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Abstract
Out-of-vocabulary (OOV) words are unknown words that appear in the testing

speech but not in the recognition vocabulary. They are usually important content
words such as names and locations which contain information crucial to the success
of many speech recognition tasks. However, most speech recognition systems are
closed-vocabulary recognizers that only recognize words in a fixed finite vocabulary.
When there are OOV words in the testing speech, such systems cannot identify OOV
words, but misrecognize them as in-vocabulary (IV) words. Furthermore, the errors
made on OOV words also affect the recognition accuracy of their surrounding IV
words. Therefore, speech recognition systems in which OOV words can be detected
and recovered are of great interest.

As simply applying a large vocabulary in a recognizer cannot solve the OOV
word problem, several alternative approaches had been proposed. One is to use a
hybrid lexicon and hybrid language model which incorporate both word and sub-
lexical units during decoding. Another popular OOV word detection method is to
locate where the word decoding and the phone decoding results are in disagree-
ment. Some other methods involve with a classification process to find possible
OOV words using confidence scores and other evidence. For OOV word recovery,
the phoneme-to-grapheme (P2G) conversion is usually applied to predict the written
form of an OOV word.

Current OOV research focuses on detecting the presence of OOV words in the
testing speech. There is only limited work about how to convert OOV words into IV
words of a recognizer. In this thesis, we therefore investigated learning OOV words
in speech recognition. We showed that it is feasible for a recognizer to automati-
cally learn new words and operate on an open vocabulary. Specifically, we built an
OOV word learning framework which consists of three major components. The first
component is OOV word detection, where we built hybrid systems using different
sub-lexical units to detect OOV words during decoding. We also studied to improve
the hybrid system performance using system combination and OOV word classifi-
cation techniques. Since OOV words can appear more than once in a conversation
or over a period of time, in the OOV word clustering component, we worked on
finding multiple instances of the same OOV word. At last, in OOV word recovery,
we explored how to integrate identified OOV words into the recognizer’s lexicon
and language model. The proposed work was tested on tasks with different speaking
styles and recording conditions including the Wall Street Journal (WSJ), Broadcast
News (BN), and Switchboard (SWB) datasets. Our experimental results show that
we are able to detect and recover up to 40% OOV words using the proposed OOV
word learning framework. Finally, a self-learning speech recognition system will be
more robust and has broader applications in real life.
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Chapter 1

Introduction

In this Chapter, we first discuss the out-of-vocabulary (OOV) word problem in automatic speech
recognition. Following that, the thesis statement, a summary of thesis contributions, and thesis
organization are presented.

1.1 The OOV word problem
OOV words are unknown words that appear in the testing speech but not in the recognition vocab-
ulary. Most automatic speech recognition (ASR) systems can only recognize words that belong
to a fixed finite vocabulary. When encountering an OOV word, the recognizer will incorrectly
recognize the OOV word with one or more similar sounding in-vocabulary (IV) words. In addi-
tion, OOV words also affect the recognition performance of their surrounding IV words. Table
1.1 shows the recognition result of an utterance with one OOV word - “AIRCOA”. We can find
that instead of just one substitution error, it contains four recognition errors. Because of the pres-
ence of OOV word, the preceding two words “KNOWN AS” of the OOV word “AIRCOA” are
also not recognized. On average, one OOV word introduces 1.2 word errors [Rosenfeld, 1995].
Furthermore, OOV words are usually important content words, such as names, locations, etc.,
which incorporate crucial information for understanding the recognition result. For instance, in
a voice search system, many OOV words are business names, without successfully identifying
OOV words, such system cannot find the information that a user looks for.

Table 1.1: The recognition result of an utterance with one OOV word - “AIRCOA”.

associated inns KNOWN AS *** AIRCOA
associated inns AND IS A TELE

Is it possible to predefine a lexicon containing all words that may be encountered by a rec-
ognizer? The answer is NO. Language is constantly growing and changing. New words always
appear in a language. Furthermore, one language may borrow a large number of words from
other languages. A major source of OOV words is words from foreign languages. Take En-
glish as an example, we “imported” résumé from French, kung fu from Chinese, kawaii from
Japanese, etc. Those words were initially OOV words before they were adopted into English.

1
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Figure 1.1: The overall framework of our OOV word learning system.

And not mention that there is an infinite number of unknown foreign names that may come up in
the testing speech.

1.2 Thesis statement
It is necessary for an ASR system to be able to detect the presence of OOV words in the testing
speech. But more important, an ASR system should also be capable of learning new words -
converting OOV words into IV words, so that it can recognize those new words correctly in the
future. In this thesis, we investigated learning OOV words in automatic speech recognition. We
showed that it is feasible for a recognizer to automatically learn new words and operate on an
open vocabulary. Precisely, to learn new words or to convert OOV words into IV words, we have
to first detect the OOV word and then estimate the written form and n-gram language model
scores of that word. Therefore, we build an OOV word learning system which can detect, cluster
and recover OOV words. We adopted the hybrid system for OOV word detection. Then, we
performed OOV word clustering to identify recurrent OOV words. And at last, we integrated
OOV words into the recognizer’s lexicon and language model in OOV word recovery. With the
ability of learning new words, the speech recognition system will be more robust and has broader
applications in real life.

1.3 Summary of thesis contributions
This thesis investigates a fundamental problem in speech recognition – how does an ASR system
automatically learn new words? Overall, the most important contribution is that we proposed an
OOV word learning framework and we showed that an ASR system is capable of learning new
words and operating on an open vocabulary. Within this framework, several contributions had
been made:

• We compared different training schemes and different types of sub-lexical units for build-
ing the hybrid system for OOV word detection.

• We demonstrated that system combination and OOV word classification techniques can
improve the OOV word detection performance.

• We successfully identified recurrent OOV words through a bottom-up clustering process.
We also showed that multiple instances of the same OOV word are valuable for improving
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the OOV word recovery performance.
• We improved the phoneme-to-grapheme (P2G) conversion performance by training a bet-

ter P2G model from the decoding result of training speech. We also proposed to estimate
n-gram language model scores for OOV words from syntactic and semantic similar IV
words.

• We studied OOV word recovery through filtering when a large dictionary and extra text
data is available.

1.4 Thesis organization
The reminder of this thesis is organized as follows:

• Chapter 2 introduces the general framework of an automatic speech recognition system.
It also explains some basic concepts in speech recognition, which will help us understand
the OOV word problem and our thesis work better.

• Chapter 3 describes the details of current OOV word detection and recovery research. It
also discusses the advantages and limitations of each technique.

• Chapter 4 presents our work on OOV word detection. Specifically, We explored two dif-
ferent approaches for training hybrid systems, the hierarchical and flat hybrid systems. We
also compared building hybrid systems using different types of sub-lexical units, such as
the phone, syllable, subword and graphone units. Then, the OOV word classifier was ap-
plied to reduce false detections. Furthermore, we demonstrated two system combination
techniques to improve the OOV word detection performance.

• Chapter 5 discusses how to find recurrent OOV words through a bottom-up clustering
process. The phonetic, acoustic and contextual features were collected and used to measure
the similarity between OOV candidates.

• Chapter 6 writes about our OOV word recovery work. The details of how we estimated
the written form and n-gram language model scores for an OOV word are provided. In the
second part of this chapter, it describes an alternative method for OOV word recovery when
a large dictionary and extra text data are available. It also demonstrates that the clustered
recurrent OOV words can be utilized to improve the OOV word recovery performance.

• Chapter 7 summaries thesis results and contributions. It also discuss future research on
learning OOV words in speech recognition.
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Chapter 2

Automatic Speech Recognition

In this chapter, we first present the general framework of an ASR system. Then, we briefly
discuss a few major components within this framework. And finally, some important concepts in
ASR are discussed.

2.1 The general ASR framework

Automatic speech recognition, hereafter referred as ASR, converts spoken words into text. In
the past decade, many algorithms had been studied and developed to improve the performance
of ASR systems. Popular applications of ASR, such as voice search, voice control and spoken
dialog system, etc., had also been widely used.

An ASR system generally includes two major components: the front-end and the decoder.
As shown in Figure 2.1, the front-end extracts feature observations O from the input speech
signal S, so as to obtain an appropriate representation of speech. While the decoder utilizes the
predefined acoustic model, language model and dictionary to recover words W from the feature
observations O.

Front-End

Acoustic

Model
Dictionary

Language

Model

Decoder

Input Speech

Signal

Observation

Sequence
Best Word

Sequence

Recognition

Figure 2.1: The general ASR framework.
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2.2 Feature extraction
The input speech signal S is usually time-domain sampled speech waveform. However, human
hearing is based on the characteristics of speech sounds in the frequency-domain, thus a spectral
representation of speech signal is more useful for speech recognition. Since speech signal is a
time varying signal, which is stationary within a short period of time but changes over a longer
time [Rabiner & Juang, 1993]. When extracting features, we need to segment the input speech
signal into small frames, then process each frame separately. The frame length is normally 25
msec. It is short enough to capture the rapid transitions in speech and good enough to achieve
sufficient time-domain resolution. As the mel-scale approximates the human auditory response
better, the mel-frequency cepstral coefficients (MFCCs) is one of the most popular feature rep-
resentations in speech recognition [Davis & Mermelstein, 1980].

2.3 Recognition
Following feature extraction, the recognition component decodes the most probable word se-
quence W from the observation sequence O. This recognition process can be represented by the
following equation:

Ŵ = argmax
W

P (W |O)

= argmax
W

P (W )P (O|W )

P (O)
, (2.1)

where P (W ) is the prior probability of the word sequence W , P (O|W ) is the likelihood of the
observation sequence O given the word sequence W , and P (O) is the probability of observing
O. Since P (O) is not a variable of W , Equation 2.1 can be written as

Ŵ = argmax
W

P (W )P (O|W ). (2.2)

Although we don’t know the true distribution of P (O|W ) and P (W ), those probabilities can be
estimated from the predefined acoustic model and language model.

2.3.1 Acoustic model
Most ASR systems adopt the hidden Markov models (HMMs) [Baum & Petrie, 1966; Baum &
Egon, 1967] to capture the acoustic characteristics of speech sounds. Figure 2.2 shows the typical
topology of HMMs used in speech recognition. The model has three hidden states concatenated
from left to right. After entering into a state, a sample can either remain in that state for a while or
transit to the next state. The observation sequence O is generated by each state and only depends
on that state.

To train a HMM, we need to estimate the initial state distribution π = {πi = P (q1 = Si)},
the transition probability matrix A = {aij = P (qt+1 = Sj|qt = Si)} and the observation
distribution B = {bi(Ot) = P (Ot|qt = Si)}, where O = {O1, O2, · · · , OT} is a T -frame
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a12

a22

a23

a33
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Figure 2.2: A 3-state left-to-right HMM.

observation sequence and Q = {q1, q2, · · · , qT} is the underlying state sequence. The Gaussian
mixture model (GMM) is usually used to approximate the observation distribution B, hence the
likelihood P (O|W ) of the observation sequence O given W can be calculated as

P (O|W ) =
∑
allQ

P (O|Q, λ)P (Q|λ)

=
∑

q1,q2,··· ,qT

πq1bq1(O1)aq1q2bq2(O2) · · · aqT−1qT bqT (OT ). (2.3)

These HMM parameters λ = (π,A,B) can be estimated using the well known Baum-Welch
(BW) algorithm [Baum et al., 1970], a special case of the classical Expectation-Maximization
(EM) algorithm [Dempster et al., 1977].

HMMs can be trained on different units, such as phones, syllables, words, etc. As there
are fewer unique phones than words in a language, training phone HMMs requires much less
training data than training word HMMs. On the other hand, because co-articulations often appear
in continuous speech, the speech signal of a phone can be heavily influenced by surrounding
phones. Simply training a HMM for each phone is not sufficient to model the acoustic properties
of speech sounds in different contexts. As a result, in speech recognition, HMMs are normally
trained on triphone, which is a phone unit preceded and followed by specific phones. However,
even just training triphone HMMs, there are still too many triphone units to work with. For
example, in our English ASR system, there are only 39 phones, but up to 393 = 59319 unique
triphones. Therefore, to reduce the amount of training data, we cluster triphone HMM states
or Gaussian mixtures into groups and use the data from each group for training [Hwang, 1993;
Huang, 1989].

2.3.2 Language model

Language model is used to calculate the prior probability P (W ) of observing the word sequence
W in a language. In speech recognition, language model is very helpful to discriminate acous-
tic ambiguous speech sounds and reduce the search space during decoding. For example, it is
very difficult to discriminate the following two utterances, “I OWE YOU TOO” and “EYE O U
TWO”, using acoustic properties. But from our prior knowledge of English, we know that the
first utterance is more likely to hear than the second utterance in real life. Mathematically, P (W )
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can be decomposed as

P (W ) = P (w1, w2, · · · , wn)

= P (w1)P (w2|w1) · · ·P (wn|w1, w2, · · · , wn−1)

=
n∏

i=1

P (wi|w1, w2, · · · , wi−1), (2.4)

which is a product of the probabilities of observing word wi given its history.
In reality, the probability P (wi|w1, w2, · · · , wi−1) is impossible to calculate for even a moder-

ate length of history, since most word sequences w1, w2, · · · , wi−1, wi only occur a few times. In-
stead, we estimate P (wi|w1, w2, · · · , wi−1) based on several previous words wi−N+1, · · · , wi−1.
This produces the widely used n-gram language model. Based on the length of word history, there
are different complexity n-gram models, such as the unigram P (wi), bigram P (wi|wi−1), trigram
P (wi|wi−2, wi−1), etc. Take the trigram as an example, the trigram probability P (wi|wi−2, wi−1)
can be estimated using the count of the word pair C(wi−2, wi−1) and the triplet C(wi−2, wi−1, wi),

P (wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)
. (2.5)

Similarly, we can compute other n-gram probabilities in the same way. However, if the word
sequence is not seen in the training data, P (W ) will be assigned zero probability, although it
may appear in some other places. Various smoothing techniques had been proposed to mitigate
this problem, e.g., the Good-Turing smoothing, the Katz smoothing and the modified Kneser-Ney
smoothing [Good, 1953; Katz, 1978; Kneser & Ney, 1995; Chen & Goodman, 1998].

Besides using the recognition word error rate (WER) to evaluate the quality of a language
model, a more direct way is to measure the probability of the testing word sequences through the
language model, which is the perplexity of a model on a data set. The perplexity is simply the
cross-entropy between the model and the data set,

PP (W ) = 2H(W ), (2.6)

where
H(W ) = − 1

NW

log2 P (W ), (2.7)

and NW is the length of the testing word sequence. The perplexity can be roughly interpreted as
the average branching factor of the testing data to the language model. It is generally true that
lower perplexity correlates to better recognition performance. As the lower the perplexity, the
less branches the speech recognizer needs to consider during decoding [Huang et al., 2001].

2.3.3 Dictionary
We had discussed the acoustic model and language model in previous paragraphs. As shown in
Figure 2.1, there is another module in the decoder, the dictionary. Acoustic model measures the
acoustic properties of speech sounds. Language model estimates the prior probability of word
sequences in a language. While dictionary bridges the gap between acoustic model and language
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model with the lexical knowledge. Dictionary provides pronunciations of words, so decoder
knows which HMMs to use for a certain word. Dictionary also provides a list of words to limit
the language model complexity and the decoder’s search space. As a result, an ASR system can
only recognize a limited number of words presented in the dictionary, which is normally known
as the closed-vocabulary speech recognition. Table 2.1 shows part of the dictionary used in our
ASR system. We can find that for some words, such as the word “A”, multiple pronunciations
are given in the dictionary, as there are normally a few different ways to pronounce those words.

Table 2.1: An example of the dictionary used in our ASR system.

A AH
A(2) EY
ABANDON AH B AE N D AH N
...

...
INK IH NG K
...

...
ZURICH Z UH R IH K

It is not easy to generate a dictionary from scratch. To obtain a dictionary specifically for
speech recognition, it usually involves with multiple linguists manually write rules and check
individual pronunciations. This process can be very costly and time consuming. Not mention
that many linguists may not agree with each other and a linguist may not be consistent over a
long period of time. Researchers had investigated to predict pronunciations of new words with
models trained from existing dictionaries [Chen, 2003; Bisani & Ney, 2008]. There are also
some work on refining an existing dictionary with spoken examples [Bahl et al., 1991; Maison,
2003]. However, most dictionaries used in ASR systems still require human intervention.

The size of a dictionary, i.e., the number of unique words it contains, is an important param-
eter for an ASR system. For some domain-specific applications, a 5k-word dictionary may be
enough. For a large vocabulary continuous speech recognition (LVCSR) system, a 64k-word or
larger dictionaries are usually applied. While for voice search systems, it is very common to
apply a dictionary with more than 100k words. A very large dictionary may cause several issues
to an ASR system. First, it requires more data for training the acoustic model and language
model, which will produce larger models with more parameters. As a result, the decoder will
consume more memory to load those models during decoding. Second, a larger dictionary tends
to increase the perplexity of the language model to the testing data, which will affect the speed
and accuracy of the recognizer, since it increases the size of the search space during decoding.
Therefore, we cannot always use a very large dictionary for all speech recognition applications.
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2.4 Word lattice and confidence score

2.4.1 Word lattice
The word lattice is a by-product of the recognition process, which is usually considered as a
compact representation of the most possible recognition hypotheses. It contains a set of word
hypotheses with boundary times and transitions between different hypotheses [Ortmanns & Ney,
1997]. Figure 2.3 provides an example of a word lattice generated by the SPHINX-3 decoder
[Lee et al., 1990]. In this word lattice, each node is associated with a word and its entry time,
while an arc is the transition from one node to another. This lattice corresponds to an utterance
with only one word “YES”. It can be found that such word lattice usually contains a large number
of word hypotheses including both the true hypotheses and the competing hypotheses. Because
of the rich information embedded in the word lattice, nowadays, it had been involved in various
stages of the speech recognition process, such as the discriminative acoustic modeling and the
multi-pass decoding.

1

30

<sil>

32
<sil>

75

YES

75
YES

76

YES

78

YES

79

YES

YES

YES

YES

YES

YES

OH

OH

O

O

I

99
<sil>

EIGHT

Figure 2.3: An example of the SPHINX word lattice.

2.4.2 Confidence score
The confidence score is an estimate of how reliable the recognition output is, which is usually
used to automatically spot possible recognition errors. Some researchers calculated the confi-
dence score from a large number of heuristic features, such as the number of times a back-off
in the language model occurs or the log of the number of phones in a word. A more popu-
lar confidence score is the word posterior probability derived from the word lattice through the
lattice-based forward-backward algorithm [Wessel et al., 2001]. In this case, the confidence score
is the posterior probability of a word appearing at a specific time given the whole utterance.
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2.5 Summary
In this chapter, we discussed the general framework and some key components of an ASR system
including the acoustic model, language model, word lattice, etc. To learn more details about
speech recognition techniques, please refer to textbooks such as [Rabiner & Juang, 1993] and
[Huang et al., 2001].
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Chapter 3

Related Work

In this chapter, we discuss the details of current solutions for the OOV word problem in speech
recognition. For OOV word detection, we describe three different approaches as well as some
work on combining those techniques to improve the detection performance. For OOV word
recovery, we present the commonly used phoneme-to-grapheme (P2G) conversion method and
some recent studies. At last, we discuss the limitations of existing techniques.

3.1 OOV word detection

3.1.1 Finding the mismatch between phone and word recognition results

In this method, both the weakly constrained phone recognition and the strongly constrained word
recognition are performed on the testing speech. Then the two recognition results are aligned and
the region where the bad alignment occurs is considered as an OOV word region. The assumption
here is that the phone recognition and the word recognition results should be equivalent if there
is no OOV word. Otherwise, if there is an OOV word, the word recognizer will substitute the
OOV word with another IV word. As a result, the word recognition result will not be able to
align with the phone recognition result. Therefore, we can detect the OOV word by finding the
mismatch between the phone and word recognition results. Figure 3.1 provides an example of
detecting OOV words by finding the mismatch between the phone and word recognition results.
We can see that the OOV word “AIRCOA” was successfully located. However, because of phone
recognition errors, the system also incorrectly recognized two IV words as OOV words.

This approach was first proposed in [Hayamizu et al., 1993], where the 1-best word recogni-
tion hypothesis was converted into a sequence of phones and then aligned with the 1-best phone
recognition hypothesis to find the possible OOV word region. [White et al., 2008] extended the
work to also measure the alignment between the word recognition hypothesis and the output of
transducing the phone recognition hypothesis into words. In [Lin et al., 2007], instead of using
the 1-best recognition hypotheses, word lattices produced by the phone and word recognizers
were aligned. Since the word lattice provides a concise representation of all possible recognition
hypotheses, the alignment between such lattices attempted to find the best alignment between
all possible phone recognition and word recognition hypotheses. [Burget et al., 2008; Kombrink
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Figure 3.1: An example of detecting OOV word by locating the mismatch between phone and
word recognition results.

et al., 2009] studied to align not the recognition hypotheses but the frame-based posterior scores
from the phone and word recognizers.

This method is simple to implement. However, phone recognition is not very reliable, the
accuracy sometimes could be lower than 50%. As there are many errors in the phone recognition
result which also cause the mismatch between the phone and word recognition hypotheses, a
large portion of the reported OOV words are in fact recognition errors. As a result, the OOV
word detection performance is normally poor.

3.1.2 Considering OOV word detection as a binary classification problem

The OOV word detection task can be considered as a binary classification problem, where each
word in the recognition result is classified as an OOV or IV word according to the collected evi-
dence. Various features and different classifiers had been studied in this framework. For example,
in [Sun et al., 2003], multiple evidence of a word, such as the acoustic features including various
likelihood scores, the number of paths, the number of similar hypotheses and the contextual fea-
tures including the acoustic confidence scores of surrounding words, were measured. Then, those
features were combined and reduced to one confidence score using the Fisher linear discriminate
analysis (FLDA), which was finally used for OOV word detection. Besides the acoustic features
and the contextual features, [Lecouteux et al., 2009] also introduced some linguistic features de-
rived from the language model and graph features from the confusion network. In their work,
the adaptive boosting (AdaBoost) was applied to find the optimal combination of all features. In
[Stouten et al., 2009], rather than only calculating features from the word recognition result, re-
searchers also collected evidence from the phone recognition result. Among all different features
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Figure 3.2: An example of detecting OOV word through classification.

presented in those literatures, the acoustic and linguistic features are the most effective ones. And
in most cases, systems using more types of features have a better performance than systems with
fewer types of features.

In this OOV word classification framework, various features can be easily applied to detect
OOV words. But the whole word units are not good to represent OOV words, especially for
short OOV words. As shown in Figure 3.2, the system correctly detected the OOV word in this
utterance. However, because it applied classification to all words in the recognition hypothesis,
the system also produced an inserted IV word. Furthermore, within this framework, even we can
locate the OOV regions, it is still not easy to retrieve the OOV pronunciations from the IV words
units. Finally, it has the same problem as the previous method that sometimes the identified OOV
regions are in fact recognition errors.

3.1.3 Using hybrid models to explicitly model OOV words
Different from the previous two approaches, a more direct way is to explicitly model and repre-
sent the OOV word using sub-lexical units, such as phones, syllables, subwords or graphones,
etc. Figure 3.3 presents the framework of a hybrid recognition system. It can be seen that the
hybrid system is essentially the same as the general ASR system except that a hybrid lexicon and
hybrid language model consisting of both words and sub-lexical units are used during decoding.
As a result, OOV words in the testing speech will be recognized as sub-lexical unit sequences
instead of IV words.

Depending on how the hybrid language model is trained, there are two different hybrid sys-
tems: the hierarchical hybrid system and the flat hybrid system. The hierarchical hybrid system
was originally proposed in [Bazzi & Glass, 2000], where a generic word model and a base word
language model were trained separately and then combined into a single hybrid language model.
In their system, the generic word model was basically a phone language model, which is aimed
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Figure 3.3: The hybrid ASR framework.

to absorb and recognize OOV words into phone sequences. [Klakow et al., 1999] first introduced
the work of using a flat hybrid system with words and subword units for OOV word detection.
In their system, they selected the top 5k words as IV words and considered all the rest words
in the training data as “artificial” OOV words. The pronunciations of those “artificial” OOV
words were then used as data for training the subword units. After that, the appearances of OOV
words in the training text were substituted by corresponding subword units. At last, a flat hybrid
language model was directly trained from the hybrid text data. In [Schaaf, 2001], a different
head-tail hybrid model was presented, where a word was divided into a head unit and a base
word unit. Then, the recognition was conducted using a language model incorporating both head
and tail units. Graphones - the grapheme-phoneme pairs of letters and phones were proposed as
another type of sub-lexical units in [Galescu, 2003]. The advantage of using a graphone hybrid
system is that the written form of an OOV word can be obtained by simply concatenating the
letter sequence of the decoded graphone units.

When the hybrid language model is trained, the information about which word categories
OOV words are and where they appear in a sentence is implicitly embedded in the model. During
decoding, the optimal path is searched by calculating the overall acoustic and language model
scores of the whole utterance instead of each individual word. Therefore, more context evidence
are measured in the hybrid method than the mismatch and classification methods. But in this
framework, it is hard to utilize evidence other than just the acoustic and language model features
during decoding to achieve further improvement.
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3.1.4 Combining hybrid model and classification
Some researchers had proposed to combine the OOV word classifier and the hybrid system so
as to improve the OOV word detection performance. Specifically, the hybrid system was first
applied to decode the testing speech. Then, the reported OOV words in the decoding result were
classified as true or false positives to remove possible detection errors. In [Yazgan & Saraclar,
2004], the OOV word candidates were filtered according to the confidence scores derived from
the word lattice. In [Rastrow et al., 2009a], more evidence were tested in the classification step to
obtain further improvement. Within the same framework, [Parada et al., 2010a] formulated the
OOV word detection task as a sequential labeling problem, where the conditional random field
(CRF) was applied to predict IV/OOV labels for a sequence of words.

In this method, OOV words are still explicitly represented using the hybrid model. Mean-
while, multiple evidence such as the acoustic features and lexical features can be easily applied
to reduce the errors made by the hybrid system.

3.2 OOV word recovery
The most common way to recover the written form of an OOV word is through the phoneme-
to-grapheme (P2G) conversion using a joint-sequence model trained from the recognition dic-
tionary. In [Bisani & Ney, 2005, 2008], different lengths of graphones were tested to find the
optimal joint-sequence model for the P2G conversion. [Vertanen, 2008] presented that using the
best path derived from the confusion network was better than using the 1-best hypothesis for
OOV word recovery. A different recovery method was presented in [Rastrow et al., 2009b; Han-
nemann et al., 2010], where a lexical finite state transducer (FST) built from a large dictionary
was used to translate the decoded sub-lexical units into words.

[Parada et al., 2010b] introduced another interesting approach to OOV word recovery that
involved with an information retrieval (IR) system and a spoken term detection (STD) system.
They used the surrounding words of a possible OOV word as search query to search the web
and find sentences containing those query words. Then candidate words appearing at the same
locations as OOV words in each sentence were selected as key words of the STD system. Finally,
testing speech was input into the STD system, if there was an OOV word, the STD system would
spot that word from its key word list.

3.3 Summary
In above paragraphs, we discussed the current solutions to the OOV word problem in speech
recognition. Different techniques had been investigated to solve this problem from different
directions. But to finally convert an OOV word into an IV word, so that it can be recognized
when encountered by the ASR system in the future, we have to estimate n-gram language model
scores for the OOV word. Moreover, the same OOV word can appear more than once in a
conversation or over a period of time. Such multiple instances of the same OOV word provide
valuable information for estimating the pronunciation or the language model score of the word.
However, there is very limited work on those two topics in speech recognition.
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Chapter 4

OOV Word Detection

In this chapter, we study the OOV word detection problem, which is detecting the location of
an OOV word in the testing speech. We explored two different approaches for training hybrid
systems, the hierarchical and flat hybrid systems. We also compared building hybrid systems
using different types of sub-lexical units, such as the phone, syllable, subword and graphone
units. Then, the OOV word classifier was presented to remove false detections. Furthermore, we
demonstrated two system combination techniques to improve the OOV word detection perfor-
mance. And at last, the experiment setup and experiment results are provided.

4.1 OOV word detection using hybrid systems and OOV word
classifier

4.1.1 Hybrid systems
In a hybrid system, a hybrid lexicon and hybrid language model (LM) consisting of both words
and sub-lexical units were applied during decoding to detect the presence of OOV words. The
hybrid lexicon was obtained by incorporating the sub-lexical units and their pronunciations into
the word lexicon, while the hybrid LM could be trained in two different manners.

The hierarchical hybrid LM

As shown in Figure 4.1, the hierarchical hybrid LM was generated by merging an open-vocabulary
word LM trained from a large text corpus and a closed-vocabulary sub-lexical LM trained from
the pronunciations of IV words. When training the word LM, all OOV words were matched to
the same unknown token “⟨unk⟩”. Then by combining the word LM with the sub-lexical LM,
a single sub-lexical word hybrid LM was produced. For example, the unigram probability of a
sub-lexical unit in the hybrid LM was calculated as

PH(fi) = PW (⟨unk⟩) · PS(fi) · COOV , (4.1)

where PW (⟨unk⟩) is the unigram probability of the unknown token ⟨unk⟩ in the word LM,
PS(fi) is the unigram probability of the sub-lexical unit fi in the sub-lexical LM, and COOV is the
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cost of entering an OOV word during decoding. Similarly, we can compute n-gram probabilities
in the hierarchical hybrid LM.

Sub-lexical
LM

Word
LM

Hierarchical
Hybrid LM

IV 
Pronunciations

Text
Corpus

Sub-lexical 
Units

Figure 4.1: The training process of the hierarchical hybrid LM.

The flat hybrid LM

As shown in Figure 4.2, to train a flat hybrid LM, rather than separately training the word LM
and the sub-lexical LM then merging them into one hybrid LM, we directly built a flat hybrid LM
from the hybrid text corpus. Such hybrid text data was produced by substituting OOV words in
the training text with corresponding sub-lexical units derived from the OOV pronunciations. In
our system, the pronunciations of OOV words were estimated through the grapheme-to-phoneme
(G2P) conversion. We could also obtain OOV pronunciations by looking up larger dictionaries.
Again, when training the flat hybrid LM, we assigned a OOV cost COOV to control how likely to
encounter an OOV word during decoding. By tuning COOV , we can find an optimal configuration
of our system to achieve the target OOV word detection performance.

Flat
Hybrid LM

OOV 
Pronunciations

Text
Corpus

Sub-lexical 
Units

Hybrid Text
Corpus

Figure 4.2: The training process of the flat hybrid LM.
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Word boundaries

When training the hybrid LM, sometimes two or more OOV words might appear consecutively
in the training data. After replacing OOV words with their corresponding sub-lexical units, the
word boundary between two OOV words was lost. Hence, a sequence of sub-lexical units in
the OOV word detection output might actually match to multiple consecutive OOV words in the
testing speech. To solve this problem, we added two more symbols into the sub-lexical units
of each OOV word, which were the word start “∧” and word end “$”. By doing this, the sub-
lexical units at the word boundary and sub-lexical units within a word were treated differently
during training. As a result, the context information about the sub-lexical unit position was also
preserved in the hybrid model.

4.1.2 Sub-lexical units
Four different types of sub-lexical units, phone, syllable, subword, and graphone units, were
investigated for OOV word detection [Qin et al., 2011]. Among those units, phone, syllable and
subword units only model the phonetic level of a word, while graphone units also consider the
orthography level.

Phone

In the phone hybrid system, the hybrid lexicon and hybrid LM were composed with both whole
word entries and monophone entries. Then during decoding, OOV words were absorbed and
represented by phone sequences. For example, our system recognized the OOV word “ashland”
as “∧AE SH AH N$”. The phone hybrid system was simple to build. However, as we modeled
OOV words with a very small number of phones and the phone recognition was not reliable,
the OOV word detection performance was usually not satisfied. Therefore, we explored to build
hybrid systems with more complex sub-lexical units.

Syllable

Syllables are often considered as the phonological “building blocks” of words, which can influ-
ence the rhythm, prosody and stress of a word. The general structure of a syllable consists of
three components: the onset, nucleus, and coda. The nucleus is normally a vowel or a diph-
thong, while the onset and coda are usually optional consonants. For instance, the word “water”
can be split into two syllables: “∧W AO” and “T ER$”. In our system, we segmented OOV
pronunciations into syllables using the Festival lexicon tools [Black et al., 1997].

Subword

Similar to syllable units, subwords, such as “∧AH N” and “EY SH AH N$”, are iteratively
trained phone sequences with variable lengths [Klakow et al., 1999]. First, we initialized the
subword inventory with all phones to ensure the full coverage of all possible OOV words. In each
iteration, the most frequent subword bigram was merged and added to the subword inventory. Its
occurrences in the training data were also concatenated into one single entry. This transformed
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training data was then used in the next iteration. The training ended when a target number of
subword units was reached.

Graphone

A graphone is a grapheme-phoneme pair of English letters and phones. For example, one possi-
ble graphone representation of the word “speech” is

speech =

(
s
∧S

)(
pee

P IY

)(
ch

CH$

)
.

To find graphone units, a trigram joint-sequence model was trained and then used to segment
words into grapheme-phoneme pairs [Bisani & Ney, 2008]. A graphone can have a minimum
and maximum number of letters and phones. Here, we used the same range for both letters and
phones, where the minimum was set to 1 and the maximum was varied from 2 to 5.

4.1.3 The OOV word classifier
As mentioned in Chapter 3, it is much easier to utilize various evidence for OOV word detection
using the OOV word classifier. Therefore, we integrated the OOV word classification component
into our hybrid system framework to improve the OOV word detection performance. Specifically,
the hybrid decoding was first performed to find possible OOV words. From the hybrid decoding
results, we collected four types of evidence for each OOV hypothesis, which are the acoustic,
lexical, lattice, and contextual features. Those features were then inputted into a classifier to
classify whether the OOV hypothesis was a true or false positive. In this thesis, we trained
LogitBoost classifiers with feature selection using Weka on the hybrid decoding result of the
development data [Hall et al.].

• Acoustic Features: the number of phones, the duration per phone, the acoustic score, the
posterior score

• Lexical Features: the LM score, the unigram LM score, the LM back-off activity
• Lattice Features: the number of competing hypotheses, the number of competing OOV

hypotheses, the number of filler hypotheses, the sum of posterior probability of OOV hy-
potheses, the sum of posterior probability of filler hypotheses

• Contextual Features: the acoustic, lexical and lattice features of preceding and succeeding
words

4.2 System combination for OOV word detection

4.2.1 Combining multiple hybrid systems’ outputs
In previous sections, we introduced hybrid systems with different sub-lexical units for solving the
OOV word problem. Here we present a method to improve the OOV word detection performance
by utilizing multiple hybrid systems [Qin et al., 2012]. Specifically, the recognizer output voting
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Figure 4.3: The ROVER framework.

error reduction (ROVER) was applied to combine different systems’ outputs [Fiscus, 1997]. Two
combination metrics, i.e., voting by word frequency and voting by both word frequency and word
confidence, were explored.

ROVER

ROVER was originally developed at the National Institute of Standards and Technology (NIST)
to produce composite speech recognition system output when multiple recognizers’ results are
available. In many cases, the composite recognition output has lower word error rate (WER)
than any of the individual recognizers. In ROVER, the multiple recognizers’ outputs are first
combined into a single, minimal cost word transition network (WTN) via iterative applications
of dynamic programming (DP) alignments. Then, the resulting WTN is re-scored and searched
to find the optimal word sequence. Figure 4.3 shows the general ROVER framework.

A commonly used re-scoring formula in ROVER is

Score(wi) = α · N(wi)∑
w N(wi)

+ (1− α) · C(wi), (4.2)

where N(wi) is the count of word w at the i-th alignment in the WTN, C(wi) is the word con-
fidence score of wi, and α is the weight used to balance the word frequency and the word confi-
dence score. Another parameter C(@) is used to set the confidence score of the NULL transition
arc. For details of ROVER, please refer to [Fiscus, 1997].

ROVER for OOV word detection

Two ROVER systems with different re-scoring modules were investigated in this work. In the
baseline system, α in Eqn. 4.2 was set to 1, the optimal word sequence was found by only
considering the frequency of word occurrences in each alignment in the WTN. In the second
ROVER system, α was set to a value between 0 and 1, so that both the word occurrences and
word confidence scores were measured when re-scoring the WTN.
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System 3 Output: A B C D *K_AH_L_AH*

System 2 Output: B C D            E

System 1 Output: B C D *K_AE_L_AH*

System 1 Output: B C D *OOV*

System 2 Output: B C D      E

System 3 Output: A B C D *OOV*

Figure 4.4: The ROVER combination process.

Because we used ROVER for OOV word detection instead of speech recognition, we were
more concerned about where the OOV word occurred in the testing speech than what was the
correct pronunciation of that word. When calculating the confidence score C(wi) in Eqn. 4.2 for
wi in the lattice of the j-th hybrid system, we did not measure the confidence of that single word.
Alternatively, depending on whether wi is an IV or OOV word, we summed over the posterior
probabilities of all IV or OOV words in that region.

Confj(wi) =
∑

k∈[si,ei]

{
P (IVk) wi is IV
P (OOVk) wi is OOV,

(4.3)

where si and ei are the start and end time of wi, and P (IVk) is the posterior probability of an IV
word in that region, while P (OOVk) is the posterior probability of an OOV word. Confj(wi) is
then normalized by the sum of posterior probabilities of all words in that alignment to make sure
Confj(wi) ∈ [0, 1]. There are two ways to compute C(wi) from the individual confidence score
Confj(wi), i.e., the average and the maximum of individual scores. In our system, we found that
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ABOUT PRESIDENT MIGUEL MADRID'S OFFICE

BOARD OF SAN MIGUEL CORPORATION

ABOUT PRESIDENT ^M_AY G_Y_UW_L$ MADRID'S OFFICE

BOARD OF SAN ^M_AY G_Y_UW_L$ CORPORATION

Figure 4.5: An example of modeling OOV words in the mix-hier system.

the performance of those two methods was similar. The optimal values of α and C(@) in Eqn.
4.2 were searched from 0 to 1 with a step size of 0.2 using the grid search. And multiple outputs
of individual systems were always aligned to the one with the best performance.

Since different hybrid systems usually produce different sub-lexical sequences for the same
OOV word, ROVER cannot be directly applied to the OOV word detection results. Therefore
we converted all sub-lexical sequences in multiple recognizers’ outputs to the same OOV token
“*OOV*”. IV words were not changed so as to have a better alignment when building the
transition network. As presented in Figure 4.4, both System 1 and System 3 reported an OOV
word in their output. However, System 1 recognized the OOV word as “K AE L AH”, while
System 3 recognized it as “K AH L AH”. Therefore in our ROVER system, the first step was
to convert different sub-lexical sequences into the same token “*OOV*”. Then ROVER was
applied to combine and find the best result from multiple systems’ outputs. If there are OOV
words in the ROVER result, we can trace back to individual systems’ outputs, then combine
different sub-lexical sequences to obtain a better phonetic representation of the OOV word.

4.2.2 Combining multiple types of sub-lexical units

Different types of sub-lexical units have their own advantages and problems. For example, sub-
words are simple robust units, yet lack linguistic considerations. Syllables maintain phonetic
restrictions to form words, but occasionally produce problematic long rare units. Graphones
model both the written form and pronunciation of a word, however, the number of graphone
units explodes when allowing longer letter or phone sequences. Therefore, besides combining
multiple hybrid systems’ outputs, we investigated system combination from another direction by
utilizing multiple types of sub-lexical units in one system, so that different units can complement
each other [Qin & Rudnicky, 2012].
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For each appearance of MIGUEL, 
stochastically select one type of units

Figure 4.6: An example of modeling OOV words in the mix-flat system.

We implemented two methods to use mixed types of sub-lexical units in our hybrid system. In
the first method, hereafter referred as “mix-hier”, OOV words were divided into three groups and
separately modeled by the syllable, subword, and graphone units. This is similar to [Shaik et al.,
2011], in which researchers used the whole word units together with syllable or morpheme units
to model IV words and graphone units for OOV words in an open vocabulary German speech
recognition system. In the second method, hereafter referred as “mix-flat”, each occurrence of
OOV words was modeled by one type of unit stochastically selected from three types of sub-
lexical units. Compared with the first method, where each OOV word is only modeled by one
type of sub-lexical unit, in the second method, an OOV word could be modeled by multiple types
of sub-lexical units if it occurs more than once in the training data.

The mix-hier combination method

In this method, different types of sub-lexical units were combined in a hierarchical way, where
we divided OOV words into three groups and used one type of sub-lexical unit for each group.
Because the syllable system usually performed better than the subword and graphone systems,
we modeled the most frequent OOV words using syllable units and the less frequent OOV words
using subword and graphone units. In particular, we first ranked all OOV words based on their
frequencies in the training text. Then, we used syllable units to model the top x percent of OOV
words, subword units to model the following y percent of OOV words, and graphone units for
the remaining OOV words. The value of x and y were tuned over the development data to get the
best OOV word detection performance. For example, as shown in Figure 4.5, those two sentences
both contain the OOV word “MIGUEL”. Since we selected to model “MIGUEL” using syllables,
all occurrences of the word in the training data were represented using the same sequence of
syllable units.

The mix-flat combination method

In this method, different types of sub-lexical units were combined in a flat way, where each oc-
currence of OOV words was modeled by one type of sub-lexical unit stochastically selected from
syllables, subwords, and graphones. We trained each type of sub-lexical unit using the estimated
OOV pronunciations. Then, for each OOV occurrence in the training text, we represented it with
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the sub-lexical units from the stochastically selected unit type. As a result, different from the
mix-hier method, here, one OOV word can be modeled by multiple types of sub-lexical units,
if it occurs more than once in the training data. For instance, in Figure 4.6, we have the same
example as in the mix-hier system. But here, the first “MIGUEL” was modeled using syllable
units, while the second one was modeled using graphone units. The mix-flat system could there-
fore have a better coverage of OOV words from all three types of sub-lexical units. Furthermore,
this mix-flat method doesn’t require any development data for tuning.

4.3 Experiment setup and datasets

4.3.1 Experiment setup
CMU SPHINX speech recognition system

In this thesis, all experiments were conducted using the CMU SPHINX speech recognition sys-
tem [Lee et al., 1990]. SPHINX is an open source toolkit for speaker-independent large vocab-
ulary continuous speech recognition [sph]. It comes with an acoustic model trainer - Sphinx-
Train and a number of decoders including Sphinx3, Sphinx4, PocketSphinx and MultiSphinx
[Huggins-Daines, 2011]. Among all those decoders, the Sphinx3 decoder is the most accurate
one, thus we used it for our experiments. To train the acoustic model, 13-order mel-scale fre-
quency cepstral coefficients (MFCCs) including c0 were extracted from the input speech, and
then the delta and delta-delta coefficients were calculated. The feature dimension was reduced
to 29 after applying the linear discriminant analysis (LDA) [Haeb-Umbach & Ney, 1992] and
the maximum likelihood linear transform (MLLT) [Gales, 1998]. Finally, 3-state left-to-right
HMMs were trained under the maximum likelihood (ML) criterion and the maximum mutual
information (MMI) criterion [Qin & Rudnicky, 2010a,b].

Hybrid model training

For the hybrid LM training, we selected the most frequent words from the LM training text data
as vocabulary. Then the recognition lexicon was produced by looking up pronunciations for iv-
vocabulary (IV) words from the CMUdict (v.0.7.a) [Rudnicky, 2007]. To build the hierarchical
hybrid model, we combined an open-vocabulary word bigram LM trained from the LM training
data and a closed-vocabulary sub-lexical bigram LM trained from the IV pronunciations. To build
the flat hybrid model, we directly trained a bigram model from the hybrid text data by substituting
OOV words with corresponding sub-lexical units derived from the OOV pronunciations. In our
experiments, we adjusted the OOV cost COOV from 0 to 2.5 with a step size of 0.25 to control
the penalty of entering an OOV word during decoding. By doing this, we could find the optimal
COOV for different applications, such as applications in favor of finding as many OOV words as
possible or applications in favor of not misrecognizing IV words as OOV words.

Evaluation metrics

We used the following metrics to evaluate the OOV word detection performance:

27



• Miss Rate (MR), which measures how many OOV words are missed in the OOV word
detection output. MR can be calculated as

MR =
#OOVs in reference −#OOVs detected

#OOVs in reference
× 100%. (4.4)

• False Alarm Rate (FAR), which measures how many IV words are falsely reported as OOV
words. FAR can be calculated as

FAR =
#OOVs reported −#OOVs detected

#IVs in reference
× 100%. (4.5)

• Recall, which measures how many OOV words are detected. Recall can be calculated as

Recall =
#OOVs detected

#OOVs in reference
× 100% = 100%−MR. (4.6)

• Precision, which measures how many reported OOV words are correct detections. Preci-
sion can be calculated as

Precision =
#OOVs detected
#OOVs reported

× 100%. (4.7)

• F1, which measures both the Recall and Precision of the OOV word detection output. F1
can be calculated as

F1 =
2 · Precision ·Recall

Precision+Recall
. (4.8)

We calculated MR, FAR, Recall, Precision and F1 at the word level, which measure both the
presence and positions of OOV words in an utterance. This is because that in practical applica-
tions, knowing where OOV words are located is more valuable than simply knowing the fact that
OOV word(s) exist in an utterance.

4.3.2 Datasets
As we did not have data specifically designed for evaluating OOV word detection, the proposed
work was tested on three conventional ASR corpora, the Wall Street Journal (WSJ), the Broadcast
News (BN) and the Switchboard (SWB).

• The WSJ corpus contains clean read speech recordings of the WSJ text materials. We used
the WSJ0 and WSJ1 data [Garofalo et al., 1993, 1994] with a total of 80 hours speech for
acoustic model training, and the 1987-1989 WSJ text for language model training [Graff
et al., 1995]. We selected the top 20k words to build the vocabulary. The development data
was the WSJ 1992 and 1993 20k-word speaker-independent Dev sets, while the evaluation
data was the WSJ 1992 20k-word and 1993 64k-word speaker-independent Eval sets.

• The BN corpus contains speech recordings from televisions and radio networks. We used
a subset of the 1996 and 1997 BN data [Graff et al., 1997; Fiscus et al., 1998] with a total
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of 140 hours speech for acoustic model training, and the 1992-1997 BN transcripts for
language model training. Again, we selected the top 20k words to build the vocabulary.
The development and evaluation data were the F0 and F1 tasks from the 1996 HUB4 Dev
and Eval sets.

• The SWB corpus contains spontaneous telephone conversation recordings. We used the
SWB1 phrase 1 data [Godfrey & Holliman, 1997] with a total of 180 hours speech for
acoustic model training, and the SWB1 and SWBCELL transcripts together with the CALL-
HOME and FISHER data for language model training. Here, we selected the top 10k words
to build the vocabulary. The development and evaluation data were randomly selected ses-
sions from the SWB1 phrase 2 recordings.

The above three datasets are all commonly used corpora in speech recognition. They are dif-
ferent from each other with regard to content materials, recording conditions and speaking styles.
The WSJ data is read speech recorded in quite conditions, which is the simplest recognition task
among three tasks. The BN data is the recordings of television and broadcast news including
some portion of conversations and sometimes background noise. Thus it is harder to recognize
than the WSJ speech. While the SWB corpus contains recordings of spontaneous telephone
conversations, which is normally more difficult than read speech or broadcast news speech. In
addition, to handle the deletions and repetitions in the spontaneous speech, we added many word
fragment units into the SWB recognition lexicon. Most word fragment units are very similar to
the sub-lexical units, so OOV words in the testing speech might be instead recognized as word
fragments.

Table 4.1: The OOV rate of the Dev and Eval data.
Dev Data Eval Data Common OOVs

NO. OOV OOV RATE NO. OOV OOV RATE in Dev and Eval
WSJ 313 2.10% 200 2.20% 6
BN 204 2.02% 255 2.04% 5
SWB 204 1.74% 209 1.69% 4

From our initial experimental results, we found that some OOV words in the development and
evaluation data were morphological changes of IV words, such as TANKS and LUMBERING.
In practice, we can prevent this kind of OOV words by adding all morphology forms of a word
into the lexicon. As such OOV words are not the new words our system expects to detect, we
manually examined OOV words in the development and evaluation data and added those fake
OOV words into the lexicon. We also removed a few less frequent words from the lexicon to
maintain the vocabulary size. The final OOV rate of each task is given in Table 4.1. It can
be found that the WSJ and BN tasks have an OOV rate around 2%, while the SWB task has a
slightly lower OOV rate. The OOV rate is similar to many practical LVCSR applications, such
as the voice search system on mobile phones. From Table 4.1, we can also find that there are
only very few OOV words appearing in both the Dev and Eval data. Therefore, by tuning OOV
word detection performance on the Dev data, we only learned parameters of the hybrid system
but not about OOV words in the Eval data. We also measured the percentage of Dev and Eval
OOV words in the training speech and text corpora. As shown in Table 4.2, a small portion of
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Dev and Eval OOV words appear in the training speech, while a large portion of OOV words
appear in the training text in the WSJ and BN tasks. In the SWB task, all Dev and Eval OOV
words are in the training data.

Table 4.2: The percentage of Dev and Eval OOV words in the training speech and text data.

Dev Data Eval Data
In Speech In Text In Speech In Text

WSJ 13% 98% 17% 98%
BN 50% 88% 33% 83%
SWB 100% 100% 100% 100%

4.4 Experimental results

In this proposal, the OOV word detection performance of different systems were compared using
the FAR-MR and F1 curves. To draw those curves, we adjusted the OOV cost COOV when
training the hybrid systems. In general, the OOV cost COOV was adjusted from 0 to 2.5 with a
step size of 0.25.

4.4.1 Baseline word recognition results

As we discussed in 4.3.2, these three recognition tasks are quite different from each other in
terms of channels, recording conditions and speaking styles, etc. Table 4.3 presents the baseline
word recognition results using the bigram and trigram LMs. We can find that the WSJ task has
the best recognition accuracy, the BN task gets a higher WER around 30%, and the SWB task
has a WER up to 40%. To be noticed, these results are speaker independent decoding results
without adaptation. Furthermore, in this thesis, we didn’t focus on building the most accurate
ASR systems. However, we did find that better OOV word detection performance was achieved
with a more accurate recognizer.

Table 4.3: The baseline word recognition results.

WER Bigram LM Trigram LM
(%) Dev Data Eval Data Dev Data Eval Data
WSJ 15.70 13.77 13.48 12.04
BN 29.00 31.23 25.93 28.28
SWB 39.13 39.27 32.58 33.54
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4.4.2 Baseline OOV word detection results
Finding the optimal number of subword units and optimal graphone length

To determine the optimal number of sub-lexical units when building the subword and graphone
hybrid systems, we simply built multiple hybrid systems with different number of subword units
or different graphone lengths and chose the system with the best performance on the development
data. If two systems performed similarly, we preferred the slightly sub-optimal system to prevent
the over training problem. In those experiments, to save computations, we only tested hybrid
models with an OOV cost COOV of 0.25, 0.75, 1.25 and 1.75.

From the results given in Figure 4.7 and Figure 4.8, we can find that the optimal number of
subword units and graphone lengths are different for each task. More subword units and longer
graphone units are used in the flat hybrid systems than in the hierarchical hybrid systems. This
is because, as provided in Table 4.4, the subword and graphone units were trained from the
pronunciations of IV words in the hierarchical hybrid system. But in the flat hybrid system, we
trained sub-lexical units from the pronunciations of a large number of OOV words. As a result,
there were more data for training the sub-lexical units in the flat hybrid system, so that it could
afford more subword units and longer graphone lengths. The optimal number of subword units
and graphone length in each task is summarized in Table 4.5.

Table 4.4: The number of words used for training sub-lexical units.

WSJ BN SWB
Hierarchical System 20k 20k 10k
Flat System 150k 240k 50k

Table 4.5: The optimal number of subword units and graphone length.

Number of Subword Units Graphone length
WSJ BN SWB WSJ BN SWB

Hierarchical System 1000 500 500 3 2 4
Flat System 7000 3000 4500 4 3 4

As “∧” and “$” were combined with the sub-lexical units at the word boundaries, there were
a large number of sub-lexical units in our hybrid systems. The total number of sub-lexical units in
the phone, syllable, subword and graphone hybrid systems are given in Table 4.6 and Table 4.7.
In the graphone hybrid system, the number of graphones is determined by the graphone length. If
only allowing short graphones, OOV words will be represented by a sequence of short graphone
units that are hard to accurately recognize. On the other hand, if allowing longer graphones,
OOV words will be composed by fewer long graphone units that are more robust for recognition.
But in this case, the number of different graphone units will also dramatically increase. In the
subword hybrid systems, the number of subword units were fully controlled in training. And
there are much fewer sub-lexical units in the subword system than in the syllable and graphone
systems.
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Figure 4.7: The OOV word detection performance of hierarchical hybrid systems with different
number of subword units and different graphone lengths.
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Figure 4.8: The OOV word detection performance of flat hybrid systems with different number
of subword units and different graphone lengths.

32



Table 4.6: The number of sub-lexical units in different hierarchical hybrid systems.

Phone Syllable Subword Graphone
WSJ 118 8703 1000 9151
BN 124 8915 500 3002
SWB 149 5989 500 8938

Table 4.7: The number of sub-lexical units in different flat hybrid systems.

Phone Syllable Subword Graphone
WSJ 151 26855 7000 19579
BN 152 34297 3000 13616
SWB 152 15264 4500 10298

Comparison of hybrid systems with different sub-lexical units

First, we compare the OOV word detection performance of hierarchical hybrid systems using
different sub-lexical units. As provided in Figure 4.9, we can find that the syllable, subword and
graphone hybrid systems are usually better than the phone hybrid system. The reason is that
those systems can utilize a longer history of phones for modeling OOV words. For instance, in
the syllable system, a sub-lexical unit “AE N T” already incorporates a history of two phones.
However, in the phone hybrid system, any phone bigram can only rely on the previous phone.
Among three tasks, the performance difference between different hybrid systems is quite small
in the WSJ and BN tasks, but larger in the SWB task.
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Figure 4.9: The OOV word detection performance of hierarchical hybrid systems with different
sub-lexical units.

The OOV word detection results of flat hybrid systems with different sub-lexical units are
provided in Figure 4.10. Similar to the hierarchical results, the syllable, subword and graphone
systems are all better than the phone system. In the flat hybrid system, the difference between the
phone system and the other three systems is much larger, which is probably because much more
complex sub-lexical units were applied in the flat hybrid system. Among the syllable, subword
and graphone systems, the syllable system is slightly better than the other two systems.

33



2 4 6

10

20

30

40

50

60

70

False Alarm Rate (%)

M
is

s 
R

at
e 

(%
)

phone
syllable
subword
graphone

(a) WSJ Eval

2 4 6

20

40

60

80

False Alarm Rate (%)

M
is

s 
R

at
e 

(%
)

phone
syllable
subword
graphone

(b) BN Eval

0 2 4 6

20

40

60

80

100

False Alarm Rate (%)

M
is

s 
R

at
e 

(%
)

phone
syllable
subword
graphone

(c) SWB Eval

Figure 4.10: The OOV word detection performance of flat hybrid systems with different sub-
lexical units.

We also calculated the weighted length of sub-lexical units in each system. The length of
a sub-lexical unit is defined as the number of phones it contains. A longer sub-lexical unit
contains more phones and is thus easier and more robust for recognition. On the other hand, if
we represent OOV words only using longer sub-lexical units, we will end up with a very large
number of units, which then require more data for training. To account for the distribution of
sub-lexical units, the length of a unit is weighted by its frequency in the training data. As shown
in Table 4.8 and Table 4.9, the length of the phone unit is always 1 and is the smallest. This is one
reason why the phone system is usually worse than the other hybrid systems. In the hierarchical
systems, although the syllable unit has the largest length, the performance of the syllable system
is not better than the subword and graphone systems. However, in the flat systems, the length
of the syllable unit is the largest and the syllable system also has the best performance among
all hybrid systems. As mentioned in the previous paragraphs, there were usually a very large
number of sub-lexical units used in the syllable system. Therefore, it required more data for
training the hybrid LM using those units. In the hierarchical system, the sub-lexical units were
trained from the IV pronunciations, which is a very small dataset. But in the flat system, the
training data was the large number of OOV words in the LM training text, which could afford
more longer sub-lexical units. We can also find that in the flat systems, the graphone system
has a weighted length smaller than the syllable and subword units, and its performance is also
worse than the syllable and subword systems. The performance of the graphone system may be
better, if there are more data for training longer graphone units. Basically, there is a correlation
between the weighted length of sub-lexical units and the OOV word detection performance in
the flat hybrid systems.

Table 4.8: The weighted length of sub-lexical units in different hierarchical hybrid systems.

Phone Syllable Subword Graphone
WSJ 1.00 2.64 2.00 2.12
BN 1.00 2.64 1.75 1.50
SWB 1.00 2.66 1.71 2.66
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Table 4.9: The weighted length of sub-lexical units in different flat hybrid systems.

Phone Syllable Subword Graphone
WSJ 1.00 2.54 2.58 2.27
BN 1.00 2.50 2.21 1.94
SWB 1.00 2.59 2.48 2.21
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Figure 4.11: The OOV word detection performance of hierarchical and flat hybrid systems.

Comparison of the hierarchical hybrid system and flat hybrid system

In the previous section, we have discussed the OOV word detection performance of hybrid sys-
tems using different sub-lexical units in the hierarchical hybrid framework and flat hybrid frame-
work, respectively. Here, we compare those two types of hybrid systems. Figure 4.11 presents
the OOV word detection performance of hierarchical and flat hybrid systems, where the solid
lines are the results of hierarchical systems and the dotted lines are the results of flat systems.
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We can find that the flat hybrid systems are significant better than the hierarchical hybrid systems,
except for the phone flat hybrid systems in the WSJ and BN tasks. Across different systems and
tasks, the flat hybrid system obtains 10% to 30% absolute improvement on the Miss Rate over
the hierarchical hybrid system. In the flat hybrid system, the transitional probabilities between
words and sub-lexical units capture valuable information about which OOV word appears in what
context. While in the hierarchical system, the sub-lexical LM was trained separately, the context
dependencies between words and sub-lexical units were therefore lost. Furthermore, OOV words
were represented with more complex sub-lexical units in the flat hybrid system than in the hier-
archical hybrid system. As a result, flat hybrid systems usually perform better than hierarchical
hybrid systems. Since flat hybrid systems are more preferable, in the following experiments, we
will focus on the flat hybrid framework.

OOV word detection using a higher order hybrid model

Bigram hybrid models had been tested for the OOV word detection task in previous paragraphs.
Now, we investigate the use of higher order hybrid models for finding OOV words. Specifically,
trigram flat hybrid models with different sub-lexical units were trained and compared with bi-
gram flat hybrid models. Again, to find the optimal setting, we varied the number of subword
units and the graphone length when building the trigram subword and graphone systems. Then,
the best parameters were selected based on the evaluation results on the Dev data. The optimal
number of subword units and graphone length used in the bigram and trigram flat hybrid models
is presented in Table 4.10. We can find that the number of subword units is smaller than that in
the bigram model. This is because the same text training data can only afford fewer tokens when
estimating higher order n-gram language model.

Table 4.10: The optimal number of subword units and graphone length used in flat hybrid models.

Number of Subword Units Graphone length
WSJ BN SWB WSJ BN SWB

Bigram Flat System 7000 3000 4500 4 3 4
Trigram Flat Model 5000 3000 3000 4 3 4

The OOV word detection results using bigram and trigram hybrid models are provided in
Figure 4.12, where the solid lines correspond to the results of using bigram models and the
dotted lines correspond to the results of using trigram models. It can be seen that trigram hybrid
models perform much better than bigram hybrid models. Generally, there is a 5% to 15% absolute
improvement across different tasks. Compared to bigram models, LM scores are calculated from
longer history of words in the trigram hybrid model. Therefore a broader context is utilized
for OOV word detection. Similar to the bigram results, among individual hybrid systems, the
phone hybrid system is still the worst, while the subword hybrid system performs better than the
graphone hybrid system and the syllable hybrid system is slightly better than the other systems.

36



1 2 3 4 5 6

10

20

30

40

50

60

70

False Alarm Rate (%)

M
is

s 
R

at
e 

(%
)

bigram−phone
bigram−syllable
bigram−subword
bigram−graphone
trigram−phone
trigram−syllable
trigram−subword
trigram−graphone

(a) WSJ Eval

1 2 3 4 5 6 7

20

30

40

50

60

70

80

False Alarm Rate (%)

M
is

s 
R

at
e 

(%
)

bigram−phone
bigram−syllable
bigram−subword
bigram−graphone
trigram−phone
trigram−syllable
trigram−subword
trigram−graphone

(b) BN Eval

0 1 2 3 4 5
10

20

30

40

50

60

70

80

90

100

False Alarm Rate (%)

M
is

s 
R

at
e 

(%
)

bigram−phone
bigram−syllable
bigram−subword
bigram−graphone
trigram−phone
trigram−syllable
trigram−subword
trigram−graphone

(c) SWB Eval

Figure 4.12: The OOV word detection results using bigram and trigram flat hybrid models.

Utilizing a larger dictionary in a hybrid system

As discussed in previous chapters, it is not good to always apply a very large dictionary in a
recognizer. In most cases, a small domain specific dictionary is used. For example, in a dialog
system designed for inquiring bus information, a small dictionary including many street and loca-
tion names is applied. Even for LVCSR applications, some systems can only afford dictionaries
with up to 60k words. For OOV word detection, can we obtain any benefit from the large dictio-
nary, if we still apply a small IV dictionary in decoding? The answer is YES. We can utilize the
large dictionary in different phases when building a hybrid system. Specifically, when training a
flat hybrid LM, we need to estimate the pronunciations of OOV words through the grapheme-to-
phoneme (G2P) conversion. The G2P model is normally built from the small IV dictionary. But
now, we can estimate a better G2P model using the large dictionary. We can even directly search
correct pronunciations for OOV words, if they appear in the large dictionary. Because of that,
we now have a better model of OOV words from the more accurate OOV pronunciations. And
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Table 4.11: The optimal number of subword units and graphone length used in hybrid systems
trained from small and large dictionaries.

Number of Subword Units Graphone length
WSJ BN SWB WSJ BN SWB

Small Dict 5000 3000 3000 4 3 4
Large Dict 5500 4000 3000 4 4 4

1 2 3 4 5 6
5

10

15

20

25

30

35

40

45

50

False Alarm Rate (%)

M
is

s 
R

at
e 

(%
)

small−syllable
small−subword
small−graphone
large−syllable
large−subword
large−graphone

(a) WSJ Eval

1 2 3 4 5 6 7
10

20

30

40

50

60

70

False Alarm Rate (%)

M
is

s 
R

at
e 

(%
)

small−syllable
small−subword
small−graphone
large−syllable
large−subword
large−graphone

(b) BN Eval

0 1 2 3 4 5
10

20

30

40

50

60

False Alarm Rate (%)

M
is

s 
R

at
e 

(%
)

small−syllable
small−subword
small−graphone
large−syllable
large−subword
large−graphone

(c) SWB Eval

Figure 4.13: The OOV word detection results using hybrid systems trained from small and large
dictionaries.

as a result, we are able to train a better flat hybrid model. In this thesis, the CMUdict (v.0.7.a)
[Rudnicky, 2007], which is a pronunciation dictionary for North American English containing
over 125k words, was introduced as the large dictionary.

We can find the optimal number of subword units and graphone length used in hybrid systems
trained from the small IV dictionary and the large CMUdict from Table 4.11. When using the
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large CMUdict to train hybrid model, we have more accurate phonetic representation of OOV
words. As a result, we can utilize more subword units and longer graphone units in the hybrid
system. The OOV word detection results using hybrid systems trained from small and large
dictionaries are given in Figure 4.13, where the solid lines correspond to the results of using
hybrid systems trained from the small dictionary and the dotted lines correspond to the results of
using hybrid systems trained from the large CMUdict. It can be seen that by using better hybrid
models trained from the very large CMUdict, we can further improve the OOV word detection
performance by about 5%. To be noticed, the improvement obtained in the graphone hybrid
system is not as large as in the syllable and subword hybrid systems. Because we still used the
joint sequence model built from the small IV dictionary to segment OOV words into graphone
units when training the graphone hybrid system. We tried to build joint sequence models from the
large CMUdict for segmentation. However, the training of high order long length joint sequence
models require very large amount of computation. Therefore, we only used the not so accurate
model built from the small dictionary. We believe the graphone system could perform better if
the graphone units are produced using a better model trained from the large dictionary. For the
best performance, when the False Alarm Rate is 1%, the hybrid system can detect more than
75% OOV words in the WSJ and SWB tasks and up to 60% OOV words in the BN task.

4.4.3 OOV word classifier results
To evaluate the OOV word classifier performance, we performed classification on OOV hypothe-
ses in the hybrid system’s output. We selected the best hybrid system in each task, which is the
subword system in the WSJ and BN tasks and the syllable system in the SWB task. As described
in Section 4.1.3, we first trained the LogitBoost classifier using the OOV word detection output
of the Dev data. After that, we collected acoustic, lexical, lattice and contextual features from the
OOV word detection output of the Eval data and classified each detection hypothesis as a true or
false positive. Figure 4.14 presents the OOV word detection results using the hybrid system and
OOV word classifier, where the dotted line is the detection result of the hybrid system and the
solid line is the result after OOV word classification. First, when COOV is small, we cannot get
much help from the OOV word classifier. This is because OOV word detection was very accu-
rate when COOV was small, there were not many false alarm errors in the detection output. As a
result, we cannot observe improvement from the OOV word classifier. Then, when we gradually
increase COOV , the hybrid system started to report more OOV hypotheses, which produced more
false alarm errors. In this case, the OOV word classifier was able to identify more false positive
OOV hypotheses, so that the OOV word detection performance was improved. Furthermore, the
OOV word classifier did not work well in the BN task. This may because the BN task is gener-
ally more difficult than the WSJ and SWB tasks. The features collected from the BN data were
more noisy than features in the WSJ and SWB tasks, which could cause a poor classification
performance. Moreover, we trained the OOV word classifier from the hybrid decoding result of
the Dev data. But there are only a few hundred OOV words in the Dev data. If we could train
the classifier on a larger data set, such as the hybrid decoding result of the training data, the
classification performance may be further improved. As the OOV word classifier involved extra
computation and the performance was not consistent across different tasks, we didn’t perform
OOV word classification in following experiments.

39



0.25 0.75 1.25 1.75 2.25
40

45

50

55

60

65

70

C
oov

F
1 

(%
)

hybrid system
hybrid system
& classifier

(a) WSJ Eval

0.25 0.75 1.25 1.75 2.25
25

30

35

40

45

50

55

60

C
oov

F
1 

(%
)

hybrid system
hybrid system
& classifier

(b) BN Eval

0.25 0.75 1.25 1.75 2.25
40

45

50

55

60

65

70

75

C
oov

F
1 

(%
)

hybrid system
hybrid system
& classifier

(c) SWB Eval

Figure 4.14: The OOV word detection results using the hybrid system and OOV word classifier.

4.4.4 System combination results

In previous sections, we showed that hybrid systems using different sub-lexical units performed
differently, do they also complement each other? The distribution of common detection errors
among the syllable, subword and graphone hybrid systems is given in Table 4.12. Here, we
averaged the common errors from detection results when using hybrid models with COOV =
[0, 2.5]. It can be seen that across all tasks, more than 50% errors are unique errors only made by
one system, which in theory can be corrected by voting.

Similar to recognition errors, we can also divide detection errors into three categories: sub-
stitutions, insertions, and deletions. Substitution corresponds to an OOV word in the reference
is detected as IV word in the hypothesis, and vice versa. Insertion corresponds to an extra OOV
word is inserted in the hypothesis, while deletion corresponds to an OOV word in the reference
is deleted in the hypothesis. From the distribution of different detection errors presented in Table
4.13, we can find that most of the detection errors are substitution errors. There is a very small
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number of insertion errors and even less deletion errors.

Table 4.12: The distribution of common detection errors among the syllable, subword, and gra-
phone hybrid systems.

Errors appear in (%) WSJ BN SWB
1 system 52.6 55.1 52.0
2 system 25.7 24.6 25.0
3 system 21.7 20.3 23.0

Table 4.13: The distribution of different detection errors.
detection errors (%) WSJ BN SWB

substitution 95.0 94.7 86.5
insertion 3.6 3.5 8.1
deletion 1.4 1.8 5.4

The results of combining multiple hybrid systems’ outputs

Now we investigate to combine multiple systems’ outputs using ROVER to improve the OOV
word detection performance. Two voting modules, voting by word frequency, hereafter referred
as “rover-1”, and voting by word frequency and word confidence, hereafter referred as “rover-2”,
were compared. Since the phone hybrid system performed much worse than the other systems,
we only worked with the outputs of the syllable, subword and graphone hybrid systems. During
ROVER, outputs of multiple systems using hybrid models with the same OOV cost were com-
bined. The parameter α and C(@) were determined using grid search on development data. And
multiple outputs of individual systems were always aligned to the one with the best performance.

In the rover-1 system, when re-scoring the transition network, only the word frequency was
considered. ROVER will identify an OOV word in a region if at least two systems reported OOV
words in that alignment. While in the rover-2 system, to re-score the transition network, both
the word frequency and the word confidence score were used. As a result, even two systems
had the same vote, the third system could still win if it was more confident. The OOV word
detection results of individual and combined systems are given in Figure 4.15. It can be seen that
the rover-1 system does not always outperform all individual systems. In fact, if two systems act
similarly, the rover-1 system usually tends to follow the performance of those two systems. For
example, in the SWB task, when the performance of the syllable and subword systems are similar
and better than the graphone system, the rover-1 system also beats the graphone system and
even slightly better than the syllable and subword systems. But when the subword and graphone
systems perform similarly and worse than the syllable system, the rover-1 system now gets a poor
performance and cannot win the best individual system. On the other hand, the rover-2 system
usually performs better than the rover-1 system and all individual systems, indicating that the
word confidence does help to find the correct hypothesis other than the majority hypothesis in
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Figure 4.15: The OOV word detection results of individual and combined systems.

system combination. However, in the WSJ task, although the rover-2 system is still better than
the rover-1 system, it does not outperform all individual systems. This may because individual
systems are all very confident in this case, so that the word confidence is not as effective as in
the BN and SWB tasks to help differentiate the correct hypotheses from the majority ones.

We also noticed that the improvement on OOV word detection is not as large as shown in
Table 4.12. One reason may be that we only applied the basic ROVER method to combine the
1-best OOV word detection hypothesis from each hybrid system. We may be able to improve the
system combination performance by combining more complex outputs of individual systems,
such as the n-best lists or word lattices. Another reason is in ROVER, we aligned individual
hypotheses to the one with the best performance. But when finding common errors among in-
dividual systems, we used the true reference to align the hypothesis of each system. We can
certainly improve the ROVER performance, if we can find better alignments among multiple
systems’ outputs.

42



The results of combining multiple types of sub-lexical units

In our experiments, we tuned x and y for the mix-hier method on the Dev data. We changed
x and y from 10 to 80 with a step size of 10. The best performance was achieved when using
x = 60, y = 10 in the WSJ and BN tasks and x = 30, y = 10 in the SWB task. The OOV word
detection results of combining multiple types of sub-lexical units are given in Figure 4.16. We
can find that the mix-flat system usually performs better than the mix-hier system, which may be
a result of better model of OOV words using all three types of sub-lexical units. Furthermore,
the mix-flat system outperforms hybrid systems with only one type of sub-lexical units in the
WSJ task and performs similarly as the best individual system in the BN and SWB tasks. The
mix-hier system might be improved by more carefully tuning the parameters x and y. However,
the mix-flat system is still preferable, as it does not involve any manual work and development
data in training.
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Figure 4.16: The OOV word detection results of combining multiple types of sub-lexical units in
one system.
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Comparison of combining multiple systems’ outputs and combining multiple types of sub-
lexical units

Since we had implemented two different system combination techniques, let us compare the
OOV word detection performance of those two systems, which is show in Figure 4.17. We can
find that those two system combination techniques perform differently across different tasks. In
the WSJ task, combining multiple types of sub-lexical units is better than combining multiple
systems’ outputs. Furthermore, the first combination system also outputs all individual systems,
while the ROVER system does not. In the BN and SWB tasks, however, the ROVER system is
better than the mixed units system. And unlike the mixed units system, the ROVER system is bet-
ter than all individual systems. Therefore, by carefully selecting the proper system combination
technique, we can always have a combined system which outputs individual hybrid systems.
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Figure 4.17: The OOV word detection results of combing multiple systems’ outputs and com-
bining multiple types of sub-lexical units.
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4.5 Summary
In this chapter, we investigated various techniques for OOV word detection. First, different hy-
brid systems, the hierarchical and flat hybrid systems, using different sub-lexical units, the phone,
syllable, subword and graphone units, were built and tested. Then the OOV word classifier and
system combination approaches were explored to further improve the OOV word detection per-
formance. From the experimental results, we found that the flat hybrid system is better than the
hierarchical hybrid system. We also learned that the syllable, subword and graphone units model
OOV words better than the phone units. Moreover, the effectiveness of the OOV word classifier
and system combination techniques is confirmed by our experiments.
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Chapter 5

Finding Recurrent OOV Words

OOV words can appear more than once in a conversation or over a period of time. Such multiple
instances of the same OOV word provide valuable information for estimating the pronunciation,
part-of-speech (POS) tag or language model scores of the word. Therefore, in this chapter, we
investigated how to identify recurrent OOV words in speech recognition. Specifically, we pro-
posed to cluster multiple instances of the same OOV word using a bottom-up approach. Phonetic,
acoustic and contextual features were collected to measure the distance between OOV candidates
[Qin & Rudnicky, 2013].

5.1 Bottom-up clustering
To find recurrent OOV words, we worked on the hybrid decoding output, from which we col-
lected the phonetic, acoustic and contextual features for each hypothesized OOV candidates. As
given in Table 5.1, the phonetic feature is simply the decoded phone sequence of an OOV can-
didate, the acoustic feature is posterior probability vectors extracted from the OOV region in the
testing speech, while the contextual feature is obtained from the words surrounding the OOV
candidate. Note that since we collected features from the hybrid system output, recognition er-
rors might be incorporated in these features. For example, in the contextual feature of OOV
candidate s1, the word “major” is a misrecognition of “mayor”; and the correct pronunciation of
OOV candidate s2 is actually “B AO R AO F”. Depending on the hybrid system performance, the
collected features could be very noisy, which thus would cause a poor clustering performance.

Table 5.1: Examples of the phonetic, acoustic and contextual features of an OOV candidate.

OOV Phonetic Acoustic Contextual
s1 S EH L T S [0.00 ... 0.17] ... major join crowd wall street cut ibm

earning estimate ...
s2 M AO R AO F [0.01 ... 0.24] ... pakistani prime minister die gun battle

govern party campaign ...
s3 W AO L IY [0.02 ... 0.01] ... racquetball court rule play ball gym

schedule ...
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As we did not know the correct number of OOV words in the testing speech, and many OOV
words only had one or two instances, we could not apply the centroid-based or distribution-based
clustering algorithms, such as the k-means algorithm. Therefore we proposed to cluster multiple
instances of the same OOV word using a bottom-up approach. Initially, each OOV candidate
was considered as a single cluster. Then, in each iteration, two clusters with the smallest distance
were merged. This clustering procedure ended when the distance between clusters was larger
than a threshold. In this thesis, the distance between two clusters was defined as the average
of pairwise distances between OOV candidates in two clusters. Formally, the distance between
cluster Cm and Cn is

D(Cm, Cn) =
1

|Cm||Cn|
∑
s∈Cm

∑
s′∈Cn

d(s, s′), (5.1)

where |Cm| and |Cn| are the number of OOV candidates in cluster Cm and Cn, and d(s, s′) is the
distance between two OOV candidates

d(s, s′) = ωPdP (s, s
′) + ωAdA(s, s

′) + ωCdC(s, s
′). (5.2)

Here, dP (s, s′), dA(s, s′) and dC(s, s
′) are the phonetic, acoustic and contextual distances be-

tween OOV candidate s and s′, while ωP , ωA, ωC are their weights respectively. In addition to
averaging the pairwise distances between OOV candidates, we also experimented with calculat-
ing D(Cm, Cn) as the maximum or minimum distance between OOV candidates in two clusters.
However, we found that the clustering performance with different definitions of D(Cm, Cn) was
essentially the same, although the average one occasionally performed better.

Actually, we could applied the semi-supervised clustering techniques, such as the similarity-
adapting methods, where we can learn a better similarity metric from the development or training
data rather than linearly combining different features. Given the true labels of detected OOV can-
didates in the development or training data, we can train classifiers using the distances between
the phonetic, acoustic and contextual features of two OOV candidates as input while the label
of whether those two OOV candidates are from the same OOV word as output. Then during
testing, we can use those classifiers to measure the similarity between OOV candidates and clas-
sify whether they correspond to the same OOV word. But to simplify our implementation, we
chose to perform unsupervised clustering, although those semi-supervised clustering techniques
are probably more accurate.

5.2 Measuring the distance between OOV candidates
To measure the distance between OOV candidates during clustering, we calculated the distance
between the phonetic, acoustic and contextual features of two OOV candidates. While the overall
distance between OOV candidates is a linear combination of individual distances.

5.2.1 Phonetic distance
The most direct way to determine whether two OOV candidates may correspond to the same
OOV word is to examine whether they have the same pronunciation. To do that, we measured the
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phonetic similarity between OOV candidates by computing the distance between their decoded
phone sequences. Specifically, the phonetic distance dP (s, s

′) between OOV candidate s and s′

was formulated as the normalized edit distance between their phone sequence ps and ps′:

dP (s, s
′) =

edit(ps, ps′)

|ps|+ |ps′|
(5.3)

where |ps| and |ps′ | are the lengths of phone sequence ps and ps′ . As shown previously in Table
5.1, the decoded phone sequences of OOV candidates may incorporate recognition errors. Par-
ticularly, similar phones, such as “AA” and “AO”, are more often to be mis-recognized than the
other phones. Therefore, we adopted a modified edit distance that compensates for the acous-
tic confusability between phones [Wagner & Fischer, 1974; Audhkhasi & Verma, 2007; Pucher
et al., 2007; Printz & Olsen, 2002],

edit(0, 0) = 0

edit(i, 0) = i

edit(0, j) = j

edit(i, j) = min


edit(i− 1, j) + 1
edit(i, j − 1) + 1
edit(i− 1, i− 1) + c(i, j).

(5.4)

In Eq. 5.4, c(i, j) is the confusability between phone i and j

c(i, j) =

{
0 if i = j
1− p(i, j) if i ̸= j,

(5.5)

where p(i, j) is the probability of misrecognizing phone i and phone j. We estimated p(i, j) from
the recognition result of the Dev speech

p(i, j) = p(j, i) =
N(i → j) +N(j → i)

N(i) +N(j)
, (5.6)

where N(i) and N(j) are the number of phone i and phone j in the recognition result, while
N(i → j) and N(j → i) are the number of times phone i was recognized as phone j and
vice versa. In this thesis, p(i, j) was estimated from the hybrid decoding results of the Dev
data. Basically, we transformed words in the hybrid decoding result and in the reference into
phone sequences, aligned those two sequences of phones, then counted how many phones were
misrecognized.

5.2.2 Acoustic distance
Besides measuring the phonetic distance between OOV candidates, we can also compare their
acoustic features extracted from the OOV region in the testing speech. Acoustic features, such as
the mel-scale frequency cepstral coefficients (MFCCs), are highly sensitive to speaker and chan-
nel variations. On the other hand, posterior-based features, such as the phonetic posteriorgram,
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are more robust and also widely used in speech recognition [Aradilla et al., 2006; Hazen et al.,
2009; Zhang & Glass, 2009]. We therefore used the posterior feature to model OOV candidates
in our system. Precisely, each frame ft in the OOV region was represented by a probability
vector

vt = [P (p1|ft), P (p2|ft), ..., P (pK |ft)], (5.7)

where P (pk|ft) is the posterior probability of ft belonging to phone pk and K is the total num-
ber of phones. To estimate P (pk|ft), we trained a Gaussian mixture model (GMM) with 256
Gaussian components for each phone. Then the posterior probability P (pk|ft) can be calculated
as

P (pk|ft) =
P (ft|pk)∑
k∈K P (ft|pk)

, (5.8)

where P (ft|pk) is the likelihood of observing ft from the GMM of pk. In our experiments,
we found that the posterior probability mass was usually absorbed by only a few GMMs, most
phones had a posterior probability close to zero. We ended up with a very sparse posterior
probability vector vt. To solve this problem, we performed a discounting-based smoothing on
vector vt in a way similar to [Zhang & Glass, 2009]. Specifically, each zero element in vt was
assigned a small posterior probability λ, and each non-zero element was discounted by (1−Nλ),
where N is the total number of zero elements in vt.

After constructing the posterior features, we calculated the acoustic distance between OOV
candidates using the dynamic time warping (DTW) algorithm [Vintsyuk, 1968; Sakoe & Chiba,
1978],

dA(s, s
′) = DTW (s, s′). (5.9)

In DTW, the distance between two posterior vectors vi and vj was defined as the negative log
cosine similarity between vi and vj

d(vi, vj) = −log(
vi · vj

∥vi∥∥vj∥
). (5.10)

Moreover, similar to the phonetic distance, we also normalized the acoustic distance by the
lengths of OOV regions.

5.2.3 Contextual distance
OOV words are usually content words such as names or locations and the same OOV word may
appear in similar contexts or environments. If two OOV candidates are surrounded by the same
words or used in the same topic, they may actually be the same OOV word. As presented in
Eq. 5.2, besides the phonetic and acoustic distances, we also measured the contextual distance
between OOV candidates during clustering. To take the position of surrounding words into
account, the contextual distance has two elements:

dC(s, s
′) = ωldlC(s, s

′) + ωgdgC(s, s
′). (5.11)

Here, dlC(s, s
′) is a local contextual distance that measures the similarity between the adjacent

words of OOV candidates, which works like an n-gram language model. And dgC(s, s
′) is a global

contextual distance, which resembles a topic model.
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Table 5.2: Examples of the local and global contextual features of OOV candidates.

OOV s1 s2

Text i am going to watch tonight because
s1 ryan is going to pitch

i love s2 ryan i alway like to watch
him pitch

Local context tonight because s1 ryan is i love s2 ryan i
Global context watch:0.33 pitch:0.33 ryan:0.33 watch:0.25 pitch:0.25 ryan:0.25

love:0.25

To calculate the local contextual distance, we compared the left two and right two words of
OOV candidates

dlC(s, s
′) = 1− M

4
, (5.12)

where M is the number of matched words. For instance, as shown in Table 5.2, there is only one
match, “ryan”, between the local context of OOV candidate s1 and s2, hence the local contextual
distance dlC(s1, s2) equals to 0.75.

The global contextual distance was calculated in the same manner as measuring the similarity
between two documents in information retrieval. However here, we focused on words in the
same sentence and we only used content words. Particularly, for an OOV candidate s, its global
context was represented by a term frequency vector cg which was built from the content words
of the sentence containing s. Then the global contextual distance between OOV candidate s and
s′ was calculated as

dgC(s, s
′) = −log(

cg · c′g
∥cg∥∥c′g∥

), (5.13)

which is the negative log cosine similarity between the global context of s and s′. Examples of
the global context are also provided in Table 5.2.

5.3 Experiment setup

5.3.1 The hybrid system and dataset
As we mentioned previously, the quality of the hybrid system’s output will affect the quality
of features we extract for each OOV candidate, which will then affect the OOV word cluster-
ing performance. Therefore, we tried to use the output from hybrid systems with the best OOV
word detection performance for our clustering experiments. It is shown in Figure 4.13 that hy-
brid systems built with the large CMUDict performed better than systems built with the small
in-vocabulary (IV) dictionary. We selected outputs with the highest F1 score from hybrid sys-
tems built with the large CMUDict. Specifically, the subword system with COOV = 0.75 was
selected in the WSJ task, the subword system with COOV = 1.0 was selected in the BN task,
and the syllable system with COOV = 1.0 was used in the SWB task. The OOV word detection
performance on the Eval data of selected hybrid systems is given in Table 5.3. We can find that
the hybrid system performs very well in the WSJ and SWB tasks. But the performance in the BN
task was slightly worse. This may because in the BN task, utterances are usually much longer
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and multiple OOV words can appear in one utterance or even in a sequence, which make OOV
word detection more difficult than in the WSJ and SWB tasks. Furthermore, although we could
segment a sequence of sub-lexical units into multiple OOV candidates using word start “∧” and
word end “$”, it was not guaranteed that they were always applied during the hybrid decoding.
As a result, we manually checked the hybrid system’s output to make sure that sub-lexical units
were properly segmented. We also manually extracted content words from the hybrid decoding
result of each utterance. Finally, the number of instances an OOV word has is given in Table
5.4. It can be seen that in the hybrid system’s output, about 70% OOV words appear only once,
less than 10% OOV words have more than two instances. On average, one OOV word has 1.2
instances.

Table 5.3: The OOV word detection performance on the Eval data of selected hybrid systems.

Task WSJ BN SWB
Precision 63.8% 49.8% 67.2%

Recall 74.0% 62.4% 74.6%
F1 68.5% 55.4% 70.7%

Table 5.4: The number of instances an OOV word has in the hybrid system’s output.

OOV word has WSJ BN SWB
1 instance 70.8% 68.8% 77.5%
2 instances 24.0% 19.5% 16.5%

≥ 3 instances 5.2% 11.7% 6.0%

5.3.2 Evaluation metrics
The Rand index (RI) is a common evaluation metric for clustering [Rand, 1971]. It involves
counting pairs of items on which the reference and hypothesis clusterings agree or disagree. In
practice however, RI does not take on a constant value for random clustering. Especially, when
the number of classes is large and the number of candidates is small, a random clustering result
can have a very good RI score. Contrarily, the adjusted Rand index (ARI) is another widely
used clustering evaluation metric [Hubert & Arabie, 1985], which adjusts for the chance of a
clustering result. The ARI score is bounded between -1 to 1. Independent clusterings has a
negative ARI score, similar clusterings has a positive ARI score and an ARI score of 1 indicates
a perfect match between the reference and hypothesis clusterings. As shown in Table 5.4, in our
experiment, the majority of clusters only contain one candidate and the candidate to cluster ratio
is as low as 1.2. If without clustering, but simply considering each candidate as one OOV word,
the RI score will be almost 1, but the ARI score will be a small value close to 0. For this reason,
we selected ARI to evaluate our OOV word clustering result.

The adjusted mutual information (AMI) [Vinh & Epps, 2010], which measures the mutual
information between the reference and hypothesis clusterings, is another evaluation metric used
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in this thesis. Similar to ARI, AMI is also normalized against chance. The AMI score is bounded
between 0 to 1. An AMI score of 0 indicates purely independent clusterings, while AMI of
exactly 1 means the reference and hypothesis clusterings are equal.

5.4 Experimental results

5.4.1 The intra-cluster and inter-cluster distances

Before discussing the clustering performance, we first take a closer look at the testing data. Fig.
5.1 shows the comparison of the average distance between candidates from the same OOV word
(intra-cluster) with the average distance between candidates from different OOV words (inter-
cluster). It can be seen that for the phonetic, acoustic and contextual features, the intra-cluster
distance is always smaller than the inter-cluster distance. Moreover, the difference between
the phonetic intra-cluster and inter-cluster distances is normally greater than that of the other
features. Furthermore, the OOV candidates in the WSJ and SWB tasks seem to be more separable
than those in the BN task, as the differences between the intra-cluster and inter-cluster distances
are greater in the WSJ and SWB tasks than those in the BN task.

WSJ SWB BN
0

0.5

1
phonetic distance

WSJ SWB BN
0

1

2

3
acoustic distance

WSJ SWB BN
0

1

2
contextual distance

intra−cluster
inter−cluster

Figure 5.1: Comparison of the average distance between candidates from the same OOV word
(intra-cluster) with the average distance between candidates from different OOV words (inter-
cluster).
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Figure 5.2: The performance of bottom-up clustering using one feature.

5.4.2 The bottom-up clustering results

The performance of bottom-up clustering using one feature is given in Fig. 5.2. We can find
that the phonetic feature is very effective in all tasks. The acoustic feature works well in the
WSJ task but shows the same score as random clustering in the SWB and BN tasks. This may
because that measuring the distance between acoustic signals in the spontaneous or noisy speech
is less reliable than in clean speech. Moreover, in the WSJ task, one speaker usually recorded
up to 50 utterances. As a result, multiple instances of the same OOV word may actually be
spoken by the same speaker, which makes it easier to compare OOV candidates using acoustic
features. Although, the contextual feature is not as good as the phonetic one, it does produce
positive results across different tasks. By comparing Fig. 5.2 with Fig. 5.1, we can also learn
that the clustering performance highly correlates with the difference between the intra-cluster
and inter-cluster distances of one feature. Basically, the greater the difference, the better the
clustering performance. For instance, the difference between the phonetic intra-cluster and inter-
cluster distances is great in all tasks, and the clustering performance using the phonetic feature
is always good. On the other hand, the difference between the acoustic intra-cluster and inter-
cluster distances is only noticeable in the WSJ task, and clustering using the acoustic feature
performs badly in the SWB and BN tasks. The best performance is obtained when using the
acoustic feature in the WSJ task and using the phonetic feature in the SWB and BN tasks.

In addition to using only one feature to measure the distance between OOV candidates dur-
ing clustering, we also applied the combined feature defined in Eq. 5.2. Fig. 5.3 shows the
performance of bottom-up clustering using the combined feature, in which the red bar is the best
clustering performance using one feature, the green bar is the performance when using both the
phonetic and acoustic features, and the blue bar is the performance when combining all features.
It can be seen that the clustering performance is better when using the combined feature than us-
ing individual feature to measure the distance between OOV candidates. Even for the SWB and
BN tasks, where the acoustic feature does not work at all, combining the phonetic and acoustic
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Figure 5.3: The performance of bottom-up clustering using the combined feature.

features can still yield some improvement. And the best performance is usually achieved when
combining all features. Overall, the ARI and AMI score is up to 0.8 in the WSJ and SWB tasks
and up to 0.6 in the BN task, which indicates that we can successfully find most of the recurrent
OOV words using the proposed bottom-up clustering approach. Again, the clustering perfor-
mance on the BN task is worse than that on the WSJ and SWB tasks. This is because there are
many short IV words which were incorrectly recognized as OOV candidates in the BN task. And
those short IV words are very hard to cluster compared to longer OOV words.

The goal of finding recurrent OOV word is to utilize its multiple instances, so that we can
build a better phonetic representation or estimate better language model scores for the word.
During clustering, we prefer not having different OOV words in the same cluster than trying to
find all instances of one word. For example, there are four instances of the OOV word “CIBA”
in the Eval data. Then we prefer finding two or three instances of “CIBA” than having all four
candidates with some other OOV words in the same cluster. The details of our OOV word
clustering result are given in Table 5.5. We can find that in the WSJ task, only very few clusters
containing OOV candidates from different OOV words, but we did miss some candidates which
should be merged with other candidates. In the SWB task, we successfully found most recurrent
OOV words, but there were more clusters with irrelevant OOV candidates. In the BN task, we
failed to find a large number of recurrent OOV words. Figure 5.4 provides the ARI and AMI
scores calculated from all clusters and only from clusters with more than one candidate. We can
find that the ARI score is much higher, up to 0.9, when calculated only from clusters with more
than one candidate, indicating that most clusters only contain instances from the same OOV
word. As a result, we should be able to utilize identified recurrent OOV words to improve the
OOV word recovery performance, which will be covered in the following chapter.
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Table 5.5: Details of the OOV word clustering result.

WSJ SWB BN
Clusters with more than one
candidate

13.9% 13.1% 10.3%

Clusters with candidates from
different OOV words

0.5% 3.0% 1.6%

Clusters should be merged
with other clusters

5.4% 2.5% 14.4%
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Figure 5.4: The ARI and AMI scores calculated from all clusters and only from clusters with
more than one candidate.

5.5 Summary
In this chapter, we studied a bottom-up clustering approach to find recurrent OOV words in
speech recognition. We collected the phonetic, acoustic and contextual features to measure the
distance between OOV candidates. From our experimental results, we found that the phonetic
feature is more effective than the acoustic and contextual features for detecting the recurrence
of OOV words, but the best performance is usually achieved when combining all features. We
also demonstrated the clustering result is good enough for further process. In next chapter, we
will investigate how to utilize those multiple instances of the same OOV word for estimating the
written form and language model scores of the word.

56



Chapter 6

OOV Word Recovery

In this chapter, we discuss the OOV word recovery problem – recovering the written form and
language model scores of an OOV word so as to convert OOV words into IV words. First, we
describe our work on estimating the written form of an OOV word through the phoneme-to-
grapheme (P2G) conversion. We also study how to estimate language model scores for an OOV
word using its syntactic property. In the second part, we investigate another recovery method
when extra resources are available. After that, we discuss how to utilize the multiple instances
of the same OOV word to improve the OOV word recovery performance. At last, experimental
results are given.

6.1 The baseline OOV word recovery approach
To learn OOV words or to convert OOV words into IV words, we need to incorporate detected
OOV words into the recognizer’s lexicon and language model, thus we need to estimate the
written form and language model scores for an OOV word. In this section, we first describe
how to estimate the written form of an OOV word through the P2G conversion. We then present
how to estimate language model scores by utilizing the part-of-speech (POS) tags of the an OOV
word and its surrounding IV words.

6.1.1 Estimating the written form of an OOV word

As presented in Chapter 4, after detecting OOV words in the testing speech using the hybrid
system, we can obtain a phonetic representation of an OOV word from the decoded sub-lexical
units. We then estimated the written form of an OOV word from its phonetic representation –
pronunciation using the P2G conversion.

P2G conversion

Phoneme-to-grapheme conversion (P2G) refers to the task of finding the written form of a word
given its pronunciation. It is related to another task, the grapheme-to-phoneme (G2P) conversion,
which performs the opposite conversion – estimating the pronunciation of a word from its written
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form. One simple P2G or G2P conversion method is the rule-based conversion system, in which
carefully designed matching rules are applied to convert phones to letters or vice versa. But, it
is very hard and time consuming to design complete rules to cover both the general and atypical
conversions of all words in a language. Therefore, data-driven approaches are more popular in
recent years.

There are generally two types of data-driven P2G conversion techniques, the local classifi-
cation approach and the probabilistic global optimism approach. In the local classification ap-
proach, the input string sequence is normally processed individually from left to right. For each
input phoneme, one or more letters are predicted using neural networks or decision trees. As the
selection of output letters is only based on the context of the current phoneme, this approach is
not optimal. But it avoids the need of a search algorithm to find the global optimal solution. On
the other hand, in the probabilistic approach, dynamic programming is usually applied to find
the global optimal prediction. One particular algorithm in this category was used in this the-
sis, which was the joint-sequence model [Bisani & Ney, 2008]. The idea of the joint-sequence
model is that the relation between the orthographic form and the pronunciation of a word can be
generated by a common sequence of graphones, which are grapheme-phoneme pairs of English
letters and phones. For example, the word “speech” can be represented as a sequence of three
graphones

speech =

(
s
S

)(
pee
P IY

)(
ch
CH

)
.

Then the P2G or G2P conversion task can be solved by searching for the optimal representation
of a word using graphones given its pronunciation or its written form.

Each graphone can model a minimum and maximum number of letters and phones. Mean-
while, a joint-sequence model can be built on different lengths of graphone sequences. Therefore,
to achieve the best P2G conversion performance, we trained a 6-gram joint-sequence model with
short graphone units as suggested in [Chen, 2003]. The word start and end symbols, “∧” and
“$”, were used to segment the decoded sub-lexical sequences into multiple OOV words. While
for the hybrid system built from graphones, we did not need to perform the P2G conversion to re-
store the OOV word spellings, instead we could simply concatenate the letters from the decoded
graphone sequence.

Training a better joint-sequence model

In our experiment, we found only a small portion of the detected OOV words had the correct
pronunciation and even fewer OOV words’ written forms were successfully estimated. Since
we trained the joint-sequence model from IV words whose pronunciations are always correct,
the P2G conversion is not reliable when the input phonemes are mixed with recognition errors.
Figure 6.1 provides an examples of the P2G conversion from the decoded OOV word’s pronun-
ciation to the OOV word’s written form. We can find that because the OOV word was incorrectly
recognized as “K AE D IY” instead of the correct pronunciation “K AE D R IY”, the predicted
spelling “CADY” was also wrong. Therefore, we proposed to train a better joint-sequence model,
so that we were able to correctly estimate the written form of an OOV word, even if its phonetic
representation incorporated recognition errors. For instance, the P2G conversion using a better
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joint-sequence model would be able to correctly predict the written form “CADRE” from the
incorrect pronunciation “K AE D IY”.

HYP K AE D IY CADY

REF K AE D R IY CADRE

Pronunciation Spelling

P2G

better 
P2G

Figure 6.1: An example of the P2G conversion from an incorrect OOV word pronunciation.

We began with collecting detected OOV words from the hybrid decoding results of the train-
ing speech. In the hybrid decoding result, there were detected OOV words with correct pro-
nunciations, from which we could extract alignments between the correct letter sequences of
reference OOV words and the correct phone sequences of detected OOV words. Furthermore,
because the decoder could make the same errors on the training data as on the Eval data, we
could also find alignments between the correct spellings of reference OOV words and incorrect
pronunciations of detected OOV words. Then we trained a joint-sequence model using the de-
tected OOV words together with the IV words. This joint-sequence model measured both the
regular matchings between the correct phone and letter sequences. It also learned the alignments
between the correct spellings and incorrect pronunciations. As a result, it was capable of recover-
ing more OOV words from the noisy hybrid decoding output. During our experiment, we found
sometimes a long IV word could be recognized as a sequence of short IV words or a number
of short OOV words. Then when we aligned the reference with the decoding hypothesis, many
reported OOV words could be aligned to the wrong reference words. It was sub-optimal to train
the joint-sequence model from those data. Instead, we only used positive OOV detections in the
training speech as the training data for the joint-sequence model, which guaranteed us to obtain
the correct alignments between the reference OOV words and their decoded pronunciations.

6.1.2 Estimating the language model scores of an OOV word
It is very difficult to estimate language model scores of an OOV word, as there is no training
data available. Normally, we do not have any text data but the sentence where the OOV word is
detected. Therefore, we cannot directly estimate language model scores of an OOV word using
conventional techniques, but to find some alternative ways. In this thesis, we investigated to
estimate the language model scores of an OOV word using the POS tags of the word and its
surrounding IV words.

From the hybrid decoding output, we could estimate the POS label of an OOV word using
the Stanford MaxEnt POS tagger [Toutanova & Manning, 2000; Toutanova et al., 2003]. Figure
6.2 provides an example of the estimated POS labels of the OOV word “AIRCOA” and its sur-
rounding IV words. With the POS label, the language model scores of an OOV word could be
estimated from IV words in the same syntactic category - words with the same POS label. Specif-
ically, we first trained a POS class-based language model from the training text data. Then, for
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HYP

Partner Of AIRCOA Hotel Partners

POS NN IN NNP NN NNS

Figure 6.2: An example of the POS labels of decoded OOV and IV words.

a detected OOV word, language model scores were estimated using the POS labels of the word
and its surrounding IV words. For example, the unigram score of OOV word “AIRCOA” could
be estimated as

P (WAIRCOA) = P (WAIRCOA|CNNP )P (CNNP ), (6.1)

where P (CNNP ) is the unigram probability of the POS class “NNP” and P (WAIRCOA|CNNP )
is the probability of observing “AIRCOA” in class “NNP”. Here, we used a simple uniform
distribution to estimate P (W |C),

P (W |C) =
1

N
, (6.2)

where N is the number of words in class C. Similarly, we could estimate the bigram and trigram
language model scores for “AIRCOA” as

P (WAIRCOA|WOF ) = P (WAIRCOA|CNNP )P (CNNP |CIN), (6.3)

and

P (WAIRCOA|WPARTNER,WOF ) = P (WAIRCOA|CNNP )P (CNNP |CNN , CIN). (6.4)

For one detected OOV word, we could add one unigram and up to two bigram and three trigram
scores of the word. However, as our ASR system applied a back-off language model during
decoding, it required that trigrams only contained bigrams that already existed in the language
model. For instance, if the bigram “HOTEL PARTNERS” was not in the language model, we
could not add trigram “AIRCOA HOTEL PARTNERS” into the language model.

In our experiment, we found P (W |C) could be very small, especially for the “NNP” class,
which could contain more than 10k words. As a result, the estimated bigram and trigram scores
of an OOV word were usually much smaller than those of existing IV words. Therefore, we set a
threshold on P (W |C), so as to obtain proper bigram and trigram scores for an OOV word. In this
thesis, we used all labels from the Penn Treebank POS tag set [Marcus et al., 1993]. Furthermore,
in our ASR system, words like “I’VE” or “TEAM’S” were processed as a single unit. However,
in the POS tagger, those words were predicted with separate labels. For example, the POS tagger
output of “TEAM’S” was “TEAM NN” and “’S POS”. To solve this problem, we combined the
separate labels of a word to form a compound label, such as “TEAM’S NN+POS”. Therefore,
besides the 35 base labels, there were also many compound POS labels in our system.
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An OOV word may come up in a totally different context in the future, therefore we also need
to estimate possible context an OOV word may appear and their corresponding language model
scores. To do that, we still utilized the surrounding IV words of an OOV word. For each IV word
in the left and right two words of an OOV word, we substituted it with other semantic similar IV
words, and then augmented the language model with those new n-grams. For instance, we found
the IV word “HOTEL” is very similar to another IV word “INN”. Therefore, we augmented the
language model with new bigram “AIRCOA INN”, new trigram “OF AIRCOA INN” , “AIRCOA
INN PARTNERS”, etc. The semantic features of each IV word were obtained from the WordNet
corpus [Miller, 1995; Fellbaum, 1998]. And we measured the similarity between words based
on their connectivity [Pedersen et al., 2004]. As the WordNet only collects semantic features
of nouns and verbs, only IV nouns and verbs surrounding an OOV word were processed. For
an IV noun or verb, we ranked the other IV nouns or verbs based on their semantic similarity.
We only selected the top three most similar IV words to prevent from adding too many n-grams.
We also skipped words which are morphological changes of the IV word, such as “HOTELS”
to “HOTEL”. Moreover, if the similarity between IV words is too small, we did not add them
into the language model. For example, we did not want to substitute a proper noun with other IV
words, and in WordNet, the similarity between proper nouns is usually very small.

6.2 OOV word recovery through filtering

As we mentioned in Chapter 2, in certain applications, ASR systems cannot apply a very large
vocabulary, although there are normally more data available for building a larger lexicon or a
larger language model. For example, in a dialog system, there is generally not enough compu-
tation resource to handle the large vocabulary continuous speech recognition (LVCSR) or the
LVCSR is too slow for real time interactions. In other situations, it is not always the best to use
a very large vocabulary in an ASR system. A larger vocabulary tends to increase the perplexity
of the language model to the testing data. Furthermore, increasing the vocabulary size may also
increase the acoustic confusability between words, which also makes the recognition task harder.
Figure 6.3 presents the OOV rate, the recognition performance and the run time when increas-
ing the vocabulary size of an ASR system. We can find that the OOV rate drops dramatically
when we start to increase the vocabulary size until the vocabulary reaches 60k words. The WER
curve is similar to the OOV rate one. The WER drops when increasing the vocabulary size. The
lowest WER is achieved when using a 60k-word vocabulary. After that, the WER starts to in-
crease when adding more words into the vocabulary. At last, the recognition run time increases
monotonically when the vocabulary becomes larger. On the other hand, even if we use a very
large vocabulary in an ASR system, such as a commercial voice search system, there will still
be OOV words, because new words always emerge in a language. As large commercial systems
cannot afford to update their lexicon and language model very often, such new words will be
OOV words for a while. But we can probably find numerous examples of those new words on
Internet very shortly after they appear, and use those data to estimate language model scores
of new OOV words. For instance, very shortly after the FBI released the name of the Boston
Bombing suspects, you could find tons of articles online writing about those names. However,
many commercial systems might not be able to recognize those names for certain time, as they
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were infrequent foreign names which you probably would not find in the lexicon. Even if those
words were in the recognizer’s lexicon, people might not know how to pronounce it correctly.
Therefore, the recognizer still could not recognize those names. If the ASR system can automat-
ically detect those new words or new pronunciations, then utilize extra resources to recover those
words, the ASR system will be able to recognize emerging OOV words in a short time without
human intervention. Therefore, an interesting question is how an ASR system can utilize those
extra resources for OOV word recovery after it detects OOV words in the testing speech.
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Figure 6.3: The OOV rate, WER and run time of the WSJ Eval set when increasing the vocabu-
lary size of the recognizer.

In this thesis, we investigated a new OOV word recovery approach when a larger lexicon
and a larger text corpus are available. Formally, we first collected detected OOV words from
the hybrid decoding output. For each detected OOV word, we searched for words in the large
lexicon. If the phonetic distance between the OOV word and the word in the large lexicon was
small enough, or say if those two words sounded very similar, the word in the large lexicon may
actually be the OOV word we detected in the testing speech. We then added that word into our
recognizer’s vocabulary. Here, we calculated the phonetic distance in the same way as Eq. 5.3
when measuring the similarity between OOV samples in Chapter 5. After processing all words
in the larger lexicon, we ended up with a new vocabulary which contains all existing IV words
and new detected OOV words. At last, We used the larger text corpus to train a new language
model, which incorporated n-gram scores for both IV and OOV words.

6.3 Recovering recurrent OOV words
In Chapter 5, we discussed how to identify recurrent OOV words through a bottom-up clustering
process. As shown in Table 6.1, after OOV word clustering we found three OOV candidates
all correspond to the same OOV word “PASHOVSKI”. We now have three different phonetic
representations and different context for one OOV word. Such multiple instances of the same
OOV word incorporate valuable information. And in this section, we will study how to utilize
those knowledge to improve the OOV word recovery performance.

According to our best grapheme-to-phoneme (G2P) conversion output, the correct pronun-
ciation for “PASHOVSKI” should be “ P AH SH AA V S K IY”. We can notice that none of
the three pronunciations is correct. Therefore, if we directly perform the P2G conversion on
those pronunciations, the estimated written forms may all be wrong. Instead, we could use those
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Table 6.1: Examples of the OOV word clustering results.

OOV Pronunciation Context
PASHOVSKI K R AH SH N AA V S K IY ... replace mr PASHOVSKI as ambas-

sador ...
PASHOVSKI P AH S EH V S K IY ... Bulgarian ambassador PASHOVSKI

said he ...
PASHOVSKI P AE SH AA F S K IY ... dismissal ambassador PASHOVSKI

join us ...

different pronunciations simultaneously to build a better phonetic representation for OOV word
“PASHOVSKI”. Specifically, we applied a similar approach as ROVER to combine different
phone sequences, so as to produce a better pronunciation for recurrent OOV words. For instance,
after combining the three decoded pronunciations of OOV word “PASHOVSKI”, we obtained
the correct phone sequence “P AH SH AA V S K IY”. As a result, we also recovered the correct
written form for this OOV word.

Since we estimated the language model scores of an OOV word based on its POS label, we
could also learn a better POS label for an OOV word from its multiple instances, which might
then improve the language model scores we learned for the word. Again, we estimated the POS
label of recurrent OOV words by voting among the POS labels of its multiple instances.

Another advantage of identifying recurrent OOV words is that we can easily discover dif-
ferent context for the OOV word. As we mentioned previously, an OOV word may appear in a
different context when encountered by the recognizer in the future. Therefore, we have to esti-
mate possible context by finding other IV words similar to the surrounding IV words of an OOV
word. By doing that, we usually add a large number of new n-grams into the language model, as
we are not sure which context the OOV word may really appear. With the multiple instances of
a recurrent OOV word, we not only have more knowledge about the OOV word but also obtain
multiple n-grams of the word. Furthermore, we could also use those contextual information to
predict new n-grams for recurrent OOV words without adding too many irrelevant entries into
the language model.

6.4 Experiment setup

We used the same datasets as Chapter 4 in our OOV word recovery experiments. The optimal
configurations of hybrid systems were adopted to perform OOV word detection. Then OOV
word recovery experiments were conducted on the OOV word detection output. To evaluate
OOV word recovery, we introduced the following metrics:

• Pronunciation Accuracy (PA), which measures how many detected OOV words’ pronun-
ciation are correct. PA can be calculated as

PA =
#OOVs detected with correct pronunciation

#OOVs detected
× 100%. (6.5)
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• Recovery Rate (RR), which measures how many detected OOV words’ written forms are
successfully recovered. RR can be calculated as

RR =
#OOVs recovered
#OOVs detected

× 100%. (6.6)

• Word Error Rate (WER), which measures how many errors are made by the recognizer.
WER can be calculated as

WER =
#Substitution errors +#Deletion errors +#Insertion errors

#Words in reference
× 100%. (6.7)

In this thesis, we calculated Pronunciation Accuracy (PA) and Recovery Rate (RR) as the average
of the results from hybrid systems built with the OOV cost COOV ranging from 0 to 2.5 with a
step size of 0.25.

To evaluate the overall OOV word learning performance, we need to test how many recovered
OOV words can be recognized by the ASR system in the future, such as whether the system can
recognize the same OOV words appear in a different context spoken by a different speaker.
Initially, we considered to learn OOV words from the Dev set and test the learning result on the
Eval set. However, as shown in Table 4.1, there are very few common OOV words between the
Dev and Eval sets of each task. Therefore, we collected another Test set, which contains OOV
words learned from the Eval data. We tried to make the new Test set to have similar properties as
the old Dev and Eval sets, such as a similar OOV rate and recognition accuracy. The OOV rate
and baseline word recognition result of new Test data are given in Table 6.2. We can find that
the BN Test data has a higher OOV rate than the Eval data, while the Test data of the WSJ and
SWB tasks has a similar OOV rate as the Eval data. The baseline WER of three tasks is in the
same range as the WER on the Eval data. In Table 6.2, we can also find how many of the Test
OOV words also appear in the Eval data. It can be seen that the Test data of the WSJ and SWB
tasks shares more than 50% OOV words with the Eval data. But the BN Test data only has less
than 25% OOV words that also appear in the BN Eval data.

Table 6.2: The OOV rate and WER of the new Test data.
WSJ BN SWB

OOV Rate 2.13% 2.79% 1.80%
OOV in Eval 52.3% 23.9% 66.1%

WER 10.13% 30.39% 33.26%

In our experiments, we found some incorrectly detected and recovered OOV words were very
short words, such as words with only one or two letters. But in our Dev, Eval or Test data, there
was no such short OOV word. The shortest OOV word had at least three letters. In general, we
will probably not observe too many OOV words with only three letters or any OOV word with
just one or two letters in a practical ASR system. Therefore, in this thesis, we skipped short
recovered OOV words which contained only one or two letters.
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6.5 Experimental results

6.5.1 The baseline OOV word recovery results
The results of estimating the OOV word written form through the P2G conversion

We collected the detected OOV words from the hybrid decoding result, then estimated the written
form of an OOV word from its decoded pronunciation through the P2G conversion. Here, we
first measured how many detected OOV words had the correct pronunciation and how many OOV
words had the correct written form after the P2G conversion. The Pronunciation Accuracy (PA)
of different hybrid systems is given in Table 6.3. We can find that hybrid systems in the WSJ
and SWB tasks have higher PAs than systems in the BN task. This is consistent with what we
found in Chapter 4 and Chapter 5. As the utterance is usually very long and many OOV words
appear in the same utterance, the BN task is much harder than the WSJ and SWB tasks. Among
different systems, the syllable hybrid system has higher PAs than the subword and graphone
hybrid systems. This is because syllable units are more constraint than subword and graphone
units, thus the P2G conversion from syllable units is much easier.

Table 6.3: The pronunciation accuracy of different hybrid systems.

PA (%) Syllable Subword Graphone
WSJ 39.8 39.0 38.1
BN 20.7 14.9 18.5
SWB 47.8 43.0 39.2

Table 6.4: The recovery rate of different hybrid systems.

RR (%) Syllable Subword Graphone
WSJ 18.4 15.2 38.2
BN 13.0 6.1 22.6
SWB 36.2 33.3 45.6

Furthermore, by comparing PAs with Recovery Rates (RRs) given in Table 6.4, we can find
that RR is lower than PA in the syllable and subword hybrid systems, indicating that not all
correct OOV pronunciations produce correct spellings after OOV word recovery. But in the
graphone hybrid system, RR is even higher than PA, since some OOV words are in fact suc-
cessfully recovered from incorrect pronunciations. In the syllable and subword hybrid systems,
the spellings are recovered through the P2G conversion, which may involve additional errors.
While in the graphone hybrid system, letters and phones are aligned and simultaneously mod-
eled as a pair. Then during decoding, the pronunciation and the written form of an OOV word
are evaluated as a single unit. Thus correct spellings may still be recovered from graphones with
pronunciation errors.

The OOV word recovery results are given in Figure 6.4, where the solid lines are the WERs
of detection results in which hypothesized OOV words are represented as sub-lexical units, the
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Figure 6.4: The OOV word recovery results using trigram flat hybrid models with different sub-
lexical units.

dotted lines are recovery results in which the written forms of hypothesized OOV words are
estimated through the P2G conversion, and the black horizontal solid line corresponds to the
baseline word recognition performance. We can notice that even without recovering OOV words’
written forms, sometimes the detection results are still better than the word baseline. This is
because by successfully detecting the presence of OOV words, the recognizer can avoid making
errors on the surrounding IV words of an OOV word. But when the hybrid system starts to report
more OOV words, the Miss Rate becomes lower and the False Alarm Rate becomes higher. The
hybrid system now makes more detection errors, which then causes more recognition errors and
worse WERs than the word baseline.

Now, we focus on the OOV word recovery results in Figure 6.4. It can be seen that compared
to the detection results, around 1% absolute improvement on WER is achieved after recovering
the OOV word’s written form. The differences between the syllable, subword and graphone
hybrid systems are small, but the syllable hybrid system is slightly better than the other two
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systems. For the best performance, there is about 11% relative improvement over the word
baseline in the WSJ task, 3% in the BN task and 4% in the SWB task. Such improvement on
WER comes from three sources: 1) by detecting OOV words, the hybrid system recognizes IV
words that are adjacent to OOV words better; 2) some OOV words are successfully recognized
after recovering the OOV word’s written from; 3) a few IV words are mis-detected as OOV words
but later recovered.

Utilizing a larger dictionary

Similar to OOV word detection, where a larger dictionary could be very helpful, we can also
utilize the large dictionary to train a better P2G model for estimating the written form of an OOV.
Therefore, we trained a 6-gram joint-sequence model from the large CMUdict and applied this
model in the P2G conversion. And here, we worked on the decoding results of hybrid systems
built with the large CMUdict. The PA and RR when using the large dictionary are shown in Table
6.5 and Table 6.6. First, we can see that the WSJ and SWB tasks still have better performance
than the BN task. Meanwhile, the syllable systems are still the best. Then by comparing those
tables with PA and RR when using a smaller dictionary in Table 6.3 and Table 6.4, we can find
that more correct pronunciations and spellings are produced for OOV words. PA is improved,
as now we have a better model of OOV words when training sub-lexical units using the large
CMUDict. And because of the better P2G model trained from the large CMUDict, we also have
better RRs. The difference between PA and RR is also smaller. But in the graphone system, RR
is smaller than PA now, which again may be caused by the use of less optimal joint-sequence
model built from the small dictionary when training graphone units.

Table 6.5: The pronunciation accuracy of hybrid systems built with the large dictionary.

PA (%) Syllable Subword Graphone
WSJ 55.3 50.9 47.2
BN 32.7 26.8 27.1
SWB 64.2 56.8 53.1

Table 6.6: The recovery rate of hybrid systems built with the large dictionary.

RR (%) Syllable Subword Graphone
WSJ 49.7 44.2 42.4
BN 30.8 25.3 26.2
SWB 59.4 53.4 52.6

From the OOV recovery results given in Figure 6.5, we can find that about 1% absolute
improvement on WER is obtained when using hybrid systems and P2G models built with the
large CMUdict. Compared to the baseline word recognition results, because of using a better
hybrid model and a better P2G model trained from the large dictionary, we can now achieve 14%
relative improvement on WER in the WSJ task, 4% in the BN task and 6% in the SWB task. Yet
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again, the graphone hybrid system can perform better if we use a better joint sequence model to
segment OOV words into graphone units.
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Figure 6.5: The OOV word recovery results using hybrid systems and P2G models built with
small and large dictionaries.

Training a better P2G model from recognition errors

To train a better joint-sequence model for the P2G conversion, we performed hybrid decoding
on the training speech. Table 6.7 presents the statistics on OOV words in the training speech of
each task. We can find that the OOV rate in the training speech is similar to that in the Dev, Eval
and Test data. There are more OOV tokens and OOV words in the BN and SWB task than in
the WSJ task. Moreover, in the WSJ task, there are 14k OOV tokens but only 3k unique OOV
words. As a result, there are fewer OOV samples we could learn from in the WSJ task than the
other tasks, which may limit the improvement by learning the P2G model from those data.
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Table 6.7: The statistics on OOV words in the training speech.

WSJ BN SWB
OOV Rate 2.2% 2.9% 2.0%

No. OOV Tokens 14k 44k 31k
No. OOV Words 3k 14k 14k

We selected the best hybrid system to perform hybrid decoding in each task, which is the
subword hybrid system in the WSJ and BN tasks and the syllable hybrid system in the SWB
task. The OOV word detection performance on the training speech is given in Table 6.8. We
can find that the OOV word detection performance on the training speech in the WSJ and BN
tasks is similar to that on the Dev and Eval data. But in the SWB task, the OOV word detection
performance is much worse than that on the Dev and Eval data. This may because that there are
more word fragments in the training speech than in the Dev and Eval data. The hybrid system
could incorrectly recognize those word fragments as OOV words, which will result in more false
alarm errors. We also experimented with using the subword hybrid system output for training the
P2G model used in the subword system and using the syllable hybrid system output for training
the P2G model used in the syllable system. The performance is essentially the same as just using
the best system in each task to perform hybrid decoding on the training speech.

Table 6.8: The OOV word detection performance on the training speech.

(%) WSJ BN SWB
Precision 65.0 55.9 49.7

Recall 66.8 39.4 56.7
F1 65.8 46.2 53.0

As we collected the aligned data from the hybrid decoding result, let us count how much
data we can obtain for training the joint-sequence model. The number of alignments and unique
OOV words collected from the hybrid decoding result are provided in Table 6.9. We can see that
there are normally more alignments than unique OOV words. This is because the same OOV
word may be recognized into different pronunciations in different context. Furthermore, there
are much more alignments in the BN and SWB tasks than in the WSJ task. Hence, we had more
training samples in the BN and SWB tasks.

Table 6.9: The number of alignments and unique OOV words in the hybrid decoding output of
the training speech.

WSJ BN SWB
No. Alignments 4k 11k 11k

No. OOVs 2k 9k 9k

The PA and RR of hybrid systems with the baseline and better P2G conversion is shown in
Figure 6.6. It can be seen that RR is significantly increased when using the better joint-sequence
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Figure 6.6: The pronunciation accuracy and recovery rate of hybrid systems with the baseline
and better P2G conversion.

model for P2G conversion. Among three tasks, the improvement on RR in the BN and SWB
tasks is more than that in the WSJ task. Again, this may be because there are more alignments
for training the better P2G model in the BN and SWB tasks than in the WSJ task. Furthermore,
in the BN and SWB tasks, RR is now even larger than PA, which clearly indicates that many
OOV words were now recovered from incorrect pronunciations.

Finally, let us take a look at the OOV word recovery results when using the better joint-
sequence model for P2G conversion. As given in Figure 6.7, the solid line is WER when using
the baseline P2G conversion for OOV word recovery, while the dotted line is WER when using
the better joint-sequence model for P2G conversion. We can find that the WER is always lower
when using the better P2G conversion than the WER when using the baseline P2G conversion.
By improving the P2G conversion performance, we can now achieve 9% relative improvement
over the word baseline in the WSJ task, 3% in the BN task and 5% in the SWB task through
OOV word recovery.
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Figure 6.7: The OOV word recovery results with the baseline and better P2G conversion.

The results of estimating language model scores of an OOV word

After estimating the written form of an OOV word and integrating the word into the recognizer’s
lexicon, we need to estimate language model scores for the OOV word. As we estimated the
language model scores of an OOV word based on the POS labels of the word and its surrounding
IV words, let us first see how good the POS tagger we used. We manually labeled all OOV words
in the Eval data. Then we counted how many OOV words were assigned the correct label when
running POS tagging on the transcription of the Eval data. There are two models in the POS tag-
ger. One model was trained from the WSJ text data, hereafter referred as the “WSJ” model. The
other model was trained from WSJ and some extra text data, hereafter referred as the “English”
model. The POS label accuracy on OOV words in the Eval data is provided in Table 6.10. It can
be seen that the WSJ model usually performs better than the English model. Therefore, in the
following experiments, we applied the WSJ model when performing POS tagging on the hybrid
decoding output. Overall, the POS label accuracy in the WSJ and BN tasks is better than that
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in the SWB task. This is because compared to the read speech, the spontaneous conversational
speech which contains many word repetitions and fragments, is more difficult for POS tagging.

Table 6.10: The POS label accuracy on OOV words in the Eval data.

(%) WSJ BN SWB
WSJ model 84.5 84.3 77.5

English model 85.5 82.0 74.2

Now, we take a closer look at the distribution of POS labels of OOV words in the Eval data.
From Table 6.11, we can find that most OOV words are nouns, especially proper nouns. There
are also many verbs and adjectives as well as very few adverbs. We can also find some compound
labels in all tasks.

Table 6.11: The distribution of POS labels of OOV words in the Eval data.
Label WSJ BN SWB

JJ 12 15 25
NN 48 50 81

NNP 87 144 44
NNPS 0 0 6
NNS 21 21 20
RB 1 1 0
VB 5 7 17

VBD 1 2 3
VBG 9 3 2
VBN 11 4 7
VBP 0 0 2
VBZ 3 2 0

NN+POS 0 1 0
NNP+POS 2 5 2

Total 200 255 209

Our language model score learning experiments were performed on the hybrid decoding
output of the Eval data using hybrid systems with the most recovered OOV words. Specifically,
we selected the graphone system with COOV = 1.5 in the WSJ task, graphone system with
COOV = 1.25 in the BN task, and syllable system with COOV = 0.75 in the SWB task. The
number of recovered OOV words whose written forms are correct and the POS label accuracy of
those OOV words are presented in Table 6.12. It can be seen we can recover about 40% OOV
words in the WSJ and BN tasks and a little more than 20% OOV words in the BN task. The POS
label accuracy on recovered OOV words is similar to the numbers in Table 6.10. In fact, even
on all detected OOV words including words whose written form is not correct, the POS label
accuracy is still fairly good. Because the POS tagger usually assigns the “NNP” label to words
it never observes, such as words with an incorrect written form. And we have a large number of
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OOV words with the “NNP” label. Therefore, it is highly possible that those unrecovered OOV
words can still obtain correct POS labels.

Table 6.12: The number of recovered OOV words and their POS label accuracy.

WSJ BN SWB
OOV recovered 79 60 93
POS accuracy 87% 83% 70%

After detecting OOV words and recovering the written form of OOV words from the Eval
data, we incorporated all hypothesized OOV words which had more than 2 letters into our recog-
nizer’s lexicon. There were a few OOV words even with multiple pronunciations, as they were
recognized differently in different utterances. Figure 6.8 presents the change of the vocabulary
size and OOV rate on the Eval and Test data when integrating OOV words into the recognizer’s
lexicon. It can be seen that by augmenting the vocabulary with a small number of OOV words
learned from the Eval speech, there is a big drop of OOV rate on both the Eval and Test data.
The drop of OOV rate in the Eval data is more than that in the Test data, because there are only
up to 50% OOV words in the Test data that also appear in the Eval data.
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(c) OOV Rate on Test Data

Figure 6.8: The vocabulary size and OOV rate on the Eval and Test data of the baseline and
expanded vocabulary.

Table 6.13: The number of hypothesized OOV words and OOV words eliminated in the Eval and
Test data.

WSJ BN SWB
Hypothesized OOVs 267 305 143

Eliminated OOVs in Eval 90 73 101
Eliminated OOVs in Test 61 39 119

As shown in Figure 6.8, after OOV word recovery, many OOV words were eliminated from
the OOV word list and converted into IV words. The number of hypothesized OOV words and
OOV words eliminated in the Eval and Test data are shown in Table 6.13. Up to 50% OOV words
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were eliminated in the Eval data of the WSJ and SWB tasks and up to 30% OOV words were
eliminated in the Eval data of the BN task. We can find that the number is better than Table 6.12.
This is because some OOV words appeared multiple times in the Eval data. But our system did
not recovered all instances of those OOV words. However, when we added detected OOV words
into lexicon, all instances of those OOV words become IV words. Therefore, more OOV words
were eliminated. Again, the number of OOV words eliminated in the Test data is smaller than
that in the Eval data, as there are fewer Eval OOV words in the Test data. On average, more than
40% OOV words in the Test data were converted into IV words.

Table 6.14: The number of n-gram scores added into the language model.

WSJ BN SWB
Unigrams 267 305 143
Bigrams 536 621 312
Trigrams 683 860 442

After estimating the POS labels of an OOV word and its surrounding IV words in the hybrid
decoding output of the Eval data, we estimated language model scores for the word, then inte-
grated those new n-grams into the recognizer’s language model. Table 6.14 shows the number
of n-gram scores added into the language model. We can find a proper number of n-grams were
incorporated into our language model.
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Figure 6.9: The number of recognized OOV words when integrating OOV n-grams into the
language model.

The goal of learning OOV words is to correctly recognize those words when encountered
by the recognizer in the future. To evaluate our OOV word learning framework, we measure
how many of the eliminated OOV words in Table 6.14 can be recognized in the second pass
decoding of the Eval data and in the first pass decoding of the Test data. Figure 6.9 shows the
number of recognized OOV words in the Eval and Test data when integrating OOV unigram,
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bigram and trigram scores into the language model, where the dark blue bar is the target number
of OOV words we tried to recognize, while the light blue, yellow and red bars correspond to
the number of OOV words recognized when incorporating OOV language model scores. It can
be seen that when only adding unigram scores of OOV words into the language model, we can
already recognized more than half of OOV words in both the Eval and Test data. When adding
longer n-grams, such as bigrams and trigrams, more OOV words are recognized in the Eval data,
but not in the Test data. As we mentioned previously, OOV words in the Test data usually appear
in different context from OOV words in the Eval data. Therefore, adding bigrams and trigrams
learned from the Eval context does not help to recognize more OOV words in the Test data.
That is why we also need to estimate new context an OOV word may appear. The recognition
performance when integrating OOV n-grams into the language model is given in Figure 6.10,
where the dark blue bar is the baseline word recognition WER, while the light blue, yellow and
red bars are the WERs when decoding with estimated OOV language model scores. Different
from the number of recognized OOV words, the WER was slightly higher when integrating
OOV bigram and trigram scores into the language model. Although we are able to recognized
more OOV words, the recognizer probably also misrecognizes many IV words as OOV words,
because of higher order n-grams added into the language model. As a result, we cannot observe
improvement on WER when integrating OOV bigrams and trigrams into the language model.
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Figure 6.10: The recognition performance when integrating OOV n-grams into the language
model.

After integrating the OOV n-grams into the language model, we estimated new context an
OOV word may occur. For nouns and verbs in the left and right two words of an OOV word, we
found other semantic similar IV nouns and verbs, then formed new OOV n-grams using those
words. The number of new OOV bigram and trigram scores added into the language model is
given in Table 6.15. It can be seen that a large number of new bigram and trigram scores were
incorporated into the language model. In fact, since we only substituted nouns and verbs with
high semantic similarities, we already skipped many other possible context. Otherwise, there
will be even more new OOV bigrams and trigrams. For comparison, we also experimented with
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only adding oracle new OOV n-grams extracted from the transcription of the Test data. The
scores of those oracle n-grams were still estimated based on the POS labels of OOV words and
their surrounding IV words. The number of oracle OOV n-grams added into the language model
is presented in Table 6.16. We can find that there are much fewer oracle OOV n-gram compared
to that of the estimated new n-grams.

Table 6.15: The number of new OOV n-grams added into the language model.

WSJ BN SWB
Bigrams 590 689 346
Trigrams 887 947 492

Table 6.16: The number of oracle OOV n-grams added into the language model.

WSJ BN SWB
Bigrams 46 49 131
Trigrams 84 82 102
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Figure 6.11: The number of recognized OOV words when integrating unseen OOV n-grams into
the language model.

Figure 6.11 presents the number of recognized OOV words when integrating new OOV n-
grams into the language model. The dark blue bar is the target number of OOV words we try to
recognize, the light blue bar is the result when only adding seen n-grams into the language model,
the yellow bar is the result when adding estimated new n-grams, while the red bar correspond
to the result when adding oracle new n-grams. We can find that a few more Test OOV words
were recognized when adding estimated unseen n-grams into the language model. Furthermore,
new n-grams from the Test data did not increase the number of recognized OOV words in the
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Eval data. We can also see that our system recognized much more OOV words with oracle new
n-grams, which indicates that the estimated new n-grams were not good enough. The recognition
performance when decoding with new OOV n-grams is given in Figure 6.12, where the dark blue
bar is the WER of the baseline word recognition, the light blue bar is the WER when only adding
seen OOV n-grams, the yellow bar is the WER when adding estimated unseen OOV n-grams and
the red bar is the WER when adding oracle unseen OOV n-grams from the transcription of the
Test data. It can be seen that the WER did not change much in both the Eval and Test data when
integrating unseen OOV n-grams into the language model, although we recognized more OOV
words in the Test data. This is probably because we added too many irrelevant OOV n-grams
into the language model, which produced many recognition errors. Overall, we could recognize
up to 90% learned OOV words in the Eval data and about 60% to 80% learned OOV words in
the Test data. And there is about 8% relative improvement on WER in the WSJ task, about 2%
relative improvement in the BN task and 1% in the SWB task.
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Figure 6.12: The recognition performance when integrating unseen OOV n-grams into the lan-
guage model.

6.5.2 The results of OOV word recovery through filtering
In this section, we tried to build a vocabulary with a proper size but meanwhile keep the OOV rate
as low as possible. We selected the best system’s output for our OOV word filtering experiments.
Specifically, we selected the subword hybrid system with COOV = 0.75 in the WSJ and BN
tasks and the syllable hybrid system with COOV = 1.0 in the SWB task. For each task, the
vocabulary size of the baseline system and system using all words from the training text data and
their corresponding OOV rate on the Eval data is provided in Table 6.17. We can find that when
building the system from all words in the training data, the vocabulary size is extremely large. As
demonstrated in Figure 6.3, the recognition performance could be hurt when using a very large
vocabulary in an ASR system. We can also notice that even using the very large vocabulary, there
are still some OOV words in the Eval data.
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Table 6.17: The vocabulary size and OOV rate on the Eval data of different systems.

WSJ BN SWB
baseline all baseline all baseline all

Vocab Size 20,000 165,503 20,000 258,834 10,000 60,752
OOV Rate 2.20% 0.01% 2.02% 0.18% 1.69% 0%

Some statistics about the hybrid decoding output in each task is given in Table 6.18. It
can be seen that half of the detected OOV words have the correct pronunciation in the WSJ
and SWB tasks, while only about 20% detected OOV words have correct pronunciations in the
BN task. Therefore, we can recover those OOV words by searching for words with the same
pronunciation in the large lexicon. But we also found that more than 70% of the detected OOV
words have identical pronunciations with words in the large lexicon. As a result, we will also
add some irrelevant words from the large lexicon into our vocabulary. We could try to utilize
some other features when measuring the similarity between detected OOV words and words in
the large lexicon, such as the contextual feature used in Chapter 5, which may help to prevent
from adding too many irrelevant words.

Table 6.18: The statistics of the hybrid decoding output in each task.

WSJ BN SWB
No. reported OOVs 221 235 210

Pronunciation accuracy 46.2% 19.1% 55.0%
Identical pronunciations 80.1% 67.7% 76.2%

When adding words from the large lexicon to the recognition vocabulary, we could control
how many words will be added by setting a proper threshold on the word similarity. Figure 6.14
presents the OOV rate on the Eval data of different vocabularies. We compared two different
ways of adding words into the recognition vocabulary. In one method, we added words into the
recognition vocabulary based on the word frequency in the training data, which is indicated by
the solid blue line. In another method, we added words by adjusting the threshold for the word
similarity, which corresponds to the dotted red line. It can be seen that the OOV rate of vocab-
ularies produced by filtering the large lexicon is much lower than that of expanding vocabulary
based on word frequency. The gap between the solid line and the dotted line becomes smaller
when the vocabulary becomes larger. This is because to add more words into the vocabulary, we
had to apply a loose threshold when filtering words in the large lexicon. As a result, we added
many irrelevant words rather than true OOV words into our recognition vocabulary.

In practice, we will not add too many words into the recognition vocabulary, since there
are generally not that many OOV words in the testing speech. Assuming we will only increase
the vocabulary size by 5%, which is 1000 more words in the WSJ and BN tasks and 500 more
words in the SWB task. Figure 6.14 provides the OOV rate of ASR systems built with different
vocabularies, where the blue bar is the baseline vocabulary, the green bar is the expanded vo-
cabulary based on word frequency and the red bar is the expanded vocabulary through filtering.
We can find that both expanded systems have lower OOV rate than the baseline ASR system, as
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Figure 6.13: The OOV rate of different size recognition vocabularies produced by choosing upon
word frequency and filtering a large lexicon.

the expanded vocabularies consist of more words than the baseline vocabulary. The expanded
vocabulary from OOV filtering usually has much lower OOV rate than the expanded vocabulary
based on word frequency, except in the BN task on the Test data. As shown in Table 6.2, there
are less than 25% OOV words in the BN Test data which also occur in the BN Eval data. As a
result, learning OOV words from the Eval data cannot reduce the OOV rate on the Test data very
much. Overall, by filtering OOV words in the large lexicon, we can reduce the OOV rate by up
to 50% in the Eval data and up to 30% in the Test data.
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Figure 6.14: The OOV rate of recognition systems built from different vocabularies.

Let us now compare the recognition performance using vocabularies produced by adding
words based on their frequency and filtering words in the large lexicon. Figure 6.15 provides
the recognition performance on the Eval and Test data when using different vocabularies. We
can find that the WER is smaller when using the expanded vocabularies than using the baseline
vocabulary. It is simply because the OOV rate of the larger vocabularies is much lower than
that of the baseline vocabulary. Between the two expanded vocabularies, the one produced by

79



filtering the large lexicon is preferred than the one based on word frequency. Again, there are
fewer OOVs when using the vocabulary produced by filtering the large lexicon. Overall, when
using the expanded vocabulary through filtering, we can achieve up to 10% relative improvement
on WER on both the Eval and Test data in the WSJ and SWB tasks, while up to 4% relative
improvement in the BN task.
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Figure 6.15: The WER of recognition systems built from different vocabularies.

Comparison of the two OOV word recovery approaches

Since two OOV word recovery approaches were investigated in this paper, here, let us compare
the OOV word learning performance of these two approaches. To do that, we produced two
expanded vocabularies with the same size. In one approach, hereafter referred as “recovered”,
we expanded the recognition vocabulary with detected and recovered OOV words. Then, we
estimated language model scores for OOV words based on the POS labels of those words and
their surrounding IV words. In another approach, hereafter referred as “filtered”, we searched for
phonetic similar words as detected OOV words in the large lexicon and trained language model
scores from the extra text data.

The size of the recovered and filtered expanded vocabularies is shown in Table 6.19. We can
find the recovered and filtered expanded vocabularies have similar size. In fact, when building
the filtered vocabulary, we only added words with the same pronunciations as OOV words from
the large lexicon. Otherwise, there will be more words added into the filtered vocabulary.

Table 6.19: The size of the recovered and filtered expanded vocabularies.

WSJ BN SWB
recovered vocab 20267 20205 10143

filtered vocab 20307 20298 10171
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Figure 6.16: The OOV rate of the recovered and filtered expanded vocabularies in the Eval and
Test data.

The OOV rate of the recovered and filtered expanded vocabularies in the Eval and Test data
is given in Figure 6.16. It can be seen that as more words were incorporated, both expanded
vocabularies have lower OOV rate than the baseline vocabulary. Between the two expanded
vocabularies, the recovered expanded vocabulary has slightly lower OOV rate than the filtered
expanded vocabulary in the BN and SWB tasks. But in the WSJ task, the recovered expanded
vocabulary has much lower OOV rate than the filtered expanded vocabulary.
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Figure 6.17: The recognition performance when using the recovered and filtered expanded vo-
cabularies on the Eval and Test data.

Figure 6.17 provides the recognition performance when using the recovered and filtered ex-
panded vocabularies during decoding. We can find that ASR systems using the expanded vocab-
ularies usually have lower WER than systems using the baseline vocabulary. The two expanded
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vocabularies performed similarly in the WSJ and BN tasks, while systems using the filtered ex-
panded vocabulary is much better than systems using the recovered expanded vocabulary in the
SWB task. Although the recovered expanded vocabulary had lower OOV rate than the filter ex-
panded vocabulary, ASR systems built with the recovered vocabulary did not have a lower WER.
This may because the language scores learned for recovered OOV words were still not as good
as language model scores directly learned from a text corpus.

From Figure 6.18, we can find how many learned OOV words were recognized when using
the recovered and filtered expanded vocabularies. Here, we counted when expanding vocabulary
with learned OOV words, how many of those OOV words were recognized in the second pass
decoding of the Eval data and in the first pass decoding of the Test data. It can be seen that
systems using the recovered expanded vocabulary usually have a higher recognition rate than
systems using the filtered expanded vocabulary on the Eval data. However, on the Test data,
systems using the filtered expanded vocabulary perform better. Again, this is probably because
the language model scores learned for OOV words in the recovered system are not optimal. But
we should also notice that we did not use any extra resources when building ASR systems with
the recovered expanded vocabulary.
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Figure 6.18: The OOV words recognized ratio when using the recovered and filtered expanded
vocabularies on the Eval and Test data.

6.5.3 The results of recovering recurrent OOV words
When evaluating the performance of recovering recurrent OOV words, we only worked on iden-
tified OOV words with more than one instances, since we needed those multiple instances to
estimate a better written form and better language model scores for the word. The accuracy of
identified OOV clusters will affect our OOV word recovery performance. For example, if many
instances of different OOV words were unfortunately identified as the same OOV word, then be-
cause of the noise introduced by clustering errors, the recovery performance might even be hurt.
As discussed in Chapter 5, our OOV word clustering results were very accurate, there were only
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a few OOV candidates which belong to different OOV words were clustered into the same group.
Therefore, the clustering results were good enough for our OOV word recovery experiments.

To estimate the written form of recurrent OOV words, we implemented a ROVER-like com-
bination procedure, which combines multiple pronunciations from the multiple instances of the
same OOV word to build a better phonetic representation for the word. Then, the better joint-
sequence model trained with recognition results of the training speech was applied to perform
the P2G conversion. To compare those results, we also directly performed the P2G conversion
on the decoded pronunciation of each OOV candidate, which is considered as a baseline. The
pronunciation accuracy of recurrent OOV words before and after combination is given in Table
6.20. It can be seen that PA is significantly increased after combining the multiple phonetic rep-
resentations of an OOV word in the WSJ and BN tasks. In the SWB task, multiple instances of
the same OOV words were usually decoded with the same pronunciation. As a result, we did not
observe much improvement from combination.

Table 6.20: The pronunciation accuracy of recurrent OOV words before and after combination.

WSJ BN SWB
Before combination 56.1% 34.9% 72.8%
After combination 62.9% 42.2% 72.8%

We have demonstrated that after combining multiple pronunciations of the same OOV word,
we could have a better phonetic representation for the word. Now, we evaluate how many OOV
words have the correct written form after the P2G conversion. The recovery rate of recovered
recurrent OOV words with and without combination is given in Table 6.21. We can see that RR
also greatly increases when perform the P2G conversion on the combined pronunciation of a
recurrent OOV word in the WSJ and BN tasks. As there is no improvement on PA in the SWB
task, RR also remains unchanged.

Table 6.21: The recovery rate of recovered recurrent OOV words with and without combination.

WSJ BN SWB
Without combination 25.6% 17.5% 69.3%

With combination 35.8% 30.6% 69.3%

Table 6.22: The POS label accuracy of recurrent OOV words before and after combination.

WSJ BN SWB
Baseline 86.4% 66.7% 62.1%

Combined 91.5% 85.5% 70.7%

Besides combining the pronunciations of multiple instances of an OOV word to obtain a
better phonetic representation, we could also combine the POS labels from multiple instances
of the word to estimate a more accurate POS label. Table 6.22 presents the POS label accuracy
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of recurrent OOV words before and after combination. It can be seen that the POS accuracy is
improved after combining the POS labels from multiple instances of an OOV word.

Finally, let us compare the recognition performance of ASR systems built from the baseline
recovered expanded vocabulary and the recurrent recovered expanded vocabulary. From Figure
6.19, we can find that the difference between those two systems is very small. The improvement
of better phonetic representation, better written form and more accurate POS label does not
produce a lower WER. One possible explanation is there are only very few recurrent OOV words
in the Eval and Test data. Even we achieved good results on recurrent OOV words, they are too
few to make contributions to the WER of the whole Eval and Test data. The performance may
be improved if we tested on a datasets with more recurrent OOV words.
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Figure 6.19: The recognition performance of ASR systems built from baseline recovered ex-
panded vocabulary and recurrent recovered expanded vocabulary.

6.6 Summary
In this chapter, we investigated various techniques for OOV word recovery. First, the conven-
tional P2G conversion was applied to estimate the written form of the detected OOV words. As
we found many detected OOV words’ pronunciations were incorrect, we proposed to train a bet-
ter P2G model by learning from the recognition errors of the training speech. Then, we explored
to estimate the language model scores of an OOV word from IV words in the same syntactic
category. We also studied an alternative OOV word recovery approach when extra language re-
sources are available. At last, we showed that the multiple instances of recurrent OOV words
can be used to further improve the OOV word recovery performance. To summary, we recovered
more than 40% OOV words after integrating detected OOV words into the recognizer’s lexi-
con. Then, our system recognized more than 90% recovered OOV words in the Eval data and
up to 70% recovered OOV words in the Test data. Overall, our OOV word learning framework
successfully learned up to 40% OOV words from the Eval data.
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Chapter 7

Conclusion and Future Work

In this thesis, we investigated a fundamental problem in speech recognition - how to automati-
cally learn OOV words in an ASR system. To learn an OOV word or to convert an OOV word into
an IV word, a recognizer has to first detect the presence of the OOV word in the testing speech,
and then incorporate the OOV word into its lexicon and language model. Therefore, we built an
OOV word learning framework, which can automatically detect, cluster and recover OOV words
in an ASR system. From the experimental results, we found that about 40% OOV words were
successfully converted into IV words through the proposed OOV word learning framework.

7.1 Summary of results and contributions
Our proposed OOV word learning framework consists of three main components: the OOV
word detection component, the OOV word clustering component and the OOV word recovery
component. In the following paragraph, the results and contributions in each component are
summarized. Furthermore, the results on different datasets are also summarized and analyzed.

OOV word detection

In the OOV word detection component, we tried to detect the presence of OOV words in the test-
ing speech. We adopted the hybrid system, which applies a hybrid lexicon and language model
during decoding, to explicitly represent OOV words using sub-lexical units. Since two differ-
ent training schemes had been individually studied for building the hybrid system, we compared
the OOV word detection performance using the hierarchical and flat hybrid systems. We found
that those two hybrid systems had similar OOV word detection performance if they were built
on simple sub-lexical units, such as phones. However, the flat hybrid system was significantly
better than the hierarchical hybrid system when more complicated sub-lexical units were used,
such as the syllable, subword or graphone units. Furthermore, we also compared the effective-
ness of modeling OOV words using different types of sub-lexical units. Our experimental results
showed that the syllable, subword and graphone units performed much better than the simple
phone units, because longer context histories were embedded in more complex sub-lexical units.

In this part of thesis, we also studied to remove incorrect detections from the hybrid decoding
output using the OOV word classifier. We collected the acoustic, lexical, lattice and contextual
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features from the OOV word detection result of the development data, and built a LogitBoost
classifier with feature selection. Then, the LogitBoost classifier was applied to the OOV word
detection hypotheses of the evaluation data. The classification result indicated that the OOV word
classifier effectively reduced false alarm errors when the hybrid system reported many incorrect
detections. As a result, the OOV word detection performance was improved. Furthermore, better
classifiers could be trained if we collected more OOV word detection examples from the hybrid
decoding result of the training speech.

At last, we introduced two system combination techniques to further improve the OOV word
detection performance. In one approach, multiple systems’ outputs were aligned, combined and
re-scored to produce a better hybrid decoding result. The word frequency and confidence score
of individual hypothesis were applied for re-scoring. As we found different types of sub-lexical
units had their own advantages and problems, in another combination approach, multiple types of
sub-lexical units including the syllable, subword and graphone units were simultaneously used
in one hybrid system, so that different types of sub-lexical units can complement each other.
From the experimental results, we found both system combination techniques performed better
than individual systems which were built using one type of sub-lexical units. Between these
two combination techniques, the one combining multiples systems’ outputs performed better in
the BN and SWB tasks, while the other one performed better in the WSJ task. Overall, we can
detect more than 70% OOV words with more than 60% accuracy in the OOV word detection
component

OOV word clustering

An OOV word can appear more than once in a conversation or over a period of time. Such
multiple instances of the same OOV word provide valuable information for estimating the pro-
nunciation, part-of-speech (POS) tag or language model scores of the word. In the OOV word
clustering component, we therefore studied how to identify recurrent OOV words through a
bottom-up clustering process. Initially, each OOV candidate in the OOV word detection output
was considered as a single cluster. Then, in each iteration, two clusters with the smallest distance
were merged. This clustering procedure ended when the distance between any two clusters was
larger than a threshold. The distance between two clusters was calculated as the average of the
pairwise distances between OOV candidates in each cluster. And to measure the distance be-
tween OOV candidates, the phonetic, acoustic and contextual features of each OOV candidate
were collected. Specifically, the phonetic distance measured whether two OOV candidates had
the same pronunciation or not, the acoustic distance compared their acoustic representations,
while the contextual distance measured whether two OOV candidates appeared in the same con-
text and whether they were about the same topic. Our experimental results presented that the
phonetic feature was more effective than the acoustic and contextual features for detecting the
recurrence of OOV words, but the best performance was achieved when combining all features.
As the goal of finding recurrent OOV words is to utilize the multiple instances of the same OOV
word to learn a better pronunciation or POS tag of the word, in this chapter, we also showed that
the OOV word clustering result was good enough for further process.
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OOV word recovery

After detecting and clustering OOV words in the testing speech, we worked on recovering OOV
words - converting OOV words into IV words of an ASR system in the OOV word recovery com-
ponent. To finally recover an OOV word, we had to integrate the OOV word into the recognizer’s
lexicon and language model, which means we would need to estimate the written form and lan-
guage model scores of the word. We first applied the conventional phoneme-to-grapheme (P2G)
conversion to estimate the written form of an OOV word from its decoded phonetic representa-
tion. However, the experimental results showed that we could only recover a small portion of the
detected OOV words. By carefully examined the detected OOV words and the P2G conversion
result, we found that the decoded pronunciations of many OOV words incorporated recognition
errors. But the conventional P2G model could not handle incorrect phone sequences, as it was
trained only from the alignments between correct phone and letter sequences. Therefore, we
investigated to build a better P2G model by also learning from the hybrid decoding result of the
training speech. The evaluation results indicated that significantly more correct written forms
were estimated using the better P2G model. As a result, more improvement on the WER was
observed. To estimate the language model scores of an OOV word, we utilize the POS tags of
the OOV word and its surrounding IV words. Precisely, we first trained a POS tag class-based
language model using the text training data. Then given the POS tags of the OOV word and its
surrounding words, the n-gram scores of an OOV word could be estimated from corresponding
n-grams in the class-based language model. As an OOV word may appear in a different con-
text when encountered by the recognizer in the future, we also proposed possible context for an
OOV word by substituting its surrounding IV words with other semantic similar IV words. Our
recognition results indicated that we were able to successfully estimate language model scores
for detected OOV words. Overall, we converted more than 40% OOV words into IV words after
integrating recovered OOV words into the recognizer’s lexicon. And we could recognizer more
than 90% learned new words in the Eval data and up to 70% learned new words in the Test data.

In some situation, ASR systems cannot use a very large vocabulary, although there are nor-
mally more data available for building a larger lexicon or a larger language model. Therefore,
in the OOV word recovery component, we also studied an alternative OOV word recovery ap-
proach, when a larger lexicon and a larger text corpus are available. Here, we still worked on
the OOV word detection output. For each detected OOV word, we searched for words in the
large lexicon. If the phonetic distance between the OOV word and the word in the large lexicon
was small enough, or say if those two words sounded very similar, the word in the large lexicon
may actually be the OOV word we detected in the testing speech. We then added that word into
our recognition vocabulary. After processed all detected OOV words, we trained a new language
model with the new expanded vocabulary using the extra text corpus. The experimental results
showed when only increased the vocabulary size by 5%, we could learn about 40% of OOV
words in the testing speech. And the WER on the evaluation and test data was substantially
improved.

As we mentioned previously, the multiple instances of recurrent OOV words incorporated
valuable information for estimating the written form and language model scores of an OOV
word, in this part, we also investigated how to improve the OOV word recovery performance
on recurrent OOV words. We first introduced a ROVER-like combination technique to build a
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better phonetic representation for the recurrent OOV word from the decoded pronunciations of its
multiple instances. We then combined the POS tags of the multiple instances of an OOV word to
estimate a more accurate POS tag for the word. We also utilized the different context a recurrent
OOV word appeared to construct exact n-grams for recurrent OOV words. We could also use
those context to estimate new n-gram scores for recurrent OOV words without adding too many
irrelevant entries into the language model. From the experimental results, we found about 7%
more OOV words obtained the correct phonetic representation by combining the pronunciations
of their multiple instances. And because of that, about 10% more OOV words ended up with the
correct written form. But overall, only a few more OOV words were recognized in the evaluation
and test data.

7.1.1 Comparing the results on different datasets
We tested our OOV word learning framework on three different datasets. It is interesting to see
the different performance of each component on different data, from which we can understand
the advantage and weakness of our system better.

First, as the recording condition and speaking style of three datasets is quite different, the
WER of the baseline word recognition system is also in different ranges. From Table 4.3, we
can find that we have the best recognition accuracy on the WSJ task, which has the optimal
condition – prepared read speech in a very quiet environment. The BN speech is extracted from
broadcast news, which has fairly good audio quality. But there is occasionally background speech
or music, which can degrade the recognition performance. Furthermore, in BN, the speech is
more free style than WSJ, that’s another factor to make it harder to recognize. At last, it is
not surprise to find that the WER on the SWB data is the highest. The SWB speech is 8k
Hz telephone speech, which has much worse audio quality compared to the WSJ and BN data.
Moreover, the data is spontaneous human to human conversation containing a large number of
natural speech phenomena, such as deletions, repetitions, etc., which can cause a big problem to
the ASR system. The findings here are basically the same as those reported by other researchers
on the same datasets indicating that we built a reasonable recognizer for our OOV word learning
framework.

The OOV word detection performance does not always align with the recognition perfor-
mance of different tasks. Again, we have pretty good OOV word detection performance in the
WSJ task, where we can detect more than 70% OOV words with more than 60% precision.
However, different from the recognition performance, we have better OOV word detection per-
formance in the SWB task than in the BN task. One observation is that many utterances are very
long in the BN task. As a result, more than one OOV word can appear in the same utterance or
even appear in a row, which may confuse our OOV word detection component. Another reason
comes from the training data. We found all OOV tokens are in the training data of the SWB task,
but that is not true in the BN task. What we can learn from these experiments are: 1) the OOV
word detection component works much better if the OOV tokens have been seen in the training,
from which we can know how those OOV words sound like and where they usually appear in
an utterance. But in this case, those OOV tokens are not “true” OOV words, they are just low
frequency words which are excluded from the recognizer’s vocabulary. 2) Our system does not
work well when multiple OOV words appear consecutively in speech. It normally can detect the
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presence of OOV words, but cannot tell how many OOV words are there. Although we already
incorporated the word start and word end symbols into the sub-lexical units, they only give us in-
formation about which sub-lexical units appear more often at the word boundaries. To solve this
problem, we can investigate to use more acoustic evidence to cut decoded sub-lexical sequences
into multiple OOV words. For instance, we can try to find silence within the OOV region in the
testing speech and use that to identify word boundaries. Another place our OOV word detector
may fail is when trying to identify very short OOV words, such as words with only two or three
phones. Those OOV words are hard to detect and recognize because of lacking enough acoustic
evidence. They are frequently to misrecognize with short in-vocabulary words, since they may
sound very similar. But we probably do not need to worry about this too much, because there are
normally not many such short OOV words in a language.

The OOV word clustering performance on different datasets has similar picture as in the
OOV word detection experiments, where we have better performance in the WSJ and SWB tasks
than in the BN task. Particularly, when only using the phonetic feature to measure the similarity
between OOV candidates, the OOV word clustering performance in the BN task is much worse
than those in the WSJ and SWB tasks. First, as the OOV word detection result is less accurate
in the BN task, more IV words were incorrectly detected as OOV words, which can affect the
clustering accuracy. Second, we found that the decoded pronunciation of OOV words is also
more noisy in the BN task. Contrarily, the decoded pronunciations of multiple instances of the
same OOV word are more or less the same in the WSJ and SWB tasks, no matter whether those
multiple instances appear in the same context or not. We can also learn this from Figure 6.6.
It can be seen that the pronunciation accuracy (PA) is much higher in the WSJ and SWB tasks,
especially, in the SWB task, where PA is up to 50%. But in the BN task, PA is only about
20%, most decoded pronunciations of OOV words are wrong. And because of that, the phonetic
feature in the BN task is not as reliable as that in the WSJ and SWB tasks. From our experiments
we also notice that the acoustic feature only works well in the WSJ task. Certainly, as we have
better recognition result in WSJ, the OOV segment timing information is more accurate. But that
should not give such a big impact on the clustering performance. One possible reason is, in WSJ,
we usually have many utterances (more than 20) from the same speaker, which may contain the
same OOV word in multiple places. Then, when comparing the acoustic distance between OOV
candidates, the distance will be smaller if the two OOV candidates are from the speech of the
same speaker. Moreover, the WSJ speech is quite clean, without pollution from the background
noise. On the other hand, in the BN and SWB tasks, even if two OOV candidates correspond to
the same OOV word, their acoustic distance may still be large, since they usually from different
speakers and more probably influenced by noise. Therefore, we need something better than the
simple posterior feature representation for the acoustic signal.

The phoneme-to-grapheme (P2G) conversion performance in different tasks is similar to what
we learned from the pronunciation accuracy, except that we only obtained very small improve-
ment by learning from the recognition results of training speech when building the P2G model
in the WSJ task. This may because the recognizer makes much less recognition errors on the
training speech in the WSJ task than in the BN and SWB tasks, as the recognizer accuracy is
more than 90% in the WSJ task. As a result, the benefit of learning from errors is small in WSJ.
In terms of the part-of-speech (POS) label accuracy, we have better results in the WSJ and BN
tasks than in the SWB task. This is simply because the SWB sentences are from human to hu-

89



man conversation, which is usually not grammatical. Therefore, POS tagging on the SWB data
is much harder than on the WSJ and BN data. For OOV word learning, again, we have better
results in the WSJ and SWB tasks than in the BN task, which is probably a result of accumulating
the better OOV word detection, clustering and P2G conversion results. One interesting finding
is from the OOV word learning performance on the testing data as shown in Figure 6.11. It can
be seen that we recognized much more newly learned OOV words in the WSJ task than in the
BN and SWB tasks. As we mentioned in previous sections, the estimated language model scores
for detected OOV words are not very accurate, especially the new contexts for OOV words are
mostly irrelevant. Then when recognizing unseen OOV words in the testing speech, most of
time, the unigram scores of OOV words will be applied. In the case, the recognition depends
more on the acoustic model. And a more accurate acoustic will definitely produce better recog-
nition result. Therefore, we have the best recognition performance on unseen OOV words in the
WSJ task, which has a very good acoustic model. From this, we can also learn that our OOV
word learning framework will be more appreciated when having a strong acoustic model in the
recognizer.

7.2 Future work
A few interesting topics were not addressed in this thesis but worth for future investigations.

Contextual evidence for OOV word detection

In daily communications, most of time, we can successfully identify OOV words in human
speech. When we hear an OOV word, besides the uncertainty about individual OOV words,
we often rely on broad contextual evidence especially syntactic and semantic evidence to verify
whether what we hear is reasonable in a certain context. Therefore, we may be able to improve
the OOV word detection performance by utilizing high level syntactic and semantic evidences.
Although we applied certain contextual features when building the OOV word classifier in the
OOV word detection component, longer range dependencies between words across sentences
and even paragraphs are still not explored. Besides the OOV word classifier, we can also try to
find other ways of applying high level syntactic and semantic evidences. For example, we can
re-score the lattices by using a factored language model (FLM) built from various features to find
a better recognition hypothesis after the first pass hybrid decoding.

Batch learning or hill climbing learning?

In this thesis, we studied how to learn OOV words in an ASR system in the batch mode. We did
not investigate how often should we integrate newly learned OOV words into the recognizer’s
lexicon and language model. If we expand the recognition vocabulary very often, we always
have a low OOV rate on the testing speech. We may then have a better recognition accuracy and
detect more OOV words. On the other hand, we will not be able to obtain multiple instances of
an OOV word, if we update the recognition vocabulary too often. In this case, although we can
detect those OOV words, we may not be able to correctly recover their written form and language

90



model scores. This problem is more important for a commercial system, where certain events
may emerge and suddenly generate high demand OOV words.

OOV word learning curve

When we learn new words in our daily life, there is usually a learning curve to successfully learn
the word. We will probably not learn a new word after the first time we encounter the word.
Our brain needs more examples of the word and usually more time to understand and memorize
the word. Similarly, to an ASR system, it may not be able to successfully learn an OOV word
when it detects the OOV word at the first time. Maybe the pronunciation is not correct, or the
written form can be wrong or the estimated language model scores are not good enough. When
the ASR system encounters more and more instances of the same OOV word, how does it update
its existing information about the word? Should it keep its past understandings of the word or
trust new examples more? Furthermore, maybe both the old and new information of the word is
correct. For instance, the word may have multiple pronunciations. It is interesting to see how the
ASR system learns multiple phonetic representations of one word.

OOV word learning in a dialog system

Another interesting problem is how to integrate our OOV word learning framework into a dialog
system. A dialog system usually operates on a small closed vocabulary, which makes it more
often to encounter OOV words than large vocabulary commercial ASR systems. Therefore, a
dialog system with the ability of automatically learning new words will be extremely valuable.
It may be easier and more accurate to learn OOV words in a dialog system, as we can rely on the
interactions between the user and system. If the system suspects there may be an OOV word in
the input speech, it can directly ask confirmation from user. The system can even ask user how to
spell the word, what is the meaning of the word and if there is a synonym of the word, etc. From
those answers, we can even learn syntactic and semantic properties of the word. There are also
challenges for OOV word learning in a dialog system. For example, once the system detect there
is an OOV word, how to present the OOV word to user? Should the system synthesize the word
or directly replay a segment of the input speech? Or maybe there is a even easier way by simply
notifying user there is an OOV word. Some researcher found user can usually guess which word
in an utterance a dialog system may not know.
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