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Abstract

As large-scale techniques for studying and measuring gene expressions have been developed,
automatically inferring gene interaction networks from expression data has emerged as a popular
technique to advance our understanding of cellular systems. Accurate prediction of gene interac-
tions, especially in multicellular organisms such as Drosophila or humans, requires temporal and
spatial analysis of gene expressions, which is not easily obtainable from microarray data. New
image based techniques using in-situ hybridization(ISH) have recently been developed to allow
large-scale spatial-temporal profiling of whole body mRNA expression. However, analysis of
such data for discovering new gene interactions still remains an open challenge.

This thesis studies the question of predicting gene interaction networks from ISH data in three
parts. First, we present SPEX2, a computer vision pipeline to extract informative features from
ISH data. Next, we present an algorithm, GINI, for learning spatial gene interaction networks
from embryonic ISH images at a single time step. GINI combines multi-instance kernels with re-
cent work in learning sparse undirected graphical models to predict interactions between genes.

Finally, we propose NP-MuScL (nonparanormal multi source learning) to estimate a gene in-
teraction network that is consistent with multiple sources of data, having the same underlying
relationships between the nodes. NP-MuScL casts the network estimation problem as estimat-
ing the structure of a sparse undirected graphical model. We use the semiparametric Gaussian
copula to model the distribution of the different data sources, with the different copulas sharing
the same covariance matrix, and show how to estimate such a model in the high dimensional
scenario.

We apply our algorithms on more than 100,000 Drosophila embryonic ISH images from the
Berkeley Drosophila Genome Project. Each of the 6 time steps in Drosophila embryonic devel-
opment is treated as a separate data source. With spatial gene interactions predicted via GINI,
and temporal predictions combined via NP-MuScL, we are finally able to predict spatiotemporal
gene networks from these images.
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Chapter 1

Introduction

In multicellular organisms such as the metazoans, many important biological processes such

as development and differentiation depend fundamentally on the spatial and temporal control

of gene expression (Davidson, 2001; Gilbert, 2003). To date, the molecular basis and regula-

tory circuitry underlying metazoan gene regulation remains largely unknown. Numerous algo-

rithmic approaches have been attempted to infer “networks” of regulatory elements from high-

throughput experimental data, such as microarray profiles (Dobra et al., 2004; Ong, 2002; Se-

gal et al., 2003), ChIP-chip genome localization data (Bar-Joseph et al., 2003; Harbison et al.,

2004), and protein-protein interaction data (Causier, 2004; Giot et al., 2003; Kelley et al., 2004),

based on formalisms such as Bayesian networks (Cowell et al., 1999) or graph mining (Tanay

et al., 2004). Comparisons of different methods used for reverse engineering gene networks have

been performed (Bansal et al., 2007; Hache et al., 2009), and predictions made by automatically

learned gene networks have been experimentally validated (Carro et al., 2010; Wang et al., 2009),

thus increasing the credibility of such approaches.

This progress notwithstanding, a key deficiency of these approaches is that they rely heavily

on high-throughput biological data like microarrays that only capture average behavior of the
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genes and proteins in a large cell population from, e.g., a cell culture, a dissected tissue, or

even a homogenized whole animal. For multicellular organisms such as Drosophila and human,

gene expressions must be described in a spatiotemporal context, which reveals the histological

specificities and temporal dynamics of the activities of the gene. Such information is not available

from the standard whole-animal microarray data which record only the average expression of

each gene over all cells in the body, nor is it easily obtainable from “tissue-specific” microarray

assays using advanced micro-dissection and cell-sorting techniques (Figure 1.1).

stage 1 stage 4 stage 6

stage 9 stage 12 stage 14

stage 1 stage 4 stage 6

stage 9 stage 12 stage 14

Figure 1.1. Microarray time series versus ISH time series. Top: CG9373 (RNA binding
protein). Bottom: CG16738 (RNA polymerase II TF). Although the 2 time courses of
whole-body mRNA ambulance measured by microarray are nearly indistinguishable, the ISH
data reveals distinctive spatio-temporal patterns. (Courtesy of Dr. Hanchuan Peng who pointed
these genes to us.)

In situ hybridization (ISH) assay is an imaging method to visualize mRNA expression in tissues

and cells without homogenizing the specimens to be analyzed and therefore retains the original

histological context of gene expression. Recent advancements in image-based genome-scale pro-

filing technology such as whole-body mRNA abundance micro-imaging via in situ hybridization

(ISH) have begun to reveal a more holistic view of the activities and functions of genes in rich

spatial-temporal contexts. ISH has been used to characterize whole genome expression patterns

for different species such as Drosophila embryos (Tomancak et al., 2002b, 2007), C. elegans

(Yuji, 2001), and adult mouse brain (Lein et al., 2007), and at smaller scales for Arabidopsis
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flowers (Wellner and Meyerowitz, 2004), testicular germ cell tumors (Almstrup and Leffers,

2004), and others. The availability of this form of gene expression data calls for development of

next-generation image analysis systems to facilitate not only efficient pattern mining such as im-

age clustering or retrieval, but also in-depth reasoning of complex spatial-temporal relationships

between gene expression patterns, which will be essential for functional genomics and regu-

latory network inference in higher organisms. Such information is indispensable for in-depth

analysis of gene regulation networks, developmental mechanisms, and oncogenic processes in

higher eukaryotic organisms (Montalta-He and Reichert, 2003).

In this thesis, we focus on a particularly interesting, but previously unaddressed challenge along

this direction: inferring a statistically sound gene network from gene expression micro-imaging

data, in the same sense of inferring a gene network from microarray data as widely studied in

the literature. Analyzing ISH data allows us to infer a network by computing similarities in

the spatial and temporal distributions of gene expressions in Drosophila embryo. Analyzing

the temporal changes of the spatial distributions of genes could reveal how a gene regulation

network evolves over time during dynamic biological processes such as embryogenesis (Ahmed

and Xing, 2009a).

Systematic profiling of ISH images capturing gene expressions over the entire span of Drosophila

embryogenesis are now being undertaken at a whole genome scale, offering an unprecedented

opportunity for investigators to compare the spatio-temporal behavior of genes and begin as-

sembling realistic pictures of gene regulatory networks underlying the developmental process

(Tomancak et al., 2002b). The fast growing “Expression Pattern” database under the Berkeley

Drosophila Genome Project (BDGP, 2005) now contains over 100,000 digital images of expres-

sion patterns of ∼ 7500 genes. As of now, the only analysis done on co-expressed genes in the

BDGP is based on manual-labeling of the images by a domain expert using a controlled vocabu-

lary. However, with the rapid growth of data volume, manual analysis is no longer feasible, and

automatic analysis techniques are sorely needed, which require the development of new systems
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capable of noise removal, pattern extraction, feature description, and similarity measures.

1.1 Gene networks

Networks have been used to represent interactions between nodes in a large variety of application

areas including gene co-expression networks (Stuart et al., 2003), protein-protein interaction

networks (Giot et al., 2003; Uetz et al., 2000), cell interaction networks (Yook et al., 2004), etc.

While microarrays measure co-expression, which can then be used to predict gene co-expression

networks, current technology in ISH data measures only one gene (or a small set of genes) at a

time, and not co-expression of thousands of genes simultaneously. The techniques developed in

this thesis allow us to develop a network from ISH data, where an edge is represented between

two genes, if their gene expression has similar spatial and temporal profiles. In essence, the

gene network we wish to predict is one that captures co-localization of genes across various

conditions.

Current work on analyzing ISH data has only focussed on extracting features from the ISH

images (Kumar et al., 2002; Peng and Myers, 2004), clustering the images (Frise et al., 2010;

Heffel et al., 2008), classifying images (Ji et al., 2009; Zhou and Peng, 2007) etc. This thesis

is the first work that defines the notion of co-localization based gene networks, and proposes

algorithms to learn a gene network from such ISH data.

1.2 About the BDGP data

While the techniques discussed in this thesis are generic to all ISH data, a major motivation of our

work is the extensive imagery documentation of all the genes expressed during Drosophila em-
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Figure 1.2. Examples of embryonic ISH images from the BDGP data. Presence of gene
expression is indicated by the blue stain on the different regions of the embryo.

bryogenesis via ISH imaging by the Berkeley Drosophila Genome Project (BDGP) (Tomancak

et al., 2002b). BDGP is an ongoing effort to determine gene expression patterns during em-

bryogenesis for Drosophila genes. In February 2013, the data contained more than 110,000 ISH

images capturing the expression pattern of 7516 genes. Each image is annotated with time infor-

mation, indicating the development of the embryo in six development stage ranges. Each image

documents the gene expression pattern of a single gene in an embryo. Most images have a sin-

gle embryo, however some images capture partial views of the embryo, others have overlapping

or touching embryos. This is an extremely interesting but difficult dataset that reveals unprece-

dented details of gene activities during metazoan embryogenesis, but at the same time posts large

unanswered challenges on methodologies for systematic and principled analysis.

1.3 Thesis overview

This thesis addresses the challenge of inferring a network of gene interactions by analyzing

spatio-temporal data obtained from ISH images. The overall problem can be summarized in

cartoon form, in Figure 1.3. The main challenges in the correct estimation of the spatio-temporal

network from such data can be divided into three sub-areas

1. Image-specific feature extraction: The ISH image data must be represented by a set of
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Figure 1.3. Gene interaction network prediction from ISH data. A cartoon figure
summarizing the challenges in learning a spatio-temporal network from image data at multiple
time points, where each gene at each time point may have a different number of images.

features that are independent of the size, shape, location, and orientation of the embryo,

and accounts for differences in illumination etc. across images.

2. Comparing images at a single time point: At each time-point, we may have different

number of images per gene. How do we compare such data, while learning a network that

represents sparse, global conditional independencies in the data?

3. Combining information across multiple time points : Given an algorithm to estimate

a gene network from a single time point, how can we extend it to combine information

across multiple time points, with a reasonable generative model that explains the existence

of multiple data sources/time points.

We hence propose a three-step solution to our problem - each step deals with challenges in each

of the categories above. Chapter 2 proposes SPEX2, an automatic image processing system for

embryonic ISH image processing, which inputs Drosophila ISH images, and outputs the precise
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gene expression pattern observed in the image. Chapter 3 proposes GINI, an algorithm to learn

a network from ISH images at a single time-point, using the features obtained from SPEX2.

Chapter 4 proposes NP-MuScL, an algorithm to combine data from multiple sources to infer a

single network. Using data from each of the 6 time points in the BDGP data as a data source, we

show how to infer a network from multiple time-points. Chapter 5 runs detailed experiments on

the entire BDGP data set, verifying the overall effectiveness of our proposed methods. Finally,

Chapter 6 summarizes our contributions, and proposes directions of future research.
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Chapter 2

SPEX2: Concise Gene Expression Pattern

Extraction from Fly ISH

In this chapter, we present SPEX2 (Puniyani et al., 2010), an automatic system for embryonic

ISH image processing, which can extract, transform, compare, classify and cluster spatial gene

expression patterns in Drosophila embryos. Our pipeline for gene expression pattern extraction

outputs the precise spatial locations and strengths of the gene expression. We performed ex-

periments on the largest publicly available collection of Drosophila ISH images, and show that

our method achieves excellent performance in automatic image annotation, and also finds clus-

ters that are significantly enriched, both for GO functional annotations, and for annotation terms

from a controlled vocabulary used by human curators to describe these images.
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2.1 Introduction

SPEX2 (SPatial gene EXpression pattern EXtractor) is a highly effective and reliable image

processing pipeline for automated and concise extraction of bona fide gene expression patterns

(rather than generic shaded areas as usually recognized by naive pattern extracting procedures),

from Drosophila embryonic ISH results imaged from the lateral view. Such patterns offer a high-

fidelity surrogate of the spatial patterns of gene expression in a developing embryo or if necessary

other subjects in question (Figure 2.1(c)), nearly free of misleading non-expression patterns due

to poor quality staining/washing, body texture, color condensation caused by body anatomy,

embryo shape and contour, etc., which often fool standard pattern extracting procedures, as en-

dogenous gene expression patterns (Figure 2.1(b)). These patterns allow highly informative and

specific feature representations of each gene to be generated, which can be used in a variety of

downstream analysis like functional clustering, gene annotation, and network inference.

(a) 

(b) 

(c) 

Figure 2.1. SPEX2 example. (a) Original Image (b) Pattern extracted by standard procedures
(c) Standardized gene expression pattern extracted by SPEX2.

Specifically, we address the following questions in this paper:

1. Given an ISH image of a Drosophila embryo, how to find the pixels that correspond specif-

ically to the spatial expression pattern, rather than other non-expressional entities such as

body anatomies and textures, in the embryo?

2. How should a good representation of the gene expression pattern be constructed?

3. How should this representation be used for further clustering and classification tasks ?
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Comparisons of gene expression patterns from different ISH images must be performed with

respect to the embryo, and not the image. The position, orientation, size, shape contour, lighting

condition, and texture of the embryo within the image do not matter, as long as the compari-

son is dependent on the location and strength of the gene expression within the embryo. This

requires automated detection of the embryo in an image. Additionally, the orientation of the

embryo needs to be identified and standardized, and the embryo must be registered to a standard

shape. Furthermore, the ISH image contains noise in addition to the gene expression itself, due

to staining artifacts. The correct expression pattern must be extracted from the registered image

before conducting further analysis.

SPEX2 converts every raw ISH image of Drosophila embryo into a feature representation of the

spatial gene expression pattern thereof suitable for downstream quantitative analysis, based on

the following 3 steps : (1) Embryo standardization, via embryo extraction, orientation correction,

and registration. (2) Gene expression extraction via stain extraction and pattern segmentation,

and (3) Feature extraction. Each step in the pipeline uses image processing and machine learning

algorithms to extract the correct output. Automated error control methods detect and reject

images if they are not being correctly analyzed, or if they are unsuitable for analysis due to

imaging artifacts.

The resultant feature representation can be directly used for tasks like classification, clustering,

standard correlation analysis and network inference of Drosophila genes in a metric space. Our

techniques are automatic, and are not specific to any data set. Our pipeline also outputs spatial

patterns of gene expression, that are amenable to easy interpretation by biologists.

As proof of concept, we demonstrate our technique on lateral view images from the Berkeley

Drosophila Genome Project (BDGP) gene expression pattern database, from the time stage 13-

16. To evaluate our pipeline, we cluster the genes based on the features extracted by SPEX2, and

report enrichment analysis, conducted using GO functional annotations, as well as enrichment of
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manual annotations describing the spatial expression localization using a controlled vocabulary.

We also learn a classifier to annotate gene expression patterns during embryogenesis using a con-

trolled vocabulary, and report classification accuracy. We find that we significantly outperform

other standard feature extraction techniques from the computer vision community, as well as the

techniques reported in previous work.

2.1.1 Related work

We build upon the first steps taken by earlier work to construct our analysis pipeline for Drosophila

ISH images. The system BEST, developed by Kumar et al. (2002), performs a direct pixel-level

comparison of binarized images, using the intersection of the foreground regions as a similarity

measure for gene expression patterns. They develop an embryo enclosing algorithm to find the

embryo outline, and extract the binary expression pattern via adaptive thresholding.

Li et al. (2009) propose multi-instance multi-label learning via appropriate kernels to improve

performance specifically for annotating images using a controlled vocabulary. An extension

was proposed by Ji et al. (2009) to model term-term interactions in a regression framework that

has improved performance for this task. They extract position invariant features using a sparse

codebook on aligned images, and apply a local regularization framework on these features for

automatic image annotation.

Peng and Myers (2004); Zhou and Peng (2007) developed techniques to represent ISH images,

based on Gaussian mixture models, principal component analysis, and wavelet functions. They

use the wavelet features, with min-redundancy max-relevance feature selection, to automatically

annotate images. Heffel et al. (2008) have also proposed a pipeline for this task, using embryo

outline extraction, transformation of the embryo into a circular outline, and conversion to fourier-

coefficients based feature representation. They report a visual clustering of seven images using
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their pipeline.

Tomancak et al. (2007) analyzed the global gene expression patterns in the BDGP data set,

using only the manual annotations available for each gene from a controlled vocabulary. They

reported clustering results on joint clustering of microarray data and annotation terms, and found

interesting clusters that could not be found using microarray data alone.

Thus, these advances have offered important new insights and computational tools for mining

image-based gene expression patterns captured by ISH, which we extend by conducting a de-

tailed analysis of the information contained in ISH images, and how it can be captured in a good

feature representation format.

2.2 Methods

The SPEX2 system consists of three major components: (a) embryo standardization, (b) gene

expression pattern extraction, and (c) feature representation. An illustration of the pipeline is

given in Figure 2.2. Below, we describe each component in detail.

2.2.1 Embryo standardization

Given a raw ISH image, SPEX2 uses an embryo standardization process to convert it into a

standardized form suitable for subsequent expression extraction and pattern comparison. The

embryo is extracted from the ISH image, and aligned along its A/P and D/V axis correcting for

the orientation, thereby ensuring the anterior (of the embryo) is to the left and the dorsal surface

is to the top of the image. Finally, the embryo is registered to a standard shape and size.
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Figure 2.2. A schematic illustration of the SPEX2 pipeline.

Embryo outline extraction

Our embryo extraction procedure works in two steps. First, a foreground object extractor is used

to extract potential embryos in the image. Second, a series of increasingly complex tests filter

out foreground objects that are not embryos, or are embryos not suitable for analysis.

The object extractor uses the Canny edge operator to identify regions with fast-changing color

and high variance. A series of morphological operations (dilations and erosions) are used to

smooth out the edges and close holes to find the foreground objects.
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A sequence of tests are then applied to each foreground object to test whether it’s an embryo

suitable for further analysis; rejected items include erroneous outlines, partial embryos, multiple

embryos physically touching or overlapping with each other, and excessively dried or otherwise

mishandled embryos.

1. Objects touching the image boundary are rejected, since these may be partially imaged

embryos.

2. Objects that are too small or too large are rejected. Small objects imply that a part of

the actual embryo was potentially missed by the object extractor. Large objects are either

partial embryos imaged using a large magnification, or incorrect outlines that include a

portion of the background in the foreground object.

3. If the maximum distance between the object outline and the convex outline of the object is

large, the image is rejected; ensuring that the embryo outline is almost convex.

4. Scale-independent shape features of the object outline are extracted and compared with

expected shape features of a standard embryo. Scale independence is required since the

size of the embryo varies across images. Examples of shape features include : (a) The

ratio between the major and minor axes of the object must match the expected ratio for

a Drosophila embryo. This ensures that the object is not too thin and narrow, nor is it

too circular. (b) The centroid of the foreground object must be close to the centroid of its

outlining rectangle (ensures symmetry). (c) The maximum (and mean) curvature of the

object outline must be similar to the values expected for an embryo (filters out deformed

embryos). If the value of any of the above features is more than 20% away from the feature

value computed from a single correctly identified embryo, then the image is rejected.

Some examples of embryo outlines extracted by our algorithm are shown in Figure 2.3. Embryo

extraction works well in presence of varying illumination (Figure 2.3(a)), when the background is
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(a) (b) (c) (d) 

Figure 2.3. Embryo extraction. The top image shows the original image, and the bottom
image shows the extracted embryo.

lighter than the foreground (Figure 2.3(b)), in the absence of stain in the embryo (Figure 2.3(c)),

and when there are multiple embryos touching each other (Figure 2.3(d)).

Alignment, orientation detection and registration

To align all embryos for later comparisons, we assume the camera angle is perpendicular to the

surface of the embryo, which is the case with most imaging technologies with zoom-in. An

ellipse is fitted to the detected embryo outline, with the major axis of the ellipse assumed to be

the A/P axis, and minor axis the D/V axis of the embryo; and the embryo is rotated so that the

A/P axis is horizontal.

Next, the correct orientation of the aligned embryo is identified and standardized so that the

head is to the left, tail to the right, dorsal part of the embryo at the top, and ventral part at

the base. This is akin to a binary classification task, for which we need to determine whether

to flip the embryo horizontally to correctly position the anterior part of the embryo to the left,

and vertically to position the dorsal side to top. Gargesha et al. (2005) proposed a technique

to automatically annotate the anterior/posterior sides of the embryo. However, their technique

is supervised, requiring a large amount of pre-labeled data, which is tedious and expensive to
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generate. Additionally, their technique is based on a heuristic that does not utilize the knowledge

of the expected gene expression patterns. As for finding the dorsal/ventral sides of the embryo,

to our knowledge, no reported result is available so far.

We propose an algorithm for unsupervised embryo orientation detection, based on the insight

that images of the same gene at the same time stage must have similar expression patterns. We

start with a heuristic assignment to each embryo, and change the assignment of a particular

embryo if it increases its similarity with other embryos stained with the same gene, in a greedy

manner. The algorithm for A/P orientation detection for all embryos stained for a single gene is

outlined in Figure 2.4, and is run for all genes being analyzed. A similar algorithm is used for

D/V orientation, based on the heuristic that the dorsal side is less curved than the ventral side of

the embryo. Though this is a greedy algorithm that assumes that the first embryo assignment is

always correct, we found that it works well in practice. Some examples of orientation detection

and correction of embryos is shown in Figure 2.5.

Data: n embryos (emb) stained for the gene being analyzed
Result: Correct orientation assignment for each input embryo
for i = 1...n do

// heuristic assignment
assignment(i) = the thinner side of emb(i) is the head;
confidenceScore(i) = the difference in width of the two sides;

end
Sort all emb in descending order of confidenceScore;
for i = 2...n do

// compute mean similarity

s1 = 1
i−1
∑i−1

j=1 sim(emb(i), emb(j)) ;
s2 = 1

i−1
∑i−1

j=1 sim(flip(emb(i)), emb(j)) ;
if s2 > s1 then

// swap the heuristic assignment
assignment(i) = ! assignment(i);

end
end

Figure 2.4. Algorithm for A/P orientation detection.
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(a) (b) (c) (d) 

Figure 2.5. Orientation Detection. Flip (a) anterior/posterior, (b) both anterior/posterior and
dorsal/ventral, (c) dorsal/ventral, (d) dorsal/ventral assignments of the embryo in the image.
The top image shows the original image, and the bottom image shows the embryo outline after
alignment, orientation detection and correction, and registration.

Finally, a registration algorithm using point-wise affine stretching is used to register the convex

outline of the embryo to a standard ellipse shape. This enables us to obtain an exact map from

pixel space to body part of the embryo. At the end of the standardization process, for all the

processed images, there is a fixed correspondence between the image pixels and the various

embryonic structures, enabling comparison of the spatial patterns of gene expression in different

images by comparing the pixel-level expression values.

2.2.2 Concise gene expression pattern extraction

Given a standardized embryonic image, SPEX2 extracts concise spatial gene expression patterns

therein via a two-step procedure. First, standardized embryonic images are preprocessed to

extract ISH stains. Then, noise in the stains are removed using a Markov Random Field (MRF)

model based image segmentation. Our algorithm constructs the MRF graph structure and finds

image-specific parameters for the image segmentation in a completely unsupervised way.
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Stain extraction

The BDGP data set used digoxigenin-labeled RNA probes, that were visualized by using color

substrates NBT/BCIP, giving blue-colored gene expression stains to the embryo. Accordingly,

blue information present in the RGB image is extracted to quantify the amount of gene expres-

sion.

The image has R, B, and G channels for red, blue and green respectively, scaled to lie between

0 and 1. Using the grey scale image (y = (R+G+B)
3

) as the amount of stain captures the stain

correctly, but noise due to illumination and texture variance is considerable. In images where the

stain is present in small regions of the embryo, it is unable to identify a good contrast between

the presence and absence of stain. Another possible technique to extract blue information is

to subtract the grey scale color of the pixels from the blue channel (referred to as blue-grey in

Figure 2.6). Thus, the stain is s = max(0, B − y) where y is the grey scale image as defined

earlier. Though the illumination effects are reduced by this technique, this approach is unable

to extract highly stained portions of the image because dark blue stains have small (and equal)

values for all three components of RGB.

Since the above solutions seem inadequate, we propose an approach that captures the correct

staining in images with ubiquitous staining, and correctly identify the contrast between stain and

no-stain in images where small regions of the embryo are stained:

geneExpression =


max(s, 1−B) B < 0.5

s otherwise

It can be seen that geneExpression is always positive, bounded between 0 and 1, and captures

the amount of stain present (the higher the amount of stain, the higher the value of geneExpression).

For visualizations in this paper, we use (1 − geneExpression) (no longer mentioned explicitly
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later) so that darker regions have more stain. Sample results of extracting gene expression stain

using various techniques are shown in Figure 2.6.

original 
 Image 

grayscale 

blue-grey 

our method 

(1) (2) (3) (4) 

Figure 2.6. Gene expression extraction. For images (1) and (2), grey scale doesn’t extract
good results, while blue-grey gives good output. For images (3) and (4), grey scale does well,
while blue-grey misses highly stained regions. In all images, our method performs at least as
good as the best of the other two methods.

Gene expression segmentation with MRF

The expression stain found by preprocessing the image is a noisy measurement of the true ex-

pression value, distorted due to poor quality staining/washing, body texture, color condensation

caused by body anatomy, embryo shape and contour, etc. Since the expression patterns are noisy

with no sharp edges, standard edge-based segmentation algorithms are unable to find the correct

stain pattern; adaptive thresholding methods also fail due to the presence of a large variance in the

amount of staining in different images. Hence, we correct these issues by using a Markov Ran-

dom Field (MRF)-based segmentation algorithm to remove noise from the expression pattern.

Furthermore, given wide differences of expression patterns in different images, using a standard

MRF with fixed parameters across images is hardly adaptive; therefore we fit image-specific

MRFs in an unsupervised manner.
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Figure 2.7. The gene expression pattern extraction process. The input image is first
over-segmented, and the segments are converted into the MRF graph. The histogram of the
image is analyzed using EM to find the MRF parameters. Loopy Belief Propagation is used for
approximate inference to find the background pixels. Background pixels are noise, and their
expression values are removed to get the gene expression pattern.

Building MRF structure Naively, for any image, each pixel can be treated as a single node

in the MRF, and therefore the MRF naturally follows a grid structure. However, for large im-

ages, this technique generates very large graphical models, which are computationally infeasible.

We define our image-specific MRF on “super-pixels” (Ren and Malik, 2003) instead, by first

“over-segmenting” the image. A super-pixel is a collection of close-by pixels that have similar

grey scale levels, and the same foreground/background label because our MRF assigns labels on

super-pixels. Adjacent pixels whose values lie within k ∗ i and k ∗ (i + 1) for some integer i,

are put in the same super-pixel. k is a thresholding parameter, which we set to 0.05. The MRF

graph has each super-pixel corresponding to a nodal variable, and is connected to all its adjacent

28



super-pixels, using 4-adjacency.

Let X ≡ {xi}Si=1 denote the set of (binary) random variables representing class labels of super-

pixels, and Y ≡ {yi}Si=1 be the mean color values of super-pixels, where S is the total number of

super-pixels in the image. The MRF defines the following distribution:

P (X, Y ) =
1

Z

S∏
i=1

Φ(xi, yi)
∏

(i,j)∈E

Ψ(xi, xj) (2.1)

where Φ is the node potential, which captures the effect that pixel yi has on the label of xi; Ψ is

the edge potential, which captures how the label of xi is influenced by the labels of its neighbors,

and E is the set of edges we found over the super-pixels.

The node potential Φ(xi, yi) is assumed to be Gaussian with parameters (µf , σf ) if xi is fore-

ground, and (µb, σb) if xi is background. The edge potential is defined as

Ψ(xi, xj) = exp {−β × I (xi 6= xj)} , (2.2)

where I is an indicator function. Ψ defines the penalty given for neighboring pixels to disagree,

i.e. one of the pixels is foreground and the other is background, and there is an edge connecting

them. β captures the strength of the penalty, as β increases, we encourage smoother foreground

assignments. We used β = 2, and found that it gave reasonably good performance.

Learning MRF parameters For the MRF defined above, the parameters (µf , σf , µb, σb) must

be defined for each image. Learning the MRF parameters for every image, by using classical

unsupervised MRF learning techniques, is usually slow and inconvenient to process thousands

of images.

We propose a simple heuristic to determine the graph parameters. If the penalty parameter β is
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Figure 2.8. Gene Expression Pattern Extraction. The top row shows the original image, and
the bottom row shows the extracted gene expression pattern at the end of our analysis. Note
that, the embryo has been aligned to a standard shape before pattern extraction, and it may have
been flipped by the orientation correction process.

zero, then the edge potentials are constant. The MRF then reduces to a mixture of Gaussians,

where every super-pixel value is generated from one of two Gaussians, corresponding to the

foreground and background respectively. The Gaussian parameters can then be learnt efficiently

by computing the histogram of the image, and fitting a mixture of two Gaussians to the histogram

using EM. To improve the smoothness of the estimates, we add a small uniform prior (1% of the

mass of the histogram) to the image histogram before running EM. The parameters of the two

Gaussians are then treated as approximations to the MRF parameters, i.e. µf , µb, σf , σb.

Loopy belief propagation for inference A standard approximate inference technique, loopy

belief propagation (LBP), is used to find the maximum a posteriori (MAP) assignment to each

xi as foreground or background. Although LBP is not always guaranteed to converge, in our

experiments, a small number (3-10) of iterations were sufficient for convergence, for all input

images. At the end of this inference procedure, all background nodes are set to zero, and the

foreground expression value is used as the final gene expression pattern obtained at the end of

our image analysis pipeline. A small flowchart of our gene expression pattern extraction process

is shown in Figure 2.7. Some examples of the gene expression patterns found by our MRF image

segmentation algorithm are shown in Figure 2.8.
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2.2.3 Feature extraction

Since all ISH images have been standardized to a standard shape, size, orientation, and position;

and the gene expression pattern has been extracted, removing noise effects along the way, the

feature representation needs to be position, orientation and scale dependent. The SIFT feature

descriptor (Lowe, 1999) is used to derive a dense set of local visual features, using patches spaced

regularly through the image, with a radius of 12 pixels (images are standardized to 128×320

pixels). Since the SIFT interest point detector is not used for finding features, the features found

by this process are dependent on position, scale and orientation. Since this feature representation

is high dimensional, we reduce dimensionality by using Singular Value Decomposition (SVD).

A projection in 50 dimensional space was sufficient to capture most of the relevant information

in these images, and gave good results.

2.3 Results

We apply SPEX2 to the ISH images from the Berkeley Drosophila Genome Project (BDGP,

2005). Since our system performs automatic analysis for images in the lateral position, we picked

2689 images from the 13-16 time stage of the data set, which represent the expression patterns

of 1432 genes. After automatic filtering of unqualified images in the standardization phase,

1904 images of 1011 genes entered the pattern extraction phase. We analyzed these expression

patterns, and report results on two exemplary tasks: automatic annotation of images, and image

clustering.
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2.3.1 Image annotation

The expression patterns in BDGP Drosophila ISH images were annotated with anatomical and

development ontology terms from a controlled vocabulary by human curators. Automatic anno-

tation of images with terms from a controlled vocabulary represents a unique challenge itself.

Since the main goal of SPEX2 is to extract concise spatial expression patterns from ISH im-

ages for generic downstream applications of any user, rather than offering a perfect annotator,

we will demonstrate the quality of the SPEX2 output (e.g., expression features) using standard

off-the-shelf annotation classifiers.

We focus on the 10 most frequent annotation terms in BDGP, and treat every term as an indepen-

dent binary classification task. Each binary classifier is a standard SVM with a Gaussian kernel

(we used libsvm (Chang and Lin, 2001) for our experiments). We use 10-fold cross-validation

over a small set of values to pick the tuning parameter of SVMs - the cost of misclassification

C.

We compare our results with two benchmark systems representing the state-of-the-art. In System

I, we implement the feature extraction and classification procedure proposed by Zhou and Peng

(2007). Their system extracts the embryo outline by using an adaptive thresholding method

(Peng and Myers, 2004), and registers the embryo using affine transformation and intensity

scaling. The anterior/posterior orientation is determined by maximizing total gene similarity

across all images. Subsequently, two-dimensional wavelet embryo features are used, with min-

redundancy max-relevance feature selection to pick the best features. Finally, binary classifica-

tion on each annotation term is obtained via LDA (Linear Discriminant Analysis). In System

II, Ji et al. (2009) used dense SIFT feature descriptors that are converted into sparse codes to

form a codebook to represent their aligned images, and proposed an elegant local regularization

(LR) procedure for multi-label learning. Details on how to obtain well-aligned images were not

given, but the work by the same group in Ye et al. (2006) used a image standardization procedure
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outlined in Kumar et al. (2002), followed by histogram equalization for improved contrast in

images. Hence, we use the above procedure when implementing this system, using the LR code

from that group.

mean accuracy F1 score
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Figure 2.9. Image annotation. Mean Accuracy and F1 using macro averaging, for predicting
annotation terms.

We evaluate the performance using accuracy and F1 score (Goutte and Gaussier, 2005). The F1

score is the harmonic mean between the precision and recall of the results, and lies between 0 and

1, with higher F1 representing better performance. Figure 2.9 shows the classification accuracy

based on the SPEX2 features, in comparison with the benchmarks. In terms of mean accuracy,

SPEX2 out-performs both the systems, while maintaining the same F1 score. It is noteworthy that

our result is obtained with a standard SVM, because our goal here is to demonstrate the quality

of the SPEX2 features, not that of the annotation algorithm. Indeed, we observe that using the

sophisticated LR annotation algorithm of System II with our SPEX2 features, increases our F1

score, at the cost of a very small reduction in accuracy. Using the paired t test, the difference

in accuracy between SPEX2 with LR and System II was found significant with p-value=6.33e-6

and the difference in F1 scores was significant with p-value=9.51e-5.
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In addition, we visualize the information captured in the extracted expression patterns from

SPEX2 and the two systems we compare with, by computing the singular value decomposition

(SVD) of the expression patterns (Pan et al., 2006). The set of eigen vectors can then be repre-

sented as images. We call these images eigen-expression patterns, like eigenfaces used in facial

recognition (Pentland and Turk, 1991). The top 25 eigen-expression patterns are shown in Fig-

ure 2.10. Even though SVD performs global analysis of the feature space, the eigen-expression

patterns produced by SPEX2 seem to find localized regions of expression that correspond well to

known gene expression patterns.

2.3.2 Gene expression clustering

Next we evaluate the SPEX2 features on clustering, using a popular (but not necessarily optimal)

clustering algorithm, the Spectral Clustering (SC). To avoid tuning parameters, we used self-

tuning SC (Chen et al., 2008). Since the number of clusters must be specified in advance, and is

hard to estimate for biological gene data, we tried different numbers of clusters from 5 to 100 (in

steps of 5). We do most of our analysis on 15 clusters, the mean image of each cluster is shown

in Figure 2.11. Visual inspection shows that the mean of each cluster has a distinctive pattern,

each image looks salient enough to be a potential ISH image, even though it is the mean of tens

to hundreds of images. This suggests that we have obtained high purity clusters. Details of the

content of each cluster (i.e., represented by 10 images therein) are available in the supplemental

material, which substantiate the above assessment.

The literature on clustering specifies a variety of evaluation measures, however all of them are

distance-based and not biologically intuitive. In this specific data set, we observe that we have

two external sources of information associated with each image (that are not used by the clus-

tering algorithm), which can help build an intuition of what good clusters should look like. The

first source of information is the manual curation of these images, which has annotated each gene
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pattern with terms from a controlled vocabulary describing the localization of the expression pat-

tern. The second source is the GO functional annotations, associated with the gene. We conduct

enrichment analysis using both sets of information.

Hypothesis test for enrichment

Given a single cluster, and a single annotation term (from controlled vocabulary or GO ontol-

ogy), a p-value can be obtained by using an exact hypergeometric test. However, since we test

each cluster for multiple annotations, a correction for multiple hypothesis is needed. Standard

corrections for multiple hypothesis testing are usually found to be either very conservative, or

having low power. We instead convert the p-values into q-values, that control the positive false

discovery rate (pFDR), by using the procedure described by Storey (2002). The pFDR is the ex-

pected proportion of erroneous rejections among all rejections, thus a pFDR value of 5% means

that 5% of predicted significant features will be truly null. The q-value measures the strength of

the observed statistic, with respect to pFDR, and automatically corrects for multiple hypothesis

testing, it is therefore a much more powerful test scheme.

We conduct enrichment analysis using the procedure outlined by Arava et al. (2003), which

allows us to estimate q-values for multiple hypothesis tests, even when the statistics being mea-

sured are correlated (as is the case for GO and pattern annotations).

Annotation terms enrichment

If the data is well clustered, then a single cluster of images must be enriched for specific an-

notation terms that the images have been annotated with. Table 2.1 shows a partial enrichment

analysis for 15 clusters. All clusters were significantly enriched for at least one term, with a total

of 90 enriched terms. Since the number of terms is higher than the number of clusters, each
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cluster is enriched for a combination of multiple terms. For example, cluster one with 149 im-

ages is enriched for images that have been annotated with embryonic brain and central nervous

system, while cluster three with 100 images is enriched for a combination of embryonic brain

with embryonic midgut and ventral nerve cord. Images annotated with only ventral nerve cord

have been clustered into a separate cluster (having 139 images).

To assess the advantage of concise expression information extracted by SPEX2 over benchmark

systems, we performed the same clustering analysis based on features generated by the two

systems discussed above. We counted the number of clusters therefrom that have at least one

significant annotation at qvalue=0.05. Figure 2.12 shows the number of significant clusters found

by the three methods, as we vary the number of clusters from 5 to 100. We observe that SPEX2

works better than the other two methods, with an average of 18.39% more significant clusters

obtained than its closest competitor System I.

GO functional enrichment

It is believed that similar spatial-temporal patterns of gene expression are related to similar func-

tionality. Hence, we might expect that a good clustering will be enriched for gene functions, as

defined by the GO ontology. Since we are analyzing data from stage 13-16 of Drosophila em-

bryonic development, its not clear that the spatial expression information in this brief period is

enough for gene functionality enrichment. Hence, we do a limited functional enrichment analysis

of our cluster results, and leave extended analysis across time-stages for future work.

Since we are analyzing spatial patterns of genes that are differentially expressed in the embryonic

stage, without any analysis across time, we expect to find enrichment of smaller, more precise

functional annotations that are related to specific areas of embryonic development, and GO Slim

is not appropriate. For our enrichment analysis, we used GO annotations that are present in at
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least 5 genes in our data set.

Table 2.2 shows a part of the enrichment analysis performed on 15 clusters. We observe that 9 out

of the 15 clusters are significantly enriched (q-value=0.05) for various GO ontology functions,

many of which are known to be explicitly relevant to Drosophila development. For example, 8

of the 12 genes related to myoblast fusion are found in a single cluster. Genes for the myoblast

fusion are known to be expressed early in development, in embryos 0-4h after egg laying, and

remain high during embryogenesis (but not in the larval stage) (Dworak and Sink, 2002). Addi-

tionally, it is known that during Drosophila embryogenesis, the development of the open tracheal

system can be observed on the dorsal side; 18 of the 43 genes related to open tracheal system

development are found in a single cluster.

All ten genes related to “progression of morphogenetic furrow during compound eye morpho-

genesis” are found in the same cluster, and 5 of the 9 genes related to segment specification, are

also clustered together. Additionally, all genes related to “larval central nervous system remodel-

ing” are found in a single cluster, and 5 of the 6 genes related to “bristle morphegenesis” are also

co-clustered. This seems to imply that genes involved in larval stage development are already

showing spatial coherence in the embryonic stage.

Thus, the SPEX2 clusters are able to capture fine-grained GO functional annotations. In contrast,

clustering using features extracted by System I found only 6 significant clusters out of 15. Our

method thus improves the number of significantly enriched clusters by 50%. System II returned

only 1 significantly enriched cluster out of 15, at q-value=0.05.
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2.4 Sample cluster images

We present details of the content of each cluster, by representing each cluster by 10 representative

images, as shown in Figures 2.13-2.26 below. As can be clearly seen, each cluster visually cap-

tures specific expression patterns. For example, cluster 1 consists of genes including CG11426,

sna, mira, shep, NetB, CG1434, and others, and clearly shows patterning in ventral epidermis

and nerve cord. Similarly, cluster 13 with genes like scarface, RhoBTB, CG1942, prc, CG5171

and Oat show patterning in the yolk nuclei, and amnioserosa.
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1

(a) Eigen-expression patterns produced by SPEX2

(b) Eigen-expression patterns produced by System I

(c) Eigen-expression patterns produced by System II
Figure 1: Eigen-expression patterns used for low dimensional feature representation.
The eigen-expression patterns produced by SPEX2 show local pattern coherence,
which the other two methods are unable to capture.

(a) Eigen-expression patterns produced by SPEX2

1

(a) Eigen-expression patterns produced by SPEX2

(b) Eigen-expression patterns produced by System I

(c) Eigen-expression patterns produced by System II
Figure 1: Eigen-expression patterns used for low dimensional feature representation.
The eigen-expression patterns produced by SPEX2 show local pattern coherence,
which the other two methods are unable to capture.

(b) Eigen-expression patterns produced by System I

1

(a) Eigen-expression patterns produced by SPEX2

(b) Eigen-expression patterns produced by System I

(c) Eigen-expression patterns produced by System II
Figure 1: Eigen-expression patterns used for low dimensional feature representation.
The eigen-expression patterns produced by SPEX2 show local pattern coherence,
which the other two methods are unable to capture.

(c) Eigen-expression patterns produced by System II

Figure 2.10. Eigen-expression patterns used for low dimensional feature representation.
The eigen-expression patterns produced by SPEX2 show local pattern coherence and better
capture spatial patterns observed in the data, which the other two methods are unable to capture.
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2

(a) Mean cluster images produced by SPEX2

(b) Mean cluster images produced by the unprocessed images

(c) Mean cluster images produced by System I

(d) Mean cluster images produced by System II

Figure 2: Each image is the mean of a single cluster found by using processed images
from different systems. The intensity of any pixel in the mean image is the average
intensity of that pixel in all images assigned to this cluster. As can be seen, clustering
using unprocessed images only finds clusters based on embryo position and illumina-
tion. The clusters produced by SPEX2 have very low noise, and visually look pure in
terms of patterns clustered.

(a) Mean cluster images produced by SPEX2
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(a) Mean cluster images produced by SPEX2

(b) Mean cluster images produced by the unprocessed images

(c) Mean cluster images produced by System I

(d) Mean cluster images produced by System II

Figure 2: Each image is the mean of a single cluster found by using processed images
from different systems. The intensity of any pixel in the mean image is the average
intensity of that pixel in all images assigned to this cluster. As can be seen, clustering
using unprocessed images only finds clusters based on embryo position and illumina-
tion. The clusters produced by SPEX2 have very low noise, and visually look pure in
terms of patterns clustered.

(b) Mean cluster images produced by the unprocessed images
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(a) Mean cluster images produced by SPEX2

(b) Mean cluster images produced by the unprocessed images

(c) Mean cluster images produced by System I

(d) Mean cluster images produced by System II

Figure 2: Each image is the mean of a single cluster found by using processed images
from different systems. The intensity of any pixel in the mean image is the average
intensity of that pixel in all images assigned to this cluster. As can be seen, clustering
using unprocessed images only finds clusters based on embryo position and illumina-
tion. The clusters produced by SPEX2 have very low noise, and visually look pure in
terms of patterns clustered.

(c) Mean cluster images produced by System I

2

(a) Mean cluster images produced by SPEX2

(b) Mean cluster images produced by the unprocessed images

(c) Mean cluster images produced by System I

(d) Mean cluster images produced by System II

Figure 2: Each image is the mean of a single cluster found by using processed images
from different systems. The intensity of any pixel in the mean image is the average
intensity of that pixel in all images assigned to this cluster. As can be seen, clustering
using unprocessed images only finds clusters based on embryo position and illumina-
tion. The clusters produced by SPEX2 have very low noise, and visually look pure in
terms of patterns clustered.

(d) Mean cluster images produced by System II

Figure 2.11. Mean image in gene clustering. Each image is the mean of a single cluster found
by using processed images from different systems. The intensity of any pixel in the mean image
is the average intensity of that pixel in all images assigned to this cluster. As can be seen,
clustering using unprocessed images only finds clusters based on embryo position and
illumination. The clusters produced by SPEX2 have very low noise, and visually look pure in
terms of patterns clustered.
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Cluster
Size

Term Annotation Annotation
Probability

Overlap q-value

149 embryonic brain 0.298 133 5.14e-17
embryonic central nervous system 0.117 49 9.27e-30

194 embryonic midgut 0.282 109 1.84e-20
embryonic/larval muscle system 0.150 67 3.27e-13
embryonic Malpighian tubule 0.074 41 6.59e-12
embryonic anal pad 0.122 49 1.30e-5
embryonic gastric caecum 0.028 23 5.61e-7
dorsal prothoracic pharyngeal muscle 0.103 47 2.72e-15

100 embryonic midgut 0.282 56 1.03e-6
embryonic brain 0.298 67 3.98e-13
ventral nerve cord 0.327 68 6.64e-11
ventral sensory complex primordium 0.084 23 3.95e-4

139 ventral nerve cord 0.327 75 5.80e-6
39 embryonic central brain pars inter-

cerebralis
0.0094 5 6.94e-3

110 amnioserosa 0.01577 13 1.12e-6
140 embryonic esophagus 0.0678 27 4.11e-5

embryonic hypopharynx 0.168 51 5.07e-6
embryonic proventriculus 0.121 40 1.50e-5

165 embryonic/larval muscle system 0.15 74 3.27e-12
dorsal prothoracic pharyngeal muscle 0.103 53 1.65e-17

168 yolk nuclei 0.073 64 2.78e-31
gonadal sheath 0.0007 7 2.43e-2

78 embryonic brain 0.298 47 5.11e-6
ventral nerve cord 0.327 56 7.31e-8

70 embryonic hypopharynx 0.168 28 2.77e-4
labral sensory complex 0.009 7 2.77e-4
embryonic maxillary sensory complex 0.0205 10 2.68e-4

128 embryonic salivary gland body 0.021 12 2.482e-3
96 embryonic large intestine 0.035 13 7.120e-3
163 embryonic/larval somatic muscle 0.070 31 6.06e-5

dorsal prothoracic pharyngeal muscle 0.103 37 3.43e-4
93 ventral nerve cord 0.327 51 5.491e-3

Table 2.1. Enrichment Analysis for 15 clusters, using terms from the controlled
vocabulary. The first column shows the size of the cluster, the next 2 columns show the term
annotation, and the probability that a given gene will be annotated with this term. The 4th
column gives the number of images in this cluster annotated with this term, with the last column
giving the q-value of the overlap.
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Figure 2.12. Significantly enriched clusters v/s total # of clusters (q-value=0.05)

Figure 2.13. Sample images from cluster 1

Figure 2.14. Sample images from cluster 2
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Cluster
Size

GO Cate-
gory

GO Function GO Cate-
gory Size

Overlap q-value

149 GO:0007520 myoblast fusion 12 8 0.00539
187 GO:0007424 open tracheal system de-

velopment
43 18 0.011601

GO:0008354 germ cell migration 8 5 0.081374
GO:0035017 cuticle pattern formation 8 5 0.081374

126 GO:0008407 bristle morphogenesis 6 5 0.005878
102 GO:0035193 larval central nervous sys-

tem remodeling
10 10 0.0010015

GO:0006914 autophagy 10 10 0.0010015
GO:0007350 blastoderm segmentation 9 5 0.046871
GO:0007379 segment specification 9 5 0.046871
GO:0007458 progression of morpho-

genetic furrow during
compound eye morpho-
genesis

10 10 0.0010015

GO:0007552 metamorphosis 17 10 0.068039
GO:0007562 eclosion 10 10 0.0010015
GO:0048808 male genitalia morphogen-

esis
10 10 0.0010015

174 GO:0005730 nucleolus 11 8 0.00961
116 GO:0017150 tRNA dihydrouridine syn-

thase activity
5 4 0.021049

GO:0003725 double-stranded RNA
binding

5 4 0.021049

GO:0003777 microtubule motor activity 9 6 0.006836
GO:0005873 plus-end kinesin complex 5 4 0.021049
GO:0016323 basolateral plasma mem-

brane
8 8 0.044737

94 GO:0004866 endopeptidase inhibitor
activity

5 4 0.021049

68 GO:0004497 monooxygenase activity 12 6 0.028244
44 GO:0006508 proteolysis 48 8 0.009222

Table 2.2. Enrichment Analysis for 15 clusters, using GO functional annotations. The first
column shows the size of each cluster, the next 3 columns show the GO category, function, and
number of genes in the dataset having that GO function. The fifth column gives the number of
genes with the particular GO function present in this cluster, and the last column gives the
q-value of the overlap.

43



Figure 2.15. Sample images from cluster 3

Figure 2.16. Sample images from cluster 4

Figure 2.17. Sample images from cluster 5

Figure 2.18. Sample images from cluster 6
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Figure 2.19. Sample images from cluster 7

Figure 2.20. Sample images from cluster 8

Figure 2.21. Sample images from cluster 9

Figure 2.22. Sample images from cluster 10
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Figure 2.23. Sample images from cluster 11

Figure 2.24. Sample images from cluster 12

Figure 2.25. Sample images from cluster 13

2.5 Discussion

SPEX2 represents the first step towards automatic functional analysis of ISH images of Drosophila

embryos, namely concise extraction of spatial gene expression patterns. Our extraction system

employs a pipeline of analytical techniques to first standardize the embryo via embryo outline

extraction, orientation detection and correction, and registration; and then extracts spatial ex-

pression signal via filters and probabilistic segmenters. Finally, it converts the spatial signals
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Figure 2.26. Sample images from cluster 14

into a low dimensional feature representation, suitable for advanced analysis. We evaluated our

system by using the resultant features for automatic pattern annotation and clustering. Using

simple classification techniques and our sophisticated feature extraction pipeline, we achieved

a significant improvement in annotation accuracy over existing systems. We also clustered the

Drosophila ISH images, and conducted enrichment analysis on both pattern term annotations,

and GO functional annotations. We found significant enrichment in both scenarios. The next

step is a more detailed analysis of ISH images using this feature representation, which we will

see in the next chapter.
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Chapter 3

GINI: From ISH images to gene

interaction networks

This chapter discusses GINI (Puniyani and Xing, 2012), a machine learning system for infer-

ring gene interaction networks from Drosophila embryonic ISH images. GINI builds on the

vector-space representation of the spatial pattern of gene expression in ISH images, enabled by

the SPEX2 system; and a new multi-instance-kernel algorithm that learns a sparse Markov net-

work model, in which, every gene (i.e., node) in the network is represented by a vector-valued

spatial pattern rather than a scalar-valued gene intensity as in conventional approaches such as

a Gaussian graphical model. By capturing the notion of spatial similarity of gene expression,

and at the same time properly taking into account the presence of multiple images per gene via

multi-instance kernels, GINI infers statistically sound, and biologically meaningful gene interac-

tion networks from image data. Using both synthetic data and a small manually curated data set,

we demonstrate the effectiveness of our approach in network building. Furthermore, we report

results on a large publicly available collection of Drosophila embryonic ISH images from the

Berkeley Drosophila Genome Project, where GINI makes novel and interesting predictions of
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gene interactions.

3.1 Introduction

In this chapter, we propose a machine learning system for image-based network estimation to

infer gene interaction networks from spatial similarity of gene expressions captured via ISH

images. The system is called GINI (Gene Interaction Network from Images). With such a

system, we were able to systematically perform a genome scale network learning and analysis of

the image data from BDGP from a single time point.

To solve this problem, we recognized the following main challenges that are unique to micro-

imaging data versus the classical microarray data, which must be properly addressed before a

genome-scale gene network can be derived from such data.

Representation and quantification of gene activities: Unlike microarrays, which represent gene

activity with a univariate state or magnitude, images provide high-dimensional informa-

tion for every gene, and it remains an open problem in computer vision research to extract

meaningful features from the ISH images that are suitable for comparing activities of dif-

ferent genes and other genome-wide analysis (Frise et al., 2010; Puniyani et al., 2010).

Multi-variate measurement: Even after one can standardize the imagery-records of the expres-

sion of a gene at a particular time point by a d-dimensional vector, where d are the number

of features extracted from the image, a proper metric must be defined to quantify distances

between them.

Condition alignment: Images for different genes are typically taken under non-identical condi-

tions (e.g., time, temperature, etc.), whereas a microarray is a snapshot of multiple genes

under the same condition. This affects how signals are normalized across genes before
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they can be compared.

Sample imbalance: Different genes typically have different number of image records, i.e., for

gene i and j, their corresponding measurements can be in the form of two bags of different

sizes. It is not clear how to define distance or correlation between bags of images of differ-

ent sizes. One simple solution to this problem is to randomly sample a single image from

each gene. However, throwing away images fails to capture the natural variation observed

in gene expression patterns for some genes. Further, if noise in the expression patterns

has not been removed correctly in the feature extraction step, leveraging the existence of

multiple images per gene can lead to reduced noise, and improved performance.

Sparsity and statistical interpretability: The interaction network proposed must be sparse and

statistically meaningful, since we expect that a small fraction of all possible interactions are

actually present in a single organism, and such interactions must reveal globally consistent

conditional-independence relationships between genes, which is not possible in a simple

pairwise-correlation graph.

There has been some earlier work on automatic annotation of ISH images with annotation terms

(Mace and Ohler, 2010; Yuan et al., 2012), clustering of gene expressions (Tomancak et al.,

2007), determination of the development stage of embryos (Gargesha et al., 2005), etc., some

of which have been applied on the BDGP dataset. In this paper, we propose a machine learning

system to infer gene interaction networks from spatial similarity of gene expressions captured via

ISH images. The system is called GINI, for Gene Interaction Network from Images. With such

a system, we were able to address satisfactorily the challenges mentioned above, and systemati-

cally performed a genome-scale network learning and analysis on the BDGP dataset.
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Figure 3.1. GINI schematic. The schematic shows an outline of the overall system to reverse
engineer gene networks from ISH data. Sample output of each step is shown on top of the box
corresponding to that step.

3.1.1 Overview of the GINI approach

GINI first extracts the gene expression pattern from each image using a computer version driven

image analysis pipeline SPEX2 (Puniyani et al., 2010). These expression patterns are spatially

aligned and normalized to enable spatial comparison of gene expression across multiple images.

Next, the expression patterns are represented by suitable standardized features through a process

called “triangulation”, followed by feature normalization and selection. Since each gene may

have a different number of images in the data, each gene can now be represented by a “bag” or

a set of feature vectors - one feature vector per image. Thus, our task is to estimate the gene

network, given bags of images per gene (Figure ??). We cast the problem of estimating a gene

interaction network as the task of estimating the graph structure G of a Markov random field

(MRF) over the genes. The underlying graph encodes conditional independence assumptions be-

tween the genes, that is, two genes are said to not interact in the network if their gene expressions

are conditionally independent of each other, conditioned on the expression of all other genes in

the network. We employ multi-instance kernel technique using different order statistics to com-
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pute similarity between bags of images. We then estimate a sparse network of gene interactions

by modeling the data as a multi-variate multi-attribute Gaussian, and estimating the sparse in-

verse covariance matrix of the model. A schematic diagram of the system pipeline can be seen

in Figure 3.1.

3.1.2 Contributions

GINI is a bioimage informatics system based on a computer vision pipeline for ISH micro-image

processing and a statistical learning algorithm for network inference. The main contributions of

this work are summarized below.

First, the image analytic pipeline used by GINI offers a rigorous and universal approach to extract

a standardized representation of spatial patterns of gene expressions. Comparing to the popular

SIFT features (Yuan et al., 2012), which is based on detecting interest points with heavy assump-

tions on object shape, texture, and other physical properties originally meant for natural objects,

our approach is more suitable for ISH staining in Drosophila embryos which do not resemble

natural objects and require preservation of overall spatial shape and overall intensity information

in a canonical way for intra-gene normalization and inter-gene comparison.

Second, GINI infers a network that enjoys the Markov network property: it gives globally consis-

tent conditional-independency interpretation for every edge, and therefore is biologically more

meaningful. It is known that marginal correlation (as often used in estimating an ad hoc net-

work), which is computed for every gene-pair in isolation (i.e., ignoring all other genes in the

system), confounds direct and indirect dependencies, and could result in a clique-like dense graph

or subgraph among genes that are not directly dependent, but have a long-distance interaction.

Studying conditional independencies in a network allows us to predict interactions between a

pair of genes in the context of other genes, allowing a distinction to be made between direct and
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indirect relationships between the genes, and reducing false positives.

Third, our formulation based on Gaussian Markov random field and multi-instance kernel for

the GINI network is convex, hence the globally optimal estimator of the network is computed,

no approximations are involved. Furthermore, under suitable conditions, our graphical model

learning algorithm is sparsistent, i.e. as the amount of available data increases, the algorithm is

statistically guaranteed to predict the correct interactions between the genes. While Bach and

Jordan (2002) have previously proposed learning the structure of graphical models from data

using Mercer kernels, their approach is based on a non-convex local greedy search to find edges

in the graph. Our approach represents the first work that uses Mercer kernels and Gaussian

Graphical Models to predict kernelized graphical models using a convex formulation.

Finally, with the GINI system, we were able to systematically perform a genome-scale network

learning and analysis of the genes expressed during 2 time points of Drosophila embryogenesis

recorded by ISH imaging from BDGP (Tomancak et al., 2002b). In both time points, we find

that the GINI networks are modular and scale free, which are properties predicted to hold true

in gene interaction networks. Further, different regions of the networks are enriched for spatial

annotations, thus GINI is able to cluster spatially similar genes. The hubs of the networks, i.e., the

genes with the largest number of predicted interactions are functionally enriched for important

cellular functions. We demonstrate that the networks predicted by analyzing microarray data

does not have either spatial or functional enrichment, thus these results could not have been

obtained by analyzing microarray data.

To the best of our knowledge, GINI represents one of the first efforts to reverse engineering gene

networks from ISH image data. In both extensive simulation studies and empirical biological

analysis, we demonstrate the effectiveness of GINI in predicting networks, and show that the

statistical assumptions behind GINI are reasonable, and the biological analysis enabled by GINI

merits close examination and further exploration.
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3.2 Methods

We begin by introducing the key algorithmic innovations needed to compute the gene network

from the ISH images, assuming that each gene has a bag of images, with the images processed to

be represented by informative and canonical feature vectors. This is followed by a discussion on

the image processing procedures needed to extract informative features from the images.

3.2.1 Network inference from “one image per gene” ISH data

We first show how GINI estimates a gene network, when each gene has only one image. The

next subsection extends the GINI algorithm to deal with multiple images per gene.

Let G denote the set of n genes being studied, so that gi is the ith gene, where i ∈ {1, · · · , n},

and d is the number of features extracted per image. Each feature represents the gene expression

in a spatial location of the embryo.

Note that algorithms that analyze microarray data typically treat samples drawn from different

time points as independent samples (Jaffrezic and Tosser-Klopp, 2009), even though expressions

of the same gene across time is expected to be auto correlated. We similarly assume that the

different spatial features are independent of each other. The spatial independence assumption

has also been implicitly made by (Janssens and Reinitz, 2006; Segal et al., 2008) while modeling

transcription networks in Drosophila embryos. In the results section, we use simulated data to

demonstrate that this assumption does not affect the accuracy of the algorithm significantly.

By modeling the gene interactions as invariant across the spatial locations in the embryo, we can

assume that each feature is independently and identically drawn (i.i.d.) from the same distri-

bution. Inferring gene interactions is then equivalent to modeling the dependence between the

expression values of different genes at the same spatial location. Expression of the n genes in
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each spatial location is assumed to be drawn from some (multi-variate) distribution, independent

of all other spatial locations. Each spatial feature X(k) (k ∈ {1, · · · , d}) may be modeled as a

vector of length n, with X(k)(i) capturing the expression value of the ith gene in this location

k. This gives us d independent samples with which the parameters of the underlying distribution

may be learned. Formally, let each spatial location be drawn independently from a multi-variate

Gaussian N (µ,Σn×n), where µ is the mean vector, and Σn×n is the positive semi-definite co-

variance matrix between the genes.

In a multivariate Gaussian distribution, the (i, j)th entry of the inverse covariance matrix Σ−1 is

zero if and only if the corresponding genes are conditionally independent given the rest of the

graph. Thus, the non-zero entries of the inverse covariance matrix correspond to edges in the

corresponding Gaussian Markov random field, giving rise to the gene interaction network. The

Gaussian Markov random field is also known as a Gaussian graphical model (GGM) (Dempster,

1972). Since we expect a small number of interactions per gene, the estimated graph must be

sparse, i.e. the number of non-zero entries of the inverse covariance matrix must be small.

Thus, the gene interaction network may be estimated by learning a Gaussian distribution from the

observed images, such that the inverse covariance matrix is sparse. The mean µ of the Gaussian

is estimated by the observed sample mean,

µ =
1

d

d∑
k=1

X(k) (3.1)

Then, the inverse covariance matrix Σ̂−1 can be estimated by minimizing the negative log-

likelihood of the data, over all possible positive semi-definite matrices. To enforce sparsity,

the L0 norm of Σ−1, which counts the number of non-zero elements, is added to the negative log

likelihood. Since optimizing the L0 norm is non-convex and NP hard, the L1 norm is used as a

convex relaxation to the L0 norm. The L1 norm of a matrix is the sum of the absolute values of
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the elements of the matrix, and also enforces sparsity in the solution. Adding the L1 norm reg-

ularization also ensures that the minimizer of the objective function exists, and is well defined.

Thus, our objective function is

Σ̂−1 = arg min
Θ�0

{
trace(SΘ)− log det Θ + λ||Θ||1

}
(3.2)

where S is the second moment matrix about the mean

S =
1

d

d∑
k=1

(X(k) − µ)(X(k) − µ)T (3.3)

λ is a tuning parameter, by which we determine the strength of the penalty. As we increase the

value of λ, we increase the penalty on the absolute values of Θ, and hence, the graph induced by

Σ̂−1 becomes more sparse. The edges in the graphical model are then estimated as

E =
{

(i, j)
∣∣ Σ̂−1(i, j) 6= 0; i 6= j

}
(3.4)

Optimization

The objective function defined in Equation 3.2 is convex, hence it can be solved by any convex

optimization algorithm. Banerjee et al. (2006a) formulated an O(n4) block coordinate descent

method to solve it, where n is the number of dimensions. Friedman et al. (2007) formulated each

step of the block coordinate descent as a Lasso regression, and solved it in O(n3) - they named

their technique glasso. The glasso algorithm uses a series of L1 penalized regressions, called

Lasso regressions (Tibshirani, 1996); and we use the glasso algorithm for efficient optimization
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of our objective function.

Note that Equation 3.2 is a function of data X only through the sample covariance matrix S,

hence, we can replace the sample covariance matrix with a suitable similarity or kernel function.

This is the key idea behind GINI’s algorithm to deal with multiple images per gene, which we

discuss in the next section.

3.2.2 Network inference from “multiple images per gene” ISH data

Multiple images of the same gene at the same time point should have the same gene expression

pattern. However, in practice, the expression patterns in different images may differ considerably,

for three main reasons.

Firstly, there is a wide interval of time considered as a single time point while collecting such

data. For instance, the BDGP data divides embryonic development into 6 time stages. The last

stage 13-16 corresponds to development of the embryo 9.3 to 15 hours after fertilization, which

represents more than a third of the time taken for embryonic development. Hence, the true gene

expression pattern may be dynamic within the time period of a single development stage, and

the gene expressions captured for the same gene at the same time may not look similar to each

other. Secondly, we might expect that for any organism for which ISH data is collected, there

will necessarily be some ambiguity in how the development stage of the organism is labeled by

human annotators. Finally, noise in the expression patterns due to excessive staining, lighting

conditions and similar other reasons will also be observed. For all of the above reasons, any

network-learning algorithm should leverage the existence of multiple images per gene per time

point in improving its estimates of gene similarity.

The problem of multiple images per gene is reminiscent of multi-instance learning (Andrews

et al., 2003; Maron and Ratan, 1998). Multi-instance learning is a form of supervised learning,
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where instead of labeling each instance, a bag of instances is labeled. A popular solution to

the multi-instance problem is to define a multi-instance kernel, that can compute the similarity

between bags of instances. Let s(A) be a collection of order statistics of the set A, for example,

mean, median, minimum, maximum etc. In d dimensions, s(A) is computed on each dimension

independently, to form a vector of order statistics. If we use m order statistics, then the length

of s(A) will be dm. The similarity between gene gi with a set of images Bi and gene gj with

images Bj can then be computed as

K(Bi,Bj) = k(s(Bi), s(Bj)) (3.5)

where k(a, b) is an appropriate kernel function between vectors a and b. Such a kernel is called

the statistic kernel.

The choice of the order statistics used in the kernel depends on the data collection procedure of

the ISH. One concern in ISH data is that images may be overstained. In such a scenario, the

median may be an appropriate choice of order statistic. If over-staining is not a concern, the

maximum statistic may be more appropriate to ensure that information about presence of gene

expression is not lost.

For the BDGP data, we use the covariance kernel k(a, b) = Cov(a, b), and the mean statistic

s(B) = 1
|B|
∑

b∈B b. The choice of using a single statistic to represent information from multiple

images was due to the presence of noisy images in the data set. Thus,

K(Bi,Bj) = Cov

 1

|Bi|
∑
a∈Bi

a,
1

|Bj|
∑
b∈Bj

b


=

1

|Bi|
1

|Bj|
∑
a∈Bi

∑
b∈Bj

Cov(a, b) (3.6)

Thus, our choice of kernel is equivalent to computing the mean similarity of all pairs of images
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in bags Bi and Bj . This specific kernel is also known as the normalized set kernel, and has been

shown to perform very well in multi-instance classification (Gartner et al., 2002).

Any kernel function may be written as the dot product in some higher dimensional feature space,

i.e. K(a, b) = φ(a)Tφ(b) (Aronszajn, 1950). Hence, if we assume that the data is drawn from a

distribution such that φ(a) is a zero-mean Gaussian, we can learn the gene interaction network

by treating K as the sample covariance matrix. Since estimating the inverse covariance matrix

by solving equation 3.2 requires only the sample covariance matrix S and not the data itself,

we can kernelize it by using the kernel matrix K defined in equation 3.6 as the required sample

covariance matrix. Thus, the objective function is

Σ̂−1 = arg min
Θ�0

{
trace(KΘ)− log det Θ + λ||Θ||1

}
, (3.7)

which can be solved as discussed in the previous section.

Consistency of the estimate

Given samples X(1), X(2), · · · , X(n) drawn from a Gaussian distribution, it can be shown that

the objective function in Equation 3.2 leads to a consistent solution, with a suitable choice of λ

(Banerjee et al., 2006a). That is, the estimator Σ̂−1 converges in probability to the true inverse

covariance matrix Σ.

GINI however does not work with samples from a Gaussian distribution, but directly with a multi-

instance kernel K. By definition, any kernel K can be represented as an inner product in some

feature space φ, i.e. K(a, b) = φ(a)Tφ(b). For the multi-instance statistic kernel, φ = s(B), that

is, the feature space is defined by the order statistics computed over bag B. Since the order statis-

tics for image data is bounded between 0 and 255, s(B) is a bounded random variable. Hence

the distribution of s(B) is sub-Gaussian. For sub-Gaussian distributions, Ravikumar et al. (2011)
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show that the penalized maximum likelihood estimator defined in Equation 3.7 is sparsistent, i.e.

as the amount of data increases, the probability of identifying incorrect edges goes to zero. Thus,

the kernelized estimator defined by GINI is sparsistent.

Thus, the GINI algorithm predicts the gene interaction network in two steps: in the first step,

the similarity between different genes is computed using a multi-instance kernel. In the next

step, a sparse interaction network is learned from the similarity matrix by solving Equation 3.7,

and predicting edges corresponding to the non-zeros of the non-diagonal entries of the estimated

Σ̂−1. The next subsections describe the feature extraction, representation, and normalization

process used to obtain suitable features from images that can be input into GINI.

3.2.3 Image processing

We convert the ISH images into canonical feature vectors suitable for analysis by our algorithm

described above in a three-step manner. First, the precise expression pattern found in each image

is extracted and aligned spatially to make all images spatially comparable. Next, each image

is represented by a feature vector using Delaunay triangulation. Finally, features are normal-

ized and feature selection is performed to extract meaningful features, that can be then used to

compute the multi-set kernels to obtain gene similarity and learn the gene network.

Feature extraction via SPEX2

ISH images are taken under diverse lighting conditions, and may suffer from poor quality stain-

ing/washing. A good feature extraction system must remove these effects, controlling for posi-

tion, orientation etc. of the embryo and extract a precise gene expression pattern from the ISH

images. In previous work (Puniyani et al., 2010), we developed SPEX2, an automatic system
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for embryonic ISH image feature extraction. SPEX2 registers each Drosophila ISH image by

first extracting the embryo (foreground) from the image, using edge filters and image analysis

techniques. Next, the alignment, size, shape and orientation of the embryo is determined, and

normalized to a standardized ellipse. SPEX2 also does automatic error detection and correction,

rejecting images where the gene expression extraction process may have introduced errors, and

also rejecting partial embryos, multiple embryos physically touching each other, and excessively

dried or otherwise mishandled embryos. Next, the expression stain is extracted from the stan-

dardized embryo using a novel algorithm that maximizes the contrast between the stained and

unstained regions of the embryo. Finally, an image segmentation algorithm using Markov ran-

dom fields is defined to extract only the regions that have gene expression. Thus, a concise and

high-fidelity gene expression pattern is extracted from the ISH image.

Feature representation via Delaunay triangulation

While SPEX2 makes the images of different genes alignable spatially, and therefore directly

comparable, the expression patterns must still be converted into an appropriate feature repre-

sentation. One commonly used method for feature representation is to use the SIFT feature

descriptor(?) in either a grid of points spaced uniformly through the image, with principal com-

ponent analysis(PCA) used for dimensionality reduction(Puniyani et al., 2010), or via interest

point detection and codebook generation (Yuan et al., 2012). Such techniques work well for su-

pervised tasks like image annotation where a weight can be learned for each direction computed

by PCA or for each codeword in the generated codebook. However, for unsupervised tasks,

where weights cannot be learned, we wish to extract features that explicitly take into account the

spatial distribution of the gene expression. A pixel level feature representation on the other hand,

allows us to capture spatial information, but has high redundancy due to the correlation between

neighboring pixels.

61



To reduce redundancy while capturing spatial gene expression information, we choose to overlay

a fixed triangular mesh on top of the standardized embryo. The gene expression pattern for each

image may then be represented as the median gene expression present in each triangle in this

mesh. A mesh of 311 equilateral triangles was produced by using the Delaunay triangulation

algorithm (Persson and Strang, 2004), and aligning the mesh to the standardized embryo, as

described in Frise et al. (2010). Each image can then be represented as a feature vector of length

311, with each feature representing the median gene expression expressed in a specific location

on the embryo, which is fixed across all images. For example, triangle 1 may correspond to the

head in all images, and so on. Modeling the spatial locations in a lower dimensional space via

triangulation helps in approximating the independence assumption made in the GINI algorithm,

analogous to using coarse time definitions while making microarray measurements.

Figure 3.2 shows examples of ISH images converted into the triangulated gene expression pat-

terns. As can be seen, triangulating the SPEX2 output captures the key features of the gene

expression location and strengths. Thus, triangulation enables reducing the dimensionality of the

feature space, while retaining explicit spatial information about the gene expression, which other

dimensionality reduction techniques would not be able to capture.

Input images Triangulated images 

Figure 3.2. Triangulation. Examples of how ISH images are converted into low-dimensional
triangulated representations, for efficient feature representation.
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Feature processing

The feature vectors extracted by triangulating the expression patterns are not normalized, hence,

we need to adjust the signal obtained from different images to a common scale. The set of

triangulated features may also contain uninformative features that may add a bias if used directly

to compute the multi-set kernel. Further, the gene network analysis should only consider genes

with informative expression patterns that have non-trivial spatial expression in the data. Hence,

we need to further process the features to select informative features and genes, and normalize

the features in an appropriate manner.

Feature normalization:

Unlike in microarray data, the currently available ISH data does not measure the signal related to

nonspecific binding of the probe for each image, hence the background correction of intensities

cannot be image specific. Each gene expression pattern is normalized to have its expression

values(t) lie between 0 and 255 (the minimum and maximum color value). The feature value is

then computed as the logarithm of the expression value : log(1 + t).

Feature & gene selection:

A large percentage of the ISH images have no stain, or ubiquitous staining. In the BDGP data,

55% of the genes have at least one image, in at least one time point, with no stain. Since no

information may be inferred from such data, these images must be removed from analysis. This

can be achieved by removing expression patterns having variance below a threshold (ε, usually

0.1).

Additionally, features that have low variance in the data set are capturing no information about

63



the gene expression variation across multiple genes. Hence, they must be removed from the

analysis as well. Since removing images from the analysis affects the feature variance and vice-

versa, we alternate removing features and images with low variance, until both feature variance

and image variance is greater than the threshold. The algorithm is described formally in Figure

3.3.

Input: triangulated features for n images : ti, where i ∈ {1, ...n};
variance threshold ε

Output: normalized and processed features in matrix X
for image i = 1 · · ·n do

X(i, •) = log(1 + 255 ∗ ti−min(ti)
max(ti)−min(ti)

) ;
end
while (min(var(X)) < ε || min(var(X′)) < ε) do

keepImages = find(var(X′) > ε);
X = X(keepImages, •);
keepFeatures = find(var(X) > ε);
X = X(•, keepFeatures);

end

Figure 3.3. Algorithm outlining feature normalization and processing. var(A) for matrix
A returns a vector containing the variance of each column of A; find(y) returns the indices of
the non-zero elements of vector y, and A′ is the transpose of matrix A.

3.2.4 Summary of the GINI system

Putting everything together, we conclude the method section with a summary of the GINI system

for network inference from ISH images. Each ISH image is converted into a standardized ex-

pression pattern using SPEX2, and then triangulated to extract a low-dimensional spatial feature

vector. Next, feature values are normalized, uninformative features are removed, and genes with

insufficient information available are rejected. Finally, the multi-set kernel is used to compute

the similarity between the bags of image vectors available for each gene, and the gene network

is estimated using Equation 3.7. The algorithm is summarized in Figure 3.4.
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Input: Embryonic ISH images for n genes ;
λ - tuning parameter to control sparsity
Output: Predicted gene network for the n genes
for gene i = 1 · · ·n do

// feature extraction
Bi = {};
for each image j of gene gi do

Extract expression patterns from image j using SPEX2;
tj = triangulate expression pattern of image j;
// feature normalization

tj = log(1 + 255 ∗ tj−min(tj)

max(tj)−min(tj)
) ;

bj = feature selection(tj);
Bi = Bi ∪ {bj};

end
// Bi is now the set of all normalized features of the

images of gene gi
end
// Define the multi-instance kernel
for gene i = 1 · · ·n do

for gene j = 1 · · ·n do
K(i, j) = Cov

(
1
|Bi|
∑

a∈Bi a,
1
|Bj |
∑

b∈Bj b
)

end
end
// Run glasso using kernel K
Σ−1 = glasso(K, λ) ;
Predicted edges in the network: E = non-zeros in the non-diagonal elements of Σ−1 ;

Figure 3.4. The final GINI algorithm to obtain the gene network from ISH images.

Computational complexity

We assume that the number of images per gene is small and bounded by a constant, and hence

the total number of images isO(n), where n is the number of genes. Then, given the triangulated

features of all images, feature and gene selection takes time O(nd2) and O(n2d) to compute the

correlation matrix in feature and gene space respectively. Computing the kernel requires O(n2d)

time, and finally, the computational complexity of minimizing the log-det divergence is known

to be O(n3). The overall computational complexity is then O(n3 + nd2 + n2d). Assuming
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d << n, the complexity may be assumed to be O(n3). The implementation is efficient, and

computes a gene network for ∼ 2000 genes in a few minutes on an Intel Core-2 CPU with 2 GB

memory.

3.3 Results

We first demonstrate that the independence and Gaussian assumptions are reasonable for ISH

data, and that GINI explains the ISH data well, with small fitting errors, and no bias in the

residues. Next, we show the performance on a small subset of 12 images for 6 genes to verify

that the network predicted by GINI is reasonable. We then run GINI on two datasets of ISH

images from 2 time points in the BDGP data, and study the networks. We find the networks are

modular and scale free as expected. Furthermore, different regions of the networks are enriched

for spatial annotations, and the hubs of the networks are functionally enriched for important

cellular functions. Finally, we demonstrate that these results could not have been obtained by

analyzing microarray data.

3.3.1 Validation of the GINI assumptions : independent spatial data

GINI assumes that the gene expression in each triangle can be assumed to be independently

drawn from a multi-variate Gaussian. However, the true gene expression in adjacent spatial

locations is correlated and not independent. To verify that this dependence of adjacent samples

does not affect the accuracy of the estimated network, we simulate synthetic data where the

underlying network is known, but the data points are not independent of each other, and test

whether GINI can recover the correct network in such a scenario. The data samples depend on

each other via a parameter c that captures degree of dependence between data samples. When
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c = 0, all data samples are drawn i.i.d. from the known distribution. As c increases, data samples

are drawn from the same distribution, but they depend on the adjacent samples.

Data generation

For p = 50 dimensions, the true inverse covariance matrix was constructed by using the AR(1)

model from Yuan and Lin (2007). That is, Σ−1i,i = 1, and Σ−1i,i+1 = 0.5, with all other elements

being zero. Dependent samples are generated from a zero mean Gaussian having the above

known inverse covariance matrix, as explained below.

Let c ∈ [0, 1) be the fractional overlap between adjacent samples. The first sample is sampled

independently from the above specified Gaussian. The (i+ 1)th sample is generated from the ith

sample as follows. Pick c ∗ p random features f , and copy the value of the previous sample for

these features : X(i + 1, f) = X(i, f) = a. Now, Xi+1 can be partitioned into the “known” f

features and the remaining q features which still need to be sampled, conditioned onX(i+1, f) =

a. If we partition Σ as

 Σff Σfq

Σqf Σqq



then Xq conditioned on Xf = a can be shown to be Gaussian with mean µ̄ and covariance Σ̄,

which can be computed as below, and X(i+ 1, q) can be sampled from it.

µ̄ = ΣqfΣ
−1
ff a (3.8)
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Σ̄ = Σqq − ΣqfΣ
−1
ff Σfq (3.9)

We ran two experiments. In the first, a fixed number of samples(n = 100) were used to learn

the network. In the second, as c increases, more samples (n = 100
√
p ∗ c+ 1) are available for

learning the network. In both experiments, for each c value, we randomly sample data points X

using the method outlined above, estimate the Σ̂−1 matrix, and compare it to the known Σ−1 ma-

trix, to compute precision and recall. Results are averaged over 50 runs of the experiment.

Figure 3.5(a) shows that as c increases, the precision (fraction of correct interactions among all

inferred ones) and recall (fraction of correct interaction among all true interactions) stay constant

for small values for c. Only when the amount of dependence increases beyond half, do we see a

small reduction in accuracy. Thus, we can conclude that even if there is a large spatial dependence

in gene expression, the result is equivalent to a slight reduction in performance. Futher, in Figure

3.5(b), we see that if we can increase the number of data points as we increase c, the performance

remains the same as using i.i.d. data.
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Figure 3.5. GINI assumptions are reasonable. Even if the data are not independent draws
from the Gaussian, the network can still be learned with high precision and recall. (a) For a
fixed number of data points, as c increases beyond 0.5, the precision and recall reduces. (b) If
we allow the number of data points n to increase as c increases, the precision and accuracy of
the method is not affected. The standard deviation at each point in both results is approximately
0.09.
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3.3.2 GINI explains the ISH data well

For a high-dimensional distribution, it is not feasible to test if the data is truly Gaussian. However,

a consequence of Gaussianity is that for each gene, the gene expression can be expressed as a

weighted linear sum of the expression values of a few other genes, which form the edges of the

network. To test if this assumption holds true in ISH data, for each gene, we fit a linear regression

between the gene and its neighbors found by GINI and look at the absolute value of the error i.e.

the mean absolute difference between the predicted and the known gene expression. When the

maximum expression value is 1, for more than 90% of the genes we looked at, the absolute error

was less than 0.02; 99.5% of all genes had absolute error less than 0.05, confirming that the GINI

generative model explains the ISH data.

We also confirm that the prediction error is not systematic with respect to the spatial location. For

each gene, we compute the prediction error (residue) when the gene is predicted by regressing it

on its neighbors. For each spatial location, we plot the mean residue at that location for all genes.

As can be seen in Figure 3.6, there is no systematic bias in the spatial positions that are hardest

to predict for any gene.

stage 9-10 stage 13-16

Figure 3.6. GINI error analysis. Locations where gene expression cannot be predicted easily.
Red color indicates that the true gene expression was higher than predicted by the regression,
while blue indicates that the true gene expression was lower than predicted by the regression.
Note that since the difference in the true and predicted gene expressions is very small, the mean
residue values were multiplied by 10 to improve the contrast of the image for visualization
purposes. Thus, there is no systematic bias in the spatial locations where expression is hard to
predict.
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3.3.3 Network on limited data

(a) (b)

Figure 3.7. Example network on small data. (a) 12 images input to the GINI system, and (b)
network of genes learnt by it, with each gene represented by one image.

Before running our algorithm on a large sized dataset, we construct an artificial small data set to

verify the results. We input 12 images, shown in Figure 3.7(a) from 6 genes to the GINI algorithm

(each gene has 1-3 images in the data set). With λ = 0.46, 4 edges are predicted in the network,

shown in Figure 3.7(b). As can be seen, the three genes hunchback(hb), four-jointed(fj), and

Blimp-1, which are expressed in the dorsal, ventral and procephalic ectoderm, are connected in

a single cluster. Similarly, the genes organic anion transporting polypeptide 74D(Oatp74D) and

bicoid(bcd) are connected by an edge, since both show expression in the foregut and the anterior

endoderm. Finally, the expression of sloppy paired-1(slp1) was considered to be sufficiently

different from the other genes, hence it is not connected to any other gene in the network.

Thus, the gene interaction network found by GINI can be verified to be reasonable for the above

small data set.

3.3.4 Network on the whole BDGP data

We now turn our attention to the ISH images from the Berkeley Drosophila Genome Project

data set. We have obtained around 67400 ISH images of 3509 protein-coding genes from the
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BDGP data released in September 2009, captured at key development stages of embryonic de-

velopment. Each image captures embryonic gene expression of a single gene using RNA in-situ

hybridization. Each image was labeled manually with the age of the embryo, categorized into

six distinct embryonic stages : 1-3, 4-6, 7-8, 9-10, 11-12, and 13-16. Genes are also annotated

with ontology terms from a controlled vocabulary of around 295 terms, describing the unique

embryonic structures in which gene expression is observed during the various stages of embry-

onic development. SPEX2 analyzes these image automatically, rejecting unsuitable images, to

produce 51593 expression patterns of 3347 genes.

As proof of concept, we focus on images viewed from a lateral perspective from two development

stage ranges of this data : 9-10 and 13-16. For the stage 9-10, we have 2869 expression patterns of

2609 genes, and for stage 13-16, we have 6350 expression patterns of 3258 genes. We extracted

features as described in the methods section. For each development stage, we ran a separate

analysis.

Using a λ value of 0.775 for stage 9-10, we ran GINI and obtained a network having 258 genes,

and 516 interactions (edges) between them. For the development stage 13-16, we used λ =

0.875, and obtained a network with 1202 genes and 3666 interactions between them. The λ

value was selected for each network by running GINI for 21 λ values between 0.5 and 1, and

picking a value such that the mean-degree for the network is reasonable (approximately 2-3)

- see Supplementary Figure S1 for a plot that shows how the number of edges in the network

decreases as λ increases.

Some of the interactions predicted by GINI have already been reported in the literature. For

example, in the network for stage 9-10, GINI predicts that DCP-1 (CG5370), an effector caspase

which is involved in apoptosis, will interact with the thread gene (CG12284), a known inhibitor

of apoptosis protein (JS et al., 2003). GINI also predicts that Snf5- related 1(CG1064) interacts

with echinoid (CG12676), both of which are known to be involved in epidermis development,
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muscle organ development, as well as imaginal disc-derived wing vein morphogenesis. In the 13-

16 development network, GINI predicts that the capping protein beta gene (CG17158) interacts

with the Glycogen phosphorylase gene (CG7254), and Tpc1 (CG6608) interacts with CG2812,

which has been previously reported in Giot et al. (2003).

The next five subsections do a detailed analysis of the 2 networks.

3.3.5 Scale free network

A network is said to be scale free if its degree distribution asymptotically follows a power law.

That is, the fraction of genes P (k) that have at least k interactions with other genes is

P (k) = ck−γ (3.10)

where γ is the scale free parameter, and c is the normalization constant. It has been hypothesized

that gene regulatory networks are scale free (Basso et al., 2005). We looked at the characteristic

of our interaction networks by plotting the number of interactions per gene (Figure 3.8), and

found that the networks found by GINI are scale free. The γ parameter obtained is 2.3 and 2.5

for the 9-10 and 13-16 networks respectively, which corresponds well to the values observed

for a large variety of power law graphs. The scale free nature of the network was found to be

independent of the λ tuning parameter of the algorithm.

Unlike the gene regulatory network obtained for Human-B cells (Basso et al., 2005), we found

that the scale-free nature of the gene network we obtain has a good fit, without observing a

deviation from the expected at low connectivity values. However, this could be a side-effect of

the larger number of genes they analyzed.
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Figure 3.8. Scale-free network. Connectivity properties of the reconstructed network for time
stage 9-10, and 13-16. The scale free nature of the plot can be observed for both networks. The
plot for stage 9-10 has fewer points since the network constructed has fewer nodes and edges.

3.3.6 The BDGP networks are modular

Using spectral clustering, we construct 12 regions or clusters within each network, and visualize

the five biggest clusters of each of the networks in Figure 3.9. All 12 clusters in both networks are

very well separated. The ratio of within-cluster edges to total number of edges is 70% and 87%

for the 9-10 and 13-16 development stage networks respectively, indicating that the estimated

networks are highly modular. From a biological perspective, different parts of gene networks

may be responsible for different pathways or biological functional components of the cell, thus

modularity is a good prediction for real interaction networks.

3.3.7 Hub analysis

Given the scale-free nature of the network, a small number of the genes have a large number of

interactions. We analyze the Gene Ontology functions of the genes having the largest number of

interactions, i.e. the hubs of the network. The question we wish to address is : if we pick the

top 5% of the genes having the maximum connectivity with other genes, what kind of functional

enrichment do these genes have? Our background population is of the 2609 and 3258 genes for

which we have at least one ISH image describing its expression for the 9-10 and 13-16 stages
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Figure 3.9. Modular network. A global view of the networks constructed by our algorithm for
development stage 9-10, and 13-16, visualized for 5 of the 12 clusters in the network. The nodes
of each cluster in the network are represented by different colors. Red edges are edges between
nodes in the same cluster, while green edges are edges between nodes in different clusters. Each
cluster is represented by one or two spatial annotation terms enriched in the cluster.

Table 3.1. GO functional analysis for the gene hubs of the GINI network

Stage Gene Ontology term Hub frequency Genome frequency P-value
9-10 cellular macromolecule metabolic process 57 of 119 genes, 47.9% 652 of 2575 genes, 25.3% 1.79e-05

macromolecule metabolic process 62 of 119 genes, 52.1% 772 of 2575 genes, 30.0% 8.16e-05
cell cycle 24 of 119 genes, 20.2% 174 of 2575 genes, 6.8% 0.00029
primary metabolic process 67 of 119 genes, 56.3% 962 of 2575 genes, 37.4% 0.00559
cell cycle phase 18 of 119 genes, 15.1% 127 of 2575 genes, 4.9% 0.00667
cellular metabolic process 64 of 119 genes, 53.8% 910 of 2575 genes, 35.3% 0.00827
mitotic cell cycle 18 of 119 genes, 15.1% 131 of 2575 genes, 5.1% 0.01039
cell cycle process 19 of 119 genes, 16.0% 146 of 2575 genes, 5.7% 0.01313
cellular process 90 of 119 genes, 75.6% 1508 of 2575 genes, 58.6% 0.01798
macromolecule modification 20 of 119 genes, 16.8% 163 of 2575 genes, 6.3% 0.01888
protein modification process 19 of 119 genes, 16.0% 155 of 2575 genes, 6.0% 0.03111
nucleobase-containing compound metabolic process 39 of 119 genes, 32.8% 476 of 2575 genes, 18.5% 0.04665

13-16 energy derivation by oxidation of organic compounds 13 of 159 genes, 8.2% 47 of 3217 genes, 1.5% 0.00011
cellular respiration 12 of 159 genes, 7.5% 43 of 3217 genes, 1.3% 0.00031
generation of precursor metabolites and energy 14 of 159 genes, 8.8% 60 of 3217 genes, 1.9% 0.00039
electron transport chain 10 of 159 genes, 6.3% 32 of 3217 genes, 1.0% 0.00093
mitochondrial ATP synthesis coupled electron trans-
port

9 of 159 genes, 5.7% 26 of 3217 genes, 0.8% 0.00121

ATP synthesis coupled electron transport 9 of 159 genes, 5.7% 27 of 3217 genes, 0.8% 0.00174
cellular process 116 of 159 genes, 73.0% 1808 of 3217 genes, 56.2% 0.00211
respiratory electron transport chain 9 of 159 genes, 5.7% 28 of 3217 genes, 0.9% 0.00246
oxidative phosphorylation 9 of 159 genes, 5.7% 29 of 3217 genes, 0.9% 0.00342
ribosome biogenesis 7 of 159 genes, 4.4% 20 of 3217 genes, 0.6% 0.01640
cellular metabolic process 78 of 159 genes, 49.1% 1091 of 3217 genes, 33.9% 0.01708
mitochondrial electron transport, NADH to
ubiquinone

6 of 159 genes, 3.8% 15 of 3217 genes, 0.5% 0.02661

GO functional analysis for the gene hubs of the networks learned for the two development
stages by GINI. Both networks have hubs that are enriched for multiple important cellular
functions.

respectively. We use the hypergeometric test, with Bonferroni correction used to correct for mul-

tiple hypothesis tests (Boyle et al., 2004). As can be seen in Table 3.1, we observe enrichment of
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Figure 3.10. Hubs of the GINI network. A look into the neighborhoods of a few hubs from
the GINI networks for stage 9-10 and 13-16. A few enriched GO groups are highlighted in the
subnetworks as shown.

a wide variety of functions that are essential to cell growth and functioning, including metabolic

processes, cellular respiration, transport of electrons and ions, protein modification, ribosome

biogenesis etc.

Next, we examine a few high-degree hubs in the two networks in detail, along with their neigh-

borhood genes in the networks. Figure 3.10 shows the hub neighborhood for two genes in the

9-10 development stage network. CG3969 is a Activated Cdc42 kinase-like gene known to be

involved in protein phosphorylation (Consortium, 2002) and cell death (Gorski et al., 2003), and

CG9984 (TH1) is known to be involved in regulation of biosynthetic process (Missra and Gilmour, 2010)

and nervous system development (Neumüller et al., 2011). Both genes interact with many genes

having functions related to the primary metabolic process, and single-organism cellular process.

In stage 13-16, we examine the hub neighborhood of CG5904 and CG6501. The mitochon-

drial ribosomal protein CG5904 has been previously predicted to be a structural constituent of

ribosome(Koc et al., 2001), and we find that it interacts with many genes involved in the ribo-

some biogenesis. Gene CG6501 (Ns2) has been previously predicted to be involved in phagocy-

tosis, engulfment(Stroschein-Stevenson et al., 2006), and ribosome biogenesis (Consortium, 2002);
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CG6501’s neighborhood has multiple genes that are also involved in ribosome biogenesis and

single-organism cellular process.

3.3.8 Enrichment of annotation terms

Each gene in the BDGP data has been labeled manually by annotations describing the spatial

gene expression, using 295 annotation terms. We expect that since the gene interaction network

is constructed via spatial similarity, genes that are connected to each other in the network will

have similar spatial annotation terms.

To test this, we cluster the gene network using spectral clustering (NG et al., 2001) into 12 clus-

ters, and analyze the enrichment of each cluster for annotation terms using the hypergeometric

test, with Bonferroni correction used to correct for multiple hypothesis tests. In the gene net-

work for the 9-10 stage, 11 of the 12 clusters are enriched for 63 total annotation terms (Figure

3.11). The only cluster not showing any enrichment in the 9-10 stage network is also the smallest

cluster, having only 4 genes. For example, in cluster 8, 92% of the genes have expression in the

ventral nerve cord primordium P3 , while only 8% of the genes in the data have expression in

this region. Similarly, 73% of the genes in cluster 11 have expression in the trunk mesoderm

primordium, while only 16% of the genes in the data have expression in this region. For the

13-16 stage network, all 12 clusters are enriched for a total of 81 enrichments, a part of which is

visualized in Figure 3.11. Tables S1 and S2 in the supplementary material report the complete

enrichment analysis.

Triangulation improves quality of result

Previous work on image processing for ISH images has focused on using SIFT features, and

constructing a codebook that contain all the embryonic structures that the system is expected to
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Figure 3.11. Spatial annotations. Enrichment analysis for clusters in the gene interaction
networks found by GINI. A green dot indicates enrichment with a P-value < 0.05.

annotate(Yuan et al., 2012). In this section, we show that triangulation produces more interesting

networks over such a SIFT feature representation. We use the SPEX2 gene expression patterns,

and represent them by constructing SIFT features of the expression pattern over a grid. These

grid SIFT features are then represented with a codebook of 2000 dictionary features, as described

in(Yuan et al., 2012). We then use these dictionary features instead of the triangulated features

to learn the GINI network. Figure 3.12 shows that the resulting networks are not as richly en-

riched as the ones derived from the triangulation features in Figure 3.11. The total number of

enrichments in the SIFT codebook network is 42 and 21 for the 9-10 and 13-16 development

stage networks respectively. In contrast, the triangulated GINI networks had 63 and 81 enrich-

ments for the 9-10 and 13-16 stage networks. Figure 3.13 shows that this result is independent of

the number of clusters selected for the analysis, for both triangulated networks as well as SIFT

codebook networks.

Sensitivity to the tuning parameter λ

Supplementary Figure S1 shows how the number of edges in the network decreases as the tuning

parameter(λ) of the GINI algorithm increases. To confirm that the enrichment results are not

sensitive to the choice of λ, we obtained 21 predicted networks by varying the λ value uniformly

from 0.5 to 1. For each network, we repeated the clustering and enrichment analysis, and found
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Figure 3.12. Enrichment analysis on networks learned from SIFT dictionary features
instead of triangulation features. The network for development stage 9-10 has only 7
enriched clusters of the 12 clusters in the network. For the stage 13-16 network, only 3 of the 12
clusters are enriched for spatial annotations.
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Figure 3.13. SIFT codebook features do not perform as well as triangulated features on
ISH data. Percentage of clusters enriched for spatial annotations in networks predicted by
GINI as a function of number of clusters for data from development stage 9-10 and 13-16. As
can be seen, using triangulated features produces networks with more enriched clusters than
using SIFT-codeword features, independent of the number of clusters selected for the analysis.
Further, the enrichment of the GINI network clusters does not significantly vary as the number
of clusters are varied.

that the enrichment for term annotations is not highly sensitive to choice of λ ( Figure 3.14). The

enrichment results are also not dependent on the number of clusters - we get high enrichment,

independent of the number of clusters chosen while running the clustering algorithm (Figure

3.13).
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Figure 3.14. λ tuning. Percentage of clusters enriched for spatial annotations in networks
predicted by GINI as a function of tuning parameter λ for data from development stage 9-10
and 13-16. As we increase λ, the number of edges predicted in the network decrease, however,
the enrichment of the different clusters stays almost constant. Thus, qualitative analysis of the
network does not seem to be sensitive to choice of λ.

3.3.9 Comparison with microarray network

We learn a network from microarray data collected by the BDGP project over 12 time points in

embryonic development (Tomancak et al., 2002b), over the same genes that are being studied in

the 9-10 and 13-16 networks, using covariance between the microarray expression as the kernel.

We find that the overlap in edges between the 2 networks is very small, only 1% of the edges

are common to both networks. If we assume that spatial expression annotations are a proxy for

functional enrichment, then we can check if the microarray network is enriched for the spatial

annotation terms. Figure 3.15 shows that the percentage of enriched clusters in the microarray

network is small, independent of the number of clusters analyzed.

We can also test functional GO enrichment of the hubs of the network. Table 3.2 shows that the

hubs of the microarray network for stage 13-16 are enriched for only a single function, where

4 of the 145 hub genes are involved in the “aromatic compound catabolic process”, while the

microarray data network for stage 9-10 has no enrichments.

Thus, we find that the network learned from ISH images is clearly different from a network

learned from microarray data. The ISH image network is enriched for spatial annotation terms,

as well as functional enrichment of the hubs of the network, which does not hold true for the
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Figure 3.15. Microarray v/s ISH data. The percentage of clusters that are enriched for spatial
term annotations using networks learned from ISH and microarray data.

microarray network. This suggests that analyzing ISH images could support different scientific

conclusions, which should be studied in greater detail.

Table 3.2. GO functional analysis for the gene hubs of the microarray network

Stage Gene Ontology term Hub frequency Genome frequency P-value
13-16 aromatic compound catabolic process 4 of 145 genes, 2.8% 6 of 3213 genes, 0.2% 0.01841

GO functional analysis for the gene hubs of the microarray networks learned for genes with
images in the 13-16 development stage. No enriched terms were found for the microarray
network constructed on genes from the 9-10 stage.

3.4 Discussion

GINI predicts gene interaction networks by analyzing Drosophila embryo ISH images. While

the experiments above have been reported on the ISH data from BDGP, the GINI algorithm can

be applied to all image data, by suitably modifying only the image processing SPEX2 pipeline.

Using synthetic and image data, we establish that GINI fits the ISH data well, with low error

residues, and that it can learn the true network correctly even if the data is not completely i.i.d.

The analysis of the BDGP data shows that the hubs of the predicted gene interaction network are

enriched for essential cellular functions, and that different regions of the interaction network are

enriched for different combinations of annotation terms describing the gene expression. Thus,

the predicted gene interaction network is capturing essential spatial and functional information

80



about the expression pattern of the genes. We found that the gene interaction network learned

from ISH images differs significantly from a network learned from microarray data.

The current work focuses on extracting gene networks from spatial data. The next step is combin-

ing information from multiple time stages to improve predictions, thus learning spatial-temporal

gene networks. The problem of time-varying networks has been studied extensively for mi-

croarray data, by using different statistical penalties to estimate the network. For example,

Ahmed and Xing (2009a) construct time varying networks by using a temporally smoothed L1-

regularized logistic regression formulation, while Danaher et al. (2013) propose a fused lasso and

group lasso based approach to combine information across time. Extensions of such algorithms

for image data require stronger assumptions on data quality, such as having the same number of

genes and image quality across time. Further, certain development stages may be less informa-

tive than others; for example, very few genes are active at development stage 1-3, and expression

data from this stage is not as informative as expression data from development stage 13-16, when

the embryo is much more mature. Developing algorithms that can account for such variations in

data quality, while combining information across time, remains an interesting future direction to

explore.
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Chapter 4

NP-MuScL: Unsupervised global

prediction of interaction networks from

multiple data sources

Prediction of gene interaction networks from expression data usually focuses on global network

estimation from a single data source. However, in many real world applications, multiple data

sources are available that give information about the same set of genes. We propose NP-MuScL

(nonparanormal multi source learning) to estimate a gene interaction network that is consistent

with multiple sources of data, having the same underlying relationships between the nodes ?. NP-

MuScL casts the network estimation problem as estimating the structure of a sparse undirected

graphical model. We use the semiparametric Gaussian copula to model the distribution of the

different data sources, with the different copulas sharing the same covariance matrix, and show

how to estimate such a model in the high dimensional scenario. Results are reported on synthetic

data, where NP-MuScL outperforms baseline algorithms significantly, even in the presence of

noisy data sources. Experiments are also run on two real-world scenarios: two yeast microarray
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data sets, and three Drosophila embryonic gene expression data sets, where NP-MuScL predicts

a higher number of known gene interactions than existing techniques.

4.1 Introduction

There have been two popular approaches to reverse engineering gene networks. The first ap-

proach is to build a generative model of the data, and learn a graphical model that captures the

conditional independencies in the data. Learning the structure of a graphical model under a

multivariate Gaussian assumption of the data has received wide attention in recent years (Baner-

jee et al., 2006b; Friedman et al., 2008; Meinshausen and Bühlmann, 2006); various algorithms

have been proposed (Banerjee et al., 2006b; Friedman et al., 2008; Meinshausen and Bühlmann,

2006), many with theoretical analysis offering asymptotic guarantee of consistent estimation of

the interactions between genes in the network. Empirically, these algorithms are computationally

efficient and the results obtained have been encouraging.

However, a limitation of this class of network inference approach is that, it assumes data are

identically and independently distributed (i.e., iid), which implicitly means that they are from

a single experimental source. In reality, many real world biological problems sit on multiple

sources of information that can be used to predict interactions between genes. For example,

there can be multiple microarray data sets from different laboratories available for the same

organism, sometimes measured at the same conditions where the main differences lie in the data

sampling strategy or measurement technologies. Biologically, it is often plausible to assume

that multiple experimental means resulting in the different datasets may have captured the same

information from different viewpoints, e.g., both microarray and in-situ hybridization can capture

gene expression information, even though the technology used to measure mRNA abundances is

different. It remains unclear how to integrate such multiple sources of data in a statistically valid
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and computational efficient way to infer the underlying network. One may imagine inferring

independently a network from each data source, and then averaging across multiple resultant

networks, but such an ad hoc method is not only un-robust (e.g., each view may have only

a small amount of samples), but also lacks statistically justification and consistence guarantee

(e.g., on the “average” operator). In this paper, we address the question of inferring a network

by analyzing multiple sources of information simultaneously.

An alternative approach to tackle this problem is via supervised learning methods, where a clas-

sifier (e.g., SVM) is trained by using examples of known gene interactions (edges in the network)

as training data to learn the importance of each data source in predicting unknown interactions

between other gene-pairs (Ben-Hur and Noble, 2005). This approach suffers from some intrinsic

limitations which prevent it from being widely applicable. First, while such an approach works

well for problems where there are sufficient examples of known edges in the network, e.g., in the

form of a reference network or reference interactions obtained from reliable sources, it fails for

problems where few or no examples of known edges are available. Gene networks for humans

or yeast may be learned by supervised methods where reference interactions are available from

extensive prior studies; but for organisms where prior research is limited, this approach cannot be

used. Furthermore, one can argue that predicting gene networks is of high importance for such

organisms with few known edges, to help biologists who are starting research for regulatory

mechanisms of these organisms.

Secondly, using a classifier to predict edges implicitly utilizes the notion of marginal indepen-

dence between nodes. To classify an edge as “positive”, i.e., to predict an edge between a given

pair of nodes, the correlation between the data for these nodes must be high. Gene networks usu-

ally have pathways in which genes interact with each other in a sequential order, which results

in high marginal correlation between all pairs of genes in the same pathway. Predicting each

edge locally and independently of all other edges will often result in an non-stringent prediction

of a clique for all genes in the same pathway, leading to high false positive rates. To reduce
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such false positives and increase accuracy, we wish to analyze conditional independence be-

tween the genes instead, which must be done by building a global graphical model that captures

simultaneously all the conditional independencies among genes. Thus, conditional independence

predicts an interaction between two genes in the context of all the other genes in the network,

unlike marginal independence, which takes into account only the localized interaction between

the genes, without taking into account the other genes that may also be interacting with the given

pair of genes. Each edge resultant from such an estimator enjoys global statistical interpretability

and consistency guarantee, and such an estimator does not require supervised training, although

prior knowledge of interactions on the “reference gene pairs” can still be utilized via introducing

a prior over the model, if desired. Thus, it is desirable to develop an unsupervised and global

inference method which can incorporate multiple data sources to predict a consensus graphical

model that explains all the data sources, without using any examples of known edges for training

the model.

This paper proposes NP-MuScL (NonParanormal Multi-Source Learning), a machine learning

technique for estimating the structure of a sparse undirected graphical model that is consistent

with multiple sources of data. The multiple data sources are all defined over the same feature

space, and it is assumed that they share the same underlying relationships between the genes

(nodes). We use the semiparametric Gaussian copula to model the distribution of the different

data sources, where the copula for each data source has its own mean and transformation func-

tions, but all data sources share the same precision matrix (i.e., the inverse covariance matrix,

which captures the topological structure of the network). We propose an efficient algorithm to

estimate such a model in the high dimensional scenario. The likelihood-related objective func-

tion used in NP-MuScL is convex, and results in a globally optimal estimator. Furthermore, the

implementation of our algorithm is simple and efficient, computing a network over 2000 nodes

using 3 data sources in a matter of minutes. Results are reported on synthetic data, where NP-

MuScL outperforms baseline algorithms significantly, even in the presence of noisy data sources.
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We also use NP-MuScL to estimate a gene network for yeast using two microarray data sets: one

over time series expression, and the other over knockout mutants. Finally, we run NP-MuScL on

three data sets of Drosophila embryonic gene expression using ISH images and microarray. In

both yeast and Drosophila, we find that NP-MuScL predicts a higher number of gene interactions

that are known to interact in the literature, than existing techniques.

4.1.1 Related work

Previous work on analyzing multiple data sources for network prediction has either specifically

taken time into account (Ahmed and Xing, 2009b; Wang et al., 2006), or has different source

and target organisms via transfer learning (Xu et al., 2012). Katenka and Kolaczyk (2012) and

Kolar et al. (2013) propose a strategy to learn a network from multi-attribute data, where aligned

vector observations are made for each node. The NP-MuScL algorithm on the other hand works

for data sources which are not aligned, hence each data source may have a different number of

observations. Honorio and Samaras (2011) and Danaher et al. (2013) proposed techniques for

multi-task structure learning of Gaussian Graphical Models, to share knowledge across multiple

problems, using multi-task learning and fused lasso or group lasso penalties respectively. How-

ever, their method estimates a separate graphical model for each data source, unlike our problem

which requires a consensus network common to all data sources. To the best of our knowledge,

the NP-MuScL algorithm is the first work that builds a consensus graphical model to explain

the relationship between genes by combining information from multiple data sources without

explicitly constraining the data to be time-series, or about different organisms.
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4.2 Nonparanormal Multi-Source Learning (NP-MuScL)

Let the k input data sources be defined as X(1) ∈ Rn1×d, X(2) ∈ Rn2×d, . . . , X(k) ∈ Rnk×d

with total number of data samples n =
∑k

i=1 ni. Each data source i may have a different number

of measurements or samples ni, but they all measure information about the same feature space

of d genes. The goal of NP-MuScL is to learn the structure of a graphical model over the feature

space, such that the graphical model will encapsulate global conditional independencies between

the genes.

4.2.1 Glasso

Given a single source of data X ∈ Rn×d drawn from a Gaussian distributionN (0,Σ), a Gaussian

graphical model (GGM) may be estimated by computing the inverse covariance matrix Σ−1 of

the Gaussian. Zeros in the inverse covariance matrix imply conditional independence between

the features, and thus the absence of an edge between them in the corresponding GGM. Given

the empirical covariance matrix S of the data, the inverse covariance matrix may be computed

by maximizing the log likelihood of the data, with an L1 regularizer to encourage sparsity.

Σ̂−1 = arg max
Θ�0

{log det Θ− tr(SΘ)− λ||Θ||1} (4.1)

where λ is a tuning parameter that controls the sparsity of the solution; as λ increases, fewer

edges are predicted in the GGM. Rothman et al. (2008) showed the consistence of such estimators

in Frobenius and Operator norms in high dimensions when d >> n; Friedman et al. (2008)

proposed a block coordinate descent algorithm for this objective - they named their technique

glasso. The glasso algorithm uses a series of L1 penalized regressions, called Lasso regressions
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(Tibshirani, 1996), that can be solved in time O(d3).

4.2.2 Joint estimation of the GGM

Given k data sources X(1),X(2), · · ·X(k) with corresponding sample covariances S(1),S(2), · · · ,S(k),

a joint estimator of the underlying GGM may be computed as

Σ̂−1 = arg max
Θ�0

k∑
i=1

wi
{

log det Θ− tr(S(i)Θ)
}
− λ||Θ||1 (4.2)

where wi defines the relative importance of each data source, and must be defined by the user

such that
∑k

i=1wi = 1. Assuming the data in each data source is drawn i.i.d., an appropriate

choice for the weights may be wi = ni

n
. It can be seen that if each data source is assumed to have

mean 0, then for this choice of wi

Σ̂−1 = arg max
Θ�0

log det Θ−
k∑
i=1

ni
n

tr
(
S(i)Θ

)
− λ||Θ||1

= arg max
Θ�0

log det Θ− tr

(
1

n

k∑
i=1

ni∑
l=1

X(i)(l, ·)TX(i)(l, ·) Θ

)
− λ||Θ||1 (4.3)

Thus, our objective function is equivalent to calling glasso with covariance matrix computed as

1
n

∑k
i=1

∑ni

l=1 X(i)(l, ·)TX(i)(l, ·). We call this method “glasso-bag of data”. With an appropriate

choice of weights, this model concatenates the data from all data sources into a single matrix,

and uses the second moment of the data to estimate the inverse covariance matrix.

Such a procedure highlights the underlying assumption of Gaussianity of the data. If we assume

that all data is being drawn from the same Gaussian distribution, then it is reasonable to construct
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a single sample covariance matrix from the data to estimate the network. However, real data is not

always Gaussian; and such an assumption can be limiting, especially when analyzing multiple

data sources simultaneously, since non-Gaussianity in a single data source will result in the non-

Gaussianity of the combined data. A lot of previous work has been done to drop the Gaussianity

assumption in the solution to classic problems like sparse regression (Ravikumar et al., 2007),

estimating GGMs (Liu et al., 2009), sparse CCA (Balakrishnan et al., 2012) etc., and propose

non-parametric solutions to the same. We will also drop the assumption that the data is drawn

from the same Gaussian distribution in the next section.

However, if the data is not drawn from the same Gaussian distribution, then how can we char-

acterize the underlying network that generated the data? We propose a generative model where

we assume that each data source is drawn from a semi-parametric Gaussian copula, where the

copulas for the different data sources share the same covariance matrix, but have different func-

tional transformations. To justify this model, we assume that for each data source, the data is

sampled from a multi-variate Gaussian, but this sample is not directly observed. Instead, due to

non-linearities introduced during data measurement, a transformed version of the data is mea-

sured. Each data source will have its own transformation, hence, the observed distribution of

each data source will be different. The key idea of NP-MuScL is then to estimate the non-linear

transformation, so that all data can be assumed Gaussian, and the network can be estimated using

Equation 4.2.

4.2.3 Dropping the Gaussianity assumption

We model that each data source is drawn from an underlying Gaussian distribution with mean

0, and covariance matrix Σ, where the variance of each feature σjj = 1, ∀ j ∈ {1, · · · , d}.

However, the observed data may be some unknown transformation of the Gaussian data; thus,

if y ∼ N (0,Σ), then the observed data is X(i)(j) = µij + ρijgij(y(j)) where µij and ρij is the
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mean and standard deviation respectively of feature j in data source i.

The function gij is some (unknown) transformation that depends on the data source, our task is

to estimate fij = g−1ij from the data, so that fij(X
(i)
j ) is Gaussian. The data generation process is

then described in Figure 4.1.

Input: True covariance matrix Σ with σjj = 1 ∀ j ∈ {1, · · · , d}
Input: Transformation function gij , mean µij and variance ρij for each feature j for each

data source i.
for i = 1 to k do

for l = 1 to ni do
y ∼ N(0,Σ) ;
for j = 1 to d do

X(i)(l, j) = µij + ρijgij(y(j)) ;
end

end
end
Output: Observed data X(i) from k data sources.

Figure 4.1. Data generation model for NP-MuScL

4.2.4 NP-MuScL algorithm

A random vector X has a nonparanormal distribution NPN(µ,Σ, f) if there exists a function

f(X) = (f1(X1), f2(X2), · · · , fd(Xd)) such that f(X) has a multi-variate Gaussian distribu-

tion N (µ,Σ) (Liu et al., 2009). To preserve identifiability, we constrain each fj to have mean

0 and standard deviation 1. The nonparanormal distribution is a Gaussian copula when the

fs are monotone and differentiable. For our model, we assume that each data source X(i) ∼

NPN(0,Σ, fi), that is, while each data source has its own functional transformation, they all

share the same underlying relationship between the nodes, represented by Σ. The mean of each

copula is zero, since we constrain the estimated functions fj to have zero means. Then, for non-

paranormal data, it can be shown that conditional independence in the corresponding graph is
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Estimate f2 

Estimate �-1 

Estimate fk Estimate f1 

… 

Data set 1 Data set 2 Data set k 

Figure 4.2. The overall algorithm for NP-MuScL. Each data source is transformed into a
Gaussian, using a nonparanormal, and the Gaussian data is then used to jointly estimate a
inverse covariance matrix, giving the structure of the Gaussian Graphical Model, underlying the
data.

equivalent to zeros in the inverse covariance matrix Σ−1 (Liu et al., 2009).

This suggests the following two step algorithm. For each data source i and each feature j, we

first estimate the sample mean µij and sample variance ρij .

µ̂ij =
1

ni

ni∑
l=1

X(i)(l, j); ρ̂2ij =
1

ni

ni∑
l=1

(
X(i)(l, j)− µ̂ij

)2
(4.4)

The data in each data source is normalized by the appropriate µ and ρ to have mean 0 and standard

deviation 1. Non-parametric functions fij are estimated for each data source i and feature j, so

that fij ∼ N (0, 1). The details of estimating f are discussed in Sec. 4.2.6.

In the second step, the inverse covariance matrix is estimated jointly from the transformed fis.

We can define Y(i) ∈ Rni×d as
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Y(i)(·, j) = f̂ij
(
X(i)(·, j)

)
∀j ∈ {1, 2, · · · d} (4.5)

The distribution of Y(i) is then Gaussian with covariance matrix Σ. The graphical model corre-

sponding to all data sources can be jointly estimated as

Σ̂−1 = arg max
Θ�0

k∑
i=1

wi

{
log det Θ− tr(Θ Ŝf

(i)
)
}
− λ||Θ||1 (4.6)

where

Ŝf

(i)
=

1

ni

ni∑
l=1

Y(i)(l, ·)TY(i)(l, ·) (4.7)

Setting the weights wi = ni

n
is equivalent to the data in each data source being drawn i.i.d. from

the corresponding Gaussian copula; while setting different weights suggests that the effective

sample size of a data source is not the observed sample size.

4.2.5 Optimization

The objective function in Equation 4.6 can be rewritten as

Σ̂−1 = arg max
Θ�0

log det Θ− tr(Θ
k∑
i=1

wiŜf

(i)
)− λ||Θ||1 (4.8)

Thus, by using
∑k

i=1wiŜf

(i)
as the covariance matrix, we can optimize the above objective by

using efficient, known algorithms like glasso. The overall NP-MuScL algorithm is summarized

in Figure 4.2.
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4.2.6 Estimating f̂

For each feature j in data source i, we can compute the empirical distribution function as (where

I is the indicator function)

F̂ij(t) =
1

ni

ni∑
l=1

I(X(i)(l, j) ≤ t) (4.9)

The variance of such an estimate may be very large, when computed in the high dimensional

scenario d >> n. Liu et al. (2009) propose using a Winsorized estimator, for the same, where

very small and large values of F̂ij(t) are bounded away from 0 and 1 respectively. Thus,

F̃ij(t) =


δn F̂ij(t) < δn

F̂ij(t) δn ≤ F̂ij(t) ≤ 1− δn

1− δn F̂ij(t) ≥ 1− δn

(4.10)

where δn is a truncation parameter. A value of δn chosen to be δn = 1
4n1/4

√
π logni

is found to

give good convergence properties for estimating the network for a single data source (Liu et al.,

2009); and we use the same estimate for NP-MuScL.

Now, for any continuous pdf f , the distribution of the cdf F (x) = P (X ≤ x) is uniform.

Then, the distribution of Φ−1(F (x)) is Gaussian with mean zero, and standard deviation one,

as required (where Φ is the cdf of the standard Gaussian). Thus, we can estimate the re-

quired function by using the marginal empirical distribution function defined above: f̂ij(x) =

Φ−1(F̃ij(x)).
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4.3 Results

We first demonstrate that when multiple data sources have different distributions, NP-MuScL

can extract the underlying network more accurately than other methods. Next, we show that NP-

MuScL can identify the correct network, even when one of the data sources is noise. To analyze

NP-MuScL on real data, we run NP-MuScL on two microarray yeast data sets, and find that the

network obtained by NP-MuScL predicts more known edges of the yeast interaction network

than other methods. Finally, we analyze NP-MuScL on Drosophila embryonic gene expression

data from 3 data sets of ISH images and microarray.

4.3.1 Multiple data sources with different distributions

Data generation We construct an inverse covariance matrix with an equivalent random sparse

Gaussian graphical model with a known structure and parameters. Data is sampled from the

Gaussian, and then transformed into non-Gaussian distribution using different transformations.

Synthetic network We generate synthetic data by first sampling a sparse inverse covariance

matrix, as described in Meinshausen and Bühlmann (2006).

The key idea behind generating a network is: associate each node in the network with a random

point in space. Then, add edges so that “nodes that are closer to each other are more likely to have

an edge between them”. In this simulation, we pick random points in 2D space (as suggested by

Meinshausen and Bühlmann (2006)), but in general, each node can be associated with a random

point in any n-dimensional space.

Each node is associated with a point uniformly at random in the two dimensional square [0, 1]2,

and an edge is included with probability Φ(y/
√
d), where y is the Euclidean distance between
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the two nodes. The maximum degree of a node is set to 4; if more than 4 edges are generated

by the above procedure, they are discarded to maintain the maximum degree. The sparse inverse

covariance matrix is generated by setting the diagonal elements to 1; the non-diagonal elements

to 0.245 if an edge is present, and 0 otherwise (this value guarantees than the matrix is diagonal-

dominant).

Transformations We use two transformations to generate non-Gaussian data (Liu et al., 2009):

1. Gaussian cdf: Let g0 be the one-dimensional Gaussian cdf with mean µ0 and std dev σ0.

The Gaussian cdf transformation function for the jth dimension gj = f−1j is then defined

as

gj(zj) = σj

 g0(zj)−
∫
g0(t)Φ(

t−µj
σj

)dt√∫ (
g0(y)−

∫
g0(t)Φ

(
t−µj
σj

)
dt
)2

Φ
(
y−µj
σj

)
dy

+ µj (4.11)

2. Power transform: Let g0 = sign(t)|t|α be the symmetric transform. Then the power

transformation for the jth dimension can be defined as

gj(zj) = σj

 g0(zj − µj)√∫
g20(t− µj)Φ(

t−µj
σj

)dt

+ µj (4.12)

For d = 50 and d = 200 with k = 2 data sources, we use the Gaussian cdf (µ0 = 0.05, σ0 = 0.4)

and power transform (α = 3) for the two data sources respectively. The task then is to jointly

use the data from the two sources to extract the network. For k = 3 data sources, we use the

identity transform for the third data source, so that the data sampled from the third source is

truly Gaussian. For k = 4 data sources, the fourth data source is Gaussian noise, to test the

performance of the algorithms in the presence of noise. We generate the same amount of data in

each source (n), and run the experiment as n varies. Each result is reported as the average of 10
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randomized runs of the experiment.

Metrics We report the F1 measure, which is the harmonic mean of precision and recall, as a

measure of the accuracy of predicting the edges in the network. The maximum and minimum

value are 1 and 0 respectively, with higher values representing better performance (Goutte and

Gaussier, 2005).

Baselines We report three baselines. The first baseline is to report the best accuracy found by

a single data source (Best Single Network). We assume that an oracle tells us which data source

is most predictive. In our data experiments, we found that it was not possible to predict the most

informative data source without using an oracle. Even when k = 3, the identity transformed

source was not always the most informative. The second baseline is the glasso-bag of data,

described in Section 4.2.2. The third baseline is to compute a separate network for each data

source using glasso, and combine the networks to predict a single network (glasso-combine

networks). An edge in the final network is present if it is present in m out of the k networks from

the k data sources. We assume an oracle defines the best value of m for a given data set, the best

value of m varied with different data sets.

As can be seen in Figure 4.3, NP-MuScL outperforms all three baselines significantly in all three

scenarios. Interestingly, using the best single source outperforms estimating separate networks,

and combining them in a second step. Note that an oracle is used for identifying the best source,

as well as the optimal m used to combine networks. Hence, in a real world scenario, we may

expect combining different data sources to perform as well as using only the best single data

source for network prediction. When k = 4 (Figure 4.3(c) and 4.3(f)), one of the data sources is

Gaussian noise, however, the use of the oracle in the “Glasso-combine networks” and the “single

best source” baselines allows these baselines to ignore the noise source completely. However,

NP-MuScL is still able to identify more correct edges in the network. Using a paired t-test, we
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found that the difference in F1 scores between NP-MuScL and “glasso-bag of data” is significant

in all conditions, with P-value p = 10−4.

4.3.2 Effect of varying size of data sources

In the previous experiment, we assumed that each data source has equal amount of data, i.e. ni

is the same for each data source i. Next, we vary the amount of data available for different data

sources, and study the effect of the same on our results. For d = 200 dimensional data, we again

generate simulated data for 3 data sources, with a total of 300 data samples across all 3 sources.

Data source 1 has Gaussian data (identity transform) with 100 i.i.d. data samples, data source 2

has CDF transformed data with m samples, and data source 3 has power transformed data with

(200 −m) samples. We vary m to study the effect of data sources having different amounts of

data. Figure 4.4 shows that even when the three data sources are of different sizes, NP-MuScL

performs significantly better than the other algorithms. When the amount of data in data source 2

is very small, a network learned from this data source alone has poor predictive performance, and

the “Glasso-combine networks” method performs poorly since it incorporates this low precision

network in its predictions. “Glasso-bag of data” also drops its performance as m reduces, since

this results in increasing importance to be placed on predictions from data source 3, which now

has more data and hence a higher weight wi = (200−m)
300

.

4.3.3 Yeast data

In this experiment, we look at two different yeast microarray data sets, and make joint predictions

via NP-MuScL. Data source 1 is a set of 18 expression profiles from Cho et al. (1998), where

each expression corresponds to a different stage in the cell cycle of the the yeast. Data source 2 is

a set of 300 expression profiles from Hughes et al. (2000), where each expression corresponds to
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a different knockout mutant of the yeast. Both data sets are processed using standard microarray

processing algorithms (Hibbs et al., 2007).

We use a list of known interactions from BioGrid (Stark et al., 2011) to test how well do the

different algorithms predict the known edges. Note that since the known gene interactions is an

incomplete set, predicted gene interactions may be interactions that have not been observed yet,

and thus, have not been added to the BioGrid data base. Hence, measuring recall is no longer

appropriate, and we report the improvement in accuracy over random prediction of edges, as

suggested by Liben-Nowell and Kleinberg (2003). “Improvement over random guessing” is a

dimensionless quantity, a value of one means that the algorithm is doing as poorly as randomly

guessing the edges in the network, a value of m means that the algorithm does m times better in

accuracy than randomly guessing edges.

The total data is over 6120 genes, we sample 1000 genes at a time, and run the algorithms

for them. Results are reported for 10 random sub-samples of the genes. Figure 4.5 shows the

improvement over random prediction for edges predicted by each method. Due to the amount

of data available, the knockout mutant expression profiles capture more information (and hence

more known edges) than the time series expression. Surprisingly, both methods of combining

information without taking non-Gaussianity into account, perform worse than using only data

source 2. NP-MuScL is the only method where using both data sets into account increases the

number of correctly predicted edges. The same results were found to hold true when the network

is predicted over the entire set of 6120 genes - NP-MuScL did significantly better than all other

methods, and both glasso bag-of-data and glasso-OR did worse than using only data set 2.

To test the effect of varying tuning parameter λ, Figure 4.6 plots the number of known edges

predicted by each method, versus the total number of edges predicted, as λ is varied. For very

large values of λ when few edges are predicted, NP-MuScL and “glasso-Bag of data” perform

equally well, however, as the amount of predictions increase, NP-MuScL outperforms other
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methods significantly.

Figure 4.7 shows the transformations learned for the two data sets by NP-MuScL for 4 random

genes. A straight line corresponds to Gaussian data, non-linearities are clearly detected by the

NP-MuScL algorithm. The transformations also seem to be damping extremely large values

observed in the features.

4.3.4 Drosophila embryonic data

We study three data sets of Drosophila embryonic gene expression for 146 genes (Tomancak

et al., 2002a). The first data set measures spatial gene expression in embryonic stage 9-10 of

Drosophila development via in-situ hybridization (ISH) images (4.3 to 5.3 hours after fertiliza-

tion), when germ band elongation of the embryo is observed. The second data set also studies

ISH images measuring spatial gene expression in the 13-16 stage of embryonic development (9.3

to 15 hours after fertilization), when segmentation has already been established. The last data set

is of microarray expression at 12 time points spaced evenly in embryonic development.

The ISH images were processed to extract 311 data points for each data set, as described in

Puniyani and Xing (2012). The microarray data was processed using standard microarray pro-

cessing algorithms (Hibbs et al., 2007). Since the number of data points extracted from the ISH

data is dependent on the image processing algorithm used, using weights proportional to the

number of data points is no longer suitable. We expect the microarray data to be as informative

as the ISH data, hence we use wi = 0.25 for each of the two ISH data sources, and wi = 0.5 for

the microarray data. The results in Table 4.1 show that NP-MuScL outperforms using the data

separately, and glasso bag-of-data and glasso-combine networks (m=1, called glasso-OR).

We visualized the differences in edge prediction between the NP-MuScL network and the net-

works predicted by analyzing only one single data source at a time. The orange ellipse in Fig-
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NP-MuScL Glasso Bag-of-data Glasso OR ISH 13-16 ISH 9-10 Microarray
7.29 4.88 4.06 5.98 2.35 3.66

Table 4.1. Improvement in prediction over random guessing for predicting gene
interactions using Drosophila embryonic data.

ure 4.8(a) highlights gene interactions predicted by NP-MuScL by analyzing all 3 data sources,

which were not predicted by any single data source. Figure 4.8(b) highlights interactions pre-

dicted by the microarray data that were not predicted either by the ISH data or the NP-MuScL

network. The 9-10 ISH network is similar to the 13-16 ISH network, and hence, is not shown.

A detailed analysis of the specific differences in the gene interactions predicted by the different

methods is ongoing.

4.4 Discussion

We proposed NP-MuScL, an algorithm that predicts gene interaction networks in a global, unsu-

pervised fashion by jointly analyzing multiple data sources to capture the conditional indepen-

dencies observed in the data. NP-MuScL models each data source as a non-parametric Gaussian

copula, with all data sources having different mean and transformation functions, but sharing the

covariance matrix across the underlying copulas. The network can then be efficiently estimated

in a two step process, of transforming each data source into Gaussian, and then estimating the in-

verse covariance matrix of the Gaussian using all data sources jointly. We found that NP-MuScL

significantly outperforms baseline methods in both synthetic data, and two experiments predict-

ing a gene interaction network from two yeast microarray data sets, and three Drosophila ISH

images and microarray data sets.

One limitation of NP-MuScL is that the weights giving the importance of each data source must

be assigned by the user. While a good estimate of the weights may be obtained if all data sources
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are truly drawn i.i.d. from their nonparanormal distributions, and have similar noise levels; in

practice, some data sources may be known to be noisier than others, or known to not be i.i.d.

(e.g.. microarray experiments over time are not truly independent draws from the distribution).

The question of automatically learning the weights from data remains an open challenge.

101



0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
d=50, K=2

F1
 s

co
re

n
0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1
d=50, K=3

F1
 s

co
re

n
0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1
d=50, K=4

F1
 s

co
re

n

! "! #!! #"! $!! $"!
!

!%$

!%&

!%'

!%(

#
)*"!+,-*$

.
#
,/
0
1
23

4

,

,
56!7890:

;<=//1!>=?,1@,A=B=

;<=//1!C1DEF43,43BG12H/

>3/B,9F4?<3,53BG12H

(a) (b) (c)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
d=100, K=2

F1
 s

co
re

n
0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1
d=100, K=3

F1
 s

co
re

n
0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1
d=100, K=4

F1
 s

co
re

n

(d) (e) (f)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1
d=200, K=2

F1
 s

co
re

n
0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1
d=200, K=3

F1
 s

co
re

n
0 100 200 300 400 500

0

0.2

0.4

0.6

0.8

1
d=200, K=4

F1
 s

co
re

n

(g) (h) (i)

Figure 4.3. F1 score for predicting edges in simulated data. The results are plotted as n is
varied, for k = 2, k = 3, and k = 4 data sources for d = 50 ((a) - (c)), d = 100 ((d) - (f)), and
d = 200 ((g) - (i)) dimensions. The standard deviation in the results is small and almost
constant across the different experiments; it ranges from (0.01-0.03), and is hence not displayed
on the plot. Note that the X-axis values for d = 50 stops at a lower value of n than for d = 100
and d = 200.
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Figure 4.5. Performance of different methods
on predicting edges in the yeast network.
Only NP-MuScL is able to jointly use the two
data sources to obtain better performance than
using a single data source alone.
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Figure 4.7. Examples of the transformations made for data in source 1 (red) and source 2
(blue) for different features.

(a) (b) 

Figure 4.8. Difference between the NP-MuScL network and (a) the 13-16 ISH network
alone and (b) microarray network alone. Green edges are only predicted in the NP-MuScL
network. Blue edges are only present in the (a) 13-16 ISH network and (b) microarray network.
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Chapter 5

Analysis of the entire BDGP data set

The techniques developed in this thesis were applied on smaller subsets of the BDGP data, due to

availability issues (a smaller subset was accessible to us when we started working on the problem

in 2008). To verify that the algorithms generalize well to the larger data set, we repeat some of

the key experiments on the entire data set, and report these results in this chapter. The data set

we work with was obtained in late 2011, and contained 108423 images of 7382 genes. Figure

5.1 shows a histogram of the number of images available per gene, over all 6 time points. We

notice that most genes have very few images - 198 of these genes have exactly 1 image over the

6 time points, and 2455 of them have exactly 2 images over the 6 time points.

The data collection process for BDGP, which was started in 2000, is still on-going. These num-

bers suggest that a large scale analysis of the variation in gene expression, and gene networks

over time will be possible only after more data has been collected. However, we will still be

able to construct gene networks over smaller subsets of the genes, for which more data is avail-

able.
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Figure 5.1. Histogram of number of images per gene. The counts on the Y-axis represent the
number of genes that have X images available, over all 6 time points in the BDGP data. The
maximum number of images available for a single gene is 270 for gene CG16738 (sloppy
paired 1), and 248 images for gene CG17390 (O/E-associated zinc finger protein).

5.1 Feature extraction

We ran the SPEX2 feature extraction pipeline on the images, and extracted 69420 feature pat-

terns out of them. Effectively, we extracted patterns from 64% of the total images. To test the

reasons for rejection of images, we looked at the rejected images, and categorized the reason for

rejection

1. No outline of any embryo could be found for 333 images.

2. The outline obtained was too small and too big for 1865 and 4887 images respectively.

3. The extracted ellipse was too circular, suggesting errors in extracting the correct boundary

(often, this means that the extract boundary encapsulated two touching embryos).

4. The extracted embryo boundary differs dramatically from the convex ellipse outline fit to

it, suggesting highly non-convex regions in the embryo.

5. The fitted convex outline to the embryo was much larger than the segmented embryo,

suggesting that the embryo extraction extracted an outline that has regions that were highly

non-convex.

Figure 5.2 shows the number of images rejected for each of these reasons. Given that the original

SPEX2 pipeline was designed and tested using only∼ 2000 images, we observe that many of the
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Figure 5.2. Reasons why an image is rejected by SPEX2. The counts on the Y-axis represent
the number of images that were rejected for various reasons by the SPEX2 pipeline, over all 6
time points in the BDGP data.
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Figure 5.3. Manual error analysis. Categorization of the reason why SPEX2 did not extract
any expression pattern from a given image.

images in the large data set have the same problems encountered in the small data set. To test

if images were rejected correctly, we manually looked at 200 random images that were rejected,

and assign the validity of rejection by SPEX2 (Figure 5.3).

In the initial analysis, we assigned 4 reasons for rejecting images

1. Rejected since the image had only a partial embryo, which cannot be handled in down-

stream analysis.

2. Rejected due to overlapping or touching embryos in the image, that the SPEX2 pipeline

could not extract a single embryo from, and hence rejected the image.

3. Rejected due to surprising shape of embryo, suggesting damage to embryo, multiple em-

bryos in the image that don’t capture details,

4. One single embryo in the image, that is not deformed, hence should not have been rejected

by SPEX2.
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The first three reasons are inherent to the data, (though further work into extracting 1 embryo

from multiple touching embryos may help), while embryos rejected for category 4 would be er-

rors made by SPEX2. Figure 5.3 shows us that most of the rejected embryos are partial embryos,

while the number of errors made by SPEX2 are quite small. Further, in further analysis of the

types of images rejected by SPEX2, we found that out of the 38 embryos classified as “should not

have been rejected”, 11 did not have any gene expression pattern, hence, the outline detection did

not extract correct boundaries of the embryo, even though it did detect the correct region. The

distorted boundaries led to failures of the tests in SPEX2, that check not just whether we found

the embryo, but also, if the extracted boundary is precise. Further, 23 of the embryos were not

imaged at the correct focus, leading to blurry images, that again confused the outline detection

algorithm. Rejecting incorrectly focused images is an unexpected, but good side-effect of the

SPEX2 pipeline. Figure 5.4 shows example images rejected by SPEX2.

5.2 Classification

To test the SPEX2 features, we again test the annotation accuracy for spatial annotations for the

images, as discussed in Section 2.3.1. The original results were reported on 2689 images from

a single development stage, and the accuracy reported was around 80%. We now test the same

classification task on the larger data set of ∼ 70000 images, for all 6 development stages. Since

the annotations are different for each development stage, we report results separately on each of

the 6 development stages. The task, evaluation method, etc. are the same as described in Section

2.3.1. Figure 5.5 shows that we get high prediction accuracy in both classification accuracy

and mean AUC (area under the curve) for all 6 time stages. This verifies that SPEX2 extracts

meaningful features on a larger data set, and the system was not over fit to the smaller data set

we originally tested on. As an aside, the results are reported by using the SVM classifier. The

Local Regularization classifier (Ji et al., 2009) that was designed for this task, and had very good
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Figure 5.4. Examples of images rejected by SPEX2. (a)-(b) partial embryos, (c) multiple
overlapping embryos, (d)-(f) images rejected due to incorrectly focused images, (g)-(h)
deformed embryos and (i) multiple embryos without sufficient detail.
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Figure 5.5. Annotation accuracy and mean Area Under the Curve (AUC) score for each of
the 6 development stages in the BDGP data

results on the smaller data set did not perform as well on the larger data set. While the AUC

scores were as high as using an SVM classifier, the accuracy scores were much smaller (< 0.4),

suggesting that the classifier is unable to deal with rare classes in the larger data set.

5.3 Importance of each step in the pipeline

Since SPEX2 is a complex image processing pipeline, we wish to ascertain the role of each step

in the pipeline in obtaining out results. To test this, we extracted features by replacing specific

modules in SPEX2 by simpler modules as follows.

1. No image segmentation In this baseline, we do not remove the background noise from

the expression pattern by using image segmentation. Instead, the stain extracted in Section

2.2.2 is directly converted into features.

2. Grey scale color In Section 2.2.2, we discussed a specific algorithm proposed by us to

convert the RGB image into a representation of the stain in the image. In this baseline, in-

stead of using this algorithm, the RGB image is converted into greyscale, and the greyscale

values are used as a representation of the stain, which is then segmented to extract the ex-
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Figure 5.6. Effect of each step in the pipeline. We show annotation accuracy, F1 score, and
mean AUC score for stage 13-16 for SPEX2, and 4 baselines derived by omitting various steps
in the SPEX2 pipeline. The difference in accuracy, and F1 score is statistically significant at
P-value = 0.01, except for the difference in SPEX2, and the “no image segmentation baseline”.

pression pattern.

3. No convex outline In Section 2.2.1, we discussed how a convex outline of the embryo

is registered to a standard elliptical shape. In this baseline, we directly use the extracted

embryo outline, instead of fitting a convex boundary to the embryo shape. Not computing

the convex outline means that small errors in boundary detection (a hard problem in vision)

will result in distortions of the extracted pattern.

4. No image rejection In Section 2.2.1, we discussed various tests that SPEX2 runs to au-

tomatically reject some images to reduce errors. In this baseline, such tests are not per-

formed, and all images are converted into expression patterns.

Figure 5.6 shows the reduction in accuracy as each step in the pipeline is replaced by a simpler

algorithm. Each result is the average of 10 annotation tasks. The difference in accuracy and

F1 score is statistically significant (using a paired t-test) at P-value = 0.01, for each step in the

pipeline, except the “no image segmentation” baseline. The image segmentation module in the

SPEX2 pipeline removes noise, hence, one reason for the similar performance with and without

the image segmentation could be because the SVM classifier is able to handle the added noise

when we do not segment the image to remove the background. We would still argue to keep the

image segmentation component of the pipeline, since (a) it may lead to improved performance

in the unsupervised task of network prediction, and (b) segmented image patterns may be easier
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to analyze and visualize on a larger scaler. For example, if we use the non-segmented patterns to

cluster the image, and plot the mean image of each cluster (as in Figure 2.11), we find that using

the non-segmented images produces visibly noisier image patterns as the mean of each cluster,

than if we used the SPEX2 expression pattern output.

5.4 Learning a network from multiple data sources

Finally, we turn our attention to applying NP-MuScL to our bigger data set. From our smaller

experiments, we observed that the image data from development stage 13-16 is more informative

than the image data from development stage 9-10. One possible reason for this could be that the

more developed embryos in later stages of embryonic development have more informative gene

expression patterns. Due to the large amount of missing data (more than half the genes have

2 or less images across the 6 time stages), we can only analyze a smaller subset of genes and

development stages of Drosophila. In this experiment, we choose to analyze ISH data from the

development stage 11-12 and 13-16, along with microarray data, over n = 600 genes for which

data is available for these data sources.

5.4.1 Known gene interactions

We predict networks with 2000 edges, and using a list of known interactions from BioGrid (Stark

et al., 2011), we test how well do the different algorithms predict the known edges. To test perfor-

mance of the different methods, we report the improvement in accuracy over random prediction

of edges, as suggested by Liben-Nowell and Kleinberg (2003). We find that NP-MuScL is capa-

ble of predicting more known edges than other baseline methods. However, due to the difficulty

of the problem itself, and the small number of known genetic interactions for Drosophila, the
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NP-MuScL Glasso Bag-of-data Glasso OR ISH 11-12 ISH 13-16 Microarray
6.066 2.574 2.225 1.658 2.574 2.386

Table 5.1. Improvement in prediction accuracy over random guessing for predicting gene
interactions using Drosophila embryonic data.

absolute improvement over random guessing is small for all methods.

5.4.2 Clustering annotation terms

We expect genes having similar spatial annotations to be clustered within the network. We test

this hypothesis by clustering the NP-MuScL network, and running an enrichment analysis for

each cluster, testing if specific annotations appear in a cluster with frequency higher than would

be expected by chance. The experimental setup is the same as described in Section 3.3.8, with

15 clusters found using spectral clustering, and the enrichment analysis done using the hyper-

geometric test(with Bonferroni correction used to correct for multiple hypothesis tests). We

observed that spectral clustering produced 9 small clusters with only 1-2 genes, and only 6 clus-

ters with 5 or more genes in them, and restricted our analysis only the clusters that have at least

5 genes.

Unlike in Section 3.3.8 that analyzed a network learned from data at a single time point, we now

have annotations from 2 development stages, both of which were used to learn the network. We

run a separate enrichment analysis for annotations from both development stages. The overall

process is: the NP-MuScL network was clustered, small clusters were rejected, and for each

cluster with at least 5 genes, we run enrichment analysis for annotations made at stage 11-12

and at stage 13-16. We found that all 6 clusters were enriched for terms from both development

stages (Table 5.2 and 5.3). In contrast, when the network was learnt by using the “Glasso-Bag of

data” algorithm, only 4 clusters were enriched.
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Cluster Gene Ontology term Cluster frequency Genome frequency P-value

1

anterior midgut primordium 52 of 112 genes, 46.43% 1051 of 4237 genes, 24.81% 9.09098e-06
brain primordium 44 of 112 genes, 39.29% 767 of 4237 genes, 18.10% 3.05368e-06
head mesoderm primordium 24 of 112 genes, 21.43% 315 of 4237 genes, 7.43% 2.75141e-05
posterior midgut primordium 52 of 112 genes, 46.43% 1104 of 4237 genes, 26.06% 3.35944e-05
somatic muscle primordium 17 of 112 genes, 15.18% 297 of 4237 genes, 7.01% 0.0233243
strong ubiquitous 10 of 112 genes, 8.93% 36 of 4237 genes, 0.85% 9.29689e-07
trunk mesoderm primordium 38 of 112 genes, 33.93% 631 of 4237 genes, 14.89% 7.91628e-06
ubiquitous 66 of 112 genes, 58.93% 812 of 4237 genes, 19.16% 4.83252e-19
ventral nerve cord primordium 36 of 112 genes, 32.14% 712 of 4237 genes, 16.80% 0.000591857

2

amnioserosa 18 of 85 genes, 21.18% 197 of 4237 genes, 4.65% 9.82781e-07
anterior midgut primordium 44 of 85 genes, 51.76% 1051 of 4237 genes, 24.81% 1.20414e-06
dorsal epidermis primordium 18 of 85 genes, 21.18% 351 of 4237 genes, 8.28% 0.00146043
dorsal pharyngeal muscle primordium 14 of 85 genes, 16.47% 180 of 4237 genes, 4.25% 0.000118361
fat body/gonad primordium 10 of 85 genes, 11.76% 125 of 4237 genes, 2.95% 0.00150384
foregut primordium 28 of 85 genes, 32.94% 315 of 4237 genes, 7.43% 2.28828e-10
hindgut proper primordium 30 of 85 genes, 35.29% 554 of 4237 genes, 13.08% 1.60408e-06
longitudinal visceral mesoderm primordium 7 of 85 genes, 8.24% 108 of 4237 genes, 2.55% 0.0324033
posterior midgut primordium 45 of 85 genes, 52.94% 1104 of 4237 genes, 26.06% 1.48091e-06
salivary gland body primordium 26 of 85 genes, 30.59% 269 of 4237 genes, 6.35% 2.28828e-10
tracheal primordium 16 of 85 genes, 18.82% 181 of 4237 genes, 4.27% 4.88977e-06
trunk mesoderm primordium 36 of 85 genes, 42.35% 631 of 4237 genes, 14.89% 2.35953e-08
visceral muscle primordium 17 of 85 genes, 20.00% 272 of 4237 genes, 6.42% 0.000206696
yolk nuclei 19 of 85 genes, 22.35% 222 of 4237 genes, 5.24% 9.82781e-07

3

trunk mesoderm primordium 26 of 57 genes, 45.61% 631 of 4237 genes, 14.89% 1.42576e-06
somatic muscle primordium 16 of 57 genes, 28.07% 297 of 4237 genes, 7.01% 3.69239e-05
brain primordium 22 of 57 genes, 38.60% 767 of 4237 genes, 18.10% 0.00293397
dorsal epidermis primordium 16 of 57 genes, 28.07% 351 of 4237 genes, 8.28% 0.00017718
head epidermis primordium P1 6 of 57 genes, 10.53% 73 of 4237 genes, 1.72% 0.00500391
hindgut proper primordium 19 of 57 genes, 33.33% 554 of 4237 genes, 13.08% 0.0010242
strong ubiquitous 4 of 57 genes, 7.02% 36 of 4237 genes, 0.85% 0.0122736
ubiquitous 30 of 57 genes, 52.63% 812 of 4237 genes, 19.16% 1.42576e-06
ventral epidermis primordium 15 of 57 genes, 26.32% 294 of 4237 genes, 6.94% 0.00013097
visceral muscle primordium 14 of 57 genes, 24.56% 272 of 4237 genes, 6.42% 0.00017718

4 salivary gland body primordium 3 of 3 genes, 100.00% 269 of 4237 genes, 6.35% 0.029629

5
embryonic central brain glia 3 of 5 genes, 60.00% 113 of 4237 genes, 2.67% 0.00936417
neuroblasts of ventral nervous system 3 of 5 genes, 60.00% 125 of 4237 genes, 2.95% 0.00936417
procephalic neuroblasts 3 of 5 genes, 60.00% 109 of 4237 genes, 2.57% 0.00936417

6

anterior midgut primordium 99 of 143 genes, 69.23% 1051 of 4237 genes, 24.81% 6.112e-28
posterior midgut primordium 100 of 143 genes, 69.93% 1104 of 4237 genes, 26.06% 3.45418e-27
Malpighian tubule primordium 17 of 143 genes, 11.89% 190 of 4237 genes, 4.48% 0.0019426
dorsal pharyngeal muscle primordium 31 of 143 genes, 21.68% 180 of 4237 genes, 4.25% 2.28314e-13
head mesoderm primordium 33 of 143 genes, 23.08% 315 of 4237 genes, 7.43% 2.32371e-08
hindgut proper primordium 56 of 143 genes, 39.16% 554 of 4237 genes, 13.08% 3.66025e-14
muscle system primordium 33 of 143 genes, 23.08% 224 of 4237 genes, 5.29% 2.52148e-12
somatic muscle primordium 36 of 143 genes, 25.17% 297 of 4237 genes, 7.01% 5.19369e-11
trunk mesoderm primordium 67 of 143 genes, 46.85% 631 of 4237 genes, 14.89% 6.60219e-19
ubiquitous 64 of 143 genes, 44.76% 812 of 4237 genes, 19.16% 1.66609e-11
visceral muscle primordium 24 of 143 genes, 16.78% 272 of 4237 genes, 6.42% 0.000110534

Table 5.2. Enrichment analysis for the NP-MuScL network, using the spatial annotations
made for the genes in the network in development stage 11-12.
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Cluster Gene Ontology term Cluster frequency Genome frequency P-value

1

embryonic brain 57 of 112 genes, 50.89% 1092 of 4237 genes, 25.77% 4.40035e-07
embryonic midgut 57 of 112 genes, 50.89% 1401 of 4237 genes, 33.07% 0.00144194
embryonic/larval somatic muscle 20 of 112 genes, 17.86% 362 of 4237 genes, 8.54% 0.0217912
embryonic/larval visceral muscle 25 of 112 genes, 22.32% 375 of 4237 genes, 8.85% 0.000290122
ubiquitous 54 of 112 genes, 48.21% 547 of 4237 genes, 12.91% 3.14719e-18
ventral nerve cord 53 of 112 genes, 47.32% 1102 of 4237 genes, 26.01% 2.93825e-05

2

embryonic midgut 50 of 85 genes, 58.82% 1401 of 4237 genes, 33.07% 1.87279e-05
embryonic proventriculus 19 of 85 genes, 22.35% 336 of 4237 genes, 7.93% 0.000331347
embryonic salivary gland 19 of 85 genes, 22.35% 234 of 4237 genes, 5.52% 4.05001e-06
embryonic ventral epidermis 25 of 85 genes, 29.41% 629 of 4237 genes, 14.85% 0.00438576
embryonic/larval fat body 21 of 85 genes, 24.71% 278 of 4237 genes, 6.56% 3.96323e-06
amnioserosa 9 of 85 genes, 10.59% 131 of 4237 genes, 3.09% 0.0113089
embryonic dorsal epidermis 31 of 85 genes, 36.47% 702 of 4237 genes, 16.57% 0.000107587
embryonic foregut 27 of 85 genes, 31.76% 410 of 4237 genes, 9.68% 1.21157e-06
embryonic hindgut 36 of 85 genes, 42.35% 808 of 4237 genes, 19.07% 1.5881e-05
plasmatocytes 11 of 85 genes, 12.94% 93 of 4237 genes, 2.19% 3.6021e-05
ubiquitous 24 of 85 genes, 28.24% 547 of 4237 genes, 12.91% 0.00142254
yolk nuclei 15 of 85 genes, 17.65% 216 of 4237 genes, 5.10% 0.000287568

3

embryonic brain 28 of 57 genes, 49.12% 1092 of 4237 genes, 25.77% 0.00478187
embryonic hindgut 21 of 57 genes, 36.84% 808 of 4237 genes, 19.07% 0.0366295
embryonic/larval muscle system 18 of 57 genes, 31.58% 655 of 4237 genes, 15.46% 0.0403494
ubiquitous 19 of 57 genes, 33.33% 547 of 4237 genes, 12.91% 0.00315244
ventral nerve cord 30 of 57 genes, 52.63% 1102 of 4237 genes, 26.01% 0.00178349

4 embryonic salivary gland 3 of 3 genes, 100.00% 234 of 4237 genes, 5.52% 0.020469

5
embryonic brain 5 of 5 genes, 100.00% 1092 of 4237 genes, 25.77% 0.0484706
embryonic central brain neuron 2 of 5 genes, 40.00% 38 of 4237 genes, 0.90% 0.0484706
ventral nerve cord 5 of 5 genes, 100.00% 1102 of 4237 genes, 26.01% 0.0484706

6

dorsal prothoracic pharyngeal muscle 58 of 143 genes, 40.56% 442 of 4237 genes, 10.43% 3.65634e-20
embryonic Malpighian tubule 30 of 143 genes, 20.98% 314 of 4237 genes, 7.41% 1.33598e-06
embryonic anal pad 44 of 143 genes, 30.77% 322 of 4237 genes, 7.60% 1.28059e-15
embryonic gastric caecum 15 of 143 genes, 10.49% 111 of 4237 genes, 2.62% 4.17235e-05
embryonic hindgut 76 of 143 genes, 53.15% 808 of 4237 genes, 19.07% 6.17686e-19
embryonic midgut 108 of 143 genes, 75.52% 1401 of 4237 genes, 33.07% 5.26809e-24
embryonic/larval muscle system 66 of 143 genes, 46.15% 655 of 4237 genes, 15.46% 2.30025e-17
embryonic/larval somatic muscle 40 of 143 genes, 27.97% 362 of 4237 genes, 8.54% 5.33029e-11
embryonic/larval visceral muscle 41 of 143 genes, 28.67% 375 of 4237 genes, 8.85% 4.27454e-11
ubiquitous 59 of 143 genes, 41.26% 547 of 4237 genes, 12.91% 1.36952e-16

Table 5.3. Enrichment analysis for the NP-MuScL network, using the spatial annotations
made for the genes in the network in development stage 13-16.
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Chapter 6

Conclusions

This thesis has explored the question of whether we can learn gene interaction networks from

ISH images in a systematic and statistically sound manner. Our thesis presents a combination of

(a) computer vision algorithms and pipelines to extract meaningful features, (b) design of algo-

rithmic and machine learning tools to learn networks from ISH images, and finally (c) extensive

empirical analysis of the results predicted by our algorithms to verify how well they perform

with real data. This naturally closes the loop between designing algorithms on one hand, and

empirical measurement and modeling on the other hand.

6.1 Summary of contributions

The techniques described in this thesis advance the state-of-the-art in the following ways:

• We proposed a computer vision pipeline SPEX2 to extract features from Drosophila em-

bryonic images. We found that using SPEX2 features results in a significant improvement

in both annotation accuracy, and clustering enrichment, over using state of the art com-
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puter vision features like SIFT, or previous feature extraction methods proposed for this

problem.

• We proposed statistical machine learning based algorithms to learn gene interaction net-

works from ISH images collected at a single time point (GINI), as well as from multiple

time points (NP-MuScL). GINI and NP-MuScL both extend Gaussian Graphical Model

learning algorithms to work with kernel data and multiple data sources respectively. We

verified that our algorithms work well on synthetic data, as well as the image data that is

the focus of this thesis.

• Using extensive evaluations on a large data set of more than 100,000 images, we showed

that our system can predict accurate gene interaction networks from Drosophila embryonic

ISH data, using the notion of both spatial and temporal similarities of gene expression.

6.2 Future research

This thesis incorporates research from various fields including machine learning, computational

biology, imaging and computer vision. We summarize ongoing and future work in each of these

fields below.

6.2.1 Machine learning

NP-MuScL combines information from multiple data sources in a completely unsupervised man-

ner to predict gene interactions. One future work problem would be to allow it some supervision

in the form of examples of known gene interactions. Preliminary experiments show that given

some known interactions, a GGM that does not penalize the known edges has improved precision
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and recall in predicting the unknown edges, over an unsupervised method that does not use the

known edges in prediction. This suggests that a method may be devised to learn the importance

of each data source, using the examples of known gene interactions as training data. Such a

weighted NP-MuScL method will allow us to compare to methods like SVM that predict each

edge independently of the rest, with a generative GGM-based model that predicts each edge in

the context of all other edges.

One of the challenges in working with ISH data is the large amount of missing data - many genes

have images for only 2-3 out of the 6 development stages. Preliminary work has been done on

such estimation for GGMs (Kolar and Xing, 2012), but generalizing such results for GINI and

NP-MuScL would be very useful in predicting a much larger gene interaction network.

Given n nodes, learning the structure of a Gaussian Graphical Model takes computational O(n3)

time (for dense problems). While we can learn models over 10, 000 − 20, 000 nodes, when the

nodes are genes, for other problems, where the number of nodes is much larger, eg. ∼ 500, 000

SNPs, ∼ 4 million Wikipedia articles, or ∼ 1 billion users on a social network, we need to

build more scalable algorithms, that can learn the structure of a Gaussian graphical model in a

distributed fashion. This remains an open challenge.

6.2.2 Computational biology and bioimaging

This thesis implicitly assumes that the relationship between genes can be captured by a linear

function; i.e. the expression of a single gene may be expressed as a linear weighted sum of the

expression of its neighbors in the interaction network. However, the relationship between gene

expressions may not be linear at all, but is a complex function that may also involve other data

sources like the cis-regulatroy module(CRM) sequence of each gene, the type of interaction, etc.

Janssens and Reinitz (2006); Segal et al. (2008) model the mechanistic forces that may control
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gene interaction using Arrhenius kinetics. However, such modeling is valid only when trying to

capture interactions between transcription factors binding to the CRM of a gene. Generalizing

the linear model to non-linear relationships that may capture more complex interactions between

genes remains an open problem.

Recent advances in bio-imaging now allow us to develop robotic pipelines to collect 2D ISH

data in a completely automated manner, on live embryos (Delubac, 2012). Further, the Berkeley

Drosophila Transcription Network Project (Hendriks et al., 2006) has started imaging 3D images

of the expression patterns for Drosophila embryos. For 2D automated images, SPEX2, GINI and

NP-MuScL can be used to predict gene interactions. In addition, since the imaging is done on

live embryos, the amount of noise will be much smaller. However, for such data, we might wish

to predict time-varying networks, as suggested in Ahmed and Xing (2009a). Extending such

algorithms to work with vector-valued image data instead of classical scalar microarray data will

need further work.

6.2.3 Computer vision

The SPEX2 pipeline extracts high- fidelity spatial patterns of gene expression in a developing

Drosophila embryo. Similar systems have also been proposed on a limited scale for mouse brain

(Jagalur et al., 2007) and C. elegans (Peng et al., 2008). Further, different Drosophila data sets

are now being collected with minor variations in color expression profile, and amount of noise in

the data (Delubac, 2012; Lécuyer et al., 2007). How do we design the SPEX2 pipeline to make

it easily usable by the researchers who collect such data sets, to allow them to extract features

from their own data set? An initial approach into this problem has been done by Shamir et al.

(2010), but note that the image processing part of their pipeline is limited to only region-of-

interest detection, which we have seen is not sufficient to get good results (Section 2.3.1). Open

problems in this area are (a) how do you define expected shape of objects in the data set to be
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extracted, to make it easy to extract the correct objects, and register them to the correct shape,

and (b) how do you define color profiles in the data set to easily extract the correct foreground

and background from the data set.

6.3 Related peer-reviewed publications

The following is a list of publications that I have published during the course of my Ph.D.

1. Kriti Puniyani, Eric Xing. GINI: From ISH images to gene interaction networks. PLOS

Computational Biology, 2013 (in press).

2. Kriti Puniyani, Eric Xing, NP-MuScL: Unsupervised Global Prediction of Interaction Net-

works from Multiple Data Sources. Journal of Computational Biology, 2013 (in press).

3. Eric P. Xing, Ross Curtis, Seunghak Lee, Junming Yin, Kriti Puniyani, Wei Wu, Peter

Kinnaird, GWAS in a Box: Statistical and Visual Analytics of Structured Associations via

GenAMap (under review).

4. Kriti Puniyani, Eric Xing, NP-MuScL: Unsupervised Global Prediction of Interaction Net-

works from Multiple Data Sources. Proceedings of the 17th annual international confer-

ence on RECOMB (Research in Computational Molecular Biology), LNCS Vol. 7821, pp

173-185, 2013.

5. Kriti Puniyani, Eric Xing, Inferring gene interaction networks from ISH images via kernel-

ized graphical models. Proceedings of the 12th ECCV (European Conference on Computer
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