
Flexible Turn-Taking
for Spoken Dialog Systems

Antoine Raux

CMU-LTI-08-XXX

December 2008

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Maxine Eskenazi, Chair

Alan W Black
Reid Simmons

Diane J. Litman, U. of Pittsburgh

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2008 Antoine Raux

This research was sponsored by the U.S. National Science Foundation under grant number IIS-0208835

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of the U.S. Government.

Keywords: Turn-Taking, Dialog, Dialog Systems, Speech, Computers, Science

To my wife Miyako,

iv

Abstract

Even as progress in speech technologies and task and dialog modeling has
allowed the development of advanced spoken dialog systems, the low-level
interaction behavior of those systems remains often rigid and inefficient.

The goal of this thesis, is to provide a framework and models to endow
spoken dialog systems with robust and flexible turn-taking abilities. To this
end, we designed a new dialog system architecture that combines a high-level
Dialog Manager (DM) with a low-level Interaction Manager (IM). While the
DM operates on user and system turns, the IM operates at the sub-turn level,
acting as the interface between the real time information of sensors and actu-
ators, and the symbolic information of the DM. In addition, the IM controls
reactive behavior, such as interrupting a system prompt when the user barges
in. We propose two approaches to control turn-taking in the IM.

First, we designed an optimization method to dynamically set the pause
duration threshold used to detect the end of user turns. Using a wide range of
dialog features, this algorithm allowed us to reduce average system latency by
as much as 22% over a fixed-threshold baseline, while keeping the detection
error rate constant.

Second, we proposed a general, flexible model to control the turn-taking
behavior of conversational agents. This model, the Finite-State Turn-Taking
Machine (FSTTM), builds on previous work on 6-state representations of the
conversational floor and extends them in two ways. First, it incorporates the
notion of turn-taking action (such as grabbing or releasing the floor) and of
state-dependent action cost. Second, it models the uncertainty that comes
from imperfect recognition of user’s turn-taking intentions. Experimental re-
sults show that this approach performs significantly better than the thresh-
old optimization method for end-of-turn detection, with latencies up to 40%
shorter than a fixed-threshold baseline. We also applied the FSTTM model
to the problem of interruption detection, which reduced detection latency by
11% over a strong heuristic baseline.

The architecture as well as all the models proposed in this thesis were
evaluated on the CMU Let’s Go bus information system, a publicly available
telephone-based dialog system that provides bus schedule information to the
Pittsburgh population.

vi

Acknowledgments

I would like to thank my advisor, Maxine Eskenazi for giving me guidance when I needed
it while leaving me the freedom to pursue my own interest during the past 6 years. In
addition to mentoring my research, Maxine has always been concerned about other aspects
of my life, in particular my family, and I thank her for that. Alan W Black has been a
kind of informal co-advisor for me during my whole PhD, and I am deeply grateful for
the numerous hours he has spent helping me shape up and strengthen my research. I
would also like to thank Diane Litman and Reid Simmons for agreeing to be on my thesis
committee and providing many helpful comments and suggestions.

During the course of my PhD, I made some very good friends in Pittsburgh. More often
than not, they offered both academic and emotional support. In particular, I would like
to thank Satanjeev ”Bano” Banerjee, Dan Bohus, Thomas Harris, Brian Langner, Mihai
Rotaru, and Jahanzeb Sherwani for the many discussions we had, whether it be on the pros
and cons of reinforcement learning for dialog management, or on the latest Steelers game.

I would also like to thank all the members of the Sphinx Group at CMU, of the Di-
alogs on Dialogs student reading group, and of the Young Researchers Roundtables on
Spoken Dialog Systems participants, for many many discussions that helped me both de-
fine my research and broaden my horizon. Many thanks to Hua Ai, Tina Bennett, Anan-
lada ”Moss” Chotimongkol, Heriberto Cuayahuitl, Matthias Denecke, Bob Frederking,
Hartwig Holzapfel, Matthew Marge, Jack Mostow, Ravi Mosur, Verena Reiser, Alex Rud-
nicky, Jost Schatzmann, Rich Stern, Svetlana Stoyanchev, and Jason Williams.

I would like to thank my family. My parents, my sister Cecile and her family, and my
brother Xavier, and my grandmother Jeannette, for always trusting me to go my own way
and supporting me, even if that meant going thousands of miles away from home, and then
thousands of miles in the other direction.

Finally, my deepest gratitude goes to my children Yuma and Manon, and my wife
Miyako. Thank you for bearing with me when deadlines meant more stress and less time
at home. Thank you Manon for brightening my days with your smiles and laughter and

vii

singing. Thank you Yuma for reminding me what really matters, with all the wisdom of
your 4 years, and for building me a ”super special pen” that writes theses faster when I
needed it. Last but, oh so not least, thank you Miyako for your love, patience, and strength
in carrying the whole family during the past 6 years. I could not have done it without you.

viii

Contents

1 Introduction 1
1.1 Introduction . 1

1.2 The Conversational Floor . 2

1.3 Spoken Dialog Systems . 4

1.3.1 Voice Activity Detection . 4

1.3.2 Speech Recognition . 5

1.3.3 Natural Language Understanding 6

1.3.4 Dialog Management . 6

1.3.5 Natural Language Generation 7

1.3.6 Speech Synthesis . 7

1.4 Turn-Taking in Spoken Dialog Systems 8

1.4.1 End-of-Turn Detection . 8

1.4.2 Barge-in Detection . 10

1.4.3 Other turn-taking phenomena 10

1.5 Principled Approaches to Optimizing Turn-Taking Behavior 11

1.6 Thesis Statement . 12

1.7 Contributions . 12

2 Related Work 13
2.1 Turn-Taking in Conversation . 13

2.1.1 What is turn-taking? . 13

ix

2.1.2 TRPs and Turn Transitions . 14

2.1.3 Overlapping Speech . 16

2.2 Turn-Taking Models for Spoken Dialog Systems 18

2.2.1 Supporting and related work . 18

2.2.2 The Ymir Architecture . 20

2.2.3 The TRIPS Architecture . 21

2.2.4 Other work . 23

2.3 Summary . 24

3 Research on a Deployed SDS: the CMU Let’s Go Bus Information System 25
3.1 Summary . 25

3.2 Research on Deployed Spoken Dialog Systems 26

3.3 Overview of the Let’s Go System . 27

3.3.1 Speech Recognition and Understanding 27

3.3.2 Dialog Management . 31

3.3.3 Speech Generation and Synthesis 35

3.4 Public Deployment and Performance . 36

3.4.1 Call traffic . 36

3.4.2 Dialog completion rate . 36

3.5 Turn-Taking in the Let’s Go System . 38

3.5.1 Baseline Endpointer . 38

3.5.2 Human-Computer Dialog Corpora 38

3.5.3 Turn-Taking Failures . 39

3.5.4 Comparison of Human-Human and Human-Computer Dialog Rhythm 40

3.5.5 Discussion . 45

4 Olympus 2: a Multi-Layer Spoken Dialog System Architecture 47
4.1 Summary . 47

4.2 Levels of Dialog Processing . 47

x

4.3 Architecture Overview . 49

4.3.1 Two Layers of Representation 49

4.3.2 Sensors and Actuators . 50

4.3.3 Interaction Management . 51

4.3.4 Dialog Management . 53

4.4 Application to the Let’s Go System . 58

4.5 Discussion . 58

5 Optimizing Endpointing Thresholds 61
5.1 Summary . 61

5.2 Introduction . 61

5.3 Analysis of Endpointing in the Let’s Go System 63

5.3.1 The Let’s Go Random Threshold Corpus 63

5.3.2 Automatic Cut-in Annotation 64

5.3.3 Thresholds and Cut-in Rates . 64

5.3.4 Relationship Between Dialog Features and Silence Distributions . 68

5.3.5 Performance of Supervised Classification 75

5.4 Dynamic Endpointing Threshold Decision Trees 76

5.4.1 Overview . 76

5.4.2 Feature-based Silence Clustering 76

5.4.3 Cluster Threshold Optimization 77

5.5 Evaluation of Threshold Decision Trees 79

5.5.1 Offline Evaluation Set-Up . 79

5.5.2 Overall Results . 79

5.5.3 Performance of Different Feature Sets 82

5.5.4 Learning Curve . 83

5.5.5 Live Evaluation . 84

6 The Finite-State Turn-Taking Machine 87

xi

6.1 Summary . 87

6.2 Turn-Taking States and Actions . 88

6.2.1 Conversational Floor as a Finite-State Machine 88

6.2.2 Overview of the Finite-State Turn-Taking Machine 91

6.2.3 Cost of Turn-Taking Actions . 93

6.2.4 Decision Theoretic Action Selection 95

6.3 Pause-based Endpointing with the FSTTM 96

6.3.1 Problem Definition . 96

6.3.2 Estimating P (F |O) . 98

6.3.3 Estimating P (t|O,U) . 100

6.3.4 Batch Evaluation . 101

6.4 Anytime Endpointing . 101

6.4.1 Problem Definition . 101

6.4.2 Estimating P (F |O) During Speech 103

6.4.3 Batch Evaluation . 104

6.5 Interruption Detection . 106

6.5.1 Problem Definition . 106

6.5.2 Estimating P (BS|O) . 107

6.5.3 Batch Evaluation . 112

6.6 Live Evaluation . 112

6.7 Discussion . 115

7 Conclusion 117
7.1 Summary of contributions . 117

7.2 Possible extensions . 118

Bibliography 121

xii

List of Figures

1.1 The typical pipeline architecture of a spoken dialog system. 4

1.2 Latency / Cut-in trade-off. 9

3.1 Excerpt from a dialog with the system. (U: user turns, S: system turns) . . 28

3.2 Relationship between word error rate and task success in the Let’s Go
system. 29

3.3 Effect of language and acoustic model retraining on word error rate. As ex-
plained in section 3.3.1, two gender-specific engines were used. The dark
bars represent WER obtained when selecting for each user utterance the
recognizer with the highest (automatically computed) recognition score,
while the light bars represent WER obtained when selecting the recog-
nizer with the lowest WER (oracle selection). The latter is a lower bound
of the performance obtainable by selecting one recognizer for each utter-
ance. At runtime, the selection is based on Helios confidence (see text),
which, in addition to recognition score, uses information from the parser
and dialog state. Therefore, runtime performance typically lies between
the two bounds given here. 30

3.4 The RavenClaw task tree for the Let’s Go spoken dialog system (March
2008). The tree is rotated 90 degrees, with the root on the left and leaves
to the right. Left-to-right traversal becomes top-to-bottom in this layout. . 32

3.5 Evolution of call volume and system performance between March 2005
and September 2008. The acoustic and language models of the speech
recognizer were retrained in the summer of 2006. 37

3.6 Distribution of the number of user turns per dialog. 37

3.7 Histograms of the duration of the switching pauses preceding utterances
by one of the participants in the HH and HC2 corpora 43

xiii

3.8 Average duration (with error bars) of pauses preceding different types of
dialog moves . 44

4.1 Overview of the proposed architecture. 50

4.2 Internal Structure of the Interaction Manager. 51

4.3 Main execution loop of the original RavenClaw dialog manager as pro-
posed by Bohus and Rudnicky [2003]. 54

4.4 Main execution loop of the proposed approach. 57

5.1 Relationship between endpointing threshold and cut-in rate. 66

5.2 Relationship between endpointing threshold and cut-in rate (semi-logarithmic
scale). 66

5.3 Relationship between endpointing threshold and non-understanding rate. . 67

5.4 False Alarm / Latency Trade-off in the Winter Corpus. 68

5.5 Illustration of the proof by contradiction of Theorem 1. 78

5.6 Performance of the proposed compared to a fixed-threshold baseline, a
state-specific threshold baseline and the approach of Ferrer et al. [2003]. . 81

5.7 Performance of the proposed approach using different feature sets. 81

5.8 Example endpointing threshold decision tree learned by the proposed al-
gorithm. Each internal node represents a test on dialog features. Cases for
which the test is true follow the top branch while those for which it is not
follow the bottom branch. Leaf nodes contain the thresholds obtained for
a 3% overall cut-in rate. 82

5.9 Performance and tree size with increasing training set size for a 4% cut-in
rate. 83

5.10 Live evaluation results. 84

6.1 Our six-state model of turn-taking, inspired by Jaffe and Feldstein [1970]
and Brady [1969]. 89

6.2 Cut-in / Latency Trade-off for Pause-based Endpointing in the FSTTM,
compared with a fixed-threshold baseline, the threshold optimization ap-
proach described in Chapter 5, and the approach of Ferrer et al. [2003]. . 102

xiv

6.3 Cut-in / Latency Trade-off for Pause-based Endpointing in the FSTTM,
compared with a fixed-threshold baseline and the threshold optimization
approach described in Chapter 5. 102

6.4 Cut-in / Latency Trade-off for Anytime Endpointing in the FSTTM, com-
pared with a fixed-threshold baseline and the At-Pause endpointing. . . . 105

6.5 Average latency as a function of CW for a fixed cut-in rate of 5%. 106

6.6 False Interruptions / Latency trade-off with the FSTTM and the first-match
heuristic. 113

6.7 Live evaluation results. 114

xv

xvi

List of Tables

3.1 Impact of initial prompts initiative style on user behavior and system per-
formance . 33

3.2 Non-understanding recovery strategies in the old and new version of Let’s
Go! (*: the prompt for this strategy was preceded by a notification prompt) 34

3.3 Overview of the human-computer and human-human corpora. 39

3.4 Frequency of occurrence of five turn-taking failures. 40

3.5 Average State Duration and Standard Deviation in the HH Corpus 40

3.6 Average State Duration and Standard Deviation in the HC2 Corpus 41

5.1 Performance of the cut-in labeling heuristic. 65

5.2 Performance of the cut-in labeling heuristic on actual speech boundaries. . 65

5.3 Effect of dialog Features on Pause Finality. * indicates that the results are
not statistically significant at the 0.01 level. 70

5.4 Effect of dialog Features on Turn-Internal Pause Duration. * indicates that
the results are not statistically significant at the 0.01 level. 71

6.1 Cost of each action in each state (K: keep the floor, R: release the floor,
W : wait without the floor, G: grab the floor, t: time spent in current state,
-: action unavailable). 94

6.2 Features selected by stepwise logistic regression to estimate P (F |O) at
pauses and their coefficients (all non-null coefficients are non null with
p < 0.01). 99

6.3 Performance of state-specific logistic regression for estimating P (F |O) at
pauses. 100

xvii

6.4 Performance of state-specific logistic regression for estimating P (F |O)
during speech segments. 104

6.5 Features selected by stepwise logistic regression to estimate P (F |O) dur-
ing speech segments and their coefficients (all non-null coefficients are
non null with p < 0.01). 105

6.6 Co-occurrence of Matches/Non-understandings and Manually Annotated
Barge-ins/False interruptions. 108

6.7 Barge-in keywords for the dialog act ”explicit confirm”. * indicate words
that signal self interruptions, all other words signal barge-ins. 110

6.8 Barge-in keywords for the dialog act ”request next query”. * indicate
words that signal self interruptions, all other words signal barge-ins. . . . 110

xviii

Chapter 1

Introduction

1.1 Introduction

After several decades of research and development effort in the realm of practical spoken
dialog systems, the technologies have matured enough to allow wide spread use of such
systems. Still, the approaches that have permitted the creation of working systems have left
many issues unsolved and spoken conversation with artificial agents remains often unsat-
isfactory. Perhaps the most prominent issue is the quality of automatic speech recognition
(ASR), which often results in misunderstandings that, in turn, lead to dialog breakdowns.
To overcome these issues system designers either constrain the interaction in some way,
as is the case in system-directed dialogs [Farfán et al., 2003], or endow systems with error
handling capabilities to smoothly recover from misrecognitions [Edlund et al., 2004, Bo-
hus and Rudnicky, 2005]. These two strategies provide a way to cope with imperfect ASR,
but they both come with a cost: they make dialogs longer either by only letting the user
provide small amounts of information at a time (as in strongly system-directed dialogs),
or by generating confirmation prompts (as in systems with error handling strategies). This
would not be an issue if, in addition to issues in spoken language understanding, current
spoken dialog systems did not also have poor turn-taking capabilities. Indeed, the cost
of an additional turn for artificial conversational agents, in time spent and/or disruption
of the flow of the conversation, is much higher than what happens in human-human con-
versation. As pointed out in recent publications [Porzel and Baudis, 2004, Ward et al.,
2005], this weakness comes from the fact that low-level interaction has to a large extent
been neglected by researchers in the field. Instead, they have concentrated on higher-level
concerns such as natural language understanding and dialog planning.

1

1.2 The Conversational Floor

Before going into any more details on turn-taking and system dialog systems, it is impor-
tant to define the key concepts at play: conversational floor and turn-taking. Consider the
following example of a dialog between a spoken dialog system (S) and a human user (U):

S: How may I help you? Miami?
U: I want to go to Miami. Yes.

At a basic level, all we see is the transcription of words spoken by both participants over
time. The conversational floor itself does not appear in the raw data. Yet, most people
would agree that this dialog has four turns, that the floor first belongs to the system (”How
may I help you?”), then to the user (”I want to go to Miami.”), then to the system again
(”Miami?”), and so on. While the idea that someone has the floor at a certain point in time
in a conversation and that people take turns speaking make intuitive sense, they are in fact
difficult to formalize. In fact, in their seminal paper, Sacks et al. [1974] never explicitly
define what a turn is. Rather they describe turn-constructional units, of which turns are
composed. But saying that a turn is a sequence of turn-constructional units presents the
risk of a circular definition, as noted by [Clark, 1996, p. 324]. Sacks et al do not thus eval-
uate their model by comparing the turns it produces to some theoretical definition of what
a turn is, but rather by ensuring that its output obeys a number of “grossly apparent facts”,
which act as empirical constraints on conversations. Perhaps, the two most fundamental
of these facts are “Speaker-change recurs, or at least occurs”, and “Overwhelmingly, one
part talks at a time”. Following this empirical approach, researchers who have focused on
the analysis of recordings and transcripts of natural conversations, usually define the floor
in a bottom up fashion. For instance, [Jaffe and Feldstein, 1970, p. 19] define possession
of the floor entirely from the acoustic manifestation of a conversation (i.e. without regard
to any linguistic or higher level aspect):

The speaker who utters the first unilateral sound both initiates the conver-
sation and gains possession of the floor. Having gained possession, a speaker
maintains it until the first unilateral sounds by another speaker, at which time
the latter gains possession of the floor.

This very objective definition is appropriate for the analysis of existing conversation,
where in fact, anything except the sounds and the words has to be inferred by the re-
searcher, and thus could be subject to ambiguity or disagreement. This is the definition we
will use in our analyses of recorded human-human and human-computer dialogs.

2

On the other hand, this definition of the floor is not appropriate for a computational
model of turn-taking control, i.e. for the model that an artificial agent engaged in a con-
versation would use to decide when to speak or be silent. While a bottom-up definition
of the floor allows us to investigate when people start and stop speaking, it does not help
us explain why. Why does the system stop, and the user start, speaking after “How may I
help you?” The system proposed by Sacks et al relies on the hypothesis that participants in
a conversation aim at minimizing gaps and overlaps between speech segments. However
that criterion alone does not account for turn transitions, since the best way to minimize
gaps and overlaps in a given dialog is to have one participant speak all the time and the
other never.

To understand why users take turn, and ultimately build systems whose turn-taking
behavior is, if not perfectly natural, at least optimal according to some criterion, we need
to refer to a separate body of literature, that of computational linguistics. Computational
linguists are more concerned with how people think rather than when they speak. They
explain human conversational behavior in terms of beliefs, goals, intentions, and obliga-
tions [Cohen and Perrault, 1979, Allen and Perrault, 1980, Grosz and Sidner, 1986, Clark
and Schaefer, 1989, Traum and Allen, 1994]. While these notions are often applied to
high levels of processing (e.g. the user’s goal in our example might be to book a flight
to Miami), they are also relevant to turn-taking. For example, social obligations [Traum
and Allen, 1994] explain why someone generally responds when being asked a question,
whether or not they know the answer to the question, and whether or not they want to
provide that answer. When asking a question, the speaker introduces an obligation for
the addressee to respond. When an addressee raises her hand, opens her mouth and starts
speaking, she manifests her intention to introduce new information or voice an opinion.
Both obligations and intentions give rise to another definition of the floor, one that is sub-
jective to each participant rather than objective as was Jaffe and Feldstein’s. Subjectivity
means that each participants in a dialog estimates at every point in time whether they or
someone else have an obligation to speak, and whether another participant has the inten-
tion to speak. In this context, the only variable that a participant knows with certainty is
whether they themselves have the intention to speak. Other participants’ intentions are
only known with a degree of uncertainty. In other words, each participant holds beliefs
on other participants’ intentions. This notion of the conversational floor based on beliefs,
intentions, and obligations is one of the key aspects of the computational model of turn-
taking we propose in chapter 6. It is also the definition that most spoken dialog systems
implicitly use, even when their underlying turn-taking behavior is not based on any theory
but rather on, potentially clever, engineering.

3

Figure 1.1: The typical pipeline architecture of a spoken dialog system.

1.3 Spoken Dialog Systems

Spoken dialog systems divide the complex task of conversing with the user into more spe-
cific subtasks handled by specialized components: voice activity detection, speech recog-
nition, natural language understanding, dialog management, natural language generation,
and speech synthesis. These components are usually organized in a pipeline as shown in
Figure 1.1, where each component processes the result of the preceding one and sends its
result to the next one. The following sections give a brief overview of each component
and the typical issues they face.

1.3.1 Voice Activity Detection

Voice activity detection (VAD) is the problem of detecting in the incoming audio signal
when the user speaks and when she does not. This apparently easy problem can in fact
be extremely hard to solve accurately in noisy conditions and has been the focus of much
research, particularly in the signal processing community. Virtually all approaches to VAD
follow the same three step process:

1. Extract features from the audio signal

2. Classify small time frames (about 5-10 ms) as speech or non-speech

3. Smooth the classification decisions to identify speech and non-speech regions

4

The most straightforward feature is the energy of the signal. The classification decision
is then based on a threshold on that energy. When the signal is louder than the threshold,
the user is assume to be speaking. When the signal is quieter, the user is assumed to be
silent. As long as the environment of the user is quiet, i.e. as long as the energy of noises
other than user speech is significantly lower than that of user speech, this approach works
well. However, when background noise, including potentially background speech, pollutes
the audio signal, energy alone does not discriminate well between user speech and other
noises, leading to many false positives (frames classified as speech when they should be
silence). More advanced approaches have been explored [Ramı́rez et al., 2007, for a review
of the state of the art], which have mostly focused on extracting robust features, while
keeping the two other steps in the VAD process unchanged. Example of robust features
are higher order statistics [Nemer et al., 2001, Cournapeau et al., 2006] and spectrum
divergence measures [Marzinzik and Kollmeier, 2002].

1.3.2 Speech Recognition

The automatic speech recognition module (ASR) takes the speech audio data segmented by
the VAD and generates its word-level transcription. In addition, the generated hypothesis is
sometimes annotated at the word- or utterance-level with confidence scores. For example,
given the waveform of the user uttering “I need to go to the airport” the output of the ASR
should be I NEED TO GO TO THE AIRPORT.

ASR engines rely on three models [Huang et al., 2001], an acoustic model, which de-
scribes the mapping between audio data and phonemes, a lexicon, which describes the
mapping between phoneme sequences and words, and a language model, which describes
the possible (or likely) sequences of words in a language. The acoustic model needs to
be trained on a corpus of transcribed utterances. The lexicon can be either trained as a set
of letter-to-sound rules from a corpus of words and their pronunciation, or, more often, it
can be written by hand. The language model can be either a hand-written grammar, or a
statistical language model trained on a corpus of in-domain data. Most ASR engines are
designed to process full utterances, where the definition of an utterance depends on the
provided grammar or the corpus on which the statistical LM was built, but usually corre-
sponds to a phrase or sentence. However, they usually perform recognition incrementally,
as the user is speaking, and therefore can provide partial recognition results at any time,
which, as we will see, can be used to inform turn-taking decisions.

5

1.3.3 Natural Language Understanding

The natural language understanding module (NLU) takes the sequence of words output by
the ASR and generates a semantic representation of it. In the example above, the input to
the NLU would be the sequence of words “I NEED TO GO TO THE AIRPORT”, and the
output could be the semantic frame destination = ‘‘THE AIRPORT".

NLU can be performed by providing a hand-written grammar that captures semantic
relationships (either directly from the words, or via a syntactic analysis). Another approach
to NLU is to train a statistical parser on a corpus of sentences annotated with their seman-
tic representation. Most NLU modules assume that they are given a full utterance. Again
the definition of an utterance varies and depends on the grammar or corpus on which the
module was built. The traditional, text-based, approach to NLU [Earley, 1970, Charniak,
1997, see for example], which requires the input sentence to be fully parsable does not
apply well to spoken dialog due to the large number of non-sentential fragments, as well
as repairs and other disfluencies in sponetaneous speech. To cope with these irregulari-
ties, robust parsers have been proposed, which relax some of the constraints on the input
sentence and can find the best parse for the utterance, even if it does not match perfectly
the NLU’s grammar [Ward, 1991, Lavie and Tomita, 1993]. Additionally, there has been
some research on incremental parsers that are able to provide partial results before the
utterance is completed [Wiren, 1992, Mori et al., 2001, Rose et al., 2002, ACL Workshop
on Incremental Parsing, 2004, Kato et al., 2005].

1.3.4 Dialog Management

The dialog manager (DM) takes the semantic representation of the user input generated
by the NLU and outputs the semantic representation of the system’s response. In our
example the input would be destination= ‘‘THE AIRPORT" and the output could
be explicit_confirm:destination= ‘‘THE AIRPORT", if the DM decided
to respond to the user by asking them to explicitly confirm that their destination is indeed
the airport.

While there are many approaches to dialog management [Larsson and Traum, 2000,
Rich et al., 2002, Bohus and Rudnicky, 2003], the DM generally performs (at least) the
following three tasks:

1. interpreting user input in the current dialog context

2. updating the dialog context based on user input

6

3. generating relevant system responses

To do so, the DM relies on some representation of the structure of dialog, which can range
from simple finite-state machines as is the case, for example, in the VoiceXML standard
widely used in industry, to complex, linguistically driven structures such as those proposed
by Grosz and Sidner [1986] or Allen and Perrault [1980]. The DM also exploits knowledge
about the domain and task at hand, which are usually provided by some back end module
such as a database or an expert system.

1.3.5 Natural Language Generation

The natural language generation module (NLG) takes the semantic representation of the
system response and outputs a natural language expression of it. In our example, the input
would be explicit_confim:destination= ‘‘THE AIRPORT", and the output
Going to the airport. Is that right?.

Simple and common approaches to NLG include canned text when there is little vari-
ation in system prompts and templates. In our example, the NLG might have used a tem-
plate such as Going to <destination>. Is that right?. More advanced
approaches have been proposed, either based on linguistic concepts such as discourse
structure [Wilcock and Jokinen, 2003] or using statistical mapping between the semantic
representation and the surface form [Oh and Rudnicky, 2000]. The NLG can optionally
annotate the surface form with mark up tags destined to help speech synthesis using a
speech synthesis mark up language such as SSML or JSAPI’s. Such tags can indicate
prosodic patterns such as rising or falling pitch, pauses, or emphasis.

1.3.6 Speech Synthesis

The speech synthesis, or text-to-speech module (TTS) takes the natural language output
of the NLG (potentially augmented with mark up tags) and generates an audio waveform
corresponding to its spoken version.

The simplest way to perform TTS, and also the one that leads to the highest naturalness,
is to use pre-recorded prompts. As for canned-text NLG, this can be used when there is
little variation in the system prompts so that they can all be covered by a voice talent.
General speech synthesis allows the system to say any text, even potentially unplanned
ones (which is necessary when the system retrieves variable information from, say, a web
site). Common approaches to general-purpose TTS include concatenative synthesis, which

7

agglutinates segments of audio from a corpus of recorded utterances to produce new ones
[Hunt and Black, 1996, Dutoit et al., 1996], and parametric synthesis, which generates the
speech signal from a representation of the mapping from text or phonemes, to acoustics
[Tokuda et al., 2000, Black, 2006]. The synthesized utterance is played back to the user
through the output audio device.

1.4 Turn-Taking in Spoken Dialog Systems

1.4.1 End-of-Turn Detection

End-of-turn detection refers to the task of detecting when the user releases the floor after
speaking an utterance. By far, the most common approach is to use the same rule that
is used to segment the audio before sending it to the ASR. In other words, the system
considers that the user releases the floor when the VAD detects a stretch of silence longer
than a threshold. This approach has its merits, such as simplicity and a certain robustness.
However, it faces two types of issues. On the one hand, the system can wrongly interrupt
the user mid-utterance. We refer to this problem as a cut-in. On the other hand, the
system can also fail to recognize the end of the user turn and remain silent when the user
expects an answer, which will first slow down the interaction, and if prolonged, can lead
to the user speaking again to re-establish the channel (”Hello?”), with the associated risk
of misrecognitions and, again, confusion about who has the floor. We refer to the general
problem of having too long delays before system responses as latency.

The system designer faces a trade-off between cut-ins and latency. By setting a short
threshold, we can reduce latency at the cost of increasing the number of cut-ins, while a
long threshold will reduce the number of cut-ins but increase latency. Figure 1.2 illus-
trates this trade-off in the CMU Let’s Go bus information system [Raux et al., 2003, 2005,
2006, see also Chapter 3]. To plot this graph, we let the system pick a random threshold
between 400 ms and 1200 ms at the beginning of each dialog (the threshold was kept con-
stant throughout the dialog). We then binned dialogs according to the threshold that was
selected (between 400 and 500 ms, between 500 and 600 ms, etc) and computed the cut-in
rate for each bin. As expected, the graph shows that short thresholds (on the left side of
the graph) result in higher cut-in rates, while long thresholds result in lower cut-in rates.

Cut-ins impact dialog performance in several ways. They confuse the user and can lead
to situations where the user and the system keep interrupting each other, not knowing who
has the floor. They also hurt speech recognition accuracy since they lead to incomplete
user utterances that are usually poorly recognized. Hence, in the Let’s Go system, we

8

Figure 1.2: Latency / Cut-in trade-off.

found that ASR word error rate is significantly correlated with cut-in rate (R2 = 0.28,
p < 0.0001). The coefficient of the correlation equation is 3.6, indicating that on average,
an increase of 1% of the cut-in rate corresponds to an increase of 3.6% of the word error
rate.

On the other hand, excessive latency can also hurt user experience. In an experiment
comparing dialogs with a dialog system with similar dialogs with a human operator, Ward
et al. [2005] count system response time (i.e. latency) as one of the areas where an im-
provement could have a major impact on usability, noting in particular that:

Responsiveness seemed to become relatively more important when the dialog
departed from the desired path. In particular, swift exchanges were common
during error recovery in the human-human dialogs but painfully absent during
error recovery with the system.

In addition, they found that dialogs with the system tended to take more than 3 times as
long as those with the human operator, with system latency accounting for 20% of the
difference. Our own study of the Let’s Go data, detailed in Section 3.5.4, confirms this,
with the system being on average twice as slow to respond as human operators, and up to

9

18 times as slow after certain dialog acts (e.g. closings).

1.4.2 Barge-in Detection

Another important turn-taking phenomenon is barge-in or interruption. A barge-in hap-
pens when the user attempts to interrupt a system prompt. System designers typically take
one of two approaches to handle barge-in: they either ignore it altogether, in which case
the user is forced to listen to every system prompt in its entirety, or they base barge-in
detection on the VAD alone, interrupting a system prompt whenever the VAD detects user
speech. The issue with that second approach is that it exposes the system to detection
errors by the VAD, in particular false positives, when the VAD misinterprets a noise (or
background speech) as user speech. In such cases, the system interrupts itself when the
user is actually listening, leading, at best, to significant confusion, and at worst to the
user missing important information from the system. As for endpointing, there exists a
trade-off between acting fast and acting accurately, as the system might be able to gather
additional evidence in favor or against a barge-in (e.g. in the form of partial speech recog-
nition results) by waiting after the VAD first detects speech. On the other hand, if the
system fails to react in a timely fashion, the user might assume the system is not listening
(or not accepting barge-ins) and cut their utterance short, leading to further turn-taking and
recognition problems.

1.4.3 Other turn-taking phenomena

A number of other phenomena fall under the turn-taking category. For example, systems
typically use a time out mechanism to reprompt the user if they fail to respond to a prompt
within a certain time (or if the system failed to detect the user response). The issue of
timeouts is quite straightforward in unimodal systems for which dialog is the only task.
The timeout decision becomes more complex in cases where the user might be involved in
other tasks during the dialog (e.g. driving, manipulating objects), which make the user less
responsive but also act as evidence that the user has heard the system prompt and started
to react to it, in which case a time out should not be triggered.

Finally, in certain tasks, such as in-car applications [Weng et al., 2004, Ko et al., 2005],
the system might have to intentionally interrupt the user1. This can be crucial when dealing
with time-sensitive (e.g. directions while driving) or critical (e.g. collision risk) informa-
tion. This intentional interruption is to be distinguished from cut-ins, which happen when

1This is not to be confused with cut-ins described in section 1.4.1, which are unintentional

10

the system erroneously assumes that the user has released the floor. Knowing when to
interrupt involves many levels of decision, some are in the turn-taking realm (i.e. finding
an appropriate time in the user utterance to take the floor with minimum disruption and
confusion), while others are at higher levels (e.g. how important is what the system wants
to convey to the user compared to what the user is currently saying).

These phenomena, which involve some knowledge about the specific task at a high
level and are not applicable to all dialogs, are beyond the scope of this thesis.

1.5 Principled Approaches to Optimizing Turn-Taking Be-
havior

Sacks et al. [1974] stated minimizing gaps and overlaps as one of the goals of a turn-taking
system. Yet, the algorithms used for turn-taking in spoken dialog systems, relying on fixed
rules involving very few, low-level, features do not generally make any attempt at optimiz-
ing their behavior. While there is still room for improving those features (e.g. more noise-
robust voice activity detection), research on Conversation Analysis and psycholinguistics
(see Chapter 2) tells us that the cues necessary to detect and anticipate turn-taking events
come from all levels of dialog: acoustics, prosody, lexicon, syntax, semantics, discourse
structure, and pragmatics. One difficulty of building machines that use those features for
any kind of processing (turn-taking, discourse segmentation, emotion detection, etc) is that
higher level features are usually harder to extract. Many questions need to be addressed
even before one starts using that information. What level of semantics should be extracted?
How to represent semantics and pragmatics? These issues are particularly daunting when
dealing with free-form human-human conversation. Fortunately, spoken dialog systems,
offer a constrained, task-oriented environment that not only makes the choices of represen-
tation easier, but even provides representations for higher levels of language. As we have
seen, the speech recognizer, natural language understanding module, and dialog manager
process user’s input at different levels of representation. The dialog manager also contains
a representation of discourse structure (i.e. the dialog state). The natural language gen-
eration and text-to-speech modules provide information at various levels of the system’s
contributions. However, besides the primary goal of dialog management, other compo-
nents of dialog systems rarely exploit this wealth of knowledge.

In this dissertation, we describe a research program whose goal is to endow spoken
dialog systems with a principled approach to turn-taking that allows to optimize the sys-
tem’s behavior based on data collected through interaction. Our approach relies on three
components:

11

An architecture for spoken dialog systems where turn-taking and other low-level inter-
actional phenomena are modeled explicitly

A model of turn-taking that represents the dialog’s turn-taking state and controls the sys-
tem’s behavior

Optimization methods to allow the training and adaptation of the turn-taking model’s
parameters through interaction

Whenever possible, we will design the features and optimization procedures to allow un-
supervised learning, so that the system can improve its behavior over time, without human
intervention other than the dialogs themselves.

1.6 Thesis Statement

Incorporating different levels of knowledge using a data-driven decision model will im-
prove the turn-taking behavior of spoken dialog systems. Specifically, turn-taking can be
modeled as a finite-state decision process operating under uncertainty.

1.7 Contributions

This thesis extends the state of the art of spoken dialog systems technologies by providing:

1. an architecture for timing-aware spoken dialog systems (Chapter 4)

2. demonstration that dialog features can be used to improve turn-taking (Chapter 5)

3. an algorithm to optimize endpointing thresholds using dialog features (Chapter 5)

4. a decision theoretic model of turn-taking as a dynamic decision problem (Chapter
6)

12

Chapter 2

Related Work

2.1 Turn-Taking in Conversation

2.1.1 What is turn-taking?

In a conversation, most of the time one person speaks and the others don’t. Participants
”take turn” at the floor. While small gaps and overlaps between participants’ speech are
frequent they rarely last more than a few hundred milliseconds. This smooth interaction is
one of the essential elements of spoken conversation, one that distinguishes it from other
modes of communication such as monologues, formal speeches, and written and electronic
mail.

The coordination between participants happens in a very natural way to anyone who
has learned to speak, yet researchers have long failed to recognize it, let alone identify
some of its mechanisms, signals and required skills.

In the 60s and early 70s, Harvey Sacks and his colleagues, created the field of Conver-
sation Analysis (CA), defined as the study of how people interact with speech in different
social settings (e.g. informal conversations, medical appointments, political interviews...).
In particular, CA researchers have focused on turn-taking as one of the prominent features
of spontaneous conversation. Based on an analysis of naturally occurring conversations,
Sacks et al. [1974] established a set of constraints that they claim any model of turn-taking
in conversation should obey. Namely, that such a model should be locally managed (i.e.
only depends on the neighboring turns), party-administered (i.e. does not involve an ex-
ternal regulator), and interactionally controlled (i.e. managed through interaction between
the participants). Another important aspect of turn-taking that needs to be accounted for

13

is that transition from one speaker to the next occur very frequently with neither gap nor
overlap in speech, or at least not significant ones. Sacks et al propose a minimal model
of turn-taking whose key components are a turn-constructional component, which defines
what is a turn, and a turn-allocation component, which indicates who should speak next.
A concept central to the turn-constructional component is that of Transition Relevance
Places (TRPs). TRPs are points in an utterance where it would be relevant for another
participant to take the floor.

2.1.2 TRPs and Turn Transitions

To explain the high number of turn transitions without gap (or even with overlap) that they
observe, Sacks et al. advance the hypothesis that listeners are able to project TRPs before
they occur. Many studies in CA following Sacks et al. [1974] aim at identifying features
of TRPs and their projectability.

Sacks et al. [1974] consider syntactic constituents’ boundaries as TRPs. This strict use
of syntax is problematic considering that spoken language rarely has well-formed complex
constituents due to disfluencies (see for example Levelt [1993] for a discussion of these
issues). Recently, authors concerned with the quantitative analysis of turn-taking [Ford
and Thompson, 1996, Furo, 2001] have given more operational definitions of syntactic
TRPs. For instance, Ford and Thompson [1996] specify that they are ”potential terminal
boundaries for a recoverable clause-so-far”. This is illustrated in the following example
(from Ford and Thompson [1996]):

(2.1)
V: And his knee was being worn/- okay/ wait./

It was bent/ that way/

In this utterance, the two syntactic completion points in ”It was bent/ that way/” indicate
that at these two points the whole units ”It was bent” and ”It was bent that way” can be
considered complete. Often, a larger context must be taken into account to recover the
clause-so-far. For instance, answers, which are often not complete syntactic constituents
in spontaneous conversations, complete a clause implied by the question, and are therefore
considered complete syntactic units from the point of view of turn-taking. Similarly, Reac-
tive tokens such as backchannels (e.g. ”okay”, ”mhm”), assessments (e.g. ”really?”) and
repetitions (when the listener repeats all or part of the original speaker’s utterance as an
acknowledgment or confirmation) are often considered complete syntactic units although
they are typically not well-formed syntactic constituents [Ford and Thompson, 1996, Sor-
jonen, 1996, Furo, 2001].

14

A second type of TRP features is prosody. In English, falling and rising pitches are usu-
ally considered as markers of intonation completion points for statements and questions,
respectively [Chafe, 1992, Ford and Thompson, 1996, Furo, 2001]. In contrast, level pitch
is considered a continuation marker, therefore not indicative of a TRP [Oreström, 1983, p.
62]. Another prosodic pattern is the lengthening, or drawling, of the final word or syllable
of a turn [Duncan, 1972, Koiso et al., 1998], although these results are contradicted by
Oreström [1983, p. 64]. These phenomena are sometimes accompanied by changes in
voice quality such as creaks [Chafe, 1992]. Prosody as predictive of the end of turns has
also been investigated by psycholinguists in perceptual experiments. For example, in an
experiment on turn-taking in Dutch conversations, Wesseling and van Son [2005] asked
their subjects to listen to recordings of natural conversations in two conditions: natural
speech and synthesized speech, the latter preserving the prosody of the natural utterances
but stripping them away of any lexical/semantic information. Subjects had to produce
minimal vocal answers (backchannels) at times they felt were appropriate, which, the au-
thors claim, would correspond to TRPs. The delay between each minimal response and
the closest (manually labeled) turn boundary was then measured. Their results show that
human listeners are consistently able to react very fast to, or even anticipate, turn bound-
aries both with full speech and with only prosodic information. This result is in partial
contradiction with a previous study by Schaffer [1983], who found little consistency in
how listeners use intonation to predict TRPs. In her experiment, subjects were listening
to short extracts (”sentences, phrases, or single words”) from recorded natural conversa-
tions in again two similar conditions: normal recording and filtered. Based on what they
heard, on one set of recordings, the subjects had to predict whether the next speaker in the
original conversation (immediately after the extract) was the same as the one in the extract
or a different one. Schaffer then analyzed whether groups of 20 to 31 listeners agreed in
their judgements. She found only sparse evidence of agreement between the subjects. In
particular, intonation alone (in the filtered condition) did not allow them to agree on points
of speaker transition. Although part of the results might be explained by her experimental
design (e.g. quality of the recordings, unnaturalness of the task, fact that speaker changes
are often optional in natural conversation, etc), they do support the claim that intonation
alone and without context is not a sufficient cue for turn-taking.

Semantic and pragmatic completion points correspond to points where the turn-so-far
constitutes a complete meaningful utterance coherent within the conversational context.
Not surprisingly, they have been found to strongly correlate with TRPs [Oreström, 1983,
Furo, 2001]. However, all the authors addressing this point acknowledge the difficulty of
establishing an operational definition of semantic completion. Hence, Oreström [1983, p.
57] writes:

15

As there is no simple way to formalizing a semantic analysis of this conver-
sational material, the interpretation will have to be made subjectively. Admit-
tedly, this may be regarded as the weakest point in the whole analysis.

Furo [2001] uses a more specific definition of semantic completion points. They are placed
after: floor-giving utterances (e.g. questions), complete propositions, and reactive tokens,
provided they are not preceded by a floor-claiming utterance (such as ”Here is what I
told him.”). However, there is still an issue with this criterion since it relies on syntax
completion.

Finally, non-verbal aspects of face-to-face conversation are known to interact with
linguistic signals for turn-taking. The most frequently observed such signal is that of
speakers making eye contact with their listeners to indicate the end of their turn [Kendon,
1967, Goodwin, 1981]. On the other hand, gestures are generally found to be of little
turn-taking significance [Oreström, 1983, p. 36], although Duncan [1972] did find that
hand gestures were used by patients and doctors during interviews to cancel other turn-
yielding signals. Beattie [1983] makes a distinction between simple movements, through
which the speaker merely emphasizes the spoken message, and more complex gestures,
which appear to accompany the planning of an upcoming utterance, the gesture generally
preceding the verbal rendition of the utterance. While one can speculate about listeners
using these gestures to predict upcoming speech (which would go along with Duncan’s
finding that gestures signal turn continuations rather than transitions), more studies are
necessary in this area to expose the potential turn-taking functions of gestures.

2.1.3 Overlapping Speech

In addition to the signals announcing the end of a turn there are other turn-taking sig-
nals, in particular those that trigger backchannel feedback from the listener. Clancy et al.
[1996] investigated the use of Reactive Tokens in English, Japanese, and Mandarin. They
found that, in English and Mandarin, RTs are produced by the listener predominantly at
syntactic completion points (resp. 78% and 88% of the RTs) whereas only 36% of RTs
in Japanese conversation occur at such points. This, along with the fact that backchan-
nels are much more frequent in Japanese (29.9% of all speaker changes are backchannels)
than in English (15.9%) and Mandarin (4.7%), reflect the typical behavior in Japanese to
produce backchannel after each noun phrase produced by the speaker (not only clauses).
In her own work, Furo [2001] found a similar percentage of RTs occurring at syntactic
completion points in English conversations (71.9%) but a much higher rate in Japanese
conversations (83.7%). She also found that many RTs occur at noticeable pauses in both

16

English and Japanese (resp. 74.6% and 82.1%). Duncan and Fiske [1985] hypothesized
that, in face-to-face interaction, the speaker within-turn signal, which triggers a backchan-
nel from the listener, is composed of the completion of a syntactic clause and of a shift of
the speaker’s gaze towards the listener.

Ward and Tsukahara [2000] studied another potential backchannel trigger, again in
English and Japanese. Their hypothesis was that regions of low pitch yield backchan-
nel feedback. They built a predictive rule for each language and automatically predicted
backchannels in two corpora, one consisting of 68 minutes of conversations between native
speakers of English, and one of 80 minutes of conversations between Japanese speakers.
Although the accuracy of their predictions is modest (18% for English, 34% for Japanese),
it is above chance and shows that some of the backchannels can be explained by such a
prosodic cue. Koiso et al. [1998] also used predictive models as an analysis tool and
trained decision trees to predict backchannel occurrence in Japanese conversations. The
recordings were automatically split into ”interpausal units” (stretches of speech separated
by pauses of 100 ms or more). For each unit, a number of syntactic and (discretized)
prosodic features was semi-automatically extracted. The authors first studied the corre-
lation between each feature and the occurrence of a backchannel in the pause following
the unit and then built a decision tree using all the features to predict the backchannels.
As a result, they are able to predict backchannel occurrence with a high accuracy (88.6%).
They found that intonational features (the type of final contour of the unit) are the strongest
signals for the occurrence of backchannels. In contrast, the most prominant features in-
hibiting the occurrence of backchannels are syntactic (i.e. certain types of words, such as
adverbs, tend to ”block” backchannels). In her analysis of videotaped conversations be-
tween strangers, Denny [1985] built logistic regression models to predict the occurrence
of backchannels during pauses of 65 ms or more. Although she does not provide an es-
timate of the quality of the prediction, she did find that the most useful (hand-annotated)
features were grammatical completion, speaker gaze, intonation, pause length, and type of
preceding utterance (questions are less likely to be followed by backchannels than state-
ments). Cathcart et al. [2003] attempted to predict backchannel feedback in the HCRC
Map Task Corpus of goal-directed conversations using low-level, easy to extract features.
By combining pause duration information with a trigram language model built on symbols
representing Parts-of-Speech and pauses from the main speaker, as well as backchannels
from the listener, they were able to achieve precisions in the range of 25%-30% and recalls
of 35%-60%.

As we see, the literature on cues triggering backchannel feedback indicates that some-
what similar features are used for backchannel and turn transitions. One difference is that
backchannel feedback is always optional (particularly in English), whereas turn transi-

17

tions are more systematic. Indeed, one can imagine a completely functional conversation
without any backchannel, but not without turn transitions. Therefore, it is difficult to eval-
uate the acuracy of backchannel predictions, since they attempt to detect places where a
backchannel feedback could, but does not have to, be produced. As for turn transitions,
it seems that one weakness of all the analyses described above is that, to a large extent,
they ignore semantic and pragmatic information, which might be of prime importance in
the decision to produce backchannel feedback (e.g. the fact that a speaker sounds sad or
concerned might lead a caring listener to produce backchannels, as a form of support).

2.2 Turn-Taking Models for Spoken Dialog Systems

2.2.1 Supporting and related work

Incremental Language Understanding

Research in psycholinguistics has established that humans process utterances incremen-
tally [Tyler and Marlsen-Wilson, 1977, Altmann and Steedman, 1988, Kamide et al.,
2003]. That is to say, when we hear an utterance, at each point during the utterance,
we hold a (potentially underspecified) semantic representation of this utterance. Both in
order to match human language processing and to allow interactive natural language-based
applications, incremental parsers have been proposed and implemented by computational
linguists [Wiren, 1992, Mori et al., 2001, Rose et al., 2002, ACL Workshop on Incremen-
tal Parsing, 2004, Kato et al., 2005]. Among those, a number have specifically targetted
spoken dialog systems.

For example, Stoness et al. [2004] describe a continuous understanding module for a
dialog system which takes into account context information (e.g. reference resolution) to
guide its parser dynamically. They use a Mediator module which exploits high level infor-
mation (e.g. from the reference resolution module of a dialog system) to directly modify
the chart of a chart parser, changing the probability of certain chart entries or adding new
chart entries. They evaluated their approach on a corpus of human-human dialogs and
found that it brought some, albeit quite small, improvement over a non-incremental parser,
in terms of understanding accuracy and efficiency.

The incremental parser developped by Nakano et al [Nakano et al., 1999b], uses a
unification-based grammar and combines NLU and discourse processing in an algorithm
called Incremental Significant-Utterance-Sequence Search (ISSS). For each new incoming
word from the ASR, the parser maintains a number of candidate contexts (i.e. parsing stack

18

and beliefs about the user’s intention), each associated with a priority level. Priorities are
heuristically set so as to be higher for ”significant utterances”, i.e. phrases or clauses that
correspond to a fully formed dialog act, and also favor longer constituents (as opposed to
concatenation of shorter ones). This parser is part of the WIT spoken dialog system toolkit
(see below).

Another related work is Wang [2003], which describes an integrated recognition and
parsing engine. In this approach, the speech recognizer uses a combination of Probabilistic
Context-Free Grammars (PCFG) and N-grams language models to capture the semantic
structure of the input (through the PCFG), while keeping the flexibility of N-grams to
model the language of complex semantic classes (e.g. ”email subject”). Decoding is then
performed frame by frame, as in standard speech recognition, and the current hypothe-
ses, including their semantic PCFG classes, can be obtained at any frame. The method
was evaluated in MiPad, a personal assistant for mobile devices that allows the user to
manage contacts, emails and schedules. The results show no difference between the syn-
chronous (i.e. incremental) NLU version and a standard ”turn-based” version in terms of
task completion rate or time. However, subjects using the incremental NLU version tended
to produce longer and more complex utterances since the system showed its current un-
derstanding while the user was speaking.

Real-Time Control of Mobile Robots

The incremental processing work described in the previous section is rooted in human lan-
guage processing and psycholinguistics. Another way to approach flexible turn-taking is as
an instance of real-time reactive behavior by an artificial agent. This relates to research in
Artificial Intelligence and mobile robotics on how autonomous mobile robots can navigate
in the real world and perform their tasks. A common principle used to build architectures
for such agents is to use multiple layers [Brooks, 1985, Muller, 1996, Bonasso et al., 1997,
Hassan et al., 2000]. In such architectures, the components in charge of long-term planning
(such as those required to explore a building) and those in charge of immediate reactive
behavior (such as those required to avoid obstacles) operate asynchronously and for the
most part independently. They communicate usually by passing messages. On the one
hand, the reactive component informs the planning component of events arising in the real
world that might trigger replanning. On the other hand, the planning component informs
the reactive component of its plan of action so that the reactive component can (attempt
to) take the prescribed actions. This separation into layers can be ported to spoken dialog,
where the planning component is the dialog manager and the reactive component (which
typically does not exist in standard dialog systems) is in charge of executing the actions

19

(e.g. saying the utterances) decided by the dialog manager while monitoring real-world
events (e.g. barge-in, backchannel) that might modify the dialog manager’s model of the
world.

2.2.2 The Ymir Architecture

Possibly the most detailed work on reproducing human turn-taking behavior in artificial
conversational agents is that of Thorisson [Thorisson, 1996, 2002]. The core of this work is
Ymir [Thorisson, 1999], an architecture for conversational humanoids that integrates many
aspects of multimodal face-to-face interaction (e.g. hand gestures, gaze, backchannels, but
also higher level aspects such as discourse planning) in a unified framework. Although the
architecture is presumably task- and domain-independent, all of the work in turn-taking
has been done with Gandalf, an embodied agent acting as a guide to the solar system.
As in other systems, the architecture contains three major sets of agents: perceptors (and
multimodal integrators, which combine information from unimodal perceptors), deciders,
which plan the interaction, and behaviors, which encode the realization of communicative
actions as motor sequences. In addition, Thorisson divides mental processes involved in
conversation in three layers, which affect all three types of modules (perceptors, deciders,
and behaviors). These layers correspond to different levels of priority and reactivity and
are, from the highest priority to the lowest:

the Reactive Layer which captures the fastest (and simplest) behaviors such as broad-
stroke functional analysis and reactive behaviors (e.g. backchannels). Decisions in
this layer are made at a frequency of 2-10 per second.

the Process Control Layer which captures domain-independent dialog structure inter-
pretation and control mechanisms. Such decisions happen 1-2 times per second.

the Content Layer which contains actual linguistic and higher level mechanisms used
for content interpretation and presentation. Decisions at this level happen 1 or less
times per second.

The argument is that, given the constraints of real-time processing imposed by face-to-face
interaction, an agent should first analyze the other participant’s behavior in terms of broad
functionality (e.g. is a gesture communicative or non-communicative?), then in terms
of dialog control (e.g. turn-taking), and only finally (i.e. ”when time allows”) in terms
of linguistic and discourse content. In practice, deciders and multimodal integrators are
coded as sets of rules that get evaluated at a rate depending on their layer. For example,

20

one rule for turn-taking lying in the Reactive Layer is (in LISP-style, reproduced from
Thorisson [2002]):

START STATE: Other-Has-Turn
END STATE : I-Take-Turn
CONDITION : (AND (Time-Since ’Other-is-presenting > 50 msec)

(Other-produced-complete-utterance = T)
(Other-is-giving-turn = T)
(Other-is-taking-turn = F))

This rule, evaluated 2-10 times per second, specifies that the system must take the turn
after a 50 ms pause following a user utterance, provided the utterance is complete and
turn-yielding. Other examples of rules in the Reactive Layer aim at showing that the sys-
tem is listening (by modifying Gandalf’s facial expression) or at looking puzzled during
an awkward pause. Rules in the Process Control Layer concern higher level behavior such
as turning to the user when the system speaks. Gandalf/Ymir was evaluated in three ways:
comparison with human behavior, reusability of the framework, and user study [Thoris-
son, 1996]. First, from a theoretical point of view, Thorisson compared the response times
of Ymir’s various perception, decision, and action loops with those of humans and found
that they were roughly comparable. This evaluation is however highly dependent on the
performance of the hardware and the software used and is probably no longer relevant
ten years later. Second, Thorisson showed that his framework is general by using it in
two very different systems: Gandalf and Puff the LEGO Magic Dragon, a character in a
video game-like environment. More interestingly, he conducted a user study in which 12
subjects interacted with three versions of Gandalf: one with just content (task) related be-
havior (CONT), one with additional turn-taking abilities (ENV), and one with emotional
expressions (e.g. looking confused) but no flexible turn-taking (EMO). In the follow-
up questionnaires, subjects rated the ENV system higher than the other two in terms of
smoothness of interaction and life-likedness. More surprisingly, they also rated the sys-
tem’s ability to understand and produce natural language significantly higher in the ENV
condition than in the other two. One explanation for this would be that the answer to the
natural language questions reflected more the overall satisfaction of the subjects than the
specific understanding and generation ability of Gandalf.

2.2.3 The TRIPS Architecture

The TRIPS spoken dialog architecture [Ferguson and Allen, 1998], developped at the Uni-
versity of Rochester, is an intergrated system for conducting collaborative problem-solving

21

dialogs. It has been used to develop a number of dialog systems over almost a decade on
tasks such as emergency response and evacuation planning [Allen et al., 2000]. While
its initial implementation handled turn-taking in the standard rigid way, a later version
featured a new core architecture specifically allowing incremental interpretation and gen-
eration [Allen et al., 2001]. This new architecture is divided in three components: in-
terpretation, generation and behavior, the latter representing all high level planning. An
important feature of TRIPS is the separation of discourse- from task-related components.
Discourse is captured by a Discourse Context (DC), which contains typical elements such
as the past history of user and system utterances and the set of current salient entities (for
reference resolution), but also discourse level obligations (e.g. the obligation to address a
question asked by the user), and current turn status. All the components of the architec-
ture run incrementally and asynchronously, which allows for flexible turn-taking behavior.
For example, when there is an obligation to respond to the user in the DC, the ”normal”
behavior is to get the answer to the user’s question and produce it. However, the genera-
tion module might also decide to provide an acknowledgment, possibly in the form of a
backchannel, without waiting for the task-reasoning modules’ complete answer. Unfortu-
nately, while Allen et al. [2001] do provide a number of examples of the phenomena that
this architecture aims at capturing, there are, to my knowledge, no published studies of
a full spoken dialog system based on it exploiting its turn-taking capabilities. There is,
however, recent work [Allen et al., 2005] using a TRIPS-based multimodal system that
takes speech input to manipulate graphical objects on the screen, but responses from the
system are only graphical.

The WIT Architecture

The WIT spoken dialog system toolkit was developped at NTT Corporation by Nakano
and his colleagues [Nakano et al., 1999a, 2000]. This toolkit provides four main modules.
First, a grammar-based speech recognizer outputs word hypotheses as they are identified
as being part of the best path in the grammar. Second, the core of the architecture is the
incremental natural language understanding module described in section 2.2.1. The third
component of the architecture is an incremental natural language generation module de-
scribed in detail in Dohsaka and Shimazu [1997], which takes into account user responses
(including backchannels) to system utterances to dynamically update output planning. Fi-
nally, the last module concerns speech output and consists of pre-recorded phrases that are
concatenated together according to the NLG output plan. While systems built on the WIT
architecture have been used in further research studies (e.g. the work on utterance bound-
ary detection in Sato et al. [2002]) and videos demonstrating such systems have been made
public, no formal evaluation of this system has been published.

22

2.2.4 Other work

Lemon et al. [2003] proposed a multi-layered architecture for dialog systems with the goal
of separating the planning aspect of dialog from its reactive aspect. The top layer keeps
track of the context of the dialog and plans responses to user requests and system-initiated
topic switches. The bottom layer is in charge of maintaining the communication channel.
This involves a variety of tasks such as the generation of outputs scheduled by the top
layer, targeted help after non-understandings, and turn-taking (e.g. interrupting the user).
None of the actions taken at the bottom layer require information about the context of the
dialog beyond the last system and user utterances. The two layers operate asynchronously
and communicate through specific data structures. For example, the Output Agenda is a
prioritized list of the outputs planned by the top layer that is accessed by the bottom layer
to decide what to generate next. Again, while the authors give examples of behaviors made
possible by the architecture and mention a system built on top of it, no formal evaluation
results are provided.

Hulstijn and Vreeswijk [2003] use turn-taking as a test case for agent-based program-
ming. Thus their goal is neither to validate a linguistic theory nor to build a conversational
agent, but rather to implement the SSJ model of Sacks et al. [1974] as multi-agent soft-
ware. In particular, the simulated multi-party dialog that they generate have no linguistic
content, participants selecting utterances at random from a fixed set when they decide to
speak. However, Kronild [2006] describes the turn manager of an actual artificial con-
versational agent partly inspired by this work. As Hulstijn and Vreeswijk [2003], it fol-
lows the SSJ model closely and allows for multi-party conversation. This model relies on
complex state machines called Harel statecharts [Harel, 1987]. Unfortunately, while this
turn-taking model was built in conjunction with a dialog manager for multi-party conver-
sation [Kronlid, 2008], this works remains essentially theoretic and does not mention any
empirical evaluation. Our own model, described in Chapter 6, also relies on a finite-state
machine, albeit a simpler one.

Aist [1998] describes a turn-taking architecture for the Reading Tutor of CMU’s Project
LISTEN, a system that listens to children reading aloud and provides help and feedback
accordingly. Although the Reading Tutor differs from task-based spoken dialog systems in
that the student spoken input is limited to reading (correctly or not) sentences displayed on
the screen, thus eliminating the problem of natural language understanding, it does involve
a multimodal ”dialog” in that, in addition to reading the sentence, the student can click on
certain GUI elements (e.g. to request help). On the other side of the interaction, the system
uses speech and graphics to provide instructions, feedback, and help to the student. The
tutorial actions that the system can take [Aist and Mostow, 1997] include backchanneling

23

when the student is correctly reading the sentence. In order to accomodate the multimodal-
ity and allow for time-sensitive actions, the system uses an event-based model, where each
event (examples of events include ”user starts speaking”, ”user clicks on the Back but-
ton” and ”tutor stops speaking”) is timestamped and certain events trigger transitions in
a finite state discourse model. Based on the incoming events and the current state of the
interaction, a set of turn-taking rules is used to decide, 5 times per second, whether the sys-
tem should start/stop speaking or produce a backchannel. Unfortunately, little quantitative
evaluation of the turn-taking mechanism of the system has been published.

2.3 Summary

In this chapter, we discuss how decades of research on human-human conversation, both
by conversation analysts and psycholinguists, first uncovered the turn-taking process and
then revealed its complexity. In particular, both the analysis of naturally occurring con-
versations and perceptual experiments have shown that humans resort to a wide range of
features in order to make timely turn-taking decisions.

We present a number of efforts to apply these findings to spoken dialog systems
through flexible architectures that rely mostly on incremental natural language process-
ing, and on robotic principles of real-time, event-driven, control.

24

Chapter 3

Research on a Deployed SDS: the CMU
Let’s Go Bus Information System

3.1 Summary

In this chapter, we present the task and system that we used for all the data collections and
evaluations described in the following chapters. We begin by discussing the advantages
and challenges of doing research on publicly deployed systems in section 3.2, and explain
our decision to base our research on Let’s Go, a publicly deployed bus information system
for the city of Pittsburgh. Section 3.3 provides an overview of the system and of its speech
understanding, dialog management, and speech generation components. In section 3.4,
we describe the results of Let’s Go’s public deployment in terms of call traffic and task
completion. Finally, in section 3.5, we analyze in more details the turn-taking behavior of
the baseline system, which relied on standard voice activity detection and threshold-based
endpointing techniques. We find that turn-taking failures are frequent and can lead to dia-
log breakdowns. Further, we compare temporal aspects of turn-taking between successful
Let’s Go dialogs and natural human-human dialogs on the same task. Results show that
the system is significantly less efficient at taking turns than a human operator and that
part of this difference comes from the inability of the system to leverage information such
as dialog state when making turn-taking decisions. Ignoring such information leads to
unnatural turn transition pauses, which in turns affect user’s own turn-taking behavior.

25

3.2 Research on Deployed Spoken Dialog Systems

Until recently, virtually all research on spoken dialog systems was conducted in the lab.
Even today, most academic work relies on systems (either fully automated or relying on
some form of the Wizard-of-Oz paradigm) specially created for the purpose of a study.
Experiments rely on recruited subjects that are given tasks to accomplish with the system,
and usually some form of compensation for their participation. In the past decade, the
emergence and spread of telephony based systems used by thousands, if not millions, of
users have given birth to a new kind of study, which relies heavily on the analysis of large
amounts of data collected from the logs of those systems Raux et al. [2006], Damnati et al.
[2007], Bacchiani et al. [2008]. Here we describe the pros and cons of both approaches
to spoken dialog systems research and explain our choices for the evaluation of the work
described in the following chapters.

The first question one has to consider is whether a system matching the researcher’s
topic of study already exists. For research that explores new applications of the technology
(e.g. human-robot interaction), the only solution is for the researcher to create a new sys-
tem and, most of the time, to focus on controlled experiments in the lab. However, many
research questions span a wide variety of tasks. For those, whether to exploit a system
deployed among real users or to conduct controlled experiments in the lab is a genuine
design question. One of the main advantages of deployed system is that they provide large
amounts of collected data on which to train and evaluate models. As anyone involved in
user studies is well aware of, collecting large amounts of data through controlled experi-
ments is a very costly, time-consuming, enterprise. A deployed system generally provides
a constant stream of data without the need for recruiting users. In addition, users of a de-
ployed system are genuinely trying to achieve their goal, whereas paid subjects’ motivation
is external to the system or task. As a consequence, as found by Ai et al. [2007], dialogs
in lab settings differ from those with deployed systems along various dimensions such as
speaking rate, help requests, and barge-in. Evaluating dialog systems in their ”natural”
setting, with real users, is thus a major benefit of research on deployed systems. On the
other hand, lab studies allow for far more control over the various variables that affect the
performance of a system, such as task difficulty, speech recognition accuracy, etc. Such
experiments might be able to capture subtle differences that would be otherwise masked
by other dominant factors in a deployed system.

Because turn-taking is a universal conversational phenomenon that occurs in all human-
computer spoken interaction, not only advanced research systems, but also simple form-
filling systems such as those that are already commercially available today, we decided to
focus on a relatively standard, but deployed, system. Specifically, the research presented

26

in this thesis is based on Let’s Go, a public, telephone-based dialog system that we fully
designed and implemented, and deployed in partnership with the Port Authority of Al-
legheny County, which operates buses in the Pittsburgh area. We believe that this choice
allowed us to:

1. Gather enough data to build data-driven models of turn-taking

2. Assess the proposed approaches on a wide variety of users and conditions

3. Confirm the potential of advanced turn-taking behavior on current systems

with the caveat that the task-at-hand (providing bus schedules) might not be as impacted
by improved turn-taking as would be a more artificial task purposefully designed to em-
phasize turn-taking (e.g. one where the user needs to provide long lists of items, or one
of a real time nature such that the system might have to sometimes interrupt the user).
Ultimately, however, the results presented in chapters 5 and 6, indicate that even simple
systems can benefit significantly from this work.

3.3 Overview of the Let’s Go System

Let’s Go [Raux et al., 2003, 2005, 2006] is an automated telephone-based service that
provides access to bus schedules for certain routes in the Port Authority of Allegheny
County network, covering parts of the Pittsburgh metropolitan area. Since March 2005,
users who call the Port Authority outside of business hours (i.e. between 7pm and 7am
on weekdays and 4:30pm and 8am on weekends), are given the possibility to use Let’s
Go. This results in an average of 40 calls per night on weekdays and about 80-100 calls
per night on weekends handled by the system. Software-wise, Let’s Go is built on the
Olympus dialog system framework Bohus et al. [2007]. Figure 3.1 shows an example of a
typical dialog with Let’s Go. The following sections describe Let’s Go’s components.

3.3.1 Speech Recognition and Understanding

Two engines using gender-specific acoustic models and context-dependent language mod-
els run in parallel. Originally, the Sphinx-II engine Huang et al. [1992] was used, which
was subsequently replaced by the newer PocketSphinx engine Huggins-Daines et al. [2006]
in April 2007. The top (1-best) hypotheses of both engines are parsed and the system se-
lects one of the hypotheses based on the dialog-level confidence annotation performed by

27

S: Welcome to the bus information system. This conversation will be recorded for technical research pur-
poses. What can I do for you?
U: 54C
S: The 54C . Did I get that right?
U: YES
S: Alright. Where are you leaving from?
U: OAKLAND
...
S: Leaving at 8 p.m. Is this correct?
U: YES
S: Right. Hold on. Let me check that for you. There is a 54C leaving FIFTH AVENUE AT BIGELOW at
8:19 p.m. It will arrive at EAST CARSON STREET AT TWENTIETH at 8:28 p.m. To get more information
about buses related to this trip, you can say, when is the next bus, or, when is the previous bus. To ask about
a different trip, you can say, start a new query. If you are finished, you can say goodbye.
U: WHEN IS THE PREVIOUS BUS
S: Okay. There is a 54C leaving FIFTH AVENUE AT BIGELOW at 8 p.m.
...

Figure 3.1: Excerpt from a dialog with the system. (U: user turns, S: system turns)

Helios (see below). As of January 2007, the lexicon, in which each bus stop name ap-
pears as a single multi-word entry, contains 7913 words. The language model was initially
trained on data collected in experiments predating the opening of Let’s Go to the general
public. This resulted in a significant mismatch between the model and the actual users’
utterances, and thus to poor recognition accuracy. In June 2006, we retrained the language
and acoustic models on a corpus of 2000 calls to the public system that were manually
transcribed1. For the language model, the data was used to train both the general parts of
each dialog state’s LM, as well as distributions within word classes such as place names,
neighborhoods, and bus routes.

Figure 3.2 shows hand labeled task success as a function of word error rate (WER,
computed as the ratio of the number of words inserted, deleted and substituted by the
speech recognizer divided by the total number of words actually spoken by the user),
which is a standard measure of speech recognition accuracy. Except for the left-most point
where too little data was available, it can be noted that there is a strong linear correlation

1Many thanks to David Huggins-Daines for performing the acoustic training/adaptation

28

Figure 3.2: Relationship between word error rate and task success in the Let’s Go system.

between the two (R2 = 0.97 for WER over 10%). This was confirmed when we retrained
the models in 2006, bringing about a significant reduction of the word error rate as shown
on Figure 3.3, from about 60% to about 35%. At the same time, dialog completion rate
(an automatic estimate of task success, defined in section 3.4.2) rose from 45% to 75%
(see Figure 3.5(b)).

For natural language understanding, Let’s Go uses Phoenix, a robust semantic parser
using hand-written context-free grammars. The grammar is designed so as to directly cap-
ture relevant concepts and their value, without requiring an intermediate syntactic parse.
It was initially written based on intuition and initial wizard-of-oz and in-lab experiments,
and continuously refined as dialogs with general users were transcribed and analyzed.

The last part of the understanding process is confidence annotation, which is performed
by the Helios confidence annotator developed by [Bohus and Rudnicky, 2002]. Helios re-
lies on a logistic regression model trained on a large number of features, including recog-
nition score, parse coverage, dialog state, etc. The model used in Let’s Go was trained on
9163 dialog turns collected with the Let’s Go system during the first three weeks of public
use in March 2005.

29

Figure 3.3: Effect of language and acoustic model retraining on word error rate. As ex-
plained in section 3.3.1, two gender-specific engines were used. The dark bars represent
WER obtained when selecting for each user utterance the recognizer with the highest (au-
tomatically computed) recognition score, while the light bars represent WER obtained
when selecting the recognizer with the lowest WER (oracle selection). The latter is a
lower bound of the performance obtainable by selecting one recognizer for each utterance.
At runtime, the selection is based on Helios confidence (see text), which, in addition to
recognition score, uses information from the parser and dialog state. Therefore, runtime
performance typically lies between the two bounds given here.

30

3.3.2 Dialog Management

Task Specification

Let’s Go uses a plan-based dialog manager using the RavenClaw Bohus and Rudnicky
[2003] framework. RavenClaw provides a generic dialog manager to which the system
designer must provide a task specification in the form of a tree. The tree captures dialog
structure by decomposing conversational goals into subgoals, from high-level tasks such
as ”getting the query specifications from the user” to atomic dialog actions such as ”asking
where the user is leaving from”. While by default, RavenClaw performs a depth first left-
to-right traversal of the tree, the task specification contains preconditions and triggers that
allow for more complex dialog flows. Figure 3.4 shows the dialog tree for the Let’s Go
system as of March 2008.

The core structure of the dialog is as follows. The system first greets the user, then
acquires the details of the user query, provides results, and allows the user to ask follow-
up requests (e.g. asking the bus immediately following the given result). The user query
has three or four slots: departure place, arrival place, travel time, and optionally, bus route.
In order to help dialogs with understanding problems recover gracefully, we implemented
a specific sub-dialog that is triggered after 2 unsuccessful attempts at getting the departure
place from the user. In this dialog, the system first asks the neighborhood and then narrows
down to the specific stop, leaving the user the option to say ”I don’t know” and let the
system pick a common stop in the chosen neighborhood.

Opening prompt

While the core of the dialog is system-directed, we experimented with three types of open-
ing prompts (see Raux et al. [2006]):

1. Which bus number or departure place do you want information for?

2. What bus information are you looking for?

3. What can I do for you?

In version 1, the system only recognized bus numbers and places at this point in the
dialog, whereas in version 2 and 3, the system could understand more general utterances
such as When is the next bus from CMU to downtown?. If the system failed to understand
anything on the users first utterance, it gave a help message with examples of appropriate

31

Figure 3.4: The RavenClaw task tree for the Let’s Go spoken dialog system (March 2008).
The tree is rotated 90 degrees, with the root on the left and leaves to the right. Left-to-right
traversal becomes top-to-bottom in this layout.

32

System version
Nb of Call duration Non-underst. Dialog Average nb
dialogs (ms) rate completion rate of user turns

1 1063 1678 32.2% 54.9% 17.9
2 1006 1750 28.9% 52.4% 17.5
3 999 2828 52.0% 51.5% 18.2

Table 3.1: Impact of initial prompts initiative style on user behavior and system perfor-
mance

utterances (the examples were different for version 1 vs 2 an 3). Table 3.1 shows various
metrics of user behavior and system performance in the three conditions.

Interestingly, although prompts 2 and 3 were designed to be similar, except for their
specific wording, user behavior following prompt 2 was much more similar to that follow-
ing prompt 1. Apparently, many users understood prompt 2 as asking them ”Which bus
do you want information for?”, leading them to respond simply with route numbers, quite
similarly to what people responded to prompt 1. In contrast, prompt 3 led to significantly
longer user utterances, as well as significantly more non-understandings. However, the
differences in both task completion rate and overall number of turns per dialog were small
and not statistically significant. Therefore we decided to keep the open prompt 3 as the
standard opening for Let’s Go, so that we could collect more data in this condition and
improve recognition accuracy.

Grounding strategies

Another important aspect of dialog management is error handling. RavenClaw provides a
principled approach to confirmation, as well as a set of domain-independent dialog strate-
gies for handling non-understandings. Grounding behavior does not need to be represented
in the task specification tree (as can be seen in Figure 3.4) but rather is performed as a
background task by the dialog engine. However, the dialog designer can specify which
strategies to use for confirmations (e.g. alway explicitly confirm concepts or mix implicit
and explicit confirmations) and non-understanding recovery (e.g. see Table 3.2 for exam-
ple of non-understanding recovery strategies).

For confirmation, except for the final experiment described in Chapter 6, Let’s Go
has been relying on systematic explicit confirmation of every concept. We decided to

33

Strategy Old set New set
General help on how to use the system X* X
Local help + context-dependent examples X*
Context-dependent examples X* X
General help + local help + c.-d. examples X*
Give up question and go on with dialog X X
Repeat question X* X
Ask user to repeat what they said X X
Ask user to rephrase what they said X X
Ask user to go to a quiet place X
Ask user to speak louder X
Ask user to use short utterances X
Offer to start over X
Give up dialog and hang up X

Table 3.2: Non-understanding recovery strategies in the old and new version of Let’s Go!
(*: the prompt for this strategy was preceded by a notification prompt)

take this rather conservative approach in order to limit the confusion on the user and the
need to open the initiative (to allow corrections of previous concepts), which could lead to
degraded performance.

For non-understandings, the initial set of strategies was designed based on our intuition
and our experience with research spoken dialog systems. This original set is described in
Table 3.2. In early 2006, having learned a lot from almost a year of experience with a real-
world system, we modified the set of non-understanding recovery strategies (see Table
3.2). The modifications were of three types: rewording of system prompts, removal of
ineffective strategies, and addition of new strategies.

Our experience with Let’s Go suggested that long prompts were not well received by
the users and were mostly ineffective. Consequently, we removed non-critical informa-
tional content from prompts, shortened them, and made them as specific as possible. For
example, many prompts started with a notification that a non-understanding had occurred
(”Sorry, I didn’t catch that.”).

During such prompts, users would frequently barge in on the system right after the
notification and thus not hear the following utterance, which contained help or examples of

34

expected user utterances. We therefore decided to eliminate the notification prompt so that
the user could hear the more informative specific content of each prompt. We also removed
generic help prompts, which explain what the system is trying to do at a given point, since
they didn’t appear to help much. However, we kept the help prompts giving example
utterances (e.g. ”For example, you can say When is the next 28X going to the airport.”),
which were more often picked up by users and were thus more effective. Finally, we
added more specific strategies, aiming at dealing with problems like noisy environments,
too loud or too long utterances, etc. The idea was that such pinpointed strategies, if used
at the right time, would be more effective in addressing the issues hurting communication
between the user and the system. Currently we use simple heuristics to trigger each of
these strategies, based for example on the length of the last user utterance or a simple
audio clipping detection algorithm. To evaluate the impact of these changes, we manually
labeled the action following each non-understanding as successful when the next user
utterance was correctly understood by the system or failed when the next user utterance
led to another non-understanding or to a misunderstanding. We labeled three days of
data before the modifications took place and three days after. We used the same days
of the week (three weeks apart) to mitigate the effect of daily variations in performance.
The results indicate that the modifications significantly improved the success rate of non-
understanding recovery strategies, from 19.8% to 24.1% (p < 0.01). The overall dialog
completion rate also went up from 49.7% to 55.2% although this result is only a trend
(p < 0.1).

3.3.3 Speech Generation and Synthesis

Let’s Go uses Rosetta, a template-based natural language generation module. Hand-
written templates, which can be as advanced as full programmatic functions (in Perl),
are used to convert a semantic frame generated by the dialog manager into an English
sentence. This sentence is then passed to Cepstral’s Swift synthesizer, for which a limited-
domain voice was built. The corpus on which the Let’s Go voice was trained contains 1702
in-domain utterances (generated by the system’s natural language generator, using place
names and bus numbers from the Port Authority database), and 1131 out-of-domain utter-
ances from the Arctic database Kominek and Black [2003], all recorded by the same male,
native speaker of North-American English. In order to increase the quality of the synthe-
sized utterances, most of the generated prompts are complete sentences, whereas human
participants in a conversation typically make use of sentence fragments (e.g. for confir-
mation). This results in very high quality synthesis (very often mistakable for a recording
of a human speaker) but sometimes long and cumbersome system prompts. Some of the

35

speech generation templates and all the work to build the limited domain synthesis voice
were done by Brian Langner, and these components were kept unchanged throughout this
thesis work.

3.4 Public Deployment and Performance

3.4.1 Call traffic

The average number of calls reaching Let’s Go is about 40 on weeknights and 60 on
weekend nights. Average daily call traffic oscillates between 30 and 60 (see Figure 3.5(a)),
depending on seasonal variations and special events such as schedule changes. We also
found that the average daily traffic for March 2006 was about 10% higher than for March
2005. One possible explanation is that some callers for whom the system worked well got
used to calling outside of normal business hours (i.e. when the system is active), which was
not the case early on since, before the system went public, out-of-business-hours callers
would only get a recorded message asking them to call back the next day. The average
length of a dialog is 14 turns. However the distribution of dialog turn lengths, shown
in Figure 2, is bi-modal, with a first peak at 0 turns (10% of the dialogs) and a second
one around 10 turns. This reflects two types of user behavior, with part of the population
hanging up as soon as they realize they are not speaking with a human, while the other
part at least attempts to get some information. Given all the necessary confirmations, the
minimum number of turns necessary to get schedule information is six.

3.4.2 Dialog completion rate

In order to have a running estimate of success rate without having to manually label each
call, we used the following heuristic: a dialog is marked as complete if the system obtained
enough information from the user to either provide a result (by performing a database look-
up) or notify the user that their request is out of coverage (e.g. it is for a bus route that
we do not deal with yet). We call the ratio of complete calls to the total number of calls
”dialog completion rate” (DCR).

To understand how DCR correlates with actual task success, two annotators listened
to a subset of 387 dialogs and labeled each of them as a success if the system fulfilled the
caller’s need or a failure otherwise. Even to a human observer, this annotation is not always
obvious. For example, the caller might appear to change their request during a dialog. To
improve annotation coherence, the annotators first independently annotated 147 dialogs.

36

(a) Average daily call volume. (b) Average Dialog Completion Rate.

Figure 3.5: Evolution of call volume and system performance between March 2005 and
September 2008. The acoustic and language models of the speech recognizer were re-
trained in the summer of 2006.

Figure 3.6: Distribution of the number of user turns per dialog.

37

They then discussed and resolved the discrepancies. Finally, they independently annotated
the remaining 240 dialogs. On this second subset, Cohen’s Kappa coefficient was 0.88.

Overall, complete dialogs have a 79% success rate. In the remaining 21% of the di-
alogs, the system provided the user with schedule information (hence the dialog was com-
plete), but that information did not correspond to the caller’s request. Note that by con-
struct, incomplete dialogs are necessarily failures (since no information was given to the
user). Based on this, an estimate of task success rate could be derived from DCR.

Hereafter, we only report task success rate when dialogs were manually labeled. In all
other cases, we report DCR. The evolution of DCR over the past year is shown in Figure
3.5(b). The significant increase in DCR observed in summer 2006 corresponds to speech
recognition models retraining (see section 3.3.1).

3.5 Turn-Taking in the Let’s Go System

3.5.1 Baseline Endpointer

Let’s Go, as with most current dialog systems, relies on an energy-based voice-activity
detector (VAD) to identify pauses in the user speech and considers a user turn finished
when a pause lasts more than a fixed threshold (700 ms). Although barge-in from the user
is allowed at certain points in the dialog, the system does not have rich turn-taking man-
agement abilities and therefore imposes a fairly rigid model of turn-taking to the dialog.
For example, the user backchanneling to the system as a response to confirmation requests
is often misinterpreted as a barge-in and leads to the system interrupting itself when it
should not. Also, if users introduce long pauses within their utterances, they are likely to
be misinterpreted as turn boundaries, leading to confusion and misrecognitions.

3.5.2 Human-Computer Dialog Corpora

In order to quantify the amount of turn-taking issues, their impact on the dialog, and to
compare turn-taking behavior in human-computer and human-human dialogs, we collected
and annotated two sets of dialogs, both in early April 2005. The first set contains all
the calls received on April 1st, 2nd and 3rd. There are 142 calls in total, of which 40
were excluded because they were too short (less than 5 user turns), or did not contain any
speech directed to the system. This first set of 102 calls, hereafter referred to as the HC1
corpus, is a representative sample of calls to the system at that point in time. The hand-

38

HC1 HC2 HH
Nb of dialogs 102 57 103
Average dialog duration (in min) 4.3 2.5 1.2
Avg nb of caller turns/dialog 19.8 12.5 11.0
Word error rate 60% 28% -
Task success rate 54% 93% -

Table 3.3: Overview of the human-computer and human-human corpora.

labeled success rate for HC1 is 54%. A second set was assembled by collecting complete
dialogs with fewer than 15 user turns. These calls represent 12% of all the calls received
between April 1st and 10th. This set, hereafter called HC2, has a success rate of 93%
and is therefore representative of ”good” dialogs, where speech recognition performed
reasonably well and no other major problem occurred.

Table 3.3 shows an overview of the two corpora.

3.5.3 Turn-Taking Failures

For each failure, we counted the proportion of dialogs in which it occurred. The most
frequent failure is when the system misinterprets a noise or a backchannel from the user as
a barge-in and wrongly interrupts its current turn. While we disabled barge-in on crucial
turns (e.g. when giving the results of the query), we still allow the user to barge in at
many points in the dialog. While this allows a swifter interaction for expert users, it has
a significant cost as this failure appeared in more than half of the dialogs (52%). Next in
frequency (47%) is the system failing to take a turn, usually due to inaccurate endpointing
(e.g. the system does not endpoint because of background noise). Third is the converse of
the first one, namely the system failing to interrupt itself when the user actually attempts
to barge in. This generally happens on prompts where barge-in is intentionally turned
off, and shows that this option is not optimal either since users can get frustrated if the
system does not respond in a timely fashion. Finally the last two failures occur when the
system starts speaking when it should not, right after its own turn (System takes extra
turn), usually due to a noise misinterpreted as a user turn, or in the middle of a user turn,
usually by misinterpreting a hesitation pause as a turn boundary.

Overall, turn-taking failures occurred more frequently than we had anticipated, with
85% of the calls containing at least one such failure and, on average 3.8 failures per call.

39

Failure type Frequency of occurrence (% calls)
System wrongly interrupts its turn 52.0%
System fails to take a turn 47.1%
System fails to yield a turn on user barge-in 43.1%
System takes extra turn 39.2%
System wrongly barges in on user 15.7%

Table 3.4: Frequency of occurrence of five turn-taking failures.

Operator Caller
Avg (s) StdDev (s) Nb Cases Avg (s) StdDev (s) Nb Cases

Vocalizations 1.9 2.7 1423 1.5 1.5 1677
Simult. Speech 0.4 0.2 78 0.4 0.2 113
Pauses 1.6 2.9 330 0.9 1.5 641
Sw. Pauses 0.7 3.0 759 1.0 2.0 570

Table 3.5: Average State Duration and Standard Deviation in the HH Corpus

In addition, inspection of the dialogs showed that 10% of them broke down mainly for
turn-taking reasons, which represents about 20% of the failed dialogs.

3.5.4 Comparison of Human-Human and Human-Computer Dialog
Rhythm

Data Analysis

In addition to analyzing obvious turn-taking failures, we also wanted to compare the gen-
eral turn-taking behavior of the system to that of a human operator in similar dialogs. To
that end, we annotated a corpus (HH) of 103 recordings of telephone calls to Customer
Service human operators at the Port Authority of Allegheny County. We selected them
from a database of 3000 calls provided by the Port Authority, among calls that 1) dealt
with scheduling information, 2) were less than 6 minutes long. These criteria were chosen
to get dialogs that match, as closely as possible, dialogs with the system. In particular, we
excluded calls unrelated to bus schedules, as well as very long calls which usually contain
social interaction, small talk, and other out-of-task speech.

40

System Caller
Avg (s) StdDev (s) Nb Cases Avg (s) StdDev (s) Nb Cases

Vocalizations 1.4 1.6 2257 1.5 1.7 658
Simult. Speech 1.4 1.4 89 1.6 1.4 10
Pauses 1.6 2.1 1610 1.3 1.5 63
Sw. Pauses 1.5 1.8 549 1.6 3.2 582

Table 3.6: Average State Duration and Standard Deviation in the HC2 Corpus

To evaluate the rhythmic differences between human-computer and human-human di-
alogs, we segmented and labeled the HC2 and HH corpora according to dyadic conver-
sation states [Jaffe and Feldstein, 1970]. At each point in time, the dialog is in one of 8
dyadic states, 4 for each speaker: vocalization (VOC: ”a continuous sound by the speaker
who has the floor2 ”), pause (PAU: ”a period of joint silence bounded by vocalizations of
the speaker who has the floor”), switching pause (SWP: ”a period of joint silence bounded
by vocalizations of different speakers”), and simultaneous speech (SSP: ”a sound by a
speaker who does not have the floor during a vocalization by the speaker who does”). In
the following, we call ”a state” or ”a dyadic state” a stretch of time during which the label
remains the same.

We labeled in two passes. First, we manually marked the regions where each partici-
pant was speaking. This gave us the floor possession information, along with the periods
of simultaneous speech, which could not be identified automatically from a single-channel
recording. Then, we semi-automatically detected the pauses within each speaker’s utter-
ances. This second pass was performed using a Matlab script which looked for energy
peaks within a 250 ms window and marked the window as speech or pause based on an
energy threshold. Because the recording conditions varied widely between dialogs, we
manually adjusted the energy threshold for each dialog so as to match as closely as possi-
ble our perception of pauses in the conversation. The final result of this phase is, for each
dialog, a sequence of dyadic states. Note that our state definitions are such that simulta-
neous speech is attributed to the speaker who has the floor at the time the overlap occurs,
and that a switching pause is attributed to the speaker who had the floor before the pause.

2 Following Jaffe and Feldstein, we define ”floor” in the following way: ”The speaker who utters the first
unilateral sound both initiates the conversation and gains possession of the floor. Having gained possession,
a speaker maintains it until the first unilateral sound by another speaker, at which time the latter gains
possession of the floor.”

41

Frequency of Occurrence of Dyadic States

As can be seen in Tables 3.5 and 3.6 the number of occurrences of the 8 dyadic states is not
only different in absolute value (which can simply be explained by the different amounts of
data in each corpus), but also in its distribution across states. Hence, while the number of
occurrences of simultaneous speech and switching pauses for the operator/system are sim-
ilar across corpora, the number of pauses, and to a lesser extent of vocalizations, is larger
in system utterances. This reflects the fact that, by design, the system is more verbose
than a human operator, often uttering several sentences at a time, and pausing between
them. This is, for example, the case in the introduction and when giving results (see Fig-
ure 3.1). Another difference is that callers produce many fewer vocalizations and pauses
when speaking to the system than to a human. This is the result of the constrained nature
of the dialog with the system, where users are only asked short answer and yes/no ques-
tions. One can assume that a mixed-initiative system would yield longer user responses
with more vocalizations and pauses.

Average State Durations

The differences in average duration between the human-human and human-computer cor-
pora are statistically significant (p < 0.001 using a two-sample with unequal variance,
two-tailed t-test) for all states except operator/system pauses and user vocalizations. In
particular, periods of simultaneous speech are longer in the human-computer corpus, both
for the system and the user. This reflects the fact that in task-oriented human-human con-
versations, overlapping speech is to a large extent limited to backchannels and very short
overlaps at turn transitions. On the other hand, we have already observed that in many
cases, the system fails (or does not attempt) to detect barge-in from the user, resulting
in longer, unnatural, simultaneous speech. Second, pauses in user utterances are longer
when speaking to the system rather than to a human. One explanation is that among the
relatively rare cases where users do pause in their utterance, a significant number are due
to the system failing to take a turn (IGN YLD). The user then repeats their utterance or
tries to reestablish the channel (e.g. by saying ”hello?”) after an unnaturally long pause.
Finally, switching pauses are longer in the human-computer situation, both for the system
(compared to the operator) and the user. Figure 3.7 shows the distribution of the duration
of switching pauses for both participants to human-human and human-computer dialogs.
First, it is clear that the system takes more time to respond than any other participant. Sec-
ond, when talking to the system, human callers also take more time when they are dealing
with a system than when it is a human operator. In addition, a closer look at this distribu-
tion of switching pauses preceding caller turns in HC2 shows that this ditribution appears

42

(a) Operator in HH (b) Caller in HH

(c) System in HC2 (d) Caller in HC2

Figure 3.7: Histograms of the duration of the switching pauses preceding utterances by
one of the participants in the HH and HC2 corpora

43

(a) Operator in HH (b) System in HC2

Figure 3.8: Average duration (with error bars) of pauses preceding different types of dialog
moves

to be bimodal. By looking at the data, we can explain this by the two most frequent types
of answers that callers have to provide to the system: for answers to wh-questions (e.g.
”Where do you want to go to?”), the average preceding pause is 1341 ms, whereas for
answers to confirmation questions (e.g. ”You want to go to the airport. Did I get that
right?”), the average duration is 574 ms.

Interaction between Discourse Structure and Turn-Taking

To better understand the nature of the differences in switching pauses between the HH
and HC2 corpora, we labeled system/operator utterances with dialog moves, which were
grouped into four main discourse functions: opening, initiation, response, and closing.
Initiation and response moves follow the classification proposed by Carletta et al. [1997]
and were already used to study the timing of turn-taking in Matthew Bull’s thesis [Bull,
1997]. An initiation move is an utterance that introduces new expectations to the dialog
(e.g. asking a question, setting a goal). A response move is one that attempts to fulfill such
an expectation (e.g. acknowledgment, response to a yes-no or wh- question). Addition-
ally, we distinguish opening and closing moves (which correspond to utterances such as
”Hello” and ”Thank you”, ”You’re welcome”, and ”Goodbye”) from other moves because
they typically do not imply any transfer of information and correspond more to the ”pro-

44

tocol” people use when talking over the phone. In particular, because we are interested in
switching pauses occurring before different types of moves, we will not address opening
moves here. When an utterance contained several successive moves (e.g. an acknowl-
edgment followed by a yes-no question), we used the move that appeared first since we
assume that the pauses immediately preceding a turn are mostly affected by what comes
first in the turn.

Figure 3.8 shows the average duration of pauses preceding different types of move for
the operator in HH and the system in HC2. Besides the previously noted fact that the
operator is always faster than the system, these graphs show that the response time of the
operator depends greatly on the type of dialog move, which is not the case for the system.
The result on HH is similar to what Bull and Aylett [1998] found on the HCRC Map Task
corpus, namely that inter-speaker intervals are longer between conversational games (i.e.
before initiation moves) than within games (i.e. before response moves). In addition, we
find that closings require the shortest response time by far (almost a tenth of initiation
moves). This is probably due to their predetermined nature (thus not requiring much plan-
ning from the speaker). On the other hand, system response time in HC2 is by and large
dictated by processing that is independent of the structure of the dialog (e.g. endpointing,
dialog state computation, synthesis...). This results in almost constant response times.

3.5.5 Discussion

Our experimental results suggest that the current approach to turn-taking in spoken dia-
log systems can lead to suboptimal interaction. First, many turn-taking failures occur in
human-computer dialogs, and most of them would only appear in human-human conver-
sation in the presence of a severely degraded channel (e.g. so noisy that one cannot always
tell whether the other participant has finished speaking or not). Second, endpointing mech-
anisms based on pause detection alone result in significantly longer response times than
human performance. Third, whereas human-human conversation presents a rhythmic pat-
tern related to its meaning and discourse structure, our system (and, to the best of our
knowledge, all dialog systems today) have mostly constant reaction time. The extent to
which this fixed, unnatural rhythm hurts the dialog (e.g. by annoying the user) remains
an open question. In any case, this rigidity reflects the fact that turn-taking mechanisms
in dialog systems do not use information from the higher levels of conversation (structure
and meaning).

The turn-taking behavior of human callers is also significantly affected by that of the
system. There are two explanations for this. One is that humans adapt to the rhythm
imposed by the system consciously or unconsciously, as has been observed by Darves and

45

Oviatt [2002]. This, in itself, is not a problem as long as user adaptation to unnatural
patterns does not hurt the quality of the interaction. A second reason for the difference in
human response time could be that users need more time to process system utterances than
human operator utterances. This could be due to the fact that system prompts are worded
in an unexpected way. Also, some system questions, even if they are naturally worded,
could come at unexpected times for the user, for example following misrecognitions (as
in the following example dialog: ”User: I want to go to the airport. System: Going to
downtown. Did I get that right? User: ...”). The quality of speech synthesis, in particular
its prosody, could also make comprehension and endpointing more difficult for users.

46

Chapter 4

Olympus 2: a Multi-Layer Spoken
Dialog System Architecture

4.1 Summary

In this chapter, we describe a new, multi-layer architecture to build task-oriented spoken
dialog systems. Implemented as a new version of the Olympus architecture, it features
a new version of the RavenClaw dialog management framework, which explicitly takes
into account the conversational floor, as well a new component, the Interaction Manager,
which handles low-level reactive behavior and acts as an interface between the real world
and the abstract representation used in the dialog Manager. The feasibility and practicality
of the approach was confirmed by porting the Let’s Go bus information system, a deployed
information access system, to the new architecture.

4.2 Levels of Dialog Processing

Spoken dialog unfolds at many different levels simultaneously. When we talk, we are at
the same time producing sounds, uttering words, performing dialog acts such as making
a statement or asking a question, and exchanging ideas, among other levels of action.
Typically in a dyadic conversation, the participant who has the floor produces content
while the other perceives it (although both can do both at the same time, as is the case with
backchannel feedback). Consider for example the following extract from a dialog between
a human user and a hypothetical spoken dialog system:

47

User: I want to go to Miami.
System: Going to Miami, right?
User: Yes.

As the user speaks the first utterance, the system perceives it as streams of sounds, phonemes,
words, and finally meaning. At this level, a user utterance is anchored in time: it has a
start, an end, and a duration. Yet at another level, an utterance, or more precisely a seman-
tic unit, is a single contribution from the user to the dialog. The utterance ”I want to go to
Miami” as a whole and its associated meaning, are qualitatively different from the partial
utterances that emerged as the user spoke them (”I”, ”I want”, ”I want to”, ...).

Conversely, the system utterance ”Going to Miami, right?”, is at the same time an
atomic action (asking the user to confirm that their destination is Miami), and a composite
result of producing words, phonemes, and sounds with a beginning, an end, and a duration.
We thus see the emergence of two realms of dialog events and actions, one, which we
call the concrete level, that is concerned with how semantic units are constructed, and
the other, the symbolic level, where these semantic units are integrated in the general
dialog context. While further distinction is possible in both realms, for example between
phonemes, words, and semantic units at the low level, and between semantic units, turns,
and discourse segments at the high level, the separation that we draw is fundamental in
that concrete events and actions are typically continuous, in terms of their timing as well
as of other properties such as pitch, while symbolic events and actions are discrete.

A conversational agent, whether human or artificial, can make decisions and trigger
actions at both levels. However, these decisions differ in nature. Decisions at the concrete
level are reactive. They involve a short, potentially subconscious, perception-action loop
and trigger reactive behavior such as stopping to speak when being interrupted or nodding
to indicate that one is listening. In contrast, behavior controlled at the symbolic level is
deliberative. It comprises typical discourse phenomena such as grounding and reference
resolution. This is where the agent keeps track of dialog context and plans the next ut-
terance. The two levels operate to a large extent asynchronously: the symbolic level can
integrate events and plan future actions just as the concrete level is perceiving and exe-
cuting the current ones. Yet, in order to explain such simple and pervasive phenomena as
the fact that the agent waits for the answer after asking a question, there needs to be some
locking mechanism that prevents the symbolic level from triggering actions at inappropri-
ate times (e.g. when the other participant speaking is claiming the floor). We will see that
the conversational floor can be thought of as such a synchronization mechanism.

We designed a generic software architecture for spoken dialog systems that captures
the concrete / symbolic dichotomy, as well as the role of the conversational floor at both

48

levels. The key aspects of the architecture are given in the next section. Section 4.4
presents the application of the new architecture, implemented as Olympus 2, to the Let’s
Go system, and Section 4.5 compares our approach with the other multi-layer architectures
introduced in chapter 2.

4.3 Architecture Overview

4.3.1 Two Layers of Representation

Conceptually, our architecture distinguishes two layers of processing. At each layer, we
define events, i.e. observations about the real world, and actions, i.e. requests to act upon
the real world. The lower layer, the closest to the real world, corresponds to the concrete
level of processing introduced in section 4.2. This layer consists of real-time events and
actions with continuous properties. An example of a concrete event is the transition from
silence to speech as detected by the voice activity detector. A partial recognition hypoth-
esis from the speech recognizer and the associated parse also constitute a concrete event.
The top layer is the domain of symbolic events and actions with typically discrete prop-
erties. A full utterance with its parse make up a symbolic event. The core components of
the architecture perform three types of tasks:

Event composition They accept events at one level and produce events at a higher level.

Action decomposition They accept actions at one level and produce actions at a lower
level.

Control They produce actions at a level in response to events at the same level.

The interface between the real world and the concrete layer is a set of sensors and actua-
tors. No control happens at this level. The interface between the lower and top layers is a
module called the Interaction Manager (IM). In addition to event composition and action
decomposition, the IM controls reactive behavior that does not involve high-level cogni-
tion (e.g. stopping speaking when the user interrupts). Finally, within the top layer, the Di-
alog Manager (DM) plans symbolic actions based on symbolic events. Being at the highest
level of the architecture, the DM does not perform any composition/decomposition.

49

Figure 4.1: Overview of the proposed architecture.

4.3.2 Sensors and Actuators

Sensors and actuators are the point of contact between the real world and the dialog system.
Their role is to translate physical phenomena into concrete events, and concrete actions
into physical phenomena. Typical examples of sensors in our systems are the voice activity
detector and the speech recognizer. In multimodal systems, other sensors such as a touch
screen or a gaze tracker can be used. One characteristic of these sensors is that they stream
real time information to the system. For example, the speech recognizer does not only
produce the final recognition result for each user utterance but also partial hypotheses as
the user is speaking. Some sensors have an internal state that controls their behavior and
is updated by the Interaction Manager. For example, the speech recognizer’s internal state
indicates 1) whether the recognizer should be decoding audio or ignoring it (i.e. whether
an utterance has been detected), and 2) which language model the recognizer should use,
based on dialog state.

In speech only systems, the only actuator is the speech synthesizer, while multimodal
systems can feature other actuators like a talking head, a graphical user interface, or a
robotic arm. In addition to performing their physical actions, actuators need to inform the
system in real time of their status. For example, the speech synthesizer must indicate the
precise time at which it starts and finishes speaking a given utterance.

50

Figure 4.2: Internal Structure of the Interaction Manager.

4.3.3 Interaction Management

The Interaction Manager acts both as the interface between the concrete and symbolic
levels of processing, and as the controller of the system’s reactive behavior. In particular,
it sends appropriate dialog state and floor update events to the Dialog Manager. In order
to achieve these goals, the IM needs to:

1. react to symbolic actions and concrete events

2. integrate a variety of modalities and sensor/actuator types

3. operate in real time

Our implementation of the IM, named Apollo, fulfills these requirements (see Figure
4.2). Two interfaces handle communication of actions and events with the DM (sym-
bolic communication interface), and the sensors and actuators (concrete communication
interface). Between these two lies a set of agents, each of which handles unimodal or
multi-modal perception or production. All agents can read and write to a central black-
board object called the Interaction State. Typical agents are the Listener Agent, which

51

handles events from the voice activity detector and speech recognizer, and the Speaker
Agent, which handles actions on, and events from, the speech synthesizer. Let us consider
our example from section 4.2:

User: I want to go to Miami.
System: Going to Miami, right?
User: Yes.

While the user is speaking the first utterance, the IM receives events from the VAD
(speech/silence transitions) and ASR (partial recognition results), and sends these events
to the Listener Agent. Based on these events, the Listener Agent updates the Interaction
State by, for example, marking the floor as belonging to the user. The Listener Agent uses
the Interaction State to decide whether the user has released the floor (i.e. finished speak-
ing their turn) or not. Once a complete utterance has been recognized, the Listener Agent
updates the Interaction State (marking the floor as free), and sends an event to the DM
containing the semantics of the new user turn. Once the floor has been marked as free, the
Speaker Agent can start sending utterances to the TTS to respond to the user (e.g. fillers),
or it can wait for a symbolic action request to come from the DM that contains the system
response (in this case, an explicit confirmation prompt). While the system is speaking,
the Listener Agent is in charge of detecting when the user attempts to interrupt it. If, for
example, the user responds ”Yes” before the system finished speaking the confirmation
prompt, the Listener Agent updates the Interaction State accordingly, which then leads the
Speaker Agent to stop the playback of the system prompt.

In a multimodal scenario, one could add an agent in charge of, for example, detecting
user gestures (a Gesture Perceiver Agent), and updating the Interaction State accordingly.
Multimodal fusion would then be performed by an integration agent that would use infor-
mation from both speech and gesture contained in the Interaction State to send a symbolic
event to the DM capturing the semantics of the user action. For example, if the user said
”Give me this cup” while pointing at a specific cup on a table, the integration agent would
generate an event that captures the fact that the user wants the system to give them the
specific cup they point at.

In addition to the events it receives from the sensors, the concrete communication
interface is also in charge of generating a pulse event, which reaches all agents and allows
to react not only to specific events when they occur but also to delays between events (e.g.
to wait for a given amount of time after the user finished speaking before taking the turn).

Agents that handle different modalities, such as the Listener and Gesture Perceiver
Agents above, can be developed independently and later combined with an integration
agent. While the use of the blackboard guarantees that any agent has access to information

52

from all the other agents, it allows agents to use state information when it is available but
still function when it is not (e.g. information from a gaze tracker could be optionally used
in an embodied agent).

Overall, the architecture fulfills the above-mentioned requirements through 1) the sym-
bolic and concrete communication interfaces, 2) its multi-agent, distributed nature, and 3)
both its simplicity (which allows efficiency) and the use of pulse events to allow reaction
at any time, based on the current interaction state.

4.3.4 Dialog Management

Overview

Dialog management is performed by an extended version of the RavenClaw dialog man-
agement framework [Bohus and Rudnicky, 2003]. To provide the necessary background
to our own work, we provide in this section a brief overview of the core functionalities of
RavenClaw, as designed and implemented chiefly by Dan Bohus. The reader is invited to
refer to previous work by Bohus and Rudnicky [2003] and Bohus [2007] for more details.
A RavenClaw dialog manager is composed of two elements: a task-independent engine
and a task specification. The latter is a hierarchical plan that decomposes the main goal of
the dialog into subgoals and so on, recursively. One example of such a task tree is given
in Chapter 3 (see Figure 3.4). Nodes of the tree are called agents. Each internal agent
(also called agency) represents a (sub)goal that can be decomposed further, while terminal
agents represent atomic dialog acts. There are four types of terminal agents:

Inform Agents provide information to the user.

Request Agents request information from the user and capture the expected response.

Expect Agents capture expected user inputs, without performing any dialog act.

Execute Agents perform non-conversational actions such as database look-up.

During execution, RavenClaw plans agents by pushing them on a stack and executing the
agent at the top of the stack.

The default behavior is as follows. When an agency is executed, it pushes its first non-
completed child onto the stack. When an agent completes its goal, either by performing its
dialog act for leaf agents, or by having all of its children’s goals completed for agencies,
the agent gets popped off the stack. Thus this default behavior amounts to a depth-first

53

Figure 4.3: Main execution loop of the original RavenClaw dialog manager as proposed
by Bohus and Rudnicky [2003].

left-to-right traversal of the task tree. This behavior can be altered by adding preconditions
and completion criteria to agents, as well as having some agents being triggered by some
conditional expression (usually corresponding to the user uttering a specific command, like
”HELP”). When an agent’s triggering condition becomes true, it is pushed onto the stack,
thus introducing a new subdialog. Once that subdialog is complete (i.e. the triggered agent
has achieved its goal), the triggered agent is popped off the stack and the dialog resumes in
the context it was in before the trigger. These mechanisms, and others, allow RavenClaw to
handle a wide range of interaction styles, from system initiative, to command and control,
to mixed initiative.

Figure 4.3 is the flowchart for the main execution loop of the DM. When a user in-
put reaches the DM, RavenClaw matches it against the concepts expected by the agents

54

currently in the stack, starting from the top, performing what we call concept binding.
Next, grounding actions are planned by the DM and, if necessary, corresponding agents
are pushed on the stack. Dialog agents whose trigger conditions are true are also pushed
onto the stack. The agent sitting on top of the stack is then executed. As explained above,
this generally leads to more agents pushed onto the stack and/or prompts being sent to be
spoken by the TTS. If that agent is marked as requiring an input pass, the system waits for
the next user input and restarts from the beginning (loop B). If that agent does not require
an input pass (e.g. an agency, inform agent or database look-up agent), then loop A is
executed again. At any time, agents whose completion criterion is true are popped from
the stack.

The Conversational Floor

We extended RavenClaw to accommodate general events (as opposed to only user inputs)
and better account for turn-taking issues, in particular for the fact that the system waits for
a user response after asking a question.

We introduced a new ternary variable that tracks the conversational floor. Its possible
values are USER, SYSTEM, and FREE1.

Floor transitions happen in two ways. First, incoming events can be marked as mod-
ifying the floor. For example, an event that corresponds to the end of a user utterance,
will set the floor to FREE. However, system questions (produced by Request agents) are
typically marked to set the floor to USER once they have been asked. This is what makes
the system wait for the user answer, or another event that would change floor status, such
as a time out. Second, the floor can be directly affected by the DM’s own actions. When
RavenClaw executes an Inform or Request agent, the floor becomes SYSTEM, until the
IM sends the notification that the system utterance has been completed or interrupted.

All agents are marked as requiring or not requiring the floor. By default, all Inform and
Request agents require the floor, while Expect and Execute agents do not. While the floor
is not FREE, new events are accepted and bound, and agents can be triggered and pushed
on the stack, and even executed if they do not require the floor. But the floor-requiring
agents are not executed. Their execution resumes when the DM receives an event that sets
the floor to FREE (such as the end of a system prompt or of a user utterance).

The distinction between agents requiring and not requiring the floor allows RavenClaw
to be at the same time synchronized with the user (e.g. waiting after asking a question),

1We do not deal with cases where both participants claim the floor at the same time in the DM, the IM
being in charge of resolving these situations at the concrete level

55

and performing non-conversational behavior in the background. This is important because,
in systems that operate in the real world, non-conversational events can come at any time,
asynchronously from the dialog. For example, in a human-robot dialog, the robot visual
sensor might detect the presence of an unexpected object (e.g. a vehicle heading toward
the user) while the user is speaking. Even though the floor might not be FREE, this event
will be processed and bound by the DM. If necessary, the detection of this object can
trigger an Inform agent set to not require the floor but instead grab it, interrupting the user
(e.g. to warn them of the impending collision).

Thus the conversational floor in RavenClaw offers a flexible synchronization mecha-
nism that captures the turn-taking nature of conversation while allowing a wide range of
asynchronous behavior.

Main Execution Loop

Figure 4.4 illustrates the new main execution loop of the RavenClaw engine. When a
new event arrives, it is matched against the current stack and bound to appropriate con-
cepts. Then, if the event requires grounding, i.e. if it’s a user input, RavenClaw’s ground-
ing management mechanisms are used to potentially push grounding agents on the stack.
RavenClaw then enters subloop C (see Figure 4.4). First, RavenClaw updates the floor
based on the incoming event. Agents with trigger conditions are pushed on the stack.
Finally, RavenClaw checks the agent that sits on top of the stack. If it is marked as not
requiring the floor or if the floor is free, RavenClaw executes the top agent and returns to
the beginning of loop C. On the other hand, if the agent is marked as requiring the floor
and the floor is either USER or SYSTEM, the agent stays on top of the stack but is not
executed. Instead, RavenClaw returns to the initial state of loop D, waiting for the next
event to come from the IM. Note that, during this period, the whole stack below the floor-
requiring agent is on hold. That is to say, the non-floor-requiring agents that are already
on the stack are not executed (since the top agent is not popped off the stack). In practice,
this is not a problem because the execution of these agents is typically conditioned on the
top, floor-requiring, agent’s completion (since they were under it in the stack). However,
additional, non-floor-requiring agents can be pushed on the stack over the blocked agent,
and executed.

The key difference with the original RavenClaw execution loop of Figure 4.3 is that
events can be interpreted and non-conversational agents can be executed when the floor is
not FREE, whereas the Input Pass strictly stops the DM execution until the next user input
is received.

56

Figure 4.4: Main execution loop of the proposed approach.

57

4.4 Application to the Let’s Go System

We implemented the proposed architecture as Olympus 2, a new version of the Olympus
[Bohus et al., 2007] spoken dialog framework. By doing so we were able to reuse a number
of modules and ensure the task-independence of our implementation.

We then ported the Let’s Go bus information system from Olympus 1 to Olympus 2. In
its first two years of operation, Let’s Go handled more than 34000 calls and was progres-
sively improved to reach a dialog completion rate of 76.7% . In April 2007, we ported the
system to Olympus 2. This required only minor modifications to the domain-dependent
parts of the system. Since Let’s Go is a unimodal system, Apollo has only one percep-
tion agent and one production agent: respectively, the Listener Agent, which handles the
ASR/NLU sensor and the Speaker Agent, which handles the NLG/TTS actuator. Initially,
the turn-taking rules within the agents were hand-written so as to follow a standard behav-
ior, similar to that of Olympus 1. Thus, for example, the system considers that the user
yields the floor based on pauses of more than 800 ms. Barge-in is only allowed during
certain system prompts. These rules, while simple and leaving many turn-taking issues
unsolved were adopted as a baseline, and a proof of concept. Chapters 5 and 6 illustrate
more advanced turn-taking models that exploit the proposed architecture. In its first three
months of operation, the new version of Let’s Go handled 5000 dialogs, 3738 of which
have 4 user turns or more. The completion rate among these longer dialogs is 76%, al-
most identical to the rate in the three months preceding the switch to the new version (the
difference is not statistically significant)2. Similarly, the average duration and number of
turns per dialog have remained stable (resp. from 137.3 s to 138.8 s, and from 15.9 turns
to 16.2 turns).

4.5 Discussion

Other multi-layer approaches to dialog management have been proposed. An early and
important work is that of Thorisson [Thorisson, 1996, 2002]. His model is divided in three
layers: the Content Layer, which deals with topics and tasks, the Process Control Layer,
which deals with typical dialog phenomena (e.g. taking a turn), and the Reactive Layer,
which deals with highly reactive behaviors (e.g. gazing at objects mentioned by the other
speaker). Each layer has a specific target perception/production loop time (from less than
500 milliseconds for the Reactive Layer to more than 2 seconds for the Content Layer).

2The dip in performance that can be seen for July and August 2007 on Figure 3.5(b), down to about 70%,
is the result of hardware issues that forced us to use a different telephony board with poorer audio quality

58

Processes on different layers communicate through two blackboards (one shared by the
Content and Process Control Layers, and the other shared by the Process Control and Re-
active Layers). This allows all processes to have access to any bottom-up or top-down
signal, while limiting inter-layer communication to a small set of predefined messages.
Unfortunately, Thorisson provides little detail on the inner workings of the Content Layer.
While this is a seminal work and an influential effort towards realistic turn-taking behavior
in conversational agents, it was developed largely independently of past and concurrent
work on high-level dialog management. Therefore, it remains unclear how this model
would work in the context of complex, task-oriented dialogs. More recently, Lemon et al.
[2003] propose an architecture for task-oriented dialog systems that distinguishes a Con-
tent Layer and an Interaction Layer. The Content Layer has at its core a dialog Manager
that operates on logical forms. The Interaction Layer involves lower level modules such as
speech understanding and generation, as well as a Turn Manager. As in Thorisson’s archi-
tecture, the two layers work asynchronously and communicate through a set of specialized
data structures (e.g. a prioritized output agenda which contains the planned system ut-
terances). This architecture captures a number of interaction phenomena, including turn
taking. However, the turn-taking model reported in Lemon et al. [2003] seems to be ex-
clusively contained in the Interaction Layer and it is not clear how the Dialog Manager
handles floor issues.

The Olympus 2 architecture combines elements from both Thorisson’s (the focus on
turn-taking) and Lemon’s (the connection to a traditional dialog management framework)
work. Our dialog management model goes further than previous work by making explicit
how the theoretical concept of conversational floor influences the execution of the dia-
log plan. This particularity constitutes a departure from the purely asynchronous models
previously proposed.

To enforce turn-taking behavior, practical DMs such as the original version of Raven-
Claw [Bohus and Rudnicky, 2003] or COLLAGEN [Rich et al., 2002], resort to synchro-
nization mechanisms extraneous to the planning and execution model. Bohus and Rud-
nicky [2003] use a separate Input Pass, while Rich et al. [2002] mention an unspecified
”separate layer of discourse”. These mechanisms freeze DM execution when user input
is expected (e.g. after the DM executes a ”question” action). During that time, the DM
cannot accept nor plan further events and actions until the end of the user utterance. The
floor mechanism that we propose resolves these synchronization issues in a more general
and flexible way, allowing the DM to handle both synchronous events (i.e. user turns) and
asynchronous events (e.g. non-conversational events and backchannels).

One of our main contributions is to provide the community with an open framework
based on the multi-layer approach and to show the applicability of this approach to de-

59

ployed systems. The fact that Let’s Go was ported to Olympus 2 with only minimal modi-
fications to the domain-specific parts of the system (about half a day’s work) confirms that
systems can be built on top of reactive architectures without large overhead in terms of
system design.

In the context of this thesis, the benefits of this architecture over the original Olympus
architecture will become clear in the next chapters. By centralizing interaction manage-
ment in one component, while separating it from dialog management, it allowed us to
implement and evaluate task-independent models of turn-taking. At the same time, the
”blackboard” function of the interaction manager, as a central component gathering in-
formation from on the one hand sensors and actuators and on the other hand the dialog
manager, provides access to a wide range of features that can be exploited in these models.
As such, the proposed architecture has fulfilled one of its main goals, namely to provide a
platform for domain-independent research on turn-taking and low-level interaction.

In addition to Let’s Go, the TeamTalk system [Harris et al., 2005], which handles com-
munication within a mixed team of humans and robots, has been ported to Olympus 2.
Other projects, both at CMU and at least two in other universities are currently using the
architecture. We hope these efforts will shed light on the benefits that multi-layer architec-
tures can bring to a wide range of applications, from simple information access systems
to multi-participant interaction with embodied agents. In the process, theoretical as well
as practical challenges will undoubtedly surface, which will extend our understanding of
low- and high-level conversational phenomena.

60

Chapter 5

Optimizing Endpointing Thresholds

5.1 Summary

In this chapter, we propose an approach to improve the behavior of the Interaction Manager
by exploiting a wide range of features made available by the architecture presented in
Chapter 4. Specifically, we start by analyzing the relationship between pause distribution
and a wide range of automatically extracted features from discourse, semantics, prosody,
timing and speaker characteristics. These results are presented in section 5.3. Then, in
section 5.4, we propose an algorithm to dynamically set endpointing threshold for each
pause. Both batch and live (i.e. deployed in an actual system) evaluations are presented
in section 5.5. When all features are used, the proposed method reduces latency by up to
24% compared to a fixed-threshold baseline, and performs similarly to a previous feature-
based approach proposed by Ferrer et al. [2003], while generating more compact decision
trees. Closer analysis showed that prosodic features do not help threshold optimization
once other feature are included. The practicality of the approach and the batch evaluation
results were confirmed by implementing the proposed algorithm in the Let’s Go system.

5.2 Introduction

One of the central tenets of conversation, whether it be from the Conversation Analysis
(CA) perspective or from the point of view of building spoken dialog systems, is the ability
for a listening participant to detect when it is appropriate to respond to the current speaker.
Much of Sacks et al. [1974] and subsequent CA work specifically addresses the definition

61

and characterization of transition relevance places (TRPs), which are those times in a par-
ticipant’s speech where it is appropriate (or relevant) for someone else to start speaking
(and take the floor). While, as seen in Chapter 2, socio- and psycho-linguists have un-
covered a wide variety of factors that help humans detect or anticipate the end of turns,
practical spoken dialog systems have generally adopted a simplistic approach. Typically,
pauses in the user speech are detected using a Voice Activity Detector (VAD) and a turn
is considered finished once a pause lasts longer than a fixed threshold. This approach
has the advantage of being simple, only relying on easily computable low-level features.
However, it leads to suboptimal behavior in many instances. First, cut-ins happen when
a turn-internal pause (TIP) lasts longer than the threshold and gets wrongly classified as
a turn boundary (TB). Second, latency occurs at the end of every user turn, because the
system must wait for the duration of the threshold before classifying a pause as TB. When
setting the threshold, system designers must consider the trade-off between these two is-
sues: setting a low threshold reduces latency but increases cut-in rate, while setting a high
threshold reduces cut-in rate but increases latency.

To help overcome the shortcomings of the single-threshold approach, several researchers
have proposed to use features from dialog. Sato et al. [2002] used decision trees to classify
pauses longer than 750 ms as TB or TIP. By using features from semantics, syntax, dialog
state, and prosody, they were able to improve the classification accuracy from a baseline
of 76.2% to 83.9%. While this important study provides promising results showing the
value of using various sources of information in a dialog system, the proposed approach
(classifying long pauses) is not completely realistic (what happens when a TB is misclas-
sified as a TIP?) and does not attempt to optimize latency. An extension to this approach
was proposed by Takeuchi et al. [2004], in which a turn-taking decision is made every
100 ms during pauses. However, in this latter work the features are limited to some tim-
ing, prosody, and part-of-speech. Also the reported classification results, with F-measures
around 50% or below do not seem to be sufficient for practical use.

Similarly, Ferrer et al. [2003] proposed the use of multiple decision trees, each trig-
gered at a specific time in the pause, to decide to either endpoint or defer the decision
to the next tree, unless the user resumes speaking. Using features like vowel duration or
pitch for the region immediately preceding the pause, combined with a language model
that predicts boundaries based on the preceding words, Ferrer et al are able to reduce la-
tency while keeping the cut-in rate constant. On a corpus of recorded spoken dialog-like
utterances (ATIS), they report latency reductions of up to 81% for some cut-in rates. While
very promising, this approach has several drawbacks. First it relies on a small set of pos-
sible decision points for each pause, preventing fine optimization between them. Second,
the trees are trained on increasingly smaller datasets requiring smoothing of the tree scores

62

to compensate for poor training of the later trees. Finally, and perhaps most importantly,
these authors have investigated prosodic and lexical features, but by and large ignored
other aspects of dialog, such as discourse structure, timing, and semantics.

In dialog problems other than turn-taking, dialog features have also been found useful.
Most notably, a significant body of research has focused on the use of a wide range of
features for confidence annotation. Confidence annotation refers to the problem of esti-
mating, for a given user input, the probability that the system’s understanding is accurate,
as opposed to corrupted by speech recognition and/or natural language understanding er-
rors. The general approach is to frame this task as a supervised classification learning
problem. In a corpus of previously recorded dialogs, each user turn is labeled as correctly
understood or not, and annotated with a number of features. Then some statistical clas-
sifier, such as decision trees, Support Vector Machines, or logistic regression, is trained
on the corpus to predict understanding accuracy based on the features. Among the feature
sources that have proved useful are: acoustics/ASR [Gabsdil and Lemon, 2004], syntax
[Guillevic et al., 2002], prosody [Hirschberg et al., 2004], discourse [Higashinaka et al.,
2005], and pragmatics [Gabsdil and Lemon, 2004]. Bohus and Rudnicky [2002] provide
a good example of the integration of features from many different levels in a single frame-
work. Similar features have been used to detect user’s emotions in spoken dialogs [Ang
et al., 2002, Liscombe et al., 2005, Ai et al., 2006].

In this chapter, we propose an algorithm that leverages automatically extracted dialog
features to directly optimize end-of-turn detection thresholds. Section 5.3 describes the
analysis of the relationship between pause distribution and a wide range of dialog features
that are available in a standard spoken dialog system. Section 5.4 outlines a new algorithm
to dynamically set the endpointing threshold for each pause. Evaluation results, both off
line and in the deployed Let’s Go system are given in Section 5.5.

5.3 Analysis of Endpointing in the Let’s Go System

5.3.1 The Let’s Go Random Threshold Corpus

The baseline Let’s Go system uses a VAD based on Gaussian Mixture Models trained on
previously transcribed dialogs, along with a fixed threshold on pause duration for end-
pointing. In order to investigate the effect of the endpointing threshold on cut-in rate and
other metrics, we collected a corpus of dialogs using a wide range of thresholds. For three
months spread across summer and fall 2007, the Let’s Go Public system was set to ran-
domly pick an endpointing threshold between 400 and 1200 ms at the beginning of each

63

dialog. This provided us with a corpus of 2839 dialogs and 39125 user turns. Of these, the
first three days (from June 16 to 18) were manually transcribed and annotated for cut-ins,
totaling 237 dialogs (3299 turns).

5.3.2 Automatic Cut-in Annotation

To overcome the cost of manually labeling cut-ins, we designed a heuristic to automati-
cally mark runtime endpointing decisions as correct or cut-ins. This heuristic is based on
the observation, made on the manually annotated data, that when a cut-in occurs, the user
tends to resume speaking soon after the system wrongly endpointed the turn. Concretely,
we mark as cut-ins endpoints for which the user resumed speaking within 1200 ms. The
performance of the heuristic was further improved by excluding those turns where the user
and the system were speaking at the same time to begin with, since during these turns, the
user might actually interrupt their own turn to respond to concurrent system speech, lead-
ing to a short gap between two user turns that we do not consider a cut-in. The heuristic in
its final form is thus:

At a given runtime endpoint, if the user resumes speaking within 1200 ms,
consider the endpoint as a cut-in, except if the user and system were speaking
simultaneously.

The performance of this heuristic is given in terms of precision, recall and F-measure in
Table 5.1. Because we used automatic voice activity detection, in some of these cases, the
turn preceding and/or the turn following the pause are not actual user speech but rather
background noise. If we exclude these noisy cases, the performance of the heuristic, given
in Table 5.2, is much better. We found that the performance of the heuristic depended
heavily on the preceding system prompt. Prompts come in three broad categories: Open
(”What can I do for you?”), Closed (”Where are you leaving from?”), and Confirmation
(”Leaving from the airport. Is this correct?”). As seen in Tables 5.1 and 5.2, the heuristic
performs best on Open prompts (F = 89.5% on actual boundaries), and worst on Con-
firmation prompts (F = 46.5%), with Closed prompts between the two (F = 68.0%).
However, on these last two contexts, the cut-in rate was in any case very low (resp. 3.0%
and 1.8% for Closed and Confirmation prompts).

5.3.3 Thresholds and Cut-in Rates

To analyze the correlation between threshold and cut-in rate, we bin the dialogs in 8 bins
according to their selected threshold: dialogs whose threshold falls between 400 and 500

64

Context
Number Cut-in rate

Precision Recall F-measure
of samples Real Estimated

Whole corpus 3299 3.1% 4.0% 58.5% 75.2% 66.4%
Open prompt 492 10.4% 9.6% 89.4% 82.4% 85.8%
Closed prompt 1335 2.7% 4.3% 46.6% 75.0% 59.1%
Confirm. prompt 1472 1.2% 2.0% 33.3% 55.6% 43.0%

Table 5.1: Performance of the cut-in labeling heuristic.

Context
Number Cut-in rate

Precision Recall F-measure
of samples Real Estimated

Whole corpus 2895 3.5% 3.7% 70.6% 75.5% 73.0%
Open prompt 414 12.1% 10.1% 97.6% 82.0% 89.5%
Closed prompt 1180 3.0% 3.8% 60.0% 77.1% 68.0%
Confirm. prompt 1301 1.3% 1.7% 40.9% 52.9% 46.5%

Table 5.2: Performance of the cut-in labeling heuristic on actual speech boundaries.

ms are grouped in the first bin (with average threshold at 450 ms), those whose threshold
is between 500 and 600 ms in the second one, and so on. Figure 5.1 shows how cut-in rate
varies with threshold on the whole data as well as after different types of system prompts.

As expected, we observe a strong correlation between endpointing threshold and cut-in
rate in all dialog contexts. Specifically, the logarithm of the cut-in rate is linearly related
to the threshold value, as illustrated in the semi-logarithmic-scale graph of Figure 5.2.
The correlation coefficients R for, resp., Open, Closed, and Confirm prompts are 0.99,
0.98, and 0.99. Interestingly, cut-in rates vary across dialog contexts. Open prompts
yield user responses that are more prone to cut-ins than closed prompts, and even more so
confirmation prompts. This matches the intuition that responses to open prompts are more
likely to be longer and contain hesitations (thus possibilities of cut-ins), whereas closed
and confirmation prompts typically yield short answers (e.g. ”FORBES AND MURRAY”,
”YES”, etc). To the extreme, single word answers without any pause do not allow for
any cut-in at all. These observations suggest that different thresholds (longer for open
prompts and shorter for closed and confirmation prompts) should be used in these different
contexts, which is the underlying principle of the approach proposed in Section 5.4.

65

(a) Whole corpus (b) Open prompts

(c) Closed Prompts (d) Confirm prompts

Figure 5.1: Relationship between endpointing threshold and cut-in rate.

Figure 5.2: Relationship between endpointing threshold and cut-in rate (semi-logarithmic
scale).

66

(a) Whole corpus (b) Open prompts

(c) Closed Prompts (d) Confirm prompts

Figure 5.3: Relationship between endpointing threshold and non-understanding rate.

Besides the confusion that they induce on the user, cut ins can have other negative
effects on dialog. For example, cut-in utterances are likely to be badly recognized by
the speech recognizer since they contain only fragments of sentences, whereas the rec-
ognizer’s language model is typically trained on full utterances. To assess the impact of
the endpointing threshold on speech recognition accuracy on the large amounts of untran-
scribed data in the Let’s Go Random Threshold Corpus, we analyzed non-understandings.
Non-understandings (also called rejects) happen when the system receives a user utter-
ance but is not able to interpret it semantically, either because the recognition result is
not parsable or because the parse does not match expected user input in the current state
(e.g. ”5 PM” after the system asks ”Where are you leaving from?”). Figure 5.3 shows
the non-understanding rate (proportion of turns that are non-understandings) as a function
of the endpointing threshold. There is a general trend towards more non-understandings
for shorter thresholds. One exception to this is after confirmation prompts, where non-
understanding rate appears to reach a minimum of 8% for thresholds around 900 ms and
then increase again for higher thresholds. This phenomenon, which we also observed in
the live evaluation of our approach (see Section 5.5), can be explained by the fact that most
utterances after confirmation prompts are short (mostly ”YES” and ”NO”). For such utter-
ances, including a long silence after the end of user’s speech (because of a long threshold)

67

Figure 5.4: False Alarm / Latency Trade-off in the Winter Corpus.

can lead to poor recognition, particularly in the presence of background noise. Hence, not
only short thresholds but also in some case long ones can hurt speech recognition.

5.3.4 Relationship Between Dialog Features and Silence Distributions

The Let’s Go Winter ’07 Corpus

This analysis is based on a second corpus of dialogs, collected with the Let’s Go system
in December 2007 and January 2008. The endpointing threshold in this corpus is fixed at
700 ms. This corpus contains 1337 dialogs and 20190 turns.

Overall there were 9471 TIPs in the corpus, which amounts to 0.55 pauses per turn.
The trade-off between latency and False Alarms for the corpus is plotted in Figure 5.4.
Note that False Alarms and cut-ins, although strongly related, are not identical, because
False Alarm rate considers all pauses in the corpus independently, whereas in practice,
once the system has detected the end of a turn, the pauses found in the remainder of the
turn, if any, are irrelevant, which is taken into account when computing cut-in rate. Nev-
ertheless, we found that the distributional properties of cut-in rates were very similar to

68

that of FA rates. Indeed, similarly to what we observed in Figure 5.2, this curve closely
follows an exponential function (i.e. Log(FA) is strongly correlated with latency, with
R = 0.99). This stems from the fact that TIP duration approximately follows an exponen-
tial distribution, which has been observed by others in the past [Jaffe and Feldstein, 1970,
Lennes and Anttila, 2002].

One consequence of the exponential-like distribution is that short pauses strongly dom-
inate the distribution. We decided to exclude pauses shorter than 200 ms from the follow-
ing analysis for two reasons: 1) they are more prone to voice activity detection errors or
short non-pause silences within speech (e.g. glottal stops), and 2) in practice, 200 ms is
the minimum amount of time required to detect the pause and extract the features. Once
these pauses have been excluded, there are 2339 TIP in the corpus, 0.12 per turn.

Statistical Analysis

In order to get some insight into the interaction of the various aspects of dialog and pause
characteristics, we investigated a number of features automatically extracted from the di-
alog recordings and system logs. Each feature is used to split the set of pauses into two
subsets. For nominal features, all possible splits of one value vs all the others are tested,
while for continuous and ordinal features, we tried a number of thresholds and report the
one that yielded the strongest results. In order to avoid extreme cases that split the data
into one very large and one very small set, we excluded all splits where either of the two
sets had fewer than 1000 pauses. All the investigated splits are reported in Table 5.3 and
5.4. We compare the two subsets generated by each possible split in terms of two metrics:

• Boundary Ratio (BR), defined as the proportion of turn-final pauses among all pauses
of a given set. We report the absolute difference in BR between the two sets, and
use chi-square in a 2x2 design (TIP vs TB and one subset vs the other) to test for
statistical significance at the 0.01 level, using Bonferroni correction to compensate
for multiple testings.

• Mean TIP duration. The strength of the interaction is shown by the difference in
mean pause duration, and we use Mann Whitney’s Rank Sum test for statistical
significance, again at the 0.01 level using Bonferroni correction.

We group features into five categories: discourse, semantics, prosody, timing, and
speaker characteristics, described in the following sections.

69

Category Feature test Data Boundary
Split Ratio

Timing Pause start time ≥ 3000 ms 1836 / 19260 65% / 87%
Timing Pause number ≥ 2 3379 / 17717 69% / 88%
Discourse Previous question is open 3376 / 17720 70% / 88%
Semantics Utterance expectation level ≥ 1 10025 / 11071 78% / 92%
Individual Mean pause duration ≥ 500 ms 1336 / 19760 72% / 86%
Semantics Utterance contains a positive marker 4690 / 16406 96% / 82%
Prosody Mean energy of last vowel ≥ 5 1528 / 19568 74% / 86%
Prosody Slope of energy on last vowel ≥ 0 6922 / 14174 78% / 89%
Individual Mean number of pauses per utt ≥ 3 1929 / 19267 76% / 86%
Semantic Utterance is a non-understanding 6023/15073 79% / 88%
Discourse Previous question is a confirmation 8893 / 12203 90% / 82%
Prosody Duration of last vowel ≥ 1 1319 / 19777 78% / 86%
Prosody Mean pitch on last voiced region ≥ 5 1136 / 19960 92% / 85%
Prosody Slope of pitch on last voiced region ≥ 0 6617 / 14479 82% / 87%
Semantics Utterance contains a negative marker 2667 / 18429 87% / 85%*
Discourse Previous question is closed 8451 / 12645 86% / 85%*

Table 5.3: Effect of dialog Features on Pause Finality. * indicates that the results are not
statistically significant at the 0.01 level.

70

Category Feature test Data Split Mean TIP
Duration (ms)

Prosody Mean pitch on last voiced region ≥ 4 172 / 2911 608 / 482
Semantics Utterance Expectation Level ≥ 4 2202 / 881 475 / 526
Prosody Slope of energy on last vowel ≥ 1 382 / 2701 446 / 495
Timing Pause number ≥ 2 1031 / 2052 459 / 504
Discourse Previous question is open 1015 / 2068 460 / 504
Individual Mean pause duration ≥ 500 ms 370 / 2713 455 / 494*
Prosody Mean energy of last vowel ≥ 4.5 404 / 2679 456 / 494*
Semantics Utterance contains a positive marker 211 / 2872 522 / 487*
Discourse Previous question is closed 1178 / 1905 510 / 477*
Timing Pause start time ≥ 3000 ms 650 / 2433 465 / 496*
Semantic Utterance is a non-understanding 1247 / 1836 472 / 502*
Prosody Duration of last vowel ≥ 0.4 1194 / 1889 507 / 478*
Individual Mean number of pauses per utterance ≥ 2 461 / 2622 474 / 492*
Semantics Utterance contains a negative marker 344 / 2739 504 / 488*
Prosody Slope of pitch on last voiced segment ≥ 0 1158 / 1925 482 / 494*
Discourse Previous question is a confirmation 867 / 2216 496 / 487*

Table 5.4: Effect of dialog Features on Turn-Internal Pause Duration. * indicates that the
results are not statistically significant at the 0.01 level.

71

Discourse Structure

Discourse structure has been found be informative for many tasks, from confidence anno-
tation [Bohus and Rudnicky, 2002, Higashinaka et al., 2005, Rotaru and Litman, 2006a],
to emotion detection [Liscombe et al., 2005, Forbes-Riley et al., 2007], to system perfor-
mance evaluation [Rotaru and Litman, 2006b]. While there are many ways to characterize
the structure of dialog, researchers in spoken dialog systems, often rely on a dialog act
(DA) classification scheme that characterizes how utterances by participants contribute to
the advancement of the dialog. Example of generic DAs are ”statement”, ”wh-question”,
”acknowledgment”, etc. In accordance with previous results by Bull and Aylett [1998], we
have shown in section 3.5.4 that acts with different discourse functions such as ”initiation”
or ”response” result in different turn-taking behavior in human-human conversations.

Here, we use the dialog acts of system prompts, which are robustly available to the sys-
tem at runtime, as discourse features. In the Let’s Go dialogs, 98% of system dialog acts
directly preceding user turns are questions1. Of these, 13% are open questions (”What can
I do for you?”), 39% are closed questions (”Where are you leaving from?”) and 46% are
confirmation requests (”Leaving from the airport. Is this correct?”)2. In terms of BR, open
questions are correlated with low finality (cf Table 5.3). One explanation is that they tend
to be longer (2046 ms on average, to be contrasted with 1268 ms for turns following closed
questions and 819 ms for responses to confirmation questions). Conversely, confirmation
questions lead to responses with significantly fewer TIPs. 78% of such turns contained
only one word, single YES and NO answers accounting for 81% of these one-word re-
sponses, which obviously do not lend themselves to internal pauses. Discourse context
also has an effect on TIP durations, albeit a weak one, with open questions leading to
turns with shorter pauses. One possible explanation for this is that pauses after closed and
confirmation questions tend to reflect more hesitations and/or confusion on the user’s side,
whereas open questions also yield pauses in the normal flow of speech (because responses
are longer).

Semantics

In this context, Semantics refers to the meaning of the utterance being spoken, in the
current discourse context. As we have seen in section 2.1.2, Oreström [1983] and Furo
[2001] have found that semantics are a good predictor of turn transitions in human-human

1The remaining 2% belong to special cases such as certain user barge-ins.
2The high number of confirmations comes from the fact that Let’s Go is designed to ask the user to

explicitly confirm every concept.

72

conversations. In his work on utterance-level confidence annotation for dialog systems,
Bohus and Rudnicky [2002] used as feature whether the concepts appearing in the parse
of a given recognition result correspond to concepts expected by the dialog manager in
the current dialog state. Bohus found this feature to be one of the most predictive of
understanding errors.

We follow, Bohus and Rudnicky [2002] in our definition of semantic features. How-
ever, while Bohus was classifying full turns as correctly or incorrectly understood, we eval-
uate how partial speech recognition hypotheses match the current dialog context. Specifi-
cally, we use the latest recognition hypothesis available at the time when the pause starts,
parse it using the system’s standard parser and grammar, and match the parse against the
”expectation agenda” that RavenClaw [Bohus and Rudnicky, 2003] maintains. The expec-
tation level of a partial utterance indicates how well it fits in the current dialog context. A
level of 0 means that the utterance can be interpreted as a direct answer to the last system
prompt (e.g. a ”PLACE” concept as an answer to ”Where are you leaving from?”, a ”YES”
or a ”NO” after a confirmation question). Higher levels correspond to utterances that fit
in a broader dialog context (e.g. a place name after the system asks ”Leaving from the
airport. Is this correct?”, or ”HELP” in any context). Finally, non-understandings, which
do not match any expectation, are given a matching level of +∞.

Expectation level is strongly related to both finality and TIP duration. Pauses fol-
lowing partial utterances of expectation level 0 are significantly more likely to be turn
boundaries than those matching any higher level. Also, very unexpected partial utterances
(and non-understandings) contain shorter pauses than more expected ones. Another in-
dicative feature for finality is the presence of a positive marker (i.e. a word like ”YES” or
”SURE”) in the partial utterance. Utterances that contain such a marker are more likely
to be finished than others. In contrast, the effect of negative markers is not significant.
This can be explained by the fact that negative responses to confirmation often lead to
longer corrective utterances more prone to pauses. Indeed, 91% of complete utterances
that contain a positive marker are single-word, against 67% for negative markers.

Prosody

Prosody has traditionally be seen as a strong indicator of turn-taking phenomena. As re-
ported in section 2.1.2, Duncan [1972], Oreström [1983], Chafe [1992], Ford and Thomp-
son [1996], Koiso et al. [1998], Furo [2001] all found that certain prosodic patterns, such as
falling or rising pitch or final vowel lengthening, foreshadowed turn transitions in human-
human conversations. Ferrer et al. [2003] (see section 5.2) specifically found that vowel
duration and pitch allowed them to improve automatic endpointing of user utterances.

73

Inspired by their results, we extracted three types of prosodic features: acoustic energy
of the last vowel, pitch of the last voiced region, and duration of the last vowel. Vowel
location and duration were estimated by performing phoneme alignment with the speech
recognizer. Duration was normalized to account for both vowel and speaker identity. This
is done by first dividing each vowel’s duration by the mean duration of identical vowels in
the whole corpus, to account for differences between vowels (e.g. the ”i” in ”bit” is much
shorter than the ”oa” in ”float”). We then take the logarithm of the result and subtract
the mean normalized duration of all vowels in the current dialog (so far), to account for
speaker differences. Energy was computed as the log-transformed signal intensity on 10
ms frames. Pitch was extracted using the Snack toolkit [Sjolander, 2004], also at 10 ms
intervals. For both energy and pitch, the slope of the contour was computed by linear
regression, and the mean value was normalized by Z-transformation using statistics of the
dialog-so-far. As a consequence, all threshold values for means are expressed in terms of
standard deviations from the current speaker’s mean value.

Vowel energy, both slope and mean, yielded the highest correlation with pause finality,
although it did not rank as high as features from other categories. As expected, vowels
immediately preceding turn boundaries tend to have lower and falling intensity, whereas
rising intensity makes it more likely that the turn is not finished. On the other hand,
extremely high pitch is a strong cue to longer pauses, but only happens in 5.6% of the
pauses.

Timing

While they have often been overlooked in human-human studies, timing features, such
as the duration-so-far of the current utterance, are intuitively likely to correlate with the
likelihood that the turn ends. In addition, such features are easily extractable (though not
necessarily perfectly reliable) in a running system, by simply keeping track of VAD and
speech recognition events.

In fact, in our case, we found that timing features, provided the strongest cue to finality.
The longer the on-going turn, the less likely it is that the current pause is a boundary. This
is true both in terms of duration (i.e. the start time of the current pause relative to the
beginning of the turn) and number of pauses observed so far. While this might seem like
a paradox at first, it captures the fact that turns tend to be either very short (i.e. there is a
high probability of the turn ending early on), or significantly longer.

The number of pauses so far also correlates well with mean TIP duration, the initial
pauses of a turn tending to be longer than the later ones.

74

Speaker Characteristics

Because turn-taking behavior is to a large extent dictated by social conventions, cultural
and individual differences affect participants’ turn-taking behavior. Clancy et al. [1996]
and Furo [2001] discuss differences in backchannels and turn transitions between English,
Japanese, and Mandarin speakers. Within a culture, but across genders, Beattie [1982]
found significant differences in the turn-taking behavior of British politicians during inter-
views.

To capture some of these individual differences, we consider the mean number of
pauses per utterance, and the mean TIP duration observed so far for the current dialog.
Both features correlate reasonably well with pause finality: a higher mean duration indi-
cates that upcoming pauses are also less likely to be final, so does a higher mean number
of pauses per turn.

Discussion

What emerges from the analysis above is that features from all aspects of dialog pro-
vide information on pause characteristics. While most previous research has focused on
prosody as a cue to detect the end of utterances (e.g. Ferrer et al. [2003]), timing, dis-
course, semantic and previously observed pauses appear to correlate more strongly with
pause finality in our corpus. While this can be partly explained by the specifics of the Let’s
Go system and the fact that prosodic features might be harder to reliably estimate on such
noisy data than on commonly used research corpora, we believe this makes a strong case
in favor of a broader approach to turn-taking for conversational agents, making the most
of all the features that are readily available to such systems. Indeed, particularly in con-
strained systems like Let’s Go, higher level features like discourse and semantics might
be more robust to poor acoustic conditions than prosodic features. Still, our findings on
mean TIP durations suggest that prosodic features might be best put to use when trying
to predict pause duration, or whether a pause will occur or not. The key to more natural
and responsive dialog systems lies in their ability to combine all these features in order to
make prompt and robust turn-taking decisions. In the rest of this chapter, we describe our
approach to go from feature analysis to decision making.

5.3.5 Performance of Supervised Classification

The most straight-forward way to detect turn boundaries is to directly classify pauses as
final or internal using a standard classifier that uses the features available at the start of

75

the pause. The classifier can be trained in a supervised fashion on the collected data set.
We trained a logistic regression model and evaluated it using 10-fold cross-validation on
the Let’s Go Winter ’07 Corpus, using the exact same feature set as for our proposed ap-
proach (see 5.5.1). The model failed to improve over a majority baseline for classification
accuracy (both with 14.5% error). On the other hand, log likelihood, a soft measure of
accuracy, did improve from −0.41 to −0.35. This leads to two observations. First, the
task of detecting turn boundaries among pauses is a difficult one, given the available fea-
tures. Second, while the improvement in soft metric indicates that classifiers can be used
to estimate the probability that the turn is finished at the start of a given pause, one can-
not rely solely on classification to make the endpointing decision. This latter observation
guided our design of an algorithm that combines classification and thresholding (see next
section).

5.4 Dynamic Endpointing Threshold Decision Trees

5.4.1 Overview

Our goal is to build a decision tree where the internal nodes are questions on dialog features
available at runtime at the start of a pause, and each leaf node contains an endpointing
threshold to apply to this pause. The tree must be constructed so as to minimize the
average latency (or average threshold value for turn boundaries) for a fixed false alarm
rate. Because the thresholds themselves are unknown in our training set, we cannot rely
on supervised approaches such as regression. Instead, we propose a two-stage algorithm
that first builds a tree by clustering pauses according to an appropriate cost function and
second, given the tree, finds the set of thresholds that minimizes latency for a given false
alarm rate. The next sections provide a detailed description of both stages, as well as an
analysis of the interaction between dialog features and pause distributions.

5.4.2 Feature-based Silence Clustering

The goal of the first stage of training is to cluster together pauses with a similar FA
rate/latency trade-off. Specifically, we would like to generate low-threshold clusters,
which contain mostly boundaries and short IPs, and clusters where long IPs would be
concentrated and with very few boundaries, allowing to set high thresholds that reduce
cut-in rate without hurting latency. To obtain such clusters, we designed a hierarchical al-
gorithm that exhaustively searches binary splits by asking question on feature values such

76

as ”Is the utterance duration more than 2000 ms?”, ”Is the expectation level of the latest
partial recognition hypothesis smaller than 1?”, or ”Was the last system prompt an open
question?”. The question that yields the minimal overall cost is kept, where the cost Cn of
cluster Kn is defined by the following function:

Cn = Bn ×
√

1

|K|
∑
p∈K

Duration(p)2 (5.1)

where Bn the number of TBs in Kn and Duration(p) the duration of a pause p, set to zero
for TBs. The intuition behind this formula is that the first factor captures the boundary ratio
of the cluster and the second one, the root mean square of pause duration, is a variant of
mean duration that puts a larger weight on long pauses. This process is repeated recursively
for each generated cluster until the reduction in cost between the original cost and the sum
of the costs of the two split clusters falls below a certain threshold. By minimizing C(K),
the clustering algorithm will find questions that yield clusters with either a small |KTB|
(few TBs), or a small root mean square TIP duration (short TIPs), which, as we argued
above, should lead to more appropriate thresholds. Ultimately, at the leaves of the tree are
sets of pauses that will share the same threshold.

5.4.3 Cluster Threshold Optimization

Given the obtained clusters and under the hypothesis that TIP durations follow an ex-
ponential distribution (see Section 5.3.4), the unique set of threshold that minimizes the
overall average latency for a certain total number of FAs, E is given by:

θn =
µn × log(E×µn∑

µn
) + µn × log(βn)

Bn

(5.2)

where µn and βn can be estimated from the data.

An informal proof of 5.2 is as follows. Let (Kn) be a set of n pause clusters, the goal
is to set the thresholds (θn) that minimize overall mean latency, while yielding a fixed,
given number of false alarms E. let us define Bn the number of turn boundaries among
the pauses of Kn. For each cluster, let us define En(θn) the number of false alarms yielded
by threshold θn in cluster n, and the total latency Ln by:

Ln(θn) = Bn × θn (5.3)

The two curves in figure 5.5 represent Ln as a function of En(θn) for two hypothetical
clusters. Assuming TIP durations follow an exponential distribution, as shown in Section

77

Figure 5.5: Illustration of the proof by contradiction of Theorem 1.

5.3, the following relation holds between Ln and En:

e
Ln(θn)
µn = βn × En(θn) (5.4)

where µK and βK are cluster-specific coefficients estimated by linear regression in the log
domain. If we take the log of both sides, we obtain:

Ln(θn) = µn × log(En(θn)) + µn × log(βn) (5.5)

Theorem 1. If (θn) is a set of thresholds that minimizes
∑

n Ln such that
∑

nEn(θn) = E,
then ∃As.t.∀n, dLn

dEn
(θn) = A

Proof. The proof can be done by contradiction, as illustrated in figure 5.5. Let us assume
(θn) is a set of thresholds that minimizes

∑
n Ln, and ∃(A,B)s.t. dLA

dEA
(θA) > dLB

dEB
(θB)

(these thresholds correspond to the Xs on figure 5.5. Then, there exists small neighbor-
hoods of θA and θB where LA(EA) and LB(EB) can be approximated by their tangents.
Since the tangents’ slopes differ, it is possible to find a small ε such that the increase in la-
tency λ = LA(EA−ε)−LA(EA) is smaller than the decrease λ′ = LB(EB)−LB(EB +ε)

78

(these new thresholds correspond to the circles in figure 5.5). Since EA − ε + EB + ε =
EA+EB, the total number of FAs is still equal toE but becauseLA(EA−ε)+LB(EB+ε) <
LA(EA) +LB(EB),

∑
n Ln has been reduced, contradicting the hypothesis that (θn) min-

imizes
∑

n Ln.

From Theorem 1, we get ∃As.t.∀n dLn
dEn

= A. Thus, by deriving Equation 5.5, µn
En

= A

which gives En = µn
A

. Given that
∑
En = E,

∑
µn
A

= E. Hence, A =
∑
µn
E

. From 5.5,
we can infer the values of Ln(θn) and, using 5.3, the optimal threshold θn for each cluster
given by 5.2.

5.5 Evaluation of Threshold Decision Trees

5.5.1 Offline Evaluation Set-Up

We evaluated our approach on the same corpus used for the analysis of Section 5.3. The
feature set was extended to contain a total of 4 discourse features, 6 semantic features, 5
timing/turn-taking features, 43 prosodic features, and 6 speaker characteristic features. All
evaluations were performed by 10-fold cross-validation on the corpus. Based on the pro-
posed algorithm, we first built a decision tree and then computed optimal cluster thresholds
for different overall FA rate. We report average latency as a function of the proportion of
turns for which any TIP was erroneously endpointed, which is closer to real performance
than pause FA rate since, once a turn has been endpointed, all subsequent pauses are irrel-
evant.

5.5.2 Overall Results

We compare the proposed approach to three baselines:

Fixed threshold a single pause duration threshold is used for all turns. The different cut-
in rates are obtained for different global thresholds.

State-specific threshold A different threshold is used for each of the three dialog states
(Open question, Closed question, Confirmation). For a given cut-in rate, the three
thresholds are set so as to minimize the average latency, using 10-fold cross-validation.
This is performed by running the proposed algorithm with dialog state as the only
feature.

79

Ferrer et al (2003) We used the exact same set of features as for the proposed approach
and trained classification trees using Matlab’s treefit function. A different tree
is trained for each set of pauses longer than 200 ms, 300 ms, 400 ms, 500 ms, 750
ms, and 1000 ms. All pauses that lasted 1200 ms or more were classified as end
of turns. Given a set of input features corresponding to a pause, each tree gives a
score (between 0 and 1), which we regularize using a sigmoid, thus obtaining the
probability that the pause is the end of the turn. As noted in [Ferrer et al., 2003],
the training corpus gets smaller for each increment of the threshold (e.g. there are
fewer pauses longer than 300 ms than longer than 200 ms), and the accuracy of
the classifier decreases. To compensate, we use a smoothed score Ti computed by
interpolating the probability obtained from each tree Ti with the (interpolated) score
of the previous tree T̂i−1. Thus T̂1 = T1 and for all i ≥ 2,

T̂i = λTi + (1− λ)T̂i−1

with λ = 0.73. At runtime, once a pause reaches a duration of 200, 300, 400 ms...
the corresponding tree is run on the current features and a threshold θ is applied such
that if T̂i > θ, the system considers the pause as an end point, otherwise it waits until
the next decision point. Varying the value of θ allows us to obtain different cut-in
rates and draw the curve on Figure 5.6.

Figure 5.6 shows the performance of the four approaches. We give results on the 2-6%
range of turn cut-in rate where any reasonable operational value is likely to lie (the 700
ms threshold of the baseline Let’s Go system yields about 4% cut-in rate). The proposed
approach significantly outperforms the fixed-threshold and state-specific-threshold base-
lines, up to a maximum latency reduction of, respectively, 25% and 13% for a 6% cut-in
rate. The approach of Ferrer et al. [2003], however, tends to perform better for low cut-in
rates (up to 3%) and identically for higher cut-in rates4. On the other hand, our approach
generates a single, more compact, decision tree. The average number of internal nodes in
cross-validation was 23.7 in our case (as can be seen at the far right of Figure 5.9), whereas
Ferrer et al’s approach results in several trees (one for each decision point, 6 in our case),
with a total number of internal nodes of 44.

3This value was found empirically to yield the best result on the test set. Therefore the accuracy of this
baseline is slightly inflated.

4Chapter 6 describes an approach improving over these results.

80

Figure 5.6: Performance of the proposed compared to a fixed-threshold baseline, a state-
specific threshold baseline and the approach of Ferrer et al. [2003]. All confidence inter-
vals for latency fall within +/ − 4ms. For the sake of clarity, we did not represent them
on the graph.

Figure 5.7: Performance of the proposed approach using different feature sets.

81

Figure 5.8: Example endpointing threshold decision tree learned by the proposed algo-
rithm. Each internal node represents a test on dialog features. Cases for which the test is
true follow the top branch while those for which it is not follow the bottom branch. Leaf
nodes contain the thresholds obtained for a 3% overall cut-in rate.

5.5.3 Performance of Different Feature Sets

We evaluated the performance of each feature set individually. The corresponding cut-in
rate/latency trade-off curves are shown in Figure 5.7. All feature sets improve over the
fixed-threshold baseline. Statistical significance of the result was tested by performing
a paired sign test on latencies for the whole dataset, comparing, for each cut-in rate the
proportion of boundaries for which the proposed approach gives a shorter threshold than
the single-threshold baseline. Latencies produced by the decision tree for all feature sets
were all found to be significantly shorter (p < 0.0001) than the corresponding baseline
threshold.

The best performing feature set is semantics, followed by timing, prosody, speaker,
and discourse. The maximum relative latency reductions for each feature set range from
12% to 22%.

82

Figure 5.9: Performance and tree size with increasing training set size for a 4% cut-in rate.

5.5.4 Learning Curve

In order to further analyze the performance of the algorithm, we computed its learning
curve by progressively increasing the training set size to the total set of 1192 dialogs. We
selected the thresholds corresponding to a 4% cut-in rate and performed, for each training
set size, 10-fold cross-validation. The resulting mean performance is plotted on figure 5.9.

Most of the gain in average latency is obtained from the first 200-400 dialogs. Adding
further dialogs to the training set increases tree size but only brings marginal improvement
in performance. This indicates that, since the labeling of the training set is automatic (using
the heuristic described in section 5.3.2), this algorithm could be used in an online fashion,
constantly retraining the tree on the past few hundred dialogs. This would allow the system
to adapt to any change in dialog structure (when adding a new subdialog), user population
(e.g. seasonal variations, expert users adapting to the system), or any component of the
system (e.g. new speech recognizer). It would only take a few hundred dialogs after any
change for the system to automatically recompute optimal endpointing thresholds.

83

(a) Latency

(b) Cut-in rates (c) Non-understanding rate

Figure 5.10: Live evaluation results.

5.5.5 Live Evaluation

We confirmed the offline evaluation’s findings by implementing the proposed approach in
Let’s Go’s Interaction Manager. Since prosodic features were not found to be helpful and
since extracting them online reliably (in particular, pitch) is typically resource-expensive,
we did not include them. At the beginning of each dialog, the system was randomly set as
a baseline version, using a 700 ms fixed threshold, or experimental version using the tree
learned from the offline corpus represented in figure 5.8 with thresholds corresponding to
a theoretical cut-in rate of 3%. We collected a total of 1061 dialogs in May 2008, 548 in
the control condition and 513 using the proposed approach.

Figure 5.10 shows the results. Overall latency (see figure 5.10(a)), which includes
not only the threshold but also the time it took for the system to generate and synthesize
the response, was almost the same between the two conditions (although the difference
in median value, as measure by a Wilcoxon rank sum test, is statistically significant, with
p < 1e − 8). However, larger differences appear when examining the three main con-
texts separately. The proposed approach was in fact slower than the baseline after open
questions (p < 1e− 8). The corresponding user utterances are often long and contain hes-

84

itations, hence longer internal pauses. The proposed approach is also slower, though only
very slightly, after closed questions (p < 1e − 8). The difference is reversed after yes/no
questions, which mostly yield one-word answers with no internal pause (p < 1e− 8). As
expected, the algorithm learned to set longer thresholds for the former and shorter thresh-
olds for the latter. The effect of this can be seen on cut-in rates (figure 5.10(b)). Overall,
the cut-in rate in the experimental condition is 4.5%5 vs 5.3% in the control condition,
which is statistically significant (p < 0.05, with a binomial proportions test). Not surpris-
ingly, the bulk of the gain comes from responses to open questions (p < 0.01), thanks
to the longer thresholds. The differences observed in the other two states are not statisti-
cally significant. The very short thresholds used after yes/no questions did not harm cut-in
rate, again because these utterances contain very few internal pauses. However, because
this approach is contingent on pause detection, which by itself requires a certain amount
of audio data to make a decision, the latency induced is still fairly high (about 650 ms).
We will see in Chapter 6 how we can perform endpointing without relying on pauses in
unambiguous cases.

Finally, to get more insight on the impact of endpointing on speech recognition per-
formance, we analyzed non-understanding rate (figure 5.10(c)). Overall, the proportion of
non-understandings was reduced by 21.1% for the baseline to 20.0% for the proposed ap-
proach, which appears as a trend in our data (p < 0.1). When looking at specific contexts,
the only statistically significant difference is after yes/no questions, where the rate went
from 11.1% to 8.3% (p < 1e−4). This result was not expected since cut-in rates were vir-
tually identical in that context. However, we have already discussed a similar phenomenon
in section 5.3.3. Longer thresholds increase the risk of background noise hurting recogni-
tion performance. Therefore, the fact that the algorithm significantly shortens threshold in
this context improved not only responsiveness but also speech recognition performance.

5The difference between the theoretical cut-in rate of 3% and the observed cut-in rate of 4.5% can be
explained by the imperfection of the automatic labeling heuristic (see section 5.3.2) as well as by differences
in user behavior (in particular, we assumed in the batch experiment that once a turn was cut-in, the user
would stop and let the system speak, which might not have been the case in reality, potentially leading to
several cut-ins in a row).

85

86

Chapter 6

The Finite-State Turn-Taking Machine

6.1 Summary

In this chapter, we propose a comprehensive probabilistic model of turn-taking to control
the Interaction Manager introduced in Chapter 4. In section 6.2, we review existing finite-
state models of turn-taking in dyadic conversations, and propose the Finite-State Turn-
Taking Machine, an approach to turn-taking that relies on three core elements:

• A non-deterministic finite-state machine that captures the state of the conversational
floor

• A cost matrix that models the impact of different system actions in different states

• A decision-theoretic action selection mechanism through which the system base its
turn-taking decisions

The next three sections explain the application of the FSTTM to two key turn-taking phe-
nomena. First, we revisit the problem of end-of-turn detection at pauses described in
Chapter 5 in section 6.3. In section 6.4, we generalize the approach to allow the system
to take turns even when a pause has mostly started but has not yet been detected. Finally,
section 6.5 focuses on the problem of detecting user interruptions (aka barge-in) during
system prompts. Drawing from the work presented in Chapter 5, we illustrate, in each
case, how a wide range of dialog features can be exploited to estimate state probabilities.
Evaluation both offline and by applying the FSTTM to the live Let’s Go system showed
that it outperforms previously proposed data-driven approaches, including the one intro-

87

duced in Chapter 5. We discuss the flexibility of the model, its strengths and possible
applications and extensions.

6.2 Turn-Taking States and Actions

6.2.1 Conversational Floor as a Finite-State Machine

6-state finite state models of turn-taking

In the 1960’s and early 1970’s, several researchers proposed models to explain the rhyth-
mic turn-taking patterns in human conversation. In particular, Jaffe and Feldstein [1970]
developed a fully automated process to extract temporal patterns of dyadic conversa-
tions. Their system (the Automatic Vocal Transaction Analyzer) generates traces of who is
speaking within 300 ms frames of conversations recorded with the device. With two partic-
ipants (A and B), there are four possible configurations at any point in time: A and B both
speak, A and B are both silent, only A speaks, and only B speaks. Jaffe and Feldstein use
these traces to compute the mean durations of pauses, switching pauses (when a different
speaker takes the floor), simultaneous speech, and (single-speaker) vocalizations. Based
on these traces, they found that the duration of each of these three types of event follow
exponential distributions. This finding led them to propose first-order Markov models to
capture the alternation of speech and silence first in monologues, then in dialog (first-order
Markov processes generate exponential distributions for the duration of each state). They
find that their initial four-state model (corresponding to the four configurations mentioned
above) fails to distinguish between silences that happen immediately following A’s speech
and those following B’s speech. A similar limitation exists for overlapping speech. Based
on this observation, they extend their model to one similar to the six-state model shown
in Figure 6.1. This model explicitly accounts for who has the floor at every point in time,
in addition to who is vocalizing. Jaffe and Feldstein found this model to better fit their
data than the four-state model. At the same time as Jaffe and Feldstein, and while con-
cerned more with electrical engineering and telecommunications rather than medical or
psychological applications, Brady Brady [1969] developed a very similar six-state model.
He then trained the parameters of the model (i.e. the state transition probabilities) on the
recordings of 16 dyadic conversations, which were annotated for speech/non-speech for
each participant at a 5 ms time frame. Speech was detected frame-by-frame automatically
and then smoothed by filling in gaps of less than 200 ms and rejecting speech periods of
less than 15 ms. The approach was evaluated by training the parameters on a given con-
versation and generating a simulated conversation with the model, using a Monte Carlo

88

Figure 6.1: Our six-state model of turn-taking, inspired by Jaffe and Feldstein [1970] and
Brady [1969].

simulation. Then the generated conversation was compared to the original real one along
several dimensions (pause and speech segment durations, overlaps, etc). Brady found that
his model produced a generally good fit of the data. One interesting exception is that of
the distribution of the amount of time between the beginning of a speech interval (called
talkspurt by Brady) and the beginning of an interruption by the other participant. Real
conversations exhibited significantly more early interruptions (i.e. short intervals) than the
model would predict. Brady explains this with the fact that these ”early” interruptions are
probably not intended to be interruptions but rather the result of both speakers starting
to speak inadvertently at the same time (both assuming they would be the only speaker).
Whereas the model assumes that as soon as a participant starts speaking, the other one is
aware of it and will only speak if she wishes to interrupt, in reality, it takes some amount of
time (Brady suggests 200 ms) for a participant to register the fact that the other has started
speaking. As we will see, we similarly observed the preponderance of early (as well as
late) user barge-ins in our data.

89

Finite-State Models for Control

While Jaffe and Feldstein [1970] and Brady [1969] are primarily concerned with the anal-
ysis of human-human conversations, more recently, several researchers have proposed
finite-state machines to control conversational agents. For instance, Cassell et al. [2001]
models the conversational state of an embodied real estate agent as a 5-state machine. Two
states indicate whether a user is present or not, whereas the other three indicate who holds
the floor between the user and the agent, or whether the floor is open. The agent tracks
the current conversational state through a number of sensors (visual and auditory), so that
the user can claim the floor by either speaking or gesturing to the agent. The agent can
also hold the floor while she is planning a response, by looking away from the user. Floor
conflicts are not captured by this machine and are presumably resolved through simple
rules (e.g. when the user speaks, the agent immediately yields the floor).

From the turn-taking models already described in Chapter 2, Kronild [2006] proposes
a much more complex model, based on Harel statecharts, which are an extension of finite-
state machines for modeling and visualizing abstract control Harel [1987]. This model
takes into account any number of participants and also captures projections, a key aspect
of the SSJ model of turn-taking[Sacks et al., 1974]. Harel statecharts feature hierarchical
states, which allow this model to capture both broad characteristics of conversation (e.g.
”I am speaking” vs ”I am silent”) and fine-grain aspects such as whether an overlap with
another speaker is occurring or even whether a TRP in a speaker’s utterance is predicted.

Thorisson [2002] also features an implicit finite-state machine, in the form of ”State
Deciders” which are rules governing the transitions between dialog states such as ”Other-
Has-Turn” and ”I-Take-Turn”.

All these models are deterministic. At any point in time, the agent knows the state
of the conversational floor and uses fixed, hand-written, rules to take appropriate actions.
These approaches assume 1) that sensors provide reliable information on the state of the
world, and 2) that the state itself is unambiguous. These assumptions are made explicit in
Thorisson’s hypothesis that:

A decision is based on the boolean combination of perceptual features.

90

6.2.2 Overview of the Finite-State Turn-Taking Machine

Extending the 6-state model to control

Our model, the Finite-State Turn-Taking Machine (FSTTM), uses the same six states as
Jaffe and Feldstein [1970] and Brady [1969]. However, we apply this model to the con-
trol of a conversational agent, with a goal similar to that of Cassell et al. [2001], Kronild
[2006], and Thorisson [2002]. One important contribution is that we define the states in
terms of the participants’ intentions and obligations rather than the surface level observa-
tion of speech vs silence (see our discussion of the definition of floor in section 1.2). For
example, the state is USER when the user has the obligation to speak (to respond to a
system question) or the intention to speak, while at the same time, the system does not
hold the floor. This does not necessarily means that the user is speaking, for example at
pauses during a user utterance or right before the user starts an utterance.

As can be seen in Figure 6.1, not all transitions are valid. First, there is no direct
transition between any of the intermediate states (the two FREE states and two BOTH
states). The assumption is that to go from any of these state to another, the model will
first go to either SY STEM or USER. This is an approximation as there might be cases
where, for example, both the system and user start speaking at the exact same time, going
from a FREE state to a BOTH state. However these cases are rare enough that they can
be approximated using a transition through either SY STEM or USER. Second, because
intermediate states are conditioned on who had the floor previously, not all valid transitions
are bidirectional. For example, there is no transition from SY STEM to BOTHU . We
associate pairs of user/system actions to each transition. The four possible actions are:

• Grab the floor

• Release the floor

• Wait while not claiming the floor

• Keep the floor

For example, transition from SY STEM to FREES corresponds to the user waiting
silently and the system releasing the floor at the end of a prompt, noted (R,W) (we always
note the system action first and user action second).

This representation allows us to formalize a wide variety of turn-taking phenomena
in a unified framework. Specifically, there are 4 types of 2-step transitions from a single

91

-floor-holder state (SY STEM or USER) to another (or the same) single-floor-holder
state, which represent typical turn-taking phenomena:

Turn transitions with gap are the most common way the floor goes from one participant
to the other. For example, starting with a user utterance, once the user finishes
speaking, the floor becomes free, after which the system starts responding, thus
grabbing the floor. The resulting state sequence, aligned with the first two turns of
the example first given in section 4.2, is:

USER
(W,R)→ FREEU

(G,W)→ SY STEM
User: I want to go to Miami.

System: Going to Miami, right?

Conversely, the transition with gap following a system prompt corresponds to:

USER
(R,W)→ FREES

(W,G→ USER

Turn transitions with overlap happen when a participant grabs the floor while it still
belongs to the other. For example, when a user barges in on a system prompt, both
participants hold the floor. Then, the system recognizes the barge-in attempt and
relinquishes the floor, which becomes user’s.

SY STEM
(K,G)→ BOTHS

(R,K→ USER

And conversely, when the system interrupts the user mid-utterance (which in dia-
log systems is more often the result of an intentional cut-in, rather than intentional
interruption), the state sequence is:

USER
(G,K)→ BOTHU

(K,R)→ SY STEM

Failed interruptions happen when a participant barges in on the other and then with-
draws before the original floor holder releases the floor. For example, when the
system interrupts the user (often by mistake) but detects it and interrupts itself:

USER
(G,K)→ BOTHU

(R,K→ USER

The converse is usually the result of the system failing to react fast enough to a user
barge-in:

SY STEM
(K,G)→ BOTHS

(K,R)→ SY STEM

92

Note that backchannels seem to fit in this category too. However, since backchan-
nels, by definition, do not represent an attempt to grab the floor, they are not captured
by the model as it is (for example, the floor should remain SY STEM when a user
backchannels a system utterance).

Time outs start like transitions with gap but the intended next speaker (e.g. the user after
a system prompt) does not take the floor and the original floor holder grabs it back.
For instance, after a system prompt, if the floor remains free for a certain amount
of time, the system attempts to re-establish the communication with the user, as
follows:

SY STEM
(R,W)→ FREES

(G,W→ SY STEM

The opposite also happens when the system is to slow to respond to the user:

USER
(W,R)→ FREEU

(W,G→ USER

While all the transitions above were described as deterministic, the actual state of the
model is not fully observable. Specifically, while the system knows whether its claiming
the floor or not, it can only believe with some degree of uncertainty that the user does
so. The system’s knowledge of its own claim to the floor splits the state space into two
disjoint subsets. When the system claims the floor, the state can be SY STEM , BOTHS ,
or BOTHU . When the system does not claim the floor, the state can be USER, FREEU ,
or FREES . In either case, the system needs to recognize the user’s intention (i.e. whether
the user claims to the floor or not) to maintain a probability distribution over the three
states. Since the distinction between the two BOTH states (resp. the two FREE states)
is based on past history that can be known with a high level of certainty, the uncertainty
in state distribution is fully characterized by the probability that the user is claiming the
floor, which will have to be estimated from observations, as we will see below.

6.2.3 Cost of Turn-Taking Actions

The problem we are facing is that of choosing the best system action given the system’s
belief about the current state of the model. That is achieved by applying the probabilistic
decision theory principle of selecting the action with lowest expected cost. The actions
available to the system are the four described above (G,R,K,W), although not all actions
are available in all states. In fact, as can be seen in Table 6.1, there are always only two
actions available in each state, depending on whether the system is claiming the floor or
not.

93

PPPPPPPPPState
Action

K R W G

SY STEM 0 CS - -
BOTHS CO 0 - -
BOTHU CO 0 - -
USER - - 0 CU
FREEU - - CG · t 0
FREES - - CG · t 0

Table 6.1: Cost of each action in each state (K: keep the floor,R: release the floor,W : wait
without the floor, G: grab the floor, t: time spent in current state, -: action unavailable).

Each action in each state has a particular cost. While there are many possible ways of
defining these costs, we propose a simple cost structure that derives from the principles
laid out in Sacks et al. [1974]:

Participants in a conversation attempt to minimize gaps and overlaps.

Critics of Sacks et al’s theory have pointed our that this principle fails to capture phe-
nomena such as backchannels and collaborative endings [Clark, 1996]. However, while
this criticism holds with Sacks et al’s definition of ”gaps” and ”overlaps” as silence and
simultaneous speech, our definition of the floor at the intention level addresses most of
these concerns. For example, backchannels are, by definition, not attempts at grabbing the
floor, and thus do not constitute overlaps by our definition. From this general principle,
we derive three rules to drive the design of the cost matrix:

1. The cost of an action that resolves either a gap or an overlap is zero

2. The cost of an action that creates unwanted gap or overlap is equal to a constant
parameter (potentially different for each action/state pair)

3. The cost of an action that maintains a gap or overlap is either a constant or propor-
tional to the total time spent in that state

The resulting cost matrix is shown in Table 6.1, where

94

• CS is the cost of interrupting a system prompt before its end when the user is not
claiming the floor (false interruption)

• CO is the cost of remaining in overlap

• CU is the cost of grabbing the floor when the user is holding it (cut-in)

• CG is the cost of remaining in gap

This cost structure makes a number of simplifying assumptions. First, in reality, the
cost of creating a gap or overlap is not necessarily constant. For example, the cost of
interrupting the user might vary depending on what has already been said in the utterance,
so does the cost of interrupting a system prompt. Second, for CG and CO we tried three
cost functions: constant, sublinear (log) with time, and linear with time and selected the
ones that gave the best results. A more principled approach to setting the costs would be
to estimate from perceptual experiments or user studies what the impact of remaining in
gap or overlap is compared to that of a cut-in or false interruption. However, as a first
approximation, the proposed cost structure offers a simple way to take into account some
of the constraints of interaction. We will discuss potential improvements to the cost matrix
in the future work section.

6.2.4 Decision Theoretic Action Selection

Given the state space and the cost matrix given above, the optimal decision at any point in
time is the one that yields the lowest expected cost, where the expected cost of action A is:

C(A) =
∑
S∈Σ

P (s = S|O) · C(A, S)

where Σ is the set of states, O are the observable features of the world, and C(A, S) is the
cost of actionA in state S, from the cost matrix in Table 6.1. In addition to the cost matrix’
four constants, which we will consider as parameters of the model, it is thus necessary
to estimate P (s = S|O), which as seen above amounts to estimate the probability that
the user is claiming the floor. The way to estimate this probability varies depending on
the circumstances. In the following two sections, we discuss the two main turn-taking
phenomena encountered in typical dialog systems, endpointing (or end-of-turn detection)
and user interruption (or barge-in) detection.

95

6.3 Pause-based Endpointing with the FSTTM

6.3.1 Problem Definition

In the FSTTM formalism, endpointing is the problem of selecting between the Wait and
the Grab actions during a user utterance. At each pause within the utterance, uncertainty
arises as to whether the user is keeping the floor, in which case the state is USER, or
releasing it, in which case the becomes FREEU 1.

This first approach to endpointing is similar to that described in Chapter 5 in that,
whenever user speech is detected by the voice activity detector, the probability of being in
state USER is set to 1. Only when a pause is detected by the VAD does the system attempt
to estimate P (s = USER|Ot) = 1− P (s = FREEU |Ot), where Ot represents the set of
observable features characterizing a pause that has lasted t milliseconds so far. We further
decompose Ot into t and O, which is the set of dialog features available at the time when
the pause started (i.e. at t = 0), under the assumption that once the pause is started, no
additional information, apart from the duration of the pause arises. Dialog features are
identical to those described in Chapter 5, and cover discourse, semantics, timing, and user
characteristics. We decided not to include prosody after early attempts that showed that,
as was the case in Chapter 5, it did not significantly affect the performance of the model.

We express the probability that the state is USER, in a pause that has lasted tmillisec-
onds so far, as follows (NB: for the sake of clarity, we note s = USER as U):

P (s = USER|Ot) = P (U |O, t) (6.1)

=
P (U, t|O)

P (t|O)
(6.2)

=
P (t|O,U) · P (U |O)

P (t|O)
(6.3)

where P (t|O,U) is the probability that a pause lasts at least t milliseconds, given that the
user still claims the floor and given the dialog features at the start of the pause, P (U |O)
is the probability that the user still claims the floor (i.e. that this pause is turn-internal
rather than turn-final) given the dialog features (regardless of how long the pause lasts),
and P (t|O) is the probability that the pause lasts at least t milliseconds.

1We make the assumption that, at some point during this utterance before the first pause, we know with
probability 1 that the floor was USER. This assumption means that we do not attempt to model here those
cases where the VAD wrongly detects speech and the user never really take a turn. We will focus more on
these issues when dealing with interruption detection in section 6.5.

96

The probability that the state is FREEU (i.e. that the user released the floor) can be
similarly decomposed as:

P (s = FREEU |Ot) =
P (t|O,F) · P (F |O)

P (t|O)
(6.4)

=
1 · (1− P (U |O))

P (t|O)
(6.5)

=
1− P (U |O)

P (t|O)
(6.6)

Equation 6.5 uses the fact that the user never resumes speaking in the FREEU state (hence
P (t|O,F) = 1). Note that overall, we work under the assumption that once the user has
released the floor to FREEU , they never claim it back (see the ”time out” phenomena in
section 6.2.2). While this is an approximation, we can assume and have actually observed
in the data that the time frame at which the user would in fact resume speaking is signifi-
cantly longer than the longest ”normal” system reaction time 2. Therefore, this assumption
does not hurt the decision we are making for endpointing.

Given Table 6.1, the expected cost of Waiting is:

C(W, t,O) = P (U |t, O) · C(W,U) + P (F |t, O) · C(W,F) (6.7)
= P (U |t, O) · 0 + P (F |t, O) · CG · t (6.8)

=
P (F |O)

P (t|O)
· CG · t (6.9)

and the expected cost of Grabbing the floor is:

C(G, t, O) = P (U |t, O) · C(G,U) + P (F |t, O) · C(G,F) (6.10)
= P (U |t, O) · CU + P (F |t, O) · 0 (6.11)

=
P (t|O,U) · (1− P (F |O))

P (t|O)
· CO (6.12)

At t = 0, i.e. at the very beginning of the pause, C(W, t,O) = 0 and, except for the
degenerate case where either P (F |O) = 1 or P (t|O,U) = 0, C(G, t, O) > 0. As t grows,
C(W, t,O) increases while C(G, t, O) decreases (because typically P (t|O,U) decreases
faster than P (t|O) with time. So there is necessarily a time t0 so that C(W, t0, O) =

2We still observe user time outs when, for example, the voice activity detector fails to detect silence at
the end of the user turn and the system takes more than a few seconds to respond but these cases do not
interfere with genuine attempts at endpointing because, for practical reasons, we force endpointing when a
pause has lasted more than 1500 ms.

97

C(G, t0, O). This time corresponds in fact to the point at which the cost of waiting be-
comes higher than that of grabbing the floor; in other words it is an endpointing threshold
similar to those described in Chapter 5. Given all of the above, the threshold t0 is the
solution to the equation:

C(W, t0, O) = C(G, t0, O) (6.13)
P (F |O)

P (t|O)
· CG · t =

P (t|O,U) · (1− P (F |O))

P (t|O)
· CO (6.14)

P (F |O) · CG · t = P (t|O,U) · (1− P (F |O)) · CO (6.15)

t =
CO
CG
· P (t|O,U) · 1− P (F |O)

P (F |O)
(6.16)

We define α = CO
CG

as a parameter of the model. To solve the above equation, we need
estimates of both P (F |O) and P (t|O,U), which are described in the next two sections.
Note that P (t|O), which appeared on both sides of equation 6.14 can be eliminated and
thus does not need to be estimated.

6.3.2 Estimating P (F |O)

We estimate P (F |O) by stepwise logistic regression on a training set of pauses labeled
for finality (whether the pause is turn-final or turn-internal) with their associate dialog fea-
tures automatically extracted as in Chapter 5. We created one additional feature to capture
lexical cues that mark the end of turns. First we collected all partial and final hypothe-
ses collected by the live system in the month of April 2008. This resulted in a corpus
of 133828 hypotheses. We marked the end of each partial hypothesis by a special token
(</p>) and that of final hypotheses with a different one (</s>). We trained a standard
3-gram language model for each of the three main dialog states (open question, closed
question, and confirmation, see section 5.3.2) on this corpus using the CMU-Cambridge
Statistical Language Model Toolkit [Clarkson and Rosenfeld, 1997]. Given the sequence
of words of a hypothesis, we use the generated LM to compute the log-likelihood of both
the partial hypothesis symbol and the final hypothesis symbol given the last two words
of the hypothesis. Finally, we define our new feature as the difference of these two log-
likelihoods (i.e. the log of the likelihood ratio). This feature, which takes values between
approximately −6 and +2 is larger for hypotheses whose last words match existing final
hypotheses and smaller for those that do not. Inspection of the produced LM shows that
it captures expected phenomena such as the fact that the single-word hypothesis ”YES” is
likely to be final in the confirmation state. It also learns less expected patterns. For exam-
ple, among the bus routes that are covered by the system, which include routes numbered

98

Feature Value range Median Open Closed Confirmation
Constant - - 1.5409 2.1298 1.2403
LM boundary score [−3.9, 2.1] −0.3 0.6681 1.1009 0.6541
Avg nb words per turn [1, 27] 1.9 −0.2723 −0.2296 0
Hyp has confirm 0, 1 0 0 0 1.0732
User barge-in 0, 1 0 0.8447 0.4829 0
Avg confidence so far [0, 1] 0.6 0 0 1.5474
First agenda level [0, 7]

⋃
999 1 0 0 −0.0006

Table 6.2: Features selected by stepwise logistic regression to estimate P (F |O) at pauses
and their coefficients (all non-null coefficients are non null with p < 0.01).

61A, 61B, and 61C, 61A is less likely to be final than the others. This is because routes
that start with the number 61 tend to be recognized as 61A in the early partial hypotheses.
Thus seeing 61A appear in a hypothesis is not as strong a sign that the turn is finished as
seeing, for example, 61C.

Based on these features, we built one logistic regression model for each dialog state
using stepwise regression and 10-fold cross-validation on the data used in Chapter 5. Table
6.3 shows the performance of the model for each state, as well as overall. The learning al-
gorithm is actually unable to improve the classification error rate, although the probability
estimate gets more accurate as is evidenced by the increase in log likelihood (all likelihood
ratio test show statistically significant differences at the p < 1e−4 level). The features se-
lected for each state by the stepwise algorithm are shown in Table 6.2. The LM boundary
score is the only feature used in all three states and also the one that, when normalized by
its dynamic range, has the largest weight, showing its general informativeness. The open
and closed question states use the same other features, which consists of the average num-
ber of words per turn in the dialog so far and a boolean feature indicating whether the user
is barging in on the system. The first feature shows that users who have had longer turns so
far are also more likely to have internal pauses (correlated with longer turns) in the current
turn. The second one indicates that barge-ins tend to have fewer internal pauses than other
utterances. Three other features are helpful for the confirmation state. Whether the partial
hypothesis contains a confirmation word (e.g. ”YES”) is strongly correlated with high
P (F |O) since many utterances in this state are single ”YES”. Next, the mean turn confi-
dence score so far captures how well speech recognition has been working so far, and also
how likely a user is to answer ”YES” to an explicit confirmation request. Finally, the level

99

Dialog state Majority baseline
Classification Baseline log

Log likelihood
error rate likelihood

Open question 37.91% 34.71% -0.6636 -0.6073
Closed question 24.94% 25.50% -0.5616 -0.4973
Confirmation 11.66% 12.02% -0.3601 -0.2963
Overall 21.88% 21.72% -0.5254 -0.4375

Table 6.3: Performance of state-specific logistic regression for estimating P (F |O) at
pauses.

at which the current partial hypothesis matches the system’s expectations mostly captures
non-understandings (non-understandings get an arbitrary 999 value, whereas matches get
actual agenda levels between 0 and 6. See [Bohus and Rudnicky, 2003] for an explanation
of the agenda).

6.3.3 Estimating P (t|O,U)

P (t|O,U), the probability that the current pause will last at least t milliseconds given that
it is a turn-internal pause, is directly related to the distribution of pause durations. It plays
a very similar role to the duration component of the clustering cost function introduced
in Section 5.4.2. Here again, we exploit the observation made in Section 5.3.3 that pause
durations approximately follow an exponential distribution:

P (t|O,U) = e−
t

µ(O) (6.17)

where µ is the only parameter of the distribution, which is equal to the mean pause dura-
tion. To estimate µ(O) we train a regression model using the dialog features O to predict
the duration of turn-internal pauses. Because duration are lower bounded by zero, we use a
generalized linear model[McCullagh and Nelder, 1989] with a gamma distribution (expo-
nential distributions are a special case of gamma distributions) and a logarithmic link. In
addition to improving the fit, the logarithmic link guarantees that the predicted durations
are positive.

Predicting the duration of a pause at its onset is a difficult task and the fit is far from
perfect. The correlation between actual and predicted duration is 0.43 and the root mean
square error 248 ms. The first four feature picked by the stepwise algorithm are user

100

barge-in (YES/NO), dialog state (last system prompt type), whether a partial recognition
hypothesis is available (YES/NO), the number of pauses since the beginning of the utter-
ance, and the time since the end of the last user utterance.

For each pause, we compute the predicted pause duration and use that duration as the
µ parameter of P (t|O,U).

6.3.4 Batch Evaluation

We evaluated our FSTTM approach to endpointing at pauses on the dataset already used
for clustering-based threshold optimization in Chapter 5. Figure 6.2 shows the latency /
cut-in trade-off for the fixed threshold baseline, threshold optimization, the approach pro-
posed by Ferrer et al. [2003] (see section 5.5.2 for details) and the FSTTM approach. The
FSTTM consistently outperforms all other approaches, improving over the fixed threshold
baseline by up to 29.5%.

In order to assess the impact of P (t|O,U), we tested three different ways of computing
the µ parameter of the exponential distribution:

1. Overall mean pause duration, independently of the dialog features

2. Pause duration predicted by the generalized linear model described in the previous
section

3. An oracle that predicts the actual pause duration for all internal pause and the overall
mean for all final pauses

As seen in Figure 6.3, predicting pause duration provides almost no improvement over a
fixed pause duration. However, the oracle duration did provide significant improvement,
which confirms the potential of using an estimated P (t|O,U), provided better modeling
of pause duration can be achieved (e.g. using better prosodic features).

6.4 Anytime Endpointing

6.4.1 Problem Definition

While the approach described above allowed some improvement over the method of Chap-
ter 5, it is still constrained by the pause detection mechanism, which, independently of the

101

Figure 6.2: Cut-in / Latency Trade-off for Pause-based Endpointing in the FSTTM, com-
pared with a fixed-threshold baseline, the threshold optimization approach described in
Chapter 5, and the approach of Ferrer et al. [2003]. All confidence intervals for latency
fall within +/− 4ms. For the sake of clarity, we did not represent them on the graph.

102

Figure 6.3: Cut-in / Latency Trade-off for Pause-based Endpointing in the FSTTM, com-
pared with a fixed-threshold baseline and the threshold optimization approach described
in Chapter 5. All confidence intervals for latency fall within +/ − 4ms. For the sake of
clarity, we did not represent them on the graph.

103

endpointing decision algorithm, introduces delays (it takes at least 200 ms to detect a
pause). However, contrarily to cluster-based threshold optimization, the FSTTM approach
does not require that a pause be detected to be applied. Thus, we reformulate the problem
as that of making a decision every time a new partial recognition hypothesis is available
from the speech recognizer. Doing so allows the system to potentially endpoint even be-
fore a pause is detected. Note that our goal is not to generate overlapping speech but rather
to better anticipate pauses. We redefine the endpoint of an utterance as the time at which
the text of the current partial hypothesis is identical to what the final hypothesis would be,
were we to wait for a significant pause to endpoint. The idea here is that if the text of the
hypothesis does not change, the system has not gained any information by waiting, rather
it lost time. Given this new goal, we define two cost matrices. The first one is used to make
decisions before a pause is detected. The other is used once a pause longer than 200 ms
has been detected by the speech recognizer, as that of Section 6.3. In both cases, we set the
cost of grabbing the floor while the user still claims it at a constant CU , as we did before.
During a pause, the cost of waiting when the user has released the floor is again CG · t. The
cost of waiting when no pause has been detected yet but the latest partial hypothesis is the
same as the final one is set to another constant CW . Thus the system grabs the floor when
either there is not a pause longer than 200 ms at the end of the last partial hypothesis and

C(W,O) ≥ C(G,O) (6.18)
P (F |O) · CW ≥ (1− P (F |O)) · CU (6.19)
P (F |O) · CW ≥ (1− P (F |O)) · CU (6.20)

P (F |O) ≥ CU
CW + CU

(6.21)

or there is pause of t ≥ 200ms at the end of the last partial hypothesis and, as before

t ≥ CO
CG
· P (t|O,U) · 1− P (F |O)

P (F |O)
(6.22)

As in Section 6.3, we need to estimate P (F |O) at the beginning of pauses and P (t|O,U),
and, additionally, P (F |O) at partial hypothesis during speech.

6.4.2 Estimating P (F |O) During Speech

We use the same features and logistic regression model to learn P (F |O) during speech,
the goal being this time to predict whether a given partial hypothesis is the same as the
final one in the training data. Because the log files of the corpus used in Section 6.3

104

Dialog state Majority baseline
Classification Baseline log

Log likelihood
error rate likelihood

Open question 19.86% 16.51% -0.4985 -0.3955
Closed question 32.26% 21.51% -0.6288 -0.4947
Confirmation 35.95% 17.45% -0.6531 -0.4003
Overall 38.99% 19.17% -0.6687 -0.4495

Table 6.4: Performance of state-specific logistic regression for estimating P (F |O) during
speech segments.

lacked necessary information about partial hypotheses, we use a more recent corpus of
586 dialogs, collected between May, 4 and May, 14, 2008. The performance of the logistic
regression for each dialog state and overall is shown in Table 6.4.

In contrast to the models learned at pauses, these models are much more accurate than
the majority baseline. The best performance improvement is achieved in the confirmation
state, where most utterances are predictable single words such as ”YES” and ”NO”. The
selected features, shown in table 6.5, overlap those selected for detection at pauses. One
difference is the use of the duration of the final pause. While this model is only triggered
during speech and not when a pause has been detected, our definition of ”in speech” is
that the final pause is shorter than 200 ms, so the model is able to extract information from
durations between 0 and 190 ms, with longer pauses inducing a higher P (F |O).

6.4.3 Batch Evaluation

We evaluated anytime endpointing using cross-validation on the May 2008 corpus. For
this evaluation, we set the cost of not endpointing in speech when the floor is FREE, CW
to 1000. We then vary the cost of a cut-in CU to compute the latency / cut-in rate trade-off
curve for this model. We compare this approach to the fixed-threshold baseline, as well as
the in-pause-only FSTTM approach (i.e. we setCW to 0). Anytime FSTTM endpointing is
consistently better than both baselines, improving over in-pause-only FSTTM endpointing
by up to 17% for a cut-in rate of 5%. At that point the average latency of the Anytime-
FSTTM endpointer is about 40% less than that of the fixed-threshold baseline.

To investigate the impact of in-speech endpointing on the overall performance of the
model, we varied CW while selecting CU so as to keep a constant cut-in rate of 5%. The

105

Feature Value range Median Open Closed Confirmation
Constant - - 0.3582 0.5852 0.1683
LM boundary score [−5.3, 2.4] −0.7 1.1947 1.1397 0.5888
Final pause duration [0, 190] 28.7 0.0113 0.0107 0.0110
Avg nb words per turn [1, 27] 1.9 −0.2656 −0.4181 −0.1368
Nb words in hyp [1, 35] 1 −0.0557 0 −0.2555
Hyp has confirm 0, 1 0 0 0 2.6156
Hyp has disconfirm 0, 1 0 −1.1122 0.8555 2.0213
Hyp is non-und. 0, 1 0 −0.4535 −0.7820 −0.8857
Non-und. rate so far [0, 1] 0.2 0 0.9434 0
User barge-in 0, 1 0 0 −0.1851 0

Table 6.5: Features selected by stepwise logistic regression to estimate P (F |O) during
speech segments and their coefficients (all non-null coefficients are non null with p <
0.01).

Figure 6.4: Cut-in / Latency Trade-off for Anytime Endpointing in the FSTTM, compared
with a fixed-threshold baseline and the At-Pause endpointing. All confidence intervals for
latency fall within +/ − 4ms. For the sake of clarity, we did not represent them on the
graph.

106

Figure 6.5: Average latency as a function of CW for a fixed cut-in rate of 5%.

resulting curve, drawn on Figure 6.5, has a clear convex shape, with a minimum around
CW = 1000. With smaller values, the model endpoints less frequently in speech, resulting
in ”wasted” opportunities for faster response. On the other hand, for high CW , the model
aggressively endpoints in speech, leading to an increasing number of cut-ins for those
utterances. To compensate and keep the overall cut-in rate at 5%, the in-pause decisions
will be more conservative, leading to longer delays there. For other cut-in rates, we also
found the optimal CW value to lie between 500 and 1000. At optimal cut-in rates, 30 to
40% of the turns are endpointed during speech.

6.5 Interruption Detection

6.5.1 Problem Definition

Interruption detection is the problem of identifying when the user is trying to interrupt the
system during a prompt (barge-in), and to rule out other cases. We call false interruptions
cases where the system erroneously interrupts itself although the user was not trying to

107

barge in. In our FSTTM formalism, this problem translates into that of selecting between
the Keep and the Release actions during a system prompt. We assume that at some point,
the system knew the user was not claiming the floor at the same time that the system
was. In other words, at some point in the past, the model state was SY STEM with
probability 1. After that point, the uncertainty lies between the states SY STEM (user
does not claim the floor) and BOTHS (user claims the floor, i.e. barges in). Potential user
utterances are first detected by the VAD, which is equivalent to saying that P (BS|O) = 0
when the VAD is in a non-speech state. In addition, we only make decisions when a new
(non-empty) partial hypothesis is output by the ASR. Finally, we make the simplifying
assumption that whenever the user addresses the system, they are claiming the floor. This
treats backchannels as normal floor grabbing turns which is obviously wrong in the general
case but, due to the constrained nature of most current systems, including Let’s Go, is a
reasonable first approximation.

Thus the problem is to distinguish user utterances directed at the system (stateBOTHS)
from noises (i.e. VAD/ASR false positives) and other utterances (e.g. directed to another
person), which correspond to state SY STEM . Given the cost structure of table 6.1, in-
terruptions are detected when:

C(K,O) ≥ C(R,O) (6.23)
P (BS|O) · CO ≥ P (S|O) · CS (6.24)
P (BS|O) · CO ≥ (1− P (BS|O)) · CS (6.25)

P (BS|O) ≥ CS
CS + CO

(6.26)

As for endpointing in speech, this amounts to a threshold on P (BS|O).

6.5.2 Estimating P (BS|O)

Since we only make a decision, and thus compute P (BS|O), when a non-empty partial hy-
pothesis is generated, we assume that all the acoustic evidence has already been taken into
account by the VAD and the ASR. Therefore, at this stage, we focus on higher level cues.
Specifically, our goal is to identify keywords which, when found in the partial hypothesis,
provide evidence towards SY STEM or BOTHS .

The intuition behind this approach is that barge-ins should exhibit specific words that
are meaningful in the current dialog context, whereas false interruptions are likely to gen-
erate random words in the partial hypotheses. For example, during a prompt where the

108

Match Non-understanding
Barge-in 3891 1807
False interruption 378 1332

Table 6.6: Co-occurrence of Matches/Non-understandings and Manually Annotated
Barge-ins/False interruptions.

system gives a bus time to the user, it is expected (and encouraged by help prompts) that
the user would barge-in and produce utterances such as ”WHEN IS THE NEXT BUS” or
”WHEN IS THE PREVIOUS BUS”. Therefore, if a partial hypothesis during that prompt
contains ”WHEN”, it is probably evidence that it is a barge-in.

To identify these keywords, we used the Let’s Go data from May, 3rd to September,
5th, 2008, which, overall, contained 158994 prompts, of which 28684 (18%) were inter-
rupted (including both barge-ins and self interruptions), for a total of 234772 partial hy-
potheses. Each partial hypothesis was automatically marked with a binary label indicating
if it belonged to an utterance that ultimately resulted in a match in the expectation agenda
or a non-understanding. This is a very crude way of discriminating real interruptions from
a false interruption (i.e. other speech or noise), since many genuine interruptions result
in non-understandings, and some false interruptions result in a match. Indeed, we veri-
fied this by manually annotating a smaller corpus of 212 dialogs. Each input occurring
during a system prompt that led to at least one non-empty partial hypothesis was marked
as barge-in or false interruption. We excluded hypotheses that started 500 ms or less be-
fore the end of the prompt, since these tend to be genuine utterances but correspond to
turn transitions with slight overlap rather than actual barge-in. For these cases, the system
being about to finish speaking the prompt anyway, it is not necessary to make a barge-in
decision. We thus have a corpus of 7408 partial hypotheses, 74% of which were marked
as barge-in. On this data, we cross-tabulated non-understandings and barge-ins (see Table
6.6). We found that 91% of matches are barge-ins, whereas 78% of false interruptions
are non-understandings. On the other hand, 58% of non-understandings are also barge-ins
and 32% of barge-ins are non-understandings. These figures indicate that these automated
match labels are by no means a good substitute for manual barge-in labels. However,
for the purpose of identifying relevant keywords, we hoped that the large amount of data
would compensate for this imperfection.

One property of these keywords is that they are likely to depend on the prompt, or at

109

least its dialog act, since both what the user says and the ASR language model depend
on those. To take this into account, we segmented the data in 36 system dialogs acts
such as ”inform result” and ”request departure place”. It is also likely that the keywords
would depend on the duration of the partial hypothesis. In the example above, ”BUS”
might be a good keyword for long hypotheses (since both ”WHEN IS THE NEXT BUS”
and ”WHEN IS THE PREVIOUS BUS” contain it), but not so for short ones since it
is unlikely the user would actually start their utterance by ”BUS”. Therefore we further
clustered each dialog act’s partial hypotheses into 10 groups according to the estimated
duration of speech in the hypothesis (based on time alignment information from the ASR).
The first group contains hypothesis whose duration is between 0 and 100 ms, the second
one between 100 and 200 and so on. The tenth group contains all hypotheses longer than
900 ms. As a result, we obtained 360 groups containing between 0 and 13927 partial
hypotheses. 55 of these groups did not contain any partial hypothesis, while 165 contained
100 or more hypotheses. For each group, we computed the information gain of each
word appearing in a partial hypothesis with respect to that hypothesis ultimately leading
to a match. Information gain is defined as the difference between the entropy of a target
variable and its conditional entropy on a conditioning variable. In our case, let us call
M the binary variable that equals 1 when a given partial hypothesis belongs to what will
ultimately be a matched utterance and 0 otherwise. Let Wi be another binary variable that
equals 1 if keyword Wi appears in the hypothesis and 0 otherwise. The Information Gain
of M given Wi is:

IG(M |Wi) = H(M)−H(M |Wi) (6.27)

where the entropy of M H(M) is

H(M) = P (M = 0) · log(P (M = 0)) + P (M = 1) · log(P (M = 1)) (6.28)

and the conditional entropy H(M |Wi) is defined as

H(M |Wi) = (P (Wi = 0) ·H(M |Wi = 0) + P (Wi = 1) ·H(M |W − i = 1))(6.29)

with

H(M |Wi = x) = P (M = 0|Wi = x) · log(P (M = 0|Wi = x) + P (M = 1|Wi = x) · log(P (M = 1|Wi = x))(6.30)

We estimate the probabilities P (M = y), P (Wi = x) and P (M = y|Wi = x) using the
frequency counts in their 2x2 contingency table (smoothed by adding one to each cell).
For each of the 360 groups, we rank the keywords by decreasing IG.

Tables 6.7 and 6.8 show the keywords for the two most commonly interrupted dialog
acts. ”explicit confirm” indicates all prompts such as:

110

Hyp. duration Nb of hyp Non-und. rate Top keywords
0− 100 1437 12% THE*, NO, TO*, OF*, YEAH
100− 200 6196 21% THE*, NO, YEAH, IT*, FROM*
200− 300 11127 20% YES, YEAH, THE*, NO, NEED*
300− 400 13927 18% YES, GOING*, NO, THE*, SHE*
400− 500 11909 16% YES, NO, GOING*, HELLO*, AM*
500− 600 8373 14% YES, NO, THE*, AM*, HELLO*
600− 700 5398 19% YES, AM*, NO, HELLO*, LEAVING*
700− 800 3419 23% YES, AM*, NO, HELLO*, TOLD*
800− 900 2591 26% HELLO*, AM*, WHAT*, P*, YES
900− 2300 26% HELLO*, EN*, AM*, YES, ME*

Table 6.7: Barge-in keywords for the dialog act ”explicit confirm”. * indicate words that
signal self interruptions, all other words signal barge-ins.

Hyp. duration Nb of hyp Non-und. rate Top keywords
0− 100 328 61% THE*, WH, BYE, NEW, WHEN
100− 200 2476 68% THE*, BYE, WHEN, WHAT, PRE
200− 300 4534 54% BUS*, WHEN, NEXT, THE*, PRE
300− 400 3992 40% NEXT, BUS*, IS, PRE, HELLO*
400− 500 3607 36% PREVIOUS, THE, NEXT, IS, OF*
500− 600 3495 33% NEXT, PREVIOUS, HELLO*, OF*, THE
600− 700 3263 31% NEXT, PREVIOUS, BUS, THE, HELLO*
700− 800 3243 29% NEXT, BUS, PREVIOUS, THE, DONE*
800− 900 2787 26% NEXT, BUS, PREVIOUS, THE, IS
900− 2918 26% NEXT, BUS, PREVIOUS, THE, IS

Table 6.8: Barge-in keywords for the dialog act ”request next query”. * indicate words
that signal self interruptions, all other words signal barge-ins.

111

Leaving from Downtown. Is this correct?

and

The next bus. Did I get that right?

and ”request next query” corresponds to the following fixed prompt, after the system has
given a bus time to the user:

To get more information about buses related to this trip, you can say, when is
the next bus, or, when is the previous bus. To ask about a different trip, you
can say, start a new query. If you are finished, you can say goodbye.

Both dialog acts show an evolution over the duration of the hypothesis, albeit with differ-
ent properties. In the ”explicit confirm” case, except for the very first time interval, the
proportion of (future) non-understandings among partial hypotheses first decreases until
reaching a minimum of 14% at the 500−600 ms interval and finally increasing again. This
shows that most genuine barge-ins have a duration of about 500 ms, which corresponds to
the average duration of the words ”YES” and ”NO” alone. In contrast, self interruptions
appear to be of two kinds. The first type is short noises, which explain the somewhat higher
non-understanding rates between 100 ms and 400 ms. These noises are captured in partial
hypotheses by the word ”THE”, which because of its short duration and fricative nature,
tends to match non-speech noises. Another type of self interruption happen with hypothe-
ses longer than 600 ms. It consists of user speech not directed to the system, background
voices, or otherwise continuous noises, which explain the higher non-understanding rates
at these durations. They are best captured by the word ”HELLO”, which because of its
voiced nature tends to match background speech.

The non-understanding rates and keywords for the ”request next query” dialog act tell
a different story. In this case, genuine barge-ins tend to be longer utterances like ”WHEN
IS THE NEXT BUS”. Hence, shorter, non-speech events, along with genuine attempts
at barging in that do not match the system’s expectations (and hence will lead to a non-
understanding) finish earlier than matches, which explains the decreasing ratio of future
non-understandings. The ”THE” keyword is also present here but with a dual pattern. At
first, as in the explicit confirm case, it indicates future non-understandings, while later on
it becomes an indicator of matches because it appears in the frequent matches ”WHEN IS
THE NEXT BUS” and ”WHEN IS THE PREVIOUS BUS”. Also, the partial words ”WH”
and ”PRE”, who only appear in the ASR output because they were forgotten when we
”cleaned up” the training corpus of the language model, are in fact good early predictors
of matches since they announce the common valid words ”WHEN” and ”PREVIOUS”.

112

The fact that words like ”THE” and ”HELLO”, as well as partial words like ”WH” and
”PRE”, are found to be informative indicates that these keywords not only capture what
users normally say in actual interruptions but also the bias of the ASR towards certain
words, in particular when confronted with noise. These specific keywords would of course
be different when using a different speech recognizer or even just different acoustic and/or
language models. The features would have to be recomputed for these new conditions.

For each partial hypothesis, we defined binary features indicating the presence of each
of the top five keywords for each group. We also added one binary feature indicating
whether the partial hypothesis itself is a match or a non-understanding. We trained 305 6-
variable logistic regression models on the May-September 2008 data. The target variable
is whether the partial hypothesis belongs to an utterance whose final hypothesis was a
match given the current system expectations.

6.5.3 Batch Evaluation

We evaluated the models on the manually annotated corpus introduced in section 6.5.2.
By varying the costs CS and CO we evaluate the average latency across a range of thresh-
olds on P (BS|O). The results is shown on Figure 6.6. The most straightforward baseline,
which is to interrupt the system prompt as soon as a non-empty partial hypothesis is gen-
erated leads to very fast decisions (233 ms on average) but a high false interruption rate
(4.7% of all prompts are erroneously interrupted). This baseline (referred to as ”first hy-
pothesis”) is not represented in Figure 6.6. A second baseline (referred to as ”first match”)
uses semantic and discourse information by interrupting a system prompt at the first partial
hypothesis that is a match in the current dialog context. This baseline, represented by a
triangle on Figure 6.6, leads to slower reactions (543 ms on average). It is also less prone
to false interruptions with a rate of 1.6%. Our FSTTM approach introduces a trade-off
between latency and accuracy of the decision. At a false interruption rate of 1.6%, the
average latency is 482 ms, which corresponds to a reduction of 61 ms or 11% over the
first-match baseline.

6.6 Live Evaluation

To confirm the results of the batch evaluation, we implemented our FSTTM model in the
Apollo Interaction Manager of the Olympus spoken dialog architecture (see Chapter 4).
We let the public system’s IM use either FSTTM as described above (condition FSTTM),
or a fixed threshold for endpointing and interrupts system prompts as soon as a partial

113

Figure 6.6: False Interruptions / Latency trade-off with the FSTTM and the first-match
heuristic.

hypothesis matches the current expectation agenda (condition control). For FSTTM, we
set the costs to the following values:

CG = 1

CU = 5000

CW = 500

CO = 1

CS = 10

which, in the batch evaluation, corresponded to a cut-in rate of 6.3% and an average la-
tency of 320 ms. For the control condition, we set the fixed endpointing threshold to
555 ms, which also corresponded to about 6.3% cut-ins. The barge-in costs correspond
to setting a threshold on P (U |O) at 0.9. This is a conservative decision that stems from
our observations that the cost of interrupting certain prompts erroneously can have serious
consequences on dialog success. This is the case, for example, when the user manages to
specify their complete query to the system but simply does not hear the result because of
an erroneous barge-in detection on the result prompt.

114

(a) Latency (b) Cut-in rates

(c) Non-understanding rate

Figure 6.7: Live evaluation results. All the differences in latency are significant (p <
1e − 4, using the Wilcoxon rank sum test). For cut-in rates, only the difference in the
Confirmation state is significant (p < 0.05 using the binomial proportions test). For non-
understanding rates, only the overall difference is statistically significant (p < 0.05).

115

Figure 6.7 shows average latency, cut-in rate and non-understanding rate for the con-
trol and experimental conditions. Our FSTTM approach improves over the baseline on all
metrics, reducing average latency by 193 ms, cut-in rate by 1.5% and non-understanding
rate by 4.9%. All the differences in latency are significant (p < 1e−4, using the Wilcoxon
rank sum test). For cut-in rates, only the difference in the Confirmation state is signifi-
cant (p < 0.05 using the binomial proportions test). For non-understanding rates, only
the overall difference is statistically significant (p < 0.05). As already observed for the
threshold optimization approach of Chapter 5, the latency reduction is largest for the con-
firmation dialog state (440 ms). On the other hands, both cut-in and non-understanding
rates improve the most for the closed question state.

For interruption detection, the proportion of user utterances that start during a system
prompt (barge-in rate) was not affected by the approach (33% in both cases). However the
non-understanding rate for barge-ins was lower in the FSTTM condition (32%) than in the
control condition (40%), but not significantly so.

In addition to these results, inspection of the live data revealed some issues with ASR-
based pause detection. Indeed, a significant portion of the cut-ins are the result of poor
pause detection, which happens when the PocketSphinx recognition engine fails to recog-
nize silence or noise at the end of a partial utterance, artificially lengthening the last word
instead.

6.7 Discussion

Both batch and live evaluation results confirm the effectiveness of our FSTTM approach in
improving system responsiveness, both at the end of user turns and on user interruptions.
For endpointing in particular, this approach improved significantly over the threshold op-
timization approach we proposed in Chapter 5. The language-model-based feature got the
highest weight in the regression, indicating that in a domain such as Let’s Go’s, lexical
cues are very informative for endpointing. The fact that the boundary LMs can be com-
puted without any human transcription effort (since they are trained on the output of the
recognizer) make them all the more appealing.

Lexical cues were also useful for interruption detection, albeit to a lesser extent. Our
finding that the partial words ”WH” and ”PRE” are useful in early detection provides in-
spiration for future feature design. First, one could add more of these partial words to the
language model, effectively leading to a mixed sub-word unit / word LM. This approach
is likely to hurt recognition performance when scaled up, by introducing many highly
confusable words in the ASR lexicon. Rather, one could imagine getting more fine-grain

116

information from the ASR. Currently, most ASR engines are able to produce word-level
partial hypotheses corresponding to the most likely word sequence so far. It might be use-
ful to also include the most likely next word(s) based on the word hypotheses currently
active. This, combined with the problems encountered in ASR-based pause detection dur-
ing the live evaluation, point to the need for more research on ASR engines not just as
transcription tools producing sequences of words, but as dynamic components of interac-
tive systems, providing a rich set of features to inform higher-level modules. Generally
speaking, the performance of our model for interruption detection was not as good as for
endpointing, particularly when compared with the first-match baseline. However, it should
be noted that this is a rather strong baseline since it uses semantic and dialog expectation
information. Ultimately, the live evaluation did show that the FSTTM approach did reduce
non-understanding rate significantly. Another advantage of the FSTTM approach is that it
allows tuning of the system’s behavior by adjusting the costs, which heuristic approaches
such as first-match do not allow.

Essentially, we showed that our FSTTM provides a simple, unified model of turn-
taking that lends itself to data-driven optimization. While we described and evaluated
specific cost structures and probability estimation techniques, the framework’s flexibility
opens it to other choices at many levels. In some ways, the FSTTM is an extension of
previous classification based approaches to endpointing such as those proposed by Sato
et al. [2002], Ferrer et al. [2003] and Takeuchi et al. [2004]. But it unifies these models
with those proposed for backchannel / barge-in prediction and identification by, e.g. Ward
and Tsukahara [2000] and Cathcart et al. [2003], as well as production by, e.g., Tsukahara
[1998]. While much work is still needed before a comprehensive model of turn-taking
for control of conversational agents can be designed, we believe the FSTTM provides a
framework that can support research towards such a model.

117

118

Chapter 7

Conclusion

7.1 Summary of contributions

The research described in this dissertation addresses the problem of making spoken dialog
systems more responsive to the user. Its main contributions are:

An architecture for semi-synchronous, event-driven, dialog management. While sim-
ilar to other existing multi-layer spoken dialog systems architecture, the proposed
architecture offer several advantages. First, it fully integrates a state-of-the-art di-
alog manager, with complex task representation, mixed-initiative, and grounding
mechanisms, with a fine-grain low-level interaction module, the interaction man-
ager. This integration is done in a fully task-independent fashion, allowing the use
and evaluation of various turn-taking models in different tasks. Second, it central-
izes information from all levels of dialog, including high-level information from
the dialog manager, and low-level information from the ASR engine and other sen-
sors, in a single structure, which allows turn-taking models to make use of a wide
range of features to make their decisions. Third, it is freely available as open-source
software, facilitating the implementation of full dialog systems and research on any
aspect, including timing and turn-taking.

An algorithm to optimize endpointing thresholds. We designed a method to dynami-
cally set the utterance endpointing threshold, using a model trained on past dialogs.
Our evaluation shows that many features that are readily available in most spoken
dialog systems can help improve responsiveness. In particular, we showed that, in
information access systems, semantic information based on dialog context is the

119

most useful source of information for endpointing.

A decision theoretic model of turn-taking as a dynamic decision problem. Our model,
the Finite-State Turn-Taking Machine, is, to our knowledge, the first general con-
trol mechanism for turn-taking in conversational systems implemented in a task-
independent way. Offline and live evaluations showed its effectiveness. Beyond
the specific cost structures and probabilistic models used in this work, the FSTTM
is a new way of thinking about the turn-taking process, which formalizes it while
keeping a high degree of flexibility. While this work has focused on dyadic, tele-
phone, information access dialogs, the FSTTM can be applied to many other types
of conversations.

A demonstration of the validity of our approach on real deployed systems All of the
experiments in this work were conducted on the Let’s Go system, a publicly avail-
able system that has provided bus information to Pittsburghers through more than
60000 telephone calls so far. Not only did Let’s Go provide large amounts of data
to train models, but it also allowed us to test our approaches directly on hundreds of
dialogs with genuine user goals. In addition, all the data collected with the Let’s Go
system is freely available for other researchers. While this research paradigm can be
further refined, in particular by combining controlled studies with live experiments,
this is, to our knowledge, the first work that exploits an academic deployed system
to this extent.

7.2 Possible extensions

Throughout this thesis, we have designed, implemented, and evaluated methods to make
spoken dialog systems more responsive. While the results were positive, we believe that
there is still a long way until the interaction with artificial conversational agents is as effi-
cient and comfortable as human-human conversation. This work could be taken towards a
number of directions.

First, while we designed and implemented the Olympus 2 architecture to be truly task-
independent and open to many modalities, we have only tested it in the case of dyadic tele-
phone conversations in this thesis. Application of Olympus 2 to other domains involving
multiple participants and multiple modalities is underway in the TeamTalk [Harris et al.,
2005]. That project and others in the future offer the opportunity to explore turn-taking
and timing issues in much more complex settings than the Let’s Go system does. There
is no doubt that the current version of the architecture will need to be modified to truly

120

accommodate a wide range of domains and interaction modalities. We hope that this will
ultimately result in a generic framework for turn-taking applied and tested on complete,
working, and if possible, deployed, dialog systems.

Second, as already explained, the Finite-State Turn-Taking Machine lends itself to
many applications and improvements. While we hope that the general ideas of finite-state
floor modeling and decision-theoretic action selection will stand the test of time, its inner
workings and computational details are open to change. For example, new features that are
most useful for turn-taking, in particular using prosody and visual cues, can be explored
and incorporated. The probability models that derive state probabilities from these features
can be modified from the current fairly direct logistic regression-based models.

One very active research area in the field of spoken dialog systems are statistical
models for dialog management [Singh et al., 2002, Henderson et al., 2005, Williams and
Young, 2007]. These models typically make use of reinforcement learning to train a policy
that maps system actions to dialog states. A very similar approach could be applied to the
FSTTM, which would provide for a principled way to track of the uncertainty over the
floor state over time, as well as a framework to integrate more context in the turn-taking
decisions. For example, a reinforcement learning algorithm could learn a policy that trig-
gers a different action after several floor conflicts (when the user and system repeated start
speaking at the same time and interrupt themselves).

In general, the issue of turn-taking error handling is a crucial component of a really
responsive system. With good floor conflict solving abilities, a system could afford to
take more aggressively turn-taking decisions, knowing that it could recover at low cost if
the decision was wrong. It is indeed very common, and not an issue, for people to start
speaking at the same time and resolving the conflict in a matter of milliseconds.

Another aspect that can lend itself to improvement is cost structure. Our design of
the cost matrix was motivated by intuition and the will to keep it as simple as possible.
The result we have obtained indicate that our choices were reasonable. On the other hand,
one can imagine more complex cost structures which, instead of optimizing for objective
average latency as we did, are directly optimizing the naturalness of the interaction. To
this end, perceptual and/or user studies could be crucial in order to determine the actual
cost of latency and turn-taking errors (cut-ins and false interruptions) for users. These
costs might depend on time, but also on other contextual information such as dialog state,
user and system utterance semantic content, and user personality. The flexibility of the
FSTTM approach, which makes it amenable to such perception-driven costs is one of its
most significant strengths.

Applying the FSTTM to multimodal systems will also provide interesting challenges

121

and opportunities. How can one use visual and other non-speech cues to optimize turn-
taking? How do the different modalities interplay in terms of floor? For example, when
can the visual modality be used to convey information when the ”acoustic” floor is not
available? These are all questions that we will need to answer as systems get more sophis-
ticated and more embedded in the real world.

Multi-party conversation is another case where turn-taking becomes both more com-
plex and more crucial to the successful unfolding of a dialog. What is the state structure in
a multi-party conversation? Can the floor be modeled in a way that is independent of the
number of participants? The focus of our work is the control of an agent rather than the
analysis of naturally occurring human-human dialogs. Yet, multi-party conversations give
rise to situations where a given system is simply listening to two other parties talking with
each other. How can we model these cases? If the two participants in question are human,
how much understanding is necessary to track the floor state? How does the state relate to
social relationships and obligations in such context?

The problems defining the floor state, dynamically tracking it and acting in the most
efficient and/or natural way are, at this point, open research questions in the general case.
We hope that the FSTTM can provide a framework in which these can be investigated in
the context of artificial conversational agents.

122

Bibliography

H. Ai, D. Litman, K. Forbes-Riley, M. Rotaru, J. Tetreault, and A. Purandare. Using
system and user performance features to improve emotion detection in spoken tutoring
dialogs. In Proc. Interspeech 2006, Pittsburgh, PA, USA, 2006. 5.2

H. Ai, A. Raux, D. Bohus, M. Eskenazi, and D. Litman. Comparing spoken dialog cor-
pora collected with recruited subjects versus real users. In 8th SIGDial Workshop on
Discourse and Dialog, Antwerp, Belgium, 2007. 3.2

G. S. Aist. Expanding a time-sensitive conversational architecture for turn-taking to handle
content-driven interruption. In Proc. ICSLP 1998, Sydney, Australia, 1998. 2.2.4

G. S. Aist and J. Mostow. Adapting human tutorial interventions for a reading tutor that
listens: Using continuous speech recognition in interactive educational multimedia. In
Proc. CALL ’97 Conference on Multimedia, Exeter, England, 1997. 2.2.4

J. F. Allen, D. Byron, M. Dzikovska, G. Ferguson, L. Galescu, and A. Stent. Towards a
generic dialogue shell. Natural Language Engineering, 6(3):1–16, 2000. 2.2.3

J. F. Allen, G. Ferguson, and A. Stent. An architecture for more realistic conversational
systems. In Proc. Intelligent User Interfaces 2001 (IUI-2001), pages 1–8, Santa Fe,
NM, 2001. 2.2.3

J. F. Allen, G. Ferguson, A. Stent, S. Stoness, M. Swift, L. Galescu, N. Chambers, E. Cam-
pana, and G. S. Aist. Two diverse systems built using generic components for spoken
dialogue (recent progress on trips). In Interactive Demonstration Track, Association of
Computational Linguistics Annual Meeting, Ann Arbor, MI, 2005. 2.2.3

J. F. Allen and C. R. Perrault. Analyzing intention in utterances. Artificial Intelligence,
15:143–178, 1980. 1.2, 1.3.4

G. T. M. Altmann and M. J. Steedman. Interaction with context during human sentence
processing. Cognition, 30(3):191–238, 1988. 2.2.1

123

J. Ang, R. Dhillon, A. Krupski, E. Shriberg, and A. Stolcke. Prosody-based automatic
detection of annoyance and frustration in human-computer dialog. In Proc. ICSLP 2002,
Denver, CO, USA, 2002. 5.2

ACL Workshop on Incremental Parsing, 2004. Proc. ACL Workhop on Incremental Pars-
ing: Bringing Engineering and Cognition Together, Barcelona, Spain, 2004. Associa-
tion for Computational Linguistics. 1.3.3, 2.2.1

M. Bacchiani, F. Beaufays, J. Schalkwyk, M. Schuster, and B. Strope. Deploying goog-
411: Early lessons in data, measurement, and testing. In ICASSP-08, Las Vegas, NE,
USA, 2008. 3.2

G. W. Beattie. Turn-taking and interruption in political interviews: Margaret Thatcher and
Jim Callaghan compared and contrasted. Semiotica, 39(1-2):93–114, 1982. 5.3.4

G. W. Beattie. Talk: An Analysis of Speech and Non-Verbal Behaviour in Conversation.
Open University Press, 1983. 2.1.2

A. Black. Clustergen: A statistical parametric synthesizer using trajectory modeling. In
Interspeech, Pittsburgh, PA, USA., 2006. 1.3.6

D. Bohus. Error Awareness and Recovery in Conversational Spoken Language Interfaces.
PhD thesis, Carnegie Mellon University, 2007. 4.3.4

D. Bohus, A. Raux, T. Harris, M. Eskenazi, and A. Rudnicky. Olympus: an open-source
framework for conversational spoken language interface research. In HLT-NAACL 2007
workshop on Bridging the Gap: Academic and Industrial Research in Dialog Technol-
ogy, Rochester, NY, USA, 2007. 3.3, 4.4

D. Bohus and A. Rudnicky. Integrating multiple knowledge sources for utterance-level
confidence annotation in the CMU Communicator spoken dialog system. Technical
Report CS-190, Carnegie Mellon University, Pittsburgh, PA, USA, 2002. 3.3.1, 5.2,
5.3.4, 5.3.4

D. Bohus and A. Rudnicky. RavenClaw: Dialog management using hierarchical task de-
composition and an expectation agenda. In Eurospeech03, Geneva, Switzerland, 2003.
(document), 1.3.4, 3.3.2, 4.3.4, 4.3, 4.5, 5.3.4, 6.3.2

D. Bohus and A. Rudnicky. Error handling in the ravenclaw dialog management architec-
ture. In Proc. HLT/EMNLP 2005, Vancouver, BC, 2005. 1.1

124

R. Peter Bonasso, David Kortenkamp, David P. Miller, and Marc Slack. Experiences with
an architecture for intelligent, reactive agents. Journal of Experimental and Theoretical
Artificial Intelligence, 9:237–256, 1997. 2.2.1

P. T. Brady. A model for generating on-off speech patterns in two-way conversation. The
Bell System Technical Journal, 48:2445–2472, 1969. (document), 6.2.1, 6.1, 6.2.1, 6.2.2

R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(1):14–23, 1985. 2.2.1

M. Bull. The Timing and Coordination of Turn-Taking. PhD thesis, University of Edin-
burgh, 1997. 3.5.4

M. Bull and M. Aylett. An analysis of the timing of turn-taking in a corpus of goal-oriented
dialogue. In ISCLP 98, pages 1175–1178, Sydney, Australia, 1998. 3.5.4, 5.3.4

J. Carletta, S. Isard, G. Doherty-Sneddon, A. Isard, J. C. Kowtko, and A. H. Anderson.
The reliability of a dialogue structure coding scheme. Computational Linguistics, 23
(1):13–31, March 1997. 3.5.4

J. Cassell, T. Bickmore, L. Campbell, H. Vilhjalmsson, and H. Yan. More than just a pretty
face: conversational protocols and the affordances of embodiment. Knowledge-Based
Systems, 14:55–64, 2001. 6.2.1, 6.2.2

N. Cathcart, J. Carletta, and E. Klein. A shallow model of backchannel continuers in spo-
ken dialogue. In Proc. 10th Conference of the European Chapter of the Association for
Computational Linguistics (EACL10), pages 51–58, Budapest, Hungary, 2003. 2.1.3,
6.7

W. L. Chafe. Talking Data: Transcription and Coding Methods for Language Research,
chapter Prosodic and Functional Units of Language, pages 33–43. Lawrence Erlbaum,
1992. 2.1.2, 5.3.4

Eugene Charniak. Statistical techniques for natural language parsing. AI Magazine, 18:
33–44, 1997. 1.3.3

P. M. Clancy, S. A. Thompson, R. Suzuki, and H. Tao. The conversational use of reactive
tokens in english, japanese, and mandarin. Journal of Pragmatics, 26:355–387, 1996.
2.1.3, 5.3.4

H.H. Clark. Using language. Cambridge University Press, 1996. 1.2, 6.2.3

125

H.H. Clark and E.F. Schaefer. Contributing to discourse. Cognitive Science, 13:259–294,
1989. 1.2

P. Clarkson and R. Rosenfeld. Statistical language modeling using the cmu-cambridge
toolkit. In Eurospeech97, Rhodes, Greece, 1997. 6.3.2

P.R. Cohen and C.R. Perrault. elements of a plan-based theory of speech acts. Cognitive
Science, 3:177–212, 1979. 1.2

D. Cournapeau, T. Kawahara, K. Mase, and T. Toriyama. Voice activity detector based
on enhanced cumulant of lpc residual and on-line em algorithm. In Interspeech 2006,
Pittsburgh, USA, 2006. 1.3.1

G. Damnati, F. Béchet, and R. De Mori. Spoken language understanding strategies on the
france telecom 3000 voice agency corpus. In ICASSP 2007, 2007. 3.2

C. Darves and S. Oviatt. Adaptation of users’ spoken dialogue patterns in a conversational
interface. In ICSLP 2002, 2002. 3.5.5

R. Denny. Interaction Structure and Strategy, chapter Pragmatically Marked and Un-
marked Forms of Speaking-Turn Exchange, pages 135–174. Cambridge University
Press, 1985. 2.1.3

K. Dohsaka and A. Shimazu. System architecture for spoken utterance production in
collaborative dialogue. In Working Notes of IJCAI 1997 Workshop on Collaboration,
Cooperation and Conflict in Spoken Dialogue Systems, Nagoya, Japan, 1997. 2.2.3

S. Duncan. Some signals and rules for taking speaking turns in conversations. Journal of
Personality and Social Psychology, 23(2):283–292, 1972. 2.1.2, 5.3.4

S. Duncan and D. W. Fiske. Interaction Structure and Strategy, chapter The Turn System,
pages 43–64. Cambridge University Press, 1985. 2.1.3

T. Dutoit, V. Pagel, N. Pierret, O. van der Vreken, and F. Bataille. The MBROLA
project: Towards a set of high-quality speech synthesizers free of use for non-
commercial purposes. In ICSLP96, volume 3, pages 1393–1397, Philadelphia, PA.,
1996. http://tcts.fpms.ac.be/synthesis/mbrola.html. 1.3.6

Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94–102,
1970. ISSN 0001-0782. 1.3.3

J. Edlund, G. Skantze, and R. Carlson. Higgins - a spoken dialogue system for investigat-
ing error handling techniques. In Proc. ICSLP, Jeju, Korea, 2004. 1.1

126

F. Farfán, H. Cuayáhuitl, and A. Portilla. Evaluating dialogue strategies in a spoken di-
alogue system for email. In Proc. IASTED Artificial Intelligence and Applications,
Manalmádena, Spain, 2003. 1.1

G. Ferguson and J. F. Allen. Trips: An integrated intelligent problem-solving assistant. In
Proc. Fifteenth National Conference on AI (AAAI-98), pages 26–30, 1998. 2.2.3

L. Ferrer, E. Shriberg, and A. Stolcke. A prosody-based approach to end-of-utterance
detection that does not require speech recognition. In ICASSP, Hong Kong, 2003. (doc-
ument), 5.1, 5.2, 5.3.4, 5.3.4, 5.5.2, 5.6, 6.3.4, 6.2, 6.7

K. Forbes-Riley, M. Rotaru, D. J. Litman, and J. Tetreault. Exploring affect-context de-
pendencies for adaptive system development. In Proc. HLT/NAACL 2007, 2007. 5.3.4

C. E. Ford and S. A. Thompson. Interaction and Grammar, chapter Interactional Units in
Conversation: Syntactic, Intonational, and Pragmatic Resources for the Management of
Turns, pages 134–184. Cambridge University Press, 1996. 2.1.2, 2.1.2, 5.3.4

H. Furo. Turn-Taking in English and Japanese. Projectability in Grammar, Intonation,
and Semantics. Routeledge, 2001. 2.1.2, 2.1.2, 2.1.3, 5.3.4, 5.3.4, 5.3.4

M. Gabsdil and O. Lemon. Combining acoustic and pragmatic features to predict recog-
nition performance in spoken dialogue systems. In Proc. ACL 2004, Barcelona, Spain,
2004. 5.2

C. Goodwin. Conversational Organization: Interaction between Speakers and Hearers.
Academic Press, 1981. 2.1.2

B. J. Grosz and C. Sidner. Attention, intentions, and the structure of discourse. Computa-
tional Linguistics, 12(3):175–204, 1986. 1.2, 1.3.4

D. Guillevic, S. Gandrabur, and Y. Normandin. Robust semantic confidence scoring. In
Proc. ICSLP 2002, Denver, CO, USA, 2002. 5.2

D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8:231–274, 1987. 2.2.4, 6.2.1

T. K. Harris, S. Banerjee, and A. Rudnicky. Heterogeneous multi-robot dialogues for
search tasks. In Proc. AAAI Workshop on Dialogical Robots: Verbal Interaction with
Embodied Agents and Situated Devices, Stanford, CA, 2005. 4.5, 7.2

127

H. Hassan, A. Crespo, and J. Simó. Flexible real-time architecture for hybrid mobile
robotic applications. In Proc. 9th International Federation of Automatic Control Sym-
posium, Budapest, Hungary, 2000. 2.2.1

J. Henderson, O. Lemon, and K. Georgila. Hybrid reinforcement/supervised learning for
dialogue policies from communicator data. In IJCAI Workshop, 2005. 7.2

R. Higashinaka, K. Sudoh, and M. Nakano. Incorporating discourse features into con-
fidence scoring of intention recognition results in spoken dialogue systems. In Proc.
ICASSP 2005, 2005. 5.2, 5.3.4

J. Hirschberg, D. Litman, and M. Swerts. Prosodic and other cues to speech recognition
failures. Speech Communication, 2004. 5.2

X. Huang, F. Alleva, H.-W. Hon, K.-F. Hwang, M.-Y. Lee, and R. Rosenfeld. The
SPHINX-II speech recognition system: an overview. Computer Speech and Language,
7(2):137–148, 1992. 3.3.1

X.D. Huang, A. Acero, and H.W. Hon. Spoken Language Processing. Prentice Hall PTR,
2001. 1.3.2

D. Huggins-Daines, M. Kumar, A. Chan, A. W Black, M. Ravishankar, and A. I. Rudnicky.
Pocketsphinx: A free, real-time continuous speech recognition system for hand-held
devices. In ICASSP 2006, Toulouse, France., 2006. 3.3.1

J. Hulstijn and G.A.W. Vreeswijk. Turntaking: a case for agent-based programming.
Technical Report UU-CS-2003-045, Institute of Information and Computing Sciences,
Utrecht University, Utrecht, NL, 2003. 2.2.4

A. Hunt and A. Black. Unit selection in a concatenative speech synthesis system using a
large speech database. In ICASSP96, volume 1, pages 373–376, Atlanta, Georgia, 1996.
1.3.6

J. Jaffe and S. Feldstein. Rhythms of Dialogue. Academic Press, 1970. (document), 1.2,
3.5.4, 5.3.4, 6.2.1, 6.1, 6.2.1, 6.2.2

Y. Kamide, G. T. M. Altmann, and S. L. Haywood. The time-course of prediction in
incremental sentence processing: Evidence from anticipatory eye movements. Journal
of Memory and Language, 49:133–156, 2003. 2.2.1

Y. Kato, S. Matsubara, Toyama K., and Y. Inagaki. Incremental dependency parsing based
on headed context free grammar. Systems and Computers in Japan, 36(2):84–97, 2005.
1.3.3, 2.2.1

128

A. Kendon. Some functions of gaze direction in social interaction. In Acta Psychologica,
volume 26, 1967. 2.1.2

J. Ko, F. Murase, T. Mitamura, E. Nyberg, T. Tateishi, and I. Akahori. Cammia - a context-
aware spoken dialog system. In ASRU 2005, San Juan, Puerto Rico., 2005. 1.4.3

H. Koiso, Y. Horiuchi, S. Tutiya, A. Ichikawa, and Y. Den. An analysis of turn-taking and
backchannels based on prosodic and syntactic features in japanese map task dialogs.
Language and Speech, 41(3-4):295–321, 1998. 2.1.2, 2.1.3, 5.3.4

J. Kominek and A. Black. The CMU ARCTIC speech databases for speech synthesis
research. Technical Report CMU-LTI-03-177 http://festvox.org/cmu arctic/, Language
Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, 2003. 3.3.3

F. Kronild. Turn taking for artificial conversational agents. In Cooperative Information
Agents X, Edinburgh, UK, 2006. 2.2.4, 6.2.1, 6.2.2

F. Kronlid. Steps towards Multi-Party Dialogue Management. PhD thesis, University of
Gothenburg, 2008. 2.2.4

S. Larsson and D. Traum. Information state and dialogue management in the trindi dia-
logue move engine toolkit. Natural Language Engineering, 6:323–340, 2000. 1.3.4

Alon Lavie and Masaru Tomita. Glr* - an efficient noise-skipping parsing algorithm for
context-free grammars. In In Proceedings of the Third International Workshop on Pars-
ing Technologies, pages 123–134, 1993. 1.3.3

O. Lemon, L. Cavedon, and B. Kelly. Managing dialogue interaction: A multi-layered
approach. In Proc. SIGdial Workshop 2003, Sapporo, Japan, 2003. 2.2.4, 4.5

M. Lennes and H. Anttila. Prosodic features associated with the distribution of turns
in finnish informal dialogues. In Petri Korhonen, editor, The Phonetics Symposium
2002, volume Report 67, pages 149–158. Laboratory of Acoustics and Audio Signal
Processing, Helsinki University of Technology, 2002. 5.3.4

W. J. M. Levelt. Speaking: from Intention to Articulation. MIT Press, 1993. 2.1.2

J. Liscombe, G. Riccardi, and D. Hakkani-Tr. Using context to improve emotion detection
in spoken dialog systems. In Proc. Interspeech 2005, Lisbon, Portugal, 2005. 5.2, 5.3.4

M. Marzinzik and B. Kollmeier. Speech pause detection for noise spectrum estimation by
tracking power envelope dynamics. IEEE Trans. on Speech and Audio Processing, 10:
109–118, 2002. 1.3.1

129

P. McCullagh and J. Nelder. Generalized Linear Models. Chapman and Hall, London,
1989. 6.3.3

D. Mori, S. Matsubara, and Y. Inagaki. Incremental parsing for interactive natural language
interface. In Proc. IEEE International Conference on Systems, Man and Cybernetics,
Tucson, AZ, 2001. 1.3.3, 2.2.1

J. P. Muller. The Design of Intelligent Agents: A Layered Approach. Springer, 1996. 2.2.1

M. Nakano, K. Dohsaka, N. Miyazaki, J. Hirasawa, M. Tamoto, M. Kawamori,
A. Sugiyama, and T. Kawabata. Handling rich turn-taking in spoken dialogue systems.
In Eurospeech, Budapest, Hungary, 1999a. 2.2.3

M. Nakano, N. Miyazaki, J. Hirasawa, K. Dohsaka, and T. Kawabata. Understanding
unsegmented user utterances in real-time spoken dialogue systems. In ACL, College
Park, MD, 1999b. 2.2.1

M. Nakano, N. Miyazaki, N. Yasuda, N. Sugiyama, J. Hirasawa, K. Dohsaka, and
K. Aikawa. Wit: A toolkit for building robust and real-time spoken dialogue systems.
In 1st SIGdial Workshop, Hong-Kong, 2000. 2.2.3

E. Nemer, R. Goubran, and S. Mahmoud. Robust voice activity detection using higher-
order statistics in the LPC residual domain. IEEE Trans. on Speech Audio Processing,
9:217–231, 2001. 1.3.1

A. Oh and A. Rudnicky. Stochastic language generation for spoken dialogue systems. In
ANLP/NAACL 2000 Workshop on Coversational Systems, pages 27–32, Seattle, WA,
2000. 1.3.5

B. Oreström. Turn-Taking in English Conversation. CWK Gleerup, Lund, 1983. 2.1.2,
5.3.4, 5.3.4

R. Porzel and M. Baudis. The tao of chi: Towards effective human-computer interaction.
In HLT/NAACL 2004, Boston, MA, 2004. 1.1

J. Ramı́rez, J. M. Górriz, and J. C. Segura. Robust Speech Recognition and Understand-
ing, chapter Voice Activity Detection. Fundamentals and Speech Recognition System
Robustness, pages 1–22. New York: Academic, 2007. ISBN 978-3-902613-08-0. 1.3.1

A. Raux, D. Bohus, B. Langner, A. W. Black, and M. Eskenazi. Doing research on a de-
ployed spoken dialogue system: One year of Let’s Go! experience. In Proc. Interspeech
2006, Pittsburgh, PA, USA, 2006. 1.4.1, 3.2, 3.3, 3.3.2

130

A. Raux, B. Langner, A. Black, and M. Eskenazi. LET’S GO: Improving spoken dialog
systems for the elderly and non-native. In Eurospeech03, Geneva, Switzerland, 2003.
1.4.1, 3.3

A. Raux, B. Langner, D. Bohus, A. W. Black, and M. Eskenazi. Let’s Go Public! taking
a spoken dialog system to the real world. In Proc. Interspeech 2005, Lisbon, Portugal,
2005. 1.4.1, 3.3

C. Rich, N.B. Lesh, J. Rickel, and A. Garland. Architecture for generating collaborative
agent responses,. In International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), 2002. 1.3.4, 4.5

C. P. Rose, A. Roque, D. Bhembe, and K. VanLehn. An efficient incremental architec-
ture for robust interpretation. In Proc. Human Languages Technology Conference, San
Diego, CA, 2002. 1.3.3, 2.2.1

M. Rotaru and D. J. Litman. Discourse structure and speech recognition problems. In
Proc. Interspeech 2006, Pittsburgh, PA, USA, 2006a. 5.3.4

M. Rotaru and D. J. Litman. Exploiting discourse structure for spoken dialogue perfor-
mance analysis. In Proc. EMNLP 2006, Sydney, Australia, 2006b. 5.3.4

H. Sacks, E. A. Schegloff, and G. Jefferson. A simplest systematics for the organization
of turn-taking for conversation. Language, 50(4):696–735, 1974. 1.2, 1.5, 2.1.1, 2.1.2,
2.2.4, 5.2, 6.2.1, 6.2.3

R. Sato, R. Higashinaka, M. Tamoto, M. Nakano, and K. Aikawa. Learning decision trees
to determine turn-taking by spoken dialogue systems. In ICSLP 2002, Denver, CO,
2002. 2.2.3, 5.2, 6.7

D. Schaffer. The role of intonation as a cue to turn taking in conversation. Journal of
Phonetics, 11:243–257, 1983. 2.1.2

S. Singh, D. Litman, M. Kearns, and M. Walker. Optimizing dialogue management with
reinforcement leaning: experiments with the njfun system. Journal of Artificial Intelli-
gence, 16:105–133, 2002. 7.2

Kare Sjolander. The snack sound toolkit. http://www.speech.kth.se/snack/, 2004. 5.3.4

M.-L. Sorjonen. Interaction and Grammar, chapter On repeats and responses in Finnish
conversations, pages 277–327. Cambridge University Press, 1996. 2.1.2

131

S. C. Stoness, J. Tetreault, and J. Allen. Incremental parsing with reference interaction.
In Proc. ACL Workshop on Incremental Parsing, pages 18–25, Barcelona, Spain, 2004.
2.2.1

M. Takeuchi, N. Kitaoka, and S. Nakagawa. Timing detection for realtime dialog systems
using prosodic and linguistic information. In Proc. Speech Prosody 04, Nara, Japan,
2004. 5.2, 6.7

K. R. Thorisson. Communicative Humanoids: A Computational Model of Psychosocial
Dialogue Skills. PhD thesis, Massachusetts Institute of Technology, 1996. 2.2.2, 4.5

K. R. Thorisson. A mind model for communicative humanoids. International Journal of
Applied Artificial Intelligence, 13(4-5):449–486, 1999. 2.2.2

K. R. Thorisson. Multimodality in Language and Speech Systems, chapter Natural Turn-
Taking Needs No Manual: Computational Theory and Model, From Perception to Ac-
tion, pages 173–207. Kluwer Academic Publishers, 2002. 2.2.2, 4.5, 6.2.1, 6.2.2

K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura. Speech parameter
generation algorithms for hmm-based speech synthesis. In ICASSP, volume 3, pages
1315–1318, 2000. 1.3.6

D. R. Traum and J. F. Allen. Discourse obligations in dialogue. In Proc. ACL-94, pages
1–8, 1994. 1.2

Wataru Tsukahara. An algorithm for choosing japanese acknowledgments using prosodic
cues and context. In In International Conference on Spoken Language Processing, pages
691–694, 1998. 6.7

L. K. Tyler and W. D. Marlsen-Wilson. The on-line effects of semantic context on syntactic
processing. Journal of Verbal Learning and Verbal Behaviour, 16:683–692, 1977. 2.2.1

K. Wang. Semantic synchronous understanding for robust spoken language understanding
applications. In Proc. ASRU 2003, St Thomas, US Virgin Islands, 2003. 2.2.1

N. Ward, A. Rivera, K. Ward, and D. Novick. Root causes of lost time and user stress in a
simple dialog system. In Interspeech 2005, Lisbon, Portugal, 2005. 1.1, 1.4.1

N. Ward and W.. Tsukahara. Prosodic features which cue back-channel responses in en-
glish and japanese. Journal of Pragmatics, 32:1177–1207, 2000. 2.1.3, 6.7

W. Ward. Understanding spontaneous speech: the phoenix system. In ICASSP 91, pages
365–367, 1991. 1.3.3

132

F. Weng, L. Cavedon, B. Raghunathan, D. Mirkovic, H. Cheng, H. Schmidt, H. Bratt,
R. Mishra, S. Peters, L. Zhao, S. Upson, E. Shriberg, and C. Bergmann. A conversa-
tional dialogue system for cognitively overloaded users. In ICSLP 2004, Jeju Island,
Korean, 2004. 1.4.3

W. Wesseling and R.J.J.H. van Son. Timing of experimentally elicited minimal responses
as quantitative evidence for the use of intonation in projecting TRPs. In Interspeech
2005, pages 3389–3392, Lisbon, Portugal, 2005. 2.1.2

Graham Wilcock and Kristiina Jokinen. Generation models for spoken dialogues. In In
Natural Language Generation in Spoken and Written Dialogue, Papers from the 2003
AAAI Spring Symposium, pages 159–165, 2003. 1.3.5

J. Williams and S. Young. Partially observable markov decision processes for spoken
dialog systems. Computer Speech and Language, 21(2):393–422, 2007. 7.2

M. Wiren. Studies in Incremental Natural Langauge Analysis. PhD thesis, Linkoping
University, 1992. 1.3.3, 2.2.1

133

	1 Introduction
	1.1 Introduction
	1.2 The Conversational Floor
	1.3 Spoken Dialog Systems
	1.3.1 Voice Activity Detection
	1.3.2 Speech Recognition
	1.3.3 Natural Language Understanding
	1.3.4 Dialog Management
	1.3.5 Natural Language Generation
	1.3.6 Speech Synthesis

	1.4 Turn-Taking in Spoken Dialog Systems
	1.4.1 End-of-Turn Detection
	1.4.2 Barge-in Detection
	1.4.3 Other turn-taking phenomena

	1.5 Principled Approaches to Optimizing Turn-Taking Behavior
	1.6 Thesis Statement
	1.7 Contributions

	2 Related Work
	2.1 Turn-Taking in Conversation
	2.1.1 What is turn-taking?
	2.1.2 TRPs and Turn Transitions
	2.1.3 Overlapping Speech

	2.2 Turn-Taking Models for Spoken Dialog Systems
	2.2.1 Supporting and related work
	2.2.2 The Ymir Architecture
	2.2.3 The TRIPS Architecture
	2.2.4 Other work

	2.3 Summary

	3 Research on a Deployed SDS: the CMU Let's Go Bus Information System
	3.1 Summary
	3.2 Research on Deployed Spoken Dialog Systems
	3.3 Overview of the Let's Go System
	3.3.1 Speech Recognition and Understanding
	3.3.2 Dialog Management
	3.3.3 Speech Generation and Synthesis

	3.4 Public Deployment and Performance
	3.4.1 Call traffic
	3.4.2 Dialog completion rate

	3.5 Turn-Taking in the Let's Go System
	3.5.1 Baseline Endpointer
	3.5.2 Human-Computer Dialog Corpora
	3.5.3 Turn-Taking Failures
	3.5.4 Comparison of Human-Human and Human-Computer Dialog Rhythm
	3.5.5 Discussion

	4 Olympus 2: a Multi-Layer Spoken Dialog System Architecture
	4.1 Summary
	4.2 Levels of Dialog Processing
	4.3 Architecture Overview
	4.3.1 Two Layers of Representation
	4.3.2 Sensors and Actuators
	4.3.3 Interaction Management
	4.3.4 Dialog Management

	4.4 Application to the Let's Go System
	4.5 Discussion

	5 Optimizing Endpointing Thresholds
	5.1 Summary
	5.2 Introduction
	5.3 Analysis of Endpointing in the Let's Go System
	5.3.1 The Let's Go Random Threshold Corpus
	5.3.2 Automatic Cut-in Annotation
	5.3.3 Thresholds and Cut-in Rates
	5.3.4 Relationship Between Dialog Features and Silence Distributions
	5.3.5 Performance of Supervised Classification

	5.4 Dynamic Endpointing Threshold Decision Trees
	5.4.1 Overview
	5.4.2 Feature-based Silence Clustering
	5.4.3 Cluster Threshold Optimization

	5.5 Evaluation of Threshold Decision Trees
	5.5.1 Offline Evaluation Set-Up
	5.5.2 Overall Results
	5.5.3 Performance of Different Feature Sets
	5.5.4 Learning Curve
	5.5.5 Live Evaluation

	6 The Finite-State Turn-Taking Machine
	6.1 Summary
	6.2 Turn-Taking States and Actions
	6.2.1 Conversational Floor as a Finite-State Machine
	6.2.2 Overview of the Finite-State Turn-Taking Machine
	6.2.3 Cost of Turn-Taking Actions
	6.2.4 Decision Theoretic Action Selection

	6.3 Pause-based Endpointing with the FSTTM
	6.3.1 Problem Definition
	6.3.2 Estimating P(F|O)
	6.3.3 Estimating P(t|O,U)
	6.3.4 Batch Evaluation

	6.4 Anytime Endpointing
	6.4.1 Problem Definition
	6.4.2 Estimating P(F|O) During Speech
	6.4.3 Batch Evaluation

	6.5 Interruption Detection
	6.5.1 Problem Definition
	6.5.2 Estimating P(BS|O)
	6.5.3 Batch Evaluation

	6.6 Live Evaluation
	6.7 Discussion

	7 Conclusion
	7.1 Summary of contributions
	7.2 Possible extensions

	Bibliography

