
Learning Transfer Rules for Machine Translation

with Limited Data

A Dissertation
submitted to the graduate school

in partial fulfillment of the requirements
for the degree

Doctor or Philosophy
in Language and Information Technologies

by
KATHARINA PROBST

Committee:
Alon Lavie (chair)
Jaime Carbonell

Lori Levin
Bonnie Dorr, University of Maryland, College Park

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania, U.S.A.

August 15, 2005

2

Abstract

The transfer-based approach to machine translation (MT) captures struc-
tural transfers between the source language and the target language, with
the goal of producing grammatical translations. The major drawback of
the approach is the development bottleneck, requiring many human-years
of rule development. On the other hand, data-driven approaches such as
example-based and statistical MT achieve fast system development by de-
riving mostly non-structural translation information from bilingual corpora.
This thesis aims at striking a balance between both approaches by inferring
transfer rules automatically from bilingual text, aiming specifically at sce-
narios where bilingual data is in sparse supply. The rules are learned using
a variety of information, such as parses that are available for one of the lan-
guages, and morphological information that is available for both languages.
They are learned in three stages, first producing an initial hypothesis, then
capturing the syntactic structure, and finally adding appropriate unification
constraints. The learned rules are used in a run-time translation system, a
statistical transfer system which is a combination of a transfer engine and
a statistical decoder. We demonstrate the effectiveness of the learned rules
on Hebrew→English and a Hindi→English translation tasks.

The main contribution of this thesis is a new framework for inferring
structural information with feature constraints from bilingual text, as well
as an investigation of the taxonomy of learnable rules and their effective-
ness. The framework is designed to be applicable for any language pair, and
the inferred rules can be used in conjunction with a statistical decoder. In
addition to presenting methods to integrate syntactic and statistical infor-
mation, the thesis makes a case for inferring information from very small
training corpora, and provides methods to do so.

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Research Goals . 12

1.3 Thesis Statement . 15

1.4 Thesis Summary . 15

1.4.1 Transfer Rule Formalism 16

1.4.2 Run-Time System: Transfer Engine and Decoder . . . 17

1.4.3 Training Data . 18

1.4.4 Seed Generation . 20

1.4.5 Structural Learning 21

1.4.6 Learning Unification Constraints 22

1.4.7 Summary of Results 24

2 Related Work 25

2.1 Approaches to Machine Translation 26

2.1.1 Transfer-based Approaches to MT 26

2.1.2 Statistical and Example-Based MT 27

2.1.3 Hybrid Approaches to MT 28

2.2 Automatic Inference of Generalized Structure 29

2.2.1 Monolingual Grammar Induction 29

2.2.2 Inference of Structural Rules for Transfer-based MT
systems . 30

2.2.3 Translation Templates for Example-Based MT 31

2.2.4 Syntax for Statistical MT 33

2.2.5 Other Types of Learned Transfers 34

2.3 Learning from Elicited Data and Small Corpora 34

3 Setting and Run-Time System 37

3.1 Complete Avenue Project Overview 37

3

4 CONTENTS

3.2 Transfer Rule Formalism . 41

3.3 Transfer Engine . 48

3.4 Statistical Decoder . 53

3.5 Language Pair Specific Components 54

3.5.1 Character Sets and Romanization 54

3.5.2 Morphology Modules 55

3.5.3 Translation Dictionaries 61

3.6 Run-time Example . 64

3.6.1 Parsing . 66

3.6.2 Transfer and Generation 68

3.6.3 Resulting Lattice . 70

4 Training Data 73

4.0.4 Functional Elicitation Corpus 75

4.0.5 Structural Training Corpus 76

4.0.6 Training Data Format 81

4.0.7 A Note on Uncontrolled Corpora 82

5 Evaluation Methodology 83

6 Seed Generation 89

6.1 Introduction . 89

6.2 Description of Learning Algorithm 91

6.3 Results . 94

6.3.1 Discussion of Learned Rules 94

6.3.2 Automatic Evaluation Results 96

7 Structural Learning 99

7.1 Introduction . 99

7.2 Taxonomy of Structural Transfers 102

7.2.1 System Constraints . 102

7.2.2 General Space of Possible Transfers 103

7.2.3 Space Defined by Rule Formalism 104

7.2.4 Space Defined by Learning Setting 107

7.3 The Basic Compositionality Algorithm 110

7.4 Approach I: Learning Without Maximum Compositionality . 112

7.4.1 Iterative Type Learning 116

7.4.2 Co-Embedding Resolution 117

7.5 Approach II: Learning With Maximum Compositionality . . . 118

7.6 Advanced Structural Learning 120

CONTENTS 5

7.6.1 Pro-Drop . 123

7.6.2 Compounds and other One-Many Alignments 125

7.6.3 Lexicon Enhancement 128

7.6.4 Generalization to Part-of-Speech Level 133

7.6.5 Subtleties in Compositionality Learning 137

7.6.6 Structural Grammar Enhancement 144

7.7 Applying Quality Criteria . 153

7.7.1 Quality Criterion 1: Checking for Boundary Crossings 153

7.7.2 Quality Criterion 2: No Unaligned Constituents 155

7.8 Results . 155

7.8.1 Discussion of Learned Rules 155

7.8.2 Automatic Evaluation Results 159

8 Learning Unification Constraints 163

8.1 Introduction . 163

8.2 Review of Unification Constraints 165

8.3 Taxonomy of Constraints . 167

8.3.1 Constraint Parameter: Value or Agreement 168

8.3.2 Constraint Parameter: Level 169

8.3.3 Constraint Parameter: Language 170

8.3.4 Constraint Parameter: Constrains Head 170

8.3.5 Constraint Parameter: Depth 171

8.3.6 Constraint Parameter: Enforce Existing Value 171

8.3.7 Constraint Parameter: Multiple Values 172

8.3.8 Subtypes of Constraints 173

8.4 Learning Basic Constraints 175

8.5 Learning Agreement Constraints 179

8.5.1 SL Agreement Constraints 184

8.5.2 TL Agreement Constraints 185

8.5.3 SL→TL Agreement Constraints 185

8.6 Value Constraints Revisited 189

8.7 Results . 192

8.7.1 Discussion of Learned Rules 192

8.7.2 Automatic Evaluation Results 197

8.8 Case Study: Hebrew Copula 199

9 Comprehensive Evaluation 211

9.1 The Evaluation Space . 211

9.2 Overview of Evaluated Settings 213

9.2.1 Defaults . 213

6 CONTENTS

9.2.2 Varied Settings . 214
9.3 Default Setting Evaluation . 215
9.4 Varying Learning Settings . 216
9.5 Varying Evaluation - Rule Level Evaluation 219
9.6 Varying Test Corpora - Test Suite 226
9.7 Varying Run-Time Settings - Lengthlimits 230
9.8 Varying Training Corpora . 234

9.8.1 Comparison Corpus 234
9.8.2 Additional Training Data 236
9.8.3 Non-Compositional Grammars for Larger Datasets . . 237
9.8.4 Mixed Compositional and Non-Compositional Gram-

mars for Larger Datasets 241
9.9 Varying Languages - Hindi→English Translation 247

9.9.1 Hindi Grammars with Hebrew Default Settings 248
9.9.2 Non-Compositional Rules for Hindi→English transla-

tion . 251
9.9.3 Learning from Additional Data 255
9.9.4 Conclusion of Hindi→English Portability Test 256

10 Conclusion 259
10.1 Contributions . 259
10.2 Lessons Learned . 263
10.3 Future Work . 266

10.3.1 Learning from Larger Corpora 266
10.3.2 Training corpora enhancement 266
10.3.3 Rule Scoring and Filtering 267
10.3.4 Constructions, Divergences 267
10.3.5 Other Areas for Future Work 273

A Lattice Scoring 275

B Sample Translations 279

Acknowledgments

During my work on this thesis, I received a lot of support from my thesis
committee, and I would like to acknowledge their help. First, I would like to
thank my committee chair Alon Lavie, who carried me through a number of
tough phases and believed in me and the project. I thank Jaime Carbonell
for his insightful advice. I, like many others, found every meeting with him a
step forward. I thank Lori Levin for her linguistic perspective and input that
helped form this thesis. I also want to thank her especially for all the work
she did in helping me improve my thesis document. Last but not least, I
want to thank Bonnie Dorr for her input. She gave very thorough comments
which showed her decication; for this I am grateful, and her advice made
my thesis better.

I would also like to thank all the faculty, students and staff of the Avenue

project under which this research was performed, and its international part-
ners. In particular, thanks to Erik Peterson for the transfer engine, which
I used extensively in this work, and without which my work could not have
happened. Alison Alvarez deserves thanks for creating the copula elicita-
tion corpus. Ariadna Font-Llitjos provided very useful technical comments
and indispensable moral support. I would also like to thank our numerous
Hindi and Hebrew informants, who helped especially with data collection
and morphology.

Although this work was done at Carnegie Mellon University, I give spe-
cial thanks to Linda Lankewicz, my undergraduate advisor and mentor at
the University of the South, who taught me a lot about computer science,
research, and life, and advised me to go to graduate school.

Guy Lebanon deserves my infinite gratitude for never, ever doubting me,
for giving me moral support whenever I needed it, and for playing a major
role in making my life as a PhD student happy.

My family, Maria and Lorenz Probst as well as Barbara Probst-Jilg and
Martina Bug, always thought I could do it, and saw me through it to the
end. I am thankful for their support, and thankful to my parents for being

7

8 CONTENTS

proud of me.
This research was funded in part by the DARPA TIDES program and

by NSF grant number IIS-0121-631.

Chapter 1

Introduction

1.1 Motivation

Traditionally, it was common to spend many years of effort on the devel-
opment of machine translations (MT) systems for a given language pair.
Recent advances in MT research have focused on more speedy development
of systems. The goal is to be able to apply MT to a new language pair
within a matter of weeks or months. This is clearly a desirable goal, be-
cause so far MT has only been applied to a select few language pairs. With
the advance of technology all over the world, bridging language barriers is
becoming ever more important, and MT can be a very useful tool in this
context. In practice, however, this multi-lingual challenge requires an effort
by the MT community to develop techniques that allow the rapid develop-
ment and deployment of MT systems. Clearly, human involvement must be
minimized if a system is required within a matter of months.

The multi-lingual challenge is one of the reasons that many recent ap-
proaches to MT have opted to learn translation information automatically
from bilingual corpora (i.e. text that is given in parallel in two languages),
most commonly using example-based or statistical methods that derive mod-
els of translation. Statistical and example-based approaches focus on ana-
lyzing the sequence of words and their translation. For example, how does a
given sequence of words translate into another language, and (in the case of
statistical MT) with what probability? Statistical and example-based MT
approaches have the advantage of being derivable from bilingual text, thus
overcoming the development bottleneck. However more recently, the com-
munity has noted once again the potential beneficial impact of structural
and feature information on translation quality. Structural information can

9

10 CHAPTER 1. INTRODUCTION

be in the form of constituent transfer: for example, how is a noun phrase or
a sentence constructed in a language, and how does the ordering of words
and groups of words change when translated into another language? In
such approaches, the composition and hierarchical organization a sentence
is analyzed, and rules are given for how the hierarchy transfers into an-
other language. For example, the English sentence ‘THE CAT SLEPT’
is considered to consist of two constituents, a noun phrase ‘THE CAT’ and
‘SLEPT’. Structural transfer information would then address such questions
as whether the noun phrase and verb phrase appear in the same order in an-
other language, whether the noun phrase appears in the same composition,
a determiner ‘THE’ followed by a noun ‘CAT’, and if not, how this noun
phrase is expressed, etc. Feature information addresses another set of prob-
lems. For example, the noun phrase ‘THE CAT’ is considered to be singular,
as there is only one ‘CAT’. Feature information then addresses such problems
as how singular is expressed in the other language, and how it can be assured
that the MT system will produce the equivalent of one ‘CAT’ rather than
of many ‘CATS’. Naturally, things become quite more complicated when
the transfer information is to be used on sentences of 30 or 50 words with
complicated structural composition. Despite such complications, structural
and feature information can be very useful for translation: it allows the
grouping of words into meaningful elements (such as noun phrases), that
can then be translated as a whole. It further allows the system to capture
more information about the sentence, for example whether a noun phrase is
singular. Such information can be used to produce the correct translation.

Most statistical and example-based systems do not infer structural or fea-
ture information. This thesis, on the other hand, ultimately aims at making
use of such structural information by learning syntactic transfer rules, i.e.
transfers between structures in one language and structures in another lan-
guage. The transfer rules are learned from a very small bilingual corpus.
In particular, this work specifically targets scenarios where bilingual data
resources are extremely limited, and where the target language is a major
language such as English, and the other language is a minor language. We
define a minor/major language pair simply as a pair of languages where 1)
little or no parallel data is available, and where 2) there is no syntactic parser
for the minor language. Parallel data is data that is given in one language
with the translation of each sentence or phrase in the other language. A
syntactic parser is a tool that gives the structural composition of a sentence
in the form of a tree.

Our definition of minor/major does not necessarily imply that there
are no other resources (such as monolingual data, morphology modules,

1.1. MOTIVATION 11

etc.) available for the minor language. This can in fact be the case, and
in particular a morphological analyzer for the minor language is put to
effective use in our approach. In addition, we also make use of translation
lexicons that specify the translation of individual words or short sequences
of words, and also contain information about the part of speech (e.g. noun,
adjective, verb, etc.) of the translated words. The experiments reported
in this thesis use Hebrew and Hindi as minor languages. Furthermore, the
transfer rules that are learned are directed: run-time translation is always
done from Hebrew or Hindi into English.

The learned grammar rules consist of both source- and target-language
information where the source language (SL) is the language translated from
and the target language (TL) is the language translated into. The rules
contain a context-free part that captures structural information and an op-
tional set of unification constraints that capture feature information. When
the rules apply to unseen test data, they provide a means to analyze the SL
sentence or phrase and map its structure into a structure that is appropri-
ate for the TL. The run-time system that uses the learned rules to produce
translations is a statistical transfer system consisting of a transfer engine
that produces partial translations, and a decoder that finds the most likely
combination of the partial translations. Thus, the learned rules are used in
the context of a larger translation system.

The algorithms laid out in this thesis infer syntactic transfer rules from
bilingual, word-aligned text. The rules are learned in three stages. In the
first, we create hypothesis rules, so-called seed rules, for each training ex-
ample. The seed rules can only apply in isolation, and reflect the training
examples very closely. The following learning step, Compositionality, aims
at generalizing from the training data by capturing higher-level structural
information, resulting in rules that can combine with each other. In the
third learning step, we add grammatical constraints to the rules, thereby
restricting when a rule can apply, or restricting what translations a rule can
produce.

A major constraint imposed on this work, and a major difference between
this and related projects, is that the work described here does not assume
the availability of a parser for the minor language. Due to the absence of
a parser for one language, we frame the learning problem as the task of
learning 1) the structure of the language for which there is no parser, and 2)
the transfers of structures between the two languages. More specifically, the
rule learner must make use of a target-language parser at training-time, but
must infer rules that can be used for source language parsing at run-time.
This is a potentially confusing point: the training system (this thesis) has

12 CHAPTER 1. INTRODUCTION

available to it parses for the target-language side of each bilingual training
example. In our language pairs, this means that we have the parses for all
English sentences in the training examples. At run-time, we do not have
the parses for the source language, in our case Hebrew or Hindi. Instead,
during training we must infer rules that can, at run-time, parse the Hebrew
or Hindi input. This inference must happen using only the English parse.
At run-time, the English parse of the training examples is not used, as
we are translating into English. This is a challenging problem, because it
essentially involves inferring the grammar of one language using parses for
another language.

The other major difference between this and related work is that because
of our interest in minor languages, we are forced to learn from extremely
small bilingual datasets. In fact, most of the grammars described in this
thesis were learned from a bilingual training set of 120 sentences and phrases.

One big challenge of this thesis is to learn transfer rules using a variety of
imperfect and sometimes inconsistent resources, and do so fast, i.e. without
large amounts of language-specific engineering. Most notably, we use an
English syntactic parser, morphology modules for both languages, a bilingual
dictionary (i.e. a translation lexicon), and a small bilingual corpus. One of
the challenges of this work is to integrate the different knowledge sources
meaningfully, especially when they contradict each other.

This document is structured as follows: we will first state the research
goals and give the thesis statement as well as a thesis statement. We will
then describe related work in the area. This is followed by a discussion of
the training and run-time systems: what is the input of the rule learning
system, what is the output, and how is this output used to produce trans-
lations at run-time? We will then discuss each of the three rule learning
phases. The following chapter presents an evaluation of the learned rules on
Hebrew→English and Hindi→English translation tasks. We conclude with
lessons learned, contributions of this thesis to the MT community, and a
discussion of possible future work.

1.2 Research Goals

In this section, we summarize the goals of the presented research. The
premise of the thesis is to automatically learn transfer rules for Machine
Translation from bilingual text. More specifically, we target a difficult sce-
nario where rules are learned from 1) a very small corpus and 2) for an
unbalanced language pair where a parser is available for only one of the

1.2. RESEARCH GOALS 13

languages. The learned rules are to be used in a run-time system that com-
bines transfer and statistical techniques. In the following, we discuss each
of our research goals. At the end of the document, we will return to these
goals, summarize how they were accomplished, and state in what way they
constitute novel research contributions.

1. Develop a framework for learning transfer rules from bilin-
gual data. The first goal of the thesis work is to develop a novel
framework for learning syntactic transfer rules. Many groups have
inferred structural or dependency information from text, but our ap-
proaches is novel in that the rules include 1) a context-free backbone
and 2) unification constraints. Learning both of these enables us to
capture a wide variety of linguistic phenomena.

2. Improve of the quality of MT output by automatically learned
rules. The inferred rules are intended to be used in an MT system in
order to improve translation quality. The system is a hybrid transfer
and statistical system, where the transfer rules are used to produce
a possibly large number of hypothesis translations, and a statistical
selection module is used to choose between the hypotheses. The rule
learning algorithms are to be designed such the rules can be used in
this hybrid system effectively.

3. Address limited-data scenarios with ‘frugal’ techniques. This
thesis is aimed at scenarios where bilingual data is in sparse supply
or not available. In order to overcome the lack of a large bilingual
corpus, the rules are learned from a carefully designed, but extremely
small corpus that is translated and word-aligned by a bilingual user,
meaning that the user specifies which words translate into each other.
This small corpus serves as the only training data for the rule learning
system. The goal is to demonstrate that meaningful transfer rules can
be learned from very small datasets, therefore making a case for MT
under frugal data scenarios.

4. Learn rules in the absence of a parser for one of the languages.
The language pairs that are targeted in this work are ‘unbalanced’,
meaning that a syntactic parser is available for one of the languages
in the pair (the major language, in our system the target language),
but not for the other (the minor language, in our system the source
language). The learning algorithms must be designed to overcome the
lack of syntactic information for the minor language, and must learn
such information automatically.

14 CHAPTER 1. INTRODUCTION

5. Combine a set of different knowledge sources in a meaningful
way, and do so quickly. The premise of this approach is to com-
bine as many existing knowledge sources as possible. The following
resources are used in the approach:
Required resources: 1) small word-aligned bilingual corpus, 2) parser
for major language
Optional resources: 1) morphology module for major language, 2)
morphology module for minor language, 3) bilingual dictionary

One of the challenges of this thesis is to combine these knowledge
sources meaningfully and quickly, i.e. without extensive language-
specific engineering, and to produce rules that can in fact improve
translation quality. This is challenging because all of the resources
are incomplete, they achieve good but not perfect accuracy, and they
sometimes disagree.

Note that we list here the resources required for the learning phase,
i.e. the phase where the transfer rules are inferred. A different set
of resources is necessary for the run-time MT system in which the
learned rules are embedded. The run-time systems will be discussed
in section 1.4.2.

6. Encouraging MT research in the direction of incorporating
syntax into statistics-based systems. There has recently been
increased interest in combining syntactic and statistical information
for Machine Translation. This thesis aims at demonstrating that this
combination can be done successfully as well as automatically. We
envision that the combination of different approaches will become the
standard accepted approach in the future, and our goal is to encourage
this trend.

7. Learn human-readable rules that can be improved by an ex-
pert. The automatically learned rules are in a format that is human-
readable by expert users. This has two big advantages. The first ad-
vantage is the rules can be proof-read and refined by a computational
linguist who knows both languages, or by a rule refinement system
that analyzes the behavior of the rules and corrects them based on the
output they produce. (Font-Llitjós, 2004) has developed algorithms
for this task, and has simulated automatic rule refinement manually,
thus showing that both manual and automatic rule correction are fea-
sible. The second advantage is that the automatically learned rules
can easily be used in conjunction with manually written rules that

1.3. THESIS STATEMENT 15

follow the same formalism. This allows for maximum flexibility: our
system uses produces a set of rules that could be refined or expanded
by an expert user.

1.3 Thesis Statement

The thesis statement is given as follows:

1. Given bilingual, word-aligned data, and given a parser for one of the
languages in the translation pair, we can learn a set of syntactic
transfer rules for Machine Translation. The rules are comprehen-
sive in the sense that they include analysis, transfer, and generation
information.

2. The rules are learned from a small bilingual corpus, and the learning
algorithms are optimized for this task.

3. The rules consist of a context-free backbone and unification con-
straints, learned in three separate stages.

4. The resulting rules form a syntactic translation grammar for the lan-
guage pair and are used in a statistical transfer system to trans-
late unseen examples.

5. The translation quality of a run-time system that uses the learned
rules is superior to a system that does not use the learned
rules on Hebrew→English and Hindi→English translation tasks.

6. The translation quality is comparable to the performance
using a small manual grammar written by an expert on the
Hebrew→English translation task.

7. The thesis presents a new approach to learning transfer rules
for Machine Translation in that the system learns syntactic models
from text in a novel way, aiming at producing rules of the same
type that a human grammar writer would design.

1.4 Thesis Summary

In this section, we give a summary of the thesis, presenting the rule formal-
ism, the MT system within which the learned rules are embedded, and a
brief outline of the learning algorithms and evaluation results.

16 CHAPTER 1. INTRODUCTION

1.4.1 Transfer Rule Formalism

In order to discuss the learning algorithms, we must first define the goal, i.e.
what kinds of transfer rules we wish to infer. An example of a Hebrew→English
rule looks as follows, presented here with a possible parallel sentence pair
that this rule could translate.

Parallel sentence pair:

Hebrew: H &NIN H RB B BXIRWT

Gloss: the interest the widespread in+the election

English: the widespread interest in the election

Transfer rule:

NP::NP ["H" N "H" ADJ PP] -> ["THE" ADJ N PP]

(

(X2::Y3)

(X4::Y2)

(X5::Y4)

((Y3 NUM) = (X2 NUM))

)

Rules consist of a context-free part and possibly a set of unification
constraints. The first context-free component of every transfer rule is the
source and target language type information, ‘NP’ in the sample rule above.
The type information is followed by a part-of-speech or, more generally,
component sequence, both for the source and the target languages. In the
example rule, the component sequences are [“H” N “H” ADJ PP] for the SL
and [“THE” ADJ N PP] for the TL. Entities enclosed in quotes are actual
lexical items, whereas entities that are not enclosed in quotes are parts of
speech (i.e. a N can be filled by any noun) or else generalized constituents
(e.g., PP is a prepositional phrase). At run-time, the SL component sequence
is used to parse an input sentence, both to build a SL parse tree, and to
check if the rule applies to the input sentence. The TL component sequence
is used to build the TL tree that corresponds to the SL parse tree. This
is done by transferring the SL tree into the TL using the alignments, e.g.,
(X2::Y3) above, indicating the that second SL component (‘&NIN’) aligns to
the third TL component (‘INTEREST’). “X0” is reserved for the top-level,
i.e. the root node “NP”, on the source language side, and “Y0” is reserved
for the target language top level, also “NP” here.

All rule parts described so far are context-free, and all are required.
Unification constraints, on the other hand, are optional. The above rule

1.4. THESIS SUMMARY 17

has one unification constraint, ‘((Y3 NUM) = (X2 NUM))’. Constraints are
used as specification information, specifying to what sentences a transfer
rule applies, what types of features are required when generating the target
language sentence, and what feature values transfer from the source into the
target language.

One way to understand the rules is that they encode tree-to-tree transfers
at different levels. Each individual rule captures a small tree-to-tree transfer.
When the rules are combined, the x-side type and component sequences
combine to a large tree which is then mapped to an equivalent tree on the
y-side, which is again built from smaller trees from individual rules.

1.4.2 Run-Time System: Transfer Engine and Decoder

The transfer engine is a system that takes as its input a translation lexicon,
a set of rules of the formalism described above, morphological information
for one or both languages if available, and source language input text, and
it creates target language output. This tool was developed by Erik Peter-
son (Peterson, 2002).

The transfer engine uses the rules to analyze the source language sen-
tence. It first builds the set of all those parse trees that are licensed by
both the lexicon and the grammar rules (if there are any). The resulting
set is then transferred into the target language, applying constraints and
reorderings as specified in the rules. The final product is a (generally large)
‘lattice’ that contains all possible partial translations for a given input sen-
tence. The individual lattice entries, i.e. partial translations, are referred to
as ‘arcs’. Arcs are indexed by the portion of the input sentence that they
span. Individual arcs rarely cover the entire input sentence. Rather, the
lattice contains all possible partial translations of all input chunks of length
1 up to the sentence length. Note that ‘all possible translations’ is defined as
all translations that are licensed by the grammar and lexicon. The rules are
applied to the input sequence, and not to all permutations of input words,
i.e. the rules must apply to input word sequences in the order in which
the input words are given. The design and implementation of the transfer
engine is not in the scope of this thesis, but is described in (Peterson, 2002).

After the transfer engine produces a list of all possible partial trans-
lations, the lattice is processed by a statistical decoder. This tool is the
statistical decoder that is used in the in-house statistical MT system. For
details, see (Vogel et al., 2003).

The decoder uses an English (or other major language) language model in
order to produce the most likely full translation. It does this by performing

18 CHAPTER 1. INTRODUCTION

a Viterbi search through the lattice, selecting those arcs whose combination
will result in the full translation with the highest probability. For more
details on the statistical decoder, as well as the entire run-time system,
please refer to (Lavie et al., 2003).

1.4.3 Training Data

The rule learning training corpus that is used for the experiments described
in this thesis is a small but carefully designed corpus that is aimed at cover-
ing a wide variety of structural phenomena. It consists of 120 sentences and
phrases, and it covers different compositions, i.e. examples of different se-
quences of parse child nodes, of adjective phrases (ADJPs), adverb phrases
(ADVPs), noun phrases (NPs), prepositional phrases (PPs), SBARs and
sentences (Ss). These types include a small number of subtypes such as SQ
(a question sentence).

For illustration, we give here several examples of different compositions
of ADJPs. We would have examples of the following composition (among
others):

ADJP -> ADJ

ADJP -> ADV ADJ

ADJP -> ADV ADJ PP

etc.

For each of the types of structures, we have collected a number of in-
stances of different composition. In order to obtain good coverage of the
most frequent compositions, we analyzed the frequency of compositions that
were observed in the Penn Treebank (Marcus et al., 1995), and found exam-
ples for the most frequent structures.

The structural elicitation corpus consists of 120 sentences and phrases
in English. The bilingual data is obtained via a process of elicitation, where
a bilingual user translates the data from English into their native language
and specifies the word alignments. Word alignments are translations of
individual words or phrases into each other. The structural corpus was
translated into both Hebrew and Hindi. Unless otherwise noted, all learned
grammars that are described in this document were learned from this corpus,
which is referred to as the ‘structural corpus’.

As was said above, the training algorithm makes use of the English parse
of each parallel training example. For this reason, we include the parses in
the training data. Some examples of training examples can be found below,

1.4. THESIS SUMMARY 19

where we present the bilingual sentence pair together with the user-specified
word alignments and the English parses.

English: in the forest

Hebrew: B H I&R

Alignment: ((1,1),(2,2),(3,3))

C-Structure:(<PP> (PREP in-1)(<NP> (DET the-2)(N forest-3)))

English: quickly

TL: B MHIRWT

Alignment: ((1,1),(1,2))

C-Structure:(<ADVP> (ADV quickly-1))

English: the boy ate the apple

Hebrew: H ILD AKL AT H TPWX

Alignment: ((1,1),(2,2),(3,3),(4,5),(5,6))

C-Structure:(<S> (<NP> (DET the-1)(N boy-2))(<VP> (V ate-3)

(<NP> (DET the-4)(N apple-5))))

English: a dispute with the school board

Hebrew: SKSWK &M W&D BIT H SPR

Alignment: ((2,1),(3,2),(4,5),(5,4),(5,6),(6,3))

C-Structure:(<NP> (<NP> (DET a-1)(N dispute-2))

(<PP> (PREP with-3)(<NP> (DET the-4)(N school-5)

(N board-6))))

English: old

Hebrew: I$N

Alignment: ((1,1))

C-Structure:(<ADJP> (ADJ old-1))

English: where our interests lie and what we must do

Hebrew: HIKN $ H AIN@RSIM $LNW NMCAIM W MH $ ANXNW CRIKIM

L&$WT

Alignment: ((1,1),(2,5),(3,4),(4,6),(5,7),(6,8),(7,10),(8,11),

(9,12))

C-Structure:(<SBAR> (<SBAR> (<WHADVP> (WH where-1))

(<S> (<NP> (POSS our-2)(N interests-3))(<VP> (V lie-4))))

(CONJ and-5)(<SBAR> (<WHNP> (SUBORD what-6))

(<S> (<NP> (PRO we-7))(<AUX> (AUX must-8))

20 CHAPTER 1. INTRODUCTION

(<VP (V do-9)))))

English: aware that the money was gone

Hebrew: MWD& $ H KSP N&LM

Alignment: ((1,1),(2,2),(3,3),(4,4),(5,5),(6,5))

C-Structure:(<ADJP> (ADJ aware-1)(<SBAR> (SUBORD that-2)

(<S> (<NP> (DET the-3)(N money-4))(<AUX> (V was-5))

(<ADJP> (ADJ gone-6)))))

English: because he was hungry

Hebrew: KI HWA HIH R&B

Alignment: ((1,1),(2,2),(3,3),(4,4))

C-Structure:(<SBAR> (PREP because-1)(<S> (<NP> (PRO he-2))

(<VP> (V was-3)(<ADJP> (ADJ hungry-4)))))

1.4.4 Seed Generation

Seed Generation is the first of three learning phases. It takes as input the
training corpus described in the previous section, uses a variety of resources
such as the parser for the major language (TL), and produces an approx-
imation of learned transfer rules. For each training example, it constructs
an initial transfer rule called a seed rule. The seed rule is a complete trans-
fer rule in format: it contains SL and TL type information, component
sequences, and alignments. In other words, it is a fully functional trans-
fer rule, transferring an SL structure into a TL structure, where the minor
language (Hebrew/Hindi) is the source language and the major language
(English) is the target language.

For each training example, the task of the Seed Generation module is
to produce the following rule parts: SL type information, TL type infor-
mation, SL component sequence, TL component sequence, and word-level
alignments.

The following is an example of a flat rule:

Parallel sentence pair:

Hebrew: H &NIN H RB B BXIRWT

Gloss: the interest the widespread in+the election

English: the widespread interest in the election

Transfer rule:

NP::NP ["H" N "H" ADJ PREP DET N] -> ["THE" ADJ N PREP DET N]

1.4. THESIS SUMMARY 21

(

(X2::Y3)

(X4::Y2)

(X5::Y4)

(X6::Y5)

(X7::Y6)

)

1.4.5 Structural Learning

The second learning phase aims at inferring rules of higher-level structures.
Wherever possible, the rules learned in this section capture transfer be-
tween constituents such as noun phrases, prepositional phrases, etc. When
generalization to the constituent level is impossible or undesired, the rules
transfer POS sequences and/or lexical items. Thus, the structural rules pro-
vide a mixture of transfer at different levels, depending on what can safely
be inferred from the training data.

Before designing the learning algorithms, we must specify what types of
structures can and should be learned from the data. Otherwise, the learning
algorithm could infer rules that are either faulty or cannot be used by the
run-time system. In chapter 7, we discuss in detail the types of possible and
meaningful transfers.

The basic idea of structural learning is to infer compositional rules, so
that the rules can combine with each other and cover a wide variety of
phenomena at run-time. This is achieved by traversing the English parse
from the top-down, and introducing a compositional element for a subnode
wherever appropriate. Two basic settings are possible for Compositionality
Learning: assuming Maximum Compositionality, or not assuming Maximum
Compositionality, described in chapter 7.

In both settings, the goal of Compositionality is to generalize as much
as possible over the training data and thus produce rules that will apply
to a variety of new contexts. By contrast, Unification Constraint Learning
aims at limiting the applicability and/or the output of the rules. In this
way, Compositionality and Constraint Learning together serve to strike a
balance between generality and overgeneralization that is supported by the
training data.

An example of a compositional rule can be seen below:

Parallel sentence pair:

Hebrew: H &NIN H RB B BXIRWT

22 CHAPTER 1. INTRODUCTION

Gloss: the interest the widespread in+the election

English: the widespread interest in the election

Transfer rule:

NP::NP ["H" N "H" ADJ PP] -> ["THE" ADJ N PP]

(

(X2::Y3)

(X4::Y2)

(X5::Y4)

)

1.4.6 Learning Unification Constraints

The third learning phase adds unification constraints to the context-free
rules produced in the previous two phases. Unification constraints can ei-
ther 1) limit their applicability to certain contexts (thereby limiting parsing
ambiguity), 2) ensure the passing of a feature value from source to target
language (thereby limiting transfer ambiguity), or 3) disallow certain tar-
get language outputs (thereby limiting generation ambiguity). As in the
previous chapter, the constraints are automatically learned from data. Con-
straints can be subdivided into value constraints with specific feature values
(e.g., ((X1 NUM) = S)) and agreement constraints that enforce agreement
between features (e.g., ((X1 NUM) = (X4 NUM))). A taxonomy of possible
and relevant constraints can be found in section 8.3.

Constraint Learning can again be subdivided into three main phases. In
the first phase, basic constraints, mostly in the form of value constraints, are
introduced using the morphology modules. In the second phase, the basic
constraints are generalized to agreement constraints wherever appropriate.
Finally, most of the basic constraints are eliminated, unless they can serve
to disambiguate between structures during transfer.

The basic constraints gather as much information as is available from
the morphology modules and introduce a large set of value constraints. The
goal of the basic constraint phase is to obtain all morphological features
for each word and mark it in the transfer rule as a value constraint. Such
information can be obtained from the morphology modules. This module
also determines what features should be marked on the constituent level,
not only on the word level. For example, NPs should be marked for number
and definiteness. This is important when rules are used in combination with
each other. Some rules may only be valid when used with a singular NP, for
example.

1.4. THESIS SUMMARY 23

Agreement constraints are learned from the value constraints that were
produced as basic constraints. This is achieved again in three distinct
phases. The first two phases focus on intra-lingual constraints, i.e. SL
constraints and TL constraints. Since one language does not influence what
agrees in the other language (e.g., Hebrew has no influence on subject-verb
agreement in English), these constraints can be learned separately. Value
constraints are generalized to agreement constraints if it is found that two
values should always agree. For example, if two components such as X1 and
X4 are generally marked with the same number value, then an agreement
constraint should enforce that the rule applies only if this is the case. The
decision about whether an agreement constraint should be introduced can
be made by considering the full training set, and collecting statistics of how
often components agree in a certain feature value, and how often they do
not. We employ two types of tests, depending on how many data points
are available for a specific potential agreement constraint. The first test is
a likelihood ratio test, and the second is a heuristic fallback. All agreement
constraints are learned in this fashion.

The last Constraint Learning phase determines which of the value con-
straints should be retained and which ones unnecessarily limit the applica-
bility of the rules. We retain only those value constraints that can be used
to disambiguate: in some cases, a specific feature value determines what
TL component sequence should be produced. This can be tested automat-
ically by finding examples where a specific value resulted in a specific TL
structure, whereas a different value produced a different TL structure.

Below we give an example of a rule annotated with a unification con-
straint:

Parallel sentence pair:

Hebrew: H &NIN H RB B BXIRWT

Gloss: the interest the widespread in+the election

English: the widespread interest in the election

Transfer rule:

NP::NP ["H" N "H" ADJ PP] -> ["THE" ADJ N PP]

(

(X2::Y3)

(X4::Y2)

(X5::Y4)

((Y3 NUM) = (X2 NUM))

)

24 CHAPTER 1. INTRODUCTION

1.4.7 Summary of Results

In this section, we present very abbreviated evaluation results. We evaluated
our learning algorithms most extensively on a Hebrew→English evaluation
task. While in section 9 we present different sets of results for different
corpora, different system settings, as well as for Hindi→English translation,
we will present here only briefly evaluation results for the default settings.
We use the standard automated evaluation metric BLEU (Papineni et al.,
1998), as well as a slightly modified version, ModBLEU (Zhang & Vogel,
2004), and an evaluation metric called METEOR (Lavie et al., 2004). Note
that none of these metrics is normalized between 0 and 1, so that what
is crucial is the relative difference in score between the systems, not the
absolute scores. The evaluation was run on an unseen test set of 62 sentences
of newspaper text with two reference translations (test set 2). We compare
the run-time system in three settings: one without any grammar rules, i.e.
a statistical-only system, one with the learned grammar rules, and one with
a small manually written grammar. The results can be found in Table 1.1.

Grammar BLEU ModBLEU METEOR

No Grammar 0.0565 0.1362 0.3019

Manual Grammar 0.0817 0.1546 0.3241

Learned Grammar 0.0780 0.1524 0.3293

Table 1.1: Evaluation results for Hebrew→English translation on test set 2
of 62 sentences of newspaper text.

It can be seen from the results that our approach results in significant
gains in translation performance. The relative improvement depends in part
on what evaluation metric is used. However, for all three evaluation metrics
the performance gain is considerable as well as statistically significant. It can
also be observed that the METEOR score assesses the translation quality
of the fully automatic system as higher than with the manually written
grammar. This is a very positive result for our approach.

Chapter 2

Related Work

In this chapter, we discuss related work and situate this thesis within the
Machine Translation field. In particular, we discuss several approaches to
MT and how they relate to the present thesis. We discuss the advantages and
disadvantages of previous approaches, and compare them to the strengths
and weaknesses of the approach presented here.

We will further compare different approaches to inferring structural in-
formation from monolingual or bilingual text. The automatic inference of
generalized information has received a fair amount of attention especially
in the example-based and statistical MT frameworks. Remarkably little has
been done on the inference of complex rules within a transfer-based sys-
tem. It should however be noted that the boundaries between the classical
approaches to MT become blurred under all the paradigms discussed here.
For example, a statistical system that incorporates context-free transfers is
essentially a hybrid between a transfer and a statistical system. Similarly,
our system is a hybrid transfer-statistical approach, as will be described in
chapter 3 below.

Finally in this chapter, we will address the task of building MT systems
from small datasets. The approach described in this thesis learns from a
very small, but carefully developed corpus. Similar approaches have been
taken by a few other research groups. The idea of a carefully constructed
corpus is especially attractive when building MT systems for language pairs
where little bilingual data is available to begin with.

It is not straightforward to situate our work within the larger MT com-
munity. This is because a large number of papers describe work that is
related to our approach in some way. To our knowledge, however, nobody
has addressed the particular problem that we are addressing in this thesis,

25

26 CHAPTER 2. RELATED WORK

and under the circumstances we propose. For instance, some systems learn
transfer rules for transfer-based MT, but they generally use parses in both
languages. Other systems only use a parser for one language, but they only
allow for a small number of reorderings and do not encode linguistic features.

2.1 Approaches to Machine Translation

2.1.1 Transfer-based Approaches to MT

Especially in the 1980s and early 1990s, MT systems have relied heavily on
hand-written rules: transfer rules that specify how a (syntactic or semantic)
structure in one language maps to the corresponding structure in another
language. Under this paradigm, the translation task is split into three dis-
tinct phases: 1) analysis of the SL sentence, which generally includes syn-
tactic and morphological analysis, 2) transfer into a TL representation, and
3) generation of a TL sentence, again using syntactic and morphological
information. The knowledge is stored in two separate resources, the gram-
mar (i.e. the set of transfer rules) and the lexicon. Both of these resources
together serve to accomplish the three steps of translation. The lexicon and
grammar store varying amounts of information, and how much information
is stored in each depends on the specific system design.

A classical example in this context is Systran (Hutchins & Somers, 1992;
Senellart et al., 2001). Other systems that have received a large amount of
attention include the METAL system (McCormick, 1998; Thurmair, 1990),
the GETA-Ariane system (Boitet, 1988), and finally the Eurotra system
(Alberto Alonso, 1990; Steiner, 1990).

The system within which this thesis was developed fits best into the
framework of transfer-based MT. The Avenue system, as described below,
also employs a separate lexicon and a grammar that encodes transfers be-
tween source and target language. There are a number of differences between
our system and previous systems, however. The first is that in the Avenue

system transfer is combined with a statistical decoder, resulting in a hybrid
MT system. Hybrid MT systems have been addressed by a minority of re-
searchers and are described in section 2.1.3. The second difference is that
unlike in the classical approach, the transfer rules, i.e. the grammar, in the
Avenue system are learned automatically. This is the goal of this thesis.

The approach described here can thus be summarized as follows: it aims
at overcoming the development bottleneck for transfer-based MT in the
context of a hybrid transfer-statistical system.

2.1. APPROACHES TO MACHINE TRANSLATION 27

2.1.2 Statistical and Example-Based MT

While the classical transfer-based approach can achieve reasonably high
translation quality, it also takes many person years to create a system that
can handle a wide variety of sentence constructions and will perform well
on unseen text. One approach to overcoming the development bottleneck is
the one described in this document: learning grammar rules automatically
from bilingual text.

Other approaches, which currently receive considerable treatment in the
research community, are corpus-based approaches, namely statistical MT
(SMT) and example-based MT (EBMT). Much attention has recently been
given to the rapid deployment of MT systems: given a language pair, how
quickly can we ramp up a system that can produce reasonable quality out-
put?

EBMT builds a database of word- and phrase-level associations (e.g.,
(Sato & Nagao, 1990),(Brown, 1997)) from a bilingual corpus. The approach
is based on the observation that the bilingual corpus is essentially a database
of correct translations. If the system can determine which parts of the SL
sentences translate into which parts of the TL sentences, then it can build
a repository of known correct translations. At run-time, a SL sentence is
matched as a whole or in part against the translation examples, and is
translated using those examples. The partial translations are then merged
to form a full translation of the SL sentence.

SMT is similar in spirit: it builds a ‘memory’ of word and phrase trans-
lations from a bilingual corpus. The approach is however very different.
Most SMT systems are built based on a noisy channel model that allows the
translation problem to be decomposed into 1) a translation modeling prob-
lem and 2) a target language modeling problem (e.g., (Vogel et al., 2003),
(Brown et al., 1993), (Och & Ney, 2002)). The bilingual corpus is used to
derive translation probabilities between words and phrases, and (possibly in
conjunction with a monolingual TL corpus) to derive a language model of
the target language. At run-time, the translation model is used to build a
list of possible partial translations, and then the target language model is
used to choose between the partial translations and to merge them into a
full translation. Because the problem was framed as a noisy-channel model,
the run-time SMT system is generally referred to as a ‘decoder’.

EBMT and SMT are indirectly related to the work presented in this
thesis: In the Avenue system, we employ a statistical decoder much like
in an SMT system to disambiguate between partial translations (described
in greater detail in chapter 3). The statistical decoder takes in a list of

28 CHAPTER 2. RELATED WORK

possible partial translations. It then optionally reranks them according to
a translation model that is learned from a bilingual corpus. Finally, it finds
the most likely combination of partial translations, based on an English
language model, and merges them to a full translation. In this sense, the
Avenue hybrid system is a hybrid system between a transfer-based and a
statistical system.

Further, both EBMT and SMT are relevant to the present work because
many researchers have addressed the problem of incorporating syntactic or
other generalized structural information within SMT or EBMT systems.
Such approaches blur the boundaries between SMT, EBMT, and transfer-
based approaches, and many of the systems that identify themselves as SMT
or EBMT papers are nevertheless relevant to this work. These approaches
will be described in 2.2.

2.1.3 Hybrid Approaches to MT

As already mentioned briefly above, the approach described here learns
transfer rules that are used in the Avenue system, a hybrid MT system
that combines syntactic and statistical information.

Hybrid MT is generally based on the idea that symbolic (i.e. syntactic,
morphological, etc.) information can be very useful for capturing and trans-
ferring linguistic information, but that those methods often result in a large
number of ambiguities. For this reason, the systems create a large number of
(partial) hypothesis translations using symbolic methods, and then employ
a statistical model to extract the best hypotheses and to form a full transla-
tion. This is the case in the system described in (Knight et al., 1995; Knight
et al., 1996), where the system first produces a syntactic representation of
the sentence, which is then mapped to a semantic representation, where am-
biguities are preserved. The semantic representations are then ranked using
a statistical model. A symbolic decoder then produces candidate transla-
tions, which are again reranked and filtered with a statistical model, more
specifically a target language model.

An approach that is related to the one presented here, ‘Generation-Heavy
MT’ (Habash & Dorr, 2002; Habash, 2002; Ayan et al., 2004) passes a rich
set of translation hypotheses to a language model in the target language,
which then extracts the best combination of hypotheses. The approach
targets in particular language pairs that differ greatly in structure as well
as in the availability of syntactic and semantic tools. SL analysis is done
with a dependency parser. Then the lexical items on the dependency tree are
translated using a translation lexicon. This is followed by a series of TL steps

2.2. AUTOMATIC INFERENCE OF GENERALIZED STRUCTURE 29

that deal with categorial variation, subcategorization variation, structural
expansion (such as head swapping) to handle translation divergences, etc.
These steps are hand-coded by humans. A TL language model then picks
between competing partial translations to form a full translation.

In this thesis, we describe an approach to learning transfer rules that
are used in a hybrid MT system. The design of the hybrid MT system
is not directly part of this thesis. However, it is important to discuss hy-
brid approaches here: the transfer rules that are learned automatically often
overgeneralize in order to cover a wide variety of structures. The fact that
a statistical decoder is charged with reranking and filtering the hypothesis
translations affects the design of the learning algorithms described in this
thesis. Seed Generation and Compositionality are aimed specifically at gen-
eralizing from the training data as much as possible (and plausible). This
decision fits with the overall system design of a symbolic, overgeneralizing,
module and a statistical module that chooses between hypothesis transla-
tions.

2.2 Automatic Inference of Generalized Structure

2.2.1 Monolingual Grammar Induction

When framing the problem of grammar induction very generally, statisti-
cal parsing techniques should be mentioned. Most modern statistical pars-
ing techniques view the problem of parsing as a supervised learning prob-
lem (Charniak, 2000), (Collins, 2003). Here, implicit grammars are learned
from a large corpus of parsed data, usually the Penn Treebank (Marcus
et al., 1995).

Some projects have focused on less supervised methods. (Hwa, 1999)
describes an approach to grammar induction from less supervised data by
pre-selecting a smaller corpus to label. An unsupervised approach starting
from a POS tagged, but not parsed, corpus is described in (Klein & Manning,
2001). Here, a context-free grammar is induced based not on a hand-parsed
corpus, but rather on linguistic principles of constituency. A POS sequence
is described in terms of the tags that surround it, how many different such
contexts there are, how frequent they are, etc. This allows not only for the
detection of salient POS patterns (by the entropy of the contexts it appears
in), but also for the definition of a similarity metric between sequences.
Then a context-free grammar can be learned by clustering techniques. The
learned grammars, as expected, do not perform as well on parsing as models
trained in a supervised fashion. They do however capture linguistically

30 CHAPTER 2. RELATED WORK

viable rules in an unsupervised fashion. Like most unsupervised, statistics-
based techniques, this technique requires a larger training corpus than the
one we use in the approach described here.

The work described in this thesis can be viewed as falling within the semi-
supervised methods. This is because we assume the existence of a parser
for the major language. For the minor language, however, we only assume
that we can reasonably reliably obtain parts of speech and morphological
information.

2.2.2 Inference of Structural Rules for Transfer-based MT
systems

A few researchers have proposed approaches to learning structural infor-
mation from bilingual data within the framework of transfer-based systems.
Generally, those systems differ from ours in that they infer transfers by pars-
ing both the source and the target language sentences at training time. Such
algorithms are designed to extract generalized transfers from the aligned
trees.

It should be noted that some of the systems described in this section
could also be considered generalized EBMT systems (cf. section 2.2.3). As
was said above, the boundary between transfer-based MT and example-
based MT becomes blurred, especially when the transfers are (partially)
lexicalized, and when they are learned automatically from bilingual text.
However, the systems described in this section fit also into the transfer
paradigm, in particular because they use full parses as training data.

(Menezes & Richardson, 2001) use such an approach: pairs of aligned
sentences in ‘Logical Form’ (LF) serve as input to the training algorithms.
The LF is essentially a dependency structure that is tagged with morpho-
logical information. The task of the training algorithm is then to 1) find
correct alignments between the logical forms, and 2) break the full logical
forms into smaller parts that can be used as transfer rules. Alignments be-
tween sentence parts are allowed only if they meet linguistically motivated
criteria. For example, a V+Object combination can be aligned to a verb,
but not to an NP. The extracted rules are at least partially lexicalized; each
rule must contain at least one lexical item on each language side. The trans-
fer rules are generalizations in that they contain variables such as parts of
speech or constituent labels that can be filled by other rules.

Another approach that uses parse trees for both languages as training
data is described in (Meyers et al., 1998). This system also grows alignments
between parsed sentence pairs, where the parser of choice is a dependency

2.2. AUTOMATIC INFERENCE OF GENERALIZED STRUCTURE 31

parser. The authors limit the search space by a linguistically motivated
heuristic: in their system, no dominance-violating alignments are allowed.
For example, if aSL aligns to aTL and bSL aligns to bTL, then there cannot
be an alignment where aSL is a dependent of bSL, but bTL is a dependent of
aTL. Alignments between dependency structures are grown from the lexical
level up, where lexical alignment is done using a bilingual dictionary. The
inferred transfer rules are compositional, i.e. they can combine with each
other, but they are not typed for constituents, so that they capture the
transfer of chunks rather than constituents.

(Lavoie et al., 2002) also start from parsed bilingual (Korean and Eng-
lish) text. The extracted patterns include information on a number of lin-
guistic features such as number or person. At run-time, the induced rules
are applied to a parsed Korean sentence, and the resulting tree is passed
through an English generation module. While the paradigm employed in
this work is also dependency structures, the transfer rules are similar to the
ones described in this thesis in that they include “constraints”, i.e. context
conditions in the form of feature-value pairs. For example, some rules only
apply if one of their slots can be filled by a definite noun.

One example of a system that learns transfers of constituent trees is (Kaji
et al., 1992) (which actually groups itself into the EBMT framework). Again,
the training data is parsed bilingual text, and an algorithm aligns the trees
starting from the lexical level with a dictionary, and then extracts transfer
rules. Here the variables in the transfer rules are constituents, similar to our
approach.

The systems described in this section use parses for both languages and
infer transfer rules from aligned trees or dependency structures. Our system
is unique in that it learns not only from a much smaller corpus, but also
using a parser only for one of the languages.

2.2.3 Translation Templates for Example-Based MT

In the literature on example-based methods, it is often noted that the ex-
amples in a bilingual corpus present a possibility for generalization. A large
number of researchers have proposed approaches to store the bilingual cor-
pus not simply as a set of examples, but to extract regularities in the cor-
pus. These regularities, or generalizations, can take various forms. Some
approaches compare pairs of bilingual sentence pairs to determine what
phrases regularly translate into each other, resulting in a phrase- rather
than word-based translation lexicon. The SMT community has recently
shifted towards learning phrase-to-phrase (rather than word-to-word) trans-

32 CHAPTER 2. RELATED WORK

lation rules (Och & Ney, 2004). The generalized EBMT approach differs
from the SMT phrase-to-phrase translation in that it stores templates. In
other words, along with phrase-phrase translation examples, it stores what
must come before and after the translation example, e.g. X [phraseSL] Y
→ Y [phraseTL] X, where X and Y can be filled by certain other transla-
tion examples. For example, (Guvenir & Tunç, 1996) generalize examples
by aligning similar and non-similar parts of sentence pairs. The a priori
assumption in their work is that similar parts in a sentence translate into
similar parts in the other language, and non-similar parts translate into
non-similar parts.

A large number of projects extracts generalized patterns using a depen-
dency structure. This has the advantage that the patterns will naturally be
lexicalized, which is in line with the spirit of EBMT. Transfer-based systems
often put more emphasis on constituent transfer, whereas EBMT systems
emphasize more the transfer of specific words. One such system is described
in (Alshawi et al., 1998; Alshawi et al., 2000), which learns head transducers
from bilingual text. The sentence pairs are word-aligned automatically, and
then heads are found by means of heuristics such as word frequency or word
length. Finally, the transducers are extracted from the word-aligned depen-
dency structures. The transducers are head lexicalized, meaning that the
head word is translated, and the transducer specifies how (e.g., in what or-
der) the dependents are realized in the TL. The advantage of this approach
is that it requires no outside resources such as a parser or a morphology
module. On the other hand, our approach enables us to generalize further
from the training data and to capture more syntactic regularities between
languages.

Similar to the ‘transfer’-based approaches above, some EBMT systems
infer general rules from parsed and aligned bilingual text. For example,
(Watanabe et al., 2000) grow rules between source and target language sen-
tences using parses, starting from word alignments. The phrase alignments
are restricted in order to avoid overgeneralization.

The rules inferred in these approaches are similar to our approach in some
ways. To varying degrees, they include ordering information between con-
stituents (including reordering between languages), generalization to con-
stituents such as NP, PP, etc., typed compositionality where slots in rules
can only be filled by other templates of a specific type such as NP. Some in-
clude contextual information in the form of linguistic features. This is closely
related to the unification constraints learned in our system. It should how-
ever be mentioned that in general EBMT learns from large datasets. The
rules described in this thesis were learned from a very small dataset, which

2.2. AUTOMATIC INFERENCE OF GENERALIZED STRUCTURE 33

sets our work apart from the work described in this section.

2.2.4 Syntax for Statistical MT

Recent years have seen a flurry of activity in incorporating syntactic infor-
mation into statistical systems. A front-runner in this area was (Wu, 1997),
proposing Inversion Transduction Grammars. ITGs represent an exception
to the noisy-channel model usually used for SMT. In ITGs, bilingual data
is parsed in both languages, and then reorderings of subtrees are learned
from the matched parses. Similar projects use parse information for both
languages, and learn tree transformations from the training data. (Alshawi
et al., 1998), (Alshawi et al., 2000) describe a dependency-based head trans-
ducer approach. Their system learns rules that translate a head-word into
its corresponding translation, but also translate the dependent words, thus
allowing for recursive reorderings.

(Yamada & Knight, 2001), (Yamada & Knight, 2002) focus on string-to-
tree transformations. In their approach, syntactic variation is built directly
into a statistical translation model. During translation, the system allows
with certain (trained) probabilities for translations, insertions, and reorder-
ings. All of these operations are performed on a parse tree.

Similarly, both (Charniak et al., 2003) and (Zhang & Gildea, 2004) learn
tree-to-string transformations that are again incorporated directly into the
translation model.

(Xia & McCord, 2004) take a similar approach to ours: they learn trans-
fers (‘rewrite patterns’) using the parses. Their formalism is similar to
ours in that the rules are compositional, include word-level, POS-level, and
constituent-level elements, and specify alignments. However, the rewrite
rules do not include feature constraints. At run-time, the rules are used to
modify the incoming SL sentence, so that its ordering will match the TL
sentence (similar to the approach described in (Dorr et al., 2002)).

Most recently, (Chiang, 2005) presents an approach that allows for the
learning of hierarchical phrase based rules that are very similar in spirit to
the rules learned in our approach. Two main differences between Chiang’s
and our approach are 1) in our system, the phrase types are predefined and
learning is only done for those predefined types, and 2) Chiang’s learned
rules are incorporated directly into the statistical MT system.

Not all efforts to incorporate syntactic information into statistical MT
systems have yielded significant results (Och et al., 2003). This indicates
that statistical MT systems, although they do not explicitly model syntax,
do implicitly prefer grammatical transfer and production, and are very hard

34 CHAPTER 2. RELATED WORK

to improve upon. In our work, we observe that the statistical decoder is
extremely strong in deciding between partial translations. This is consistent
with the observation made in (Och et al., 2003). We remain however con-
vinced that syntax in conjunction with SMT systems can produce superior
output. This is confirmed by our results, where we show an improvement in
translation quality when grammar rules are used by the system (cf. chap-
ter 9).

A major difference between the approaches described in this section and
this thesis is that in our work, we learn transfer rules from extremely small
corpora. SMT generally relies on the existence of large bilingual corpora.
We show that transfer rules can be learned from much smaller corpora if
those corpora are of carefully designed composition.

2.2.5 Other Types of Learned Transfers

As was said above, all of the approaches described here contribute to the
blurring of the distinction between traditional approaches to MT. The above
approaches could still be loosely classified into transfer, SMT, or EBMT. A
few further systems are worth mentioning that do not fall obviously into
any of the above classes. For example, (Hermjakob & Mooney, 1997) learn
generalized translation rules from shallow parses. In their work, a user trains
the parsing system by providing or correcting partial parses, depending on
how much the system has already learned. The learned parsing system is
used directly to model translation rules.

2.3 Learning from Elicited Data and Small Cor-

pora

In previous sections, we have described systems that learn transfers (or tem-
plates, or rules) from bilingual text, generally by taking as input bilingual
parsed corpora. In this section, we describe systems that do not rely on the
existence of large bilingual corpora, and describe how our work differs from
these approaches.

(Nirenburg, 1998; Sherematyeva & Nirenburg, 2000) describe a system,
Project Boas, that elicits information from a non-expert user about their
native language. For example, with the user’s help, it builds an inventory
of morphological features that are marked in the language. Furthermore, it
elicits subcategorization information. This information is then used to auto-
matically induce transfer rules for MT. The syntax of a language is inferred

2.3. LEARNING FROM ELICITED DATA AND SMALL CORPORA 35

by presenting the user with sample constructions in English and asking for a
translation, so as to acquire similar structures in the new language. This is
similar to our structural elicitation corpus, which is described in chapter 4.

Another system that falls into this category is (Jones & Havrilla, 1998).
The paper describes an approach for semi-automatically learning rules for
transfer between languages. Similarly to (Nirenburg, 1998; Sherematyeva
& Nirenburg, 2000), a user (here, an expert user) provides the system with
enough information to infer rules. In this case, the user is presented with a
bilingual sentence pair. They are not expected to provide a full parse, but
are expected to tag the sentence with linguistic features such as number,
and to specify how the words are reordered when translating from the SL
into the TL. The approach is called ‘Twisted Pair Grammar’, because the
grammar formalism allows only for reorderings for the children of binary
trees, thus restricting the search space.

Although the work described in this thesis uses a carefully constructed,
but small corpus, it does not rely on a user to provide linguistic information.
In the case of Project Boas, the user provides an inventory of features for
their language, whereas in the Twisted Pair Grammar formalism, the user
tags training sentences with features. Our work is aimed rather at using a
corpus in conjunction with existing resources, i.e. a parser and morphology
modules, so as to 1) further automate the inference process, and 2) put less
burden on a bilingual user. In the Avenue project, a bilingual user merely
translates and word-aligns the corpus.

36 CHAPTER 2. RELATED WORK

Chapter 3

Setting and Run-Time
System

In this section, we will describe in detail the Avenue project within which
this research was performed. This includes an in-depth discussion of the
run-time system complete with a full translation example trace. It should
be noted very explicitly that the design and implementation of the run-time
system is not part of this thesis. It must however be described in order to
explain how the learned rules (this thesis) are used to produce translations.
For readers who are mostly interested in the rule learning approaches and
only wish to get a rough idea of the run-time system, we suggest reading
the following two sections (section 3.1, which describes the larger project
and the run-time system in brief, and section 3.2, which discusses the rule
formalism), and then skipping forward to chapter 4.

3.1 Complete Avenue Project Overview

The rule learner developed for this thesis is part of a larger project, the
Avenue project. A system diagram of Avenue can be seen in Figure 3.1.
The goal of Avenue is to enable rapid development of MT for languages
with few resources. To this end, we elicit data from bilingual speakers
using a specifically designed corpus that covers a wide variety of linguistic
phenomena, but is kept to minimum size because it has to be translated by
an informant. The elicited data, as well as any monolingual data that may
be available, can be used to infer morphological information. Within this
context, (Monson et al., 2004) have developed a novel technique to detect
not only roots and inflected forms, but also inflection classes. Note that

37

38 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

MorphologyElicitation Rule Learning Run−Time
System

Elicitation
Tool

Elicitation
Corpus

Word−aligned
parallel corpus

Morphological
analyzer

Rule Learning
Module

Transfer
rules

Lexical
Resources

Handcrafted
rules

Run time
transfer system

Translations

Figure 3.1: Avenue system diagram.

in the specific language pairs described in this thesis, we used hand-built
morphology systems that were available for Hebrew and Hindi, rather than
using the system by (Monson et al., 2004). We will discuss this issue in
greater detail in section 3.5.2.

The elicited data is however not only used for morphology induction.
One other possible application is the detection of linguistic features in a
language (Probst et al., 2001), a module that automatically analyzes the
elicited data to draw inferences about what features are marked in a lan-
guage, what parts of speech they are marked on, etc.

The use of elicited data that is most relevant to this thesis is to use
the data as training example to the rule learning system (this thesis). The
learned rules can either be used as is, or they can go through an itera-
tive refinement step where users that not grammar writing experts can give
feedback to the system by means of correcting translations, and the sys-
tem automatically refines the learned rules based on the feedback from the
user (Font-Llitjós, 2004). This is a step that can optionally be added to the
rule learning (training time) phase, and is not addressed in this document.

3.1. COMPLETE AVENUE PROJECT OVERVIEW 39

The last step that is necessary for building a functioning system is the
creation of a translation lexicon. Such lexicons are often available in some
format, and can be typed up if not available in electronic form. If no trans-
lation lexicon is available, one can be built from the elicited data (of course,
an existing lexicon can also be enhanced using the elicited data). The trans-
lation lexicons that were used in the specific systems described in this thesis
are discussed in greater detail in section 3.5.3.

The design of Avenue is very flexible. The learned and possibly refined
grammar can always be enhanced by a human expert should one become
available. Also, the learned grammar can always be expanded if more data
is translated, and can be refined if more feedback is given. The translation
lexicon can similarly be expanded on an ongoing basis. This flexible design
allows for iterative development of the MT system so that an initial system
can be built very quickly and can then be improved over time.

To state clearly the relationship between this thesis and the larger Av-

enue project, it should be noted once again that this thesis is one piece
of Avenue. More specifically, the Avenue project ultimately aims at 1)
developing resources, such as bilingual corpora and morphology modules,
for minor languages, 2) learning and refining transfer rules for language
pairs that involve minor languages, and 3) using a combination of manually
written and automatically learned and refined transfer rules for Machine
Translation in a hybrid transfer-statistical MT system. This thesis is one
step on the road to this goal: it develops the underlying technology to learn
transfer rules. It does not focus on how the resources (corpora, morphol-
ogy modules) are developed, but rather on how they can be used to learn a
transfer grammar. It further does not claim that the learned rules are flaw-
less. Rather, the rules are learned as one step towards a full-fledged transfer
grammar that can be obtained by 1) refining the rules learned as described
in this document, and 2) supplementing them with manually written rules.

The diagram in Figure 3.2 depicts graphically the training time (rule
learning) and the run-time (rule application) of the rule learning approach
described in this thesis. It shows the different steps that take place during
training time, i.e. the learning of transfer rules, and run time, i.e. using the
learned rules to produce translations. More specifically, at training time,
several resources such as a TL parser and morphology modules are used to
learn a grammar (set of transfer rules) from bilingual data. At run time, the
learned rules are used by the transfer engine to produce a lattice. Finally,
a statistical decoder picks the best partial translations from the lattice to
form a translation.

In the following sections, we will describe the transfer rule formalism and

40 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

morphology
and
L1 parses

Aligned
Parallel
Data

L2
morphology

Bilingual
lexicon

Rule Learner

Training Time
Run Time

Transfer Engine

Statistical Decoder

Learned Rules

L1 language
model

Lattice
L2 test

data

L1 trans−

lation

Figure 3.2: Training and run-time of the system. The topic of this thesis is
the rule learner.

3.2. TRANSFER RULE FORMALISM 41

each of the modules in the larger system.

3.2 Transfer Rule Formalism

The goal of this thesis is to infer structural transfer rules that are enriched
with unification constraints. Before delving into the actual learning algo-
rithms, we must explain the transfer rule formalism: what components the
rules consists of, what the restrictions on the format of these components
are, etc. We will then describe the transfer engine that actually uses the
rules to generate a list of partial translations. The decoder then selects
partial translations from this list to form a full translation.

The transfer rule formalism is similar to ones that have been discussed in
the literature, e.g., (Aho & Ullman, 1969). The transfer rules are designed
to be comprehensive and self-contained translation entities: they contain
all necessary information to perform analysis, transfer, and generation at
run-time, given that an input chunk matches the rule. This is not to say
that transfer rules can only be used in isolation: the formalism allows rules
to combine with each other, as in a context-free grammar. Structural learn-
ing (cf. chapter 7) is in fact aimed at creating rules at different levels of
abstraction, so that they can combine in order to apply to a wide variety of
contexts.

The comprehensive nature of the transfer rules lends itself especially to
learning from bilingual text: each learned rule is always associated with the
training example(s) it was derived from. This close tie between the inferred
rule and the original training example allows the system to modify, refine, or
even eliminate the learned rule during the learning process, always referring
back to the bilingual sentence pair that was used to produce it.

The transfer rules are in human-readable format. This is important, as
one of the goals of this work was to produce output that a human expert
could read, evaluate, refine, and expand on.

An example of a Hebrew→English rule looks as below. We present with
it a parallel sentence pair that the rule could translate.

Parallel sentence pair:

Hebrew: H &NIN H RB B BXIRWT

Gloss: the interest the widespread in+the election

English: the widespread interest in the election

Transfer rule:

NP::NP ["H" N "H" ADJ PP] -> ["THE" ADJ N PP]

42 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

(

(X2::Y3)

(X4::Y2)

(X5::Y4)

((Y3 NUM) = (X2 NUM))

)

In the rules, the language translated from is the source language (SL) and
the language translated into is the target language (TL). In the following
discussion, the left-hand side, or the “X”-side, of a rule refers to the SL
and the right-hand side, “Y”, refers to the TL. In general, we will refer to
the left-hand side pieces of information as SL information, and to the right-
hand side as TL information. For instance, the NP to the left of the double
semi-colon refers to the source language, as does the [“H” N “H” ADJ PP]1,
where as the NP to the right of the double semi-colon refers to the target
language. In the transfer rule above, the source language is Hebrew, and
the target language is English.

In addition to the terms SL/TL and X-side/Y-side, we will use the terms
“major” and the “minor” language in our discussion. This will be useful
when discussing the different resources that are used for learning, e.g., the
English parser. We refer to the major language, English, as TL, and to
the minor language, Hebrew and Hindi, as SL, because the run-time system
translated from the minor language into the major language. To summarize,
the following terms are used as appropriate in context, but refer to the
same entities throughout the thesis: X-side, SL, and minor language.
Further, the following terms refer to the same: Y-side, TL, and major
language.

In general, every piece of information is given for both languages. Rules
consist of a context-free part and possibly a set of unification constraints.
The first context-free component of every transfer rule is the source and
target language type information, “NP::NP” in the sample rule above,
where the first “NP” refers to the SL and the second “NP” to the TL.
During learning, this type information is used in classifying transfer training
examples, so that only rules of the same type are learned together. At run-
time, the type information specifies what slots in other rules a given rule
can fill. In this example, the type is NP in both languages, implying that a
Hebrew noun phrase translates into an English noun phrase. This has the
implications that the translation of the Hebrew noun phrase is assumed to

1Entities enclosed in quotes are actual lexical items. This is discussed below in greater
detail.

3.2. TRANSFER RULE FORMALISM 43

be in some sense similar in composition to the original Hebrew. This will
be discussed further in chapter 6.

The type information is followed by a component sequence, both for
the source and the target languages. We call these sequences component
sequences, because they can consist of a combination of lexical items, parts-
of-speech, and constituents. In the example rule, the component sequences
are [“H” N “H” ADJ PP] for the SL and [“THE” ADJ N PP] for the TL.
The components in the sequences can be 1) lexical items (such as ‘THE’), 2)
part-of-speech labels (such as ‘N’), or 3) constituent labels (such as ‘PP’). In
this rule, the SL component sequence contains the lexical item ‘H’, and the
TL component sequence contains two lexical items, ‘THE’. Lexical items are
always enclosed by quotes, so that the transfer engine can recognize them
as words rather than parts of speech or components. Some learned rules
contain lexical items, and we will describe in later sections what causes
some words to remain lexicalized in a learned rule. Entities that are not
enclosed in quotes are parts of speech (i.e. a N can be filled by any noun)
or else generalized constituents (e.g., PP is a prepositional phrase).

At run-time, the SL component sequence is used to parse an input sen-
tence, both to build a tree, and to check if the rule applies to the input
sentence or a part thereof. The TL component sequence is used to build
the corresponding tree for the TL. This is done by transferring the SL tree
into the TL using the alignments, e.g. (X2::Y3) above. “Xi” refers to the
ith constituent on in the SL component sequence (using 1-based counting).
(X2::Y3) means that the second component in the component sequence of
the SL (N here) aligns to the third component in the component sequence
of the TL (also N). “X0” is reserved for the top level on the source language
side (NP here), and “Y0” for the target language top level, also NP here.

It should be noted that the rule encode tree-to-tree transfers at different
levels. Each individual rule captures a small tree-to-tree transfer. When the
rules are combined, the x-side type and component sequences combine to a
large tree which is then mapped to an equivalent tree on the y-side, which
is again built from smaller trees from individual rules.

The first two learning phases, Seed Generation and Compositionality,
fall into the category of structural learning. Their combined goal is to infer
all the rule parts that have been described so far: type information for both
languages, component sequences, and component alignments. Further, all
the transfer rule components described so far are required. Unification
constraints, on the other hand, are optional. The above rule has one
unification constraint, ((Y3 NUM) = (X2 NUM)). This constraint causes the
number value of the second SL component (N) to be passed to the third TL

44 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

component (also N). Put more generally, constraints are used as specification
information: what sentences does a transfer rule apply to (x-side constraints,
e.g., ((X2 NUM) = S)2, what types of features are required when generating
the target language sentence (y-side constraints, e.g., ((Y1 DEF) = +))3,
and what feature values transfer from the source onto the target language
(xy-constraints, e.g. ((Y3 NUM) = (X2 NUM)). One important detail about
lexicalized items in the component sequences is that the transfer engine does
not allow them to be constrained with unification constraints. For example,
although factually correct, the constraint ((Y1 DEF) = +) (i.e. the first TL
index is definite, which is the case for the definite determiner ‘THE’) is not
allowed by the rule formalism.

While it is useful to classify constraints by what language side they per-
tain to, it is also necessary for the learning algorithm to distinguish between
value constraints and agreement constraints. As the names indicate, value
constraints assign a ground value to the feature of a specific component (in-
dex). The constraint ((Y1 DEF) = +) is an example of a value constraint.
Agreement constraints, on the other hand, enforce that the values of a spe-
cific feature on two components have to agree. ((Y3 NUM) = (X2 NUM))
is an example of an agreement constraint, enforcing that the third English
component must agree in number with the second Hebrew component.

In a later chapter on learning unification constraints (cf. chapter 8), we
provide a much more detailed discussion of different types of constraints.
Constraints can be described with several parameters, such as whether they
pertain to a specific word (e.g., Y1 in the example above) or to a constituent
(e.g., the PPs (X5 and Y4) in the rule above). Section 8.3 provides an in-
depth examination of the types of constraints that can exist, which ones are
of interest to our system, and which ones could be useful for other systems
or language pairs.

The distinction between context-free and unification components is ex-
ploited by learning them separately: first, the system learns the context-free
backbone of the grammar. It learns what level of abstraction is appropriate
for the learned structures, e.g. when to propose a constituent in the compo-
nent sequence of a rule (such as the constituent PP in the example above),
and when such generalization is better avoided. This step is followed by
a step that learns unification constraints: it enriches the context-free rules
with whatever constraints are appropriate for the rules. For example, con-
straints can be used for disambiguation, or to produce more grammatical

2This feature is not part of the sample rule.
3This feature is not part of the sample rule.

3.2. TRANSFER RULE FORMALISM 45

output by enforcing agreement between two components. Three of the main
chapters of this thesis (cf. chapters 6 and 7 for structural learning and chap-
ter 8 for Constraint Learning) are devoted to these two separate learning
steps. Why is it desired to keep the learning phases separate? One obvious
advantage is that the algorithms to learn these two types of information can
be designed separately, and can be optimized to the task. This simplifies
the design of the algorithms. Another advantage is that the rule learner can
be run in different settings. In particular, it can be run without learning
constraints, or with learning constraints. As will be described below, if con-
straints are learned, the run time of the system improves greatly. However,
rules without constraints generally lead to higher recall in the translation.
This can be more important than run-time efficiency depending on the task,
so that Constraint Learning may or may not be desirable. Another, more
technical reason to keep the learning modules separate cannot be given until
the learning algorithms have been discussed in detail. For this reason, we
will put off this discussion until chapter 8.

The type information, component sequences, alignments, and constraints
constitute the major rule components. For convenience, we repeat the ex-
ample rule in Figure 3.3. In this figure, the example rule is marked up
with those most essential rule parts. These terms are necessary in order to
understand the rest of this document.

TL Type Information (
SL Type Information NP::NP ["H" N "H" ADJ PP] −> ["THE" ADJ N PP]

 ;(X1::Y1) SL Component Sequence
 (X2::Y3) TL Component Sequence
Alignments ;(X3::Y1)
 (X4::Y2)
 (X5::Y4)
 ((Y3 NUM) = (X2 NUM))
Constraints)

Figure 3.3: Essential rule components.

While the previous rule illustrates the basic format of a rule, several
special cases and additions must be discussed. Consider the following rule:

;;SL: H N$IM IHIW AIN@LIGN@IWT

;;TL: THE WOMEN WILL BE INTELLIGENT

46 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

;;SL(alt1): H AI$H THIH AIN@LIGN@IT

;;TL(alt1): THE WOMAN WILL BE INTELLIGENT

;;SL(alt2): H AN$IM IHIW AIN@LIGN@IM

;;TL(alt2): THE MEN WILL BE INTELLIGENT

;;SL(alt3): H AI$ IHIH AIN@LIGN@I

;;TL(alt3): THE MAN WILL BE INTELLIGENT

S::S [NP "HIH" ADJP] -> [NP "WILL" "BE" ADJP]

(

(X1::Y1)

;(X2::Y2)

;(X2::Y3)

(X3::Y4)

(X0 = X2)

((Y1 GEN) = (X1 GEN))

((Y1 NUM) = (X1 NUM))

((Y1 PER) = (X1 PER))

(Y0 = Y2)

)

One difference between this and the previous rule is that the second
rule contains several lines that begin with a semicolon. Any line that starts
with a semicolon is ignored by the transfer engine. Such lines generally
contain additional information about the rule that is useful for the human
reader. In this rule, two examples of such information are given. The first
are alignments that are prepended by a semicolon, in this rule ;(X2::Y2) and
;(X2::Y3). These lines reflect the word alignments that were provided by
the user. In this case ‘HIH’ aligns to both ‘WILL’ and ‘BE’. Why are those
alignments commented out and others are not? The reason is that the trans-
fer engine considers all lexical items in component sequences by definition
unaligned. We sometimes choose to include the alignments for readability
as a reminder of the alignments that were specified by the user. The rule
learner simply automatically comments out those alignments referring to
words that remain lexicalized in the component sequences.

Furthermore, the rule in this example is annotated with all the training
pairs that produced it, in each case with the SL (Hebrew) and the TL
(English) sentences. If a rule was produced from more than one example,
as the rule above, the additional training examples are denoted with “alt”
for “alternative”.

Note that in this rule, the Hebrew sentence is given in a transcribed
romanized form, as will be done for all examples in this document. The

3.2. TRANSFER RULE FORMALISM 47

romanization facilitates reading as well as automatic processing, and is a
lossless mapping. Hebrew and Hindi romanization is described in greater
detail in section 3.5.1.

Finally, it should be noted that sometimes we list different information
with the rule as appropriate. For example, in the following rule we list
not only the training sentences that produced it, but also their parse and
alignments. In chapter 4, we will discuss in detail what information is given
in the training data. To understand this rule example, it is only important
to know that with each bilingual training example, the rule learner is given
the syntactic parse of the English sentence (referred to as the ‘C-Structure’),
as well as word alignments that are specified by the translator that created
the bilingual training data.4

{NP,16}

;;SL: H &NIIN H RXB B H BXIRWT

;;TL: THE WIDESPREAD INTEREST IN THE ELECTION

;;Alignment: ((1,1),(1,3),(2,4),(3,2),(4,5),(5,6),(6,7))

;;C-Structure:(<NP> (DET the-1)(ADJ widespread-2)

(N interest-3)(<PP> (PREP in-4)

(<NP> (DET the-5)(N election-6))))

NP::NP ["H" N "H" ADJ PP] -> ["THE" ADJ N PP]

(

;(X1::Y1)

(X2::Y3)

;(X3::Y1)

(X4::Y2)

(X5::Y4)

((Y3 NUM) = (X2 NUM))

)

Note that unlike before, we now include the word alignments of the deter-
miner ‘H’ being aligned to ‘THE’, although in commented-out form. Again,
these additional pieces of information are given only for the reader and de-
veloper, and are not used by the transfer engine, as they are commented out
by a semicolon at the beginning of the line. In this document, we give such
additional information only when it is useful to the discussion at hand.

4The reader may notice that the English ‘IN’+‘THE’ is generally translated into only
one Hebrew word, ‘B’. In our system, the translator explicitly separates the preposition
‘B’ from the determiner ‘H’, so that the words can be aligned separately. This has the
effect that the Hebrew training data has the additional word ‘H’.

48 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

Note that the alignments that are given by the user are stored in a
slightly different format from the format that is used in the rule. Here,
(1,3) means that the first word of the TL (English) sentence aligns to the
third word of the SL (Hebrew) sentence. The direction is reversed: in the
original alignments the direction is (English,Hebrew), whereas in the rule,
the alignments are given in the direction (Hebrew::English). This is simply
an artifact of elicitation being done in the opposite direction of run time
translation. This issue is not of great importance to this thesis, but it
should be kept in mind when examining the examples.

Further, the original alignments provided by the user are given at the
word level, but the learned rule gives alignments for the actual compo-
nents, which can be constituents. For example, in this rule, the alignments
(4,5),(5,6), and (6,7) as given by the user are reflected in the rule as (X5::Y4),
because ‘IN THE ELECTION’ and its Hebrew equivalent were generalized
to a PP.

Finally, this rule is annotated by a unique identifier, in this case “NP,16”.
The rule learner can automatically assign unique identifiers to rules, which
can be used to track the behavior and effectiveness of specific rules. The
identifiers do not have any impact on the application of the rule, i.e. the
rule would apply in the same way if no identifier (or a different identifier)
were assigned to it; it is useful only to the developer. In this thesis, we will
use unique identifiers when discussing the behavior of the individual rules
in section 9.5.

3.3 Transfer Engine

The transfer engine, the first of two big components of the run-time system,
is a module that produces a list of partial hypothesis translations of the
input sentence, as licensed by the translation lexicon and the rules in the
grammar. It was developed by Erik Peterson (Peterson, 2002). The transfer
engine takes as its input a translation lexicon, a set of rules of the formalism
described above, morphological information for one or both languages if
available, and source language input text, and it creates target language
output. The translation lexicon uses a formalism that is very similar to
the transfer rule formalism (however, the rules are generally simpler). Two
examples of transfer lexicon entries can be seen below:

{DET,0}

DET::DET |: ["H"] -> ["THE"]

(

3.3. TRANSFER ENGINE 49

(X1::Y1)

)

{N,0}

N::N |: ["BIT XWLIM"] -> ["HOSPITAL"]

(

(X1::Y1)

)

{N,1}

N::N |: ["SPR"] -> ["books"]

(

(X1::Y1)

((Y0 NUM) = P)

((X0 NUM) = P)

((Y0 lex) = "BOOK")

)

The transfer engine can distinguish lexical entries from grammar rules
by the additional symbol ‘|:’ in the lexical entries. Like grammar rules, the
lexical items can be annotated with unique identifiers (e.g., N,0 here).

The above lexical rules demonstrate that lexical entries are annotated
with POS information. This is important when they are used in conjunc-
tion with grammar rules. As was discussed above, the rules’ component
sequences often contain parts of speech, which can be filled by any word
in the lexicon of this POS. For example, consider again the rule from the
previous section:

;;SL: H &NIIN H RXB B H BXIRWT

;;TL: THE WIDESPREAD INTEREST IN THE ELECTION

NP::NP ["H" N "H" ADJ PP] -> ["THE" ADJ N PP]

(

;(X1::Y1)

(X2::Y3)

;(X3::Y1)

(X4::Y2)

(X5::Y4)

((Y3 NUM) = (X2 NUM))

)

50 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

Here, the slot X2::Y3 could be filled by the second lexicon entry above
if 1) it is of the correct POS to fill the slot, and 2) the two components X2
and Y3 align in the rule. N,0 above demonstrates that phrasal entries are
allowed in the translation lexicon. Like non-phrasal entries, they can serve
to fill ‘N’ components in the grammar rules.

The rule can optionally contain feature information in the form of unifi-
cation constraints, e.g., ‘((Y0 NUM) = P)’ in N,1 above. When the lexical
entries are applied at run-time, these features are unified with any informa-
tion that SL morphology modules return. For example, N,0 would not apply
if the input sentence contained a singular noun. The transfer engine first
runs the input words through the morphology module, and then matches
the resulting SL word in root form, together with their features, against the
lexical entries. This points to another feature of the lexical entries: gen-
erally (with exceptions of phrases and fixed expressions), the SL word in
the lexical entry is given in the root form, not in the inflected form. This
has the advantage that ‘generic’ lexical entries, i.e. entries without feature
information, match all inflected forms of the SL word at run-time, provided
that the morphology module can correctly reduce the inflected form to the
root form. How the constraints and the root form of the SL word are used in
the run-time system will be demonstrated in an example in section 3.6. The
specific lexicons used in our Hebrew→English and Hindi→English systems
are described in section 3.5.3.

The transfer engine uses the rules to analyze the source language sen-
tence, using a standard bottom-up chart parsing algorithm. (Chart parsing
is described e.g., in (Allen, 1995).) The parsing stage results in a set of all
those parse trees that are licensed by both the lexicon and the grammar
rules. During parsing, ambiguities can be resolved by using the feature con-
straints in the lexical and grammar rules. Feature information on specific
input words is obtained from the lexicon and the SL morphology module.
The resulting set of possible analyses is then transferred into the target
language via an integrated transfer and generation approach. The system
builds structure trees for the target language side, again using the gram-
mar and lexicon to produce all possibilities. During generation, constraints
(which are initially marked on specific words, thus at the bottom of the gen-
erated trees) are passed up the possible trees as specified by the constraints.
This is followed by a constraint checking pass which similarly to parsing
eliminates hypothesis translations whose feature values do not match the
ones specified in the rules. For all generation trees that were not eliminated
in this step, the transfer engine produces target language output. The fi-
nal product is a (generally large) lattice that contains all possible partial

3.3. TRANSFER ENGINE 51

translations for a given input sentence. The lattice consists of a set of arcs,
which are partial translations of the sentence, indexed by what portion of
the input sentence they span. Individual arcs do not necessarily cover the
entire input sentence; in fact, very few do. Rather, the lattice contains all
possible partial translations of all input chunks. Sample lattice entries, i.e.
arcs, look as follows:

(11 13 "FOUR YEARS" 3 "ARB& $ NIM" "@NP2")

(8 13 "AGO FOUR YEARS" 3.3 "L PN $LI ARB& $ NIM" "@PP")

(8 13 "BEFORE FOUR YEARS" 3.2 "L PN $LI ARB& $ NIM" "@PP")

(8 13 "IN FRONT OF FOUR YEARS" 3.1 "L PN $LI ARB& $ NIM" "@PP")

(8 13 "PRIOR TO FOUR YEARS" 3 "L PN $LI ARB& $ NIM" "@PP")

(8 13 "UNTIL FOUR YEARS" 2.9 "L PN $LI ARB& $ NIM" "@PP")

The first two indices indicate what span of the input sentence is covered,
followed by a partial translation, a score (that is not currently used by the
transfer engine), the translated input chunk, and finally the type of the
highest-level grammar rule that was used to produce the output.

So far, we have described the behavior of the transfer engine when a
translation grammar is given. However, a translation grammar is strictly
optional for transfer engine usage. When no translation grammar is given,
the transfer engine can build a lattice using only the lexicon. This reduces to
a word-by-word translation, or a phrase-by-phrase translation if phrases are
given in the lexicon. The advantage of this flexible design is that it allows
us to compare the performance of the run-time system without the learned
rules and with the learned rules.

One difficulty that we often face in practice are extremely large lattices.
In its default setting, the transfer engine produces a full lattice. This means
that it enumerates all possible rule applications and their combinations, as
well as combinations with lexical items, for all input lengths. For example,
for a sentence of m words, the transfer engine will first create a lattice
for each of the m words separately.5 This is done by using all applicable
rules (both in the grammar and the lexicon) to give a translation of each
word. Then the transfer engine produces all possible partial translations
for bigrams, using a sliding window over the input sentence. Again, all
possible rules are applied. This process is repeated until all possible partial
translations for all possible n-grams are translated. For example, given an
input chunk w1w2w3, the transfer engine populates the lattice not only with
all possible translations for w1w2w3, but also with all translations for w1,

5This is a conceptual, not an actual description of the transfer engine algorithm.

52 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

all translations for w2, all translations for w3, all translations for w1w2,
and all translations for w2w3. When the grammar is big or ambiguous,
each of these chunks can result in a large number of possible translations.
Sometimes, the lattice becomes so large that it cannot be produced because
of hardware limitations. In such cases, we either make the learning settings
more restrictive, or else we produce a partial lattice using a search that is
similar in spirit to a beam search: we specify a lengthlimit beyond which
the transfer engine does not produce translations. For example, if we set
the lengthlimit to 2 for the input chunk w1w2w3, then the transfer engine
does not produce the possible translations for w1w2w3, because this input
chunk is of length 3. Instead, it will only produce partial translations for
all uni- and bigrams within w1w2w3. At first sight, this strategy does not
seem to obviously limit the lattice size. The key to understanding why this
strategy works is that higher-order n-grams suffer from exponential explosion
of all combinations of the lower-order n-grams. For example, the partial
translations of w1w2w3 are combinations (as licensed by the grammar) of
the translations of its unigrams and bigrams. For this reason, the lengthlimit
has been found to be an effective strategy. One of the goals of chapter 9 is
to assess the impact of different maximum arc lengths (i.e. lengthlimits) on
the translations.

Table 3.4 summarizes the inputs and output of the transfer engine.

Transfer engine input and output

• Inputs:

– Required:

1. Translation Lexicon

2. SL input sentence(s)

– Optional:

1. Transfer rules (grammar)

2. SL morphology module

3. TL morphology module

• Output: Lattice of partial translations, indexed by the
translated input chunk.

Figure 3.4: Input and output of transfer engine.

3.4. STATISTICAL DECODER 53

The transfer engine is used at run-time as the first step towards produc-
ing translations, with the statistical decoder being the second step. However,
the transfer engine is also used at training time in order to conveniently as-
sess what rules have already been learned. This information is used when
producing compositional rules that are intended to combine with each other.
A detailed discussion of this usage of the transfer engine must be postponed
until chapter 7. For now, the transfer engine should be thought of only in
the context of run-time translation.

The design and implementation of the transfer engine is not part of this
thesis. It is part of the run-time system within which the learned rules
are applied. For more details, please refer to (Peterson, 2002). However,
in order to clarify more how the grammar, lexicon, morphology modules,
transfer engine, and decoder interact, we will demonstrate a full sample
trace of a run-time translation in section 3.6.

3.4 Statistical Decoder

The statistical decoder is the second phase of run-time translation after the
transfer engine, and is another area of investigation that is beyond the scope
of this thesis. The specific statistical decoder used in the Avenue system
is the decoder of the CMU SMT system, which is described in (Vogel et al.,
2003).

In the first phase, the transfer engine uses the learned grammar (if avail-
able), lexicon, and morphology modules (if available) to produce a list of
partial translations in the form of a lattice. The lattice is then fed into a
statistical decoder that uses a TL language model to find the most likely
path through the translation lattice. This is done by a Viterbi-style beam
search through the lattice, where combinations of arcs are scored accord-
ing to the TL language model. Optionally, the lattice entries can be scored
according to a translation model if available. The decoder allows for reorder-
ings of words that were translated using only the lexicon, but it does not
reorder words within chunks that were produced using transfer rules. In this
way, the confidence in the chunks produced by grammar rules is raised. This
is important, because otherwise the decoder could choose to reorder within
the partial translations. This would mean that the reorderings captured in
transfer rules and expressed in partial translations would be ignored, which
is clearly not a desirable effect. Figure 3.5 summarizes the input and output
of the statistical decoder.

54 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

Statistical decoder input and output

• Input: Lattice of partial translations, indexed by the
translated input chunk.

• Output: Full translations, one per sentence.

Figure 3.5: Input and output of statistical decoder.

3.5 Language Pair Specific Components

In this chapter, we discuss components or modules that are specific to the
Hebrew→English and Hindi→English run-time systems. Although the ac-
tual run-time systems are not part of the thesis work, we describe them here
in detail so that the user may obtain a better idea of how things work in
practice. As was said before, the reader who is merely interested in the rule
learning algorithms may wish to skip ahead to chapter 4.

3.5.1 Character Sets and Romanization

The first language-specific topic to be addressed is romanization. As has
been seen before, we present all Hebrew and Hindi examples in this thesis in
romanized form. Both Hebrew and Hindi use character sets that are different
from Latin-1. In order to standardize and simplify things and because some
of the components in our systems expect romanized representations, we
chose to romanize the Hebrew and Hindi characters.

Romanization in the Hebrew→English system

The Hebrew character set consists of 22 characters, plus 5 characters that are
variations of one of the 22 characters and are only used at the end of words.
In other words, 5 characters are represented differently when it occurs at
the end of a word vs. when it occurs at the beginning or in the middle of
a word. In our system, we ignore this difference between the end of a word
and the beginning or middle of a word, which leaves us with 22 characters.
Table 3.1 lists the mappings of the 22 characters to a Roman character set.
For the interested reader, we also list the common pronunciations of each
of the characters, both in intuitive description and in the representation in
the International Phonetic Alphabet.6

6Information taken from http://www.omniglot.com/writing/hebrew.htm

3.5. LANGUAGE PAIR SPECIFIC COMPONENTS 55

The mapping in this table is not the only existing mapping of Hebrew
characters to Roman characters; several other such transliteration tables
exist. We chose to use this particular mapping, because it is the one that
is used by the Hebrew morphology module in our system. The Hebrew
morphology module is described in section 3.5.2 below.

One complication with Hebrew script is that vowels are not generally
written, with some exceptions. For this reason, Hebrew textual input is
often highly ambiguous, because different vowel combinations may indicate
differences in POS, tense, number, etc.

Romanization in the Hindi→English system

The Hindi Devanagari character set contains 33 consonant characters, as
well as 28 vowels and diacritics. In addition, several characters are used
only in loanwords, are combinations of characters, or special characters.
Finally, each of the numerals (including 10) has a character representation
in Hindi.7

The Devanagari character set cannot be simply mapped to a romanized
representation, because the characters take different shape depending on the
surrounding characters. Quite a number of character representations exist
for Hindi. The one that we chose to use is the romanized character repre-
sentation RomanWX. RomanWX is routinely used in computer processing
of Hindi.

Several converters exist between UTF8 (in which Devanagari is repre-
sented) and other representation such as RomanWX. One such converter
can be found at http://sarovar.org/projects/codeconverters. These tools
also provide additional information on the mapping between Devanagari
characters and the RomanWX representation.

3.5.2 Morphology Modules

In our Hebrew→English and Hindi→English systems, we use morphology
modules that were developed with hand-written rules. It was important
for the rule learning module (this thesis) to have access to morphological
information in the minor languages. However, as we have emphasized above,
it is not necessary to have hand-built morphology modules available for all
language pairs. Hand-built systems will be higher in quality, but they may
not be available for all language pairs. As the rule learning simply uses
the output of morphological analysis as one of its inputs, the morphological

7Information drawn from http://www.omniglot.com/writing/hindi.htm.

56 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

Letter Name Roman Pronunciation IPA

Alef A ’ [P,ø]

Bet B b/v [b,v]

Gimel G g [g]

Dalet D d [d]

He H h [h]

Vav W w [v]

Zayin Z z [z]

Het X h/ch [x]

Tet @ t [t]

Yod I y/i [j]

Kaf K k/kh [k,x]

Lamed L l [l]

Mem M m [m]

Nun N n [n]

Samekh S s [s]

Ayin & ’ [P,ø]

Pe P p/f [p,f]

Tsadi C tz/ts/z [Ń]

Qof Q k [k]

Resh R r [r]

Shin $ sh/s [S,s]

Tav T t [t]

Table 3.1: Mapping of Hebrew characters to Roman representation. We list
here also the pronunciation of Hebrew characters in International Phonetic
Alphabet (IPA).

3.5. LANGUAGE PAIR SPECIFIC COMPONENTS 57

information could also stem from a system that was built automatically, i.e.
an unsupervised morphology module for the minor language.

Unsupervised or minimally supervised learning of morphology is a grow-
ing research field with quite a number of researchers addressing the problem.
Generally, the task is defined as automatic assignment of inflected forms to
their roots as well as the isolation of morphemes in a language. (Goldsmith,
2001) and (Snover & Brent, 2002) use the context or paradigmatic structure
of words to accomplish this. Other approaches, such as (Johnson & Martin,
2003) use a finite state approach to detecting morphemes, whereas (Schone
& Jurafsky, 2001) view the problem as an LSA problem. What all these
approaches have in common is that they do not consider it part of the task
to assign meaning to morphemes. This, however, is a crucial step if a mor-
phology module is to be used as underlying technology for our approach.
For example, in many cases it is useful to know that ‘S’ is a morpheme in
English, but for our task and other MT tasks, we also need to know that ‘s’
can either mark a noun for plural or a verb for 3rd person singular present
tense. How can this be accomplished? Several approaches have been sug-
gested that move research into this direction. For instance, (Yarowsky &
Wicentowski, 2000) propose several approaches that allow the reduction of
specific inflected forms (such as past tense) to root forms. This approach
requires knowledge of the morphology of a language. In other words, it must
be known a priori what features are marked in the language. The advantage
of the approach is however that the detected inflection forms are immedi-
ately mapped to meaning. (Yarowsky et al., 2001; Yarowsky & Ngai, 2001)
as well as (Probst, 2003) use word alignments and projection from one lan-
guage into another to infer some morphological information and POS tags
for another language. This approach has a similar advantage of immediate
assignments of morphemes to meaning, but it requires a (large) bilingual
corpus, which is not necessarily given for all languages. Within the Avenue

project, (Monson et al., 2004) have developed a novel technique to detect
not only roots and inflected forms, but also inflection classes, thus deriving
more information about the language’s morphology system. While all these
approaches provides steps in a direction that would make an automatically
inferred morphology module useful to our approach, no single technique as
yet is powerful enough, and more research is necessary. For this reason, the
work described here relies on the existence of a manually developed mor-
phology module. Currently, such morphology modules are available for a
variety of languages (including Hebrew and Hindi, which are of relevance to
this thesis), or can be developed for Mapudungun or Quechua, as is being
done within Avenue.

58 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

Hebrew morphology in the Hebrew→English system

The Hebrew morphology module is a freely available tool described in (Itai
& Segal, 2003) and available at (Segal, 2001). The tool expects input in
romanized form (the mapping from Hebrew script to Roman characters was
described in the previous section). One of the difficulties in handling He-
brew is that both the definite determiner ‘H’ and prepositions such as ‘B’
(in, at), ‘M’ (from) etc. are generally merged with the noun that they
precede. For example, ‘the house’ would be represented by only one word
in Hebrew, ‘HBIT’. During training, we circumvent this problem by sep-
arating this word into two, where one represents the determiner ‘H’ and
one represents the noun ‘BIT’. During run-time, however, the morpholog-
ical analyzer must separate merged input words. To complicate matters
further, the Hebrew ‘LILD’ (‘to the/a boy) is ambiguous: the preposition
‘L’ (to) merges with the definite determiner if one is present. In other
words ‘L’(to)+‘H’(the)+‘ILD’(boy) would be written as ‘LILD’. Indefinite-
ness is not marked in Hebrew, so that the phrase ‘to a boy’ would be repre-
sented by ‘L’(to)+‘ILD’(boy), which would also merge to ‘LILD’. The task
of the morphological analyzer is then to propose all ambiguities. When
faced with a possibly ambiguous tokenization, the morphological analyzer
proposes all analyses for all possible tokenizations. For example, ‘LILD’
is analyzed by the morphology module to have the possible tokenizations
‘LILD’, ‘L’+‘H’+‘ILD’, and ‘L’+‘ILD’.

The analyzer returns a number of feature values for each word. First, it
returns the set of possible root forms for this word. For example, if the input
word is an inflected word, the morphological analyzer returns the citation
form of this word in Hebrew. This is important (among other things) because
for most entries in the Hebrew→English dictionary, the Hebrew word is in
the root form. It is thus necessary to analyze each Hebrew input word with
the morphology module, so that the root form can then be matched against
the entries in the dictionary, and can then be used in grammar rules.

As was said above, Hebrew does not generally write vowels, so that a
given word can often be analyzed as more than one part of speech. All
possible analyzes are returned by the morphology module.

In addition to POS information, the analyzer also returns a number of
feature-value pairs as appropriate. These features include gender, number,
status (for noun compounds), person, and tense information.

When a word cannot be analyzed, the morphology returns an ‘analysis’
with a POS ‘LEX’, which is used for all words for which the POS is unknown.
No features are returned for a ‘LEX’ analysis. As was described above, each

3.5. LANGUAGE PAIR SPECIFIC COMPONENTS 59

input word is analyzed in all possible tokenizations, so that a ‘LEX’ is often
given for a non-tokenized word.

Sample output from the morphology module for the PP ‘LILD’ can be
seen in Figure 3.6. Here, the ‘SPANSTART’ and ‘SPANEND’ indices indi-
cate what part of the tokenized word is spanned by a given analysis. For
the word ‘LILD’ the maximum tokenization ‘L’+‘H’+‘ILD’ determines the
number of indices. This means that if an analysis has SPANSTART 0 and
SPANEND 1, then it spans the word ‘L’. If it has SPANSTART 2 and
SPANEND 3, then it spans ‘ILD’. This is illustrated in the following table:

Index 0-1 Index 2-3 Index 3-4

L H ILD

The morphological analyzer analyzed the word ‘LILD’ in several ways:
it recognized that the preposition ‘L’ can be split off, and that the defi-
nite determiner ‘H’ can be inserted, resulting in an analysis of a definite
prepositional phrase ‘L’+‘H’+‘ILD’ (to the boy). However, the analyzer
also recognized the analysis where the definite determiner ‘H’ is not present,
resulting in an analysis of ‘L’+‘ILD’ (to a boy). Further, the noun ‘ILD’
could be in either construct or absolute status. The status feature indicates
what part of a noun compound a word can be (because nouns change their
form in noun compounds under certain circumstances). The final analysis
of ‘LILD’ is one that spans the entire word. No analysis was found for this
word, so that the analyzer simply returns a ‘LEX’ as the POS and no fea-
tures. It should finally be noted that the scores that are returned by the
morphology module are not currently used in our system.

The transfer engine handles the ambiguity in morphology by passing on
all possible morphological analyses. This means that all analyses are used
in rule applications and lexical transfer.

Hindi morphology in the Hindi→English system

The morphology system that is used in our Hindi→English translation sys-
tem is, like in the Hebrew case, readily available software that was not
developed within the Avenue project. The particular Hindi morphology
module that is used in our system was developed at IIIT in India and can
be obtained from http://www.iiit.net/ltrc/morph/index.html.

Like the Hebrew morphology module, the Hindi morphological analyzer
takes as input fully inflected Hindi words. It returns first the root form

60 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

Doing morphological analysis on LILD

Y0: ((SPANSTART 0)

(SPANEND 1)

(SCORE 1)

(LEX L)

(POS PREP))

Y1: ((SPANSTART 1)

(SPANEND 2)

(SCORE 1)

(LEX H)

(POS DET))

Y2: ((SPANSTART 2)

(SPANEND 3)

(SCORE 363)

(LEX ILD)

(POS N)

(GEN M)

(NUM S)

(STATUS ABSOLUTE))

Y3: ((SPANSTART 0)

(SPANEND 2)

(SCORE 1)

(LEX L)

(POS PREP))

Y4: ((SPANSTART 2)

(SPANEND 3)

(SCORE 337)

(LEX ILD)

(POS N)

(GEN M)

(NUM S)

(STATUS ABSOLUTE))

Y5: ((SPANSTART 2)

(SPANEND 3)

(SCORE 298)

(LEX ILD)

(POS N)

(GEN M)

(NUM S)

(STATUS CONSTRUCT))

Y6: ((SPANSTART 0)

(SPANEND 4)

(SCORE 1)

(LEX LILD)

(POS LEX))

Figure 3.6: Sample Hebrew morphology output.

3.5. LANGUAGE PAIR SPECIFIC COMPONENTS 61

of the word, which is given in UTF8 and in the romanized (RomanWX)
versions. The root form can then be matched against entries in the bilingual
dictionary, where most Hindi words are represented in their root form.

The morphological analyzer further returns a number of features for
each word, including POS, number, tense, gender, person, and verb form
information. Similarly to Hebrew, several different analyses are possible for
many words. The transfer engine handles this ambiguity by passing on all
possible analyses, as in the Hebrew system.

A sample analysis of the Hindi word is given in Figure 3.7. This example
was also given in a previous paper about the Hindi→English system (Lavie
et al., 2003). The analyzed word (RomanWX transliteration ‘raha’, mean-
ing ‘continue/stay/keep’). It can be seen in this figure that two analyses
are proposed by the morphological analyzer, one where the input word is
analyzed as a verb, and one where it is analyzed as a form of the Hindi light
verb ‘RAHA’.

Figure 3.7: Example of Hindi morphology output.

3.5.3 Translation Dictionaries

The translation dictionaries accomplish lexical transfer, as well as feature
value passing at the lexical level (in addition to lexical level feature pass-
ing in the grammar rules). In both the Hebrew and the Hindi cases, the
bilingual lexicons are made up of entries that contain not only the SL (He-
brew or Hindi) word and its English equivalent, but also the POS of the two
corresponding words, and whatever feature values apply.

The SL words are given in their root form in the dictionary. As was

62 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

mentioned above, all input is first passed through the appropriate morphol-
ogy module. Then the returned root forms are matched against all lexical
entries in order to accomplish lexical transfer. One exception to this rule is
the case of phrasal entries, i.e. transfers of sequences of words to sequences
of words. The transfer of phrasal entries is only done as a whole, i.e. the
entire phrase must match.

Since neither system uses an English morphology generation module,
the lexicons are enhanced to contain different forms of English words, to-
gether with appropriate features. For example, for the Hebrew word ‘BIT’
(‘house’), there are two entries in the lexicon, one for singular and one for
plural. The SL word is, in both cases, given in the root form (‘BIT’), but one
entry translates into the singular ‘house’, the other into the plural ‘houses’.
The transfer is constrained by features, so that only the correct translation
is produced. The relevant lexical rules are as follows:

N::N |: ["BIT"] -> ["HOUSE"]

(

(X1::Y1)

((X0 NUM) = S)

((Y0 NUM) = S)

((Y0 lex) = "HOUSE")

)

N::N |: ["BIT"] -> ["houses"]

(

(X1::Y1)

((Y0 NUM) = P)

((X0 NUM) = P)

((Y0 lex) = "HOUSE")

)

The English word forms that were introduced in the lexicon are plurals
for nouns and gerund, 3rd.sg.present, past tense, and past participle for
verbs. The English verb forms were generated automatically, where the
English ‘generation’ module (a small in-house module) takes care to observe
spelling rules and irregular forms as much as possible. A few misspellings
and incorrect forms still exist in the lexicons, but most entries are correct
English forms.

The same English ‘generation’ principle is applied in the Hindi→English
dictionary in order to accomplish the generation of different English forms.

3.5. LANGUAGE PAIR SPECIFIC COMPONENTS 63

The translation lexicon plays a very important role in the application
of the learned rules, and thus in the performance of the run-time system.
The learned rules rely on the existence of a lexicon that accomplishes not
only lexical transfer, but also contains the parts of speech of the relevant
words. If an input word is found in the lexicon, it can be translated, but
only if it is found with part-of-speech information can it be used in rules.
Note that the rules often generalize to applying to a whole class of words of
a given part of speech. For example, the sample rule in Figure 3.3 captures
the transfer of a N into an N (by the alignment (X2::Y3)). This means that
this slot can only be filled by words that are marked specifically as nouns in
the dictionary. They must be marked as such in the dictionary.

Hebrew→English dictionary

The Hebrew→English bilingual dictionary contains a total of 62038 en-
tries that were in part derived from elicited data. The largest part of
the dictionary was however built based on the Dahan dictionary (Dahan,
1997). The Dahan dictionary contains a Hebrew→English part and an
English→Hebrew part. We used both parts (in reversed direction in the
case of English→Hebrew entries). The lexicon was also enhanced with some
entries that were found missing. Finally, some entries were removed, be-
cause their application produced obscure translations that merely increased
lexical ambiguity without any added benefit.

Hindi→English dictionary

The Hindi→English dictionary was based to a large extent on a dictionary
provided by the Linguistic Data Consortium. As this dictionary is highly
ambiguous and contains a number of obscure translations, we eliminated
some possible English translations (as in the Hebrew case) in order to elimi-
nate lexical ambiguity and in order to rule out some obscure translations. In
addition, we added several types of manually produced rules. First, we ex-
tracted lexical transfer rules from elicited data. As the bilingual informants
not only translate data, but also specify word alignments, lexical rules can
easily be extracted from the hand-translated and -aligned data. In addition,
we added several hand-written rules for specific fixed expressions. For a full
breakdown of lexical rules, please refer to (Lavie et al., 2003). The current
full dictionary contains 57960 entries.

64 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

3.6 Run-time Example

In this section, we provide a simple, but complete example trace of how
translation is accomplished in the run-time system. We give the run-time
example only for Hebrew→English translation; the Hindi→English run-time
system behaves sufficiently similarly (for the purposes of this discussion) to
make a second trace unnecessary. Also, the trace is slightly simplified and
conceptualized, i.e. it does not completely reflect the actual optimized order
of operations in the algorithm, but rather explains what the algorithms
accomplish. For more details, please refer to (Peterson, 2002). We trace
here only the transfer engine phase, as the statistical decoder is a standard
statistical decoder described in various places, e.g., in (Vogel et al., 2003).

It should be emphasized that the example in this section is a very simple
one. It is merely meant to illustrate the behavior of the system. The main
reason to not present a more complex example here is that the complexity
increases very quickly, which would lead to a very lengthy discussion without
any added benefit or insight. For this reason, we restricted ourselves to a
simple example, and trust that it will give the reader an idea of how the sys-
tem behaves under ‘friendly’ conditions, and impress upon the reader again
that in practice, the system handles much larger grammars and lexicons, as
well as much more complex sentence constructions. This will become clear
in the remainder of this thesis.

In this example, we will trace the translation of the following phrase:

H SPRIM H IRWQIM

the book.pl the green.pl.m

‘THE GREEN BOOKS’

Let us begin by presenting the lexicon that is used in this example. It
consists of only 5 entries:

{DET,0}

DET::DET |: ["H"] -> ["THE"]

(

(X1::Y1)

)

{ADJ,0}

ADJ::ADJ |: ["IRWQ"] -> ["GREEN"]

(

(X1::Y1)

3.6. RUN-TIME EXAMPLE 65

)

{N,0}

N::N |: ["SPR"] -> ["BOOKS"]

(

(X1::Y1)

((Y0 NUM) = P)

((X0 NUM) = P)

((Y0 lex) = "BOOK")

)

{N,1}

N::N |: ["SPR"] -> ["BOOK"]

(

(X1::Y1)

((X0 NUM) = S)

((Y0 NUM) = S)

((Y0 lex) = "BOOK")

)

{N,2}

N::N |: ["SPR"] -> ["BORDER"]

(

(X1::Y1)

((X0 NUM) = S)

((Y0 NUM) = S)

((Y0 lex) = "BORDER")

)

We selected these dictionary entries specifically only for this trace. As
was said above, our actual run-time system has many thousand (not just
five) lexicon entries. The toy dictionary in this example contains three
entries for the root of ‘SPR’ (book). One is for a singular translation, one
for a plural translation, and one is for a lexically ambiguous translation into
‘border’. This alludes to the problem that the run-time system must often
choose between many ambiguous translations.

The grammar for this example is equally simple and consists of only two
rules:

{NP,0}

66 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

;;SL:H $NH H RA$WNH

;;TL:THE FIRST YEAR

NP::NP ["H" N "H" ADJP] -> ["THE" ADJP N]

(

;--;(X1::Y1)

(X2::Y3)

;--;(X3::Y1)

(X4::Y2)

(X0 = X2)

((Y3 NUM) = (X2 NUM))

((Y3 PER) = (X2 PER))

(Y0 = Y3)

)

{ADJP,0}

;;SL:I$N

;;TL:OLD

ADJP::ADJP [ADJ] -> [ADJ]

(

(X1::Y1)

)

Note that both of these rules are actual automatically learned rules that
were produced by the system described in this thesis. However, they repre-
sent only a very small fraction of the learned rules. The two rules NP,0 and
ADJP,0 accomplish the transfer of definite Hebrew NPs that are modified
by an ADJP. Note that in Hebrew, the definite determiner is marked on the
noun as well as on the adjective. The ADJP rule is the most basic ADJP
rule that simply states that a single adjective can function as an ADJP.

These grammar rules cover exactly the phrase that we trace in this ex-
ample. Note again that in real examples, translation becomes more complex,
among other things because many grammar rules can apply to a given input,
especially when the input is morphologically ambiguous and can be of mul-
tiple POSs. Lexical ambiguity further complicates translation, because it
forces the transfer engine to try all possible combinations of lexical choices.

3.6.1 Parsing

During the parsing step, the transfer engine first runs all words through
morphology. For example, for the word ‘SPRIM’, the following two analyses

3.6. RUN-TIME EXAMPLE 67

are returned:

X0: ((SPANSTART 1)

(SPANEND 2)

(SCORE 1000)

(LEX SPR)

(POS N)

(GEN M)

(NUM P)

(STATUS ABSOLUTE))

X0: ((SPANSTART 1)

(SPANEND 2)

(SCORE 1)

(LEX SPRIM)

(POS LEX))

The first analysis correctly analyses the word as a plural form of the
word ‘SPR’ (‘THE BOOK’). The second is a default analysis without any
feature values. Both of the analyses, i.e. both of the values for the ‘LEX’
field, are then matched against the dictionary entries, and it is checked
whether the features unify with the features that were returned from mor-
phology. For example, the plural analysis of ‘SPRIM’ with its root (LEX)
‘SPR’ matches three lexicon entries: N,0 (‘BOOKS’), N,1 (‘BOOK’), and
N,2 (‘BORDER’). However, only one entry results in a successful unification,
namely N,0 (‘BOOKS’). The reason is that N,1 and N,2 are both marked
for singular, whereas the morphology analysis for this ‘SPR’ is marked for
plural. For the successful unification, the morphological features are re-
tained for further analysis. In other words, the features are used for any
rule application in which this analysis is used. The unified entry is also
marked with the POS that is given in the lexicon entry if it is not the same
as the POS returned by morphology. The second morphological analysis
with LEX ‘SPRIM’ does not match any lexicon entries.

The same lookup/matching scheme is used on all input words: they are
passed through morphology, then matched against the lexicon entries. The
input words can also be matched against the lexical entries in their surface
form, i.e. before passing them through morphology first to obtain the root
form.

Parsing, of course, consists of more than simple lexical analysis. During
this step, the transfer engine also tries to ‘put together’ the lexical analyses
by means of the transfer rules in the grammar.

68 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

This is done by using the analyses (unifications of morphology and lexical
entries, or only lexical entries) with their POSs and their feature-value pairs
in the rules.

In this case, the rule ADJP,0 is used to parse the single input adjective
‘IRQIM’ (‘GREEN’.m.pl). In other words, the adjective is analyzed as an
ADJP, and the morphological features from the adjectives are passed to the
ADJP. The non-terminal node is used in the rule NP,0 to fill the slot X4.
When rules are used in combination, it must again be the case that their
features unify. In the case of this rule combination, the features values that
must unify are those marked on the X0 node on the ADJP rule, and the
ones marked on the X4 node for the NP rule.

As was said before, the transfer engine produces all translations (as
licensed by the lexicon and grammar) of all input chunks. In order to explain
the behavior of the transfer engine, we will focus in this discussion on only
one partial translation that is produced. In section 3.6.3 we give the full list
of partial translations that were produced for this phrase. For discussion,
we focus on the following parse tree:

(NP ((‘‘H’’) (N) (‘‘H’’) (ADJP (ADJ))))

3.6.2 Transfer and Generation

Transfer and generation are done in an integrated step in the transfer engine.
However, it is easier to conceptualize the behavior of the transfer engine by
discussing transfer and generation separately.

Syntactic Transfer

The first phase of transfer and generation creates a syntactic tree for the
TL from each parse tree. This is done using the component alignments that
are given in the rules that were used to produce the parse tree. During
syntactic transfer, the transfer engine builds a TL tree for all components
in the parse tree, except the lexical items. Lexical transfer is accomplished
in the subsequent phase.

Syntactic transfer begins from the root node of the parse tree. The
transfer engine creates a corresponding TL node. The features that are
associated with this node are obtained using the xy- and y-side constraints
in the rules that were used to obtain the parse tree.

The process is repeated for the root’s children, and recursively after that.
However, when producing corresponding nodes for each interior node in the
parse tree, the transfer engine uses the alignments in order to put the TL

3.6. RUN-TIME EXAMPLE 69

components in the correct order. This implicitly accomplishes component
reordering wherever necessary. Lexicalized components are also handled
during this phase: lexicalized items in the SL component sequence are not
transferred because they are unaligned. Lexicalized items in the TL compo-
nent sequence are inserted in the correct place. Again, the transfer engine
uses the alignments and component sequences of the rules that were applied
to form the parse tree. In our example, we can picture the SL parse tree
and the corresponding TL tree as follows:

(NP::NP (("H"::"")

(""::"THE")

(N::N)

("H"::"")

(ADJP::ADJP (ADJ::ADJ))))

This bilingual tree demonstrates how literals are deleted and inserted
during syntactic transfer, and how the components are transferred recur-
sively. Each TL node is now associated with a set of features that was
passed to it from the corresponding SL node by means of xy- and y-side
constraints. In our case, the TL node marked by N is now marked for the
number value plural and person value 3rd, as these features were passed to
it by the following xy-constraints from rule NP,0:

((Y3 NUM) = (X2 NUM))

((Y3 PER) = (X2 PER))

The transfer engine does not actually represent the trees as bilingual
trees, but rather simply produces a TL tree:

(NP ("THE")(ADJP (ADJ))(N))

The resulting TL tree does not yet have lexical items associated with the
pre-terminal (i.e. POS) nodes. In other words, in our example, although
the literal ‘THE’ has been inserted, the nodes marked as N and ADJ are
not yet filled with lexical items. This happens during lexical transfer and
generation in the following phase.

Lexical Transfer and Generation

During the final phase of transfer, the TL tree’s nodes are filled with lexical
items. During parsing, only a subset of the lexical entries that match a SL

70 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

word can be applied, because some may result in failed unifications with
constraints in the transfer rules. During lexical transfer, a similar principle
applies. From those lexical entries that were in fact applied during parsing,
the transfer engine now forms a list of possible lexical items for each POS
node, in our case for the N and the ADJ nodes. Then it unifies the features
associated with the lexical entries with the features associated with the TL
tree nodes (here, N and ADJ). This generally results in a smaller list. In
our case, only one lexical item remains for each of the nodes, ‘GREEN’ for
the ADJ node and ‘BOOKS’ for the N node, because the other entries did
not unify at parsing time. The transfer engine then proposes all possible
combinations of the remaining lexical items. This involves applying all y-
side constraints, so that some features are passed up the TL tree from the
lexical level. Since higher-level constraints sometimes result in a failed uni-
fication (e.g., a singular verb will not unify with a plural noun in subject
position, provided the correct constraints are given), some combinations can
be eliminated.

After narrowing the list of possible combinations by means of the features
and constraints, the transfer engine finally reads the lexical items off the TL
tree. The lexical items are already in the proper TL order, and are output
as partial translations.

3.6.3 Resulting Lattice

The final resulting lattice for this example is:

(

(0 0 "THE" 1 "H" "(DET,0 "THE")")

(1 1 "BOOKS" 1 "SPR" "(N,0 "BOOKS")")

(1 1 "BOOKS" 1 "SPR" "((NP,0 (N,0 "BOOKS")))")

(2 2 "THE" 1 "H" "(DET,0 "THE")")

(3 3 "GREEN" 1 "IRWQ" "(ADJ,0 "GREEN")")

(3 3 "GREEN" 1 "IRWQ" "((ADJP,0 (ADJ,0 "GREEN")))")

(0 3 "THE GREEN BOOKS" 1 "H SPR H IRWQ" "((NP,0 (LITERAL "THE")

(ADJP,0 (ADJ,0 "GREEN")) (N,0 "BOOKS")))")

)

Each line represents an ‘arc’, i.e. a partial translation. In this lattice,
we give the full trace of each arc. This means that the last field in each arc
(i.e. the field enclosed by ‘”(’ and ‘)”’) specifies how the rules were applied
together.

In this lattice, we can note several interesting points:

3.6. RUN-TIME EXAMPLE 71

1. There are arcs of different lengths. The transfer engine translates
all input chunks of all lengths, unless a maximum length is specified,
which we did not do in this example. For this reasons, we have arcs of
length 1 and one arc of length 4 (number of indices spanned in Hebrew
input).

2. The last arc indicates the rule application of NP,1 and ADJP,1. They
were applied in combination, where the actual lexical transfer was
handled with rules from the lexicon.

3. There are no arcs that use the lexical rules N,1 and N,2. This stems
from the fact that the input word ‘SPRIM’ was passed through mor-
phology, producing the following analysis:

X0: ((SPANSTART 1)

(SPANEND 2)

(SCORE 1000)

(LEX SPR)

(POS N)

(GEN M)

(NUM P)

(STATUS ABSOLUTE))

In other words, the morphology returned that the word ‘SPRIM’ is a
plural noun. For this reason, the unification with the lexical entries
N,1 and N,2 does not succeed, as both of them require that the SL
word (X0) is marked for singular rather than plural.

4. The lattice contains duplicates, i.e. arcs that match both in span and
in translation. In this case, the duplicates are ‘GREEN’ and ‘BOOKS’.
When we do not wish to output the trace and inspect all possible
outcomes, then we generally run the transfer engine in a mode that
automatically eliminates such duplicates in order to limit the lattice
size.

72 CHAPTER 3. SETTING AND RUN-TIME SYSTEM

Chapter 4

Training Data

The Avenue project targets language pairs with an imbalance in electronic
resources. In particular, it is not expected that for a given language pair, a
large bilingual corpus will be available. For this reason, we are designing a
unilingual corpus, generally referred to as the Elicitation Corpus. The elici-
tation corpus is a collection of sentences and phrases in the major language
(TL). Most of the designed elicitation corpus so far is in English, but part
of it has been translated into Spanish, which will in particular allow us to
build MT systems between Spanish and minor languages in South America
(for example, Mapudungun). A native speaker of the low-density language
of interest (SL) then translates the elicitation corpus into their language,
and specifies the word alignments. This is done using an Elicitation Tool.
The interface was developed by Erik Peterson and is described in (Lavie
et al., 2003). It presents users with one sentence to translate at a time. The
user enters the translation into a specified line. Word alignments can be
specified by clicking on an English word and then the corresponding word in
the other language. Not only one-one, but in fact zero-one, one-zero, many-
one, one-many, and many-many alignments are allowed in the translation
tool. Further, the user is able to give as many alternative translations for a
sentence as desired. The interface offers a convenient and intuitive way to
do this. A snapshot of the interface can be seen in Figure 4.1.

Although the elicitation tool is very flexible in what word alignments can
be given by the user, we encourage translators to abide by certain guide-
lines when giving alternative translations and when giving word alignments.
Alternative translations should be given when a real syntactic alternative
exists, or when both alternatives are roughly equally common. It is not
necessary to give all alternatives when they only differ in lexical items that

73

74 CHAPTER 4. TRAINING DATA

Figure 4.1: Elicitation tool for corpus creation.

are synonyms. As for word alignments, the users are encouraged to align
at the word-level as much as possible, and to only resort to many-many
alignments when the translation is a fixed expression or an idiom. They are
also asked to align those words whose roots correspond to the same concept.
If, for example, an English noun translates into a noun and a preposition
in Hindi, then the two nouns should be aligned and the preposition should
be unaligned, as its root does not carry the meaning of the English noun,
but rather carries syntactic information. In the work reported in this the-
sis, parts of the elicitation corpus (as described below) were translated into
Hebrew and Hindi. For Hebrew, three informants translated different parts
of the elicitation corpus, and for Hindi, one person served as a bilingual
informant. As the translators give not only the word alignment, but also
the translation itself, inter-annotator agreement is difficult to assess reliably
because of data sparseness. The agreement could reasonably be expected to
be high, because the translated sentences and phrases are very short (3.74
words on average).

Rule learning can proceed with an extremely small corpus: about 100
carefully selected phrases and sentences allow us to capture many major
phenomena for a language pair. The elicitation corpus can thus be described

75

as a condensed, but high-variety bilingual training corpus. In the absence of
large but uncontrolled corpora, we elicit a small but controlled corpus. The
elicitation corpus can be subdivided into two main parts: the functional and
the structural part.

The design of the elicitation corpus is not in the scope of this thesis.
For coherence and focus, this thesis is aimed at using bilingual data to learn
transfer rules. It is however necessary to discuss the structural elicitation
corpus so as to clarify the training data that the rule learning module works
with for the experiments described in this document. For further details
on elicitation, the interested reader may refer to papers such as (Probst &
Lavie, 2004; Probst & Levin, 2002), which deals with the corpora, their
design, and their goals in greater detail.

4.0.4 Functional Elicitation Corpus

The functional elicitation corpus is designed to cover major linguistic phe-
nomena in typologically diverse languages. The current pilot functional
corpus has about 2000 sentences (in English, some of which have been trans-
lated into Spanish), though we expect it to grow to at least the number of
sentences in (Bouquiaux & Thomas, 1992), which includes around 6,000 to
10,000 sentences, and to ultimately cover most of the phenomena in the
Comrie and Smith (Comrie & Smith, 1977) checklist for descriptive gram-
mars. We are currently investigating techniques to create such a corpus
automatically by defining comprehensive feature vectors and using a gener-
ation grammar that produces sample sentences from the feature structures
that can ultimately be used for elicitation.

The current corpus contains phrases and sentences such as the following:

The family ate dinner.

The dance amazed the children.

Why are you not going to sleep?

My heart beat.

The linguistic features that are emphasized in this part of the corpus
are features such as copula, negation, questions, passive, possessives, com-
paratives, numbers, etc. The most major difference between the functional
and the structural corpus is that the functional elicitation corpus does not
emphasize structural variation. Rather, it focuses on linguistic features.

The functional elicitation corpus was designed for a multitude of pur-
poses. For instance, it can be used to detect whether certain features exist

76 CHAPTER 4. TRAINING DATA

in a language (e.g. does a language mark nouns for dual? (Probst et al.,
2001)). In the future, we also envision the functional elicitation corpus to
be used as input to rule learning. At this stage in development, however, the
full functional corpus is incomplete, and is thus not yet ready to be used for
this purpose. Since a completed functional corpus would provide an ideal
environment for Constraint Learning (as described in chapter 8), we chose
to perform a case study where we use one part of the functional corpus, and
learn a grammar with constraints from it. This case study deals with He-
brew copulas. The copula corpus contains 287 unique elicitation examples
for copula expressions, such as

She was the teacher.

They were students.

The copula case study is described in section 8.8.of the experiments in
this thesis use the structural elicitation corpus.

4.0.5 Structural Training Corpus

The structural part of the elicitation corpus, referred to as the structural
training corpus, was designed to cover major structural phenomena. It
consists of a few hundred sentences and phrases (120 structures that are
exemplified with different sentences and phrases in three corpora), and it
covers different compositions of adjective phrases (ADJPs), adverb phrases
(ADVPs), noun phrases (NPs), prepositional phrases (PPs), SBARs and
sentences (Ss). It also includes a small number of subtypes such as SQ (a
question sentence). Examples of each of these types can be found in Fig-
ure 4.2. For each of these types of structures, we have collected a number
of instances of different composition.

A note on verb phrases (VPs) is in order here: in our system, we do
not currently learn VPs. This is because we are mainly interested in con-
stituent who are likely to translate into constituents of the same type. For
the above constituent types, this is a reasonable assumption. However, VPs
are different in that their make-up often changes significantly during trans-
lation. Handling VPs calls for a different approach, such as the one put
forth in (Dorr et al., 2004). We discuss possible extensions to our approach
to cover VPs in section 10.3.

We began the creation of the structural corpus with a set of parses
from the Brown section of the Penn Treebank (Marcus et al., 1995). The
Penn Treebank is a large-scale project where different types of text were

77

1. ADVP: Adverb phrase, e.g., ‘MAYBE OR MAYBE NOT’

2. WHADVP: Question adverb phrase, e.g., ‘HOW DISAP-
POINTED’

3. ADJP: Adjective phrase, e.g., ‘EXTREMELY HAPPY’

4. WHADJP: Question adjective phrase, e.g., ‘SO IN-
TENSE THAT SHE FORGOT’

5. NP: Noun phrase, e.g., ‘the big book’

6. WHNP: Question noun phrase, e.g., ‘TEN PICTURES
ON THE WALL’

7. PP: Prepositional phrase, e.g., ‘WHAT UNIVERSITY’

8. WHPP: Question prepositional phrase, e.g., ‘ON WHICH
WERE PAINTED RED AND GREEN APPLES’

9. SBAR: Sbar, e.g., ‘ESPECIALLY WHEN HE WAS
THERE’

10. SBARQ: Question Sbar, e.g., ‘WHO IS IT’

11. S: Sentence, e.g. ‘THE BOY ATE AN APPLE’

12. SQ: Question sentence, e.g., ‘CAN YOU COME’

13. SINV: Inverted sentence, e.g., ‘ADDED THE SPEAKER’

Figure 4.2: Relevant constituent types.

78 CHAPTER 4. TRAINING DATA

manually parsed. The parses are often used especially in the statistical
parsing community. In that context, they serve to train statistical models
of the parse trees that can be used to parse unseen text. In our approach,
we made use of the manual parses in a different way. We mapped the
Penn Treebank tagset (http://www.computing.dcu.ie/˜acahill/tagset.html,
1990). to the tagset used by our system, and then collected statistics over
the six types (and their subtypes) in Figure 4.2. Each instance of one of
these types is expressed as a pattern of expression, where a pattern is the
top-node of a partial parse tree, together with the labels of the top-node’s
immediate children. For example, the following two NPs are considered to
be of the same pattern NP→ ADJP N.

black and white and color photography

Type: NP

Parse:(<NP> (<ADJP> (<ADJP> (ADJ black-1)

(CONJ and-2) (ADJ white-3))

(CONJ and-4) (<ADJP> (N color-5)))

(N photography-6))

SL: subsequent developments

Type: NP

Parse:(<NP> (<ADJP> (ADJ subsequent-1))

(N developments-2))

We refer to the pattern of a partial parse tree as its top-level component
sequence. For each type (ADVP, ADJP, etc.), we collected a large number of
different top-level component sequences, together with their frequency of oc-
currence. This gave us an idea of how different structural types are expressed
in English. We then created an elicitation corpus from the most frequent
patterns as follows: for each type, we wanted to cover most of the proba-
bility mass of different top-level component sequences that can express this
type. For those most frequent patterns, we then either extracted or designed
a generic, simple example for elicitation. Referring back to the two NP ex-
amples from above, the first example would be a better elicitation sentence,
because it is simple. This will make it more likely that the sentence is actu-
ally translated into a similar structure in the other language, or else that the
structure in the other language can be robustly detected automatically. The
second sentence allows enough room for translation variation that the task
of the rule learning system would be made more difficult. In a post-editing
step, we then changed a number of lexical items so as to remain as culturally

79

unbiased as possible. This was done in part because lexical selection can
cause sentences to be translated into completely different structures, and in
part because this corpus is designed to be used for various language pairs,
and culturally biased lexical selection can lead to sentences that are simply
not translatable into many languages. During post-editing, we also elimi-
nated a number of structures that should be elicited in the functional part
of the elicitation corpus, because it is known to be expressed differently in
different languages, and thus deserves special in-depth treatment. One such
example is the partitive, e.g., ‘SOME OF THE CHILDREN’. Below we list
several examples of elicitation sentences from the structural corpus:

The election was conducted.

the widespread interest in the election

the city executive committee

David can barely walk.

In (Probst & Lavie, 2004) we describe a different approach to overcome
the problems that lexical selection can cause. There, we make several copies
of the elicitation corpus, where in each copy the lexical items in the elic-
itation examples are changed. Each corpus, however, has the exact same
structures. We show there that lexical selection does indeed play a role in
what types of structures are elicited, but that this problem can be overcome
with only a small number of corpus copies.

While this is an interesting and promising approach, it is not the one
taken in this thesis. Rather, in the results reported here, we put the learning
system in the extreme situation of having to learn from only one copy of
a very small corpus. The goal was to determine what we can learn under
those severe circumstances and the algorithms were optimized for this task.
If we can learn meaningful rules and improve translation quality, we show
that the approach put forth in this thesis can really be applied to language
pairs where we can obtain only very little data.

The structural elicitation corpus consisting of 120 sentences and phrases
was translated and aligned for both Hebrew and Hindi. Unless other-
wise noted, all learned grammars that are described in this document were
learned from the structural corpus. Some bilingual examples between Eng-
lish and Hebrew from this corpus can be found below. Together with the
sentence pairs, we list their English parses and the user-specified alignments.
The following section we describe the full training data format for the rule
learner.

English: in the forest

80 CHAPTER 4. TRAINING DATA

Hebrew: B H I&R

Alignment: ((1,1),(2,2),(3,3))

C-Structure:(<PP> (PREP in-1)(<NP> (DET the-2)(N forest-3)))

English: quickly

TL: B MHIRWT

Alignment: ((1,1),(1,2))

C-Structure:(<ADVP> (ADV quickly-1))

English: the boy ate the apple

Hebrew: H ILD AKL AT H TPWX

Alignment: ((1,1),(2,2),(3,3),(4,5),(5,6))

C-Structure:(<S> (<NP> (DET the-1)(N boy-2))(<VP> (V ate-3)

(<NP> (DET the-4)(N apple-5))))

English: a dispute with the school board

Hebrew: SKSWK &M W&D BIT H SPR

Alignment: ((2,1),(3,2),(4,5),(5,4),(5,6),(6,3))

C-Structure:(<NP> (<NP> (DET a-1)(N dispute-2))

(<PP> (PREP with-3)(<NP> (DET the-4)(N school-5)

(N board-6))))

English: old

Hebrew: I$N

Alignment: ((1,1))

C-Structure:(<ADJP> (ADJ old-1))

English: where our interests lie and what we must do

Hebrew: HIKN $ H AIN@RSIM $LNW NMCAIM W MH $ ANXNW CRIKIM

L&$WT

Alignment: ((1,1),(2,5),(3,4),(4,6),(5,7),(6,8),(7,10),(8,11),

(9,12))

C-Structure:(<SBAR> (<SBAR> (<WHADVP> (WH where-1))

(<S> (<NP> (POSS our-2)(N interests-3))(<VP> (V lie-4))))

(CONJ and-5)(<SBAR> (<WHNP> (SUBORD what-6))

(<S> (<NP> (PRO we-7))(<AUX> (AUX must-8))

(<VP (V do-9)))))

English: aware that the money was gone

Hebrew: MWD& $ H KSP N&LM

81

Alignment: ((1,1),(2,2),(3,3),(4,4),(5,5),(6,5))

C-Structure:(<ADJP> (ADJ aware-1)(<SBAR> (SUBORD that-2)

(<S> (<NP> (DET the-3)(N money-4))(<AUX> (V was-5))

(<ADJP> (ADJ gone-6)))))

English: because he was hungry

Hebrew: KI HWA HIH R&B

Alignment: ((1,1),(2,2),(3,3),(4,4))

C-Structure:(<SBAR> (PREP because-1)(<S> (<NP> (PRO he-2))

(<VP> (V was-3)(<ADJP> (ADJ hungry-4)))))

4.0.6 Training Data Format

During elicitation, the bilingual informants provide the translation of an
elicitation example as well as word-level alignments.

In addition, the rule learner is given the English parse of each training
example. In the case of the structural training corpus, the parse is the
parse from the Penn Treebank (with possible small changes if the lexical
items were changed from the original sentence in the Penn Treebank to
the sentence used in the structural corpus). For the functional corpus, we
used the Charniak parser (Charniak, 2000). As all the training examples in
the functional corpus are very short and structurally simple sentences, the
Charniak parser yields very reliable results.

In addition to a translation pair, word alignments, and the English
parse, each training example also contains type information as well as a
co-embedding score. The type is the label of the top-node of the English
parse of each example. The co-embedding score essentially captures the
depth of the parse tree. It will be described in more detail in chapter 7, as
it is used during Compositionality Learning. Type and co-embedding scores
can be obtained off-line before learning. This results in improved efficiency
of the rule learner.

A complete training example then looks as follows:

TL: in the forest

SL: B H I&R

Alignment:((1,1),(2,2),(3,3))

Type: PP

CoEmbeddingScore: 3

C-Structure:(<PP> (PREP in-1)(<NP> (DET the-2)(N forest-3)))

82 CHAPTER 4. TRAINING DATA

4.0.7 A Note on Uncontrolled Corpora

The rule learning techniques developed in this thesis are not aimed specifi-
cally at the controlled elicitation corpora described in the previous sections.
In fact, the rule learning module could be run just as easily on any bilingual
data that is available, with automatically assigned word alignments.

Uncontrolled corpora have the advantage of being more widely available.
It is often possible to find a bilingual publication for a given language pair,
for example an online newspaper. Then automated techniques for sentence
and word alignment can be applied to this uncontrolled corpus, yielding the
type of corpus that is needed for the learning algorithms described here.
On the other hand, controlled corpora have the advantage of that 1) they
can easily be developed by bilingual speakers if no uncontrolled corpus is
available, and 2) the researchers have more control over what the training
corpus contains. The latter advantage allows us to compact the corpus by
making it diverse in the types of structures that it contains.

We have developed some techniques to learn under a variety of circum-
stances, such as from uncontrolled corpora and from automatically induced
SL morphology modules (Probst, 2003). However, this is not the main line
of this research. The goal of this thesis was to investigate what can be
learned under a miserly data scenario, for example from only the structural
elicitation corpus of 120 sentences. As mentioned above, if we can learn
meaningful grammars from a corpus this small, we can make a strong case
that our approach can be applied to language pairs where very little data is
available. We show in this thesis that this is the case.

Learning from uncontrolled corpora is a very exciting and promising
direction that this research could take in the future. It is however an equally
big project to the one described in this thesis. In particular, as we show in
chapter 9, the algorithms that perform well under the miserly data scenario
are not the same ones that perform well when larger amounts of training data
are given. This indicates that for a different scenario, i.e. large datasets, the
problem must be approached in a slightly different way. For the purpose of
this thesis, this problem is considered to be out of scope.

Chapter 5

Evaluation Methodology

Throughout the thesis, the learned grammars are evaluated in two ways:
first by a discussion of the learned rules and their application, and second
in a ‘task-based’ evaluation where the rules are used in the context of a
translation system. The discussion of the learned rules is both useful and
important, as the system learns rules that are human-readable and can thus
be inspected for their soundness. For each module, and each substantial
learning phase, we thus discuss the learned rules and their strengths and
weaknesses. We also demonstrate how the learned rules in a specific module
accomplish the goal of this module. For example, if a module is designed to
solve the problem of pro-drop, we demonstrate how the learned rules capture
pro-drop and improve translation quality.

In the task-based evaluation, the grammar is used with the transfer en-
gine to produce a lattice, and the decoder is used to produce a final transla-
tion. The translations are evaluated with automated evaluation techniques.

The first metric that we use is BLEU (Papineni et al., 2001). BLEU
is a metric that is routinely used in the MT community to automatically
assess translation quality. It is based on matching a hypothesis translation
(i.e. the output of an MT system) to one or more reference translations that
were produced by a human. BLEU counts how many unigrams, bigrams, . . .

n-grams (where n is usually set to 4) in the hypothesis translation match one
or more reference translation. For each n-gram length, a score is assigned.
The BLEU metric then takes the geometric mean of the scores assigned to all
n-gram lengths. This is however not enough: the MT system could propose
very long translations and thus stand a better chance of matching many
n-grams. In order to overcome this potential problem, BLEU introduces the
notion of a lengthlimit, where translation hypotheses are penalized if their

83

84 CHAPTER 5. EVALUATION METHODOLOGY

length is different from the average reference translation length.
As BLEU is not normalized and increases with the number of sentences

in the test set and with the number of reference translations, it is best used
as a comparison metric to assess the difference of two systems. This is how
it is used in this thesis. In particular, we compare the performance of the
system without learned rules to the system with learned rules.

One drawback of BLEU is that if the number of matched higher-order
n-grams is small, the overall score will be low, regardless of how many lower-
order n-grams are used. In particular, if for example no n-grams of a specific
length (e.g. no 4-grams) are matched, the overall score will be 0. In order to
overcome this problem, a modified version of the BLEU metric, the modified
BLEU (referred to as ModBLEU in this document) has been proposed by
Zhang (Zhang & Vogel, 2004). Instead of the geometric mean, they use
the arithmetic mean, which corrects the problem. We report this metric in
this document for completeness. In our experience, however, its behavior
is usually very similar to the BLEU metric if there are no zero matches of
n-gram lengths.

The third metric used in this thesis is METEOR. The METEOR metric,
proposed in (Lavie et al., 2004) also matches unigrams, bigrams, . . . , n-
grams to reference translations. However, instead of a length penalty, it
counts the number of reorderings that would be necessary to get from the
hypothesis translation to the reference translation.

It is important to note that BLEU and ModBLEU put a stronger em-
phasis on precision than on recall, whereas METEOR puts more emphasis
on recall. This basic difference is consistently observed in our results. For
example, whenever an algorithm is designed to improve recall while sacrific-
ing some precision, the METEOR score generally increases, while the BLEU
and ModBLEU scores decrease.

In addition to the translation evaluation metrics, we also use a Lat-
tice Evaluation, which abstracts away from the decoder: it evaluates the
lattice produced by the transfer engine by comparing it to the reference
translation(s) much in same way as BLEU and METEOR do. The lattice
evaluation compares the translation chunk of each lattice arc against the ref-
erence translation. It first counts the number of unigrams, then the number
of bigrams, etc. up to a specified maximum n-gram size. For each match,
the arc’s score is increased. The lattice scoring also takes into account the
length of the arc, and how many times each of the matched n-grams was al-
ready matched in a given sentence. If an arc contains an n-gram match that
was already proposed by another arc, then the addition to the arc score
is discounted based on how many times the matched n-gram was already

85

observed. In this way, an arc receives a boost in score for each matched
n-gram. However, frequently matched n-grams are not rewarded as highly,
because an arc that contains a frequently matched n-gram adds very little
to the quality of the lattice. Multiple reference translations are handled
by computing the score for an arc for each reference translation, and then
retaining only the maximum value. Since the evaluation method is not di-
rectly part of the thesis, more details can be found in the appendix under
section A. In the work reported here, the lattice evaluation metric is used
to assess the quality of individual rules. We can measure how well rules
perform (independently of the decoder) by evaluating the quality of the arcs
that were produced using this rule. More details on rule scoring can be
found in section 9.5.

We report results for each individual learning phase and each training
set, and compare the results. In addition to comparing different grammars,
we also compare the learned grammars to a baseline and a manually written
grammar. The baseline is a translation without a grammar, but only with
the statistical decoder and the lexicon. The manually written grammar is a
small Hebrew→English grammar that was designed by a human expert in
the course of a few weeks. While by no means comprehensive, this grammar
provides a good basis for comparison. For Hindi→English translation, we
only compare to the baseline without a grammar.

The experiments were performed on a test set of 26 parallel sentences of
newspaper style text with one reference translation (test set 1). In addition,
we evaluate the algorithms on an test set of 62 sentences, again newspaper
test, but with two reference translations (test set 2). Test test 1 was used as
a development set for the manually written grammar. For this reason, the
manual grammar performs better on test set 1 than on test set 2. For auto-
matic rule learning, both test set 1 and test set 2 are unseen test data. We
further evaluated on a test suite that targets specific syntactic phenomena
of interest, for instance reordering of adjectives and nouns between Hebrew
and English. The test suite has 138 sentences and one reference translation.
The test suite and the evaluation on it will be discussed in section 9.6.

The run-time system is generally used in a mode that allows the user to
specify the maximum arc length of partial translations as discussed in sec-
tion 3.3. For example, a lengthlimit of 6 means that the maximum number
of source indices (i.e. components) that can be spanned by any one arc is
6. While this is suboptimal in the sense that we do not obtain complete
lattices, the lengthlimit is a very useful tool in practice. It is set in order to
combat the often very large number of possible arcs. The decoder chooses
between the possible partial translations, but when there are sufficiently

86 CHAPTER 5. EVALUATION METHODOLOGY

many partial translations, the transfer engine is not able to produce all of
them. Unless otherwise specified, we report results throughout for a length-
limit of 6. In section 9.7, we compare the performance of grammars under
different lengthlimits.

In addition to BLEU, ModBLEU, and METEOR scores, we report through-
out the thesis confidence intervals and p-values that can be associated with
the raw scores. In the case of BLEU and ModBLEU, no sentence-level score
is available. For this reason, it is not completely straightforward to measure
statistical significance. However, it would be useful to report a measure of
statistical significance between the baseline and the various learned gram-
mars. For this reason, we follow the method described in (Zhang & Vogel,
2004), and used the software provided with it. The authors apply the tech-
nique of bootstrapping in order to produce enough information to report
confidence intervals. The interested reader should refer to the paper for
more details. We explain the idea here only briefly: For BLEU and Mod-
BLEU, the bootstrap proceeds as follows: suppose that the test set consists
of x sentences. Then the bootstrap randomly draws from the x sentences
x times with replacement. In other words, it randomly creates a new arti-
ficial test set, also consisting of x sentences, but in the new test set some
sentences may be repeated. For this test set, it then computes the BLEU
and ModBLEU scores both for the baseline and for the system that uses the
learned grammar, and takes the difference between the scores. This process
is repeated y times, where the y used in the experiments in this thesis was set
to 10000. This yields 10000 data points of the difference between the base-
line and the system with the learned grammar. Finally, the bootstrapping
module reports a 95% confidence score on this difference. In other words, if
0 is not included in this confidence interval, we can say with 95% confidence
that the baseline and the system with the learned grammar are different.
Often in our results, 0 is included in this interval, but only barely, leading
us to conclude that the system with the learned grammar are different with
close to 95% confidence.

Statistical significance for METEOR scores are easier to compute. Here,
we report the p-value of a one-tailed t-test, again between the baseline and
the system with the learned grammar. The p-value is the lowest confidence
level at which we can reject the hypothesis that the baseline and the system
with the learned grammar are not different. In other words, a p-value of
0.05 indicates that with 95% confidence, the two systems are different.

In the tables that report the confidence intervals and p-values, we only
give the name (or description) of the learned grammar. The reader should
note that we always report confidence intervals on the difference between the

87

system with the learned grammar and the baseline. Similarly, the p-values
always indicate the level of statistical significance of a one-tailed t-test on the
difference between the system with the learned grammar and the baseline.

It should be noted that in particular for the Hebrew test sets, a statis-
tically significant result is difficult to accomplish, because the test sets are
small (26 sentences and 62 sentences, respectively). On the other hand, a
statistically significant result on such a test set is a very strong result.

88 CHAPTER 5. EVALUATION METHODOLOGY

Chapter 6

Seed Generation

6.1 Introduction

Seed Generation is the process of building transfer rules from the training
data that closely reflect the sentences that they were derived from. This
is done using the parses, the dictionary, and a morphology module for the
minor language SL.

The goal of this module is to produce flat rules. To clarify this concept,
consider the following two rules, NP,1 and NP,2:

{NP,1}

;;SL: &NIIN RXB B H BXIRWT

;;TL: WIDESPREAD INTEREST IN THE ELECTION

NP::NP [N ADJ PREP DET N] -> [ADJ N PREP DET N]

(

(X1::Y2)

(X2::Y1)

(X3::Y3)

(X4::Y4)

(X5::Y5)

)

{NP,2}

;;SL: &NIIN RXB B H BXIRWT

;;TL: WIDESPREAD INTEREST IN THE ELECTION

NP::NP [N ADJ PP] -> [ADJ N PP]

(

(X1::Y2)

89

90 CHAPTER 6. SEED GENERATION

(X2::Y1)

(X3::Y3)

)

The first rule, NP,1, is an example of a flat rule. Its component se-
quences contain only POS labels, but no constituent labels. The second
rule, NP,2, on the other hand, contains a generalization to the constituent
level, represented by the PP labels in both component sequences. The sec-
ond rule can combine with any rule whose type is PP::PP. The first rule,
on the other hand, cannot combine with any other grammar rules and is
therefore considered a ‘flat’ rule. The goal of Seed Generation is to produce
such flat rules. Flat rules and their relationship to Seed Generation can be
defined as follows. Please refer to Figure 3.3 for a reminder of essential rule
parts.

A flat rule is a fully functional transfer rule whose com-
ponent sequences contain only lexical items or part of
speech labels, but no constituent labels. Seed Genera-
tion produces exclusively flat rules.

Constituent labels such as PPs, which allow the rules to combine, are
introduced during Compositionality Learning. Flat seed rules, on the other
hand, can only apply individually. In addition, seed rules are generally
highly lexicalized: with few exceptions, any word that is not aligned one-
one is left lexicalized during Seed Generation. Compositionality learning
overcomes this one-one restriction in some cases.

Seed generation, like all other learning modules, learn rules only for a
set of relevant types. The constituent types that are handled in our system
are listed in Figure 4.2.

Other non-terminals, in particular verb phrases (VPs), are very difficult
to capture in transfer rules, because they are more likely to exhibit structural
mismatches. Since our rules are learned completely automatically, excluding
VPs from our choice of relevant types is merely a conservative precaution.
This does not mean that verbs are not an integral part of the learned rules,
but no sequence of parts of speech and/or non-terminals is ever general-
ized to a VP, and no rule are learned that are of type VP::VP. A possible
extension to our work to include VP handling is discussed in section 10.3.

6.2. DESCRIPTION OF LEARNING ALGORITHM 91

6.2 Description of Learning Algorithm

Seed Generation processes each training example in turn. For each, it con-
structs a flat transfer rule called a seed rule, if certain conditions are met.
The seed rule is a complete transfer rule in format: it contains SL and TL
type information, component sequences, and alignments. In other words, it
is a fully functional transfer rule.

For each training example, the task of the Seed Generation module is to
produce the following rule parts:

• SL type information

• TL type information

• SL component sequence

• TL component sequence

• word-level alignments

In Figure 6.1, we present the Seed Generation algorithm in pseudocode.
While it is not possible to include all details in the pseudocode listing, it
can be useful for giving an overview picture.

The TL type information is obtained from the parse, it is simply the label
of the top node. It is important to remember that at Seed Generation time,
each bilingual training example is fully annotated, including the English
syntactic parse. For this reason, the English parse for each training example
is readily available to the Seed Generation algorithm. For more details on
what information is available for each bilingual training sentence pair, please
refer to chapter 4.

The SL type information is assumed to be always the same as for the
major language, TL, so that the SL type information in each seed rule
is also the TL parse’s top node. This approach stems from the underlying
assumption that elicitation targets those sentence components that are likely
to transfer into the same kind of component, e.g., noun phrases are assumed
to translate into noun phrases.

The TL component sequence can essentially be obtained from the Eng-
lish parse that is given with the training example: for each word in the
training example’s TL sentence or phrase, the part of speech of this word
can be looked up in the parse. One restriction that is put on the component
sequences is that only words that are aligned one-one can be represented
by their POS in the component sequence. By contrast, not one-one aligned

92 CHAPTER 6. SEED GENERATION

Seed Generation

For all training examples

For all 1-1 aligned word pairs wi,SL, wj,TL

Get the TL POS tag POSwj,TL
for wj,TL from

the parse

Get the POS tag POSwi,SL
for wi,SL if

possible:

If there exists an entry in

the dictionary for the pair

‘‘wi,SL’’→‘‘wj,TL’’

If the POS combination for this entry

is POSwj,TL
:: POSwj,TL

, then let

POSwi,TL
be POSwj,TL

Else leave wi,SL and wj,TL lexicalized

Else get a set POS1..k,wi,SL
of all

possible POS tags for wi,SL from the

SL morphology

If POSwj,TL
∈ POS1..k,wi,SL

, then let

POSwi,TL
be POSwj,TL

Else if POS1..k,wi,SL
=∅, then let

POSwi,TL
be POSwj,TL

Else leave wi,SL and wj,TL lexicalized

For all other words, leave the words lexicalized

For each SL word wi,SL that is left lexicalized,

determine the most likely root:

Get a set root1..k,wi,SL
of all possible roots

for wi,SL from the SL morphology

For each aligned TL word wj,TL and each

rootwi,SL
∈root1..k,wi,SL

, look up the combination

‘‘rootwi,SL
’’→‘‘wj,TL’’ in the dictionary

If a combination exists, then rootwi,SL

remains in the set root1..k,wi,SL

Else remove rootwi,SL
from root1..k,wi,SL

If exactly one element remains in root1..k,wi,SL
,

then this is the root

Else if the original set root1..k,wi,SL
as returned

from morphology has exactly one element, this

element is the root

Else the word itself wi,SL is considered the root

Produce a fully functional transfer rule from

the POS tags, the words that remain lexicalized,

and the alignments

Figure 6.1: Pseudocode for Seed Generation.

6.2. DESCRIPTION OF LEARNING ALGORITHM 93

words are left lexicalized, i.e. the lexical item from the translation sentence
remains in the component sequence. This was seen earlier in the sample
transfer rule in Figure 3.3, where two instances ‘H’ and ‘THE’ remained
lexicalized because they were not aligned one-one.

SL component sequences are obtained similarly to their TL counterparts.
Any one-one aligned word is replaced by a POS label if certain conditions
hold. As the rule learning system works without an SL parse, the bilingual
dictionary is used to obtain a better estimate of what the POS of a given SL
word should be. For all one-one aligned words, the TL-SL word combination
is first looked up in the dictionary. Similarly, if the TL-SL word combination
is found in the dictionary and the dictionary entry’s TL POS is the same
as the TL word’s POS in the parse, the words are raised to the POS level.
However, if the SL part of speech is not the same, then both the TL word
and the SL word are left lexicalized. If there is no entry in the lexicon
for this combination, the SL morphology module is used to return a list of
possible parts of speech for the given word. If no possible parts of speech
are returned, it is assumed (in the absence of any other information) that
the SL POS label is the same as the POS of the corresponding TL word.
Both the TL and SL word will be replaced by their parts of speech in the
learned seed rule.

If one of the possible parts of speech returned by the morphology module
is the same as the corresponding TL word’s POS, then both the TL and the
SL word are generalized to the POS level, and this POS will be entered into
the component sequence.

If a word is not aligned one-one, it must remain lexicalized. In the
Hebrew→English system, the dictionary is in full (i.e. inflected) form for
English, but in root form for Hebrew. Therefore it is necessary that the rules
contain Hebrew lexical items in their root form if the words are lexicalized.
The root form can be obtained as follows: the Hebrew word is analyzed
by the Hebrew morphology module, which returns a list of possible roots.
Each root and all possible English translations from the training example
are then looked up in the dictionary. If there exists an entry for such a
combination, then the proposed root is returned as the root for the given SL
word. If no such entry exists, but the morphology module returns exactly
one possible root, then this root is returned. Otherwise, no root is returned.
If a root is found, it is entered into the SL component sequence instead of
the original word. If not, the original Hebrew lexical item is entered into
the SL component sequence.

As was mentioned above, the Seed Generation module produces com-
pletely ‘flat’ rules. This is accomplished by allowing the component se-

94 CHAPTER 6. SEED GENERATION

quences to contain only literals and parts of speech, i.e. only components
that refer to at most one word in the training examples. Components that
can span more than one word, and can be filled by other grammar rules, are
learned during Compositionality.

The Seed Generation algorithm contains some technical details that
could obscure the big picture. For this reason, we summarize below the
essential goals and assumptions of Seed Generation. The three most impor-
tant details to remember about Seed Generation are the following:

1. Seed Generation produces flat rules.

2. Not one-one aligned words remain lexicalized in the
component sequences.

3. The SL type information is assumed to be the same
as the TL type information.

6.3 Results

6.3.1 Discussion of Learned Rules

We will now discuss several rules for Hebrew→English translation that were
learned using the Seed Generation module. All rules were learned from the
structural elicitation corpus, which consists of 120 sentences and phrases.
For details on the training corpus, refer back to chapter 4.

;;SL: $MX MAWD &L H XD$WT

;;TL: VERY HAPPY ABOUT THE NEWS

;;C-Structure:(<ADJP> (<ADVP> (ADV very-1))(ADJ happy-2)

(<PP> (PREP about-3)(<NP> (DET the-4)(N news-5))))

ADJP::ADJP [ADJ ADV PREP DET N] -> [ADV ADJ PREP DET N]

(

(X1::Y2)

(X2::Y1)

(X3::Y3)

(X4::Y4)

(X5::Y5)

)

This rule demonstrates well what kind of structures Seed Generation
can capture. It was learned that the English pre-adjectival adverb appears
after the adjective in Hebrew. The position of the prepositional phrase is

6.3. RESULTS 95

the same for both languages. Note that this rule does not contain any
lexicalized items, as all words are aligned one-one in the training example,
and there is evidence that the parts of speech for the Hebrew words are
the same as for their aligned English counterparts. A rule such as this first
example will readily apply to unseen text. It illustrates generalization over
the training data up to the POS level. Any lexicon entries of these parts of
speech can now fill the slots in the rule. For example, any lexicon entry of
type ADJ::ADJ can now fill the slots X1 and Y2, which are aligned to each
other and of type ADJ.

The following is an example of a less general, more lexicalized rule:

;;SL: H QBWCH H XD$H $LW

;;TL: HIS NEW TEAM

;;C-Structure:(<NP> (POSS his-1)(ADJ new-2)(N team-3))

NP::NP ["H" N "H" ADJ POSS] -> [POSS ADJ N]

(

(X2::Y3)

(X4::Y2)

(X5::Y1)

)

This rule expresses how simple possessives, in conjunction with an ad-
jective, are realized in Hebrew. It was learned that while an English NP
with a possessive, as in the example, generally does not mark for definite-
ness, the Hebrew definiteness marker ‘H’ appears on both the noun and the
adjective. Both instances remained lexicalized because they are not aligned
to any English words. It should also be noted that the entire phrase is
completely reordered in Hebrew.

The following is another automatically learned rule:

;;SL: KL KK XZQ $ HIA $KXH

;;TL: SO INTENSE THAT SHE FORGOT

;;C-Structure:(<ADJP> (<ADJP> (<ADVP> (ADV so-1))(ADJ intense-2))

(<SBAR> (SUBORD that-3)(<S> (<NP> (PRO she-4))(<VP> (V forgot-5)))))

ADJP::ADJP ["KL" "KK" ADJ SUBORD PRO V] -> ["SO" ADJ SUBORD PRO V]

(

;(X1::Y1)

;(X2::Y1)

(X3::Y2)

(X4::Y3)

96 CHAPTER 6. SEED GENERATION

(X5::Y4)

(X6::Y5)

)

This is an example of a partially lexicalized rule that nevertheless cap-
tures an interesting Hebrew expression and its English counterpart. The
English intensifier ‘SO’ is expressed in Hebrew as the two words ‘KL’ ‘KK’.
The words remained lexicalized during learning because they were not aligned
one-one. This rule, albeit interesting, will apply only to few test examples
because of its partial lexicalization. Note that the transfer rule contains, in
commented-out form, the word alignments that were specified by the user
between ‘KL’ ‘KK’ and ‘SO’. These alignments are merely retained for the
human inspector; they are commented out automatically by the rule learner
and ignored by the transfer engine.

Finally, we present an example of reordering of noun compounds between
Hebrew and English.

;;SL: TKNIT H @IPWL H HTNDBWTIT

;;TL: THE VOLUNTARY CARE PLAN

;;C-Structure:(<NP> (DET the-1)(<ADJP> (ADJ voluntary-2))

(N care-3)(N plan-4))

NP::NP [N "H" N "H" ADJ] -> ["THE" ADJ N N]

(

(X1::Y4)

;(X2::Y1)

(X3::Y3)

;(X4::Y1)

(X5::Y2)

As previously, the Hebrew definite determiner ‘H’ appears more than
once. In Hebrew, noun compounds mark definiteness only on the second
noun. The determiner is repeated on the adjective. As the alignments
indicate, the word order is essentially reversed when translating from Hebrew
into English.

6.3.2 Automatic Evaluation Results

Seed Generation is the first of three phases of rule learning. The rule learn-
ing module can be run only for Seed Generation, producing flat seed rules.
It is interesting to evaluate these rules without running the subsequent two

6.3. RESULTS 97

learning phases. The seed rules capture important phenomena of word re-
orderings, insertions, deletions, etc. The two following learning phases turn
the flat seed rules into more generally applicable rules, but even the flat seed
rules themselves capture a variety of translation phenomena.

We ran the rule learner for Seed Generation only on the structural elic-
itation corpus of 120 sentences and phrases. For the learned grammar, we
computed several automated evaluation scores. We report here the BLEU
score, the ModBLEU score, as well as the METEOR score. Here and for the
remainder of the document, we compare against a baseline translation with-
out a grammar and a translation with a hand-written grammar, as described
in chapter 5.

Grammar BLEU ModBLEU METEOR

No Grammar 0.0255 0.0910 0.2681

Manual Grammar 0.0713 0.1209 0.3204

Learned Grammar (SeedGen) 0.0281 0.0969 0.2786

Table 6.1: Seed Generation only evaluation results on test set 1.

Comparison BLEU ModBLEU METEOR

SeedGen [-0.0073,0.0018] [-0.0149,0.0026] p=0.112

Table 6.2: Seed Generation only confidence intervals (for BLEU and Mod-
BLEU) and one-tailed t-test for comparison between learned grammar and
baseline.

Table 6.1 presents the results on test set 1 for the baseline without a
grammar, manually written grammar, and the grammars that were learned
from the structural corpus. The p-value and confidence intervals are given
in Table 6.2.

Although the results are not highly statistically significant (which is in
part due to the small dataset of 26 sentences), it can be seen from the
automated evaluation results that considerable improvement of translation
quality can be gained from the flat seed rules alone. This indicates that
the seed rules capture the kinds of structural phenomena that are targeted
during learning. It also indicates that the rules can generalize beyond the
training sentences they were inferred from, and can be used to translate
unseen examples. In subsequent chapters, we will improve upon this first
learning phase. Seed generation is a learning strategy that captures the

98 CHAPTER 6. SEED GENERATION

training data in rule format, but it does not generalize as well over the
training data as Compositionality learning (cf. chapter 7). Generalization
is important especially when the training corpus is very small, such as our
corpus of 120 sentences and phrases.

We note again that for a test set of 26 sentences, a statistically significant
result is difficult to accomplish.

Under the above comparison of the baseline, manual grammar, and the
rules learned with Seed Generation, the manual grammar outperforms the
learned grammar noticeably. This is in part because test set 1 was used as a
development set for the manual grammar. The goal of the following learning
phases is then to improve upon the performance of the seed rules, and to get
as close as possible or beyond the performance of the manual grammar. We
will in fact show that under certain conditions, the learned grammar will
outperform the manual grammar.

Chapter 7

Structural Learning

7.1 Introduction

The previous chapter described the Seed Generation algorithm, during which
a set of rules are learned that closely reflect the training data. In this
and the following chapter, we shift our attention to learning more complex
rules, i.e. rules that generalize further over the training data, and that
capture higher-level structure as well as context. In order to make clear
the difference between the flat rules produced during Seed Generation and
the more general rule produced during Compositionality, consider first the
following training example and the corresponding seed rule as generated by
the learning module. Note again that the English (i.e. TL) parse is given
with the training example, and is used during rule learning.

TL: a year later they returned

SL: $NH MAWXR IWTR HM $BW

Alignment: ((2,1),(3,2),(3,3),(4,4),(5,5))

Type: S

CoEmbeddingScore: 4

C-Structure:

(<S> (<ADVP> (<NP> (DET a-1)(N year-2))

(ADV later-3))

(<S> (<NP> (PRO they-4))

(<VP> (V returned-5))))

;;SL: $NH MAWXR IWTR HM $BW

;;TL: A YEAR LATER THEY RETURNED

S::S [N "MAWXR" "IWTR" PRO V] -> ["A" N "LATER" PRO V]

99

100 CHAPTER 7. STRUCTURAL LEARNING

(

(X1::Y2)

;(X2::Y3)

;(X3::Y3)

(X4::Y4)

(X5::Y5)

)

The seed rule is flat, as desired by the Seed Generation algorithm. In
order for this rule to scale to a larger number of test sentences, several
generalizations of the seed rule are possible:

;;SL: $NH MAWXR IWTR HM $BW

;;TL: A YEAR LATER THEY RETURNED

S::S [N "MAWXR" "IWTR" PRO V] -> ["A" N "LATER" PRO V]

(

(X1::Y2)

;(X2::Y1)

;(X3::Y3)

(X4::Y4)

(X5::Y5)

)

;;SL: $NH MAWXR IWTR HM $BW

;;TL: A YEAR LATER THEY RETURNED

S::S [N "MAWXR" "IWTR" NP V] -> ["A" N "LATER" NP V]

(

(X1::Y2)

;(X2::Y3)

;(X3::Y3)

(X4::Y4)

(X5::Y5)

)

;;SL: $NH MAWXR IWTR HM $BW

;;TL: A YEAR LATER THEY RETURNED

S::S [ADVP PRO V] -> [ADVP PRO V]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

7.1. INTRODUCTION 101

)

;;SL: $NH MAWXR IWTR HM $BW

;;TL: A YEAR LATER THEY RETURNED

S::S [N "MAWXR" "IWTR" S] -> ["A" N "LATER" S]

(

(X1::Y2)

;(X2::Y3)

;(X3::Y3)

(X4::Y4)

)

;;SL: $NH MAWXR IWTR HM $BW

;;TL: A YEAR LATER THEY RETURNED

S::S [ADVP S] -> [ADVP S]

(

(X1::Y1)

(X2::Y2)

)

This chapter focuses on learning more general rules such as the ones
above. More specifically, it targets the learning of appropriate component
sequences. These sequences, together with the type information, represent
the structural portion of the rules. If as in the above rules the component
sequences contain constituent labels, then they capture a hierarchical struc-
tural transfer, i.e. the transfer of structural SL trees to TL trees, because
the constituent labels in the component sequences allow the rules to com-
bine with each other. In this sense, the rules are now compositional. Why
are structural transfers important? First, they allow us to reorder not only
words, but also entire constituents. Second, they also allow us to capture in
part the structure of the minor language SL. As mentioned in the Related
Work section (chapter 2), a very important distinction between our work and
a body of recent related work is that in our framework, we do not assume
the availability of an SL parser. This makes the learning of structures all the
more challenging. This chapter provides a discussion of learning structure
with only a parser for the major language: it discusses what is learnable,
and proposes learning algorithms for those structures that can be learned in
our framework.

An important observation is that the generalized rules above are of vary-
ing degrees of generality. More specifically, the last rule is the most general

102 CHAPTER 7. STRUCTURAL LEARNING

rule, which means that it will apply to a large number of unseen examples,
while at the same time maximally generalizing over the specific training ex-
ample. One of the most basic problems that we are facing when learning
transfer rules is the trade-off between scaling to unseen examples and overly
general rules that apply in many contexts where they should not apply. The
goal of Compositionality, as described in this chapter, is essentially to create
very general rules that will apply to a variety of new contexts. By contrast,
the unification constraints serve to limit the applicability and/or output of
the rules. In this way, Compositionality and Constraint Learning together
serve to strike an appropriate balance, as supported by the training data.

7.2 Taxonomy of Structural Transfers

In this section, we discuss the theory of what structures can exist, and what
structures are learnable. There are several factors to consider:

1. The space of possible transfers

2. The space defined by the rule formalism

3. The space defined by the learning algorithm

The following sections will provide discussions of each of these spaces.
In particular, we will discuss the advantages and disadvantages of the rule
formalism. We will then derive an argument of what the learning algorithms
address and why. Our goal is to at least address in discussion all important
types of transfers; in the case of structural transfers that are not learnable
by our algorithms, we give a discussion of why this is the case. Some issues
are left for future work. The goal of this section is to give a comprehensive
discussion of the structural learning problem. Before discussing the three
spaces within which the learning system resides, we give a listing of the
specific constraints on our system that do not influence the generality of the
argument following it.

7.2.1 System Constraints

In this section, we lay out a set of constraints under which our system
must work. The constraints are meant to not influence the generality of the
approach. Instead, they make the discussion feasible by making it concrete.

We apply the following constraints:

7.2. TAXONOMY OF STRUCTURAL TRANSFERS 103

1. Transfers are applied at most at the sentence level. Each transfer
(rule) captures a transformation of a phrasal instance or a complete
sentence, but not a paragraph.

2. The transfer rules are designed to be unidirectional from the minor
language (SL) to the major language (TL).

3. The rules must be learned under the resource constraints described in
previous chapters, in particular the availability of a parser only for the
major language. Due to these restrictions, the structural part of the
rules are highly dependent on the TL parse information.

7.2.2 General Space of Possible Transfers

The general space of structural transfers can be regarded as any transfer
between the two languages. The most specific transfer is between two com-
pletely lexicalized sentences. This is not a structural transfer, because it
does not provide any generalization power: no other (partial) sentences can
be translated with such a transfer. Further, the transfer is flat, thus does not
provide any hierarchy. Example-based machine translation operates mostly
at this level.

In this work, we aim at inferring more structural transfers, meaning
that they will 1) generalize to unseen examples, i.e. abstract away from the
lexical level as much as possible, and 2) provide a hierarchical structure, i.e.
transfer (partial) trees of structures. This is motivated by the extremely
small training corpus: more general (i.e. non-lexicalized) rules allow us
to capture the structure of the training example independently of specific
lexical items.

While the most specific rules are easily defined and understood, it is less
clear how to define the most general rules that could be produced. Using
similar reasoning as before, we can state that the most general rules that
we could produce are ones whose component sequences contains exclusively
constituent labels, so that every component must be filled by another rule.
Clearly, not all rules in the grammar can be at this most general level. This
definition is merely meant to emphasize once again that the rules are of
varying degrees of generality. Compositionality Learning must determine
what level of generality is appropriate for a given rule.

104 CHAPTER 7. STRUCTURAL LEARNING

7.2.3 Space Defined by Rule Formalism

Before learning structural transfers, it is necessary to define a set of tags that
describe categories of words or higher-level structures. The rule formalism
developed for this work allows for two types of categories in addition to
lexical items. The categories are as follows:

1. Non-terminals (NT): non-terminals are those labels that appear in the
type of a rule. In our system, the non-terminals are the set of labels
listed in Figure 4.2. Non-terminals are used in two rule parts: first,
in the type definition of a rule (both for SL and TL, meaning X0
and Y0), and second in the component sequences for both languages.
Non-terminals can be defined as any label that can be the type of a
rule. They describe higher-level structures such as sentences (S), noun
phrases (NP), or prepositional phrases (PP). Generally, they can be
filled with more than one word. In other words, NTs in component
sequences are filled by other rules.

2. Pre-terminals (PT): pre-terminals are part of speech labels. Pre-
terminals can only be used in the component sequences of the rules,
and not as X0 or Y0 types (except in the lexicon). Pre-terminals in
component sequences can be filled by only one lexical entry, not by
other grammar rules.

3. Terminals (LIT): terminals are lexicalized entries in the component
sequences, and can be used on both the x- and the y-side. They can
only be filled by the specified terminal itself.

These categories in combination with the definition of the rule formalism
as well as the implementation of the transfer engine narrow the space of
possible rules that can be learned. They enforce that there is a hierarchy of
levels of abstraction, as specified by the categories.

The rule formalism furthermore implies a number of restrictions on the
types of rules that the transfer engine can translate. Note that these restric-
tions are independent of any restrictions imposed by the learning algorithms
on what rules could be learned from data. In fact, many rules could be
learned, but could not be used for run-time translation, because they are
meaningless in our system. This will become clearer further along in the
discussion. The restrictions imposed by the rule formalism are subtle, but
have wide-reaching implications. They are as follows:

NTs must not be aligned one-zero or zero-one.

7.2. TAXONOMY OF STRUCTURAL TRANSFERS 105

This can be explained as follows: Suppose NTs could be aligned one-
zero or zero-one. If it is one-zero aligned, then we arrive at a contradiction.
Consider the following (abstract) rule that contains a one-zero alignment of
an NT:

NT1::NT1 [PT1 NT2] -> [PT1]

((X1::Y1))

This rule may at first glance seem like a meaningful rule. Note, however,
that it can never be applied. In order to resolve (fill) NT2 with actual words,
it would need to apply another grammar rule with NT2 as its x-side type
and no y-side type (as NT2 does not align to anything). The rule formalism
enforces that each grammar rule must have an x-side and a y-side type.
Hence, this rule can never resolve the NT2 and can thus never apply to
produce a translation.

A similar argument holds for the zero-one alignment case. The only
difference being that the grammar would need to contain a rule without
a x-side type. The rule formalism does not allow this, hence a zero-one
alignment is impossible.

PTs behave in a similar way to NTs:

PTs must not be aligned one-zero or zero-one.

Again, we first discuss the case of one-zero alignments. Consider the
following (abstract) rule that contains a one-zero alignment of a PT:

PT1::PT1 [PT2 NT1] -> [NT1]

((X2::Y1))

In order for this rule to apply, there would need to be a lexicon entry
with PT2 as its x-side top-node, but without a y-side top-node. This is not
allowed in the transfer rule formalism, so that such a rule cannot exist in
the lexicon, and the above rule can never apply. A zero-one alignment for
a PT is equally impossible. It would require a lexicon entry with an empty
x-side top-node, which is not allowed in the transfer rule formalism. Thus,
a rule with a zero-one alignment for a PT can never apply. In practice,
unaligned PTs result in undefined transfer engine behavior and should thus
never occur in any rules.

Given these two restrictions, we can further conclude the following:

106 CHAPTER 7. STRUCTURAL LEARNING

Any word in the bilingual training pair must participate in
exactly one LIT, PT, or NT.

This principle follows from the fact that the training examples are used
to infer transfer rules. In this process, each input word either participates
in a consistent (NT), or it is generalized to the POS level (PT), or else
it remains lexicalized (LIT). There are no circumstances under which the
learning algorithm would have an input word participate in more than one
component, or else the inferred rule would not reflect what was given in the
training example, leading to undesired effects at run-time.

Although these three principles limit the space of meaningful rules, we
have not yet developed a clear picture of what kinds of structures are possible
in the given transfer rule formalism. In order to obtain a more complete
picture, the space of possible rules can be expressed as a set of rewrites, as
follows:

1. X-side context-free rewrite rule. The X0 node, i.e. the top-level
node for the x-side, is transformed into the x-side component sequence.

2. Transfer X0 to Y0. The X0 node, i.e. the top-level node for the
x-side, is transferred to the Y0 node, i.e. the top-level node for the
y-side.

3. Y-side context-free rewrite rule. The Y0 node, i.e. the top-level
node for the y-side, is transformed into the y-side component sequence.

4. Transfer x-side component sequence to y-side component se-
quence. The x-side component sequence is transferred to the y-side
component sequence.

It is not obvious why these four rewrites do in fact capture the entire
space of possible transfer rules under the rule formalism, so we will discuss
why this is the case. In principle, the first two rewrites are exactly the
language defined by a context-free grammar that transforms the top nodes
into productions (or component sequences, as they are referred to in our
formalism). The first rewrite captures what x-side component sequences can
be produced from the X0 node, the second captures what y-side component
sequences can be produced from the Y0 node.

The first and third rewrites would be enough to capture the entire space
of possible transfers, were it not for the fact that the x-side and y-side are
by no means independent. In fact, each transfer rule is tied to the other

7.2. TAXONOMY OF STRUCTURAL TRANSFERS 107

language by the transfer of X0 to Y0 (the second rewrite), and the transfer
of the x-side component sequences to the y-side component sequences (the
fourth rewrite): these rewrites capture what structures can possibly occur
together in one specific rule. For example, in the previous section we have
proven that it is not possible for NTs or PTs to be aligned to the empty
word. These kinds of restrictions can only be captured via these two rewrites
between the x-side and the y-side.

We can now describe the four above rewrites in terms of the categories
described above (NTs, PTs, LITs), as well as an additional empty word, ǫ.

• X-side context-free rewrite rule.

– NT → (NT | PT | LIT)+

• Transfer X0 to Y0.

– NT → NT

• Y-side context-free rewrite rule.

– NT → (NT | PT | LIT)+

• Transfer x-side component sequence to y-side component se-
quence.

– NT → NT+

– PT → PT+

– LIT → ǫ

– ǫ → LIT
LITs are always considered unaligned by the transfer engine.

Any learning algorithm that we design must stay within the parame-
ters of what the transfer formalism allows. Otherwise, we would get rules
that would be meaningless to the transfer engine, as explained above. In
the following settings, we will frame the learning algorithm within these
constraints.

7.2.4 Space Defined by Learning Setting

The rule formalism imposes certain constraints on what rules can be han-
dled. Similarly, the learning setting imposes a set of constraints. For conve-
nience, we summarize below in one list what has been said in various places
above.

The learning setting makes the following assumptions:

108 CHAPTER 7. STRUCTURAL LEARNING

1. The presence of a TL parser.

2. The absence of an SL parser.

3. Word alignments are given for the training data.

4. We define the set of non-terminals, i.e. the types of rules that can be
learned, as the set NT. In our system, the set of NTs consists of the
types listed above in Figure 4.2: ADVP, ADJP, NP, PP, SBAR, and S,
with subtypes. We discuss in chapter 4 the motivation for restricting
the system to those types.

The assumption with the strongest implications is the absence of an SL
parser. For this reason, we generally assume that a TL NT translates into
the same NT on the SL side, as was discussed in chapter 6. In other words,
since we only have a parser for the major language (TL), we assume that a
given NT (such as NP) will translate into a the same NT (i.e. NP) on the
y-side.

An TL NT is assumed to translate into the same NT in SL.

This assumption has wide-reaching implications, as it restricts the types
of structures that can be learned. This simplifies learning, but it also limits
the system.

Folding the above assumption into the four rewrites yields the following:

• X-side context-free rewrite rule.

– NT → (NT | PT | LIT)+ (unchanged)

• Transfer X0 to Y0.

– NTi → NTi (same type of NT)

• Y-side context-free rewrite rule.

– NT → (NT | PT | LIT)+ (unchanged)

• Transfer x-side component sequence to y-side component se-
quence.

– NTi → NTi+ (same type of NT)

7.2. TAXONOMY OF STRUCTURAL TRANSFERS 109

– PT → PT+ (unchanged)

– LIT → ǫ (unchanged)

– ǫ → LIT (unchanged)

Closer inspection of these transformations shows that the first and third
rewrites do not pose any real restrictions on the rule learning algorithm.
The only restriction is that at least one index must be produced, but this
index can be filled by a LIT, PT, or NT. Transformation I, on the other
hand, is now quite restrictive. Future work will address the softening of the
assumption of direct transfer of NTs.

The second and fourth rewrites can be viewed as expressing cross-lingual
learning. Let us call this ‘xy learning’. Further, consider the categories NT,
PT, and LIT in a hierarchy where NT is the highest-level and LIT is the
lowest-level category. Finally, let a ‘sequence’ be defined as one or more
instances of one category. Then a closer inspection of the second and fourth
rewrites allows us to postulate the following axioms:

1. A NT cannot map down. A NT must map to another NT of the
same type. It cannot map to a sequence of PTs or LITs, and it cannot
map to the empty word ǫ.

2. A PT cannot map up down. A PT cannot map to a sequence of
LITs, and it cannot map to the empty word ǫ. Corollary of axiom 1:
A PT cannot map up. It cannot map to a sequence of NTs.

3. A LIT can map to the empty word ǫ, and the empty word
ǫ can map to a LIT. Literals can only map to the empty word ǫ1.
Corollary of axioms 1 and 2: A LIT cannot map up.

The last axiom may be the cause of confusion. While it happens fre-
quently that one word in a language translates into more than one word in
another language, it is undesirable to express such a transfer as the transfer
for a specific word to a constituent. For example, the Hebrew possessive
particle ‘LI’ generally translates into the English ‘TO ME’. A learned rule
would leave all three words lexicalized, rather than proposing a transfer of
‘LI’ to a PP. The PP could not be filled by any rule, because it would not
have a corresponding x-side.

Furthermore, the above discussion leads us to the following additional
axiom. Although this was discussed above, it should be repeated here as an
axioms, as all learned rules must abide by these axioms:

1Remember that literals are always considered unaligned by the transfer engine.

110 CHAPTER 7. STRUCTURAL LEARNING

4. Any word must participate in exactly one LIT, PT, or NT.
This follows from the fact that the transfer engine matches against the
input linearly. See section 7.2.3 for a more detailed discussion.

These axioms stem from a combination of 1) the transfer rule formalism
and transfer mechanism and 2) the restrictions imposed in the absence of
the transfer engine. In fact, we could easily design a learning algorithm that
would propose rules that violate these axioms, but the system will never be
able to apply them properly. Therefore, any learning algorithm must either
be designed to never violate these axioms, or else must filter out all learned
rules that violate one or more of the axioms, because such rules will merely
slow the system without any added benefit.

The question then becomes how to define a learning mechanism that will
learn reasonable structures while at the same time ‘playing’ within the rules
of the game, i.e. not violating any of the axioms. In the sections below it
will become clear how our learning algorithms ensure that all learned rules
abide by the axioms.

7.3 The Basic Compositionality Algorithm

In order to exploit the inherent structure in the training examples, and in
order to scale better to unseen examples, the system learns compositional
rules. The goal of this module is to learn the context-free backbone of the
transfer grammar. This is achieved by traversing the TL parse from the
top-down, and introducing a compositional element for a subnode wherever
appropriate. Two basic settings are possible for Compositionality learning:
assuming Maximum Compositionality, or using the transfer engine and pre-
viously learned rules to decide whether compositional elements should be
introduced. We will discuss these settings in the following two sections.
This section lays out the algorithm independently of the Maximum Compo-
sitionality parameter.

In the introduction to this chapter, we presented a flat seed rule and sev-
eral possible generalizations of this rule that were compositional in that their
component sequences contained constituent labels. How can such composi-
tional rules learned? This can be accomplished by traversing the TL parse
from the top down. For each subnode, the algorithm decides whether or
not to introduce a compositional element. This decision depends first on
whether Maximum Compositionality is assumed or not. It further depends
on subtle issues such as whether the TL component aligns to a contiguous set

7.3. THE BASIC COMPOSITIONALITY ALGORITHM 111

of SL words, or whether the aligned SL words align to other TL components.
These advanced issues will be described below.

The algorithm will first try to introduce a compositional element for
each of the direct children of the root. The root itself is not considered for
Compositionality, because we do not want to introduce completely recursive
rules of the form

S::S [S] -> [S]

(

(X1::Y1)

)

Such rules do not add any new information to the grammar, and will
make the run-time infinite by applying repeatedly.

For each direct child of the node, a compositional element can be intro-
duced. If this happens, no further traversal of the subtree rooted at the child
takes place. Otherwise, the Compositionality algorithm descends further
into the tree, with a base case of leaving the seed rule non-compositional.

What exactly does it mean to introduce a compositional element? The
label of the compositional subroot replaces a substring of the component
sequences (in the appropriate place) of the rule. As was discussed above, we
always require that the label of a compositional element is the same both
for the SL and TL. This is necessary so that other rules can ‘plug into’ the
now compositional rule. For example, if a compositional element is of the
type NP, then this NP can be resolved at run-time using another NP::NP
rule, as in a standard context-free grammar.

Since the Compositionality algorithm traverses the parse from the top-
down, it prefers the most far-reaching compositional elements. For instance,
if the S ‘THEY RETURNED’ qualifies for compositionality, then the lower-
level NP ‘THEY’ is no longer even considered for compositionality. This
again illustrates the fact that Compositionality aims at learning rules that
are as general as possible while still supported by the training data.

In figure 7.1, we present the basic Compositionality algorithm in pseudocode.
As will be explained in greater detail below, whether compositionality is
valid for a given subroot depends in part on whether Maximum Compo-
sitionality is assumed or not. If Maximum Compositionality is assumed,
compositionality is always assumed valid; if not, then compositionality is
only valid if a previously learned rule can translate the TL sequence that
the subroot spans into the corresponding SL sequence.

In the following, we will discuss two approaches to Compositionality
Learning. In addition to the running examples throughout the chapter, we

112 CHAPTER 7. STRUCTURAL LEARNING

will present a number of learned rules in section 7.8.1. There, we will com-
pare non-compositional rules to compositional rules, as well as compositional
rules that were learned using one of the two approaches as described in the
following sections.

The complexity of this algorithm depends to a large extent on the specific
approach that is taken. When Maximum Compositionality is not assumed,
Compositionality Learning is much less efficient than when Maximum Com-
positionality is assumed. In the following two sections, we will discuss the
complexity of the algorithms. Complexity is however only an issue under
the first approach.

7.4 Approach I: Learning Without Maximum Com-
positionality

In the learning setting where Maximum Compositionality is no assumed,
the rule learner uses previously learned rules to determine whether or not a
compositional element should be introduced. Note that under this paradigm,
it is very important what order the rules are learned in. Sections 7.4.1
and 7.4.2 discuss how the appropriate order can be ensured.

How can the rule learner use previously learned rules to determine whether
a compositional element should be introduced? First, each of the nodes in
the parse is used to 1) extract the TL substring (w1,TL . . . wk,TL in the
pseudocode above) covered by this node 2) using the alignments, create a
SL substring corresponding to the TL chunk (w1,SL . . . wl,SL above), 3) the
type of the node (labelSubroot).

The learning algorithm then uses all rules of type labelSubroot to translate
the TL chunk that was extracted from the training example. Only rules of
this type can serve as the top-node in this translation. The rules can however
combine with rules of any other type to form a translation of w1,TL . . . wk,TL.
If any of the possible translations is the correct translation w1,SL . . . wl,SL,
then a compositional element can be introduced if w1,SL . . . wl,SL is contigu-
ous. To return to the previous example, consider the node and subtree

(<S> (<NP> (PRO they-4))

(<VP> (V returned-5))))

The Compositionality algorithm extracts the TL chunk ‘THEY RE-
TURNED’ and, using the alignments, the SL chunk ‘HM $BW’. Then the
transfer engine uses all previously learned rules of type S to translate ‘THEY

7.4. APPROACH I: LEARNING WITHOUT MAXIMUM COMPOSITIONALITY113

Basic Compositionality Algorithm

IntroduceCompositionalElement(Root), where Root is

the root of the TL parse

IntroduceCompositionalElement(Subroot)

Get parse label labelSubroot of Subroot

Extract wa,TL . . . wb,TL covered by Subroot and

their corresponding entries compa,TL . . . compb,TL

in the TL component sequence

Extract wc,SL . . . wd,SL aligned to wa,TL . . . wb,TL and

their corresponding entries compc,SL . . . compd,SL

in the SL component sequence

If wc,SL . . . wd,SL contiguous and wc,SL . . . wd,SL 6= ǫ

If compositionality valid for Subroot

Replace compa,TL . . . compb,TL by labelSubroot

in the TL component sequence

Replace compc,SL . . . compd,SL by labelSubroot

in the SL component sequence

Adjust the alignments in the rule

Else for each child of Subroot

Childi,Subroot, a ≤ i ≤ b

IntroduceCompositionalElement(Childi,Subroot)

Figure 7.1: Pseudocode for Basic Compositionality. Whether composition-
ality is valid for a subroot depends on the algorithm chosen, as described
in 7.4 and 7.5.

114 CHAPTER 7. STRUCTURAL LEARNING

RETURNED’. If one of the possible translations is the expected ‘HM $BW’,
a compositional element is introduced with the label ‘S’ both for TL and
SL. Finding a correct translation for the TL chunk means that we have pre-
viously learned a rule of type S which, possibly in combination with other
previously learned rules, can translate this chunk. Two exceptions hold:
first, the SL chunk must be contiguous, and second, a compositional ele-
ment is not introduced when the TL constituent is not aligned to any word
in SL. In this case, it is safer to simply leave this sequence lexicalized2.

What are the previously learned rules? Rules are learned in several iter-
ations according to their co-embedding score and type, as will be described
below (sections 7.4.1 and 7.4.2). As before, Compositionality begins from
the top of the parse and therefore introduces compositional elements that
are as big as possible.

The advantage of this approach is that we only introduce compositional
elements that are warranted by the previously learned rules and thus is
directly ‘endorsed’ by the training data. The disadvantage is that there
is a strong reliance on structural variety in the training data: if a certain
structure was not encountered in the training data by itself, it cannot be
recognized as a compositional element in the context of a different rule.
Further, compositionality can also suffer if the training data contains noise.
We can expect that this will almost always be the case to a certain extent.

The generic Compositionality algorithm listed above is modified slightly
in the pseudocode in Figure 7.2 to reflect that Maximum Compositionality
is not assumed.

Throughout this document, we have noted that the algorithms laid out
here are designed to extract the maximum amount of information from a
minimum amount of training data. For this reason, training complexity is
never a big issue in practice. However, it should be mentioned that out of
all the algorithms presented in this thesis, the Compositionality algorithm
without the assumption of Maximum Compositionality is the most expensive
in terms of time complexity, and could cause problems if training data were
increased by a large factor. In practice, the complexity of the run-time
system far outweighs the training time for any of the algorithms.

The worst-case complexity of this algorithm can be analyzed as follows.
Suppose that the number of training examples is n. Then in the worst case,

2It can be argued that training examples with unaligned constituents will always result
in bad learned rules. This is not necessarily the case. For example the rule ADJP::ADJP
[“BN” NP] → [NP ‘OLD’] ((X2::Y1)) contains the unaligned constituent ‘OLD’. The
translator did not align the two remaining literals in the rule because ‘BN’ literally means
‘SON’. Nevertheless, the learned rule is valid and useful.

7.4. APPROACH I: LEARNING WITHOUT MAXIMUM COMPOSITIONALITY115

Compositionality Algorithm Without Assuming Maxi-
mum Compositionality

IntroduceCompositionalElement(Root), where Root is

the root of the TL parse

IntroduceCompositionalElement(Subroot)

Get parse label labelSubroot of Subroot

Extract wa,TL . . . wb,TL covered by Subroot and

their corresponding entries compa,TL . . . compb,TL

in the TL component sequence

Extract wc,SL . . . wd,SL aligned to wa,TL . . . wb,TL and

their corresponding entries compc,SL . . . compd,SL

in the SL component sequence

If wc,SL . . . wd,SL contiguous and wc,SL . . . wd,SL 6= ǫ

If there exists a previously learned rule

of type labelSubroot that can translate

wa,TL . . . wb,TL into wc,SL . . . wd,SL

Replace compa,TL . . . compb,TL by labelSubroot

in the TL component sequence

Replace compc,SL . . . compd,SL by labelSubroot

in the SL component sequence

Adjust the alignments in the rule

Else for each child of Subroot

Childi,Subroot, a ≤ i ≤ b

IntroduceCompositionalElement(Childi,Subroot)

Figure 7.2: Pseudocode for Compositionality without the Maximum Com-
positionality Assumption.

116 CHAPTER 7. STRUCTURAL LEARNING

each training example will result in a unique seed rule. For each seed rule, the
Compositionality algorithm is run, which involves checking for the existence
of lower-level rules that can translate chunks of the training example. Denote
the maximum tree depth of any tree in the training data by d, and denote the
maximum number of non-root, non-terminal nodes in any parse tree in the
training data by k. Then the Compositionality algorithm without maximum
compositionality is bound above by n ∗ ((k ∗ (n − 1)) ∗ ((d − 1) ∗ (n − 1))).
For each training example, the Compositionality algorithm must check up to
n−1 existing rules. This, however, is not enough, because the existing rules
may have to combine with other existing rules (including themselves) in
order to translate the chunk in question. The number of such combinations
is however bounded above by the depth of the tree3, because the chunk in
question can only require as many rules as the depth of its parse tree. In
big-O notation, the complexity of this algorithm can thus be summarized as
O(n3). This could create problems if the training data was very large. As
was said above, in practice, complexity was not an issue at training time.
Should it become a problem, the rule learner could either be run using the
Maximum Compositionality assumption.

7.4.1 Iterative Type Learning

It was mentioned above that we concentrate our learning efforts on a set
of constituents that are of high interest to English and can furthermore be
assumed to transfer into another language with minimal structural diver-
gence. We concentrate on the following types (with some subtypes). For
examples of each of these types and a discussion of why these types were
chosen, see Figure 4.2. The types are based on the nodes marked in the
Penn Treebank (Marcus et al., 1995).

1. ADVP

2. WHADVP

3. ADJP

4. WHADJP

5. NP

6. WHNP

7. PP

8. WHPP

9. SBAR

10. SBARQ

3Unless there are circular rules such as NP [NP] → [NP], which are pruned out, as will
be described in section 7.7.

7.4. APPROACH I: LEARNING WITHOUT MAXIMUM COMPOSITIONALITY117

11. S

12. SQ

13. SINV

This list can easily be changed for a different language pair. However, it
is assumed that it will stay relatively constant whenever the TL is English.

In this table, we list the types of interest in a particular order: this is the
order in which these types are learned. When Maximum Compositionality is
not assumed, it makes sense to learn ‘simpler’ constituents, such as ADJPs
first, and then to move on to more complex constituents that are likely to
embed the simpler ones. For example, it is by far more likely that an NP
will embed an ADJP than the other way around. By enforcing this order,
the rules are in fact learned ‘bottom up’, i.e. from simplest to most complex.

When the Compositionality algorithm (without assuming Maximum Com-
positionality) is run on an NP that embeds an ADJP, this ADJP can only be
recognized as a compositional element embedded within the NP if a rule has
already been learned for the ADJP. The order described above maximizes
the probability that types that embed other constituents are learned after
the embedded constituents are learned.

7.4.2 Co-Embedding Resolution

While iterative type learning is a step in the right direction, it cannot resolve
all embedding conflicts. We mentioned above that it is more likely that an
NP embeds and ADJP than the other way around. This is true, but the op-
posite can still happen, as in the example ‘PROUD OF THE CHILDREN’.
Under iterative type learning, ADJPs are learned before NPs and PPs are
learned, and thus neither ‘OF THE CHILDREN’ nor ‘THE CHILDREN’
can be recognized as compositional elements and inserted into the ADJP as
such.

In order to overcome this difficulty, we tag each training example with
a so-called co-embedding score. The co-embedding score is the depth of
the TL parse tree.4 Learning is then run from the smallest co-embedding
score to the highest co-embedding score. In each iteration, i.e. for each co-
embedding score, Seed Generation and Compositionality are performed for
each example that is of the given co-embedding score. Within one iteration,
training examples are considered in the order that is imposed by iterative

4In previous versions, the co-embedding score was the number of embedded constituents
of the same type as the root label. It was found that this does not indeed solve all co-
embedding problems, as for instance in the example ‘PROUD OF THE CHILDREN’

118 CHAPTER 7. STRUCTURAL LEARNING

Co-embedding Resolution and Iterative Type Learning

Find highest co-embedding score in training

data,maxcoembedding

Find the number of types to learn, ntypes

For (1 ≤ i ≤ maxcoembedding)

For (1 ≤ j ≤ ntypes)

For all training examples with co-embedding

score i and of type typej

Perform Seed Generation

Perform Compositionality Learning

Figure 7.3: Pseudocode for Co-Embedding Resolution and Iterative Type
Learning.

type learning. In other words, we first learn rules for all training examples of
co-embedding score 1, in the order ADVP, ADJP, NP, . . . S. This is followed
by another pass, in which we learn rules for all training examples of co-
embedding score 2, again in the order ADVP, ADJP, NP, . . . S. The process
repeats up to the highest co-embedding score found in the training data.
Since learning is efficient both in terms of memory and time usage, running
several iterations does not pose a problem, and Compositionality learning
is ensured to always be able to draw on all potentially relevant rules for a
given context.

Co-embedding resolution and iterative type learning together result in
two big loops around Seed Generation and Compositionality Learning, as
can be summarized in pseudocode as in Figure 7.3.

7.5 Approach II: Learning With Maximum Com-
positionality

An alternative to the algorithm that uses previously learned rules is the
assumption of Maximum Compositionality. Under this paradigm, the rule
learner does not check whether there exists a previously learned rule that can
translate the TL chunk into the SL chunk. Instead, we make the assumption
that under ‘ideal’ circumstances, this will be the case. If the training data
were noise-free and contained all possible compositional elements that might
be needed by higher-level rules, then the assumption of Maximum Compo-

7.5. APPROACH II: LEARNING WITH MAXIMUM COMPOSITIONALITY119

sitionality would hold. This means that every direct child of the parse root
is eligible for compositionality, and generally, a compositional element is in-
troduced. As before, a compositional element is not introduced if the SL
chunk is not contiguous, or if the TL constituent is not aligned to any word
in SL, and the unaligned sequence is left lexicalized.

More formally, the Compositionality algorithm with the assumption of
Maximum Compositionality can be given as follows:

For every direct child of the parse root, introduce a composi-
tional element if

1. the TL words covered by this direct child wTL,k . . . wTL,m align
to a coherent chunk of SL words wSL,k . . . wSL,m, k < m, i.e. no
words wSL,l, k < l < m are aligned to a word outside wTL,k . . . wTL,m.

2. the aligned chunk is not necessarily contiguous, but can only
be interrupted by unaligned SL words.

Let us once more return to the previous example:

TL: a year later they returned

SL: $NH MAWXR IWTR HM $BW

Alignment: ((2,1),(3,2),(3,3),(4,4),(5,5))

Type: S

CoEmbeddingScore: 4

C-Structure:

(<S> (<ADVP> (<NP> (DET a-1)(N year-2))

(ADV later-3))

(<S> (<NP> (PRO they-4))

(<VP> (V returned-5))))

The immediate children of the parse root are and ADVP and a S. The
ADVP covers the TL chunk ‘A YEAR LATER’ with the corresponding SL
chunk $NH MAWXR IWTR’. Since ‘$NH MAWXR IWTR’ is contiguous,
and the TL chunk is not unaligned, a compositional element can be intro-
duced.

Similarly, the other direct child of the parse root, S, covers the TL
chunk ‘THEY RETURNED’, with the corresponding translation ‘HM $BW’.
Again, the TL chunk is not unaligned, and the corresponding SL chunk is
contiguous, so compositionality is valid.

The two compositional steps lead to the following maximally composi-
tional rule:

120 CHAPTER 7. STRUCTURAL LEARNING

;;SL: $NH MAWXR IWTR HM $BW

;;TL: A YEAR LATER THEY RETURNED

S::S [ADVP S] -> [ADVP S]

(

(X1::Y1)

(X2::Y2)

)

The advantage of the Maximum Compositionality approach is that the
algorithm is no longer limited by what is observed in the training data,
i.e. all compositional structures were previously observed. The potential
fallacy is overgeneralization: under this paradigm, the Compositionality al-
gorithm aggressively ‘imposes’ the TL structure onto the SL sentence (while
allowing for reordering), which in some cases is incorrect. We will give a
more detailed discussion of the advantages and disadvantages of Maximum
Compositionality in sections 7.8.2 and 9.4 below.

Under the Maximum Compositionality assumption, the generic Compo-
sitionality algorithm simplifies to the pseudocode in Figure 7.4.

In the first approach, i.e. no assumption of Maximum Compositional-
ity, we have argued that training time complexity could be an issue with
large amounts of training data, as the algorithm scales in O(n3) time. One
way to overcome this problem is the second approach, i.e. the assumption
of Maximum Compositionality. Under this paradigm, the algorithm scales
linearly: the number of seed rules is bounded above by the number of train-
ing examples, n. For each seed rule, there will be a constant number of
non-root, non-terminal nodes in the parse tree. In the worst case (i.e. if
compositionality cannot be introduced because of complex alignments), all
non-root, non-terminal nodes may be explored by the Compositionality al-
gorithm. However, no other rules must be examined. If you again denote
the maximum number of non-root, non-terminal nodes in any parse tree in
the training data by k, then the complexity of the Compositionality algo-
rithm with the assumption of Maximum Compositionality is bounded above
by n ∗ k, which is O(n).

7.6 Advanced Structural Learning

In this section, we describe several algorithms to deal with advanced cases
of higher structural complexity.

This chapter has so far focused on cases where constituents translate in
constituents of the same type. If this can safely be inferred, we propose a

7.6. ADVANCED STRUCTURAL LEARNING 121

Compositionality Algorithm With Assuming Maximum
Compositionality

IntroduceCompositionalElement(Root), where Root is

the Root of the TL parse

IntroduceCompositionalElement(Subroot)

get parse label labelSubroot of Subroot

extract wa,TL . . . wb,TL covered by Subroot and

their corresponding entries compa,TL . . . compb,TL

in the TL component sequence

extract wc,SL . . . wd,SL aligned to wa,TL . . . wb,TL and

their corresponding entries compc,SL . . . compd,SL

in the SL component sequence

if wc,SL . . . wd,SL contiguous and wc,SL . . . wd,SL 6= ǫ

If wc,SL . . . wd,SL is coherent, i.e. no word

∈ wc,SL . . . wd,SL aligns to a word outside of

wa,TL . . . wb,TL

Replace compa,TL . . . compb,TL by labelSubroot

in the TL component sequence

Replace compc,SL . . . compd,SL by labelSubroot

in the SL component sequence

Adjust the alignments in the rule

else for each child of Subroot

Childi,Subroot, a ≤ i ≤ b

IntroduceCompositionalElement(Childi,Subroot)

Figure 7.4: Pseudocode for Compositionality with the Maximum Composi-
tionality Assumption. ‘If wc,SL . . . wd,SL is coherent’ indicates the difference
between Maximum Compositionality and the algorithm without Maximum
Compositionality.

122 CHAPTER 7. STRUCTURAL LEARNING

generalization to the constituent level. With this approach, we can capture
the transfer of constituents, and we can capture in particular reorderings
of constituents. This approach is supplemented by instances where we do
not generalize to the constituent level: we either leave words lexicalized, or
else we only generalize to the POS level. Such cases of structural differences
are common when translating from one language into another. Different
approaches have been proposed to account for such phenomena. Dorr et
al. (Dorr et al., 2002) classify such differences in structural make-up into
several categories of divergences: examples are categorial variation (where a
word of a given POS translates into a word of a different POS), head swap-
ping (where two phrases which are translations of each other have heads that
are not translations of each other), etc. Others, such as Levin and Niren-
burg (Levin & Nirenburg, 1994) take a different approach by accounting for
the differences with a theory of constructions. A construction is a way in
which a language expresses a certain concept. In a different language, the
same concept may be expressed with a completely different syntactic make-
up. The theories of constructions and divergences are not contradictory.
They merely explain the same phenomena from different perspectives. The
divergence approach captures the surface form of the expressions, whereas
the construction approach focuses more on the concept that is being ex-
pressed.

It is not the purpose of this thesis to provide a full account of translation
divergences or constructions. The phenomenon of translation mismatches,
as a general concept, however plays a role in our work: in this chapter, we
propose several methods to handle such translation mismatches. We present
a method to handling noun compounds that translate into single nouns, a
method for learning lexical entries for words that translate into a constituent
of a certain composition, etc. Not all translation mismatches are handled
here. However, this section addresses the issue of how such mismatches can
be handled in principle. In the future work section (cf. section 10.3), we
will discuss extensions to the algorithms described in this section.

All of the phenomena described below are rare, so that they do not
impact the automatic scores. We felt, however, that it was important to de-
velop algorithms that are able to deal with these cases. While the algorithms
described below are thus mainly of theoretical interest, they prove that our
system is able to handle complex cases. Furthermore, future research into
these and other complex cases is facilitated, because we show below that it
is possible to devise effective algorithms for such phenomena.

7.6. ADVANCED STRUCTURAL LEARNING 123

7.6.1 Pro-Drop

Pro-drop is a phenomenon common to many languages in which a personal
pronoun can be dropped if it is implicit in the form of the main verb. As
pro-drop is a common phenomenon across languages, we chose to handle it
as a special case. Hebrew exhibits pro-drop under certain circumstances.
For instance, the first person pronouns often drop in past tense sentences.

How pro-drop is handled in our system depends in part on alignment
choices that the translator makes. If the translator only aligns the verbs to
each other, the learning algorithm handles pro-drop naturally: the pronoun
remains lexicalized in the rule.

If the translator however aligns both the English pronoun and the English
verb to the Hebrew verb, then the basic learning system would leave all three
words lexicalized. In this case, our approach to pro-drop consists of

• Recognizing an instance of pro-drop,

• Breaking the link between the pronoun and the verb, and

• Generalizing the now one-one aligned verbs to the POS level

In essence, this handling of pro-drop creates the rule that would have
been learned had the translator aligned only the verbs and left the pronoun
unaligned.

Pro-drop is handled before Compositionality Learning takes place, so
that Compositionality can already take advantage of the pro-drop general-
ized seed rule. After a seed rule is produced, the learning algorithm checks
whether it contains an example of pro-drop, i.e. an alignment of the SL
main verb to both a pronoun and a verb on the TL side. Note that it is
not immediate how the learner knows what (lexicalized) word on the SL
is the main verb, especially because this word is aligned to two TL words
of different POS. The SL word POS is obtained with the SL morphology
module: if one of the possible POS for this word is a verb, and if the aligned
TL words are a pronoun and a verb, then it is assumed that the training
example exhibits pro-drop.

Once pro-drop is detected, the algorithm breaks the ‘weaker’ alignment
link between the pronoun and the verb, and retains the alignment between
the two verbs. This has the consequence that the TL pronoun remains
lexicalized as before. One area for future work is to generalize this word to
the POS level if it is found that appropriate constraints can be introduced.
A rule that inserts a pronoun without constraints is undesirable, because all

124 CHAPTER 7. STRUCTURAL LEARNING

the TL pronouns would be proposed for this slot at run-time. However, if
the appropriate constraints that enforce agreement in number and person
can be learned for the given rule, then generalization of the pronoun to
POS is appropriate. This step would have to take place during Constraint
Learning.

Removing the link between the TL pronoun and the SL verb causes
the verbs to now be aligned one-one. This means that they can safely be
generalized to the POS level.

An example of pro-drop can be found in the following training example:

TL: I come

SL: ABWA

Alignment: ((1,1),(2,1))

Type: S

CoEmbeddingScore: 3

C-Structure:(<S> (<NP> (PRO I-1))(<VP> (V come-2)))

Seed generation produces a seed rule that leaves both verbs as well as
the pronoun lexicalized:

;;SL: ABWA

;;TL: I COME

;;Alignment:((1,1),(2,1))

;;CStructure:(<S> (<NP> (PRO I-1))(<VP> (V come-2)))

S::S ["ABWA"] -> ["I" "COME"]

(

;(X1::Y1)

;(X1::Y2)

)

The pro-drop handler breaks the link between the pronoun and the verb
(as reflected in the alignments), and generalizes the verbs to the POS level:

;;SL: ABWA

;;TL: I COME

;;Alignment:((1,1),(2,1))

;;CStructure:(<S> (<NP> (PRO I-1))(<VP> (V come-2)))

S::S [V] -> ["I" V]

(

(X1::Y1)

)

7.6. ADVANCED STRUCTURAL LEARNING 125

Treatment of Pro-Drop

For all instances of one-two alignments, i.e.

instances where a word wSL is aligned to w1,TL, w2,TL

Extract the entries in the component sequences

compSL,comp1,TL, comp2,TL corresponding to

wSL,w1,TL,w2,TL, respectively

If ((wSL is aligned to w1,TL, w2,TL) &&

(compwSL
= V) && (compw1,TL

= PRO) &&

(compw2,TL
= V))

Remove alignment between wSL and w1,TL

Replace compTL and comp2,SL in the rule with

label V

Figure 7.5: Pseudocode for treatment of pro-drop.

Such a rule will allow the translator to now propose correct translations
for instances of pro-drop. For example, the Hebrew ‘AXLTI’ (eat.past.1.sg)
can now be translated into ‘I ATE’, not simply into ‘ATE’.

This rule will not always perform well in practice. Ideally, Unification
Constraint Learning will introduce the appropriate constraints in order to
make this rule less general. In practice, the TL language model in the
decoder is often enough to filter out bad applications of this rule.

Figure 7.5 lists the treatment of pro-drop in pseudocode.

7.6.2 Compounds and other One-Many Alignments

One-many alignments are frequent in our training data. For example, many
English nouns translate into a compound of two nouns in Hebrew, such as
‘HOSPITAL’ → ‘BT’ ‘XWLIM’ (house sick.pl.masc). Denote the TL word
by wTL, and denote the sequence of SL words by w1,SL . . . wn,SL. We then
handle one-many alignments as follows: If the aligned word sequence in SL
is contiguous, we check whether there exists an entry in the dictionary that
equates the SL sequence w1,SL . . . wn,SL with the TL word wTL. If there is
such an entry, then we replace the word sequence w1,SL . . . wn,SL with the
SL type of the dictionary entry, and replace wTL with the TL type of the
dictionary entry.

For example, consider the rule

126 CHAPTER 7. STRUCTURAL LEARNING

;;SL: B BT XWLIM

;;TL: IN A HOSPITAL

;;Alignment:((1,1),(3,2),(3,3))

;;CStructure:(<PP> (PREP in-1) (<NP> (DET a-2) (N hospital-3)))

S::S [PREP "BT" "XWLIM"] -> [PREP "A" "HOSPITAL"]

(

(X1::Y1)

;(X2::Y3)

;(X3::Y3)

)

if there exists a dictionary entry for ‘HOSPITAL’ - ‘BT’ ‘XWLIM’, then
with compound handling, the rule becomes:

;;SL: B BT XWLIM

;;TL: in a hospital

;;Alignment:((1,1),(3,2),(3,3))

;;CStructure:(<PP> (PREP in-1) (<NP> (DET a-2) (N hospital-3)))

S::S [PREP N] -> [PREP "A" N]

(

(X1::Y1)

(X2::Y3)

)

This rule is clearly more general. It can now apply to any N::N entry in
the dictionary, such as ‘BT’→‘HOUSE’, which could not have been handled
by this rule before applying the compound algorithm.

In Figure 7.6, the algorithm is given in pseudocode.

This approach handles most one-many alignments that we encounter for
Hebrew→English translation. There are few examples that do not fall into
this category, and they cannot currently be handled in our system, so that
they are left lexicalized. Consider the following example:

;;SL: &WRK H DIN $ RAITI

;;TL: THE LAWYER WHO I SAW

NP::NP ["&WRK" DET "DIN" SUBORD "RAH"] ->

[DET "LAWYER" SUBORD "I" "SAW"]

(

;(X1::Y2)

(X2::Y1)

7.6. ADVANCED STRUCTURAL LEARNING 127

Treatment of Compounds

For all instances of many-one alignments, i.e.

instances where a sequence wa,SL . . . wb,SL is aligned

to wTL

Extract the entries in the component sequences

compa,SL . . . compb,SL and compTL corresponding to

wa,SL . . . wb,SL and wTL, respectively

If the sequence wa,SL . . . wb,SL is contiguous

Check the translation

‘‘wa,SL . . . wb,SL’’→‘‘wTL’’ in the

dictionary. If it exists with types

typeSL :: typeTL

Replace compa,SL . . . compb,SL in the

SL component sequence with typeSL and

replace compwTL
in the TL component

sequence with typeTL.

Else leave the words w1,SL . . . wn,SL as well as

wTL lexicalized in the component sequences

Else leave the words w1,SL . . . wn,SL as well as

wTL lexicalized in the component sequences

Figure 7.6: Pseudocode for treatment of compounds.

128 CHAPTER 7. STRUCTURAL LEARNING

;(X3::Y2)

(X4::Y3)

)

The current version of the transfer engine processes words linearly and
cannot recognize and translate discontinuous compounds. In order to over-
come this difficulty without a change in the transfer engine, we would need
to pre-process the data and reorder the words before they are passed to
the transfer engine: ‘&WRK’ ‘H’ ‘DIN’, if encountered at run-time, would
then be passed into the transfer engine as ‘H’ ‘&WRK’ ‘DIN’. This is not a
trivial task, in particular for Hebrew, because Hebrew morphology is highly
ambiguous, and many words can be interpreted as a sequence of the parts of
speech N ‘H’ N. As a robust alternative, the input sentence could be passed
to the transfer engine in both original and reordered form, and the result-
ing lattices could be probabilistically merged. While this is an interesting
area for future investigation, it is outside the scope of this thesis, and such
cases remain lexicalized for all learned grammars that are reported in this
document.

7.6.3 Lexicon Enhancement

For some language pairs, the translation of certain words of one part of
speech consistently yields an expression involving a different part of speech.
For example in Hebrew, adverbs are formed by a combination of the prepo-
sition ‘B’ and a noun. For example, ‘HAPPILY’ translates into ‘B SMXH’,
literally ‘IN HAPPINESS’. In this section, we aim at automatically discov-
ering such cases, and handling them in the rule learner. We will exemplify
the approach with Hebrew adverbs simply because it is the most prominent
example of a POS shift between Hebrew and English. The approach is how-
ever more general and can be used to automatically detect and deal with
POS shifts.

The basic rules learned for cases such as this one would contain the
adverb, as well as the preposition and the noun in Hebrew, in a lexicalized
form. It would be much better if the rule learner could determine that
an English adverb always (or at least in most cases) translates into the
preposition ‘B’ and a noun.

We attack this problem in a two-step process, one involving the lexi-
con and one involving the learned rules. The first step is the lexicon en-
hancement step. We scan through the training data looking for instances of
one-many alignments. Whenever we encounter that a specific POS transfers

7.6. ADVANCED STRUCTURAL LEARNING 129

consistently into a specific sequence of POS labels, we initiate a lexicon en-
hancement step. This is especially applicable in the Hebrew adverbs case,
because the English adverb varies together with the Hebrew noun, whereas
the Hebrew preposition is constant.

While will now explain this process for the example of ADV → ‘B’ N,
we want to stress however that this process could be applied in the more
general case to other language pairs and other POS sequences. Below, we
describe the results on running the automatic enhancement algorithm on
the training data.

The algorithm proceeds as outlined in pseudocode in Figure 7.7. Denote
the varying TL word vi,TL and the varying SL word vi,SL, and denote the
constant SL word cSL. The algorithm is seeded with all instances of a one-
two alignments where one word is constant and the other words are of a
specific POS. It then finds a derivational morphology rule which allows it to
propose additional lexical rules.

As an additional precautionary step, the newly produced TL word is
be checked against a monolingual TL corpus or against a monolingual TL
dictionary, and the new lexical rule is only retained if the new word appear in
the dictionary or corpus. Note that TL is assumed to be a major language,
so it is fair to assume that such a corpus or dictionary will exist. In the
case of TL being English, we can check whether the newly created TL word
appears in the British National Corpus (Leech, 1992),(Leech et al., 1994).
Using the BNC, we can also verify that the new word is of the desired part
of speech.

For illustration we now demonstrate the algorithm with the above ex-
ample ‘HAPPILY’ → ‘B’ ‘SMXH’.

1. Get all translations w1,TL . . . wn,TL of the “SMXH” from the lexicon.
w1,TL = “JOY” and w2,TL = “HAPPINESS”.

2. Using minimal edit distance, find the translation wclosest,TL that is
closest to the varying “HAPPILY”. wclosest,TL = “HAPPINESS”.

3. Learn a replacement rule (a derivational morphology rule) to modify
“HAPPINESS” into “HAPPILY”. The replacement rule in this case is
“INESS” → “ILY”.

4. Apply the learned rule to all N::N entries in the dictionary and intro-
duce new entries of type ADV::ADV.

The list of new entries can either be manually inspected by a native
bilingual speaker, or can simply be introduced into the lexicon. Since the

130 CHAPTER 7. STRUCTURAL LEARNING

Lexicon Enhancement Using Training Data

For all sets of tuples of the form C={〈cSL, vi,SL, vi,TL〉,
1 ≤ i ≤ |C| | vi,TL aligns to cSL and vi,SL and cSL is

constant ∀i}

For each varying word vi,SL

Get all translations w1,TL . . . wn,TL of vi,SL

from the lexicon.

Using minimal edit distance, find the

one translation wclosest,TL, wclosest,TL ∈
w1,TL . . . wn,TL that is closest to the varying

TL word vi,TL.

Learn a replacement rule (a derivational

morphology rule, e.g., Adj:‘‘’’→‘‘ly’’) to

modify wi,TL into vi,TL.

For all words w1,SL . . . wm,SL in the lexicon

that are of the same POS as vi,SL, get all

translations t1,TL . . . tm,TL.

For all words t1,TL . . . tm,TL, apply the

replacement rule to obtain modified words

t′i,TL. Note that the replacement rule will

not apply to all words t1,TL . . . tm,TL.

If ((t′i,TL appears in a monolingual TL

dictionary or corpus) && (One of the

possible POSs for t′i,TL according to the

monolingual TL dictionary or corpus is

vi,TL’s POS))

For each modified word t′i,TL, introduce

a new lexical item of the form

‘‘cSL wi,SL’’ → ‘‘t′i,TL’’. The type of

the entry will be the same POS as the

type of vi,TL.

Figure 7.7: Pseudocode for lexicon enhancement.

7.6. ADVANCED STRUCTURAL LEARNING 131

algorithm is completely automatic, some spurious rules are introduced. We
have a mechanism to prevent the introduction of invalid English words (see
below). Also, if the Hebrew sequence is invalid, the lexical rule will never
apply, because the sequence will not be encountered at runtime. However, as
in any automatic process, we cannot guarantee that all of the newly created
entries are actual correct translations.

Returning to rule learning, we can now apply a similar approach to the
one described for compounds above: if we encounter a seed rule with three
lexicalized words that align to each other, and if there is a lexicon entry that
can translate the two words in SL into the corresponding TL word, then we
replace the sequence of SL words as well as the single TL word with the
POS that is found in the dictionary. For this case, rather than leaving the
words lexicalized, we will now replace them with ADV on both sides, and
align the indices one-one. In this way, any ADV::ADV lexicon entry can fill
these indices (i.e. components), and we have successfully generalized from
the lexical level as appropriate.

The lexicon enhancement process has many subtleties, most of which
are engineering details that we will not focused on here. However, a few of
them are worth noting. First, lexicon enhancement is run only under specific
circumstances; in particular, it is necessary to find at least two instances of
a one-two alignment where the intersection of the possible parts of speech
of the variable SL words must be non-empty. In other words: for each
variable SL word, we collect all possible parts of speech from the lexicon
and from the morphology. We then intersect these sets of possible parts of
speech. For enhancement, we then only apply replacement rules to words
of the part(s) of speech in this intersection. Second, we currently focus
only on one-two (rather than one-three, etc.) alignments. This was done in
order to control the complexity of the process, and as a safeguard against
unbounded overgeneralization. Third, we currently only focus on suffixes.
This indicates that much future work is possible in this area, and will be
discussed at the end of this section. Finally, when English is the TL, it is
not necessarily required to learn derivational morphology rules. Existing
English morphology modules could be integrated with this approach in the
future.

The lexicon enhancement was run on the full structural corpus. The
goal of this module is to introduce as many new lexicon entries as possible.
For this reason, we opted in favor of a certain amount of language-specific
engineering in order to demonstrate how the algorithm works. This means
that our experiment was no longer a fully automatic experiment, but that it
was ensured that we would be able to introduce lexicon entries for 1) Hebrew

132 CHAPTER 7. STRUCTURAL LEARNING

adverbs and 2) Hebrew comparative adjectives, as described below.
The three most important replacement rules that were learned from the

training corpus seed are listed below. The rules are to be read as in the
following example:

ADJ→ADJ by “”→“ER”

is to be read as:

An ADJ can be transformed into an ADJ by replacing suffix “” with “ER”

The following are successful replacement rules that were inferred:

1. ADJ→ADJ by “”→“ER”, e.g., ‘TALL’→‘TALLER’

2. ADV→ADJ by “Y”→“IER”, e.g., ‘HAPPY’→‘HAPPIER’

3. N→ADV by “NESS”→“LY”, e.g., ‘FOOLISHNESS’→‘FOOLISHLY’

4. N→ADV by “CY”→“TLY”, e.g., ‘CONSISTENCY’→‘CONSISTENTLY’

The last two rules are used to introduce new adverb entries as in our
example. The first two are used for Hebrew comparative adjectives: In He-
brew, adjectives in the comparative are expressed as ADJ ‘IWTR’ (literally
ADJ ‘MORE’). In other words, the constant word in this example is ‘IWTR’,
while the variable words in TL and SL are the adjectives, where the English
adjective is in the comparative and the Hebrew adjective is in its base form.

Some rules that were inferred and can be classified as wrong are:

1. PREP→PREP by “TO”→“INTO”

2. ADV→N by “HASTE”→“QUICKLY”

Using this algorithm on all the manually enhanced structural corpus
resulted in a total of 728 new rules. Below, we list several new lexical rules.

ADJ::ADJ |: ["$B&" "IWTR"] -> ["FULLER"]

ADJ::ADJ |: ["$Q@" "IWTR"] -> ["CALMER"]

ADJ::ADJ |: ["&LWB" "IWTR"] -> ["POORER"]

ADJ::ADJ |: ["&ML" "IWTR"] -> ["LABOURER"]

ADJ::ADJ |: ["XWLH" "IWTR"] -> ["SICKER"]

ADV::ADV |: ["$MX" "IWTR"] -> ["HAPPIER"]

ADV::ADV |: ["&SWQ" "IWTR"] -> ["BUSIER"]

ADV::ADV |: ["B" "@P$WT"] -> ["FOOLISHLY"]

ADV::ADV |: ["B" "@QSIWT"] -> ["CEREMONIOUSLY"]

ADV::ADV |: ["B" "@RWP"] -> ["CRAZILY"]

7.6. ADVANCED STRUCTURAL LEARNING 133

The conclusion is that the automatic process manages to capture some
interesting new lexical items, but it is not perfect. For instance, ‘HAPPIER’,
while a good translation of its Hebrew equivalent, is tagged as an adverb
rather than an adjective.

The work described here is only the beginning of what could be in it-
self a larger research direction on lexicon enhancement, and in particular
lexical enhancement for categorial variation. We wanted our approach to
be as language-independent as possible; thus, the approach is completely
automated, but can be seeded with language-specific information if such in-
formation is available. It could easily be applied to another language pair.
The derivational morphology rules inferred here are only for those cases that
were observed in the training data, i.e. for the seeds. In this way, as stated
above, the algorithm is dependent on what it is seeded by. An interesting
area for future research would be to automatically learn derivational mor-
phology rules, in particular in bilingual setting and with the help of POS
tags. As was said above, we currently only learn suffix replacement rules.
This indicates that this project is only the beginning, and could be expanded
to prefixes, circumfixes, and infixes as well, however with much increased
complexity. For the purpose of this thesis, the current work has proven use-
ful, as its goal was to show a solution to the given problem. For this reason,
we will not develop this direction further for this thesis.

7.6.4 Generalization to Part-of-Speech Level

This section describes a special case that is both rare in our training data
and subtle. We present here a solution to this special case. It should however
be noted that this is merely a proof of concept, a proof that a solution can be
found for the problem at hand. The solution provided here has no bearing
on the overall system results and is mostly interesting from a theoretical
perspective.

During Seed Generation, we raised lexical items to the POS level only
if the they were aligned one-one and the two one-one aligned words did not
appear in the dictionary with different parts of speech. This was done as a
precaution: if there is a mismatch in POS, it is not desirable to propose a
consistent transfer from one POS into another. For example, it is undesirable
to have a rule that consistently translates any verb into an adjective simply
after seeing one such example in the training data. Rather, we propose a
more robust algorithm by which in such cases the rules retain the lexical
items, and a raising to the POS level is proposed only after more evidence
is observed.

134 CHAPTER 7. STRUCTURAL LEARNING

For example, we observe in the training data that between Hebrew and
English, English demonstrative pronouns, e.g. ‘THIS’, translates into equiv-
alent Hebrew demonstrative pronouns, as made explicit with the following
dictionary entries:

DEMPRO::DET ["ZH"] -> ["THIS"]

(

(X1::Y1)

((X1 GEN) = M)

((X1 NUM) = S)

)

DEMPRO::DET ["ZWT"] -> ["THIS"]

(

(X1::Y1)

((X1 GEN) = F)

((X1 NUM) = S)

)

DEMPRO::DET ["ALH"] -> ["THESE"]

(

(X1::Y1)

((X1 NUM) = P)

)

The reason for the POS mismatch here is that Hebrew demonstrative
pronouns do not behave like other determiners and are thus tagged with a
different label in the dictionary, while English demonstrative pronouns are
tagged as determiners, because they act like ordinary determiners. Thus,
when using the lexicon during rule learning, the following training examples
result in the rules listed with them:

TL: this city

SL: H &IR H ZWT

Alignment: ((1,4),(2,2))

Type: NP

CoEmbeddingScore: 2

C-Structure:(<NP> (DET THIS-1) (N CITY-2))

results in

7.6. ADVANCED STRUCTURAL LEARNING 135

;;SL: H &IR H ZWT

;;TL: this city

NP::NP ["H" N "H" "ZWT"] -> ["THIS" N]

(

(X2::Y2)

)

and

TL: these cities

SL: H &IRIM H ALH

Alignment: ((1,4),(2,2))

Type: NP

CoEmbeddingScore: 2

C-Structure:(<NP> (DET THESE-1) (N CITIES-2))

results in

;;TL: H &IRIM H ALH

;;SL: these cities

NP::NP ["H" N "H" "ALH"] -> ["THESE" N]

(

(X2::Y2)

)

As a separate optional step before Compositionality Learning, we then
inspect all learned rules and raise the lexicalized items to the POS level if
we encounter more than one example of given POS labels translating into a
specific different POS label. It would be desirable here to have a less heuristic
cutoff. However, the number of training examples for this special case are
extremely limited: in our training data, we only encountered the example
involving the demonstrative pronouns and no other examples. For future
work, it would be interesting to measure how much this extreme sparseness
of training data is a function of the dictionary, as in our dictionary contains
almost no instances of entries with different parts of speech for the Hebrew
and the English word. It is not infrequent for a word to translate into
a different part of speech. In our system, we are limited in catching and
handling this phenomenon simply by the given dictionary. The algorithm
that allows one-one aligned words of different POS to be generalized to the
POS level can be represented in pseudocode as in Figure 7.8.

When applying this step to the example above, we obtain the following
more general rules:

136 CHAPTER 7. STRUCTURAL LEARNING

Generalization to POS level

For each rule ri with one-one aligned words wTL wSL

that are listed in the dictionary with different

parts of speech typewTL
and typewSL

, respectively

If there is another rule rj with a one-one

aligned word pair w′

TL w′

SL with the same parts

of speech as wTL and wSL, namely typewTL
and

typewSL
, respectively

Replace wTL with typewTL and wSL with

typewSL in rule ri

Replace w′

TL with typewTL and w′

SL with

typewSL in rule rj

If there are any other rules rk with a one-one

aligned word pair w′′

TL w′′

SL with the same parts

of speech as wTL and wSL, namely typewTL
and

typewSL
, respectively

Replace w′′

TL with typewTL and w′′

SL with

typewSL in rule rk

Figure 7.8: Pseudocode for generalization to POS level.

7.6. ADVANCED STRUCTURAL LEARNING 137

;;SL: H &IR H ZWT

;;TL: this city

NP::NP ["H" N "H" DEMPRO] -> [DET N]

(

(X2::Y2)

(X4::Y1)

)

;;SL: H &IRIM H ALH

;;TL: these cities

NP::NP ["H" N "H" DEMPRO] -> [DET N]

(

(X2::Y2)

(X4::Y1)

)

7.6.5 Subtleties in Compositionality Learning

One-many and many-one alignments revisited

All many-one and one-many alignments that do not fall in the lexicon en-
hancement categories, in the compound category, or in the pro-drop category
are not generalized to the POS level. This includes complex alignments such
as

TL: the world ’s famous dictators

SL: H DIQ@@WRIM H MPWRSMIM $L H &WLM

Alignment: ((1,1),(1,3),(2,7),(3,5),(4,4),(5,2))

Type: NP

CoEmbeddingScore: 2

C-Structure:(<NP> (<NP> (DET the-1)(N world-2))(GEN ’s-3)

(ADJ famous-4)(N dictators-5))

These cases cannot easily be handled in our system, because they are
very rare and would be very susceptible to learning idiosyncrasies and thus
overfitting to the training data. Therefore, we have chosen to not generalize
from these cases, and leaving the words in question lexicalized. While this
approach comes at the expense of some generality in the learned rules, it
is nevertheless a safer choice. This is an instance of a trade-off between
generality and overfitting to the training data. It would be interesting to
explore how to approach these more complex cases with more training data
available; however, this is not in the scope of this thesis.

138 CHAPTER 7. STRUCTURAL LEARNING

There are, however, certain ways in which Compositionality Learning
can overcome the problems posed by components that are not aligned one-
one. During Seed Generation, words that are not aligned one-one in the
training data are left lexicalized. During Compositionality Learning, it is not
generally desirable to prevent not one-one aligned words from participating
in a compositional element.

For example, if it were enforced that an unaligned word remain lexical-
ized and not participate in compositionality, the following seed rule

;;SL: $ HWA $R $IR

;;TL: THAT HE SANG A SONG

SBAR::SBAR [SUBORD PRO V N] -> [SUBORD PRO V "A" N]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

(X4::Y5)

)

would be generalized during Compositionality to:

;;SL: $ HWA $R $IR

;;TL: THAT HE SANG A SONG

SBAR::SBAR [SUBORD NP V N] -> [SUBORD NP V "A" N]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

(X4::Y5)

)

Clearly, the unaligned indefinite determiner ‘A’ would lower the level of
compositionality that can be learned. By contrast, if allowing unaligned
words to participate in compositionality, the following rule can be learned:

;;SL: $ HWA $R $IR

;;TL: THAT HE SANG A SONG

SBAR::SBAR [SUBORD S] -> [SUBORD S]

(

(X1::Y1)

(X2::Y2)

)

7.6. ADVANCED STRUCTURAL LEARNING 139

In order to develop a clearer picture of the problem, we categorize not
one-one alignments as follows:

1. UnalignedTL: Unaligned TL indices

2. UnalignedSL: Unaligned SL indices

3. OneToMany: one-many word alignments

4. ManyToOne: many-one word alignments

5. ManyToMany: a group of TL indices aligned to a group of SL indices

6. DiscontSL: a TL constituent that aligns to two or more coherent SL
indices that are interrupted by another set of indices

Most of these categories are straightforward, but the last one warrants
an example for clarification. An example of DiscontSL is:

TL: a dispute with the school board

SL: SKSWK &M W&D BIT H SPR

Alignment: ((2,1),(3,2),(4,5),(5,4),(5,6),(6,3))

Type: NP

CoEmbeddingScore: 4

C-Structure:(<NP> (<NP> (DET a-1)(N dispute-2))

(<PP> (PREP with-3)(<NP> (DET the-4)(N school-5)

(N board-6))))

In this case, the contiguous component ‘SCHOOL BOARD’ is inter-
rupted by the Hebrew word ‘H’.

It is interesting to examine what impact these special cases have on the
learned rules. In essence, two things can happen with not one-one aligned
indices. They can either remain lexicalized, or else they can be merged
into a higher-level constituent. In the following, we discuss some training
examples and how the learning algorithms handle them.

The training example with an unaligned TL index

TL: the jury did not elaborate

SL: XBR H MW$B&IM LA HTDINW

Alignment: ((1,2),(2,1),(2,3),(4,4),(5,5))

Type: S

CoEmbeddingScore: 3

140 CHAPTER 7. STRUCTURAL LEARNING

C-Structure:(<S> (<NP> (DET the-1)(N jury-2))

(<AUX> (V did-3))(NEG not-4)

(<VP> (V elaborate-5)))

results in the following rule:

;;SL: XBR H MW$B&IM LA HTDINW

;;TL: THE JURY DID NOT ELABORATE

;;C-Structure:(<S> (<NP> (DET the-1)(N jury-2))

(<AUX> (V did-3))(NEG not-4)

(<VP> (V elaborate-5)))

S::S [NP ADV V] -> [NP "DID" ADV V]

(

(X1::Y1)

(X2::Y3)

(X3::Y4)

)

In this rule, the auxiliary is left lexicalized, which can be useful at run-
time, because it capture the divergence that in Hebrew, negated verbs are
not split into a verb and an auxiliary like in English. Therefore, it is useful
to introduce the auxiliary as a lexicalized item.

Consider another example. The training example

TL: a meter long

SL: B AWRK M@R

Alignment: ((2,3),(3,1),(3,2))

Type: ADJP

CoEmbeddingScore: 3

C-Structure:(<ADJP> (<NP> (DET a-1)(N meter-2))

(ADJ long-3))

produces the following rule:

;;SL: B AWRK M@R

;;TL: A METER LONG

;;C-Structure:(<ADJP> (<NP> (DET a-1)(N meter-2))

(ADJ long-3))

ADJP::ADJP ["B" "ARK" NP] -> [NP "LONG"]

(

;(X1::Y2)

7.6. ADVANCED STRUCTURAL LEARNING 141

;(X2::Y2)

(X3::Y1)

)

In this case, the NP is correctly captured and generalized to, whereas
the adjective remains lexicalized. The lexicon enhancement cannot cover
this example, because there was not enough evidence of English adjectives
translating into the preposition ‘B’ and a noun. Possibly a larger training
set would ameliorate this limitation. With the given training set, the best
solution is for the not one-one words to remain lexicalized, so as to not
overgeneralize (for instance to PREP N → ADJ).

Further, the training example

TL: before they arrived

SL: LPNI $ HM HGI&W

Alignment: ((1,1),(2,3),(3,4))

Type: SBAR

CoEmbeddingScore: 4

C-Structure:(<SBAR> (PREP before-1)

(<S> (<NP> (PRO they-2))(<VP> (V arrived-3))))

resulted in the following rule:

;;SL: LPNI $ HM HGI&W

;;TL: BEFORE THEY ARRIVED

;;C-Structure:(<SBAR> (PREP before-1)

(<S> (<NP> (PRO they-2))(<VP> (V arrived-3))))

SBAR::SBAR [PREP "$" S] -> [PREP S]

(

(X1::Y1)

(X3::Y2)

)

This training example captures the important translation mismatch that
Hebrew prepositions are often followed by the conjunction ‘$’ to introduce
a subordinate clause.

No examples were found in the training data of an unaligned SL word
being integrated in a higher-level constituent. For example, the training
example

142 CHAPTER 7. STRUCTURAL LEARNING

TL: the boy ate the apple

SL: H ILD AKL AT H TPWX

Alignment: ((1,1),(2,2),(3,3),(4,5),(5,6))

Type: S

CoEmbeddingScore: 4

C-Structure:(<S> (<NP> (DET the-1)(N boy-2))

(<VP> (V ate-3)(<NP> (DET the-4)(N apple-5))))

results in the following rule:

;;SL: H ILD AKL AT H TPWX

;;TL: THE BOY ATE THE APPLE

;;C-Structure:(<S> (<NP> (DET the-1)(N boy-2))

(<VP> (V ate-3)(<NP> (DET the-4)(N apple-5))))

S::S [NP V "AT" NP] -> [NP V NP]

(

(X1::Y1)

(X2::Y2)

(X4::Y3)

)

This rule is learned even when Maximum Compositionality is assumed.
This is because the ‘AT’ could only be part of a higher-level VP. VP, however,
is not on the list of constituents of interest, so no VPs are produced, and
the ‘AT’ must remain lexicalized.

To give one example of the category DiscontSL, the training example

TL: a dispute with the school board

SL: SKSWK &M W&D BIT H SPR

Alignment: ((2,1),(3,2),(4,5),(5,4),(5,6),(6,3))

Type: NP

CoEmbeddingScore: 4

C-Structure:(<NP> (<NP> (DET a-1)(N dispute-2))

(<PP> (PREP with-3)(<NP> (DET the-4)(N school-5)

(N board-6))))

produced the following rule under Maximum Compositionality:

;;SL: SKSWK &M W&D BIT H SPR

;;TL: A DISPUTE WITH THE SCHOOL BOARD

;;C-Structure:(<NP> (<NP> (DET a-1)(N dispute-2))

7.6. ADVANCED STRUCTURAL LEARNING 143

(<PP> (PREP with-3)

(<NP> (DET the-4)(N school-5)(N board-6))))

NP::NP [NP PP] -> [NP PP]

(

(X1::Y1)

(X2::Y2)

)

Despite the fact that the indices corresponding to the English compo-
nent ‘SCHOOL BOARD’ are discontinuous, the Compositionality algorithm
manages to abstract away from this, as a higher-level component ‘THE
SCHOOL BOARD’ translates into a contiguous chunk of SL indices.

Discussion: Recovering from Noise in the Training Data

In certain cases, the learning algorithms can help the system overcome noisy
training data. Consider the following example:

TL: the press and its readers

SL: H &TWNWT W QWRIAI H

Alignment: ((1,1),(2,2),(4,5),(5,4))

Type: NP

C-Structure:

(<NP>

(<NP> (DET the-1)(N press-2))

(CONJ and-3)

(<NP> (POSS its-4)(N readers-5)))

The translation in Hebrew does not translate ‘ITS’ properly (the aligned
word ‘H’ is the definite singular determiner in Hebrew). Thus, a flat rule
would incorrectly reflect how a possessive translates into Hebrew. Luck-
ily, this problem can be ‘hidden’ when the learning algorithm is run with
the assumption of Maximum Compositionality. It then infers correctly the
following higher-level rule:

;;SL: H &TWNWT W QWRIAI H

;;TL: THE PRESS AND ITS READERS

NP::NP [NP "W" NP] -> [NP "AND" NP]

(

(X1::Y1)

(X3::Y3)

)

144 CHAPTER 7. STRUCTURAL LEARNING

(Note that ‘AND’ and ‘W’ remain lexicalized because the translator did
not align them, although they are actually translations of each other).

While the Compositionality algorithms were not designed specifically to
overcome noise in the training data, they were in fact designed to learn
maximally compositional rules, which has the potential side-effect of hiding
noise that is contained in the lower-level constituents.

7.6.6 Structural Grammar Enhancement

The previous sections discussed how rules are learned from training ex-
amples, and how complex cases are handled. This section is different in
the sense that it uses an existing learned grammar to infer further transfer
rules. As we will describe below, structural grammar enhancement takes in
a learned grammar that is as large as possible, and infers additional rules
from it.

Consider the following pair of component sequences:

NP::NP [Det Adj Adj N] -> [Det N Adj Adj]

NP::NP [Det Adj N] -> [Det N Adj]

To a human grammar designer, these two sequences are not only similar,
but indicate a possible generalization. The underlying rule for both of the
above sequences could be

NP::NP [Det Adj+ N] -> [Det N Adj+]

In other words, the two sequences above may lead to conclude that for
more than two adjectives, the language pair behaves similarly. However, if

NP::NP [Det Adj Adj Adj N] -> [Det N Adj Adj Adj]

was not observed in the training data, but such a structure was encoun-
tered in the test data, the grammar would not be able to cover this structure
at run-time. The goal of the work described here is to infer automatically
when the grammar can be generalized in this way. Although in practice a
test sentence cannot contain an infinite number of adjectives in succession,
and in fact the number of adjectives in succession is bounded by a small
number, such generalizations are desirable simply because the training data
may not reach those practical limits. In the evaluation section we report that
the generalized rules were applied at run-time, thus validating the approach
in practice, not only in theory.

7.6. ADVANCED STRUCTURAL LEARNING 145

We now give a brief description of the steps involved in obtaining such
generalizations. The subsequent sections will explain each of the steps in
greater detail.

1. Learned Grammar. The original learning algorithm extracts a num-
ber of transfer rules from a bilingual corpus. The set of learned rules,
the grammar, is the input to the grammar enhancement module.

2. Pairs of Rules. The first step in enhancing a learned transfer gram-
mar is to consider all pairs of rules of the same type. All rule types
are considered for expansion. The reason that we want to find pairs
of rules as in the example above is that we want to maximize the evi-
dence from the data before we propose a generalized rule. We do not
want to introduce an X+ whenever we observe an X component in the
data, because an observation of X in a particular context provides very
little evidence that this component should be generalized. Especially
in the face of very limited data, as in our system, it is important to
safeguard against drawing generalizations too quickly.

3. Minimal Alignment. In this step, the algorithm minimally aligns
the component sequences of the rule pair, for the source and target
languages independently. Minimal alignment aligns the sequences with
the minimal number of gaps.

4. Enhancement Criteria. Minimal alignment always finds a solution,
even for pairs of rules whose component sequences are not in the least
similar. For this reason, a pair of rules and their minimal alignment
must fulfill a number of enhancement criteria before it can be gener-
alized. These enhancement criteria essentially check whether the rule
pair is an example such as the one described above in this section.

5. Generalization. Generalization works by adding rules to the gram-
mar in order to allow for an infinite sequence of the generalized con-
stituent. Generalization is done by introducing another level of com-
positionality and a new non-terminal into the grammar.

Pairs of Rules

Starting with an existing transfer grammar, we consider all pairs of rules that
are of the same type. As described above, each rule in our grammar is labeled
with a top node that essentially indicates the rule’s role in the grammar,
e.g. PP or S. Two rules are only considered for generalization if they are

146 CHAPTER 7. STRUCTURAL LEARNING

of the same type, because we only want to generalize two rules if they are
sufficiently similar. The generalization produces a rule that ‘explains’ both
of the underlying rules. Two rules of different types cannot be explained
by just one rule, as they play different roles in the grammar (e.g. combine
compositionally with a different set of rules).

Minimal Alignment of Rules

In order to compare pairs of rules, we minimally align the component se-
quences using an algorithm that is routinely used in DNA sequence analysis,
the Needleman-Wunsch algorithm (Needleman & Wunsch, 1970). This al-
gorithm relies on dynamic programming to find an alignment between two
sequences that introduces a minimum number of gaps. Each gap is penalized
by lowering the score of the alignment. The algorithm proceeds by filling
the two-dimensional table formed by the two candidate sequences, starting
from the top left corner. Each entry in the table receives a score, indicating
the goodness of the alignment sequence up to this point in the table. The
highest-scoring sequence is then obtained by backtracking through the table.
Table entries are filled as follows:

F (i, j) = max

F (i − 1, j − 1) + s(xi, xj)

F (i − 1, j) − d

F (i, j − 1) − d

d is the gap penalty, in our case d = 1 and s(xi, xj) is the score of an
alignment, in our case s = 100 if the labels are the same s = −100 otherwise.
In order to get reasonable alignments, it is important that it is penalized
highly to align two labels that are not the same. With a penalty of 100,
as used here, two different labels will never be aligned to each other, as
desired. An intuitive explanation of this algorithm is that at each step in
the alignment, one can either skip a word in the first sequence, skip a word
in the second sequence, or else move forward in both sequences. All of these
possibilities are associated with a certain score that reflects the contribution
of this move to the overall alignment. As the goal is to introduce a minimum
number of gaps (and gaps are penalized by lowering the score), the algorithm
always chooses from the three possibilities the one with the highest score.
This means in effect that each table entry receives the highest score of all
possible alignments leading to it. Table 7.1 shows the application of the
algorithm to the sequences in the example above. The algorithm proceeds
through the table, filling it with the maximally possible scores.

7.6. ADVANCED STRUCTURAL LEARNING 147

Det Adj Adj N

0 -1 -2 -3 -4

Det -1 100 99 98 97

Adj -2 99 200 199 198

N -3 98 199 198 299

Table 7.1: Complete minimal alignment table.

When backtracking through the table to find the highest-scoring align-
ment, we start from the bottom right and proceed up, left, or diagonally up
left, always choosing the step with the maximal score, until we reach the
top-left corner. A move diagonally up means ‘scanning’ a symbol from both
sequences, whereas moving up or left implies that a gap is introduced in the
final alignment.

Since the table was filled by essentially capturing all the scores up to
this point, backtracking by always choosing the maximal step is not greedy.
For the example in Table 7.1, the resulting minimal sequence is

Det Adj Adj N
Det Adj N

The minimal alignment algorithm is performed on all pairs of rules of
the same type. Each rule has a SL and a TL component sequence; they
are aligned separately, so that for each rule pair we obtain a SL minimal
alignment and a TL minimal alignment.

Grammar Enhancement Criteria

As was said above, the Needleman-Wunsch algorithm always finds a solution.
All pairs of sequences can be minimally aligned, even if they are not similar
whatsoever. This means that we must interpret the output of the minimal
alignment algorithm to determine if the pair of rules is actually sufficiently
similar to propose a generalization. This is done by applying several ‘tests’ to
the minimal alignments of source and target language component sequences
as well as on the entire rules. The tests are crucial, so that the grammar is
not overgeneralized with invalid rules. In order to result in a generalization,
a pair of minimally aligned rules must fulfill all of the following criteria:

For example, the sequences above would fulfill all of these criteria, since
one rule has and adjective on both sides that the other rule does not have,

148 CHAPTER 7. STRUCTURAL LEARNING

1. The minimal alignment must contain exactly one
gap each on the source and the target language side.
This constraint is introduced in order to enforce that the
rules are sufficiently similar. Each newly introduced rule is
designed to generalize over exactly one constituent.

2. Both gaps must be found in one and the same rule.
The constituent that is to be generalized over should be
present in both languages for one rule, and not present
in both languages for the other rule. This constraint ties
in with the previous one. In essence, we want to ensure
that the longer rule (i.e. the one without gaps) includes
a constituent on both sides that is missing in the shorter
rule, such that the constituent in both languages translate
into each other.

3. The source language component sequence must
have a constituent adjacent to the gap that is of
the same type as the consistent corresponding to
the gap. This will ensure that one of the rules has one
instance of the constituent, whereas the other has two in-
stances in sequence. If this criterion is met, we essentially
generalize from seeing one and two instances to potentially
infinitely many instances.

Figure 7.9: Enhancement criteria for structural grammar enhancement.

7.6. ADVANCED STRUCTURAL LEARNING 149

and the shorter rule has another adjective adjacent to the gap.

Producing Additional Rules

For each pair of rules that is minimally aligned and fulfills the grammar en-
hancement criteria, three new rules are added to the grammar. These three
rules in effect implement the regular expression C+, where C is the con-
stituent that is being generalized. A unique constituent label is introduced
into the grammar, in place of the gaps in the shorter rule. Two additional
rules of type C are then introduced, allowing C to turn into one terminal of
the generalized constituent and another C non-terminal, or else to produce
just one terminal. In the case of our example, the three introduced rules
will look as follows:

NP::NP [Det Adj C N] -> [Det N Adj C]

C::C [C Adj] -> [C Adj]

C::C [Adj] -> [Adj]

Now that we have described all parts of the enhancement algorithm, we
can summarize it in pseudocode as in Figure 7.10.

Discussion of Additional Rules

In order to assess the effectiveness of the proposed approach, we learned an
initial context-free grammar from about 470 sentences and phrases. The
original grammar contained 407 unique rules. The context-free grammar
was then fed into the enhancement algorithm, producing an additional 24
unique rules. An example of a series of newly added rules to the grammar
can be seen below:

NP::NP [ADJ C0 N] -> [N ADJ C0]

(

(X1::Y3)

(X2::Y1)

(X3::Y2)

)

NP::NP ["A" ADJ C0 N] -> [N ADJ C0]

150 CHAPTER 7. STRUCTURAL LEARNING

Structural Grammar Enhancement

For all pairs of rules r1, r2 of the same type typei

Find a minimal alignment of the component

sequences

If the rule r1 and r2 fulfill enhancement

criteria as specified in Figure 7.9

Then r2 contains one gap in the SL and

TL component sequences in the minimal

alignment, where r1’s component sequences

contain a component of type C, and where

r1 and r2 contain a component adjac, that is

adjacent to the SL gap and that is of the

same type as C.

Introduce three additional rules that

implement the regular expression C+, where

C is the generalized constituent:

typei::typei [. . . adjac C . . .] → [. . . adjac C . . .]

C::C [C adjac] → [C adjac]

C::C [adjac] → [adjac]

Figure 7.10: Pseudocode for structural grammar enhancement.

7.6. ADVANCED STRUCTURAL LEARNING 151

(

(X2::Y2)

(X3::Y3)

(X4::Y1)

)

These rules apply to indefinite NPs. In Hebrew indefinite NPs are not
marked with a determiner, while in English they are in some cases (e.g.
‘A TALL MAN’, i.e. singular indefinite, vs. ‘TALL MEN’, i.e. plural
indefinite). This is reflected by an ambiguous translation in the two rules
above. The algorithm proposed in this paper detected that in both cases,
the NP can contain an arbitrary number of adjectives, as is reflected in the
rules. A few things are interesting to note about this series of rules. The
statistical decoder will deal with the ambiguity inherent in these rules, and
will extract the appropriate partial translations to combine them into a full
translation. Future work will aim at introducing a set of constraints into
the rules, so that their applicability or possible output can be restricted and
thus relieve the burden on the decoder.

The following examples are generalized rules learned for noun compound-
ing. The first three, a straightforward reduplication of the noun is applies
on both sides. The fourth rule is particularly interesting, because it cap-
tures the phenomenon that definite noun compounds in Hebrew are marked
for definiteness only before the last noun. This example also illustrates the
power of the alignment algorithm: a more simple algorithm that would sim-
ply scan the original grammar for cases where components are reduplicated
on both sides would not capture this case.

NP::NP [N C2] -> [N C2]

(

(X1::Y1)

(X2::Y2)

)

NP::NP [ADJ N C2] -> [N C2 ADJ]

(

(X1::Y3)

(X2::Y1)

(X3::Y2)

)

152 CHAPTER 7. STRUCTURAL LEARNING

NP::NP ["A" ADJ N C2] -> [N C2 ADJ]

(

(X2::Y3)

(X3::Y1)

(X4::Y2)

)

NP::NP [DET N C2] -> [C2 DET N]

(

(X1::Y2)

(X2::Y3)

(X3::Y1)

)

Although the algorithm does capture interesting phenomena, it is lim-
ited in certain ways, and future research could address these limitations.
Consider the following rule in the original grammar:

;;SL: H B&IH H $NIH H GDWLH

;;TL: THE SECOND BIG PROBLEM

NP::NP ["THE" ADJ ADJ N] -> ["H" N "H" ADJ "H" ADJ]

(

(X2::Y4)

(X3::Y6)

(X4::Y2)

)

The current generalization algorithm is not able to capture the fact that
in a definite Hebrew noun phrase, each adjective is marked for definiteness
separately. In this case, the algorithm would have to detect that the original
rule actually represents a more complex reduplication.

Another limitation of our current algorithm is that although it maximizes
support from the original grammar before introducing a generalization, this
might still not be enough in all cases. There are currently no safeguards
against generalizations that are supported only by noise in the data, since
we generalize after seeing merely one rule with reduplication and one rule
without reduplication. Future work will address this in the context of scor-
ing rules based on their translation power on the training set. We have done
some initial investigation on this topic, as it can be applied to all learned
rules, not only the generalized ones. In this framework, rules will be scored

7.7. APPLYING QUALITY CRITERIA 153

based on whether they can correctly translate sentences (or parts of sen-
tences) other than the ones they were derived from. Future work could
address this issue in detail.

7.7 Applying Quality Criteria

In all previous sections, we aimed at extracting the maximally compositional
rules from the training data. We applied certain safeguards against over-
generalization, but the overall goal was to strive towards high generality of
the rules. By contrast, in this section we introduce two filters that are ap-
plied to the rules, so that the learned grammars will not contain obviously
overly general rules, and so that the rules abide by the axioms put forth in
section 7.2.4. Any learned rule must pass these two filters in order to be
included in the final grammar.

7.7.1 Quality Criterion 1: Checking for Boundary Crossings

The alignments give us sets of indices that group together, denoted compo-
nent sets. For TL, these groups consist of all the indices that are covered by
an interior parse node. From the alignments we can infer the corresponding
sets for SL. The component sets allow us to gain insight into how well the
TL structure is preserved when being translated into SL.

As discussed earlier, in some training examples the TL component sets do
not align to coherent sets on the SL side. This can be detected by checking
for so-called Boundary Crossings, where a SL component set includes an
alignment not only to words in the corresponding TL component set, but
also to one or more words in a different TL component set. This is best
illustrated with an example:

TL: instead of a book

SL: BMQWM SPR

Alignment: ((1,1),(2,1),(4,2))

Type: PP

C-Structure:

(<PP>

(ADV instead-1)

(<PP> (PREP of-2)(<NP> (DET a-3)(N book-4))))

This is an example of the advanced case of DiscontSL as was described
above. In the previous example, the DiscontSL effect was masked, because

154 CHAPTER 7. STRUCTURAL LEARNING

the discontinuity was embedded within a higher-level structure for which a
compositional element could be introduced. In this example, however, this
is not the case, so that a different approach must be taken.

It can be seen that the English structure is not preserved in Hebrew, as
is indicated by the word alignments and the boundary crossing between the
component set corresponding to the ADV and component set corresponding
to the PP. In the absence of an SL parser, we cannot propose any structure,
so that falling back onto the lexical items is the best solution, as reflected
in the learned rule:

;;SL: BMQWM SPR

;;TL: INSTEAD OF A BOOK

PP::PP ["BMQWM" "SPR"] -> ["INSTEAD" "OF" "A" "BOOK"]

(

;(X1::Y1)

;(X1::Y1)

;(X2::Y4)

)

This example can be explained better with a diagram, as in Figure 7.11.
The PP ‘OF A BOOK’ is ‘split’ in Hebrew, because the preposition aligns
to a word that is also aligned with a word outside the prepositional phrase.

 instead of a book

 bmqwm spr

Figure 7.11: Diagrammatic representation of boundary crossing.

We cannot reach a higher level of compositionality in such a case, because
a TL constituent does not align to a coherent SL component, where no other
TL component aligns to this SL chunk.

If we proposed compositional elements, the SL word ‘BMQWM’ would
participate in more than one component in the resulting component sequence

7.8. RESULTS 155

(the PREP and the NP). This would however violate the last axiom, which
states that each word must participate in exactly one component.

7.7.2 Quality Criterion 2: No Unaligned Constituents

In the following training pair, one of the constituents is completely untrans-
lated and thus unaligned: ‘IN EFFECT’ remains untranslated, presumably
because the training example does not easily translate into Hebrew.

TL: in fact and in effect

SL: L M&$H

Alignment: ((1,1),(1,2),(2,1),(2,2))

Type: PP

C-Structure:

(<PP>

(<PP> (PREP in-1)(<NP> (N fact-2)))

(CONJ and-3)

(<PP> (PREP in-4)(<NP> (N effect-5))))

In the case where a complete constituent, not simply a single word,
remains untranslated, we must assume that the training example is noisy.
In such a case, we do not produce any transfer rule at all.

7.8 Results

7.8.1 Discussion of Learned Rules

Comparison of Compositional and Non-Compositional Rules

In this section, we present a number of rules that were automatically learned
using our system. The training corpus was the structural elicitation corpus
of 120 examples.

Consider the following three rules. The first one represents the rule that
was learned using Seed Generation only. This is followed by the correspond-
ing compositional rules that were learned with and without the assumption
of Maximum Compositionality, respectively.

The seed rule looks as follows:

;;SL: $ B TWK H M&@PH HIH $M

;;TL: THAT INSIDE THE ENVELOPE WAS A NAME

SBAR::SBAR [SUBORD "B" "TWK" DET N V N] ->

156 CHAPTER 7. STRUCTURAL LEARNING

[SUBORD "INSIDE" DET N V "A" N]

(

(X1::Y1)

(X4::Y3)

(X5::Y4)

(X6::Y5)

(X7::Y7)

)

It can be seen the rule is flat, which is necessarily the case when Com-
positionality Learning is not used. Further, the rule generalizes some of the
word indices to the POS level, while other words are left lexicalized. For
example, ‘INSIDE’ is left lexicalized because it aligns to two Hebrew words,
whereas ‘A’ is left lexicalized because it is unaligned. However, several words
are generalized to the POS level. This results in a rule that generalizes well
beyond the specific training example it was derived from.

When Compositionality Learning is turned on, the following rule is
learned without the assumption of Maximum Compositionality:

;;SL: $ B TWK H M&@PH HIH $M

;;TL: THAT INSIDE THE ENVELOPE WAS A NAME

SBAR::SBAR [SUBORD "B" "TWK" NP V N] ->

[SUBORD "INSIDE" NP V "A" N]

(

(X1::Y1)

(X4::Y3)

(X5::Y4)

(X6::Y6)

)

This rule generalizes ‘THE ENVELOPE’ to an NP. This means that a
rule learned in a previous learning step can translate the chunk ‘H M&@PH’
into ‘THE ENVELOPE’. The rule is more general than the one learned
with Seed Generation only, as any NP can now plug into the slot that is
represented by NP in the rule.

Finally, we compare the previous two rules to the compositional rule that
was learned under the assumption of Maximum Compositionality:

;;SL: $ B TWK H M&@PH HIH $M

;;TL: THAT INSIDE THE ENVELOPE WAS A NAME

7.8. RESULTS 157

SBAR::SBAR [SUBORD PP V NP] -> [SUBORD PP V NP]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

(X4::Y4)

)

This rule is again more general than the rule that was learned without
the assumption of Maximum Compositionality. The generalization power of
this rule is very high, as it can apply to any subordinate clause of the given
structure, and is not lexically bound. Note that the unaligned ‘A’ has now
been abstracted away from, as it is part of an NP.

As another example, the following is a rule produced using Seed Gener-
ation only:

;;SL: RQ AM H RKBT TGI&

;;TL: ONLY IF THE TRAIN ARRIVES

SBAR::SBAR [ADV SUBORD DET N V] -> [ADV SUBORD DET N V]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

(X4::Y4)

(X5::Y5)

)

In this case, the rule produced by Seed Generation alone is quite general.
It still cannot combine with any other grammar rules, as it is not compo-
sitional. It is, however, general in the sense that it is no longer lexically
bound.

The corresponding compositional rule without assuming Maximum Com-
positionality is:

;;SL: RQ AM H RKBT TGI&

;;TL: ONLY IF THE TRAIN ARRIVES

SBAR::SBAR [ADV SUBORD NP V] -> [ADV SUBORD NP V]

(

(X1::Y1)

(X2::Y2)

158 CHAPTER 7. STRUCTURAL LEARNING

(X3::Y3)

(X4::Y4)

)

It can be seen that the compositional rule is more general than the
corresponding seed rule because it no longer requires that the subject of the
subordinate clause be a simple NP of the form ‘DET N’. This means that
the rule can apply to a larger number of structures at run-time.

Finally, running Seed Generation in combination with the Composition-
ality algorithm while assuming Maximum Compositionality is:

;;SL: RQ AM H RKBT TGI&

;;TL: ONLY IF THE TRAIN ARRIVES

SBAR::SBAR [ADVP SUBORD S] -> [ADVP SUBORD S]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

)

This rule correctly recognizes that in fact we are dealing with a subordi-
nate clause that consists of a subordinating conjunction and a full sentence.
Clearly, this rule is more general than the previous two, and manages to
capture more of the structure of the two languages.

Comparison of learned rules with Maximum Compositionality and
learned rules without Maximum Compositionality

One example of the comparison of learned rules when Maximum Composi-
tionality is assumed versus when it is not assumed is as follows. The rule
without assumption of Maximum Compositionality is:

;;SL: $&WT H &RB LA TMID BWLW B AWTW AWPN

;;TL: THE EVENING WAS NOT ALWAYS SPENT IN THE SAME WAY

S::S ["$&WT" NP ADV ADV V PREP ADJ N] ->

[NP "WAS" ADV ADV V PREP "THE" ADJ N]

(

(X2::Y1)

(X3::Y3)

(X4::Y4)

(X5::Y5)

7.8. RESULTS 159

(X6::Y6)

(X7::Y8)

(X8::Y9)

)

Assuming Maximum Compositionality results in the following rule:

;;SL: $&WT H &RB LA TMID BWLW B AWTW AWPN

;;TL: THE EVENING WAS NOT ALWAYS SPENT IN THE SAME WAY

S::S ["$&WT" NP ADV ADVP V PP] -> [NP "WAS" ADV ADVP V PP]

(

(X2::Y1)

(X3::Y3)

(X4::Y4)

(X5::Y5)

(X6::Y6)

)

Clearly, the rule learned under the assumption of Maximum Composi-
tionality captures the structure of the training example better, while the
other rule is left mostly lexicalized.

The key to understanding this example is that the learning algorithm
often has few ‘previously learned rules’ that can be used for testing the
validity of compositionality.

7.8.2 Automatic Evaluation Results

Table 7.2 summarizes the automatic evaluation results for compositional
grammars. We list several results here, which warrants some explanation:
Aside from results for no grammar and the manual grammar as above, we
repeat for convenience the results for rules learned during Seed Genera-
tion (‘Learned Grammar (SeedGen)’). We then list the results for two
compositional grammars, without and with the assumption of Maximum
Compositionality (‘Learned Grammar (Compos)’ and ‘Learned Grammar
(MaxCompos)’, respectively).

The above results indicate that an improvement in score can be observed
for the compositional rules. The results are more highly statistically signifi-
cant than the Seed Generation results, with the METEOR scores being less
significant.

The increase in score over Seed Generation indicates the generalization
power of rules that can combine with each other to cover unseen structures.

160 CHAPTER 7. STRUCTURAL LEARNING

Grammar BLEU ModBLEU METEOR

No Grammar 0.0255 0.0910 0.2681

Manual Grammar 0.0713 0.1209 0.3204

Learned Grammar (SeedGen) 0.0281 0.0969 0.2786

Learned Grammar (Compos) 0.0346 0.0998 0.2819

Learned Grammar (MaxCompos) 0.0344 0.0995 0.2811

Table 7.2: Automated evaluation results for Seed Generation and Basic
Compositionality on test set 1. ‘MaxCompos’ stands for a run that assumes
Maximum Compositionality.

Comparison BLEU ModBLEU METEOR

SeedGen [-0.0073,0.0018] [-0.0149,0.0026] p=0.112

Compos [-0.0321,0.000] [-0.0164,-0.020] p=0.084

MaxCompos [-0.0312,0.000] [-0.0162,-0.0017] p=0.108

Table 7.3: Seed Generation only and Basic Compositionality confidence in-
tervals (for BLEU and ModBLEU) and one-tailed t-test for comparison be-
tween learned grammar and baseline.

The two approaches to Compositionality, with and without the assumption
of Maximum Compositionality, perform about equally well, and both pro-
vide an improvement over the baseline. It is not clear a priori which one
should be used in practice. Maximum Compositionality has two clear ad-
vantages: 1) it produces more human-readable rules, as was explained in
section 7.8.1 above, and 2) grammars can be trained faster because of the
smaller training-time complexity of the Maximum Compositionality (as dis-
cussed in section 7.5). The algorithm without the assumption of Maximum
Compositionality, on the other hand, has the advantage that at run-time, the
lattices are smaller, resulting in faster run-time performance. It should be
decided on a case-by-case basis which approach to Compositionality Learn-
ing should be used.

It should however also be noted that unconstrained compositional rules
are very general and combine with each other readily, leading to large lat-
tices. The goal of the following chapter is to attack this issue by amending
the rules with unification constraints. From a practical perspective, we hope
to bound the generality of the rules, so that they apply to fewer contexts.

Again, it can be observed that the manual grammar outperforms the

7.8. RESULTS 161

learned grammar by a considerable margin. This can at least in part be
attributed to the fact that test set 1 was used as a development set for the
manual grammar. In chapter 9, we test the system on a different test set
that is unseen both for the manual and the learned grammar, and show that
the margin between the two diminishes.

162 CHAPTER 7. STRUCTURAL LEARNING

Chapter 8

Learning Unification
Constraints

8.1 Introduction

The goal of the two previous chapters was to learn a set of context-free
translation rules. Context-free rules are appealing because they are easy to
grasp and apply. Furthermore, context-free rules provide the highest level of
generalization over the training data. It implies that the rules can be used to
maximally cover unseen data at run-time, given the observed training data.
This is useful especially when learning from a very small corpus, when a
large number of structures, or combinations thereof, are not observed.

On the other hand, context-free rules can overgeneralize. For example,
certain rules should only apply under a set of specific circumstances, e.g.
only to definite NPs. It is not straightforward to capture such kind of con-
textual information in context-free rules alone. For this reason, this chapter
aims at refining the context-free rule with unification constraints or simply
constraints. Unification constraints can either 1) limit their applicability to
certain contexts (thereby limiting parsing ambiguity), 2) ensure the passing
of feature values from source to target language (thereby limiting transfer
ambiguity), or 3) disallow certain target language outputs (thereby limit-
ing generation ambiguity). The constraints are automatically learned from
data, using morphological information for both languages.

Unification constraints are theoretically very appealing, because they
allow us to capture the appropriate context for a given rule. It should
however be noted that the statistical decoder is very strong at selecting the
best partial translations to form a full translation. This is the case even when

163

164 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

the partial translations were produced by a context-free grammar and thus
contain a large number of ambiguities. This means that limiting ambiguity
with unification constraints can only be useful to translation quality if the
constraints eliminate arcs from the lattice that are 1) incorrect translations
and 2) would have been chosen by the decoder. In practice, this is hard
to achieve because of the strength of the decoder. The practical goal of
this chapter is thus to limit ambiguity, thus reducing run-time, while not
eliminating any or many ‘good’ arcs from the lattice. Whether this goal
is achieved can be measured by comparing translation quality with and
without constraints, and by measuring the run-time of the system with and
without constraints. We provide both measures in the evaluation section 8.2
below.

We have given several motivations for learning unification constraints.
Let us now briefly return to another discussion. In section 3.2 above we
have argued why structural learning and Unification Constraint Learning
should be kept separate. In addition to the reasons listed there (facilitating
the design of the algorithm, more flexibility in the settings of the algorithm,
optionality of the constraints), there is another argument in favor of learning
unification constraints in a separate step: the goal of structural learning is
to accomplish maximal generalization over the training data. For example,
if a PP with an embedded NP is observed, the embedded NP is recognized
in the rule as a compositional element if possible. More generalization can
be accomplished if this is done without constraints. Consider the following
illustrative example, and suppose that constraints were added to rules at
the same time as the structure was determined:

NP::NP [DET N] -> [DET N]

(

(X2 NUM = S)

(Y2 NUM = S)

)

PP::PP [PREP DET N] -> [PREP DET N]

(

(X3 NUM = P)

(Y3 NUM = P)

)

Given that the NP rule applies only to singular nouns, the embedded
NP in the PP rule could not be recognized and would not be generalized

8.2. REVIEW OF UNIFICATION CONSTRAINTS 165

to the NP level. It is, however, desirable to generalize to the NP level
in this case, so that different types of NPs can apply within the PP rule.
There are two ways to overcome this problem: 1) run the system with the
assumption of Maximum Compositionality, and 2) ignore the constraints
while learning structure. If the second option is chosen, the learning modules
are once again separate. We thus chose to separate the learning modules,
even if the assumption of Maximum Compositionality is made. This solution
provides a greater amount of flexibility in the settings in which the rule
learner can be run, and it has no bearing on the system behavior if Maximum
Compositionality is in fact assumed.

Having said that, there are in fact special cases where interleaving the
learning phases could result in superior rules. This case will be discussed in
the Future Work section (Section 10.3).

Before we delve into the theory of unification constraints, a brief re-
minder on notation: the following refer to the same entities: Source Lan-
guage (SL), minor language, and x-side. Similarly, the following refer
to the same: Target Language (TL), major language, and y-side.
In our case, Hebrew and Hindi are the SLs in the Hebrew→English and
Hindi→English systems, respectively, and English is the TL. These terms
will be used as appropriate in context. For example, when referring to rule
parts, we often use the terms x-side and y-side. When talking about trans-
lation in general, the terms SL and TL are often more appropriate.

8.2 Review of Unification Constraints

Constraints were briefly described in section 3.2. They are equations that
can be added to parsing, generation, or translation rules in order to specify
context or pass feature values. Unification constraints are often used in
LFG-style grammars (Bresnan, 2001).

In this section, we will only discuss constraints to the level that is nec-
essary to understand the work described in this document. For further
information on unification, pseudo-unification, and constraints, the inter-
ested reader should refer to (Shieber, 1986). The transfer engine used in
our system performs pseudo-unification. This means that the result of a
unification is passed to the left-hand side of the constraint equation. If the
feature was not marked on the left-hand side, the feature value is merely
passed from the right-hand side to the left-hand side.

Some constraints are referred to as head-passing constraints. A head can
informally be described as the ‘most important’ word in a phrase, and the

166 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

word that gives the category to the phrase. For example, the phrase ‘THE
BLUE BOOK’ is headed by the noun ‘BOOK’ and is thus a NP. Naturally,
the definition of a head is not actually always this straightforward. For
example, the head of the phrase ‘THE FATHER’S CARS’ is ‘CARS’, not
‘FATHER’, even though both words are nouns and the phrase is a NP. This
is because the number of ‘CARS’ is plural, whereas the number of ‘FATHER’
is singular. However, the number of the entire phrase is plural, indicating
that ‘CARS’ is the word that passes up the number feature, making ‘CARS’
the head of the phrase. More formally, a head can be defined as the word
or construction that determines the type and feature values of the entire
phrase. Feature values are generally passed to the phrase-level only from
the head and from minor categories such as determiners. More details on
heads can be found in (Bresnan, 2001).

In order to understand the following discussion, the most important
concepts to remember are the following:

• Pseudo-unification: Pseudo-unification assigns the re-
sult of a unification to the left-hand side of the constraint
equation. If the feature was not marked on the left-hand
side, the feature value is merely passed from the right-hand
side to the left-hand side.

• Head: A head can be defined as the word or construction
that determines the type and feature values of the entire
phrase. Feature values are passed to the phrase-level from
the head.

As described above, constraints can refer to the x-side (SL), the y-side
(TL), or both. They can be categorized as follows:

• Value Constraints:
e.g. ((X1 NUM) = S)
This constraint implies that the rule in which it occurs only applies if
X1’s number is singular, or if X1 does not mark for number. The latter
can happen for example if a word is not recognized by the morphology
module, or if it is ambiguous.

• Agreement Constraints:
e.g. ((X2 NUM) = (X1 NUM))
A rule with this constraint can only apply if the number values of X2
and X1 are the same, or if one or both of them do not mark for number.

8.3. TAXONOMY OF CONSTRAINTS 167

The application of this constraint also means that the number value is
now passed to X2. In other words, if X2 does not mark for number, but
X1 does, the application of this constraint implies that X1’s number
value is passed to X2. This concept is especially important for cross-
lingual constraints such as ((Y2 NUM) = (X1 NUM)), where X1’s
number constraint is passed to Y2, i.e. a feature is passed from the
SL to the TL.

• Head Passing Constraints:
e.g. (X0 = X2)
The application of this constraint causes all feature values that are
marked on X2 to be passed to X0. Constraints of this form are only
used for heads of phrases in our system, where X2 is the head of a
phrase and X0 stands for the phrase-level node. Then this rule passes
all features from the head to the constituent level.

Head passing constraints are a subtype of agreement constraints that
deserve separate treatment. They are necessary to determine features of
constituents (rather than individual words), e.g. the number of an NP is
determined by the number of the head. A head-passing constraint is used to
ensure that the NP receives the number feature value. Due to their essential
importance to any system that uses unification constraints, head passing
constraints are always introduced both for the x-side and the y-side during
Basic Constraint Learning (see Section 8.4) whenever Constraint Learning
is done. In that section, we will discuss head passing constraints in greater
detail and argue why they are important.

By contrast, in the following section on the taxonomy of constraints,
we focus on value and agreement constraints. This is because value and
agreement constraints should only be introduced as appropriate, whereas
any rule with constraints is annotated with head passing constraints.

8.3 Taxonomy of Constraints

As mentioned in the previous section, two basic types of constraints are
of interest to this discussion: value constraints and agreement constraints.
Furthermore, a constraint can refer to the x-side, the y-side, or both. Con-
straints can moreover refer to individual words (raised to the part-of-speech
level), to higher-level constituents, or to both. Other possible criteria of in-
terest could be whether an agreement constraint constrains two heads, two
non-heads, or a head and a non-head. These are only three examples of

168 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

parameters by which constraints can be distinguished. A few others will be
described below.

The taxonomy that results from distinguishing constraints along these
axes provides insight into what constraints may be useful for the given sys-
tem: which constraints are learnable from text, and which ones are useful
for translation? For those parameters that are of interest to our system, we
propose a method for learning such constraints from text. The approach will
encompass two stages: first, to detect cases when a constraint of a certain
type may be needed, and second, to find and introduce the appropriate con-
straint. The learning approach is an extension of our earlier work (Probst
et al., 2003).

In the following, we discuss a number of parameters along which unifica-
tion constraints could vary. We give examples for each possible value, and
explain those parameters that have not yet been discussed. We then argue
which parameters are of interest to our system.

8.3.1 Constraint Parameter: Value or Agreement

Possible values: Value, Agreement.

Examples for each possible value:

Value: ((X1 NUM) = P)
Agreement: ((X1 NUM) = (X3 NUM))

This parameter is of high interest to our system. Value constraints en-
force that a component must be marked with a specific value. This can 1)
limit the applicability of rules to certain contexts, or 2) limit the possible
outputs. Agreement constraints enforce that two components are marked
with the same feature value. This can also 1) limit the applicability of rules
to certain cases, or 2) limit the possible outputs by enforcing that two TL
components have the same value. In addition, however, there is another
possibility: an agreement constraint can pass a feature from the SL to the
TL, thereby also limiting the number of possible outputs.

8.3. TAXONOMY OF CONSTRAINTS 169

8.3.2 Constraint Parameter: Level

Possible values: POS, Constituent, POS/Constituent.

Examples for each possible value:

POS:
NP::NP [DET ADJ N] → [N ADJ]
(. . . ((X3 NUM) = P) . . .), also
NP::NP [DET ADJ N] → [N ADJ]
(. . . ((X3 NUM) = (X1 NUM))) . . .)
Constituent:
S::S [NP V] → [V NP]
(. . . ((Y2 NUM) = P) . . .), also
S::S [NP V] → [V NP]
(. . . ((Y2 NUM) = (X1 NUM)) . . .)
POS/Constituent:
S::S [NP V] → [V NP]
(. . . ((X2 NUM) = (X1 NUM)) . . .)

To clarify, constraints at the POS level constrain indices in the compo-
nent sequences that are POS labels. In the first example, the constraint
‘((X3 NUM) = P)’ constrains the third x-side index, i.e. the ‘N’. By con-
trast, constraints at the constituent level constrain indices in the component
sequences that are constituent labels. In the first constituent level example,
‘((Y2 NUM) = P)’ constrains the ‘NP’ in the y-side component sequence.

Although it is not immediately obvious why this is so, this parameter is
of interest to our system. In particular, y-side value constraints are different
depending on whether they constrain a single word or an entire constituent,
as will be discussed below.

As was noted above, words that remain lexicalized in the component
sequence cannot be annotated with unification constraints (or alignments).
For this reason, constraints can only constrain either POS indices or con-
stituent indices.

170 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

8.3.3 Constraint Parameter: Language

Possible value: x-side, y-side, xy.

Examples for each possible value:

SL (x-side): ((X3 GEN) = F), also ((X2 GEN) = (X5 GEN))
TL (y-side): ((Y3 NUM) = P), also ((Y2 NUM) = (Y3 NUM))
SL→TL (xy): ((Y3 NUM) = (X5 NUM))

This parameter is of high interest to our system. x-side constraints limit
the applicability of the rule, xy-constraints determine what feature values
are passed to the target language, and y-side constraints limit the possible
outputs of a rule.

8.3.4 Constraint Parameter: Constrains Head

Possible values: Head, Non-Head, Head/Non-Head.

Examples for each possible value:

Head:
NP::NP [N ADJ] → [DET ADJ N]
(. . . ((Y3 NUM) = P) . . .), also
NP::NP [N ADJ] → [DET ADJ N]
(. . . ((Y3 NUM) = (X1 NUM))) . . .)
Non-Head:
NP::NP [N ADJ] → [DET ADJ N]
(. . . ((Y2 GEN) = F) . . .), also
NP::NP [N ADJ] → [DET ADJ N]
(. . . ((Y1 GEN) = (Y2 GEN))) . . .)
Head/Non-Head:
NP::NP [N ADJ] → [DET ADJ N]
(. . . ((Y3 GEN) = (Y2 GEN)) . . .)

These constraints are discussed below in the context of agreement con-
straints. In particular, the agreement constraints that will be introduced
will be exactly those constraints that will pass features to heads or from
the SL to the TL. In the case of x-side and y-side constraints, features

8.3. TAXONOMY OF CONSTRAINTS 171

are passed from non-heads to heads. In the cross-lingual case, features are
passed between aligned indices (either two heads or two non-heads).1

The following three parameters (Depth, Enforce Existing Value, Multiple
Values) are not addressed in our system, but are discussed here because they
are frequently mentioned in the context of unification-based formalisms.

8.3.5 Constraint Parameter: Depth

Possible values: 1, 2, . . .

Examples for each possible value:

1: ((X4 DEF) = +)
2: ((X3 SUBJ NUM) = P)
. . .

Depth of constraints has not yet been defined in this thesis. The depth
of a constraint is the length of the ‘path’ of features that are marked. This is
best illustrated with an example: ‘((X3 SUBJ NUM) = P)’ does not mean
that X3 should be marked for plural, but rather that X3’s subject’s number
value should be plural. The expression ‘X3’s subject’s number’ is the path.
Its length is the depth of the constraint. In our system, we restrict ourselves
to constraints of depth 1, i.e. simple constraints of feature-value pairs. The
reason is that we do not learn function assignments, such as subject, object,
etc. for the components, because such assignments are not available to us
and cannot be obtained only from the parse in a reliable way.

8.3.6 Constraint Parameter: Enforce Existing Value

Possible values: ‘=’, ‘=c’.

Examples for each possible value:

=: ((X4 DEF) = +)
=c: ((X4 DEF) =c +) This will only succeed if X4 is already marked for

1The reader is reminded that there are also head constraints, where all features are
passed from the head of a phrase to the X0 or Y0 level. These constraints are automatically
introduced and do not fall under this discussion.

172 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

definiteness before the constraint is applied.

Unification formalisms generally allow for a special type of unification
that is not handled in our system, and has not yet been discussed. This
is the concept of a different type of unification, namely ‘=c’. =c is used
instead of =, e.g., in a constraint such as ‘((X1 NUM) =c (X2 NUM))’.
This differs slightly from ‘((X1 NUM) = (X2 NUM))’ in semantics: The
unification ‘((X1 NUM) =c (X2 NUM))’ will succeed only if 1) X1 and X2
are marked for number before the unification equation is evaluated, and
2) X1 and X2 have the same number value. By contrast, the unification
of the constraint ‘((X1 NUM) = (X2 NUM))’ will succeed if 1) either or
both X1 and X2 are not marked for number, or 2) both are marked with
the same number value. In our system, this distinction is not handled, as
it is intricately associated with the strength of the morphology modules.
Since the morphology modules are not complete and sometimes give wrong
information, it is not desirable to enforce that a specific value must be
marked. It could happen that a specific feature is simply not returned by
the morphology module, which would prevent an entire rule from applying.
For this reason, we conservatively refrain from introducing =c constraints.

8.3.7 Constraint Parameter: Multiple Values

Possible value: AND, OR, Single Value.

Examples for each possible value:

and: (∗AND∗ (((X1 NUM) = P) ((X2 DEF) = +)))
or: ((X1 PER) = (∗OR∗ 1 2))
single value: ((X1 NUM) = P)

Multiple values have also not yet been discussed. In the above examples,
an ‘OR’ implies that the unification will succeed if one or more of the ground
values are marked on X1, i.e. it will succeed if X1’s person value is either 1
or 2. A set of unification constraints that is surrounded by AND will only
succeed if each of the unifications in the set succeeds, otherwise it fails.

In our system, OR can be used just like any other ground value; it
makes no difference to the rule learning whether it is faced with a single or a
composite ground value. AND is in fact implicit in our rule applications: a
rule can only apply if all unification constraints in the rule succeed. For this

8.3. TAXONOMY OF CONSTRAINTS 173

reason, neither OR nor AND will receive special attention in our discussion
of unification constraints.

8.3.8 Subtypes of Constraints

The above discussion leaves three parameters that are of interest to our
system: value or agreement, level, and language. Forming the cross-product
between all possible values of these three parameters results in 18 possible
combinations, as can be seen in Table 8.1. The table indicates that, for
example, a value constraint that constrains a constituent on the x-side (SL)
may have to be treated differently than a value constraint that constrains
a constituent on the y-side (TL). In other words, the three parameters are
not independent.

Val/Agr Language Level Type

value x POS
value x const x-side value constraints

value x POS/const cannot exist

value y POS y-side POS value constraints

value y const y-side const value constraints

value y POS/const
value xy POS
value xy const cannot exist
value xy POS/const

agreement x POS
agreement x const x-side agreement constraints
agreement x POS/const

agreement y POS
agreement y const y-side agreement constraints
agreement y POS/const

agreement xy POS
agreement xy const xy agreement constraints
agreement xy POS/const

Table 8.1: List of relevant constraint types.

Learning is facilitated by the fact that some of these categories are
not of interest to our system, and because some categories can be col-
lapsed. As can be seen from the table above, some combinations, such
as ‘value,x,POS/const’ cannot exist (because a value constraint constrains

174 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

only one index, and POS/const requires two constrained indices). Subtypes
that can be collapsed are shown above with the same group name, e.g., x-
side value constraints. We will now give examples of all relevant constraint
types. In subsequent sections, it will become clear why some of the sub-
types can be collapsed into groups. This has to do with their impact on
translation.

Examples of x-side value constraints:

((X1 NUM) = P)

Examples of y-side POS value constraints:

NP::NP [N ADJ] → [DET ADJ N]
(. . . ((Y3 NUM) = P) . . .)

Examples of y-side constituent value constraints:

S::S [NP V] → [V NP]
(. . . ((Y2 NUM) = P) . . .)

Examples of x-side agreement constraints:

S::S [NP V] → [V NP]
(. . . ((X2 NUM) = (X1 NUM)) . . .)

Examples of y-side agreement constraints:

S::S [NP V] → [V NP]
(. . . ((Y1 NUM) = (Y2 NUM)) . . .)

Examples of xy agreement constraints:

S::S [Det N V] → [V N]
(. . . ((Y2 NUM) = (X2 NUM)) . . .)

8.4. LEARNING BASIC CONSTRAINTS 175

8.4 Learning Basic Constraints

After discussing the types of constraints that could exist and those that are
meaningful to our task, we now present how these constraints are learned in
our system.

This section discusses a set of constraints that are introduced in all rules
as a starting point for Constraint Learning. With the exception of head
passing constraints, only value constraints are introduced in this phase. The
basic constraints essentially gather as much information as can be obtained
from the morphology modules and introduce a large set of constraints. The
subsequent Constraint Learning phases then use the basic constraints as
input, generalize them to agreement constraints, and subject them to an
appropriateness test to see if they should be retained as value constraints in
the final rules.

It is important to note here that if a rule was produced by more than
one training example, then during Constraint Learning we distinguish the
rules for each training example. For example, if we learn only context-
free rules, we collapse rules that are the same but were produced by two
training examples. During Constraint Learning, we would consider them
two separate rules. This is because each set of words (i.e. training example)
can give rise to a unique set of basic constraints. If the grammar with
constraints contains duplicates at the end of learning, the duplicate rules
are once more collapsed.

The Basic Constraint Learning phase relies on two sources of informa-
tion: the knowledge of feature values for specific words, and the knowledge
of what word is the head of a given phrase in both languages. We will
first describe how these two pieces of information are obtained, and will
subsequently describe how they are used to form basic constraints.

First, features for specific words can be determined from a morphology
module. Each rule is learned from a bilingual training example. Each of
the words in the training example is passed through the morphology mod-
ules for the respective language. The modules return a set of features for
each word. Sometimes, disambiguation is necessary when more than one
analysis is found for a given word. Generally, however, there is only one
possible analysis per part of speech. During Seed Generation, we have al-
ready performed POS disambiguation. For the TL, the parts of speech can
be obtained from the parse that is given for each bilingual training example.
For the SL, we use the alignments as well as the morphology module to
assign parts of speech to individual words. For more details, the reader is
referred back to chapter 6. During Basic Constraint learning, the same POS

176 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

assignments are used for the individual words. We then extract all relevant
features for the disambiguated part of speech assignments.

Second, we can determine with acceptable accuracy what the head of a
phrase is. For this, we use a version of Michael Collins’s head Table (Collins,
1996) that was adapted to our tagset. The head table specifies how, for
English, heads can be found in different types of phrases. For instance,
the head of an NP is generally the rightmost noun. The head table is
heuristic, but yields good results and is routinely used in the statistical
parsing community.

The SL head cannot be found as easily. In the absence of any other
information such as a head table for SL, we assume the SL head to be the
word that is aligned to the TL head. Some complications arise when the
TL head is not aligned to exactly one SL head. In the case of multiple
alignments, we prefer the SL word that is of the same POS as the TL word.
If the TL head is unaligned, no SL head can be found. Similarly to the TL
head table, the mechanism for finding the SL head is heuristic, but yields
good results. A future research direction could be to explore head finding
in greater detail, however this is considered to be outside the scope of the
thesis.

With feature values on specific words and head information now avail-
able, we can construct the set of basic constraints. For components that
cover only one word, the features for this word are introduced as value con-
straints on those indices. For example, if a rule

NP::NP ... -> [DET ADJ N]

was obtained from a training example whose English side is ‘THE BLUE
CAR’, then the rule would have a constraint of the form ((Y3 NUM) = S),
because the English morphology module returns a number value of singular
for the noun ‘CAR’. In other words, for words in the training example the
are captured as PTs (i.e. POS labels) in the component sequences, we can
simply introduce value constraints for those indices.

This is however not enough. As was discussed above, a constituent can
only carry a feature if this feature was passed up from one of the words in
the component. Consider the rule

NP::NP ... -> [DET N "’s" N]

derived from the example sentence ‘THE FATHER’S CARS’. Y0 should
be marked for definiteness and with a number value of plural, for reasons
discussed below. For example, this rule should not combine with a rule that

8.4. LEARNING BASIC CONSTRAINTS 177

should apply only to singular NPs. This means that we must introduce
constraints for the constituent level.

Feature values are ‘passed up’ by marking certain feature values as value
constraints at the constituent level, i.e. the phrase level. For example,
Figure 8.1 shows a partial rule that is marked up with basic constraints.
Some value constraints are marked on indices referring to components in
the component sequence. Additional constraints however are inserted for the
constituent (phrase) level Y0. These feature values were derived from the
words in the bilingual training example, and were ‘passed up’ from them to
the constituent level. Generally it is not obvious what feature values should
be passed up to the component level, and from what words they should be
passed up. As was said before, feature values are generally passed up from
the head and from minor categories to the constituent level. In our approach,
we pass up features from all words, because the subsequent learning phases
only retain those constraints that are appropriate for the given rule. For
example, the phrase ‘THE CHILDREN’S ROOM’ is considered definite,
although definiteness is marked only on the determiner ‘THE’, not on the
head ‘ROOM’, as can be seen in the rule in Figure 8.1 below. Complications
arise when there is a contradiction between a feature value from a head and
a feature value from a non-head. In such a case, the feature value from the
head will prevail, and the non-head’s feature value will not be marked at
the constituent level. For example, the number value of the head ‘ROOM’
overrides the number value of the non-head ‘CHILDREN’, as follows:

{NP,1}

;;SL: ...

;;TL: THE CHILDREN ’S ROOM

NP::NP ... -> [DET N "’s" N]

(

...

((Y1 DEF) = +)

((Y2 NUM) = P)

((Y4 NUM) = S)

((Y0 DEF) = +)

((Y0 NUM) = S) ;overrides NUM value from ‘CHILDREN’,

;because ‘room’ is tagged as the head

)

Figure 8.1: Sample rule with basic constraints.

178 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

This approach can sometimes cause problems, since from a linguistic
perspective not necessarily all constraints should be passed up. While this
leaves opportunities for future research, it is a reasonable approach in the
current system for the reason cited earlier: subsequent Constraint Learning
phases eliminate those constraints that are not necessary for translation.
This will be described in greater detail below.

One may wonder why it is even important to mark feature values on
the phrase (constituent) level. The following example should illuminate this
point. Suppose we have a rule such as the following:

{PP,1}

PP::PP [PREP NP] -> [PREP NP]

(

...

((Y2 DEF) = -)

)

The constraint in this rule essentially enforces that the y-side NP in the
translation be indefinite. Suppose the run-time system would try to use this
rule in conjunction with the previous rule NP,1. A human inspector would
realize that the combination of the two rules should not succeed, because
the y-side NP in the NP,1 is definite, not indefinite. This is in fact what
happens, and the two rules do not apply in combination. But why? The
reason is that in the NP rule, definiteness is marked at the Y0 level. If
the Y0 NP is used in a different rule, such as PP,1 above, then all features
marked on Y0 must unify with all features for Y2 (the NP slot). If they do
not, as in this example, then the two rules cannot combine. For this reason,
it is important to pass relevant features to the X0 and Y0 level. As this is
not a thesis about unification theory, we must refer the reader to sources
such as (Bresnan, 2001) for further details.

The question remains what should be done about cases where sequences
of words were generalized to constituents during Compositionality Learning?
In other words, it must be determined what should be done with rules
whose component sequences contain constituent labels such as the ‘PP’ in
the following rule:

NP::NP [DET ADJ N PP] -> ...

In such cases, Basic Constraint learning must be applied recursively. Con-
sider the following example:

S::S ... -> [NP V]

8.5. LEARNING AGREEMENT CONSTRAINTS 179

How can we accomplish that Y2 is marked for number? This is done with the
same mechanism as for non-compositional components. Value constraints
for components are marked up with value constraints in the same way as we
previously passed up features to the X0 and Y0 level.

As mentioned earlier, during Basic Constraint learning we also introduce
a set of head passing constraints, i.e. constraints that pass all features
from one component, namely the head, to the X0 or Y0 level. Since we
are generally able to determine the head of a phrase as described above,
we introduce such head passing constraints for both the x- and the y-side.
These basic agreement constraints are always retained in the rule.

Figure 8.2 summarizes Basic Constraint Learning in pseudocode.

8.5 Learning Agreement Constraints

(x-side agreement constraints, y-side agreement constraints,
xy agreement constraints)

In the previous section, we described the first phase of Constraint Learn-
ing: the introduction of basic constraints from morphology, and their ‘pass-
ing up’ from the word to the phrase (constituent) level. In this and the
subsequent sections, we turn our attention to the constraints types listed
in Table 8.1. The first type of constraints we will address are agreement
constraints. Agreement constraints are generalizations of value constraints,
because they do not specify a ground value, but rather only enforce that two
components are marked with the same value, whatever that constraint may
be. Agreement constraints can be obtained from pairs of value constraints.
For this reason, Agreement Constraint Learning utilizes the value constraints
introduced during Basic Constraint Learning, and produces agreement con-
straints from them wherever possible. The subsequent learning phase will
then eliminate those value constraints that are not useful for translation.

There are three different kinds of agreement constraints: agreement con-
straints may pertain only to one language (either the SL or the TL), or they
may be cross-lingual constraints. More specifically:

1. SL constraints (x-side agreement constraints): Such constraints
limit the applicability of the rules and thus parsing ambiguity. This
category also includes constraints that pass features up to the con-
stituent level, such as ((Y0 NUM) = (Y1 NUM)).

2. TL constraints (y-side agreement constraints): Such constraints
limit the output of the rules and thus generation ambiguity. As in the

180 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

Learning Basic Constraints

For each learned rule ri and the corresponding

training example tri with words w1,SL . . .

wm,SL and w1,TL . . . wn,TL and component

sequences comp1,SL. . . compm′,SL for the SL and

comp1,TL. . . compn′,TL for the TL

Find head of SL sentence: headSL =

FindHead(w1,SL . . . wm,SL, SL)

Get index indheadSL
in SL component sequence

corresponding to headSL

Insert into rule agreement constraint (X0 =

XindheadSL
)

For each compi,SL ∈ comp1,SL. . . compm′,SL

Get index indcompi,SL
corresponding to

compi,SL

Get all words wa,SL . . . wb,SL covered by

compi,SL

Find head headcompi,SL
of compi,SL:

headcompi,SL
= FindHead(wa,SL . . . wb,SL,SL)

For each word wa,SL . . . wb,SL, get all

feature-value pairs from SL morphology

Insert value constraints for index indcompi,SL

for all feature-value pairs

In case of conflicts, the feature value

marked on headcompi,SL
prevails

Repeat everything for TL

FindHead(WordSeq, Language)

Extract POS sequence for WordSeq, derived during

Seed Generation

If Language = TL, use head tablea to find head

Else if Language = SL, project head from TL

using user-specified word alignments

Return head

aThe head table can be found at (Collins, 1996).

Figure 8.2: Pseudocode for Basic Constraint Learning.

8.5. LEARNING AGREEMENT CONSTRAINTS 181

previous case, this category includes constraints that pass features up
to the constituent level, in this case X0.

3. SL→TL constraints (xy agreement constraints): With SL→TL
constraints, feature values are passed from the source language to the
target language; by this process, they limit the possible output of rules,
more specifically by limiting transfer ambiguity.

Agreement constraints are learned from the value constraints produced
during Basic Constraint learning. This is achieved in three distinct phases.
The first two phases will focus on intra-lingual constraints, i.e. SL-only con-
straints and TL-only constraints. Since one language does not influence what
agrees with what else in the other language (e.g., Hebrew has no influence
on subject-verb agreement in English), these constraints can be learned sep-
arately. This is an important observation, because separation into smaller
tasks can make learning easier and more reliable. The third phase will focus
on those feature values that should be passed from the SL to the TL. Finally,
the fourth phase will determine which value constraints should be kept and
which ones have become obsolete because of the agreement constraints.

As the three phases of Agreement Constraint Learning focus on agree-
ments rather than specific values, the values are deemphasized. In other
words, it is more important whether two components agree in a value than
what this specific value is. More specifically, we are interested in how of-
ten we observe the same value and how often we observe a different value.
The following discussion treats the case of cross-lingual constraints, i.e. fea-
ture values being passed from SL to TL. The intra-language case is defined
equivalently, as we will see.

Suppose a feature can take values v1, v2, . . . , vk. For the purpose of
discussion (so that we can show a concrete contingency table), assume that
k = 3. The approach works equivalently for other values of k. Denote ci,SL

as the source language component (constituent or POS) that is constrained,
and denote cj,TL as the target language component that is aligned to ci,SL

and that is constrained on the same feature. Then we can construct a
contingency table as follows:

ci,SL = v1 ci,SL = v2 ci,SL = v3

cj,TL = v1 m1,1 m2,1 m3,1 mx,1

cj,TL = v2 m1,2 m2,2 m3,2 mx,2

cj,TL = v3 m1,3 m2,3 m3,3 mx,3

m1,y m2,y m3,y N

182 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

The number of corresponding constraints with the same value is msame =
m1,1 + m2,2 + m3,3. The number of constraints with different values is
mdifferent = N − msame. Agreement Constraint Learning looks at whether
msame is considerably larger than mdifferent, i.e. whether msame >> mdifferent.
Whether this is the case is determined either by a heuristic or a statistical
significance test, as will be described below. If msame is in fact much larger
than mdifferent, then it can be concluded that most of the time the value
of this constraint is the same, and that an agreement constraint should be
introduced instead of the less general value constraints.

During Agreement Constraint Learning, no value constraints are elimi-
nated - this phase merely introduces additional constraints. Elimination of
irrelevant constraints is not done until the last learning phase (section 8.6).

We begin the process by considering several pieces of information:

1. First, we create a list of all possible index pairs that should be consid-
ered for agreement constraints.

• SL-only constraints: collect a list of all head/non-head pairs
in the same constituent that occur with the same feature (not
necessarily same value). For example, we will consider the fol-
lowing for an agreement constraint: DET and N in a NP where
the DET is a dependent of the N and where DET and N mark
the same feature, e.g., NUM, not necessarily with the same value.
We then scan through all the rules and find all those rules with
a DET and a N in a NP where the DET is a dependent of the N.

• TL-only constraints: same as SL only constraints above.

• SL→TL constraints: consider all situations where two aligned
components mark the same feature (not necessarily with the
same value).

2. After creating a set of rules for each situation, we then collect the
counts of how many times the feature value was the same, denoted
by Esame, and how many times the feature was different, Edifferent.
Note that we now have to keep track of how many times one of the
components did not mark the feature at all. We exclude from the
hypothesis or heuristic test those rules that do not mark the feature
on both components. If the hypothesis test leads to the conclusion
that an agreement constraint should be introduced, then all rules of
this situation will receive an agreement constraint, even though the
original rule did not mark the feature on both components.

8.5. LEARNING AGREEMENT CONSTRAINTS 183

The question remains how to weigh the positive and negative evidence
in order to get a reasonable estimate of how confident we should be in
introducing an agreement constraint. Note that some of these counts will
be very low when the learning corpus is small. The simplest way is to
introduce an agreement constraint if we have more positive than negative
evidence:

Introduce an agreement constraint if Esame ≥ Edifferent.

This is a heuristic test, but a good solution when little training data is
given. Alternatively, we can use a likelihood ratio test to determine how
likely it is that the values are dependent on each other (force each other to
be the same), and how likely it is that they are distributed independently.

The likelihood ratio test is done by first proposing two hypotheses of
what gave rise to the data:

• Hypothesis 0 (Θ0): The values are independently distributed.

• Hypothesis 1 (Θ1): The values are not independently distributed.

We then compute the likelihood of the data given each of the two hy-
potheses and take the ratio between the two. Alternatively, to avoid numeric
underflow, we can take the log-likelihoods and take the difference between
them. llΘ0

is the log-likelihood of the data under the null hypothesis. It can
be computed as follows:

llΘ0
=

n
∑

i=1

log(pvxi1
∗ pvxi2

)

Here, the two indices in the compared pair (i.e. the head/non-head pair
in the intralingual case and the aligned indices in the interlingual case) are
denoted by xi1 and xi2. vxi1

is the value that index xi1 is marked with,
and equivalently, vxi2

is the value that index xi2 is marked with. pvxi1
is

the probability of the occurrence of this value. How this probability can be
estimated will be discussed below.

Under the alternative hypothesis, we can determine the likelihood as
follows:

llΘ1
=

n
∑

i=1

log(pvxi1
∗ ind)

where ind is 1 if vxi1
= vxi2

and 0 otherwise. In other words, under the
alternative hypothesis we merely assign probabilities based on whether the

184 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

value in the two compared indices is the same or whether it is different. If
it is different, then no ‘credit’ is given to this compared pair.

The difference ratio between those two, llΘ0
−llΘ1

(difference rather than
ratio because of the logs) is then an indicator of how much more likely the
null hypothesis is than the alternative hypothesis. We use a χ2 table to find
whether we should reject the null hypothesis at a level of 0.1 confidence.

Let us now turn to the discussion of how the probabilities of the oc-
currence of specific values can be estimated. Again, xi1 and xi2 are the
compared indices that are considered for generalization to an agreement
value. The value for each index, vxi1

and vxi2
, is modeled as drawn from a

multinomial distribution. The probabilities for each value can be estimated
from the data as a whole using the Maximum Likelihood Estimator: this
will is the proportion of the time we see the given feature with a value vi.
Then:

pvi
=

cvi
∑k

j=1
cvj

where cvi
is the number of times the value vi (e.g., 1st) was encountered

for the given feature (e.g., PERS), and k is the number of possible values
for the feature (e.g., 1st, 2nd, 3rd).

If there is strong evidence that the two compared indices will generally
agree with each other on this feature, then we introduce an agreement con-
straint without eliminating any of the value constraints. As the transfer
engine uses pseudo-unification, it matters which index is on the left-hand
side of the agreement constraint: in the intralingual case (SL-only and TL-
only constraints), it should be the head index. This implies that the value
from the dependent is passed up to the head. In the interlingual case, the
left-hand index in the constraint should be the y-side index, so that the
feature can be passed from the SL to the TL.

In our experiments, we apply the log-likelihood ratio test if there consid-
erable data for a specific case (n ≥ 10). Otherwise, we revert to the much
simpler heuristic solution where an agreement constraint is introduced if
there is more evidence for than against it, i.e. if Esame ≥ Edifferent.

8.5.1 SL Agreement Constraints

(x-side agreement constraints)

In this phase, we consider only the SL side of the learned rules, indepen-
dently of the TL. As was discussed above, in the case of x-side agreement

8.5. LEARNING AGREEMENT CONSTRAINTS 185

constraints, we collect a list of all head/non-head pairs in the same con-
stituent that occur with the same feature (not necessarily same value). For
example, we will consider the following for an agreement constraint: DET
and N in a NP where the DET is a dependent of the N and in at least one
training example DET and N mark the same feature, e.g., NUM, not neces-
sarily with the same value. We then scan through all the rules and find all
those rules that exhibit the property DET and N in a NP where the DET
is a dependent of the N.

Agreement constraints are then introduced as described in the previous
section. Pseudocode for the learning of SL agreement constraints can be
found in Figure 8.3.

8.5.2 TL Agreement Constraints

(y-side agreement constraints)

Learning TL constraints proceeds in the same fashion as learning SL agree-
ment constraints. Equivalently to the previous section, the other language,
in this case the SL, is ignored. Again, we collect evidence from all head/non-
head pairs to determine what agreement constraints should be introduced.
No value constraints are eliminated; this phase only introduces new con-
straints if appropriate. Pseudocode for the learning of TL agreement con-
straints can be found in Figure 8.4.

8.5.3 SL→TL Agreement Constraints

(xy agreement constraints)

This is defined similarly to the previous phases, except that in this case we
consider cross-lingual constraints. Evidence will be collected from aligned
pairs of indices for a specific SL type, a specific TL type (that is aligned to
the SL index in question), and a specific feature.

As was mentioned above, a necessary modification to the intralingual
algorithm is that in the interlingual case, the y-side index (rather than
the head as previously) is always the left-hand side index of the constraint
equation. The reason is that the run-time system uses pseudo-unification,
and that in pseudo-unification, the result of the unification is stored only in
the left-hand side index. By making the y-side index the left-hand side of
the agreement constraint, the feature value can be passed from the SL to
the TL. Pseudocode for the learning of SL-TL agreement constraints can be
found in Figure 8.5.

186 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

Advanced Constraints: Learning SL agreement con-
straints

Collect from all rules all sets S of head-nonhead SL

component pairs that occur with the same feature fi

on the same types:

S = {pairi = 〈compi,1,SL, compi,2,SL〉|
∀i, typecompi,1,SL

= type1, typecompi,2,SL = type2,

∃ feature fj s.t. fj marked on

compi,1,SL,compi,2,SL

with values vfj ,compi,1,SL
,vfj ,compi,2,SL

}

For each such set S

If |S| < 10, perform heuristic test:

Get

csame=|{pairi = 〈compi,1,SL, compi,2,SL〉 ∈ S|
vfj ,comp1,SL

= vfj ,comp2,SL
}| and

cdiff=|{pairi = 〈compi,1,SL, compi,2,SL〉 ∈ S|
vfj ,comp1,SL

6= vfj ,comp2,SL
}|

If csame ≥ cdiff, test passes

Else test fails

Else perform log-likelihood ratio test:

Compute likelihood for Θ0 (vfj ,comp1,SL
and

vfj ,comp2,SL
are independently distributed)

using estimation described in 8.5

Compute likelihood for Θ1 (vfj ,comp1,SL

and vfj ,comp2,SL
are not independently

distributed) using estimation described

in 8.5

If Θ0 rejected, test passes

Else test fails

If heuristic or likelihood ratio test passed

Introduce agreement constraint for fj for all

rules ∈ S where vfj ,comp1,SL
= vfj ,comp2,SL

Figure 8.3: Pseudocode for Advanced Constraint Learning: learning SL
agreement constraints.

8.5. LEARNING AGREEMENT CONSTRAINTS 187

Advanced Constraints: Learning TL agreement con-
straints

Collect from all rules all sets S of head-nonhead TL

component pairs that occur with the same feature fi

on the same types:

S = {pairi = 〈compi,1,TL, compi,2,TL〉|
∀i, typecompi,1,TL

= type1, typecompi,2,TL = type2,

∃ feature fj s.t. fj marked on

compi,1,TL,compi,2,TL

with values vfj ,compi,1,TL
,vfj ,compi,2,TL

}

For each such set S

If |S| < 10, perform heuristic test:

Get

csame=|{pairi = 〈compi,1,TL, compi,2,TL〉 ∈ S|
vfj ,comp1,TL

= vfj ,comp2,TL
}| and

cdiff =|{pairi = 〈compi,1,TL, compi,2,TL〉 ∈ S|
vfj ,comp1,TL

6= vfj ,comp2,TL
}|

If csame ≥ cdiff, test passes

Else test fails

Else perform log-likelihood ratio test:

Compute likelihood for Θ0 (vfj ,comp1,TL
and

vfj ,comp2,TL
are independently distributed)

using estimation described in 8.5

Compute likelihood for Θ1 (vfj ,comp1,SL

and vfj ,comp2,SL
are not independently

distributed) using estimation described

in 8.5

If Θ0 rejected, test passes

Else test fails

If heuristic or likelihood ratio test passed

Introduce agreement constraint for fj for all

rules ∈ S where vfj ,comp1,TL
= vfj ,comp2,TL

Figure 8.4: Pseudocode for Advanced Constraint Learning: learning TL
agreement constraints.

188 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

Advanced Constraints: Learning SL-TL agreement con-
straints

Collect from all rules all sets S of SL-TL component

pairs that occur with the same feature fi on the same

types:

S = {pairi = 〈compi,SL, compi,TL〉|
∀i, typecompi,SL

= typeSL, typecompi,TL = typeTL,

∃ feature fj s.t. fj marked on compi,SL,compi,TL

with values vfj ,compi,SL
,vfj ,compi,TL

}

For each such set S

If |S| < 10, perform heuristic test:

Get

csame=|{pairi = 〈compi,SL, compi,TL〉 ∈ S|
vfj ,compSL

= vfj ,compTL
}| and

cdiff=|{pairi = 〈compi,SL, compi,TL〉 ∈ S|
vfj ,compSL

6= vfj ,compTL
}|

If csame ≥ cdiff, test passes

Else test fails

Else perform log-likelihood ratio test:

Compute likelihood for Θ0 (vfj ,compSL
and

vfj ,compTL
are independently distributed)

using estimation described in 8.5

Compute likelihood for Θ1 (vfj ,compSL
and

vfj ,compTL
are not independently distributed)

using estimation described in 8.5

If Θ0 rejected, test passes

Else test fails

If heuristic or likelihood ratio test passed

Introduce agreement constraint for fj for all

rules ∈ S where vfj ,compSL
= vfj ,compTL

Figure 8.5: Pseudocode for Advanced Constraint Learning: learning SL-TL
agreement constraints.

8.6. VALUE CONSTRAINTS REVISITED 189

8.6 Value Constraints Revisited

(x-side value constraints, y-side POS value constraints, y-side
constituent value constraints)

x-side value constraints

After introducing basic constraints using the morphology and principles to
pass features to the constituent level, we have examined which value con-
straints should be generalized to agreement constraints. During that latter
phase, we did not eliminate any existing value constraints. We delayed the
discussion and treatment of value constraints until this time, because it
was necessary that the Agreement Constraint Learning phase had all value
constraints available. Only in this phase can we now eliminate those value
constraints that are not of interest for translation.

First, we will discuss the different types of value constraints, and how
they can be of interest for translation, and then we will describe how an
automatic decision is made about their usefulness.

x-side value constraints limit the applicability of a rule. At run-time,
they only succeed if the value constraint unifies with the morphological
analysis or the dictionary entry of the index in question, or else of the
value that was passed up to the index by one or more lower-level rules.
Limiting applicability can be called for under three circumstances: first, a
rule should only apply if the value constraint is met, and a different value
must be marked on the TL side. This cannot be expressed as an agreement
constraint, as agreement constraints enforce the same, not a different value.
For instance, in a situation where a certain SL NP must be in the singular,
but the corresponding NP in the TL must be plural. This case will simply
be handled as follows: if we detect a case where two corresponding indices
mark for the same feature, but with different values, we retain both value
constraints.

The second applicability limitation occurs when the corresponding TL
index should carry the same value. This situation is handled by agreement
constraints, so it is not of interest to the present discussion.

Finally, there are cases where a value constraint determines the structure
of the TL translation. This can occur if a given SL context-free structure can
translate into at least two different TL context-free structures, and there is
a specific value that can determine which TL structure must be produced.
The following example illustrates this problem. Here, the number value
determines the structure of the TL output.

190 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

;;SL: ILD @WB

;;TL: A GOOD BOY

NP::NP [N ADJ] -> ["A" ADJ N]

(

...

((X1 NUM) = S)

((X2 NUM) = S)

((Y3 NUM) = S)

...

)

;;SL: ILDIM @WBIM

;;TL: GOOD BOYS

NP::NP [N ADJ] -> [ADJ N]

(

...

((X1 NUM) = P)

((X2 NUM) = P)

((Y2 NUM) = P)

...

)

In this section, we will examine such cases where an SL structure trans-
fers into different TL structures: can the value of a constraint determine
what structure should be produced in the TL?

To accomplish this, we begin by grouping the learned rules such than in
each group the type and component sequence of the SL is constant. Denote
this by the SL context-free part of the rule, CFSLi

. In other words, we form
all groups where CFSLi

is constant. In all such groups, we then look for
cases where the CFTLi

is different, and check whether a specific SL feature
value can distinguish between the different CFTLi

structures.

In the above example, the value of the number feature determines the
structure of the translation. If such a case is detected, and a feature is found
to influence what type of structure is produced, its ground value is retained.
In the above example, both rules retain the number constraint with the
specific value (SG and PL, respectively). Otherwise, the value constraints
are eliminated, and only the agreement constraints are retained.

After grouping the learned rules by their SL context-free parts, we exam-
ine how a given feature correlates with a specific TL component sequence:

Let CFTL be the TL component sequence, let CFSL be the SL compo-

8.6. VALUE CONSTRAINTS REVISITED 191

nent sequence, and let vi be a specific value associated with a specific feature
(e.g., NUM value SG). Then define P (CFTL|vi) only over those cases where
CFSL is constant.

P (CFTL|vi) =
P (CFTL, vi)

P (vi)
.

This can be estimated by

cCFTL,vi

cCFSL
cvi

cCFSL

=
cCFTL,vi

cvi

.

If this value is greater than 0.5, then there is good evidence that this par-
ticular ground value should be retained.

Similarly to Agreement Constraint Learning, we must have a fallback
heuristic method if there is not enough training data to get a reliable esti-
mate as described above. For this reason, if we have less than 10 training
examples for a potential pair of value constraints, we only retain the value
constraints if the training data is completely separable by them. This means,
if we can retain value constraints that deterministically determine the struc-
ture of the TL translation without any mistakes on the training data, we do
so.

To summarize, we have discussed three types of x-side value constraints,
and how they are handled:

1. The value of the corresponding TL index is different. In such cases,
the x-side value constraints are retained.

2. The value of the corresponding TL index is the same. In such cases,
the x-side value constraint is not retained, but this case is handled by
agreement constraints.

3. The value the x-side value constraints determines the component se-
quence, i.e. structure, of the TL. In this case, the value is retained if a
different value would produce a different TL structure, and the ground
values distinguish between the two TL structures.

y-side POS value constraints

y-side POS value constraints are of little interest to our system: these kinds
of value constraints on the TL side constrain only one word. In our system
setup, features on single words are passed in the lexicon, but the TL word

192 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

translations are not marked for those features. This means that y-side POS
value constraints would have no effect on the resulting translation, because
they would not be subjected to unification with any feature values passed
from the lexicon or morphology. In other words, the constraints would
always succeed. As was said above, we describe here how the taxonomy of
constraints is applied to our system. In other systems, y-side POS value
constraints may well play a role.

y-side constituent value constraints

y-side constituent value constraints are constraints that limit the output on
the TL side. Because we cannot easily find a Hebrew→English example for a
y-side constituent value constraint, consider the following English→German
example (where English is the SL and German is the TL):

S::S [NP V NP] -> [NP V NP]

(

...

((Y3 CASE) = ACC)

)

In such a case, we would need to learn y-side a constituent value con-
straint. To see this, note that German NPs mark for case: subjects are
generally in nominative case, where objects are generally in accusative case.
If we wanted to learn a rule such as the one above, the second German
NP (Y3) would have to marked for accusative case, a feature that is not
used in English. How can such a constraint be learned? The constraint
will be introduced by the Basic Constraints module. The task of the learn-
ing module would then be to recognize the cases where a feature is only
marked in German, but not in English. In our experiments, this case did
not occur when translating from Hebrew into English, but the rule learner
provides the functionality for the case that learning is applied to other lan-
guage pairs. Figure 8.6 summarizes, also in pseudocode, the reconsideration
of value constraints.

8.7 Results

8.7.1 Discussion of Learned Rules

In our experiments, we found that a large number of useful constraints were
found by the algorithms described above. Some rules are missing some

8.7. RESULTS 193

Advanced Constraints: Retaining value constraints

For all pairs of rules pairi=〈r1, r2〉 s.t. the

SL component sequences are the same, and the TL

component sequences are different

If ∃ a feature fi s.t. fi is marked with a value

constraint in both rules with different values:

vfi,r1
6= vfi,r2

Retain the fi value constraints in r1 and r2

Else remove all value constraints from r1 and r2

For all other rules, remove all value constraints

Figure 8.6: Pseudocode for Advanced Constraint Learning: retaining value
constraints.

constraints, and some constraints are spurious. Missing constraints make
the constrained rules more similar to the context-free rules from the pre-
vious chapter. They imply that a larger lattice will be produced, so that
the decoder has to choose from a larger number of hypothesis translations.
Spurious constraints, on the other hand, are a larger problem, because they
will limit the applicability of a rule or prevent correct translations. For this
reason, it is preferable to err on the side of missing constraints.

Despite spurious and missing constraints in some rules, we will show
in the examples below that the constraints that were learned are useful at
run-time.

;;SL: H ILD AKL KI HWA HIH R&B

;;TL: THE BOY ATE BECAUSE HE WAS HUNGRY

;;C-Structure:(<S> (<NP> (DET the-1)(N boy-2))

(<VP> (V ate-3))(<SBAR> (PREP because-4)

(<S> (<NP> (PRO he-5))(<VP> (V was-6)

(<ADJP> (ADJ hungry-7))))))

S::S [NP V SBAR] -> [NP V SBAR]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

194 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

(X0 = X2)

((X1 GEN) = (X2 GEN))

((X1 NUM) = (X2 NUM))

((Y1 NUM) = (X1 NUM))

((Y2 TENSE) = (X2 TENSE))

((Y3 NUM) = (X3 NUM))

((Y3 TENSE) = (X3 TENSE))

(Y0 = Y2)

)

This rule enforces a number of agreements on the Hebrew side. It en-
forces agreement between the subject and verb in gender and number. Why
is this useful? This will ensure that the rule only applies to cases where the
NP and V agree. As Hebrew is highly ambiguous, it can often happen that a
sequence of words can be analyzed as a noun and verb, although this is not
the correct analysis in this context. Then the above rule would not apply
if in the incorrect analysis the noun and verb did not agree in number and
gender. The agreement constraints thus ensure that faulty applications are
ruled out.

The rule further passes several important features from the SL to the TL.
Both sentences must be in the same tense, and the number of the subject is
passed. If, for example, the tense feature were not passed from SL to TL,
the transfer engine could produce the English verb in all tenses, without
preference for any particular one. This would lead to more ambiguity that
the decoder must resolve, so that ruling out some incorrect options is useful.

;;SL: I$IR B IWTR W P&IL

;;TL: HIGHLY DIRECT AND ACTIVE

;;C-Structure:(<ADJP> (<ADVP> (ADV highly-1))

(<ADJP> (ADJ direct-2)(CONJ and-3)(ADJ active-4)))

ADJP::ADJP [ADJ ADVP CONJ ADJ] -> [ADVP ADJ CONJ ADJ]

(

(X1::Y2)

(X2::Y1)

(X3::Y3)

(X4::Y4)

(X0 = X2)

((X1 GEN) = (X4 GEN))

((X1 NUM) = (X4 NUM))

(Y0 = Y1)

8.7. RESULTS 195

)

This rule again enforces agreement between SL components. In this case,
it is ensured that the first and second adjective agree in number and gender.
This is in fact the case in Hebrew. Again, SL constraints help ensure that
no incorrect POS sequence analyses result in an incorrect application of the
rule.

In this rule, no information is passed from the SL to the TL. This is
because adjectives in English do not mark for any features, so that no con-
straints can or should be learned.

;;SL: HIA HGI&H W HWA &ZB

;;TL: SHE ARRIVED AND HE LEFT

;;C-Structure:(<S> (<S> (<NP> (N she-1))

(<VP> (V arrived-2)))(CONJ and-3)

(<S> (<NP> (N he-4))(<VP> (V left-5))))

S::S [S CONJ S] -> [S CONJ S]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

(X0 = X3)

((Y1 TENSE) = (X1 TENSE))

((Y3 TENSE) = (X3 TENSE))

(Y0 = Y3)

)

This simple rule passes tense information separately for each of the sen-
tences in the conjunction. This can be done because it is known how the
components align to each other. The agreement constraints in are exactly
in the form that they should be, because it can happen that both sentences
are not in the same tense.

;;SL: NW$AIM KLLIIM

;;TL: GENERAL SUBJECTS

;;C-Structure:(<NP> (<ADJP> (ADJ general-1))(N subjects-2))

NP::NP [N ADJP] -> [ADJP N]

(

(X1::Y2)

(X2::Y1)

196 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

((X1 GEN) = (X2 GEN))

((X1 NUM) = (X2 NUM))

(X0 = X1)

((Y2 NUM) = (X1 NUM))

(Y0 = Y2)

)

Again, this rule encodes a number of useful agreements. On the SL
side, it is ensured that the adjective and noun must agree in number and
gender (as in previously described rules). Further, only the number feature
is transferred to the TL side, because English does not generally mark nouns
for gender, as for example in the training example that produced this rule.
Nothing is transferred between the aligned adjectives, again because English
adjectives do not mark for any features.

;;SL: H ILD CRIK LLKT

;;TL: THE BOY MUST GO

;;C-Structure:(<S> (<NP> (DET the-1)(N boy-2))

(<AUX> (AUX must-3))(<VP> (V go-4)))

S::S [NP AUX V] -> [NP AUX V]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

(X0 = X2)

((X1 GEN) = (X2 GEN))

((X1 NUM) = (X2 NUM))

((Y1 NUM) = (X1 NUM))

(Y0 = Y2)

)

As in a previous rule, this rule enforces that the subject and noun in
Hebrew agree in number and gender. However, this rule is also an example
of a missing constraint. Ideally, this rule would also enforce that the English
subject and noun agree in number.

;;SL: H ILD AKL TPWX

;;TL: THE BOY ATE AN APPLE

;;C-Structure:(<S> (<NP> (DET the-1)(N boy-2))

(<VP> (V ate-3)(<NP> (DET an-4)(N apple-5))))

8.7. RESULTS 197

Grammar BLEU ModBLEU METEOR

No Grammar 0.0255 0.0910 0.2681

Manual Grammar 0.0713 0.1209 0.3204

Learned Grammar (SeedGen) 0.0281 0.0969 0.2786

Learned Grammar (Compos) 0.0346 0.0998 0.2819

Learned Grammar (MaxCompos) 0.0344 0.0995 0.2811

Learned Grammar (Constraints) 0.0344 0.0993 0.2811

Table 8.2: Automatic evaluation metrics for grammar with constraints.

S::S [NP V NP] -> [NP V NP]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

((X2 GEN) = (X3 GEN))

((X2 NUM) = (X3 NUM))

(X0 = X2)

((X1 GEN) = (X2 GEN))

((X1 NUM) = (X2 NUM))

((Y1 NUM) = (X1 NUM))

((Y2 TENSE) = (X2 TENSE))

((Y3 NUM) = (X3 NUM))

(Y0 = Y2)

)

This rule is an example of spurious constraints: it enforces that the verb
and object must agree in number and gender. This is not true in Hebrew.
The implication of the spurious constraints will be that this rule will only
apply to sentences where the verb and object happen to agree.

8.7.2 Automatic Evaluation Results

As in previous chapters, we here compare the translations on test set 1 for
learned grammars with constraints to the translation without a grammar
and the translation with a manual grammar. We can observe from Table 8.2
that the expected results were obtained, where the learned grammars with
constraints fall in the space between the baseline and the manual grammar
on all three automatic evaluation techniques.

198 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

Seed Gen Compos MaxCompos Constraints
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
er

ce
nt

 Im
pr

ov
em

en
t/1

00

BLEU
ModBLEU
METEOR

Figure 8.7: Improvement over baseline for test set 1.

Comparison BLEU ModBLEU METEOR

SeedGen [-0.0073,0.0018] [-0.0149,0.0026] p=0.112

Compos [-0.0321,0.000] [-0.0164,-0.020] p=0.084

MaxCompos [-0.0312,0.000] [-0.0162,-0.0017] p=0.108

Constraints [-0.0304,0.000] [-0.0162,-0.0018] p=0.108

Table 8.3: Seed Generation, Basic Compositionality, and Constraint Learn-
ing confidence intervals (for BLEU and ModBLEU) and one-tailed t-test for
comparison between learned grammar and baseline.

Once again we note that the manual grammar outperforms the learned
grammar, which can at least in part be attributed to the fact that test set
1 was used as a development set for the manual grammar. The test set
used in chapter 9 is unseen both for the manual and the learned grammar,
which allows for a fairer comparison. In this case, the performance of the
learned grammar matches and sometimes even exceeds the performance of
the manual grammar.

As was said above, our goal for Constraint Learning was a reduction in
lattice size. For this reason, we report the lattice size for the unconstrained
grammar vs. the constrained grammar in Table 8.4. A considerable reduc-
tion can be observed, as desired.

8.8. CASE STUDY: HEBREW COPULA 199

Grammar Lattice Size Reduction in Size

Learned Grammar, no constraints 87455872 -

Learned Grammar, constraints 72564618 0.170271631

Table 8.4: Lattice sizes for unconstrained and constrained grammars, to-
gether with reduction in size over lattice without constraints.

To summarize our findings regarding the performance of constraints, it
can be said that grammars with constraints do not generally result in better
translation quality. They do however result in a speed-up of the run-time
system. In order to achieve higher translation quality and a speed-up in run-
time, the constraints would have to eliminate only such arcs from the lattice
that are 1) poor translations, and 2) would be preferred by the decoder. If
an overly general rule results in lattice arcs that are such poor translations
that the decoder would not pick them, then Constraint Learning can only
hope to achieve an improvement in run-time. This goal was accomplished
with the algorithms described here. In section 9 below we will discuss these
results in greater detail.

8.8 Case Study: Hebrew Copula

For most of the experiments reported here, we used a structural elicitation
corpus for training. This corpus was designed specifically to capture a wide
variety of structural phenomena. It was, however, not designed for to contain
a variety of feature phenomena. When learning constraints, it would be ideal
to have a corpus such as

I fell.

You fell.

He fell.

She fell.

It fell.

...

Learning from such a corpus would allow us, for example, to capture
more easily what feature values influence the form of the verb in the minor
language SL. More generally, a more feature-oriented corpus would aim at
varying feature values in order to determine which values make a difference.

200 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

In order to get insight into how the Constraint Learning algorithms pro-
posed in this thesis would perform with a different type of corpus, we chose
to perform a case study. The complete feature-based corpus as described in
chapter 4 is not yet available. However, we were able to obtain a portion
of the corpus that specifically targets copula. A copula is a word that links
a subject to its predicate, which can for example be a NP or an ADJP. In
English, the verb ‘to be’ in its various forms acts as a copula in the following
sentences:

The man was a teacher.

A dog is a kind of dog.

Dogs are nice animals.

He is always impatient.

In English, the copula is a verb and takes verb forms. This is not neces-
sarily the case in all languages.

Copulas are interesting to Hebrew→English translation because Hebrew
copulas exhibit some properties that are very different from English. We will
first briefly describe the issue of copulas in Hebrew, and will then discuss
the copula-specific training corpus and the rules that were learned from it.

In Hebrew, present tense copula are often optional. Consider the follow-
ing example:

HWA MWRH

he teacher.m.s

‘He is a teacher.’

In this canonical example, no copula is used in the present tense. In the
past or future tense, however, the copula is required:

HWA HIH MWRH

he be.s.past teacher.m.s

‘He was a teacher.’

HWA IHIH MWRH

he be.m.fut teacher.m.s

‘He will be a teacher.’

In the present tense, however, things become more complicated: in some
cases, a copula can in fact be used. However, instead of using a form of
the verb ‘TO BE’, Hebrew uses personal pronouns as present tense copulas.

8.8. CASE STUDY: HEBREW COPULA 201

Furthermore, the personal pronouns agree with the subject in number, but
not in person. Personal pronouns are used as copulas generally only for
definite predicates. A few examples should clarify this phenomenon:

In the following examples, the Hebrew copula can be used, as the pred-
icate ‘H TLMID’ (‘the student’) is definite:

ATH H TLMID

or

ATH HWA H TLMID

‘You are the student.’

and

ANI H TLMID

or

ANI HWA H TLMID

‘I am the student’

In the following examples, on the other hand, the copulas are not possi-
ble:

ANI TLMID

but

*ANI HWA TLMID

‘I am a student’

ATM TLMIDIM

but

*ATM HM TLMIDIM

‘You are students’

For more details on the complex issue of present tense copula in Hebrew,
please refer to (Falk, 2004).

We have created a training corpus of 283 unique elicitation examples
for Hebrew copulas. The corpus contains examples such as the ones listed
above. We vary person, gender, number, definiteness (of subject
and predicate), tense, and the type of predicate (NP or ADJP). A
Hebrew informant translated and word-aligned the copula elicitation corpus.
In cases where the Hebrew copula is optional, the informant provided both
possible translations. The resulting rule learning training corpus contains
319 training examples.

202 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

The learned grammar contains 135 rules, and was learned with Maximum
Compositionality and all Constraint Learning algorithms. Below, we will
discuss some of the resulting rules, and will also discuss what the current
Constraint Learning algorithm cannot currently handle, thus pointing to
future work.

In order to characterize the learned rules, we will address the following
questions:

1. How are past tense copulas handled?

2. How are future tense copulas handled?

3. How are optional present tense copulas handled?

4. Can we distinguish between definite and indefinite predicates for present
tense copulas?

5. What features would ideally be there but are not, and why?

Question 1: How are past tense copulas handled?

Below are two typical rules for past tense copula that exemplify well how
the grammar handles past tense copula.

In this section, we list the learned rules with all training examples that
the rules were learned from. The sentences are listed as SL-TL pairs, where
additional training sentences are marked with “alt”. For brevity and because
they are relatively simple, we do not list the parses for the training examples
here.

;;SL: H N$IM HIW AIN@LIGN@IWT

;;TL: THE WOMEN WERE INTELLIGENT

;;SL(alt1): H AN$IM HIW AIN@LIGN@IM

;;TL(alt1): THE MEN WERE INTELLIGENT

S::S [NP AUX ADJP] -> [NP AUX ADJP]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

((X2 NUM) = (X3 NUM))

(X0 = X2)

((X1 NUM) = (X2 NUM))

((Y1 GEN) = (X1 GEN))

8.8. CASE STUDY: HEBREW COPULA 203

((Y1 NUM) = (X1 NUM))

((Y1 PER) = (X1 PER))

(Y0 = Y2)

)

In this rule, it is learned that in Hebrew, the subject, copula, and predi-
cate must agree in number, which is correct. It further specifies that gender,
number, and person are passed from the Hebrew subject to the English sub-
ject. Note that nothing is passed between the adjectives. This is because
English adjectives do not mark for anything. The auxiliary transfer will
automatically pass lexical-level features from the Hebrew auxiliary to the
English auxiliary, so that no constraint is necessary in the rule.

;;SL: H N$IM HIW H TLMIDWT

;;TL: THE WOMEN WERE THE STUDENTS

;;SL(alt1): H AN$IM HIW H TLMIDIM

;;TL(alt1): THE MEN WERE THE STUDENTS

S::S [NP AUX NP] -> [NP AUX NP]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

((X2 NUM) = (X3 NUM))

(X0 = X2)

((X1 NUM) = (X2 NUM))

((Y1 GEN) = (X1 GEN))

((Y1 NUM) = (X1 NUM))

((Y1 PER) = (X1 PER))

((Y3 NUM) = (X3 NUM))

((Y3 PER) = (X3 PER))

(Y0 = Y2)

)

Some important agreements were learned in this rule. For instance, it is
enforced that number, gender, and person values are passed from the Hebrew
to the English subject. Notice that gender happens to be marked on the
specific English training examples’ subjects. Further, it was learned that
number and person should be passed from the nominal predicate in Hebrew
to the predicate in English. Further, all three Hebrew elements (subject,
copula, predicate) must agree in number.

204 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

Neither of the two rules specifies that it is particular to past tense. This
is because the learning algorithm did not find that it would produce an
incorrect context-free sequence in English if it were applied to present tense
sentences, and for this reason no tense value constraint was retained. For
more details on this issue, please refer to section 8.6.

Question 2: How are future tense copulas handled?

Again, we present two sample rules that were learned for future tense copula.

;;SL: H N$IM IHIW AIN@LIGN@IWT

;;TL: THE WOMEN WILL BE INTELLIGENT

;;SL(alt1): H AI$H THIH AIN@LIGN@IT

;;TL(alt1): THE WOMAN WILL BE INTELLIGENT

;;SL(alt2): H AN$IM IHIW AIN@LIGN@IM

;;TL(alt2): THE MEN WILL BE INTELLIGENT

;;SL(alt3): H AI$ IHIH AIN@LIGN@I

;;TL(alt3): THE MAN WILL BE INTELLIGENT

S::S [NP "HIH" ADJP] -> [NP "WILL" "BE" ADJP]

(

(X1::Y1)

;(X2::Y2)

;(X2::Y3)

(X3::Y4)

(X0 = X2)

((Y1 GEN) = (X1 GEN))

((Y1 NUM) = (X1 NUM))

((Y1 PER) = (X1 PER))

(Y0 = Y2)

)

;;SL: H AI$H THIH H TLMIDH

;;TL: THE WOMAN WILL BE THE STUDENT

;;SL(alt1): H AN$IM IHIW H TLMIDIM

;;TL(alt1): THE MEN WILL BE THE STUDENTS

;;SL(alt2): H AI$ IHIH H TLMID

;;TL(alt2): THE MAN WILL BE THE STUDENT

S::S [NP "HIH" NP] -> [NP "WILL" "BE" NP]

(

(X1::Y1)

8.8. CASE STUDY: HEBREW COPULA 205

;(X2::Y2)

;(X2::Y3)

(X3::Y4)

(X0 = X2)

((Y1 GEN) = (X1 GEN))

((Y1 NUM) = (X1 NUM))

((Y1 PER) = (X1 PER))

((Y4 NUM) = (X3 NUM))

((Y4 PER) = (X3 PER))

(Y0 = Y2)

)

Note that in both rules, the copula and the English future tense verb
must stay lexicalized, because they are not aligned one-one. This has the
side-effect that no constraints are learned for the lexicalized words. This
has some implications, because we learn agreement constraints only between
heads and their dependents. Since we do not have constraints for the lexical-
ized words, we also do not have agreement constraints between the copula
and the subject or predicate in both cases.

However, we again observe that certain feature values are passed from
Hebrew to English. In particular, the English subject receives the gender,
number, and person marking from the corresponding Hebrew NP, and the
predicate also receives the number and person marking. As in the previ-
ous case, no constraints are passed between the adjectives, because English
adjectives do not mark for number, person, etc.

Question 3: How are optional present tense copulas handled?

For present tense, there are cases where the copula is used, and cases where
it is not used. Consider the following rule:

;;SL: ANI TLMIDH

;;TL: I AM A STUDENT

;;SL(alt1): ANI TLMID

;;TL(alt1): I AM A STUDENT

S::S [NP NP] -> [NP "AM" NP]

(

(X1::Y1)

(X2::Y3)

((X1 NUM) = (X2 NUM))

206 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

((Y1 NUM) = (X1 NUM))

((Y1 PER) = (X1 PER))

((Y3 NUM) = (X2 NUM))

((Y3 PER) = (X2 PER))

(Y0 = Y2)

)

This rule, among other things, hints at a very important issue that is in
fact captured in the rules: for those cases where there is no copula in He-
brew, only present tense copulas can be introduced in English. The English
copula must remain lexicalized, because it is unaligned. However, the gram-
mar contains rules for no-copula Hebrew sentences only for present tense
English copulas. In other words, there are rules similar to the one above
that introduce ‘IS’ and ‘ARE’, but there are no rules that introduce instead
‘WERE’.

This means that the system handles correctly the case of missing Hebrew
copula in the present tense.

Another interesting observation can be made about the rule above: al-
though person and number information is passed correctly from the SL to
the TL, agreement within the SL is only enforced for person. This is be-
cause there is in fact no agreement in person between the two constituents:
in both training examples, the subject’s person value is 1st, and the predi-
cate’s person value is 3rd.

;;SL: ANI AIN@LIGN@IT

;;TL: I AM INTELLIGENT

;;SL(alt1): ANI AIN@LIGN@I

;;TL(alt1): I AM INTELLIGENT

S::S [NP ADJP] -> [NP "AM" ADJP]

(

(X1::Y1)

(X2::Y3)

((X1 NUM) = (X2 NUM))

((Y1 NUM) = (X1 NUM))

((Y1 PER) = (X1 PER))

(Y0 = Y2)

)

In this rule and the one above, we can again observe that some features
are passed from Hebrew to English. Again, the system learns that the
Hebrew subject and predicate must agree in number, but not in person.

8.8. CASE STUDY: HEBREW COPULA 207

Although this rule should only apply to first person singular NPs, it is
limited in that it only passes number and person information from the SL to
the TL, and does not enforce that the person must be 1st and the number
singular. This is because the value constraint learner targets constraints
only in isolation. Only singular or only 1st person are not sufficient in
deterministically predicting the TL component sequence. In order to learn
these two constraints, a different algorithm would be necessary that checks
whether combinations of value constraints can be useful to predict the TL
component sequence. We will return to this issue under question 5 below.

Let us now turn to those cases where Hebrew does indeed use a copula
for the present tense. The below rule is one good example.

;;SL: H N$IM HN AIN@LIGN@IWT

;;TL: THE WOMEN ARE INTELLIGENT

S::S [NP "HN" ADJP] -> [NP "ARE" ADJP]

(

(X1::Y1)

;--;(X2::Y2)

(X3::Y3)

((X2 GEN) = (X3 GEN))

((X2 NUM) = (X3 NUM))

(X0 = X2)

((X1 GEN) = (X2 GEN))

((X1 NUM) = (X2 NUM))

((Y1 GEN) = (X1 GEN))

((Y1 NUM) = (X1 NUM))

(Y0 = Y2)

)

The present tense copulas in Hebrew are not of the same part of speech
as the English words they are aligned to: the present tense Hebrew copulas
are personal pronouns, whereas the English copulas are as usual auxiliaries.
For this reason, the rule learner did not generalize these words to the POS
level, and the words remain lexicalized. This has the effect that several rules
of the type above are learned, one for each person/gender combination in
Hebrew. This simply implies a larger grammar, but has no other serious
effects.

As in previous rules, several features are passed from the Hebrew to the
English side.

208 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

Question 4: Can we distinguish between definite and indefi-
nite predicates for present tense copulas?

For the current system the answer to this question is no.
It is not be possible for the learning algorithms to learn a definiteness fea-

ture to distinguish between English outputs, because the learning algorithm
described in section 8.6 only allows for the introduction (rather, retention)
of a value constraint if a certain feature value would produce a specific Eng-
lish component sequence while a different feature value would produce a
different component sequence consistently. In Hebrew, NPs are indefinite
unless marked with the determiner ‘H’ (or unless their head is a pronoun).
Therefore, most Hebrew NPs do not obtain a definiteness feature from any
word, so they are simply not marked for definiteness, and no distinguishing
feature value can be learned.

Question 5: What features would ideally be there but are not,
and why?

We have seen that the learning module was able to capture quite a number,
albeit not all, relevant features for Hebrew constraints. This section will
address the weaknesses of the current system: why could we not learn certain
features, and how can future work address these issues?

The biggest limitation of the current Constraint Learning system is that
it deals with features in isolation. For example, it is not able determine that
the combination of two or more features leads to a specific translation. For
example, consider another present tense copula example:

;;SL: H N$IM AIN@LIGN@IWT

;;TL: THE WOMEN ARE INTELLIGENT

;;SL(alt1): H AN$IM AIN@LIGN@IM

;;TL(alt1): THE MEN ARE INTELLIGENT

S::S [NP ADJP] -> [NP "ARE" ADJP]

(

(X1::Y1)

(X2::Y3)

((X1 GEN) = (X2 GEN))

((X1 NUM) = (X2 NUM))

((Y1 GEN) = (X1 GEN))

((Y1 NUM) = (X1 NUM))

((Y1 PER) = (X1 PER))

(Y0 = Y2)

8.8. CASE STUDY: HEBREW COPULA 209

)

Ideally, this rule would include a constraint that would disallow the rule
from firing unless the Hebrew subject is marked for plural number or else
for 2nd person singular. This could be handled in the following two rules:

S::S [NP ADJP] -> [NP "ARE" ADJP]

(

(X1::Y1)

(X2::Y3)

...

((X1 NUM) = P)

...

)

and

S::S [NP ADJP] -> [NP "ARE" ADJP]

(

(X1::Y1)

(X2::Y3)

...

((X1 NUM) = S)

((X1 PER) = 2)

...

)

The current learning system is not able to either split a rule into two
or to determine that the combination of two feature values causes a given
output. How this can be done automatically is an interesting area for fu-
ture investigation. In previous work, we have viewed the transfer rules as
residing in a version space ((Probst, 2002), (Probst et al., 2003)). In such
a framework, we would be able to split the version space into two distinct
hypotheses, namely the rules proposed above. Unlike in previous work, this
would be possible because we have the actual value constraints with ground
values for the components, as we now pass rules from the word level to the
constituent level. One possible problem is that in order to do this, we would
need to consider all possible combinations of two or more features, greatly
increasing the complexity of the learning algorithm.

Another interesting approach to solving this problem has been proposed
by Font (Font-Llitjós, 2004). The example rule, together with the training

210 CHAPTER 8. LEARNING UNIFICATION CONSTRAINTS

sentences it was derived from, can be used in the Automatic Rule Refinement
module described there. With minimal user feedback, the original rule could
be bifurcated and tagged with the appropriate constraints.

Another limitation of the current system is its reliance on the morphology
modules. The system has no way of verifying whether the information from
the morphology modules is correct and/or complete, so that it must rely
on it. Naturally, this can have a negative impact on rule learning. This
thesis addresses the task of learning with very limited datasets, so that
we cannot afford to eliminate information, even if we do not necessarily
consider this information reliable. As we will discuss in section 10.3, one
area for future investigation will be to learn from larger datasets. Under
such a scenario, we would be able to only accept the information from the
morphology modules with a certain probability, and increase the confidence
score if the information is found to be consistent with morphological analyses
for other words in similar contexts or constructions.

Overall, it was found that the Constraint Learning module is indeed
able to handle many phenomena related to copula. The case study also
allowed us to pinpoint some weaknesses of the current Constraint Learning
algorithms, and we have gained considerable insight into how to address
these weaknesses in the future.

Chapter 9

Comprehensive Evaluation

Throughout this document, we have presented aggregate evaluation results
of the entire system with our learned grammars on a small test set of 26
sentences that was also used as a development set for the manual grammar.
This put the learned grammars at a disadvantage. In this section, we delve
deeper into different aspects of the system. The tests in this section will
be performed on test sets that are completely unseen both for the manual
grammar and for the learned grammars. We will first present a number of
ways in which the system can be evaluated. We will then vary a number
of parameters and report results, so as to maximize the insight into the
performance of the system.

We can view the system as residing in a multi-dimensional space, where
the output can depend on a number of settings. We cannot even attempt to
explore this space exhaustively. Rather, we will highlight several interest-
ing combinations of settings and report and analyze results for those. We
will further put the spotlight on several settings that we think have great
potential if explored further, and hope that this will raise concrete research
questions for the future.

Thus, the goal of this section is to 1) lay out the space of possible ways
to evaluate and further investigate our approach, 2) to report results for
some of the area in this space, and 3) to spark interest for promising areas
of future research.

9.1 The Evaluation Space

The space that we will lay out here has a number of dimensions, as listed
below:

211

212 CHAPTER 9. COMPREHENSIVE EVALUATION

1. Learning Phases / Settings: SeedGenOnly, Compositionality, Max-
imum Compositionality, Constraint Learning, Pruning by rule scoring,
etc.

2. Evaluation: Automatic evaluation metrics, aggregate vs. rule-based
evaluation, effect on run-time

3. Test Corpora: Test Set 1, Test Set 2, TestSuite

4. Run-time Settings: Lengthlimit

5. Training Corpora: Structural corpus vs. comparison corpus, addi-
tional data, etc.

It is clearly impossible to evaluate on the cross-product of all these set-
tings. Furthermore, it will not allow us to gain good insight. We will argue
why some of these dimensions are of interest to the present thesis, while
others are not.

It is clearly interesting to evaluate the different learning settings in or-
der to see what impact they have on the learned rules. It should be kept
in mind that the different learning phases often have different goals. In
particular, Constraint Learning has two goals: 1) to automatically induce
interesting facts about the SL and its relation to the TL, and 2) to constrain
the lattice. Constraining the lattice is mostly aimed at reducing the run-
time, which can be prohibitively long for longer lengthlimits. The addition
of constraints can so lead to longer lengthlimits being feasible at run-time.
While adding constraints will generally not have any or much positive effect
on the final translation (the decoder is usually strong enough to pick out the
best translations in context), the reduction in run-time is in itself a desirable
effect if the translation quality does not suffer, or at least does not suffer
significantly.

The preceding discussion makes it clear that while we will evaluate dif-
ferent learning phases, they will have to be evaluated from different perspec-
tives, as they have different goals. Thus the second axis, evaluation metrics,
will be explored together with different learning phases.

As for the third dimension, test corpora: we will report results on two
types of test corpora. The two test corpora that were used up to this point
are newspaper text. This kind of evaluation is useful because it shows how
our system performs ‘in real life’, i.e. under harsh conditions of long sen-
tences, uncontrolled vocabulary, etc. The second kind of test corpus that
will be used in this chapter is a test suite. The test suite was designed

9.2. OVERVIEW OF EVALUATED SETTINGS 213

specifically for this thesis. It comprises a number of sentences that contain
structural and linguistic phenomena. Why is this useful? Measuring the
performance of our rules on the test suite will allow us to examine what
kind of phenomena are captured in our rules.

The fourth dimension deals with different training corpora. One goal
of the Avenue project, within which this research was performed, is the
development of training corpora that will be useful for eliciting information
about a language in a targeted way. While this is an interesting research
question, it is not in the scope of this thesis, so that we will not emphasize
the evaluation of our system for different training corpora, and will instead
focus on other dimensions. We will however present an ablation study,
which will allow us to gain insight of the performance of the system as
a function of the training corpus size. We will also present results for a
grammar learned from a comparison corpus, which is of the same size as
our ‘standard’ structural corpus, but which was not designed specifically to
capture a variety of structural phenomena.

Finally, run-time settings can have a great effect on the performance of
the system as a whole. We will briefly present results for different length-
limits. The lengthlimit is a parameter in the transfer engine that can be set
in order to limit the maximum number of input tokens spanned for a given
arc. The learned rules are compositional and aimed at combining with each
other. The side effect of this combination is that the longer the spanned
input becomes, the more combinations of rules are possible, resulting in po-
tentially very large lattices. In fact, the lattices routinely become so large
that pruning by setting a lengthlimit is necessary in order for the transfer
engine to produce a lattice. The section is aimed at sparking interest for
future research: it would be interesting to explore in greater detail the re-
lationship between the lengthlimit and the pruning of the grammar or the
introduction of constraints. Again, this is not at the core of this thesis, and
is merely presented to promote further research on this issue.

9.2 Overview of Evaluated Settings

In this section, we present an overview of the different system settings that
we have evaluated. The following sections will then address each of these
settings in turn.

9.2.1 Defaults

The above dimensions will be set to the following defaults:

214 CHAPTER 9. COMPREHENSIVE EVALUATION

1. Learning Phases / Settings: Seed Generation + Compositionality
+ Constraint Learning

2. Evaluation: Automatic evaluation metrics

3. Test Corpora: Test Set 2

4. Training Corpora: Structural corpus

5. Run-time Settings: Lengthlimit set to 6

The default for the learning phases allows us to evaluate the system as a
whole, with all learning phases. Test set 2 is a newspaper text test set of 62
sentences that is unseen for both the manual and the learned grammar, thus
allowing for a fairer comparison than test set 1. A lengthlimit of 6 was the
highest lengthlimit that the run-time system could handle for the default
learned grammar.

9.2.2 Varied Settings

In addition to the default settings, we will vary the first three dimensions,
one at a time. We will set them to the following:

1. Learning Phases / Settings: SeedGenOnly, Compositionality, Rule
Scoring / Pruning

2. Evaluation: Automatic evaluation metrics, precision, recall of indi-
vidual rules

3. Test Corpora: Test Set 1, Test Set 2, TestSuite

In addition to these variations, we will present a number of settings that
‘fall off the grid’. One of these settings is an evaluation of the system using
different training corpora. We present a section on training a grammar
with different training corpora. This will allow us to gain insight into what
can be achieved when the corpus is not as small as our standard training
corpus. In a bigger corpus, the problem of “missing” structures diminishes.
At the same time, the grammars become very big, leading to large lattices.
This evaluations is largely intended as motivation for future work. In this
thesis, we concentrated on small corpora, and how much we could learn from
them. Future work could address the learning of rules from larger corpora,
as with larger corpora some approaches need to be revised. For instance,

9.3. DEFAULT SETTING EVALUATION 215

pruning will become much more important, as larger corpora result in larger
grammars and thus in higher ambiguity and bigger lattices.

Another evaluation is a series of different lengthlimits. It is expected
that a longer lengthlimit will result in higher scores, as shorter lengthlimits
cause rules or rule combinations not to fire.

We finally explore the possibility of scoring rules in order to prune the
grammar. The transfer engine does not explicitly handle scored grammar
rules; it will produce a full lattice given a grammar and a lexicon. To
reduce the lattice, we are forced to reduce the grammar. An important
issue to note here is that there is a trade-off between what the decoder
can pick out of a large lattice, and producing a smaller lattice. The trade-
off is very similar to the trade-off with lengthlimits above (and actually
very similar to the trade-off with introducing constraints). However, when
pruning the grammar, we also hope to extract those rules that are powerful
and accomplish good translation power, and to discard ‘bad’. rules. If bad
rules are eliminated, we not only achieve a run-time speed-up (because the
resulting lattice will be smaller), but we also eliminate those arcs from the
lattice that are undesirable. Given the power of the decoder to extract the
best arcs from the lattice, it is hard to prune the grammars reliably and to
accomplish an increase in performance. For this reason, the main goal is to
reduce the run-time without a big reduction in performance.

Once again we note that often the results that show a big improvement
in translation quality are not highly statistically significant, because the test
set size is small (62 sentences). We therefore report significance tests mostly
for completeness, and do not attach too much weight to them.

9.3 Default Setting Evaluation

In the default evaluation, we used the Compositionality setting with the
assumption of Maximum Compositionality. The lengthlimit was set to 6 for
all tests. The learned grammar was tested on the test set 2 (62 sentences),
and the system’s performance was compared to the performance of the sys-
tem using the manual grammar and no grammar. The system without a
grammar consists of lexical transfer only, i.e. translation using the lexicon,
but no grammar rules. The partial translations produced by the lexicon are
then entered into a lattice and decoded exactly as if they had been produced
by a lexicon and a grammar. The manual grammar was used with the de-
fault lengthlimit of 6. We report BLEU, ModBLEU, and METEOR scores
in Table 9.1. We furthermore illustrate the improvement over baseline in

216 CHAPTER 9. COMPREHENSIVE EVALUATION

graphical form in Figure 9.1.

Grammar BLEU ModBLEU METEOR

No Grammar 0.0565 0.1362 0.3019

Manual Grammar 0.0817 0.1546 0.3241

Learned Grammar 0.0780 0.1524 0.3293

Table 9.1: Evaluation results for default settings on test set 2 for
Hebrew→English translation.

Comparison BLEU ModBLEU METEOR

Learned default [-0.0386,0.0048] [-0.0263,-0.0070] p=0.050

Table 9.2: Default settings confidence intervals (for BLEU and ModBLEU)
and one-tailed t-test for comparison between learned grammar and baseline.

It can be seen from the results that our approach results in significant
gains in translation performance. The percent improvement depends in part
on what evaluation metric is used. However, for all three evaluation metrics
the gain is considerable. It can also be observed that the METEOR score
assesses the translation quality of the fully automatic system as higher than
with the manually written grammar. This is a very positive result for our
approach.1

9.4 Varying Learning Settings

In this section, we present a comparative evaluation of the system under
different conditions: we learn several grammars with different parameter
settings, using different parts of the learning system. We report the following
scores: BLEU, Modified BLEU, and METEOR. In Table 9.3 we report the
results for different learning settings for the test set 2.

In the first evaluation, we compare a learned grammar that only uses
the Seed Generation module to a system with no grammar and to a sys-
tem using the manual grammar. Seed Generation only results in flat, non-
compositional rules. This means that each of the rules can only apply in

1In earlier chapters, we reported evaluation results on test set 1, where the manual
grammar performed better than the learned grammar. We believe that this is in part due
to the fact that the manual grammar was designed using this first set, test set 1.

9.4. VARYING LEARNING SETTINGS 217

BLEU ModBLEU METEOR
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
er

ce
nt

 Im
pr

ov
em

en
t/1

00

Manual Grammar
Learned Grammar

Figure 9.1: Improvement over Baseline for Default Settings on
Hebrew→English translation.

Grammar BLEU ModBLEU METEOR

No Grammar 0.0565 0.1362 0.3019

Manual Grammar 0.0817 0.1546 0.3241

Learned Grammar (SeedGen) 0.0741 0.1498 0.3239

Learned Grammar (MaxCompos) 0.0772 0.1519 0.3297

Learned Grammar (Constraints) 0.078 0.1524 0.3293

Table 9.3: Evaluation results for different learning settings on test set 2.

isolation. The rules are often more lexically bound and thus more specific
(i.e. apply to fewer contexts). However, they generalize from lexical items
to the POS level wherever possible, which allows them to capture important
transfers. Table 9.3 shows the results for this experiment for the test set 2.

It can be seen that Seed Generation alone results in a system consis-
tently above the baseline system. This indicates that much can be learned
from copying the flat structure of the training sentences into the rules. It
can be concluded that the training data exhibits a number of frequent and
important transfers. If we can get significant gain out of this process, we can
conclude that the POS sequences play a very important role in determining
the syntactic structure of a sentence, because the rule applications result in

218 CHAPTER 9. COMPREHENSIVE EVALUATION

Comparison BLEU ModBLEU METEOR

SeedGen [-0.0343,-0.0020] [-0.0229,-0.0049] p=0.148

MaxCompos [-0.0379,-0.0044] [-0.0256,-0.0063] p=0.049

Table 9.4: Different learning settings: confidence intervals (for BLEU and
ModBLEU) and one-tailed t-test for comparison between learned grammar
and baseline.

correct word reorderings.

In the next experiment, we ran the rule learning using the Seed Gener-
ation and Compositionality, meaning that we learn a set of compositional
rules that do not have any constraints. The advanced techniques described
in the section 7.6 were used for this experiment, but they are rare and do
not impact the score. Table 9.3 shows the results for this experiment for
the test set 2, again comparing the learned grammars to the baseline (no
grammar) and the manually written grammar.

Once again, the system performs well above baseline, an encouraging
result. When comparing to Seed Generation only, we see that the more
general grammar in fact performs better than Seed Generation only.

Finally, in Table 9.3 we also report evaluation results for a grammar with
constraints. In the above results it can be observed that the constraints
did not result in improved translation performance. As has been discussed
in previous chapters, the goal of Constraint Learning is a reduction in run-
time. This is accomplished by preventing the transfer engine from producing
a large number of incorrect ambiguities, which result in additional arcs in
the lattice. When constraints are added to the grammar, some ambiguities
can successfully be eliminated. As was discussed before, in order to achieve
higher translation quality and a speed-up in run-time, the constraints would
have to eliminate only such arcs from the lattice that are 1) poor partial
translations, and 2) would be preferred by the decoder. If an overly general
rule results in lattice arcs that are such poor translations that the decoder
would not pick them, then Constraint Learning can only hope to achieve an
improvement in run-time. This goal was accomplished with the algorithms
described here.

As was mentioned above, BLEU and Modified BLEU emphasize mea-
suring precision, whereas the METEOR score emphasizes recall. From this
perspective, the results on the learned grammar with constraints can be ex-
plained: adding constraints to the grammar results in smaller lattices, as
can be seen in Table 9.5. Furthermore, the processing time is reduced, as is

9.5. VARYING EVALUATION - RULE LEVEL EVALUATION 219

shown in tables 9.6 and 9.7.

Grammar Lattice Size Reduction in Size

Learned Grammar (MaxCompos) 187275514 -

Learned Grammar (Constraints) 149713589 0.20057

Table 9.5: Lattice sizes for unconstrained and constrained grammars, to-
gether with reduction in size over lattice without constraints.

Grammar System Time

Learned Grammar (MaxCompos) 54.98

Learned Grammar (Constraints) 33.28

Table 9.6: Lattice creating times on test set 2 (system time in seconds) for
grammars with and without constraints.

Grammar System Time

Learned Grammar (MaxCompos) 3123.38

Learned Grammar (Constraints) 2287.47

Table 9.7: Decoding times on test set 2 (system time in seconds) for gram-
mars with and without constraints.

The speed-up in processing time comes at the cost of some recall, while
compromising hardly any precision. It would be hoped that adding con-
straints would increase in more improved precision (i.e. higher BLEU and
Modified BLEU) scores. However, the speed-up in processing power, es-
pecially during decoding, still very much justify introducing constraints.
Lastly, constrained rules can feed into a rule refinement module as proposed
by Font-Llitjós (Font-Llitjós, 2004), which in part aims at improving the
accuracy of unification constraints, in particular for automatically learned
rules.

9.5 Varying Evaluation - Rule Level Evaluation

The goal of this section is to evaluate the performance of individual rules.
This has two goals: 1) we can inspect the highest-performing rules, thus gain-

220 CHAPTER 9. COMPREHENSIVE EVALUATION

ing insight into what most causes the increase in translation performance,
and 2) rule scoring allows us to prune from the grammar the lowest-scoring
rules.

Rule scoring is done via a lattice scoring method that is described in
the appendix section A. This method assigns individual scores to each
rule in the grammar. With precision scores at hand, we can prune the
grammar by eliminating the low-scoring rules. This allows us to eliminate
the worst-scoring rules, with the goal of producing a higher-quality grammar.
Rule-level scoring and subsequent pruning can be seen as a post-learned
filter for the learned rules. We first learn a set of rules, and then eliminate
those that do not perform well in practice. For example, if a rule was
learned from noisy data, it would perform poorly at run-time, and should
be eliminated. As was said above, it is hard for this technique to yield an
increase in translation performance overall, because the filter would need to
automatically eliminate 1) rules that produce bad arcs that 2) the decoder
would choose for the final translation. For this reason, a speed-up at run-
time is a more achievable goal. Run-time is generally improved by this
technique, because a pruned grammar almost necessarily leads to smaller
lattices, which was in fact observed in our experiments. If pruning results
additionally in improved translation power, then two goals are accomplished
at the same time.

In the experiments reported in this section, we first obtained precision
scores based on test set 1, which was used for evaluation in previous chapters.
We then resorted the grammar based on the individual rule scores. This
allowed us to eliminate a portion of the grammar, leaving only 25%, 50%,
75%, or the complete grammar. Then we can assess the quality of the pruned
grammar on test set 2, which is unseen data to the grammars.

The rules were scored using a lattice evaluation metric to assign individ-
ual scores to arcs. The lattice scoring metric is described in detail in the
appendix in section A. Without getting into the details here, the metric as-
signs scores to individual arcs in a manner that is very similar to the BLEU
and METEOR scores: it compares unigrams, bigrams, trigrams, . . . n-grams
to the reference translation. The more unigrams, bigrams, etc. match the
reference translation, the higher the score of the arc.

Because we know what rule or rules were applied to produce a specific
arc, we can then compute a precision score for each rule. Each arc is as-
signed to the rule which was the top-level rule in the arc production. For
example, if an arc was produced by a sentence-level rule S, 1, which filled its
subject with an NP rule NP, 2, then this specific arc is only assigned only
to S, 1, because it is the top-level rule for this arc production. The scor-

9.5. VARYING EVALUATION - RULE LEVEL EVALUATION 221

ing mechanism abstracts away from mistakes that are made by lower-level
rules also involved in the arc production: for a given span of indices and
a given rule, only the highest-scoring arc is assigned to the top-level rule.
This eliminates problems caused by lower-level rules as well as ambiguous
lexical selection.

For each individual rule, we sum the arc scores for all arcs 1) to which
the rule contributed as the top-level rule, and 2) which have the maximum
score for their span. We then divide by the number of rule applications in
order to get a confidence (precision) score for the rule. This precision score
captures the average quality of an arc to which the given rule contributed
as the top-level rule. If we denote with k the number of arcs to which rule
Ri contributed, and we denote the subset of arcs in the lattice to which rule
Ri contributed as ArcSetRi

(i.e. |ArcSetRi
| = k), then the rule precision is:

RulePrecision =

∑k
j=1

ArcScorej

k
, j ∈ ArcSetRi

Since the arc scores are normalized (between 0 and 1), the precision score
can easily be interpreted as the power of the rule to produce translations
that are close to the reference translation.

It should be emphasized here that the lattice scoring metric as described
in section A is only possible because the transfer engine and the decoder are
two separate software systems. The transfer engine produces a full lattice,
which then serves as input to the decoder. The rule level evaluation analyzes
the individual arcs (i.e. partial translations) in the lattice. In the appendix
section A, we describe a possible approach to rule scoring under a scenario
where the transfer engine and decoder are not separate modules.

If we were not able to analyze the individual arcs, for instance if the
transfer engine and the decoder were merged into an integrated step, then
the rule level evaluation method would need to be modified. In such a case,
we could assess the quality of individual rules as follows: in order to asses
the quality of rule Ri in grammar G, use grammar G to translate a devel-
opment set, or as here the training set. This results in a translation score
for G, scoreG. Then eliminate Ri from G, resulting in modified grammar
G′ = G \ {Ri}. Run G′ on the same development or training set to obtain
scoreG′ . The quality of Ri can then be estimated by scoreG − scoreG′ . This
method would be an effective way of estimating rule quality. Its drawback is
efficiency: especially for large grammars, the operation would be expensive,
because the training or development set must be translated separately to
assess the quality of each rule. For this reason, the lattice scoring metric

222 CHAPTER 9. COMPREHENSIVE EVALUATION

used here is preferable in practice.
The following table, Table 9.8, lists the rules with the highest precision

score according to the lattice scoring.

PP,7 0.055634892

NP,25 0.04240812

NP,10 0.03525641

NP,21 0.034090909

NP,17 0.033509862

Table 9.8: Rules with highest rule precisions.

{PP,7}

;;SL: &BWR AW@WBWSIM W &BWR MKWNIWT

;;TL: FOR BUSES AND FOR CARS

;;C-Structure:(<PP> (<PP> (PREP for-1)(<NP> (N buses-2)))

(CONJ and-3)

(<PP> (PREP for-4)(<NP> (<NP> (N cars-5)))))

PP::PP [PP CONJ PP] -> [PP CONJ PP]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

(X0 = X1)

((Y1 NUM) = (X1 NUM))

((Y3 NUM) = (X3 NUM))

(Y0 = Y1)

)

{NP,25}

;;SL: KBI$IM MHIRIM W &BWDWT CIBWRIWT AXRWT

;;TL: HIGHWAYS AND OTHER PUBLIC PROJECTS

;;C-Structure:(<NP> (<NP> (N highways-1))

(CONJ and-2)

(<NP> (<ADJP> (ADJ other-3))

(<ADJP> (ADJ public-4))(N projects-5)))

NP::NP [NP CONJ NP] -> [NP CONJ NP]

(

(X1::Y1)

9.5. VARYING EVALUATION - RULE LEVEL EVALUATION 223

(X2::Y2)

(X3::Y3)

(X0 = X3)

((Y3 NUM) = (X3 NUM))

(Y0 = Y3)

)

{NP,10}

;;SL: @MPR@WRH W LXC

;;TL: TEMPERATURE AND PRESSURE

;;C-Structure:(<NP> (N temperature-1)(CONJ and-2)(N pressure-3))

NP::NP [N CONJ N] -> [N CONJ N]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

(X0 = X3)

((Y1 NUM) = (X1 NUM))

((Y3 NUM) = (X3 NUM))

(Y0 = Y3)

((Y1 PERS) = (Y3 PERS))

)

{NP,21}

;;SL: BNINIM CIBWRIIM XD$IM

;;TL: NEW PUBLIC BUILDINGS

;;C-Structure:(<NP> (<ADJP> (ADJ new-1))(<ADJP> (ADJ public-2))

(N buildings-3))

NP::NP [N ADJP ADJP] -> [ADJP ADJP N]

(

(X1::Y3)

(X2::Y2)

(X3::Y1)

((X1 GEN) = (X3 GEN))

((X1 NUM) = (X3 NUM))

((X2 GEN) = (X3 GEN))

((X2 NUM) = (X3 NUM))

(X0 = X1)

((Y3 NUM) = (X1 NUM))

(Y0 = Y3)

224 CHAPTER 9. COMPREHENSIVE EVALUATION

)

{NP,17}

;;SL: TKNIT H @IPWL H HTNDBWTIT

;;TL: THE VOLUNTARY CARE PLAN

;;C-Structure:(<NP> (DET the-1)(<ADJP> (ADJ voluntary-2))

(N care-3)(N plan-4))

NP::NP [N "H" N "H" ADJP] -> ["THE" ADJP N N]

(

(X1::Y4)

;(X2::Y1)

(X3::Y3)

;(X4::Y1)

(X5::Y2)

(X0 = X1)

((Y3 NUM) = (X3 NUM))

((Y4 NUM) = (X1 NUM))

(Y0 = Y4)

)

The first three rules are straightforward in the sense that they do not
reorder any of the constituents. However, their importance lies in the fact
that they combine words in conjunctions, which can then, as a unit, be used
in higher-level rules. The fourth rule is an interesting in that it captures
the reordering of adjectives and nouns when translating from Hebrew to
English. The fifth-ranking rule is similar, but it captures the facts that 1)
Hebrew adjectives occur after the noun, but before the noun in English,
2) in Hebrew noun compounds, definiteness is marked on the second noun,
while in English it is marked before both nouns, and 3) Hebrew adjectives
are marked for definiteness, while English adjectives are not.

Some rules do not apply at run-time. This can have several reasons. The
most prominent is that we are forced to apply a lengthlimit during lattice
creation. With the lengthlimit set to 6, some rules cannot apply because
they span more than 6 source language indices. This complication is hard
to overcome. One possible area for future work is to make the lengthlimit
more flexible. More specifically, the lengthlimit generally prevents repeated
applications of the same rule to the same arc, resulting in combinatorial
explosion. In the future, we can develop a method whereby the lengthlimit
is enforced only if the same rule applies repeatedly, or if the applying rule
does not have a high precision score.

9.5. VARYING EVALUATION - RULE LEVEL EVALUATION 225

As was said in the leading paragraph of this section, part of the ratio-
nale behind rule scoring is the possibility to prune the grammar. In the
below experiments, we pruned the grammar to 25%, 50%, and 75% of the
original size, and report results on test set 2 (table 9.9). It can be seen
that pruning the grammar to 75% actually yields slightly improved trans-
lation performance, which was a hard goal to accomplish. The results for
the grammar pruned to 75% are highly statistically significant on this test
when comparing the learned grammar to the baseline.

Grammar BLEU ModBLEU METEOR

No Grammar 0.0565 0.1362 0.3019

Manual Grammar 0.0817 0.1546 0.3241

Learned Pruned (25%) 0.0565 0.1362 0.3019

Learned Pruned (50%) 0.0592 0.1389 0.3075

Learned Pruned (75%) 0.0800 0.1533 0.3296

Learned Pruned (full) 0.078 0.1524 0.3293

Table 9.9: Evaluation results for grammars pruned to different sizes.

Comparison BLEU ModBLEU METEOR

Pruned (25%) [N/A] [N/A] [N/A]

Pruned (50%) [-0.0104,0.0034] [-0.0063,0.0004] p=0.121

Pruned (75%) [-0.0402,-0.0092] [-0.0270,-0.0089] p=0.023

Table 9.10: Pruned grammars: confidence intervals (for BLEU and Mod-
BLEU) and one-tailed t-test for comparison between learned grammar and
baseline. No p-value and confidence intervals could be obtained for the
grammar pruned to 25%, because the values are the same for the learned
grammar and the baseline.

We also report the run-time lattice creation (Table 9.11) and decoding
(Table 9.12). We expected that run time would be reduced drastically at
some cost in score, which was supported by the results except for the gram-
mar pruned to 75%, which resulted in a slight performance increase. In
Table 9.11, we further report the reduction in lattice size over the lattice for
the full grammar. We observe a sizeable reduction already for the grammar
that was reduced to 75% of the full grammar.

226 CHAPTER 9. COMPREHENSIVE EVALUATION

Grammar System Time

Learned Grammar (25%) 1.02

Learned Grammar (50%) 1.81

Learned Grammar (75%) 5.91

Learned Grammar (full) 33.28

Table 9.11: Lattice creating times on test set 2 (system time in seconds) for
grammars pruned to different sizes.

Grammar System Time

Learned Grammar (25%) 22.55

Learned Grammar (50%) 189.89

Learned Grammar (75%) 397.06

Learned Grammar (full) 2287.47

Table 9.12: Decoding times on test set 2 (system time in seconds) for gram-
mars pruned to different sizes.

9.6 Varying Test Corpora - Test Suite

The test suite is a test set of 119 sentences that was designed to capture
different linguistic structures, so that it can be assessed whether the learned
grammar can handle these structures. The test suite was designed in English
and translated by one informant into Hebrew. The following structures are
tested in the test suite:

• Subordinate clauses

• Conjunction of PPs

• Adverbs

• Direct objects

• Reordering of adjectives and nouns

• Pro-drop

• Comparatives and superlatives

• NP→ NP PP

9.6. VARYING TEST CORPORA - TEST SUITE 227

Grammar Lattice Size Reduction in Size

Learned Grammar (25%) 330342 0.997793507

Learned Grammar (50%) 13431206 0.910287329

Learned Grammar (75%) 29242597 0.804676401

Learned Grammar (100%) 149713589 -

Table 9.13: Lattice sizes for full and pruned grammars, together with re-
duction in size over lattice for full grammar.

• ADJ ADJ

• ADJP embedded in NP

The following table (Table 9.14) shows the results; Table 9.15 lists the
confidence intervals for BLEU and ModBLEU and the p-value for METEOR.

Grammar BLEU ModBLEU METEOR

No Grammar 0.0746 0.1562 0.4146

Manual Grammar 0.1179 0.1887 0.4471

Learned Grammar 0.1199 0.1914 0.4655

Table 9.14: Evaluation results for different learning settings on test suite.

Comparison BLEU ModBLEU METEOR

Comparison Corpus [-0.0706,-0.0243] [-0.0495,-0.0215] p=4.32327E-05

Table 9.15: Test suite confidence intervals (for BLEU and ModBLEU) and
one-tailed t-test for comparison between learned grammar and baseline.

It can be observed that the learned grammar performs very well, well
above baseline. In addition, the learned performs even above the manual
grammar on all scores, and with a considerable margin for the METEOR
score. Both of these scores emphasize recall more than BLEU and Mod-
BLEU do, once again hinting at the higher generality of the learned gram-
mar.

In Table 9.2, we show the percent improvement over the baseline for
the test suite. A complete listing compares of the differences in translation
when the learned grammar was used versus when no grammar was used can

228 CHAPTER 9. COMPREHENSIVE EVALUATION

BLEU ModBLEU METEOR
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

ce
nt

 Im
pr

ov
em

en
t/1

00

Manual Grammar
Learned Grammar

Figure 9.2: Improvement over baseline for test suite.

be found in the appendix in section B. Below, we list examples of each of
the phenomena that were targeted in this test suite. Clearly, the test suite
contains many more phenomena than the ones listed above (e.g., simple
NPs, etc.). We chose to concentrate our examination on those phenomena
listed above, because they are interesting structures that we can hope to
capture with grammar rules, and where a simple word-by-word translation
would fail to produce the correct structure.

Subordinate clauses:
No Grammar: i slept when he read you the tablet
Learned grammar: i slept when he read the book
Reference translation: I slept while he read the book

Conjunctions of PPs:
No Grammar: students youths on the road all want to learn countries

learn and for people learn
Learned Grammar: young students with access all wish to study various

countries and with different peoples
Reference Translation: Young students often want to learn about different

countries and about different people.

Adverbs:

9.6. VARYING TEST CORPORA - TEST SUITE 229

No Grammar: the drug improved slowly you health his
Learned Grammar: the drug improved slowly you his health
Reference Translation: The drug slowly improved his health

Direct objects:
No Grammar: the mother miss for child of her
Learned Grammar: the mother miss for her son
Reference Translation: The mother misses her child

No Grammar: the president promised support faster to assemble
Learned Grammar: the president promised stronger support to assemble
Reference Translation: The President promised stronger support for the army

Reordering of adjectives and nouns:
No Grammar: the students the successful transfer you the examina-

tion
Learned Grammar: the successful students study you the examination
Reference Translation: The good students passed the exam

No Grammar: the house the beautiful near river sell for 100000 dol-
lars

Learned Grammar: the beautiful home near river sell for 100000 dollars
Reference Translation: The pretty house near the river was sold for $ 1000000

Pro-drop:
No grammar: we went to museum
Learned grammar: we went to museum
Reference translation: We went to the museum
Comment: system without grammar also produces correct trans-

lation because of enhanced lexicon

Comparatives:
No Grammar: he suggested to him contract longer
Learned Grammar: he suggested if longer treaty
Reference Translation: He offered him a longer contract

NP→ NP PP:

230 CHAPTER 9. COMPREHENSIVE EVALUATION

No Grammar: the decision the final by lot his for the captain cpwih
become known in $bwa show

Learned Grammar: the final decision on his fate of the captain cpwih be-
come known in $bwa show

Reference Translation: The final decision on the captain ’s fate is expected
will be announced publicly next week

ADJ ADJ (plus reordering in NP):
No Grammar: we coat for communication public grand today
Learned Grammar: we coat for important public announcement today
Reference Translation: We expect an important public announcement today

ADJPs embedded in NPs:
No Grammar: the film show you the fact the tough greatly for the

persons in the country the it
Learned Grammar: the film show you the very harsh reality of the adults

in the country the it
Reference Translation: The movie shows the extremely difficult situation of

the people in this country

9.7 Varying Run-Time Settings - Lengthlimits

As discussed above, the transfer engine can be run in a setting that re-
stricts the maximum arc length that is produced. This means that when
the lengthlimit is set to n, only arcs spanning up to n input segments are
produced. ‘Segments’ are generally considered to be words. For the Hebrew
system, the morphology step divides each word into one or more segments.
For example, ‘HBIT’ (‘THE HOUSE’) is split by the morphology module
into two segments, one for the definite determiner (‘H’), and one for the
noun (‘BIT’). In this sense, lengthlimit is defined slightly differently within
the transfer engine for Hebrew than for other languages. However, the goal
of this section is to examine the relative impact of different lengthlimits on
the score. In general, it is true that the longer the lengthlimit, the more the
rules can apply and combine. However, a longer lengthlimit also implies a
large number of ambiguities.

The following tables and figures compare the system with no grammar,
with an automatically learned grammar, and with the manual grammar
under different lengthlimits. As elsewhere, we report BLEU (Tables 9.17

9.7. VARYING RUN-TIME SETTINGS - LENGTHLIMITS 231

Lengthlimit 1 2 3 4 5 6

No Grammar 0.019 0.0521 0.0535 0.056 0.0565 0.0565
Manual Grammar 0.0221 0.056 0.0697 0.0784 0.0806 0.0817
Learned Grammar 0.019 0.0562 0.0588 0.0763 0.0772 0.078

Lengthlimit 7 8 9

No Grammar (cont.) 0.0565 0.0565 0.0565
Manual Grammar (cont.) 0.0822 0.0854 0.0854
Learned Grammar (cont.) - - -

Table 9.17: BLEU scores for different lengthlimits.

Lengthlimit 1 2 3

Learned Grammar [N/A] [-0.0806,0.0437] [-0.0166,0.0039]

Lengthlimit 4 5 6

Learned Grammar (cont.) [-0.0380,-0.0031] [-0.0388,-0.0044] [-0.0386,0.0048]

Table 9.18: Different lengthlimits: confidence intervals for BLEU. No con-
fidence interval could be obtained for a lengthlimit of 1, because the values
are the same for the learned grammar and the baseline.

and 9.18 and Figure 9.3), ModBLEU (Tables 9.19 and 9.20 and Figure 9.4),
and METEOR (Tables 9.21 and 9.22 and Figure 9.5) scores. For the system
without a grammar and with the manual grammar, we were able to report
results for lengthlimits up to 9. For the learned grammar, as was said above,
the maximally possible lengthlimit was 6.

It is interesting to note that the system without a grammar (lexicon only)
experiences gains in performance up to a lengthlimit of 3. This is explained
by two phenomena: many entries in the lexicon have a SL side consisting of
more than one token. These entries are not usable when lengthlimit is set to
1. The second reason returns to the Hebrew segmentation issue addressed
above: a given Hebrew input word (as delimited by spaces) can be split into
multiple segments by the morphology module. If so, this word could not be
translated in parts by the system if the lengthlimit is set to 1. It could only
be translated reliably if the correct morphological analysis does not result
in multiple segments. This effect tapers off at a lengthlimit of 3. This is
not unexpected, as most words are analyzed into one or two segments, and
most dictionary entries have either one or two tokens on the SL side.

As for the systems that use the learned and manual grammar, respec-

232 CHAPTER 9. COMPREHENSIVE EVALUATION

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 1 2 3 4 5

’No Grammar’
’Manual Grammar’
’Learned Grammar’

Figure 9.3: BLEU scores across different lengthlimits, comparing no gram-
mar, manual grammar, and learned grammar.

Lengthlimit 1 2 3 4 5 6

No Grammar 0.0676 0.1287 0.1322 0.1354 0.1362 0.1362
Manual Grammar 0.069 0.1297 0.1429 0.1517 0.1539 0.1546
Learned Grammar 0.0676 0.1311 0.1352 0.1498 0.1518 0.1524

Lengthlimit 7 8 9

No Grammar (cont.) 0.1362 0.1362 0.1362
Manual Grammar (cont.) 0.1552 0.1568 0.1568
Learned Grammar (cont.) - - -

Table 9.19: Modified BLEU scores for different lengthlimits.

Lengthlimit 1 2 3

Learned Grammar [N/A] [-0.0074,0.0019] [-0.0076,-0.0012]

Lengthlimit 4 5 6

Learned Grammar (cont.) [-0.0239,-0.0052] [-0.0255,-0.0067] [-0.0263,-0.0070]

Table 9.20: Different lengthlimits: confidence intervals for ModBLEU. No
confidence interval could be obtained for a lengthlimit of 1, because the
values are the same for the learned grammar and the baseline.

9.7. VARYING RUN-TIME SETTINGS - LENGTHLIMITS 233

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0 1 2 3 4 5

’No Grammar’
’Manual Grammar’
’Learned Grammar’

Figure 9.4: Modified BLEU scores across different lengthlimits, comparing
no grammar, manual grammar, and learned grammar.

Lengthlimit 1 2 3 4 5 6

No Grammar 0.171 0.2962 0.3016 0.3012 0.3019 0.3019
Manual Grammar 0.1744 0.297 0.3141 0.3182 0.3232 0.3241
Learned Grammar 0.171 0.2995 0.3072 0.3252 0.3282 0.3293

Lengthlimit 7 8 9

No Grammar (cont.) 0.3019 0.3019 0.3019
Manual Grammar (cont.) 0.3257 0.3276 0.3276
Learned Grammar (cont.) - - -

Table 9.21: METEOR scores for different lengthlimits.

Lengthlimit 1 2 3

Learned Grammar [N/A] p=0.302 p=0.377

Lengthlimit 4 5 6

Learned Grammar (cont.) p=0.086 p=0.067 p=0.050

Table 9.22: Different lengthlimits: confidence intervals for METEOR. No
p-value could be obtained for a lengthlimit of 1, because the values are the
same for the learned grammar and the baseline.

234 CHAPTER 9. COMPREHENSIVE EVALUATION

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0 1 2 3 4 5

’No Grammar’
’Manual Grammar’
’Learned Grammar’

Figure 9.5: METEOR scores across different lengthlimits, comparing no
grammar, manual grammar, and learned grammar.

tively, it is observed that the performance increases as a function of the
increasing lengthlimit. This is not surprising because for longer lengthlimits
more rules can apply and combine. However, it should be expected that the
performance tapers off with increasing lengthlimits as the increasing number
of ambiguities outweighs the benefit of adding new good arcs to the lattice
when more rules can apply, and as the lengthlimit exceeds the length of the
learned rules. Most transfer rules are learned from relatively short examples,
so that there are no transfer rules for extremely long phrases (such phrases
can however still be covered by combinations of rules). Although the argu-
ment of short training examples does not hold for the manual grammar, the
effect of translation quality tapering off is also observed with the manual
grammar: moving from a lengthlimit of 5 to a lengthlimit of 6 results only
in negligible performance gain. The performance boost continues to be very
gradual for lengthlimits higher than 6.

9.8 Varying Training Corpora

9.8.1 Comparison Corpus

So far, we have focused on the results using a training corpus of 120 training
elements. This corpus was specifically designed to be structurally diverse,

9.8. VARYING TRAINING CORPORA 235

which is expected to facilitate learning. In order to test this hypothesis, we
also ran an experiment where we learned a grammar from a corpus of equiv-
alent size (120 training examples), but with less structural diversity. We
took as the training corpus the first part of the original functional corpus.2

This corpus contains a number of sentences and phrases of low complexity,
as for example:

I lost a tooth.

A star was shining brightly.

a car

with his finger

These training examples lend themselves to rule learning in a way similar
to the examples in the structural corpus. However, the structural diversity
in this corpus is more limited than in the structural corpus. Therefore,
taking 120 phrases and sentences from this corpus provides a good basis
for comparison to test our hypothesis: does it help rule learning to create
a corpus that is structurally diverse? Table 9.23 summarizes our findings
(p-value and confidence intervals in Table 9.24).

Grammar BLEU ModBLEU METEOR

No Grammar 0.0565 0.1362 0.3019

Manual Grammar 0.0817 0.1546 0.3241

Learned Grammar (Structural) 0.0780 0.1524 0.3293

Learned Grammar (Comparison) 0.0626 0.1412 0.3123

Table 9.23: Results comparing the Structural Corpus to a comparison corpus
of equal size.

Comparison BLEU ModBLEU METEOR

Comparison Corpus [-0.0160,0.0021] [-0.0097,-0.0005] p=0.345

Table 9.24: Comparison corpus confidence intervals (for BLEU and Mod-
BLEU) and one-tailed t-test for comparison between learned grammar and
baseline.

2Note that this is not the copula corpus, but rather the functional corpus described
in (Probst & Levin, 2002).

236 CHAPTER 9. COMPREHENSIVE EVALUATION

The results indeed support our hypothesis. The structural corpus leads
to a stronger grammar that can perform better on unseen data. However,
it was also found that the comparison corpus, in which structural diversity
was not a high priority, outperforms the baseline.

9.8.2 Additional Training Data

It has been emphasized repeatedly that the goal of the algorithms developed
here is to optimize learning from a very small training corpus. In particular,
the Compositionality algorithms aimed at generalizing as much as possible
(and plausible) away from the training data. We have discussed that such
generalization results in large numbers of ambiguities and thus large lattices.
In fact, in the previous section, we reported that the learned grammar could
be run maximally with a lengthlimit of 6, and that beyond this lengthlimit
the run-time system could not produce the lattices. This indicates that the
algorithms as presented in this thesis were in fact optimized for learning
from a very small dataset.

In this section, we present a very brief exploration of the behavior of
the system when more training data is added. We consider three additional
training sets: the first, which is training data that from the structural cor-
pora described in (Probst & Lavie, 2004). We describe there three versions
of the same structural corpus that differ only in lexical choices, but not in the
structural make-up of their training examples. Three translators translated
parts of these three corpora: one translated version 1, one translated ver-
sion 1 and version 2, and one translated parts of version 3. For this reason,
there is partial overlap between the bilingual data from different translators.
Overall, the combined translations from these versions contain 614 training
examples. We will refer to this as the ‘OtherStruct’ corpus. We further
added training data that stems from an older, and reduced, version of the
functional corpus. Parts of this corpus were translated and word-aligned by
three informants, resulting in a total of 806 sentences and phrases. This
corpus will be referred to as the ‘Reduced’ corpus. Finally, we consider the
addition of the copula corpus that was used for the copula case study in
chapter 8, consisting of 319 sentences. This corpus was translated by one
informant. We call this corpus the ‘Copula’ corpus. In order to simplify our
notation, we refer to the standard 120 sentences and phrases as the ‘Struct’
corpus.

With these corpora at hand, we consider the combinations
Struct+OtherStruct, Struct+OtherStruct+Reduced, and
Struct+OtherStruct+Reduced+Copula, i.e. we add one corpus after an-

9.8. VARYING TRAINING CORPORA 237

other to the training data.

For these corpora combinations, we first learned grammars with the stan-
dard settings of all three major learning phases, Seed Generation, Compo-
sitionality, and Constraint Learning. Not unexpectedly, even for the com-
bination Struct+OtherStruct we were not able to produce a lattice for a
lengthlimit of 6, which was the default lengthlimit in previous experiments.

There are several ways to overcome this problem. We report here on
several possible directions, and conclude which directions are most promising
for future work. As the topic of this thesis is to learn under a very miserly
data scenario, we merely aimed at applying our algorithms to a different
data scenario, not at developing new algorithms for situations when more
data is available. This should be a topic for future work.

9.8.3 Non-Compositional Grammars for Larger Datasets

When learning compositional rules from a larger dataset, the run-time sys-
tem is not able to produce lattices for the learned grammars. For this reason,
the best strategy would be to limit the generality of the learned rules. This
can be accomplished by running the rule learner in a mode where it applies
only the Seed Generation algorithm, not the Compositionality or Constraint
Learning algorithms. Under this setting, the generality of the grammar is
much reduced, as the learned rules cannot combine with each other. They do
however capture not simply the observed training examples, but generalize
away from the training data to the POS level wherever appropriate.

We learned grammars with Seed Generation only for all combinations
mentioned above, and ran experiments for test set 2. The results can be
seen in Tables 9.25 and 9.26.

The above results show that the learning system scales to larger training
sets, and that translation quality increases as more data becomes available.
The copula corpus contains only on the order of a dozen different struc-
tures, so that the translation score did not increase with the addition of
the copula corpus. It can also be observed that the translation score for
the larger training sets exceeds the score that was observed for the com-
positional grammar that was learned from the original Structural Corpus.
This means that with the addition of more training data, improved system
performance can be achieved. Further, we observe that more training data
results in better performance when comparing grammars that were learned
with Seed Generation only. When the training data size was increased, the
translation quality of the Seed Generation grammar that was learned from
the original Structural Corpus is exceeded.

238 CHAPTER 9. COMPREHENSIVE EVALUATION

BLEU ModBLEU METEOR

No grammar 0.0565 0.1362 0.3019
Manual 0.0817 0.1546 0.3241
Struct(SeedGen) 0.0741 0.1498 0.3239
Struct(Compos) 0.0772 0.1519 0.3297
S+O 0.0832 0.1554 0.3263
S+O+R 0.0837 0.1567 0.3308
S+O+R+C 0.0837 0.1567 0.3308

Table 9.25: Results for corpus combinations for Seed Generation only on
test set 2. The combinations are abbreviated as follows: “S” stands for
“Structural Corpus”, “O” is “Other Structural Corpus”, “R” is “Reduced
Functional Elicitation Corpus”, and “C” is “Copula Corpus”.

Comparison BLEU ModBLEU METEOR

S+O [0.0488,-0.0058] [-0.0330,-0.0080] p=0.102

S+O+R [0.0474,-0.0073] [-0.0323,-0.0092] p=0.0501

S+O+R+C [-0.0476,-0.0084] [-0.0324,-0.0093] p=0.0501

Table 9.26: Corpus combinations for Seed Generation only: confidence in-
tervals (for BLEU and ModBLEU) and one-tailed t-test for comparison be-
tween learned grammar and baseline on test set 2. The combinations are
abbreviated as follows: “S” stands for “Structural Corpus”, “O” is “Other
Structural Corpus”, “R” is “Reduced Functional Elicitation Corpus”, and
“C” is “Copula Corpus”.

The above results allow us to plot the translation performance of the
learned rules as a function of the training corpus size. In the figures below,
we plot the BLEU (Figure 9.6), ModBLEU (Figure 9.7), and METEOR
scores (Figure 9.8) for the compared corpora on test set 2.

For comparison, we also report results for the corpus combination Struct+
Reduced. This allows us gain insight into whether the amount of training
data or the quality of the structural corpus resulted in the increase in per-
formance. The results in Table 9.27 (p-value and confidence intervals in Ta-
ble 9.28) indeed indicate that, at least according to BLEU and ModBLEU,
a bigger gain in performance results from the addition of the OtherStruct
corpus than from the addition of the Reduced corpus. It can be conjectured
that this is caused by the higher level of structural variety in the “Other

9.8. VARYING TRAINING CORPORA 239

0.074

0.075

0.076

0.077

0.078

0.079

0.08

0.081

0.082

0.083

0.084

S S+O S+O+R S+O+R+C

B
L

E
U

Training Sets

’BLEU’

Figure 9.6: BLEU scores for different training corpus combinations on test
set 1. The x-axis labels are as follows: “S” stands for “Structural Corpus”,
“O” is “Other Structural Corpus”, “R” is “Reduced Functional Elicitation
Corpus”, and “C” is “Copula Corpus”.

Structural” corpus.

In addition to the fact that translation quality increases with larger
datasets, a number of important observations can be made based on the
observed results.

1. Compositionality is most appropriate for small datasets. Com-
positionality overcomes training data sparseness by generalizing max-
imally over the training data. This is not only useful, but in fact
indispensable when learning from a small dataset. As this thesis fo-
cused on such miserly data scenarios, we have consistently found the
Compositionality approach to be very important. When more training
data is given, Compositionality leads to very general grammars, where
the rules combine freely with each other, resulting in extremely, and
often infeasibly, large lattices.

2. Seed Generation captures important structural transfers. As
has been noted before, Seed Generation produces much less general
rules, as the rules are flat and cannot combine with each other. This
does not mean, however, that Seed Generation does not capture im-
portant structural transfers between the languages. As more data

240 CHAPTER 9. COMPREHENSIVE EVALUATION

0.149

0.15

0.151

0.152

0.153

0.154

0.155

0.156

0.157

S S+O S+O+R S+O+R+C

B
L

E
U

Training Sets

’ModBLEU’

Figure 9.7: Modified BLEU scores for different training corpus combinations
on test set 1. The x-axis labels are as follows: “S” stands for “Structural
Corpus”, “O” is “Other Structural Corpus”, “R” is “Reduced Functional
Elicitation Corpus”, and “C” is “Copula Corpus”.

becomes available, Seed Generation captures more and more of the
structural transfers that are necessary for translations.

3. A trade-off exists between Seed Generation and Composi-
tionality. The trade-off is a function of the training data size.
Compositionality is a means to overcome training data sparseness.
It generalizes to the constituent level, so that combinations of con-
stituent make-ups that were not observed in the training data can be
captured by the rules. As more training data becomes available, fewer
combinations of constituent make-ups are not observed, so that Seed
Generation becomes more powerful and the gain from Compositional-
ity becomes less pronounced. Also, as more data becomes available,
Compositionality leads to overly general rule that over-combine, lead-
ing to infeasibly large lattices. In other words, full Compositionality,
as proposed in this thesis, is most appropriate when the training cor-
pora are small.

9.8. VARYING TRAINING CORPORA 241

0.323

0.324

0.325

0.326

0.327

0.328

0.329

0.33

0.331

S S+O S+O+R S+O+R+C

M
o

d
B

L
E

U

Training Sets

’METEOR’

Figure 9.8: METEOR scores for different training corpus combinations on
test set 1. The x-axis labels are as follows: “S” stands for “Structural
Corpus”, “O” is “Other Structural Corpus”, “R” is “Reduced Functional
Elicitation Corpus”, and “C” is “Copula Corpus”.

9.8.4 Mixed Compositional and Non-Compositional Gram-
mars for Larger Datasets

Although Seed Generation can capture many important structural transfers
as more training data becomes available, it should be possible to exploit the
strengths of Seed Generation and Compositionality at the same time. For
this reason, we have run several exploratory experiments in this direction.

In these experiments, we wanted to explore the possibility of more se-
lective compositionality. In other words, we want to generalize only some,
not all rules, to compositional rules. As the original Structural Corpus was
designed specifically to capture the most important structures, it is an ob-
vious choice to allow only the rules derived from the Structural Corpus to
generalize to compositional rules, and to produce only flat seed rules for the
remaining training data. A lengthlimit of 6 was again infeasible, so that the
experiments had to be run with a lengthlimit of only 4. The results can be
seen in Table 9.29. It was observed that again the addition of more training
data results in increased scores. However, the scores are not as high as the
ones observed in the original grammars. It can be conjectured that this is
mostly due to the forced smaller lengthlimit.

In a similar experiment, we took the top ranking 25% of the composi-

242 CHAPTER 9. COMPREHENSIVE EVALUATION

BLEU ModBLEU METEOR

No grammar 0.0565 0.1362 0.3019
Manual 0.0817 0.1546 0.3241
Struct(SeedGen) 0.0741 0.1498 0.3239
Struct(Compos) 0.0772 0.1519 0.3297
S+O 0.0832 0.1554 0.3263
S+R 0.0746 0.1507 0.3297
S+O+R 0.0837 0.1567 0.3308
S+O+R+C 0.0837 0.1567 0.3308

Table 9.27: Results for corpus combinations for Seed Generation only on
test set 2. The combinations are abbreviated as follows: “S” stands for
“Structural Corpus”, “O” is “Other Structural Corpus”, “R” is “Reduced
Functional Elicitation Corpus”, and “C” is “Copula Corpus”.

Comparison BLEU ModBLEU METEOR

S+R [-0.0348,-0.0025] [-0.0231,-0.0064] p=0.0503

Table 9.28: Corpus combinations for Seed Generation only: confidence in-
tervals (for BLEU and ModBLEU) and one-tailed t-test for comparison be-
tween learned grammar and baseline on test set 2. The combinations are
abbreviated as follows: “S” stands for “Structural Corpus”, “O” is “Other
Structural Corpus”, “R” is “Reduced Functional Elicitation Corpus”, and
“C” is “Copula Corpus”.

tional rules from the original grammar. The rules were the top-scoring rules
from the pruning test (cf. section 9.5). These rules were combined with
the full Seed Generation only learned grammar for the respective datasets.
This is justified by the high scores of the Seed Generation only grammars.
Adding some compositional rules could lead to additional translation power.
The results can be seen in Table 9.30. While it can be seen that the addition
of some compositional rules still hurts performance over the Seed Genera-
tion only grammars according to ModBLEU and METEOR, this experiment
yielded better results than the previous one. Again, the addition of training
data improved translation power to a certain extent. This leads us to con-
clude that such a mixture approach is in fact a promising direction. Future
work will need to address the issue of run-time efficiency, so that the learned
grammars can actually be used with a higher lengthlimit.

9.8. VARYING TRAINING CORPORA 243

BLEU ModBLEU METEOR

No Grammar 0.0565 0.1362 0.3019
Manual 0.0817 0.1546 0.3241
Struct(SeedGen) 0.0741 0.1498 0.3239
Struct(Compos) 0.0772 0.1519 0.3297
S+O,part.compos(1),LL4 0.0747 0.1474 0.3153
S+O+R,part.compos(1),LL4 0.0749 0.1486 0.3201
S+O+R+C,part.compos(1),LL4 0.0749 0.1486 0.3201

Table 9.29: Comparison of no grammar and several learned grammars for
different training corpus sizes. We compare the original Seed Generation
only and compositional grammar to grammars of selective compositional-
ity. For the combinations of the Struct corpus with other corpora, only
rule derived from the Struct corpus are generalized to compositionality as
appropriate. The remaining rules remain flat seed rules. The lengthlimit
for the combinations grammars is 4. “S” stands for “Structural Corpus”,
“O” is “Other Structural Corpus”, “R” is “Reduced Functional Elicitation
Corpus”, and “C” is “Copula Corpus”.

BLEU ModBLEU METEOR

No Grammar 0.0565 0.1362 0.3019
Manual 0.0817 0.1546 0.3241
Struct(SeedGen) 0.0741 0.1498 0.3239
Struct(Compos) 0.0772 0.1519 0.3297
S+O,part.compos(2),LL4 0.0758 0.1484 0.3173
S+O+R,part.compos(2),LL4 0.0758 0.1493 0.3224
S+O+R+C,part.compos(2),LL4 0.0758 0.1493 0.3224

Table 9.30: Comparison of no grammar and several learned grammars for
different training corpus sizes. We compare the original Seed Generation
only and compositional grammar to grammars of selective compositionality.
For the combinations of the Struct corpus with other corpora, only the
top 25% ranking rules from the Struct corpus were included. They were
combined with Seed Rules from the entire training corpus. The lengthlimit
for the combinations grammars is 4. “S” stands for “Structural Corpus”,
“O” is “Other Structural Corpus”, “R” is “Reduced Functional Elicitation
Corpus”, and “C” is “Copula Corpus”.

244 CHAPTER 9. COMPREHENSIVE EVALUATION

Another way to address the run-time efficiency issue is to prune the
grammars as was described in section 9.5. While this seems a straightforward
approach, the run-time system is again the limiting factor. This is because
the first step necessary for pruning is to produce a lattice on the training
set that a grammar was derived from. This again presented problems of
efficiency. We resorted to several helpful heuristics to make this approach
feasible:

1. Manual pruning of the OtherStruct training set to eliminate struc-
tures that will generalize to undesirable compositional rules. We man-
ually eliminated 201 training examples (leaving this corpus with 413
bilingual training examples). For example, a training example for the
structure ADVP→ADJ (i.e. an ADVP consisting only of an ADJ) was
eliminated.

2. When generating the full lattice on the training set, a time-out was
installed: whenever the transfer engine could not produce a full lattice
on a sentence within a certain amount of time, no lattice was produced
for this training sentence. The timeout was set to 5 minutes.

3. When pruning the resulting grammars, we chose to prune the gram-
mar to a similar size as we had observed before with high scores. We
chose the size of the grammar that was pruned to 75% from the de-
fault “original” grammar, and yielded high translation power, which
contains 84 rules. However, simply pruning to 84 rules is not desirable,
as when pruning from very large grammars, it is unlikely that ‘basic’,
but necessary rules, will be in the top 84 rules. For this reason, we
first chose to include three basic rules in the pruned grammar:

ADVP::ADVP [ADV] -> [ADV]

(

(X1::Y1)

(X0 = X1)

(Y0 = Y1)

)

NP::NP [N] -> [N]

(

(X1::Y1)

(X0 = X1)

((Y1 NUM) = (X1 NUM))

9.8. VARYING TRAINING CORPORA 245

(Y0 = Y1)

)

ADJP::ADJP [ADJ] -> [ADJ]

(

(X1::Y1)

(X0 = X1)

(Y0 = Y1)

)

The remaining 81 rules were chosen to be the top-ranking rules ac-
cording to their rule score.

The results of these experiments can be seen in Table 9.31 below. It
can be seen that the series of compromises that had to be made in order to
overcome run-time limitations yielded limited performance.

BLEU ModBLEU METEOR

No Grammar 0.0565 0.1362 0.3019
Manual 0.0817 0.1546 0.3241
Struct(SeedGen) 0.0741 0.1498 0.3239
Struct(Compos) 0.0772 0.1519 0.3297
S+O,compos.pruned,LL4 0.0607 0.1386 0.3051
S+O,compos.pruned,LL5 0.063 0.1414 0.3103
S+O,compos.pruned,LL6 0.0636 0.1421 0.3101

Table 9.31: Automatic evaluation results for a grammar learned from the
original structural corpus plus the other structural corpus. The learned
grammar was 1) scored, and 2) pruned to 84 rules, with c) basic rules such
as NP→N included. We report here results for different lengthlimits. ‘LL’
stands for lengthlimit. “S” stands for “Structural Corpus”, “O” is “Other
Structural Corpus”, “R” is “Reduced Functional Elicitation Corpus”, and
“C” is “Copula Corpus”.

Finally, we chose to perform an oracle-like experiment where we modified
the grammar of 983 seed rules by adding a few compositional rules (12 rules
were added) and deleting some rules that are subsequently subsumed by the
12 new rules (75 rules were deleted). For example, we added the following
rules (with constraints):

246 CHAPTER 9. COMPREHENSIVE EVALUATION

S::S [NP V "AT" NP] -> [NP V NP]

(

(X1::Y1)

(X2::Y2)

(X4::Y3)

((Y3 DEF) = +)

)

{NP,978}

NP::NP [N] -> ["A" N]

(

(X1::Y2)

((Y0 DEF) = -)

)

{NP,979}

NP::NP [N] -> [N]

(

(X1::Y1)

((Y0 DEF) = -)

)

These additions and deletions simulate partial and selective composi-
tionality. The results in table 9.32 show that this selective compositionality
can in fact result in improved performance.

In summary, when moving to larger datasets, the following two issues
must be addressed with the highest priority:

1. Run-time system efficiency. The current algorithms yield rules
that cannot be applied at run-time under optimal lengthlimits.

2. Selective Compositionality. A new mixture algorithm must be
developed that only generalizes to compositional rules where appro-
priate. As this was not the goal of this thesis, such an algorithm has
not been designed. However, we showed that in the oracle experiment
that selective Compositionality can lead to increased performance. In
particular, our algorithms were developed to optimally exploit small
training sets. When learning from larger corpora, compositionality
could be allowed only if considerable evidence is given that this is
desirable. In our approach, due to the sparsity of training data, gen-
eralization is allowed if very little evidence is observed.

9.9. VARYING LANGUAGES - HINDI→ENGLISH TRANSLATION 247

BLEU ModBLEU METEOR

No Grammar 0.0565 0.1362 0.3019
Manual 0.0817 0.1546 0.3241
Struct(SeedGen) 0.0741 0.1498 0.3239
Struct(Compos) 0.0772 0.1519 0.3297
S+O+R+C 0.0837 0.1567 0.3308
S+O+R+C,man.modified, LL4 0.0810 0.1547 0.3315
S+O+R+C,man.modified, LL5 0.0843 0.1580 0.3363

Table 9.32: Automatic evaluation results for a grammar learned from the full
combination of training data, and manually modified to simulate selective
compositionality. We report here results for lengthlimits 4 and 5. ‘LL’
stands for lengthlimit. “S” stands for “Structural Corpus”, “O” is “Other
Structural Corpus”, “R” is “Reduced Functional Elicitation Corpus”, and
“C” is “Copula Corpus”.

9.9 Varying Languages - Hindi→English Transla-
tion

Although most of the experiments reported in this document are for a
Hebrew→English translation system, our goal was to make the algorithms
as language-independent as possible. Hebrew→English is a language pair
that lends itself strongly to our approach, in particular as the two languages
are very different in word order. If two languages are similar in word order,
a word-by-word translation can accomplish acceptable translation perfor-
mance. When many reorderings are necessary, rules such as the ones learned
in our system can truly provide benefit for translation.

As a portability test, we chose our existing Hindi→English MT system.
Elsewhere (Lavie et al., 2003), we give details on this system, which is also
described in this document in chapter 3. In this section, we report results
on an experiment that learns rules from the same structural corpus that
was used for Hebrew rule learning. For this purpose, we had the Structural
Elicitation corpus of 120 sentences and phrases translated into Hindi and
word-aligned. For two phrases, two alternative translations were given, re-
sulting in a total set of 122 training examples. This bilingual corpus served
as the training corpus for the experiments reported below, unless otherwise
noted.

As for Hebrew→English, we use the learned grammar in conjunction

248 CHAPTER 9. COMPREHENSIVE EVALUATION

BLEU 0.1091

Modified BLEU 0.199

METEOR 0.3409

Table 9.33: Hindi baseline evaluation on test set of 122 sentences.

with a Hindi→English lexicon, and compare the performance of the resulting
system to a lexicon-only system. The test set consists of 122 sentences of
newspaper text. In this section, we present the results in somewhat of a
more compressed format than for Hebrew, as the purpose of this section is
to only briefly explore the portability of our algorithms, not to perform as
full a range of experiments as we did in the Hebrew→English case.

In Table 9.33, we first present the Hindi baseline, i.e. lexicon-only eval-
uation results on this test set. No lengthlimit was set.

9.9.1 Hindi Grammars with Hebrew Default Settings

Our first experiment was to run the system ‘as-is’, i.e. with all the ma-
jor learning algorithms, Seed Generation, Compositionality, and Constraint
Learning. No language-specific optimization was performed.

The system learned a number of interesting rules under those settings.
Similarly to Hebrew, the Hindi training sentences are given in an romanized
version. The romanization used for Hindi here is RomanWX, as described
in section 3.5.

;;SL: jaMgala meM

;;TL: IN THE FOREST

;;C-Structure:(<PP> (PREP in-1)(<NP> (DET the-2)(N forest-3)))

PP::PP [NP POSTP] -> [PREP NP]

(

(X1::Y2)

(X2::Y1)

(X0 = X2)

(Y0 = Y1)

)

The rule learner captured in this rule a canonical reordering between
Hindi and English. Hindi uses postpositions, while English uses prepositions.
This implies that any PP must be reordered as captured in the rule above.

9.9. VARYING LANGUAGES - HINDI→ENGLISH TRANSLATION 249

;;SL: muSkIla se vakwa para

;;TL: BARELY ON TIME

;;C-Structure:(<PP> (<ADVP> (ADV barely-1))

(PREP on-2)(<NP> (N time-3)))

PP::PP [ADVP NP POSTP] -> [ADVP PREP NP]

(

(X1::Y1)

(X2::Y3)

(X3::Y2)

(X0 = X3)

(Y0 = Y2)

)

;;SL:bagIce meM se

;;TL:IN FROM THE GARDEN

;;CStructure:(<PP> (PREP in-1)(<PP> (PREP from-2)

(<NP> (DET the-3)(N garden-4))))

PP::PP [NP POSTP POSTP] -> [PREP PREP NP]

(

(X1::Y3)

(X2::Y1)

(X3::Y2)

(X0 = X2)

(Y0 = Y1)

)

This is a special case of the first Hindi rule presented above. Both postpo-
sitions are reordered to appear before the NP. The order of the postpositions
is flipped during translation.

;;SL: purAnI strIta gAdZI

;;TL: THE OLD STREET CAR

;;C-Structure:(<NP> (DET the-1)(<ADJP> (ADJ old-2))

(N street-3)(N car-4))

NP::NP [ADJP N N] -> ["THE" ADJP N N]

(

(X1::Y2)

(X2::Y3)

(X3::Y4)

(X0 = X3)

250 CHAPTER 9. COMPREHENSIVE EVALUATION

(Y0 = Y4)

((Y3 NUM) = (Y4 NUM))

((Y3 PERS) = (Y4 PERS))

)

This rule captures the fact that Hindi does not use determiners before
NPs. The challenge for any translation system into English is then to de-
termine whether to insert ‘THE’, ‘A’, or no determiner at all. This rule
captures one of the possibilities, indefinite NPs with two modifying ADJPs.

While the above rules capture important generalizations, one observation
about the Hindi system is that a large number of rules contain lexical items,
which reduces their generalization power. Consider for example the following
rule:

;;SL:vakwA ne Age kahA

;;TL:ADDED THE SPEAKER

;;CStructure:(<SINV> (V added-1)(<NP> (DET the-2)(N speaker-3)))

SINV::SINV [NP "ne" "Age" "kahanA"] -> ["ADDED" NP]

(

(X1::Y2)

;--;(X3::Y1)

;--;(X4::Y1)

(Y0 = Y1)

)

This rule exemplifies a design choice in the learning algorithms: not one-
one aligned words generally remain lexicalized with few exceptions. This is
done as a precaution against overgeneralization to the POS level. However,
in cases such as the rule above, the result is a lexicalized rule that will
apply to few if any test sentences at run-time. Future work will address
this problem by relaxing the one-one restriction for generalization. In our
experiments, it has proven to be a useful safeguard.

Table 9.34 shows the results for the complete system with all major
learning algorithms, i.e. Seed Generation, Compositionality, and Constraint
Learning, for different lengthlimits. Table 9.34 reports the p-value and con-
fidence interval for the highest-scoring lengthlimit (lengthlimit 1). Note that
for all Hindi test, statistical significance is much easier to accomplish because
the test set is larger than both Hebrew test sets.

A very unexpected observation can be made: the system performs best
with a lengthlimit of 1. This means that the only grammar rules that are

9.9. VARYING LANGUAGES - HINDI→ENGLISH TRANSLATION 251

Lengthlimit 1 2 3 4 5

BLEU 0.1142 0.1112 0.1117 0.1103 0.1103
Modified BLEU 0.2076 0.2073 0.2077 0.2069 0.2069
METEOR 0.3531 0.3537 0.3538 0.3539 0.3539

Table 9.34: Translation results and improvements over baseline for learned
grammars with Seed Generation, Compositionality, and Constraints.

Comparison BLEU ModBLEU METEOR

Struct,LL1 [-0.0059,0.0005] [-0.0077,0.0006] p=0.003

Table 9.35: Grammars learned from Structural Corpus with Seed Gener-
ation, Compositionality, and Constraints evaluated at lengthlimit 1: confi-
dence intervals (for BLEU and ModBLEU) and one-tailed t-test for compar-
ison between learned grammar and baseline. ‘LL’ indicates the lengthlimit.

applied are ones whose SL component sequence is of length 1. Closer inspec-
tion found that the single most powerful rule in the Hindi→English system
is the following:

NP::NP [N] -> ["THE" N]

(

(X1::Y2)

)

This rule, while seemingly very basic, is very powerful for translation
from Hindi into English, because Hindi does not use determiners in noun
phrases, unlike English. Therefore, the simple insertion of a definite deter-
miner when translating from Hindi into English results in a gain in transla-
tion power.

9.9.2 Non-Compositional Rules for Hindi→English transla-
tion

To test whether different learning settings lend themselves better to the
Hindi→English translation system, we learned rules using only the Seed
Generation module. This results in rules that are flat and do not combine
with each other. However, the rules are, wherever possible, generalized to
the POS level, so that they capture important structural differences between
the two languages. A few examples of learned rules are given below.

252 CHAPTER 9. COMPREHENSIVE EVALUATION

;;SL:nayIM SAsakIya imAraweM

;;TL:NEW PUBLIC BUILDINGS

;;CStructure:(<NP> (<ADJP> (ADJ new-1))

(<ADJP> (ADJ public-2))(N buildings-3))

NP::NP [ADJ ADJ N] -> [ADJ ADJ N]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

)

This rule exemplifies how Seed Generation results a flattening of the
input structure. In this case, the English ADJPs are each represented only
by the POS label ‘ADJ’. This results in a less general rule that will only
apply to the specific POS sequence in the SL component sequence. A similar
observation can be made for the following rule:

;;SL:bahuwa sIXA Ora sakrIya

;;TL:HIGHLY DIRECT AND ACTIVE

;;CStructure:(<ADJP> (<ADVP> (ADV highly-1))

(<ADJP> (ADJ direct-2)(CONJ and-3)(ADJ active-4)))

ADJP::ADJP [ADV ADJ CONJ ADJ] -> [ADV ADJ CONJ ADJ]

(

(X1::Y1)

(X2::Y2)

(X3::Y3)

(X4::Y4)

)

Here, the ADVP ‘DIRECT AND ACTIVE’ is not recognized as such,
and generalization is only done up to the POS level.

;;SL:samAcAra se bahuwa prasanna

;;TL:VERY HAPPY ABOUT THE NEWS

;;CStructure:(<ADJP> (<ADVP> (ADV very-1))(ADJ happy-2)

(<PP> (PREP about-3) (<NP> (DET the-4)(N news-5))))

ADJP::ADJP [N POSTP ADV ADJ] -> [ADV ADJ PREP "THE" N]

(

(X1::Y5)

(X2::Y3)

9.9. VARYING LANGUAGES - HINDI→ENGLISH TRANSLATION 253

(X3::Y1)

(X4::Y2)

)

As in the compositional case, the major problem with the grammar is
that a large number of rules contains lexical items, in particular open-class
lexical items. Consider, for example, the following rule:

;;SL:acCI samAjIka prawimA

;;TL:A GOOD PUBLIC IMAGE

;;CStructure:(<NP> (DET a-1)(<ADJP> (ADJ good-2))

(<ADJP> (ADJ public-3))(N image-4))

NP::NP ["acCI" ADJ N] -> ["A" "GOOD" ADJ N]

(

;--;(X1::Y2)

(X2::Y3)

(X3::Y4)

)

Why would the pair ‘acCI’→‘GOOD’ remain lexicalized, even though
the words are aligned one-one? The Seed Generation algorithm contains a
number of precautions against generalizing to the POS level. In this case,
‘acCI’ and ‘GOOD’ remain lexicalized because the Hindi→English lexicon
contains an entry for this pair whose English POS label does not match the
POS label given in the parse. While this is simply noise in the lexicon, the
automatic safeguard cannot distinguish between noise and an actual case
where the POS label cannot be assigned reliably to the Hindi word during
rule learning. For this reason, the words remained lexicalized. This points
again to the dependence of the rule learner on the reliability of the underlying
resources. When the underlying resources contain noise, the rule learner
cannot operate under optimal conditions. In the future, such problems can
be tackled only with more data, which would result in more evidence. Given
more evidence, better decisions can be made. This thesis focused on learning
from extremely small datasets. As has been mentioned throughout, the small
size of the training corpus implies a poverty of evidence, and thus greater
reliance on the underlying resources.

The automatic evaluation results for this experiment can be found in
Table 9.36, the corresponding p-values and confidence intervals in Table 9.37
for the highest-performing lengthlimit. As was seen in other experiments
throughout this document, the Seed Generation algorithm is able to capture

254 CHAPTER 9. COMPREHENSIVE EVALUATION

Lengthlimit 1 2 3 4 5

BLEU 0.1142 0.1148 0.1148 0.1134 0.1134
Modified BLEU 0.2076 0.209 0.2087 0.208 0.208
METEOR 0.3531 0.3557 0.3555 0.3555 0.3555

Table 9.36: Translation results and improvements over baseline for learned
grammars with Seed Generation only.

Comparison BLEU ModBLEU METEOR

Struct,SeedGen,LL2 [-0.0064,0.0005] [-0.0087,-0.0011] p=0.002

Table 9.37: Grammar learned from Structural Corpus with Seed Generation
only, evaluated at lengthlimit 2: confidence intervals (for BLEU and Mod-
BLEU) and one-tailed t-test for comparison between learned grammar and
baseline.

important generalizations, and can in fact result in improved translation
power. In the Hindi case, the Seed Generation only algorithm actually
results in better performance than the rules that were learned with all major
learning algorithms.

Note that in this case, the best performance occurs at a lengthlimit of
2 (rather than 1, as before). This has to do with the fact that the Seed
Generation only grammar contains the following rule, in addition to the
basic ‘THE’ insertion rule above:

;;SL:jaMgala meM

;;TL:IN THE FOREST

;;CStructure:(<PP> (PREP in-1)(<NP> (DET the-2)(N forest-3)))

PP::PP [N POSTP] -> [PREP "THE" N]

(

(X1::Y3)

(X2::Y1)

)

This rule encodes a quintessential reordering between Hindi and Eng-
lish, where a Hindi postposition (which stands after the noun) turns into a
preposition in front of a noun in English. In addition, this rule encodes the
insertion of the definite article ‘THE’ when translating into English. The
question now arises why this rule did not benefit to the same extent the

9.9. VARYING LANGUAGES - HINDI→ENGLISH TRANSLATION 255

compositional grammar reported above. For comparison, the compositional
version of this rule (as learned by the rule learner with Compositionality),
is:

;;SL:jaMgala meM

;;TL:IN THE FOREST

;;CStructure:(<PP> (PREP in-1)(<NP> (DET the-2)(N forest-3)))

PP::PP [NP POSTP] -> [PREP NP]

(

(X1::Y2)

(X2::Y1)

(X0 = X2)

(Y0 = Y1)

)

In this case, the rule is more general and encodes the reordering of Hindi
postpositions to the beginning of a NP when translating into English. It
would be expected that this rule would result in improved translation. The
problem that was encountered in our experiments was that it is often difficult
to correctly propose the span of a NP, so that the postposition can be
correctly reordered. Hindi is highly ambiguous with respect to the span of
NPs. In other words, there are often many sequences of words which could
together form a NP. At run-time, this results in a very large number of
ambiguities, thus producing a lattice that proposes many possible positions
for the postposition. In many cases, the NP however spans only one noun. In
this case, the non-compositional rule can correctly reorder the postposition
(and insert the determiner). In other words, the non-compositional rule can
apply correctly to most cases where this rule should apply. In addition, the
compositional rule introduces a large number of ambiguities, most of which
are naturally incorrect. For this reason, the non-compositional rule performs
better overall.

9.9.3 Learning from Additional Data

We further performed an experiment in which we added additional training
data, 149 sentences and phrases from the Reduced training corpus that was
also used for Hebrew. The additional data resulted in a training corpus of
a total of 271 sentences and phrases. The results, as listed in Table 9.38
suggest that adding more training data has a certain, but small, positive
impact on the results. The results are highly statistically significant for

256 CHAPTER 9. COMPREHENSIVE EVALUATION

Lengthlimit 1 2 3 4 5

BLEU 0.114 0.1144 0.1144 0.1131 0.1131
Modified BLEU 0.2072 0.2081 0.2087 0.2079 0.2079
METEOR 0.3545 0.3569 0.3573 0.3573 0.3573

Table 9.38: Translation results and improvements over baseline for learned
grammars with Seed Generation only, learned with additional data.

ModBLEU and METEOR, and further statistically significant with close to
95% confidence for BLEU.

Comparison BLEU ModBLEU METEOR

Struct,LL1 [-0.0059,0.0005] [-0.0077,0.0006] p=0.003
Struct,SeedGen,LL2 [-0.0064,0.0005] [-0.0087,-0.0011] p=0.002
Struct+add’l,SeedGen,LL3 [-0.0059,0.0010] [-0.0088,-0.0008] p=0.005

Table 9.39: Grammars learned from Structural Corpus and from Structural
Corpus with additional training data with Seed Generation only, evaluated
at lengthlimits 2 and 3, respectively: confidence intervals (for BLEU and
ModBLEU) and one-tailed t-test for comparison between learned grammar
and baseline. ‘LL’ indicates the lengthlimit.

9.9.4 Conclusion of Hindi→English Portability Test

The accomplished improvements for Hindi are plotted in Figure 9.9.

In conclusion, the following inherent weaknesses of the learning algo-
rithms most contributed to the performance drop when porting the system
to a new language pair:

• Verb phrases and verb complexes. It has been observed that
many of the translation variation between Hindi and English lies in
verb phrases (Dorr et al., 2003). Verb phrases are not currently cap-
tured by our current system. The system could still learn rules for verb
complexes, which would be less general than the VP level. However,
since it was not the goal of this work to target verb phrases or verb
complexes, the structural training corpora do not contain examples for
important verb complexes. Possible extensions to the current system
to include verb phrase handling are discussed in section 10.3.

9.9. VARYING LANGUAGES - HINDI→ENGLISH TRANSLATION 257

BLEU ModBLEU METEOR
0

0.01

0.02

0.03

0.04

0.05

0.06

P
er

ce
nt

 Im
pr

ov
em

en
t/1

00

Learned Grammar Struct,LL2
Learned Grammar Struct+OtherStruct,LL3

Figure 9.9: Improvement over Baseline for Hindi→English translation.

• Less reordering during translation. Our system is strong at dis-
covering how constituents and words must be reordered during trans-
lation, so that significant improvements can be gained when such re-
orderings are actually necessary during translation. When translating
from Hindi into English, the most common reordering (outside of verb
complexes) is the reordering of a Hindi postposition as a preposition in
English. Hebrew→English translation, on the other hand, has 1) more
and 2) more frequent such reorderings, such as adjectives that appear
mostly after the modified noun in Hebrew and before the modified
noun in English.

• Fewer one-one aligned words. Our Seed Generation algorithm
generally does not generalize to the POS level if words are not one-
one aligned. This has been found to be an effective safeguard against
overgeneralization. When learning Hindi→English translation rules,
many words remain lexicalized because of this restriction. Among
other issues, future work (as described in section 10.3) will focus on
an extension to handling not one-one aligned words.

• Weaker lexicon. A related issue is the strength of the translation
lexicon in terms of POS assignments. As we discussed when describing
the Seed Generation algorithm (see chapter 6), generalization to the

258 CHAPTER 9. COMPREHENSIVE EVALUATION

POS level depends in part on whether the translation pair is marked
with the expected POS labels in the dictionary. If the underlying
translation dictionary contains fewer correct translation pairs and/or
fewer correct POS labels for the translation pairs, less generalization
to the POS level is performed during Seed Generation.

• Ambiguities in determining NP span. As was said before, one of
the most prominent reordering phenomenon for Hindi→English trans-
lation is the translation of Hindi postpositions as English prepositions.
In order to do this correctly, it is necessary to determine the exact
span of the NP, so that the postposition can be inserted into the cor-
rect position when translating into English. Because of ambiguities,
the English preposition is not inserted in the correct position reliably.
This problem can only be solved if all aspects of the learning and run-
time system (i.e., morphology, lexicon, rule learning) become stronger,
or if the transfer engine allows for probabilistic transfer.

Future work should address these points in particular. This is described
in section 10.3. Despite the weaknesses of the current Hindi→English sys-
tem, it is encouraging to note that without a considerable amount of language-
specific engineering, the system can still accomplish a considerable improve-
ment in performance over the baseline.

Chapter 10

Conclusion

10.1 Contributions

Throughout the document, we have made arguments of why this work is an
important contribution to the Machine Translation community. The goal of
this section is to collect these arguments, at the end of the document, in
order to create a more coherent and full picture of how this thesis contributes
to MT research. The main contributions are summarized in Figure 10.1.

We have proposed a novel approach to learning transfer rules from bilin-
gual data, using a variety of resources. A series of three algorithms analyzes
the training data and infers transfer rules. We showed improved translation
quality on Hebrew→English and Hindi→English translation tasks.

In our work, we have focused on learning from extremely small datasets.
Most of the grammars presented in this document were learned from 120
training examples. This is a novel contribution, as it has as yet not re-
ceived attention in the literature. The approach we have taken in this work
is to produce rules that are similar in format to what a human grammar
writer would write, and that aim at capturing similar phenomena. Man-
ually written grammars are complex in their make-up: they are generally
compositional, and they are often annotated with unification constraints.
The challenges of this work were 1) to learn grammars in a similarly com-
plex hypothesis space, 2) to do so from extremely limited datasets, and 3)
in the absence of a TL parser. We believe that this work has pushed the
state of the art research into these directions. To our knowledge, no existing
system has approached this particular problem before.

Not only were we able to learn meaningful grammars, however. We have
also shown that the automatically learned rules are useful in producing more

259

260 CHAPTER 10. CONCLUSION

Research Contributions of the Presented Thesis

1. Framework for learning transfer rules from bilingual data

2. Improvement of the quality of MT output: translation
quality of system with learned rules that is

• superior to a system that does not use the learned
rules

• comparable to the performance using a small man-
ual grammar written by an expert

3. Proposing a method to overcome the bottleneck for
transfer-based MT

4. Encouraging MT research in the direction of incorporat-
ing syntax into statistics-based systems

5. Addressing limited-data scenarios with ‘frugal’ tech-
niques

6. Combining a set of different knowledge sources in a
meaningful way, and doing so quickly

7. Human-readable rules that can be improved by an ex-
pert or system

8. Rule base input to feedback-based automatic refinement
system

Figure 10.1: Summary of contributions.

10.1. CONTRIBUTIONS 261

grammatical output. Our experiments show that the learned grammars cap-
ture important linguistic phenomena, in particular reorderings of words and
entire constituents and passing of features from source to target language.
This shows that we can, to a certain extent, automatically capture the syn-
tax of a language in an unsupervised manner by inferring information from
a major language parse and bilingual data. We showed that the automat-
ically learned rules improve translation output, and can yield comparable
performance to a small manually written grammar.

Another contribution of this thesis is that it overcomes the problem of
long development times that has traditionally been the biggest bottleneck
of syntax-based MT. In the past, most transfer-based systems relied on
an extensive manually written rule base, which often took many human
years to develop. This approach is targeted specifically at overcoming this
bottleneck by introducing an automatic way to infer such transfer rules.
Furthermore, the rules are learned from very small training sets. This allows
us to minimize the amount of necessary human involvement.

One of the most important contribution of this work is to encourage the
Machine Translation community to further integrate statistical techniques
with syntactic approaches. Syntax-based MT and statistical MT have not
traditionally been regarded as approaches that can be integrated easily. Here
we propose a framework within which the integration can be accomplished.
The learning of syntactic rules is done independently of decoding. Our learn-
ing approach allows for a very fine-grained hypothesis space. We can learn
rules within this space, and then integrate them easily into the statistical
system. The rule learning module requires some word-aligned data, as this
work as focused on minority languages, and thus on very small, but high-
quality corpora. Future work may address rule learning from any bilingual
corpus with automatic word alignments. Then the approach presented here
could be used within any statistical system, using whatever training data is
available for the statistical system as well.

The lack of large training corpora for the language pairs of relevance for
this work forced us to use techniques specific to small high-quality corpora.
For instance, we opted for eliciting word alignments in order to reduce noise
in the training data. The rule learning algorithms were carefully designed to
work on small corpora. For instance, the Compositionality techniques pre-
sented in this document are aimed at maximizing the generality and thus
applicability of the grammar. More lexicalized rules would apply to much
fewer circumstances meaning that more training data will be necessary to
get broad coverage. We also showed that Compositionality Learning is opti-
mized for small corpora, and can boost performance under such a scenario.

262 CHAPTER 10. CONCLUSION

For larger corpora, we showed that more selective Compositionality is nec-
essary.

When learning rules within a rich hypothesis space and from very little
data, one cannot overstate the importance and difficulty of integrating a
variety of knowledge sources in a meaningful way. One of the premises of
this work has been to integrate whatever knowledge is available. This means
making the best use possible of an English parser as well as morphology
modules, but also a head table for English, word alignments, an incomplete
and not noise-free dictionary, a list of irregular English verbs, etc. The basic
difficulty is that none of these resources are perfect or noise free. In fact,
they often disagree, and it is difficult to resolve the conflict, as well as any
remaining ambiguity, meaningfully. For example, we are often faced with a
question such as “What is the most likely part of speech for a given Hebrew
word in this context?” We can consult several resources: 1) we can consider
the POS of the aligned English word, which we know from the parse. This is
a good idea if the Hebrew and English words are aligned one-one. 2) we can
consider the Hebrew-English dictionary. In order to do that, we must first
determine the most likely root of the Hebrew word. This can in principle be
accomplished using the Hebrew morphology module. In practice, however,
any Hebrew word could have multiple analyses, and thus multiple possible
roots. Once the root is determined, there may be several entries for a given
Hebrew word in the dictionary, so that it is not obvious which one is the
correct entry. What if there is only one entry, and its POS is different from
the POS proposed by the morphology module, and in turn different from
the POS of the aligned English word? How can we design criteria that will
meaningfully combine these sources of information?

In this thesis, we did not focus on such questions of inconsistency of
underlying resources. They are common to any natural language system
that incorporates morphological or structural analysis. The fact that despite
these difficulties, we succeeded in learning meaningful rules and improving
translation output definitely speaks strongly in favor of our approach. If and
when the underlying resources improve in quality, the rule learning system
will in turn improve in quality as well.

As we do not want to be idle and wait simply until other resources im-
prove, we also designed our learning approach such that the learned gram-
mars can serve as a ‘raw version’ of a transfer grammar that is refined either
by an expert or an interactive rule refinement module. This is because the
rules are of very fine granularity, in particular because of the unification
constraints. This allows for interactive refinement with user feedback. The
system described in (Font-Llitjós, 2004) proposes to use user corrections to

10.2. LESSONS LEARNED 263

refine learned grammar rules. Non-expert users correct MT output that was
produced with the learned rules. The system then assigns blame to specific
rules, and fixes the rules so that the MT output will no longer be faulty.
The importance of the work presented here is that the rules have enough
specific details and constraints to allow for this process to happen.

Finally, one obvious contribution of this work is that it provides a syn-
ergy between statistical techniques and transfer-based techniques: as was
said above, it allows for the integration of syntactic rules into a statistical
system. But in addition, the learned rules are human-readable. This means
that experts can post-process the learned rules. In other words, the work
developed here can be seen as a way to bootstrap the development of new
grammars. This was not the original intention, and is not how we use the
rule learning module in our work. However, it is important to stress that
our rule learning system can be used also in the context of transfer-based
systems where the automatically learned rules serve as hypotheses that hu-
man grammar writers can post-process, refine, and augment. With first
hypotheses given to the experts, a speed-up in grammar development time
can be expected.

10.2 Lessons Learned

After presenting the rule learning algorithms as well as their performance
in practice, this chapter will summarize once again the conclusions that can
be drawn and the lessons that were learned.

1. When combining a number of resources, the performance of the
algorithm depends to a certain extent on how reliable the
underlying resources are, and how they are combined when they
contradict each other. This implies that further development of un-
derlying resources could in the future lead to better rule learning per-
formance.

2. The three learning phases, Seed Generation, Compositionality,
and Constraint Learning perform well under different cir-
cumstances:

• Seed Generation performs well when a large amount of training
data is given. Seed Generation can be seen as a way to induce
flat transfer rules from data, i.e. rules that are generalized to
the POS level wherever possible, but that cannot combine with

264 CHAPTER 10. CONCLUSION

each other. Its specific boundary is completely lexicalized rules.
This specific boundary is not generally reached, and thus Seed
Generation provides a certain amount of generalization over the
training data.

• Compositionality Learning without the assumption of
Maximum Compositionality performs well especially when
there is little training data. Under those circumstances, the costly
training-time efficiency is not an issue. Furthermore, this algo-
rithm generalizes only when the generalization is licensed by pre-
viously learned rules and thus by the training data. Generally,
this algorithm tends to perform comparable to Compositionality
Learning with the assumption of Maximum Compositionality.

• Compositionality Learning with the assumption of Max-
imum Compositionality is most appropriate when maximum
generalization over the training data is desired. This algorithm
generally produces rules that are most human-readable and most
similar to rules that a human grammar writer would write when
faced with the same training example. Compositionality learning
with the assumption of Maximum Compositionality has the fur-
ther advantage of linear learning time. When it is used for large
training sets, however, the grammar must be pruned of spurious
rules, as the generality of the grammar results in potentially very
large lattices at run-time.

• Constraint learning allows us to limit the generality of the
grammar in a way that is different from pruning: pruning elimi-
nates rules completely, while constraints limit the applicability of
a rule or limits the set of possible outputs. It is useful to eliminate
arcs from the lattice that would merely slow down the run-time
system, and it thus results in improved run-time efficiency with-
out compromising translation quality to a large degree.

3. Pruning of rules from the grammar based on the estimated transla-
tion power of the rules is another means to improve run-time efficiency.
The pruning of ineffective rules results in the elimination of arcs from
the lattice that do not provide good partial translations, and that
merely slow down the run-time system. Ideally, pruning also elimi-
nates arcs that are bad translations and that would have been chosen
by the decoder had they been provided. In such cases, pruning can
achieve an improvement in translation quality.

10.2. LESSONS LEARNED 265

4. Language Portability depends on the specific language pair.
Our portability test to Hindi→English showed that we can accom-
plish improved translation power on this language pair, but that the
Hindi→English translation task does not lend itself as well to the struc-
tural learning task as Hebrew→English does. This is caused, among
others, by the following:

• Hindi→English exhibits fewer reorderings than Hebrew→English.
For example, Hebrew→English translation requires reordering of
adjectives and nouns, reordering of noun compounds, etc. On the
other hand, Hindi→English translation mainly requires reorder-
ings in prepositional phrases, where Hindi postpositions must be
moved in front of the NP. These reorderings are less common
than the Hebrew→English reorderings, causing the learned rules
to have less effect.

• A large portion of the translation mismatches between Hindi and
English lie in VPs, an area of research that this thesis did not
tackle. In section 10.3, we will discuss this issue in greater detail.

5. Additional Training Data can lead to better performance. We
showed that the addition of training data can lead to better perfor-
mance. Because of limitations of the run-time system, lenient compo-
sitionality is not the optimal choice in this context. Instead, producing
flat rules that do not combine leads to improved performance. Future
work should include devising more selective methods of compositional-
ity. When learning from a very small corpus, as was done throughout
this thesis, the best choice is to introduce compositionality to overcome
training data limitations wherever possible. When more training data
is available, there are fewer limitations with this data, so that composi-
tionality leads to more ambiguity while not leading to much increased
generalization power.

What can we learn from these lessons? One conclusion is that the dif-
ferent learning algorithms that were proposed are suitable for different cir-
cumstances. The learning system is flexible enough to run in a variety of
settings, where the specific settings can, and should, be adapted to the sit-
uation at hand. What settings to choose will depend to a large degree on
the language pair as well as on the amount of training data available.

We can conclude that we have designed a flexible and novel approach
to learning transfer rules for MT. The full suite of learning algorithms is
optimized for scenarios where very little bilingual training data is available.

266 CHAPTER 10. CONCLUSION

10.3 Future Work

While any thesis is a substantial piece of research work, it also opens up
more research directions. This thesis is no exception. Future directions
for this work can be seen as falling into two categories: first, pursuing a
similar direction in learning rules from very small corpora and for minority
languages, and second, modify the algorithms developed here to work on
large, uncontrolled corpora.

10.3.1 Learning from Larger Corpora

We have presented a framework for learning transfer rules for Machine Trans-
lation. In particular, we have focused on learning from a very small corpus.
In the future, we hope in particular to apply the rule learning approach
described in this thesis to large uncontrolled corpora. This can safely be
considered the largest and most promising area for future work: while we
believe that the automated learning techniques developed here will be useful
for large corpora, we have not explored this area in detail. Our feasibility
study and our study with non-compositional rules showed that more se-
lective compositionality is the most promising avenue in this area. In the
future, we hope to further pursue this direction. If we succeed, then we will
have an extremely adaptive learning approach that can work successfully for
a variety of language pairs and corpus sizes.

The first step in this direction is to develop robust techniques to learn
from automatic word alignments and automatic parses. When learning from
much larger corpora, it will not be feasible to get reliable manual word
alignments. The challenge will then be to use automatic alignments, which
can be expected to be noisier than manual alignments.

Further, the two areas that will have to receive most attention in the
future are 1) training corpora enhancement, and 2) rule scoring. We will
now briefly discuss these areas.

10.3.2 Training corpora enhancement

Training corpora enhancement is a technique that allows one to create train-
ing examples at different levels, e.g., NPs, ADJPs. We have developed a
technique for accomplishing this task, as described briefly in (Lavie et al.,
2003) and (Font-Llitjós et al., 2004). For example, a training example at
the sentence level can be split up at different levels, e.g., NPs, PPs, etc. as
follows: A new training example can be created by extracting the partial

10.3. FUTURE WORK 267

parse for the NP (or PP), the sub-sentential TL chunk, as well as the cor-
responding SL chunk, and the relevant word alignments. We did not use
this technique in the experiments reported here, because it is not a com-
pletely fail-safe operation, and because the structural corpus was designed
specifically to contain training examples at different levels. When learning
from uncontrolled corpora, however, training data enhancement will be very
important, because all training data will be given only in the form of full
sentences. The Compositionality module depends on having rules learned
at different levels, and at run-time rules can only combine if they are at
different levels.

10.3.3 Rule Scoring and Filtering

The second specific component that will have to receive additional atten-
tion when learning from larger corpora is rule scoring and filtering. The
rule learning system will learn a larger number of rules from a bigger train-
ing corpus. The advantage of this will be that frequency scores and other
statistics will become usable. However, any training corpus, in particular
large uncontrolled corpora, will contain some amount of noise, resulting in
noisy rules. Thus more noisy rules will be learned, and filtering will become
very important. Overall, however, we believe that adapting the present ap-
proaches to work on much larger corpora, and with automatic parses and
word alignments, is the most prominent future direction of this work.

10.3.4 Constructions, Divergences

In the section on advanced structural learning, we discussed different ap-
proaches that have been proposed to explaining variation that occurs dur-
ing translation. One theory is the theory of constructions, which views all
of language as specific constructions, and argues that syntax derives from
how a language chooses to express a certain concept (Levin & Nirenburg,
1994). A different approach, the divergence approach (Dorr, 1992) classifies
translation variation into several categories, such as categorial variation or
structural divergence. In this section, we will discuss how some of the types
of translation variation could be handled by our rule learner, i.e. how our
algorithms could be expanded to be able to capture more variation than it
is able to capture now.

We will discuss the following types of variation that are both high priority
and that hold promise for boosting the strength of the system beyond what
it can do so far.

268 CHAPTER 10. CONCLUSION

1. Verb handling. These two categories require some complex handling
of verb phrases or verb complexes.

2. Categorial variation. We have already discussed this issue in the
context of lexicon enhancement, in particular for Hebrew adverbs.
Here, we provide possible extensions.

3. Structural variation. Structural variation, e.g., conflation of two
words into one, is already handled in part by the existing algorithms.
Again, we will discuss areas of possible extension.

4. Other constructions. While arguably all of the above fall under con-
structions, we propose here a more general approach to handling con-
structions. Such an approach could apply to any type of construction,
while the previous three were specific to certain phenomena. Often,
constructions provide a certain amount of generalization power, but
are usually bound by specific lexical items. We will discuss possible
approaches to handling constructions.

Verb Handling

Let us fist turn to the handling of verbs, as it should receive the most
attention in future work. In this thesis, we have chosen not to handle VPs.
This is because VPs are very diverse, and their make-up often depends on
the specific verb’s subcategorization information. For example, some verbs
require a direct object, some a direct and an indirect object, etc. The
subcategorization information is specific to a verb. Our rules, however,
capture structures that are generally applicable to all or most words of a
given POS. Since we are using a very small training corpus, we aim to not
learn rules that are bound by specific lexical items, especially if those lexical
items are of an open word class.

How can verb complexes be learned? We will illustrate the issues with
examples from Hindi and Hebrew. In Hindi, many verbs appear in the
citation form, and the verb form is expressed using an inflected light verb
such as ‘honA’ or ‘karanA’, which expresses the form that the verb is in.
For example:

V::V |: ["praxAna" "karawA" "WA"] -> ["used to give"]

(

(X1::Y1)

)

10.3. FUTURE WORK 269

and

V::V |: ["praxAna" "karawe" "hue"] -> ["giving"]

(

(X1::Y1)

)

The inflected form of ‘karanA’ (‘karawA’ and ‘karawe’ in the examples)
together with the constant lexical items ‘WA’ and ‘hue’ mark the inflection
of the verb. In English, the first is expressed as a verb complex, whereas
the second is expressed as an inflected form of the verb.

In order to handle such cases, we would first need to design an exten-
sive verb corpus that elicits verbs in all different forms. The corpus would
furthermore need to elicit all verb forms for a number of different verbs,
because forms are sometimes expressed differently depending on the specific
verb. Irregular verbs are one example of this phenomenon. Another exam-
ple is that in Hindi, some verbs occur not with forms of ‘karanA’, but with
forms of ‘honA’, as in the example below:

V::V |: ["kula" "hoke"] -> ["adding"]

(

(X1::Y1)

)

Some verbs occur with neither of these light verbs, but in some other
form.

Thus, the first challenge would be to design a corpus that would provide
enough training examples for all different verb forms. This is however not
enough. Consider again the two examples of ‘karanA’. The first could be
generalized to the following rule:

VC::VC [V "karawA" "WA"] -> ["used to" V]

(

(X1::Y1)

)

This rule is a rule that the current learning system can infer, and that
the run-time system can handle. The second example, however, would need
to be handled as follows:

270 CHAPTER 10. CONCLUSION

VC::VC |: [V "karawe" "hue"] -> [V]

(

(X1::Y1)

((Y1 FORM) = GERUND)

)

The above two VC rules could be learned in almost the desired form
provided that 1) there are examples in the training corpus 2) the Hindi
and English morphological analysis modules give the correct analyses and
3) the relevant word translation entries can be found in the dictionary. The
problem with this rule is that the run-time system does not currently sup-
port morphological generation in English, as all morphological generation
information is encoded in the dictionary. The best solution for this problem
would in fact be an English generation module.

Finally, the proposed handling of verb complexes does not correctly cover
all verbs. Consider the following example for Hebrew→English translation,
where the English auxiliary and verb ‘spread’ across the sentence:

ANI TMID AAHWV AWTX

I always like.1st.sg.fut you.sg.f.acc

‘I will always like you’

If we had learned a VC rule that inserts a ‘WILL’ in English to mark
future, it would look as follows:

VC::VC [V] -> ["WILL" V]

(

(X1::Y2)

(X1 FORM) = FUT)

)

This rule correctly turns a Hebrew future verb into an English future
verb complex. It can however not apply to the bilingual sentence pair given
above. The only way for it to apply properly would be a rule as follows:

S::S [NP ADVP VC NP] -> [NP VC(Part1) ADVP VC(Part2) NP]

(

(X1::Y1)

(X2::Y3)

(X3::Y2)

(X3::Y4)

10.3. FUTURE WORK 271

(X4::Y5)

)

In other words, the VC rule ‘interleaves’ with the S rule. This is some-
thing that the current run-time system does not support. For this reason,
we propose a two-step process, where we first produce the English sequence

[NP VC ADVP NP]

‘I’ ‘WILL LIKE’ ‘ALWAYS’ ‘YOU’

and then, in a post-processing step, reorder the produced sequence to
produce the proper English ordering. The post-processing module could be
applied to a variety of cases, not only to distributed verb complexes. It
will be similar in spirit to what was proposed in (Dorr et al., 2002), which
reorders English sequences to more closely reflect the constituent order of
another language. This is a potentially large area of future work.

To summarize, we propose to handle verbs and verb complexes with the
following steps:

1. Design a training corpus that elicits verb complexes and verbs in all
forms.

2. Integrate English morphological generation.

3. Add a post-processing module to deal with interleaving rules.

Categorial Variation

The second type of translation variation that should be handled in future
work are categorial variations. We have already proposed a method that ex-
pands the lexicon automatically by scanning the training data for examples
of systematic categorial variation, for example between English adverbs and
their Hebrew expression as a preposition plus a noun. This approach could
be expanded to cover a larger number of contexts. For example, in the
solution proposed in section 7.6.3, we automatically deduced derivational
morphology rules for English. In the future, we will consider using such re-
sources as the categorial variational database (or CatVar for short, (Habash
& Dorr, 2003)). Such a database will allow us to find the correspondents for
a given English word in a different part of speech, and will thus allow us to
detect more cases of categorial variation. For example, if a Hebrew or Hindi
word was translated into an English word, but the correspondence is not
found in a dictionary, the current algorithm leaves the words lexicalized.

272 CHAPTER 10. CONCLUSION

In the future, we could check whether there exists a lexicon entry for all
categories of the English word. If such cases could be detected, they could
be generalized rather than being left lexicalized.

Structural Variation and Conflations

Structural variation is already handled in the current system. For example,
the Hebrew direct definite object marker ‘ET’ is simply retained as a lexical
item in the rule, and is eliminated when translating into English:

S::S [NP V "ET" NP] -> [NP V NP]

This is one type of structural variation. Similarly, we have proposed a
method for handling conflations in section 7.6.2, which works by conflating
two words of a compound into one in the learned rules.

In order to expand on what has been done so far, one area of future work
is not only two-one alignments, but also many-one alignments. Such cases
are often bound by specific lexical items, i.e. they do not apply to all (or
most) words of a given word class. For this reason, we propose exploring
further our work on dictionary enhancement, rather than learning highly
lexicalized transfer rules. Dictionary enhancement, as opposed to capturing
phenomena in transfer rules, has the advantage that the transfer rules will
not be overly specific.

More generally, it should be noted that this and other algorithms are
dependent on examples in the training corpus. When working with a very
small training corpus, such phenomena are not always observed. It is par-
ticularly hard to design a corpus in one language (without knowledge of
the other language) and guarantee that certain phenomena will occur. For
verbs, we can design a specific corpus that contains all verb forms. For
structural variation, we must restrict ourselves to handling those cases that
occurred in the training data. This holds especially for phenomena that are
bound by lexical items, such as compounds.

Other Constructions

Constructions constitute a sizeable part of language. Some authors argue
that all of language is constructions, but that in some cases languages hap-
pen to use the same constructions (Levin & Nirenburg, 1994). From our per-
spective, constructions can be viewed expressions that are partially bound by
specific lexical items, and allow partially for generalization. This is a more
general concept than the ones described in previous sections: We propose

10.3. FUTURE WORK 273

here a method for handling constructions in general, while in the previous
few sections, we discussed approaches to very specific phenomena, whereas
here we frame the problem much more generally.

Consider the following construction in Hebrew and English:

ZH @WB B AINIM $LI

it good in eyes my

‘I like it’

Note that in such a construction, any NP can occur in the subject po-
sition in English. Similarly, the possessive in Hebrew can take any person
and number value.

Constructions provide at least two unique difficulties:

1. Recognize which parts can be generalized. This requires a num-
ber of training examples for each construction, so that the common and
different parts can be determined automatically. As was said above,
this is a challenging elicitation task, as it is often hard to predict what
constructions exist in different languages.

2. Capture the actual generalization in rules. The above example
illustrates this difficulty well. In this case, a possessive translates into
a NP, which is not currently handled by the rule learner. The learn-
ing algorithms should be expanded to handle these cases, but only if
enough training examples are observed. It would not be desirable to
learn a rule that indeterminately translates a Hebrew possessive into
an English NP. Further, the learning system would need to ensure
that all the necessary features (in this case, number and person) are
transferred properly in translation.

10.3.5 Other Areas for Future Work

Another area of future work will be to integrate the rule learner with an
automatic morphology detection module. Unsupervised morphology is an
active area of research that is likely to mature over the coming years to a
point where it can be used successfully with other unsupervised techniques
such as rule learning.

Further, we will consider the combination of the two learning phases
of Compositionality and Constraints into one wherever this is appropriate.
We have argued above (sections 3.2 and 8) why it is desirable to keep the
learning phases separate. There are, however, cases where it could be useful

274 CHAPTER 10. CONCLUSION

to combine them. One such example are rules of the form that were described
in section 8.6. There, we described pairs of rules that agree in the SL
component sequence, but not in the TL component sequence. We aimed at
learning value constraints that can distinguish between the two cases, and
thus determine the structure of the TL output. What if there are no value
constraints that can distinguish between the two? In such cases, it could be
useful to drop the level of generalization of the two rules, so that they differ
in their SL component sequence, and the ambiguity is eliminated. This
could only be accomplished by another feedback loop into the structural
learning phase. Those and other cases would provide interesting insight into
the interaction between structural and Constraint Learning. One interesting
area of future work could be the exploration of such cases.

We believe that the approach presented here and similar approaches will
be used in coming years to push MT research beyond its current limitations.
Statistical information will play a big role, but deeper analysis techniques
should not be overlooked or ignored. We have shown here that syntactic,
morphological, and other feature information can be put to effective use. In
the future, we hope to continue our work in this direction, and hope that
other researchers will follow suit.

Appendix A

Lattice Scoring

In this section, we describe a recall-based method to evaluate a lattice be-
fore decoding. Assessing the quality of a lattice, rather than of the final
translations, allows us factor out the effect of the decoder on the translation
score. By doing so, we can gain insight into the performance of the rule set
as a whole. We can also use it to measure the quality of specific rules, as was
done in section 9.5, because each arc in the lattice is tagged with the rules
that were used to create it. The evaluation method works by measuring
how many of the n-grams in the reference translations can be found in the
lattice. If all of the n-grams in the reference translations are in the lattice,
then a perfect decoder would produce a perfect translation.

The lattice of partial translations contains a set of arcs for each sentence.
Our evaluation metric scores each arc separately as follows: we consider all
n-grams of length up to k (i.e. unigrams, bigrams, trigrams, . . . k-grams)
in the partial translation and match them against the reference translation.
For each n-gram that is found in the reference translation, we add to the
n-gram score

matchscorengram =
1

ngramsRefTranslation

,

where ngramsRefTranslation is the number of n-grams in the reference trans-
lation. This measures how many of the n-grams in the reference translations
are actually found in the partial translation. The number of n-grams in the
reference translation is given by ngramsRefTranslation = c − n + 1, where c

is the number of words in the reference translation. For example, a sentence
of c =20 words contains 17 4-grams. Each matched 4-gram will add 1

17
to

the arc score. As mentioned earlier, a user-specified parameter k specifies
the length of the highest n-gram that is measured. By default, k is set to

275

276 APPENDIX A. LATTICE SCORING

4, meaning that the metric evaluates unigrams, bigrams, trigrams, and 4-
grams. This is a reasonable choice, as it is often used in automatic n-gram
based MT evaluation metrics, such as BLEU (Papineni et al., 1998).

After collecting all match scores for an arc, we must combine the uni-
gram, bigram, . . . , k-gram scores into a single score for each arc. This is
done by interpolating the scores for each n. The weight is uniformly dis-
tributed over all n-gram scores, so that λ = 1

k
. The score of an arc i is then

determined by:

arcscorei =
k

∑

n=1

λmn
1

c − n + 1
,

where c is the number of words in the reference translation, m is the number
of n-grams that match the reference translation (for a given n), and k is the
length of the highest n-gram considered.

After each arc is tagged with a score, we can obtain two types of in-
formation: the first is to assign a score to each individual rule (as used in
section 9.5), the other is to assign a score to the entire lattice.

Rule-level scores can be computed because we know what rule or rules
were applied to produce a specific arc. Each arc is assigned to the rule
which was the top-level rule in the arc production. For example, if an arc
was produced by a sentence-level rule S, 1, which filled its subject with an
NP rule NP, 2, then this specific arc is only assigned only to S, 1, because it is
the top-level rule for this arc production. The scoring mechanism abstracts
away from mistakes that are made by lower-level rules also involved in the
arc production: for a given span of indices and a given rule, only the highest-
scoring arc is assigned to the top-level rule. This eliminates problems caused
by lower-level rules as well as ambiguous lexical selection.

For each individual rule, we sum the arc scores for all arcs 1) to which
the rule contributed as the top-level rule, and 2) which have the maximum
score for their span. We then divide by the number of rule applications in
order to get a confidence (precision) score for the rule. This precision score
captures the average quality of an arc to which the given rule contributed
as the top-level rule. If we denote with k the number of arcs to which rule
Ri contributed, and we denote the subset of arcs in the lattice to which rule
Ri contributed as ArcSetRi

(i.e. |ArcSetRi
| = k), then the rule precision is:

RulePrecision =

∑k
j=1

ArcScorej

k
, j ∈ ArcSetRi

After each arc is tagged with a score, we can also combine the arc scores

277

to obtain a score for the lattice as a whole. In doing this, we do not simply
add the arc scores. Rather, we discount additional arcs that account for
the same part of the test sentence. More specifically, when a new arc is
added that ‘explains’ (i.e. correctly translates) a part of the sentence that
has been explained before, then the score for this arc should be highly dis-
counted. This will prevent the scores from increasing by the addition of arcs
that essentially do not add anything new to the lattice. We therefore first
distribute the arc score over the matched words in it by taking arcscorei

nummatchedi
,

where nummatchedi is the number of matched words in arc i. We then
consider each word j in arc i that matches the reference translation (there
are nummatchedi js for a given arc). Each partial score is discounted based
on countj, the number of times this part of the reference sentence, j, was
already accounted for by existing arcs, including the current one (so that
if an arc accounts for j for the first time, its score is not discounted). The
final lattice score is then given by:

∑N
i=1

∑nummatchedi

l=1

arcscorei

nummatchedi
∗ 1

2
countjl

−1

corpussize

For convenience, we repeat here the notation used in this metric. N

denotes the number of arcs in the lattice, nummatchedi denotes the num-
ber of words matched in the reference translation for a given arc. countjl

denotes the number of times a certain word index, j, for a given sentence
was accounted for by arcs in the lattice, and jl indicates the word index of
the lth word in the arc that matched the reference translation. corpussize

indicates the number of sentences in the test corpus.

The metric emphasizes recall in the lattice by rewarding those arcs (or
parts thereof) that match the reference translation. The longer the match,
the higher the reward. Also, it rewards instances where an arc accounts for
a part of the reference sentence that was not previously accounted for, while
highly discounting arcs (or parts of arcs) that introduce redundancy into
the lattice.

Note that the lattice scoring metric as described here is only possible
because the transfer engine and the decoder are two separate modules. If
this were not the case, then the rule level evaluation method would need to
be modified. In such a case, we could assess the quality of individual rules as
follows: in order to asses the quality of rule Ri in grammar G, use grammar
G to translate a development set, or as here the training set. This results
in a translation score for G, scoreG. Then eliminate Ri from G, resulting
in modified grammar G′ = G \ {Ri}. Run G′ on the same development or

278 APPENDIX A. LATTICE SCORING

training set to obtain scoreG′ . The quality of Ri can then be estimated
by scoreG − scoreG′ . This method would be an effective way of estimating
rule quality. Its drawback is efficiency: especially for large grammars, the
operation would be expensive, because the training or development set must
be translated separately to assess the quality of each rule. For this reason,
the lattice scoring metric used here is preferable in practice.

Appendix B

Sample Translations

Out of 119 test suite sentences, 62 were translated differently with a gram-
mar than without. Note that this does not mean that for the remaining 48
sentences, the lattices are identical in both cases. In fact, the lattices are
never identical. However, in 71 cases the decoder chose a different best path
through the lattice.

No Grammar: under to mi@h he found border back that it will remember
well from childhood his

Learned Grammar: under to mi@h it finds old book that he will remember well
from his childhood

Reference Translation: Under the bed he found an old book that he remembered
vividly from his childhood

No Grammar: the decision the final by lot his for the captain cpwih become
known in $bwa show

Learned Grammar: the final decision on his fate of the captain cpwih become
known in $bwa show

Reference Translation: The final decision on the captain ’s fate is expected will be
announced publicly next week

No Grammar: under cut <UNK> the medicine will respond in her with
drugs different the team that if her the party the international
most successful

Learned Grammar: under cut <UNK> the medicine will respond in her with
other drugs the team that if her the most international group
successful

279

280 APPENDIX B. SAMPLE TRANSLATIONS

Reference Translation: Under certain conditions the drug will react strongly with
other drugs

No Grammar: it past development long and swab
Learned Grammar: he studied long process and swab
Reference Translation: He underwent a long complicated procedure

No Grammar: we protect activities quick and positive
Learned Grammar: we ensure prompt and safe operations
Reference Translation: We guarantee fast secure transactions

No Grammar: the house stood finally long and pwtl
Learned Grammar: the house stood long finally and pwtl
Reference Translation: The house stood at the end of a long windy road

No Grammar: they with iqxw extension short precedent and not mwgblt of
known the finish

Learned Grammar: they with iqxw short extension precedent and not mwgblt of
known the finish

Reference Translation: They asked for an unprecedented unlimited extension of the
deadline

No Grammar: the change the second the major at rule iiw$m more years
Learned Grammar: the second change the strong in law iiw$m more years
Reference Translation: The second big change in the law will be introduced in two

years

No Grammar: the radio broadcast news political great every time
Learned Grammar: the radio broadcast news important political every time
Reference Translation: The radio broadcasts important political news every hour

No Grammar: troops religious title $p&h hwmi&w you views their
Learned Grammar: religious groups in the cost impact hwmi&w you their ideas
Reference Translation: Influencial religious groups voiced their opinions

No Grammar: the response can to make her military grave
Learned Grammar: the response can to make her major military
Reference Translation: The response could be a serious military attack

No Grammar: we coat for communication public grand today

281

Learned Grammar: we coat for important public announcement today
Reference Translation: We expect an important public announcement today

No Grammar: it will wear jackets black and prolonged
Learned Grammar: he wore black jacket and prolonged
Reference Translation: He wore a long black coat

No Grammar: the book the back of the hebrew contains many matters of
&ninim

Learned Grammar: the old book on hebrew contains many matters of &ninim
Reference Translation: The old Hebrew book contained many interesting stories

No Grammar: the girl reduction not understood why the hwri her left
Learned Grammar: the little girl not understood why the hwri her left
Reference Translation: The small child did not understand why her parents had left

No Grammar: the house the beautiful near river sell for 100000 dollars
Learned Grammar: the beautiful home near river sell for 100000 dollars
Reference Translation: The pretty house near the river was sold for $ 1000000

No Grammar: the attack the keen on plwgh last five days
Learned Grammar: the fierce attack on plwgh last five days
Reference Translation: The intense assault on Falluja lasted for five days

No Grammar: candidates right choice
Learned Grammar: successful candidate elected
Reference Translation: A good candidate was selected

No Grammar: the students the successful transfer you the examination
Learned Grammar: the successful students study you the examination
Reference Translation: The good students passed the exam

No Grammar: the president be ashamed selected of secretary new
Learned Grammar: the president be ashamed picked in the new secretary
Reference Translation: President Bush chose a new Secretary

No Grammar: the book the old contains stories of &ninim
Learned Grammar: the old book contains stories of &ninim
Reference Translation: The old book contained interesting stories

282 APPENDIX B. SAMPLE TRANSLATIONS

No Grammar: we coat for communication grand today
Learned Grammar: we coat for important communication today
Reference Translation: We expect an important announcement today

No Grammar: the students the young learn about countries learn
Learned Grammar: the young students studied for different countries
Reference Translation: The young students learned about different countries

No Grammar: students youths on the road all want to learn countries learn
Learned Grammar: young students with access all wish to study various worlds
Reference Translation: Young students often want to learn about different countries

No Grammar: i saw you film still beat
Learned Grammar: i saw the movie still beat
Reference Translation: I saw the movie again

No Grammar: she loves you the son of her
Learned Grammar: she likes her son shovel
Reference Translation: She loves her child

No Grammar: i cut you solder to bits
Learned Grammar: i shovels cut the bread to bits
Reference Translation: I cut the bread into small pieces

No Grammar: under pressure the bws his it signed with the contract the
new

Learned Grammar: force behind the bws his it signed with the new treaty
Reference Translation: Under pressure from his boss he signed the new contract

No Grammar: the drug improved slowly you health his
Learned Grammar: the drug improved slowly you his health
Reference Translation: The drug slowly improved his health

No Grammar: they cuts you the tree the fine
Learned Grammar: they cuts you the beautiful wood
Reference Translation: They cut the pretty tree

No Grammar: i put you the border in case of me
Learned Grammar: i put you the border with my hand
Reference Translation: I put the book in my bag

283

No Grammar: the president be ashamed call you the tablet
Learned Grammar: the president be ashamed shovels read the book
Reference Translation: President Bush read the book

No Grammar: it will wear jackets black
Learned Grammar: he wore black jacket
Reference Translation: He wore a black coat

No Grammar: troops religious h$mi&w you voices their
Learned Grammar: religious groups h$mi&w you their opinions
Reference Translation: Religious groups voiced their opinions

No Grammar: i ate you the swollen yesterday
Learned Grammar: i ate the apple yesterday
Reference Translation: I ate the apple yesterday

No Grammar: we protect activities positive
Learned Grammar: we ensure safe operations
Reference Translation: We guarantee secure transactions

No Grammar: the change the strong in law iiw$m more years
Learned Grammar: the successful transformation of the law iiw$m more years
Reference Translation: The big change in the law will be introduced in two years

No Grammar: troops religious h$mi
w you qwlwthm

Learned Grammar: religious groups h$mi
w you qwlwthm

Reference Translation: Religious groups voiced their opinions

No Grammar: we coat for communication public today
Learned Grammar: we coat for public notice today
Reference Translation: We expect a public announcement today

No Grammar: they started attacks successful
Learned Grammar: they began serious offense
Reference Translation: They started a big attack

No Grammar: you always will be man strong

284 APPENDIX B. SAMPLE TRANSLATIONS

Learned Grammar: you always will be strong man
Reference Translation: You will always be a strong man

No Grammar: you bestial in many countries
Learned Grammar: you my animal in many countries
Reference Translation: I lived in many countries

No Grammar: it with the way law emphasizes you the importance of pa-
tience

Learned Grammar: it with all access stressed the importance of patience
Reference Translation: He often emphasizes the importance of patience

No Grammar: the film show you the fact the very of the adults in the country
the it

Learned Grammar: the film show you the very existence of the adults in the
country the it

Reference Translation: The movie shows the horrible situation of the people in this
country

No Grammar: the police on the road all work tonight
Learned Grammar: the police of all road work tonight
Reference Translation: The policeman often works at night

No Grammar: the soldier write many messages to the family of he
Learned Grammar: the soldier write many messages to his family
Reference Translation: The soldier writes many letters to his family

No Grammar: the president returns with thought his
Learned Grammar: the president returns for his wisdom
Reference Translation: The President repeats his opinion

No Grammar: the mother miss for child of her
Learned Grammar: the mother miss for her son
Reference Translation: The mother misses her child

No Grammar: the doctor helps to patients take out
Learned Grammar: the assistant doctor for his patients
Reference Translation: The doctor helps his patients

No Grammar: this the border most twb

285

Learned Grammar: it the most border twb
Reference Translation: This is the best book

No Grammar: it built you the tower most important in the country
Learned Grammar: it will build the tower most important in the country
Reference Translation: He built the tallest tower in the country

No Grammar: he students more clerk of the clear
Learned Grammar: it wise more students in the plain
Reference Translation: He is clearly the smarter student

No Grammar: the nominee the second to win support more xzkh of the
persons

Learned Grammar: the second candidate to win support more xzkh of the persons
Reference Translation: The second candidate received stronger support from the peo-

ple

No Grammar: he suggested to him contract longer
Learned Grammar: he suggested if longer treaty
Reference Translation: He offered him a longer contract

No Grammar: the president promised support faster to assemble
Learned Grammar: the president promised stronger support to assemble
Reference Translation: The President promised stronger support for the army

No Grammar: it like ibl scores more successful in exam
Learned Grammar: it like ibl good more on exam results
Reference Translation: He got better results on the test

No Grammar: some for me now achieved clearer regarding the plan of by2
Learned Grammar: some for me now achieved more positive about the plan of

by2
Reference Translation: I now have a clearer idea of your plan

No Grammar: the student the navy sweet win awards
Learned Grammar: the student takes the fleet nice cuts
Reference Translation: The nicest student received an award

No Grammar: he appreciated even you the issues most strongly
Learned Grammar: he appreciated even you the most problems difficult

286 APPENDIX B. SAMPLE TRANSLATIONS

Reference Translation: He understood even the hardest problems

No Grammar: he gave to her you the medicine most xzkh
Learned Grammar: he gave to her you the most drug xzkh
Reference Translation: He gave her the strongest drug

No Grammar: weather recognized to be difficult for her
Learned Grammar: accept weather was difficult for her
Reference Translation: the cold weather was difficult for her

No Grammar: the response can to make her military major greatly
Learned Grammar: the response can to make her military very serious
Reference Translation: The response could be a very serious military attack

No Grammar: the book the old contains stories of &ninim greatly
Learned Grammar: the old book contains stories of &ninim greatly
Reference Translation: The old book contained very interesting stories

No Grammar: the film show you the fact the tough greatly for the persons
in the country the it

Learned Grammar: the film show you the very harsh reality of the adults in the
country the it

Reference Translation: The movie shows the extremely difficult situation of the peo-
ple in this country

No Grammar: the book the back of the hebrew contains many matters of
&ninim and humorous

Learned Grammar: the old book on hebrew contains many matters of &ninim
and humorous

Reference Translation: The old Hebrew book contained many interesting stories

No Grammar: i put you the border in case of me the fast
Learned Grammar: i put you the barber in my case the fast
Reference Translation: I quickly put the book in my bag

No Grammar: students youths on the road all want to learn countries learn
and for people learn

Learned Grammar: young students with access all wish to study various countries
and with different peoples

287

Reference Translation: Young students often want to learn about different countries
and about different people.

No Grammar: it like ibl products successful in exam
Learned Grammar: it like ibl good results of examination
Reference Translation: He got good results on the test

No Grammar: any called you it on the borders and in newspaper
Learned Grammar: any called this shovel of borders and in newspaper
Reference Translation: i read this in books and in the newspaper

No Grammar: the wife of dress the human lives of many countries
Learned Grammar: the wife of the red dress lives of many countries
Reference Translation: The woman in the red dress lived in many countries

No Grammar: i slept when he read you the tablet
Learned Grammar: i slept when he read the book
Reference Translation: I slept while he read the book

288 APPENDIX B. SAMPLE TRANSLATIONS

Bibliography

Aho, A. V., & Ullman, J. D. (1969). Syntax directed translations and the
pushdown assembler. Journal of Computer and System Sciences, 3, 37–56.

Alberto Alonso, J. (1990). Transfer InterStructure: designing an ’interlin-
gua’ for transfer-based MT systems. Proceedings of the 3rd International
Conference on Theoretical and Methodological Issues in Machine Transla-
tion of Natural Language.

Allen, J. (1995). Natural Language Understanding, 2nd Edition.

Alshawi, H., Bangalore, S., & Douglas, S. (1998). Automatic Acquisition of
Hierarchical Transduction Models for Machine Translation. Proceedings of
the 36th Annual Meeting of the Association for Computational Linguistics
and 17th International Conference on Computational Linguistics (ACL-
COLING-1998).

Alshawi, H., Douglas, S., & Bangalore, S. (2000). Learning Dependency
Translation Models as Collections of Finite-State Head Transducers. Com-
putational Linguistics, 26.

Ayan, F., Dorr, B. J., & Habash, N. (2004). Application of Alignment to
Real-World Data: Combining Linguistic and Statistical Techniques for
Adaptable MT. Proceedings of the 6th Conference of the Association for
Machine Translation in the Americas (AMTA-04).

Boitet, C. (1988). Bernard Vauqois’ contribution to the theory and practice
of building MT systems: a historical perspective. Proceedings of the Sec-
ond International Conference on Theoretical and Methodological Issues in
Machine Translation of Natural Languages.

Bouquiaux, L., & Thomas, J. (1992). Studying and Describing Unwritten
Languages. Dallas, TX: The Summer Institute of Linguistics.

289

290 BIBLIOGRAPHY

Bresnan, J. (2001). Lexical-Functional Syntax. Blackwell Textbooks in
Linguistics.

Brown, P., Della Pietra, V. J., Della Pietra, S. A., & Mercer, R. L. (1993).
The Mathematics of Statistical Machine Translation: Parameter Estima-
tion. Computational Linguistics, 19, 263–311.

Brown, R. (1997). Automated Dictionary Extraction for ‘Knowledge-Free’
Example-Based Translation. Proceedings of the 7th International Con-
ference on Theoretical and Methodological Issues in Machine Translation
(TMI-97).

Charniak, E. (2000). A Maximum-Entropy-Inspired Parser. Proceedings of
the 1st Conference of the North American Chapter of the Association for
Computational Linguistics and 6th Conference on Applied Natural Lan-
guage Processing (NAACL/ALP-00).

Charniak, E., Knight, K., & Yamada, K. (2003). Syntax-based Language
Models for Statistical Machine Translation. Proceedings of the 9th Ma-
chine Translation Summit (MT-Summit IX).

Chiang, D. (2005). A hierarchical phrase-based model for statistical machine
translation. Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL-05).

Collins, M. (1996). Identifying head-words in the WSJ Penn treebank.

Collins, M. (2003). Head-Driven Statistical Models for Natural Language
Parsing. Computational Linguistics, 29.

Comrie, B., & Smith, N. (1977). Lingua Descriptive Series: Questionnaire.
Lingua, 42, 1–72.

Dahan, H. (1997). Hebrew-English English-Hebrew Dictionary.

Dorr, B. J. (1992). Machine Translation: A View from the Lexicon. MIT
Press.

Dorr, B. J., Ayan, N. F., & Habash, N. (2004). Divergence Unraveling for
Word Alignment of Parallel Corpora. submitted to Journal of Natural
Language Engineering.

Dorr, B. J., Ayan, N. F., Habash, N., & Hwa, R. (2003). Rapid Porting
of DUSTer to Hindi. ACM Transactions on Asian Language Information
Processing (TALIP), 2.

BIBLIOGRAPHY 291

Dorr, B. J., Pearl, L., Hwa, R., & Habash, N. (2002). DUSTer: A Method for
Unraveling Cross-Language Divergences for Statistical Word-Level Align-
ment. Proceedings of the 5th Conference of the Association for Machine
Translation in the Americas (AMTA-02).

Falk, Y. N. (2004). The Hebrew Present-Tense Copula as a Mixed Category.
Proceedings of the Lexical Functional Grammar 04 Conference (LFG-04).

Font-Llitjós, A. (2004). Towards Interactive and Automatic Refinement of
Translation Rules. Thesis Proposal.

Font-Llitjós, A., Probst, K., & Carbonell, J. (2004). Error Analysis of Two
Types of Grammar for the Purpose of Automatic Rule Refinement. Pro-
ceedings of the 6th Biennial Conference of the Association for Machine
Translation in the Americas (AMTA-04).

Goldsmith, J. (2001). Unsupervised Learning of the Morphology of a Natural
Language. Computational Linguistics, 27, 153–198.

Guvenir, H. A., & Tunç, A. (1996). Corpus-Based Learning of Generalized
Parse Tree Rules for Translation. In G. McCalla (Ed.), New Directions
in Artificial Intelligence: Proceedings of the 11th Biennial Conference of
the Canadian Society for Computational Studies of Intelligence. Toronto,
Canada: Springer Verlag.

Habash, N. (2002). Generation-Heavy Hybrid Machine Translation. Pro-
ceedings of the 2nd International Natural Language Generation Conference
(INLG-02).

Habash, N., & Dorr, B. J. (2002). Handling Translation Divergences: Com-
bining Statistical and Symbolic Techniques in Generation-heavy Machine
Translation. Proceedings of the 5th Biennial Conference of the Association
for Machine Translation in the Americas (AMTA-02).

Habash, N., & Dorr, B. J. (2003). CatVar: A Database of Categorial Vari-
ations for English. Proceedings of the 9th Machine Translation Summit
(MT-Summit IX).

Hermjakob, U., & Mooney, R. (1997). Learning Parse and Translation Deci-
sions From Examples With Rich Context. Proceedings of the 35th Annual
Meeting of the Association for Computational Linguistics (ACL/EACL-
97).

292 BIBLIOGRAPHY

http://www.computing.dcu.ie/˜acahill/tagset.html (1990). Penn Treebank
Tagset.

Hutchins, W. J., & Somers, H. L. (1992). An Introduction to Machine
Translation. London: Academic Press.

Hwa, R. (1999). Supervised Grammar Induction using Training Data with
Limited Constituent Information. Proceedings of the 37th Annual Meeting
of the Association for Computational Linguistics (ACL-99).

Itai, A., & Segal, E. (2003). A corpus based morphological analyzer for
unvocalized modern hebrew. Proceedings of Machine Translation for Se-
mitic Languages: Issues and Approaches, Workshop at MT Summit IX
(MT-SUMMIT-IX).

Johnson, H., & Martin, J. (2003). Unsupervised Learning of Morphology
for English and Inuktitut. Proceedings of the Human Language Technology
Conference / Conference of the North American Chapter of the Associa-
tion for Computation Linguistics 2003 (HLT/NAACL-03).

Jones, D., & Havrilla, R. (1998). Twisted Pair Grammar: Support for
Rapid Development of Machine Translation for Low Density Languages.
Proceedings of the 3rd Biennial Conference of the Association for Machine
Translation in the Americas (AMTA-98).

Kaji, H., Kida, Y., & Morimoto, Y. (1992). Learning Translation Templates
from Bilingual Text. Proceedings of the 15th International Conference On
Computational Linguistics (COLING-92).

Klein, D., & Manning, C. (2001). Distributional Phrase Structure Induc-
tion. Proceedings of the Fifth Conference on Natural Language Learning
(CoNLL-2001).

Knight, K., Al-Onaizan, Y., Chander, I., Hovy, E., Langkilde, I., Whitney,
R., & Yamada, K. (1996). System demonstration: JAPANGLOSS: using
statistics to fill knowledge gaps. Expanding MT horizons: Proceedings of
the Second Conference of the Association for Machine Translation in the
Americas (AMTA-96).

Knight, K., Chander, I., Haines, M., Hatzivassiloglou, V., Hovy, E., Iida, M.,
Luk, S. K., Whitney, R., & Yamada, K. (1995). Filling knowledge gaps in
a broad-coverage MT system. Proceedings of the 14th International Joint
Conference on Artificial Intelligence (IJCAI-1995).

BIBLIOGRAPHY 293

Lavie, A., Sagae, K., & Jayaraman, S. (2004). The Significance of Recall
in Automatic Metrics for MT Evaluation. Proceedings of the 6th Biennial
Conference of the Association for Machine Translation in the Americas
(AMTA-04).

Lavie, A., Vogel, S., Levin, L., Peterson, E., Probst, K., Font-Llitjós, A.,
Reynolds, R., Carbonell, J., & Cohen, R. (2003). Experiments with a
Hindi-to-English Transfer-based MT System under a Miserly Data Sce-
nario. ACM Transactions on Asian Language Information Processing
(TALIP), 2.

Lavoie, B., White, M., & Korelsky, T. (2002). Learning Domain-Specific
Transfer Rules: An Experiment with Korean to English Translation. Pro-
ceedings of the Workshop on Machine translation in Asia, 19th Interna-
tional Conference on Computational Linguistics.

Leech, G. (1992). 100 Million Words of English: the British National Corpus.
Language Research, 28.

Leech, G., Garside, R., & Bryant, M. (1994). CLAWS4: The tagging of the
British National Corpus. Proceedings of the 15th International Conference
on Computational Linguistics (COLING-94).

Levin, L., & Nirenburg, S. (1994). Construction-Based MT Lexicons. Cur-
rent Issues in Computational Linguistics: In Honour of Don Walker. Zam-
polli, Calzolari, and Palmer (eds.).

Marcus, M., Taylor, A., MacIntyre, R., Bies, A., Cooper, C., Fer-
guson, M., & Littmann, A. (1995). The Penn Treebank Project.
http://www.cis.upenn.edu/˜treebank/home.html.

McCormick, S. (1998). A centralized approach to managing multiple lexical
resources. Proceedings of the 3rd Workshop of the Euroapean Association
for Machine Translation (EAMT-98).

Menezes, A., & Richardson, S. D. (2001). A Best-first Alignment Algorithm
for Automatic Extraction of Transfer Mappings from Bilingual Corpora.
Proceedings of the Workshop on Data-driven Machine Translation at the
39th Annual Meeting of the Association for Computational Linguistics,
(ACL-01).

Meyers, A., Yangarber, R., Grishman, R., Macleod, C., & Moreno-Sandoval,
A. (1998). Deriving Transfer Rules from Dominance-Preserving Align-
ments. Proceedings of the 36th Annual Meeting of the Association for

294 BIBLIOGRAPHY

Computational Linguistics and the 17th International Conference on Com-
putational Linguistics (COLING-ACL-98).

Monson, C., Lavie, A., Carbonell, J., & Levin, L. (2004). Unsupervised
Induction of Natural Language Morphology Inflection Classes. Proceedings
of the Workshop of the ACL Special Interest Group in Computational
Phonology (SIGPHON) at the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-04).

Needleman, S., & Wunsch, C. (1970). A General Method Applicable to
the Search for Similarities in the Amino Acid Sequence of Two Proteins.
Journal of Molecular Biology, 48, 443–453.

Nirenburg, S. (1998). Project Boas: A Linguist in the Box as a Multi-
Purpose Language Resource. Proceedings of the First International Con-
ference on Language Resources and Evaluation (LREC-98).

Och, F. J., Gildea, D., Khudanpur, S., Sarkar, A., Yamada, K., Fraser, A.,
Kumar, S., Shen, L., Smith, D., Eng, K., Jain, V., Jin, Z., & Radev, D.
(2003). Syntax for Statistical Machine Translation.

Och, F. J., & Ney, H. (2002). Discriminative Training and Maximum En-
tropy Models for Statistical Machine Translation. Proceedings of the 40th
Anniversary Meeting of the Association for Computational Linguistics
(ACL-02).

Och, F. J., & Ney, H. (2004). The alignment template approach to statistical
machine translation. Computational Linguistics, 30.

Papineni, K., Roukos, S., & Ward, R. T. (1998). Maximum Likelihood
and Discriminative Training of Direct Translation Models. Proceedings of
the International Conference on Acoustics, Speech, and Signal Processing
(ICASSP-98) (pp. 189–192).

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2001). Bleu: A
Method for Automatic Evaluation of Machine Translation (Technical Re-
port RC22176(W0109-022)). IBM Watson Research Center.

Peterson, E. (2002). Adapting a Transfer Engine for Rapid Machine Trans-
lation Development. Master’s thesis, Georgetown University.

Probst, K. (2002). Semi-Automatic Learning of Transfer Rules for Machine
Translation of Low-Density Languages. Proceedings of the Student Session

BIBLIOGRAPHY 295

at the 14th European Summer School in Logic, Language and Information
(ESSLLI-02).

Probst, K. (2003). Using ‘Smart’ Bilingual Projection to Feature-tag a
Monolingual Dictionary. Proceedings of the 7th Conference on Natural
Language Learning (CoNLL-03).

Probst, K., Brown, R., Carbonell, J., Lavie, A., Levin, L., & Peterson, E.
(2001). Design and Implementation of Controlled Elicitation for Machine
Translation of Low-density Languages. Proceedings of the MT2010 Work-
shop at the Machine Translation Summit VIII (MT-Summit VIII).

Probst, K., & Lavie, A. (2004). A Structurally Diverse Minimal Corpus for
Eliciting Structural Mappings between Languages. Proceedings of the 6th
Biennial Conference of the Association for Machine Translation in the
Americas (AMTA-04).

Probst, K., & Levin, L. (2002). Challenges in Automated Elicitation of a
Controlled Bilingual Corpus. 9th International Conference on Theoretical
and Methodological Issues in Machine Translation (TMI-02).

Probst, K., Levin, L., Peterson, E., Lavie, A., & Carbonell, J. (2003). MT for
Minority Languages Using Elicitation-Based Learning of Syntactic Trans-
fer Rules. Machine Translation, Special Issue on Embedded MT.

Sato, S., & Nagao, M. (1990). Towards Memory-based Translation. Proceed-
ings of the 13th International Conference On Computational Linguistics
(COLING-90).

Schone, P., & Jurafsky, D. (2001). Knowledge-Free Induction of Inflectional
Morphologies. Proceedings of the Second Meeting of the North American
Chapter of the Association for Computational Linguistics (NAACL-01).

Segal, E. (2001). A Hebrew morphological analyzer (includes free source
code).

Senellart, J., Plitt, M., Bailly, C., & Cardoso, F. (2001). Resource Alignment
and Implicit Transfer. Proceedings of the Machine Translation Summit
VIII (MT-Summit VIII).

Sherematyeva, S., & Nirenburg, S. (2000). Towards a Universal Tool for NLP
Resource Acquisition. Proceedings of the 2nd International Conference on
Language Resources and Evaluation (LREC-00).

296 BIBLIOGRAPHY

Shieber, S. M. (1986). An Introduction to Unification-Based Aproaches to
Grammar. In Lecture notes, vol. 4. Center for the Study of Language and
Information.

Snover, M. G., & Brent, M. R. (2002). A Probabilistic Model for Learning
Concatenative Morphology. Proceedings of the 16th Annual Conference
on Neural Information Processing Systems (NIPS-02).

Steiner, E. (1990). Aspects of a functional grammar for machine transla-
tion. Proceedings of the 3rd International Conference on Theoretical and
Methodological Issues in Machine Translation of Natural Language (TMI-
90).

Thurmair, G. (1990). Complex lexical transfer in METAL. Proceedings of
the 3rd International Conference on Theoretical and Methodological Issues
in Machine Translation of Natural Language (TMI-90).

Vogel, S., Zhang, Y., Huang, F., Tribble, A., Venogupal, A., Zhao, B., &
Waibel, A. (2003). The CMU Statistical Translation System. Proceedings
of the Machine Translation Summit IX (MT-Summit IX).

Watanabe, H., Kurohashi, S., & Aramaki, E. (2000). Finding Structural
Correspondences from Bilingual Parsed Corpus for Corpus-based Trans-
lation. Proceedings of the 18th International Conference on Computational
Linguistics (COLING-00).

Wu, D. (1997). Stochastic Inversion Transduction Grammars and Bilingual
Parsing of Parallel Corpora. Computational Linguistics, 23.

Xia, F., & McCord, M. (2004). Improving a Statistical MT System with
Automatically Learned Rewrite Patterns. Proceedings of the 20th Inter-
national Conference on Computational Linguistics (COLING-04).

Yamada, K., & Knight, K. (2001). A Syntax-Based Statistical Translation
Model. Proceedings of the 39th Anniversary Meeting of the Association
for Computational Linguistics (ACL-01).

Yamada, K., & Knight, K. (2002). A Decoder for Syntax-Based Statistical
MT. Proceedings of the 40th Anniversary Meeting of the Association for
Computational Linguistics (ACL-02).

Yarowsky, D., & Ngai, G. (2001). Inducing Multilingual POS Taggers and
NP Bracketers via Robust Projection Across Aligned Corpora. Proceedings

BIBLIOGRAPHY 297

of the Second Meeting of the North American Chapter or the Association
for Computational Linguistics (NAACL-2001) (pp. 200–207).

Yarowsky, D., Ngai, G., & Wicentowski, R. (2001). Inducing Multilingual
Text Analysis Tools via Robust Projection across Aligned Corpora. Pro-
ceedings of the First International Conference on Human Language Tech-
nology Research (HLT-01).

Yarowsky, D., & Wicentowski, R. (2000). Proceedings of the 38th Annual
Meeting of the Association for Computational Linguistics (ACL-00).

Zhang, H., & Gildea, D. (2004). Syntax-Based Alignment: Supervised or
Unsupervised? Proceedings of the 20th International Conference on Com-
putational Linguistics (COLING-04).

Zhang, Y., & Vogel, S. (2004). Measuring Confidence Intervals for the Ma-
chine Translation Evaluation Metrics. Proceedings of The 10th Interna-
tional Conference on Theoretical and Methodological Issues in Machine
Translation (TMI-04).

