations of what the argument roles
might be in a specific context for a semantic class of verbs, and the context may include a set of
related events. Norvig (1989), Bouaud et al. (1996), Dyer and Zernik (1986), Dahlgren et al.
(1989), Charniak and Goldman (1988), (and even Wilks (1975a) who uses “semantic templates”
for general behavior) all make use of (at least shallow) script-like mechanisms for WSD. Acquir-
ing scripts at a significant depth, however, proves to be too expensive for practical applications.

The approach in Wilks (1975a) and Charniak and Goldman (1988) uses a hybrid of shallow
scripts, which provide selectional restrictions for roles, and logical inference rules. Wilks’ infer-
ence rules included both role constraints and causality information (e.g., what the results of get-
ting shot are). More traditional logic-based approaches, such as the abductive logic model of
Hobbs et al. (1988), Grosz et al. (1986), or Hobbs (1991), encode some amount of selectional and
script-like relational information by means of axioms, but also suffer from severe acquisition
problems.

The Word Expert Parser approach of Small and Rieger (1982) involves an extreme case of
encoding contextual knowledge (in their case, procedurally) to support inference for WSD, which
was doomed to failure in scaling up because of the extensive amount of knowledge that had to be
hand-crafted for each word.

8.1.3  Hybrid Approaches

Most work on practical applications that require WSD assume that some combination of the
above techniques will be necessary to achieve the desired WSD accuracy. In some cases, such as
McRoy (1992), these multiple techniques are independent, and the results are combined in some
way to get an overall WSD preference (see Section 7.5.4). In a group of approaches described be-
low, including our own, elements of both syntagmatic and paradigmatic approaches are combined
into a single technique to allow for better-informed WSD.

Miller and Teibel (1991) use their WordNet hierarchy in combination with a corpus, by look-
ing for examples where synonyms of the word in question appear in the same context in a corpus.
So for WSD, they replace, in an abstraction of the sentential context, the word in question with
other words in the syn-set for each sense, and see if any local contexts appear in the pre-tagged
corpus. This method suffers from an extremely heavy reliance on a huge sense-tagged corpus,
however. Instead of using an MRD or WordNet, Yarowsky (1992) uses Roget’s thesaurus. Using
an on-line corpus (an encyclopedia), he collected statistics of the categories of words (of the
1000+ categories or groups in Roget’s) that appeared in a 50-word left and right context. This
demonstration, however, was very narrow in scope, and remains to be proven as scalable to full
running text.

Resnik (1995a,b) also uses WordNet, but as a semantic net for computing semantic distance,
but he augments this with corpus-based frequencies for each node (syn-set) in WordNet. By com-
puting the information content of each syn-set (how much unique information it conveys, inverse
to the frequency), he gets a more informed distance metric that is sensitive to frequency of use at
each node in the path. He finds that this outperforms regular semantic distance metrics, but ex-
pects that a richer network would be more informative, as do Richardson et al. (1994), Agirre and
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Rigau (1996), and as do we. Richardson et al. (1994) also use the Resnik information content
measure, but rely on the more elaborate Rada et al. (1989) semantic distance metric to mitigate a
weakness of the information content measure, where the size of syn-sets affects the relative im-
portance.

Sowa (1993), on the other hand, makes use of the simple semantic distance over an IS-A tree
to help pick right conceptual graph for WSD, and for finding missing elements of meaning. Since
he does not use an a priori full-sized ontological or taxonomic resource, his distance calculation
is contextually restricted and only reflects the conceptual graphs invoked by sentential context.

Kozima and Furugori (1993) and Kozima and Ito (1995) also use word frequency to indicate
informativeness, but in conjunction with spreading activation over LDOCE definitions. For them,
initial activation is proportional to the significance of the word, reflected by the inverse of the fre-
quency of occurrence in LDOCE definitions. But they have a big problem in that the defining vo-
cabulary words in the definitions aren’t disambiguated themselves.

Basili et al. (1997) share a concern with us regarding unsupervised methods for inducing
WSD information statistically from corpora (monolingual or bilingual), since they too believe that
explicit semantic classes are needed to avoid “mysterious scores with no linguistic flavor”, be-
cause the semantic classes and data are needed for some applications/domains for their explanato-
ry power, as is the case for supporting KBMT. They do use corpus statistics, however, to “tune”
the WordNet taxonomy to reflect only the domain of immediate interest.

The overall approach for the work described here also falls into this hybrid syntagmatic/para-
digmatic category. Crucial to our framework is the paradigmatic ontological knowledge source,
which has some flavor of a semantic net in that it includes substantial relational and situational
links between the concepts, but differs from many of the resources described above in that there is
no linguistic knowledge in the resource (it is a network of concepts, not words). However, our de-
cision procedure does not follow the spreading activation model, but (in addition to syntactic cat-
egory and subcategory matching) is very much like selectional restriction satisfaction, although
substantially generalized (as discussed in detail above) to include more sources and types of con-
straints. Additionally, the ontological graph search provides an elaborate relaxation procedure,
which has some of the “semantic distance” flavor (but differs from distance in that the search
checks for compliance of a filler with a constraint instead of assessing “semantic similarity”); al-
so, it uses an elaborate mechanism for assigning weights to each link on the basis of type and con-
text (vs. depth or breadth of the tree at that point), and returns a single chain of meaningful links
between the filler and the constraint (resulting in much simpler computational complexity). Un-
like many of the WSD approaches described above, particularly the statistical ones, our approach
has been tested on running text, and produces not only WSD, but also builds a TMR representa-
tion of the meaning of the text.

8.2  The SDS-Based Model for WSD

After discarding word senses with inappropriate syntactic categories and syntactic (e.g., sub-
categorization) frames, the central mechanism for selecting word senses is a heuristic which relies
on the satisfaction and relaxation of constraints on combinations of concepts. This heuristic at-
tempts to find the best match between i) semantic constraints on roles or relational slots of a con-
cept and ii) the candidate fillers for those roles or relational slots. The process of word-sense
disambiguation prefers the set of word senses with the overall best-satisfied set of constraints, as
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described above.

Hobbs and Martin (1987) observed that “every morpheme in a sentence corresponds to a pred-
ication, and every predicate imposes selectional constraints on its arguments. Since entities in the
text are generally the arguments of more than one predicate, there could well be inconsistent con-
straints imposed on them.” We find that we this observation holds in our work, in that we have a
proliferation of constraints, as described above. For this reason, the SDS-building process com-
bines evidence from all available constraints, with some amount of constraint relaxation typically
found in every sentence.

As mentioned above, all concepts have relational slots (in addition to arguments or case-roles
in the case of EVENTs, or attributes in the case of ENTITYs). On average, each concept has 14 local
and inherited relational slots; we use about 350 discrete types of relational slots. Each relational
slot has constraints on what concepts (or complexes of concepts) may fill that slot, as well as an
expected (DEFAULT) filler for some of the slots. The constraint can be any concept from the on-
tology (or Boolean combinations of concepts). As described in more detail above, one advantage
that we have over previous constraint-based approaches to WSD is that we have many more
sources of constraints and a much richer set of possible constraints (the ontology), which allows
fairly fine-grained constraints on some slots, along with a knowledge-intensive constraint check-
ing heuristic.

In the easiest case, the selectional constraints on the correct set of senses are all satisfied, and
are violated for incorrect combinations of senses. Satisfied selectional constraints appear in the
heuristic as a simple path over the IS-A hierarchy between the candidate concept and the con-
straint. But because natural language use is not literal or precise (because of metonymy, metaphor,
etc.), we often need to relax constraints; however, relaxing or discarding semantic constraints un-
restrictedly would result in egregious proliferation of readings in semantic analysis.

In our heuristic, controlled constraint satisfaction is managed by considering all arcs, not just
IS-A arcs, and by levying a cost for traversing any of those other arcs. We treat the ontology as a
directed (possibly cyclic) graph, with concepts as nodes and relational slots as arcs. Thus con-
straint satisfaction is treated as a cheapest path problem, between the candidate concept node and
the constraint nodes; the best path thus reflects the most likely underlying semantic relation,
whether it be metonymic or literal.

In the simple, base case, the process of matching a potential filler against a semantic constraint
is simply checking whether the filler IS-A whatever the constraining concept is. This check identi-
fies whether the constraining ontological concept is a parent of the potential filler in the ontologi-
cal tree (viewing only the “vertical” hierarchical arcs in the tree); a *DOUGHNUT IS-A *PASTRY
which IS-A *PREPARED-FOOD, which (skipping some generations) IS-A *PHYSICAL-OBJECT, so
therefore a *DOUGHNUT can also be said to IS-A *PHYSICAL-OBJECT (the relation is transitive).
This process of constraint checking is viewed as an application of a best path algorithm from the
(potential) filler to the constraint concept, as described in Section 5.1. Since the cheapest arc is IS-
A, then the ontological graph search algorithm finds whether the potential filler has an IS-A rela-
tionship to the constraining concept. Typically, the weight on the IS-A arc is 1.0, or very close to
1.0.

In many cases the constraint isn’t a single simple concept but a Boolean combination of con-
straining concepts. Currently the AND and OR operators are supported in an obvious manner. In
the current version of the ontological search algorithm, the OR case is treated by placing all of the
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disjuncts on the target search frontier (i.e., identify as acceptable path termination points, and in
bidirectional search, place on list of target-side nodes available for expansion), and searching as in
the base case; the difference is that the shortest path to reach any of the target nodes succeeds. The
AND case is treated by iterating through all the conjuncts, and checking that the constraints are
met — the resulting preference is the multiplication of all of the weights of all the conjunct pref-
erences. With both of the operators, the juncts are actually treated in a recursive manner to handle
possible imbedded Boolean combinations. The effect of a negation operator NOT can be simulat-
ed, for example NOT fu, by an OR of the remaining siblings of the concept fu, and the remaining
relevant siblings of the parents of fu. For example, (AND *ANIMAL (NOT *HUMAN)) would be
simulated by disjoining all of the remaining children of the parent of *HUMAN (for illustration, as-
sume it to be *PRIMATE), and also adding as disjuncts the roots of all of the remaining maximal
subtrees under *ANIMAL which do not include *PRIMATE.1

 In some cases, although there is only one concept constraining the semantic filler, that con-
cept may be a complex constraint, not just a node from the ontology (identified as a univocal map-
ping in Meyer et al. (1990)). For example, the lexeme +jet-v1, meaning “to travel by jet”, has a
constraint that the INSTRUMENT, if mentioned, typically needs to be a jet-propelled aircraft (see
below for discussion of relaxation of constraints). The lexical semantics of this lexeme may in-
clude the following structure:

SEM-STRUC:
(%MOVE

...
(INSTRUMENT

(SEM *AIRCRAFT
(PROPELLED-BY
 (VALUE *JET-ENGINE)))

The semantic constraint-checking procedure needs to not only check that the possible filler is of
the appropriate ontological type, but also that it has appropriate internal structure, for example, as
in the instance:

TMR:
(%AIRCRAFT234

(OWNER (VALUE %PERSON223))
(MAKE (VALUE “LEAR”));;this sloppiness for illustration
(PROPELLED-BY (VALUE JET-ENGINE)))

Ignoring the very imprecise semantic representation used here (for perspicuous illustration pur-
poses only), this example demonstrates that once the conceptual type of the potential filler (i.e.,
AIRCRAFT234), IS-A of the appropriate semantic class (i.e., *AIRCRAFT), any slots that the con-
straint and filler may need to be verified as well. Thus this process can be seen to be very similar
to a recursive feature structure unification process, augmented with relaxation. Thus, if the pro-
spective filler has internal structure, the semantic constraint checking process remains the same,
since the algorithm is recursive.

For example, given an input sentence such as The independent candidate jetted around the

1.  A NOT macro will be implemented to avoid this unwieldy notation.
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country in his two-seater Cessna, given the lexical semantics of the word jet as identified above,
the strict semantic constraint would fail. Given that the search is for a path from the potential filler
to the constraint, the arc weights for that particular search would include:

(INSTANCE-OF 1.0)
(IS-A 0.997)
(SUBCLASSES 0.9)
... ;all other arcs have costs < 0.997

The other arc weights would be defined with smaller multiplicative weights. So the search path
would begin at AIRCRAFT337, traverse the INSTANCE-OF arc (cost still 1.0), succeed in meeting
the constraint IS-A *AIRCRAFT, but fail in the secondary constraint (PROPELLED-BY (VALUE
JET-ENGINE)) since world knowledge would identify the Cessna two-seater as a prop-driven
plane. Since *PROP-ENGINE does not satisfy the constraint IS-A *JET-ENGINE, the search would
continue. The next cheapest arc to traverse from *PROP-ENGINE would be IS-A to the parent con-
cept *PROPULSION-ENGINE, the net cost would still be 1.0. But then to reach the concept *JET-EN-
GINE, which also IS-A *PROPULSION-ENGINE, the path would have to traverse the SUBCLASSES
arc from the path head (i.e., *PROPULSION-ENGINE) to the target, *JET-ENGINE. The cost of that
last arc would be 0.9, giving a net cost of 0.9 for the path. No cheaper path between the two con-
cepts (*PROP-ENGINE and *JET-ENGINE) would be found. The net effect of this semantic con-
straint test would be two-fold: an IS-A relation on the head concept, and a sibling relation on a
secondary constraint. Thus directed constraint relaxation served here to allow the most plausible
semantic dependency structure to be built without allowing a proliferation of alternative readings.

There are cases where there are constraints on the filler of a slot from the head, as well as con-
straints from the element that is providing the filler on what the head can be. For example, one
sense of the English word wooden is that the head is MADE-OF *WOOD. This sense of the adjective
(say, +wooden-adj2) has a constraint on what it can modify:

SEM-STRUC:
(^$VAR1

(INSTANCE-OF
(SEM *ARTIFACT))

(MADE-OF
(VALUE *WOOD))))

Here, the constraint is that this sense of wooden can only modify things that are made by people,
i.e., artifacts, and that the meaning of the word is carried by filling the MADE-OF slot. Meanwhile,
the head that is being modified will also have constraints (local or inherited) on what it can be
made of. For example, the furniture sense of the English word table will specify what tables can
be made of. Thus, in order to produce the representation for the phrase wooden table, two con-
straint checks need to be carried out: a constraint on the head that wooden requires, and the con-
straint on the filler of MADE-OF that table requires.

8.3  Results

The entire Mikrokosmos SDS process was evaluated on the WSD problem on Spanish. This
evaluation used a Spanish lexicon acquired as part of the overall effort. The lexicon consisted of
more than 7000 lexical entries, along with 37,000 “virtual” dynamically-producible entries result-
ing from lexical rules, as described in Viegas et al. (1996) and Onyshkevych and Nirenburg
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(1995), where lexical rules apply to well-defined base lexemes to transform the orthography, syn-
tax, and semantics in a regular way, much the same way as a derivational process.

Table 1 shows statistics and results of the application of the Mikrokosmos implementation of
the SDS-building process and ontological graph search as described in previous chapters. The ta-
ble shows system results on 4 out of 400 Spanish texts used in knowledge acquisition (training). It

is important to note that the context of this experiment involves full-scale building of the Text
Meaning Representation as described in Section 3.3, not just WSD experiments in isolation. So
these results also reflect errors and successes in syntactic parsing, syntax-semantics interface, and
construction of TMR through SDS-building. The four texts represented in this table are real-world
texts from the EFE newswire, from the financial domain. The texts had, on average, 17 sentences
each, with over 21 words per sentence. The correct senses for all the open class words in these
four texts were selected (by a native speaker) from the Mikrokosmos lexicon, as described above;
the native speaker was a member of the lexicography team that built the lexicon, so was able to
pick correct senses with high reliability (we did not have multiple independent sense annotation).
In cases of apparent ambiguity in the input text, the lexicographer still selected the most plausible
sense. As the table shows, the system is able to select the correct sense of ambiguous open-class
words 91%, or of all open-class words about 97% of the time, despite the fact that several micro-
theories that impinge on WSD have not been implemented yet, including reference, anaphora,
context, stylistics, or attitude/modality resolution. The results are significantly better than two
common baselines reported in the literature: picking word senses at random (actually modeled

Table 1: Word Sense Disambiguation Results on Spanish Training Data

Text 1 Text 2 Text 3 Text 4 Average

# of words in text 347 385 370 353 364

# of words/ sentence 16.5 24.0 26.4 20.8 21.4

# of open-class words 183 167 177 177 176

# of ambiguous open-class words 57 42 57 35 48

# of senses per ambiguous word 2.65 2.24 2.47 2.06 2.36

# of words resolved by syntax 21 19 20 12 18

# of words resolved by semantics 30 22 25 22 25

# correctly resolved: syntax + semantics 51 41 45 34 43

% correct of ambiguous: random guess 62 70 64 67 65

% correct of ambiguous: pick first sense 67 45 54 46 54

% correct of all: pick first sense 90 87 86 90 88

% correct of the ambiguous words 89% 98% 79% 97% 91%

% correct of all open-class words 97% 99% 93% 99% 97%
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probabilistically, not computed) and always picking the first sense.

The sources of disambiguation knowledge used in this experiment were syntactic category,
subcategorization, semantic constraint checking, and a weak domain model. The table identifies
what percent of disambiguation was achieved by the syntactic methods, as compared to semantic
constraint checking via the ontological graph search. As an example, the total number of con-
straints checked in Text 1 was 4857, with an average of 231 constraints checked per sentence.
This works out to about 14 constraints per word! The Hunter-Gatherer control structure (see Beale
(1997)) for SDS building caches each constraint satisfaction call to the ontological graph search
for reuse of results when the call is identical (resulting in about a 2/3 reduction in the number of
explicit calls).

Notice that the syntactic analysis (including both syntactic category and syntactic subcategori-
zation, as described in Section 3.4.2), contributed to about 38% of WSD results. This is consistent
with results on verb pruning by subcategorization by Jing et al. (1997). Perhaps stronger WSD re-
sults could be achieved by syntax alone with a more informed parser, in conjunction with more
extensive lexical information, such as syntactic classes of the type described in Levin (1991),
Levin (1993), or Mitamura (1990); however, because of the strength of the semantic contribution
in this approach, as well as for robustness against syntactic anomaly, ill-formedness, or mis-pars-
ing, we do not intend to extend the syntactic disambiguation beyond the current level of disambig-
uating power.

As Table 1 shows, the first and third texts had significantly lower accuracy in WSD that the
other two texts, because they had longer sentences, many more ambiguous words, and difficult
constructs (e.g., ambiguous words embedded in appositions). In those two texts, in a number of
cases a single word appeared multiple times, and was incorrectly disambiguated multiple times.
For example, the Spanish word operacion occurred several times and the system was not always
able to disambiguate correctly between its WORK-ACTIVITY, MILITARY-OPERATION, SURGERY, and
FINANCIAL-TRANSACTION senses (although the SURGERY sense was easily eliminated). An addi-
tional theory of context or a stronger microtheory of domain would contribute to resolving this
ambiguity in a fully-implemented end-to-end system.

The Mikrokosmos analyzer was then tested on a text that was not used for any stage of lexical
acquisition, ontology acquisition, ontological graph search weight training, or any other stage of
development. As Table 2 shows, results on this unseen text are not significantly different from re-

Table 2: Word Sense Disambiguation Results on Unseen Spanish Test Data

Text 5

# of words in text 215

# of words/ sentence 26

# of open-class words 104

# of ambiguous open-class words 26

# of senses per ambiguous word 3.0

# of words resolved by syntax 9
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sults on the training data, despite the fact that the syntactic parser used for this made numerous
parse errors, and the analyzer itself had some variable binding problems due to previously unseen
constructions. This unseen text contained 19 words that hadn’t been entered into the Mikrokos-
mos lexicon. The Mikrokosmos analyzer produces dummy entries for all unknown words, marks
them as nouns, and dynamically builds a SEM-STRUC mapping the meaning to ALL, the root con-
cept in the ontology; this effectively means that semantic constraints will have little if any effect.
These 19 words were treated as unambiguous in the WSD results in Table 2. Of these 19 unknown
words, 12 were actually proper nouns, which could easily have been identified with high accuracy
by Name Tagging technology, as described in Sundheim (1995). The name taggers would have
also identified the proper nouns as referring to HUMAN, ORGANIZATION (or even FOR-PROFIT-
CORPORATION), GEOGRAPHICAL-ENTITY (a place), or named ARTIFACT (such as a product), in-
stead of just ALL; this additional level of information would certainly be useful for disambiguation
of surrounding words. Of the other 7 unknown words, about half would have had multiple senses
had they been entered into the lexicon.

The average number of senses per ambiguous word is 2.36 for the training data. This number
is relatively low, in comparison with MRDs and resources such as WordNet. However, the sense
distinction is finer than homograph level, so the results given below aren’t comparable to Wilks
and Stevenson (1996), or, for that matter, Yarowsky (1995), who only used binary distinctions.
Although the lexicon was not acquired as a domain-specific lexicon, the fact that a mergers and
acquisitions financial corpus was used to guide acquisition suggests that a higher percentage of
senses relate to the training and testing domain than would be the case for a general resource; giv-
en the approach to semantic analysis described here, it is probably the case that domain-specific
terms are more difficult to disambiguate than word senses from other domains.

In order to explore the effect of a more fine-grained lexicon (more senses per word) on disam-
biguation results, an additional experiment was run. For this experiment, an additional 40 senses
were added to the lexicon entries of a total of 30 words used in the texts (these senses were gener-
ally beyond the domains encountered in the 400 training texts). The evaluation was re-run with
this expanded lexicon (but without an expanded domain microtheory), giving overall results only
3.6% worse on total WSD.

The results, as a whole, are difficult to compare to other work for a number of reasons. Firstly,
the results above are on Spanish, while the vast majority of other work is for English text. Second,
we actually performed WSD on running text, while efforts such as Yarowsky (1995), Leacock et
al. (1993a), Luk (1995), or Bruce and Wiebe (1994) gave results on a very small number of words

# of words resolved by semantics 14

# correctly resolved: syntax + semantics 23

# correctly resolved: random guess 64

% correct of the ambiguous words 88%

% correct of all open-class words 97

Table 2: Word Sense Disambiguation Results on Unseen Spanish Test Data

Text 5
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(between one and twelve), but many occurrences. Third, our effort is not merely a word-sense tag-
ging or WSD effort, as most of the efforts described in Light (1997) are, but a full semantic anal-
ysis effort, involving the building of SDS, which introduces a variety of complications that a
tagging effort wouldn’t encounter. Fourth, our lexical and ontological resources are of a substan-
tially different granularity than most other efforts, which tend to use WordNet or LDOCE. That
said, the results given on the experiments above are very competitive, especially since the scale of
the effort is not toy; testing was not conducted on more texts not because the system wouldn’t
handle more texts, but because of the high cost of building answer keys for evaluation.
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9. Application of the SDS-Building Mechanism: Metonymy Processing
Lakoff and Johnson (1980) identify metonymy as “using one entity to refer to another that is

related to it.” Following Gibbs (1993), metonymy crucially differs from metaphor in that metony-
my uses an entity to refer to another, related, entity from the same domain, whereas metaphor nec-
essarily relies on the replacement of an entity from one domain by an entity from another
conceptual domain.

As has been well-established in the literature, metonymic language use is pervasive in written
and spoken language. NLP efforts addressing specific corpora, such as Hobbs and Martin (1987),
Stallard (1993), and MADCOW (1992), all had to address metonymic phenomena because of its
high frequency. The training and test data collected for this effort (as described below in Section
9.8 an Section 9.9) also found high volumes of metonymy in newswires.

9.1  Why Resolve Metonymy?

We find that we need to identify and resolve metonymy during the semantic analysis phase of
Machine Translation for a number of reasons, given below. (Of course, some of these arguments
assume that the generation component of the MT system is able to take advantage of the addition-
al inferences and information that is provided as a result of the resolution.)

• The most compelling argument for resolving metonymy as part of the analysis process in
MT is that metonymies do not necessarily translate literally into other languages. Al-
though often they do translate felicitously, an informal investigation into the translatability
of 15 examples of metonymy easily found a number of cases where a literal translation
would be bizarre, misunderstood, or just ill formed. For example, in The newspaper fired
the editor in chief, the word for newspaper (shinbun) must be rendered as newspaper com-
pany (shinbunsha) to make the example understandable in Japanese. In Kannada, the ex-
ample Alicia de Larrocha plays Mozart exquisitely would be misunderstood if translated
literally (would, at best, appear to refer to mind games that she played on him), as would
an example such as The sax has the flu tonight (which would be understood as referring to
the sax’s sound). These results are consistent with the more thorough field work in Kamei
and Wakao (1992) and Wakao and Helmreich (1993) on English, Chinese, and Japanese;
they cite additional examples, such as He read Mao being unacceptable in Chinese. The
series of examples concerning the Prix Goncourt, developed by Kayser (1988) and ex-
tended by Horacek (1996) and others, also illustrate cases where well-formed metonymies
in English are unacceptable in French or German; Horacek also presents other examples,
such as Mary finished her beer and we need a couple of strong bodies over here as ill
formed when translated into German.

• In addition to the cases where literal translation of metonymy is unacceptable, there are nu-
merous other examples where the literal translation is understandable but not fluent. Ex-
amples of this include Clinton invaded Haiti when translated into Hebrew, The newspaper
fired the editor in chief when translated into Ukrainian, and We usually go out to lunch af-
ter church when rendered in Japanese. Gibbs (1993) suggests that in metonymy “a thing
may stand for what it is conventionally associated with”, so, since not all conventions are
shared (or not shared with equal strength) across cultures and languages, there should be
no expectation that a literally-translated metonymy will be felicitous.

• The replaced entity may need to be available for anaphoric and other referential mecha-
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nisms. In the utterance The sax has the flu tonight, so the boss docked his pay, the pronoun
refers to human (the musician) that the metonym replaced. Similarly, for identifying the
definite reference in I bought a used Volvo, even though the engine was shot, one needs to
identify that the company name is used metonymically for its product. Anaphora and defi-
nite reference function in various unique ways in different languages, so resolution is nec-
essary for fluent translation.

• Agreement mechanisms may reference not the metonymic expression, but the replaced enti-
ty, in some examples. In the saxophone example above, the pronoun agrees with the re-
placed musician’s gender, not the metonym’s. In Japanese and other languages with
counters or classifiers, expressions such as six Volvos require the classifier for cars, not for
companies.

• Since word sense disambiguation (WSD) mechanisms typically rely on sentential context in
some form, unresolved metonymies can cause inaccurate resolution. This is certainly the
case for constraint-based WSD methods (such as the one described in Section 8, or meth-
ods using LDOCE box codes), domain-tag methods (such as those using LDOCE subject
codes), semantic distance and other semantic net methods (such as Agirre and Rigau
(1996), Collins and Loftus (1975), or Resnik (1995a)), or dictionary-definition-intersec-
tion methods (such as Lesk (1986) or Kozima and Furugori (1993)); all of these methods
would be more accurate if the metonymies were resolved and the replaced entity added to
the local context. Of course, these sorts of methods are often used to identify metonymies,
so there is a circularity regarding whether WSD is needed to resolve metonymies, metony-
mies resolved to aid in WSD, or both needing to be done in parallel.

9.2  Related Computational Approaches to Metonymy

Two general classes of mechanisms for handling metonymy have been implemented (either
implicitly or explicitly) in earlier work. In one approach, the lexical entries for argument-selecting
heads can be extended to allow arguments to be of the type of typical metonyms (e.g., specifying
that the agent of announce needs to be either a person, an organization, or a place of residence to
handle expressions such as The White House announced... or Tokyo announced...); similarly, the
lexical entries for typical metonyms can be expanded, typically by duplicating them with different
type specification (e.g., having a second lexical entry for White House or Tokyo as a government
organization). In addition to excessive proliferation or generalization of lexical entries and the in-
evitability of lexical acquisition gaps (resulting in missed metonymies and WSD errors), this ap-
proach misses the important insight or generalization that such processes are productive. Most
efforts on sublanguages (e.g., Grishman and Kittredge (1986)) or in narrow domains, such as Stal-
lard (1993), incorporate “domain-specific” lexical relaxations in their lexicons in this way, some-
times effectively avoiding the issue of metonymy.

The explicit approach involves the addition or incorporation of metonymy-handling processes
to selectional constraint satisfaction, thus allowing full generalization; one danger here is overac-
ceptance/overgeneration (which can substantially weaken word sense disambiguation), and the
burden of acquisition of knowledge shifts from lexical to ontological or processing knowledge re-
sources. The other systems described below are of this type.

A significant distinction in how metonymies are treated in computational systems that actually
produce a representation of some sort is found in the reflex of the metonymy in the representation.
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Sowa (1993), Hobbs and Martin (1987), Grosz et al. (1986), and Charniak and Goldman (1988)
all rely on instantiating the entity replaced by the metonym and making it part of the representa-
tion (in addition to the surface metonym). In fact, the latter three assume metonymy as part of ev-
ery relation between entities, instantiate an underspecified entity, then only delete it if constraints
suggest that the intermediate entity is the same as one of the two actual entities.

On the other hand, Nunberg (1978), Pustejovsky (1991), Pustejovsky and Bouillon (1995),
and others adopt a mechanism for coercing the argument role or the predicate to make the relation
appropriate. In fact, Nunberg (1993) denies that some examples that are generally-regarded as
metonymy actually are metonymies: he argues that in We’re parked around the corner there is no
metonymy, only coercion of the predicate, as indicated by agreement and anaphoric availability of
the supposedly replaced entity. Stallard (1993), however, argues that while sometimes it is neces-
sary to instantiate the replaced referent (what he calls referential metonymy), other times it is de-
sirable to merely coerce the argument place (predicative metonymy), but considers both types as
metonymy proper.

Given the MT and knowledge-based context of our work as described here, however, we find
it always necessary to instantiate the replaced referent. One of the reasons, as identified in Fau-
connier (1985), is that sometimes the same expression can produce (in different contexts) as ante-
cedents either the metonym or the replaced expression (Plato is on the top shelf, and it is bound in
leather, and ...and he is a very interesting author); any system would need to have a highly accu-
rate mechanism for handling context to be able to select one or the other with sufficient confi-
dence. Stallard (1993) is only able to do so because of the extremely limited scope of the ATIS
domain. Additionally, in our context of Machine Translation, we find it necessary to always insert
the missing referent because the target language may require it to be lexicalized explicitly, as
would be the case for many of the examples in Section 9.1 above.

While some of the approaches above instantiate the replaced entity, based on specific relation-
al information and constraints on that relation, Sowa (1993), instantiates a concept (based on se-
lectional constraints) and then attempts to determine the metonymic relation that holds between
the inserted concept and the surface metonym, based on some inventory of lambda expressions
encoding some kinds of background knowledge. This reliance on explicit background knowledge
is not unlike Bouaud et al. (1996), who don’t use an inventory of explicit metonymies, but use re-
lational mini-Conceptual Graph models of background information. Their metonymy resolution
search space expansion actually involves splicing together (joining) model graphs. They have no
good way of preferring one CG model over another if the constraints are the same, and they use
very weak constraints. As stated in their paper, they don’t have sufficient resolution capability be-
cause the “semantic analyzer goes directly from grammatical relations to conceptual relations
without any intermediate semantic representation”, and thus they lack the case-role or thematic
information which further constrains the arguments of the models. Thus they have to rely on their
models or mini-scripts (in CG formalism), without which they aren’t able to offer resolution for a
given metonymy.

One element that many earlier approaches have in common is reliance on matching a fixed in-
ventory of metonymic relations or patterns, as in Kamei and Wakao (1992), Fass (1986b), or Stal-
lard (1993). However, an approach such as Hobbs and Martin (1987) assumes the existence of
metonymy everywhere, but doesn’t appear to have to identify the nature of the metonymic relation
itself; likewise, Stallard doesn’t identify the metonymic relation. Fass does attempt to identify the
metonymic relation, using four inference rules that apply to specific topological relations over an
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IS-A hierarchy; after identifying the relation, he substitutes in the replaced entity and then repro-
cesses the utterance from the beginning. However, he is unable to identify any metonymies that do
not conform to these discrete rules.

All of the inventory-based approaches have a fundamental gap. As is evident from Nunberg
(1978) or Fauconnier (1985), the number and types of relations or referring functions that may be
used metonymically is effectively unrestricted. For that reason, semantic and pragmatic frame-
works such as Grosz et al. (1986), Hobbs and Martin (1987), or Fauconnier (1985) assume that
metonymic referring functions are effectively unrestricted. Unfortunately, for practical computa-
tional semantics system-building efforts, this means an explosion of the semantic search space be-
yond the already virtually-intractable. For this reason, our approach restricts the possible referring
functions to individual relations or compositions of relations from the ontology. The discussions
below will make evident that our approach uses both an inventory and a general (yet not uncon-
strained) mechanism to handle metonymies outside the inventory.

A further issue involves the interaction between metonymy processing in computational sys-
tems and WSD. (In some discussions, either one or the other problem is being tackled in a labora-
tory setting, so there is no requirement to integrate the solution into a complete system, thus the
issue of integration never arises.) The approach taken in Kamei and Wakao (1992) and Wakao and
Helmreich (1993) is to always accept any metonymy in their inventory, regardless of language;
this hurts the WSD search space, by not restricting the search space to only consider metonymies
licensed for a particular language. Additionally, if integrated into a full MT system, their approach
would generate metonymies in a target language if and only if there was a metonymy in source the
source language; Horacek (1996) shows why this results in infelicitous translations, in addition to
limiting expressibility in generation.

9.3  Framework for Metonymy Processing

The metonymy identification and resolution mechanism is an integral part of the overall SDS-
building process in our paradigm, as it is in Hobbs and Martin (1987) or Charniak and Goldman
(1988), as opposed to relegating metonymy processing to an error-recovery process, as in Fass
(1986b). Because it is an integral part of the word-sense disambiguation process, we gain efficien-
cy and unified control, which has a high payoff because of the high prevalence of metonymy in
text from real corpora, as discussed in Section 9.8 and Section 9.9.

A further benefit of this integration is that it correlates with psycholiguistic results concerning
human metonymy processing, as discussed in Gibbs (1993):

... there are good reasons and experimental evidence to suggest that these tropes
[metonymy, irony, hyperbole, understatements, oxymora, idioms, metaphor] do not
require special cognitive processes to be understood, contrary to the widely held
assumption in linguistics and philosophy that tropes violate, or ‘flout,’ norms of
cooperative conversation.... a major reason why people use different tropes so frequently
in everyday speech and writing is that human cognition is fundamentally shaped by
various processes of figuration.

The approach described in this chapter relies on a fundamental observation about metonymy,
namely that it reflects (conventional) semantic contiguity, as described in Gibbs (1993) or Jakobs-
en and Halle (1956). The premise of our approach is that relations in the ontology coincide with
the relations of semantic contiguity at some level, thus the task of the ontological graph search is
to identify the nature of contiguity in each case by identifying the best path.
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Gibbs (1993) discusses how metonymic relations, identified by Nunberg (1978) or Fauconnier
(1985) referring functions, reflect cultural conventions, thus language-specific conventions. For
these types of metonymy, an inventory can be very useful; we make use of an inventory, for exam-
ple, of about 40 frequent metonymic relations for English (probably the most comprehensive in-
ventory built).

Gibbs (1983) also identifies that prior context can set up a mutually-understood local referring
function: “any given instance of a referring function needs to be sanctioned by a body of beliefs
encapsulated in an appropriate frame”. But there are infinite such local contexts that can generate
locally-sanctioned referring functions (all the “ham sandwich” types of metonymies, for exam-
ple), thus an unrestricted range of notions of contiguity. While we aren’t able to fully make use of
context at this stage of development, the ontological graph search can make use of any ontological
relation or predicate (event) in establishing a metonymic link. So any of the 300+ (non-inventory)
relations in the ontology can all be identified as the contiguity relation and establish the metonym-
ic link, if they provide the most plausible explanation for an apparently necessary constraint relax-
ation (if describing the problem from an abductive inference perspective).

The inclusion of both conventionally-established and locally-sanctioned referring functions
thus corresponds with the approach taken within the ontological graph search program.

In general, the attitude taken here is consistent with Apresjan (1973), who identified that “Se-
lectional restrictions can be in principle violated, e.g., for stylistic purposes. The semantic theory
should not only make provision for such cases but it should also specify for each of them what he
resulting stylistic effect or trope is.” The mechanism described below crucially depends on violat-
ed selectional restrictions, and resolves the trope explicitly. Apresjan, however, believes that it is
practically impossible to mark each noun in the dictionary with certain features (such as “dis-
placeability”) which therefore cannot be used for restrictions. By relying on the ontology to cap-
ture such features (instead of the lexicon), and by making extensive use of inheritance in the
ontology, we find that we can use a very wide range of features for constraining relations.

Thus the metonymy-processing approach described below essentially consists of two steps: a)
the application of the general constraint-satisfaction process (the ontological graph search process
outlined in Section 5), and b) identification of the concept that was replaced by the metonym in
the path returned by the graph search process.

This approach allows full use of the relations defined in the ontology. If only the strict IS-A re-
lations from the ontology were used, with either vertical relaxation of constraints (see Section 8.2)
or a relaxation utilizing a small set of topological relations over a hierarchy (such as Fass 1986,
1988), then the wealth of metonymic expressions would be unprocessable without either allowing
excessive ambiguity or not recognizing numerous uninventoried examples of metonymy. The
framework outlined here allows metonymic expressions to be processed by utilizing the general
word-sense disambiguation mechanisms, namely semantic constraint checking and relaxation
over the full range of metonymic relations, combined with taxonomic generalization; note, how-
ever, that not all combinations of relations or arcs in the ontology identify paths of acceptable
weights, that is, the arc weight mechanism allows for identifying varying degrees of acceptability
of relations that comprise potential paths between filler and constraint.

As inventoried in detail below in Section 9.6, the metonymic arcs reflect the types of met-
onymic relations which have been identified, such as PART-OF for the Part-for-Whole metonymy,
LOCATION-OF for the Place-for-Event metonymy, PRODUCTS for the Producer-for-Product me-
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tonymy, etc. Thus for each identified metonymy, the arc(s) is found in the ontology that reflects
the metonymy in defining the path from the metonym to the constraint. For example, in he drove
his V8... the constraint on what can be driven is ENGINE-PROPELLED-VEHICLE, but the candidate
filler is ENGINE (of a certain type). The part is the engine, the whole is the vehicle, and the arc
from ENGINE to ENGINE-PROPELLED-VEHICLE is PART-OF; the potential filler is the metonym,
and the constraint identifies what is being replaced. Thus in Producer-for-Product, a candidate
filler (such as Chevrolet) has a certain relation, identified by the metonymic arc (such as PRODUC-

ER-OF), to the constraint, which is what is being replaced (such as an automobile).

Heuristic IX. Metonymies in text are identified by the ontological graph search, when
the best path traverses an arc which reflects a metonymic relation.

The general problem of metonymy handling is thus reduced to identifying the list of metonymic
relations, establishing relations in the ontology to reflect these metonymic relations, and assigning
weights to these arcs. The metonymic arcs would be less expensive than the rest of the unmen-
tioned arcs, but more expensive than the weights for straightforward constraint satisfaction (i.e.,
IS-A and INSTANCE-OF). Since these arc weights are available to every constraint satisfaction
check, metonymy processing is an integral part of SDS-building, not a special disjoint mechanism
to be called upon failure. Yet if a straightforward constraint satisfaction path is found, the met-
onymic paths need not be pursued, thus not adding to the computational cost.

Once a metonymic relation is found by the constraint satisfaction process, the metonym needs
to be represented. The metonymic relation is represented by a slot on the metonym, which is filled
by an instantiation of the concept that the metonym replaces.

Heuristic X. In representing metonymies in the text meaning representation, it is nec-
essary to make an inference (by instantiation) about the existence of the entity
replaced by the metonym.

In other words, if X-for-Y is the metonymy, X is the metonym actually used, and Y is what it re-
places, then in addition to instantiating X (from the lexical trigger), we also instantiate Y, and we
connect X and Y with the metonymic arc reflecting the relation. Since every relation in the ontolo-
gy has an inverse, X will have a slot FU filled by Y, and Y will have a slot FU-1 which is filled by X.
A specific example of this appears below.

9.4  Determination of Arc Weights

As identified above, metonymy processing is essentially reduced to selection of a path includ-
ing a metonymic arc by the constraint satisfaction mechanism (the ontological graph search).
Thus success depends on having the appropriate arcs in the ontology, with the appropriate cost as-
sessing mechanism. However, this cost assessment is specific to metonymy type as well as the in-
dividual context. The PRODUCER-OF arc, as the COMPOSED-WORKS arc (for musical composers),
might appear only once in the ontology, since all concepts that are descendants will inherit the
slot. Individual subconcepts for various kinds of products would not need to define this slot, al-
though they may be able to fill the slot where the filler is known and fixed.

The heuristic that underlies this approach to metonymy processing is that the inventoried met-
onymic arcs will be traversed by the ontological graph search in constraint satisfaction if taxo-
nomic (IS-A) relations do not satisfy the constraint, but would be preferred to arcs identifying other
(non-inventoried) real-world relations between the candidate filler and the constraint.
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Heuristic XI. Inventoried metonymic relations are less preferable than taxonomic (IS-
A) relations, but still preferable over all other relations over the ontology.

For some of the metonymic relations (such as Part-for-Whole), the chaining of more than one
traversals of a metonymic arc (such as the PART-OF arc) is acceptable; for others (such as Place-
for-Event), the dynamic arc weight mechanism (described in Section 5.2) increases the arc cost of
that particular arc to near-infinite cost, once one occurrence of that arc appears in the path current-
ly being explored.

9.5  Metonymy Processing: An Example

Once an acceptable path is found, the preference of the reading is adjusted to reflect the cost
incurred in allowing the metonymy (vs. a straightforward taxonomic satisfaction over IS-A arcs)
and the path is analyzed to produce the appropriate combination in the instantiation-combination
process. Thus, for example, for the sentence Lynn drives a Saab, the semantic constraint for the
appropriate slot of the appropriate sense of the verb drive would be *ENGINE-PROPELLED-VEHI-
CLE. Yet the potential filler Saab is of type (or a subtype of) *FOR-PROFIT-MANUFACTURING-
CORPORATION which is a violation of the constraint. The ontological concept *FOR-PROFIT-MAN-
UFACTURING-CORPORATION has a slot PRODUCER-OF, which has an “inverse” relation called
PRODUCED-BY. The path which is found by the ontological search process is (expressed in the
[SOURCE-NODE OUTGOING-ARC --> DESTINATION NODE] notation):

ONTOLOGY PATH:
[FOR-PROFIT-MANUFACTURING-CORP417 PRODUCER-OF --> *AUTOMOBILE]
[*AUTOMOBILE IS-A --> *WHEELED-ENGINE-VEHICLE]
[*WHEELED-ENGINE-VEHICLE IS-A --> *ENGINE-PROPELLED-VEHICLE]

If FOR-PROFIT-MANUFACTURING-CORPORATION417 were a concept in the onomasticon (with
knowledge about Saab Scania AB), i.e., with slot/fillers such as (NAME $SAAB),(PRODUCER-

OF *AUTOMOBILE *JET-AIRCRAFT), the above path would be found. But even if that world knowl-
edge tidbit (about Saab’s products) were not available, the path that the ontological search process
finds is:

ONTOLOGY PATH:
[FOR-PROFIT-MANUFACTURING-CORP417 PRODUCER-OF --> *ARTIFACT]
[*ARTIFACT SUBCLASSES --> *VEHICLE]
[*VEHICLE SUBCLASSES --> *ENGINE-PROPELLED-VEHICLE]

The latter path has a lesser preference (i.e., a greater cost) than the former, because of the more
expensive traversed arcs (SUBCLASSES is always more expensive than IS-A), but illustrates that the
mechanism is still able to identify the metonymy in the absence of the specific product informa-
tion.

Once a path is found (let’s assume the latter no-onomasticon-information case), it is inspected
for the appearance of a metonymic relation arc. If such an arc is found, the inverse of that arc is
available in constructing the final SDS of the sentence.1 For the above example, the most specific
information that is available from the path (identifiable by following SUBCLASSES arcs after the
metonymic arc) is utilized in making an inference about the replaced metonym and instantiating

1. The inference notation for use in the TMR was developed by Sergei Nirenburg and Kavi Mahesh and
implemented by Stephen Beale.
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an appropriate concept %ENGINE-PROPELLED-VEHICLE460:

TMR:
(DRIVE435
   (AGENT (VALUE PERSON440)) ; abbreviated of course
   (THEME

      (SEM *ENGINE-PROPELLED-VEHICLE)
      (VALUE
         (source FOR-PROFIT-MANUFACTURING-CORP417)
         (inference inference306 ENGINE-PROPELLED-VEHICLE460))))
(PERSON440
    (NAME $LYNN))
(inference480
    (TYPE metonymy)
    (ENGINE-PROPELLED-VEHICLE460
       (MANUFACTURED-BY

         (VALUE FOR-PROFIT-MANUFACTURING-CORP417))))
(FOR-PROFIT-MANUFACTURING-CORP417
    (NAME (VALUE $SAAB))
    (PRODUCER-OF inference480
       (SEM *ARTIFACT))
       (VALUE ENGINE-PROPELLED-VEHICLE460)))

(Here the SEM facets are left in from processing for illustration, but are not properly part of the
TMR). We could augment the episodic memory about Saab (if this reading were found to be the
most plausible one for the sentence) to include information about the type of product that this
manufacturer produces.

The inference notation used in this example is more generally available to represent infer-
ences made by a variety of specialized mechanisms or microtheories during the course of seman-
tic analysis. This notation preserves the original literal interpretation, while making available the
replaced entity that was inferred to exist by the metonymy processing mechanism; this inferred in-
formation (in this case, the existence of a produced vehicle) satisfies the goals of metonymy reso-
lution mentioned above in Section 9.1.

The real challenge to this approach is when the episodic memory has no information about the
word Saab at all. As a system heuristic, one of the most likely possibilities for an unrecognized
word in noun position (particularly if we utilize the English capitalization information) is that it is
a name for some named entity (i.e., (NAMED-ENTITY239 (NAME “Saab”))). In fact, we can
do better by relying on Name Tagging (i.e., shallow extraction) capabilities that are available for
integration into MT and other NLP applications.1 Name Tagging technology can suggest, with
high reliability (93-94%) that the string represents an organization, say ORGANIZATION 240, in
which case we can expect the path found by the ontological search process to be:

1. Numerous such Name Tagging systems, with accuracy very near human, have been evaluated in the scope
of the Message Understanding Conferences (MUCs) and are described in Sundheim (1995).
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ONTOLOGY PATH:
[ORGANIZATION239 INSTANCE-OF --> *ORGANIZATION]
[*ORGANIZATION PRODUCER-OF --> *ARTIFACT]
[*ARTIFACT SUBCLASSES --> VEHICLE]
[*VEHICLE SUBCLASSES --> *ENGINE-PROPELLED-VEHICLE]

This path, albeit expensive, is found by the search algorithm; the challenge of this approach is to
adjust all of the arc weights to return these weights with fairly low cost relative to other returned
paths, as a subset of the problem identified in Section 5.2.

9.6  Inventory of Metonymic Relations

Although not receiving nearly as much attention in the literature as metaphor, there have been
a few attempts in the various literatures to categorize metonymy into types. None of the invento-
ries are comprehensive enough to support the population of a working ontology for use in the
analysis of real-world texts. Thus the strategy used here to build such an inventory consisted of
combining multiple sources in the literature, experiments and analysis of corpora, and carefully
filtering inventories of other kinds of semantic relations (e.g., syntagmatic and paradigmatic lexi-
cal relations, meaning change, cognitive meronymic classification) for relations that do reflect
metonymic use of language in English.

As mentioned above, it is not possible to build an exhaustive inventory of metonymy (espe-
cially in the pragmatic relation group, below). So although this inventory was compiled for the
purpose of seeding the metonymy processing mechanism, it is augmented with the mechanism for
handling novel or unexpected (i.e., uninventoried) metonymic relations and combinations (chains)
of metonymic relations.

Below is a combined inventory of metonymy types derived from various sources; since these
works span theoretical linguistics, lexicography, cognitive science, philosophy of language, and
computational linguistics, and did not necessarily deal explicitly with metonymy, the relations
identified below are those for which metonymic examples could be found in the cited work or
constructed. Each relation below is marked by one or more initials for the various sources from
which the relation was derived:

• (A) for regular polysemy relations as identified in Apresjan (1974)

• (F) for the computational semantics treatment of metonymy in Fass (1986)

• (K) for the inventory of metonymy treated by Kamei and Wakao (1992)

• (L) for the seminal treatment of metaphor and metonymy in Lakoff and Johnson (1980)

• (M) for lexical functions which can serve as metonymy in Mel’chuk and Zholkovsky (1984)

• (N) for referring functions described in Nunberg (1978)

• (S) for a discussion of diachronic and synchronic change of meaning in Stern (1965)

• (W) for the categorization of part-whole relations (meronymy) in Winston et al. (1987)

• (Y) for the examples of metonymy in Yamanashi (1987)

Metonymies found in the course of the work described here are also marked:

• (O) for relations that were identified in experiments during the course of this work.
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Notice the subcategories identified below for some of the categories (the subcategories do not
necessarily define the entire partition for the category). The top level distinction (Semantic vs.
Conventional vs. Pragmatic) is based on Yamanashi (1987), and is in accord with distinctions
among types of reference described in Nunberg (1978).

9.6.1  Semantic Metonymic Relations

Metonymic relations that fall into this group of relations reflect fundamental semantic rela-
tionships between the metonym and the replaced entity, and are understood independent of con-
text. In many cases the metonym could be lexically defined to mean the replaced entity, as
described in Yamanashi (1987). These metonymies tend to be very productive, and in many cases
are cross-linguistic, because they reflect fundamental semantic relationships.

• Part-for-Whole:

••Material-for-Object-made-from-it: as in He drinks a lot of alcohol, or He pumped lead
into the assailant (for bullets), or glass (W, S, A, Y, O)

••Component-for-integral-object: as in he drove his V8; or He always carries his blade
(for sword or knife) (W, S, L, F, Y)

••Member-for-collection: as in We need to pay attention to Ivan (meaning Russia or the
Russians) (W, O)

••Body-part-for-Animal: as in there are many new faces around here, She is wearing
mink, or We need another pair of hands (L had Face-for-Person, S, A, K)

••Container-for-Contents: as in he drank two whole bottles. (F, S, A, K, Y)
••Container-for-Measure: as in he drank a pitcher of soda (A)

• Producer-for-Product: as in he drove his Ford... (L, K, O).

••Artist-for-Artform: as in She plays Mozart exquisitely (F) Except for some very well-
known inventions (such as engines referred to as diesels or wankels), this type seems
to be restricted to literature, art, or music.

• Role-for-Person: as in the President (A, O)

••Voice-for-Singer: as in the baritone will stand on the right (A).

• Information-conveyer-for-Information: as in Today’s paper will cause the President to is-
sue a retraction. (K, O)

9.6.2  Conventional Metonymic Relations

The metonymies in this category are also understandable independent of any special context
or pragmatic environment. But these metonymies are more the reflective of conventional associa-
tions than the semantic relations, and understanding these metonymies may require encyclopedic
knowledge. These metonym generally cannot be lexically defined to refer to the replaced entities.
Because the relationship is conventionalized, a given language or culture may not share a particu-
lar convention that may be prevalent in another language, resulting in non-translatability.

• Object-for-Material: as in This jacket is made of recycled soda bottles (O)

• Institution-for-PeopleResponsible: as in IBM announced an agreement...(L, O)

• Controller-for-Controlled: as in Clinton invaded Haiti, (L, O)

• Place-for-Entity
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••Place-for-Occupants: as in the pit (for orchestra) (S, A, Y, O)

••Place-for-Institution: as in Tokyo announced... (L, O)

• Symbol-for-Thing-symbolized: as in He fought for the Crown, or He hung up The Last
Supper in the corner (meaning a picture of that event), or I have only three names so far
for tomorrow’s luncheon. (S, A, O)

••Concrete-for-Abstract: as in Max is down to his last pennies (meaning that he has no
means or resources) (Y, O)

• Product-for-Producer: as in PowerPC announced a new version of the chip... (O)

• Entity-for-Action (O)

••Co-Agent for Activity: as in The Orioles played the Brewers (F, A)

••Instrument-for-Action: as in Under the baton of Ozawa, the concerto took on a new life
(S, A, O)

••Place-for-Event: as in Antietam was a critical point in the war, After my shower,... or
We go out to lunch after church. (L, S, A)

••Organ-for-Capability: as in Paul’s nose can identify the year of any burgundy, The
point guard had hot hands tonight, or Max is the brains of the company (S, O)

••Body-Part-for Disease: as in She suffers her joints in humid weather, or, in Russian,
she has kidneys (translation) can mean that she is afflicted with a disease of the kid-
neys (M, A)

• Action-for-Entity: as in Accounting won the annual softball game. (O)

••Production-process-for-Product: as in a painting, an etching (O, A)

••Event-for-Location: as in He arrived at the dinner at 8:15. (O)

9.6.3  Pragmatic Metonymic Relations

These metonymies necessarily require a specific pragmatic context to establish the metonymic
entailment. Such metonymic relationships are not conventionalized, lexicalized, or reflective of a
fundamental semantic defining condition. Many of these cases will not be translatable into other
languages verbatim.

• ObjectUsed-for-User: as in the sax has the flu tonight (L, A, O).

••Article-of-Dress-for-Person: as in The boardroom is overrun by suits, or The redcoats
are coming. (S, A)

••Equipment-for-Operator: as in The F16 requested clearance to land (O)

• User-for-ObjectUsed: as in Jack is parked around the corner. (O)

• Feature-for-Activity: as in I’m going to spend money this afternoon (for going out shop-
ping) (W, O)

• Generic-for-Specific: as in That animal needs to be fed (for dog) (M, Y, O)

• Group-for-Individuals: as in The Canadians won the pennant (referring to a group of indi-
viduals forming a sports team), or I want you to meet this couple (referring to two individ-
uals married to each other). (M)

• Abstract-for-Concrete: as in Power and privilege will no longer shout down the voice of the
people. (O)
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• Other: Other physio-spatial or arbitrary context-specific relations, such as The ham sand-
wich needs another fork (N, O).

In general, most non-inventoried metonymies that were found in the English corpora were of the
pragmatic group; for this reason, we include the Other category in this group.

9.6.4  Utility of this classification

There are some examples which seem to fall into multiple categories: The White House an-
nounced that... could be either Symbol-for-Thing-symbolized or Place-for-Occupants. It is
also the case that it isn’t clear which high-level group of relations a given metonymic relation falls
into, particularly between the Semantic and Conventional groups. This classification is primarily
for conceptual organizational purposes, and is not reflected by the processing mechanism de-
scribed in this chapter.

There is a group of alternations that reflect a semantic relation that could be arguably treated
as either metonymy, regular polysemy (i.e., handled by Lexical Rules in our format or by genera-
tive processes in Pustejovsky (1995)), or derivational processes.

• Product-for-Plant: (or is it vice-versa?) as in raspberry, cotton, rose, mustard, or cedar (A)

• Animal-for-Meat: as in I’ll have the goose (A)

• Music-for-Dance: as in waltz, jig, etc. (A)

• Phenomenon-for-Discipline: as in history, mathematics (A)

• Government-form-for-Country: as in a democracy (A)

9.7  Metonymic Relations in the Ontology

This inventory is abstracted from the previous section, with certain metonymies weeded out
for lack of productivity (often because there is only a limited possibility of examples of the me-
tonymy, and those are diachronically lexicalized). For each metonymic relation below, we list a
relation that is used in the ontology to represent the relation between the referent and the
metonym (i.e., from the thing being replaced to the thing that replaces it), along with the inverse
relation (which is what actually appears in the path in a filler-to-constraint search).

• Part-for-Whole:

••Material-for-Object-made-from-it: MADE-OF/MATERIAL-OF

••Component-for-integral-object: HAS-PARTS/PART-OF

••Member-for-collection: HAS-MEMBER/MEMBER-OF, can also be reflected by a MEMBERS
slot in a TMR set notation.

••Body-part-for-Animal: HAS-PARTS/PART-OF with a SEM constraint of EXTERNAL-ANI-
MAL-PART on the RANGE.

••Container-for-Contents: CONTAINED-IN/CONTAINS

••Container-for-Measure: uses quantity and measure representation

• Producer-for-Product: PRODUCED-BY/PRODUCER-OF

••Artist-for-Artform: CREATION-RELATION/INVERSE-CREATION-RELATION, with subtypes
such as COMPOSED-BY/COMPOSER-OF, AUTHORED-BY/AUTHOR-OF, INVENTED-BY/INVEN-
TOR-OF, etc.
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• Role-for-Person: typically no relation necessary, because social roles are subtypes of hu-
mans in the ontology

• Information-conveyer-for-Information: CONVEYED-BY/CONVEYS

• Object-for-Material: MATERIAL-OF/MADE-OF

• Institution-for-PeopleResponsible: HEAD-OF/HEADED-BY, OWNER-OF/OWNED-BY, CON-

TROLS/ CONTROLLED-BY or even MEMBER-OF/HAS-MEMBER; often in series with Role-for-
Person, because constraints on HEADED-BY etc. are SOCIAL-ROLEs, not HUMANs.

• Controller-for-Controlled: HEADED-BY/HEAD-OF, OWNED-BY/OWNER-OF, and CONTROLLED-

BY/CONTROLS

• Place-for-Entity: LOCATION/LOCATION-OF

••Institution-for-PeopleResponsible: LOCATION/LOCATION-OF or OCCUPANTS-OF/OCCU-
PANTS where the occupants would be constrained to be HUMAN or ORGANIZATION.

••Place-for-Institution: LOCATION/LOCATION-OF where the institution is constrained to be
an ORGANIZATION

• Symbol-for-Thing-symbolized: SYMBOL/SYMBOL-OF, INVERSE-EVERYDAY-NAME-RELATION/

NAME-OF (for pictures etc.)

••Concrete-for-Abstract: varies

• Product-for-Producer: PRODUCER-OF/PRODUCED-BY

• Entity-for-Action

••Co-Agent for Activity: ACCOMPANIER/ACCOMPANIER-OF

••Instrument-for-Action: INSTRUMENT/INSTRUMENT-OF

••Place-for-Event: LOCATION/LOCATION-OF

••Organ-for-Capability: INSTRUMENT/INSTRUMENT-OF on PERCEPTUAL-EVENTs, with
fillers constrained to SENSORY-ORGANs

• Action-for-Entity: ROLE-FOR-ACTIVITY/ACTIVITY-FOR-ROLE, AGENT-OF/AGENT

••ProductionProcess-for-Product: generally reflected by the THEME-OF/THEME slot of
an event

••Event-for-Location: LOCATION-OF/LOCATION

• ObjectUsed-for-User: UTILIZES/USED-IN, and other various slots

••Article-of-Dress-for-Person: WEARING/WORN-BY

••Equipment-for-Operator: a two-step relation, first INSTRUMENT/INSTRUMENT-OF then
AGENT-OF/AGENT, or a one-step OPERATOR-OF/OPERATED-BY relation

• User-for-ObjectUsed: INSTRUMENT-OF/INSTRUMENT of an event after an AGENT/AGENT-OF,
or a one-step OPERATED-BY/OPERATOR-OF

• Feature-for-Activity: this relation would pick out a single (most salient?) subtask of a com-
plex event; these subtasks or subevents would need to be represented by script-like mech-
anisms as in Cullingford (1981), in contrast with all the core relations which are
represented by simple relations from the ontology. In the absence of a well-defined theory
of complex events in our paradigm, these types of examples are not currently treated in the
work described.
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• Generic-for-Specific: just the IS-A/SUBCLASSES relation.

• Group-for-Individuals: the relation appears to identify an aggregate unit of some sort; po-
tentially this could be represented by MEMBER-OF/HAS-MEMBER arcs from the ontology.
However, the aggregate entity needs to be treated at its first mention in the text, before any
such membership links are established. This would need to be remedied by default reason-
ing, as represented by relations such as TYPICAL-MEMBER-OF/TYPICALLY-HAS-MEMBER. Ac-
tual set membership is represented in the TMR by using the set notation, which is treated
entirely non-ontologically, thus would not be available to the metonymic treatment mech-
anism as described in this section.

• Abstract-for-Concrete: any of a variety of relations relating EVENTs or OBJECTs to specific
OBJECTs

• Other: any of the other (350 or more) relations in the ontology may be needed for specific
metonymic constructions in input texts

Notice that there are cases of both relations and their inverses as allowed metonymic links, and
also note that some metonymies that are distinct in the literature (as reflected by the inventory)
end up with the same relation.

The biggest challenge with some of the metonymies where there wasn’t a specific slot speci-
fied is that the triggering conditions may differ from the canonical metonymy, where a selectional
restriction violation is a clear indicator that some kind of relaxation is necessary. In particular,
there might not be any selectional restriction violation for the examples given for some of the
pragmatic group metonymies. In other words, for the example I’m going to spend money this af-
ternoon there would be no indication that a trope of some sort is being used, because the literal in-
terpretation is perfectly adequate. Chances are that there is no selectional restriction violation in
the examples such as That animal needs to be fed either. If we adopt the strategy of variable
depths of description discussed in Hirst and Ryan (1992) or conditional interpretation of Pollack
and Pereira (1988), however, we can identify that all of these secondary phenomena can be han-
dled adequately at the literal level, under the premise that for any realization in another language
in a MT application, the same literal level of description might be adequate. In applications re-
quiring more elaborate event or domain inferencing, however, these examples would need to be
treated (but fall outside the scope of the current work).

9.8  Knowledge Base for Metonymy Processing

The knowledge required for processing metonymy by the ontological search mechanism is not
specifically differentiated from the constraint satisfaction data requirements of the overall pro-
cessing mechanism, which includes the relaxation mechanism. In other words, the same list or ta-
ble of arcs and weights that were described in Section 5 and Section 7 are used for metonymy
processing. Those static resources do, however, reflect arcs and weights that are used for identify-
ing and resolving metonymy. The knowledge acquisition consisted first of identifying the arcs that
needed special treatment because they are used in resolving frequently-occurring metonymies,
then second by setting weights for those arcs by the automated training mechanism (using simu-
lated annealing) described in Section 5.3.2. The latter part of the task, however, required manually
building a training data set, as described in the same section above.

The example below illustrates the training data. The example from the corpus is quoted, fol-



— 145 —

lowed by an enumeration of the metonymy categories in effect in the example. The matrix verb is
the source of constraints on the metonym in this case, so the concept is listed, along with the con-
straint that it places on the AGENT role. The path given in this example needs to be matched by the
ontological graph search exactly.

;;; “The White House said it does not know” (USA Today)
;;; Metonymy Type: PLACENAME-FOR-OCCUPANTS
;;; Metonymy Type: ROLE-FOR-PERSON
;;; “said” = ASSERTIVE-ACT
;;; ASSERTIVE-ACT.AGENT= HUMAN (SEM constraint)
WHITE-HOUSE (HUMAN)

(((WHITE-HOUSE -)
  (PRESIDENT OCCUPANT)
  (ELECTED-GOVERNMENTAL-ROLE IS-A)
  (GOVERNMENTAL-ROLE IS-A)
  (SOCIAL-ROLE IS-A)
  (HUMAN IS-A)))

9.8.1  Training the Static Weight Assignment Mechanism

The training process for the static weight assignment mechanism simply produces a weight
for each of the arcs represented in a manually-produced inventory of arcs, mostly reflecting the
arcs (actually, the second of each pair) identified above in Section 9.7. In our experiment, the arc
types that receive special weights are manually specified, and the training mechanism assigns
weights. It would have been possible for the training mechanism to assemble the list of arcs, as
well, by examining the arcs reflected in the training data; one drawback of the latter approach
would have been the inability to call out specific arcs that aren’t used in the training data, in ex-
pectation of their occurrence in other corpora.

This section describes the training process and the success of metonymy identification on the
training data. Section 9.9 describes the success of metonymy identification on a test data set that
was not used in training.

The data acquisition effort involved three separate data sets. Table 9A below addresses Data

Table 9A. Metonymy Training Results on Data Set 1 (Static Weight Assignment)

Data Set 1
(Collected examples)

% of Total
# Correct:

Manual Weights
# Correct:

Trained Weights

Symbol for Symbolized 1.7% 0/1 1/1

Role for Person 1.7% 1/1 1/1

ProductionProcess
for Product

1.7% 0/1 1/1

Product for Producer 5.1% 3/3 3/3
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Set 1, used as a training data set. The data set consisted of 56 examples in English (three involved
a chain of two metonymies) that included artificial examples concocted to illustrate particular me-
tonymies, in addition to actual examples that were assembled from the literature and from four
Spanish newswire articles. This data set essentially reflects an opportunistic collection of metony-
mies, and is in no way exhaustive or reflective of the distribution of metonymies over a corpus.
The table shows the results of the ontological graph search process on the data set, first using stat-
ic weights that were assigned based on intuition. The table also reflects the results of the process
using weights produced by the simulated annealing training process; the training was able to pro-
duce a set of weights that accounted for 100% of the training data. A typical set of such weights is

given below:

Place for Institution 1.7% 1/1 1/1

Other 24.1% 11/14 14/14

ObjectUsed for User 3.4% 2/2 2/2

Object for Material 3.4% 0/2 2/2

Instrument for Action 1.7% 1/1 1/1

Institution for
PeopleResponsible

18.9% 7/11 11/11

InfoConveyer
for Information

1.7% 0/1 1/1

Generic for Specific 5.1% 0/3 3/3

Event for Location 3.4% 2/2 2/2

Equipment for Operator 3.4% 2/2 2/2

Entity for Action 1.4% 1/1 1/1

Concrete for Abstract 3.4% 1/2 2/2

Action for Entity 10.3% 1/7 7/7

Abstract for Concrete 6.9% 4/4 4/4

TOTAL 100% 37/59 = 62.7% 59/59 = 100%

Table 9A. Metonymy Training Results on Data Set 1 (Static Weight Assignment)

Data Set 1
(Collected examples)

% of Total
# Correct:

Manual Weights
# Correct:

Trained Weights
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IS-A 0.979727
SUBCLASSES 0.762831
HAS-MEMBER 0.787453
PRODUCER-OF 0.779002
PRODUCED-BY 0.80813
INSTRUMENT-OF 0.741613
REPRESENTS 0.793012
HEADED-BY 0.889488
LOCATION 0.767951
OWNED-BY 0.714717
MADE-OF 0.941093
ACTIVITY-FOR-ROLE 0.702713
NAME-OF 0.9999
AGENT 0.832912
THEME 0.9666362
THEME-OF 0.601492
SOURCE 0.906768
CONVEYS 0.69802
RANGE 0.825514
DOMAIN 0.973727
HAS-ELEMENT 0.836513
HAS-AS-PART 0.602793
PART-OF 0.86144
MEMBER-OF 0.982538
INSTRUMENT 0.863454
HEAD-OF 0.82394
OPERATED-BY 0.802672
CONTROLLED-BY 0.669301
LOCATION-OF 0.74336
MATERIAL-OF 0.663279
SYMBOL-OF 0.656622
INVERSE-CREATION-RELATION 0.796057
CONTROLS 0.9999
OWNER-OF 0.62836
USED-IN 0.962146
EQUIPMENT-FOR 0.875004
ELEMENT 0.632047
WORN-BY 0.536994
ACCOMPANIER-OF 0.859984
OPERATOR-OF 0.889231
OCCUPANT 0.956381
EMPLOYER-OF 0.869145
ACCOMPANIER 0.504643
INSTANCE-OF 1.0
NAMED-INSTANCE-OF 1.0
* 0.58028

The last line reflects the weight used for all arcs not explicitly inventoried.

This set of weights (produced by training on Data Set 1) was tested against Data Set 2. This
second training set was produced more systematically from English-language newswire, specifi-
cally the February 9-11 1997 edition of USA Today (hardcopy) and the February 11 1997 edition
of the on-line edition of the San Jose Mercury News.  Table 9B below shows the distribution of
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Table 9B. Metonymy Training Results On Data Set 2 (Static Weight Assignment)

Data Set 2
(SJMN and USA Today)
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Role for Person 2/7 2/5 7/7

ProductionProcess
for Product

1/1 1/1

Product for Producer 8/9 1/1 2 9/9

PlaceName
for Occupants

0/5 2/5 3/5
1 link

5/5

Place for Institution 3/4 1/1 4/4

Other 0/3 2/3
2 concepts

1/3 1 2/3

ObjectUsed for User 0/1 1/1 1 0/1

None 7/7 7/7

Instrument for Action 0/1 1/1 0/1

Institution for
PeopleRespons.

30/36 1/6 4/6 1/6 36/36

InfoConveyer
for Information

4/4 4/4

Feature for Activity 1/4 3/3
1 link

4/4

Event for Location 1/2 2/2

Equipment
for Operator

0/5 5/5
2 links

5
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5/5

Entity for Action 0/3 1/3 2/3
1 link

2
1 link

2/3

Concrete for Abstract 3/3 1 2/3

Action for Entity 2/3 1 3/3



— 149 —

metonymy types in this data set, which consists of 88 examples for a total of 99 metonymies (be-
cause of chained metonymies in some examples). Just using the ontology as-is and arc weights
produced by training on Data Set 1, 67% of the examples were covered (compared to chance,
where less than 5% of the examples would be covered). The table also shows the error analysis at
this level, also broken down per metonymy type. Only four additional links needed to be added to
the ontology to account for the 99 metonymies, as well as five additional concepts. After those
concepts and links (slots) are added, using the weights trained on DS1, 85% accuracy is achieved.
Note that both numbers (67% and 85%) include a 3 point penalty due to apparent metonymies that
the developer wasn’t sure how to represent, resulting in automatic deductions for those examples.

After the ontology was augmented as required, new weights were produced by simulated an-
nealing. The annealing run used the same annealing schedule and Cauchy cooling rate described
in Section 5.3.2, and began by initially “heating” the temperature (by 10 complete randomizing
annealing iterations) to an energy of 0.97 (in the interval [0.0, 1.0]). The simulated annealing run
resulted in final energy of 0.0575, or 94.25% example accuracy (percentage of example sentences
correctly analyzed, as compared to metonymic link accuracy, where examples with a chain of
multiple metonymies count multiple times). Of the remaining errors (i.e., metonymic relations not
found by the ontological search program), one is unsolvable by the current approach. The exam-
ple, Eddie Jones had a hot hand in today’s game has no selectional constraint violations (and is, in
fact, understandable and incorrectly acceptable literally).1 Handling this type of non-literal ex-
pression is beyond the scope of the work described here, and would require a substantially differ-

a. The TOTAL reflects percentage of correct examples; because some examples involve chained metonymies,
the ratios in the breakdown (reflecting individual metonymies) do not match the total.

1. This example is from CNN, dated February 9 1997, not from San Jose Mercury News or USA Today, so
doesn’t really belong in this data set.

Abstract for
Concrete

1/1 1/1

TOTAL 62/99,
but
67%a
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5 concepts
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ent approach.

Of the other four examples that were not solvable after training, one is actually ambiguous,
and the ontological search mechanism suggested a reading not supported by context: Fujimori
told Peruvian radio that1... appeared in a context which suggested that he talked to the nation via
radio, vs. talking to the people in charge of the Peruvian radio service, as the ontological search
program suggested. Two of the other examples, Other dinners brought in more money and The
dinner is adding to the questions being asked about fund-raising activities, were incorrectly ana-
lyzed as using “dinner” to refer to the people who prepared the dinner, not the people who attend-
ed the dinner (in the former case); in is unclear how to analyze the latter of these, which is
complicated by ellipsis, so there is no correct answer given in the training data, resulting in an au-
tomatic failure.2 The last of the incorrect examples, ... will move people from welfare rolls into
jobs, also involves some metaphorical or elliptical mechanism.3

9.8.2  Training the Transition Table

The training mechanism for the dynamic transition-table-based weight assignment mecha-
nism also just assigns weights. In preparation for the automated training, however, the developer
needs to manually suggest the various states that may be encountered. In addition, for the sake of
efficiency, it is useful to group arcs that could be expected to have similar behavior into arc clus-
ters (for example, grouping CONTAINS, HAS-MEMBER, HAS-AS-PART, and HAS-ELEMENT). This is
merely to reduce the search space for the simulated annealing, as well as for adding robustness to
handle metonymic expressions that were not encountered in the training data; thus instead of hav-
ing 45+ inputs requiring different transition table columns, we deal with about 25. Still, however,
the transition table has so many entries that it would require a very large training corpus to get
even single examples of each state for the training process. For that reason (and, again, to improve
robustness), cells are grouped to reflect similar expected arc weights; for example, for the group-
ing of arcs mentioned above we have six groups of cells, with the grouping reflecting whether the
previous path is an IS-A vs. a SUBCLASSES path, etc. So instead of a transition table requiring 46
(unique slots) * 40 (states) = 1840 cell values, we only require a total of 80. The simulated anneal-
ing mechanism can still handle that number of parameters (although there still are some parame-
ters which can vary freely because the training data never causes those states to be reached).

Other than this simplification, the process of training of the transition table paralleled the stat-
ic mechanism training process described above. Table 9F,  on page 155, illustrates the transition
table built manually for handling metonymy, which also served as the starting point for training.
Table 9G,  on page 158, shows the grouping of transition table cells as described above; the first
element of each cell reflects the cell grouping, while the second element of each cell reflects the
next state. For each cell grouping, the simulated annealing training mechanism sets a value in
[0.0, 1.0] (actually in [Threshold, 1.0]).

Results of training on Data Set 1 and Data Set 2 are given in Table 9C, which shows the accu-
racy of the search process when trained on the data set indicated and applied to the data set indi-
cated in the top row. As expected, applying the training results to the data trained on typically
approaches (but doesn’t always reach) 100%; when using weights generated by training on a data

1. This example due to the on-line San Jose Mercury News service, article dated 11 February 1997.
2. Both these examples due to USA Today, 9-11 February 1997 edition (hardcopy).
3. This example due to the on-line San Jose Mercury News service, article dated 11 February 1997
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set other than the data set to which the results are applied, the results are worse. As the total train-
ing data set increases, however, the loss decreases.

Four examples in DS2 were not solvable after training (compared to five by the static mecha-
nism). The two unsolvable examples were obviously not solved, and the two other examples that
ended up unsolved were the ambiguous ones, where both static and dynamic mechanisms picked
the option that was not supported by the context. To address these sorts of genuinely ambiguous
examples (for example, peruvian radio as referring to the audience not the management, and din-
ners bringing in money as referring to attendees not preparers), a context mechanism is needed.
This mechanism could make use of both actual context (entities previously referred to, for exam-
ple) and virtual context, expectations, or world knowledge, as would be encoded in script mecha-
nism such as in Cullingford (1981).

9.9  Results

A test set was produced in exactly the same way as training Data Set 2, from USA Today and
San Jose Mercury News articles (7 March 1997 editions). The test data reflects the first fifty me-

Table 9C. Metonymy Training Results On Data Sets 1 and 2 (Transition Table Weight
Assignment)
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tonymies found in the two sources; actually, many repeat metonymies of the form X announced...
X also announced... were omitted; the inclusion of all these (easy) metonymies would have result-
ed in a ratio of about 95/100 for the test set. Table 9D shows results on this test set for both the dy-
namic and the static arc weight assignment mechanisms, using weights trained on DS1 and DS2
together.

A certain class of errors was disregarded in these test results: concepts missing from the ontol-
ogy, which suggests that the word (sense) for the metonym or the selecting word (usually the
verb) would not have been in the lexicon, so, in computational processing, the metonymy resolu-
tion mechanisms would not have been invoked in the first place. In this test, similar concepts were
substituted for these missing concepts or instances (for example, Liberia was missing from the
onomasticon, so Algeria was used instead).

 The test corpus had one “guaranteed” error, because the key had no correct answer for it: the
pro-Beijing newspaper. The meaning of pro is captured by the ADVOCACY relation; a metonymy
arises because our ontology requires that the DOMAIN of ADVOCACY be restricted to ABSTRACT-
OBJECT, perhaps capturing the notion that only ideas etc. can be advocated. Thus this example
contains at least a Place-for-Institution metonymy. In addition, the ontological constraint sug-
gests that it isn’t the government that is being advocated, but perhaps their policies or actions. It is
uncertainty about this second chained metonymy that caused the metonymy to be unresolved in
the key.

Both examples (for both assignment mechanisms) where the wrong path was returned (the
Tamil rebels attacked two army bases and Tamil rebels shelled a town) required that the THEME of
ASSAULT be HUMAN; the search returns an Institution-for-PeopleResponsible metonymy in-
stead of the Institution-for-PeopleResponsible metonymy. However, the OCCUPANTs relation is
not defined for SMALL-GEOPOLITICAL-ENTITY and MILITARY-INSTALLATION; the LOCATION-OF re-
lation is defined, but too generally to have been preferred by the search.

The texts used for training and testing for the Spanish WSD experiments (see Section 8.3)
were also examined for metonymies produced as part of the SDS-building/TMR-construction pro-
cess. The results there showed, realistically, how metonymy resolution and WSD are interrelated,
in that many of the WSD failures correlated with (wrong) metonymies being produced and vice
versa. Table 9E shows the cumulative counts for different categories of metonymies produced
during the course of producing TMRs for the four training and one test text. The table shows that
seven kinds of metonymic expressions were found in the four texts, of which Institution-for-Per-
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sonResponsible was the most common, as expected, due to the nature of the texts. The Action-
for-Entity type was also well-represented, often from the use of “imports” or “exports” to refer to
products (since they are represented as the THEME of an event in the lexical semantic specifica-
tions). The table also shows a count for various classes of errors in TMR production. A number of
these errors are just reflections of missing microtheories; for example, “millions of dollars” and
other numerical expressions cause odd TMR constructions that cause trouble when they are linked
to other elements of the SDS, resulting in type mismatches and. therefore, metonymic inferences.
Another class of anomaly is due to temporal expressions, for which no microtheory has been de-
veloped, and whose absence causes funny metonymic expressions to appear in the TMR. These
various missing microtheories account for about half of the errors. It is difficult to pinpoint the
cause of errors, so no breakdown of the error types can be produced; for example, it is difficult to
determine whether bad metonymic resolution is the cause or the effect of bad WSD on open class
words or prepositions, informed by a range of other knowledge sources other than the ontological
graph search. Some indeterminate fraction of the errors is due to the ontological graph search re-
turning a bad path, or returning an appropriate path but at a cost that resulted in bad overall disam-
biguation. Thus many of these errors, real and apparent, would be eliminated by further
development of the MikroKosmos system that formed the test environment in this case, namely
by developing the following microtheories: numeric expressions, temporal expressions, reification
of case roles, and prepositional semantics.

Table 9E. Metonymic Inferences in 5 Spanish Texts

CORRECT
INFERENCES DUE
TO METONYMIES

Institution for
PersonResponsible

23

ObjectUsed for User 1

Action for Entity 15

Generic for Specific 10

Symbol for Symbolized 1

Product for Producer 2

Instrument for Action 1

INCORRECT
INFERENCES

wrong preposition selected 6

conjunction problems 2

all other TMR errors
(including bad metonymy

resolution and missing
microtheories)

37
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The goal of these experiments was not to attempt to solve all cases of metonymy, but to iden-
tify how far this general mechanism can lead us in addressing metonymies. In fact, the results are
rather promising, in terms of coverage. A handful of examples are mentioned in Section 9.8 above
and in this subsection as difficult or impossible within the framework of the approach described
here; however, they seem to account for less that five percent of metonymies occurring in real cor-
pora. Not unexpectedly, overall results improve with improvements to the ontology and with in-
creased training data for inducing the arc weights.
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10. Ontology Acquisition
One of the chief impediments to the use of knowledge-based systems is the heavy burden of

acquiring the knowledge sources. In this section we present some thoughts on the acquisition of
the ontology, as well as the ramifications of gaps in the ontology. While the acquisition of knowl-
edge for the ontology and lexicons is outside the scope of the work discussed here, this section
will speculate on ways of acquiring knowledge in a semi-automated manner, on methodologies
for augmenting that knowledge to support the sort of reasoning discussed in Section 7 and subse-
quent sections, and on effects of gaps in the ontology on those reasoning processes.

10.1  Acquisition of Ontological Knowledge

The ontology is organized as a hierarchical tree; the content of the uppermost levels of the on-
tology is crucial to the inheritance, organization, and utility (by various reasoning mechanisms) of
the ontology itself. These upper levels of the ontology are necessarily hand-crafted. The balance
of the ontology, which is expected to consist of thousands (probably under ten thousand) of nodes,
could be constructed by a combination of semi-automated importation of existing resources that
have ontological knowledge implicitly or explicitly encoded within, manual acquisition to support
the processing of particular domains or corpora, and tool-enhanced manual acquisition in a more
thorough manner. The sections below discuss some such possibilities to expedite or automate the
ontology acquisition process. However, it should be noted that an ontology has already been built
that is sufficient for the experiments and results presented in previous chapters; this ontology, with
about 5000 nodes and over 15,000 (local) relations, is described in Mahesh and Nirenburg (1995)
or Mahesh (1996).

10.1.1  Importing Existing Ontological Resources

There is a range of available resources which contain some amount of either taxonomic or on-
tological knowledge; the depth of these resources varies from shallower to deeper than is required
for the work discussed here, but, uniformly, all of these resources are impoverished in terms of re-
lations and attributes on concepts or ontology entries. In order to make use of any of these re-
sources it becomes necessary to reformat the resource into a hierarchy of the form that the
ontology-building tools can manipulate, then to allow a human ontology acquirer to peruse the re-
sources and import appropriate fragments. Although the uppermost levels of the hierarchical re-
sources tend to be organized differently from what our paradigm expects, the mid levels of these
resources can be suitable for importation; the lower levels vary from being too detailed to being
useful as well. An approach which involved merging a number of these (or other) resources could
also be attempted, but would run into the same difficulties as mentioned above. All these resourc-
es only provide the taxonomic structure — the relational and attribute information (i.e., the differ-
entia) need to be added to the taxonomic (the genus). Note that all of these resources, in addition
to providing some ontological information, generally provide lexical information for English, per-
haps including some lexical semantic mapping.

• WordNet (Miller et al. (1993)) — The WordNet resource contains clusters of related word
senses (called syn-sets), along with indications of hyponymy, hypernymy, meronymy, and
antonymy between clusters. Although the clusters are defined by their membership of En-
glish words, in effect they identify clusters akin to ontological concepts. Numerous efforts
have used this resource in building English-language lexicons or ontologies. Several com-
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plications for using WordNet for our ontology exist, however, including a difference in
top-level choices of categories. Additionally, the WordNet resource has a much finer gran-
ularity at the leaf nodes than we would want to have in our ontology; either manual prun-
ing, or perhaps a corpus-specific method such as Cucciarelli and Velardi (1997), could
reduce the taxonomy to a more appropriate depth and granularity.

• LDOCE (Procter et al. (1978)) — The Longman Dictionary of Contemporary English has
also been extensively used, typically in building a lexicon. The presence of semantic con-
straint information and typology (via the box codes) and the domain information (the sub-
ject codes), in the electronic form, allows some degree of taxonomization; the limited
vocabulary and grammar of the definitions has allowed researchers to induce semantic
definition and/or classification information, including Guthrie et al. (1990), Bruce and
Guthrie (1992), Vossen et al. (1989), Alshawi (1989).

• CYC (Lenat et al. (1990)) — The CYC knowledge base offers the opportunity for importing
knowledge into our ontology, of the taxonomic, attributive, and relational nature. Substan-
tial work will need to be done, however, to determine whether the rather disparate knowl-
edge types and structures in CYC would be appropriate for MIKROKOSMOS-style
inferencing, and to perform the conversion. An initial investigation into the utility of such
a large-scale importation is described in Mahesh et al (1996b), with generally pessimistic
conclusions. The axiomatic information in CYC isn’t necessarily of the sort that the ontol-
ogy encodes, and the number of concepts isn’t as significant as expected. The way infor-
mation is encoded doesn’t sustain the frame-based approach that we need (although it
could be reformatted, with some effort). In general, the information in CYC isn’t designed
to sustain the sort of reasoning that we perform, namely inheritance and relaxation of con-
straints, which necessarily relies on hierarchical organization of information (a type of
knowledge that CYC is deficient in).

• SIC (Office of Management and Budget, US Government) — The Standard Industrial Clas-
sification manual presents a very large, comprehensive taxonomization (bushy, 6 levels
deep) of all areas of business, commerce, industry, agriculture, etc. in the United States.
Portions of this taxonomy can be imported to populate appropriate portions of our ontolo-
gy. From the occurrence of the same type of product in numerous categories (for example,
research on computers, manufacturing of computers, sales of computers, repair of comput-
ers) it should be possible to develop a characterization of some events and relations that
certain types of objects can participate in.

• Cambridge Linguistic Survey — This repository of lexicalized knowledge may be able to
provide taxonomic and attribute information that could be imported into the ontology,
whether directly or thorough the Cambridge International Dictionary of English (CIDE,
Procter (1995).

• Word Menu from Random House — This compilation of words is organized in hierarchical
thesaurus-like manner that may allow some derivation of ontological information.

• FrameNet, as described in Lowe et al. (1997), may be the best potential source for direct im-
portation of ontological knowledge, although the project was just initiated at the time of
writing. This resource will certainly have more relational information that WordNet, espe-
cially of the case role type. Since relational information will be important in building this
resource, the taxonomy may end up not too dissimilar with the taxonomy in our ontology,
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to facilitate inheritance.

• The ISI SENSUS ontology, as described in Knight and Luk (1994) — This resource was, in
fact, constructed by integrating the taxonomic information from a number of other re-
sources mentioned above, specifically LDOCE (although this resource was eventually re-
moved for intellectual property rights reasons), the predecessor of the MikroKosmos
ontology described here, and the WordNet taxonomy. Knowledge from these resources
was merged with the ISI Upper Model, and upper tier ontology. This taxonomy does not
have the relational information needed to support the kinds of inferencing that we require,
and is very English-language specific, but could be used to bootstrap an English lexicon
by mapping portions of the taxonomy to sections of our ontology.

• The information encoded in an MRD could be mined in an attempt to build a taxonomy, as in
White (1988), but any such effort would have to contend with word sense ambiguity and
other text processing problems on the dictionary definitions themselves.

10.1.2  Facilitating Building an Ontology

There will always be a need for some manual addition and modification of the ontology, even
in the unlikely case of overwhelming success in (semi-) automated acquisition. In addition to an
editor, there are other tools that could be provided to the lexicographer/ontologist which can assist
in the manual review process.

• Tools for automatic derivation of subcategorization frames for verbs (such as those being de-
veloped by Levin and Hogan at CMU, or Briscoe and Carroll (1997)), can help the ontolo-
gist determine the sort of relations that a concept (which represents the meaning of a
certain verb) can participate in over a corpus; the case roles identify slots and relations that
need to be defined for the event concept.

• Corpus analysis tools, even as primitive as KWIC, can help identify the sorts of arguments
that a verb takes; the concept(s) which represents the meaning of that verb will need to al-
low the appropriate set of fillers (through semantic constraints) for the various relations/
case-roles that the verb participates in. Similarly, KWIC on a noun can identify the sort of
events and relations that the entity can participate in.

• Noun-Noun compounds in English provide an unusually rich source of relations which have
objects as the domain and range (i.e., are slots on object concepts). In examining the N-N
compounds, say from a syntactically marked-up corpus like Treebank, each such com-
pound identifies a particular relation that exists between the concepts which represent the
meaning of the head and subordinate nouns. Appropriate generalization of such relations
should substantially enrich the ontology to reflect empirical facts.

• Collocational relations in corpora could be mined to identify the underlying semantic infor-
mation, as in the preliminary work in Anick and Pustejovsky (1990)

The use of these tools, as described above, to analyze a corpus for the purpose of determining the
appropriate relations and constraints that various concepts (as reflected by English words) can
participate in provide an avenue for empirical verification and augmentation of the ontology, par-
ticularly the relational information.
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10.2  The Effects of Gaps in the Ontology

The process of lexical acquisition ensures, to a certain degree, an appropriate degree of rich-
ness in the ontology; in order to write the LEX-SEM specification of a particular lexeme, it is nec-
essary to have a specific ontological concept, a TMR structure, or a complex of concepts and
structures to map the meaning of the lexeme into. Thus the ontology is incrementally enriched on
an as-needed basis in the process of lexical acquisition.

It is unclear what the effect of varying degrees of richness over sections of the ontology would
have on the reasoning and constraint relaxation processes. It is possible that a corner of the ontol-
ogy, if defined to a greater granularity and bushiness, would be traversed at a different rate than
another corner which is sparser, resulting in different “best paths” than would have resulted from
an equally-balanced ontology. This will be a matter of investigation.

In general, the effect of missing relations and attributes result in the lack of information by
which to distinguish between possible lexical realizations in generation. In analysis, lack of rela-
tions can result in missing metonymies or metaphors in constraint relaxation, and certainly in
finding inappropriate relations for resolving N-N compounds. Since such effects are possible, the
gap issue may contribute a heuristic to the ontology building constraints: that the ontology be as
balanced as possible in terms of granularity.

Gaps in the ontology might also hinder recovery mechanisms for dealing with unknown words
in the input text. Although such mechanisms have not been explored seriously in the context of
MIKROKOSMOS yet (other than just guessing a lexeme with meaning ALL as described in Sec-
tion 8.3), there are some specific approaches that follow from the use of the ontology both for de-
fining selectional restrictions and lexical semantics. For example, unknown nouns can be
approximated by instantiating the constraint on the verb (or preposition) argument slot in which
the noun appears. Verbs might be approximated by determining the arguments, and perusing the
EVENT subhierarchy in search of events with semantic constraints matching the semantics of the
arguments, assuming a default syntax/semantic interface frame. If an appropriate verb subtree is
found, instantiate the fairly general event concept (at the head of the tree) as the approximation of
the verb’s meaning. Similar exercises have been described in the literature, but perhaps by having
a rich ontology and specific constraints it may be possible to get reasonable results.

10.3  Issues in Defining Relations

The success of the lexical semantic representation (in discriminating between senses) lies in
the ontology having the appropriate richness, and mapping lexical meaning from the ontology.
The success of the semantic analysis or SDS-building process also relies on the ontology, in that
constraint satisfaction and relaxation, as well as determination of the relation between syntactical-
ly marked items (such as N-N compounds) also depends on the richness of nodes and, crucially,
links in the ontology. There are numerous issues that arise about the nature and richness of the in-
ventory of relations (in the RELATION corner of the ontology), as well as about the process of ac-
quiring these relations.

• One question that can only be answered after extensive work on the ontology is whether or
not we need to represent any three-place relations. If so, is there any penalty in treating
them as events, where there may be arbitrarily many arguments. It might be the case that
there are three-place relations which are treated by “lexicalizing” one of the arguments
into the definition of the relation type.
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• One critical issue that needs to be addressed is whether, as the ontological graph search as-
sumes, there is in fact some sort of ontological proximity (i.e., some relatively short path
over any arcs) between semantically related concepts. Here, “semantically related” needs
to be defined in pragmatic terms, i.e., so that the notion can be used by the ontological
graph search to perform disambiguation and to select appropriate relations between con-
cepts. Thus we would expect holster and revolver to be related, chopsticks and eating, as-
tronomer and star, stocks and bonds, and so on. This basic assumption underlies the
algorithm in Section 5; success or failure of that approach will validate or deny this
premise.

• Various observations have been made about the relatedness of the sets of relations that exist
in derivational word formation (as reflected in Lexical Rules), in N-N compounds, in reg-
ular polysemy, in collocations, and in metonymy (usually these observations are on specif-
ic pairs from the above list). There are inventories in the literature for each these
phenomena (e.g., Mel’chuk and Zholkovsky (1984), Lakoff and Johnson (1980), Apresjan
(1974), Apresjan et al. (1969), Stern (1965), Ostler and Atkins (1992), among others);
these inventories can be exhaustively reflected by sets of relations in the ontology. Addi-
tionally, each of these phenomena could be isolated in a corpus, and a study of the exam-
ples would lead to verifying the existence of appropriate relations in the ontology. On the
other hand, after extensive development of the ontology and the lexicons, as verified by
extensive processing of texts from various sources, an experiment could be set up to ex-
plore the degree to which these various phenomena share similar semantic relations, and
the extent of relations that are only differentia in meaning discrimination but don’t partici-
pate in any of these phenomena.

• Just as there are obvious parallels between English verbs and nouns (destroy and destruction,
for example), there are parallels between event verbs (which have EVENT representations)
and expressions which give rise to relational information in the TMR. For example, there
might be an ontological event STORE_EVENT, which reflects the act of storing something
somewhere. The issue is whether or not there should be a relation (such as STORED_IN)
which relates one argument of an event with another (e.g., REVOLVER STORED_IN HOL-
STER), to mirror the event, for example STORE_EVENT with THEME REVOLVER and LO-
CATION HOLSTER. Furthermore, if there were such a relation, what the exact semantics
would be; in fact, for the above example, the relation (and the event from which it was de-
rived) should probably be something akin to TYPICALLY_STORED_IN. Although represent-
ing weak default knowledge, such relations appear to be necessary to capture the relation
between HOLSTER and REVOLVER, which might be necessary for N-N compound resolu-
tion (such as revolver holster); whether this relation could be represented by generic spec-
ification of HOLSTER is left to experimentation.

If, in fact, such events do lead to relations, it needs to be determined how specifically they
should be used in the ontology; should AIRPLANE have slots TYPICALLY_FUELLED_IN,
TYPICALLY_MAINTAINED_IN, TYPICALLY_STORED_IN, etc. locally specified? Or should
more generic knowledge be relied on, with substantial acquisition and storage savings,
perhaps at the risk of some inappropriate inference?

As an experiment to investigate the feasibility and nature of such relations derived from
events, a Gedanken experiment could be conducted on a number of events from various
points in the ontology (from fairly general to fairly specific). From each event, a number
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of relations could be derived by considering each of the five or seven most frequent case-
roles for the domain of the relation, and the same for the range (for example MANUFAC-
TURE, AGENT as domain, and LOCATION as range, yielding a relation
LOCATION_OF_MANUFACTURING). A representative set of objects (from various points in
the ontology, particularly including typical instruments, agents, locations, etc.) could be
tested against the domain and range of the relation (for the above example, for BLACK-
SMITH the relation makes sense, and would be fillable by SMITHY or BLACKSMITH-SHOP,
since that is the typical location where a blacksmith manufactures). If the relation is valid,
there should be a well-defined subtree (however large or small) of object concepts for both
the domain and range. A pragmatic decision in using these sorts of relations is whether or
not the specificity, thus added discriminatory and disambiguation power, is enough to jus-
tify the overhead. In the absence of such specific information, the BLACKSMITH concept
would still be linkable to SMITHY as a LOCATION.
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11. Conclusion

11.1  Future Work

11.1.1  Noun-Noun Compound Resolution

The processing of N-N compounds for English (where there is no preposition that links the
two nouns) would differ from most of the other applications of the instantiation-combination pro-
cess in English in that there are no explicit syntactic relations identified in the SYN-STRUC zones
of the participating nouns, nor are there semantic dependency selectors (i.e., ^$VAR#) expres-
sions in the lexical semantic specifications of the nouns. A discussion of the way that this type of
structural processing is handled in the state-space search process appears in Section 6.3.2.

The basic premise of this approach to N-N compound processing is that slots capture the rela-
tion between the two concepts:

Heuristic XII. In N-N compound processing, the relation between the subordinate
noun and the head noun is captured by filling a slot on the head instance with
the subordinate instance.

Since any relation that is defined in the ontology may serve as a slot on a concept, this approach
allows a wide variety of relations to be used to define N-N compounds.

In implementing the SDS-building process for N-N compounding, certain differences from
the base case need to be accounted for. Firstly, the invocation of the combination process is driven
not by the syntax/semantic interface through the $VARs, but by syntactic cues. Secondly, since
there is no indication of the appropriate slot for combination, the combination operator is invoked
slightly differently. The same ontological graph search process is still appropriate for this task, but
with a different set of arc weights than the ones for directed semantic constraint satisfaction. The
search is initiated by searching for the best paths from the filler (subordinate concept) to the head
concept; since any path to the constraining concept (in this case the head) goes through one of the
slots on that concept, this approach serves to explore any of the slots on the head concept.

In assigning the arc weights for the graph search process, certain heuristics apply. The slots
that are locally defined or are inherited by the head concept have semantic constraints which de-
fine what are the desired and allowed fillers for those slots, which serve to define the paths to the
head.

Heuristic XIII. In N-N compound processing, slots inherited by the head concept, al-
though still available to serve as the locus of combination, are slightly less pre-
ferred than locally-defined (therefore more specific) slots

This causes a decreased preference for every level above the head concept from which a slot/con-
straint is inherited. Thus, the initial path costs are adjusted to reflect the decreased preference for
the more distantly-inherited slot constraints.

Examples such as bottle opener or airline ticket reservation system illustrate the need for “ge-
neric instances”. There is no one specific instance of *BOTTLE that the particular opener was built
to open, and there isn’t one specific airline, one specific ticket, or one particular reservation that
the system is to handle. On the other hand, in examples such as boat bottom or toothbrush handle
there is a specific boat that the bottom is part of, and a specific handle that is part of the specific
toothbrush in the model of discourse.
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Although no comprehensive generalization is immediately available as to when the subordi-
nate noun(s) is a generic vs. an instance, it appears clear that the relation controls the instantiation:

Heuristic XIV. The nature of the relation between the head and subordinate nouns in
N-N compounds dictates whether the subordinate noun produces a generic or
an instance.

It appears, at first blush, that when the relation is a kind of TYPE relation (such as SYSTEM-TYPE),
the generic is called for; when the relation is PART-OF, the instance appears to be more appropri-
ate. Obviously, extensive experimentation and corpus analysis will be necessary to determine this
division and to validate this heuristic generalization. This partitioning of relations may, in fact,
have ramifications on the design of the *RELATION portion of the ontology, if it appears that all ge-
neric-producing relations are somehow taxonomically grouped.

Much of the literature on N-N compound typology (e.g., Finin (1980, 1986), Lees (1960,
1966), Warren (1978), Lehnert (1988), or Zhivov (1978)) classifies compounds along structural
equivalents that the compound correlates with, such as SUBJECT-OBJECT. Although this sort of
typology is useful, it does not provide the semantic relations that are needed for the approach de-
scribed here. A search of other, possible less related, literature and empirical studies will be need-
ed to describe a typology of semantic compounding relations. Semantic classification of the two
terms which comprise N-N compounds may allow specific constraints to be placed on the domain
and range of each relation, which could substantially aid the search process.

11.1.2  Additional Microtheories

The model of semantic analysis presented here makes use of the SDS-building process with
constraint satisfaction via the ontological graph search for core meaning construction from lexical
information and inter-lexeme relationships. However, the model also expects to have a range of
specialist microtheory processors to handle particular phenomena or aspects of meaning. Some of
these microtheories may be interleaved or integrated into core SDS-building, while others may
apply separately, as characterized in Figure 7A. Additionally, some of these microtheories will
make use of the ontological graph search, but, again, not all. What follows below is some specula-
tion on possible microtheories that may need to be added to the overall framework to address the
range of meaning that we desire to represent, and to address the four desiderata for practical com-
putational semantic theories as spelled out in Section 1.3.

• Reference resolution: the TMR notation already has a mechanism for representing corefer-
ence, but we don’t have a procedure specified for discovery of coreference relations. The
ontological graph search may assist such a procedure or microtheory, by exploring the
paths over the ontology between candidate coreferring instance structures in the TMR (a
different set of arc weights would be needed, because the ontological graph search would
be asked to identify semantic similarity, instead of constraint satisfaction). Additional
mechanisms would obviously be necessary; the coreference exercises in MUC (see Sund-
heim (1995)) required a wide range of techniques, including partial matching of name
strings, to address the coreference problem in news wire texts.

The ontological graph search can also assist in some cases of definite reference resolution,
particularly with evoked or inferable information (see Prince (1981)). The ontological
graph search can identify relationships between parts and wholes and other semantically
related entities.
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• The name tagging technology also described in Sundheim (1995) could also provide a useful
tool for our framework, if inserted before the syntactic parser. In addition to identifying
the extent of proper names in text (a surprisingly non-trivial problem) and tokenizing
them, this technology can provide semantic type information for what would otherwise be
an unknown word (or an ambiguous word), in many cases (such as novel company names
not in the onomasticon, or names that could serve multiple types, such as London as a
place or a person name, among others). In cases where a name isn’t found in the onomas-
ticon and lexicons, a name transliteration mechanisms could be incorporated, as appropri-
ate.

• Some of the WSD algorithms in Section 8.1 could be integrated into our framework as an
additional microtheory of sense selection, adding its preferences to the mechanisms al-
ready in place, as described in this document. Some of these algorithms, such as the collo-
cational statistics-based approaches, could be added as a separate stand-alone
microtheory, so long as the word senses were mapped into our lexicon. Other mechanisms,
such as the Resnik (1995a) information content approach, could be explored as an en-
hancement to the ontological graph search, although it isn’t clear whether it would provide
added value, since the knowledge that his approach encodes is somewhat orthogonal to the
path weights that we use.

• A more sophisticated approach to stylistics could be incorporated as a microtheory in the
analysis process, also providing weak WSD clues on the basis of expected (or computed)
stylistic mismatches with certain senses.

• A microtheory of certain types of metaphor is already under preliminary investigation; the
current model being explored involves comparison of semantic features across the ontolo-
gy in cases of constraint violations, and suggestions of substitutions of the event concept
in a metaphor with semantically/metaphorically related ones (and reliance on the core
SDS process to select among them). In essence, this involves relaxing the event or con-
straining concept in the case of violations, as opposed to relaxation of the constraint itself,
as is the case in metonymy resolution. This effort is very preliminary at this stage, and
only attempts to address a small subset of metaphors that conform to this relaxation mod-
el.

11.2  Summary and Heuristics

The paradigm presented in this paper developed from the observation that the depth of analy-
sis required for high-quality translation and other applications exceeds the capabilities of syntac-
tic and shallow semantic frameworks. The information that is derived from the semantic analysis
(which, in our terms, includes contextual semantics, pragmatics, stylistics, treatment of unexpect-
ed input, resolution of deictic phenomena, and other tasks, in addition to what has traditionally
been called lexical semantics — that is, static, syntax-driven constraints on meaning) is represent-
ed in the language-neutral representation (the TMR). In practice, this depth of analysis requires
substantial amounts of world knowledge for disambiguation and the other inferencing that is re-
quired in the process of building the TMR. The lexicon becomes the point in which much of this
world knowledge is referenced and indexed.

Basic semantic analysis, or Semantic Dependency Structure building, becomes a process of
disambiguating the input into lexemes and predicate argument structure, the instantiation of those
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lexemes, and the combination of those instantiated fragments into the basis of the TMR. The
search space of possible combinations and instantiations (thus possible semantic representations)
is large, therefore elaborate constraint checking is utilized to restrict possible combinations of rep-
resentations for lexemes.

This constraint check relies on semantic constraints on fillers of slots of instances, encoded ei-
ther in the ontology or in lexical entries. Constraint checking is performed by determining the se-
mantic relation between the potential filler and the constraint, by means of a best-path search over
the ontology, where various relations other than hierarchical ones also provide arcs between
nodes. Arcs have different weights to reflect the degree of semantic affinity reflected by that node,
although the weight itself may be context dependent. Semantic affinity refers to the strength of the
relation encoded by an arc, as judged against the extent to which it can serve as the underlying
motivator which defines a metonymic or other relation between words.

The list of heuristics below summarizes the main insights which guide the effort described
here.

Heuristic I. Semantic constraint satisfaction and relaxation corresponds to finding the
best path over weighted arcs in an ontological graph from the candidate filler to
the constraint.

Heuristic II. Use Equation (2) as the search heuristic in the graph search over the ontol-
ogy.

Heuristic III. The weight on an arc from node A to node B in the ontology is propor-
tional to the semantic affinity that node A has for node B.

Heuristic IV. The syntax/semantics interface identifies the correlation between ele-
ments in the syntactic argument structure and semantic dependency structure
by means of parallel variable structures.

Heuristic V. Semantic Dependency Structure Building is accomplished by iterative ap-
plication of the Instantiation and Combination operators.

Heuristic VI. The semantic analysis process proceeds by recursive descent down the
syntactic parse tree.

Heuristic VII. The instantiation operator produces a meaning representation for a spe-
cific or generic instance of an entity, event, etc., as specified in the SEM-STRUC
zone of a particular lexeme; these fragmentary meaning representations consti-
tute fundamental building blocks of the TMR.

Heuristic VIII. The Combination operator attempts to combine TMR fragments ac-
cording to either expectations from the syntax/semantics interface or as indicat-
ed by syntactic clues; the success of the operator is contingent on the successful
application of the constraint satisfaction check, as embodied by the ontological
graph search mechanism.

Heuristic IX. Metonymies in text are identified by the ontological graph search, when
the best path traverses an arc which reflects a metonymic relation.

Heuristic X. In representing metonymies in the text meaning representation, it is nec-
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essary to make an inference (by instantiation) about the existence of the entity
replaced by the metonym.

Heuristic XI. Inventoried metonymic relations are less preferable than taxonomic (IS-A)
relations, but still preferable over all other relations over the ontology.

Heuristic XII. In N-N compound processing, the relation between the subordinate
noun and the head noun is captured by filling a slot on the head instance with
the subordinate instance.

Heuristic XIII. In N-N compound processing, slots inherited by the head concept, al-
though still available to serve as the locus of combination, are slightly less pre-
ferred than locally-defined (therefore more specific) slots

Heuristic XIV. The nature of the relation between the head and subordinate nouns in
N-N compounds dictates whether the subordinate noun produces a generic or
an instance.

These heuristics can be categorized according to their primary purpose. The core heuristics
that deal with the SDS-building process are Heuristic IV and Heuristic X, while others deal with
the search space for the process: Heuristic V, Heuristic VI, Heuristic VII, and Heuristic VIII. The
largest set of heuristics, however, are concerned with defining the use of the graph search in the
constraint satisfaction process: Heuristic I, Heuristic II, Heuristic III, Heuristic IX, and Heuristic
XI. While these heuristics alone do not define the entire SDS-building process, search space, con-
trol flow, or knowledge sources, they are the chief guiding insights that led to the design of the ap-
proach as described above.

11.3  Significance

The body of work presented in this document and a constellation of related work in the DI-
ANA/MIKROKOSMOS projects marks the first significant effort to use an ontological semantics
framework for KBMT on unrestricted text. Although some of the theory and method discussed
above may have been used in other contexts, we found that the ontological semantics framework
provides opportunities to extend traditional concepts in significant ways. The results obtained on
both the Word Sense Disambiguation task and on metonymy resolution suggest that not only is
the overall framework viable, but also that the richness of knowledge and the inference mecha-
nisms are adequate for addressing these very difficult NLP tasks.

The contributions of this work to the theory of ontological semantics include the following
points:

• We define a framework for the unified treatment of semantic dependency structure building
that encompasses, in an integrated manner, satisfaction and relaxation of constraints,
word-sense disambiguation, and resolution and representation of metonymy (and, poten-
tially, could also be extended to handle some cases of nominal compounding and reference
resolution).

• We define a model for achieving very significant expressiveness of meaning representation.

• We extend the notion of traditional selectional restrictions or semantic constraints by using a
wide range of sources of constraints, a rich inventory of potential constraints (the entire
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ontology), constraints on non-selected-for structures, and semantically nullifying con-
straints.

• We show how an ontology can be used as a search space for constraint satisfaction and iden-
tification of semantic relations.

• We built an extensive inventory and typology (via the ontology) of metonymic relations

• We present an approach to metonymy which is an integral component of semantic analysis,
not a separate afterthought; this approach uses an inventory of metonymic relations but
also identifies novel uninventoried uses, and it isn’t specific to a pair of languages and can
recognize and represent chains of metonymies in one semantic relation.

In addition, this work contributes to the methodology of practical computational semantics
and KBMT:

• We define a framework for lexical semantics and a syntax-semantics interface which can
support rich expressiveness, lexical decomposition and non-compositional combination of
lexical meaning.

• This framework demonstrates a novel integration of syntagmatic (via extensive selectional
constraints) and paradigmatic (via ontological graph search from constraint to filler) mod-
els to word-sense disambiguation, with experimental results that are very promising.

• We demonstrated the practical utility of rich ontological relations for a range of computa-
tional tasks for NLP, including semantic representation, word-sense disambiguation, and
metonymic processing.

• We introduce an efficient mechanism for finding paths over graphs with context-sensitive
weighting of arcs.

The practical results of the framework are such that they suggest continuing the exploration of
these methods for practical NLP applications, first among them being Machine Translation.

We now revisit the four desiderata for practical computational semantic theories that we spec-
ified in Section 1.3. The expressiveness of meaning representation is addressed by the extensive
propositional and non-propositional meaning structures in both lexical semantic and text meaning
representations, including stylistics, inferences, speaker attitudes, and text relations. All the se-
mantic primitives of the meaning representation are defined by means of an ontology that uses a
multiple inheritance hierarchy, relational links between concepts, and features or properties on
those concepts; thus we satisfy the second desideratum. The third one is addressed by the SDS-
building and constraint satisfaction procedure outlined above, while the fourth desideratum is
only partially addressed by the idiom processing, conventional language, and metonymy resolu-
tion mechanisms integrated into the overall framework.

The overall significance of the work outlined here is that it demonstrates that the ontological
semantic and knowledge-based frameworks for practical computational semantics can provide
leading-edge results on NLP tasks such as machine translation. Although the framework could
still fail to scale well to full production-level applications, the results achieved on the non-trivial
demonstrations are very promising.
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