
Privacy-Preserving Machine Learning
for Speech Processing

Manas A. Pathak

CMU-LTI-12-005

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

Thesis Committee:

Bhiksha Raj (chair)
Alan Black

Anupam Datta
Paris Smaragdis, UIUC
Shantanu Rane, MERL

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

In Language and Information Technologies

© 2012, Manas A. Pathak

Manas A. Pathak: Privacy-Preserving Machine Learning for Speech Pro-
cessing, © April 26, 2012.

This research was supported by the National Science Foundation
under grant number 1017256. The views and conclusions contained in
this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

Dedicated to my parents, Dr. Ashok and Dr. Sulochana Pathak

� �� ������ । �� �� �� ��� ।
�� ���� ������� ।

������ ���������� �� ��������� ॥

� ������ ������ ������ ॥

Om! May He protect us both together;
May He nourish us both together;

May we work conjointly with great energy,
May our study be vigorous and effective;

May we not mutually dispute.

Om Shanti Shanti Shanti

ABSTRACT

Speech is one of the most private forms of personal communication,
as a speech sample contains information about the gender, accent, eth-
nicity, and the emotional state of the speaker apart from the message
content. Recorded speech is a relatively stronger form of evidence as
compared to other media. The privacy of speech is recognized legally
as well; in many cases it is illegal to record a person’s speech without
consent.
In spite of the significant theoretical and practical advances in

privacy-enabling methodologies, little has been applied to speech
tasks and most existing speech processing algorithms require com-
plete access to the speech recording. In this thesis, we introduce the
problem of privacy-preserving speech processing. We focus on con-
structing privacy-preserving frameworks for three speech processing
applications: speaker verification, speaker identification, and speech
recognition. Our emphasis is on creating feasible privacy-preserving
frameworks, where we measure feasibility by speed and accuracy of
the computation.
In speaker verification, speech is widely used as a biometric in an

authentication task. However, existing speaker verification systems re-
quire access to the speaker models of enrolled users and speech input
from a test speaker. This makes the system vulnerable to an adversary
who can break in and gain unauthorized access to the speaker data,
and later utilize it to impersonate a speaker. Towards this we create a
privacy-preserving speaker verification framework using homomor-
phic encryption in which the system stores only encrypted speaker
models and is able to authenticate users who provide encrypted input.
We also construct an alternative framework in which we transform the
speech input into fingerprints or fixed-length bit strings, and the users
obfuscate the bit strings using a cryptographic hash function. In this
framework, the system is able to efficiently perform the verification
similar to a password system.
In speaker identification, we use a speech recording to classify the

speaker among a set of individuals. This task finds use in surveillance
applications where a security agency is interested in checking if a given
speech sample belongs to a suspect. In order to protect the privacy
of speakers, we create a privacy-preserving speaker identification
framework, where the security agency does not observe the speech
recording. We use homomorphic encryption to create protocols for
performing speaker identification over encrypted data. We also use
the string comparison framework to perform speaker identification
over obfuscated bit strings.

v

Recently, there has been a increase in external speech recognition
services that allow users to upload a speech recording and return the
text corresponding to the spoken words as output. In many cases, users
are reluctant to use such services due to confidentiality of their speech
data. We create a privacy-preserving framework using homomorphic
encryption that allow the service to perform isolated-word speech
recognition over encrypted speech input.
In the above problems, we formalize the privacy model, analyze

the adversarial behavior of different parties and present detailed
cryptographic protocols. We report experiments with prototype im-
plementations of our solutions for execution time and accuracy on
standardized speech datasets.

KEYWORDS

speaker verification, speaker identification, speech recognition, secure
multiparty computation, homomorphic encryption, locality sensitive
hashing.

vi

PUBL ICAT IONS

Some of the ideas in this thesis have appeared previously in the
following publications.

Manas A. Pathak and Bhiksha Raj. Privacy preserving speaker ver-
ification using adapted GMMs. In Interspeech, pages 2405–2408,
2011a.

Manas A. Pathak and Bhiksha Raj. Efficient protocols for principal
eigenvector computation over private data. Transactions on Data
Privacy, 4, 2011b.

Manas A. Pathak and Bhiksha Raj. Large margin Gaussian mixture
models with differential privacy. IEEE Transactions on Dependable
and Secure Computing, 2012a.

Manas A. Pathak and Bhiksha Raj. Privacy preserving speaker veri-
fication as password matching. In IEEE International Conference on
Acoustics, Speech and Signal Processing, 2012b.

Manas A. Pathak, Shantanu Rane, and Bhiksha Raj. Multiparty differ-
ential privacy via aggregation of locally trained classifiers. In Neural
Information Processing Systems, 2010.

Manas A. Pathak, Shantanu Rane, Wei Sun, and Bhiksha Raj. Privacy
preserving probabilistic inference with hidden Markov models. In
IEEE International Conference on Acoustics, Speech and Signal Processing,
2011a.

Manas A. Pathak, Mehrbod Sharifi, and Bhiksha Raj. Privacy preserv-
ing spam filtering. arXiv:1102.4021v1 [cs.LG], 2011b.

vii

If I have seen further it is by standing on the shoulders of giants.

— Issac Newton

ACKNOWLEDGMENTS

I would like to thank my advisor, Bhiksha Raj, with whom I have had
the pleasure of working with during the course of my PhD program
at Carnegie Mellon University. Bhiksha is truly a visionary, and has
made many contributions to multiple research areas: speech and signal
processing, machine learning, privacy, optimization, dialog systems,
knowledge representation, to name a few – he is symbolic of the
interdisciplinary culture that LTI and CMU are known for. I learned a
lot from working with Bhiksha: his depth of knowledge, his effective
communication of ideas, and most importantly, his zeal to push the
boundaries and advance the state of art. I appreciate the latitude he
gave me in pursuing research, while providing invaluable guidance
and support.
I also learned a lot from Rita Singh as well, who is also a visionary

and an extraordinary researcher. Apart from the numerous useful
technical discussions which I am thankful for, Rita and Bhiksha made
myself and the other graduate students feel at home in Pittsburgh
despite being literally thousands of miles away from our original
homes. I thank my “grand-advisor” Rich Stern for his feedback that
significantly helped me improve my research. I also thank Eric Nyberg
who was my advisor during the masters program at CMU. It was
with him that I obtained my first experience of doing graduate-level
research and he always took special efforts in improving my speaking
and writing skills.
I was fortunate in having an amazing thesis committee with Alan

Black, Anupam Datta, Paris Smaragdis and Shantanu Rane. I thank
Alan for the useful guidance and suggestions at each stage of my
research. I also learned a lot about privacy and security from being
the teaching assistant for the seminar course instructed by him and
Bhiksha. I thank Anupam for helping me in making the thesis much
more rigorous through insightful discussions. His feedback during
the proposal stage helped me vastly in focusing on relevant aspects
and improving the quality of the thesis. Paris, of course, inspired me
with the idea for this thesis through his multiple papers on the subject.
I also thank him for his valuable guidance which especially helped
me in seeing the big picture. I am grateful to Shantanu for mentoring
me during my internship at MERL. It was a very fulfilling experience
and was indeed the point at which my research got accelerated. I
also thank Shantanu for his suggestions which helped me make the

viii

thesis more comprehensive. I am also thankful to my other internship
mentors: Wei Sun and Petros Boufounos at MERL, Richard Chow and
Elaine Shi at PARC.
Special thanks to my former and current office-mates: Mehrbod

Sharifi, Diwakar Punjani, Narjes Sharif Razavian during my masters
program, Amr Ahmed during the middle years, Michael Garbus and
Yubin Kim during the last year, and my co-members of the MLSP
research group: Ben Lambert, Sourish Chaudhuri, Sohail Bahmani,
Antonio Juarez, Mahaveer Jain, Jose Portelo, John McDonough, and
Kenichi Kumatani, and other CMU graduate students. I enjoyed work-
ing with Mehrbod; it was my discussions with him that led to some
of the important ideas in this thesis. Apart from being close friends,
Diwakar originally motivated me towards machine learning and Amr
taught me a lot about research methodologies, which I thank them for.
I thank Sohail for being my first collaborator in my research on pri-
vacy. Thanks to Sourish, Ben and Michael for the thought-provoking
discussions.
Finally, I am thankful to my father Dr. Ashok Pathak and my mother

Dr. Sulochana Pathak for their endless love and support. I dedicate
this thesis to them.

ix

CONTENTS

i introduction 1
1 thesis overview 2

1.1 Motivation 2
1.2 Thesis Statement 2
1.3 Summary of Contributions 4
1.4 Thesis Organization 5

2 speech processing background 6
2.1 Tools and Techniques 6
2.2 Speaker Identification and Verification 8
2.3 Speech Recognition 15

3 privacy background 17
3.1 What is Privacy? 17
3.2 Secure Multiparty Computation 21
3.3 Differential Privacy 40

ii privacy-preserving speaker verification 44
4 overview of speaker verification with privacy 45

4.1 Introduction 45
4.2 Privacy Issues & Adversarial Behavior 47

5 privacy-preserving speaker verification using gaus-
sian mixture models 50
5.1 System Architecture 50
5.2 Speaker Verification Protocols 52
5.3 Experiments 56
5.4 Conclusion 58
5.5 Supplementary Protocols 58

6 privacy-preserving speaker verification as string
comparison 63
6.1 System Architecture 63
6.2 Protocols 65
6.3 Experiments 66
6.4 Conclusion 68

iii privacy-preserving speaker identification 69
7 overview of speaker identification with privacy 70

7.1 Introduction 70
7.2 Privacy Issues & Adversarial Behavior 72

8 privacy-preserving speaker identification using
gaussian mixture models 75
8.1 Introduction 75
8.2 System Architecture 75
8.3 Speaker Identification Protocols 77

xi

contents xii

8.4 Experiments 81
8.5 Conclusion 82

9 privacy-preserving speaker identification as string
comparison 84
9.1 Introduction 84
9.2 System Architecture 85
9.3 Protocols 86
9.4 Experiments 89
9.5 Conclusion 90

iv privacy-preserving speech recognition 92
10 overview of speech recognition with privacy 93

10.1 Introduction 93
10.2 Client-Server Model for Speech Recognition 93
10.3 Privacy Issues 94
10.4 System Architecture 95

11 privacy-preserving isolated-word recognition 97
11.1 Introduction 97
11.2 Protocol for Secure Forward Algorithm 97
11.3 Privacy-Preserving Isolated-Word Recognition 100
11.4 Discussion 103

v conclusion 104
12 thesis conclusion 105

12.1 Summary of Results 105
12.2 Discussion 108

13 future work 109
13.1 Other Privacy-Preserving Speech Processing Tasks 109
13.2 Algorithmic Improvements 110

vi appendix 112
a differentially private gaussian mixture models 113

a.1 Introduction 113
a.2 Large Margin Gaussian Classifiers 114
a.3 Differentially Private Large Margin Gaussian Mixture

Models 118
a.4 Theoretical Analysis 119
a.5 Experiments 124
a.6 Conclusion 125
a.7 Supplementary Proofs 125

bibliography 132

L I ST OF F IGURES

Figure 1.1 Thesis Organization 5
Figure 2.1 Work flow of a speech processing system. 6
Figure 2.2 An example of a GMM with three Gaussian com-

ponents. 8
Figure 2.3 An example of a 5-state Hidden Markov Model

(HMM). 9
Figure 2.4 LSHmaps similar points to the same bucket. 13
Figure 2.5 Application of one and two LSH functions. 14
Figure 2.6 A trellis showing all possible paths of an HMM

while recognizing a sequence of frames. 16
Figure 3.1 An Secure Multiparty Computation (SMC) pro-

tocol with ordinary participants denoted by red
(corner nodes) emulating the behavior of a trusted
third party (TTP) denoted by blue (center node). 25

Figure 3.2 Homomorphic encryption in a client server set-
ting. 27

Figure 3.3 Densities of mechanisms evaluated over adjacent
datasets. 42

Figure 4.1 Speaker verification work-flow. 45
Figure 5.1 Enrollment Protocol: User has enrollment data

x and system has the UBM λU. System obtains
encrypted speaker model E[λ(1)s]. 51

Figure 5.2 Verification Protocol: User has test data x and
system has the UBM λU and encrypted speaker
model E[λ(1)s]. The user submits encrypted data
and the system outputs an accept/reject deci-
sion. 52

Figure 6.1 System Architecture. For user 1, test utterance
supervector: s �, salt: r1. Although only one in-
stance of LSH function L is shown, in practice
we use l different instances. 64

Figure 8.1 GMM-based speaker identification: client sends
encrypted speech sample to the server. 76

Figure 8.2 GMM-based speaker identification: server sends
encrypted models to the client. 77

Figure 9.1 Supervector-based speaker identification proto-
col. 86

Figure 10.1 Client-Server Model for Speech Recognition. 94
Figure 10.2 Privacy-Preserving Client-Server Model for Speech

Recognition. 95
Figure A.1 Huber loss 117

xiii

List of Figures xiv

Figure A.2 Test error vs. � for the UCI breast cancer dataset. 125

L I ST OF TABLES

Table 5.1 Execution time for the interactive protocol with
Paillier cryptosystem. 57

Table 5.2 Execution time for the non-interactive protocol
with BGN cryptosystem. 57

Table 6.1 Average EER for the two enrollment data config-
urations and three LSH strategies: Euclidean, co-
sine, and combined (Euclidean & cosine). 67

Table 8.1 GMM-based Speaker Identification: Execution
time Case 1: Client sends Encrypted Speech Sam-
ple to the Server. 82

Table 8.2 GMM-based Speaker Identification: Execution
time Case 2: Server sends Encrypted Speaker
Models to the Client. 83

Table 9.1 Average accuracy for the three LSH strategies:
Euclidean, cosine, and combined (Euclidean &
cosine). 89

Table 11.1 Protocol execution times in seconds for different
encryption key sizes. 103

xv

ACRONYMS

smc Secure Multiparty Computation

ot Oblivious Transfer

ttp Trusted Third Party

he Homomorphic Encryption

zkp Zero-Knowledge Proof

gmm Gaussian Mixture Model

ubm Universal Background Model

map Maximum a posteriori

hmm Hidden Markov Model

lsh Locality Sensitive Hashing

mfcc Mel Frequency Cepstral Coefficients

em Expectation Maximization

eer Equal Error Rate

xvi

Part I

INTRODUCTION

1
THES I S OVERVIEW

1.1 motivation

Speech is one of the most private forms of personal communication.
A sample of a person’s speech contains information about the gender,
accent, ethnicity, and the emotional state of the speaker apart from
the message content. Speech processing technology is widely used in
biometric authentication in the form of speaker verification. In a con-
ventional speaker verification system, the speaker patterns are stored
without any obfuscation and the system matches the speech input
obtained during authentication with these patterns. If the speaker ver-
ification system is compromised, an adversary can use these patterns
to later impersonate the user. Similarly, speaker identification is also
used in surveillance applications. Most individuals would consider
unauthorized recording of their speech, through eavesdropping or
wiretaps as a major privacy violation. Yet, current speaker verification
and speaker identification algorithms are not designed to preserve
speaker privacy and require complete access to the speech data.
In many situations, speech processing applications such as speech

recognition are deployed in a client-server model, where the client
has the speech input and a server has the speech models. Due to the
concerns for privacy and confidentiality of their speech data, many
users are unwilling to use such external services. Even though the
service provider has a privacy policy, the client speech data is usually
stored in an external repository that may be susceptible to being
compromised. The external service provider is also liable to disclose
the data in case of a subpoena. It is, therefore, very useful to have
privacy-preserving speech processing algorithms that can be used
without violating these constraints.

1.2 thesis statement

With the above motivation, we introduce privacy-preserving speech
processing: algorithms that allow us to process speech data without
being able to observe it. We envision a client-server setting, where the
client has the speech input data and the server has speech models.
Our privacy constraints require that the server should not observe the
speech input and the client should not observe the speech models. To
prevent the client and the server from observing each others input
we require them to obfuscate their inputs. We use techniques from

2

1.2 thesis statement 3

cryptography such as homomorphic encryption and hash functions
that allow us to process obfuscated data through interactive protocols.
The main goal of this thesis is to show that:

“Privacy-preserving speech processing is feasible and useful.”

To support this statement, we develop privacy-preserving algo-
rithms for speech processing applications such as speaker verification,
speaker identification, and speech recognition. We consider two as-
pects of feasibility: accuracy and speed. We create prototype implemen-
tations of each algorithm and measure the accuracy of our algorithms
on standardized datasets. We also measure the speed by the execution
time of our privacy-preserving algorithms over sample inputs and
compare it with the original algorithm that does not preserve privacy.
We also consider multiple algorithms for each task to enable us to
obtain a trade-off between accuracy and speed. To establish utility, we
formulate scenarios where the privacy-preserving speech processing
applications can be used and outline the various privacy issues and
adversarial behaviors that are involved. We briefly overview the three
speech processing applications below.
A speaker verification system uses the speech input to authenticate

the user, i.e., to verify if the user is indeed who he/she claims to be.
In this task, a person’s speech is used as a biometric. We develop
a framework for privacy-preserving speaker verification, where the
system is able to perform authentication without observing the speech
input provided by the user and the user does not observe the speech
models used by the system. These privacy criteria are important in
order to prevent an adversary having unauthorized access to the user’s
client device or the system data from impersonating the user in another
system. We develop two privacy-preserving algorithms for speaker
verification. Firstly, we use Gaussian Mixture Models (GMMs) and
create a homomorphic encryption-based protocol to evaluate GMMs

over private data. Secondly, we apply Locality Sensitive Hashing
(LSH) and one-way cryptographic functions to reduce the speaker
verification problem to private string comparison. There is a trade off
between the two algorithms, the GMM-based approach provides high
accuracy but is relatively slower, the LSH-based approach provides
relatively lower accuracy, but is comparatively faster.
Speaker identification is a related problem of identifying the speaker

from a given set of speakers that best corresponding to a given speech
sample. This task finds use in surveillance applications, where a se-
curity agency such as the police has access to speaker models for
individuals, e.g., a set of criminals it is interested in monitoring and
an independent party such as a phone company might have access to
the phone conversations. The agency is interested in identifying the
speaker participating in a given phone conversation among its set of

1.3 summary of contributions 4

speakers, with a none of the above option. The agency can demand
the complete recording from the phone company if it has a warrant
for that person. By using a privacy-preserving speaker identification
system, the phone company can provide the privacy guarantee to
its subscribers that the agency will not be able to obtain any phone
conversation for the speakers that are not under surveillance. Sim-
ilarly, the agency does not need to send the list of speakers under
surveillance to the phone company, as this itself is highly sensitive
information and its leakage might interfere in the surveillance process.
Speaker identification can be considered to be an extension of speaker
verification to the multiclass setting. We extend the GMM-based and
LSH-based approaches to create analogous privacy-preserving speaker
identification frameworks.
Speech recognition is the task of converting a given speech sample

to text. We consider a client-server scenario for speech recognition,
where the client has a lightweight computation device to record the
speech input and the server has the necessary speech models. In many
applications, the client might not be comfortable in sharing its speech
input with the server due to privacy constraints such as confidentiality
of the information. Similarly, the server may not want to release its
speech models as they too might be proprietary information. We create
an algorithm for privacy-preserving speech recognition that allows us
perform speech recognition while satisfying these privacy constraints.
We create an isolated-word recognition system using Hidden Markov
Models (HMMs), and use homomorphic encryption to create a protocol
that allows the server to evaluate HMMs over encrypted data submitted
by the client.

1.3 summary of contributions

To the best of our knowledge and belief, this thesis is the first end-
to-end study of privacy-preserving speech processing. The technical
contributions of this thesis along with relevant publications are as
follows.

1. Privacy models for privacy-preserving speaker verification, speaker
identification, and speech recognition.

2. GMM framework for privacy-preserving speaker verification [Pathak
and Raj, 2011a].

3. LSH framework for privacy-preserving speaker verification [Pathak
and Raj, 2012b].

4. GMM framework for privacy-preserving speaker identification.

5. LSH framework for privacy-preserving speaker identification.

1.4 thesis organization 5

6. HMM framework for privacy-preserving isolated-keyword recog-
nition [Pathak et al., 2011a].

1.4 thesis organization

Chapters 1, 2, 3

Privacy-Preserving

Speech Processing

Chapter 4

Speaker Verification

Chapter 7

Speaker Identification

Chapter 10

Speech Recognition

Chapter 5

GMM +

Encryption

Chapter 6

LSH +

Hashing

Chapter 8

GMM +

Encryption

Chapter 9

LSH +

Hashing

Chapter 11

HMM +

Encryption

Part II Part III Part IV

Part I

Figure 1.1: Thesis Organization

We summarize the thesis organization in Figure 1.1. In Part I we
overview the preliminary concepts of speech processing (Chapter 2)
and privacy-preserving methodologies (Chapter 3). In Part II, we in-
troduce the problem of privacy-preserving speaker verification, and
discuss the privacy issues in Chapter 4. We then present two algo-
rithms for privacy-preserving speaker verification: using GMMs in
Chapter 5 and LSH in Chapter 6. In Part III, we introduce the prob-
lem of privacy-preserving speaker identification with a discussion
of the privacy issues in Chapter 7. We then present two algorithms
for privacy-preserving speaker identification: using GMMs in Chap-
ter 8 and LSH in Chapter 9. In Part IV, we introduce the problem of
privacy-preserving speech recognition with a discussion of the privacy
issues in Chapter 10 along with an HMM-based framework for isolated-
keyword recognition in Chapter 11. In Part V, we complete the thesis
by summarizing our conclusions in Chapter 12 and outlining future
work in Chapter 13.

2
SPEECH PROCESS ING BACKGROUND

In this chapter, we review some of the building blocks of speech pro-
cessing systems. We then discuss the specifics of speaker verification,
speaker identification, and speech recognition. We will reuse these
constructions when designing privacy-preserving algorithms for these
tasks in the reminder of the thesis.
Almost all speech processing techniques follow a two-step process

of signal parameterization followed by classification. This is shown in
Figure 2.1.

Speech Signal

Feature Computation

Features

Pattern Matching

Output

Acoustic Model

Language Model

Figure 2.1: Work flow of a speech processing system.

2.1 tools and techniques

2.1.1 Signal Parameterization

Signal parameterization is a key step in any speech processing task.
As the audio sample in the original form is not suitable for statistical
modeling, we represent it using features.
The most commonly used parametrization for speech is Mel Fre-

quency Cepstral Coefficients (MFCC) [Davis and Mermelstein, 1980].
In this representation, we segment the speech sample into 25 ms win-
dows, and take the Fourier transform of each window. This is followed

6

2.1 tools and techniques 7

by de-correlating the spectrum using a cosine transform, then taking
the most significant coefficients.
If x is a frame vector of the speech samples, F is the Fourier transform

in matrix form,M is the set of Mel filters represented as a matrix, and
D is a DCT matrix, MFCC feature vectors can be computed as

MFCC(x) = D log(M((Fx) · conjugate(Fx))).

2.1.2 Gaussian Mixture Models

Gaussian Mixture Model (GMM) is a commonly used generative model
for density estimation in speech and language processing. The prob-
ability of the model generating an example is given by a mixture of
Gaussian distributions.
A GMM λ comprises ofM multivariate Gaussians each with a mean

and covariance matrix. If the mean vector and covariance matrix of the
jth Gaussian are respectively µj and Σj, for an observation x, we have

P(x|λ) =
�

j

wjN(µj,Σj),

where wj are the mixture coefficients that sum to one. The above men-
tioned parameters can be computed using the Expectation Maximization
(EM) algorithm.

2.1.3 Hidden Markov Models

A Hidden Markov Model (HMM) (Fig. 2.3), can be thought of as an
example of a Markov model in which the state is not directly visible
but the output of each state can be observed. The outputs are also
referred to as observations. Since observations depend on the hidden
state, an observation reveals information about the underlying state.
Each HMM is defined as a tripleM = (A,B,Π), in which

• A = (aij) is the state transition matrix. Thus, aij = Pr{qt+1 =
Sj|qt = Si}, 1 � i, j � N, where {S1,S2, ..., SN} is the set of states
and qt is the state at time t.

• B = (bj(vk)) is the matrix containing the probabilities of the
observations. Thus, bj(vk) = Pr{xt = vk|qt = Sj}, 1 � j � N, 1 �
k � M, where vk ∈ V which is the set of observation symbols,
and xt is the observation at time t.

• Π = (π1,π2, ...,πN) is the initial state probability vector, that is,
πi = Pr{q1 = Si}, i = 1, 2, ...,N.

Depending on the set of observation symbols, we can classify HMMs

into those with discrete outputs and those with continuous outputs.
In speech processing applications, we consider HMMs with continuous

2.2 speaker identification and verification 8

Figure 2.2: An example of a GMM with three Gaussian components.

outputs where each of the observation probabilities of each state is
modeled using a GMM. Such a model is typically used to model the
sequential audio data frames representing the utterance of one sound
unit, such as a phoneme or a word.
For a given sequence of observations x1, x2, ..., xT and an HMM

λ = (A,B,Π), one problem of interest is to efficiently compute the
probability P(x1, x2, ..., xT |λ). A dynamic programming solution to this
problem is the forward algorithm.

2.2 speaker identification and verification

In speaker verification, a system tries to ascertain if a user is who he or
she claims to be. Speaker verification systems can be text dependent,
where the speaker utters a specific pass phrase and the system verifies
it by comparing the utterance with the version recorded initially by
the user. Alternatively, speaker verification can be text independent,
where the speaker is allowed to say anything and the system only
determines if the given voice sample is close to the speaker’s voice.
Speaker identification is a related problem in which we identify if a
speech sample is spoken by any one of the speakers from our pre-

2.2 speaker identification and verification 9

s1 s2 s3 s4 s5

x1 x2 x3 x4 x5

a12 a23 a34 a45

a54a43a32a21

a11 a22 a33 a44 a55

b1(x1) b2(x2) b3(x3) b4(x4) b5(x5)

Figure 2.3: An example of a 5-state HMM.

defined set of speakers. The techniques employed in the two problems
are very similar, enrollment data from each of the speakers are used
to build statistical or discriminative models for the speaker which are
employed to recognize the class of a new audio recording.

2.2.1 Modeling Speech

We discuss some of the modeling aspects of speaker verification and
identification below. Both speaker identification and verification sys-
tems are composed of two distinct phases, a training phase and a test
phase. The training phase consists of extracting parameters from the
speech signal to obtain features and using them to train a statistical
model. We typically use MFCC features of the audio data instead of
the original samples as they are known to provide better accuracy for
speech classification.
Given a speech sample y and a hypothesized speaker s, the speaker

verification task can be formulated as determining if y was produced
by S. In the speaker identification task, we have a pre-defined set
of hypothesized speakers S = {S0,S1, . . . ,SK} and we are trying to
identify which speaker s ∈ S would have spoken the speech sample
y. Speaker S0 represents the none of the above case where the speech
sample does not match any of the other K speakers. In this discussion,
we consider the single-speaker case where y is assumed to have spoken
by only one speaker, please refer to [Dunn et al., 2000] for work on
detection from multi-speaker speech.
Speaker identification is simply finding the speaker s∗ having the

highest probability of generating the speech sample.

s∗ = argmax
s∈S

P(y|s).

Speaker verification on the other hand can be modeled as the fol-
lowing hypothesis test:
H0: y is spoken by the speaker s

2.2 speaker identification and verification 10

H1: y is not spoken by the speaker s
We use a likelihood ratio test (LRT) to decide between the two

hypothesis.

P(y|H0)

P(y|H1)

> θ accept H0,

< θ accept H1,
(2.1)

where θ is the decision threshold. The main problem in speaker identi-
fication and verification is effectively modeling the probabilities P(y|s)
and P(y|H0).
Modeling for a given speaker s and the hypothesisH0 is well defined

and can be done using training data for that speaker. On the other
hand the alternative hypothesis H1 is open-ended as it represents
the entire space of possible speakers except s. There are exactly the
same issues with modeling the “none of the above” speaker S0 in
speaker identification. The main approach for modeling the alternative
hypothesis is by collecting speech samples from several speakers and
training a single model called the Universal Background Model (UBM)
[Carey et al., 1991; Reynolds, 1997]. One benefit of this approach in
speaker verification is that a single UBM can be used as the alternate
hypothesis for all speakers. There has been work on selection and
composition of the right kind of speakers used to train the UBM and
also to use multiple background models tailored for a specific set of
speakers [Matsui and Furui, 1995; Rosenberg and Parthasarathy, 1996;
Heck and Weintraub, 1997].
Selection of the right kind of probability model is a very important

step in the implementation of any speech processing task and is
closely dependent on the features used and other application details.
For text-independent speaker identification and verification, GMMs

have been used very successfully in the past. For text-dependent tasks,
the additional temporal knowledge can be integrated by using a HMM,
but the use of such complex models have not been shown to provide
any significant advantage over using GMMs [Bimbot et al., 2004].
For a GMM Φ withM mixture components, the likelihood function

density for a D-dimensional feature vector �x is given by

P(�x|Φ) =

M�

i=1

wiPi(�x),

where wi are the mixture components and Pi(�x) is the multivariate
Gaussian density parameterized by mean µi and covariance Σi. Given
a collection of vectors �x from the training data, the GMM parameters
are estimated using expectation-maximization (EM) algorithm.
For recognition, we assume the feature vectors of a speech sample

to be independent. The model probabilities are scaled by the number
of feature vectors to normalize for the length of the sample. The

2.2 speaker identification and verification 11

log-likelihood of a model Φ for a sequence of feature vectors X =

{x1, . . . , xT } is given by

logP(X|Φ) =
1

T
log

T�

t=1

P(�xt|Φ) =
1

T

T�

t=1

logP(�xt|Φ).

Basic speaker verification and identification systems use a GMM
classifier model trained over the voice of the speaker. In case of speaker
verification, we train a binary GMM classifier using the audio samples
of the speaker as one class and a Universal Background Model (UBM)
as another class [Campbell, 2002]. The UBM is trained over the com-
bined speech data of all other users. Due to the sensitive nature of
their use in authentication systems, speaker verification classifiers
need to be robust to false positives. In case of doubt about the authen-
ticity of a user, the system should choose to reject. In case of speaker
identification, we also use the UBM to categorize a speech sample as
not being spoken by anyone from the set of speakers.
In practice, we need a lot of data from one speaker to train an accu-

rate speaker classification model and such data is difficult to acquire.
Towards this, Reynolds et al. [2000a] proposed techniques for maxi-
mum a posteriori adaptation to derive speaker models from the UBM.
These adaptation techniques have been extended by constructing
supervectors consisting of concatenated means of the mixture compo-
nents [Kenny and Dumouchel, 2004]. The supervector formulation has
also been used with support vector machine (SVM) classification meth-
ods. Other approaches for representing speech samples with noise
robustness include factor analysis [Dehak et al., 2011]. These methods
can be incorporated in our privacy-preserving speaker verification
framework.

2.2.2 Model Adaptation

In the above discussion, we considered GMM as a representation of
speaker models. In practice, however, we have limited quantity of
speech data from individual speakers. It is empirically observed that
GMMs obtained from adapting the UBM to speaker data from individ-
ual speakers significantly outperform the GMMs trained directly on
the speaker data [Bimbot et al., 2004; Reynolds, 1997]. We present the
algorithm for maximum a posteriori (MAP) adaptation of UBMs.
The MAP adaptation procedure consists of a sample estimate of

the speaker model parameters such as the mixture weights and the
means, followed by their interpolation with the UBM. Given set of
enrollment speech data frames x1, . . . , xT , we first compute the a

2.2 speaker identification and verification 12

posteriori probabilities of the individual Gaussians in the UBM λU =

{wUi ,µ
U
i ,Σ

U
i }. For the i

th mixture component of the UBM,

P(i|xt) =
wUi N(xt;µUi ,Σ

U
i)�

jw
U
j N(xt;µUj ,Σ

U
j)

. (2.2)

Similar to the maximization step of EM, the a posteriori probabilities
are then used to compute new weights, mean, and second moment
parameter estimates.

w �
i =

1

T

�

t

P(i|xt),

µ �
i =

�
t P(i|xt)xt�
t P(i|xt)

,

Σ �
i =

�
t P(i|xt)xtx

T
t�

t P(i|xt)
. (2.3)

Finally, the parameters of the adapted model λs = {ŵsi , µ̂
s
i , Σ̂
s
i } are

given by a convex combination of these new parameter estimates and
the UBM parameters as follows.

ŵsi = αiw
�
i + (1−αi)w

U
i ,

µ̂si = αiµ
�
i + (1−αi)µ

U
i ,

Σ̂si = αiΣ
�
i + (1−αi)

�
ΣUi + µUi µ

UT
i

�
− µ̂si µ̂

sT
i . (2.4)

The adaptation coefficients αi control the amount of contribution of
the enrollment data relative to the UBM.

2.2.3 Supervectors with LSH

Campbell et al. [2006c] extend the adapted GMM algorithm by con-
structing a supervector (SV) for each speech sample. The supervector
is obtained by performing Maximum a posteriori (MAP) adaptation of
the UBM over a single speech sample and concatenating the means of
the adapted model. Given the adapted model λs = {ŵsi , µ̂

s
i , Σ̂
s
i } with

M-mixture components, the supervector sv is given by (µ̂s1 � µ̂s2 � · · · �
µ̂sM).
This supervector is then used as a feature vector instead of the

original frame vectors of the speech sample. The verification is per-
formed using a binary support vector machine (SVM) classifier for
each user trained on supervectors obtained from enrollment utter-
ances as instances labeled according to one class and impostor data as
instances labeled according to the opposite class. As the classes are
usually not separable in the original space, Campbell et al. [2006c] also
use a kernel mapping that is shown to achieve higher accuracy. In-
stead of using SVMs with kernels, we use k-nearest neighbors trained
on supervectors as our classification algorithm. Our motivation for

2.2 speaker identification and verification 13

this are, firstly, k-nearest neighbors also perform classification with
non-linear decision boundaries and are shown to achieve accuracy
comparable to SVMs with kernels [Mariéthoz et al., 2008]. Secondly,
by using the LSH transformations we discuss below, we reduce the
k-nearest neighbors computation to string comparison, which can be
easily done with privacy without requiring an interactive protocol.

Locality Sensitive Hashing

Locality sensitive hashing (LSH) [Indyk and Motwani, 1998] is a
widely used technique for performing efficient approximate nearest-
neighbor search. An LSH function L(·) proceeds by applying a random
transformation to a data vector x by projecting it to a vector L(x) in a
lower dimensional space, which we refer to as the LSH key or bucket.
A set of data points that map to the same key are considered as
approximate nearest neighbors.

High Dimensional Space LSH Buckets

Figure 2.4: LSH maps similar points to the same bucket.

As a single LSH function does not group the data points into fine-
grained clusters, we use a hash key obtained by concatenating the out-
put of k LSH functions. This k-bit LSH function L(x) = L1(x) · · · Lk(x)
maps a d-dimensional vector into a k-bit string. Additionally, we use
m different LSH keys that are computed over the same input to achieve

2.2 speaker identification and verification 14

better recall. Two data vectors x and y are said to be neighbors if at
least one of their keys, each of length k, matches exactly. One of the
main advantages of using LSH is its efficiency: by precomputing the
keys, the approximate nearest neighbor search can be done in time
sub-linear to the number of instances in the dataset.
A family of LSH functions is defined for a particular distance metric.

A hash function from this family has the property that data points, that
are close to each other as defined by the distance metric, are mapped
to the same key with high probability. There exist LSH constructions
for a variety of distance metrics, including arbitrary kernels [Kulis and
Grauman, 2009], but we mainly consider LSH for Euclidean distance
(E2LSH) [Datar et al., 2004b] and cosine distance [Charikar, 2002a] as
the LSH functions for these constructions are simply random vectors.
As the LSH functions are data independent, it is possible to distribute
them to multiple parties without the loss of privacy.
The LSH construction for Euclidean distance with k random vectors

transforms a d-dimensional vector into a vector of k integers, each of
which is a number between 0–255. The LSH construction for cosine
distance with k random vectors similarly transforms the given data
vector into a binary string of length k.

2.2.4 Reconstructing Data Point from LSH Keys

(a) one LSH function (solid lines) (b) two LSH functions (solid and dashed lines)

Figure 2.5: Application of one and two LSH functions.

Due to the locality sensitive property, each LSH key provides in-
formation about the data point. We consider reconstructing the data
point from LSH keys for cosine distance, but our analysis would hold

2.3 speech recognition 15

for other distance metrics. A LSH function for cosine and Euclidean
distances producing a k bit key is based on k random hyperplanes
{r1, . . . , rk}. Given a data point, we project it using each of the k ran-
dom hyperplanes and determine the key by the side on which the
data point lies.

Li(x) =

1 if rTi x � 0,

0 if rTi x < 0.

A k bit LSH key provides k bits of entropy. Computing m LSH keys
over the same data point reveals mk bits of information.
An LSH key is defined as the sector between two hyperplanes, this

is because two vectors x and y lying in this space would have little
angular distance θ(x,y), that corresponds to similarity in terms of
cosine distance. By observing multiple keys computed using different
LSH functions, we can further localize the data point by the space
between any two hyperplanes, which may be from different LSH
functions. We show an example of 2-dimensional LSH in Figure 2.5,
application of one LSH function localizes the data point in a wider
space, but application of two LSH function further localizes the space
between a hyperplane of the first and the second LSH function. As we
mentioned in the analysis above, the degree of localization depends
on the size of the LSH key, i.e., the number of hyperplanes, and the
number of LSH keys. By observing a large number of LSH keys, we
can localize a point to lie on a hyperplane.
As we shall see in later chapters, the information revealed about

the data point from the LSH keys causes a problem with respect to
privacy. We satisfy the privacy constraints by obfuscating the LSH
key. A simple way of doing that is by applying a cryptographic hash
function H[·]. In this way, we are not able to identify the hyperplanes
that localize the data point and use information from multiple LSH
keys to reconstruct the data point. We are, however, able to compare if
two data points fall in the same localized region, by comparing their
hashed keys.

2.3 speech recognition

Speech recognition is a type of pattern recognition problem, where
the input is a stream of sampled and digitized speech data and the
desired output is the sequence of words that were spoken. The pattern
matching involves combining acoustic and language models to evalu-
ate features which capture the spectral characteristics of the incoming
speech signal. Most modern speech recognition systems use HMMs as
the underlying model.
We view a speech signal as a sequence of piecewise stationary

signals and an HMM forms a natural representation to output such

2.3 speech recognition 16

a sequence of frames. We view the HMM that models the process
underlying the observations as going through a number of states, in
case of speech, the process can be thought of as the vocal tract of the
speaker. We model each state of the HMM using a Gaussian mixture
model (GMM) and correspondingly we can calculate the likelihood
for an observed frame being generated by that model. The parameters
of the HMM are trained over the labeled speech data using the Baum-
Welch algorithm. We can use an HMM to model a phoneme which is
the smallest segmental unit of sound which can provide meaningful
distinction between two utterances. Alternatively, we can also use an
HMM to model a complete word by itself or by concatenating the HMMs

modeling the phonemes occurring in the word.
A useful way of visualizing speech recognition of an isolated word

using an HMM is by a trellis shown in Figure 2.6. Every edge in the
graph represents a valid transition in the HMM over a single time step
and every node represents the event of a particular observation frame
being generated from a particular state. The probability of an HMM

generating a complete sequence of frames can be efficiently computed
using the forward algorithm. Similarly, the state sequence having the
maximum probability for an observation sequence can be found using
the Viterbi algorithm. In order to perform isolated word recognition,
we train an HMM for each word in the dictionary as a template. Given
a new utterance, we match it to each of the HMMs and choose the one
with the highest probability as the recognized word.

H
M
M

st
at
e
in
de
x

feature vectors (time)

s αu(s, t)

t− 1 t

Figure 2.6: A trellis showing all possible paths of an HMM while recognizing
a sequence of frames.

3
PR IVACY BACKGROUND

In this chapter, we introduce the basic concepts about privacy and
privacy-preserving methodologies. We also introduce a formal model
of privacy-preserving computation: Secure Multiparty Computation
(SMC) that we use in the remainder of the thesis and discuss some of
the common underlying techniques such as homomorphic encryption
and cryptographic hash functions.

3.1 what is privacy?

Informally, privacy can be considered to be a privilege that an individ-
ual has to prevent its information from being made public to another
individual, group, or society at large . Privacy can be in many forms
such as physical, informational, organizational, and intellectual. In
this thesis we mainly investigate informational privacy, specifically,
the privacy with respect to a person’s speech.

3.1.1 Definitions

As privacy is connected to every level of the human experience, it is
an issue of considerable importance to society at large. The modern
right to privacy is attributed to [Warren and Brandeis, 1890], who
considered it as protecting “the inviolate personality” of an individual.
This was in response to the incursions on personal privacy made
possible due to the newly adopted technologies of that era such as
photography and faster newspaper printing. In the last few decades,
the importance of privacy has been further compounded due to the
ubiquity and prevalence of technologies that allow individuals to
interact and collaborate with each other. Privacy issues, therefore,
have increasingly been at the focus of law makers, regulatory bodies,
and consumers alike.
Although privacy is considered to be a basic human right, what

constitutes as reasonable amount of privacy varies widely according
to cultural and other socio-political contexts. This makes the task of
precisely defining privacy fairly difficult [DeCew, 2008]. We, however,
reproduce some of the commonly referred to definitions of privacy.

1. Privacy as control over information [Westin, 1967].

“Privacy is the claim of individuals, groups or institutions to
determine for themselves when, how, and to what extent infor-
mation about them is communicated to others.”

17

3.1 what is privacy? 18

2. Privacy as limited access to self [Gavison, 1980].

“A loss of privacy occurs as others obtain information about an
individual, pay attention to him, or gain access to him. These
three elements of secrecy, anonymity, and solitude are distinct
and independent, but interrelated, and the complex concept of
privacy is richer than any definition centered around only one
of them.”

3. Privacy as contextual integrity [Barth et al., 2006].

“Privacy as a right to appropriate flows of personal information.”

3.1.2 Related Concepts

Privacy is closely related to and alternatively used with the concepts
of anonymity and security in common parlance. We briefly discuss the
differences between these concepts below.

Privacy and Anonymity. Anonymity is the ability of an individual to prevent its identity
from being disclosed to the public. Despite being closely re-
lated, privacy and anonymity are often separate goals. In privacy,
the individual is interested in protecting his/her data, while in
anonymity, the individual is interested in protecting only its iden-
tity. For instance, a web browsing user can potentially achieve
anonymity by using an anonymous routing network such as
Tor [Dingledine et al., 2004] to hide its IP address and location
from a website, but the website provider will still have access
to all the information provided by the user. In many situations,
anonymity does not lead to privacy, as the information collected
by the service provider can be correlated to identify individual
users. An example of this was the AOL search data leak [Bar-
baro and Jr., 2006], where individual users were identified from
anonymized search engine query logs. Another similar example
is the de-anonymization of the Netflix dataset [Narayanan and
Shmatikov, 2008], where users were identified from anonymized
movie rating data using publicly available auxiliary information.

Privacy and Security. In the context of information, security is the ability of protect-
ing information and systems from unauthorized access. The
unauthorized access can be in the form of public disclosure,
disruption, deletion of the underlying information. Similarly,
privacy and security differ in their intended goals. In a mul-
tiparty system, security aims to protect the information from
the unauthorized access of an eavesdropper who is not one of
the participants, while privacy aims to protect the information
provided by a party from the other parties. For instance, in a
speech-based authentication system deployed in a client-server

3.1 what is privacy? 19

model, the speech input provided by the client is encrypted
using the server’s public key to protect against a third party
that can intercept the communication. This, however, does not
protect the privacy of the client’s input from the server, as the
latter needs to observe the input in order to do the necessary
processing.

3.1.3 Privacy-Preserving Applications

We live in a world where there are vast amounts of data available from
sources such as social media, medical services, and sensor networks.
There is a wealth of information that can potentially be gained by
applying data processing and machine learning techniques such as
classification, clustering, and probabilistic inference methods to this
data. In many situations, however, this data is often distributed among
multiple parties in the form of social network users, the patient and
multiple health care providers in the case of medical services, and
sensor nodes controlled by different entities in sensor networks. In
each of these cases, there are a combination of personal, legal, ethical,
or strategic constraints against sharing the data among the parties
that is required for performing the necessary computation. We discuss
privacy-preserving computation in the context of three applications:
biometric authentication, surveillance, and external third-party ser-
vices.

1. Privacy in biometric authentication.

Biometrics like voice, face, fingerprints, and other personal traits
are widely used as robust features to identify individuals in
authentication systems. Biometrics are inherently non-exact in
their measurement, e.g., multiple recordings of a person speaking
the same content would always be slightly different. We therefore
cannot perform biometric matching by direct comparison, and
require machine learning algorithms to utilize biometrics with
high accuracy. There are, however, stringent personal privacy
and legal constraints dealing with how biometrics are stored and
used as they represent data derived from personal attributes.
It is important to keep the biometric data secure to protect the
privacy of users, and we require privacy-preserving machine
learning algorithms that can perform the authentication using
the secure data.

2. Privacy in surveillance.

Machine learning algorithms are also used in surveillance appli-
cations such as speaker identification from wiretapped phone
recordings, text classification over monitored emails, and object
recognition from closed-circuit camera images. Although some

3.1 what is privacy? 20

form of surveillance is necessary to identify credible security
threats, it has the unavoidable side-effect of infringing on the per-
sonal privacy of the innocent citizens. In a surveillance setting,
privacy-preserving machine learning algorithms can be used
to aid investigating agencies to obtain necessary information
without violating privacy constraints.

3. Privacy in Third-Party Services.

Privacy issues becomes relevant when an individual entity is
interested in analyzing its data but does not have access to the
required computational resources or algorithm implementations.
An example of this would be an independent hospital interested
in applying a classification model to calculate the likelihood of
a disease from their patient records, or a small movie rental
service interested in developing a recommendation algorithm
based on reviews from its users. An increasingly useful option
is to rely on a cloud-based service provider that has abundant
computing power and sophisticated proprietary algorithms. Due
to the same privacy and confidentiality constraints, many entities
are reluctant to export their private data outside their control and
are not able to utilize cloud-based services. Privacy-preserving
computation aims to provide a framework for these types of
computation without violating the privacy constraints of the
participants.

3.1.4 Privacy-preserving computation in this thesis

The central theme of this thesis is the design and implementation
of the privacy-preserving computation frameworks similar to the
ones mentioned above applied to speech processing. We mainly focus
on privacy-preserving solutions for the speaker verification, speaker
identification and speech recognition tasks as examples of biometric
authentication, surveillance, and cloud-based service applications.
To create such privacy-preserving mechanisms, we use crypto-

graphic primitives such as homomorphic encryption i.e., schemes
in which we can perform operations on unencrypted data by perform-
ing corresponding operations on encrypted data. Rather than merely
combining such primitives to build machine learning algorithms, we
aim to find the synergy between the primitives, often in the form of a
trade-off between privacy, accuracy, and efficiency. In some cases, we
need to modify the machine learning algorithm itself to fit the right
kind of cryptographic primitive and vice versa, in order to improve
the scalability of the privacy-preserving solution.

3.2 secure multiparty computation 21

3.2 secure multiparty computation

Secure Multiparty Computation (SMC) is a sub-field of cryptography
that concerns with settings in which n parties are interested in jointly
computing a function using their input data while maintaining the
privacy of their inputs. We overview the basic concepts of SMC in this
section.1

The privacy in SMC protocols is established by the constraint that
no party should learn anything apart from the output and the in-
termediate steps of the computation. We consider that the parties
p1, . . . ,pn respectively have inputs x1, . . . , xn and we need to com-
pute the function with n outputs, f(x1, . . . , xn) = (y1, . . . ,yn). The
privacy constraints require that the party pi provides the input xi
and obtains the output yi, and does not observe the input or output
belonging to any other party.
In this model, the function of interest f could be any computable

function. A useful example is the millionaire’s problem [Yao, 1982],
where two millionaires interested in finding out who is richer, without
disclosing their wealth. If the net worth of the two millionaires is $x
million and $y million respectively, the underlying computation is the
comparator function f(x,y) = 1(x > y), i.e., the function has a single
bit output 1 if x > y and 0 if x � y. At the end of the computation, the
output of the function is available to both the millionaires. The main
privacy criteria here is that each millionaire does not learn anything
else about the other millionaire’s wealth from the computation apart
from this information. We summarize the problem for two placeholder
parties “Alice” and “Bob” below.

Private Comparison: Millionaire Problem.
Inputs:

(a) Alice has the input x.

(b) Bob has the input y.

Output: Alice and Bob know if x > y.

In speech-processing applications that we consider in this thesis, the
two parties are client and server with the speech input and speech
models respectively. The parties are interested in performing tasks

1 Note on presentation: many cryptography textbooks, such as [Goldreich, 2001, 2004],
first begin with cryptographic primitives and definitions based on computational
complexity theory, and then develop the theory of SMC protocols. We refer to this
as the bottom-up approach. For the ease of exposition and maintaining the speech-
based application theme of the thesis, we instead take a top-down approach of
starting with SMC protocols for practical applications and work down to the necessary
cryptographic primitives. The readers are also encouraged to refer to [Cramer, 1999;
Cramer et al., 2009] for a detailed review of the subject.

3.2 secure multiparty computation 22

such as speaker verification, speaker identification, and speech recog-
nition. This usually involves computing a score of the speech models
with respect to the speech input. In this section we use a running
example to illustrate SMC protocols: we consider the client speech
input to be a d-dimensional vector x represented using MFCC fea-
tures and a linear classification model w, also a d-dimensional vector,
such that the score is given by the inner product wTx. The server will
take an action depending on whether this score is above or below a
pre-determined threshold θ. This model is simplistic, because, as we
will see in the future chapters, most speech processing tasks require
many other steps apart from inner product computation.
In this model, our the privacy criteria require that the input x should

be protected from the server and the model w should be protected
from the client. At the end of the computation, the server learns if
wTx > θ, and the client does not learn anything. We summarize this
problem below.

Private Linear Classification.
Inputs:

(a) Client has the speech input vector x.

(b) Server has the classifier model w and the threshold θ.

Output: Client and Server know if wTx > θ.

It is important that no individual party gets access to the inner
product wTx, as it can be used to infer the input of the other party, e.g.,
the server can use w and wTx to gain more information about x, which
it should not obtain otherwise. To solve the linear classifier problem,
we therefore require two steps, private inner product computation and
private comparison.
In the above discussion, we introduced SMC problem intuitively;

we now begin outlining various assumptions that we make in creating
SMC protocols and the types of adversarial behavior of the parties. In
the remainder of the section, we will look at different cryptographic
primitives and techniques that allow us to perform these steps with
privacy.

3.2.1 Protocol Assumptions

The privacy requirements of any SMC protocol ultimately depends on
the assumptions made on the parties and their adversarial behavior.
We discuss some of the conditions below.

1. setup. We assume that all parties have copies of the instruction
sequence of the protocol and know when they are required to
perform their actions. Also, in cases where we would need to use

3.2 secure multiparty computation 23

an encryption scheme, we assume the existence of a public-key
infrastructure and the parties have access to the public keys
belonging to other parties.

2. communication channels. We consider a private-channel
model where an adversary cannot listen in on messages sent
between parties. However, in the general model, an adversary
can tap any communication channels between parties and the
channels by themselves do not provide any security. Similarly,
we also assume that the channels are reliable, i.e., an adversary
cannot modify or delete any message sent between parties and
also cannot pretend to be another party and receive the mes-
sages sent to it. Using appropriate primitives such as public-key
encryption schemes, private-channel model can be simulated
using open channels.

3. computational limitations. By default we assume the
adversaries to be computationally bounded in probabilistic poly-
nomial time. This requirement is important because a computa-
tionally unbounded adversary would be able to break through
the cryptographic primitives and we would not be able to protect
the privacy of other participants’ inputs.

3.2.2 Adversarial Behavior

As discussed above, the motivation for parties to use SMC protocols is
to perform private computation while protecting the privacy of the
inputs. A basic question is: whom are the parties trying to protect
their privacy against? If we assume that the parties are entirely honest,
i.e., are uninterested in learning anything about the input provided
by other parties, we could simply require all parties to share their
data with each other and perform the necessary computation col-
laboratively and later agree to delete the data they had obtained. In
practice, however, this model is trivial, as parties would not be com-
fortable in sharing their input with other parties, e.g., in the private
linear classification problem, the client would not want to disclose its
input to the server due to confidentiality and the server would not
want to disclose the parameters of its classifier model as may contain
proprietary information.
In a more realistic setting, we assume the parties to be semi-honest

or honest-but-curious. In this model a party only tries to gather as
much information as possible about the other party’s input from the
intermediate steps of the protocol, but does not try to actively disrupt
the protocol, e.g., by providing malformed inputs. The parties are
able to do this by maintaining a log of all actions and information
that the party obtained during each step of the protocol. Due to
this behavior, the trivial model of the parties sharing their data with

3.2 secure multiparty computation 24

each other would lead to a loss of privacy and we require additional
primitives to protect the privacy criteria. Although the semi-honest
model suffices in some cases, we also consider a malicious party with
unconstrained adversarial behavior, in which the party would also
disrupt the protocol using all possible means in addition to semi-
honest behavior. A common malicious behavior is to pollute the output
of the computation by submitting malformed input.
Apart from the behavior of individual parties, it is also common to

consider an adversary who gains control over and corrupts a subset of
the parties. The adversary is able to gain complete access to the entire
history of the party including the data inputs and the logs stored by
the party. There are many variations to the nature of the adversary, we
discuss a few types below.

1. monolithic adversary. There is a single adversary that
controls a subset of k parties (out of n) and causes them to
behave maliciously by modifying the steps of the protocol and
coordinates their actions.

2. passive and active adversary. A passive adversary gains
access only to the internal state of party and cannot modify the
operations of the party. The adversary, however, utilizes that
information to learn more about other parties. This behavior
causes the affected parties to have semi-honest behavior. An
active adversary, on the other hand, fully controls the party and
causes it to perform malicious actions.

3. static and adaptive adversary. In case of a static adver-
sary, we assume that the set of dishonest parties is fixed before
the protocol execution is started, but it is not known to the
honest parties. Alternatively, an adversary is considered to be
adaptive when it can choose which parties to corrupt while the
protocol is being executed and makes its decision based on the
partial information obtained from the intermediate steps of the
protocol.

4. threshold adversary. There are limits to how many parties
can be corrupted by the adversary, as in the worst case, it does
not make sense to consider the privacy of a protocol where all
parties are corrupted. In many cases, we consider a threshold
adversary, that can corrupt any subset of t parties (out of n).

3.2.3 Privacy Definitions: Ideal Model and Real Model

One fundamental question is how do we know that an SMC protocol
actually does perform the desired computation while satisfying the
necessary privacy constraints? The classical approach of defining
privacy is to write down a list of the privacy requirements of the

3.2 secure multiparty computation 25

protocol and manually make sure that they are satisfied. The problem
with this approach is that the requirements of non-trivial protocols are
hard to formalize and are often endless; it is difficult to determine if we
have covered all in our set. A completely different approach towards
this problem is to consider the protocols in two worlds: ideal model and
real model. In the ideal model, we provide a specification of the desired
computation of the protocol and in the real model, we consider the
protocol with adversarial behavior. We consider a protocol to satisfy
privacy if the real model behavior cannot be distinguished from the
ideal model behavior.

TTP

Ideal Model Real Model

Figure 3.1: An SMC protocol with ordinary participants denoted by red (cor-
ner nodes) emulating the behavior of a trusted third party (TTP)
denoted by blue (center node).

In the ideal model, we consider a Trusted Third Party (TTP) and all
parties are able to communicate with it securely. The parties submit
their inputs to the TTP, which performs the necessary computation and
submits the output back to the respective parties. The TTP is expected
to be incorruptible: it executes a pre-specified set of commands on
the input data provided by the parties, correctly outputs the result
and later deletes the input data. We show this in Figure 3.1. No party
ever gets the opportunity to observe the input or the output belonging
to any other party, and therefore the the privacy criteria of the SMC
protocol are trivially satisfied in the ideal model.

TTPs, however, do not exist in the real world and the goal of SMC pro-
tocol is to perform the same computation with untrusted parties in the
presence of adversaries, after satisfying the same privacy constraints.

Theoretical Results

One of the most important result of SMC and theoretical cryptography
was to prove that any function can be computed privately. In the
information-theoretic model in the presence of an active and adaptive
adversary, Ben-Or et al. [1988] establish that any function can be

3.2 secure multiparty computation 26

efficiently computed by n parties, if less than n2 , i.e.,
n
3 parties are

corrupted. Similar results were also obtained by Chaum et al. [1988].
The efficiency of these constructions was improved on by Gennaro
et al. [1998]; Beerliová-Trubíniová and Hirt [2008].

3.2.4 Encryption

Encryption is one of the most important operations in cryptography.
This operation in the form of an encryption function E[·] allows one
party to transform a message or data x, referred to as the plaintext, to
an obfuscated form or ciphertext E[x]. Encryption is usually coupled
with a corresponding decryption operation defined by the decryption
function E−1[·]: the ciphertext E[x] can then be converted back to
the original plaintext x using a key. The encryption and decryption
functions together are referred to as the cryptosystem.
Encryption has been widely used between communicating parties,

archetypically referred to as “Alice” and “Bob”, to maintain secrecy of
communication against an adversary “Eve” who might be interested in
eavesdropping in on the conversation. In a symmetric-key cryptosystem,
only one key is used for both encryption and decryption operations.
This key effectively is a shared secret between Alice and Bob. If Alice
and Bob wish to communicate with each other, they would first need
to securely set up the key. Examples of symmetric-key cryptosystems
include DES, AES, Blowfish.
Conversely, an asymmetric-key or public-key cryptosystem provides a

pair of public and private keys, where the public key is used for the
encryption operation and private key is used for decryption operation.
As the name suggests, the parties publish their public keys, while they
keep the private key with themselves. The public key does not provide
any information about the private key. The public-key cryptosystem
allows Alice to send an encrypted message to Bob without requiring a
secure initial key exchange between them. Alice can simply look up
Bob’s public key, encrypt her message using it, and send it to Bob.
Bob can then decrypt this message using his decryption key. This
arrangement finds widespread use in applications such as electronic
commerce. Although, various forms of symmetric-key cryptosystems
have existed since antiquity, a mechanism for exchanging keys was
first proposed in the pioneering work of Diffie and Hellman [1976].

Homomorphic Encryption

Homomorphic Encryption (HE) schemes are a special type of cryp-
tosystems that allow for operations to be performed on ciphertexts
without requiring knowledge of the corresponding plaintexts. A ho-
momorphic encryption scheme is typically a public-key cryptosystem.
This allows for Alice to create a public-private key pair, encrypt her
data, and send the ciphertexts to Bob after publishing the public key.

3.2 secure multiparty computation 27

Enc[x]

Enc[f(x)]

Figure 3.2: Homomorphic encryption in a client server setting.

Bob can perform the necessary computation directly on the ciphertexts
without being able to decrypt them, as he does not have the key. This
arrangement finds use in client-server settings, where Alice is a client
user, and Bob is a server (Figure 3.2). The concept of homomorphic
encryption was first introduced by [Rivest et al., 1978b] and it is one
of the most important technique for creating SMC protocols in this
thesis.
More formally, if two data instances x and y are encrypted to E[x]

and E[y] using a homomorphic encryption scheme, we can obtain the
encryption of the result of an operation ⊗ performed on x and y by
performing another, possibly the same, operation ⊕ directly on the
encrypted versions of x and y,

E[x⊗ y] = E[x]⊕ E[y].

A cryptosystem in which we can perform any operations on the
plaintext by performing operations on corresponding ciphertext is
called a fully homomorphic cryptosystem (FHE). The first such cryp-
tosystem was proposed in the breakthrough work by Gentry [2009,
2010a]. Although the construction satisfies the necessary properties
for FHE, it is found to be computationally inefficient to be used in
practice [Gentry, 2010b] and developing practical FHE schemes is an
active area of research [Lauter et al., 2011].
There are, however, well-established and efficient partially homo-

morphic encryption schemes that allow a limited set of operations to
be performed on plaintext by performing operations on ciphertext, e.g.,
unpadded RSA [Rivest et al., 1978a] is multiplicatively homomorphic,
El-Gamal [1985]; Damgård and Jurik [2001]; Benaloh [1994b]; Pail-
lier [1999b] are examples of additively homomorphic cryptosystems.
Please refer to [Fontaine and Galand, 2007a] for a survey.
We briefly overview the Paillier [Paillier, 1999b] and BGN [Boneh

et al., 2005] cryptosystems below. We use the homomorphic properties
of these cryptosystems to construct higher-level primitives that are
useful in creating a protocol for the private linear classifier problem
introduced at the beginning of Section 3.2.

1. paillier cryptosystem

3.2 secure multiparty computation 28

Paillier cryptosystem is a public-key cryptosystem satisfies ad-
ditive homomorphism. This cryptosystem is based on modular
arithmetic with a finite field of order n2, where n is a product
of two large primes p and q. The primes p and q are chosen
such that n is a 1024-bit number. Although it is very efficient to
compute n = pq, there is currently no feasible algorithm known
to factor n into p and q.

The security of the Paillier cryptosystem is based on the deci-
sional composite residuosity assumption (DCRA). We briefly
overview this assumption by first defining the concept of residu-
osity below.

Residue.

Given a group Zn2 , a number z is the ith residue mod n2 if
there exists y such that

z = yi mod n2.

DCRA deals with checking for nth residuosity. We state this
assumption below.

Decisional Composite Residuosity Assumption.

For a given a number z, it is hard to check if it is an n-th residue
mod n2, i.e., if

z = yn mod n2.

We use the term hardness to mean computational infeasibility,
which is equivalent to saying that there is no known efficient
algorithm to solve the decisional composite residuosity problem.

We now describe the construction of the Paillier cryptosystem. As
discussed above, there are three components of the cryptosystem:
a key generation algorithm that outputs a public-private key pair,
an encryption function, and a decryption function.

Notation: Z∗
n2

⊂ Zn2 = {0, . . . ,n2 − 1} denotes the set of non-
negative integers that have multiplicative inverses modulo n2,
λ = lcm(p− 1,q− 1) is the Carmichael function, and L(x) = x−1n .

a) Key Generation.

i. Choose two large random primes p and q indepen-
dently, and let n = pq.

ii. Choose a random number g ∈ Z∗
n2

such that gcd(L(gλ

mod n2),n) = 1.

(n,g) is the public key, and (p,q) is the private key.

3.2 secure multiparty computation 29

b) Encryption. For a plaintext m ∈ ZN, the ciphertext is given
by

E[m] = gm rn mod n2, (3.1)

where r ∈ Z∗
n is chosen randomly.

c) Decryption. For a ciphertext c ∈ Zn2 , the corresponding
plaintext is given by

E−1[c] =
L(cλ mod n2)

L(gλ mod n2)
. (3.2)

Paillier [1999b] show that the decryption function satisfies
the property that E−1[E[m]] = m mod n.

We choose a different random number r during each application
of the encryption function, but the decryption function works
irrespective of the value of r used. We discuss the importance of
this at the end of this subsection.

We can easily verify that the Paillier cryptosystem satisfies addi-
tive homomorphism by multiplication, i.e., we can multiply two
ciphertexts to add their corresponding plaintexts.

E[m1]E[m2] = gm1 rn1 g
m2 rn2 mod n2

= gm1+m2 (r1r2)
n mod n2

= E[m1 +m2]. (3.3)

The Paillier cryptosystem, therefore, homomorphically maps the
plaintext group with addition (Z,+) to ciphertext group with
multiplication, (Z, ·).
As a corollary, we can also multiply a ciphertext by a plaintext.

[E[m1]]
m2 = [gm1 rn1 mod n2]m2

= gm1m2 (rm21)n mod n2

= E[m1m2]. (3.4)

These homomorphic properties allow us to compute the inner
product of an encrypted vector with another vector. We construct
such a protocol below. In the private linear classifier problem,
this protocol can be used by the server to compute the inner
product between the client’s input vector x and its weight vector
w.

Private Inner Product Protocol.

Inputs:

(a) Client has a d-dimensional vector x = (x1, . . . , xd).

3.2 secure multiparty computation 30

(b) Server has a d-dimensional vector w = (w1, . . . ,wd).

Output: Server obtains the encrypted inner product E[wTx].

a) Client generates a public-private key pair for the Paillier
cryptosystem with encryption and decryption functions E[·]
and E−1[·]. The client sends the encryption function to the
server.

b) Client encrypts its input vector to obtain E[x] = (E[x1], . . . ,E[xd]).
Client sends the encrypted vector to the server.

c) Server performs element-wise homomorphic multiplication
with the encrypted vector and its input vector, which it has
in plaintext.

(E[x1]
w1 , . . . ,E[xd]wd) = (E[x1w1], . . . ,E[xdwd]).

d) Server homomorphically adds these elements to obtain the
encrypted inner product.

�

i

E[xiwi] = E

��

i

xiwi

�
= E[wTx].

The server only has access to the client’s public key and not the
private key. It observes the client’s input vector in ciphertext and
cannot decrypt it, but is still able to compute the inner product.

2. bgn cryptosystem

The BGN (Boneh-Goh-Nissim) cryptosystem is designed to sat-
isfy additive homomorphism like the Paillier cryptosystem,
but in addition to that, it supports one homomorphic mul-
tiplication operation on ciphertext. Being able to perform ei-
ther addition or multiplication alone, or in other words, being
able to evaluate 2-DNF formulas on ciphertexts has its limi-
tations; given two encrypted vectors E[x] = (E[x1], . . . ,E[xm])

and E[y] = (E[y1], . . . ,E[ym]), we are not able to compute the
inner product E[xTy] without requiring an interactive protocol
involving the party with the private key.

As compared to the Paillier cryptosystem, the BGN cryptosystem
is constructed using groups defined over elliptic curves [Miller,
1985; Koblitz, 1987]. The cryptosystem relies on the the subgroup
decision problem (SDP) as its underlying basis for security. Given
a group G of an composite order n, i.e., n is a product of two
primes q1 and q2 and a subgroup G � of G. By the Lagrange the-
orem, the order of G � divides n, which implies that the order of
G � is either q1 or q2. It is computationally difficult to determine
such a subgroup given the hardness of factorizing n = q1q2.

3.2 secure multiparty computation 31

SDP deals with checking the membership of an element in the
subgroup. We define the corresponding assumption below.

Subgroup Decision Assumption.

Given a group G of order n = q1q2, where q1 and q2 are large
primes, and an element x ∈ G, it is hard to check if x is also an
element of a subgroup of G with order q1.

The BGN key generation algorithm produces a tuple (q1,q2,G,G1, e)
where q1 and q2 are τ-bit prime numbers, G and G1 are groups,
both of order n = q1q2 defined over the points on an elliptic
curve and e : G × G �→ G1 is a bilinear map. We choose two
random generators g,u of the group G and set h = uq2 , thereby
making it the generator of a subgroup of G of order q1. The
public key pk is given by the tuple (n,G,G1, e,g,h) and the
private key sk is the number q1.

For the plaintexts in the set D = {1, . . . , T }, we define the encryp-
tion function E : D �→ G as E[x] = gxhr, where r is a randomly
chosen number in Zn = {0, . . . ,n− 1} and the exponentiation is
modular in G. Using a different value of r in each execution of
the encryption function provides semantic security – two differ-
ent encryptions of a number x say, E[x; r1] and E[x; r2] will have
different values but decrypting each of them will result in the
same number x. We define the decryption function E−1 : G �→ D

as E−1[c] = log cq1 , where the discrete-log is computed to the
base gq1 . Although discrete-log is considered to be a computa-
tionally hard problem, here we compute it only in the range of
the plaintext D which is much smaller than n. The discrete-log
over plaintext space can be computed in expected-time Õ(

√
T)

using Pollard’s lambda method [Menezes et al., 1996].

We can easily verify that the encryption function is additively
homomorphic; for any two ciphertexts E[x] and E[y],

E[x] E[y] = gxhr1gyhr2 = gx+yhr1+r2 = E[x+ y].

As a corollary, for any ciphertext E[x] and plaintext y, E[x]y =

E[x y]. We obtain multiplicative homomorphism by applying the
bilinear mapping e; for any two ciphertexts E[x] and E[y], it can
be shown that

e(E[x],E[y])hr1 = g
xy
1 hr

�
1 = EG1 [xy],

where g1 = e(g,g), h1 = e(g,h), and r, r � ∈ Zn. By this op-
eration, the ciphertexts from G are mapped into G1, and the
cryptosystem is still additively homomorphic in that space,

EG1 [x1] EG1 [x2] = EG1 [x1 + x2],

3.2 secure multiparty computation 32

but we cannot perform further multiplications on these cipher-
texts. We hereafter omit the subscript from EG1 for conciseness.

As mentioned above, one motivation of using BGN is to perform
homomorphic multiplication. This allows us to create a protocol
for computing the inner product of two encrypted vectors. This
protocol is useful when the client is interested in protecting the
classifier weight vector from the server, e.g., in case of authenti-
cation systems such as speaker verification.

Private Inner Product Protocol over Ciphertexts.

Inputs:

(a) Client has a d-dimensional vector x = (x1, . . . , xd) and both
encryption and decryption functions E[·] and E−1[·].

(b) Server has an encrypted d-dimensional vector E[w] = (E[w1], . . . ,E[wd])
and the encryption function E[·].

Output: Server obtains the encrypted inner product E[wTx].

a) Client encrypts its input vector to obtain E[x] = (E[x1], . . . ,E[xd]).
Client sends the encrypted vector to the server.

b) Server performs element-wise homomorphic multiplication
with the encrypted vector and its input vector, which it has
in plaintext.

(e(E[x1],E[w1]), . . . , e(E[xd],E[wd])) = (E[x1w1], . . . ,E[xdwd]).

c) Server homomorphically adds these elements to obtain the
encrypted inner product.

�

i

E[xiwi] = E

��

i

xiwi

�
= E[wTx].

The server only has access to encryption function and cannot
observe the client input or even its own input in plaintext. The
server is still able to compute the inner product.

Semantic Security

In the encryption functions of both Paillier and BGN cryptosystems,
we considered a random number r. By using a new random number in
each encryption function application, we will get different ciphertexts
c1 = Er1 [x] or c2 = Er2 [x] for the same plaintext x. The cryptosystems
have the property that both these ciphertexts would decrypt to the
same plaintext x, i.e., E−1[c1] = E−1[c2] = x. This is referred to as
probabilistic encryption [Goldwasser and Micali, 1984].

3.2 secure multiparty computation 33

This property is very useful; if we are encrypting a data with a
small number of unique elements, e.g., binary data with 0 and 1, in
absence of such an encryption function, an adversary can statistically
determine the proportion of the inputs and gain significant informa-
tion about the data. More rigorously, we require an adversary to not
learn anything from observing the ciphertext alone. This definition of
privacy is called semantic security [Goldwasser and Micali, 1982]. A se-
mantically secure public-key cryptosystem ensures that it is infeasible
for a computationally bounded adversary to use the ciphertext and
the public key to gain information about the plaintext.
Semantic security provides protection against chosen plaintext at-

tacks (CPA). In this model, the adversary generates ciphertexts from
arbitrarily chosen plaintexts using the public key, and attempts to
gain information about the user, typically by trying to reconstruct the
private key. Due to the requirements of semantic security as discussed
above, the adversary is not able to do so.
One limitation of semantic security is that it does not protect against

chosen ciphertext attacks (CCA). In this model, the adversary can
obtain the decrypted plaintexts from the user for any ciphertext of its
choosing.

3.2.5 Masking

In the previous subsection, we considered practical homomorphic
cryptosystems that allow only a subset of operations that can be per-
formed on ciphertexts, as opposed to fully homomorphic encryption
schemes that are currently impractical. One question is how do we
privately compute a function that requires operations beyond those
provided by the cryptosystem? e.g., if we need to multiply two cipher-
texts encrypted using the Paillier cryptosystem.
A solution for this problem is called blinding or masking, where one

party modifies the input using a random number in order to obfuscate
from another party. Suppose Bob has the number x, and is interested
in hiding it from Alice. In additive masking, Bob can generate a random
number r and transfer x+ r to Alice. This masking is information
theoretically secure, if r is randomly chosen from the set of plaintexts,
i.e., the domain of encryption function Zn, Alice cannot gain any
information about x from x+ r. This is because if r can take n values
(256-bit or 1024-bit), then x+ r will take also n values, implying that
the entropy of x + r is equal to r. Additive masking is equivalent
to additive secret sharing, as Alice and Bob have shares x+ r and −r

respectively, that add up to x. For Alice, there will be n ways to split
x+ r, which would be infeasible in practice.
Additive masking can also be performed over ciphertexts using

homomorphic encryption. If Bob has a ciphertext E[x] encrypted using
Alice’s public-private key pair, he can still add the random number r

3.2 secure multiparty computation 34

to E[x] by first encrypting it using Alice’s public key and computing
E[x]E[r] = E[x+ r]. After Bob sends this ciphertext to Alice, she can
decrypt it to obtain x+ r, which is additively masked. Even in this
case, Alice and Bob would have additive shares of x.
Another form of masking is multiplicative masking, where Bob can

multiply his input x by a random number q to obtain qx in order
to hide it from Alice. Multiplicative masking hides less information
than additive masking even after choosing q randomly from the set of
plaintexts. This is because the range of qx is not equal to the range of q,
e.g., if x is an even number, qx will always be an even number, which
is not the case for additive masking. Information theoretically, there
will be logn ways to split qx, implying that multiplicative masking is
logarithmically weaker than additive masking.

Interactive Protocols using Masking

As we mentioned at the beginning of this subsection, we are interested
in augmenting the homomorphic operations of a cryptosystem with
masking in an interactive protocol. As an example, we construct a
protocol for performing homomorphic multiplication of ciphertexts
using only additively homomorphic Paillier cryptosystem.

Private Multiplication Protocol.
Inputs:

(a) Alice has a and and both encryption and decryption functions E[·]
and E−1[·].

(b) Bob has E[b] and the encryption function E[·].

Output: Bob obtains E[ab].

1. Bob generates a random number r and encrypts it to obtain
E[r]. Bob homomorphically adds it to his input to obtain E[b+ r]

which he sends to Alice.

2. Alice decrypts the ciphertext E[b+ r] to obtain b+ r. She multi-
plies this with a to obtain ab+ ar.

3. Alice encrypts the product and also her input a, and she sends
the ciphertexts E[ab+ ar] and E[a] to Bob.

4. Bob homomorphically multiplies the plaintext r with E[a] to
obtain E[ar] and homomorphically subtracts it from the product
to obtain E[ab].

Bob is able to homomorphically multiply ciphertexts with this pro-
tocol, something which is not possible using the homomorphic opera-
tions of Paillier cryptosystem alone. This protocol, however, requires 3

3.2 secure multiparty computation 35

encryption and 1 decryption operation and the transfer of 3 cipher-
texts. This is more expensive than using the BGN cryptosystem which
can directly perform one homomorphic multiplication on ciphertexts.
As another example, we construct a protocol for the private linear

classification problem introduced at the beginning of Section 3.2, using
additive masking and the inner product protocols discussed above. We
can either use the Paillier or the BGN cryptosystem for this purpose.

Private Linear Classification Protocol.
Inputs:

(a) Client has the speech input vector x.

(b) Server has the classifier model w and the threshold θ.

Output: Client and Server know if wTx > θ.

1. Client generates a public-private key pair with encryption and
decryption functions E[·] and E−1[·]. The client sends the encryp-
tion function to the server.

2. Client and server execute the private inner product protocol, and
as an output the server obtains E[wTx].

3. Server generates a random number r and homomorphically
adds it to the inner product to get E[wTx+ r]. Server transfers
the masked inner product to the client.

4. Client decrypts the server’s message to obtain wTx+ r.

5. Client and the server execute the private comparison protocol
using inputs wTx+ r and θ+ r. As output the client and server
know if wTx > θ.

The server masks the inner product wTx, because the client can
use its input x to gain information about w. In Step 5, client and the
server hold additive shares of wTx. The server uses the masked value
of the threshold θ as input to the private comparison protocol, which
is equivalent to the client and the server using wTx and θ respectively
as input.

3.2.6 Zero-Knowledge Proofs and Threshold Cryptosystems

In most of the discussion above, we considered SMC protocols for
semi-honest parties, i.e., we assume the parties to follow all the steps of
the protocol and not use spurious inputs. Although the semi-honest
assumption is valid in many settings, there are cases where the par-
ties can have malicious behavior. Common examples of this include
authentication systems, where the output of the SMC protocol could

3.2 secure multiparty computation 36

be sensitive. In order to construct protocols that can satisfy the pri-
vacy constraints, we need additional cryptographic primitives such as
zero-knowledge proofs and threshold cryptosystems. In this subsec-
tion, we present a brief overview of these concepts, with an emphasis
on creating SMC protocols that protect against malicious adversaries.
Zero-Knowledge Proof (ZKP) is a deep area of theoretical cryptography
with many applications beyond SMC protocols; please refer to Chapter
4 of [Goldreich, 2001] for a detailed review.
Goldwasser et al. [1985] originally introduced Zero-Knowledge

Proof (ZKP) as a mechanism for one party to establish to another party
that a statement is true without giving away additional information
about that statement. We refer to the party establishing the proof as
the prover and the other party as the verifier. Quisquater et al. [1989]
present a classic example of ZKPs, where there is a cave with a door
that can be opened with a secret spell, and a prover Peggy attempts
to give a proof to the verifier Victor that she knows the spell. The
ZKP criteria require that Victor should be convinced about Peggy’s
knowledge of the spell without learning what the spell is.
A valid ZKP satisfies three properties:

1. completeness . If the statement is true, the verifier will always
accept the proof.

2. soundness. If the statement is false, the verifier will accept
with only a negligible probability.

3. zero knowledge. The verifier does not learn anything about
the statement apart from its veracity.

There are two types of ZKPs: interactive and non-interactive. The
proofs we discussed above, e.g., Quisquater et al. [1989], are interactive.
Another variant of ZKP is non-interactive proofs [Blum et al., 1988], in
which a prover can establish a proof by submitting only a reference
string to the verifier without requiring further interaction from the
prover.
In their breakthrough work, Cramer et al. [2001] make a connection

between ZKPs and homomorphic encryption. Firstly, they propose
threshold homomorphic cryptosystems, which in addition to satisfying
the properties of a regular homomorphic cryptosystem, provide a
different model for decryption. In a threshold cryptosystem, there is
only one public key pk, but the decryption key is split among multiple
parties in the form of shares sk1, . . . , skm, typically obtained using a
secret sharing protocol. An individual party can encrypt a plaintext
message x to obtain the ciphertext E[x], but a single share of the private
key cannot be used to perform the decryption. A party can only obtain
a share of the plaintext si after applying the decryption function using
the share of the key: E−1ski [E[x]] = si, with the property that the share si
alone does not provide information about the plaintext x. A majority

3.2 secure multiparty computation 37

of the parties need to execute a decryption protocol together to obtain
the complete decryption result.
Secondly, the threshold homomorphic cryptosystem is augmented

with two non-interactive ZKPs:

1. proof of knowledge of plaintext (pok). A party sub-
mitting a ciphertext c = E[x] can provide a ZKP POK(E[x]) that is
a proof that the party has access to the corresponding plaintext x.
In a cryptosystem providing semantic security, using encryption
function with different randomization r1 and r2 will result in
two ciphertexts c1 = E[x; r1] and c2 = E[x; r2]. Using POK, a
party can establish that they are the same without disclosing the
plaintext x. This is useful when the party is participating in two
execution of the protocol with the same input.

2. proof of correct multiplication (pocm). A party that
is multiplying a ciphertext c = E[x] with a plaintext a homomor-
phically to obtain E[ax], can provide a ZKP POCM(E[x],E[a],E[ax]).
Using this proof, the verifier can check if the ciphertext E[x] was
indeed correctly multiplied by a, without observing either x or
a. We typically use this proof to check if a party is performing
the steps of the protocol correctly.

Damgård and Jurik [2001] extend the Paillier cryptosystem to pro-
vide threshold decryption and the ZKPs discussed above. Kantarcioglu
and Kardes [2008] use this as primitives to construct SMC protocols
for malicious adversaries for operations such as computing the in-
ner product. ZKPs and threshold cryptosystem impose a significant
computational and communication overhead as compared to the pro-
tocols using conventional homomorphic cryptosystems. The overhead
in the private inner product of [Kantarcioglu and Kardes, 2008] is
about 700 times as compared to the private inner product protocol we
constructed in Section 3.2.4 using Paillier encryption.

3.2.7 Oblivious Transfer

Oblivious Transfer (OT) is another useful primitive introduced by Ra-
bin [1981]. The motivation of this work was to construct a mechanism
for two parties to exchange secrets without a trusted third party or
a safe mechanism for exchanging messages simultaneously. The two
parties could be two businesspeople Alice and Bob negotiating a con-
tract. They would each approve only if the other party approves. In
case, if any party declines, the negotiation should fail. If Alice’s and
Bob’s inputs are represented using two bits a and b respectively, the
decision is equivalent to computing a∧ b.
The privacy criteria require that Alice and Bob do not observe the

input of the other party and can only observe the outcome a ∧ b

3.2 secure multiparty computation 38

and whatever can be inferred from it. In the above example, this is
important as Alice and Bob do not want to disclose their strategy to
each other. The two parties may be physically remote and do not wish
to engage a mediator who can inform the decision to them, because
they do not wish to disclose their inputs to anyone.
We analyze the privacy criteria from Alice’s point of view; analogous

arguments would hold for Bob. If the decision a∧ b = 1, then Alice
knows with certainty that both her and Bob’s inputs were 1. If Alice’s
input a = 1 and the decision a∧b is 0, she knows that Bob’s input was
b = 0. This leaves Alice with the only possibility of interest, which is
when her input is a = 0 and the decision will be a∧b = 0, irrespective
of Bob’s input b. In that case she should not learn if Bob’s input b is
equal to 0 or 1.
An OT protocol for this problem proceeds as follows. Alice has two

binary inputs b0 and b1, and Bob has input in the form of a selection
bit s. At the end of the protocol, Bob should obtain a single bit bs, i.e.,
b0 if s = 0 and b1 if s = 1 from Alice. The privacy criteria require that
Bob should not know Alice’s other input b1−s and Alice should not
know Bob’s input s. To solve the negotiation problem as discussed
above, Alice sets b0 = 0 and b1 = a, and Bob sets s = b. It is easy to
verify that at the end of the protocol, Bob will obtain a∧ b as output,
which he can communicate to Alice after satisfying the corresponding
privacy criteria. To satisfy fairness and correctness, we require that
Bob accurately communicates the result to Alice, which implies that
the parties are semi-honest.
Even et al. [1985] proposed the construction for the above problem

using RSA primitives [Rivest et al., 1978a], which proceeds as follows.

1-2 Oblivious Transfer.
Inputs:

(a) Alice has binary inputs b0 and b1.

(b) Bob has binary input s.

Output: Bob obtains bs.

1. Alice generates an RSA key pair that consists of two large primes
p and q, and their product n, the public exponent e and the
private exponent d. She sends n and e to Bob.

2. Alice generates two random numbers x0, x1 ∈ Zn and sends
them to Bob.

3. Bob chooses xs. He generates a random number k and computes
v = (xs + ke) mod n, which he sends to Alice.

4. Alice subtracts x0 and x1 from v and applies the private exponent
to obtain k0 = (v− x0)

d mod n and k1 = (v− x1)
d mod n.

3.2 secure multiparty computation 39

5. Alice blinds her inputs with these messages, m0 = b0 + k0 and
m1 = b1 + k1, and sends these to Bob.

6. Bob selects ms − k as the output and communicates it to Alice.

In Step 4, Alice does not know whether Bob chose x0 and x1 to
compute v, and therefore tries to unblind it using both x0 and x1.
Only one of k0 and k1 will be equal to k, but its identity is again is
unknown to Alice. She therefore blinds her input with both k0 and
k1. Bob already knows which one out of m0 and m1 is blinded by k,
and can unblind only that input. As Bob cannot blind the other input,
the privacy of Alice’s other input b1−s is preserved, and similarly, as
Alice does not know if Bob had selected x0 or x1, the privacy of Bob’s
input s is preserved.

1-2 Oblivious Transfer (OT) can also be generalized to 1-n OT [Naor
and Pinkas, 1999a; Aiello et al., 2001; Laur and Lipmaa, 2007], where
Alice has n inputs {b0, . . . ,bn−1, and Bob has a selector integer s =
{0, . . . ,n− 1}. Another extension is the k-n OT problem [Brassard et al.,
1986], where Alice has n inputs, and Bob has k selectors {s0, . . . , sn−1}.
Oblivious transfer is also related to the private information retrieval

(PIR) problem [Chor et al., 1998]. The main differences between the
two problem is that in PIR, Alice does not care about the privacy of
her inputs, and a non-trivial PIR protocol requires to have sub-linear
bandwidth requirement. In terms of privacy, PIR can be considered
a weaker version of OT. Ioannidis and Grama [2003] present a con-
struction for the Millionaire problem [Yao, 1982] and can be used
as a protocol for the private comparison problem discussed at the
beginning of Section 3.2.
Oblivious transfer is fundamental problem in cryptography. Kilian

[1988]; Crépeau et al. [1995] show that OT can be used to create a
two-party Secure Multiparty Computation (SMC) protocol for any
function. These constructions are feasibility results and inefficient to
be used in practice mainly due to high bandwidth costs. We, therefore,
construct protocols using the techniques of homomorphic encryption
and masking, and use oblivious transfer only when necessary.

3.2.8 Related Work on SMC Protocols for Machine Learning

There has been a lot of work on constructing privacy preserving algo-
rithms for specific problems in privacy preserving data mining such
as decision trees [Vaidya et al., 2008a], set matching [Freedman et al.,
2004b], clustering [Lin et al., 2005], association rule mining [Kantar-
cioglu and Clifton, 2004], naive Bayes classification [Vaidya et al.,
2008b], support vector machines [Vaidya et al., 2008c]. Please refer to
[Vaidya et al., 2006; Aggarwal and Yu, 2008] for a summary.
However, there has been somewhat limited work on SMC protocols

for speech processing applications, which is one of the motivations

3.3 differential privacy 40

for this thesis. Probabilistic inference with privacy constraints is a
relatively unexplored area of research. The only detailed treatment of
privacy-preserving probabilistic classification appears in [Smaragdis
and Shashanka, 2007]. In that work, inference via HMMs is performed
on speech data using existing cryptographic primitives. The protocols
are based on repeated invocations of privacy-preserving two-party
maximization algorithms, in which both parties incur exactly the same
protocol overhead.

3.3 differential privacy

The differential privacy model was originally introduced by Dwork
[2006]. Given any two databases D and D � differing by one element,
which we will refer to as adjacent databases, a randomized query func-
tion M is said to be differentially private if the probability that M
produces a response S on D is close to the probability thatM produces
the same response S on D �. As the query output is almost the same in
the presence or absence of an individual entry with high probability,
nothing can be learned about any individual entry from the output.
Differential privacy is formally defined as follows.

Definition. A randomized functionM with a well-defined probability
density P satisfies �-differential privacy if, for all adjacent databases
D and D � and for any set of outcomes S ∈ range(M),

����log
P [M(D) ∈ S]

P [M(D �) ∈ S]

���� � �. (3.5)

Differential privacy provides the relative guarantee that the release
of information will be just as likely whether or not the data about an
individual is present in the database. As a consequence, if an individ-
ual chooses to contribute to the database, there is little or no increase
in the privacy risk of the individual as opposed to not choosing to
contribute to the database. For instance, if an insurance company is
using a differentially private statistic computed over a database to
decide whether or not to insure a particular person, the presence or
absence of that person from the database will not significantly affect
the chances of receiving coverage.
Differential privacy is an ad omnia guarantee as opposed to other

models that provide ad hoc guarantees against a specific set of attacks
and adversarial behaviors. This is a stronger guarantee than SMC

where the only condition is that the parties are not able to learn
anything about the individual data beyond what may be inferred from
the final result of the computation. For instance, when the outcome
of the computation is a classifier, it does not prevent an adversary
from postulating about the presence of data instances whose absence
might change the decision boundary of the classifier, and verifying the
hypothesis using auxiliary information if any. Moreover, for all but

3.3 differential privacy 41

the simplest computational problems, SMC protocols tend to be highly
expensive, requiring iterated encryption and decryption and repeated
communication of encrypted partial results between participating
parties.
Differential privacy operates in two settings: interactive and non-

interactive. In the interactive setting, the users repeatedly query the
curator about information from the database, and the curator needs to
modify the response in order to protect the privacy of the individual
database entries. Differential privacy is composable: when consecutive
N queries are executed, each satisfying �-differential privacy, the
combined set of queries satisfies N�-differential privacy. � can be
thought of as a privacy cost incurred when answering an individual
query. In the non-interactive setting, the curator computes a function
on the dataset and publishes the response only once and the data is
not used thereafter. In this thesis, we will almost exclusively look at
non-interactive differentially private release mechanisms.
In a classification setting, the training dataset may be thought of as

the database and the algorithm learning the classification rule as the
query mechanism. A classifier satisfying differential privacy implies
that no additional details about the individual training data instances
can be obtained with certainty from the output of the learning al-
gorithm, beyond the a priori background knowledge. An adversary
who observes the values for all except one entry in the dataset and
has prior information about the last entry cannot learn anything with
high certainty about the value of the last entry beyond what was
known a priori by observing the output. This can be thought to be an
incentive to the dataset participants; nothing more about their data
can be inferred from the differentially private classifier beyond what
was already known about them.

3.3.1 Exponential Mechanism

Dwork et al. [2006] proposed the exponential mechanism for releasing
continuous-valued functions satisfying �-differential privacy. When a
function f is evaluated over the dataset D, the true answer is f(D). The
mechanismM adds the appropriate kind of perturbation η depending
on the sensitivity of f to f(D) such that f(D) + η satisfies differential
privacy. The function sensitivity S is defined as follows.

Definition. For all adjacent databases D and D �, the sensitivity S of
the function f is given by

S = max
D,D �

��f(D) − f(D �)
��
1
. (3.6)

The sensitivity S of a function f indicates how much is the function
is likely to change after changing one instance from the dataset. For
instance, the output of the function querying for maximum salary

3.3 differential privacy 42

Figure 3.3: Densities of mechanisms evaluated over adjacent datasets.

can change significantly after removing one instance: person having
the maximum salary, and hence this function is highly sensitive. On
the other hand, the output of the function counting the number of
instances satisfying a particular property can change only by one and
is relatively insensitive. It should be noted that the sensitivity is the
property of the function, rather than any specific dataset.
Dwork et al. [2006] show that by adding perturbation η sampled

from Laplace(S/�) to the output of the function f(D) satisfies �-
differential privacy. The variance of the perturbation η is proportional
to S/�; this means that we need to add perturbation with higher vari-
ance if our function is highly sensitive. Similarly, as the variance is
inversely proportional to �, we need to add perturbation with higher
variance if our privacy constraint is tight. The perturbation introduces
error as compared to the true answer which is inversely proportional
to �. This signifies the trade-off between privacy and accuracy.

3.3.2 Related Work on Differentially Private Machine Learning

The earlier work on differential privacy was related to functional
approximations for simple data mining tasks and data release mecha-
nisms [Dinur and Nissim, 2003; Dwork and Nissim, 2004; Blum et al.,
2005; Barak et al., 2007]. Although many of these works have con-
nection to machine learning problems, more recently the design and
analysis of machine learning algorithms satisfying differential pri-
vacy has been actively studied. Kasiviswanathan et al. [2008] present
a framework for converting a general agnostic PAC learning algo-

3.3 differential privacy 43

rithm to an algorithm that satisfies privacy constraints. Chaudhuri
and Monteleoni [2008]; Chaudhuri et al. [2011] use the exponential
mechanism [Dwork et al., 2006] to create a differentially private lo-
gistic regression classifier by adding Laplace noise to the estimated
parameters. They propose another differentially private formulation
which involves modifying the objective function of the logistic regres-
sion classifier by adding a linear term scaled by Laplace noise. The
second formulation is advantageous because it is independent of the
classifier sensitivity which difficult to compute in general and it can
be shown that using a perturbed objective function introduces a lower
error as compared to the exponential mechanism.
However, the above mentioned differentially private classification

algorithms only address the problem of binary classification. Although
it is possible to extend binary classification algorithms to multi-class
using techniques like one-vs-all, it is much more expensive to do so as
compared to a naturally multi-class classification algorithm.

3.3.3 Differentially Private Speech Processing

In speech processing, differential privacy can be used as a pub-
lication mechanism for speech models such as Gaussian Mixture
Models (GMMs) and Hidden Markov Models (HMMs). The advantage
of publishing speech models is that it obviates the need for computa-
tionally expensive SMC protocols for training these models. Publishing
differentially private classifiers, on the other hand, requires only a
form of perturbation which introduces little or no computational
overhead.
In practice, the problem with publishing differentially private speech

models is that for meaningful privacy, e.g., � � 1, the resulting classi-
fiers provide very low accuracy on speech data. We present a mech-
anism for creating differentially private GMMs in Chapter A of the
Appendix. The theoretical results show that the expected error is
bounded by the square of the data dimensions. Even after parametriza-
tion, speech data is usually very high dimensional, typically with
39-dimensions and 100 frames per second: 3,900 features per training
instance.
Speech processing applications such as speaker verification and

speaker identification, however, require high accuracy as they are
deployed in sensitive authentication and surveillance applications.
The current state of the art methods of producing differentially private
classifiers, such as the ones mentioned above, cannot be used in these
applications. We outline ideas for creating usable differentially private
classifiers in future work.

Part II

PR IVACY-PRESERVING SPEAKER
VER IF ICAT ION

4
OVERVIEW OF SPEAKER VER IF ICAT ION WITH
PRIVACY

4.1 introduction

Speech being a unique characteristic of an individual is widely used
as the biometric of choice in authentication systems. In an multi-factor
authentication system, speech is usually used in combination with
other items, something which the user has, e.g., a token or a smart card,
and something which the user knows e.g., a personal identification
number (PIN) or a password. Although the latter two are relatively
easy to be compromized, speech, being a biometric, still remains
robust to being compromised. We investigate text-independent speaker
verification systems, that can authenticate while maintaining privacy
over the speech data.

Bob,

accept/reject

User System

Figure 4.1: Speaker verification work-flow.

We consider a client-server model for speaker verification as shown
in Figure 4.1. The speaker verification system is the server, and the
user executes a client program on a network-enabled computation
device such as a computer or a smartphone. Speaker verification pro-
ceeds in two phases: enrollment, where the user submits a few speech
utterances to the system, and verification where the user submits a
test utterance and the system makes an acceptance decision based on

45

4.1 introduction 46

its similarity to the enrollment data. Our primary privacy constraint is
that the verification system should not be able to observe the speech
samples provided by the user both during the enrollment and verifica-
tion steps. This is important as the same speech data can potentially
be used to verify the user in another authentication system. A speaker
verification system might be compromised by an adversary who can
access speech samples from the internal storage of the system for this
purpose. Similarly, the system itself might be made to pose as a front
to phish speech data from the unaware users. To prevent this, we
require that the speech samples should be completely obfuscated from
the system.
Our secondary privacy constraint is related to the computation

device that is employed by the user in the verification process. We
assume the user to be honest during the enrollment step, as it is in
the user’s privacy interest to be so. In the verification step, however,
the user’s computation device may be stolen or compromised by an
adversary and can be used to impersonate the user. To prevent this,
we require that no data that may allow the adversary to authenticate
itself in place of the user should be stored on the device.
Our solution is based on two main ideas. Firstly, through the use

of Secure Multiparty Computation (SMC) protocols (Section 3.2) that
enable the user and system to interact only on obfuscated speech
data which the system cannot observe in plaintext at any point, we
eliminate the possibility that the system could phish for a user’s
voice. Secondly, by requiring the system to store only obfuscated
speaker models derived from speech data belonging to the user, we
also ensure that an adversary who breaks into the system obtains
no useful information. We assume that one adversary does not gain
access to both the user’s client device and the system at the same time.
We develop two frameworks for privacy-preserving speaker ver-

ification, satisfying the privacy constraints described above. In the
first framework, which we describe in Chapter 5, we develop pro-
tocols for private enrollment and verification using homomorphic
encryption. In the second framework which we which we describe in
Chapter 6, we use the supervector representation with Locality Sensi-
tive Hashing (LSH) (Section 2.2.3) to transform the speaker verification
problem into string comparison, and develop methods to perform it
with privacy. The two frameworks provide a trade off between ac-
curacy and efficiency: the GMM framework provides comparatively
higher accuracy and the string comparison framework provides com-
paratively lower computational overhead. We investigate this trade off
in detail in Chapters 5 and 6.
We begin our discussion on privacy-preserving speaker verification,

by examining the various privacy issues we mentioned above, that is
relevant for both GMM and string comparison frameworks. We also

4.2 privacy issues & adversarial behavior 47

consider the adversarial behavior of the various parties involved in
the process.

4.2 privacy issues & adversarial behavior

We assume the user and the system to be independent parties that
have access to separate computing devices operating in a client-server
model and engaging in Secure Multiparty Computation (SMC) pro-
tocols. We assume the parties to be computationally bounded, i.e.,
we consider that the parties cannot directly break the encryption or
reverse the hash functions to obtain plaintext without knowing the
decryption key or salt. In SMC, we consider two types of adversarial be-
havior of parties: semi-honest and malicious. We consider a semi-honest
party to follow the steps of the protocol correctly, but keep a record of
all intermediate results while trying to gain as much information as
possible about the input data belonging to other parties. A malicious
party, in addition to the semi-honest behavior, takes active steps in
disrupting the protocol by using fraudulent input data to gain infor-
mation about the input data belonging to other parties, and to obtain
an unrealistic result.
Our main privacy constraint is that the system should not be able

to observe the speech samples belonging to the user both during the
enrollment and verification phases. The only malicious behavior the
system can exhibit in the verification protocol is to modify the steps of
the procedure to obtain incorrect output. As the system never observes
the speech input in plaintext, this will not help it in anyway to obtain
any information about the input. On the other hand, a system giving
arbitrary accept/reject decisions will only antagonize the users and
accepting false users would lead to a security problem, but not a loss
in user privacy. We therefore assume that the system to be semi-honest.
We also assume that the user is semi-honest during the enrollment
phase. By maliciously submitting false user models, the user will
only help in creating a weak authentication system, and there is no
incentive for the user to do so. In the verification phase, however, we
assume that the user is malicious, as the user could well be represented
by an adversary who is trying to impersonate the user by using a
compromised or stolen device. We make no assumptions about the
correctness of the input data provided by the user; but we require that
the system use the same input data for all models.
As discussed above, we consider two kinds of adversaries: having

unauthorized access to the system data or the client device. The
first type of adversary can use the system data to learn about the
speech patterns of the user, violating user privacy, and also using it
to impersonate the user in another speaker verification system. We
therefore require the speech patterns and models to be encrypted or
hashed by the user before being stored in the system. Similarly, the

4.2 privacy issues & adversarial behavior 48

second type of adversary can use the data stored on the user’s client
device to impersonate the user. To prevent this, we require that no
information about the speech patterns should be stored on the client
device. However, we would need to store the user’s cryptographic
keys, on the client device, as these would later be required to encrypt
the test input. If an adversary gains unauthorized access into both
the client device and system data, we consider the system to be fully
compromised as the adversary can use the cryptographic keys to
decrypt the user models it obtains from the system.

4.2.1 Imposter imitating a user

Apart from the adversarial behavior discussed above, an imposter can
directly attempt to cheat a speaker verification system by imitating the
voice of an enrolled user. The imposter can also employ alternative
mechanisms such as coercion, using a publicly available recording
of a user’s speech or morphing his/her own voice into the user’s
voice [Pellom and Hansen, 1999; Sundermann et al., 2006]. Although
these type of attacks on speaker verification system do pose an im-
portant threat, we do not consider them as privacy violations, but as
security issues. This is because the imposter does not gain any new
information about the user’s speech beyond what he/she had used
to create the fake speech input. Therefore, the privacy of the user’s
speech is not compromised.
An imposter can also repeatedly interact with the system with

different inputs, until he/she converges on an input that is similar
to a legitimate user. This is less likely to succeed as the space of
possible speech inputs is large. The system can block such users after
a sufficient number of failures. Similarly, a verification system may
arbitrarily deny a legitimate user, even though the user has submitted
a speech sample. Again, for the same reasons we do not consider these
as privacy violations.

4.2.2 Collusion

In SMC protocols, parties often collude with each other, by sharing
their data, in order to gain information about the data belonging to
other parties. In speaker verification, there are two types of parties:
the system and the set of users. There is no motivation for the users to
collude among themselves as the users only interact with the system
in both enrollment and verification steps. By doing so they would
not learn data about the speech input provided by other users. A
user or a set of users could collude with the system, and the latter
could transfer the enrollment data about the non-colluding users. This,
however, would also not be useful, because the system only stores
models in an obfuscated form: using encrypted speaker models in

4.2 privacy issues & adversarial behavior 49

case of GMMs-based protocols and cryptographically hashed keys in
case of LSH-based protocols. In both the cases, the encryption and the
hash function are applied by the user. In the absence of the respective
private key or salt belonging to the genuine user, the colluding users
will not be able to observe the original speech inputs. The system
could also transfer the speech input submitted by the user in the
verification phase. As the input is similarly encrypted or hashed by
the user, this again will not help the system or the colluding user in
obtaining information about the speech of the user.

4.2.3 Information Leakage after Multiple Interactions

A user typically enrolls with a speaker verification system only once,
but performs the verification step multiple times. In each step, how-
ever, the user submits encrypted speech data in case of GMMs-based
protocols and cryptographically hashed keys in case of LSH-based
protocols, both of which are obfuscated from the system.
As we shall see in Chapter 5, in GMM-based protocols, the user and

the system execute a verification protocol and the system obtains two
encrypted scores at the end of the verification protocols, corresponding
to the speaker models and the UBM. In each execution, the system
and the user can use different random inputs in the intermediate steps.
After multiple interactions, the system would only observe a set of
encrypted scores and this does not lead to any loss of user privacy.
As we shall see in Chapter 6, in LSH-based protocols, the system

observes multiple cryptographically hashed LSH keys submitted by the
user. Due to the one-way nature of the cryptographic hash function,
the system is unable to correlate the hashes and gain information
about the user input. The system only learns about the number of
matched keys in each verification step. Again, this alone does not
reveal any information about the user input.

5
PR IVACY-PRESERVING SPEAKER VER IF ICAT ION
US ING GAUSS IAN MIXTURE MODELS

In this chapter, we present an adapted UBM-GMM based privacy
preserving speaker verification (PPSV) system, where the system is
not able to observe the speech data provided by the user and the
user does not observe the models trained by the system. We present
protocols for speaker enrollment and verification which preserve pri-
vacy according to these requirements and report experiments with
a prototype implementation on the YOHO dataset. We assume that
the user represents the speech samples using Mel Frequency Cepstral
Coefficients (MFCC). We consider the MFCC features as the user input.
In the remainder of the chapter we describe the proposed protocols

for private enrollment and verification in the PPSV system. We imple-
ment our protocols based on the commonly used UBM-GMM based
speaker verification algorithm described in [Bimbot et al., 2004] which
we outline in Section 2.2.2. We describe the proposed protocols for
privacy preserving speaker enrollment and verification in Section 5.2.
The operations on encrypted speech data motivated by our privacy

requirements introduce significantly higher computation costs as com-
pared to the non-private system. In Section 5.3, we report the increase
in execution time and the effect on accuracy in experiments with a
prototype PPSV system over the YOHO dataset [Campbell, 1995].

5.1 system architecture

Speaker verification proceeds in two separate phases: enrollment and
verification. In the enrollment phase, each user submits enrollment
samples to the system, and in the verification phase, a user submits a
claimed identity along with a test sample which the system compares
to the enrollment samples for the claimed user to arrive at the decision
to accept/reject the user. The system uses the UBM and adapted model
framework (Section 2.2.2) to represent the speaker model.
We present the design of the privacy preserving speaker verification

system with a motivation to satisfy the privacy constraints discussed
in Section 4.2. In the enrollment phase, the user and the system are
assumed to be semi-honest. To start with, user generates a public/pri-
vate key pair and sends the public key to the system. We assume that
the system trains a UBM λU on publicly available data and stores it
with itself as plaintext. In the enrollment protocol (Figure 5.1), the
system sends the UBM to the user in plaintext and the user performs
the adaptation. The user then encrypts the adapted model with its key

50

5.1 system architecture 51

and sends it to the system. After executing the enrollment protocol
with all users, the system has encrypted models for all users along
with the UBM. At the end of the protocol, we require the user to delete
the enrollment data from its computation device in order to protect it
from an adversary who might gain unauthorized access to it. The user
device only has the encryption and decryption keys. Similarly, as the
server stores only the encrypted speaker models, it is also protected
against an adversary who might compromise the system to gain the
speaker models, in order to impersonate the user later. If an adversary
compromises the user device as well as the system, we consider the
system to be completely compromised as the adversary can use the
decryption key to obtain the speaker model in plaintext.

User 1

E[·],E−1[·]
data x, λU

MAP−−−−→ λ
(1)
s

System

E[·]

UBM λU

λU

E[λ
(1)
s]

Figure 5.1: Enrollment Protocol: User has enrollment data x and system has
the UBM λU. System obtains encrypted speaker model E[λ(1)s].

In the verification protocol (Figure 5.2), the user produces a test
speech sample x and encrypts it using its key and sends it to the
system along with the claimed identity. The system evaluates the
encrypted test sample with the UBM and the encrypted model for
the claimed speaker it had obtained in the enrollment protocol using
the homomorphic operations and obtains two encrypted scores. The
system makes its decision by comparing the difference between the
two encrypted scores with a threshold using the compare protocol.
This arrangement is sufficient for a semi-honest user, who provides the
correct speech input while evaluating both the UBM and the speaker
model. We construct the interactive private verification protocol in
Section 5.2.2 to address semi-honest users.
In the verification phase, the user could also be malicious in the case

it is represented by an imposter. A malicious user can gain an advan-
tage in authenticating himself/herself by submitting different inputs
during the evaluation of the UBM and the speaker models. We, there-
fore, need a protocol where the user gets to submit only one speech
sample as input and the system can evaluate it on both the models
without requiring any further participation from the user. We con-
struct the non-interactive private verification protocol in Section 5.2.2
to address malicious users.

5.2 speaker verification protocols 52

User 1

E[·],E−1[·]
test data x

System

E[·]

UBM λU

E[λ
(1)
s], . . . ,E[λ(n)s]

User 1, E[x]

accept/reject

Figure 5.2: Verification Protocol: User has test data x and system has the
UBM λU and encrypted speaker model E[λ(1)s]. The user submits
encrypted data and the system outputs an accept/reject decision.

5.2 speaker verification protocols

We now describe the enrollment and verification protocols in detail. We
use the following construction from [Smaragdis and Shashanka, 2007]:
the multivariate Gaussian N(x;µ,Σ) computed on any d-dimensional
vector x can be represented in terms of of a (d+ 1)× (d+ 1) matrix
W.

W̃ =

−12Σ
−1 Σ−1µ

0 w∗

,

where w∗ = −
1

2
µTΣ−1µ−

1

2
log |Σ|. (5.1)

This implies logN(x;µ,Σ) = x̃TW̃x̃, where x̃ is an extended vector
obtained by concatenating 1 to x. We reduce this computation to a
single inner product x̄TW, where the extended feature vector x̄ consists
of all pairwise product terms x̃ix̃j ∈ x̃ andW is obtained by unrolling
W̃ into a vector. In this representation

logP(x|i) = logN(x;µ,Σ) = xTW (5.2)

We assume that the user computes MFCC features from the speech
samples. In the following discussion, we refer to the MFCC features
as the speech sample itself.

5.2.1 Private Enrollment Protocol

We assume that the system already has access to the UBM, λU trained
on a collection of publicly available speech data. The speaker verifi-
cation algorithm requires a speaker model obtained from adapting
the UBM to the enrollment data provided by the speaker. We re-
quire that the speaker model is kept with the system only after it is

5.2 speaker verification protocols 53

encrypted by the user’s key. We outline this enrollment protocol below.

Private Enrollment Protocol.
Inputs:

(a) User has the enrollment samples x1, . . . , xn and both encryption
key E[·] and decryption key E−1[·].

(b) System has the UBM λU = WUi for i = 1, . . . ,N, mixing weight α,
and the encryption key E[·].

Output: System has the encrypted user model E[λs] = E[Ŵsi], for
i = 1, . . . ,N.

1. The system sends the UBM λU to the user.

2. User performs the model adaptation of λU with the enroll-
ment samples x1, . . . , xn (see Section 2.2.2) to obtain the adapted
model λs.

3. The user represents the mixture components of the adapted
model using the Ŵi matrix representation described above.

4. The user encrypts Ŵi using its encryption key and sends it to
the system.

Although this arrangement, where the user performs the adapta-
tion, is adequate in most applications, we also develop the following
protocol where the system performs the adaptation over encrypted en-
rollment data to obtain the encrypted speaker models (see Section 5.5).

5.2.2 Private Verification Protocols

In the verification protocol, the system needs to evaluate the prob-
abilistic score of the given test sample using the UBM λU and the
adapted model λs . This score is evaluated for all frames of the test
sample; for a test sample x = {x1, . . . , xT } and the model λ, this score
is given by

P(x|λ) =
�

t

�

j

P(xt|j) =
�

t

�

j

wjN(xt;µj,Σj).

We compute this score in the log domain to prevent numerical under-
flow,

logP(x|λ) =
�

t

log
�

j

P(xt|j) =
�

t

log
�

j

ex
T
tWj , (5.3)

using theW matrix representation from Equation 5.2.
In our privacy model, we assume that the user has the speech sam-

ple x and the system has the encrypted matricesWj. The verification

5.2 speaker verification protocols 54

protocol proceeds as follows: the user sends the encrypted frame vec-
tors E[xt] to the system which the server uses to homomorphically
compute the inner products E[xTtWj]. In order to use the inner prod-
ucts to compute the log scores, we need to perform an exponentiation
operation on ciphertext. As our cryptosystem only supports homo-
morphic additions and a single multiplication, it is not possible to do
this directly, and we therefore use the logsum protocol which requires
user participation in the intermediate steps. We outline this interactive
verification protocol below.

Interactive Private Verification Protocol.
Inputs:

(a) User has the test sample x with frame vectors {x1, . . . , xT } and both
encryption key E[·] and decryption key E−1[·].

(b) System has E[λ] = E[Wj], for j = 1, . . . ,N, and the encryption key
E[·].

Output: System obtains the score E[logP(x|λ)].

1. The user encrypts the frame vectors E[xt] and sends it to the
system.

2. For each mixture matrices E[Wj] and each frame vector E[xt], the
system computes the inner product E[xTtWj] using the private
inner product protocol.

3. The system and the user then participate in the logsum protocol
(Section 5.5) to obtain E[logP(xt|λ)] = E[log

�
j e
xTtWj].

4. The system adds the logsums homomorphically to obtain the
E[logP(x|λ)].

As the system has access to the UBM in plaintext, the user and
the system can execute the private mixture of Gaussians evaluation
protocol (MOG) given by [Smaragdis and Shashanka, 2007]. We how-
ever observe that the above protocol is substantially faster than MOG
using unencrypted models. This is because in the above protocol,
the user computes part of the inner products xTtW

s
i in plaintext. We

therefore repeat the above protocol with the encrypted UBM E[WUi]

to obtain the encrypted probability E[logP(x|λU)]. The system and
the user finally execute the compare protocol, to privately compute if
logP(x|λU) > logP(x|λs) + θ and the system uses this as the decision
to authenticate the user.
Throughout this protocol, the system never observes the frame

vectors xt in plaintext. The various supplementary protocols require
the system to send encrypted partial results to the user. While doing so
the system either adds or multiplies the values it sends to the user by
a random number. This also prevents the user from learning anything

5.2 speaker verification protocols 55

about the partial results obtained by the system. Even after satisfying
these privacy constraints, the system is able to make the decision on
authenticating the user.
A disadvantage of the above protocol is that it requires participation

from the user in the intermediate steps. Apart from the computational
and data transfer overhead incurred, this also results in a privacy vul-
nerability. A malicious user can provide fake inputs in the logsum step
to disrupt the protocol and try to authenticate itself without having
a speech sample belonging to a genuine user. To prevent this behav-
ior, we can augment the interactive protocols with Zero-Knowledge
Proof (ZKP) and threshold decryption as discussed in Section 3.2.6.
These constructions, however, have a significantly large overhead as
compared to protocols using conventional Paillier encryption, such as
the one above.
As feasibility is one of our aims, we instead construct a non-interactive

protocol, where the user needs to submit the encrypted speech sample
and the system directly computes the probability scores. As this is
not possible due to the exponentiation involved in Equation 5.3, we
modify the score function itself by flipping the log and sum.

score(x, λ) =
�

t

�

j

logP(xt|j) =
�

t

�

j

xTtWj. (5.4)

This has the advantage that once the system homomorphically com-
putes the inner products E[xTtWj], it only needs to homomorphic
addition to compute the score without requiring any user participa-
tion. We experimentally observe that the accuracy of this score is close
to that of the original probabilistic score. We outline the non-interactive
verification protocol below.

Non-Interactive Private Verification Protocol.
Inputs:

(a) User has the test sample x with frame vectors {x1, . . . , xT } and both
encryption key E[·] and decryption key E−1[·].

(b) System has E[λ] = E[Wj], for j = 1, . . . ,N, and the encryption key
E[·].

Output: System obtains the score E[logP(x|λ)].

1. The user encrypts the frame vectors E[xt] and sends it to the
system.

2. For each mixture matrix E[Wj] and each frame vector E[xt], the
system computes the inner product E[xTtWj] using the private
inner product protocol.

3. The system adds the inner products homomorphically to obtain
the E[score(x, λ)].

5.3 experiments 56

The system executes the same protocol using the adapted model
and the UBM using the same inputs it receives from the user in Step
1. Similar to the interactive protocol, the system executes the compare
protocol with the user to decide whether to authenticate the user. The
system never observes the frame vectors in plaintext in this protocol
as well. As there is no user participation after the initial encrypted
frame vectors are obtained, there is no loss of privacy of the user data.

5.3 experiments

We present the results of experiments with the privacy preserving
speaker verification protocols described above. We created prototype
implementations of the interactive and non-interactive verification pro-
tocols in C++ using the pairing-based cryptography (PBC) library [pbc]
to implement the BGN cryptosystem and OpenSSL to implement the
Paillier cryptosystem. We performed the experiments on a 2 GHz Intel
Core 2 Duo machine with 3 GB RAM running 64-bit Ubuntu.

5.3.1 Precision

Both interactive and non-interactive protocols achieved the same final
probability scores as the non-private verification algorithm up to 5
digits of precision.

5.3.2 Accuracy

We used the YOHO dataset [Campbell, 1995] to measure the accuracy
of the two speaker verification protocols. We trained a UBM with 32
Gaussian mixture components on a random subset of the enrollment
data and performed MAP adaptation with the enrollment data for
individual speakers to obtain the speaker models. We evaluate the
UBM and the speaker models on the verification data for the speaker
as the true samples and the verification data for all other speakers as
the imposter samples. We use Equal Error Rate (EER)1 as the evaluation
metric. We observed an EER of 3.1% for the interactive protocol and
3.8% for the non-interactive protocol. This implies that there is only a
marginal reduction in performance by modifying the scoring function.

5.3.3 Execution Time

We measured the execution times for the verification protocols using
BGN encryption keys of sizes 256 and 512-bits.2 In practice, 512-bit

1 Equal error rate of x% implies that when the false accept rate is x%, the false reject
rate is also x%.

2 For 512-bit keys, we choose the two prime numbers q1 and q2 each of 256-bits, such
that that their product n = q1q2 is a 512-bit number.

5.3 experiments 57

keys are used for strong security [Sang and Shen, 2009]. We use 256
and 1024 bit keys for Paillier cryptosystem.
We perform the verification of a 1 second speech sample containing

100 frame vectors using the UBM and the speaker models each con-
taining 32mixture components. The non-private verification algorithm
required 13.79 s on the same input.
We use the Paillier cryptosystem for the interactive protocol and

the BGN cryptosystem for the non-interactive protocol, as the private
inner product is needed in the latter. We summarize the results in
Tables 5.1 and 5.2 for the interactive and non-interactive protocols
respectively. We observe that the interactive protocol is faster than the
non-interactive protocol. This is due to the execution of the private
inner product for each frame vector needed for the non-interactive pro-
tocol. The system requires to perform multiplicative homomorphic
operations to obtain the inner product. These operations in turn re-
quire the computation of a bilinear pairing which is much slower than
homomorphically multiplying plaintexts with ciphertexts as we do in
the interactive protocol.
In both protocols, we observe that the UBM evaluation is signifi-

cantly faster than the speaker model evaluation: this is because the
UBM is available in plaintext with the system and the inner product
requires only additive homomorphic operations. This is in contrast to
evaluating the speaker model that is only available in ciphertext.

Table 5.1: Execution time for the interactive protocol with Paillier cryptosys-
tem.

Steps 256-bit 1024-bit

Encrypting x1, . . . , xT 136.64 s 7348.32 s

Evaluating Speaker Model 101.80 s 1899.39 s

Evaluating UBM 95.24 s 1189.98 s

Total + adapted 333.68 s 10437.69 s

∼ 5 min, 33 s ∼ 2 hr, 53 min

Table 5.2: Execution time for the non-interactive protocol with BGN cryp-
tosystem.

Steps 256-bit 512-bit

Encrypting x1, . . . , xT 40.0 s 96.4 s

Evaluating Speaker Model 17450.3 s 77061.4 s

Evaluating UBM 19.5 s 77.8 s

Total 17509.8 s 77235.6 s

∼ 4 hr, 52 min ∼ 21 hr, 27 min

5.4 conclusion 58

We observe that a vast amount of time is spent in homomorphically
multiplying the encrypted frame vectors xt and the encrypted model
vectors W. The execution time of the protocol can be substantially
reduced by using a faster implementation of the BGN cryptosystem,
e.g., using a parallel computational framework such as GPUs. We leave
this direction of experimentation for future work.

5.4 conclusion

In this chapter, we developed the privacy-preserving protocol for GMM

based algorithm for speaker verification using homomorphic cryp-
tosystems such as BGN and Paillier encryption. The system observes
only encrypted speech data and hence cannot learn anything about
the user’s speech. We constructed both interactive and non-interactive
variants of the protocol. The interactive variant is relevant in the case
of semi-honest adversary and the non-interactive variant is necessary
in the case of malicious adversary.
During the exchanges required by the protocols, the user only

observes additively or multiplicatively transformed data, and also
cannot learn anything from it. The proposed protocols are also found
to give results which are identical, up to a high degree of precision
as compared to a non-private GMM-based algorithm. The interactive
protocol is more efficient than the non-interactive protocol as the latter
requires homomorphic multiplication.

5.5 supplementary protocols

Private Enrollment Protocol with Encrypted Data.
Inputs:

(a) User has the MFCC feature vectors of the enrollment samples
x1, . . . , xT and both encryption key E[·] and decryption key E−1[·].

(b) System has the UBM λU = WUi for i = 1, . . . ,N, mixing weight α,
and the encryption key E[·].

Output: System has the encrypted adapted model E[λs] = {E[ŵsi],
E[µ̂si], E[Σ̂

s
i]}.

Computing the posterior probabilities:
For each t:

1. The user computes the extended vector x̄t from xt and sends the
encrypted vectors E[x̄t] to the system.

2. The system computes the encrypted log probabilities for each mix-
ture component E

�
logwUi P(xt|i)

�
=
�
j E[x̄t,j]

WUi,j+E[logwUi].

5.5 supplementary protocols 59

3. The logsum protocol [Smaragdis and Shashanka, 2007] enables a
party holding E[log x] and E[logy] to collaborate with another party
who holds the private encryption key to obtain E[log(x+ y)] with-
out revealing x or y. The system participates with the user’s client
in the logsum protocol to obtain E

�
log

�
iw
U
i P(xt|i)

�
.

4. The system computes encrypted log posteriors: E[P(i|xt)] = E
�
logwUi P(xt|i)

�

- E
�
log

�
iw
U
i P(xt|i)

�
.

5. The private exponentiation protocol enables a party holding E[log x] to
collaborate with the party who holds the encryption key to obtain
E[x] without revealing x. The system then executes the private
exponentiation protocol with the user to obtain E [P(i|xt)].

Learning wsi .

1. The system computes the encrypted value ofw �
i, E[w

�
i] as E [

�
t P(i|xt)]

=
�
t E [P(i|xt)].

2. The system then computes the encrypted updated mixture weights
as

E[ŵsi] = E[w �
i]
α/TE[wUi]

1−α.

Learning µ̂si .

1. The system generates a random number r and homomorphically
computes E[P(i|xt) − r]. The system sends this quantity to the user.

2. The user decrypts this quantity and multiplies it by individual
feature vectors xt to obtain the vector P(i|xt)xt − rxt. The user
encrypts this and sends E[P(i|xt)xt − rxt] to the system along with
encrypted feature vectors E[xt].

3. The system computes E[P(i|xt)xt] = E[P(i|xt)xt] = E[xt]r + E[P(i|xt)xt−
rxt]. It then computes E[

�
t P(i|xt)xt] =

�
t E[P(i|xt)xt].

4. The private division protocol enables a party holding E[x] and E[y]

to collaborate with the party holding the encryption key to obtain
E[x/y] without revealing x or y.The system and the user participate
in a private division protocol with E[

�
t P(i|xt)xt] and E[w �] as

inputs to obtain E[µ �].

5. The system then computes the encrypted adapted mean as.

E[µ̂si] = E[µ �
i]
αE[µUi]

1−α.

Learning Σ̂si .
This is similar to learning µ̂si and continues from Step 2 of that

protocol.

5.5 supplementary protocols 60

1. The user multiplies P(i|xt) − r by the product of the feature vectors
xtx
T
t to obtain P(i|xt)xtx

T
t − rxtx

T
t .

3 The user encrypts this and
sends E[P(i|xt)xtxTt − rxtx

T
t] to the system along with encrypted

feature vectors E[xtxTt].

2. The system computes E[rxtx
T
t] = E[xtx

T
t]
r and multiplies it to

E[P(i|xt)xtx
T
t − rxtx

T
t] to obtain E[P(i|xt)xtx

T
t]. The system mul-

tiplies these terms for all values of t to obtain E[
�
t P(i|xt)xtx

T
t].

3. The system engages the user participate in the private division
protocol with this encrypted sum and E[w �] as inputs to obtain
E[Σ �
i].

4. The system and the user participate in a private vector product proto-
col with input E[µ̂si] to obtain E[µ̂

s
i µ̂
sT
i]. The system then computes

the encrypted updated covariance as

E[Σ̂si] = E[Σ �
i]
αE[ΣUi + µUi µ

UT
i]1−α − E[µ̂si µ̂

sT
i].

The encrypted model parameters obtained by the system cannot be
directly used in the verification protocol. We can then compute the
encrypted model matrix E[Ŵsi] from the encrypted model parameters.
At no point in the enrollment protocol, the system observes feature
vectors xt in plaintext and the adapted models obtained by the system
are also encrypted.

Model Construction Protocol.
Inputs:

(a) User has encryption key E[·] and decryption key E−1[·]

(b) System has encrypted adapted model parameters E[λs] = {E[ŵi],
E[µ̂i], E[Σ̂i]}, for i = 1, . . . ,N, and the encryption key E[·].

Output: System has the encrypted adapted model matrices E[Ŵi], for
i = 1, . . . ,N.

1. For each covariance matrix Σ̂i, the system generates a random
number q and homomorphically multiplies it with E[Σ̂i] and
sends the result E[qΣ̂i] to the user.

2. The user decrypts this quantity and obtains the matrix qΣ̂i.
The user then computes the reciprocal matrix 1q Σ̂

−1
i . The user

encrypts this matrix and sends E[1q Σ̂
−1
i] to the system.

3. The system homomorphically multiplies the encrypted matrix
by −q2 to get the encrypted matrix E[−12 Σ̂

−1
i].

3 For efficiency purposes, only the diagonal terms of the product xtxTt can be included
without having a significant impact on accuracy.

5.5 supplementary protocols 61

4. The user also computes the log determinant of the matrix 1q Σ̂
−1
i

to obtain − 1q log |Σ̂i|, which the user encrypts and sends to the
system.

5. The system homomorphically multiplies the encrypted log de-
terminant by q2 to obtain E[−

1
2 log |Σ̂i|].

6. The system generates a random d× 1 matrix r and homomor-
phically computes E[µ̂i − r] and sends it to the user.

7. The user decrypts this vector to obtain µ̂i − r and multiplies it
with 1q Σ̂

−1
i computed in Step 3 to obtain 1q Σ̂

−1
i µ̂i −

1
q Σ̂

−1
i r. The

user encrypts this and sends it to the system.

8. Using the matrix r and E[1q Σ̂
−1
i] which was obtained in Step 4,

the system homomorphically computes E[1q Σ̂
−1
i r] and adds it

homomorphically to the encrypted vector obtained from the user
to get E[1q Σ̂

−1
i µ̂i]. The system then homomorphically multiplies

this by q to get E[Σ̂−1
i µ̂i].

9. The system executes the encrypted product protocol using E[Σ̂−1
i µ̂i]

and E[µ̂i] as inputs to obtain E[µ̂Ti Σ̂
−1
i µ̂i] and multiplies it ho-

momorphically with −12 to obtain E[−
1
2 µ̂
T
i Σ̂

−1
i µ̂i].

10. Finally, the system homomorphically adds the encrypted scalars
obtained above along with E[ŵi] to get E[w∗].

The system thus obtains all the components necessary to con-
struct E[Ŵi].

Logsum Protocol.
Inputs:

(a) Alice has both encryption key E[·] and decryption key E−1[·].

(b) Bob has E [log zi] for i = 1, . . . ,N, and the encryption key E[·].

Output: Bob has E [log
�
i zi]

1. Bob generates a random number r and homomorphically com-
putes

E[log zi − r] = E[log zi] − E[r].

He sends this to Alice.

2. Alice decrypts this quantity and exponentiates it to obtain zie−r.

3. Alice adds these quantities to compute e−r
�
i zi and then com-

putes the log to obtain log
�
i zi − r.

5.5 supplementary protocols 62

4. Alice encrypts E [log
�
i zi − r] and sends it to Bob.

5. Bob homomorphically adds r to obtain the desired output.

E

�
log

�

i

zi

�
= E

�
log

�

i

zi − r

�
+ E[r].

Compare protocol.
Inputs:

(a) Alice has the encryption keys EA[·], EB[·] and decryption key
E−1A [·].

(b) Bob has EA[x] and EA[y] and the encryption keys EA[·], EB[·] and
decryption key E−1B [·].

Output: Bob knows if x > y.

1. Bob generates a random positive or negative number q and mul-
tiplicatively masks EA[x− y] to obtain EA[q(x− y)]. He sends
this quantity to Alice.

2. Alice decrypts this quantity to obtain q(x− y). She generates a
positive random number r and computes qr(x− y) and encrypts
this using Bob’s key to obtain EB[qr(x− y)].

3. Bob decrypts this quantity and divides it by q. Bob checks for
r(x− y) > 0 and uses that to conclude whether x > y.

6
PR IVACY-PRESERVING SPEAKER VER IF ICAT ION
AS STR ING COMPARISON

In this chaper, we develop a method for speaker verification that re-
quires minimal computation overhead needed to satisfy the privacy
constraints. The central aspect of our approach is to reduce the speaker
verification task to string comparison. Instead of using the UBM-GMM
approach, we convert the utterances into supervector features [Camp-
bell et al., 2006c] that are invariant with the length of the utterance. By
applying the locality sensitive hashing (LSH) transformation [Gionis
et al., 1999] to the supervectors, we reduce the problem of nearest-
neighbor classification into string comparison. It is very efficient to
perform string comparison with privacy, similar to a conventional
password system. By applying a cryptographic hash function, e.g.,
SHA-256 [SHA], we convert the LSH transformation to an obfuscated
string which the server cannot use to gain information about the su-
pervectors, but is still able to compare if two strings are identical. This
one-way transformation preserves the privacy of the speech utterances
submitted by the user, and can be executed significantly faster than
applying homomorphic encryption.
We emphasize that our main goal is not to develop speaker veri-

fication algorithms that achieve higher accuracy. We are principally
interested in developing an efficient speaker verification system that
satisfies the same privacy constraints but with a minimal computa-
tional overhead, while achieving feasible accuracy. Using the LSH
functions defined over Euclidean and cosine distances, we show that
our system achieves an equal error rate (EER) of 11.86% on the YOHO
dataset, while requiring only a few milliseconds of computational
overhead. We, nevertheless, consider this result as a proof of concept;
we believe the EER can be further improved by using more discrimi-
native speech features, better quality training data, and supervectors
computed over a larger number of Gaussian components, all while
utilizing the same private string comparison framework. Although
UBM-GMM and SVMs trained over supervectors are known to su-
persede our current accuracy, our proposed algorithm significantly
supersedes the computational overhead of the privacy-preserving
variants of these algorithms.

6.1 system architecture

Speaker verification proceeds in two distinct phases: enrollment, where
each user submits the speech data to the system, and verification,

63

6.1 system architecture 64

User 1
salt: r1

s � → H[L(s �) � r1]

System

Match H[L(s �) � r1]
to enrollment data

{H[L(s1) � r1],H[L(s2) � r2],
H[L(s3) � r3],H[L(s4) � r4]}

User 1, H[L(s �) � r1]

accept/reject

Figure 6.1: System Architecture. For user 1, test utterance supervector: s �,
salt: r1. Although only one instance of LSH function L is shown,
in practice we use l different instances.

where a user submits a test utterance to the system which computes
a yes/no decision as output. As discussed in Section 2.2.3, the users
convert their speech utterances into supervectors and then apply l

LSH functions. To facilitate this, the system provides a UBM trained
on publicly available data along with the random feature vectors con-
stituting the LSH functions. There is no loss of privacy in publishing
these elements, as none of these depend on the speech data belonging
to the user.
Our first privacy constraint is that the system should not be able

to observe both the enrollment data and the test input provided
by the user. As we discussed in Section 2.2.4, LSH is not privacy
preserving. Due to the locality sensitive property of LSH, it is possible
to reconstruct the input vector by observing a sufficient number of
LSH keys obtained from the same vector.
We satisfy our privacy constraint by requiring the users to apply

a cryptographic hash function H[·] to the LSH computed over the
supervector s, which we denote by H[L(s)]. Cryptographic hash func-
tions satisfy the property that they can be computed efficiently, i.e.,
in polynomial time on all inputs, but are computationally hard to
invert, i.e., there is no feasible algorithm to obtain the input L(s) for
a given output H[L(s)]. Cryptographic hash functions, such as SHA-
256, MD5, are orders of magnitude faster to compute as compared to
homomorphic encryption, such as the Paillier cryptosystem.

Salted Cryptographic Hash

As the possible values for LSH keys lie in a relatively small set by
cryptographic standards, 256k for k-bit Euclidean LSH and 2k for k-bit
cosine LSH, it is possible for the server to obtain L(s) from H[L(s)] by
applying brute-force search. To make this attack infeasible, we vastly
increase the domain of the hash functionH[·] by concatenating the LSH

6.2 protocols 65

key with a long random string ri (e.g., 80-bits in length) that is unique
to the user i, which we refer to as the salt. By requiring the user to
keep the salt private and unique to each system, this also gives us the
additional advantage of the cryptographically hashed enrollment data
being rendered useless to an adversary. An adversary who has gained
access to the system data will be unable to use the hashed enrollment
data while trying to impersonate the user in another system.
Our secondary privacy constraint is that an adversary should not

be able to impersonate the user by having access to the compromised
or stolen computation device belonging to that user. To satisfy this,
we require the device to have no record of the enrollment samples
and the previously used test samples. Although the salt ri is stored on
the device, it does not result in any loss of privacy by itself. The only
point of failure in the system is when both the user device and the
server data is compromised by the same adversary, who can then use
the salt and the cryptographically hashed enrollment data to obtain
the original LSH keys via brute-force search.
In the verification phase, the user could behave maliciously, as in

reality, it could be an imposter trying to impersonate the user. The
private verification protocols using LSH and cryptographic hash func-
tions are non-interactive; we do not require the user to submit anything
apart from the hashes computed over the test input. This automatically
addresses malicious users. If an imposter submits malformed input in
order to cheat the system into authentication, the hashes computed
over that input are not likely to match the hashes previously submitted
by the user in the enrollment step. This is due to the property of the
LSH keys; the test input needs to be similar to the enrollment samples
for the matches to take place. As discussed in Section 4.2.1, we do
not consider an adversary using publicly data to create a reasonable
imitation of a user’s speech as a privacy violation.

6.2 protocols

We present the details of the enrollment and verification protocols
below.

A. Enrollment Protocol

Each user is assumed to have a set of enrollment utterances
{x1, . . . , xn}. The users also obtain the UBM and the l LSH func-
tions {L1(·), . . . ,Ll(·)}, each of length k-bit from the system. Each
user i generates the random 80-bit salt string ri.

For each enrollment utterance xj, user i:

a) performs adaptation of xj with the UBM to obtain supervector
sj.

b) applies the l LSH functions to sj to obtain the keys {L1(sj), . . . ,Ll(sj)}.

6.3 experiments 66

c) applies the cryptographic hash function salted with ri to each
of these keys to obtain
{H[L1(sj) � r1], . . . ,H[Ll(sj) � r1]}, and sends them to the
server.

B. Verification Protocol

For a test utterance x �, user i:

i. performs adaptation of x � with the UBM to obtain supervector
s �.

ii. applies the l LSH functions to s � to obtain the keys
{L1(s

�), . . . ,Ll(s �)}.

iii. applies the cryptographic hash function salted with ri to each
of these keys to obtain {H[L1(s

�) � r1], . . . ,H[Ll(s
�) � r1]}, and

sends it to the server.

iv. The server compares the hashed keys for the test utterance
with the hashed keys of the enrollment utterances, and counts
the number of matches. Depending on whether this number is
above or below a threshold, the server makes an accept/reject
decision.

As discussed in Section 2.2.3, we consider two vectors to be matched
if any one of their LSH key matches. The server fine-tunes the accep-
tance threshold by experimenting with match counts on held-out
data.
While the above enrollment and verification protocols only consider

enrollment data belonging to the speaker, it is also possible to include
imposter data in the enrollment step. The user can similarly obtain
supervectors from publicly available imposter data, apply LSH and
the salted cryptographic hash function, and submit the hashed keys
to the server. In the verification protocol, the server can match the
test input separately to the hashed keys belonging to both the user
enrollment and imposter sets, and make the decision by comparing
the two scores. In Section 6.3, we observe that there is an improvement
in performance by including the imposter data.
The server never observes any LSH key before a salted crypto-

graphic hash function is applied to it. Apart from the salt, the user
does not need to store any speech data on its device. The enrollment
and verification protocols, therefore, satisfy the privacy constraints
discussed above.

6.3 experiments

We experimentally evaluate the privacy preserving speaker verifica-
tion protocols described above for accuracy and execution time. We
perform the experiments on the YOHO dataset [Campbell, 1995].

6.3 experiments 67

6.3.1 Accuracy

We used Mel-frequency cepstral coefficient (MFCC) features aug-
mented by differences and double differences, i.e., a recording x

consists of a sequence of 39-dimensional feature vectors x1, . . . , xT .
Although in practice the UBM is supposed to be trained on publicly
available data, for simulation, we trained a UBM with 64 Gaussian
mixture components on a random subset of the enrollment data be-
longing to all users. We obtained the supervectors by individually
adapting all enrollment and verification utterances to the UBM.

Table 6.1: Average EER for the two enrollment data configurations and three
LSH strategies: Euclidean, cosine, and combined (Euclidean &
cosine).

Enrollment: Only Speaker

Euclidean Cosine Combined

15.18% 17.35% 13.80

Enrollment: Speaker & Imposter

Euclidean Cosine Combined

15.16% 18.79% 11.86%

We use equal error rate (EER) as the evaluation metric. We observed
that the lowest EER was achieved by using l = 200 instances of LSH
functions each of length k = 20 for both Euclidean and cosine dis-
tances. A test utterance considered to match an enrollment utterance
if at least one of their LSH keys matches. The score for a test utterance
is given by the number of enrollment utterances it matched. We report
the average EER for different speakers in Table 6.1. We observe that
LSH for Euclidean distance performs better than LSH for cosine dis-
tance. We also used combined LSH scores for Euclidean and cosine
distances and found that this strategy performed the best. This can
be attributed to the fact that different distance measures find approx-
imate nearest neighbors in different parts of the feature space. We
hypothesize that the EER can be further improved by combining LSH
functions defined over an ensemble of diverse distance metrics. We
leave a study in this direction for future work.
We also consider two configurations where only the enrollment data

of the speaker was used, or secondly, where imposter data chosen
randomly from the enrollment data of other speakers was used along
with the enrollment data of the speaker. In the latter experiment, we
compare the difference between the number of utterances matched

6.4 conclusion 68

by the test utterance in the enrollment and the imposter set. We
observed that using imposter data achieved lower EER when using
the combined scores for both the distances.

6.3.2 Execution Time

As compared to a non-private variant of a speaker recognition system
based on supervectors, the only computational overhead is in applying
the LSH and salted cryptographic hash function. For a 64× 39 = 2496-
dimensional supervector representing a single utterance, the compu-
tation for both Euclidean and cosine LSH involves a multiplication
with a random matrix of size 20× 2496 which requires a fraction of a
millisecond. Performing this operation 200 times required 15.8millisec-
onds on average. We performed all the execution time experiments on
a laptop running 64-bit Ubuntu 11.04 with 2 GHz Intel Core 2 Duo
processor and 3 GB RAM.
The Euclidean and cosine LSH keys of length k = 20 require 8× 20

bits = 20 bytes and 20 bits = 1.6 bytes for storage respectively. Using
our C++ implementation of SHA-256 cryptographic hashing algorithm
based on the OpenSSL libraries [OpenSSL], hashing 200 instances of
each of these keys in total required 28.34 milliseconds on average.
Beyond this, the verification protocol only consists of matching the
256-bit long cryptographically hashed keys derived from the test
utterance to those obtained from the enrollment data.

6.4 conclusion

In this chapter, we presented a framework for speaker verification
using supervectors and LSH. The enrollment and verification protocols
add a very small overhead of a few milliseconds to the non-private
computation. This overhead is significantly smaller than the overhead
of secure multiparty computation approaches using homomorphic
encryption such as the GMM verification system, while satisfying
the same privacy constraints. Experimentally, we observed that the
algorithm achieves an Equal Error Rate (EER) of 11.86% in the case of
using imposter data along with the speaker data and 13.80% when
only using speaker data. These EERs are higher than that of using UBM-
GMM for speaker verification, but they can potentially be improved
by engineering better supervector features. In general, the choice
between using LSH and GMM represents a trade-off between speed
and accuracy.

Part III

PR IVACY-PRESERVING SPEAKER
IDENTIF ICAT ION

7
OVERVIEW OF SPEAKER IDENTIF ICAT ION WITH
PRIVACY

7.1 introduction

Speaker identification is the task of determining the identity of the
speaker given a test speech sample. We typically associate the identity
of the speaker with a predetermined set of speakers and we refer to
this task as closed-set speaker identification. If we augment the set of
speakers with a none of the above option, i.e., consider the speaker
to be outside the predetermined set of speakers, this task becomes
open-set speaker identification. Speaker verification can be considered
as a generalization of open-set speaker identification, where the set of
speakers is restricted to one speaker. As a consequence, the algorithms
used in speaker verification can be extended for speaker identification.
The main difference between the two tasks is their application scenar-
ios and this results in different evaluation metrics for the two tasks.
Speaker verification is mainly used for authentication; speaker identifi-
cation finds use in surveillance applications and also as a preliminary
step for other speech processing applications as we discuss below.

7.1.1 Speech-based Surveillance

A recorded sample of conversational speech from forms a much
stronger piece of evidence as compared to just a transcript. Because
of this, security agencies, such as the police perform audio-based
surveillance to gather information from speech samples spoken by
the suspects. We refer to the parties performing the surveillance as
the agency. The audio-based surveillance can be in the form of wire-
tapping, where the agency listens in on telephone conversations. The
agencies also perform physical surveillance, by placing hidden mi-
crophones in public areas in order to eavesdrop on individuals. A
basic characteristic of surveillance is that the agency needs to perform
it obliviously, i.e., the subjects under surveillance should not know
about it. Although listening in on personal conversations either over
the telephone or from physical sources is an effective surveillance
method to identify credible security threats, this directly infringes on
the privacy of innocent individuals, who may not be intended targets
of the surveillance. To prevent this, the agency first needs to check
if the given speech recording belongs to a speaker who is subject to
surveillance. In order to do so, the agency would need to first listen

70

7.1 introduction 71

to the conversations, which itself would cause the privacy violation,
hence the circular problem.
One strategy to avoid such privacy violations is for the agency to

perform privacy-preserving speaker identification on the surveillance
recordings. The primary requirement of such privacy-preserving algo-
rithms is that the agency is able to identify speaker corresponding to
the speech sample without observing the speech sample. If the speaker
is under surveillance, the agency can then demand the original speech
sample from the party having the speech recording, e.g., the telephone
company. In a criminal investigation setting, there is a legal authoriza-
tion for this this demand if the agency has a warrant for wiretapping
against the identified speaker. An important consideration here is
that if there is no warrant against the identified speaker, the agency
cannot demand the phone recording. This protects the privacy of
the telephone subscribers, as the telephone company can provide an
assurance that their phone conversations will only be released only
if there is a wiretapping warrant for the subscriber. This forms an
effective balance between individual privacy of the subscribers and
the audio-based surveillance necessary for security enforcement.

7.1.2 Preliminary Step for Other Speech Processing Tasks

Speaker identification is also used as the first step in more complex
speech processing tasks, e.g., speech recognition, where we use sepa-
rate recognition models trained on data for individual speakers. Given
a speech sample, we first identify the speaker corresponding to it
and then apply the recognition model for that speaker. This arrange-
ment is known to provide higher accuracy as compared to applying a
recognition model for a generic speaker.
In many cases we perform speech processing in a distributed client-

server setting, where the client user has access to the speech sample
and the server has access to the speaker models, for both identification
and recognition. Due to the privacy and concerns, many users typically
do not wish to export their speech data to an external party and
this reduces the utility of the client-server model. By using privacy-
preserving speaker identification and speech recognition protocols,
the server can perform the necessary operations without observing
the speech sample, thereby preserving the privacy constraints.
In the following two chapters, we develop protocols for privacy-

preserving speaker identification using GMM and supervector based
algorithms. We begin the discussion by formally considering the pri-
vacy issues in speaker identification in the context of a multiparty
model below.

7.2 privacy issues & adversarial behavior 72

7.2 privacy issues & adversarial behavior

We consider speaker identification with two parties: the client who has
access to the test speech sample and the server who has access to the
speaker models and is interested in identifying the most likely speaker
corresponding to the test sample. In case of wiretapping, the server
would be the security agency, and the client would be the telephone
company that has access to the conversations of all subscribers. It is
important to note that we do not consider the individual phone users
as the client. This is because they are supposed to be unaware about
being subjected to surveillance, as no user would willingly participate
in such an activity.
The agency has access to the speaker models for the individuals it

already has wiretapping warrants against. The agency directly deals
with the telephone company in order to identify if any such individual
is participating in a telephone conversation. If that is found to be
the case, the agency would follow the necessary legal procedure to
obtain the phone recording. The same analogy also holds for the case
of physical surveillance; e.g., a supermarket installs hidden security
cameras with microphones in their premises, and the police might
want the audio recordings to gain evidence about criminal activity. In
this case the supermarket would be the client and the police would
be the server. Although we aim to construct mechanisms to protect
the privacy of the client data, we assume that the client cooperates
with the server. In the speaker identification task, it is possible that the
client can refuse the server by simply not providing the speech input
or providing white noise or speech from some other source as input. In
this case, it will not be possible for the server to perform surveillance.
In order to prevent this, the server can legally require the client to use
only the correct data as input. We also assume that the server already
knows the K speakers it is looking to identify. The server uses publicly
available data for the K speakers to train the corresponding speaker
models without requiring the participation of the client. The server
trains a UBM (Section 2.2.2) to handle the none of the above case. In
the process of performing speaker identification with these models,
our privacy criteria are:

1. The server should not observe the speech data belonging to the
client.

2. The client should not observe the speaker models belonging to
the server.

The first criterion is follows directly from the discussion above, the
server being able to observe the speech data causes the violation of
client privacy. The client can also include in its privacy policy that
the user privacy will be protected because if an agency needs to

7.2 privacy issues & adversarial behavior 73

perform surveillance, it will do so using a privacy-preserving speaker
identification system.
The second criterion is important because it is possible to identify

the speaker by reverse-engineering the speaker models. The client
might do this to gain information about the blacklisted individuals
the server is performing surveillance on. This would cause problems
in the investigation process as the client can convey this information
to those individuals.
We consider the adversarial behaviors of the client and the server

below. We assume that the client and the server are computationally
bounded, so that they cannot directly break encryption and hash
functions without the necessary keys. In the speaker identification
task, the server tries to gain as much information as possible from
the input provided by the client. We assume that the server is legally
constrained from using the models for the speakers it has no legal
sanction to perform surveillance on. The server cannot do much to
disrupt the protocol, the server can use incorrect speaker models, but
that would only result in incorrectly identified speaker. As that is not
in the interest of the server, we assume that the server is semi-honest.
Similarly, the client tries to gain information about the server models
from the intermediate steps of the protocol. As discussed above, we
assume that the client cooperates in the speaker identification task by
submitting the correct input, and therefore we also require the client
to be semi-honest.

7.2.1 Collusion

In speaker identification, there are two types of parties, the client and
the server. One client, however, participates in speaker identification
tasks with multiple servers and one server participates with multiple
clients. There is no motivation for the client and server participating
in a speaker identification session to collude as that would only result
in the server obtaining the speech input belonging to the client and
the client obtaining the speaker models belonging to the server, both
direct violations of the privacy criteria discussed above. There is also
no motivation for the clients to collude amongst themselves or the
servers to collude among themselves, as the clients and the servers
only interact with each other individually.
Similar to the case of collusion in privacy-preserving speaker veri-

fication (Section 4.2.2), the client can collude with one server to gain
information about other clients, and the server can collude with one
client to gain information about other servers. This, however, is also
not possible because the speech input and the speaker models are
obfuscated: encrypted or hashed by the client and the server that own
these respectively using their keys or salts.

7.2 privacy issues & adversarial behavior 74

7.2.2 Information Leakage after Multiple Interactions

In a speaker identification, each interaction between the client and the
server is fresh. In case of GMM-based protocols, the server or the client
can simply use a different encryption key in each execution and in
case of LSH-based protocols, the server and the client can use different
salts. In this way, either party cannot obtain new information about
the other party after multiple executions of the protocol.

8
PR IVACY-PRESERVING SPEAKER IDENTIF ICAT ION
US ING GAUSS IAN MIXTURE MODELS

8.1 introduction

In this chapter we present a framework for privacy-preserving speaker
identification using Gaussian Mixture Models (GMMs). As discussed
in the previous chapter, we consider two parties, the client having the
test speech sample, and the server having a set of speaker models who
is interested in performing the identification. Our privacy constraints
are that the server should not be able to observe the speech sample
and the client should not be able to observe the speaker models.
As speaker identification can be considered as a generalization of

speaker verification to multiple speakers, the protocols for the two
problems are similar in principle, as we are evaluating GMMs in both
cases. The main difference between the two problem settings is in
how the speaker models are stored; in verification, the system stores
encrypted speaker models, in identification, the server has plaintext
models. This allows us to construct two variants of the speaker identi-
fication framework, where the client sends the encrypted speech data
to the server or the server sends encrypted models to the client. We
discuss the advantages of the two frameworks later in the chapter.
Another difference between the protocols for speaker identification
and speaker verification is in final maximum computation step. In
speaker verification, the user and the system needs to compare only
two encrypted numbers which can be done using the millionaire
protocol. In speaker identification, the server or the client needs to
compare K encrypted numbers, for which we construct the private
maximum computation protocol.
The rest of the chapter proceeds as follows: we formally discuss the

architecture for the privacy-preserving speaker identification system
in Section 8.2, and present the identification protocols using homomor-
phic encryption in Section 8.3. We present experiments on a prototype
implementation of the protocol in Section 8.4.

8.2 system architecture

We assume that the server knows the set of speakers {S1, . . . ,SK} that
it is interested in identifying and has data for each speaker. This data
could be publicly available or extracted by the server in its previous
interactions with the speakers. The server uses a GMM to represent each
speaker. The server also trains a Universal Background Model (UBM)

75

8.2 system architecture 76

λU over combined data from a diverse set of speakers. We consider the
UBM to represent the none of the above case, where the test speaker
is outside the set {S1, . . . ,SK}. The server obtains GMMs for individual
speakers {λ1, . . . , λK} by either training directly over the data for that
speaker or by performing MAP adaptation with the UBM.
The client has access to the speech sample, that it represents using

MFCC features. To perform identification, the server needs to evaluate
the K+ 1 GMMs {λ1, . . . , λK, λU} over the speech sample. The server
assigns the speaker to the GMM that has the highest probability score,
argmaxi P(x|λi).
In Figure 8.1 we design the first variant of the speaker identification

framework in which the client sends speech samples to the server.
Initially, the client generates a public/private key pair E[·],E−1[·] for
the homomorphic cryptosystem and sends the public key to the server.
The client will then encrypt the speech sample and send it to the
server. The server uses the GMM evaluation protocol for each speaker
model to obtain the K+ 1 encrypted probability scores. The server
and client then engage in the private maximum computation protocol
where only the server knows the model having the highest score at
the end.

Client

E[·],E−1[·]
Test Sample: x

Server

E[·]

Speaker Models
λ1, . . . , λK

E[x]

(GMM evaluations)
(max computation)

argmaxi E[scorei]

Figure 8.1: GMM-based speaker identification: client sends encrypted speech
sample to the server.

In the second variant of the speaker identification framework de-
noted in Figure 8.2, the server sends models to the client. To do this
privately, the server as opposed to the client creates a public/private
key pair E[·],E−1[·] for the homomorphic cryptosystem and sends the
public key to the client. The server encrypts all GMMs using this key
and sends it to the client. The client evaluates all the GMMs over the
speech sample it has and obtains K+ 1 encrypted scores. The client
and the server then participate in the private maximum computation
protocol where only the server will know the model having maximum
score at the end.
We present the cryptographic protocols for the two variants of

the privacy-preserving speaker identification framework in the next
section.

8.3 speaker identification protocols 77

Client

E[·]
Test Sample: x

Server

E[·],E−1[·]

Speaker Models
λ1, . . . , λK

E[λ1], . . . ,E[λK]

(GMM evaluations)
(max computation)

argmaxi E[scorei]

Figure 8.2: GMM-based speaker identification: server sends encrypted mod-
els to the client.

8.3 speaker identification protocols

As discussed above, the speaker identification task involves GMM
evaluation. The private GMM evaluation protocols here are similar
to those used in speaker verification (Section 5.2); we modify the
protocols to fit the system architecture for speaker identification. We
reuse the W construction for representing a Gaussian as given by
Equation 5.2:

logP(x|i) = logN(x;µ,Σ) = xTW.

We construct the following GMM evaluation protocols for the two
cases: evaluating over private speech data and evaluating over private
speaker models and later use the protocols in the speaker identification
protocols.

8.3.1 Case 1: Client sends Encrypted Speech Sample to the Server

GMM Evaluation Protocol with Private Speech Sample.
Inputs:

(a) Client has the test sample x with frame vectors {x1, . . . , xT } and
both encryption key E[·] and decryption key E−1[·].

(b) Server has the GMM λ with N mixture components W1, . . . ,WN
and the encryption key E[·].

Output: Server obtains the encrypted score E[logP(x|λ)].

1. The client encrypts the frame vectors E[xt] and sends it to the
server.

2. For each Gaussian matrix Wj and each frame vector E[xt] =
(E[xt1], . . . ,E[xtn]), the server computes the inner product E[xTtWj]
homomorphically as

�
E[xti]

Wji = E
��

xtiWji

�
= E[xTtWj].

8.3 speaker identification protocols 78

3. The server and the client then participate in the logsum protocol
(Section 5.5) to obtain E[logP(xt|λ)] = E[log

�
j e
xTtWj].

4. The server adds the logsums homomorphically to obtain the
E[logP(x|λ)].

By using this protocol, the server is able to privately evaluate a
GMM it has in plaintext over speech data belonging to the client.
As the server does not have the private key, it is not able to observe
the encrypted speech sample provided by the client and the final
encrypted probability score. The server executes this protocol for
all the K+ 1 GMMs {λ1, . . . , λK}, including the UBM and obtains the
the encrypted scores {E[logP(x|λ1)], . . . ,E[logP(x|λK)]} and the server
needs to find the GMM having the maximum probability score.
The server and the client participate in the following private max-

imum computation protocol for this purpose. Our construction is
based on the SMAX protocol of [Smaragdis and Shashanka, 2007]
and the blind and permute protocol of [Atallah et al., 2003b]. The
basic idea behind blind and permute is that given two number pairs
x1, x2 and y1,y2, comparing the difference x1 − x2 � y2 − y1 im-
plies x1 + y1 � x2 + y2. The server and the client additively share
the encrypted scores and compute the pairwise differences between
their respective shares, and then privately compare the entries to find
the maximum score. Prior to this, the server permutes the encrypted
scores in order to prevent the client from knowing the true index of
the maximum score.

Private Maximum Computation Protocol.
Inputs:

(a) Client both encryption key E[·] and decryption key E−1[·].

(b) Server has K+ 1 encrypted numbers {E[a1], . . . ,E[aK+1]}.

Output: Server knows the index of the maximum number, argmaxi ai.

1. The server applies a random permutation π to the encrypted
numbers to change their sequence into {E[ai1], . . . ,E[aiK+1]}.

2. The server generates K+ 1 random numbers {r1, . . . , rK+1} and
subtracts them homomorphically from the encrypted numbers
to get {E[ai1 − r1], . . . ,E[aiK+1 − rK+1]}. The server sends these
numbers to the client.

3. The client decrypts the numbers to obtain {ai1 − r1, . . . ,aiK+1 −
rK+1} which we denote by the sequence {s1, . . . , sK+1}. The client
computes pairwise differences between each of these numbers:
s1 − s2, . . . , sK − sK+1.

8.3 speaker identification protocols 79

4. The server similarly computes the pairwise differences r1 −
r2, . . . , rK − rK+1. The client and the server execute the secure
comparison protocol (e.g., using Millionaire protocol) for each
difference entry.

5. At the end of the computation, both the client and the server
will know that the entry rj + sj = aij is the largest. The server
will reverse the permutation π to obtain the corresponding index
of aij in the original sequence.

The above protocol allows the server to privately find the GMM hav-
ing the maximum score which corresponds to the identified speaker.
Both the server and the client do not observe the scores, as that will
also reveal additional information about the speech sample or the
GMMs. The additive randomization ri hides the scores and the per-
turbation π hides the order of the GMMs from the client. The latter is
important because it does not reveal which speaker was identified by
the server to the client.

8.3.2 Case 2: Server sends Encrypted Speaker Models to the Client

GMM Evaluation Protocol with Private Speaker Model.
Inputs:

(a) Client has the test sample x with frame vectors {x1, . . . , xT } and
the encryption key E[·].

(b) Server has the GMM λ with N mixture components W1, . . . ,WN
and both encryption key E[·] and decryption key E−1[·].

Output: Client obtains the encrypted score E[logP(x|λ)].

1. The server encrypts the Gaussian matrices {E[W1], . . . ,E[WN]}
and sends it to the client.

2. For each frame vector xt and each encrypted Gaussian matrix,
the client computes the inner product E[xTtWj] homomorphically
as

�
E[Wti]

xji = E
��

Wtixji

�
= E[xTtWj].

3. The client and the server then participate in the logsum protocol
(Section 5.5) to obtain E[logP(xt|λ)] = E[log

�
j e
xTtWj].

4. The client adds the logsums homomorphically to obtain the
E[logP(x|λ)].

The client uses the above protocol to evaluate K+ 1 GMMs provided
by the server in ciphertext on its speech data. The client obtains prob-
ability scores encrypted by the server at the end of the protocol. To

8.3 speaker identification protocols 80

perform speaker identification, only the server needs to find the GMM

having the maximum score. The client cannot transfer the scores to
the server, as that would lead to the loss of privacy of the client speech
data. We instead construct the following protocol that uses another set
of keys generated by the client and then reuse the private maximum
computation protocol we discussed above. We cannot directly use the
private maximum computation protocol with the parties reversed, i.e.,
the client as the server and the server as the client. This is because
our privacy criteria require that only the server should know about
the identified speaker and for that the server needs to perform the
random permutation.

Client-Initiated Private Maximum Computation Protocol.
Inputs:

(a) Client has K+ 1 encrypted numbers {E[a1], . . . ,E[aK+1]}.

(b) Server has both encryption key E[·] and decryption key E−1[·].

Output: Server knows the index of the maximum number, argmaxi ai.

1. The client generates a new encryption key E1[·] and a decryption
key E−11 [·], and sends the encryption key to the server.

2. The client generates K+ 1 random numbers {r1, . . . , rK+1} and
subtracts them homomorphically from the encrypted numbers
to get {E[a1 − r1], . . . ,E[aK+1 − rK+1]}. The client sends these
ciphertexts to the server.

3. The client encrypts the random numbers {r1, . . . , rK+1} using
E1[·] and sends the ciphertexts {E1[r1], . . . ,E1[rK+1]} to the server.

4. The server decrypts the first set of ciphertexts using E−1[·] to
obtain {a1− r1, . . . ,aK+1− rK+1}. The server re-encrypts this set
using E1[·] to get {E1[a1 − r1], . . . ,E1[aK+1 − rK+1]}.

5. The server homomorphically adds the two sets of ciphertexts
under E1[·] to get {E1[a1], . . . ,E1[aK+1]}. The server uses this as
input to the original private maximum computation protocol
with the client to obtain the index of the maximum number,
argmaxi ai.

Comparison of the Two System Configurations

In the first variant of the system architecture described in Case 1, the
main computation and communication overhead is due to the client
encrypting its speech sample. This overhead is directly proportional
to the length of the sample T , with 100 frames per second. In the

8.4 experiments 81

remainder of the GMM evaluation and private maximum computa-
tion protocols, the client and server exchange small vectors that are
independent of the sample length.
In the second variant described in Case 2, the main overhead is

due to the server encrypting its speaker models. As discussed above,
we represent the speaker model using N matrices W1, . . . ,WN rep-
resenting a single mixture component. Each Wj matrix is of size
(d+ 1)× (d+ 1), where d is the dimensionality of the frame vector. In
our implementation, we use d = 39 with MFCC features with N = 32.
This size is independent of the sample length. The client evaluates
these models on its own unencrypted speech data. Similar to the first
variant, the overhead from the remainder of the private computation
is relatively small.
In this way, the cost of using the two configurations is dependent

on the length of the speech sample. If the length T is typically smaller
than the matrix size N× (d+ 1)× (d+ 1), it is advantageous to use the
first variant, where the client encrypts the speech sample. If T is larger
than the product, it is advantageous to use the second variant. As
compared to speaker verification, speaker identification is performed
on relatively large amount of speech input, often multiple minutes
long in practical scenarios such as surveillance. In these situations, it
is significantly more efficient to use the second variant. On the other
hand the speech input can be only a few seconds long in problems
where speaker identification is used as an initial step for other speech
processing tasks. In these situations, it is efficient to use the first
variant.

8.4 experiments

We present the results of experiments on the privacy preserving
speaker identification protocols described above. Since our basic adap-
tation algorithm itself is the same as that in Bimbot et al. [2004] and
can be expected to be more or less as accurate as it, the key aspect
we need to evaluate is the computational overhead of the proposed
protocols. We created a prototype implementation of the verification
protocol in C++ and used the variable precision arithmetic libraries
provided by OpenSSL to implement the Paillier cryptosystem. We
performed the experiments on a 2 GHz Intel Core 2 Duo machine with
3 GB RAM running 64-bit Ubuntu.

8.4.1 Precision

Both variants of the speaker identification protocol achieved the same
final probability scores as the non-private algorithm up to 5 digits of
precision.

8.5 conclusion 82

8.4.2 Accuracy

We used the YOHO dataset [Campbell, 1995] to measure the accuracy
of the speaker identification task. We used the experimental setup simi-
lar to [Reynolds and Rose, 1995; Michalevsky et al., 2011]. We observed
the same accuracy for the two variants of the speaker identification
protocol as they both result in the same speaker scores.
We trained a UBM on a random subset of the enrollment data and

performed MAP adaptation with the enrollment data for K speakers
to obtain the speaker models. We evaluate the UBM and the speaker
models on the test data for the K speakers, in addition to the speakers
outside the set representing the none of the above case. We used
identification accuracy, i.e., the fraction of the number of times a test
speaker was identified correctly.

Accuracy =
#(Identified Speaker = Correct Speaker)

#(trials)
.

For a 10-speaker classification task, we observed 87.4% accuracy.

8.4.3 Execution Time

We measured the execution times for the verification protocols using
Paillier encryption keys of sizes 256 and 1024-bits. We identify a
1 second speech sample containing 100 frame vectors using K + 1

speaker models each containing 32 mixture components using the two
variants of the speaker identification protocol. We report the time for
evaluating 10 speaker models. As the time required for evaluating each
model is approximately the same, these numbers can be appropriately
scaled to obtain estimated execution time for more speakers.
We summarize the results in Table 8.1.

Table 8.1: GMM-based Speaker Identification: Execution time
Case 1: Client sends Encrypted Speech Sample to the Server.

Steps 256-bit 1024-bit

Encrypting x1, . . . , xT 136.64 s 7348.32 s

Evaluating Speaker Model 95.24 s 1189.98 s

Total for 10 speakers 1089.04 s 19248.12 s

∼ 18 min, 9 s ∼ 5 hr, 20 min

8.5 conclusion

In this chapter, we developed a framework for privacy-preserving
speaker identification using GMMs and the Paillier cryptosystem. In

8.5 conclusion 83

Table 8.2: GMM-based Speaker Identification: Execution time
Case 2: Server sends Encrypted Speaker Models to the Client.

Steps 256-bit 1024-bit

EncryptingW1, . . . ,WN 32.17 s 1854.07 s

Evaluating Speaker Model 460.07 s 4796.26 s

Total for 10 speakers 4922.40 s 66503.30 s

∼ 1 hr, 22 min ∼ 18 hr, 28 min

this model, the server is able to identify which of the K speakers best
corresponding to the speech input provided by the client without being
able to observe the input. We present two variants of the framework,
where either the client submits encrypted speech to the server or the
server submits encrypted speaker models to the client.
We perform accuracy and timing experiments on a prototype im-

plementation of the protocol. On a 10-speaker identification task, we
observe 87.4% accuracy. For identifying a 1 s speech input on the same
task, the first variant of the protocol required 18 min and the second
variant of the protocol required 1 hr, 22 min.

9
PR IVACY-PRESERVING SPEAKER IDENTIF ICAT ION
AS STR ING COMPARISON

9.1 introduction

In this chapter, we present a framework for speaker identification
using Locality Sensitive Hashing (LSH) and supervectors. Instead of
GMM evaluation that we considered in the previous chapter, we trans-
form the problem of speaker identification into string comparison. The
motivation behind doing so is to perform speaker identification with
privacy while having minimal computational overhead. Similar to the
speaker verification framework of Chapter 6, we convert the utterances
into supervector features [Campbell et al., 2006c] that are invariant
with the length of the utterance. By applying the LSH transformation
to the supervectors, we reduce the problem of nearest-neighbor classi-
fication into string comparison. As LSH is not privacy-preserving, we
apply the cryptographic hash function to the LSH keys. This allows
us to check if two LSH keys match without knowing their contents.
The main difference from this speaker identification framework and

the framework for speaker verification of Chapter 6 is in its application
setting. Here, we assume that the client has the test speech sample and
the server already has speech data from multiple speakers. The client
and server need to compute the supervector over their speech data,
apply LSH functions to get the LSH keys and finally the cryptographic
hash function. The client transfers the cryptographic hashes to the
server who then matches them to the hashes derived from the speech
data. One issue with this approach is that the hashes need to be salted
to prevent the server from performing a brute-force attack to recover
the original LSH keys. It is also not possible to keep the salt private
with the client, as we did in the speaker verification framework, as
the server also needs to compute salted hash over its own data. Our
privacy constraints also require that the client should not observe
the speech data belonging to the server, so the server cannot simply
transfer its supervectors to the client for hashing. To solve this problem,
we construct a oblivious salting protocol, where the client and the
server are able to compute salted hashes without either party knowing
the contents of the salt. We present the detailed protocol construction
in Section 9.3.
Similar to speaker verification with LSH, our main goal is not to

develop speaker identification algorithms that achieve higher accuracy
as compared to GMMs based algorithms. We are principally interested
performing speaker identification while satisfying the same privacy

84

9.2 system architecture 85

constraints but with a minimal computational overhead, while achiev-
ing feasible accuracy. We present the results of experiments with the
LSH based speaker identification framework using the LSH functions
defined over Euclidean and cosine distances in Section 9.4.

9.2 system architecture

We assume that the server knows the set of speakers {S1, . . . ,SK} that
it is interested in identifying and has data in the form of n speech
samples for each speaker. This data could be publicly available or
extracted by the server in its previous interactions with the speakers.
The server trains a Universal Background Model (UBM) λU over com-
bined data from a diverse set of speakers. We consider the UBM to
represent the none of the above case, where the test speaker is outside
the set {S1, . . . ,SK}. The server performs Maximum a posteriori (MAP)
adaptation of λU with each speech sample belonging to each speaker
to obtain the corresponding supervectors as described in Section 2.2.3.
The server therefore has n supervectors for each of the K speakers. The
server also obtains n speech samples from a set of imposter speakers
to model the none of the above case, where the test sample does not
match any of the K speakers; this data could be from the training data
of the UBM. The server also performs MAP adaptation for this data to
obtain the corresponding supervectors, considering it as the (K+ 1)th

speaker.
The server generates l LSH functions L1(·), . . . ,Ll(·), each of length

k-bits and applies them to each supervector to obtain l keys for each.
The l× n matrix of keys represents the server data for one speaker.
The server also makes the UBM λU and the LSH function public
to all clients. We assume a client to have a test speech sample. The
client obtains λU from the server and performs MAP adaptation to
obtain the corresponding supervector. The client also applies the LSH
functions to obtain l keys. For each of the K speakers, the server needs
to count the number of training supervectors are matched by the test
supervector, where we consider two supervectors as matched if at
least one LSH key is common between them. The server identifies
the speaker by the one having the most number of matches on the
training supervectors.
As the LSH keys can be utilized to obtain private information

about the speaker, the client and the server need to apply a salted
cryptographic hash function H[·] to the LSH keys computed on the test
supervector. As mentioned above, we construct an oblivious salting
protocol for the client and the server to compute a salted cryptographic
hash together without any party knowing the salt. Using this protocol,
the client and the server compute salted hashes over their LSH keys
and the server performs the matching to identify the speaker. We
present an overview of the supervector-based protocol in Figure 9.1.

9.3 protocols 86

Client

L(·)
Test Supervector: sv

Server

L(·)

Training Supervectors
L(x1), . . . ,L(xn)

(oblivious salting)

H[L(sv)]

Figure 9.1: Supervector-based speaker identification protocol.

9.3 protocols

9.3.1 Oblivious Salting

We first present the oblivious salting protocol that enables the client
and the server to compute the salted hashes without knowing the
salt; the construction is similar to [Cristofaro and Tsudik, 2010]. The
key idea behind this protocol is the use of two random oracles H :

{0, 1}∗ �→: {0, 1}κ for a security parameter κ and H � : {0, 1}∗ �→ Z∗
q. We

can model H using any general hash function, such as SHA-2, but H �

needs special consideration due to its range. One method to model H �

is as the hash in the group, H �[x] = x(p−1)/q mod q where q|p− 1

and p is a large prime number. One advantage of H � is that it allows
salting by modular exponentiation: it is infeasible to recover H �[x]
from H �[x]t mod q if t is unknown. The client and server respectively
generate random numbers r and s for this purpose.
The client and the server also generate random numbers r and s in

the finite field Zq and exchange gr and gs with each other, similar to
Diffie-Hellman key exchange [Diffie and Hellman, 1976]. Due to the
discrete log problem, the client is unable to obtain s from gs that it
obtains from the server, and similarly the server is unable to obtain
r from gr, thereby keeping r and s secret from each other. The client
and the server individually use their secret numbers to compute the
shared key grs: the client computes (gs)r = grs and the server com-
putes (gr)s = grs. Both the client and the server use this as a shared
salt in the hash function H. As we discuss later, the parties use this
protocol with their LSH keys as input.

Protocol for hashing with oblivious salt.
Inputs:

(a) Client has a.

(b) Server has b.

9.3 protocols 87

(c) Common Input: Prime numbers p,q such that q|p− 1, group Zq

with generator g, and two hash functions H and H �.

Output: Client has {H[a � z] and server has {H[b � z] for an oblivious
salt z.

1. The server generates a random number s ∈ Zq and sends gs to
the client.

2. The client generates a pair of random numbers r, r � ∈ Zq. The
client uses the server’s input to compute grs and gr

�s.

3. The client applies the hash function H � over its input to obtain
H �[a], and uses r � to compute H �[a]gr

�
. The client sends this to

the server.

4. The server exponentiates this by s to obtain H �[a]sgr
�s and sends

it back to the client.

5. The client multiplies this term by g−r
�sgrs to obtain H �[a]sgrs.

6. The client applies the hash function H to obtain H[H �[a]sgrs]. We
consider the terms grs and s together as the salt z, and denote
the hashed term by H[a � z].

7. The server applies the hash function H � over its input to obtain
H �[b], exponentiates it by s, and uses s � to compute H �[b]sgs

�
.

The server sends this to the client.

8. The client multiplies this with grs to obtain H �[b]sgs
�
grs, which

the client sends back to the server.

9. The server multiplies this with g−s
�
to obtain H �[b]sgrs. The

server then applies the hash function H to obtain H[H �[b]sgrs],
which is equal to H[b � z] for the same salt z.

In the intermediate steps of the protocol, the client and the server
multiply their hashes H �[a] and H �[b] with gr

�
and gs

�
respectively.

This operation protects the hash from the other party by effectively
salting it with r � and s �; the server does not know r � and the client
does not know s �. The client and server, therefore, do not observe
each others inputs. The client and the server are able to reverse their
respective salts by multiplying the output by g−r

�
and g−s

�
.

The final salted hash that we obtain at the end of the protocol has
the form H[x � z] = H[H �[x]sgrs] for the input element x. The salt is a
function of s and r, which are respectively known to the client and the
server. The client or the server, therefore, cannot compute the hash on
their own as the client does not know s and the server does not know
grs. If the server intends to use a brute-force strategy to break this
hash, i.e., identify a given H[H �[a]sgrs], it would need to compare it

9.3 protocols 88

with the hashes computed over all possible values of r, which would
be infeasible due to the enormously large number of possible values
that r ∈ Zq can take.
This protocol requires transferring 4 data transfers beyond the initial

transfer of gs. We can easily generalize the oblivious salting protocol
to case where the client and the server have a set of inputs instead of
a single element. The client can apply H � to the entire input set and
transfer {H �[a1]gr

�
, . . . ,H �[am]gr

�
} to the server, and similarly obtain

{H �[a1]sgr
�s, . . . ,H �[am]sgr

�s}. In this way, the protocol will require
2m+ 2n data transfers.

9.3.2 Speaker Identification

We present the speaker identification protocol using LSH keys hashed
with the oblivious salting protocol. We show only one LSH function
for simplicity; in practice we use l LSH functions.

Speaker Identification Protocol
Inputs:

(a) Client has the test speech sample x.

(b) Server has n speech samples for K+ 1 speakers and the UBM λU.

Output: Server knows the identified speaker.

1. The server generates the LSH function L(·) and sends it to the
client.

2. The client and the server perform MAP adaptation of each of
their speech samples with λU to obtain the compute respective
supervectors.

3. The client and the server then apply LSH function to obtain the
keys: L(sv) for the client and {L(sv11), . . . ,L(svn(K+1))} for the
server. The client and the server apply L(·) to their supervectors
to obtain the LSH keys.

4. The client and the server execute the oblivious salting protocol
to compute salted hashes over all of their LSH keys: H[L(sv)]

and {H[L(sv11)], . . . ,H[L(svn(K+1))]}.

5. The client sends its hashed LSH key H[L(sv)] to the server.

6. The server matches the hash obtained from the client to the
hashes for each of the K+ 1 speakers. The server identifies the
speaker by choosing the one with most matches.

In this protocol, the server only observes the hash that is submitted
by the client. As the hash is salted using the oblivious salting protocol,

9.4 experiments 89

the server is not able to use a brute-force strategy to feasibly identify
the underlying LSH key. The client does not observe anything about
the server’s data and the output, as the server performs the matching
locally. For efficiency, the server can pre-compute the supervectors
and the LSH keys in multiple executions of the protocol. In case, the
server is executing the protocol with the same client using a different
test sample, the hashes also do not need to be recomputed.

9.4 experiments

We experimentally evaluate the privacy preserving speaker identifica-
tion protocols described above for accuracy and execution time. We
perform the experiments on the YOHO dataset [Campbell, 1995]. We
perform all the execution time experiments on a laptop running 64-bit
Ubuntu 11.04 with 2 GHz Intel Core 2 Duo processor and 3 GB RAM.

9.4.1 Accuracy

We used Mel-frequency cepstral coefficient (MFCC) features aug-
mented by differences and double differences, i.e., a recording x con-
sists of a sequence of 39-dimensional feature vectors x1, . . . , xT . We
trained a UBM with 64 Gaussian mixture components on a random
subset of the training data belonging to all users. We obtained the
supervectors by individually adapting all enrollment and verification
utterances to the UBM.

Table 9.1: Average accuracy for the three LSH strategies: Euclidean, cosine,
and combined (Euclidean & cosine).

Euclidean Cosine Combined

79.5% 78% 81.3%

Similar to Chapter 8, we use identification accuracy as the evaluation
metric. We observed that the highest accuracy was achieved by using
l = 200 instances of LSH functions each of length k = 20 for both
Euclidean and cosine distances. A test sample considered to match a
training sample if at least one of their LSH keys matches. The score
for a test sample with respect to a speaker is given by the number
of training samples for that speaker it matched. We also consider
supervectors derived from randomly chosen imposter samples to
represent the none of the above case.
We report the average EER for different speakers in Table 9.1. Similar

to the speaker verification experiments in Chapter 6, we observe
that LSH for Euclidean distance performs better than LSH for cosine
distance. We also used the combined LSH keys for Euclidean and
cosine distances and found that this strategy performed the best.

9.5 conclusion 90

9.4.2 Execution Time

As compared to a non-private variant of a speaker identification
system based on supervectors, the only computational overhead is
in applying the LSH and the hash function. For a 64× 39 = 2496-
dimensional supervector representing a single utterance, the compu-
tation for both Euclidean and cosine LSH involves a multiplication
with a random matrix of size 20 × 2496 which requires a fraction
of a millisecond. Performing this operation 200 times required 15.8
milliseconds on average.
With respect to privacy, LSH-based speaker verification has mini-

mal overhead as compared to Secure Multiparty Computation (SMC)
protocols using homomorphic encryption. This is primarily due to the
fact that cryptographic hash functions such as SHA-256 are orders
of magnitude faster than homomorphic encryption. In LSH-based
speaker identification, however, we cannot directly use SHA-256 due
to the need for oblivious salting. As we have seen above, the protocol
for hashing with oblivious salt requires modular exponentiation and is
therefore comparatively less efficient as cryptographic hash functions.
We measure the execution time required for hashing a pair of

numbers. We created a prototype implementation of the oblivious
salting protocol in C++ and used the variable precision arithmetic
libraries provided by OpenSSL to implement the modular arithmetic
operations. We used the prime number p of size 1024-bits as that is
considered to provide state of the art security.
For hashing one key represented as an integer, we observed that on

average the client requires 14.71 ms and the server requires 8.48 ms.
The discrepancy is due to the fact that we need to perform more opera-
tion when hashing client’s input. We represent each speech sample by
its supervector and then 200 LSH keys. Hashing 200 elements would
require 2.942 s for the client and 1.696 s for the server. Beyond this, the
identification protocol only consists of exactly matching the 1024-bit
long hashed keys derived from the test sample to those obtained from
the training data.
Although this execution time is larger than applying cryptographic

hash functions on LSH keys as we do speaker verification, it is signifi-
cantly shorter than encrypting the speech sample itself using Paillier
encryption. In Chapter 8, we saw that encrypting a 1 s speech sample
requires 136.64 s.

9.5 conclusion

In this chapter, we developed an algorithm for speaker identification
using supervectors with Locality Sensitive Hashing (LSH). Here, we
developed an cryptographic hashing algorithm in which two parties
can perform oblivious salting to protect their data from each other.

9.5 conclusion 91

As was the case with speaker verification, the LSH-based protocols
have smaller computational overhead as compared to the GMM-based
protocols. We observed that the protocol requires 2.9 s for each input
supervector. In terms of the accuracy, we observe that the algorithm
has 81.3% accuracy, which is comparatively lower than the GMM-based
algorithm. Again, these two algorithms represent a trade-off between
execution time and accuracy.

Part IV

PR IVACY-PRESERVING SPEECH
RECOGNIT ION

10
OVERVIEW OF SPEECH RECOGNIT ION WITH
PRIVACY

10.1 introduction

Speech recognition is the task of identifying the spoken words from
a given speech sample. The speech recognition system consists of
an acoustic model that attempts to match the speech patterns and
a language model that attempts to match the underlying linguistic
structure of the speech. The acoustic model is typically represented
using a probabilistic model such as an Hidden Markov Model (HMM).
In most speech recognition systems, we assume that the entire set of
words is typically available beforehand in the form of a dictionary. The
language model is represented using a word-based n-gram model.
The simplest form of speech recognition is that over isolated words.

We assume that the speech is tokenized into words and the system
is given speech samples consisting of individual words. Here, we
represent each word using a single HMM. The most general form of
speech recognition is transcribing continuous speech, i.e., the speech
as it is naturally produced by a speaker with intermittent silences and
filler sound. This is a significantly more complex task than isolated
word recognition and we typically achieve much lower accuracies.
Here, the acoustic model consists of a concatenation of multiple HMMs.
As we discussed in Chapters 5 and 8, there is a significant com-

putational overhead in the homomorphic encryption based protocols
for GMM evaluation. This overhead is also applicable in developing
similar protocols for HMM inference. This would be greatly ampli-
fied in the case of privacy-preserving continuous speech recognition,
making the computation infeasible for practical purposes. We, there-
fore, restrict ourselves to creating an algorithm for privacy-preserving
isolated-word recognition.

10.2 client-server model for speech recognition

Speech recognition finds widespread applications such as telephony,
voice-based control interfaces, spoken dialog systems, speech-to-text
input. In many cases, the speech input is procured from a thin-client
device such as a smartphone. As the underlying computation involved
is fairly intensive and cannot be performed on the client device in
real-time, the speech input is transferred to an server that performs
the necessary processing and returns the transcribed text as output.
As the client may not have the necessary technology in the form

93

10.3 privacy issues 94

of speech recognition algorithms and high quality training data, or
the computing infrastructure, this service is hosted on an external
platform.
In many cases, such a speech recognition service is hosted on a

public cloud computing platform, as this provides multiple benefits
including cost reduction and high scalability with respect to demand.
A prominent commercial example of such a service is the Google
Speech Recognition API. The schematic architecture of a cloud-based
speech recognition service is shown in Figure 10.1.

Speech Recognition

Service
Text

Speech

Sample

Client Server

Figure 10.1: Client-Server Model for Speech Recognition.

10.3 privacy issues

The client-server model described above has privacy issues dealing
with the nature of the user input. The client may not be comfortable
sharing the speech sample with an external service if it is a recording
of confidential nature, such as financial, legal aspects. The privacy
criteria are even more stringent in medical settings due to privacy laws
such as HIPAA, that prohibit hospitals from storing patient records in
external media.
These privacy issues are usually addressed in the privacy policy of

the service provider. The system with the most privacy-sensitive policy,
however, requires access to the user input in clear and almost always
needs to store it for future analysis and improving its performance.
For the scenarios described above, these precautions only address the
privacy problems at a superficial level. Even if the client data is stored
securely, there are still possible threats to the server storage being
breached by an adversary leading to the public disclosure of the client
speech data. This is further amplified when the service is hosted on
a virtualized storage platform, as there are many potential security
flaws that can lead to information being revealed to another party
using the same platform [Garfinkel and Rosenblum, 2005].

10.4 system architecture 95

In addition to the server storage being compromised, another source
of undesirable publication of client data is from the government regu-
lation about the use of service. The service provider may be required
to release the client data due to legal interventions. The terms of the
privacy policy usually protect the data till the organization operating
the service is functioning. The client data can even be published or
sold if the original organization becomes bankrupt.
On the other hand, the server may need to protect its models from

the users. This is usually a hard constraint if the server is interested in
operating a pay per use service. Additionally, the speech recognition
models also form the intellectual property of the server as accurate
models are usually obtained from training over high quality speech
data which expensive.
In this way, the privacy constraints require that the speech recogni-

tion needs to be performed without the server observing the speech
input provided by the user, and the client observing the models be-
longing to the server. In the next section, we look at possible methods
by which this could be possible.

10.4 system architecture

To satisfy the privacy constraints described above, we require the
server to operate entirely on obfuscated data submitted by the user.
This is an example of Secure Multiparty Computation (SMC), and one
commonly used form of obfuscation is encryption. We envision this
architecture in Figure 10.2.

Speech Recognition

Service
Encrypted Text

Encrypted

Speech Sample

Client Server

Figure 10.2: Privacy-Preserving Client-Server Model for Speech Recognition.

In the next chapter, we develop a protocol that enables the client
and the server to collaboratively evaluate the models belonging to the
server using clients data while satisfying their privacy constraints. This
is achieved using a public-key additively homomorphic cryptosystem.
Our framework is computationally asymmetric, where a most of the

10.4 system architecture 96

computation is performed by the server who has larger computational
resources at its disposal as compared to the user. which may be
running the application on a thin-client device such as a smartphone.

11
PR IVACY-PRESERVING ISOLATED-WORD
RECOGNIT ION

11.1 introduction

In this chapter we present a privacy-preserving framework for isolated
word recognition based on Hidden Markov Models (HMMs). Classifi-
cation based on HMMs is common in machine learning and is nearly
ubiquitous in applications related to speech processing. We consider
a multi-party scenario in which the data and the HMMs belong to
different individuals and cannot be shared. For example, Alice wants
to analyze speech data from telephone calls. She outsources the speech
recognition task to Bob, who possesses accurate HMMs obtained via
extensive training. Alice cannot share the speech data with Bob owing
to privacy concerns while Bob cannot disclose the HMM parameters
because this might leak valuable information about his own training
database.
Probabilistic inference with privacy constraints is, in general, a rel-

atively unexplored area of research. The only detailed treatment of
privacy-preserving probabilistic classification appears in Smaragdis
and Shashanka [2007]. In that work, inference via HMMs is performed
on speech signals using existing cryptographic primitives. Specifically,
the protocols are based on repeated invocations of privacy-preserving
two-party maximization algorithms, in which both parties incur ex-
actly the same protocol overhead. In contrast, we present an asymmet-
ric protocol that is more suitable for client-server interaction; the thin
client encrypts the data and provides it to a server which performs
most of the computationally intensive tasks. Further, HMM-based
probabilistic inference involves probabilities and real numbers which
must be approximated for encrypted-domain processing. Accordingly,
we consider the effect of finite precision, underflow and exponentiation
in the ciphertext domain.

11.2 protocol for secure forward algorithm

We assume that Alice, a client, sets up a private and public key pair
for the Paillier encryption function E(·), and sends only the public key
to the server Bob. We assume that, in all calculations involving loga-
rithms, the base of the logarithm is g ∈ Z∗

N2
, which is the parameter

used for Paillier encryption.

97

11.2 protocol for secure forward algorithm 98

11.2.1 Secure Logarithm Protocol

Input: Bob has E(θ)
Output: Bob obtains the encryption E(log θ) of log θ, and Alice obtains
no information about θ.

1. Bob randomly chooses an integer β, and sends E(θ)β = E(βθ)

to Alice

2. Alice decrypts βθ, and then sends E(logβθ) to Bob.

3. Bob computes E(logβθ) ·E(− logβ) = E(log θ+ logβ) ·E(− logβ) =
E(log θ)

In general logβ and logβθ are not integers, and we resort to in-
teger approximations when we implement the protocol. Specifically,
in Step 2, Alice actually sends E(�L logβθ�) to Bob, where L is a
large number. For example, with L = 106, our logarithms are accu-
rate to 6 decimal places. Similarly, in Step 3, Bob actually computes
E(�L logβθ�)E(−�L logβ�) = E(�L logβ+ L log θ�− �L logβ�). Every
multiplication by L is compensated by a corresponding division at
every decryption step that Alice performs. The effect of these finite
precision approximations is further discussed in Section 11.3.

11.2.2 Secure Exponent Protocol

Input: Bob has E(logθ)
Output: Bob obtains the encryption E(θ), and Alice obtains no infor-
mation about θ.

1. Bob randomly chooses β ∈ Z∗
N2

and sends E(log θ)E(logβ) =
E(log θ+ logβ) = E(logβθ) to Alice.

2. Alice decrypts logβθ, and then sends E(βθ) to Bob

3. Bob computes E(βθ)
1
β = E(θ) where 1β is the multiplicative

inverse of β in Z∗
N2

.

As before, multiplication by a large number L followed by trunca-
tion is used to generate an approximation wherever the logarithm is
involved. Thus, in Step 1 of our implementation of this protocol, Bob
actually sends E(�L log θ�)E(�L logβ�) to Alice. To compensate for the
multiplication by L, Alice decrypts the transmission from Bob and
divides by L in Step 2.

11.2.3 Secure Logsum Protocol

Input: Bob has (E(log θ1),E(log θ2), . . . ,E(log θn)) and the constant
vector (a1,a2, ...,an);

11.2 protocol for secure forward algorithm 99

Output: Bob obtains E(log
�n
i=1 aiθi), and Alice discovers nothing

about the θi and ai.

1. With Bob’s input E(log θ1),E(log θ2), . . . ,E(log θn), Alice and
Bob execute the Secure Exponent protocol repeatedly so that
Bob obtains E(θ1),E(θ2), . . . ,E(θn).

2. Bob exploits the additive homomorphic property of Paillier en-
cryption to obtain

E

�
n�

i=1

aiθi

�
=

n�

i=1

E(aiθi) =

n�

i=1

E(θi)
ai

3. Bob and Alice execute the Secure Logarithm protocol, at the end
of which Bob obtains the encryption E(log

�n
i=1 aiθi).

11.2.4 Secure Forward Algorithm Protocol

Input: Alice has an observation sequence x1, x2, . . . , xT . Bob has the
HMM λ = (A,B,Π).
Output: Bob obtains E(log Pr{x1, x2, ..., xT |λ)}.

We write the matrix B as [b1,b2, . . . ,bN], where for each j =

1, 2, ...,N, bj is a column vector with component bj(vk), k = 1, 2, ...,M.
Now, a privacy-preserving version of the forward algorithm for HMMs
proceeds as follows:

1. For each t = 1, 2, ..., T and j = 1, 2, ...,N, Bob randomly chooses
γtj and generates a column vector logbj + γtj.

2. Based on the input xt, Alice uses 1-of-M OT to obtain logbj(xt)+
γtj.

3. Alice sends E(logbj(xt) + γtj) to Bob

4. Using γtj and the homomorphic property, Bob computes E(logbj(xt)+
γtj) · E(−γtj) = E(logbj(xt)) for j = 1, 2, ...,N, t = 1, 2, ..., T .

5. Bob computes E(logα1(j)) = E(logπj) · E(logbj(x1)) for j =

1, 2, ...,N

6. Induction Step: For j = 1, 2, ...,N, with Bob’s input E(logαt(j)),
j = 1, 2, ...,N and the transition matrix A = (aij), Alice and Bob
run the secure logsum protocol, at the end of which Bob obtains
E(log

�N
l=1 αt(l)alj).

7. For all 1 � t � T − 1, Bob computes

E(logαt+1(j)) = E(log
N�

l=1

αt(l)alj) · E(logbj(xt+1))

11.3 privacy-preserving isolated-word recognition 100

8. Alice and Bob again run a secure LOGSUM protocol, so Bob
obtains E(log

�N
j=1 αT (j)) = E(logP(x1, x2, ..., xT |λ))

11.2.5 Security Analysis

The secure logarithm, secure exponent and secure logsum protocols
rely on multiplicative masking to prevent Alice from discovering θ.
Bob cannot discover θ because he does not possess the decryption key
for the Paillier cryptosystem. The security of the Forward Algorithm
protocol derives from the security of the previous three primitive
protocols and the security of 1-of-M Oblivious Transfer (OT).

11.3 privacy-preserving isolated-word recognition

Consider the following scenario for privacy-preserving keyword recog-
nition: Alice has a sampled speech signal, which she converts into T
frames, where each frame is represented by a d-dimensional vector of
Mel Frequency Cepstral Coefficientss (MFCCs). Thus Alice possesses
xi, i = {1, 2, ..., T } where each xi ∈ Rd. Typically, d = 39 is used in
practice. Bob possesses Δ different HMMs, each trained for a single
keyword. Alice and Bob will execute a secure protocol, at the end
of which, Alice will discover the keyword that is most likely to be
contained in her speech sample.
Let a d-dimensional vector y of MFCCs have a multivariate Gaussian

distribution, i.e., bj(y) = N(µj,Cj), where j = 1, 2, ...,N indexes the
state of a HMM λ. Let z = [yT , 1]T . Then, logbj(y) = zTWjz, where

Wj =

−12C
−1
j C−1

j µj

0 wj

∈ R(d+1)×(d+1)

and wj =
1
2µ
T
j C

−1
j µj −

1
2 log |C

−1
j | − d2 log 2π. The above treatment

considers y to be a single multivariate Gaussian random variable,
though an extension to mixture of multivariate Gaussians is also
possible. Note that the matrixWj is available to Bob. Further, note that
logbj(y) is a linear function of products zizj where i, j ∈ {1, 2, ...,d+ 1}.
This allows us to simplify the Secure Forward Algorithm Protocol of
Section 11.2.4 as follows:

11.3.1 Simplified Secure Forward Algorithm

1. For each t = 1, 2, ..., T , Alice sets z = [xTt , 1]
T . Alice sends to Bob

the encryptions of all zizj with i, j ∈ {1, 2, ...,d+ 1}.

11.3 privacy-preserving isolated-word recognition 101

2. For each HMM state j = 1, 2, ...,N, Bob obtains the encryption
E(logbj(xt)) = E(zTWjz) using the additive homomorphic prop-
erty.

3. Bob executes steps 5–8 from Section 11.2.4.

Now, the protocol for secure keyword recognition is as follows.

11.3.2 Protocol for Privacy-Preserving Isolated-Word Recognition

Input: Alice has the MFCC feature vectors x1, x2, ..., xT corresponding
to her privately owned speech sample. Bob has the database of HMMs
{λ1, λ2, ..., λΔ} where each HMM λδ corresponds to a single keyword,
which is denoted by τδ;
Output: Alice obtains δ∗ = argmaxδ Pr{x1, x2, ..., xT |λδ}.

1. Alice and Bob execute the protocol of Section 11.3.1 for each
HMM λδ, at the end of which Bob obtains E(pδ) = E(log Pr{x1, x2, ..., xT |λδ}),
δ = 1, 2, ...,Δ.

2. Bob chooses an order-preserving matrix1 R = (rij)Δ×Δ with
random coefficients. Using the additively homomorphic property
of Paillier encryption, he computes the element-wise encryption
given by (E(p�1), ...,E(p

�
Δ)) = (E(p1), ...,E(pΔ)) · R. Bob sends the

result to Alice.

3. Alice decrypts and obtains δ∗ = maxδ p�δ = maxδ pδ. This is true
because R is order-preserving mapping.

4. Alice and Bob perform a 1-of-Δ OT, and Alice obtains the word
τδ∗ .

11.3.3 Computational Complexity

Let us consider the computational overhead of the protocol in terms of
the number of keywords (Δ), the number of HMM states (N), the time
duration of the observation (T) and the size of each observation (d).
Alice has an overhead of O(d2T) encryptions at the beginning of the
protocol. This initial computational overhead is independent of the
number of keywords and the size of the HMM. Bob has an overhead of
O(d2NΔT) ciphertext multiplications and exponentiations in order to
determine the E(logbj(xt)) terms. Finally, to determine the E(αT (j))
terms, Alice and Bob both have an overhead of O(NΔT). Thus Alice’s
total protocol overhead is O((d2 +NΔ)T) while Bob’s total overhead
is O(d2NΔT), which means that Bob’s overhead grows faster than
Alice’s.

1 See [Rane and Sun, 2010a] for more details

11.3 privacy-preserving isolated-word recognition 102

11.3.4 Practical Issues

The Paillier cryptosystem is defined over an integer ring but the
speech data consists of real numbers. In our implementation, we used
numbers accurate to 6 decimal places as explained in Section 11.2.
Furthermore, whenever there was a floating point number in the
ciphertext exponent – of the form E(a)b – then, the fractional part
was truncated, and only the integer portion of b was used in the
calculation. These approximations introduce errors in the protocol
which propagate during the iterations of the forward algorithm.
Another implementation issue is that the value of αt(j) gets pro-

gressively smaller after each iteration, causing underflow after only a
few iterations. This problem would not be encountered if the proba-
bilities were expressed in the form logαt(j). However, it is necessary
to consider the actual value of αt(j) as seen in Section 11.2.4. The
underflow problem is resolved by normalizing αt(1), . . . ,αt(N) in
each iteration, such that the relative values are preserved, requiring a
small modification to the protocol.

11.3.5 Experiments

We performed speech recognition experiments on a 3.2 GHz Intel Pen-
tium 4 machine with 2 GB RAM and running 64-bit GNU/Linux. We
created an efficient C++ implementation of the Paillier cryptosystem
using the variable precision integer arithmetic library provided by
OpenSSL. The encryption and decryption functions were used in a
software implementation of the protocol of Section 11.2.4.
The experiment was conducted on audio samples of length 0.98

seconds each. The samples consisted of spoken words which were
analyzed by ten HMMs each having 5 states. The HMMs were trained
offline on ten different words, viz., utterances of “one”, “two”, “three”,
and so on up to “ten”. Each test speech sample was converted into 98
overlapping vectors (called frames), a 39-dimensional feature vector
composed of MFCCs were extracted from each frame. These MFCC
vectors serve as Alice’s inputs xi.
Times needed to process audio samples of length 0.98 seconds using

the 10 HMMs were measured. Table 11.1 gives the processing times
for different key lengths with Paillier homomorphic encryption. It is
evident that stronger keys incur significant cost in terms of processing
time. Note that, once Bob receives the encrypted input from Alice, the
calculation of E(logbj(xt)) for all 10 HMMs may proceed in parallel.
This is possible, for instance, in a cloud computing framework, where
Bob has access to several server nodes.
To observe the effect of errors due to finite precision, we compared

the values of αT (N) for a given 0.98-second speech sample derived
using the privacy preserving speech recognition protocol as well as a

11.4 discussion 103

Activity 256-bit 512-bit 1024-bit

keys keys keys

Alice encrypts input data 205.23 s 1944.27 s 11045.2 s

(Done only once)

Bob computes E(logbj(xt)) 79.47 s 230.30 s 460.56 s

(Time per HMM)

Both compute E(αT (j)) 16.28 s 107.35 s 784.58 s

(Time per HMM)

Table 11.1: Protocol execution times in seconds for different encryption key
sizes.

conventional non-secure implementation. This comparison of αT (N)

with and without encryption was performed for each of the 10 HMMs
corresponding to the spoken words “one” through “ten”. The relative
error in αT (N) was measured to be 0.52%. Since the error between the
actual forward probabilities and their finite precision approximations
is very small, the secure speech recognizer nearly always gives the
same output as an HMM-based recognizer trained on the same data.
Actual performance depends on the quality of the training and test
data.

11.4 discussion

We described protocols for practical privacy preserving inference and
classification with HMMs and apply it to the problem of isolated
word recognition. A natural progression is to extend the protocols
to more complete inference, including decoding from large HMMs
with privacy. Other extensions include privacy preserving inference
from generalizations of HMMs such as dynamic Bayes networks. The
protocols proposed in this chapter represent the first step towards
developing a suite of privacy preserving technologies for voice pro-
cessing, including applications ranging from keyword spotting, to
biometrics and full speech recognition.

Part V

CONCLUS ION

12
THES I S CONCLUS ION

In this thesis, we introduced the problem of privacy-preserving speech
processing. We considered the client/server setting, where the client
has the speech input data and the server is interested in performing
some speech processing task. We developed various frameworks for
performing speech processing on obfuscated data. We considered the
problem of privacy-preserving speech processing in the context of
three applications: speaker verification, speaker identification, and
speech recognition.
We reviewed some of the commonly used algorithms used in the

speech processing applications mentioned above: Gaussian Mixture
Models (GMMs) and supervectors for speaker verification and identi-
fication, and Hidden Markov Models (HMMs) for speech recognition.
We used the cryptographic techniques such as homomorphic encryp-
tion and cryptographic hash functions to create privacy-preserving
algorithms. The cryptographic tools that are used in order to preserve
privacy introduce an additional computational overhead as compared
to the non-private algorithm. Our emphasis is on creating feasible
privacy-preserving mechanisms and we evaluate feasibility by measur-
ing accuracy and speed of the mechanisms. We summarize our results
below.

12.1 summary of results

Part II. In Chapter 4, we considered the problem of speaker verification
with the application scenarios of biometric authentication and
relevant adversarial models. Conventional speaker verification
systems require access to the speaker models and test input
samples in plaintext. This makes them vulnerable to attack from
an adversary who can gain unauthorized access to the system
and use that information to impersonate users. We, therefore,
created a framework for privacy-preserving speaker verification,
where the system stores obfuscated speaker models and also
requires the user to submit obfuscated speech input.

In Chapter 5, we developed SMC protocols for GMM-based al-
gorithm for speaker verification using BGN and Paillier cryp-
tosystems. We constructed both interactive and non-interactive
variants of the protocol. The system needs to evaluate the user
input on two models: speaker model and UBM. The interactive
variant of the protocol is sufficient in the case of semi-honest
user that provides correct speech input for both executions of

105

12.1 summary of results 106

the protocol. To protect against a malicious user that can attempt
to cheat by providing different inputs, we use the non-interactive
variant of the protocol in which the server takes only one speech
input from the user and can apply it to both models without
requiring further interaction from the user. The SMC protocols
perform the same steps as the original algorithm and obtain
identical results up to a high degree of precision. We observed
that the interactive and non-interactive protocols achieve high
accuracy: 3.1% and 3.8% EER respectively over the YOHO dataset.
In terms of the execution time, the interactive protocol requires
5 min, 33 s and the non-interactive protocol requires 4 hr, 52 min
to evaluate a 1 s speech sample. The non-interactive protocol
is slower because it involves homomorphic multiplication of
ciphertexts.

In Chapter 6, we developed a different framework for speaker
verification by transforming the problem into string comparison.
In this framework, we apply a transformation to convert a speech
sample to a fingerprint or a fixed-length bit-string by converting
them into supervectors, applying multiple LSH functions, and
finally applying a cryptographic hash function to obfuscate the
LSH keys. The system then performs then performs speaker ver-
ification as password matching, by comparing the input hashes
to those submitted by the user during enrollment. Compared to
the GMM-based protocols, this framework imposes a very small
computational overhead. We observed that the protocol only re-
quires 28.34 millisecond for each input supervector. In terms of
the accuracy, we observe that the algorithm achieves 11.86% EER.
The accuracy is lower than that of using UBM-GMM for speaker
verification, but they can potentially be improved by engineering
better supervector features. In general, the choice between using
LSH and GMM represents a trade-off between execution time
and accuracy. If the application deployment scenario requires
real-time performance, LSH based speaker verification is more ap-
plicable, on the other hand, if the scenario requires high accuracy,
it is recommended to use GMM-based speaker verification.

Part III. In Chapter 7, we considered the problem of speaker identifi-
cation with the application scenario of surveillance. Security
agencies perform speaker identification to determine if a given
speech sample belongs to a suspect. In order to do so using a
conventional speaker identification system, the agency would
require access to the speech input in plaintext, By using a privacy-
preserving speaker identification system, the agency can perform
the identification over obfuscated speech input without violating
the privacy of all individuals.

12.1 summary of results 107

In Chapter 8, we developed the privacy-preserving framework
for GMM-based for speaker identification using the Paillier cryp-
tosystem. We constructed two variants of the protocol where
either the client sends encrypted speech to the server or the
server sends encrypted models to the client. Both the variants
of the protocol perform identical computation to the original
speaker identification algorithm. We observed accuracy of 87.4%
with a 10-speaker classification task over the YOHO dataset. In
terms of the execution time, the two variants require 18 min
and 1 hr, 22 min respectively to evaluate a 1 s speech sample.
The first variant of the protocol requires large bandwidth for
long speech inputs, while the bandwidth requirement of the
second variant is independent of the speech input length. This
represents a trade-off between execution time and bandwidth.

In Chapter 9, we developed an algorithm for speaker identifi-
cation using Locality Sensitive Hashing (LSH) by transforming
the problem into string comparison, similar to Chapter 6. We
developed an cryptographic hashing algorithm in which two
parties can perform oblivious salting to hide their data from each
other. As was the case with speaker verification, the LSH-based
protocols have smaller computational overhead as compared to
the GMM-based protocols. We observed that the protocol requires
2.9 s for each input supervector. In terms of the accuracy, we
observe that the algorithm has 81.3% accuracy, which is compar-
atively lower than the GMM-based algorithm. Similar to the case
of privacy-preserving speaker verification with LSH, we observe
that, the LSH and GMM-based speaker identification algorithms
represent a trade-off between execution time and accuracy.

Part IV. In Chapter 10, we introduced the problem of privacy-preserving
speech recognition with the application scenario of an external
speech service provider. Although external speech processing
services have recently become widespread, in many cases, users
are reluctant to use them due to concerns about privacy and
confidentiality of their speech input.

In Chapter 11, we constructed a privacy-preserving protocols for
isolated-word recognition using HMM inference. In this frame-
work HMMs can be evaluated over speech data encrypted with
Paillier encryption. By creating one HMM for each word in the
dictionary, the server can perform isolated-word speech recogni-
tion without observing the client’s input. Another advantage of
this protocol is that the server is required to perform most of the
computational operations as compared to the client. In terms of
the execution time, the protocol required 5 min to evaluate a 1 s
speech sample.

12.2 discussion 108

12.2 discussion

We created various privacy-preserving frameworks for speech process-
ing tasks discussed above. For each privacy-preserving framework,
we performed experiments to calculate the precision and accuracy for
the task on a standardized dataset. We compare the execution time
of our protocols to that of the non-privacy preserving variant of the
same application. In some cases, we created two different mechanisms
for the same task, e.g., SMC protocols using homomorphic encryption
and string comparison using cryptographic hash functions, that indi-
vidually provide high accuracy and speed respectively. This provides
a trade-off between the two feasibility measures.
The above application scenarios establish the usefulness of our

frameworks. Privacy-preserving speaker verification can be used in
biometric authentication systems that are robust to being compro-
mised, privacy-preserving speaker identification can be used to per-
form surveillance with privacy, privacy-preserving speech recognition
can be used in external speech services without compromising the
confidentiality of the speech input.
In this way, we establish that privacy-preserving speech processing

is feasible and useful.

13
FUTURE WORK

In this thesis, we introduced the problem of privacy-preserving speech
processing through a few applications: speaker verification, speaker
identification, and speech recognition. There are, however, many prob-
lems in speech processing where the similar techniques can be adapted
to. Additionally, there are other algorithmic improvements that will
allow us to create more accurate or more efficient privacy-preserving
solutions for these problems. We discuss a few directions for future
research below.

13.1 other privacy-preserving speech processing tasks

13.1.1 Privacy Preserving Music Recognition and Keyword Spotting

Keyword spotting involves detecting the presence of a keyword in an
audio sample. A keyword is typically modeled as an HMM which a
party can privately train using a audio dataset belonging to another
party using a training protocol for speech recognition as described
above. Using this model, we can construct an SMC protocol for it-
erative Viterbi decoding that efficiently finds the sub-sequence an
observation sequence having the highest average probability of being
generated by a given HMM.
Keyword spotting systems that use word level HMMs are analogous

to HMM-based speaker identification systems in their operation, and
would require similar approaches to them privately. However, when
the system permits the user to specify the words and composes models
for them from sub-word units an additional complexity is introduced
if it is required that the identity of the keyword be hidden from the
system. The approach will require composition of uninformative sub-
word graphs and performing the computation in a manner that allows
the recipient of the result to obtain scores from only the portions of
the graph that represent the desired keyword.

13.1.2 Privacy Preserving Graph Search for Continuous Speech Recogni-
tion

Another interesting problem is constructing cryptographic protocols
for graph search problems. Most problems in speech recognition
including model evaluation algorithms like dynamic time warping
(DTW), Viterbi decoding, as well as model training algorithms such as
Baum-Welch can be formulated as graph search problems; an efficient

109

13.2 algorithmic improvements 110

protocol for privacy preserving graph search can result in practical
solutions for many of these problems.
The two specific directions we plan to investigate are:

1. Graph Traversal. We plan to study the general problem where
one party has a graph and another party is interested in per-
forming a graph traversal privately. While this is applicable
in continuous speech recognition, we also plan to apply it to
the general problem of matching finite automata and regular
expressions with privacy constraints.

2. Belief Propagation. Given a graph structure, we are interested in
evaluating how a potential function such as the probability of
having a contagious disease spreads across the nodes in a private
manner, i.e., without any node knowing anything about the value
of the function at its neighbors. Kearns et al. [2007] present a
privacy-preserving message passing solution for undirected trees.
We plan to extend it to general graphs.

13.2 algorithmic improvements

13.2.1 Ensemble of LSH functions

In Chapters 6 and 9, we used LSH as an approximate nearest-neighbor
algorithm. In our experiments with LSH, we observed that there is an
increase in accuracy by combining LSH for multiple distance metrics.
Intuitively, this can be explained by the fact that a single distance
metric captures “nearness” in a particular sense. By combining many
diverse distance metrics, we are able to capture a heterogeneous sense
of nearness that any single distance metric is unable to represent.
However, this characteristic is not theoretically well understood. It
will be interesting to develop a formal framework to analyze this,
including obtaining bounds on the classification error of the ensemble.

13.2.2 Using Fully Homomorphic Encryption

A cryptosystem supporting fully homomorphic encryption (FHE)
allows us to perform any operation on plaintext by performing op-
erations on corresponding ciphertext. This finds direct application
in creating privacy-preserving mechanisms for distributed computa-
tional settings such as cloud-computing. The client can simply encrypt
its data with FHE and upload it to the server. As the server can
operate on the ciphertext to perform any operation on correspond-
ing the plaintext, we can create a non-interactive protocol for any
privacy-preserving computation.
The first such cryptosystem was proposed in a breakthrough work

by Gentry [2009, 2010a]. Although the construction satisfies the neces-

13.2 algorithmic improvements 111

sary properties for FHE, it is found to be computationally inefficient
to be used in practice [Gentry, 2010b] in terms of encryption time and
ciphertext sizes. Developing practical FHE schemes is an active area
of research [Lauter et al., 2011].
If computationally practical FHE schemes are created, we can use

them in place of the Paillier and BGN cryptosystems to create non-
interactive protocols for speaker verification, speaker identification,
and speech recognition. Apart from computing the encrypted prob-
ability scores from the encrypted speech input, we can potentially
create a non-interactive protocol for private maximum computation.

Part VI

APPENDIX

A
DIFFERENTIALLY PR IVATE GAUSS IAN MIXTURE
MODELS

a.1 introduction

In recent years, vast amounts of personal data is being aggregated in
the form of speech, medical, financial records, social networks, and
government census data. As these often contain sensitive information,
a database curator interested in releasing a function such as a statistic
evaluated over the data is faced with the prospect that it may lead
to a breach of privacy of the individuals who contributed to the
database. It is therefore important to develop techniques for retrieving
desired information from a dataset without revealing any information
about individual data instances. Differential privacy [Dwork, 2006] is a
theoretical model proposed to address this issue. A query mechanism
evaluated over a dataset is said to satisfy differential privacy if it is
likely to produce the same output on a dataset differing by at most one
element. This implies that an adversary having complete knowledge
of all data instances but one along with a priori information about
the remaining instance, is not likely to be able to infer any more
information about the remaining instance by observing the output of
the mechanism.
One of the most common applications for such large data sets such

as the ones mentioned above is for training classifiers that can be
used to categorize new data. If the training data contains private data
instances, an adversary should not be able to learn anything about
the individual training dataset instances by analyzing the output of
the classifier. Recently, mechanisms for learning differentially private
classifiers have been proposed for logistic regression [Chaudhuri and
Monteleoni, 2008]. In this method, the objective function which is
minimized by the classification algorithm is modified by adding a
linear perturbation term. Compared to the original classifier, there
is an additional error introduced by the perturbation term in the
differentially private classifier. It is important to have an upper bound
on this error as a cost of preserving privacy.
The work mentioned above is largely restricted to binary classifica-

tion, while multi-class classifiers are more useful in many practical
situations. In this chapter, we propose an algorithm for learning multi-
class Gaussian mixture model classifiers which satisfies differential
privacy. Gaussian classifiers that model the distributions of individual
classes as being generated from Gaussian distribution or a mixture
of Gaussian distributions [McLachlan and Peel, 2000] are commonly

113

A.2 large margin gaussian classifiers 114

used as multiclass classifiers. We use a large margin discriminative
algorithm for training the classifier introduced by Sha and Saul [2006].
To ensure that the learned multi-class classifier preserves differential
privacy, we modify the objective function by introducing a perturbed
regularization term.

a.2 large margin gaussian classifiers

We investigate the large margin multi-class classification algorithm
introduced by Sha and Saul [2006]. The training dataset (�x,�y) contains
n d-dimensional iid training data instances �xi ∈ Rd each with labels
yi ∈ {1, . . . ,C}.

a.2.1 Modeling Single Gaussian per Class

We first consider the setting where each class is modeled as a single
Gaussian ellipsoid. Each class ellipsoid is parameterized by the cen-
troid �µc ∈ Rd, the inverse covariance matrix Ψc ∈ Rd×d, and a scalar
offset θc � 0. The decision rule is to assign an instance �xi to the class
having smallest Mahalanobis distance [Mahalanobis, 1936] with the
scalar offset from �xi to the centroid of that class.

yi = argmin
c

(�xi − �µc)
TΨc(�xi − �µc) + θc. (A.1)

To simplify the notation, we expand (�xi − �µc)
TΨc(�xi − �µc) and collect

the parameters for each class as the following (d+ 1)× (d+ 1) positive
semidefinite matrix

Φc =

�
Ψc −Ψc�µc

−�µTcΨc �µTcΨc�µc + θc

�
(A.2)

and also append a unit element to each d-dimensional vector �xi. The
decision rule for a data instance �xi simplifies to

yi = argmin
c

�xTiΦc�xi. (A.3)

The discriminative training procedure involves estimating a set of
positive semidefinite matrices {Φ1, . . . ,ΦC} from the training data
{(�x1,y1), . . . , (�xn,yn)} which optimize the performance on the deci-
sion rule mentioned above. We apply the large margin intuition about
the classifier maximizing the distance of training data instances from
the decision boundaries having a lower error. This leads to the clas-
sification algorithm being robust to outliers with provably strong
generalization guarantees. Formally, we require that for each training
data instance �xi with label yi, the distance from �xi to the centroid
of class yi is at least less than its distance from centroids of all other
classes by one.

∀c �= yi : �x
T
iΦc�xi � 1+�xTiΦyi�xi. (A.4)

A.2 large margin gaussian classifiers 115

Analogous to support vector machines, the training algorithm is an
optimization problem minimizing the hinge loss denoted by [f]+ =

max(0, f), with a linear penalty for incorrect classification. We use
the sum of traces of inverse covariance matrices for each classes as a
regularization term. The regularization requires that if we can learn a
classifier which labels every training data instance correctly, we choose
the one with the lowest inverse covariance or highest covariance for
each class ellipsoid as this prevents the classifier from over-fitting. The
parameter γ controls the trade off between the loss function and the
regularization.

J(Φ,�x,�y) =
1

n

n�

i=1

�

c �=yi

�
1+�xTi (Φyi −Φc)�xi

�
+

+ γ
�

c

trace(Ψc). (A.5)

The inverse covariance matrix Ψc is contained in the upper left size
d × d block of the matrix Φc. We replace it with IΦΦcIΦ, where
IΦ is the truncated size (d + 1) × (d + 1) identity matrix with the
last diagonal element IΦd+1,d+1 set to zero. The optimization problem
becomes

J(Φ,�x,�y) =
1

n

n�

i=1

�

c �=yi

�
1+�xTi (Φyi −Φc)�xi

�
+

+ γ
�

c

trace(IΦΦcIΦ). (A.6)

The objective function is convex function of positive semidefinite
matrices Φc. The optimization can be formulated as a semidefinite
programming problem [Vandenberghe and Boyd, 1996] and be solved
efficiently using interior point methods.

a.2.2 Generalizing to Mixtures of Gaussians

We extend the above classification framework to modeling each class as
a mixture of K Gaussians ellipsoids. A simple extension is to consider
each data instance �xi as having a mixture component mi along with
the label yi. The mixture labels are not available a priori, these can
be generated by training a generative GMM using the data instances
in each class and selecting the mixture component with the highest
posterior probability. Similar to the criterion in Equation (A.4), we
require that for each training data instance �xi with label yi and mixture
component mi, the distance from �xi to the centroid of the Gaussian
ellipsoid for the mixture component mi of label yi is at least one
greater than the minimum distance from �xi to the centroid of any
mixture component of any other class. If Φyi,mi corresponds to the
parameter matrix of the mixture component mi of the class yi, and

A.2 large margin gaussian classifiers 116

Φcm corresponds to the parameter matrix of the mixture component
m of the class c,

∀c �= yi : min
m

�xTiΦcm�xi � 1+�xTiΦyi,mi�xi.

In order to maintain the convexity of the objective function, we use the
property minm am � − log

�
m e−am to rewrite the above constraint

as

∀c �= yi : − log
�

m

e−�xTi Φcm�xi � 1+�xTiΦyi,mi�xi. (A.7)

As before, we minimize the hinge loss of misclassification along with
the regularization term. The objective function becomes

J(Φ,�x,�y) =
1

n

n�

i=1

�

c �=yi

�
1+�xTiΦyi,mi�xi + log

�

m

e−�xTi Φcm�xi

�

+

+ γ
�

cm

trace(IΦΦcmIΦ). (A.8)

After this modification, the underlying optimization problem remains
a convex semidefinite program and is tractable to solve. As compared
to the single Gaussian case, however, the space of the problem in-
creases linearly as the product of the number of classes and mixture
components CK.

a.2.3 Making the Objective Function Differentiable and Strongly Convex

The hinge loss being non-differentiable is not convenient for our
analysis; we replace it with a surrogate loss function called Huber
loss lh. For small values of the parameter h, Huber loss has similar
characteristics as hinge loss and provides the same accuracy [Chapelle,
2007]. Let us denote �xTiΦyi�xi + log

�
m e−�xTi Φc�xi by M(xi,Φc) for

conciseness. The Huber loss �h computed over data instances (�xi,yi)
becomes

�h(Φc,�xi,yi)

=

0

ifM(xi,Φc) > h,
1
4h

�
h−�xTiΦyi�xi − log

�
m e−�xTi Φc�xi

�2

if |M(xi,Φc)| � h

−�xTiΦyi�xi − log
�
m e−�xTi Φc�xi

ifM(xi,Φc) < −h.

(A.9)

A.2 large margin gaussian classifiers 117

Finally, the regularized Huber loss computed over the the training
dataset (�x,�y) is given by

J(Φ,�x,�y) =

1

n

n�

i=1

�

c �=yi
�h

�
1+�xTiΦyi�xi + log

�

m

e−�xTi Φc�xi

�

+ γ
�

cm

trace(IΦΦcmIΦ)

=
1

n

n�

i=1

L(Φ,�xi,yi) +N(Φ)

= L(Φ,�x,�y) +N(Φ), (A.10)

where L(Φ,�xi,yi) is the contribution of a single data instance to the
loss, L(Φ,�x,�y) is the overall loss function and N(Φ) is the regulariza-
tion term.

1−h

1+h

Figure A.1: Huber loss

Our theoretical analysis requires that the regularized loss function
minimized by the classifier is γ-strongly convex. The regularized loss
function J(Φ,�x,�y) is convex as it is the sum of convex loss function
L(Φ,�x,�y) and regularization term N(Φ), but it does not satisfy strong
convexity. Towards this, we augment it with an additional �2 regular-
ization term to get

J(Φ,�x,�y) =
1

n

n�

i=1

L(Φ,�xi,yi)

+ γ
�

cm

trace(IΦΦcmIΦ) + λ
�

cm

�Φcm�2

= L(Φ,�x,�y) +N(Φ). (A.11)

A.3 differentially private large margin gaussian mixture models 118

where N(Φ) now includes the extended regularization term. As the �2
regularization term satisfies 1-strong convexity, it can be easily shown
that J(Φ,�x,�y) satisfies λ-strong convexity, i.e.,

J

�
Φ1 +Φ2

2
,�x,�y

�
=
J(Φ1,�x,�y) + J(Φ2,�x,�y)

2

−
λ

4

�

cm

�Φ1,cm −Φ2,cm�2. (A.12)

a.3 differentially private large margin gaussian mixture
models

We modify the large margin Gaussian mixture model formulation to
satisfy differential privacy by introducing a perturbation term in the
objective function. As this classification method ultimately consists of
minimizing a convex loss function, the large margin characteristics of
the classifier by itself do not interfere with differential privacy.
We generate the size (d+ 1)× (d+ 1) perturbation matrix b with

density

P(b) ∝ exp (−��b�) , (A.13)

where � · � is the Frobenius norm (element-wise �2 norm) and � is
the privacy parameter. One method of generating such a b matrix
is to sample �b� from Γ

�
(d+ 1)2, 1�

�
and the direction of b from the

uniform distribution.
Our proposed learning algorithm minimizes the following objective

function Jp(Φ,�x,�y), where the subscript p denotes privacy.

Jp(Φ,�x,�y) = J(Φ,�x,�y) +
�

c

�

ij

bijΦcij. (A.14)

As the dimensionality of the perturbation matrix b is same as that
of the classifier parameters Φc, the parameter space of Φ does not
change after perturbation. In other words, given two datasets (�x,�y) and
(�x �,�y �), if Φp minimizes Jp(Φ,�x,�y), it is always possible to have Φp

minimize Jp(Φ,�x �,�y �). This is a necessary condition for the classifier
Φp satisfying differential privacy.
Furthermore, as the perturbation term is convex and positive semidef-

inite, the perturbed objective function Jp(Φ,�x,�y) has the same prop-
erties as the unperturbed objective function J(Φ,�x,�y). Also, the per-
turbation does not introduce any additional computational cost as
compared to the original algorithm.

A.4 theoretical analysis 119

a.4 theoretical analysis

a.4.1 Proof of Differential Privacy

We prove that the classifier minimizing the perturbed optimization
function Jp(Φ,�x,�y) satisfies �-differential privacy in the following the-
orem. Given a dataset (�x,�y) = {(�x1,y1), . . . , (�xn−1,yn−1), (�xn,yn)},
the probability of learning the classifier Φp is close to the the prob-
ability of learning the same classifier Φp given an adjacent dataset
(�x �,�y �) = {(�x1,y1), . . . , (�xn−1,yn−1)} which wlog does not contain the
nth instance. As we mentioned in the previous section, it is always
possible to find such a classifier Φp minimizing both Jp(Φ,�x,�y) and
Jp(Φ,�x �,�y �) due to the perturbation matrix being in the same space
as the optimization parameters.
Our proof requires a strictly convex perturbed objective function

resulting in a unique solution Φp minimizing it. This in turn requires
that the loss function L(Φ,�x,y) is strictly convex and differentiable,
and the regularization term N(Φ) is convex. These seemingly strong
constraints are satisfied by many commonly used classification al-
gorithms such as logistic regression, support vector machines, and
our general perturbation technique can be extended to those algo-
rithms. In our proposed algorithm, the Huber loss is by definition a
differentiable function and the trace regularization term is convex and
differentiable. Additionally, we require that the difference in the gra-
dients of L(Φ,�x,y) calculated over for two adjacent training datasets
is bounded. We prove this property in Lemma A.7.1 given in the
appendix.

Theorem A.4.1. For any two adjacent training datasets (�x,�y) and (�x �,�y �),
the classifier Φp minimizing the perturbed objective function Jp(Φ,�x,�y)
satisfies differential privacy.

����log
P(Φp|�x,�y)
P(Φp|�x �,�y �)

���� � � �,

where � � = �+ k for a constant factor k.

Proof. As J(Φ,�x,�y) is strongly convex and differentiable, there is
a unique solution Φ∗ that minimizes it. As the perturbation term�
c

�
ij bijΦcij is also convex and differentiable, the perturbed objec-

tive function Jp(Φ,�x,�y) also has a unique solution Φp that minimizes
it. Differentiating Jp(Φ,�x,�y) wrt Φcm, we have

∂

∂Φcm
Jp(Φ,�x,�y) =

∂

∂Φcm
L(Φ,�x,�y) + γIΦ

+ 2λΦcm + b. (A.15)

Substituting the optimal Φpcm in the derivative gives us

γIΦ + b+ 2λΦcm = −
∂

∂Φcm
L(Φp,�x,�y). (A.16)

A.4 theoretical analysis 120

This relation shows that two different values of b cannot result in the
same optimal Φp. As the perturbed objective function Jp(Φ,�x,�y) is
also convex and differentiable, there is a bijective map between the
perturbation b and the unique Φp minimizing Jp(Φ,�x,�y).
Let b1 and b2 be the two perturbations applied when training

with the adjacent datasets (�x,�y) and (�x �,�y �) respectively. Assuming
that we obtain the same optimal solution Φp while minimizing both
Jp(Φ,�x,�y) with perturbation b1 and Jp(Φ,�x,�y) with perturbation b2,

γIΦ + 2λΦcm + b1 = −
∂

∂Φcm
L(Φp,�x,�y),

γIΦ + 2λΦcm + b2 = −
∂

∂Φcm
L(Φp,�x �,�y �),

b1 − b2 =
∂

∂Φcm
L(Φp,�x �,�y �) −

∂

∂Φcm
L(Φp,�x,�y). (A.17)

We take the Frobenius norm of both sides and apply the bound on the
the RHS as given by Lemma A.7.1. Assuming that n > 1, in order to
ensure that (�x �,�y �) is not an empty set,

�b1 − b2� =

����
∂

∂Φcm
L(Φp,�x �,�y �) −

∂

∂Φcm
L(Φp,�x,�y)

����

=

�����
1

n− 1

n−1�

i=1

∂

∂Φcm
L(Φp,�xi,yi)

−
1

n

n−1�

i=1

∂

∂Φcm
L(Φp,�xi,yi) −

1

n

∂

∂Φcm
L(Φp,�xn,yn)

�����

=
1

n

�����
1

n− 1

n−1�

i=1

∂

∂Φcm
L(Φp,�xi,yi) −

∂

∂Φcm
L(Φp,�xn,yn)

�����

� 2

n
� 1.

Using this property, we can calculate the ratio of densities of drawing
the perturbation matrices b1 and b2 as

P(b = b1)

P(b = b2)
=

1
surf(�b1�)�b1�

d exp [−��b1�]
1

surf(�b2�)�b2�d exp [−��b2�]
,

where surf(�b�) is the surface area of the (d+ 1)-dimensional hyper-
sphere with radius �b�. As surf(�b�) = surf(1)�b�d, where surf(1) is
the area of the unit (d+ 1)-dimensional hypersphere, the ratio of the
densities becomes

P(b = b1)

P(b = b2)
= exp [�(�b2�− �b1�)]

� exp [��b2 − b1�] � exp(�). (A.18)

The ratio of the densities of learning Φp using the adjacent datasets
(�x,�y) and (�x �,�y �) is given by

P(Φp|�x,�y)
P(Φp|�x �,�y �)

=
P(b = b1)

P(b = b2)

|det(J(Φp → b1|�x,�y))|−1

|det(J(Φp → b2|�x �,�y �))|−1
, (A.19)

A.4 theoretical analysis 121

where J(Φp → b1|�x,�y) and J(Φp → b2|�x
�,�y �) are the Jacobian matri-

ces of the bijective mappings from Φp to b1 and b2 respectively. In
Lemma A.7.3, we show that the ratio of the Jacobian determinants
is upper bounded by exp(k) = 1+ 1

nλ , which is constant in terms of
the classifier Φp and the dataset (�x,�y). The proof of Lemma A.7.3 is
similar to Theorem 9 of [Chaudhuri et al., 2011].
By substituting this result into Equation (A.19), the ratio of the

densities of learning Φp using the adjacent datasets becomes

P(Φp|�x,�y)
P(Φp|�x �,�y �)

� exp(�+ k) = exp(� �). (A.20)

Similarly, we can show that the probability ratio is lower bounded by
exp(−� �), which together with Equation (A.20) satisfies the definition
of differential privacy.

a.4.2 Analysis of Excess Error

In this section we bound the error on the differentially private classifier
as compared to the original non-private classifier. We treat the case of
a single Gaussian per class for simplicity, however this analysis can
be naturally extended to the case of a mixture of Gaussians per class.
In the remainder of this section, we denote the terms J(Φ,�x,�y) and
L(Φ,�x,�y) by J(Φ) and L(Φ), respectively for conciseness. The objec-
tive function J(Φ) contains the loss function L(Φ) computed over the
training data (�x,�y) and the regularization term N(Φ) – this is known
as the regularized empirical risk of the classifier Φ. In the following
theorem, we establish a bound on the regularized empirical excess
risk of the differentially private classifier minimizing the perturbed ob-
jective function Jp(Φ) over the classifier minimizing the unperturbed
objective function J(Φ).

Theorem A.4.2. With probability at least 1− δ, the regularized empirical
excess risk of the classifier Φp minimizing the perturbed objective function
Jp(Φ) over the classifier Φ∗ minimizing the unperturbed objective function
J(Φ) is bounded as

J(Φp) � J(Φ∗) +
8(d+ 1)4C

�2λ
log2

�
d

δ

�
.

Proof. We use the definition of Jp(Φ) = J(Φ) +
�
c

�
ij bijΦcij and

the optimality of Φp, i.e., Jp(Φp) � Jp(Φ
∗).

J(Φp) +
�

c

�

ij

bijΦ
p
cij � J(Φ∗) +

�

c

�

ij

bijΦ
∗
cij,

J(Φp) � J(Φ∗) +
�

c

�

ij

bij(Φ
∗
cij −Φ

p
cij). (A.21)

A.4 theoretical analysis 122

Using the strong convexity of J(Φ) and the optimality of J(Φ∗), we
have

J(Φ∗) � J

�
Φp +Φ∗

2

�

� J(Φp) + J(Φ∗)
2

−
λ

8

�

c

�Φ∗
c −Φpc�2,

J(Φp) − J(Φ∗) � λ

4

�

c

�Φ∗
c −Φpc�2. (A.22)

Similarly, using the strong convexity of Jp(Φ) and the optimality of
Jp(Φ

p),

Jp(Φ
p) � Jp

�
Φp +Φ∗

2

�

� Jp(Φ
p) + Jp(Φ

∗)
2

−
λ

8

�

c

�Φpc −Φ∗
c�2,

Jp(Φ
∗) − Jp(Φ

p) � λ

4

�

c

�Φpc −Φ∗
c�2.

Substituting Jp(Φ) = J(Φ) +
�
c

�
ij bijΦcij,

J(Φ∗) +
�

c

�

ij

bijΦ
∗
cij − J(Φp) −

�

c

�

ij

bijΦ
p
cij

� λ

4

�

c

�Φ∗
c −Φpc�2,

�

c

�

ij

bij(Φ
∗
cij −Φ

p
cij) − (J(Φp) − J(Φ∗))

� λ

4

�

c

�Φ∗
c −Φpc�2.

Substituting the lower bound on J(Φp) − J(Φ∗) given by Equation
(A.22),

�

c

�

ij

bij(Φ
∗
cij −Φ

p
cij) �

λ

2

�

c

�Φ∗
c −Φpc�2,

�

c

�

ij

bij(Φ
∗
cij −Φ

p
cij)

2

� λ2

4

��

c

�Φ∗
c −Φpc�2

�2
. (A.23)

Using the Cauchy-Schwarz inequality, we have,

�

c

�

ij

bij(Φ
∗
cij −Φ

p
cij)

2

� C�b�2
�

c

�Φ∗
c −Φpc�2. (A.24)

A.4 theoretical analysis 123

Combining this with Equation (A.23) gives us

C�b�2
�

c

�Φ∗
c −Φpc�2 �

λ2

4

��

c

�Φ∗
c −Φpc�2

�2
,

�

c

�Φ∗
c −Φpc�2 �

4C

λ2
�b�2. (A.25)

Combining this with Equation (A.24) gives us

�

c

�

ij

bij(Φ
∗
cij −Φ

p
cij) �

2C

λ
�b�2.

We bound �b�2 with probability at least 1− δ as given by Lemma
A.7.6.

�

c

�

ij

bij(Φ
∗
cij −Φ

p
cij) �

8(d+ 1)4C

�2λ
log2

�
d

δ

�
. (A.26)

Substituting this in Equation (A.21) proves the theorem.

The upper bound on the regularized empirical risk is in O(C
�2
). The

bound increases for smaller values of � which implies tighter privacy
and therefore suggests a trade off between privacy and utility.
The regularized empirical risk of a classifier is calculated over a

given training dataset. In practice, we are more interested in how
the classifier will perform on new test data which is assumed to be
generated from the same source as the training data. The expected
value of the loss function computed over the data is called the true
risk J̃(Φ) = E[J(Φ)] of the classifier Φ. In the following theorem, we
establish a bound on the true excess risk of the differentially private
classifier minimizing the perturbed objective function and the classifier
minimizing the original objective function.

Theorem A.4.3. With probability at least 1− δ, the true excess risk of the
classifier Φp minimizing the perturbed objective function Jp(Φ) over the
classifierΦ∗ minimizing the unperturbed objective function J(Φ) is bounded
as

J̃(Φp) � J̃(Φ∗) +
8(d+ 1)4C

�2λ
log2

�
d

δ

�

+
16

λn

�
32+ log

�
1

δ

��
.

Proof. Let Φr be the classifier minimizing J̃(Φ), i.e., J̃(Φr) � J̃(Φ∗).
Rearranging the terms, we have

J̃(Φp) = J̃(Φ∗) + [J̃(Φp) − J̃(Φr)] + [J̃(Φr) − J̃(Φ∗)]

� J̃(Φ∗) + [J̃(Φp) − J̃(Φr)]. (A.27)

A.5 experiments 124

Sridharan et al. [2008] present a bound on the true excess risk of any
classifier as an expression of the bound on the regularized empirical
excess risk for that classifier. With probability at least 1− δ,

J̃(Φp) − J̃(Φr) � 2[J(Φp) − J(Φ∗)]

+
16

λn

�
32+ log

�
1

δ

��
.

Substituting the bound from Theorem A.4.2,

J̃(Φp) − J̃(Φr) � 8(d+ 1)4C

�2λ
log2

�
d

δ

�

+
16

λn

�
32+ log

�
1

δ

��
. (A.28)

Substituting this result into Equation (A.27) proves the theorem.

Similar to the bound on the regularized empirical excess risk, the
bound on the true excess risk is also inversely proportional to �2

reflecting the trade-off between privacy and utility. The bound is
linear in the number of classes C, which is a consequence of the multi-
class classification. The classifier learned using a higher value of the
regularization parameter λ will have a higher covariance for each
class ellipsoid. This would also make the classifier less sensitive to
the perturbation. This intuition is confirmed by the fact that the true
excess risk bound is inversely proportional to λ.

a.5 experiments

We analyze the differentially private large margin Gaussian mixture
model classifier to empirically quantify the error introduced by the
perturbation. We implemented the classifier using the CVX convex
program solver [Grant and Boyd, 2010]. We report the results on the
experiments with the UCI Breast Cancer dataset [Frank and Asuncion,
2010] consisting of binary labeled 683 data instances with 10 features.
We split the data randomly into 583 instances for the training dataset
and 100 instances for the test dataset.
We trained the classifier with the different random samples of the

perturbation term b, each sampled with the increasing values of �,
and the regularization parameter λ = 0.31 which is obtained via cross-
validation. The test error results averaged over 10 runs are shown in
Figure A.2.
The dashed line represents the test error of the non-private classifier

which remains constant with �. We observe that for small value of �
implying tighter privacy constraints, we observe a higher error. By
increasing �, we see that the error steadily decreases and converges to
the test error of the non-private classifier.

A.6 conclusion 125

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

DP LMGMM

LMGMM

Figure A.2: Test error vs. � for the UCI breast cancer dataset.

a.6 conclusion

In this chapter, we present a discriminatively trained Gaussian mixture
model based classification algorithm that satisfies differential privacy.
Our proposed technique involves adding a perturbation term to the
objective function. We prove that the proposed algorithm satisfies
differential privacy and establish a bound on the excess risk of the
classifier learned by the algorithm which is directly proportional to the
number of classes and inversely proportional to the privacy parameter
� reflecting a trade-off between privacy and utility.

a.7 supplementary proofs

Lemma A.7.1. Assuming all the data instances to lie within a unit �2 ball,
the Frobenius norm of the derivative of Huber loss function L(Φ,�xi,yi)
computed over the data instance (�xi,yi) is bounded.

����
∂

∂Φcm
L(Φ,�xi,yi)

���� � 1.

A.7 supplementary proofs 126

Proof. The derivative of the Huber loss function for the data instance
�xi with label yi is

∂

∂Φcm
L(Φ,�xi,yi)

=

0

ifM(xi,Φc) > h,
−1
2h [h−�xTiΦyi�xi − log

�
m e−�xTi Φc�xi]

e−�xT
i
Φc�xi

�
m e

−�xT
i
Φc�xi

�xi�x
T
i

if |M(xi,Φc)| � h,
e−�xT

i
Φc�xi

�
m e

−�xT
i
Φc�xi

�xi�x
T
i

ifM(xi,Φc) < −h.

The data points lie in a �2 ball of radius 1, ∀i : ��xi�2 � 1. Using linear
algebra, it is easy to show that the Frobenius norm of the matrix �xi�xTi
is same as the �2 norm of the vector �xi, ��xi�xTi � = ��xi�2 � 1.
We have,

�����
e−�xTi Φc�xi

�
m e−�xTi Φc�xi

�xi�x
T
i

����� =

�����
1

1+
�
m−1 e

−�xTi Φc�xi
�xi�x
T
i

�����

=

�����
1

1+
�
m−1 e

−�xTi Φc�xi

�����
���xi�xTi

�� � 1.

The term [h−�xTiΦyi�xi− log
�
m e−�xTi Φc�xi] is at most hwhen |M(�xi,Φc)| �

h, the Frobenius norm of the derivative of the Huber loss function is
at most one in all cases,

��� ∂
∂Φcm

L(Φ,�xi,yi)
��� � 1. Similarly, for a data

instance �x �i with label y �
i, we have

��� ∂
∂Φcm

L(Φ,�x �i,y
�
i)
��� � 1.

Lemma A.7.2. Assuming all the data instances to lie within a unit �2
ball, the Frobenius norm of the second derivative of Huber loss function
L(Φ,�xi,yi) computed over the data instance (�xi,yi) is bounded.

����
∂2

∂Φ2cm
L(Φ,�xi,yi)

���� � 1.

A.7 supplementary proofs 127

Proof. The second derivative of the Huber loss function for the data
instance �xi with label yi is

∂2

∂Φ2cm
L(Φ,�xi,yi)

=

0 ifM(xi,Φc) > h,

−1
2h

�
e−�xT

i
Φc�xi

�
m e

−�xT
i
Φc�xi

�xi�x
T
i

�2

+ 12h [h−�xTiΦyi�xi − log
�
m e−�xTi Φc�xi]

e−�xT
i
Φc�xi��

m e
−�xT
i
Φc�xi

�2�xi�xTi if |M(xi,Φc)| � h,

e−�xT
i
Φc�xi��

m e
−�xT
i
Φc�xi

�2�xi�xTi ifM(xi,Φc) < −h.

Similar to the arguments we made in Lemma A.7.1, the term
1
2h [h−�xTiΦyi�xi − log

�
m e−�xTi Φc�xi] is upper bounded by one when

|M(xi,Φc)| � h. As the term e−�xT
i
Φc�xi

�
m e

−�xT
i
Φc�xi

�xi�x
T
i is less than one, its

square is also bounded by one.
We apply the Cauchy-Schwarz inequality to the term

e−�xTi Φc�xi

��
m e−�xTi Φc�xi

�2�xi�x
T
i

=
1

1+
�
m−1 e

−�xTi Φc�xi

1
�
m e−�xTi Φc�xi

�xi�x
T
i

�
�����

1

1+
�
m−1 e

−�xTi Φc�xi

�����

�����
1

�
m e−�xTi Φc�xi

����� ��xi�x
T
i � � 1,

as each of these terms are less than one.
Therefore, the norm of the second derivative is upper bounded by

one.

Lemma A.7.3. The ratio of the determinants of the Jacobian of the mapping
ΦP → b computed over the adjacent datasets (�x,�y) and (�x �,�y �) is bounded
as

|J(Φp → b|�x �,�y �)|
|J(Φp → b|�x,�y)|

� 1+
1

nλ
.

Proof. From Equation A.16, we have

b = −
∂

∂Φcm
L(Φp,�x,�y) − λIΦ − 2λΦcm.

A.7 supplementary proofs 128

We differentiate this wrt Φcm to get the Jacobian

J(Φp → b|�x,�y) =
∂b

∂Φcm
= −

∂2

∂Φ2cm
L(Φp,�x,�y) − 2λ.

We represent this by the matrix −A. We can similarly write

J(Φp → b|�x �,�y �) = −
∂2

∂Φ2cm
L(Φp,�x �,�y �) − 2λ.

Noting that the adjacent dataset (�x �,�y �) is obtained by deleting
(�xn,yn) from (�x,�y), the second derivative of the loss function when
evaluated over (�x �,�y �) can be written as

∂2

∂Φ2cm
L(Φp,�x �,�y �) =

n

n− 1

∂2

∂Φ2cm
L(Φp,�x,�y)

−
1

n− 1

∂2

∂Φ2cm
L(Φp,�xn,yn)

We can therefore write

J(Φp → b|�x �,�y �) = −
n

n− 1

∂2

∂Φ2cm
L(Φp,�x,�y)

+
1

n− 1

∂2

∂Φ2cm
L(Φp,�xn,yn) − 2λ

=
1

n− 1
(nA+ E)

where

E =
∂2

∂Φ2cm
L(Φp,�xn,yn) + 2λ

Due to the nature of the Huber loss function, the first term in the
RHS is a matrix is of rank at most 1. From Lemma A.7.2, we therefore
get λ1(E) <= 1+ 2λ, where λ1(E) represents the largest Eigenvalue of
E.
The ratio of the determinants of the two Jacobians becomes

J(Φp → b|�x �,�y �)
J(Φp → b|�x,�y)

=
|det(A+ E)|

|detA|
. (A.29)

We simplify this ratio of the determinants by applying Lemma 10 of
[Chaudhuri et al., 2010], which we restate as Lemma A.7.4 below.

|det(A+ E)|

|detA|
=|1+ λ1(A

−1E) + λ2(A
−1E)

+ λ1(A
−1E)λ2(A

−1E)|, (A.30)

where λ1(A−1E) and λ2(A
−1E) are the first and second eigenvalues

of the matrix A−1E. As L(Φp,�x,�y) is a doubly differentiable and a

A.7 supplementary proofs 129

strongly convex function, any eigenvalue of A is at least nλ and,
therefore, |λ1(A−1E)| � |λ1(E)|

nλ and |λ2(A
−1E)| � |λ2(E)|

nλ .
We use the upper bound on the second derivative of the loss function

given by Lemma A.7.2. We apply the triangle inequality to the trace
norm, i.e., the sum of the eigenvectors of E, to obtain

|λ1(E)|+ |λ2(E)| �
����

∂2

∂Φ2cm
L(Φp,�xn,yn)

���� � 1

and,

|λ1(E)| |λ2(E)| � 1.

We substitute this into the upper bounds for |λ1(A−1E)| and |λ2(A
−1E)|

and then into Equation A.30 to obtain

|det(A+ E)|

|detA|
� 1+

1

nλ
+

1

n2λ2
�

�
1+

1

nλ

�2
.

Substituting this bound in Equation A.29 proves the theorem. We
note that this bound is independent in (�x,�y).

Lemma A.7.4 (Lemma 10 of [Chaudhuri et al., 2010]). If A is full rank
and E has rank at most 2,

det(A+ E)

detA
= 1+ λ1(A

−1E) + λ2(A
−1E) + λ1(A

−1E)λ2(A
−1E).

Lemma A.7.5.

1

dC

��

c

trace[IΦ(Φc −Φ �
c)IΦ]

�2
�

�

c

��Φc −Φ �
c

��2 .

Proof.
Let Φc,i,j be the (i, j)th element of the size (d+ 1)× (d+ 1) matrix
Φc −Φ �

c. By the definition of the Frobenius norm, and using the
identity N

�N
i=1 x

2
i � (

�N
i=1 xi)

2,

�

c

��Φc −Φ �
c

��2 =
�

c

d+1�

i=1

d+1�

j=1

Φ2c,i,j �
�

c

d+1�

i=1

Φ2c,i,i

�
�

c

d�

i=1

Φ2c,i,i �
1

dC

��

c

d�

i=1

Φc,i,i

�2

=
1

dC

��

c

trace[IΦ(Φc −Φ �
c)IΦ]

�2
.

A.7 supplementary proofs 130

Lemma A.7.6.

P

�
�b� � 2(d+ 1)2

�
log

�
d

δ

��
� δ.

Proof. Similar to the union bound argument used in Lemma 5 in
[Chaudhuri and Monteleoni, 2008].

B IBL IOGRAPHY

Charu C. Aggarwal and Philip S. Yu, editors. Privacy Preserving Data
Mining: Models and Algorithms, volume 34 of Advances in Database
Systems. Springer, 2008.

Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer:
How to sell digital goods. In EUROCRYPT, pages 118–134, 2001.

Mikhail J. Atallah, Florian Kerschbaum, and Wenliang Du. Secure
and private sequence comparisons. In Workshop on Privacy in the
Electronic Society, pages 39–44, 2003b.

Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank
McSherry, and Kunal Talwar. Privacy, accuracy, and consistency too:
a holistic solution to contingency table release. In Symposium on
Principles of Database Systems, pages 273–282, 2007.

Michael Barbaro and Tom Zeller Jr. A face is exposed for AOL searcher
no. 4417749. The New York Times, August 2006.

Adam Barth, Anupam Datta, John C. Mitchell, and Helen Nissenbaum.
Privacy and contextual integrity: Framework and applications. In
IEEE Symposium on Security and Privacy, pages 184–198, 2006.

Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure MPC
with linear communication complexity. In Theory of Cryptography,
pages 213–230, 2008.

Michael Ben-Or, Shafi Goldwasser, and Avi Widgerson. Completeness
theorems for non-cryptographic fault-tolerant distributed computa-
tion. In Proceedings of the ACM Symposium on the Theory of Computing,
pages 1–10, 1988.

Josh Benaloh. Dense probabilistic encryption. In First Annual Workshop
on Selected Areas in Cryptography, pages 120–128, 1994b.

Frederic Bimbot, Jean-Francois Bonastre, Corinne Fredouille, Guil-
laume Gravier, Ivan Magrin-Chagnolleau, Sylvain Meignier, Teva
Merlin, Javier Ortega-Garcia, Dijana Petrovska-Delacretaz, and Dou-
glas Reynolds. A tutorial on text-independent speaker verification.
EURASIP Journal on Applied Signal Processing, 4:430–451, 2004.

Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim.
Practical privacy: The suLQ framework. In Symposium on Principles
of Database Systems, 2005.

132

bibliography 133

Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications. In ACM Symposium on the Theory of
Computing, pages 103–112, 1988.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF for-
mulas on ciphertexts. In Theory of Cryptography Conference, pages
325–341, 2005.

Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing
disclosure of secrets. In CRYPTO, pages 234–238, 1986.

Robert Bringhurst. The Elements of Typographic Style. Version 2.5. Hart-
ley & Marks, Publishers, Point Roberts, WA, USA, 2002.

Joseph P. Campbell. Testing with the YOHO CD-ROM voice verifica-
tion corpus. In IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 341–344, 1995.

William Campbell. Generalized linear discriminant sequence kernels
for speaker recognition. In IEEE International Conference on Acoustics,
Speech and Signal Processing, 2002.

William M. Campbell, Douglas E. Sturim, Douglas A. Reynolds, and
Alex Solomonoff. SVM based speaker verification using a GMM
supervector kernel and NAP variability compensation. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, 2006c.

M. Carey, E. Parris, and J. Bridle. Speaker verification system using
alpha-nets. In International Conference on Acoustics, Speech and Signal
Processing, 1991.

Olivier Chapelle. Training a support vector machine in the primal.
Neural Computation, 19(5):1155–1178, 2007.

Moses Charikar. Similarity estimation techniques from rounding
algorithms. In ACM Symposium on Theory of Computing, 2002a.

Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving lo-
gistic regression. In Neural Information Processing Systems, pages
289–296, 2008.

Kamalika Chaudhuri, Claire Monteleoni, and Anand Sarwate. Dif-
ferentially private empirical risk minimization. arXiv:0912.0071v4
[cs.LG], 2010.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Dif-
ferentially private empirical risk minimization. Journal of Machine
Learning Research, 12:1069–1109, 2011.

David Chaum, Claude Crepeau, and Ivan Damgård. Multiparty un-
conditionally secure protocols. In ACM Symposium on the Theory of
Computing, pages 11–19, 1988.

bibliography 134

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan.
Private information retrieval. Journal of the ACM, 45(6):965–981,
1998.

Ronald Cramer. Introduction to secure computation. Lecture Notes in
Computer Science, 1561:16–62, 1999.

Ronald Cramer, Ivan Damgård, and Jesper B. Nielsen. Multiparty com-
putation from threshold homomorphic encryption. In EUROCRYPT,
pages 280–300, 2001.

Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty
computation, an introduction. http://cs.au.dk/~jbn/smc.pdf,
2009.

Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed
oblivious transfer and private multi-party computation. In CRYPTO,
pages 110–123, 1995.

Emiliano De Cristofaro and Gene Tsudik. Practical private set inter-
section protocols with linear complexity. In Financial Cryptography,
2010.

Ivan Damgård and Mads Jurik. A generalisation, a simplification and
some applications of paillier’s probabilistic public-key system. In
Public Key Cryptography, pages 119–136, 2001.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable distributions. In
ACM Symposium on Computational Geometry, pages 253–262, 2004b.

Steven Davis and Paul Mermelstein. Comparison of parametric rep-
resentations for monosyllabic word recognition in continuously
spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-28(4):357, 1980.

Judith DeCew. Privacy. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. http://plato.stanford.edu/archives/
fall2008/entries/privacy/, fall 2008 edition, 2008.

Najim Dehak, Patrick Kenny, Réda Dehak, Pierre Dumouchel, and
Pierre Ouellet. Front-end factor analysis for speaker verification.
IEEE Transactions on Audio, Speech & Language Processing, 19(4):788–
798, 2011.

Whitfield Diffie and Martin E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, IT-22(6):644–654,
1976.

Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The
second-generation onion router. In USENIX Security Symposium,
pages 303–320. USENIX, 2004.

bibliography 135

Irit Dinur and Kobbi Nissim. Revealing information while preserving
privacy. In ACM Symposium on Principles of Database Systems, 2003.

R. Dunn, Douglas Reynolds, and T.F. Quatieri. Approaches to speaker
detection and tracking in conversational speech. Digital Signal Pro-
cessing, 10:93–112, 2000.

Cynthia Dwork. Differential privacy. In International Colloquium on
Automata, Languages and Programming, 2006.

Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on
vertically partitioned databases. In CRYPTO, 2004.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith.
Calibrating noise to sensitivity in private data analysis. In Theory of
Cryptography Conference, pages 265–284, 2006.

Taher El-Gamal. A public-key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information The-
ory, 31:469–472, 1985.

Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized
protocol for signing contracts. Communications of the ACM, 28(6):
637–647, 1985.

Caroline Fontaine and Fabien Galand. A survey of homomorphic en-
cryption for nonspecialists. EURASIP Journal on Information Security,
2007a.

A. Frank and A. Asuncion. UCI machine learning repository, 2010.
URL http://archive.ics.uci.edu/ml.

Michael Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In Advances in Cryptology - EURO-
CRYPT, pages 1–19. Springer, 2004b.

Tal Garfinkel and Mendel Rosenblum. When virtual is harder than
real: Security challenges in virtual machine based computing envi-
ronments. In HotOS. USENIX Association, 2005.

Ruth Gavison. Privacy and the limits of law. Yale Law Journal, 89:
421–471, 1980.

Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS
and fast-track multiparty computations with applications to thresh-
old cryptography. In ACM Symposium on Principles of Distributed
Computing, pages 101–112, 1998.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In
ACM Symposium on Theory of Computing, pages 169–178, 2009.

bibliography 136

Craig Gentry. Toward basing fully homomorphic encryption on worst-
case hardness. In CRYPTO, pages 116–137, 2010a.

Craig Gentry. Computing arbitrary functions of encrypted data. Com-
munications of the ACM, 53(3):97–105, 2010b.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search
in high dimensions via hashing. In Proceedings of the Twenty-fifth
International Conference on Very Large Databases, pages 518–529, 1999.

Oded Goldreich. Foundations of cryptography: Volume I Basic Tools. Cam-
bridge University Press, 2001.

Oded Goldreich. Foundations of cryptography: Volume II Basic Applica-
tions. Cambridge University Press, 2004.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how
to play mental poker keeping secret all partial information. In ACM
Symposium on Theory of Computing, pages 365–377, 1982.

Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal
of Computer and System Sciences, 28(2):270–299, 1984.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems. In ACM Symposium on
Theory of Computing, pages 291–304, 1985.

M. Grant and S. Boyd. CVX: Matlab software for disciplined convex
programming, version 1.21. http://cvxr.com/cvx, 2010.

L.P. Heck and M. Weintraub. Handset-dependent background models
for robust text-independen speaker recognition. In International
Conference on Acoustics, Speech and Signal Processing, volume 2, pages
1071–1074, 1997.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Proceedings of the
ACM Symposium on Theory of Computing, pages 604–613, 1998.

Ioannis Ioannidis and Ananth Grama. An efficient protocol for Yao’s
millionaires’ problem. In Hawaii International Conference on System
Sciences, pages 205–210, 2003.

Murat Kantarcioglu and Chris Clifton. Privacy-preserving distributed
mining of association rules on horizontally partitioned data. IEEE
Transactions on Knowledge and Data Engineering, 16(9):1026–1037,
2004.

Murat Kantarcioglu and Onur Kardes. Privacy-preserving data mining
in the malicious model. Journal of Information and Computer Security,
2(4):353–375, 2008.

bibliography 137

Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya
Raskhodnikova, and Adam Smith. What can we learn privately? In
IEEE Symposium on Foundations of Computer Science, pages 531–540,
2008.

Michael Kearns, Jinsong Tan, and Jennifer Wortman. Privacy-
preserving belief propagation and sampling. In Neural Information
Processing Systems, 2007.

P. Kenny and P. Dumouchel. Experiments in speaker verification using
factor analysis likelihood ratios. In Odyssey, pages 219–226, 2004.

Joe Kilian. Founding cryptography on oblivious transfer. In ACM
Symposium on Theory of Computing, pages 20–31, 1988.

Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hash-
ing for scalable image search. In IEEE International Conference on
Computer Vision, pages 2130–2137, 2009.

Sven Laur and Helger Lipmaa. A new protocol for conditional dis-
closure of secrets and its applications. In Applied Cryptography and
Network Security, pages 207–225, 2007.

Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can
homomorphic encryption be practical? In ACM Cloud Computing
Security Workshop, 2011.

Xiaodong Lin, Chris Clifton, and Michael Y. Zhu. Privacy-preserving
clustering with distributed EM mixture modeling. Knowledge and
Information Systems, 8(1):68–81, 2005.

Prasanta Chandra Mahalanobis. On the generalised distance in statis-
tics. Proceedings of the National Institute of Sciences of India, 2:49–55,
1936.

Johnny Mariéthoz, Samy Bengio, and Yves Grandvalet. Kernel Based
Text-Independent Speaker Verification. John Wiley & Sons, 2008.

T. Matsui and S. Furui. Likelihood normalization for speaker verifi-
cation using a phoneme- and speaker-independent model. Speech
Communication, 17(1–2):109–116, 1995.

Geoffrey McLachlan and David Peel. Finite Mixture Models. Wiley
series in probability and statistics. John Wiley & Sons, Inc., 2000.

Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanston, editors.
Handbook of Applied Cryptography. CRC Press, 1996.

bibliography 138

Yan Michalevsky, Ronen Talmon, and Israel Cohen. Speaker identifica-
tion using diffusion maps. In European Signal Processing Conference,
2011.

Victor S. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology—CRYPTO ’85, pages 417–426, 1985.

Moni Naor and Benny Pinkas. Oblivious transfer and polynomial
evaluation. In ACM Symposium on Theory of Computing, pages 245–
254, 1999a.

Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization
of large sparse datasets. In IEEE Symposium on Security and Privacy,
pages 111–125, 2008.

SHA. FIPS 180-3: Secure Hash Standard. National Institute for Stan-
dards and Technology, 2008.

OpenSSL. http://www.openssl.org/docs/crypto/bn.html, 2010.

Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In EUROCRYPT, 1999b.

pbc. PBC library. http://crypto.stanford.edu/pbc/, 2006.

B.L. Pellom and J.H.L. Hansen. An experimental study of speaker ver-
ification sensitivity to computer voice-altered imposters. In IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, 1999.

Jean-Jacques Quisquater, Louis C. Guillou, and Thomas A. Berson.
How to explain zero-knowledge protocols to your children. In
CRYPTO, pages 628–631, 1989.

Michael Rabin. How to exchange secrets by oblivious transfer. Techni-
cal Report TR-81, Harvard University, 1981.

S. Rane and W. Sun. Privacy preserving string comparisons based
on Levenshtein distance. In Proc. IEEE international Workshop on
Information Forensics and Security (WIFS), Seattle, USA, Dec. 2010a.

Douglas Reynolds, T.F. Quatieri, and R. Dunn. Speaker verification
using adapted Gaussian mixture models. Digital Signal Processing,
10:19–41, 2000a.

Douglas A. Reynolds. Comparison of background normalization
methods for text-independent speaker verification. In European
Conference on Speech Communication and Technology, volume 2, pages
963–966, 1997.

Douglas A. Reynolds and Richard C. Rose. Robust text-independent
speaker identification using gaussian mixture speaker models. IEEE
Transactions on Speech and Audio Processing, 3(1):72–83, 1995.

bibliography 139

R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the
ACM, 21(2):120–126, Feb. 1978a.

Ronald L. Rivest, Leonard Adleman, and Michael L. Dertouzos. On
data banks and privacy homomorphisms. In Foundations of Secure
Computation, pages 169–180, 1978b.

A.E. Rosenberg and S. Parthasarathy. Speaker background models
for connected digit password speaker verification. In International
Conference on Acoustics, Speech and Signal Processing, 1996.

Yingpeng Sang and Hong Shen. Efficient and secure protocols for
privacy-preserving set operations. ACM Transactions on Information
and System Security, 13(1):9:1–9:35, 2009.

Fei Sha and Lawrence K. Saul. Large margin gaussian mixture model-
ing for phonetic classification and recognition. In IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 265–268,
2006.

Paris Smaragdis and Madhusudana Shashanka. A framework for
secure speech recognition. IEEE Transactions on Audio, Speech and
Language Processing, 15(4):1404–1413, 2007.

Karthik Sridharan, Shai Shalev-Shwartz, and Nathan Srebro. Fast rates
for regularized objectives. In Neural Information Processing Systems,
pages 1545–1552, 2008.

David Sundermann, Harald Hoge, Antonio Bonaforte, Hermann Ney,
Alan Black, and Shri Narayanan. Text-independent voice conversion
based on unit selection. In IEEE International Conference on Acoustics,
Speech and Signal Processing, 2006.

Jaideep Vaidya, Christopher W. Clifton, and Yu Michael Zhu. Pri-
vacy Preserving Data Mining, volume 19 of Advances in Information
Security. Springer, 2006.

Jaideep Vaidya, Chris Clifton, Murat Kantarcioglu, and Scott Patterson.
Privacy-preserving decision trees over vertically partitioned data.
TKDD, 2(3), 2008a.

Jaideep Vaidya, Murat Kantarcioglu, and Chris Clifton. Privacy-
preserving naive bayes classification. VLDB J, 17(4):879–898, 2008b.

Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. Privacy-preserving
svm classification. Knowledge and Information Systems, 14(2):161–178,
2008c.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM
Review, 38:49–95, 1996.

bibliography 140

Samuel D. Warren and Louis D. Brandeis. The right to privacy. Harvard
Law Review, 4:193–220, 1890.

Alan F. Westin. Privacy and Freedom. Atheneum, New York, 1967.

Andrew Yao. Protocols for secure computations (extended abstract).
In IEEE Symposium on Foundations of Computer Science, 1982.

colophon

This thesis was typeset with LATEX2ε using Hermann Zapf’s Palatino
and Euler type faces (Type 1 PostScript fonts URW Palladio L and FPL
were used). The listings are typeset in Bera Mono, originally developed
by Bitstream, Inc. as “Bitstream Vera”. (Type 1 PostScript fonts were
made available by Malte Rosenau and Ulrich Dirr.)
The typographic style was inspired by Bringhurst’s genius as pre-

sented in The Elements of Typographic Style [Bringhurst, 2002]. It is
available for LATEX via CTAN as “classicthesis”.

Final Version as of April 26, 2012 at 15:52.

