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Abstract
Understanding the reasoning process through explanations is spontaneous, ubiq-

uitous and fundamental to our sense of perceiving the world around us. Scientific
progress often relies on explanations to facilitate discovery of hypotheses, identify
applications and also identify systematic errors and correct them. An in-depth study
of explanation thus help shed light on core cognitive issues, such as learning, in-
duction and conceptual representation. Current NLP systems, despite significant
advances, are usually treated as black boxes with little to no insight into how they
reason. Learning with Explanations is an under-explored area in the natural language
processing literature due to the lack of a unified theory.

In this work, we propose a theory towards how models can incorporate explana-
tion. Our results in part of this show two promising approaches and corresponding
instantiations as to how we can reliably incorporate explanations in NLP systems.
We also show that explanations can not only help models in downstream tasks but
could help humans improve upon a task.
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Chapter 1

Introduction

A central task in many of the sciences is to explain. A decision making process of any kind
involves explaining self or others why and how the decision was arrived at. What are the basic
aspects of explanations: facts, beliefs, morals ? An account of what an explanation is still largely
debated among intellectuals without consensus. The challenges are largely amplified when AI
systems are also involved in the decision making process. A system made decision without any
accountability leads to many unforeseen consequences.

Large scale neural network NLP models have made significant progress in several NLP
applications, yet they have been largely treated as blackbox [104] models. As their performances
scale over time, it is essential to also understand whether these models learn the task or rely on
spurious patterns. We summarize the contributions of this thesis as follows:

1.1 Contributions

1. A Unified Theory: Explanations in NLP systems have largely lacked a unifying theory.
Although there have been several attempts, they lack a coherent connection as to what
aspect of explanations they solve. Without a guiding principle, explanations have taken
different interpretations across various NLP tasks. In this thesis, we propose the recursive
descent theory — for practitioners for building NLP systems that are inherently able to
explain their decisions.

2. Data Based Explanations: In our first instantiation of the recursive descent based
explanations, we show how to realize explanations through data by enforcing specific
structures. They could either be static structures (chapter 3) or dynamic structures (chapter
4). We propose a framework to decouple explanations from end-task, and show how such
an approach would be beneficial.

3. Model Based Explanations: In the event of unavailability of external annotations for
explanations, in chapter 6 we show that we can elicit explanations from the model by
defining the explanation in terms of functions of input data. We observe that it is possible to
achieve self-explaining systems without sacrificing end performance.

1



1.2 Thesis Overview
Thesis Statement : Explanations are recursive, context dependent and it depends on various
stakeholders of the system to define an acceptable explanation. Explanations can be reliably
produced by both data and model based deep learning methods, and a resulting system produces
decisions that are interpretable to humans.

1. Chapter 2 : This chapter proposes a recursive descent theory for explanations, and discusses
how to operationalize explanations in deep learning architectures for NLP. We also discuss
the generalization goals for explanations and modes of explanation.

2. Chapter 3 : In this chapter, we show how to realize explanations through data [141]. We
first decouple the explanations and the end-task, and show how explanations can improve
end-task performance in the procedural text domain.

3. Chapter 4 : While chapter 3 discusses how to achieve explanations through data via a fixed
structure, this work [109] introduces data-based explanations where the explanations can
have arbitrary graph structure by leveraging large-scale pretrained models.

4. Chapter 5 : In comparison to chapters 3,4 where explanations help models improve upon
an end-task, we show an instance where explanations can help humans improve on a hard
task. We show that human annotators improve on the defeasible reasoning task using graph
based explanations.

5. Chapter 6 : This chapter discusses a model-based approach for explanations, by eliciting
interpretable output from systems that do not have explicitly annotated explanations. We
propose the SELFEXPLAIN framework, that can architecturally augment both local and
global interpretability to neural network models.

6. Chapter 7 : This chapter proposes a recursive descent theory for explanations, and discuss
different use-cases in NLP applications.

7. Chapter 8 : In this chapter, we operationalize recursive descent via using templates.
Towards this, we propose a prompt based template filling approach using text-to-text
generation models. We present this approach on a cross domain reasoning task.

8. Chapter 9 : In this chapter, we conclude with the summary of overall contributions,
limitations of the current work and directions for future work.

2



Chapter 2

Goals of Explanations

A system, like a person, that can’t explain itself can’t be trusted. Trustworthy NLP is fundamentally
limited by our ability to construct models which can be audited. Despite wide interest, no general
rigorous ontology has been proposed to define what an explanation is and must accomplish.
First, we propose such a formal treatment of what an explanation is that unifies the existing NLP
literature and points to next steps. Second, a model’s explanations must be accessible to the
stakeholders using and affected by the model. The secondary affect of our treatment is that it
bridges scientific reasoning and machine learning to facilitate building more rigorous reasoning
systems.

2.1 Introduction

Explanations offer us deeper insights towards the inner-workings of any system. Humans rely on
explanations in many high-stakes situations in diverse scenarios such as law, medicine, engineering,
politics and everyday life. Often, a good explanation helps advance learning, taking a step towards
“comprehension”. AI technologies are becoming increasingly prevalent — they are either used
to replace humans or assist humans in complex decision making processes. Yet, a large gap
exists in whether they can explain why they predicted what they predicted. Although there is
widespread agreement that explanations are essential to build trust with humans who interact with
NLP systems, there is little agreement on what is an effective explanation? and how to model
them for real world applications?

In this work, we take a step in this direction by proposing a generalized framework towards
how to design explanations. First, we establish the goals of an explanation depending on the
people who are impacted by it – i.e. stakeholders. Next, we identify the factors through which
such stakeholders can interact with the system to accomplish their goals for explanation. Taking
inspiration from social sciences, we propose that the end goal of explanations in an NLP system
should be modeled via their (i) utility and (ii) simplicity.

Whether an explanation is accepted is determined by a utility and a simplification function
specified by the various stakeholders of the system.
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Figure 2.1: An overview of our proposed framework.
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2.2 Explanations
To motivate our explanation framework, we first establish the basic definitions.

Definition 1 (System) NLP software that aims to establish expertise in a task by explaining its
predictions.
Definition 2 (Explanation) A model’s justification for a decision it makes in service of a task.
Definition 3 (Model) The procedure that the system was trained on to enable decision making
and explanation capacity for a given task. Typically, this system is a trained machine learning
method.

2.2.1 Explanation Stakeholders (SE)
Even among humans, not all questions are equally good at probing the phenomenon in question
to get at a good explanation [69]. Situations like this often raise two important questions:

What is a good explanation?
Who is the explanation for?

We argue that explanations are governed by social structures and individuals within these
social structures. Stakeholders are a collection of humans that are related to the system in a way
that the decision of the system affects them and how they relate to the system. For any explanation
producing system, it is imperative that the stakeholders are defined clearly and how their decisions
impact the explanation design. We define the primary stakeholders as having two primary roles:

Explanation Producer(s): are the architects of a system whose goal is to design a system
capable of providing explanations alongside the decision for a given task.

Explanation Consumer(s): are the end-users of the system, who rely on the output of the
system to make judgements for specific use-cases.

2.2.2 Utility ( U(t) )
In economics, utility is a measure of the relative satisfaction from, or desirability of, consumption
of various goods and services [171]. In the context of AI applications, optimizing for overall
utility is often applied the problem of evaluating factors with respect to multiple performance
criteria. Maximizing utility has been widely used in intelligent applications [10, 27, 52, 89].

We extend this idea for explanations, and define the end-goal of the explantion in terms of
their utility. The choice of the utility function maybe task-specific, but identifying general utility
factors across multiple tasks is a challenging and widely impactful reserach challenge. A good
utility function should provide model the ability to collect adequate evidence for each production
in the explanation and also be able to evaluate the efficacy of the explanation as a whole. In
practice, we can employ a variety of approaches to collect evidences for each of the production
from the explanation grammar. For NLP research, some candidates for identifying utility of a
production are shown below:
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Type Dataset U(t) P (t) Research
Questions

Attention Bahdanau et al. [7] “Importance” Input 1. Faithful? (U(t))
values overlay 2. Handle complex attentions ?

(P (t))

Chained Inoue et al. [77]; Reasoning NL 1. Arbitrary depth ? (U(t), S(t))
Sentences Jhamtani and Clark [84]; Chains 2. Multiple Decompositions
from Corpus Xie et al. [198] (depth > 1) for same sample ? (S(t))

Connecting Camburu et al. [24]; Chains NL 1. Beyond shallow ? (U(t))
Sentence Rajani et al. [142] (depth=1) 2. Repeat the answer

in a sentence ? (S(t))

Deductive Clark et al. [32]; Proof logical 1. Generalizes beyond
Proofs Saha et al. [150] structures proofs scientific domain ? (U(t))

Qualitative Rajagopal et al. [141] Qual. relations NL 1. Generalizes beyond
Structures + sentences procedural domain ? (U(t))

Rationales DeYoung et al. [43]; Supporting NL 1. Expl. outside input space ? (U(t))
Thorne et al. [184]; text 2. Can handle composition ?
Yang et al. [199] in input (U(t), S(t))

Modular Andreas et al. [4]; Functional functional 1. Preserves performance ? (U(t))
Networks Jiang and Bansal [86]; reasoning primitives 2. Can leverage pretraining ? (U(t))

Gupta et al. [63] modules

Table 2.1: Overview of explanation learning tasks proposed in the literature (and open research
questions) seen through the lens of recursive descent. “Input overlay” means that the obtained
values are then overlaid on to the input features to simplify the interpretation. “NL” simplification
implies that the output is already in the natural language form (which we assume human under-
standable in general). Research Questions are shortened to fit.

1. Retrieval from a Knowledge Source : Every node or a node-edge-node pair can be
augmented with a score w.r.t. to its validity based on an external knowledge base [33, 44, 173].
Such a score could be useful for knowledge-intensive explanations where grounding every
production rule to a reliable source is essential.

2. Via auxiliary tasks : Another way of validating a production from the explanation grammar
is using an auxiliary task. For instance, we can augment each proposition in the explanation with a
set of Natural Language Inference (NLI) [110] statements. An acceptable explanation production
should not only identify associated entailments, but also contradictions and irrelevant (neutral)
statements.

We also outline some approaches to score the utility of the overall explanation in addition to
scoring the productions individually:

1. Downstream-Task Performance : An explanation’s utility can also be computed based on
whether it a task that can benefit by incorporating the explanations downstream.
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2. Simulation : If an end-task can be simulated using virtual environment, an explanation
can be verified by checking whether they can be used to achieve a given goal in a simulated
environment [94, 135]. Such approaches provide strong grounding(§7.3), but the verifiability is
limited to the actions and objects in the environment.

3. Approximate Proofs : An explanation could also act as a approximate-proof [31, 150, 178],
i.e., we should be able to trace a soft proof structure such that it is immediately evident if the
model makes a mistake. Such an u formulation has an additional advantage — the ability of being
used as feedback to the model itself, potentially leading towards interactively explaining models.

A utility function, in theory can employ a variety of evidence methods to support an ex-
planation. But, we want to emphasize that a key aspect of an explanation producing system
is that the output explanations should be finite time verifiable. An explanation should have
the ability to be verified in finite time towards a bounded rational choice [169], for flexibility
to work in real-world use-cases. In our grammar formulation, achieving grounded nodes and
edges within finite recursive depth can be adapted to impose this time-constraint specification for
interpretability as described in Doshi-Velez and Kim [46].

Type Approach U(t) P (t) Research
Questions

Influence Han et al. [68]; Influential NL 1. Works at high dimensions? (S(t))
Functions Koh and Liang [92] Training Samples 2. Local influences ? (U(t))

Saliency Simonyan et al. [165]; Gradients Input 1. Gradient reflect importance ? (U(t))
Maps Sundararajan et al. [175]; Overlay 2. Can it be faithful ? (U(t))

Smilkov et al. [167] 3. Additional utilities ? (U(t))

Contextual Singh et al. [166]; Feature Input 1. Beyond binary classification? (U(t))
Decomposition Jin et al. [87] Clustering Overlay 2. Additional utilities ? (U(t))

Perturbations Feng et al. [54]; Local Decision 1. Beyond local ? (U(t))
Ebrahimi et al. [50] Perturbations Boundary 2. Distribution shifts ? (U(t), S(t))
Ribeiro et al. [145] Projection 3. Robustness ? (U(t))

Linguistic Hewitt and Liang [73]; End-Task Predefined 1. If no predefined end task? (U(t))
Probing Voita and Titov [188] Probes Task(s) 2. Good probe acc. = competence ?

(U(t), S(t))

Table 2.2: Overview of inverse explanation learning tasks proposed in the literature (and open
research questions) seen through the lens of recursive descent. “Input Overlay” means that the
obtained values are then overlaid on to the input features to simplify the interpretation. “NL”
simplification implies that the output is already in the natural language form (which we assume
human understandable in general). Research Questions are shortened to fit.

2.2.3 Simplification ( P (t) )
Edge Foundation posed the following question to a group of 191 intellectuals including academics,
writers, artists, and intellectuals : What is your favorite deep, elegant, or beautiful explanation?
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1. An overarching pattern consistent among most thinkers is that the most important factor for a
good explanation is simplicity. Simplicity defines the ability to concisely abstract the fundamental
properties of a system [9, 164]. A simplified explanation has the ability to be understood by the
maximum amount of stakeholders. Jeffreys [83] argued that “the simpler laws have the greater
prior probability”. We extend this argument to explanations to say that simplified explanations
have the higher prior probability of finding evidence in the real world. The theory of simplicity
has also the advantage of being modeled as a machine learning problem [112].

Consider the example of neural network models. These models are often treated as black-box
models [104]. They often represent features as continuous vectors, which are often inscrutable. In
neural network models, a simplification function P (t) would map the neural network representa-
tions in the vector space to human interpretable concepts expressed through natural language. A
good explanation should simplify the explanation such that all the stakeholders can adequately
ground each unit of the explanation. The following instance shows an example where the same
explanation can be expressed in multiple ways.

Consider the following example. From top to bottom, the explanation’s complexity increases,
thereby only accounting for lesser and lesser users as a function of their depth in vocabulary.

Input : Does boiling a medical device with chemicals remove bacteria from it ?
System Output : Yes
Explanation 1: Chemicals cleans the medical device and heat kills bacteria
Explanation 2: Chemicals disinfect the medical device and heat kills bacteria
Explanation 3: Chemicals sterilize the medical device and heat kills bacteria
Explanation 4: Chemicals depyrogenates the medical device and heat kills bacteria

The formulation of the simplification function P (t) enables us to tune the right level of
complexity to explain depending on the requirements determined by the stakeholders. Additionally,
the simplification function allows us to personalize explanations of a single sample to multiple
end-users, potentially leading to tailor explanations for diverse set of users.

2.3 Conclusion
In this chapter, we establish some fundamental goals towards building explainable NLP systems.
Our approach takes a holistic view of their stakeholders’ utility and simplicity requirements. It
helps establish how we should view explanations

1https://www.edge.org/inthenews/what-is-your-favorite-deep-elegant-or-beautiful-explanation
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Part I

Explanations via Data
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Chapter 3

Explanations via Data : Static Structure

In this chapter, we first explore data-based explanations and whether such explanations are useful
for a downstream task. In this work, wse present QUARTET, a system that constructs such
explanations from paragraphs, by modeling the explanation task as a multitask learning problem.
QUARTET constructs explanations from the sentences in the procedural text, achieving ∼ 18
points better on explanation accuracy compared to several strong baselines on a recent process
comprehension benchmark. On an end task on this benchmark, we show a surprising finding that
good explanations do not have to come at the expense of end task performance, in fact leading to
a 7% F1 improvement over SOTA.

Utility : End-task performance
Simplification : Sentences in source document, and the corresponding qualitative relation-
ships
Explanation Structure : A fixed production from the grammar where the nodes are
sentences and the edges are qualitative relationships.

3.1 Introduction
Procedural text is common in natural language (in recipes, how-to guides, etc.) and finds many
applications such as automatic execution of biology experiments [124], cooking recipes [17] and
everyday activities [201]. However, the goal of procedural text understanding in these settings
remains a major challenge and requires two key abilities, (i) understanding the dynamics of the
world inside a procedure by tracking entities and what events happen as the narrative unfolds. (ii)
understanding the dynamics of the world outside the procedure that can influence the procedure.

While recent systems for procedural text comprehension have focused on understanding the
dynamics of the world inside the process, such as tracking entities and answering questions about
what events happen, e.g., [18, 71, 181], the extent to which they understand the influences of
outside events remains unclear. In particular, if a system fully understands a process, it should
be able to predict what would happen if it was perturbed in some way due to an event from the
outside world. Such counterfactual reasoning is particularly challenging because, rather than
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Figure 3.1: Given a procedural text, the task is to explain the effect of the perturbation using the
input sentences.

asking what happened (described in text), it asks about what would happen in an alternative world
where the change occurred.

Recently, Tandon et al. [183] introduced the WIQA dataset that contains such problems,
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requiring prediction of the effect of perturbations in a procedural text. They also presented
several strong models on this task. However, it is unclear whether those high scores indicate
that the models fully understand the described procedures, i.e., that the models have knowledge
of the causal chain from perturbation to effect. To test this, Tandon et al. [183] also proposed
an explanation task. While the general problem of synthesizing explanations is hard, they
proposed a simplified version in which explanations were instead assembled from sentences in
the input paragraph and qualitative indicators (more/less/unchanged). Although they introduced
this explanation task and dataset, they did not present a model to address it. We fill this gap by
proposing the first solution to this task.

We present a model, QUARTET (QUAlitative Reasoning wiTh ExplanaTions) that takes as
input a passage and a perturbation, and its qualitative effect. The output contains the qualitative
effect and an explanation structure over the passage. See Figure 3.1 for an example. The
explanation structure includes up to two supporting sentences from the procedural text, together
with the qualitative effect of the perturbation on the supporting sentences (more of or less of in
Figure 3.1). QUARTET models this qualitative reasoning task as a multitask learning problem to
explain the effect of a perturbation.

Our main contributions are:

• We present the first model that explains the effects of perturbations in procedural text. On a
recent process comprehension benchmark, QUARTET generates better explanations compared
to strong baselines.
• On an end task on this benchmark, we show a finding that good explanations do not have to

come at the expense of end task performance, in fact leading to a 7% F1 improvement over
SOTA. (refer §3.6). Prior work has found that optimizing for explanation can hurt end-task
performance. Ours is a useful datapoint showing that good explanations do not have to come
at the expense of end-task performance1.

ears less protected→ (MORE/+) sound enters the ear → (MORE/+) sound hits ear drum → (MORE/+) more sound detected
blood clotting disorder→ (LESS/-) blood clots → (LESS/-) scab forms → (MORE/+) less scab formation
breathing exercise→ (MORE/+) air enters lungs → (MORE/+) air enters windpipe → (MORE/+) oxygen enters bloodstream
squirrels store food→ (MORE/+) squirrels eat more → (MORE/+) squirrels gain weight → (MORE/+) hard survival in winter
less trucks run→ (LESS/-) trucks go to refineries → (LESS/-) trucks carry oil → (MORE/+) less fuel in gas stations
coal is expensive→ (LESS/-) coal burns → (LESS/-) heat produced from coal → (LESS/-) electricity produced
legible address→ (MORE/+) mailman reads address → (MORE/+) mail reaches destination → (MORE/+) on-time delivery
more water to roots→ (MORE/+) root attract water → MORE/+) roots suck up water → (LESS/-) plants malnourished
in a quiet place→ (LESS/-) sound enters the ear → (LESS/-) sound hits ear drum → (LESS/-) more sound detected
eagle hungry→ (MORE/+) eagle swoops down → (MORE/+) eagle catches mouse → (MORE/+) eagle gets more food

Table 3.1: Examples of our model’s predictions on the dev. set in the format: “qp → di xi →
dj xj → de qe”. Supporting sentences xi, xj are compressed e.g., “the person has his ears less
protected”→ “ears less protected”

1All the code will be publicly shared upon acceptance
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3.2 Related work
Procedural text understanding: Machine reading has seen tremendous progress. With machines
reaching human performance in standard QA benchmarks [42, 143], more challenging datasets
have been proposed [48] that require background knowledge, commonsense reasoning [180]
and visual reasoning [5, 207]. In the context of procedural text understanding which has gained
considerable amount of attention recently, [18, 38, 71] address the task of tracking entity states
throughout the text. Recently, [183] introduced the WIQA task to predict the effect of perturbations.

Understanding the effects of perturbations, specifically, qualitative change, has been studied
using formal frameworks in the qualitative reasoning community [57, 191] and counterfactual
reasoning in the logic community [99]. The WIQA dataset situates this task in terms of natural
language rather than formal reasoning, by treating the task as a mixture of reading comprehension
and commonsense reasoning. However, existing models do not explain the effects of perturbations.
Explanations: Despite large-scale QA benchmarks, high scores do not necessarily reflect under-
standing [119]. Current models may not be robust or exploit annotation artifacts [65]. This makes
explanations desirable for interpretation [155].

Attention based explanation has been successfully used in vision tasks such as object detection
[131] because pixel information is explainable to humans. These and other token level attention
models used in NLP tasks [193] do not provide full-sentence explanations of a model’s decisions.

Recently, several datasets with natural language explanations have been introduced, e.g.,
in natural language inference [24], visual question answering [128], and multi-hop reading
comprehension (HotpotQA dataset) [199]. In contrast to these datasets, we explain the effects of
perturbations in procedural text. HotpotQA contains explanations based on two sentences from a
Wikipedia paragraph. Models on the HotpotQA would not be directly applicable to our task and
require substantial modification for the following reasons: (i) HotpotQA models are not trained to
predict the qualitative structure (more or less of chosen explanation sentences in Figure 3.1). (ii)
HotpotQA involves reasoning over named entities, whereas the current task focuses on common
nouns and actions (models that work well on named entities need to be adapted to common nouns
and actions [154]). (iii) explanation paragraphs in HotpotQA are not procedural while the current
input is procedural in nature with a specific chronological structure.

Another line of work provides more structure and organization to explanations, e.g., using
scene graphs in computer vision [59]. For elementary science questions, Jansen et al. [82] uses a
science knowledge graph. These approaches rely on a knowledge structure or graph but knowledge
graphs are incomplete and costly to construct for every domain [190]. There are trade-offs between
unstructured and structured explanations. Unstructured explanations are available abundantly
while structured explanations need to be constructed and hence are less scalable [24]. Generating
free-form (unstructured) explanations is difficult to evaluate [36, 208], and adding qualitative
structure over them is non-trivial. Taking a middle ground between free-form and knowledge
graphs based explanations, we infer a qualitative structure over the sentences in the paragraph.
This retains the rich interpretability and simpler evaluation of structured explanations as well as
leverages the large-scale availability of sentences required for these explanation.

It is an open research problem whether requiring explanation helps or hurts the original task
being explained. On the natural language inference task (e-SNLI), Camburu et al. [24] observed
that models generate correct explanations at the expense of good performance. On the Cos-E
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task, recently Rajani et al. [142] showed that explanations help the end-task. Our work extends
along this line in a new task setting that involves perturbations and enriches natural language
explanations with qualitative structure.

3.3 Problem definition
We adopt the problem definition described in Tandon et al. [183], and summarize it here.

Input: 1. Procedural text with steps x1 . . . xK . Here, xk denotes step k (i.e., a sentence) in a
procedural text comprising K steps.
2. A perturbation qp to the procedural text and its likely candidate effect qe.

Output: An explanation structure that explains the effect of the perturbation qp:

qp → dixi → djxj → deqe

• i: step id for the first supporting sentence.
• j: step id for the second supporting sentence.
• di ∈ {+ − • }: how step id i is affected.
• dj ∈ {+ − • }: how step id j is affected.
• de ∈ {+ − • }: how qe is affected.

See Figure 3.1 for an example of the task, and Table 3.1 for examples of explanations.
An explanation consists of up to two (i.e., zero, one or two) supporting sentences i, j along

with their qualitative directions di, dj . If there is only one supporting sentence, then j = i. If de =
• , then i =Ø, j =Ø (there is no valid explanation for no-effect).

While there can be potentially many correct explanation paths in a passage, the WIQA dataset
consists of only one gold explanation considered best by human annotators. Our task is to predict
that particular gold explanation.

Assumptions: In a procedural text, steps x1 . . . xK are chronologically ordered and have a
forward flowing effect i.e., if j > i then more/increase of xi will result in more/increase of xj .
Prior work on procedural text makes a similar assumption [38]. Note that this assumption does
not hold for cyclic processes, and cyclic processes have already been flattened in WIQA dataset.
We make the following observations based on this forward-flow assumption.
a1: i <= j (forward-flow order)
a2: dj = di (forward-flow assumption) 2

2Note that this does not assume all sentences have the same directionality of influence. For example, a paragraph
could include both positive and negative influences: “Predators arrive. Thus the rabbit population falls...”. Rather, the
dj = di assumption is one of narrative coherence: the more predators arrive, the more the rabbit population falls.
That is, within a paragraph, we assume enhancing one step will have enhanced effects (both positive or negative
effects) on future steps - a property of a coherently authored paragraph.
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a3: For the WIQA task, de is the answer label because it is the end node in the explanation
structure.

a4: If di = • then answer label = • (since qp does not affect qe, there is no valid explanation.)
a5: 1 ≤ i ≤ K; if di = •, then i = Ø (see a4)
a6: i ≤ j ≤ K; if de = •, then j = Ø (see a4)

This assumption reduces the number of predictions, removing dj and answer label (see a2,
a3). Given x1 . . . xK , qp, qe the model must predict four labels: i, j, di, de .

3.4 QUARTET model
We can solve the problem as a classification task, predicting four labels: i, j, di, de. If these
predictions are performed independently, it requires several independent classifications and this
can cause error propagation: prediction errors that are made in the initial stages cannot be fixed
and can propagate into larger errors later on [61].

To avoid this, QUARTET predicts and explains the effect of qp as a multitask learning problem,
where the representation layer is shared across different tasks. We apply the widely used parameter
sharing approach, where a single representation layer is followed by task specific output layers
[11]. This reduces the risk of overfitting to a single task and allows decisions on i, j, di, de to
influence each other in the hidden layers of the network. We first describe our encoder and then
the other layers on top, see Figure 3.2 for the model architecture.

Encoder: To encode x1 . . . xK and question q we use the BERT architecture [42] that has
achieved state-of-the-art performance across several NLP tasks [30], where the question q = qp⊕qe
(⊕ stands for concatenation). We start with a byte-pair tokenization [156] of the concate-
nated passage and question (x1 . . . xK ⊕ q) . Let [xk] denote the byte-pair tokens of sentence
xk. The text is encoded as [CLS] [x1] [unused1] [SEP] [x2] [unused2] [SEP] .. [q]
[SEP]. Here, [CLS] indicates a special classification token. [SEP] and [unused1..K] are
special next sentence prediction tokens.

These byte-pair tokens are passed through a 12-layered Transformer network, resulting in
a contextualized representation for every byte-pair token. In this contextualized representation,
the vector u = [u1, ...uK,uq] where uk denotes the encoding for [xk], and uq denotes question
encoding. Let El be the embedding size resulting from lth transformer layer. In that lth layer,
[u1, ...uK] ∈ RK∗El . The hidden representation of all transformer layers are initialized with
weights from a self-supervised pre-training phase, in line with contemporary research that uses
pre-trained language models [42].

To compute the final logits, we add a linear layer over the different transformer layers in
BERT that are individual winners for individual tasks in our multitask problem. For instance, out
of the total 12 transformer layers, lower layers (layer 2) are the best predictors for [i, j] while
upper layers (layer 10 and 11) are the best performing predictors for [di, de]. Zhang et al. [208]
found that the last layer is not necessarily the best performing layer. Different layers seem to learn
complementary information because their fusion helps. Combining different layers by weighted
averaging of the layers has been attempted with mixed success [30, 208]. We observed the same
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Figure 3.2: QUARTET model. Input: Concatenated passage and question using standard BERT
word-piece tokenization. Representation Layer: The input is encoded using BERT transformer.
We obtain [CLS] and sentence level representations. Prediction: From the sentence level
representation, we use an MLP to model the distributions for i and j (using attended sentence
representation). From [CLS] representation, we use MLP for di (and dj , since di = dj) and de
distributions. Output: Softmax to predict {i, j, di, dj, de}

trend for simple weighted transformation. However, we found that learning a linear layer over
concatenated features from winning layers improves performance. This is probably because there
is very different information encoded in a particular dimension across different layers, and the
concatenation preserves it better than simple weighted averaging.

Classification tasks: To predict the first supporting sentence xi, we obtain a softmax distribution
si ∈ RK over [u1, ...uK]. From the forward-flow assumption made in the problem definition
section earlier, we know that i ≤ j, making it possible to model this as a span prediction xi:j . Inline
with standard span based prediction models [157], we use an attended sentence representation
(si ⊙ [u1, ...uK])⊕ ([u1, ...uK]) ∈ RK∗2El to predict a softmax distribution sj ∈ RK to obtain xj .
Here, ⊙ denotes element-wise multiplication and ⊕ denotes concatenation.

For classification of di (and dj , since di = dj), we use the representation of the first token (i.e.,
CLS token ∈ REl) and a linear layer followed by softmax to predict di ∈ { + − • }. Classification
of de is performed in exactly the same manner.

The network is trained end-to-end to minimize the sum of cross-entropy losses for the indi-
vidual classification tasks i, j, di, de. At prediction time, we leverage assumptions (a4, a5, a6) to
generate consistent predictions.
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3.5 Experiments
Dataset: We train and evaluate QUARTET on the recently published WIQA dataset 3 comprising
of 30,099 questions from 2107 paragraphs with explanations (23K train, 5K dev, 2.5K test). The
perturbations qp are either linguistic variation (17% examples) of a passage sentence (these are
called in-para questions) or require commonsense reasoning to connect to a passage sentence (41%
examples) (called, out-of-para questions). Explanations are supported by up to two sentences
from the passage: 52.7% length 2, 5.5% length 1, 41.8% length 0. Length zero explanations
indicate that de =• (called, no-effect questions), and ensure that random guessing on explanations
gets low score on the end task.

Metrics: We evaluate on both explainability and the downstream end task (QA). For explain-
ability, we define explanation accuracy as the average accuracy of the four components of the
explanation: accexpl = 1

4
∗
∑

i∈{i,j,di,de} acc(i) and accqa = acc(de) (by assumption a3). The QA
task is measured in terms of accuracy.

Hyperparameters: QUARTET fine-tunes BERT, allowing us to re-use the same hyperparame-
ters as BERT with small adjustments in the recommended range [42]. We use the BERT-base-
uncased version with a hidden size of 768. We use the standard adam optimizer with a learning
rate 1e-05, weight decay 0.01, and dropout 0.2 across all the layers. All the models are trained on
an NVIDIA V-100 GPU.

Models: We measure the performance of the following baselines (two non-neural and three
neural).
• RANDOM: Randomly predicts one of the three labels {+ − • } to guess [di, de]. Supporting
sentences i and j are picked randomly from |avgsent| sentences.
•MAJORITY: Predicts the most frequent label (no effect i.e. de=• in the case of WIQA dataset.)
• qeONLY : Inspired by existing works [65], this baseline exploits annotation artifacts (if any) in
the explanation dataset by retraining QUARTET using only qe while hiding the permutation qp in
the question.
• HUMAN upper bound (Krippendorff’s alpha inter-annotator values on [i, j, di]) on explainability
reported in [183]4.
• TAGGING: We can reduce our task to a structured prediction task. An explanation i, j, di, de
requires span prediction xi:j and labels on that span. So, for example, the explanation i =
1, j = 2, di =+, dj =− for input x1 · x5 can be expressed as a tag sequence: B-CORRECT
E-OPPOSITE O O O. Explanation i = 2, j = 4, di =+, dj =− would be expressed as:
O B-CORRECT I-CORRECT E-OPPOSITE O. When de = • , then the tag sequence will O
O O O O. This BIEO tagging scheme has seven labels T = {B-CORRECT, I-CORRECT,
B-OPPOSITE, I-OPPOSITE, E-CORRECT, E-OPPOSITE, O}.
Formulating as a sequence tagging task allows us to use any standard sequence tagging model
such as CRF as baseline. The decoder invalidates sequences that violate assumptions (a3 - a6).

3WIQA dataset link: http://data.allenai.org/wiqa/
4https://allenai.org/data/wiqa
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To make the encoder strong and yet comparable to our model, we use exactly the same BERT
encoder as QUARTET. For each sentence representation uk, we predict a tag ∈ T . A CRF over
these local predictions additionally provides global consistency. The model is trained end-to-end
by minimizing the negative log likelihood from the CRF layer.
• BERT-NO-EXPL: State-of-the-art BERT model [183] that only predicts the final answer de, but
cannot predict the explanation.
• BERT-W/-EXPL: A standard BERT based approach to the explanation task that predicts the
explanation structure. This model minimizes only the cross-entropy loss of the final answer de,
predicting an explanation that provides the best answer accuracy.
• DATAAUG: This baseline is adapted from Asai and Hajishirzi [6], where a RoBERTa model
is augmented with symbolic knowledge and uses an additional consistency-based regularizer.
Compared to our model, this approach uses a more robustly pre-trained BERT (RoBERTa) with
data-augmentation optimized for QA Accuracy.
• QUARTET: our model described in §3.4 that optimizes for the best explanation structure.

3.5.1 Explanation accuracy

QUARTET is also the best model on explanation accuracy. Table 3.2 shows the performance
on [i, j, di, de]. QUARTET also outperforms baselines on every component of the explanation.
QUARTET performs better at predicting i than j. This trend correlates with human performance-
picking on the second supporting sentence is harder because in a procedural text neighboring
steps can have similar effects.

We found that the explanation dataset does not contain substantial annotation artifacts for the
qeONLY model to leverage (qeONLY < MAJORITY)

Table 3.1 presents canonical examples of QUARTET dev predictions.

acci accj accdi accde accexpl
RANDOM 12.50 12.50 33.33 33.33 22.91
qeONLY 32.77 32.77 33.50 44.82 36.00
MAJORITY 41.80 41.80 41.80 41.80 41.80
TAGGING 42.26 37.03 56.74 58.34 48.59
BERT-W/-EXPL 38.66 38.66 69.20 75.06 55.40
QUARTET 69.24 65.97 75.92 82.07 73.30
HUMAN 75.90 66.10 88.20 96.30 81.63

Table 3.2: Accuracy of the explanation structure (i, j, di, de). Overall explanation accuracy is
accexpl. (Note that BERT-NO-EXPL and DATAAUG do not produce explanations).

We also tried a simple bag of words and embedding vector based alignment between qp and xi

in order to pick the most similar xi. These baselines perform worse than random, showing that
aligning qp and xi involves commonsense reasoning that the these models cannot address.
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3.6 Downstream Task
In this section, we investigate whether a good explanation structure leads to better end-task
performance. QUARTET advocates explanations as a first class citizen from which an answer can
be derived.

3.6.1 Accuracy on a QA task
We compare against the existing SOTA on WIQA no-explanation task. Table 3.3 shows that
QUARTET improves over the previous SOTA BERT-NO-EXPL by 7%, achieving a new SOTA
results. Both these models are trained on the same dataset5. The major difference between BERT-
NO-EXPL and QUARTET is that BERT-NO-EXPL solves only the QA task, whereas QUARTET

solves explanations, and the answer to the QA task is derived from the explanation. Multi-tasking
(i.e., explaining the answer) provides the gains to QUARTET.

QA accuracy
RANDOM 33.33
MAJORITY 41.80
qeONLY 44.82
TAGGING 58.34
BERT-NO-EXPL 75.19
BERT-W/-EXPL 75.06
DATAAUG 78.50
QUARTET 82.07
HUMAN 96.30

Table 3.3: QUARTET improves accuracy on the QA (end task) by 7% points.

All the models get strong improvements over RANDOM and MAJORITY. The least performing
model is TAGGING. The space of possible sequences of correct labels is large, and we believe
that the current training data is sparse, so a larger training data might help. QUARTET avoids this
sparsity problem because rather than a sequence it learns on four separate explanation components.

Table 3.4 presents the accuracy based on question types. QUARTET achieves large gains over
BERT-NO-EXPL on the most challenging out-of-para questions. This suggests that QUARTET

improves the alignment of qp and xi that involves some commonsense reasoning.

3.6.2 Correlation between QA and Explanation
QUARTET not only improves QA accuracy but also the explanation accuracy. We find that QA
accuracy (accde in Table 3.2) is positively correlated (Pearson coeff. 0.98) with explanation

5We used the same code and parameters as provided by the authors of WIQA-BERT. The WIQA with-explanations
dataset has about 20% fewer examples than WIQA without-explanations dataset [http://data.allenai.org/wiqa/] This is
because the authors removed about 20% instances with incorrect explanations (e.g., where turkers didn’t have an
agreement). So we trained both QUARTET and WIQA-BERT on exactly the same vetted dataset. This helped to
increase the score of WIQA-BERT by 1.5 points.
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Model in-para out-of no-effect overall
para

RANDOM 33.33 33.33 33.33 33.33
MAJORITY 00.00 00.00 100.0 41.80
qeONLY 20.38 20.85 78.41 44.82

BERT-NO-EXPL 71.40 53.56 90.04 75.19
BERT-W/-EXPL 72.83 58.54 92.03 75.06

QUARTET 73.49 65.65 95.30 82.07

Table 3.4: QUARTET improves accuracy over SOTA BERT-NO-EXPL across question types.

accuracy (accexpl). This shows that if a model is optimized for explanations, it leads to better
performance on end-task. Thus, with this result we establish that (at least on our task) models can
make better predictions when forced to generate a sensible explanation structure. An educational
psychology study [49] hypothesizes that student performance improves when they are asked to
explain while learning. However, their hypothesis is not conclusively validated due to lack of
evidence. Results in Table 3.2 hint that, at least on our task, machines that learn to explain, ace
the end task.

3.7 Error analysis
We analyze our model’s errors (marked in red) over the dev set, and observe the following
phenomena.

1. Multiple explanations: As mentioned in Section 3.3, more than one explanations can be
correct. 22% of the incorrect explanations were reasonable, suggesting that overall explanation ac-
curacy scores might under-estimate the explanation quality. The following example illustrates that
while gathering firewood is appropriate when fire is needed for survival,
one can argue that going to wilderness is less precise but possibly correct.

Gold: need fire for survival → (MORE/+) gather firewood → (MORE/+) build fire for warmth →
(MORE/+) extensive camping trip

Pred: need fire for survival → (MORE/+) go to wilderness → (MORE/+) build fire for warmth →
(MORE/+) extensive camping trip

2. i, j errors: Fig. 3.3 shows that predicted and gold distributions of i and j are similar. Here,
sentence id = −1 indicates no effect. The model has learned from the data to never predict j < i
without any hard constraints.

The model is generally good at predicting i, j and in many cases when the model errs, the
explanation seems plausible. Perhaps for the same underlying reason, human upper bound is not
high on i (75.9%) and on j (66.1%). We show an example where i, j are incorrectly predicted (in
red), but sound plausible.
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Figure 3.3: Gold vs. predicted distribution of i & j resp.

Gold: ear is not clogged by infection → (OPP/-) sound hits ear → (OPP/-)
electrical impulse reaches brain → (OPP/-) more sound detected

Pred: ear is not clogged by infection → (OPP/-) sound hits ear → (OPP/-)
drum converts sound to electrical impulse → (OPP/-) more sound detected

3. di, de errors: When the model incorrectly predicts di, a major source of error is when ‘−’
is misclassified. 70% of the ‘−’ mistakes, should have been classified as ‘+’. A similar trend
is observed for de but the misclassification of ‘− is less skewed. Table 3.5 shows the confusion
matrix of di and of de in { + − • } .

• + −
• 1972 91 47
+ 295 883 358
− 226 492 639

• + −
• 1972 89 49
+ 261 909 295
− 252 346 830

Table 3.5: Confusion matrix for di (left) and de overall (right). (gold is on x-axis, predicted on
y-axis.)

The following example shows an instance where ‘−’ is misclassified as ‘+’. It implies that
there is more scope for improvement here.

Gold: less seeds fall to the ground→ (OPP/-) seed falls to the ground → (OPP/-) seeds germinate
→ (MORE/+) fewer plants

Pred: less seeds fall to the ground→ (OPP/-) seed falls to the ground → (OPP/-) seeds germinate
→ (OPP/-) fewer plants

4. in-para vs. out-of-para: The model performs better on in-para questions (typically, linguistic
variations) than out-of-para questions (typically, commonsense reasoning). Also see empirical
evidence of this in Table 3.4.
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The model is challenged by questions involving commonsense reasoning, especially to connect
qp with xi in out-of-para questions. For example, in the following passage, the model incorrectly
predicts • (no effect) because it fails to draw a connection between sleep and noise:

Pack up your camping gear, food. Drive to your campsite. Set up your tent. Start a fire in the fire pit. Cook
your food in the fire. Put the fire out when you are finished. Go to sleep. Wake up ...

qp: less noise from outside
qe: you will have more energy

Analogous to i and j, the model also makes more errors between labels ‘+’ and ‘−’ in
out-of-para questions compared to in-para questions (39.4% vs 29.7%) – see Table 3.6.

• + −
+ 29 295 78
− 49 130 259

• + −
+ 266 588 280
− 177 362 380

Table 3.6: Confusion matrix di for in-para & out-of-para

[183] discuss that some in-para questions may involve commonsense reasoning similar to
out-of-para questions. The following is an example of an in-para question where the model fails
to predict di correctly because it cannot find the connection between protected ears and
amount of sound entering.

Gold: ears less protected → (MORE/+) sound enters ear → (MORE/+) sound hits ear drum →
(MORE/+) more sound detected

Pred: ears less protected → (OPP/-) sound enters the ear → (OPP/-) sound hits ear drum →
(MORE/+) more sound detected

5. Injecting background knowledge: To study whether additional background knowledge can
improve the model, we revisit the out-of-para question that the model failed on. The model fails to
draw a connection between sleep and noise, leading to an incorrect (no effect) ‘•’ prediction.

By adding the following relevant background knowledge sentence to the paragraph “sleep
requires quietness and less noise”, the model was able to correctly change proba-
bility mass from de = ‘•’ to ‘+’. This shows that providing commonsense through Web paragraphs
and sentences is a useful direction.

Pack up your camping gear, food ... Sleeping requires quietness and less noise. Go to sleep. Wake up ...

qp: less noise from outside
qe: you will have more energy

3.8 Assumptions and Generality
QUARTET makes two simplifying assumptions: (1) explanations are assembled from the provided
sentences (question + context), rather than generated, and (2) explanations are chains of qualitative,
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causal influences, describing how an end-state is influenced by a perturbation. Although these
(helpfully) bound this work, the scope of our solution is still quite general: Assumption (1) is a
common approach in other work on multihop explanation (e.g., HotpotQA), where authoritative
sentences support an answer. In our case, we are the first to apply the same idea to chains of
influences. Assumption (2) bounds QUARTET to explaining the effects of qualitative, causal
influences. However, this still covers a large class of problems, given the importance of causal
and qualitative reasoning in AI. The WIQA dataset provides the first large-scale dataset that
exemplifies this class: given a qualitative influence, assemble a causal chain of events leading
to a qualitative outcome. Thus QUARTET offers a general solution within this class, as well as a
specific demonstration on a particular dataset.

3.9 Conclusion
Explaining the effects of a perturbation is critical, and we have presented the first system that can
do this reliably. QUARTET not only predicts meaningful explanations, but also achieves a new
state-of-the-art on the end-task itself, leading to an interesting finding that models can make better
predictions when forced to explain. Our work opens up new directions for future research: 1)
Can additional background context from the Web improve explainable reasoning? 2) Can such
structured explanations be applied to other NLP tasks? We look forward to future progress in this
area.
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Chapter 4

Explanations via Data : Dynamic Structure

In this chapter, we explore the idea of dynamically expanding explanation structure. In this chapter,
we propose a method to iteratively build an explanation graph of relevant consequences explicitly
in a structured situational graph (st graph) using natural language queries over a finetuned language
model (M). Across multiple domains, CURIE generates st graphs that humans find relevant and
meaningful in eliciting the consequences of a new situation. We show that st graphs generated by
CURIE improve a situational reasoning end task (WIQA-QA) by 3 points on accuracy by simply
augmenting their input with our generated situational graphs, especially for a hard subset that
requires background knowledge and multi-hop reasoning.

Utility : End task performance on a downstream task - supervised and zero-shot
Translation : Situational explanations through natural language concepts
Explanation Structure : Dynamic recursive tree, ability to expand at any node

4.1 Introduction
A long-standing challenge in reasoning is to model the consequences of a novel situation in a
context. Consider these questions - Would it rain more if we plant more trees?, or What would
help water to boil faster? - answering these questions requires comprehending the complex events
such as plant growth and water boiling, where much of the information remains implicit (by
Grice’s maxim of quantity [62]), thus requiring inference.

Tasks that require situational reasoning are increasingly observed by machines deployed in the
real world - unexpected situations are common, and machines are expected to gracefully handle
them. It is also essential for tasks such as qualitative reasoning [176, 182], physical commonsense
reasoning [15, 152], and defeasible inference [148]. Unlike humans, machines are not adept at
such reasoning.

Prior systems that address situational reasoning take as input a context providing background
information, a situation (st), and an ending, and predict the reachability from st to that ending
either in a classification setting (e.g., Tandon et al. [182] grounds the path on at most two sentences
in the context) or recently, in a story-generation setting [136], where the goal is to generate an
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QA pairs: 
Q1: What helps st imminently?  
A1 : bright skies 
Q2: What hurts st imminently?  
A2: cloudy skies 
Q3: What’s helped eventually ? 
A3: taller plants

bright 
skies

more 
sunlight

cloudy 
skies

taller 
plants

Context : 
Sunlight strikes 
chlorophyll.  
Sunlight trapped  … 

Situation (st) : 
more sunlight

RQ1. St-Graph Generation :

RQ2. Example QA End-Task :

Context Situation [c] = storm End [e]= smaller rocks
c’s influence 

on e?  
accelerates 

(helps)

Figure 4.1: RQ1: CURIE generates situational graphs through iterative queries to a model, making
the model’s knowledge of influences explicit (above; positive, and negative influence) iteratively.
RQ2: Such graphs can improve situational reasoning QA when added to the QA input (below,
where the context is a passage about erosion).

alternate ending when the original ending and a counterfactual situation are given. However,
generating effects of situations in real-world scenarios, where the ending is typically unknown is
still an open challenge. We also might need st-reasoning capabilities across multiple domains
(beyond stories).

Further, multiple types of consequences to a situation might have to be generated (e.g, positive
and negative impacts or eventual and immediate impacts), which requires outputs in a structured
form.

To address these limitations, we propose CURIE- a generation framework that generalizes
multiple reasoning tasks under a general situational reasoning framework.

The task is illustrated in Figure 4.1: given some context and just a situation st (short phrase),
our framework generates a situational reasoning graph (st-graph). At its core, CURIE constructs a
reasoning graph based on the contextual knowledge that supports the following kinds of reasoning:

1. If st occurs, what will happen imminently/ eventually?
2. If st occurs, which imminent/ eventual effect will not happen?
3. What will support/ prevent the st?
As shown in Figure 4.1, our approach to this task is to iteratively compile the answers to
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M

st tasks model st-graph

Figure 4.2: CURIE framework consists of two components: (i) a formulation that adapts datasets
that allow st-reasoning for pretraining (ii) a method to iteratively build structured st-graphs using
natural language queries over a fine-tuned language model (M).

questions 1,2,3 to construct the st-graph. Compared to a free-form text output obtained from
an out-of-the-box seq-to-seq model, our approach gives more control and flexibility over the
graph generation process, including arbitrarily reasoning for any particular node in the graph.
Downstream tasks that require reasoning about situations can compose natural language queries
to construct a st-reasoning graph that can be simply augmented to their input. In this chapter, we
ask the following two research questions:
RQ1 Given a specific context and situation, can we iteratively generate a situational reasoning

graph of potential effects?
RQ2 Can the st-graphs generated by CURIE improve performance at a downstream task?
In response, we make the following contributions:

(i.) We present CURIE, the first domain-agnostic situational reasoning framework that takes as
input some context and an st and iteratively generates a situational reasoning graph (§4.2).
We show that our framework is effective at situational reasoning across three datasets, as
validated by human evaluation and automated metrics.

(ii.) We show that st graphs generated by CURIE improve a st-reasoning task (WIQA-QA) by
3 points on accuracy by simply augmenting their input with our generated situational
graphs, especially for a hard subset that requires background knowledge and multi-hop
reasoning (§4.4). (Table 4.2).

4.2 CURIE for Situational Reasoning
CURIE provides both a general framework for situational reasoning and a method for constructing
st-reasoning graphs from pretrained language models. The overall architecture of CURIE is shown
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Dataset Original formulation st formulation st graph

WIQA

context: Wind creates waves..
Waves wash on beaches...
ques: If there is storm, how
will it affect bigger waves?
chain: storm→ stronger
wind→ bigger waves
answer: bigger waves

Given context and
st: there is a storm
Q1: What does st help imminently ?
A1: stronger wind
Q2: What does st help eventually ?
A2: bigger waves

storm

stronger 
wind

big 
waves

QUAREL

context: Car rolls further on
wood than on thick carpet
ques: what has more resistance?
(a) wood (b) the carpet
simplified logical form of
context, ques:
distance is higher on wood→
(a) friction is higher in carpet (or)
(b) friction is higher in wood
answer: (b) the carpet

Given context and
st: distance is higher on wood
Q1: What does st entail imminently ?
A1: friction is lower in wood
Q2: What does st contradict imminently ?
A2: friction is lower in carpet
Q3: What does st entail eventually ?
A3: wood has more resistance

high dist 
on wood

low 
friction on 

wood

friction 
low on 
carpet

wood 
resistance 

is more

DEFEAS

context: Two men and a dog are
standing among the green hills.
hypothesis: The men are farmers.
evidence type: strengthener
answer: the dog is a sheep dog

Given context and
st: dog is a sheep dog
Q1: What does st strengthen imminently ?
A1: The men are farmers
st: men are studying tour maps
Q2: What does st weaken imminently?
A2: The men are farmers

sheep 
dog

men're 
farmer

men 
w/ tour 

map

Table 4.1: The datasets used by CURIE and how we re-purpose them for st reasoning graph
generation task. As explained in §4.2.1, the green edges set depicts relation (r) (entail, strengthen,
helps) and red edges depict one of (contradict, weaken, hurts). The { imminent, eventual } effects
(c) are used to support multihop reasoning. DEFEAS = DEFEASIBLE, chain refers to reasoning
chain. Some examples are cut to fit. The key insight is that an st-graph can be decomposed into a
series of QA pairs, enabling us to leverage seq-to-seq approaches for st-reasoning.

in Figure 4.2. CURIE framework consists of two components: (i) st-reasoning task formulation :
a formulation that adapts datasets that allow situational reasoning (ii) st-graph construction : a
method to fine-tune language modelM to generate the consequences of a situation and iteratively
construct structured situational graphs (shown in figure 4.1). In this section, we present (i) our
task formulation (§4.2.1), (ii) adapting existing datasets for CURIE task formulation (§4.2.2), (iii)
the learning procedure (§4.2.3), and (iv) the st-graph generation via inference (§4.2.4).
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4.2.1 Task Formulation
We describe the general task formulation for adapting pretraining language models to the st-
reasoning task. Given a context T = {s1, s2, . . . , sN} with N sentences, and a situation st, our
goal is to generate an st-graph G in this changed world.

An st-graph G(V,E) is an unweighted directed acyclic graph. A vertex v ∈ V is an event or a
state such that it describes a change to the original conditions in T . Each edge eij ∈ E is labeled
with an relationship rij , that indicates whether vi positively or negatively influences vj . Positive
influences are represented via green edges comprising one of {entails, strengthens, helps} and
negative influences represented via red edges that depict one of {contradicts, weakens, hurts}.
Our relation set is general and can accommodate various st-reasoning tasks. Given two nodes
vi, vk ∈ V , if a path from vi to vk has more than one edge, we describe the effect c as eventual
and a direct effect as imminent.

We obtain the training data for st-graph generation task by decomposing an st-graph into a set
of question-answer pairs. Each question comprises of the context T , a st-vertex vs, a relation r,
and the nature of the effect c. The output is an answer to the question, that corresponds to the
target node vt. An example is shown in Figure 4.1. Compared to an end-to-end approach to graph
generation, our approach gives more flexibility over the generation process, enabling reasoning
for any chosen node in the graph.

4.2.2 Generalizing Existing Datasets
Despite theoretical advances, lack of large-scale general situational reasoning datasets presents a
challenge to train seq-to-seq language models. In this section, we describe how we generalize
existing diverse datasets towards st-reasoning towards finetuning a language model M. If a
reasoning task allows a context, a st-situation and can describe the influence of st in terms of
green and/or red edges, it can be seamlessly adapted to CURIE framework. Due to lack of existing
datasets that directly support our task formulation, adapt the following three diverse datasets -
WIQA, QUAREL and DEFEASIBLE for CURIE.

WIQA: WIQA task studies the effect of a perturbation in a procedural text [182]. The context T
in WIQA is a procedural text describing a physical process, and st is a perturbation i.e., an external
situation deviating from T , and the effect of st is either helps or hurts. An example of WIQA to
st-formulation is shown in Table 4.1.

QUAREL: QUAREL dataset [176] contains qualitative story questions where T is a narrative, and
the st is a qualitative statement. T and st are also expressed in a simpler, logical form, which we
make use of because it clearly highlights the reasoning challenge. The effect of st is either entails
or contradicts (example in Table 4.1).

DEFEASIBLE: The DEFEASIBLE reasoning task [148] studies inference in the presence of a
counterfactual. The context T is given by a premise which describes a everyday context, and the st
is an observed evidence which either strengthens or weakens the hypothesis. We adapt the original
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Research question Training dataset Test dataset Task Metrics
Can we generate WIQA-st WIQA-st generation ROUGE, BLEU
good st graphs? (§4.3) QUAREL-st QUAREL-st generation ROUGE, BLEU

DEFEASIBLE-st DEFEASIBLE-st generation ROUGE, BLEU

Can we improve WIQA-st, WIQA-QA WIQA-QA finetuned QA accuracy
downstream tasks? QUAREL-st QUARTZ-QA zero shot accuracy
(§4.4.1, §4.4.2)

Table 4.2: Overview of experiments

Dataset train dev test

WIQA 119.2k 34.8k 34.8k
QUAREL 4.6k 1.3k 652
DEFEASIBLE 200k 14.9k 15.4k

Table 4.3: Dataset wise statistics, we maintain the splits

abductive setup as shown in Table 4.1. In addition to commonsense situations, DEFEASIBLE-st
also comprises of social situations, thereby contributing to the diversity of our datasets.

4.2.3 Learning to Generate st-graphs
To reiterate our task formulation (§4.2.1), for a given context and st, we first specify a set of
questions and the resulting output for the questions is then compiled to form a st-graph.

The training data thus consists of tuples (xi,yi), with xi = (T, st , r, c)i where T denotes
the context, st the situation, r denotes the edge (green or red), c signifies the nature of the effect
(imminent or eventual), and yi is the output (a short sentence or a phrase depicting the effect).
The output of NQ such questions is compiled into a graph G = {yi}1:NQ

(as shown in Figure 4.1).
We use a pretrained language modelM to estimate the probability of generating an answer yi

for an input xi. We first transform the tuple xi = ⟨x1
i , x

2
i , . . . , x

N
i ⟩ into a single query sequence of

tokens by concatenating its components i.e. we set xi = concat(T, st , r, c), where concat
refers to string concatenation. Let the sequence of tokens representing the target event be
yi = ⟨y1i , y2i , . . . , yMi ⟩, where N and M are the lengths of the query and the target event sequences
We model the conditional probability pθ(yi | xi) as a series of conditional next token distributions
parameterized by θ: as pθ(yi | xi) =

∏M
k=1 pθ(y

k
i | xi, y

1
i , .., y

k−1
i ).

4.2.4 Inference to Decode st-graphs
The auto-regressive factorization of the language model pθ allows us to efficiently generate target
event influences for a given test input xj . The process of decoding begins by sampling the first
token y1j ∼ pθ(y | xj). The next token is then drawn by sampling y2j ∼ pθ(y | xj, y

1
j ). The

process is repeated until a specified end-symbol token is drawn at the Kth step. We use nucleus

29



Algorithm 1 ITERATIVEGRAPHGEN (IGEN): generating st graphs with CURIE

Given: CURIE language modelM.
Given: Context passage T , a situation st, a set R = {(ri, ci)}

NQ

i=1 made of NQ (r, c) tuples.
Result: st graph G where the ith node will be generated with the relation ri and the effect type ci.
Init: G← ∅
for i← 1, 2, . . . , NQ do

// Create a query
xi = concat(T, st, ri, ci) /* Sample a node from the language model M

*/
yi ∼M(xi) /* Add the sampled node and the edge to the graph */
G = G ∪ (ri, ci,yi)

end
return G

sampling [76] in practice. The tokens ⟨y1j , y2j , . . . , yK−1
j ⟩ are then returned as the generated answer.

To generate the final st-reasoning graph G, we combine all the generated answers {yi}1:NQ
that

had the same context and st pair (T, st ) over all (r, c) combinations. We can then use generated
answer st ′ ∈ {yi}1:NQ

, as a new input toM as (T, st ′) to recursively expand the st-graph to
arbitrary depth and structures (Algorithm 1). One such instance of using CURIE st graphs for a
downstream QA task is shown in §4.4.

4.3 RQ1: Establishing Baselines for st-graph Generation

This section reports on the quality of the generated st reasoning graphs and establishes strong
baseline scores for st-graph generation. We use the datasets described in section §4.2.2 for our
experiments.

4.3.1 Baseline Language Models

To reiterate, CURIE is composed of (i) task formulation component and (ii) graph construction
component, that uses a language model M to construct the st-graph. We want to emphasize
that any language model architecture can be a candidate forM. Since our st-task formulation is
novel, we establish strong baselines for the choice of language model. Our experiments include
large-scale language models (LSTM and pretrained transformer) with varying parameter size and
pre-training, along with corresponding ablation studies. OurM choices are as follows:

LSTM Seq-to-Seq: We train an LSTM [74] based sequence to sequence model [8] which uses
global attention described in [106]. We initialize the embedding layer with pre-trained 300
dimensional Glove [129]1. We use 2 layers of LSTM encoder and decoder with a hidden size of
500. The encoder is bidirectional.

1https://github.com/OpenNMT/OpenNMT-py
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Model (M) BLEU ROUGE
WIQA-st

LSTM Seq-to-Seq 7.51 18.71
GPT ∼(w/o T ) 7.82 19.30
GPT-2 ∼(w/o T ) 10.01 20.93
GPT 9.95 19.64
GPT-2 16.23 29.65

QUAREL-st
LSTM Seq-to-Seq 13.05 24.76
GPT ∼(w/o T ) 20.20 36.64
GPT-2 ∼(w/o T ) 26.98 41.14
GPT 25.48 42.87
GPT-2 35.20 50.57

DEFEASIBLE-st
LSTM Seq-to-Seq 7.84 17.50
GPT ∼(w/o T ) 9.91 20.63
GPT-2 ∼(w/o T ) 9.17 9.43
GPT 10.49 21.79
GPT-2 10.52 21.19

Table 4.4: Generation results for CURIE with baselines for language modelM. We find that
context is essential for performance (w/o T ). We provide these baseline scores as a reference for
future research.
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GPT: We use the original design of GPT [137] with 12 layers, 768-dimensional hidden states, and
12 attention heads.

GPT-2: We use the medium (355M) variant of GPT-2 [138] with 24 layers, 1024 hidden size, 16
attention heads.

For both GPT and GPT-2, we initialize the model with the pre-trained weights and use the
implementation provided by Wolf et al. [196].

4.3.2 Automated Evaluation
To evaluate our generated st-graphs, we compare them with the gold-standard reference graphs.
To compare the two graphs, we first flatten both the reference graph and the st-graph as text
sequences and then compute the overlap between them. We use the standard evaluation metrics
BLEU [127], and ROUGE [102] 2. Our results indicate that the task of st generation is challenging,
and suggests that incorporating st-reasoning specific inductive biases might be beneficial. At
the same time, Table 4.4 shows that even strong models like GPT-2 struggle on the st-graph
generation task, leaving a lot of room for model improvements in the future.

We also show ablation results for the model with respect to the context T (§4.2.1), by fine-
tuning without the context. We find that context is essential for performance for both GPT and
GPT-2 (indicated with w/o T in Table 4.4). Further, we note that the gains achieved by adding
context are higher for GPT-2, hinting that larger models can more effectively utilize the context.

4.3.3 Human Evaluation

Task GPT-2 (w/o T ) GPT-2No Preference

Relevance 23.05 46.11 30.83
Reference 11.67 31.94 56.39

Table 4.5: Results of human evaluation. The numbers show the percentage(%) of times a particular
option was selected for each metric.

In addition to automated evaluation, we perform human evaluation on the ablation (GPT-2-
w/o T and GPT-2 models) to assess the quality of generations, and the importance of grounding
generations in context. Three human judges annotated 120 unique samples for relevance and
reference, described next. Both models (with and without context) produced grammatically fluent
outputs without any noticeable differences.

Relevance: The annotators are provided with the input of a procedural text T , the st, and
the relational questions. The output events generated by GPT-2 (w/o T ) and GPT-2 are also
provided in random order. The annotators were asked, “Which system (A or B) is more accurate
relative to the background information given in the context?” They could also pick option C (no
preference).

2We use Sharma et al. [159] for calculating the overlap. https://github.com/Maluuba/nlg-eval
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Error Class Description % Question Reference Predicted

Polarity The predicted polarity was wrong 5% What does ‘oil fields over-used’ there is not more oil
but event was correct help at eventually ? oil refined is refined

Linguistic The output was a 20% What does ‘fewer rabbits will more more
Variability linguistic variant of the reference become pregnant’ hurts at imminently ? rabbits babies

Related The output was related but 17% What does you inhale more air there will be you develop
Event different reference expected from the outside hurts at imminently ? less oxygen more blood clo-

in your blood -ts in your veins

Wrong The output was 30% What does ‘less nutrients for more more wine
was completely unrelated plants’ hurt at eventually ? plants being produced

Erroneous The gold annotations 2% What does ‘less rabbit less more
Reference were erroneous rabbit mating’ hurt at imminently? rabbits babies

Table 4.6: Examples of error categories. Error analysis is only shown for the incorrect outputs.

Comparison with true event (reference): We measure how accurately each system-generated
event reflects the reference (true) event. Here, the annotators saw only the reference sentence and
the outputs of two systems (A and B) in a randomized order. We asked the annotators, “Which
system’s output is closest in meaning to the reference?” The annotators could pick the options A,
B, or C (no preference).

For relevance and reference comparison tasks (Table 4.5), we present the percentage of the
count of human judges for each of the three categories. The table illustrates that GPT-2 performs
better than GPT-2 (w/o T ) on both the metrics. Particularly, GPT-2 not only performs better
than GPT-2 (w/o T ) but also much better than the “No Preference” option in the relevance metric.
This means that GPT-2 generates target events that logically follow the passage and source events.
The reference and relevance task scores together show that GPT-2 does not generate target events
that are exactly similar to the reference target events, but they are correct in the context of the
passage and the source event. This can happen due to linguistic variation in the generation, as well
as the ability of the source event to influence multiple target events in the context of the passage.
We study this in more detail in the error analysis presented below.

4.3.4 Error Analysis

Table 4.6 shows the error analysis on 100 random samples from the validation set. We found
that for about 26% of samples, the generated event influence had an exact match with the
reference, and about 30% of the samples had no overlap with the reference (category Wrong in
Table 4.6). We found that for 20% of the cases, the generated target event was correct but was
expressed differently compared to the reference text (Linguistic Variability class in Table 4.6).
Furthermore, we observed that in 17% of cases, the generated target event was not the same as the
reference target event, but was relevant to the passage and the question, as shown in the Related
Event category in Table 4.6. In 5% of the samples (Polarity), the model generates events with
opposite polarity compared to the reference. A small fraction (2%) of samples had incorrect gold
annotations.
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4.3.5 Consistency Analysis

Finally, we measure if the generated st-graphs are consistent. Consider a path of length two in the
generated st-graph (say, A→ B→ C). A consistent graph would have identical answers to what
does A help eventually i.e., “C”, and what does B help imminently i.e., “C”.

To analyze consistency, we manually evaluated 50 random generated length-two paths, selected
from WIQA-st development set. We observed that 58% of the samples had consistent output w.r.t
to the generated output. We also measure consistency w.r.t. the gold standard, and observe that
the system output is about 48% consistent. Despite being trained on independent samples, our
st-graphs show reasonable consistency and improving consistency further is an interesting future
research direction.

4.3.6 Discussion

In summary, our task formulation allows adapting pretrained language models for generating
st-graphs that humans find meaningful and relevant. Automated metrics show the utility of using
large-scale models and grounding the st-graph generation in context. We establish multiple
baselines with varying levels of parameter size and pretraining to guide future research.

4.4 RQ2: CURIE for Downstream Tasks

In this section, we describe the approach for augmenting st graphs for downstream reasoning
tasks. We first identify the choice of tasks (st-tasks) for domain adaptive pretraining [66] and
obtain CURIE language model M. The downstream task then provides input context, st and
(relation, type) tuples of interest, and obtains the st-graphs (see Algorithm 1). We describe one
such instantiation in the section §4.4.1.

4.4.1 CURIE augmented WIQA-QA

We examine the utility of CURIE-generated graphs in the WIQA-QA [182] downstream question
answering benchmark. Input to this task is a context supplied in form of a passage T , a starting
event c, an ending event e, and the output is a label {helps, hurts, or no effect} depicting how the
ending e is influenced by the event c.

We hypothesize that CURIE can augment c and e with their influences, giving a more compre-
hensive picture of the scenario compared to the context alone. We use CURIE trained on WIQA-st
to augment the event influences in each sample in the QA task as additional context.

More concretely, we obtain the influence graphs for c and e by defining Rfwd = {(helps,
imminent), (hurts, imminent) } and Rrev = { (helped by, imminent), (hurt by, imminent)}, and
using algorithm 1 as follows:

G(c) = IGEN(T, c, Rfwd)

G(e) = IGEN(T, e, Rrev)
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Query Type BERT + CURIE BERT

1-hop 78.78 71.60
2-hop 63.49 62.50
3-hop 68.28 59.50

Exogenous 64.04 56.13
In-para 73.58 79.68

Out-of-para 90.84 89.38

Overall 76.92 73.80

Table 4.7: QA accuracy by number of hops, and question type. BERT refers to the original BERT
results reported in Tandon et al. [182], and BERT + CURIE are the results obtained by augmenting
the QA dataset with the influences generated by CURIE.

We hypothesize that WIQA-st graphs are able to generate reasoning chains that connect c to
e, even if e is not an immediate consequence of c. Following Tandon et al. [182], we encode
the input sequence concat(T, c, e) using the BERT encoder E [42], and use the [CLS] token
representation (ĥi) as our sequence representation.

We then use the same encoder E to encode the generated effects concat(G(c), G(e)), and
use the [CLS] token to get a representation for augmented c and e (ĥa). Following the encoded
inputs, we compute the final loss as: li = MLP1(ĥi), and la = MLP1(ĥa) and L = α×Li+β×La,

where li, la represent the logits from ĥi and ĥa respectively, and Li and La are their corre-
sponding cross-entropy losses. α and β are hyperparameters that decide the contribution of the
generated influence graphs and the procedural text to the loss. We set α = 1 and β = 0.9 across
experiments.

QA Evaluation Results Table 4.7 shows the accuracy of our method vs. the vanilla BERT
model by question type and number of hops between cf and e. We also observe from Table 4.7
that augmenting the context with generated influences from CURIE leads to considerable gains over
BERT based model, with the largest improvement seen in 3-hop questions (questions where the e
and c are at a distance of three reasoning hops in the influence graphs). The strong performance
on the 3-hop question supports our hypothesis that generated influences might be able to connect
two event influences that are farther apart in the reasoning chain. We also show in Table 4.7 that
augmenting with CURIE improves performance on the difficult exogenous category of questions,
which requires background knowledge.

In summary, the evaluation highlights the value of CURIE as a framework for improving
performance on downstream tasks that require counterfactual reasoning and serves as an evaluation
of the ability of CURIE to reason about st-scenarios.

4.4.2 Zero-shot Evaluation
In addition to supervised augmentation, we also evaluate CURIE-M in a zero-shot setting. Towards
this, we perform a zero-shot evaluation on QUARTZ [177], a dataset for qualitative counterfactual
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reasoning.
Each sample in QUARTZ consists of a question qi = If the top of the mountain gets hotter,

the ice on the summit will:, context ki = ice melts at higher temperatures, the task is to pick the
right answer from two options a1

i = increase, and a2
i = decrease. Since this task is setup as a

qualitative binary classification task, CURIE cannot be directly adopted to augment the QA pairs
like described in Algorithm 1.

For the zero-shot setting, we use CURIE-M fine-tuned on QUAREL-st as our language model.
For an unseen test sample (qi, a

1
i , a

2
i ,ki), we select a1

i as the correct answer if pθ(a1
i | xi) >

pθ(a
2
i | xi), and select a2

i otherwise (here pθ stands for QUAREL-st). Our zero-shot CURIE-M
achieves a 54% accuracy compared to supervised BERT model which achieves 54.7% accuracy.

These results suggest that CURIE performs competitively at tasks while having no access to
any supervision.

4.4.3 Discussion
In summary, we show substantial gains when a generated st-graph is fed as an additional input to
the QA model. Our approach forces the model to reason about influences within a context, and
then ask questions, which proves to be better than asking the questions directly.

4.5 Related Work
Closed-domain st reasoning : In NLP, a large body of work has focused on what-if questions
where the input is a context, st, and an ending, and the task is to predict the reachability from st to
the ending. The most common approach [141, 176, 182] is a classification setting where the path is
defined as more or less (qualitative intensities) over the sentences in the input context (a paragraph
or procedural text with ordered steps). Such models do not generalize across domains because it is
difficult to deal with changing vocabularies across domains. In contrast, our framework combines
such diverse st-reasoning tasks under a general framework.

Open-domain st reasoning : Very recently, there has been interest in st reasoning from a
retrieval setting [103] and a more common generation setting, attributed partially to the rise of
neural generation models [202]. Qin et al. [136] presents generation models to generate the path
from a counterfactual to an ending in a story. Another recent dataset [148] proposes defeasible
inference in which an inference (X is a bird, therefore X flies) may be weakened or overturned in
light of new evidence (X is a penguin), and their dataset and task is to distinguish and generate two
types of new evidence – intensifiers and attenuators. We make use of this dataset by reformulating
their abductive reasoning setup into a deductive setup (see §4.2.2 for details).

Current systems make some simplifying assumptions, e.g. that the ending is known. Multiple
st (e.g., more sunlight, more pollution) can happen at the same time, and these systems can only
handle one situation at a time. Finally, all of these systems assume that the st happens once in a
context. Our framework strengthens this line of work by dropping that assumption of an ending
being given, during deductive st reasoning. In principle, our formulation is general enough to
allow for multiple st and recursive reasoning as more situations unfold. Most importantly, our
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framework is the first to allow for st reasoning across diverse datasets, within a realistic setting
where only the context and st are known.

4.6 Conclusion
We present CURIE, a situational reasoning that: (i) is effective at generating st-reasoning graphs,
validated by automated metrics and human evaluations, (ii) improves performance on two down-
stream tasks by simply augmenting their input with the generated st graphs. Further, our framework
supports recursively querying for any node in the st-graph. For future work, we aim to design ad-
vanced models that seeks consistency, and another line of research to study recursive st-reasoning
as a bridge between dialog and reasoning.
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Chapter 5

Explanations for Humans

Defeasible reasoning is a mode of reasoning where conclusions can be overturned by taking into
account new evidence. A commonly used method in cognitive science and logic literature is to
handcraft argumentation supporting inference graphs. While humans find inference graphs very
useful for reasoning, constructing them at scale is difficult. In this chapter, we automatically
generate such inference graphs through transfer learning from a related NLP task that shares
the kind of reasoning that inference graphs support. Through automated metrics and human
evaluation, we find that our method generates meaningful graphs for the defeasible inference
task. Human accuracy on this task improves by 20% by consulting the generated graphs. Our
findings open up exciting new research avenues for cases where machine reasoning can help
human reasoning.

5.1 Introduction

Defeasible inference [148] is a mode of reasoning in which given a premise P (Rob went for
a hike), a hypothesis H (Rob saw an elephant, it was pink) may be weakened or overturned in
light of new evidence i.e., an update U (Rob often has hallucinations). Given the non-monotonic
nature of this reasoning, humans find it challenging to master this task [123]. This problem has
been widely studied in classical AI through logic [79, 113], and in cognitive science through
argumentative models [132]. A prominent approach is to support defeasible inference through
argumentations by constructing an inference graph [133].

Despite their prominence [12], argumentative models are not scalable because an inference
graph needs to be handcrafted for every example. Recently, Rudinger et al. [148] proposed two
auxiliary tasks related to defeasible inference: (i) an NLI task to predict whether an update U
would weaken or strengthen a hypothesis H, and (ii) a generative task to generate an update
U given a premise P and a hypothesis H. However, this only addresses a part of the problem
because their inference is still not supported by the line of reasoning that a human typically uses
to solve this task, namely mediators (e.g., hallucinations can be deceptive) and contextualizers
(some elephants can have mutated gene which makes them look different) that are inherently
embedded in an inference graph, limiting their utility for humans (figure 5.1).

In this paper, we adopt the concept of an inference graph for defeasible reasoning from
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cognitive science and provide a computational model to make their generation scalable. Training
such a model would require a large amount of annotated inference graphs, which will be too
expensive to obtain. Instead, our solution is to draw a parallel to a related reasoning task in
NLP [182], where the reasoning is supported by a graph that we find has similarities with the kind
of reasoning that an inference graph supports. We train a model that can learn from the NLP task
and effectively transfer it to generate inference graphs. Such transfer learning is made possible
due to the powerful seq-to-seq neural language models that did not exist before.

Figure 5.1: (a) An example of an Inference Graph adapted from Pollock [133] and (b) Structure of
an Influence Graph adapted from WIQA [182] dataset. The adapted influence graph incorporates
the contextualizers, mediators, hypotheses and situations, making them useful for defeasible
reasoning.

The contributions of this paper are the answers to the following two research questions:
• Can we automate the construction of the argumentation supporting inference graphs? In

§5.2, we show that we can effectively construct meaningful graphs using transfer learning.
• Can our generated graphs help improve human performance? In §5.3, we show that

humans leverage generated graphs to improve their performance on a previously reported
benchmark.

5.2 Generating argumentation supporting Inference Graphs
We start by drawing parallels to a counterfactual reasoning task in NLP - the WIQA [182] task.
WIQA consists of a set of procedural passages, each accompanied by a human-curated influence
graph. The influence graph captures the causal influences between the events in the context of
the process described by the passage. We draw a connection between inference graphs [133] and
influence graphs [182] by drawing parallels between their reasoning structures. In essence, each
inference graph from Pollock [132] can be instantiated via an influence graph from Tandon et al.
[182] by interpreting the nodes in both the graphs as follows (Figure 5.1):
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i. Contextualizers (C): these nodes set the context around a situation and connect to the P in
some way.

ii. Updates (U): these nodes are new situations that emerge which might overturn an inference.

iii. Hypothesis (H): Hypothesis nodes describes the outcome/conclusion of the situation.

iv. Mediators (M): Mediators are nodes that help bridge the knowledge gap between a situation
and a hypothesis node by explaining their connection explicitly.

Figure 5.1 presents an example to highlight the similarities between the two graphs by labeling
an example node adapted from [133], and the structure of the influence graph from [182] with the
four node types that we defined above. A green edge indicates that the source node has a positive
influence on the target node, and a red edge indicates a negative influence. Further, each node can
either act as a strengthener (+) or a weakener (-) for the hypothesis. Consequently, these graphs
can support similar type of reasoning e.g., the effect of U on H and how this can change in light
of external influences (C) is captured by graph paths C+ to U and from U via a mediator node
(M+/M-) to H. Inspired by these similarities, we hypothesize that influence graphs can be used
to supplement defeasible reasoning.

5.2.1 Influence Graphs Generation
To obtain an influence graph for each defeasible query, we perform a zero-shot transfer from
WIQA [182], a corpus of 2100 (passage, influence graphs) pairs.

Training : We treat influence graph generation as a sequence-to-sequence mapping task. We
leverage WIQA to derive parallel data {(seqi

ip, seq
i
op)}Ni=1 for the task. Let (Ti,Gi) be a sample

in WIQA, where Ti is the passage text (e.g. describing how viruses spread), and Gi is the
corresponding influence graph (e.g., Figure 5.2). To create tokens of the input sequence seqi

ip, the
model trains best with explicit markers:

seqi
ip = Premise: Ti | Update: Ui | less/ more: Hi (5.1)

where Ti is the passage text (e.g. steps describing how viruses spread) and Ui and Hi are nodes
of Gi (these are phrases as shown in Figure 5.2).

The output seqi
op is set to a DOT-string representation of the corresponding influence graph Gi,

as such a representation was shown to be effective at extracting high-quality graphs [108] from
free-form text using language models (examples in the appendix). Thus, each passage-graph pair
(Ti,Gi) from WIQA is mapped to an input-output pair D = (seqi

ip, seq
i
op). We use this corpus to

fine-tune an autoregressive language modelM for graph generation. Essentially, the fine-tuned
M allows us to efficiently sample an influence graph for a given input sequence seqj

ip by drawing
samples from Gj ∼ Pθ(y | seqj

ip) using greedy sampling, where θ denotes the parameters of the
language model.

Zero-shot Transfer to Defeasible Inference : We use the model L trained on WIQA to generate
inference graphs on the defeasible inference dataset by Rudinger et al. [148]. We obtain an
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Figure 5.2: An example of an influence graph similar to ones in WIQA that we train on.

influence graph for each defeasible input (P, H, U) by converting it to an input sequence that
can be fed toM by filling the template (5.1). This conversion from (P, H, U) to template (5.1)
is done by setting the premise P as the context passage T, the update U as the node U, and the
attenuated and strengthened outcomes are simulated by prefixing the hypothesis H with the tokens
Less and More respectively. This input is then passed to theM to generate an influence graph.

Results on Influence Graph Generation We use T5-11B [140] fine-tuned on D derived
from WIQA (§5.2.1) as our graph generation language model (M). All the graphs generated
by our model were in valid DOT format. We use the standard generation metrics BLEU [127]
and ROUGE [102] to evaluate M on the test split of WIQA. Each node Ni in the reference
graph is compared with the corresponding generated node N̂i using BLEU(Ni, N̂i) (Node-BLEU).
Further, node-edge-node pairs (neighbors) (Ni, Nj) and (N̂i, N̂j) are compared using Rel-BLEU =
HM(BLEU(Ni, N̂i),BLEU(Nj, N̂j)) where HM is the harmonic mean. These metrics are averaged
over the graph (i.e., across the nodes and the edges), and further averaged across the corpus. We
perform these experiments across two different language models: GPT-2-MEDIUM [138] and
T5-11B. Finally, we calculate the overlap in the edge structures of the reference and generated
graphs match as Edge-MATCH%. We report the numbers in Table 5.1, and include a random
baseline for reference. A random baseline will correctly generate the nodes S, H+, and H- as they
are part of the query (3

8
nodes). As neither of these nodes are connected to another, the random

baseline will likely not generate any node pair correctly ( Rel-BLEU∼ 0). Since two unique graph
structures are possible [182], a random baseline would get Edge-match ∼ 50%. Table 5.1 shows
that our T5-based model is able to generate syntactically valid (high edge-match) and semantically
meaningful graphs. Additionally, we find that our generated graphs are helpful to humans on a
downstream task, as described next.

41



Model Random GPT-2-MEDIUM T5-11B

Node-BLEU 37.5 46.05 50.94
Rel-BLEU 0.0 19.34 33.01
Edge-match% 50.0 92.86 97.63

Table 5.1: Results on automated metrics showing that our T5-11B model is able to generate very
accurate graph structure and meaningful nodes that sufficiently match the reference nodes.

5.3 Do generated graphs help humans at defeasible reasoning?

Human Evaluation Rudinger et al. [148] performed a human evaluation on 2000 defeasible
queries, where given (P, H, U), the task was to label the nature of the effect of U on H as
Intensifies or Attenuates. Three human judges labeled each query, and the majority label was
then compared with the ground-truth to ascertain the accuracy. In their setup, human judges were
collectively right on 1745 samples (correct pool) and wrong on 255 samples (wrong pool). We
create a challenging pool of 510 queries for the human judges by combining the 255 queries in the
wrong pool with 255 queries sampled from the correct pool, giving a baseline accuracy of 50% for
this eval pool. Each query in this pool is supplemented with a generated influence graph (§5.2).
We found that our generated influence graphs showed high-levels of redundancy in contextualizers
and mediators, with about 46% of the generated influence graphs repeating these nodes. We found
that humans find it simpler to follow positive chains of influence, so to reduce their cognitive load,
we post-process each influence graph to only retain the strengthening contextualizer (Figure 5.1),
the situation (U), the strengthening mediator (M+), and the hypothesis (H).

In order to establish comparable gains, we replicate the evaluation setup of Rudinger et al.
[148] by using use the same Amazon Mechanical Turk template and the instruction set, and
the same pool of 230 qualified annotators that Rudinger et al. [148] selected based on a paid
qualification test, in which the workers were asked to answer SNLI queries of varying levels of
difficulty. We paid slightly above $15 per hour for the tasks.

For each query, in addition to answering the defeasible question, three judges were asked to
evaluate the augmented influence graphs on two aspects:

i) Is the influence graph useful? The judges were allowed to select from the following:

(a) helpful: the graph was crucial in helping towards answering the question

(b) relevant but not helpful: the graph had the right topic (relevant to the question) but did
not help in answering the question.

(c) irrelevant or misleading: the graph was irrelevant to the question or misled the human
judge to a wrong answer.

ii) Why is the influence graph useful? The judges were given an option to highlight the most
useful aspect of the generated influence graph. They were allowed to tag one or more of
the following aspects as the most helpful: i) Extraneous node, ii) Mediating node, and iii)
Structure of the graph.

We summarize the key findings below.
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Finding 1: influence graphs are helpful and relevant As Table 5.2 shows, a large majority
of the human judges found the influence graphs to be helpful or relevant. We calculate the
inter-annotator agreement for this question using majority-agreement = 1

N

∑N
i=1 mai where mai

indicates a majority agreement for the ith sample (i.e., at least 2 out of 3 judges agreed on the
label for the sample). The majority-agreement (ma) on these labels was 0.83. The judges marked
about 25% of the graphs as relevant but not helpful. The graphs in such cases were on topic but
not helpful in answering the query, thereby distinguishing the cases when the graph was crucial in
reaching the correct answer. Finally, we note that the graphs provided as hints could have been
helpful in two ways: by helping the human annotators arrive at the answer, or by reinforcing their
mental picture that helped them in making the right decision. Future research in this direction is
needed to study these aspects in depth.

Helpful 47.25
Relevant but not helpful 25.09
Irrelevant or misleading 10.58
No majority agreement 17.05

Table 5.2: Helpfulness of the augmentations.

Finding 2: Mediators are the most helpful for defeasible queries For every sample, we asked
the human judges to mark which parts of the graph was the most helpful. The judges could select
more than one aspect of the graph if they found multiple useful aspects. Table 5.3 shows the
percentage of human judges that selected the particular graph aspect as most helpful. We observe
that 49.48% of the judges who found the graphs useful indicated the mediator node as the most
helpful. This indicates that while there may be other events that impact U and H, the mediating
events are the most informative in determining the type of link between them.

Aspect % marked useful

Mediator 49.48
Extraneous 32.03
Structure 12.81
None helpful 5.68

Table 5.3: Most useful aspects of an influence graph.

Finding 3: Machine generated influence graphs help humans in defeasible reasoning Ta-
ble 5.4 shows that performance improves across all three tasks when the defeasible query is
augmented with an influence graph. On our challenging set of 510 queries, the overall accuracy
jumps nearly 20 points from 0.50 to 0.698. Figure 5.3 highlights that 113 queries that were
previously given the wrong answers were marked correctly when augmented with the influence
graphs.
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Dataset Human Human
[148] (ours)

SNLI 0.461 ± 0.11 0.553 ± 0.11
SOCIAL 0.628 ± 0.07 0.814 ± 0.06
ATOMIC 0.418 ± 0.06 0.657 ± 0.06

overall 0.500 ± 0.04 0.698 ± 0.04

Table 5.4: Human performance (accuracy) on the three tasks with and without generated influence
graphs along with Wilson’s score intervals for α = 95%. We tested the statistical significance
of these results using the McNemar’s test [115] and found the results to be statistically highly
significant (p < 1e− 6).

Figure 5.3: Human performance before and after the human judges were provided with the
influence graph.

5.4 Discussion and Conclusion
Our work takes the idea of using inference graphs for defeasible inference and scales up its
usability by automatically generating and augmenting them to a downstream defeasible task that
both humans and machines are known to find difficult. We identify that the contextualizer and
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mediator nodes are crucial to defeasible inference, and show that our generated graphs generate
these critical nodes effectively. Humans perform significantly better (20% absolute improvement)
across diverse defeasible datasets and overwhelmingly attribute their success to the mediator
nodes – giving insights into what helps and why. In this case study, we show that machines can fill
the gaps in human knowledge when for defeasible reasoning. While we establish that humans are
helped by these graphs, a further investigation on how (and if) the graphs reinforced their beliefs,
and what additional information in the graphs was beneficial to their understanding is essential.
Furthermore, a deeper understanding of the trade-offs (time spent in answering these questions
with and without the graphs) also forms important future work.
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Part II

Explanations via Models
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Chapter 6

Explanation via Models: Self-Explaining
Models

This chapter proposes methods to achieve interpretability via designing model architectures that
are fundamentally amenable to interpretability. The challenge is that such models need to maintain
their performance. Predominant approaches for it in NLP are limited to local feature attribution
based on attention scores which are often less useful and even deceiving to end users. In this
chapter, we introduce SELFEXPLAIN, a novel inherently interpretable self-explaining framework
for NLP that explains a classifier’s predictions using phrase-oriented concepts providing both local
(input level) and global (training data level) interpretations. SELFEXPLAIN augments existing
neural classifiers by adding (1) a globally interpretable layer that identifies the most influential
concepts in the training set for a given sample and (2) a locally interpretable layer that quantifies
the contribution of each local input concept by computing a relevance score relative to the predicted
label. Experiments across five text-classification datasets show that SELFEXPLAIN provides
improved interpretability without sacrificing performance. Most importantly, explanations from
SELFEXPLAINare perceived as more trustworthy, understandable, and useful by human judges as
compared to existing strong and widely-used baselines.

Utility : End task performance, interpretability through concepts in the training set and the
given sample in the same architecture
Simplification : Natural language concepts via phrases under a parse tree (compared to
word-level)
Explanation Structure : Single recursive depth with globally interpretable influential
training phrases, and most relevant phrases from input sample

6.1 Introduction
Neural network models are often opaque: they provide limited insight into interpretations of
model decisions and are typically treated as “black boxes” [104]. There has been ample evidence
that such models overfit to spurious artifacts [64, 96, 114] and amplify biases in data [174, 209].
This underscores the need to understand model decision making.
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Prior work in interpretability for neural text classification predominantly follows two ap-
proaches [147]: (i) post-hoc explanation methods that explain predictions for previously trained
models using model internals, and (ii) inherently interpretable models whose interpretability is
built-in and optimized jointly with the end task. While post-hoc methods are often the only option
for already-trained models, inherently interpretable models may provide greater transparency
since explanation capability is embedded directly within the model [26, 46, 90, 116, 147].

In natural language applications, feature attribution based on attention scores [40] has been
the predominant method for developing inherently interpretable neural classifiers. Such methods
interpret model decisions locally by explaining the classifier’s decision as a function of relevance
of features in input samples. While these methods enable interpretations of black-box classifiers,
their interpretations are shown to be unreliable [134, 158] and even unfaithful [81, 192]. Moreover,
with natural language being highly structured and compositional, explaining the role of higher-
level combinational concepts like phrasal structures goes beyond individual low-level feature
attributions, and remains an open challenge.

An alternative class of inherently interpretable classifiers explains model predictions locally
using human-understandable high-level concepts such as prototypes [28, 116] and interpretable
classes [93, 95]. They were recently proposed for computer vision applications, but despite their
promise have not yet been adopted in NLP. A known limitation of such approaches is that they
often cannot provide global explanations (explaining their decisions as a function of influential
training data), which limits their generality.

In this work, we propose SELFEXPLAIN–a self-explaining model framework for inter-
pretable text classifiers that combines the global and local aspects of interpretability via human-
interpretable high-level language concepts, producing a holistic picture of a classifier’s decisions.
SELFEXPLAIN incorporates two neural network modules: (i) Globally Interpretable Layer, a
differentiable layer that uses maximum inner product search (MIPS) to retrieve the most influential
concepts from the training data for a given input sample, and (ii) Locally Interpretable Layer, a
layer that quantifies the relevance of each concept to the final label distribution of a sample through
activation differences. We show that these layers can be integrated into transformer classifiers,
converting them into inherently interpretable architectures. The interpretability of the classifier is
enforced through regularization, and the entire model is end-to-end differentiable. To the best
of our knowledge, SELFEXPLAINis the first inherently interpretable neural text classification
approach to provide both global and local interpretability in a single framework.

Our experiments on three text classification tasks spanning five datasets with pretrained trans-
former models show that incorporating these interpretable layers facilitates richer interpretation
while maintaining end-task performance. The explanations from SELFEXPLAINare perceived
by human annotators as more trustable, understandable, and useful compared to strong baseline
interpretability methods. Our contributions are:

(i) We propose SELFEXPLAIN a novel self-explaining framework for neural text classifiers
that embeds both local and global aspects of interpretability. (ii) We introduce the Globally
Interpretable Layer and Locally Interpretable Layer, two novel end-to-end differentiable modules
that explain predictions both locally (through relevance of each concept) and globally (through
influential concepts from the training data). (iii) SELFEXPLAINs explanations improves over
low-level feature attributions and enables explanations through higher-level language phrasal
structures.
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6.2 Related Work

Interpretability by Probing: Heat maps based on attention [7] are one of the commonly used
interpretability tools for many downstream tasks such as machine translation [107], summarization
[149] and reading comprehension Hermann et al. [72]. It is widely debated whether such attention
mechanisms are reliable [81, 134, 192, 210]. An alternative to attention is to use gradients
[167, 175]. A recent finding [54] suggests gradient outputs may be counter-intuitive. Other
post-hoc interpretability methods such as Singh et al. [166] and Jin et al. [87] try to decompose
relevant and irrelevant aspects from hidden state vectors and obtain a relevance score. These
models focus on local interpretability, while methods such as Koh and Liang [92] and Han et al.
[68] focus on retrieving the most influential training samples for global interpretations.

Interpretability through Rationales: Another recent line of work explores collecting rationales
(snippets of text from input that can sufficiently predict the output label)Another recent line of
work explores collecting rationales (snippets of text from input that can sufficiently predict the
output label). Commonly, they are acquired through expert annotations [205]. Current neural
networks are trained on large-scale data, often costly to obtain. Some of the work along these
lines include collecting explanations along with the end-task. Some of the work along these lines
include collecting explanations along with the end-task label for commonsense reasoning [142]
and natural language inference [24]. Although very desirable, the costs associated with obtaining
human-annotated rationales for interpretability severely limits its applicability.

Interpretability by Design: Card et al. [25] relies on interpreting a given sample as a weighted
sum of the training samples while Croce et al. [35] identifies influential training samples using a
kernel-based transformation function. Jiang and Bansal [86] produce interpretations of a given
sample through modular architectures, where model decisions are explained through outputs of
intermediate modules. Our work resembles Melis and Jaakkola [116], in that we jointly train
to optimize for interpretability and end-task performance, and we enforce interpretability as a
regularization parameter. Additionally, we also provide the most influential training samples and
show that the end-performance is not sacrificed for interpretability.

6.3 SELFEXPLAIN framework

Let M be a neural C-class classification model that maps X → Y , where X are the inputs
and Y are the outputs. SELFEXPLAIN builds intoM, and it provides a set of explanations Z
via high-level “concepts” that explain the classifier’s predictions. We first define interpretable
concepts in §6.3.1. We then describe how these concepts are incorporated into a concept-aware
encoder in §6.3.2. In §6.3.3, we define our Local Interpretability Layer (LIL), which provides
local explanations by assigning relevance scores to the constituent concepts of the input. In
§6.3.4, we define our Global Interpretability Layer (GIL), which provides global explanations by
retrieving influential concepts from the training data. Finally, in §6.3.5, we describe the end-to-end
training procedure and optimization objectives.
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Figure 6.1: A sample of interpretable concepts from SELFEXPLAIN for a binary sentiment analysis
task. CL denotes the most relevant local concepts from the sample while CG denotes the most
influential phrases from training set that contributed to the predicted label.

6.3.1 Defining human-interpretable concepts
Since natural language is highly compositional [121], it is essential that interpreting a text sequence
goes beyond individual words. Let Z be a set of basic units for interpretability which we call
concepts that are interpretable by humans. In principle, concepts can be words, phrases, sentences,
paragraphs or abstract entities. In this work, we focus on phrases as our concepts. Assume a
grammar G = {N,Σ, θp}, that takes a sentence x and outputs a parse tree y, where N represents
the set of non-terminals, Σ represents the set of terminals and θp represents the production rules.
Given any sequence x = {wi}1:T , we decompose the sequence into its component non-terminals
N(x) = {ntj}1:J , where J denotes the number of non-terminal phrases in x.

Given an input sample x, M is trained to produce two types of explanations: (i) global
explanations from the training data Xtrain and (ii) local explanations, which are phrases in x.
We show an example in Figure 6.1. Global explanations are achieved by identifying the most
influential concepts CG from the “concept store” Q, which is constructed to contain all concepts
from the training set Xtrain by extracting phrases under each non-terminal in a syntax tree for
every data sample (detailed in §6.3.4). Local interpretability is achieved by decomposing the
input sample x into its constituent phrases under each non-terminal in its syntax tree. Then each
concept is assigned a score that quantifies its contribution to the sample’s label distribution for a
given task;M then outputs the most relevant local concepts CL.

6.3.2 Concept-Aware Encoder E

We obtain the encoded representation of our input sequence x = {wi}1:T from a pretrained
transformer model [105, 187, 200] by extracting the final layer output as {hi}1:T . Additionally,
we compute representations of concepts, {uj}1:J . For each non-terminal ntj in x, we represent it

as the mean of its constituent word representations uj =

∑
wi∈ntj hi

len(ntj)
where len(ntj) represents

the number of words in the phrase ntj . To represent the root node (S) of the syntax tree, ntS, we
use the pooled representation ([CLS] token representation) of the pretrained transformer as uS
for brevity.1 Following traditional neural classifier setup, the output of the classification layer lY

1We experimented with different pooling strategies (mean pooling, sum pooling and pooled [CLS] token
representation) and all of them performed similarly. We chose to use the pooled [CLS] token for the final model as
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Figure 6.2: Model Architecture: Our architecture comprises a base encoder that encodes the input
and its relative non-terminals. GIL then uses MIPS to retrieve the most influential concepts that
globally explain the sample, while LIL computes a relevance score for each ntj that quantifies
its relevance to predict the label. The model interpretability is enforced through regularization
(example parse tree inspired from Zanzotto et al. [206]).

is computed as follows:
lY = softmax(Wy × g(uS) + by)

PC = argmax(lY )
where g is a relu activation layer, Wy ∈ RD×C , and PC denotes the index of the predicted class.

6.3.3 Local Interpretability Layer (LIL)

For local interpretability, we compute a local relevance score for all input concepts {ntj}1:J
from the sample x. Approaches that assign relative importance scores to input features through
activation differences [122, 160] are widely adopted for interpretability in computer vision
applications. Motivated by this, we adopt a similar approach to NLP applications where we learn
the attribution of each concept to the final label distribution via their activation differences. Each
non-terminal ntj is assigned a score that quantifies the contribution of each ntj to the label in
comparison to the contribution of the root node ntS. The most contributing phrases CL is used to
locally explain the model decisions.

Given the encoder E, LIL computes the contribution solely from ntj to the final prediction.
We first build a representation of the input without contribution of phrase ntj and use it to score
the labels: tj = g(uj)− g(uS)

sj = softmax(Wv × tj + bv)

this is the most commonly used method for representing the entire input.
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where g is a relu activation function, tj ∈ RD, sj ∈ RC , Wv ∈ RD×C . Here, sj signifies a label
distribution without the contribution ntj . Using this, the relevance score of each ntj for the final
prediction is given by the difference between the classifier score for the predicted label based on
the entire input and the label score based on the input without ntj:

rj = (lY )i|i=PC
− (sj)i|i=PC

where rj is the relevance score of the concept ntj .

6.3.4 Global Interpretability layer (GIL)
The Global Interpretability Layer GIL aims to interpret each data sample x by providing a set
of K concepts from the training data which most influenced the model’s predictions. Such an
approach is advantageous as we can now understand how important concepts from the training set
influenced the model decision to predict the label of a new input, providing more granularity than
methods that use entire samples from the training data for post-hoc interpretability [68, 92].

We first build a Concept Store Q which holds all the concepts from the training data. Given
the neural classifier modelM , we represent each concept candidate from the training data, qk as a

mean pooled representation of its constituent words qk =

∑
w∈qk e(w)

len(qk)
∈ RD, where e represents

the embedding layer ofM and len(qk) represents the number of words in qk. The concept store
Q is represented by a set of {q}1:NQ

, which are NQ number of concepts from the training data. As
the modelM is finetuned for a downstream task, the representations qk are constantly updated.
Typically, we re-index all candidate representations qk after every fixed number of training steps.

For any input x, GIL produces a set of K concepts (q1, q2, .., qK) from Q that are most
influential as defined by the cosine similarity function:

d(x, Q) =
x · q
∥x∥∥q∥

∀q ∈ Q

Taking uS as input, GIL uses dense inner product search to retrieve the top-K influential
concepts CG for the sample. Differentiable approaches through Maximum Inner Product Search
(MIPS) has been shown to be effective in Question-Answering settings [44, 67] to leverage
retrieved knowledge for reasoning 2. Motivated by this, we repurpose this retrieval approach to
identify the influential concepts from the training data and learn it end-to-end via backpropagation.

Our inner product model for GIL is defined as follows: p(q|xi) =
exp d(uS, q)∑
q′ exp d(uS, q′)

6.3.5 Training
SELFEXPLAINis trained to maximize the conditional log-likelihood of predicting the class at
all the final layers: linear (for label prediction), LIL , and GIL . Regularizing models with
explanation specific losses have been shown to improve inherently interpretable models [116]
for local interpretability. We extend this idea for both global and local interpretable output for
our classifier model. For our training, we regularize the loss through GIL and LIL layers by
optimizing their output for the end-task as well. For the GIL layer, we aggregate the scores over
all the retrieved q1:K as a weighted sum, followed by an activation layer, linear layer and softmax

2MIPS can often be efficiently scaled using approximate algorithms [161]
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to compute the log-likelihood loss as follows:

lG = softmax(Wu × g(
K∑
k=1

wk × qk) + bu)

and LG = −
∑C

c=1 yc log(lG) where the global interpretable concepts are denoted by CG = q1:K ,
Wu ∈ RD×C , wk ∈ R and g represents relu activation, and lG represents the logits for the
GIL layer.

For the LIL layer, we compute a weighted aggregated representation over sj and compute the
log-likelihood loss as follows:

lL =
∑
j,j ̸=S

wsj × sj, wsj ∈ R

and LL = −
∑C

c=1 yc log(lL). To train the model, we optimize for the following joint loss,
L = α× LG + β × LL + LY

where LY = −
∑C

c=1 yc log(lY ), . Here, α and β are regularization hyper-parameters. All loss
components use cross-entropy loss based on task label yc.

6.4 Experiments

6.4.1 Datasets
We evaluate our framework on five classification datasets: (i) SST-2 Sentiment Classification task
[168]: the task is to predict the sentiment of movie review sentences as a binary classification task.
(ii) SST-5 : a fine-grained sentiment classification task that uses the same dataset as before, but
modifies it into a finer-grained 5-class classification task. (iii) TREC-6 : a question classification
task proposed by Li and Roth [101], where each question should be classified into one of 6
question types. (iv) TREC-50: a fine-grained version of the same TREC-6 question classification
task with 50 classes (v) subj: subjective/objective binary classification dataset [126]. The dataset
statistics are shown in Table 6.1.

Dataset C L Train Test

SST-2 2 19 68,222 1,821
SST-5 5 18 10,754 1,101
TREC-6 6 10 5,451 500
TREC-50 50 10 5,451 499
subj 2 23 8,000 1,000

Table 6.1: Dataset statistics, where C is the number of classes and L is the average sentence
length

6.4.2 Experimental Settings
For our SELFEXPLAINexperiments, we consider two transformer encoder configurations as our
base models: (1) RoBERTa encoder [105]—a robustly optimized version of BERT [42]. (2) XL-
Net encoder [200]—a large-scale transformer model based on Transformer-XL [37] architecture
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SST-2 SST-5 TREC-6 TREC-50 subj

XLNet-Base Classifier

XLNet 93.4 53.8 96.6 82.8 96.2
SELFEXPLAINXLNet (K=5) 94.6 55.2 96.4 83.0 96.4
SELFEXPLAINXLNet (K=10) 94.4 55.2 96.4 82.8 96.4

RoBERTa-Base Classifier

RoBERTa 94.8 53.5 97.0 89.0 96.2
SELFEXPLAINRoBERTa (K=5) 95.1 54.3 97.6 89.4 96.3

SELFEXPLAINRoBERTa (K=10) 95.1 54.1 97.6 89.2 96.3

Table 6.2: Performance comparison of models with and without GIL and LIL layers. All
experiments used the same encoder configurations. We use the development set for SST-2 results
(test set of SST-2 is part of GLUE Benchmark) and test sets for - SST-5, TREC-6, TREC-50 and
subj. α, β = 0.1 for all the above settings

and a permutation language modeling objective. We incorporate SELFEXPLAINnto RoBERTa and
XLNet, and use the above encoders without the GIL and LIL layers as the baselines. We gen-
erate parse trees [91] for the input and follow same pre-processing steps as the original encoder
configurations for rest.

We also maintain the hyperparameters and weights from the pre-training of the encoders.
The architecture with GIL and LIL modules are fine-tuned for specific datasets described in
§6.4.1. For the number of global influential concepts k, we consider two settings k = 5, 10. We
also perform hyperparameter tuning on α, β = {0.01, 0.1, 0.5, 1.0} and select our best model
configuration for our experimental results. All our models trained on an NVIDIA V-100 GPU.

6.4.3 Results

We study the effect of adding the layers GIL and LIL to the encoder configurations and
present our results in Table 6.2. We compare the performance of our SELFEXPLAINversions of
RoBERTa and XLNet with and without the interpretable layers added. From the table, we observe
that these layers do not sacrifice end-task performance when integrated with both XLNet and
RoBERTa encoders. Across the different classification tasks in our experimental settings, we
observe that SELFEXPLAINRoBERTa version consistently shows competitive performance com-
pared to the base models. The SELFEXPLAINXLNet model shows competitive performance on
every task except for a marginal drop in TREC-6 dataset. We also observe that the hyperparameter
K did not make noticeable difference. We also show ablation analysis for both GIL and LIL lay-
ers in Table 6.3. The results suggest that gains through GIL and LIL are complementary in
nature.
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Model Accuracy

XLNet-Base 93.4
SELFEXPLAINXLNet + LIL 94.3
SELFEXPLAINXLNet + GIL 94.0
SELFEXPLAINXLNet + GIL + LIL 94.6
Roberta-Base 94.8
SELFEXPLAINRoberta + LIL 94.6
SELFEXPLAINRoberta + GIL 94.6
SELFEXPLAINRoberta + GIL + LIL 95.1

Table 6.3: Ablation: SELFEXPLAINXLNet and SELFEXPLAINRoBERTa base models on SST-2

Sample PC Top relevant phrases from LIL Top influential concepts from GIL
sam mendes segues from oscar winner to oscar -
winning potential with a smooth sleight of hand pos no sophomore slump, segues

above credibility,
spell binding

the iditarod lasts for days -
this just felt like it did . neg for days

exploitation piece,
heart attack

corny, schmaltzy and predictable, but still
manages to be kind of heart warming, nonetheless. pos corny, schmaltzy, of heart

successfully blended satire,
spell binding fun

suffers from the lack of a
compelling or comprehensible narrative . neg comprehensible, the lack of

empty theatres,
tumble weed

Table 6.4: Sample output from the model and its corresponding local and global interpretable
outputs SST-2 (PC stands for predicted class) (some input text cut for brevity).

6.4.4 Interpretability Evaluation

Though performance improvements can assure that the model does not need to be constrained to
produce interpretable output, it is essential that any such interpretability is useful to the end-user
of the model. Quantitative evaluation of interpretability in empirical terms is challenging [46]
and human evaluation is often the most widely used method for it. To this end, we compare
interpretable outputs from SELFEXPLAINagainst popular baselines using human judges. We focus
our evaluation on the interpretability of our approach across the following three criteria:
(i) Trustability: Do the explanations help users trust the model predictions?
(ii) Usefulness: Are the explanations useful for understanding model prediction?
(iii) Understandability: Are the explanations understandable for a human? 3

For the human evaluation, 14 graduate students in computer science were selected to be the
human judges. Each human judge was presented with 50 samples from the SST-2 validation set
of sentiment excerpts [168]. Each judge was provided the evaluation metric with a corresponding
description. While administering the evaluation, the methods were anonymized and were asked to
rate according to the evaluation criteria alone.

3Although faithfulness is a common metric to evaluate interpretability, recent work like Jacovi and Goldberg [80]
and Wiegreffe et al. [194] have called into question the the binary notion of faithfulness evaluation and highlight that
such an evaluation is challenging particularly for self-explaining models. Following their suggestion, we evaluate our
approach along multiple human evaluation criteria.
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Following Han et al. [68], for the human evaluation we compared our output against two
commonly used interpretability methods (i) Influence functions [68] for global interpretability
and (ii) Salience detection [165] for local interpretability. We obtained the output from our
SELFEXPLAINXLNet model and presented the end-user with two outputs:
(i) Most relevant local concepts: We present users with the top ranked phrases based on r(ntj)
from the LIL layer.
(ii) Top influential global concepts: We present users with the most influential concepts q1:K
ranked by the output of GIL layer.
Trustability: Trustability measures how much an interpretability technique helped an end-user
to trust the model’s label prediction. We evaluate trustability via mean trust score, a common
human evaluation strategy used by previous work on interpretability [35, 87, 166]. Given an
input, explanation, predicted label, and the gold label, judges were instructed to evaluate the
explanations as a means to trust the model’s prediction. Human judges were asked to assign the
trust score on a 1-5 likert scale on each model independently. We the compute a mean of all scores
for each model to compute the mean trust.

Figure 6.3: Mean Trust Score across models

Figure 6.3 shows the mean-trust score of SELFEXPLAIN in comparison to the baselines. We
observe that SELFEXPLAIN scores higher in terms of human annotators’ perceived mean trust
score compared to the baselines. Our model achieves a mean-trust score of 3.1, an average of 0.5
more than saliency maps and influence functions. Both of the other baselines performed similarly
in terms of mean-trust.
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Figure 6.4: Comparative evaluation of usefulness and understandability of SELFEXPLAINw.r.t
baselines
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Usefulness: Usefulness is considered to be an important criteria for acceptance of a model [39].
To evaluate usefulness, we ask human judges how “useful” an interpretation was for the given
prediction. Human judges were shown the input, gold label, predicted labels and explanations
from SELFEXPLAINand the baselines and were asked to rate which system’s explanation they
perceive as more useful as an explanation to the model prediction. We the compute the ratio of
samples that each method was rated as most useful.

Figure 6.4 (left) shows the relative performance of all the models for usefulness. The vertical
axis shows the percentage of samples as judged by humans that interpretation method as either
the most understandable. SELFEXPLAIN achieves a gain of 32% in terms of perceived usefulness.
This evaluation provides further evidence that humans perceive explanations via concepts are
perceived more useful.
Understandability: An essential criteria for a transparency in an AI system is the ability of a
human to understand its interpretations [47]. Our understandability metric evaluates whether a
human judge can understand the explanations presented by the model such that they are equipped
to verify the model predictions. For this evaluation, human judges were given the input, gold
label, and explanations from different methods (baselines, and SELFEXPLAIN, and were asked to
select the explanation that they perceived to be the most understandable.

Figure 6.4 (right) shows the understandability scores of SELFEXPLAIN in comparison to the
baselines. SELFEXPLAIN achieves 29% improvement over the best-performing baseline in terms
of understandability of the model explanation.

6.5 Analysis
In Table 6.4 we show some qualitative examples from SELFEXPLAIN’s explanations. Our
qualitative output shows that our model is able to produce reasonable global and local interpretable
concepts that are human readable as natural language text.

Sample
Top Contributing Phrases
from LIL

Top Influential Concepts
from GIL

it ’s a very charming
and often affecting journey

often affecting,
very charming

scenes of cinematic perfection that steal your heart away,
submerged, that extravagantly

it ’ s a charming and often
affecting journey of people

of people,
charming and often affecting

scenes of cinematic perfection that steal your heart away,
submerged, that extravagantly

Table 6.5: Sample (from SST-2) of an input perturbation - different local concepts but similar
global concepts

Are LIL concepts relevant?: For this analysis, we randomly 50 samples from SST2 develop-
ment set and removed the top most salient phrase ranked by LIL. Human judges were asked to
predict the label without the most relevant local concept and the accuracy dropped by 7%. We
also computed the neural classifier accuracy on the same input and the classifier accuracy dropped
by about 14%. This analysis suggests that LIL local concepts capture the relevant phrases to a
reasonable extent.
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Does SELFEXPLAINs explanation help predict model behavior? In this setup, humans are
presented with an explanation and an input, and must correctly predict the model’s output [46, 98].
For this analysis, we randomly select 16 samples spanning equal number of true positives, true
negatives, false positives and false negatives from the development set. Given a few learning
examples, three human judges were tasked to predict the model decision with and without the
presence of model explanation. We observe that when users were presented with the explanation,
their ability to predict model decision improved by an average of 22%, showing that in the
presence of SELFEXPLAINs explanations, humans can better understand model behavior.
Do similar examples have similar explanations? Melis and Jaakkola [116] argue that a crucial
property that interpretable models need to address is stability, where the model should be robust
enough that a minimal change in the input should not lead to drastic changes in the observed
interpretations. We qualitatively analyze this notion of stability in our method. From our
experiments, we identify that similar examples have high overlap of retrieving basis concepts.
Table 6.5 shows one such example where a minor modification to the input leads to different
phrases ranked by relevance, their global influential concepts remain the same.
LIL-GIL-Linear layer Agreement: To understand whether our explanations lead to predicting
the same label as the model’s prediction, we analyze whether the final logits activations on
the GIL and LIL layers agree with the linear layer activations. Towards this, we compute an
agreement between label distributions from GIL and LIL layers to the distribution of the linear
layer. Our LIL-linear F1 is 96.6%, GIL-linear F1 100% and GIL-LIL-linear F1 agreement is
96.6% for SELFEXPLAINXLNet on the SST-2 dataset. We observe that the agreement between
the GIL , LIL and the linear layer are very high, validating that SELFEXPLAINs layers agree
on the same model classification prediction, showing that our interpretability layers GIL and
LIL lead to same predictions.

6.6 Conclusion
In this chapter, we propose a self-explaining model that provides interpretability at both local
and global levels. Our method uses human understandable phrasal concepts for interpretability
and it is trainable end-to-end. Through human evaluation, we show that our interpreted output
is perceived as more trustworthy, understandable, and useful for explaining model decisions
compared to previous techniques for explainability. This opens an exciting research direction for
building inherently interpretable models text classification. The next step would be to extend the
framework to tasks beyond single sentence level and more advanced reasoning tasks such as QA.
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Part III

Recursive Descent for Explanations
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Chapter 7

Recursive Descent

We propose the recursive descent grammar framework, and in this framework, we adopt the view
that explanations are recursive by nature and can be modeled as a grammar. Modeling explanations
as recursive structures naturally lends them to be interactive, where any aspect of an explanation
can be expanded as required by the stakeholders. Each transition (by a stakeholder) can be
captured by a production from an explanation grammar. Whether an explanation is accepted is
determined by a utility and a simplification function specified by the various stakeholders of the
system.

7.1 Recursive Descent
In this section, we formalize the recursive descent for explanations. With the stakeholders defined,
we now establish the basic building blocks of an explanation.

Definition 4 (Grounding) connects a symbol (e.g. a node or edge) to an associated meaning so
that the symbol or a composition of symbols can be reliably understood by all stakeholders.
Definition 5 (Grounded Node) is a basic fragment of reasoning, grounded in a particular domain
theory that describes a stand-alone concept in that domain.
Definition 6 (Node) signifies a compositional concept or proposition that be recursively expanded
and usually terminates when the final output consists only of grounded nodes.
Definition 7 (Edge) describes the relationship between two nodes, such that their composition
forms a valid reasoning chain.
Definition 8 (Grounded Edge) an edge that is understandable by the stakeholders of interest
defined for the system.

Each node (n) quantifies a either a complex concept or proposition that acts as a building
block of an explanation, depending on the end use-case. Each edge (e) describes the relationship,
such that each connection represents the glue that gives conceptual coherence to their connection.
The nature of the edge also determines the compositional nature of the explanations. A valid
explanation is determined by the stakeholders of the system together, and that is established when
all the leaf nodes and edges are grounded in the final explanation. Given the basic units, we now
define the rules of how an explanation can be materialized.
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The structure of an explanation can be unified under an explanation grammar. An explanation
grammar can be characterized by a weighted context free grammar CFG G = {N,Σ, θp,S, A},
that takes an input sample for a task T and outputs an explanation, where N represents the set
of non-terminals, Σ represents the set of terminals, θp represents the production rules, and S
denotes the specified start symbol. Here, A represents the action states, in our case the action set
A = {expand, do not expand}. We formally describe our explanation grammar with the following
production rules.

⟨explanation⟩ |= ⟨n⟩
⟨n⟩ |= ⟨n⟩⟨e⟩⟨n⟩ | ⟨n⟩ | ⟨nG⟩
⟨e⟩ |= ⟨e⟩ | ⟨eG⟩

Here, the nonterminals are the set of nodes and edges defined for a given task at hand
N = {{n}, {e}} and the terminal symbols Σ = {nG, eG} that represent the grounded symbols.
The non-terminal abstractions are defined based on task-specific abstractions.

1. Given this context free grammar G, TG denotes the possible left-most derivations (explana-
tions) under the explanation grammar G. When the task at hand is defined, we will define
TG as T for brevity.

2. For any derivation t ∈ T , we define acceptability(t) to denote whether the explanation is
accepted for the sample.

3. For a given sample s for a task T, we write T (s) to refer the set
{t : t ∈ T , acceptability(t) = true}

4. We say that an explanation for a sample s is valid, if acceptability(t) = true

The key idea in recursive descent is to extend our grammar such that we define the criteria for
when an explanation will be acceptable based on an utility function U(t) and a simplification
function P (t). The utility U(t) defines whether the explanation satisfies the defined end utility and
simplification function P (t) defines whether the explanation is human understandable (grounded
in concepts that all the stakeholders can reliably understand). We discuss this in depth in sections
§2.2.2 and §2.2.3.

acc(t) =


true, if U(t) ≥ τ1 and

P (t) ≥ τ2

false, otherwise
Here, acc(t) denotes acceptability(t), P (t) denotes whether the explanation is grounded in nodes
and edges that are human understandable (passes threshold τ2), and the τ1 signifies whether
the given explanation passes the threshold computed by the utility function defined by various
stakeholders.

Utility score of a tree t with rules:
α1 → β1, α2 → β2, ·, αn → βn is

U(t) =
n∏

i=1

u(αi → βi)

where u(α → β) is the utility score for the rule α → β. Similarly, we can compute an overall
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distribution for P (t) for an explanation

P (t) =
n∏

i=1

p(αi → βi)

where p(α→ β) denotes the simplification score of the production.
Depending on what criteria the stakeholders determine to accept the explanation, the leaf

nodes in an explanation can be grounded in one of cognitive science, philosophy, physics, biology,
linguistics or social sciences. For building NLP systems, we choose bounded rational choice
theory [163] to bound the explanations in rationality. Explanations that satisfy utility measured
by rationality are widely used in fields like political sciences and behavioral economics. Such
explanations often resort to bounded rational choice, that aims to maximize a given utility [13],
given a specific task or a goal. In a similar spirit, we take the view that explanations in natural
language applications should optimize a utility function determined by the stakeholders. In
particular, we adopt the idea of “satisficing” from bounded rational choice theory - the strategy
of considering the options available for an explanation until you find one that meets or exceeds
a predefined threshold for a minimally acceptable outcome for a current task. This adaptation
gives us the flexibility of bounding the recursive depth of any explanation given the rational
bounds of the involved stakeholders. From a machine learning perspective, bounded rationality
can be modeled as a bias-variance tradeoff problem [60], allowing us to formulate the explanation
challenge as a machine learning task. An example is shown in Figure ??, where we present
a sample real-world stakeholder situation for a machine learning system in use. A preferable
explanation should meet the most essential criteria across all the stakeholders.

Parameterizing U(t) and P (t) : To model real world explainable systems, it is essential that
we have the ability to translate U(t) and P (t) to machine learning tasks. In practice, we can
parameterize u(α → β) and p(α → β) using a machine learning method (typically a neural
network) of choice, and learnt via maximum likelihood estimation. The explanation learning
challenge then can be cast as an optimization problem:

argmax
E

Q(E,M|SE,D,T)

where

E - Explanation

Q - Metric Function (usually a combination of U(t) and P (t) )

SE - Stakeholder Requirements

D - Dataset (that is being explained)

T - Task

Case Study - Concept Bottleneck Reasoning: For our first example, we consider the concept
bottleneck model proposed in Koh et al. [93]. An adapted example is shown in figure 7.1. The task
at hand is classifying the bird given in the image. The concept bottleneck has a set of pre-defined
intermediate concepts such as { head color, beak shape,... }. The utility of the concepts is
motivated by what high-level concepts are useful for practitioners towards understanding the
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reasoning of the model decision process. Such a system can be naturally extended to a recursive
reasoning formulation as shown in figure 7.1. A complex concept can be decomposed further
into multiple simpler concepts depending on their utility ui. In this example, the concept of
body color is further decomposed into various color and pattern features such as { yellow, black,
black-white pattern } and so on (which can be further decomposed). Each concept can be
selectively decomposed based on whether the stakeholders want to explore further.

. . .

head color

beak shape

body color

bird species

Input x
concepts c

task y
model regressor

yellow
black

black white  

pattern
. . .

. . .

Figure 7.1: A sample recursive formulation of concept bottleneck models [92]

Case Study - Explainable Multihop Reasoning: Consider this example from Clark et al. [31]:

Input : Do nails conduct electricity ?
System Output : Yes
Explanation : Nails are metals

The question we explore here is - this a valid explanation for this question-answer pair? It
is dependent on whether the explanation “adequately” explains the model decision. In natural
language applications, the challenge is multifold since many reasoning problems cannot be easily
decomposed into concepts alone. Consider a sample explanation shown in figure 7.2. Here nodes
are scientific propositions, and edges are causal. At the first level of depth, the state elicits a causal
mechanism of why nails conduct electricity. At the first level, the explanation assumes a utility
based on the underlying causal mechanism. If a stakeholder potentially needs to explain further,
such that each proposition in this case can be further validated as shown in the figure. Since the
nodes are expressed in natural language itself, a simplification function might not be relevant to
this example.
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Do nails conduct electricity ? Yes

Explanation

Nails are metals
Metals conduct 

electricity

metals have free 
valence electrons

free electrons move 
with little resistance

model classify

Input x task y

… …

causes

causes

Figure 7.2: A sample recursive formulation for multihop reasoning for scientific QA. The expla-
nation recursively queries each node at every depth and (could) explain it further by expanding
any node.

7.2 Inverse Explanation Learning

Given an observed explanation, can we estimate the parameters of utility function and simplifica-
tion functions of the explanation? We define this task as the Inverse Explanation Learning task,
where we are given an utility function and a simplification function for observed explanations, and
the task is to estimate their parameters. This is often referred in the literature as post-hoc methods
for explainability. Although this task is flexible to accommodate models that are trained with and
without explanations (as long as the utility and simplification functions are defined correctly),
these methods assume that both U(t) and P (t) variables are chosen before-hand. Typically,
each node n is a function of input sample, model, and training data (f(x,M,D)) and edges are
not involved in the productions. They inherently pose the risk of under-estimating what factors
influence the model decision making. Additionally, it is significantly challenging to naturally
incorporate human metrics such as reduction of bias, and improving trust into the model. In our
opinion, we view post-hoc explanations to be beneficial mostly to Explanation Producer(s), rather
than Explanation Consumer(s).

Similar to the explanation task, this can also be learnt through maximum likelihood estimation
of the parameters. This can be formalized as optimizing the following function:
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Utility Simplification

Model  

f(x, M, D)
U(t) S(t)

accept?

yes

label for x

no, update U(t)

Figure 7.3: Overview of Inverse Explanation framework

argmax
E

Q(E|M, SE,D,T)

where we assume the features for u(α→ β) and p(α→ β) of modelM are assumed and we
estimate the parameters of the features.

An overview of the current methods on inverse explanation framework is shown in Figure 7.3.
Consider the example of saliency maps on gradients [165, 167, 175]. Given an input sample x,
modelM, data D, output label for x, the saliency maps aim to explain the most salient aspects of
input that led to the prediction. Here, gradients (f(x,M,D)) are assumed to reflect explanation
capacity (U(t)). Once we obtain the gradients from the modelM, we then overlay each input
feature in x to the gradient values (which amounts to P (t)). If the current f(x,M,D) does not
adequately explain the prediction, it is then further complemented with additional factors for
utility.

7.3 Grounding Assumption
Much of our understanding of world phenomena exists outside the paradigm of text corpora. For
an explanation to be complete, each part of the explanation should be grounded in the shared
experience of the world. Experiences in the world go far beyond language alone. Humans are
adept at understanding the natural language symbols and ground it to their experience [185]. For
explanations, we assume that its’ basic elements are grounded in the stakeholders’ world-view. To
the question of whether machines can also achieve such grounding, a deeper treatment (beyond
this chapter’s scope) might be required and for that, we direct the readers to Bisk et al. [14].
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7.4 Explanation Depth
A natural question arises for such a recursive account of explanation: What is the deepest that
an explanation can go, in the absence of a practical utility ? In this section, we briefly (but not
exhaustively) summarize how other fields of science approached this question.

A causal account of explanation is expected to account for all the fundamental causal mech-
anisms and depending on how it is achieved, there exists two schools of thought — realist or
epistemic sense. A realist [151] posits that all the entities and processes of an explanation exists,
thereby bounding the depth to only observable entities. An epistemic interpretation [70] treats
entities and processes as tools for constructing an empirical model, and not rooted in exactly
describing the reality. According to this, an adequately strong theoretical explanation can also
be the bound, beyond only observable entities. Van Fraassen et al. [186] argue against realist
interpretations and describe explanations as a series of Why questions interpreted via bayesian
probability, compared to the logical notions of Hempel and Oppenheim [70].

An alternative view of explanations favor theories that are grounded in how humans perform
the process of explanation. A linguistic or communicative theory [1] accommodates the social
aspect of explanation where the relationship between individuals in the communication is also
accounted for. Such an explanation can be bounded by the limits of the communication itself.
Explanations can also be viewed as a purely cognitive activity where it represents the mental
representation of the process that aids in understanding. Holland et al. [75] argue that internal
representations of processes that occur due to the neural activity can be quantified as if-then rules,
thereby bounding them to neural activity in human brains.

7.5 Conclusion
In this chapter, we propose a framework to bridge the gap between theory and practice towards
building explainable NLP systems. Our unified view of explanation advocates for modeling
rigorous explainable systems that are recursive and interactive in nature, and have a holistic view
of their stakeholders’ utility and simplicity requirements.
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Chapter 8

Controllable Reasoning via Templates

In this chapter, we explore an implementation of recursive descent via templates. In this chapter,
we explore this via free-form text explanations, where a reasoning chain with explanation can
be expressed in diverse forms via templates. Towards this we (i) propose a dataset of multihop
reasoning template-expansion pairs and (ii) a prompt-template-filling approach that uses sequence-
to-sequence generation models for expanding multihop reasoning templates. Our experiments
show that our approach outperforms baselines both in generation metrics and factuality metrics.
We also present a detailed error analysis on our approach’s ability to expand multihop reasoning

8.1 Introduction

Multihop reasoning aims to address the task of reasoning across different concepts [199]. Several
approaches were proposed recently to address the task of multihop reasoning with explanations
[55, 85, 179]. Very recently, Wei et al. [189] propose a chain of thought reasoning paradigm,
where the model provides a series of short reasoning chain sentences before generating the final
answer for the question. They show that generating the reasoning process before responding to
a question greatly improves the reasoning performance. Yet, such methods still falls short of
providing the ability to control aspects of reasoning and their corresponding explanations. In this
work, we aim to address this challenge, by proposing a dataset and a method towards multihop
reasoning systems that are controllable and explainable at the same time.

We formulate the multihop reasoning task as a prompt-based template filling task (prompt-
template-filling) where a sequence-to-sequence (PLM) model is trained to fill a template that
connects concepts with a valid reasoning chain. Figure 8.1 shows an example of our approach,
where a single question-answer (QA) pair is represented by two template-expansion pairs. Mod-
eling the reasoning task as a template has distinct advantages such as: (i) expressing the same
reasoning sample in multiple ways, and (ii) controlling different aspects of the reasoning chain
and explanation via slots in the template.

Towards this, our contributions in this paper are two-fold. First, we present a dataset of
commonsense reasoning templates and their corresponding expansions that are valid completions
of the template. The slots in the templates are open-ended and are not restricted to any particular
vocabulary and enable controlling the reasoning chain. We also augment templates with an
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Input: Can people with blood clot risk eat leafy 
vegetables ? 

Output: No, because leafy vegetables leads to 
higher risk of blood clots

Input: People with blood clots risk {can/can’t} 
eat {food type} because {reason}? 

Output: People with blood clot risk can’t eat 
leafy vegetables because vitamin-k in leafy 

vegetables blocks blood thinner action

Input: People with blood clots risk {can/can’t} 
eat {food type} due to {higher/lower} risk

Output: People with blood clot risk can’t eat 
leafy vegetables due to higher risk

Existing Approaches

Our Approach

(1) Template-Expansion 

(2) Template-Expansion 

Figure 8.1: In this example, we show how existing a multihop QA sample with explanation
reformulated as two different template-expansion pairs. This formulation allows to evaluate the
ability of the model for the same reasoning in multiple ways where in each examples different
aspects of the reasoning can be controlled.

People who eat leafy vegetables are at a higher risk for blood clots because  

vitamin-K in these vegetables blocks blood thinner action  

{people_with_habit} are at a {higher/lower} risk of a {disease} because {reason}

concept concept 
qualifier

becausebecause

because
Explanation

Input

Output

Figure 8.2: An overview of the overall template structure for our approach. Our goal is to reason
across concepts in a multihop setting. Each template contains concept slots - people with habit
and disease, and a multiple choice qualifier slot - higher/lower that describes their relationship
and an explanation reason slot that aims to get a free-form text explanation for the relationship.
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optional free-form explanation slot that explains the multihop reasoning connection between the
concepts. Our dataset comprises of about 3600 unique template-expansion pairs collected from
diverse sources, and we hope to enable PLM systems to effectively learn to fill multihop reasoning
templates.

Next, we present prompt-template-filling approach, that models the multihop reasoning chal-
lenge as a PLM task where given a template, the goal of the model is to produce meaningful
completed sentences for the template. The concept in each slot in the template is provided via a
prompt [23], which indicates an abstraction of the nature of the slot. The multiple choice qualifier
slot helps model the relationship between the concepts and the explanation slot generates a
free-form text explanation for the reasoning chain. Specifying each slots in free-form text enables
control allowing multihop reasoning questions to specify concepts, the qualitative relationship
and the nature of explanation.

In our experiments from the commonsense reasoning template-expansion task, prompt-
template-filling outperforms baseline approaches for template filling both in terms of generation
metrics such as ROUGE and BERTSCORE, and factual correctness (factuality) metrics such as
FACTCC. We also present a factuality evaluation using human judges and a detailed analysis of
the model outputs. While we still observe factual errors, our approach provides a more nuanced
understanding of the mistakes, potentially leading to several future research directions.

To summarize, we present a prompt-template-filling approach to enable PLM models to perform
controllable and explainable multihop reasoning by training them for template-expansion task.
Towards this, we present a dataset and we show that our approach outperforms baselines both in
terms of generation metrics and factuality metrics.

8.2 Dataset
To investigate whether PLM models are effective at cross domain reasoning, we collect a dataset
of templates that are composed of cross-domain reasoning chains and corresponding sentences
that match the template. Figure ?? shows an example of a sample from our dataset. Each template
in our dataset is composed of the following basic units:

1. concept slot : contains an abstract category form of a concept from one of the domains.

2. qualifier slot : a word or phrase that describes the nature of the effect of concept of one
domain on the other (e.g. higher, lower,...)

3. explanation slot : this optional field consists of a free-form explanation that explains the
reasoning across the concepts from the different domains.

For our use-case, we use the commonsense domain and the health and well-being domain. In
reasoning, it is a long-standing challenge to address commonsense reasoning with approaches
ranging from building commonsense knowledge bases [111, 170] and neural-network based
approaches [19, 152]. There has also been specialized knowledge resources for reasoning in the
health and well-being domain [16, 153]. Due to their significant impact over the years, we chose
these domains to collect corpus for our use-case.

For the use-case to reason across commonsense and health and well-being, we collect a set
of template (x) and its corresponding expansions (y) based on this overall schema of reasoning
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Template Sentences

{person at location} has a
{higher/lower} risk of
{disease} because {reason for risk}

Person who lives in a city has a higher risk of depression
- because of stress due to noise
Person who lives near a village has a lower risk of respiratory illness
- because of lower pollution

{person taking prescription}
has a higher risk
of {disease} due to {reason}

Someone on steroids have a higher risk for heart disease because
- steroids compromise heart pumping
People on insulin have a lower risk of hyperglycemia
- because of lower glucose levels.

{food item 1} should not be consumed
with {food item 2} because {reason}

Steak should not be consumed with mashed potatoes because
- pairing fried foods with starchy carbohydrates increases the risk of diabetes.
Pizza should not be consumed with French fries because proteins require
- a much different stomach environment than starches for proper digestion

A change in behavior such as {behavior change}
is often associated with {a medical condition}
because {reason for condition}

A change in behavior such as becoming more sedentary is
- often associated with obesity because less activity leads to less calorie burning.
A change in behavior such as no longer drinking coffee is often
- associated with diminished insomnia because less caffeine equals improved sleep.

When severe symptoms like {a symptom}
for a {a medical condition} shows up,
immediately one should perform {an action}

When severe symptoms like confusion or disorientation for heatstroke show up,
immediately - one should perform cooling actions, such as applying cooling towels.
When severe symptoms like unconsciousness for a heart attack show up,
immediately - one should call 911 and perform CPR while awaiting help.

People often do {an activity} before going to
bed in night to prevent risk of {disease}.
This is because {reason for activity}

People often do reading before going to bed in night to prevent risk of insomnia.
- This is because doing some light reading helps lull you to sleep.
People often do teeth brushing before going to bed in night to prevent risk
- of tooth decay. This is because brushing removes cavity-causing plaque from teeth.

Table 8.1: Examples from our dataset. Each template has two corresponding sentences.
[concept] is a commonsense knowledge concept, [concept] is a health and well-being
concept, and [text] represents the explanation and [text] represents a qualifier. We show
two sentences each for a template.
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across commonsense and health and well-being domain. An example is shown in figure ??. Each
template has atleast one concept slot, one from each domain (people eating leafy vegetables from
commonsense domain and blood clot from the medical domain in the example shown in the
figure). A qualifier slot optionally specifies how the concept in a domain interacts with the concept
from other domain. In the example in figure ??, higher risk indicates the qualifier. The template
also includes an optional explanation slot that specifies in free-form text how leafy vegetable
intake is connected to blood clots.

Figure 8.3: The mechanical turk interface for data collection. The human annotators were given
instructors and examples to introduce them to the task.

8.2.1 Task Setup
To collect our dataset, we use amazon mechanical turk platform 1. The interface is shown in
figure 8.3. Each datapoint took ∼120 seconds to annotate, and we paid an average of $15 per

1https://www.mturk.com/
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Category Statistic

#sent len 14.57
#datapoints 6909
# avg slots per template 2.4

Table 8.2: Dataset Statistics

Template Output

The first blank is person at location.
The second blank is higher/lower.
The third blank is disease.
The fourth blank is a reason for risk.
[MASK] has a [MASK] risk of
[MASK] because [MASK]

Person who lives in a city
has a higher risk of depression
because of stress due to noise

Table 8.3: Task Setup. Each concept category is given as a prompt to the input and the slots are
represented via the [MASK] token. The task for PLM is to generate the output

hour. Additionally, we used a filtering step to select master annotators with an approval rate of
more than 90%. All the turkers were given specific instructions to input only factual information
and not opinionated statements. Specifically, the turkers were instructed to use the following
sources: CDC2, WebMD3, Healthline4 and Mayo Clinic5. The annotators were instructed to give a
template, and atleast two corresponding sentences that matches the template. The statistics of the
data are shown in table 8.2 and some qualitative examples from the dataset are given in the table
8.1. Overall, our dataset contains about 7000 template-sentence pairs with about 3600 unique
templates.

Once the templates are collected, we post-process the data to validate that we do not have any
identifying information like proper names. We then create a standard 70/10/20 train, validation
test split with this dataset.

8.3 Prompt Template-Filling Framework
Early NLP systems have often relied with templated rule-based systems [3, 22, 34, 146] due
to their simplistic nature. Compared to machine learning methods, they were often rigid [204].
Despite their rigidity, template based systems are often easy to comprehend, and lend themselves
to easily incorporate domain knowledge [29]. Our goal is to combine the strengths of both
template-based systems and recent pretrained PLM models for the task of cross-domain reasoning.

In our prompt-template-filling formulation, we setup the template filling task as a prompt-

2https://www.cdc.gov/
3https://www.webmd.com/
4https://www.healthline.com/
5https://www.mayoclinic.org/
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tuning task inspired by the recent advances in prompt-tuning. Prompt-based approaches have
achieved state-of-the-art performance in several few-shot learning experiments [23, 58, 97]. Table
?? shows an example of our task setup. The template filling task takes an input template x,
containing one or more template slots represented as spans ([MASK]) as input, and produce an
expanded sequences y as output. Given a template x, the task is to model p(y|x). Since there
could be multiple sentences in the output y, we concatenate these sentences as one for model
training.

In comparison to approaches such as Donahue et al. [45], our approach does not strictly enforce
that that sentences only fill missing spans of text. Rather, the expanded sentences can have addi-
tional modifications. For instance, for the following input template - {person at location}
has a {higher/lower} risk of {disease} because {reason for risk}, a valid sen-
tence is person who lives in the city has a higher risk of depression due to noise. In this example,
the word because does not match the output sentence phrase “due to” but it is considered a valid
output for the template.

8.3.1 Training

Given a template x ∈ X and its corresponding expansion y ∈ Y , we can train any sequence-to-
sequence model that models pθ(y|x). Towards this, we use a pretrained sequence-to-sequence
modelM to estimate the filled template y for an input x. We model the conditional distribution
pθ(y | x) parameterized by θ: as

pθ(y | x) =
M∏
k=1

pθ(y
k | x, y1, .., yk−1)

where M is the length of y.

8.4 Experiments
In this section, we describe the experimental setup, baselines for our approach. Since our approach
is agnostic to the pretrained encoder-decoder architecture type, we perform experiments on several
state-of-the-art PLM models.

8.4.1 Experimental Setup

Metrics : We use the following evaluation metrics for comparison against baselines: (i) ROUGE
[102] and (ii) BERTSCORE [208]. N-gram metrics such as ROUGE are known to be limited,
specifically for reasoning tasks. To mitigate this, we use BERTSCORE, which uses the similarity
score between the reference and generated output using conceptual embeddings from BERT [42]
model, which correlates better towards human judgements.

To perform the evaluation, we compare the generated sentence for the template against the
gold annotations in our dataset. We remove the template words from the output and only compare
the slot filler concepts to avoid score inflation due to copying. All the experiments were performed
on a cluster of 8 NVIDIA V100 GPUs for a total of 32 GPU hours.
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Model Type ROUGE-1 ROUGE-2 ROUGE-L BERTSCORE

BERT-BASE [MASK] 5.33 0.72 4.94 -0.39∗

BERT-LARGE [MASK] 8.05 0.63 7.85 -0.27∗

T5-BASE SPL TOKEN 14.00 2.71 12.58 2.2
T5-BASE PROMPT 14.01 2.60 12.57 6.1

T5-LARGE SPL TOKEN 13.74 3.11 13.74 4.8
T5-LARGE PROMPT 16.74 4.33 15.37 6.7

BART-BASE SPL TOKEN 17.17 5.60 16.32 3.9
BART-BASE PROMPT 18.89 5.87 17.96 6.3

BART-LARGE SPL TOKEN 19.54 7.57 18.49 7.0
BART-LARGE PROMPT 20.58 7.32 19.58 7.6

Table 8.4: Overview of the results compared to baselines. The table shows that BART-BASE

performs better than T5-BASE model and BART-LARGE outperforms both. Both in terms of
ROUGE and BERTSCORE, we also observe that our PROMPT approach outperforms SPL TOKEN
approach. ∗ - a negative score in BERTSCORE implies that the reference was dissimilar to the
generated output.

8.4.2 Models
We follow the same experimental settings across the baseline and our approach for all the models.
We initialize all the models with their pretrained weights. We use commonly used encoder-decoder
architectures for our experiments - BART-BASE, BART-LARGE, T5-BASE and T5-LARGE. The
model settings are given below:

• BART-BASE: This pretrained encoder-decoder transformer architecture is based on Lewis
et al. [100]. It consists of 12 transformer layers each with 768 hidden size, 16 attention
heads and overall with 139M parameters.

• BART-LARGE: Larger version of BART-BASE, consisting of 24 transformer layers, 1024
hidden size, 16 heads and 406M parameters.

• T5-BASE: The T5 model is also a transformer encoder-decoder model based on Raffel et al.
[139] with 220M parameters with 12-layers each with 768 hidden-state, 3072 feed-forward
hidden-state and 12 attention heads.

• T5-LARGE: T5-Large model version comprises of 770M parameters with 24-layers with
1024 hidden-state, 4096 feed-forward hidden-state and 16 attention heads 6.

8.4.3 Baseline Methods
• BERT [MASK]: To understand whether pretrained models contain the knowledge already,

we try a masked language modeling baseline [42] where we query the template using

6We use the implementation of all the models from the huggingface [197] repository
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• SPL TOKEN: In this approach, we use the special token approach (SPL TOKEN) [45],

where we indicate the start and end of each template slot in the input and generate the output
sentence

Table 8.3 shows the baseline setup of the models for our task with a corresponding example.

8.4.4 Results

The results across various pretrained encoder-decoder approaches are shown in table 8.4. In this
table, we see that on average, BART models perform better than T5 models on average. We
hypothesize this might be an effect of their pretraining task choices and corresponding datasets.
We also observe that PROMPT based models outperform the SPL TOKEN based approach. For
all of the models and baselines, we used the greedy decoding strategy.

Firstly, we find that [MASK] approach does not perform competitively compared to fine-
tuning, showing that pretrained models are not easily amenable towards template filling without
finetuning. Across all the experiments, we found that the PROMPT approach outperforms SPL
TOKEN approach across both ROUGE and BERTSCORE scores for all models.

8.5 Factual Correctness Evaluation

To further assess the quality of generated output, we perform additional factuality evaluation
towards our best performing models - SPL TOKEN and PROMPT approach using BART-LARGE.
Towards this we use the FACTCC factuality metric [? ], which uses entailment classification to
predict a binary factuality label between the source document and generated output.

Computing factuality using FACTCC metric requires an input source document; (i.e.) the
generated output is compared against the source document for factual correctness. For this
evaluation setup, we augmented each generated output y with a source document. Towards this,
we use a large scale retrieval corpus based on ? ], and retrieve the top similar document D [? ] to
a generated template expansion. Using the (D, y) pairs, we compute the factual correctness of our
best performing models. From the table 8.5, we observe that our PROMPT approach outperforms
the SPL TOKEN approach for factual correctness by ∼14 points in accuracy.

Additionally, we also perform human evaluation of factual correctness. For this experiment,
three human judges annotated 100 unique samples for correctness - that indicates how many
samples were correct from a human perspective. We used our best performing BART-BASE-
PROMPT model for this evaluation. In this experiment, a sentence generated by the model for
a given template was given to each human judge and they were asked to evaluate whether the
sentence was correct, given the template. The inter-annotator agreement on graph correctness
was substantial with a Fleiss’ Kappa score [56] of 0.73. From our evaluation, we found that
human judges rated about 69% of the sentences to be correct given a template, comparable to our

7Since mask tokens in BERT needs to be predetermined for this experiment, we try different variations with
number of [MASK] tokens and report the best results.
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Model Type FACTCC

BART-LARGE SPL TOKEN 65.27
BART-LARGE PROMPT 79.88

Table 8.5: Factual consistency results. In this experiment, we show that our PROMPT approach the
SPL TOKEN approach in terms of factuality metric FACTCC, showing its relative effectiveness

FACTCC evaluation metric numbers. Both the automated and human evaluation suggests that our
PROMPT based approach has better factual consistency.

8.6 Error Analysis
In this section, we analyze in detail how well language models perform cross-domain reasoning.
Automated metrics such as ROUGE are restrictive in terms of understanding the reasoning abilities
and we complement our automated evaluation with manual error analysis. For this analysis, we
randomly select 100 samples from the validation set predictions where the ROUGE scores were
low. We observe the following categories of errors that language models exhibit. Table 8.6 shows
the common type of errors and a corresponding example for each type.

Error Type Template Gold Answer Generated Answer

Correct but
not in gold

Children who are exposed to
{environmental factor} are often at a higher
risk for {disease} because {reason}

Children exposed to second hand smoke
are at a higher risk for lung disease
because of breathing in the cigarette smoke

Children who are exposed to lead paint are
often at a higher risk for kidney failure
because lead causes kidney damage

Wrong
commonsense
concept

People with {certain socioeconomic condiiton}
are at higher risk of {disease}
as they are more exposed to {reason}

Person who often inhales a lot of dirt is
at a higher risk of hay fever
because of allergen content.

Person who often does less medications is
at a higher risk of hay fever
because of the drug can help clear it up

Generic
Explanation

When people with {certain co-morbidities}
shows {symptoms},
this is because of {reason for patient state}

When people with diabetes shows lethargy,
this is because of high glucose levels.

When people with heart disease shows
chest pain, this is because
of the strain on the heart

Factually
Incorrect

People with a {health condition}
should do {an activity}
because {reason}

People with a cardiovascular disease
should do exercise
since exercise burns excess fat

People with a flu diagnosis
should do exercise

Table 8.6: Error Analysis based on the BART-BASE-PROMPT model. We select 100 samples
from the validation set and each row shows an example of each class of error.

Error Type - Correct but not in gold (17%) : In several cases, we observe that the output pro-
duced by the language models are correct despite not matching the gold answer. This phenomenon
is evident when the input template contains multiple possible answers. While the gold answer
in the example shown in Table 8.6 (first row) fills the template using smoking, the language
models generates an answer that relates to kidney damage. While correct, the automated
metrics score this answer lower.

Error Type - Wrong commonsense concept (8%) : In this category of error, the model
generates the wrong specification for the given slot. For instance (second row in table 8.6), the
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model mistakenly assumes person taking less medication as a socioeconomic
condition.

Error Type - Generic Explanation (53%): In several cases, the model resorts to generic
explanation that are obvious. A generic explanation repeats the same information as the rest of
sentence as an explanation, thereby not providing any new information compared to the rest of
the sentence. In the example shown in Table 8.6 (row 3), the explanation because of the
strain of the heart is already clear from the concept chest pain.

Error Type - Factually Incorrect (22%) : Factual correctness is one of the biggest challenges
in NLP applications [125, 130]. The incorrect factual information is also acute for cross-domain
reasoning applications as well. As shown in the example (row 4 in table 8.6), the model incorrectly
generates that people with flu diagnosis should do exercise.

Our errors highlight the difficulty of the task for language models. This leaves room for several
research questions that requires future work. Overall, cross-domain reasoning is still an uphill
task for language models with promising directions.

8.7 Related Work

Knowledge Bases : Knowledge Bases (KBs) have been the predominant approach to perform
cross-domain reasoning in the past. Some of the prominent cross domain knowledge bases include
DBPedia [117], YAGO [172] and NELL [120]. Most of these knowledge bases despite being
cross-domain, the focus is primarily on the encyclopedic knowledge. In our work, we focus on
ability of PLM for cross-domain reasoning, which can be viewed as a complementary approach to
KBs.

Language Models for Knowledge Generation: Using pretrained language models to generate
knowledge has been studied for commonsense reasoning tasks. [20, 21, 152, 162]. Our work
closely aligns with Bosselut et al. [20, 21]. Compared to Bosselut et al. [20], our focus in this
work to extend this line of work from only commonsense reasoning to perform reasoning cross
domain.

Language Model Infilling : Our work also closely relates to the language model infilling work
in the literature such as Fedus et al. [53] and [45]. Compared to these works which only look
at cloze-test infilling, our work aims to expand templates that cannot be directly modeled as
cloze-style. Our work is also related to the story generation efforts such as Fan et al. [51], Ippolito
et al. [78], Rashkin et al. [144], Yao et al. [203] but our application differs from them in that we
focus on cross-domain reasoning instead of content planning for stories.

There has also been efforts to transfer knowledge cross-domain via transfer learning [41, 118,
195] but our work focuses on cross-domain reasoning in the same input sample unlike transfer
learning based approaches.
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8.8 Conclusion and Future Work
In this chapter, we present a novel prompt-template-filling approach that adapts language models
to perform cross-domain reasoning via prompting. To study this, we present a dataset via a
use-case of reasoning across commonsense and health and well-being domain. Through both
automated and human metrics, we find that there is immense room for progress towards improving
language models’ capability for cross-domain reasoning. For future work, we want to extend
this work for multiple other cross-domain scenarios and understand the nature of cross-domain
reasoning in depth.
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Chapter 9

Conclusion

9.1 Contributions and Insights

9.1.1 Goals of Explanations
In our first chapter, we established some fundamental goals towards building explainable NLP
systems. Our approach takes a holistic view of their stakeholders’ utility and simplicity require-
ments. It helps establish how we should view explanations Depending on the end task, developing
explainable systems would require the developers to understand stakeholder requirements, and
formulate them as machine learning tasks using utility and simplicity terms.

9.1.2 Explanations can help Downstream Tasks
In the further chapters, we saw two examples of how explanations can help downstream tasks.
In the first task, we have presented a static explanation system that can explain the effects of
perturbation and how that can help predict the task of predicting perturbation. QUARTET not
only predicts meaningful explanations, but also achieves a new state-of-the-art on the end-task
itself, leading to an interesting finding that models can make better predictions when forced
to explain. In the second application, CURIE presents an LM approach that : (i) is effective
at generating st-reasoning graphs, validated by automated metrics and human evaluations, (ii)
improves performance on two downstream tasks by simply augmenting their input with the
generated st graphs. Our dynamic explanation framework supports recursively querying for any
node in the st-graph. In essence, we show that explanations can help models reason better for end
tasks.

9.1.3 Explanations can help Humans
We also show in our next chapter how humans can benefit from explainable NLP systems. Towards
this, we take the idea of using inference graphs for defeasible inference and scales up its usability
by automatically generating and augmenting them to a downstream defeasible task that both
humans and machines are known to find difficult. Humans perform significantly better (20%
absolute improvement) across diverse defeasible datasets and overwhelmingly attribute their
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success to the explanations in form of graphs. While we establish that humans are helped by
these graphs, a further investigation on how (and if) the graphs reinforced their beliefs, and what
additional information in the graphs was beneficial to their understanding is essential.

9.1.4 Explanations can be incorporated into Models

We also proposed a self-explaining model that provides interpretability at both local and global
levels by using architectural changes alone. This approach does not involve any additional
data collection. Our method uses human understandable phrasal concepts for interpretability
and it is trainable end-to-end. This opens an exciting research direction for building inherently
interpretable models text classification. This approach provides alternative tools to explore models’
inner working without relying on specialized tools post-hoc.

9.1.5 Recursive Descent for Explanation

In this chapter, we propose a framework to bridge the gap between theory and practice towards
building explainable NLP systems. This framework embraces the relatively dynamic nature of
explanations and uses depth to characterize how explanations can be expanded based on any
user-given criteria.

9.1.6 Prompt Template Filling for Explainable Reasoning

In the next chapter, we presented a novel prompt-template-filling approach that implements
recursive descent using the idea of templates. This approach adapts language models to perform
cross-domain reasoning via prompting. To study this, we present a dataset via a use-case of
reasoning across commonsense and health and well-being domain. We show in this work how
templates can control the nature of explanations for a reasoning task and use text-to-text generation
models to achieve the same.

9.2 Limitations and Future Work

9.2.1 Reviewable Explanations

One of the important aspects of explanations is that they need to be accompanied by evidence that
can be attributed to specific sources - be it knowledge bases or retrieved documents. Towards this,
we want to emphasize the importance of evidence as a fundamental aspect of an explanation and
how in the future, we should aspire to build explainable systems that can integrate evidence as a
fundamental aspect. In short term, we want to explore retrieval + reasoning architectures [67, 88]
towards this goal.
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9.2.2 Explanations beyond Input and Training Data
In this thesis, we explored two different styles of explanations - input level and training data
level. There is also ample evidence in literature that pretraining using large-scale data [42, 139]
contributes a lot to model performance. Explanation methods that trace the model reasoning to
pretraining is not adequately addressed in the literature.

9.2.3 Faithfulness
Another important open question for explanations is how well they reflect the model’s decision
making process. Model functions such as attention [81, 192] and gradients [2] have shown to
be unfaithful. Instance based approaches such as influence functions [68, 92] are shown to be
faithful yet computationally limiting. While this thesis does not explore the faithfulness aspect in
depth, we hope to develop explanation and evaluation methods for faithfulness.

82



Bibliography

[1] Peter Achinstein. The nature of explanation. Oxford University Press on Demand, 1983.
7.4

[2] J. Adebayo, M. Muelly, I. Liccardi, and Been Kim. Debugging tests for model explanations.
ArXiv, abs/2011.05429, 2020. 9.2.3

[3] Eugene Agichtein and L. Gravano. Extracting relations from large plain-text collections.
1999. 8.3

[4] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and D. Klein. Neural module networks.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 39–48,
2016. 2.2.1

[5] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C. Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. ICCV, 2015. 3.2

[6] Akari Asai and Hannaneh Hajishirzi. Logic-guided data augmentation and regulariza-
tion for consistent question answering. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 5642–5650, Online, July 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.499. URL
https://www.aclweb.org/anthology/2020.acl-main.499. 3.5

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In ICLR, 2014. 2.2.1, 6.2

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In 3rd International Conference on Learning
Representations, ICLR 2015, 2015. 4.3.1

[9] Alan Baker. Simplicity. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, winter 2016 edition, 2016.
2.2.3

[10] Barr and Feigenbaum Edward A. Avron. The handbook of artificial intelligence. 1981.
2.2.2

[11] Jonathan Baxter. A bayesian/information theoretic model of learning to learn via multiple
task sampling. Machine Learning, 28(1):7–39, Jul 1997. ISSN 1573-0565. doi: 10.1023/A:
1007327622663. URL https://doi.org/10.1023/A:1007327622663. 3.4

[12] J. Bentahar, B. Moulin, and M. Bélanger. A taxonomy of argumentation models used for
knowledge representation. Artificial Intelligence Review, 33:211–259, 2010. 5.1

83

https://www.aclweb.org/anthology/2020.acl-main.499
https://doi.org/10.1023/A:1007327622663


[13] D. Bernoulli. Exposition of a new theory on the measurement of risk. 1954. 7.1

[14] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa:
Reasoning about physical commonsense in natural language. In Thirty-Fourth AAAI
Conference on Artificial Intelligence, 2020. 7.3

[15] Yonatan Bisk, Rowan Zellers, Ronan LeBras, Jianfeng Gao, and Yejin Choi. Piqa: Reason-
ing about physical commonsense in natural language. In AAAI, pages 7432–7439, 2020.
4.1

[16] Olivier Bodenreider. {The Unified Medical Language System (UMLS): integrating biomed-
ical terminology}. Nucleic Acids Research, 32(suppl 1):D267–D270, 01 2004. ISSN 0305-
1048. doi: 10.1093/nar/gkh061. URL https://doi.org/10.1093/nar/gkh061.
8.2

[17] Mario Bollini, Stefanie Tellex, Tyler Thompson, Nicholas Roy, and Daniela Rus. Interpret-
ing and executing recipes with a cooking robot. In ISER, 2012. 3.1

[18] Antoine Bosselut, Omer Levy, Ari Holtzman, Corin Ennis, Dieter Fox, and Yejin Choi.
Simulating action dynamics with neural process networks. ICLR, 2018. 3.1, 3.2

[19] Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celiky-
ilmaz, and Yejin Choi. COMET: Commonsense transformers for automatic knowl-
edge graph construction. In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 4762–4779, Florence, Italy, July 2019. As-
sociation for Computational Linguistics. doi: 10.18653/v1/P19-1470. URL https:
//aclanthology.org/P19-1470. 8.2

[20] Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Çelikyilmaz,
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[194] Sarah Wiegreffe, Ana Marasović, and Noah A. Smith. Measuring association between
labels and free-text rationales. ArXiv, abs/2010.12762, 2020. 3

[195] Georg Wiese, Dirk Weissenborn, and Mariana Neves. Neural domain adaptation for
biomedical question answering. In Proceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017), pages 281–289, Vancouver, Canada, August
2017. Association for Computational Linguistics. doi: 10.18653/v1/K17-1029. URL
https://aclanthology.org/K17-1029. 8.7

[196] Thomas Wolf, L Debut, V Sanh, J Chaumond, C Delangue, A Moi, P Cistac, T Rault,
R Louf, M Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language
processing. ArXiv, abs/1910.03771, 2019. 4.3.1

[197] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
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