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Abstract

New infectious viruses appear regularly, established ones fail to be eradicated, posing
significant challenges to public health. Our lack of understanding of the intimate rela-
tionship between viruses and their hosts makes it difficult to develop effective therapies.
Protein-protein interactions (PPIs) are key players in the cell generally and viruses ex-
ploit them for their purposes. Considerable progress has been made with HIV-1, the
causative agent of AIDS, where experimental efforts have identified thousands of phys-
ical interactions and functional associations between the virus and the human host pro-
teins. However, the complete and accurate repertoire of the physical interactome is still
far from complete. Towards better defining the virus-host interactome, this dissertation
complements experimental efforts by bridging different levels of biological information
in a machine learning framework. Specifically, a wide array of genomic and proteomic
data that could serve as direct and indirect feature evidence for virus, host PPIs was
compiled. A supervised classification model was presented based on this data. A high
quality label set was obtained by collecting experts’ opinions on published interactions.
A probabilistic framework was provided to estimate expert labeling accuracies and to
obtain reliability scores for each interaction. Finally, to overcome data scarcity issues,
we developed a multi-task learning strategy, where single tasks (learning the PPIs of
each viral protein) shared parameters across different tasks based on their relatedness.
The methods developed as part of this thesis can be easily extended to other host-virus
systems as pertinent data become available. Numerous predictions of HIV-1, human
interactions have subsequently been partially validated by experiments.
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Chapter 1

Introduction

Infectious diseases caused by viruses continue to pose a major threat to public health.
Currently, there are about 500 million people worldwide suffering from chronic infec-
tions, causing 3.5 million deaths annually [1]. While viruses such as human immunod-
eficiency virus (HIV-1), influenza virus or hepatitis C virus (HCV) fail to be eradicated,
new viruses like bird or swine flu, SARS, West Nile, and Ebola emerge or cross the
species barrier, infecting humans who have little or no immunity to these novel or re-
emerging viruses [2] . Moreover, since infections are not confined to single countries,
widespread outbreaks develop easily; in the case of swine flu, 25,1401 individuals were
infected, causing 2,545 deaths across the globe in only four months [3]1. In addition to
naturally occurring infectious diseases and their burden on societies, there is also the
looming danger of the use of viruses as instruments of war and terror. The need for
effective antiviral strategies, therefore, is pressing.

As the public demand for antiviral therapies grows, science is challenged by failed
vaccine trials and emerging antiviral drug resistance[4, 5]. For many viruses such as
HCV or HIV-1, currently there is no effective vaccine. Antiviral drug therapies notably
succeeded in significantly improving the prognosis of infected individuals with access
to treatment; however, they do suffer from important drawbacks. Apart from problems
related to drug adherence, tolerability, and accessibility, there are also various issues that

1The statistics are as of August 23, 2009 and cases for reported and confirmed cases [3].
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limit the success of current antiviral treatments. In particular, many RNA viruses [6]
and some single stranded viruses [7] mutate rapidly and are able to confer resistance
to the compounds targeting them in a very short period of time as a result of their
error prone replication mechanism [5, 8]. Drug resistance raises the concern that even
more challenging types of viruses are yet to come as viruses continue to evolve under
the selective pressure of drugs [9]. Secondly, since current drugs are designed to target
a specific viral enzyme, they have a very narrow spectrum and can only treat specific
viral species or subtypes. Finally, viruses like Herpes or HIV-1 are able to lie dormant
within cellular reservoirs [10, 11] so that both the immune system and drugs fail to
purge the virus from the body completely; these dormant viruses are potentially able
to replenish infection upon interruption of the treatment. The problems associated with
current antiviral drugs and vaccine trials call for innovative approaches to developing
new and improved antiviral treatments and preventative strategies.

Current antiviral strategies are limited as they exclusively focus on viral factors [12],
which leads to a narrow drug spectrum and drug resistant viral strains. Viruses are
obligate intracellular parasites and thus they are unable to replicate without the support
of the host. Thus, an alternate strategy involves targeting the interactions of the viral
factors with the cellular factors that are essential for the viruses, instead of targeting
only the viral factors themselves [13–15]. A virus hijacks the cellular machinery so that
it can successfully produce its progeny, while at the same time avoiding the host’s im-
mune system. For example, several enveloped viruses bud from the cell by making use of
the host’s endosomal sorting (ESCRT) complexes that normally regulate the formation of
the multivesicular bodies of the endosomal pathway [16]. In addition, many viruses have
mechanisms for disrupting the immune response against viral infection [17, 18]. Antivi-
ral therapies that target these essential interactions are promising since cellular factors
would not be expected to mutate under antiviral drug pressure [13]. Therefore, the
virus may have difficulties in developing resistance against drugs targeting interactions
between invariable cellular proteins. Moreover, the host cell includes many proven drug-
gable targets such as cell surface receptors, protein kinases or nuclear receptors [14]. The
testing of existing drugs currently used for unrelated diseases on viral infections could
result in cost-effective compounds against viral diseases [15]. An additional challenge of
targeting host factors is not disrupting (greatly) the normal cellular functions relying on
the targeted host factors. Nonetheless, cellular functions are highly redundant as gene
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knockout studies in mice have shown [13].

Viruses exploit the cellular machinery through interactions between virus and host
proteins. Proteins are key players in the cell, taking part in virtually all aspects of bio-
logical processes including catalyzing reactions of metabolism, transporting molecules,
mediating signals from the exterior of a cell to the interior, carrying signals for tran-
scription of genes, and forming structural entities. Proteins realize these functions in
coordination with other proteins through protein protein interactions (PPIs). Viral proteins,
too, talk to the cell through interactions with the host’s proteins. Therefore, to decipher
the complex interplay between the host and the virus, interactions that occur between the
viral and cellular proteins need to be identified. Advancing our understanding of this
problem will provide the means for the rational design of novel intervention strategies
for viral infections.

Experimental efforts to elucidate interactions between viruses and the host led to
significant new insights about viruses such as HIV-1, influenza, and HCV. However, the
map of interactions between the virus and the host is still far from complete for these and
other host-pathogen systems, and active experimental efforts continue to identify these
PPIs. In deciphering PPIs within a single organism (intra-species PPIs), computational
methods have been instrumental [19], especially in the case of model organisms such as
Baker’s yeast and E.coli. Computational models accelerated experimental efforts to iden-
tify PPIs by suggesting hypotheses about novel interacting protein pairs or by stratifying
the noisy high-throughput results [19]. Additionally, through the analysis of the set of
interactions in a network framework, several genome-scale principles that might govern
these networks have been identified [20].

While the literature on intra-species PPI prediction tasks is rich, the work on inter-
species protein interaction prediction has been limited. A primary hurdle preventing
progress in that area has been the scarcity of data sources. In recent years, the avail-
ability of genomic, proteomic, and phenotypic data increased drastically. By leveraging
this accumulated information, I provide methods to computationally predict host-virus
interactions.
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1.1 Organization

The remaining chapters of this thesis are organized as follows:

• Chapter 2 provides a biological background on cells, viruses and protein-protein
interactions.

• Chapter 3 summarizes the related literature on PPI prediction, focusing on inter-
species PPI prediction.

• Chapter 4 states the open challenges and approaches pursued in this thesis. Thesis
contributions are stated.

• Chapter 5 presents a supervised learning model for predicting binary physical in-
teractions between HIV-1 and human proteins and provides experimental evidence
for the validity of a subset of predictions.

• Chapter 6 reports an improved version of the model presented in Chapter 5, which
expands the feature set with new biological information.

• In Chapter 7 the collection and analysis of curated expert opinions on HIV-1,human
protein interactions are described. A probabilistic approach to estimating the reli-
ability of reported interactions based on subjective expert opinions is presented.

• Chapter 8 presents a computational model for protein-protein interaction predic-
tion based on a multi-task learning framework. Building upon the results from
previous chapter an improved model is presented.

• Chapter 9 concludes the thesis and outlines possible future directions.
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Chapter 2

Biological Background

2.1 The Central Dogma: DNA, RNA and Proteins

Deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and proteins are key molecules
of the cell. DNA stores the genetic instructions for how the cell develops and functions
(with the exception of RNA viruses) [21]. These instructions contain information on how
to synthesize other molecular components of cells, such as proteins and RNA molecules.
DNA consists of long polymers of nucleotides with backbones made of sugars and phos-
phate groups. Genes reside on the DNA sequence (on RNA for RNA viruses) and are
considered the hereditary unit of the living organism. A modern definition of ‘gene’ is ‘a
region of genomic sequence, corresponding to a unit of inheritance, which is associated
with regulatory regions, transcribed regions and/or other functional sequence regions’
[22]. Genes hold the information necessary to build and maintain an organism’s cells
and pass genetic traits to offspring.

RNA is also one of the major macromolecules of the cell. Like DNA, it is a polymer
of nucleotides; each nucleotide consists of a nucleobase, a ribose sugar, and a phosphate
group. Unlike DNA, most RNA molecules is formed single-stranded in the cell. For
RNA viruses, RNA stores the whole genetic information of the virus. For example, some
viruses use RNA instead of DNA as their genetic material, and all organisms use messen-
ger RNA (mRNA) to carry the genetic information that directs the synthesis of proteins.
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There are different types of RNA; messenger RNA (mRNA) carries information from
DNA that is later translated into a protein sequence. Many RNAs do not code for pro-
tein [23]. The most prominent examples of non-coding RNAs are transfer RNA (tRNA)
and ribosomal RNA (rRNA), both of which are involved in the process of translation.
There are also non-coding RNAs involved in gene regulation, RNA processing and other
functions [24].

a) Central dogma

b) Modified central dogma

DNA RNA
transcription

protein
translation

genome

replication

DNA

DNA RNA
transcription

protein
translation

reverse 

transcriptiongenome

replication

DNA RNA

genome

replication

Figure 2.1: a) The central dogma of molecular biology in its first presented form. b) Modified
central dogma which explains various models of virus transcription and genome replication.

Proteins are also polymers; their basic unit is an amino acid. There are 20 types of
amino acids that differ in their chemical structures and thus physicochemical properties.
Depending on the arrangement of these different amino acids in the protein sequence,
the protein folds into a usually unique 3D structure. A fundamental principle of molec-
ular biology is that protein structure governs protein function. The distinctive structures
of proteins allow them to carry out a myriad of functions in the cell. Some examples
of the variety of functions they implement are: i) catalyzing reactions of metabolism, ii)
transporting molecules, iii) mediating signals from the exterior of a cell to the interior, iv)
carrying signals for transcription of genes and v) forming structural entities. The term
genome is used to refer to the complete set of genes of an organism, whereas the pro-
teome is the entire complement of proteins expressed by a genome. Owing to the advent
of sequencing technologies, the genome and proteome of many organisms, including
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humans, are now available [20, 25, 26]. Proteins seldom operate in isolation when car-
rying out these tasks; rather, they work in concert with other proteins. Major efforts are
currently directed at discovering how these entities operate together to perform cellular
functions.

Francis Crick coined the term ‘central dogma’ to describe the manner in which in-
formation flows from DNA to protein. The central dogma states that proteins are not
directly synthesized from the DNA [27]; rather, they are first transcribed into an mRNA
molecule (transcription) and then translated into protein sequences (translation), and the
genetic information is transmitted from one generation to another through copying of
the DNA (Figure 2.1 a). Increasing understanding of viral genome replication necessi-
tated modifications to the central dogma in 1970 [28]. Many viruses have RNA genomes
that are copied to RNA, and some viruses copy from RNA to DNA (Figure 2.1 b).

2.2 Protein-Protein Interactions

The physical contact made by the proteins with themselves and each other are referred
to as ‘protein protein interactions’ (PPIs). While a physical contact is the prerequisite
for the most narrow definition, the phrase ‘protein-protein interaction’ has been used
as a fairly broad term in the literature to refer to a wide range of relationships among
proteins, from direct physical interaction to functional associations. For example, pro-
teins might interact through direct physical contact, where the two proteins are bound
to each other. Such an interaction often results in one protein modifying another protein
via this interaction, i.e. a kinase protein adding a phosphate to the target protein. In
functional associations, in contrast, two proteins might cooperate to carry out a given task
without actually (or necessarily) engaging in physical contact. This could occur through
being part of protein complexes, which are units where two or more proteins collaborate
together to exert a function. In this case, two or more proteins may indirectly interact
through physical contact with a third protein. Another form of functional association
is participation in the same pathway. A pathway is a cascade of interactions between
proteins and other molecules that, when activated, ultimately change some aspect of cell
behavior [29]. Throughout the thesis, it will be made clear what type of interaction I am
referring to in each context.
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PPIs can be classified in other overlapping ways as well. For example, reference to
homo- versus hetero-oligomeric interactions specifies whether the proteins participating
in an interaction are identical or not. PPIs can also be grouped as stable versus transient
interactions. Stable interactions usually construct macromolecular structures such as the
cytoskeleton or the mitotic spindle. Transient PPIs, on the other hand, are usually in-
volved in the regulation of fundamental cellular processes such as protein modification,
transport, signaling, cell cycling, etc. Finally, PPIs can be grouped as strong vs. weak in-
teractions based on their binding affinity. Interactions between proteins within a cell are
tightly regulated at multiple levels through expression, post-translational modifications,
or ligand binding [30], enhancing the complexity of the PPI dramatically.

Since the set of interactions of a protein largely determines, identifying PPIs within
an organism and between organisms is essential to uncovering how cellular processes
are executed. Therefore, the development of methods to detect and characterize PPIs has
been a major theme of functional genomics and proteomics efforts. The data used in this
dissertation make use of experimentally derived PPIs. The motivation of predicting PPIs
comes from the fact that there is no single cost-effective reliable experimental technique
that allows high-throughput identification of PPIs. Therefore, in the following section
experimental methods for detecting PPIs will be introduced.

2.2.1 Methods for Detecting Protein-Protein Interactions Experimentally

In order to identify PPIs experimentally, a wide array of techniques are available in-
cluding genetic, biochemical, and physical techniques (reviewed in [31]). These can be
broadly classified as small-scale and large-scale experiments based on the number of
proteins studied at a time.

2.2.1.1 Small-Scale Protein-Protein Interaction Experiments

Small-scale experiments interrogate a small number of PPIs (≤ 10) at a time in a hy-
pothesis driven approach as opposed to screening all interactions in a high-throughput
fashion. Small-scale experiments are often very labor-intensive and time-consuming.
These techniques include biochemical, genetic and biophysical methods such as co-
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Method Description

Co-immunoprecipitation
assays

The protein of interest is tagged by an antibody to which it binds in a
sample solution; the bound proteins co-precipitate with the bait. Low
affinity or transient interactions are hard to detect.

Pull-down assays Similar to co-immunoprecipitation assay, except a bait protein is used
instead of an antibody to purify any proteins in a lysate that bind
to the bait. Ideal for studying interactions for which no antibody is
available for co-immunoprecipitation. Ideal for strong or stable inter-
actions.

Crosslinking The proteins of interest are chemically cross-linked to each other, so
that interaction is fixed before the isolation of interacting proteins by a
complementary technique.

Colocalization Checks whether two proteins are located in the same area or very near
each other in the cell. Fluorescence Resonance Energy Transfer is one
way of achieving this proximity check. Used usually as a primary
screen, followed by more detailed studies.

Fluorescence Resonance
Energy Transfer (FRET)

Two proteins are tagged with different fluorophores and expressed
in a cell. If those two proteins interact, the two labels come in close
proximity and a detectable loss of excitation energy is measured.

Surface Plasmon Reso-
nance (SPR)

Infers whether a protein interacts with the bait protein, based on small
changes in laser light reflected from a film coated with the bait pro-
tein.

Far Western Protein samples of interest are immobilized on a membrane and
probed with a putative interaction partner.

X-ray crystallography Interacting proteins are co-crystallized and the structure is resolved
through their X-ray diffraction patterns, characterizing the interaction
on an atomic level.

NMR The interacting proteins are resolved in solution through Nuclear
Magnetic Resonance. Characterizes the protein interaction in atomic
detail.

Table 2.1: Examples of small-scale experimental methods for identifying and characterizing
protein-protein interactions.

immunoprecipitation, fluorescence resonance energy transfer (FRET) studies, Nuclear
Magnetic Resonance (NMR), and X-ray crystallography. Some of these techniques are
listed in table Table 2.1. Each experimental technique has certain limitations and powers,
which depend on the properties of proteins under study and the nature of their inter-
actions. For example, many techniques fail to capture transient interactions since the
interaction may dissociate during the study. In such cases, crosslinking experiments are
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powerful because they trap the interaction in place. However, crosslinking may increase
the false positive rate. For some methods, a positive result would indicate binary inter-
actions, whereas in others a positive result might indicate both direct and/or indirect
interaction; e.g. co-immunoprecipation experiments. On the other hand, very labor in-
tensive techniques such as NMR and X-ray crystallography can characterize the details
of the interaction with an atomic resolution.

2.2.1.2 Large-Scale Protein-Protein Interaction Experiments

In contrast to small-scale experiments, large-scale techniques enable high-throughput
screening of PPIs. Widely employed large-scale PPI detection methods include yeast
two-hybrid (Y2H) [32] and related assays such as the split ubiquitin system [33], affinity
purification (AP) [34], usually coupled with mass spectroscopy (MS) [35], and DNA and
protein microarrays [36]. The drawback of these methods is their high false positive
and negative rates [37, 38]. Below the two most popular large scale methods, Y2H and
TAP-MS, are described:

Yeast Two-Hybrid Assay: Y2H system [32] is widely used to discover PPIs in vivo. The
Y2H method is based on the principle that eukaryotic transcription factors’ activation
and binding domains can function in close proximity even though they are split into
two domains. Relying on this principle to the Y2H technique utilizes activation of a
downstream reporter gene by the binding of a transcription factor onto an upstream
sequence. In the Y2H system, the protein of interest, referred to as ‘bait’, is typically
fused to a DNA-binding domain (DBD). The other protein of interest, referred as ‘prey’,
is fused to a transcription-activating domain (TAD). If the bait and the prey interact,
the DNA binding domain and the activation domain come into proximity of each other
and restore the function of the transcription factor. As a result, the transcription of the
reporter gene is triggered. The reporter gene enables growth on specific media or a color
reaction. The Y2H technique can be used both on a large scale and for a small set of
interactions.

Although Y2H system is regarded as one of the most powerful methods of identi-
fying PPIs, it has also been criticized for its high false positive and false negative rates
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[39]. Screens conducted in different laboratories often do not overlap. This lack of repro-
ducibility is even more pronounced when Y2H data is compared to datasets derived from
other large scale techniques, such as affinity purification/mass spectrometry (AP/MS)
experiments [40]. The difference is usually attributable to use of different vectors, strains,
or reporter genes. Another inherent drawback of the method is that the reaction takes
place in the nucleus; therefore, the proteins under study are typically not in their native
compartment. High-throughput Y2H screening has been applied to several species to
detect pairwise direct interactions within the entire proteome (all possible proteins) of a
given organism [43, 44, 44–50].

Affinity Purifications-Mass Spectrometry: Affinity purification followed by mass spec-
trometry (AP-MS) identification is a powerful method of studying novel interactions
[50, 51]. In contrast to yeast two-hybrid experiments, which only reveal pairwise inter-
actions, AP-MS experiments allow identification of PPIs in a complex [52]. The method
involves biochemical isolation of protein complexes using an inherent interaction (affin-
ity) and subsequent identification of their constituting proteins using mass spectrometry
[53, 54]. One of the molecules is immobilized on a solid support, and the interacting
molecule is purified along with associated proteins. There are many different affinity
reagents such as antibodies or other recombinant proteins, which may be epitope-tagged.
Co-immunoprecipitation mass spectrometry experiment (IP-MS) is an AP-MS method, in
which antibodies are used in the isolation step. The protein complex is captured from
cell lysates by an immobilized antibody, which specifically recognizes an epitope of one
component of the complex. The retrieved complex is washed to remove unspecifically
bound proteins. Tandem affinity purification (TAP-MS) experiment is another AP-MS
technique which allows high-throughput characterization of complexes. In TAP-MS ex-
periments two tags instead of one is utilized sequentially. The protein of interest, bait
protein, is first tagged via attachment of a purification tag to the polypeptide; next, the
bait protein is expressed inside the cell. Using the tag of the bait protein, the complex is
purified from a cell lysate via affinity chromatography to identify prey proteins forming
protein complexes with the bait protein.

Following the isolation step, the identities of the prey proteins are introduced into
the mass spectrometer to separate them according to mass (detected as mass-to-charge
ratios). Peptides of a fixed size are selected and are broken into fragments. The result-
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ing fragments are analyzed, which produces a peptide ‘fragmentation profile’. Using
this profile, proteins are identified by searching the resulting peptide mass fingerprints
through sequence databases or via statistical classifiers. Ideally, these proteins would
constitute the entire complex encompassing all proteins interacting with the bait pro-
tein but both the fragmentation peptide detection and protein spectrum reconstruction
generate some noise. Although this experiment identifies the components of the protein
complex, it typically does not provide information about interaction topology. AP-MS
allows the detection of complexes in physiological settings; however, it may miss com-
plexes that are not present under the experimental conditions. Additionally, tagging and
purification may dissociate the complexes, so if they are weakly associated they may
escape detection. This method therefore suffers from a high false negative rate.

The success of a PPI detection experiment, apart from its inherit limitations and pow-
ers, also depends on many other experimental factors, such as the ability to mimic the
interaction conditions (buffer composition, pH, cofactor requirements), the concentration
of the proteins and other requirements of the proteins, including post-translational mod-
ifications. To date, there is no reliable, cost-effective technique that can work on a large
scale with high sensitivity and specificity; therefore, computational methods are used to
stratify these studies.

2.2.1.3 Experimental Methods Applied for Detecting Host-Virus Protein-Protein In-
teractions

Majority of the host-virus interaction identification studies have been conducted via
small-scale experiments (see Section 2.2.1.1). As an example, PPIs between HIV-1 and hu-
man proteins reported in the literature were cataloged and made available in the NIAID
HIV-1,Human protein interaction database (NIAID database) [134, 135]. The database
includes more than 2500 interactions, all of which are results of small-scale experiments.
Large-scale experiments have been started to been applied to detecting virus-host inter-
actions (see Table 2.2). Calderwood et al. [41] applied Y2H screen to the Epstein-Barr
virus(EBV) and human system, which revealed 173 PPIs between 112 human and 40 EBV
proteins. In another study, Y2H screen was applied to characterize HCV-human PPI net-
work; this screen detected 314 PPIs between 278 human proteins and 11 HCV proteins
[42]. Krogan et al. (unpublished) performed an affinity purification screen coupled with
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mass-spectrometry.

Virus Number of Inter-
actions Detected

Number of Viral
Proteins

Number of Hu-
man Proteins

Reference

Epstein-Barr virus 173 40 112 [41]
Hepatitis C virus 314 11 278 [42]

Table 2.2: Yeast two-hybrid screens applied to detect virus-host protein-protein interactions.

2.2.2 RNA Interference Screens for Detecting Functional Associations

In addition to protein-protein identification methods where physical interactions direct
or in a complex are detected, functional screens are available to identify functional as-
sociations. RNA interference (RNAi) or RNA silencing is a post-transcriptional gene
silencing mechanism induced by double-stranded RNAs (dsRNAs), which deplete the
complementary mRNAs in a cell in a sequence-specific manner. The RNAi silencing
mechanism was first discovered in Caenorhabditis elegans [55] and has been reported to
be endogenously present in such diverse organisms as plants, fungi and mammals [56].
It has been shown that the RNAi pathway undertakes fundamental regulatory roles for
gene activity and structure [57, 58]. RNAi pathways are triggered by dsRNA molecules
that are complementary to the target mRNA. A protein complex containing Dicer [59]
cleaves the long dsRNAs into small interfering RNAs; these small interfering RNAs are
also known as short inferring RNAs (siRNAs), and are 20-24 nucleotides long. siRNAs
in turn are incorporated into the RNA-induced silencing complex (RISC). Following its
assembly, the RISC targets the complementary mRNAs for degradation.

Upon the discovery that synthetic dsRNA exogenously introduced into eukaryotic
cells can reduce the expression of a gene in a sequence specific manner, this process be-
came a powerful technique for studying gene function [60]. Either short double-stranded,
in vitro-synthesized siRNAs or short hairpin RNAs (shRNAs), expressed stably in cells
from specialized DNA-based vectors, are delivered into the cells. Now, RNAi libraries
covering full genomes are available and high-throughput analysis of each gene in cells is
possible [56, 61]. By introducing si/shRNAs into the cell to silence target gene mRNAs,
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genome-wide RNAi screens enable interrogating the effect of silencing each gene in a
phenotype of interest.

Current RNAi technologies have a number of limitations. Not all RNAi sequences
are equally effective and potent; therefore, the design of si/shRNA libraries is critical.
Most libraries contain pools of multiple independent siRNAs, usually three or four, for
use when targeting one mRNA to increase the likelihood of a successful knockdown [60].
After an initial hit list is generated, computational approaches are applied to reduce the
number of false positives. For an RNAi screen to be successful, biologically meaningful
reduction in the mRNA levels with the siRNAs used must be achieved. Reporting assays
are important when validating whether any given siRNA silences the targeted gene ef-
fectively. As siRNAs exert their effects at the mRNA level, the preferred assay for siRNA
validation is the one that effectively monitors mRNA levels. One of the most sensitive as-
says for siRNA validation relies on qRT-PCR, which measures the target transcript levels
in gene specific siRNA-treated and negative control cells.

Even when the mRNA is efficiently depleted, if the gene product is sufficiently stable
such that it decreases too slowly to be monitored by the reporter phenotype, the gene
might not be identified successfully [62]. Furthermore, siRNAs deplete a single gene
product at a time, so a genome wide screening will not identify genes whose function
can be carried out by other genes. Knocking down unintended target genes, referred to
as off target effects, is another known problem with the RNAi screens [63]. Finally, the
toxicity of a resulting knock-down is also an issue; the genes can only be knocked down
to a level which is not toxic to the cell [62]. Regardless of these shortcomings, RNAi
screens are of enormous interest and are widely used as primary screens.

2.3 Viruses

Viruses are small obligate intracellular parasites and are inert outside the host cell [64]. A
fully assembled infectious virus is called a virion, and is composed of a nucleic acid (RNA
or DNA) and proteins encoded by this genome. The nucleic acid of the virus contains
all the information needed to produce new viruses by interacting with host cells. This
information includes how to make new viral particles and accessory proteins, as well as
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how to redirect the host cell machinery for reproduction of viruses. The structure of the
virion is an indicator of the viral requirements during its replication cycle.

2.3.1 Virus Structure

Viruses range in size from less than 100 nanometers to several hundred nanometers in
diameter [65]. They display a wide diversity of shapes and sizes, known as morpholo-
gies; these varied structures reflect the efficiency and stability constraints faced by the
virus. The viral genome is packaged inside a protein coat along with some viral proteins
to avoid degradation by nucleases. This protective coat is called the capsid. The capsids
are made of multiple copies of a limited number of protein species, which assemble in
large numbers to form a continuous three-dimensional structure. This three-dimensional
structure can be arranged such that the proteins are wrapped around a helical filament
of nucleic acid or can take on an icosahedral morphology, a shape characteristic of the
nucleocapsids of many ‘spherical’ viruses.

Many viruses encode relatively few structural protein species, as well as a few ac-
cessory proteins that participate in the replication of the viral genome [65, 66]. There are
some viruses with proteins, most of which participate in replication, but are not pack-
aged into the virion. Additionally, the capsids of some virus types are surrounded by
extra envelope; this envelope is a protein-rich lipid membrane bilayer acquired in part
from the host cell during budding. Several classes of proteins are associated with virus
envelopes. Virus encoded matrix proteins link the envelope to the core of the particle;
glycoproteins are responsible for receptor recognition and binding. Thus, in addition
to virus-specified envelope proteins, viruses may also carry some host cell proteins as
integral constituents of the viral envelope.

2.3.2 Viral Genome

Unlike all living organisms, whose genetic material is composed of double stranded
DNA molecules, viral genomes can be made up of either RNA or DNA, which may
be single stranded (ss) or double stranded (ds), and either linear or circular. The en-
tire genome may be composed of a single nucleic acid molecule or several nucleic acid
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segments. The different types of genome result in different replication strategies [65].

In the case of the DNA viruses, the nucleic acid is usually linear, though some
may have circular DNA. DsDNA serves as a template for the viral mRNA and for self-
transcript. The capsid is made of two or three structural proteins; additionally, there are
five to six nonstructural proteins encoded that play roles in virus transcription, DNA
replication and cell transformation.

RNA viruses constitute the largest group of all viruses. In replication, the viral RNA
is first transcribed into the DNA. A key property of these viruses is that the viral enzymes
that are involved in this transcription are error prone and, due to a lack of proofreading
mechanisms, these viruses’ genomes mutate at a higher rate than the DNA viruses [65].
This high mutation rate gives the virus the capacity to adapt to new hosts and evade
host defense mechanisms.

The RNA strand of a single-stranded genome may be either a sense strand (plus
strand) or an antisense strand (minus strand). Sense RNA can function as mRNA,
whereas antisense is complementary to the sense strand and cannot function as mRNA
during protein translation. RNA viruses occur in four distinct groups depending on the
number of RNA strands and whether the virus carries a sense strand or antisense strand:

• Viruses with a genome that consists of single-stranded antisense RNA; that is, RNA
that is the complement of the message sense. This is also called negative-stranded
RNA. Measles and Ebola viruses are examples of this type of virus.

• Viruses with a genome that consists of single-stranded sense RNA; that is, the RNA
has message sense and can act as mRNA. This is also called positive-stranded RNA
Poliovirus is an example of this type of virus.

• Viruses with a genome that consists of several pieces of double-stranded RNA; an
example is reovirus.

• Retroviruses’ genomes comprise two identical plus-sense ssRNA molecules. Their
RNA (also single-stranded) is copied by viral reverse transcriptase into a DNA
genome within the host cell; HIV-1 is a member of this group. Retroviruses contain
two envelope proteins encoded by the env gene, 4-6 core proteins encoded by gag
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gene and 3 non-structural functional proteins specified by the pol gene. The reverse
transcriptase transcribes the viral ssRNA into double-stranded circular proviral
DNA. This DNA, mediated by the viral integrase, is inserted into the DNA of the
host cell to make possible the subsequent transcription of the sense strands [67].

2.3.3 Virus Life Cycle

Although the precise details vary among individual viruses, all viruses go through a
common sequence of event when replicated [65]. These steps include:

Attachment and viral entry: The viral infection of a host cell starts with attachment
of the virus onto the surface of a susceptible cell by means of surface viral proteins,
which interact with receptor structures on the host cell. These receptors take part in the
normal functioning of the cell, but the viruses have evolved means to take advantage of
them. The receptor molecules on the target cell are usually proteins; carbohydrates or
occasionally lipids may also be used. The virus-receptor interaction is often specific to
a particular virus but can also be common across a family of viruses. Some examples
of cell receptors are given in Table 2.3. There are different kinds of receptor molecules:
low affinity receptors, primary receptors and co-receptors. The attachment of the virus
onto the surface of the host cell serves to overcome any repulsive forces that may exist
between the virus and the cell, and also facilitates viral entry [66]. The attachment
is followed by the internalization of the virus into the cell. Different types of viruses
achieve this in different manners. The enveloped viruses either fuse with the plasma
membrane, releasing the contents of the virion directly into the cell cytoplasm, or the
enveloped viruses enter via endosomes at the cell surface. By contrast, non-enveloped
viruses penetrate into the cell directly or are taken up into the endosomes; the endosome
is later destroyed.

Uncoating: In order for replication to take place, the viral genome has to be accessible.
Therefore, the virion is uncoated rapidly after cell penetration. This process includes
either dissociation or partial degradation of the particles, alone or with the aid of cellular
enzymes. In viruses such as papillomavirus or herpesvirus, the nucleocapsid is trans-
ported to the nuclear pore, where the viral DNA is released directly into the nucleus. In
the case of some viruses, i.e. reoviruses, the capsid is only partially dissociated, and the
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Virus Host receptor Virus protein(s) involved in
attachment to receptor fusion

Naked viruses
≈ 90% of human rhi-
noviruses

ICAM-1 VP1 + VP3

≈ 10% of human rhi-
noviruses

Low-density lipoprotein
receptors

VP1

Poliovirus CD155 VP1

Enveloped viruses
HIV-1 CD4 gp120 gp41
Influenza viruses A& B Sialic-acid-containing

glycoproteins
Haemagglutinin Haemagglutinin

Measles virus Signaling lymphocyte
activation molecule
(CD150)

Haemagglutinin Fusion

Table 2.3: Examples of cell receptors, virus proteins involved in attachment and fusion for en-
veloped viruses. The table is adapted from Table 5.1 of [66].

viral genome expresses its functions without being fully released from the capsid. There
are also viruses for which penetration and uncoating take place simultaneously. After
uncoating, the viral genome is available as a naked nucleic acid or as a nucleoprotein
complex.

Synthesis of viral nucleic acid and proteins: Once the virus genome has been made
available, it needs to replicate and viral proteins need to be synthesized. All viruses
use the protein synthesis machinery to translate viral mRNAs. Unlike the host’s genetic
material, which is encoded in double stranded DNA, the viral genome can take different
forms, as described in Section 2.3.2. Depending on the viral genome type, the replication
and transcription of viral mRNAs take place in different ways. In positive-stranded RNA
viruses, viral RNA is translated directly from the viral genome. In negative-stranded
RNA viruses, a positive-stranded RNA is produced from the original negative strand,
and then newly produced copies are translated directly to viral proteins. In the case
of the retroviruses, this process is more complex. A DNA-RNA hybrid form is first
produced from its RNA genome via the virus-associated enzyme reverse transcriptase.
The RNA molecule is then digested and replaced by a DNA copy, which results in a
dsDNA molecule. The dsDNA molecule is integrated into the host’s genome by the
virus-encoded integrase enzyme. The virus finally replicates as part of the host cell’s
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DNA. Viral mRNAs are transcribed from this proviral DNA. On the other hand, most
DNA viruses produce mRNA transcripts through a host-cell enzyme, DNA-dependent
RNA polymerase II. An exception is the poxvirus, which carries the appropriate enzyme
into the cell. Once the viral mRNAs are transcribed, they are translated into proteins
using the host protein synthesis machinery. The replication of the genome is also differ-
ent for different virus types and takes place in different locations. In the case of DNA
viruses, with the exception of poxviruses, the viral genome is replicated in cytoplasm.
A positive-stranded RNA virus, whose genome can act as the mRNA, may not need to
enter the nucleus of the cell. With the positive-stranded RNA viruses, a virus-coded
replicase is translated directly from the viral genome. In the case of negative-stranded
RNA viruses, the virus carries the replicase itself. Either way, the RNA replicase syn-
thesizes a complementary RNA strand that serves as a template for new rounds of viral
RNA synthesis. These RNA duplexes are unstable and occur only as transient ’replica-
tive intermediates’. In this manner, the RNA virus replicates. The process is rapid, with
production of tens of thousands of new viral genomes produced in few hours; the re-
sults are error-prone because of the low fidelity of the reverse transcriptase and RNA
transcriptase, as well as the absence of a proof-reading mechanism. This error-prone
process results in new viral genomes with several mutations. In fact, all RNA viruses
are thought to exist as mixtures of with slightly different genetic compositions, called
quasi-species.

Assembly: Once the new viral genome and viral proteins are replicated, they are as-
sembled to form the next generation of viruses. Some viruses assemble completely in
the cytoplasm, whereas for other viruses the assembly takes place predominantly in the
nucleus. The assembly of virions of many viruses involves the construction of a protein
shell, known as procapsid. The procapsid contains the viral genome and protects it from
the environment. During or after the assembly, the capsid may undergo modification to
form the mature capsid. For some viruses modification of the virus involves cleavage
of one or more of the viral structural proteins. On the hand, it also needs to be able
to release the genomic content during infection, so the structure at the same time needs
to be unstable when needed. For some viruses, assembly of the structure of the viral
particle and budding occur simultaneously, whereas in others a preformed core pushes
buds through the membrane.
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Release: In the final state, new virus particles are released and begin to seek new po-
tential host cells to start the life cycle anew. Envelope viruses do not necessarily kill the
cell, but instead bud from the cell; by contrast, non-envelope viruses break the cell and
cause cell death. The particles produced within the cell may require further processing
to become infectious; such maturation may occur before or after release.

In all the phases of the virus life cycle, host-viral PPIs are essential, and the host
machineries required depend on specific viral needs.

2.3.4 Classification of Viruses

Virus Family Examples Enveloped or
Naked Virion

Capsid Sym-
metry

Strand type*

DNA viruses

Adenoviridae Adenovirus Naked Icosahedral ds

Papillomaviridae Papillomavirus Naked Icosahedral ds, circular

Herpesviridae Herpes simplex virus, cy-
tomegalovirus, Epstein-Barr virus

Enveloped Icosahedral ds

Hepadnaviridae Hepatitis B virus Enveloped Icosahedral circular, par-
tially ds

RNA viruses

Flaviviridae Hepatitis C virus, yellow fever
virus

Enveloped Icosahedral ss

Orthomyxoviridae Influenzavirus A,Influenzavirus B,
Influenzavirus C

Enveloped Helical ss (-)

Retroviridae Human immunodeficiency virus 1,
Human T-lympotropic virus I

Envoloped Icosohedral ss (w/DNA
intermediate)

Table 2.4: Examples of human viruses and their characteristics. * ds: double stranded, ss: single
stranded, (+): positive sense, (-): negative sense

.

More than 80 families of more than 30,000 different virus isolates are known today
[68]. The International Committee on Taxonomy of Viruses (ICTV) assigns a virus into
a taxonomic group by considering a range of characteristics. These include host range
(eukaryote or prokaryote, animal, plant, etc.), morphological features of the virion (en-
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veloped, shape of capsid or nucleocapsid, etc.), and the nature of the genome nucleic
acid (DNA or RNA, single stranded or double stranded, positive or negative sense, etc.).
Within these parameters, additional features are considered. Table 2.4 lists some viruses
and their classifications.

2.3.4.1 Human Immunodeficiency Virus-1

HIV-1 is the etiologic agent of acquired immune deficiency syndrome (AIDS), and con-
tinues to be a major health threat [9, 69]. The number of AIDS-related deaths was ap-
proximately two million in 2007 alone; an estimated 33 million people worldwide are
infected [70]. Use of antiretroviral therapy has prolonged patients’ lives, but cellular
latency and drug resistance problems remain. In addition to its medical importance,
studying the HIV-1, human system computationally is motivated by the fact that it is a
virus-host system, where data is relatively more abundant than other virus-host systems.

HIV-1 is a retrovirus, so it contains two copies of a single stranded RNA genome and
is a member of the Lentivirus. The RNA genome includes nine genes (gag, pol, and env,
tat, rev, nef, vif, vpr and vpu) encoding 15 proteins (19 including the prototypically cleaved
forms) (see Figure 2.2). Three of these genes, gag, pol and env, code for major structural
proteins common to all retroviruses. gag provides proteins to create the basic structure
of the virus such as matrix protein (MA, p17), capsid protein (CA, p24), spacer peptide
1 (p2); nucleocapsid protein (p7), spacer peptide 2 (p1) and p6. pol, on the other hand,
codes for viral enzymes reverse transcriptase, integrase, and HIV-1 protease. The env
gene codes for gp160, the precursor to gp120 and gp41, all of which are proteins part of
the viral envelope that enable the virus to attach to and fuse with target cells. There are
also two regulatory proteins (tat and rev) and three accessory proteins nef, vif, vpr, vpu.
None of the HIV-1 accessory proteins display enzymatic activity, but they are important
in altering the cellular pathways of the host cell. In order to complete its replication cycle
and escape the immune system at the same time, HIV-1 protein interact extensively with
cellular factors.
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Figure 2.2: The 9 genes of the HIV-1 RNA genome and the proteins encoded by each. The
different colors of the genes indicate different functional classes of proteins.

2.4 Genomewide RNA Interference Screens for Detecting Viral
Host Factors

RNA technologies have great potential for dissecting gene functions such as the role of
host genes in viral infections. In RNAi screens applied to viruses, host factors required
for the viral infection are investigated (see Section 2.2.2). Genome-scale RNAi screening
is used to identify host cell factors that promote or inhibit infection when the host gene
is silenced [71]. The screens call a set of host genes that are potentially required for
successful viral infection. The resulting set of hit genes contains a list of potential genes
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required for a successful viral infection. However, they are not necessarily direct interac-
tors of the viral proteins, but rather can be cellular factors that are indirectly affecting the
viral-host interactions. A number of genome wide RNAi screens have been applied to
human viruses including HIV [72–74], HCV [75, 76], West Nile Virus [77] and influenza
virus [78]. The results of the RNAi screens applied to HIV-1 are summarized below.

2.4.1 Genomewide HIV-1 Related RNA Interference Screens

RNAi screen Number of
genes called

Description Ref.

siRNA Brass 281 Genome-wide siRNA screen in HeLa cells [72]
siRNA König 295 Genome-wide siRNA screen for early stage of

replication in 293 cells
[74]

siRNA Zhou 291 Genome-wide siRNA screen in 293T cells [73]
shRNA Yeung 224 Genome-wide shRNA screen in Jurkat T-cells [79]

Table 2.5: Genome-wide RNA interference screens applied to detect host factors important for
HIV-1 infection.

Four HIV-1 related genome-wide RNAi screens have been conducted to identify host
factors required for viral infection, summarized in Table 2.5. In these screens, each host
gene was silenced and its effect on HIV-1 infection was measured. The hits generated by
these screens are potentially critical host factors for viral replication. Of the four screens,
the Yeung et al. study [79] employed a short hairpin RNA (shRNA) library cloned in
a retroviral vector to knock out RNAs in Jurkat T-cells, while the other three screens
employed presynthesized siRNA libraries in HeLa or 293T cells. HeLa and 293T cells are
not natural HIV-1 target cells; however, they are highly efficient model cells for siRNA
transfection. On the other hand, the Jurkat T-cells are are better models but cannot be
efficiently transfected by siRNA [79]. The König et al. study [74] only examined the steps
of uncoating through viral gene expression, while the other three studies [72, 73, 79] set
out to detect host factors required for the whole replication process.

Although these screens were aimed at identifying the complete set of host factors
(with the exception of the König et al. study), the resulting gene sets lack overlap. There
is no single gene that is called for in all four RNAi screens, and there are only three genes
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(RELA, MED6, and MED7) that are identified by three of the four screens. There are 36
genes identified by two screens, and 1010 genes are called by only one screen. The lack
of overlap could be partially attributed to differences in experimental design i.e. RNAi
libraries, cell types, reporter assays used or bioinformatics methods applied in post-
processing the initial hit lists [62]. Additionally, the limitations of RNAi experiments,
reviewed in Section 2.2.2, generally result in false positives and false negatives.
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Chapter 3

Related Prior and Recent Work

Computational methods have the potential to accelerate experimental efforts in identi-
fying PPIs; improving the coverage, accuracy, and efficiency of PPI detection. An array
of computational methods has been proposed for predicting direct physical interactions,
and complex or pathway memberships. A large fraction of these studies are designed
for detecting PPIs within a single organism, which we refer to as the intra-species predic-
tion task, whereas little work has been devoted to detecting the inter-species case PPIs
between pathogen and host organisms, referred to as the ‘inter-species’ prediction task.
In this chapter, we will first review the methods proposed for the intra-species PPI pre-
diction task, and then review the work on predicting inter-species PPIs.

3.1 Review of Prediction of Intra-Species Protein-Protein Inter-
actions

Computational approaches for predicting PPIs can be divided into two groups: i) those
that predict novel PPIs based on a single biological piece of information and ii) those
that integrate multiple pieces of information to make their predictions. The first group
comprises an earlier set of work; these methods depend on a single piece of genomic or
proteomic biological information that is used as evidence for possible interactions. In
this approach, the resulting list of interactions is typically pruned using additional infor-
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mation, such as cellular location of proteins. Although this second step reduces the false
positive rate, it does not have an effect on the frequency of false negatives. Therefore,
the additional information sources are not exploited to their full extent for prediction
of novel interactions. The second group approaches the process of predicting PPIs by
combining several biological sources, usually in a classification framework. These two
sets of methods are described below.

3.1.1 Methods Based on Single Biological Evidence

3.1.1.1 Gene Fusion

This method exploits the notion of gene fusion. Certain proteins, or domains (two sep-
arate proteins in a given species), may sometimes correspond to a single full-length
protein in other species. This fused protein is called the Rosetta stone protein [80, 81].
Proteins that are fused in one genome are likely to interact in the other organism. The
basis of this method involves searching for fusion events in a reference genome and in-
ferring that the proteins that are fused in other genomes are either physically interacting
or functionally related [80, 81]. Using this approach, Marcotte et al. [81] predicted PPIs
in E. coli. They made two different predictions based on two ways of finding a gene
fusion event. In the first method, they identified the gene fusion event by tracking the
domain assignments of the proteins. Using this approach, 3,531 PPIs were predicted. In
the second case, the fusion events are traced using sequence alignments; this method
looks for whether two proteins in an organism can be aligned to a single protein in an-
other organism. Based on this approach, the predicted set included 4,487 interactions.
The analysis of the functions of the predicted pairs showed that the predicted pairs were
closer to each other than the randomly paired proteins. Also 6.4% of their predictions
were found to be known interacting proteins when compared to an experimentally iden-
tified PPI dataset. When there is a fusion event, this information can be very helpful;
however, fusion events are rare, limiting the coverage of the method. Secondly, the ubiq-
uitous domains, like the SH3 domains, may lead to false positive predictions as they are
present in many proteins.
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3.1.1.2 Gene Neighbor and Gene Cluster Methods

A set of approaches relies on the basic assumption that genes that interact or are func-
tionally associated tend to be located in physical proximity to each other on the genome.
This is thought to be due to the selective pressure to associate genes that are co-regulated.
For instance, in prokaryotes, related genes are often co-localized into regions called ‘oper-
ons’. Capitalizing on this information, this set of methods makes predictions based on
the intergenic distances between genes, and/or based on gene orders [82–85]. Overbeek
et al. applied this method to 24 bacterial genomes and found possible operon regions,
then providing a list of functionally related proteins based on the predicted operons.
Analysis by Huynen et al. [85] of the Mycoplasma genitalium genome showed that the
fraction of genes that interact physically is 63% if conservation of co-regulation is re-
quired across six genomes. This number increases to 80% if the conservation of only
three genomes is required. Dandekar et al. [82] showed that the fraction of genes known
to interact physically was 75% in a set of conserved gene pairs in triplets of genomes that
included at least two distantly related genomes. Similar results were obtained for yeast
and worm [86, 87].

3.1.1.3 Phylogenetic Profile Methods

Phylogenetic profile methods also exploit the genomic context. These methods are based
on the hypothesis that interacting proteins share a similar evolutionary history to pre-
serve interactions and functionalities [88, 89]. A phylogenetic profile for each protein is
constructed based on the presence or absence of that protein across a range of genomes.
Genes that ‘travel’ together during evolution are assumed to be involved in similar cel-
lular processes. Similarities of profiles are calculated, and those proteins with similar
phylogenetic profiles are considered potential interacting partners [88–90]. Pellegrini et
al. [88] applied this method to E. coli. All proteins are associated with 16 other genomes,
and presence or absence of close homologues in these organisms is coded in a vector.
These boolean vectors are then used to cluster E.coli genes. Their analysis shows that
genes that participate in the same pathway or cellular component are likely to cluster
together. The method can also be used for identification of domain-domain interactions.
In this case a profile is constructed for each domain [91]. One obvious drawback of this
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methodology is that it fails to correctly classify ubiquitous proteins, i.e. proteins that
are present in all genomes but are not necessarily functionally linked. Additionally, evo-
lutionary processes such as gene duplication, loss, and horizontal gene transfer could
hamper accurate construction of phylogenetic profiles.

3.1.1.4 Domain Profile Methods

A protein domain is part of a protein sequence representing an independent folded struc-
ture that can evolve, function, and exist with or without the rest of the protein. A binding
motif, on the other hand, is a linear sequence motif that is recognized by a domain in
one protein, being part of its binding site. These motifs are short sequence patterns with
lengths of approximately ten residues that mediate binding to a common domain [92].
PPIs are often mediated through domain-domain interactions or domain-motif interac-
tions. A number of methods have used this observation to infer PPIs [93–100]. The
common theme in these methods is utilizing the statistics of the occurrence of domain-
domain or domain-motif pairs in sets of interacting protein pairs and using these esti-
mations to infer PPIs for new protein pairs.

The first approach that employed this idea was the association method [93], which
scored domain pairs by their overrepresentation in interacting proteins of yeast. Later,
Deng et al. [94] extended this model to all possible pairs of domains between a pair
of proteins. They assumed that two proteins interact if and only if at least one pair
of domains interacts from the two proteins. They also took into account that PPI data
can be noisy. Their approach used a maximum likelihood estimation (MLE), where the
probability of interaction for domain pairs is estimated by maximizing the likelihood of
the observed PPI network. The above methods may preferentially identify promiscuous
domain interactions, because they focus on those that occur with the highest frequency.
Riley et al. [98] proposed the domain pair exclusion analysis (DPEA) method to extend
the MLE approach. Their method assesses the contribution of each potential domain
interaction to the likelihood of a set of observed PPIs from the incomplete interactions
of multiple organisms. Iqbal et al. [100] addressed the problem of predicting protein do-
main interactions in yeast by using belief propagation. Belief propagation is a powerful
message passing algorithm for probabilistic inference [101].
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The major limitation of the domain profile method is its dependence on the accuracy
and coverage of the domain assignment. Predictions can only be made for those proteins
that have at least one domain assigned to them. However, many proteins have not been
annotated with an identifiable domain.

3.1.1.5 Interolog Based Methods

Interolog approaches are based on transferring the knowledge of known interacting pairs
across genomes to discover novel interactions. The rationale behind this approach is that
if two proteins interact in one organism, their homologs in another organism have a
higher chance of interacting. This is based on the assumption that sequence and struc-
tural similarities between gene products suggest functional similarities. A number of
methods are based on mapping interologs onto other organisms through comparative
genomics [97, 102, 103]. Yu et al. predicted interacting pairs in yeast C. elegans, D.
melanogaster, H. pylori. They concluded that interlog predictions are feasible when the
homology is larger than 80%.

3.1.1.6 Coevolution and Correlation of Phylogenetic Distances

This set of methods relies on the co-evolution of proteins at the sequence level. The
approach relies on the accuracy of the observation that the interacting proteins must co-
evolve to preserve their ability to interact with one another. Co-evolution of two proteins
is quantified through the similarity of their phylogenetic trees [104, 105]. Authors ob-
served that the phylogenetic trees for known interacting protein families tend to show a
higher degree of similarity than non-interacting proteins [93]. Initially only for the two
domains of phosphoglycerate kinase, Goh et al. [104] constructed trees based on distance
matrices and then quantified the similarity of the trees based on the linear correlation
of the distance matrices. Pazos et al. [105] extended this approach to larger sets of in-
teracting proteins and protein domains. In their study, they initially identified sets of
orthologus proteins in 14 genomes, using E.coli as the reference genome. In this analysis,
they found that it is possible to predict the interactions of proteins based on strength
of the correlation between the distance matrices of pairs of proteins. At a chosen cor-
relation cutoff of the distance matrices, their model predicted 2,742 PPIs. The model’s
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performance was evaluated by comparing it to that of a small set of experimental PPI
known at the time.

3.1.1.7 Sequence-Structure Threading Based Methods

Another class of methods predicts interactions based on structural information. An ex-
ample of such an approach was presented by Aloy et al. [106, 107], in which they derived
statistical potentials from known interactions. Given a 3D complex and alignments of ho-
mologues of the interacting proteins, these statistical potentials were used to assess the
fit of any possible interacting pair in the complex. These methods not only predict the
presence or absence of PPIs, but also provide details of the interacting surfaces, such as
identification of contacting residues. Lu et al. [108] applied the threading approach to
the complete yeast genome. Each possible pairwise interaction among more than 6,000
encoded proteins was evaluated against a dimer database of 768 complex structures by
using a confidence estimate of the fold assignment and the magnitude of the statistical
interfacial potentials. They identified 7,321 pairwise interactions among 1,256 proteins.
374 of the 7,231 interaction were in agreement with the experimentally identified PPIs.
Again, the quality of the predictions was estimated based on the cellular localizations
and biological functions of the predicted interactors.

We should note that protein docking is also a commonly applied methodology; how-
ever, docking is not used to predict which proteins interact with each other but instead to
characterize the physical details of the interactions. Protein docking relies on the search
for the best geometrical and polar fit between the two interacting protein structures [109].

3.1.2 Methods Based on Multiple Sources of Biological Evidence

In order to make more accurate predictions, a second group of methods utilizes mul-
tiple types of evidences simultaneously. These information sources can include direct
interaction information, such as noisy interaction data derived from high-throughput ex-
perimental results, as well as indirect information sources. For instance, interaction of
two proteins with similar mRNA expression profiles is more likely; as discussed earlier,
proteins with certain protein domain pairs are also more likely to interact [110]. The
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indirect information sources individually are usually weakly associated with the inter-
action but can yield reliable predictions when analyzed as a group. Studies that rely on
multiple information sources typically formulate the problem as a binary classification
task and solve the task with a classifier. In this framework, a classifier is trained to distin-
guish between positive examples of truly interacting protein pairs and negative examples
of non-interacting pairs. Each protein pair is encoded as a feature vector, where features
represent a particular information source regarding either protein interaction. Each of
these methods intends to assess each features’ predictive value on samples of known pos-
itives and negative examples. Thereafter, the model was extrapolated to genome scale,
and the model predicts the chance of possible interactions for every protein pair using
their associated features.

The advantage of the classification approach is that it allows the combination of
highly dissimilar types of data (i.e., numerical and categorical) probabilistically; it can
handle missing biological data, which is common in biological datasets, and it naturally
assesses the importance of each information source according to its predictive power.
Supervised binary classification requires a positive and a negative set of examples to
learn the classifier function [146]. One challenge in defining negative example sets is
their lack of a ‘gold-standard’ non-interacting proteins set. In some studies [111, 112]
non-interacting protein sets are constructed based on cellular locations of the proteins;
proteins that are localized in different parts of the cell are less likely to participate in an
interaction. However, these approaches also are likely to yield their own biases [113].
A simpler approach of selecting negatives uniformly at random is therefore commonly
preferred [96, 113–115].

For predicting direct PPIs or co-complex relationships, a number of statistical clas-
sifiers have been applied, including Naïve Bayes [112, 116], Bayesian networks [112],
decision trees [114], kernel based methods [115], Random Forests [52, 68], and logistic
regression [117, 118]. Below a few of these approaches and a study by Qi et al. [119] that
compared different classifiers in a systematic fashion will be discussed.

Jansen et al. [111] applied the Bayesian network to predict complex memberships of
proteins in yeast. Hence, their goal was to predict whether two proteins are in the same
complex, not whether they necessarily had direct physical contact. Bayesian network is a
graphical model approach, where nodes represent variables and directed edges between
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variables represent conditional probability relationships [101]. Features were derived
from interaction data obtained from high-throughput experiments comprised of Y2H
and in vivo pull down experiments, the correlation of mRNA amounts in two expression
data sets, information about whether proteins are essential for survival, and annotations
of the biological functions of genes. They derived the positive examples from the MIPS
(Munich Information Center for Protein Sequences) complexes catalog [120], while the
non-interacting pairs are synthesized from lists of proteins localized in different parts
of the cell. Using these, they verified the model by comparing the predictions against
held-out experimental interaction data, including the results of a TAP-MS study that
became available at the time. The advantage of Bayesian networks is that they can be
readily interpretable, as the structure of the Bayesian network represents dependency
relations among information sources. They predict a protein pair as positive if its com-
bined likelihood ratio exceeds a particular cutoff, and consider it as negative otherwise.
The performance of the model is evaluated using a seven fold cross-validation protocol.

Rhodes et al. [116] predicted PPIs in human. They utilized protein domain as-
signments, gene expression measurements in human tissue samples, biological function
annotations and orthologus PPIs. They derived a positive set of PPIs from the Hu-
man Protein Reference Database (HPRD) [121], a resource that contains known protein-
protein interactions manually curated from relevant literature by expert biologists. The
negative examples were generated based on sub-cellular locations, in which one protein
was located in the plasma membrane and the other in the nuclear component. First,
separated predictors were constructed based on each piece of information; next, a Naïve
Bayes classifier was trained to combine the separate classifiers. The authors validated the
accuracy of the predictive model on an independent test set of known interactions and
experimentally confirmed two of the predicted interactions.

Qi et al. [119] provided a comparison between the multiple machine learning tech-
niques in yeast PPI prediction. Importantly, authors also made a distinction between
different prediction tasks: prediction of 1) physical interaction 2) co-complex relation-
ship and (3) pathway co-membership. For each of these tasks, they compiled the ap-
propriate positive examples from different databases. In these three separate tasks, six
commonly used machine learning algorithms were compared: support vector machines
(SVM), Bayesian networks, and decision trees, logistic regression, Random Forest, and
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k-nearest neighbor. Diverse features were encoded in two different ways. In the de-
tailed encoding, every experiment was considered a feature whereas in the second en-
coding, similar experiments were grouped together and a single feature was used for
each group. The authors concluded that in all three tasks, the Random Forest performed
the best. Several factors could be the reason why the Random Forest classifier performs
well in prediction of PPIs. The features are derived from biological sources, which are
inherently noisy and features correlate strongly with each other. As the Random Forest
classifier uses voted ensemble method and it includes several randomizations in selecting
the training examples and in selecting the subsets of features to induce each tree in the
forest (Section 5.2.2.2), it can prove more robust to missing features and noise. Finally,
they found that the importance of different features depends on the specific prediction
task and the way each feature is encoded. Correlation of gene expression was found
consistently to be the most important feature for all three prediction tasks.

A recent study conducted by Mohammed et al. [122] focused on a different aspect
of PPI prediction, that of minimizing labeling efforts via active learning techniques. As
biological experiments are labor-extensive, obtaining true labels of data points is expen-
sive. Active learning is a machine-learning method, in which the objective is to minimize
labeling effort by judiciously selecting the examples to obtain labels. Initially, the classi-
fier is provided with a few labeled instances and a large set of unlabeled instances. The
active learner selects the most informative data point for the learning task from the unla-
beled set, where informativeness is typically defined as maximal expected improvement
in accuracy; the active learner then asks an oracle about this data point. The oracle is
in this case the lab experiment. It returns the label whether the pair interacts or not.
The new data are included into the labeled set and classifier is updated with the new
training data. This process is repeated until a predefined budget, if any, is consumed or
if the desired performance is achieved. In their setup, Mohammed et al. [122] tried four
different active learning strategies for selecting the most informative data point for the
task of predicting PPIs in human. Their results demonstrated that active learning enables
better learning with less labeled training data. They have simulated the active learning
setup; however, this strategy can be used in a real setup to couple computational and
experimental efforts and minimize the efforts to obtain a good classifier.
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3.2 Review of Prediction of Inter-species Protein-Protein Inter-
actions

In contrast to computational methods applied to predict PPIs within a single organism
(‘intra-species prediction’), computational work on predicting PPIs between organisms
(’inter-species prediction’), including between hosts and viruses, has been rare. The
work presented in this dissertation was one of the first ventures in this research area.
Only a subset of the methods applied in intra-species prediction described in the previ-
ous section is applicable to host-pathogen systems. For example, gene fusion and gene
neighborhood methods have limited applicability, since there is no biological evidence
that supports the assumption that two proteins in a pathogen are likely to interact if
they exist as a single protein in a related pathogen. The phylogenic profile method
might also be difficult to extend to host-pathogen systems since the pathogens also co-
evolve with their hosts. On the other hand, techniques such as domain-profile methods
or interolog-based methods have been applied to bacterial host-pathogen systems, and
these are described below in detail. I believe the list of publications that have focused on
predicting inter-species protein interactions provided below to be exhaustive.

3.2.1 Domain Profile Approach

Dyer et al. [123] proposed a method for predicting human-Plasmodium falciparum inter-
actions. In their approach, they adapted the domain-profiles approach of [93] to pre-
dict host-pathogen PPIs. They first estimated domain-pair statistics from the human
PPI network. From this set of human PPIs, they estimated the probability of two pro-
teins’ interaction given the domain pairs each protein is assigned. Using these estimated
pairwise-domain statistics, they assessed how likely an interaction between pairs of hu-
man, Plasmodium falciparum proteins is. An interesting feature of this method is that they
used the human PPIs to estimate these probabilities since more data are available in this
case. Then, they transferred this knowledge to the task of predicting human, Plasmod-
ium falciparum, where data are scarce. However, the general limitations of the domain
interaction prediction methods discussed above are problematic here as well, the most
severe limitation being that predictions can be only made for proteins assigned to do-
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mains. This especially limits the applicability of this method to viral proteins, as many
viral proteins have few domain assignments.

Evans et al. [124] predicted HIV-1,human PPIs based on sequence motif-domain
pairs, where the motifs are short eukaryotic linear motifs (ELMs) that mediate binding
to a protein domain. This is one of the features that we have used in our supervised
learning framework [125]. Using a similar strategy to that of our previous work, Evans
et al. searched for ELM motifs in the HIV-1 viral protein sequence alignments and
hypothesized that human proteins with the domain that binds to this motif are a likely
to interact. Although ELM domain motifs are likely to capture the transient interactions
between the viral and human proteins, it suffers severely from a lack of coverage. Both
the ELM motifs and the domain assignments are poorly annotated. For example, only
about 20% of the human proteome has domain assignments. In this study, the ELM-
domain feature to be one of our least informative features, probably due to the problem
of low coverage.

3.2.2 Interolog Based Approach

Davis et al. [126] presented a comparative modeling approach to predict PPIs for ten
human-pathogen pairs; this extended their previous intra-species work [127]. The pathogens
were all of bacterial origin, including mycobacteria, kinetoplastida and apicomplexa,
which are responsible for ‘neglected’ diseases. In their protocol, for each pathogen
protein-pair, template pairs were initially identified that were known to interact and
to have their 3D structures solved as a complex. Next, homology models of the host-
pathogen protein pair that bears similarity to these target pairs are used to build 3D
structural models of the host-pathogen pair. Those with good scores are then filtered
based on sub-cellular location and expression properties. The approach is limited by the
coverage, since the pairs have to match a template protein pair.

Lee et al. [128] similarly applied an interolog-based prediction method to infer inter-
actions between Plasmodium falciparum and human proteins. Having identified interolog-
based predictions, they filter the initial list to match cellular localization constraints. For
example, proteins that are in the nucleus both in human and Plasmodium falciparum are
not likely to interact. These filters utilized protein location annotations and the presence
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of translocational sequence signal on protein sequence that is needed to translocate the
protein to the red blood cell cytoplasm, where the host manipulation takes place.

Tyagi et al. [129] applied a similar homology search method. They focused on inter-
actions occurring at the early stages of pathogenesis of H. pylori, that is the attachment
of the pathogen to the host and the next immediate steps which require the recruitment
of the secreted proteins of H. pylori. First the transmembrane human proteins are iden-
tified. Then homologs of the transmembrane proteins and the viral proteins are found
by querying them using PSI-BLAST and RPS-BLAST against interaction databases. The
pairs that achieve a cutoff of similarity were accepted as interacting. They predicted total
of 623 H. pylori proteins with 6559 human proteins. The predicted interactions included
13 experimentally verified secreted proteins. In a later work [130], authors applied this
method to predict PPIs between human and three pathogens E. coli, Salmonella enterica
typhimurium and Yersinia pestis.

3.2.3 Structural Similarity Based Approach

Doolittle et al. [131] studied predicting HIV-1, host interactions based on structural
similarities between HIV-1 and human proteins. Similar to the idea of mimicking human
interaction partners in my work [125], their method was motivated by the structural
similarities of the target proteins interaction partners and the HIV-1 proteins. For this
purpose, the first pairwise structural similarities between host and pathogen proteins
are retrieved. Those human proteins that contain regions with high structural similarity
to an HIV-1 protein are referred to as ‘HIV-similar’. Next, known interaction partners
for these HIV-similar proteins are obtained. This list is referred to as ‘targets’. This list
is filtered by RNAi screens and cellular co-localization information. The advantage of
this method is that it makes use of the structural information available. A limitation,
however, is that for most of the HIV-1 proteins, only fragments of structures are solved.

Huang et al. [132] aimed to find the functional association network between In-
fluenza A (H1N1) virus proteins and human proteins. Their assumption is that if the vi-
ral proteins and the human proteins were annotated with the same functional or molec-
ular process annotations, they are likely to interact. When the authors constructed a
putative prediction list based on this rule, the resulting network was large. They further

36



filtered the network by looking at subsets of interactions. To identify these interesting
subsets, they performed a k-core decomposition to analyze the core area of the network.
K-cores are obtained by recursively removing all the vertices with degree smaller than k,
until the degree of each remaining vertex is larger than or equal to k. The vertices with
coreness equal to or greater than 4 were defined as core nodes. There are 101 core nodes,
which include four virus proteins and 97 human proteins. The authors concluded that
linkages between them formed the core functional association network. In order to as-
sess the biological relevance of the core nodes, Huang et al. performed a gene ontology
functional enrichment. However, as the network has been already constructed based on
shared Gene Ontology terms, not surprisingly, the functional network was found to be
overrepresented in certain functional terms.
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Chapter 4

Thesis Overview

Identifying interaction partners of a protein often allows inferring its function in the cell.
Similarly, knowing the set of protein interactions that take place between the virus and
the host allows us to map the molecular details of the virus’ manipulation of cellular pro-
cesses and the host cell machineries that the virus depends on for a successful replication
cycle. Such knowledge opens avenues for new therapeutic and preventative strategies.
Therefore, detecting and characterizing PPIs between the host and virus have long been
a focus of experimental biology. However, as reviewed in Section 2.2.1, there is no single,
cost-effective, reliable experimental technique that allows high-throughput identification
of PPIs. On the other hand, there is a large body of accumulated proteomic, genomic
and phenotypic data on both the human cell and viruses, which could provide evidence
on host-virus interactomes. If integrated properly; this body of data can accelerate the
experimental efforts to identify PPIs.

Working towards defining host-virus interaction networks, this thesis aims to pro-
vide high quality curated interaction data, compile and identify biological information
that serve as predictive features, predict novel host-virus direct PPIs and stratify the re-
ported interactions. I focused on the HIV-1-human interactome because it is clinically
important and represents the system with the richest experimental data available. How-
ever, the methods presented here can easily be extended to other host-virus systems as
pertinent data become available. This chapter provides an overview of the thesis, sum-
marizing open questions and challenges and the way in which they were approached.
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4.1 Predicting Virus-Host Interactions

In this thesis, predicting PPIs was defined as a binary classification task, where each
possible protein pair falls into one of two classes, the ’interacting protein pairs’ (posi-
tive class) and the ’non-interacting protein pairs’ (negative class). Predicting host-virus
interactions requires in identifying biological information that can serve as predictive
features. Several data types that have been useful in the intra-species prediction task (see
Section 3.1) are not directly applicable to the host-virus setting; such data types include
co-expression of genes, gene order and location. Therefore, identifying information that
is predictive in distinguishing interacting protein pairs from non-interacting ones is im-
portant. The first challenge is that the biological information is scattered throughout
different databases; furthermore, a large amount of information is not yet catalogued
in databases. Through an extensive curation process, I identified experimental results
pertinent to host-virus interactions and extracted the relevant data from databases or
published articles. The first set of biological information assembled in this manner in-
cludes:

• Gene expression data of HIV-1 infected versus uninfected samples

• Gene ontology in terms of HIV-1 and human proteins annotated for the three dif-
ferent gene ontologies: biological function, molecular process and cellular location.

• Sequence information of HIV-1 and human proteins

• Datasets of motif and protein domains that mediate interactions among interacting
protein pairs

• Posttranslational modifications of HIV-1 and human proteins

• Tissue expression of human proteins and HIV-1 susceptible cells and tissues

• Network properties of human proteins within the human interaction network.
These include degree, clustering coefficient and network centrality of a vertex in
the human protein-protein interaction graph.

35 different features were derived based on these datasets, which are described in
detail in Chapter 5 and publication [125]. The model presented here was the first attempt
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in literature to predict the global set of interactions between HIV-1 and human host
cellular proteins. In encoding relevant biological information, the cellular context of
the host cell is taken into account. For example, the similarity of the HIV-1 protein
to the putative human proteins’ interaction partner in terms of sequence, translational
modifications, function, molecular process and cellular location are encoded. The results
(Chapter 5) demonstrated that the features that take into account the cellular contexts of
these human proteins are especially informative. For instance, network node properties
of the human proteins in the human PPI network are among the most predictive features.
Chapter 5 describes a random forest model trained and tested using this feature set.
The learner is empirically evaluated and compared extensively to external experimental
datasets. These datasets feature host proteins detected in budding virion and published
genome-wide RNAi experiments that identified host factors that affect HIV-1’s success of
infection. 21 host proteins that were predicted to interact with one of the HIV-1 proteins
were tested experimentally as to whether they colocalize with vpr and capsid via single
live cell imaging techniques. The results of the colocalization experiments provided
experimental support for many of the predictions.

4.2 Extended Model with New Feature Set

As new pieces of biological information became available during the course of this the-
sis, I incorporated them into the model together with the cellular context, such as known
human protein complexes or human protein pathways (described in Chapter 6 and pub-
lication [133]). The new datasets included:

• Genome-wide RNAi screens in which the host factors required for infection are
identified

• Affinity purification-mass spectrometry applied to HIV-1 proteins

• Sets of human proteins detected in budding virions

• Interactions of human proteins with other host viruses
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These supervised models made use of a subset of HIV-1, human protein interac-
tions deposited in the NIAID HIV-1, human protein interaction database [134, 135]. The
database includes interactions curated from scientific literature, where interaction is de-
scribed based on the keywords. However, the distinction between physical interaction,
functional association or indirect interactions is not provided. In the first two computa-
tional models described in Chapters 5 and 6, I derived a subset for direct interactions,
where I filtered for interaction pairs reported with certain keywords indicative of a direct
interaction. In the second part of the thesis, I proposed a better solution for obtaining
higher quality datasets; as explained below.

4.3 Refining Literature Curated Protein-Protein Interactions with
Expert Opinions

Obtaining a negative set is even more problematic than defining a high-quality positive
set of interactions. This is because one cannot conclude definitely that two proteins do
not interact; the most that can be said is the proteins are not found to be interacting
under the experimental conditions and the particular experimental method used. One
common method employs annotations of cellular localizations when choosing negative
examples for training and testing purposes. The protein pairs from different cellular lo-
cations are treated as negative examples, with the assumption that the cellular constraints
most likely prevent the proteins from participating in a biologically relevant interaction
[111, 112]. While this method leads to high quality negative sets of interactions, Ben-Hur
et al. [113] showed that this method can result in biased estimates of prediction accuracy
because the constraints placed on the distribution of the negative examples make the
prediction task easier, leading to optimistic estimates of the accuracy. A second alter-
native is to create a negative set that has been created by pairing proteins uniformly at
random from the set of protein pairs not known to interact [113]. This is rationalized
by the fact that the probability that two randomly chosen proteins will interact is small
and most methods are able to handle contamination from the small number of potential
false negative matches. These positive and negative datasets constitute the labeled data
for Chapters 5 and 6. Neither of these methodologies are ideal for creating high quality
positive and negative datasets. In Chapter 7, I addressed this issue and obtained high
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quality positive and negative labels on HIV-1, host direct PPIs. For, I i) collected opin-
ions of HIV-1 experts about the interactions reported in literature and ii) formulated a
probabilistic framework to assign reliability scores to interactions based on the resulting
noisy, subjective expert opinions.

Not all of the published interactions reported in the literature are equally well-
supported by experimental evidence. Some interactions have been validated by multiple
groups and techniques; other interactions have not been validated in this way. This is a
general concern, Mackay et al. [136, 137] argue that many reports of PPIs are founded on
‘insufficient data’ generated by limited strategies; others challenge the assumption that
literature-curated interactions are of high quality [136–142]. 44% of all the pairs in the
NIAID database for HIV-1,human interactions are reported only in a single publication
(see Chapter 7). The lack of follow-up studies - especially by labs other than the one that
found the first evidence for interaction - hints at the possibility that for many of these
interactions, there may not be sufficient experimental evidence to support their direct
interaction. Assessing the data quality of PPIs from small-scale experiments requires a
complex judgment about the methods and results of each specific study. Some exper-
imental techniques more conclusively identify functional relations, while others more
conclusively identify direct interactions; techniques do not work uniformly well across
all proteins (see Section 2.2.1). In addition to the variability in the powers and limitations
of each technique, the condition under which a study is conducted, such as in vitro or
in vivo environment, the strains used, the mutations introduced, if there are any labels
introduced and if yes the attachment sites of the labels all represent potentially impor-
tant factors. Such parameters should be taken into account when interpreting the results.
Such a complex judgment can only be provided by domain experts. In order to arrive at
reliability scores for the HIV-1, human PPIs, I took a crowd-sourcing approach. HIV-1
experts were presented with the accumulated published evidence and asked to annotate
interacting pairs with labels based on whether they think the interaction is supported
with enough evidence to conclude that the pair represents a direct physical PPI.

In cases where an interaction received multiple opinions from different experts, dis-
agreements among the experts were common. This is true especially when there is not
enough evidence accumulated to give a conclusive answer. Additionally, disagreements
among experts might arise because of their biases, expertise and/or stringency levels;
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e.g., some experts are more difficult to convince with partial evidence or with the re-
sults of certain experimental techniques. For these reasons, expert opinions are noisy
and subjective. I thus formulated this as a computational problem: given noisy opin-
ions and with varying numbers of judgments for each protein pair, how to accurately
decide which of the expert-annotated pairs are more likely to have ‘direct physical inter-
actions’ and the degree of uncertainty of those conclusions in the absence of a ground
truth for the labels. I took a maximum likelihood approach to estimate the experts’ la-
beling accuracies for each label type. Next, these estimated labeler accuracies were used
to calculate the probability that the interaction is a true direct interaction. In this model,
I did not assume annotators to have the same labeling quality; moreover, I took into
account that experts may have different labeling qualities for the label types ‘interacting’
and ‘non-interacting’. The computational model is provided in Chapter 7. It is not lim-
ited to curated data for HIV-1 protein interactions, but is applicable to other cases where
multiple noisy labels needs to be combined, which is a common setting of crowdsourc-
ing applications. The results showed that negative data obtained in this way especially
improves model quality.

4.4 Multi-Task Learning for Virus, Host PPI Prediction

In the classifiers built to predict HIV-1,human PPIs, I pooled all the viral protein’s inter-
action data together and solved the problem as a single task. However, the viral proteins
undertake different functions and participate in different parts of the replication cycle,
which implies they might be drawn from different distributions. This necessitates build-
ing different models for each viral protein. However, the lack of sufficient data for many
of the HIV-1 proteins impedes the construction of separate models for each task. In order
to overcome the data scarcity issue while not disregarding possible differences in data
distribution across viral proteins, a multi-tasking learning strategy was developed. In
this model, single tasks (learning the protein-protein interactions of each viral protein)
were grouped based on their relatedness, where relatedness was based on their functions
in the viral replication cycle [143]. The model is modified in the training phase as follows.
In the random forest classifier, the training examples are bootstrapped when building the
decision trees. During the bootstrapping step, the training examples are drawn from a
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modified distribution where the probability of each example being drawn is proportional
to its relatedness to the viral protein at hand. Such a multi-task framework leads to more
accurate predictions compared to single tasks, where only the tasks’ training examples
are used and the pooled task where all the training examples are used. The focus of this
thesis was predicting virus-host phyical PPIs. To achieve this we provided computational
methods and high-quality data sets to serve as features and labeled data. Applying our
methods on HIV-1, virus system resulted with experimentally testable hypotheses on
putative host-virus PPIs, some of which have been already validated experimentally.
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Chapter 5

Predicting the HIV-1,Human Protein
Interactome

5.1 Overview

Human immunodeficiency virus-1 (HIV-1) in acquired immune deficiency syndrome
(AIDS) relies on human host cell proteins in virtually every aspect of its life cycle [69].
Experimental efforts have identified set of host factors that assist HIV-1 during the differ-
ent steps of its replication cycle [144]. Nevertheless, the complete physical interactome
between the viral and the human cell proteins is still far from complete. The model
presented here was the first attempt to predict the global set of interactions between
HIV-1 and human host cellular proteins [125]. I adopted a supervised learning frame-
work, where multiple information data sources were utilized, including co-occurrence of
functional motifs and their interaction domains and protein classes, gene ontology anno-
tations, posttranslational modifications, tissue and gene expression profiles, topological
properties of the human protein in the interaction network and the similarity of HIV-1
proteins to human proteins’ known binding partners. A Random Forest classifier with
this extensive feature set was trained and tested . The model’s predictions achieved an
average Mean Average Precision (MAP) score of 23%. The rank-ordered lists of predicted
interacting pairs are a rich source for generating biological hypotheses and many of the
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predictions were experimentally validated.

5.2 Methods

5.2.1 Problem Setting and Formulation

Predicting physical interactions between HIV-1 and human protein pairs is formulated as
a binary classification task and solved using supervised learning techniques. Specifically,
data points are pairs of HIV-1 and human proteins indexed by i = 1, . . . , N, where N is
the number of all possible pairs between HIV-1 and human, which is 353,778 (number of
HIV-1 proteins1 × the number of human genes). The set of all possible pairs is S, which
can be viewed as the set of edges in a bipartite graph, whose vertices on one side are the
HIV-1 proteins and on the other side the human proteins. We refer to the set of known
interaction pairs as L+ ⊂ S. On the other hand those pairs whose label are not known
will be referred to as U ⊂ S and U = S \ L(+). A negative set is generated from the
unlabelled set, the set of negative examples are L−, where L− ⊂ U. We referred to the
union of the positive and negative examples as L = L+ ∪ L−. ∀ protein pairs i ∈ S a
d-dimensional feature vector, xi, is constructed. Each of the d features is derived from
one or more biological information sources. Each xi maps to one of the two class labels,
y = {‘interacting’,‘non-interacting’}. For those pairs in L, we know their class labels,
YL. Given the feature matrix for L, XL, and class labels, YL, we seek to learn a classifier
h : XL → YL that will correctly predict the class labels of unseen data.

5.2.2 Classification

A Random Forest classifier was employed [145] to solve the binary classification problem.
The Random Forest method was chosen based on its robustness in scenarios, where
the features are noisy and redundant as is the case for the virus-host PPI prediction
task. Furthermore, previously it has been demonstrated to outperform other well known
supervised techniques in predicting intra-species PPIs [117, 119]. The Random Forest is

1gag p1 and gag p2 are excluded from the model due to the limited number of interactions and informa-
tion available for these proteins.

46



an ensemble learning method, where multiple decision tree learners are bagged. Below,
we first provide a brief description of the decision tree classifier, next we provide details
of the Random Forest classifier.

5.2.2.1 Decision Tree Classifier

The decision tree classifier is a supervised learning technique which uses a sequence of
decisions [146]. A decision tree is formed by a root node, a set of interior nodes and
terminal nodes, which are also named as the leaf nodes. The root node and the interior
nodes are collectively referred as non terminal nodes. Each non terminal node in the tree
represents a test on an input feature and each descendant node divides the feature space
into sub spaces based on the possible answers to this feature-value test. An instance is
classified by a set of rules that is determined by the path starting from the root node,
moving down the tree and ending in a leaf node. The arrived leaf node denotes the final
classification for that instance.

Even for a small number of nodes in a tree, learning the optimal structure that will
minimize a loss function is usually computationally infeasible due to the combinatorially
large number of solutions. Most algorithms use greedy optimization by constructing the
trees top down beginning with selecting the feature that classifies the examples best. In
deciding the best splitting feature in a decision tree, impurity measures are commonly
used [147, 148]. At each step a new feature and threshold is picked and based on the
chosen feature-value test, the feature space is divided into the subspaces, represented by
two new descendant nodes. This is recursed at each subtree until the stopping criterion is
met e.g. reaching a preset minimum number of examples at a node. Decision trees with
sufficient depth usually exhibit low bias and can capture complex feature interactions in
the data [149].

5.2.2.2 Random Forest Classifier

In contrast to the decision tree learner, which is formed by only one tree, the Random
Forest classifier bags several trees [145]. The motivation is to average many noisy but
approximately unbiased models and in this way reduce the variance [149]. Let B be the
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number of trees in the forest and let the training data contain N examples and d features.
To construct each tree in the bag, b ∈ 1..B, first a bootstrap sample, Z∗b , of size N is drawn
from the training set with replacement. Next, a tree, Tb, is learned using this bootstrap
sample. In contrast to regular decision trees, where the best splitting feature is selected
among all d features, in a Random Forest tree the best splitting feature is selected from a
random subset of m ≤ d features. To classify a new example, the instance is sorted down
on each tree and each tree gives a vote on what the predicted class label should be. The
Random Forest classifies the new example based on the majority vote of the trees in the
forest. Let x be the feature matrix for a new example, the label for a new example x will
be:

ŷB = majority vote{(ŷb(x)}B (5.1)

where ŷb be the class prediction of the bth tree in the Random Forest. The Random Forest
algorithm is detailed in Algorithm 1.

Algorithm 1 Random Forest algorithm for classification [145].2

Let N be the number of examples in the training data, d the number of features, B the
number of trees in the forest, nmin minimum number of examples allowed on a node,
m number of features to be used for determining the splitting feature.
1. Construct Random Forest:
for b = 1 to B do

2. Construct a Random Forest tree Tb:
a) Draw a bootstrap sample of Z∗b of size N from the training data.
b) Grow a tree Tb using Z∗b . In growing the tree at each terminal node of the tree
recursively apply the following steps:
repeat

i. Select m ≤ d features among the d features at random as candidates for splitting.
ii. Pick the best splitting feature among the m features based on Gini impurity
index.
iii. Split the node based on the chosen feature into two.

until nmin is reached
end for
2. Random Forest is the ensemble of trees {Tb

B}
3. Let ŷb be the class prediction of the bth tree in the Random Forest, then the label for
a new example x will be:
ŷB = majority vote{(ŷb(x)}B
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The impurity of a node captures how dissimilar the instances on this node are to each
other in terms of class labels. In constructing the trees in the Random Forest, the Gini
impurity index is used as the splitting criterion [145]. The splitting feature is chosen as
the one that reduces the Gini impurity index the most. Specifically, the Gini impurity
index associated with node t for feature xj, which takes r values {q1 . . . qr} :

Gini(t, xj) =
n1

Nt
Igini(t, xj(q1)) +

n2

Nt
Igini(t, xj(q2)) + . . . +

nr

Nt
Igini(t, xj(qr)) (5.2)

where node t has Nt examples and is split into r descendants, ni is the number of
examples at the descendant node i [150]. Igini(t, xj(qi)) is the Gini index for the node t,
associated with feature xj when it takes a value of qi and is computed as:

Igini(t, xj(qi)) = 1− ∑
c∈Y

pc(xj(qi))
2 (5.3)

where pc(xj, qi) denotes the proportion of examples whose xj feature takes the value
qi and belongs to class c. Y denotes the set of all possible class labels. The splitting
criterion is based on choosing the attribute with the lowest Gini impurity index of the
split. The Gini impurity index attains its minimum if all instances at a node belong to
only one class. In that case, the node is pure and the misclassification rate is zero. On
the other hand, it is at its maximum if each class has equal frequencies.

In our experiments, the Berkeley Random Forest package implementation was used
[145], 200 trees were bagged. To cope with the unbalanced class distribution of examples,
the cost of misclassifying a positive (‘interacting’) example is weighted more by a factor
of w as compared to misclassifying a negative (’non-interacting’) example. The model
parameters, m - number of feature candidates at each node (see Section 5.2.2.2), w - the
relative error cost of negative class to positive class - and parameters specific to feature
encodings were tuned via 3-fold cross-validation on the training data. The parameters
and features maximizing the mean average precision score were chosen.
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Group 1 keywords: acetylated by, acetylates, binds, cleaved by, cleaves, degraded by,
degrades, dephosphorylates, interacts with, methylated by, myristoylated by, phos-
phorylated by, phosphorylates, ubiquitinated by

Group 2 keywords: activated by, activates, antagonized by, antagonizes, associates
with , cleavage induced by, causes accumulation of, co-localizes with, competes with,
complexes with, cooperates with, decreases phosphorylation of, deglycosylates, de-
polymerizes, displaces, disrupts, downregulated by, downregulates, enhanced by, en-
hances, enhances phosphorylation of, enhances polymerization of, enhances release
of, excludes, exported by, facilitated by, fractionates with, glycosylated by, imported
by, inactivates, incorporates, induces, induces acetylation of, induces accumulation
of, induces cleavage of, induces complex with, induces phosphorylation of, induces
rearrangement of, induces release of, influenced by, inhibited by, inhibits, inhibits
acetylation of, inhibits induction of, inhibits release of, inhibits release of, isomerized
by, mediated by, modified by, modulated by, modulates, palmitoylated by, processed
by, polarizes, promotes binding to, protects, recruited by, recruits, redistributes, regu-
lated by, regulates, regulates import of, relocalized by, relocalizes, requires, sensitizes,
sequesters, stabilizes, stimulated by, stimulates, synergizes with, transported by, up-
regulated by, upregulates

Table 5.1: List of Group 1 and Group 2 keywords. Group 1 keywords are those that most likely
represent direct physical interactions and Group 2 set contains all the other keywords in the
database. Interactions reported with Group 1 keywords are considered as direct PPI set.

5.2.3 Dataset

Positive examples (interaction class): Protein interactions between HIV-1 and human
proteins reported in the literature were cataloged and are available in the NIAID HIV-
1,Human protein interaction database (NIAID database) [134, 135]. These interactions
were manually extracted from publications by reviewing more than 100, 000 articles.
This interaction network includes 1448 human proteins that interact with HIV-1 proteins
comprising 2589 unique HIV-1,human PPIs. Table 5.2 lists the number of interactions
per HIV-1 protein. Since our aim is to predict binary direct physical interactions, we
need a set of direct interactions. However, such information is not listed in the NIAID
database. Instead, the database describes each interaction by one or more descriptive
key phrases, which are extracted from publications reporting these interactions. Some
of these keywords are more likely associated with direct physical PPIs than others (e.g.
‘interacts with’ as compared to ‘causes accumulation of’). We grouped the keywords into
two exclusive sets: Group 1 keywords are those that most likely represent direct physical
interactions such as ‘interacts with’ or ‘binds’ and Group 2 keywords which contain all
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HIV-1 protein Number of HIV-1-Human Protein Interactions

Group 1 type Group 2 type

Env gp41 37 118

Env gp120 195 336

Env gp160 54 121

Gag capsid 19 13

Gag matrix 39 37

Gag nucleocapsid 5 19

Gag p6 14 0

Gag pr55 15 32

Nef 71 119

Integrase 72 6

Protease 60 18

Reverse transcriptase 17 22

Rev 33 29

Tat 336 420

Vif 54 10

Vpr 35 134

Vpu 7 13

Total 1063 1454

Number of unique human
proteins involved

721 914

Table 5.2: The number of interactions between HIV-1 proteins and human proteins according to
the NIAID HIV- 1, Human Interaction database [134, 135]. An interaction is classified as a Group
1 type of interaction if it is described by at least one of the Group 1 keywords and classified as
Group 2, if otherwise.

the other keywords in the database. The list of Group 1 keywords are listed in Table 5.1.
An interaction is defined as Group 2 type of interaction if it is not described by any Group
1 keyword. The Group 1 interactions constituted the ‘interaction class’, L+. Group 2 was
not used during the learning phase. Group 1 interactions includes 1063 pairs involving
721 human proteins, whereas Group 2 interactions were 1454 involving 914 proteins.
Figure 5.1 displays the network representation of the two groups of interactions.
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Figure 5.1: The HIV-1 human interactome defined by a) Group 1 interactions b) Group 2 in-
teractions. HIV-1 proteins are colored green, human protein in Group 1 and Group 2 inter-
actions are colored blue and purple respectively. The abbreviated protein names are as follows:
env120:envelope protein env120, env160: envelope protein env160; env41: envelope protein gp41;
p1: gag p1; p6:gag p6; pol RT: pol reverse transcriptase. The network visualizations are created
by Cytoscape software [151].

Negative examples (non-interaction class): Since it cannot be proven that two proteins
do not interact, there are no negative sets available for PPI prediction tasks in general.
For training and testing purposes, a common method to create such a negative dataset is
to choose protein pairs uniformly at random from the set of protein pairs which are not
known to interact and treat them as non-interacting protein pairs [113]. This is rational-
ized by the fact that the probability that two randomly chosen proteins interact is small
and most methods are able to handle contamination from the small number of potential
false negative matches. We applied this strategy and selected negative example set, L−,
by randomly pairing human and HIV-1 proteins, after removing positive interactions
from the universal set of all possible interactions (from the set S \ L+). Together these
two datasets constitute the labeled data L = L+ ∪ L−. The ratio of the negative to positive
class is assumed to be 100:1, a value chosen based on the average number of interactions
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involving HIV-1 proteins. In training, the negative to positive example ratio is treated as
a parameter that is optimized through cross-validation.

5.2.4 Features

Source Data obtained URL

GO [152] Gene ontology to describe
genes’ functions, processes and
cellular locations

www.geneontology.org

EBI [153] Human genes GO annotations
are obtained

www.ebi.ac.uk

ELM [154] Eukaryotic linear motifs, which
mediate binding to a domain or
a protein class

http://elm.eu.org

InterPro[155] Domain assignments for hu-
man proteins

www.ebi.ac.uk/interpro

GEO [156] Gene expression profiles for
HIV-1 infected vs uninfected
samples

www.ncbi.nlm.nih.gov/geo

HUPA [157] Tissue expression and post-
translational modifications of
human proteins

www.humanproteinpedia.org

HPRD [121] Post-translational modifications
of human proteins and interac-
tion data used

www.hprd.org

UniProt [158] Human protein sequences and
GO annotations for HIV-1

www.uniprot.org

Los-Alamos HIV
Database [159]

HIV-1 protein sequences, align-
ments

www.hiv.lanl.gov

dbPTM [160] Post translational modifications
of human proteins

http://dbptm.mbc.nctu.edu.

tw

Table 5.3: Biological data sources used in deriving features.

In order to extract features that can be informative to discriminate the two classes, a
total of 35 features was extracted from various biological sources. The biological infor-
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mation is scattered in a wide range of data sources, which requires extensive curation
efforts. A list of these biological sources is given in Table 5.3.

Features derived from human protein interactome  

 - GO function, process, location similarity 
 - Post translational modifications similarity
 - Sequence similarity

ij

k1

k2

2.  Similarity of i to j ’s neighbors 
 - Degree
 - Clustering coefficient
 - Betweenness centrality
 

1.  Graph properties of j

fneighsim (i, j )= max fpairsim(i,k) , 
              k ∈S  ={          }j

HIV-1 proteinHuman Protein
Interactome

k1 k2 

Figure 5.2: Schematic showing features that incorporate knowledge of the human protein in-
teractome. These features include: 1) graph properties of human protein j in human protein
interaction network, which include degree, clustering coefficient and betweenness centrality of
node j 2) the similarity of the HIV-1 protein, i, to human protein j’s interaction partners denoted
by fneigh(i, j) in the figure. In calculating the neighbor similiraity, the maximal similarity among
the neighbors is used. Five features are derived this way; GO function, process and location
similarity in addition to post-translational modification and sequence similarity.

A subset of features are specific to the HIV-1, human protein pair, whereas some en-
code information only about the human protein or only about the HIV-1 protein. The for-
mer has the potential to give information about whether the specific HIV-1, human pro-
tein pair interacts or not. On the other hand, non-pair specific features encode whether
the human protein interacts with any of the HIV-1 proteins, or whether an HIV-1 protein
interacts with any of the human proteins. Among the features two interesting (overlap-
ping) groups of features are those features that make use of the human PPI network and
features that encode the HIV-1 proteins’ similarity to its human interaction partner:

Features with human interactome knowledge: The proteins the pathogen will target
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should in principle depend on interaction relationships between human proteins because
the virus makes use of the existing communication pathways within the cell. Therefore, a
set of features are used to encode the relationships of the host proteins within themselves.

Human interaction partner similarity features: The HIV-1 proteins that will interact
with a human protein h, may bear resemblance to human protein physical interaction
partners in the human proteome. To capture this property, these features encoded the
HIV-1 proteins’ mimicry of the human protein’s interaction partners as illustrated in the
schematic Figure 5.2.

Below, we detail the features used and the rationale behind them. Table 5.4 sum-
marizes the features encoded, together with the groups they belong to. For all features,
where appropriate, the missing values were substituted with the mean or median (for
non-categorical and categorical attributes, respectively) of the available values for that
feature.

5.2.4.1 Gene Ontology Features

The Gene Ontology (GO) [152] provides a defined vocabulary of protein attributes for
molecular function, cellular component and biological process. In GO, each ontology is
represented by a hierarchical directed acyclic graph (DAG), in which nodes are GO terms
and edges are relationships between these terms. A term in the root is more general; the
lower in the tree, the more specific the term. A child term may be an ‘instance’ of
its parents’ term (‘is-a’ relationship) or a component (‘part-of’ relationship). Genes are
annotated with one or more terms. For each of the three ontologies we developed two
features: ‘pairwise GO similarity’ measures the similarity between the HIV-1 and human
proteins in a pair, while ‘neighbor GO similarity’ refers to the similarity between the
HIV-1 proteins and the human protein’s human interactors. To calculate the similarity
between two protein annotation sets of GO terms, we employed the G-SESAME method
[161]. This method compares the subgraphs of GO terms (starting from the specific
GO term ending in a root term). G-SESAME not only considers the common ancestors
the GO term pair have but also the location (closeness to the most specific term) and
the relation type of the edges. Then, the GO semantic similarity between two proteins’
annotation set is calculated by averaging the maximal similarity of each term to the other
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protein’s annotation set.

Feature(s) name Num.
features

Feature type Coverage

GO pairwise function similarity 1 HV 65.4

GO pairwise process similarity 1 HV 63.3

GO pairwise component similarity 1 HV 66.7

GO neighbor function similarity 1 HV, HPPI 42.6

GO neighbor process similarity 1 HV, HPPI 45.3

GO neighbor component similarity 1 HV, HPPI 45.3

Post translational modification similarity 1 HV, HPPI 40.0

Degree 1 H,HPPI 45.3*

Clustering coefficient 1 H, HPPI 20.0*

Betweenness centrality 1 H, HPPI 31.6*

Neighbor sequence similarity 1 H, HPPI 45.3

Pairwise sequence similarity 1 H 100.0

ELM, ligand feature 1 HV 2.3*

Gene expression features 4 H 44.0

Tissue expression 1 H 66.6

HIV protein type features 17 V 100.0

Table 5.4: Feature set derived for prediction of interactions between HIV-1 and human proteins.
The first column lists the name of feature group, the second column gives the number of features
of this group. The third column, describes whether the feature is specific to the HIV-1 protein pair
(HV), only to the human protein (H) or only to the HIV-1 protein (V); and features that makes use
of the human protein interaction network knowledge are also indicated in this column by ‘HPPI’.
The fourth column presents the percentage of pairs for which information is present (coverage).
For gene expression features, the average coverage across the four gene expression data sets is
given. In some of the features, coverage is 100 % as a result of the way the feature was encoded.
For example, for the ELM-ligand feature, if the condition for the pair is not satisfied, the feature
value for that pair takes a value of zero. In such cases, the percentage of non-zero elements is
given. The features for which this applies are marked with * in the last column.

56



5.2.4.2 Graph Topological Properties

Three features measure the topological properties of the human protein in the human
PPI network. The human PPI network is described as an undirected graph: G = (V , E)
with a set of vertices V (proteins) and a set of edges E (interactions). We utilized three
topological properties of a vertex (human protein):

• Degree, kv, of a vertex v is the number interactions (edges) in which it participates.

• Clustering coefficient, Cv, of a vertex(protein) v, measures the extent to which
the protein’s interaction partners are connected to each other and is defined as
Cv = 2nv/kv(kv − 1). In this equation, kv is the number of interaction partners
(degree) of v and nv is the number of edges present among its neighbors. Clustering
coefficient is defined for vertices with degree kv ≤ 2.

• Betweenness centrality is defined as in reference [162]; for a node it is calculated
as the fraction of shortest paths between node pairs that pass through the node of
interest. High betweenness centrality indicates that the protein has control over the
information flow between other proteins in the network.

5.2.4.3 ELM-Ligand Feature

One way of achieving PPI is through domain binding linear motifs, where a globular
domain in one protein recognizes a linear peptide from another, creating a small contact
interface. These motifs are short sequence patterns around ten residues long which medi-
ate binding to a common domain (see Section 3.1.1.4). For example, the sequence pattern
PXXDY (ELM id: LIG_SH3_5) is recognized by SH3 domains. Functional sequence mo-
tifs were downloaded from the Eukaryotic Linear Motif (ELM) database [154]. Based
on the motif descriptions, we identified 109 ELMs, which mediate binding to a protein
domain or a specific protein class. The feature evaluates whether an ELM motif is found
in a given HIV-1 sequence and its ligand domain is present in the human protein. The
HIV-1 sequences mutate rapidly and some motifs are very short. To avoid false positive
matches, we only considered a motif match if it is conserved in multiple HIV-1 sequences
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[125]; the feature value was weighted with the specificity of the motif, the weight was
chosen through cross-validation.

5.2.4.4 Gene Expression Features

GDS ID Description Number
of Features
Derived

Refer-
ence

GDS2649 20 CD4+ and 20 CD8+ samples from HIV-1
patients at different clinical stages and rates of
disease progression.

2 [163]

GDS172 Samples from brain frontal cortex of HIV-
seropositive patients with HIV encephalitis
(HIVE). 28 samples: 16 disease and 12 control
samples.

1 [164]

GDS171 Gene expression profile of proliferating normal
peripheral blood mononuclear cells (PBMC) in-
fected with HIV-1. 3 infected and 3 uninfected
for each time samples for each time points:
t=0,12,24,48,72 hours

1 [165]

Table 5.5: Gene expression data sets are derived from the Gene Expression Omnibus (GEO) of
NCBI [156] available at http://www.ncbi.nlm.nih.gov/geo/. The dataset ids are given in the
first column, which can be queried in GEO. The second column describes the dataset. In the third
column, samples are compared. The fourth column lists the number of features derived from the
respective datasets. The reference reporting the gene expression study is given in the last column.

Four features derived from three gene expression studies (see Table 5.5), which reflect
differential expression patterns of human genes across HIV-1 infected vs. uninfected
samples. The differential expression for a human gene i was calculated as the log fold
change:

fdi f f (i) = log
〈g(+)

i 〉
〈g(−)i 〉

In the above equation, 〈g(+)
i 〉 and 〈g(−)i 〉 are the average expression of the gene, i,
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across infected and uninfected samples respectively. In the case of time series experi-
ments, where expression is measured at different time points, samples at each time point
are compared between the infected samples and uninfected samples. The time point
where maximum absolute fold change occurs was used as the feature value. Thus, if the
gene expression of the infected and uninfected samples were measured at n time points,
t1, . . . , tn, and 〈g(+)

i,t 〉 and 〈g(−)i,t 〉 were the average gene expression value at time t for gene
i, across infected and uninfected samples respectively, the feature for the time series is
encodes as:

fdi f f (i) = maxt∈{t1,...,tn}log
〈g(+)

i,t 〉

〈g(−)i,t 〉

5.2.4.5 Tissue Expression Feature

This feature encoded whether the tissues that the human proteins are expressed in are
susceptible to HIV-1 infection or not. The tissues which HIV-1 reported to infected were
obtained from [166]. The tissues where each human protein are expressed were obtained
from HUPA database [157]. The feature value was set to 1 if the human protein was
expressed in one of the HIV-1 susceptible tissues.

5.2.4.6 Sequence Similarity Features

For each pair, two sequence similarity features were utilized: i) pairwise sequence sim-
ilarity and ii) similarity to human proteins’ human PPI partners. The motivation be-
hind the sequence similarity feature was the fact that homo-oligomers including homod-
imers are frequent in protein structures. Similarly, two protein structures with similar
sequences, likely representing similar structures, might interact as well. Pairwise se-
quence similarity was computed for each pair using the BLASTP package [167]. The
best hit subsequence’s − log(e-value) was used as the similarity measure, where e-value
was the expected value of the alignment score to be found merely by chance [167]. In
calculating the similarity between the HIV-1 protein and the human protein’s interaction
partners, pairwise similarities were first calculated, then the maximum similarity score
was chosen among these.
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5.2.4.7 Posttranslational Modification Similarity to Neighbor

Some PPIs require the protein(s) to be in a certain posttranslationally modified state. For
such cases, the HIV-1 protein will require to mimic the posttranslational modification
(PTM) of the human protein’s interaction partner. For example, the N-terminal myristoy-
lation domain of Nef is highly conserved and plays an important role in interacting with
calmodulin. One of calmodulin binding partners is the human protein NAP- 22/CAP23,
which is also myristoylated [168]. The feature was encoded as a binary feature such that
for a pair, the feature takes a value of 1 if at least one of the human protein’s human pro-
tein binders shares at least one common PTM with the HIV-1 protein, otherwise -1. To
this end, we collected the HIV-1 proteins’ PTMs from the literature. Experimentally veri-
fied posttranslational modifications of viral proteins are curated from published scientific
articles manually. The information on post translational modifications each human pro-
tein undergo was obtained from three different databases (see Table 5.3) and combined
using controlled vocabulary of posttranslational modifications provided by the UniProt
database [169].

5.2.4.8 HIV-1 Protein Type Features

To capture the frequency of interaction of each viral protein, HIV-1 protein type fea-
tures(ptf) were used to indicate the HIV-1 protein identity. 17 binary features encoded
which of the HIV-1 protein participates in the pair. That is for the feature encoding vpr’s
identity, all pairs that include vpr, this feature will be 1 and for other pairs it will be -1.

5.2.5 Performance Evaluation

Classifier performance was evaluated with 3-fold cross validation in 10 repeat runs. In
each repeat, a different random negative set is used. At each cross-validation step one
third of the examples are held out for testing. The training data was also further split into
three, and 1/3 was used as the validation data. The parameters for each cross-validation
step were optimized on this set. When evaluating the performance of a classifier on an
imbalanced test set such as is the case here, computing accuracy is not useful because
the majority class can easily be predicted by chance. Therefore, we evaluated the quality

60



of our predictive model using two figures of merits which ignore the success on the TN
rate: the receiver operating characteristic (ROC) curve and precision vs. recall curve
[170]. The Mean Average Precision (MAP) score is used to summarize the precision vs.
recall curve and the area under the ROC (AUC) scores to summarize the ROC curve [170].
As testing the whole list is a tedious task and experimental biologists prefer to proceed
with the most confidently predicted pairs, typically the low FP region of the ROC curve
is of particular interest in the PPI prediction task. To evaluate the model specifically
in this region, the partial AUC scores AUC50, AUC100, AUC200 and AUC300 were
determined, measuring the area under the ROC curve until reaching 50, 100, 200 and 300
FP predictions, respectively.

5.2.6 Assessing Features’ Predictive Power

Gini feature importance was derived from the Gini index described in Section 5.2.2.2 and
is the sum of all decreases in the forest due to a given feature, normalized by the number
of trees in the forest.

5.2.7 GO Enrichment Analysis

GO enrichment of the human proteins involved in the predicted interactions was iden-
tified using Ontologizer 2.0 [171] using the child-term parent intersection method and
using Bonferroni correction for multiple hypothesis testing.

5.3 Results and Discussion

5.3.1 Classifier Performance

We trained a Random Forest classifier with a rich feature set (Table 5.4) derived from
several biological information sources (Table 5.3). The performance of the model was
evaluated through 3-fold cross validation experiments (each cross validation experiment
was repeated 10 times, in each experiment the negative interaction data is selected ran-
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Figure 5.3: The average precision vs. recall curve of the Random Forest model trained on the
complete feature set (solid red line), in comparison to models trained with a subset of features.
The top 3 Gini features are degree, betweenness centrality, and GO neighbor process similarity
features. The top 6 Gini features are the top 3 Gini features plus clustering coefficient, GO
neighbor function, and location features. These are compared to two baseline classifiers, where 6
features were randomly selected from the set of features which does not include the top 6 Gini
features, with and without protein type features (ptf).

domly). The average precision vs. recall curves of these experiments are given in Fig-
ure 5.3 (solid red line). Table 5.6 lists the average MAP, AUC and partial AUC scores of
the model. The model achieves an average MAP score of 0.23(±0.02). For PPI predic-
tions, this is a very good performance, because of the highly skewed class distribution
(ratio of positive:negative pairs of 1:100).
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MAP AUC AUC50 AUC100 AUC200 AUC300

Avg 0.2300 0.9150 0.0670 0.1073 0.1682 0.2156

Ste 0.0039 0.0022 0.0025 0.0030 0.0036 0.0042

Table 5.6: Averages (Avg) and standard error (Std) of MAP, AUC and partial AUC scores over 10
repeated 3-fold cross-validation experiments.

5.3.2 Features’ Predictive Power

Biologically, it is of interest to identify the features contribute the most to the classifi-
cation of protein pairs. This not only helps reveal relationships between different data
sources, but can also suggest which data should be generated by experiments to find
novel interactions in this and other host-pathogen systems. The feature importance was
assessed based on the Gini importance of the Random Forest classifier (see Section 5.3.2).
Strikingly, the graph property and the GO neighbor similarity features are ranked at the
top, as shown in Figure 5.4.
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Figure 5.4: Gini importance indices for each feature. Protein type features are grouped together.

To assess the extent to which these features are predictive, we built models using the
same train/test data splits as before with only the top 3 and top 6 Gini feature. The top 3
Gini features are degree, betweenness centrality and neighbor GO process similarity Fig-
ure 5.4 and the top 6 Gini features in addition include clustering coefficient, neighbor GO
function, and cellular location similarities. These models were compared to two baseline
models. In the first, the Random Forest classifiers were trained with 6 features selected
randomly from the set of features excluding the top 6 Gini features. These random fea-
ture sets include the 17 protein type features (ptf), one for each HIV-1 protein. Since
these vectors alone do not contain much information, this model forms a weak baseline.
A second stronger baseline was built, where the 6 features are randomly selected from
the set of features excluding ptf and the top 6 Gini features. Figure 5.3 compares the
performance of the above 5 models. The top 6 Gini model performs quite strongly com-
pared to both baselines. However, this model is not as good as the model built using the
complete feature set. The top 3 Gini model performed significantly worse than the top 6
Gini model, but significantly better than the two baseline models suggesting that the ad-
ditional top 3 features contain independent and complementary information. Statistical
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significance of these differences was confirmed by using on paired t-test comparison of
the 30 experiments’ MAP scores (at a significance level of 0.05).

Figure 5.5: The precision vs. recall curves of the models trained with and without protein type
features.
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Figure 5.6: The number of human partners, degree, in the human PPI network (black) is plotted
and compared with the degree distribution calculated over random graphs (white). The random
graphs are generated by choosing each HIV-1 protein’s neighbors uniformly at random from the
all human protein set. 10.000 random graphs were generated

The above analysis reveals that the graph features and neighbor similarity features
are very informative confirming our intuition in incorporating human interactome knowl-
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edge into the model. Graph properties have also been found previously useful in the
intra-PPI network prediction task [20, 172, 173]. Furthermore, it has been proposed ear-
lier that pathogens exploit network properties of the human interactome: it was shown
that the Epstein-Barr virus targets high degree human proteins [41]. Similarly, Dyer et
al. [174] reported pathogens tend to interact with host proteins with high degree and
betweenness centrality. In analyzing the degree distribution of the HIV-1 proteins’ hu-
man interaction partners, we also found an enrichment of hub proteins (see Figure 5.6).
The significant performance difference between the top 6 Gini model and the complete
model shown in Figure 5.3 indicates that the lower ranked features also contribute to
the final performance. For example, the removal of ptf levels off the precision vs. recall
curve with respect to the complete feature set (see Figure 5.5. The reason why some of
these features’ Gini importance scores are very low could be due to their low coverage
(see Table 5.4).

5.3.3 Comparison with Other Biological Information

Precision Recall Total Group 1 Group 2 Novel

0.51 0.20 3373 1045 243 2085

0.37 0.29 1948 1033 153 762

0.26 0.36 1442 1019 79 344

0.18 0.41 1087 889 41 157

0.13 0.47 630 543 18 69

0.09 0.47 284 247 9 28

Table 5.7: Number of predicted pairs at different choices of Random Forest score cutoff. Average
recall and precision was calculated on the held-out test sets in cross-validation experiments.

A final model was trained with all available positive data. All HIV-1, human pairs were
ranked according to their Random Forest score. The score measures the difference be-
tween positive and negative votes from the decision trees in the trained Random Forest
model and reflects the margin of the decision. The derived ranke ordered list is available
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at URL www.cs.cmu.edu/~oznur/hiv/hivPPI.html. The set of predicted interactions de-
pends on the chosen Random Forest score threshold; lowering the threshold will increase
the TP rate at the expense of a higher FP rate. Table 5.7 presents the number of predicted
interactions for different cutoff values (the precision recall values at that cutoff is given
instead of the cutoff). At the lowest threshold considered (0), 2085 novel interactions are
predicted, of which 1 in 5 interactions is expected to be true based on precision measured
on the set of interactions withheld. Also reported in Table 5.7 group 2 predictions, which
are those pairs that are reported in the NIAID database with weak keywords, but have
not been used in model building. When also predicted as positive interactions, those
associations reported in the literature are interesting predictions to pursue. The predic-
tions referred to as ‘Novel’ in Table 5.7 are the predictions that are not reported in the
NIAID database at all.

The predictions were also examined in light of the three siRNA screens that have
been reported to have an effect on HIV-1 infection upon silencing [72–74]. Zhou et
al. screen identified 291 human genes to be potentially important in the virus screen,
whereas Brass et al. revealed 281 genes and König et al. revealed 295 genes. In addition
to the overlap of the predicted human proteins, but I also examined whether the human
protein is one of the reported siRNA genes’ interaction partner in the human PPI net-
work, since siRNA screens do not necessarily reveal direct interactions. We compared
the predictions with a second type of biological data ‘in virion’. These are the proteins
detected in the HIV-1 virion [175]. There are 314 human proteins of them. Table 5.8
gives the size of the overlap of the model’s predictions with these datasets. Although the
comparison cannot provide means to verify the predictions; the overlapping pairs would
be of particular interest to HIV-1 virologists: the siRNA data provide experimental evi-
dence pointing at their functional relevance and the in virion overlapping set could help
differentiate between mere by-stander human in virion proteins from those with func-
tional roles for the virus. A subset of the predictions were followed up by colocalization
studies.
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Group 1

Precision Recall In
Virion

Brass Brass In-
teractor

König König In-
teractor

Zhou Zhou In-
teractor

0.51 0.20 153 36 351 63 110 37 383

0.37 0.29 150 36 351 63 110 37 382

0.26 0.36 147 36 347 63 109 36 376

0.18 0.41 135 34 331 60 106 33 360

0.13 0.47 82 18 244 42 89 21 274

0.09 0.47 35 8 142 23 51 9 159
Group 2

Precision Recall In
Virion

Brass Brass In-
teractor

König König In-
teractor

Zhou Zhou In-
teractor

0.51 0.20 36 4 125 7 55 12 154

0.37 0.29 26 3 87 5 40 6 104

0.26 0.36 13 1 46 3 21 2 53

0.18 0.41 6 1 27 3 12 1 29

0.13 0.47 4 1 14 2 6 1 15

0.09 0.47 2 0 8 0 3 0 8
Novel

Precision Recall In
Virion

Brass Brass In-
teractor

König König In-
teractor

Zhou Zhou In-
teractor

0.51 0.20 240 46 1054 77 422 73 1101

0.37 0.29 99 14 435 21 182 26 456

0.26 0.36 45 5 208 11 99 9 210

0.18 0.41 17 2 97 7 54 5 98

0.13 0.47 8 1 49 4 28 0 51

0.09 0.47 4 0 25 2 14 0 23

Table 5.8: Number of predicted pairs at different choices of Random Forest score cutoff. Average
recall and precision was calculated on the held-out test sets in cross-validation experiments. The
table presents the overlap (the number of the predicted pairs including the reported human gene)
between the new predictions and three siRNA screens [72–74] and in Virion [175] datasets (for
details, see text). ’Interactor’ refers to the predicted interactions, where the human protein is at
least one of the siRNA reported human protein’s interaction partner. The comparison is divided
into three groups Group 1, Group 2 and Novel.
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5.3.4 Enriched Functions and Biological Processes

A global analysis of the predicted interactions by assessing the enrichment of GO func-
tional terms in predicted Group 2 and novel interactions revealed 31 molecular pro-
cesses, 19 biological functions and 14 cellular components (p ≤ 0.01). Partial lists of
significantly enriched GO terms for molecular process, function and cellular location
are given in Tables 5.9, 5.10, 5.11 respectively. The full lists can be obtained in Supple-
mentary Tables S5-S7 of [125]. For example, transcription regulator-, ligand-dependent
nuclear receptor-, MHC class I receptor-, and protein kinase C activities are highly en-
riched molecular functions, while immune system process and response to stimulus are
highly represented processes. Finally, macromolecular complex, membrane-enclosed lu-
men and plasma membrane are the top most significant cellular compartments.

GO term ID GO term name p-value

GO:0030528 transcription regulator activity 3.52e-38
GO:0005515 protein binding 2.97e-29
GO:0005488 binding 9.33e-20
GO:0008134 transcription factor binding 7.75e-18
GO:0003677 DNA binding 1.83e-13
GO:0004879 ligand-dependent nuclear receptor activ-

ity
1.85e-12

GO:0005057 receptor signaling protein activity 1.02e-08
GO:0016740 transferase activity 5.64e-08
GO:0032393 MHC class I receptor activity 5.83e-08
GO:0003676 nucleic acid binding 1.24e-07

Table 5.9: Enriched GO molecular function in the unique set of human proteins that involve novel
and Group 2 predicted interactions.
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GO term ID GO term name p-value

GO:0002376 immune system process 2.03e-54
GO:0051704 multi-organism process 2.11e-45
GO:0050896 response to stimulus 8.12e-44
GO:0043170 macromolecule metabolic process 3.83e-24
GO:0008150 biological-process 5.02e-24
GO:0019882 antigen processing and presentation 1.87e-19
GO:0032502 developmental process 6.36e-19
GO:0048518 positive regulation of biological process 1.73e-17
GO:0044419 interspecies interaction between organ-

isms
2.47e-16

GO:0010467 gene expression 4.30e-16

Table 5.10: Enriched GO molecular processes in the unique set of human proteins that involve
novel and Group 2 predicted interactions.

GO term ID GO term name p-value

GO:0032991 macromolecular complex 2.07e-45
GO:0031974 membrane-enclosed lumen 2.76e-35
GO:0005886 plasma membrane 1.36e-24
GO:0042611 MHC protein complex 1.26e-18
GO:0005829 cytosol 1.30e-17
GO:0043226 organelle 1.19e-13
GO:0044459 plasma membrane part 1.68e-13
GO:0005634 nucleus 2.11e-10
GO:0043234 protein complex 6.48e-10
GO:0005575 cellular-component 1.47e-08

Table 5.11: Enriched GO cellular components in the unique set of human proteins that involve
novel and Group 2 predicted interactions.

5.3.5 Colocalization of Selected Host Proteins with Vpr and Capsid

As a follow up experiments, a subset of host proteins that were predicted to interact with
an HIV-1 protein according to the model were selected to check whether they colocalize

70



with the viral proteins vpr and capsid. The experiments were conducted through cell
live imaging microscopy (carried out by external collaborators Section 5.5). As proximity
of two proteins is not enough evidence to conclude two proteins are in contact, these
colocalization experiments cannot validate the presence of an interaction. However, they
provide additional support for the validity of the interaction and the fact that the ex-
periments were carried out in living cells strength this support. Percent colocalization
results of 21 host proteins with vpr and capsid are shown in Figure 5.7. In these ex-
periments, cyclophilin A PPIA or CypA) is used as a positive control as it is known to
interact both with vpr [176] and capsid [177]. If one assumes that every pair that has per-
cent colocalization > 0% is colocalized, then 4 predictions for vpr are confirmed. These
are PPIA (CypA), KARS, EEF1A1 and SMAD3 (see Table 5.12). KARS and PPIA(CypA)
showed stronger signal than EEF1A1 and SMAD3. Earlier in vitro pull down assays,
KARS has been reported to interact with capsid [178]. Table 5.12 provides more detailed
information on these four proteins. Similarly, among the 21 host proteins, there are 4
proteins that are identified as predicted interaction partners. Those 4 proteins are PT-
GES3, SMAD3, UBE2I and XPO1. These four proteins showed a colocalization to varying
degrees Table 5.13. In the infectivity assays described in section above, PTGES3’s role as
a host factor is rejected and XPO1 was classified into the indeterminate set. It could be
that the colocalization of these two proteins is unspecific. SMAD3, on the other hand,
shows a weak colocalization result.
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Figure 5.7: Percent colocalization of host proteins with vpr(blue) and capsid(blue). The percent
colocalization is calculated by number of particles overlapping divided by the number of viral
protein particles. The experiments are averaged over 3 replicates. The first row indicates whether
the host factor is predicted to interact with any of the viral proteins; those that are predicted
are shown in green and check marked. The next two rows in the lower table list whether the
corresponding protein is predicted with capsid or vpr. In the subsequent rows, the information
whether the host protein is called as a host factor in the four genome-wide screens is given.
Whether in König et al. [74], Brass et al. [72], Zhou et al. [73] or Yeung et al. [79], the white cells
indicate the human genes are not called as a host factor by the screen.
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Gene Gene name %Colocalization
with capsid(±
std)

Evidences HIV-1 interactors re-
ported in NIAID (key-
words)

Normal-
ized RF
score

PPIA cyclophilin A 17.54(1.66) detected
in virion

nef[binds], vif[binds],
vpr[isomerized by],
gp120[inhibits, re-
quires], capsid[binds,
interacts with, isomer-
ized by, modulates, sta-
bilizes], matrix[binds],
pr55[binds, incorpo-
rates, modulated by]

0.42

KARS lysyl-tRNA syn-
thetase

17.01(3.20) con-
firmed,
König

vpr[inhibits], cap-
sid[interacts with],
pr55[incorporates,
interacts with], pro-
tease[inhibited by]

0.32

EEF1A1 eukaryotic trans-
lation elongation
factor 1 alpha 1

6.79(0.51) - tat[interacts with], ma-
trix[binds, inhibits],
integrase[binds]

0.02

SMAD3 SMAD family
member 3

3.69(0.92) - tat[inhibited
by,stimulated by]

0.02

Table 5.12: Colocalization results for genes predicted to interact with capsid.
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Gene Gene name %Colocalization
with vpr(± std)

Evidences HIV-1 interactors re-
ported in NIAID (key-
words)

Normal-
ized RF
score

PTGES3 Prostaglandin E
synthase 3

10.30(0.95) rejected,
König

vpr[interacts with] 0.34

SMAD3 SMAD family
member 3

0.77(1.33) N/A tat[inhibited by, stimu-
lated by]

0.33

UBE2I ubiquitin-
conjugating
enzyme E2I

8.80(1.95) N/A p6[interacts with] 0.22

XPO1 Exportin 1 24.40(3.39) indeter-
minate,
Zhou

rev[binds, co-localizes
with, enhanced by, ex-
ported by, inhibited by,
interacts with, mod-
ulated by, recruits],
vpr[exported by], ma-
trix[exported by]

0.01

Table 5.13: Colocalization results for genes predicted to interact with vpr.

5.4 Conclusions

In order to assist the experimental efforts for rapidly inferring the complete HIV-1,human
physical interactome a supervised model for predicting HIV-1, human PPI prediction
task was presented in this Chapter. This model was to my knowledge the first attempt
in the literature that predicted the global set of interactions between HIV-1 and human
host cellular proteins [125]. In building this model, relevant biological information is
compiled from various data sources and encoded as features to serve as evidence in
the prediction task. The biological information included co-occurrence of functional
motifs and their interaction domains and protein classes, gene ontology annotations,
posttranslational modifications, tissue distributions and gene expression profiles, topo-
logical properties of the human protein in the interaction network and the similarity of
HIV-1 proteins to human proteins’ known binding partners. A Random Forest classi-
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fier was built on this extensive dataset. The model’s predictions achieved an average
Mean Average Precision (MAP) score of 23%. Gene Ontology enrichment analysis in
the predicted set of human partners identified immune system related processes as the
top ranked molecular processes. In Chapter 5 we provided a list of putative interactions
based on a supervised learning model. Pittsburgh Center for HIV-1 Protein Interactions
conducted live cell imaging experiments to check 21 host proteins’ colocalization with
vpr and capsid. These results provided additional evidence in support of some of our
predictions.

5.5 External Collaborators

Colocalization experiments were conducted by the laboratory Dr. Simon Watkins of
University of Pittsburgh as part of the Pittsburgh Center for HIV-1 Protein Interactions.
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Chapter 6

Extended Model with New Feature
Set

6.1 Overview

In Chapter 5, a supervised classifier for predicting HIV-1,host physical protein-protein
interactions was introduced. This model was trained on 35 features derived from various
biological data sources and information specific to HIV-1 viral infection. These features
carried indirect information about PPIs such as gene expression of host proteins in the
presence of HIV-1 infection, domain and sequence pairs, functional annotations of the
proteins and relationship of human proteins with one another. Since then, several new
biological information sources pertinent to HIV-1, host relation have become available.
This also includes for the first time the direct interaction data. Here, we present an
improved model into which we incorporated these additional sources. These datasets
include i) four genome-wide RNA inference screens aimed at establishing host proteins
required for HIV-1 replication, ii) a high-throughput immunoprecipitation pull-down
mass spectrometry assay for detecting viral and host PPIs, iii) a set of human proteins
reported to interact with viruses’ proteins and iv) knowledge of human proteins detected
in budding HIV-1 virions. We utilized our knowledge of the context of the host cellular
machinery to incorporate new features into our models based on these datasets. The
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model trained with the richer feature set outperforms the first model by a 13% relative
increase in mean average precision. The set of predicted interactions serves as biological
hypotheses to test. In this section, these biological information sources and features de-
rived from them are detailed; subsequently, we report empirical performance evaluation
of the model.

6.2 Methods

6.2.1 Problem Setting and Formulation

The same problem formulation as described in Chapter 5 for the earlier model was
applied to develop the new model described in this chapter. Predicting physical inter-
actions between HIV-1 and human protein pairs is cast as a binary classification task.
That is, each viral-human protein pair belongs to one of two classes: ‘interaction’ or
‘non-interaction’. Every protein is described with a numeric feature vector, where each
feature describes properties of the human and viral proteins. Using labeled examples of
the two classes and the feature vectors, a function that distinguishes the two classes is
learned. Again, a supervised classifier, the Random Forest classifier [145], was used (see
Section 5.2.2.2 for details).

The positive and negative interactions employed were the same as in the previous
model presented in Chapter 5. The positive interactions are the group 1 subset of HIV-1,
host PPIs deposited in the NIAID database [134, 135]. The positive set included 1063
proteins involving 17 HIV-1 proteins and 721 human proteins. The negative dataset was
chosen uniformly at random. The ratio of the negative to positive class was assumed to
be 100:1, a value chosen based on the average number of such interactions involving HIV-
1 proteins. In training, the negative to positive example ratio was treated as a parameter
and was optimized through cross-validation.
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6.2.2 New Features Included

Feature name Number
of fea-
tures

Feature
type

Description

IP-MS spectrometry 1 HV, HPPI Encodes the score of the protein pair in the
high-throughput IP mass spectrometry pull
down assay.

IP-MS spectrometry
complex

1 HV, HPPI Encodes the IP-Mass spectrometry results
together with human complex information.

RNAi hits 1 H Encodes in fraction of genome wide RNAi
screens the gene is called as a hit.

RNAi hits complex
enrichment

1 H, HPPI Encodes whether the human protein is part
of an RNAi hit enriched complex.

RNAi hits pathway
enrichment

1 H, HPPI Encodes whether the human protein is part
of an RNAi hit enriched pathway.

In virion feature 1 H Encodes whether the human protein is de-
tected in a budding virion.

Other virus interac-
tors

1 H Encodes if the human proteins is reported to
interact with other human infecting viruses.

Table 6.1: Additional features derived for prediction of interactions between HIV-1 and human
proteins. The first column lists the name of feature; the second column indicates number of
features of this type. The third column, ‘feature type’, describes whether the feature is specific
to the HIV-1 protein pair (HV), specific only to the human protein (H) or specific only to the
HIV-1 protein (V). Those features that make use of the human proteins connectivity knowledge
are also indicated in this column by ‘HPPI’. The last column provides a brief description of how
the feature was encoded.

The previous feature set used to train the first model described in Chapter 5 to predict
PPIs between HIV-1, human proteins, was derived from various data sources. A total
of 35 features were derived. This feature set is summarized in Table 5.4 and details of
the data sources and the encodings are provided in Section 5.2.4. This feature set will
referred to as feature set 1. Feature set 1 was expanded by the addition of new features,
which are listed and summarized in Table 6.1. This expanded feature set includes a total
of 42 features and will be referred to as the final feature set. Below, the new features and
their encodings are detailed and the rationale behind them are explained.
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6.2.2.1 Features Based on Interaction Data Derived from Immunoprecipitation Assay
Coupled with Mass Spectrometry
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Figure 6.1: The HIV-1, human protein pairs identified in the IP-MS experiment are scored accord-
ing to specificity, reproducibility and abundance.

Immunoprecipitation coupled with mass spectrometry (IP-MS) identification is a
powerful method for detecting PPIs in vitro, as discussed in Section 2.2.1.2. Krogan et al.
applied this method to identify complexes formed between HIV-1 proteins and human
proteins (unpublished). A list of human proteins that were identified in pull-down exper-
iments from HEK293 cells transfected with single HIV-1 proteins was obtained from the
Krogan lab. In this study, every HIV-1 protein was analyzed at least four times in inde-
pendent pull-down experiments; the resulting HIV-1, human protein pairs were scored
according to specificity, reproducibility and abundance referred to as MIST score (Kro-
gan et al. unpublished). Figure 6.1 displays the distribution of these scores. The higher
the score, the more likely the protein pair represents a true interaction. We encoded two
features using this dataset:

Mass spectrometry feature: The first mass spectrometry feature for human protein h
and viral protein v , fmass(h, v), was encoded based on discretization of the MIST score
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into four bins over the range [-1,1]. Protein pairs that were not pulled down were scored
as −1.

Mass spectrometry complex feature: IP-MS experiments suffer from certain limitations
and biases as described in Section 2.2.1.2. The primary problem of these experiments for
their use in PPI prediction task is inclusion of indirect interaction partners. To account for
such possible experimental bias, a second feature was included, in which these indirect
relationships were taken into account. For each of the human proteins pulled down in
the mass spectrometry experiment I checked if, other human proteins which participate
in a complex with the respective protein. The complex membership information was
retrieved from the CORUM database (see below). The proteins pulled down by a given
viral protein and the complexed human proteins were scored in the same way as the
actually identified human-viral protein pair.

Specifically, let H be the set of human proteins pulled down with virus protein v
and let M be the set of human proteins known to be in a complex with at least one
human protein in H. The mass spectrometry complex feature (masscomplex) ∀ m in M
is defined as:

fmasscomplex(m, v) = max
h∈H

( fmass(h, v)) (6.1)

The human protein complexes were obtained from CORUM database, downloaded
on 08/19/2009 [179]. The dataset contains 1,342 human protein complexes, which were
manually annotated from experiments published in scientific articles.

6.2.2.2 RNA Interference Screens Hits

Four genome-wide RNAi screens have been conducted with HIV-1 to identify host fac-
tors required for viral infection, as listed in Table 2.5. Although these screens aimed at
identifying the complete set of host factors, the resulting gene sets lacked overlap (see
Figure 6.3 a). While the individual genes identified by the RNAi screens may not be
reproducible between screens, the screens identified related genes. For instance, many
of the subunits of the mediator complex were identified by one of the screens but only
a few of them were identified by multiple screens (Figure 6.2). To quantify this obser-
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vation, we calculated the overlap among the screens by taking into account the cellular
interactions within the host. Two genes were considered overlapping if they were part
of the same complex (see Figure 6.3 or b) or part of the same pathway (see Figure 6.3 c).
With this modified criterion, the pairwise overlaps among the screens are much larger
(compare Figure 6.3 a with 6.3 b and c). These results indicate that host factors detected
in different screens are indirect or direct interactors of one another. When creating RNAi
features, these indirect relationships were considered. Below, we describe the three fea-
tures developed based on the RNAi screens.

König  and Zhou et al.

Brass and Zhou et al.

Brass and König et al.

MED19

MED4

MED11

MED15

MED7

MED26

MED31MED27 MED17

MED20
MED6 

MED14

MED8

Brass, König and Zhou et al.

König et al.

Zhou et al.

Mediator Complex

Screens identified the subunits as hits

Figure 6.2: Mediator complex subunits identified by one or more genome-wide RNA inferences
screens.

RNA interference hits feature: This feature scores the viral-host protein pairs based
on how many screens called the human gene as a host factor important for the viral
infection.
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Figure 6.3: Overlap among the four published genome-wide RNA inference screens based on
different overlapping criteria. Overlap is calculated if genes in different screens are a) identical,
b) share a complex membership and c) share a pathway membership.

RNA interference complex enrichment features: Because the genes identified in the
RNAi screens do not necessarily detect directly interacting host factors and my analysis
on the overlap shows that different screens capture related proteins, I incorporated the
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cellular context. This feature utilizes the human protein complexes that are statistically
enriched by the RNAi hit genes. Examples of human protein complexes which include
statistically significant numbers of RNAi detected genes are given in Table 6.2. The
feature scores host viral protein pairs that belong to one of the enriched complexes as
1 and as −1 otherwise. The human protein complexes were obtained from CORUM
database (downloaded on 08/19/2009)[179].

RNA interference pathway enrichment: Similar to the complex enrichment feature, we
make use of the pathway knowledge in this feature. Compared to protein complexes,
pathways include more distant, indirect relationships. We identified human protein path-
ways that are statistically enriched with RNAi hits (p-value ≤ 0.01). The human proteins
part of these pathways formed a set, P. The feature scores the protein pairs, which are
composed of human proteins from this list as 1 and −1 otherwise. Example of enriched
pathways are shown in Table 6.3. The human protein pathways were acquired from Path-
way Commons, downloaded on 01/26/2010 [180]. Pathways including HIV-1 proteins,
or related to HIV-1 infection were excluded from the list of pathways.

Name of the complex Number of
subunits in
the complex

Number of genes
detected in the
RNAi screens and
encodes the com-
plex’s subunits

p-value

Mediator complex 32 14 8.82e-11
Spliceosome 140 28 1.74e-10
BRCA1-RNA polymerase II complex 26 12 9.30e-10
Nuclear pore complex 28 12 2.67e-09
RNA polymerase II holoenzyme complex 24 11 5.20e-09
PA700-20S-PA28 complex 36 13 7.12e-09
26S proteasome 22 10 2.91e-08
C complex spliceosome 79 17 2.18e-07
CRSP complex 12 7 4.27e-07

Table 6.2: Example of protein complexes enriched in the set of RNA interference detected human
genes.
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Name of the pathway Number of
genes in the
pathway

Number of genes
detected in the
RNAi screens and
encodes the path-
way proteins

p-value

Gene expression 360 72 5.36e-25
mRNA capping 276 54 1.31e-18
RNA polymerase II transcription 292 55 3.77e-18
mRNA processing 278 53 8.91e-18
Influenza infection 186 38 4.81e-14
Ubiquitin mediated degradation of phospho-
rylated Cdc25A

57 17 1.05e-09

mRNA editing: C to U conversion 178 27 1.73e-07

Table 6.3: Example of pathways enriched with RNAi genes.

The statistically enriched complexes and pathways are selected by calculating a p-
value of the overlap between the RNAi screens and the pathway/complex genes. For a
given pathway or complex, p, we define the set of genes that encode the proteins in the
complex or pathway as Gp. The union set of genes called by the four RNAi screens is
referred to as Gr. The size of overlap among the two gene sets is k. Ga denotes the set
of all possible genes. We use hypergeometric distribution, also known as the one-tailed
Fisher’s exact test, to calculate a p-value for the size of the overlap:

p =
min(Gp,Gr)

∑
i=k

(Gp
i )(

Ga−Gp
Gr−i )

(Ga
Gr
)

6.2.2.3 Human Proteins Detected in HIV-1 Virions

During budding from the cell membrane multiple host proteins, along with genomic
RNA and viral proteins, are packaged into the virion. While some of these proteins are
merely bystanders and are incorporated into the virion by chance due to their proximity
to the virus budding site, others are known to play key roles in the viral life cycle or in
pathogenesis [175]. In Chapter 5, we have used this biological information as an external
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validation of the trained model. Here, we include these data as a feature. The dataset
used [175] includes 314 human genes detected experimentally in the virion. The virus-
host protein pairs were scored as 1 if the human protein belongs to this dataset and −1
otherwise.

6.2.2.4 Other Virus-Host Interactions

Protein name Viruses

Histone acetyltransferase p300 BPV, HAdV, HIV, HPV, MPyV, SV
Cell division control protein 2 homologue EBV, HAdV, HIV, HPV, SV
Serine/threonine-protein phosphatase 2A HIV, HPV, MPyV, RSV, SV
CREB-binding protein HAdV, HIV, HPV, MPyV, SV
TATA-box-binding protein BPV, HAdV, HIV, HPV, SV
Transcription initiation factor IIB BPV, HHV, HIV, HPV, SV
Transcription initiation factor TFIID SV, HIV, HAdV, BPV, HPV

Table 6.4: Example of proteins targeted by multiple viruses. The abbreviations for the viruses are
listed in Notation section.

Host-virus interactions involving many different viruses including but not limited
to HIV-1 are being catalogued in the VirusMint database [181]. Given that all viruses
encounter similar barriers when using a human cell as a host, viruses are likely to recruit
similar host cell components. It has been shown that different viruses target proteins
that participate in the same pathway [182]. Table 6.4 provides some examples on how
the same protein has been reported to interact with different viruses. Capitalizing on
these observations, we include the information whether the human protein is targeted
by a virus other than HIV-1 as a feature.

6.2.3 Performance Evaluation

The performance of the models was evaluated through 3-fold cross validation experi-
ments. Each cross-validation experiment was repeated 10 times; in each experiment, the
negative interaction data and the splits are chosen randomly. The same fold splits were
used as with the experiments described in Chapter 5 to allow for a fair comparison. We

85



evaluated the quality of the new predictive model using two figures of merits that ignore
the success on the true negative (TN) rate: the receiver operating characteristic (ROC)
curve and the precision vs. recall curve [170]. The Mean Average Precision (MAP) score
was employed to summarize the precision vs. recall curve and the area under the ROC in
order (AUC) to summarize the ROC curve as a scalar score that ranges between 0 and 1
[170]. Since the low false positive (FP) region of the ROC curve is of particular interest in
the PPI prediction task, the partial AUC scores AUC50, AUC100, AUC200 and AUC300
were determined by measuring the area under the ROC curve until reaching 50, 100, 200
and 300 FP predictions, respectively.

6.2.4 Gene Ontology Enrichment Analysis

The significantly enriched GO terms in the list of human proteins involved in the pre-
dicted interactions were identified using Ontologizer 2.0 [171] using the child-term par-
ent intersection method and using Bonferroni correction for multiple hypothesis testing.

6.3 Results and Discussion

MAP AUC AUC50 AUC100 AUC200 AUC300
Feature set 1 0.2300 0.9150 0.0670 0.1073 0.1682 0.2156

Final feature set 0.2598 0.9270 0.0797 0.1264 0.1921 0.2424

Table 6.5: Performance comparison of the HIV-1 model trained with feature set 1 and the final fea-
ture set. Averages of MAP, AUC and partial AUC scores over 10 repeated 3 fold cross-validation
experiments are presented. Standard errors of the experiments can be found in the extended
table Table 6.6.
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Figure 6.4: Comparison between the two models i) the model trained on feature set 1 decribed in
Chapter 5 (red curve) ii) the new model trained on final feature set (black dashed curve).

A Random Forest classifier with this extended feature set (features listed in Table 5.4
and the new features listed in Table 6.1) was trained to contain a total of 42 features.
The performance of the model is evaluated through 3 fold cross-validation experiments.
Each cross-validation experiment was repeated 10 times; in each experiment the negative
interaction data and the data splits were selected randomly. Average precision vs. recall
curves of these experiments are shown in Figure 6.4 (red curve). Table 6.5 lists the
average MAP, AUC and partial AUC scores of the new model. The new model achieved
an average MAP score of 0.26. This is a 13% relative increase on the first model described.

6.3.1 Features’ Contribution to the Performance
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Figure 6.5: Each subfigure shows precision recall curves of three models trained with three dif-
ferent feature sets : i) feature set 1 described in Section 5.2.4 ii) a new feature added to the feature
set 1 iii) all new features added to feature set 1.
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In order to evaluate the contributions of the individual features to the performance, I
trained and tested several models, where new features were added one by one to feature
set 1. Figure 6.5 illustrates the precision recall curves of the models trained with feature
set 1, adding a new feature to the feature set and the final set where all the new features
are added to the feature set 1. The curves indicate that features act differently across
different recall ranges. In high recall regions, the mass spectrometry data improve the
precision (Figures 6.5 c,d). The RNAi pathway enrichment feature improves the precision
in most recall ranges (Figure 6.5 b). The performance comparison based on AUC and
MAP scores shows that the in virion features and mass spectrometry features alone did
not lead to a significant improvement in MAP and AUC scores (Figures 6.5 e, f). Instead,
the RNAi enrichment features lead to the largest increase in performance.
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(a) Addition of all RNAi features
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(b) Addition of all mass spectrometry features

Figure 6.6: Precision recall curves of three models: i) Model trained with feature set 1 (described
in Section 5.2.4) ii) a) all mass spectrometry features b) all RNAi features added to the feature set
1 iii) all new features added to feature set 1(described in Section 6.2.2).

In order to further assess the contribution of RNAi features and mass spectrometry
features, the features were grouped and new models were trained. Figure 6.6 demon-
strates the performance of these models, pointing to the predictive power of the RNAi
features. MAP and AUC scores of these experiments are provided in Table 6.6.
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6.3.2 Predicted Interactome

Having evaluated the model, a final model was trained with all available positive interac-
tions. All HIV-1, human pairs were ranked according to their Random Forest score. The
score measures the difference between positive and negative votes of the decision trees in
the forest. The higher the score of a pair, the higher the likelihood the model predicts that
pair to be an interaction. At an Random Forest score cutoff of zero, the model predicts
2803 interactions between 1272 human proteins and 17 HIV-1 viral proteins. The set of
predicted interactions depends on the chosen Random Forest score threshold; lowering
the threshold will increase the true positive (TP) rate at the expense of a higher false
positive (FP) rate. In the following sections, first an experimental result verifying one
of the predictions is described. Subsequently, enriched GO terms in the predicted host
factors are provided.

6.3.3 An Independent Experimental Validation, SUMO2 Interaction with the
Viral Protein Integrase

Strong evidence supporting one of the new predictions has recently been reported in-
dependently [183]. Interaction of SUMO2 with HIV-1 protein integrase is in the new
prediction list (score 0.15) and has not been reported in the NIAID database. Viral pro-
tein integrase takes role in the integration of the viral cDNA into the host genome, and
also functions in other steps of replication. SUMO2 is one of the four SUMO proteins
that the human genome encodes. Sumoylation is a post-translational modification that
consists of the covalent attachment of small ubiquitin-like modifier (SUMO) peptides to
a lysine residue. SUMO modification can lead to diverse cellular consequences; it can
affect signal transduction, protein stability and localization and transcriptional regula-
tion [184]. It is also well established that several viral proteins are either sumoylated or
interfere with the sumoylation pathway [185]. In the case of HIV-1, p6 has been shown
to interact with the SUMO1 protein [186], but the interaction with integrase has not been
reported.

Zamborlini et al. [183] very recently reported that HIV-1 integrase is sumoylated
and that the three lysine residues of integrase sequence are SUMO-acceptor sites. They
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reported that mutation of SUMO-acceptor residues in integrase led to reduced infec-
tivity and slower replication kinetics. Their experimental results demonstrated that
sumoylation-defective integrase mutants showed a significant decrease in integration
events compared to HIV-wild type infected cells. These results are also in accordance
with the genome-wide siRNA screen of König et al. [74], who also discovered SUMO2
as a required host factor for viral replication. This independent validation shows how
several lines of evidences can lead to promising biological hypotheses.

6.3.4 Enriched Functions and Biological Processes

To gain insight into the system properties of the new model, the significantly enriched
GO functions, molecular processes and cellular components among the list of predicted
human interaction partners were calculated. Terms related to protein binding, transcrip-
tion regulation activity and nucleic acid binding were highly enriched. Also, proteasome
complex terms were highly enriched. The complete list of significantly enriched terms
for the three GO ontologies can be found in Tables 6.7, 6.8 and 6.9, respectively. The
enriched functions and biological process for this model includes similiar terms as the
previous model, such as transcription factor binding but also include GO terms that are
different such as muscle contraction or DNA clamp loader activity.

GO term ID GO term name p-value

GO:0032395 MHC class II receptor activity 0.00e+00
GO:0003689 DNA clamp loader activity 0.00e+00
GO:0033170 protein-DNA loading ATPase activity 0.00e+00
GO:0046965 retinoid X receptor binding 0.00e+00
GO:0004972 N-methyl-D-aspartate selective glutamate receptor activity 0.00e+00
GO:0005515 protein binding 1.01e-179
GO:0030528 transcription regulator activity 2.56e-61
GO:0003677 DNA binding 5.42e-59
GO:0008134 transcription factor binding 5.77e-59
GO:0003712 transcription cofactor activity 9.16e-55
GO:0000988 protein binding transcription factor activity 1.90e-54

Table 6.7: Examples of enriched GO molecular function terms in the set of human proteins that
participate in the predicted HIV-1, host PPI network.
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GO term ID GO term name p-value

GO:0006936 muscle contraction 8.98e-03
GO:0007229 integrin-mediated signaling pathway 8.94e-03
GO:0043506 regulation of JUN kinase activity 8.94e-03
GO:0071479 cellular response to ionizing radiation 8.77e-03
GO:0045736 negative regulation of cyclin-dependent protein kinase ac-

tivity
8.77e-03

GO:0060444 branching involved in mammary gland duct morphogene-
sis

8.77e-03

GO:0007276 gamete generation 8.72e-03
GO:0045137 development of primary sexual characteristics 8.37e-03
GO:0046627 negative regulation of insulin receptor signaling pathway 8.16e-03
GO:0008584 male gonad development 8.12e-03
GO:0031668 cellular response to extracellular stimulus 7.76e-03
GO:0007267 cell-cell signaling 7.68e-03
GO:0046883 regulation of hormone secretion 7.57e-03
GO:0071445 cellular response to protein stimulus 7.37e-03
GO:0006874 cellular calcium ion homeostasis 7.11e-03

Table 6.8: Examples of enriched GO biological process terms in the set of human proteins that
participate in the predicted HIV-1, host PPI network.

GO term ID GO term name p-value

GO:0005838 proteasome regulatory particle 0.00e+00
GO:0022624 proteasome accessory complex 0.00e+00
GO:0005663 DNA replication factor C complex 0.00e+00
GO:0032991 macromolecular complex 4.21e-174
GO:0005654 nucleoplasm 1.17e-152
GO:0031981 nuclear lumen 1.77e-141
GO:0044428 nuclear part 2.26e-136
GO:0043233 organelle lumen 1.19e-133
GO:0031974 membrane-enclosed lumen 6.63e-133
GO:0005634 nucleus 6.58e-119

Table 6.9: Examples of enriched GO cellular component terms in the set of human proteins that
participate in the predicted HIV-1, host PPI network.
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6.3.5 Comparison of the First Model and the Old Model

Previous model

(3348)

2579 224769

New model

(2803)

Figure 6.7: Comparison between the two lists of predictions at Random Forest cutoff 0 i) the
previous model trained on feature set 1 (decribed in Chapter 5 and ii) the new model trained on
final feature set.

A comparison of the two lists of predictions by the previous model trained on fea-
ture set 1 and the new model trained on the final feature set is provided in Figure 6.7.
Although the overlap between the two predicted sets is quite large (2579), the second
model predicts fewer interactions (2803) than the previous model (3803). The simplest
interpreation of this finding is that the new information included in the model leads
classification of many pairs as negative interactions.

6.4 Conclusions

In this chapter, I described an extended set of features leading to an improved version of
the HIV-1, human PPI prediction model described in Chapter 5. The new model method
was also based on a supervised learning framework. New biological datasets were incor-
porated in the model. These datasets included four RNAi screens and interaction data
from a high-throughput IP-MS experiment, a list of human proteins detected in bud-
ding HIV-1 virions and human proteins targeted by other viruses. Evaluation of features
indicated that RNAi features were the most predictive ones, while other features con-
tributed to the precision across different recall ranges. One of our predictions between
integrase and human protein SUMO2 has been independently validated experimentally
and reported in a recent literature [183].
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Chapter 7

Refining Literature Curated
Protein-Protein Interactions with
Expert Opinions

7.1 Overview

In Chapter 5 and Chapter 6, supervised models for predicting direct HIV-1, human PPIs
were presented. These models made use of a subset of HIV-1, human protein interactions
deposited in the NIAID database [134, 135]. This database was curated from published
scientific articles and reports a mixture of functional associations and physical interac-
tions. Since the goal is to predict direct physical PPIs, I need to distinguish them from
functional and indirect associations. I have selected this set based on the keywords de-
scribing of the interactions in the database as explained in Chapter 5. In this chapter,
efforts to create a higher-quality data set of direct physical interactions of HIV-1 and hu-
man PPIs is described and its value is demonstrated by training and testing a new model.
Specifically, I i) collected opinions of HIV-1 experts about the interactions reported in the
literature ii) formulated a probabilistic framework to assign reliability scores to interac-
tions based on these expert opinions and iii) trained and tested a model using the data
labeled by experts. The method presented here is not limited to curated data on HIV-
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1 protein interactions, but is applicable in general to other bodies of literature-curated
data where it is possible to collect expert opinions. Therefore, this section will present
the method for the general case and then show the specific results for the HIV-1 dataset
in particular.

7.2 Reliability of Literature Curated HIV-1, Human Protein-Protein
Interactions

PPI databases represent tremendous efforts that have been spent on extracting and or-
ganizing interactions reported in small-scale experiments [121, 134, 135, 187–191]. In-
teractions curated from the literature are usually assumed to be of the highest quality
available. However, in recent years several concerns have been raised about the validity of
this widely accepted assumption [136–142]. The common curation protocol for literature
curated PPI databases has been to capture and deposit all interactions that have passed
peer review, without further curator judgment [138]. However, not all the published in-
teractions are equally well-supported by experimental evidence. Some interactions have
been validated by multiple groups and techniques, and the resulting reliability depends
on the proteins studied; other interactions have not been validated in this way. Mackay
et al. [136, 137] argued that many reports of PPIs are founded on ‘insufficient data’ gen-
erated by limited strategies. Additionally, Cusick et al. recently reported that many PPIs
are supported by single publications [142].
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Figure 7.1: Distribution of the number of publications supporting each HIV-1, human protein
interaction. The graph depicts two analyses, where publications are counted individually (black)
or publications are grouped together if they share a common author (gray). In both cases, the
majority of interactions are supported by a single publication. The data of literature curated
interactions and the publications reporting them are downloaded from the NIAID HIV-1,human
protein interaction database [134, 135].

When I analyzed the number of supporting publications for each of the 2598 HIV-
1, human protein interactions in the NIAID database, I found that 44% of all the pairs
in the database were reported only in a single publication (see Figure 7.1). When the
publications that share at least one common author are grouped together, the statistics
become even more striking; the proportion of interactions supported by a group is as
high as 53% (see Figure 7.1). The number of interactions that are supported by more than
five publications constituted only 19 and 13% of all interactions when publications are
ungrouped and grouped, respectively. The lack of follow-up studies-especially by other
labs than the one who found the first evidence for an interaction-hints at the possibility
that for many of these interactions, there may not be enough experimental evidence to
support their inclusion in a gold standard dataset.

Literature curated databases typically present the experimental details of each study
in the form of reference to the original publication(s). In theory, this allows the user to
review the information and use her own judgment. However, in many systems biology
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analyses, thousands of interactions are used at a time, which makes it impractical for
the investigator to review each piece of experimental evidence at the time of the study.
In practice, investigators either assume all small-scale experiments are of equally high
quality [192] or disregard some portion of the interactions based on subjective criteria.
A more principled approach would be to assign reliability scores for PPIs that reflect
the confidence in each interaction. Some databases already implement such reliabil-
ity scores, e.g. the Molecular Interaction Database (MINT) [138, 193]. MINT’s scoring
function combines information such as the scale of the experiment, the type of the exper-
iment, the number of publications supporting it and the presence or absence of ortholog
interactions. Note, however, that the score is a heuristic and includes several arbitrary
parameters [138, 193].

Assessing the data quality of PPIs from small-scale experiments requires a complex
judgment of the methods and results of each specific study. Some experimental tech-
niques are more conclusive for identifying functional relations, while others are more
robust for direct interactions. Furthermore, the techniques do not work uniformly well
across all proteins. In addition to the variability in the powers and limitations of each
technique, the conditions under which a study is conducted are important: in vitro or
in vivo environment, the strains used, the mutations introduced, or if there are labels
introduced, the attachment sites of the labels. All such parameters should be taken into
account when interpreting the results. Such a complex judgment may be provided best
by domain experts. Therefore, in order to arrive at reliability scores for the curated
HIV-1, human PPIs, I organized a community contribution effort to collect expert opin-
ions. I developed a probabilistic approach to estimate expert labeling accuracies and the
reliability scores given to the expert opinions in the absence of benchmark datasets.

7.3 Approach

To obtain HIV-1, human gold standard PPI data, experts were presented with the accu-
mulated published evidence and asked to annotate interacting pairs with labels based on
whether they consider the interaction to be supported by enough evidence to conclude
that the pair represents a direct physical PPI. Making use of community contribution in
solving difficult tasks is a fairly new concept; termed as ‘human computation’, and it
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has had several successful applications [194, 195]. The motivation of community contri-
butions is to harness human intelligence for a task that is challenging for computers but
for which humans are more capable of and using many human judgments collectively.

Given the task of reviewing PPIs, different experts might have different opinions,
especially when there is not enough evidence accumulated in the literature to give a
perfectly conclusive answer. Additionally, disagreements among experts might arise
because of their biases, expertise and/or stringency levels; e.g., some experts are more
difficult to convince with partial evidence or results of certain experimental techniques.
For these reasons, expert opinions will be noisy and subjective. By asking several experts
about the same interaction pair, the confidence in the interactions can be better assessed.
Although having as many expert opinions as possible is beneficial, it was not always
possible to obtain several expert opinions on a particular protein pair due to time or
expertise constraints. Thus, there was variance in the number of expert opinions for a
pair.

Taken these considerations into account, the computational problem becomes the
following: given noisy opinions and with possibly inconsistent numbers of judgments
for each, how to accurately decide which of the expert-annotated pairs are more likely
to have ’direct physical interactions’ and the degree of uncertainty of those conclusions.
Measuring the uncertainty of a label given multiple expert labels was addressed previ-
ously by [196] in an active learning setting. They sought to determine for which data
points acquiring labels from other experts would be beneficial; to achieve this, they es-
timated the uncertainty of the labels given multiple existing noisy labels. Their results
showed that repeated labeling can provide additional improvements to predictions, es-
pecially when labeling quality is low. However, in their model they assumed that the
experts had identical labeling quality, which is unrealistic in many real word problems
like is the case for PPIs. In this work, this simplifying assumption is relaxed and do not
require experts to have the same labeling quality. Moreover, experts are considered to
have different labeling qualities when labeling different class label types, such as ‘inter-
action’ class or ‘non-interaction’ class. In the absence of a ground truth for the labels,
given multiple noisy expert opinions the expert labeling accuracies are estimated in each
class and these values are used to estimate the most probable label and its associated
uncertainty.
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In the next section, the problem is formalized and the proposed method to solve this
computational problem is described. The effectiveness of the method is demonstrated
through synthetic data experiments. Finally, the method was applied to expert opinions
on HIV-1, human PPI interactions, which I collected from HIV-1 experts.

7.4 Methods

7.4.1 Problem Formulation

In this section, I describe the problem setting. Assume there are n literature-derived
PPIs, on which at least one expert has provided an opinion, and there is no benchmark
dataset where true labels are known. Each interaction maps to one true label, yi, which is
unknown and can take one of the two possible label types: Z = {z1, z2}. In this problem,
z1 is the label for ‘direct physical interaction’ and z2 is the label for ‘not a direct physical
interaction’. The set of notations used in this chapter is provided in Table 7.1.

n the number of interactions about which at least one expert gave an opinion
m number of experts
Z set of possible labels
z1 ∈ Z label for direct physical interaction
z2 ∈ Z label for not a direct physical interaction
y vector of hidden true labels;where yi is the true label for interaction i
ŷ matrix of expert opinions; where ŷi,j is the expert j’s label for interaction i
ŷ∗ vector of estimated labels; ŷ∗i is the most probable label of interaction i
` expert labeling accuracies, where θz,j is the expert j’s labeling accuracy for label type

z
ˆ̀ estimated expert labeling accuracies, where θ̂z,j is the expert j’s estimated labeling

accuracy for label type z
Ai set of experts that labeled interaction i
γzi×m matrix of probability of labeling an interaction of class type of zi ∈ Z, where γzi ,j is

probability of expert j providing a label for examples in class zi

Table 7.1: Additional notation used in this chapter.

In the formulation, different expert labeling accuracy across different label types
were allowed. This setting is quite realistic as experts may have different error rates in
their annotations of ‘direct interaction’ and ‘not direct interaction’ classes. There are no
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benchmark labels and the objective is to find the most probable labels for the interactions
given expert labels, ŷ:

ŷ∗i = arg max
z∈Z

P (yi = z | ŷi, θ) (7.1)

The uncertainty of the label type of an interaction, i, is defined as:

ûi(ŷi) = 1− P (yi = ŷ∗i | ŷi, θ) (7.2)

Since the set of expert labeling accuracies, θ, is unknown a priori, first they were
estimated. In the following section the estimation of θ is detailed.

7.4.2 Estimating Experts’ Labeling Qualities

The expert labeling qualities were estimated through maximum likelihood estimation
(MLE). MLE of expert labeling qualities, θ̂mle, is the one that maximizes the likelihood of
the observed expert opinions:

θ̂mle = arg max
θ
L(ŷ | θ) (7.3)

Below, I present how to estimate θ̂mle for the case in which every interaction receives
opinions from every expert; that is, Ai = 1, . . . , m. In the following section, this assump-
tion is relaxed and I handle the cases where it does not necessarily hold.

Case 1: Every expert provide labels for every example (global annotation case)

The log-likelihood of the observed expert opinions can be written as follows:

L(θ) =
n

∑
i=1

log P (ŷi | θ)

=
n

∑
i=1

log
2

∑
z=1

P (ŷi | yi = z, θ) P (yi = z)
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In the last line, I marginalized over the hidden true label, yi. It is assumed that decisions
by the experts are conditionally independent given the true label. Under this assumption,
the log-likelihood can be rewritten as:

L(θ) =
n

∑
i=1

log
2

∑
z=1

(
m

∏
j=1

P
(
ŷi,j | yi = z, θ

)
P (yi = z)

)
(7.4)

In Eq. 7.4, P
(
ŷi,j | yi = z, θ

)
is the probability of observing expert label yi,j for inter-

action i, given the true label of that interaction is yi = z:

P
(
ŷi,j|yi = z, θz,j

)
= θ

h(ŷi,j=z)
z,j (1− θz,j)

1−h(ŷi,j=z) (7.5)

where h is the indicator function. In Eq. 7.4, P (yi = z) is the prior probability of
an interaction belonging to class z; it is assumed that this prior probability is the same
for all i = 1...n. For this prior probability, an estimate of the class distribution derived
from majority vote labels was used. In order to obtain θ̂mle, first Eq. 7.5 is inserted into
Eq. 7.4 and next, the expectation-maximization (EM) algorithm [197, 198] is applied to
maximize a lower bound of this incomplete data likelihood:

L(θ) =
n

∑
i=1

log
2

∑
z=1

P (ŷi, yi = z | θ) (7.6)

≥
n

∑
i=1

2

∑
z=1

log P (ŷi, yi = z | θ)

=
n

∑
i=1

2

∑
z=1

gi(z) log
P (ŷi, yi = z | θ)

gi(z)

The first line follows from Jensen’s inequality. It is iteratively maximized with respect
to the probability distribution g(z) and θ in the expectation and maximization steps,
respectively. The derived update equations for step t + 1 are as follows:
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E-step:

g(t+1)
i (z′) = P

(
yi = z′ | ŷi, θ(t)

)
(7.7)

=

m

∏
j=1

P
(

ŷi,j | yi = z′, θ(t)
)

P
(
yi = z′

)
2

∑
z=1

P (yi = z)
m

∏
j=1

P
(

ŷi,j | yi = z, θ(t)
)

M-step:

θ
(t+1)
z′,j′ =

n

∑
i=1

g(t)i (z′)h(ŷi,j′ = z′)

n

∑
i=1

g(t)i (z′)
(7.8)

To obtain θ̂mle the procedure is repeated until convergence.

Case 2: Experts only label a subset of examples (subset annotation case)

All experts might not be available or able to annotate every instance due to time and
cost limitations, or their expertise might cover only a subset of the examples. Thus,
the assumption that every expert labels every instance may not hold. In this section, I
provide the solution when this assumption is relaxed. Let the set of labelers of interaction
i be a subset, Ai ⊂ {1, . . . , m}. It was required that each interaction has received at least
one opinion from at least one expert. In this case, the likelihood function Eq. 7.4 and the
EM update equations (Eq. Eq. 7.7 and Eq. 7.8) are modified as follows:

L(θ) =
n

∑
i=1

log
2

∑
z=1

m

∏
j=1

j:j∈Ai

P
(
ŷi,j | yi = z, θz,j

)
P(yi = z) (7.9)

Similarly the update equations, Eq. 7.7and Eq. 7.8 are modified:
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E-step:

g(t+1)
i (z′) =

P (yi = z′)
m

∏
j=1

j:j∈Ai

P
(

ŷi,j | yi = z′, θ(t)
)

2

∑
z=1

P (yi = z)
m

∏
j=1

j:j∈Ai

P
(

ŷi,j | yi = z, θ(t)
) (7.10)

M-step:

θ
(t+1)
z′,j′ =

n

∑
i=1

i:j′∈Ai

g(t)i (z′)h(ŷi,j′ = z′)

n

∑
i=1

i:j′∈Ai

g(t)i (z′)
(7.11)

Once the expert labeling accuracies are obtained as per the above procedure, they can
be plugged into equations 7.1 and 7.2 to find the most probable label and the certainty
of that label.

7.4.3 Synthetic Data Experiments

As there were no real data with opinions and expert labels, synthetic data experiments
(see Algorithm 2) were carried out to test the effectiveness of our method as follows.

7.4.3.1 Experimental Set Up

Given the prior distribution of classes, true labels were first generated randomly. Mean-
while, each expert’s true labeling quality on each class, θj,z, was assigned uniformly at
random by drawing from the interval [0.5-1.0]. The rationale is that experts likely give
better-than-random answers. Next, to create an expert’s opinion on an instance, the true
labels were taken and converted to incorrect label type randomly at the expert’s error
rate (1-θj,z).
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Algorithm 2 Set up of the synthetic data experiment to estimate expert labeling accura-
cies

Input: number of interactions n, class priors P (y = z), for all z ∈ {z1, z2}, number of
runs N, m number of experts, probability of labeling an interaction of class type by
each expert γz×m
Output: maximum likelihood estimate of expert labeling accuracies, θ̂mle

2×z, estimated
labels ŷi and their uncertainties ûi ∀i ∈ {i = 1, . . . , n}.
Synthetic experiment:
Initialize: r = 0 and ∀i Ai = {}
while r ≤ N do

1. Assign randomly true labels, Y = {y1, . . . , yn} based on P (y = z)
2. Assign θ randomly uniform from [0.5, 1]
for all data points i = 1, . . . , n do

for all experts j = 1, . . . , m do
2. True class label, z1 = yi and the opposite class label, z2 = not yi
3. Pick α1 uniformly at random from [0,1]
if γz1,j ≤ α1 then

Generate expert opinion:
Pick α2 uniformly at random from [0,1]
if α2 ≤ θz1,j then

Expert j agrees with the true label ŷi,j = z1
else

Expert j disagrees with the true label ŷi,j = z2
end if

end if
end for
Ai = Ai ∪ {j}

end for
r = r + 1

end while
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Two scenarios were considered: i) in the global annotation scenario, every expert labels
every example and ii) in the subset annotation scenario, each instance receives labels from
a subset of labelers. To achieve this, a probability of labeling an instance to each expert,
γj,z, was assigned. Each γj,z was drawn uniformly at random from the interval [0,1].
Based on the assigned probability of labeling, the expert gives a set of opinions for a
subset of instances; γj,z = 1 indicates the expert j labels all of the instances for class z.
The flow of the synthetic experiment is given in Algorithm 2. This step is summarized
in Algorithm 2.

7.4.3.2 Baseline Estimators

The most probable label estimation was compared to the four following estimators; each
labels the interaction as a ‘direct interaction’ if:

1. the majority of the experts label them as ‘direct interaction’ (Majority voting).

2. there is at least one expert that thinks it is a ‘direct interaction’ (Single voting )

3. there is at least two experts voting for ‘direct interaction’ (Double voting)

4. all the experts agree on the ‘direct interaction’ label (All voting)

7.4.3.3 Evaluation

The synthetic experiments were repeated N = 300 times; the mean and standard error of
MSE were calculated over these N random configurations. To measure how accurately
the maximum likelihood estimator can recover the true expert labeling accuracies and
uncertainties, the average mean squared error (AMSE) was calculated:

AMSE(θ̂mle) =
1
n

1
2m

2

∑
z=1

m

∑
j=1

(θ̂mle
z,j − θz,j)

2 (7.12)

AMSE(û) =
1
n

(
ûi(ŷi, θ̂mle)− ui(ŷi, θ)

)2
(7.13)

In order to assess whether the accuracy of the final label is correctly assigned, we
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precision and recall rates were reported. The precision is the fraction of the true direct
interactions that are identified by the method as ‘direct interaction’. On the other hand,
recall is the fraction of the correctly identified ‘direct interaction’ pairs among all the
pairs that are direct interactions:

precision =

n

∑
i=1

h(ŷi = yi = 1)

n

∑
i=1

h(ŷi = 1)
, recall =

n

∑
i=1

h(ŷi = yi = 1)

n

∑
i=1

h(yi = 1)
(7.14)

7.4.4 Annotating HIV-1 Human Interaction Labels

I contacted 16 HIV-1 domain experts and requested their opinions about a subset of the
interactions deposited in the NIAID database. One of the experts was a PhD student
working with HIV-1 experimentally; all others were professors at different universities
who have worked several years on one or more HIV-1 proteins. The experts were asked
to annotate only the interactions of the HIV-1 proteins on which they consider themselves
experts. For each HIV-1 protein, an Excel file was prepared, in which interactions with
the HIV-1 protein were listed. The file included the interaction partners of the HIV-1
protein, the keywords retrieved from the NIAID database, and hyperlinks to the original
publications so the experts could check the articles if necessary. For HIV-1 proteins,
where the number of interactions are (≤ 50), I sent all the interactions reported in the
NIAID database regardless of the keyword indicating the association. In cases where
>50 interaction partners were listed for HIV-1 proteins, experts were sent only the subset
of interactions described with the keywords ‘interacts with’ and ‘binds’ in the NIAID
database. This was to avoid overwhelming the expert with a long list and to increase the
chance of receiving a response. In some cases, experts did not label the files due to time
constraints; instead, they provided us with a set of interaction partners they thought were
real and direct interactions. Experts were asked to include labels as an additional column
in this Excel file: 0 if they thought the reported interaction was not a direct interaction,
label 1 if they thought it was direct interaction and label 2 if they thought it was indirect
or if they were unsure. Upon retrieval of the annotations, I realized experts used different
distinctions for indirect interaction and not direct interaction. In order to mitigate this
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effect, I post-processed the labels to reduce them to two classes: expert-labeled as ‘direct
interaction’ or ‘not’.

Of the 2498 interactions, I was able to elicit 765 opinions across 384 interactions. 16
HIV-1 experts contributed labels for 13 HIV-1 proteins. For the interactions of some of the
HIV-1 proteins (nucleocapsid, integrase, protease, p1 and env gp160), no opinions were
provided. Below, expert opinions collected and the results of applying the maximum
likelihood estimator are summarized.

7.4.5 Refining the Literature Curated HIV-1, Human Interactome

In order to estimate the accuracies of experts in labeling, only interactions that were
multiply annotated are considered. An expert’s labeling accuracy were estimated only if
the expert provided labels on the pairs that also received labels from at least one other
expert, and if the expert also annotated at least three examples for that class. There were
10 experts in each class. Ultimately, those experts whose labeling accuracies were not
estimated were assigned the mean of the available expert qualities.

7.5 Results

Below, we describe first the results of the synthetic data experiments, then the results
from applying the method to the real-world data literature-curated PPIs between HIV-1
and human proteins.

7.5.1 Synthetic Data Experiments

The results of two example synthetic data experiments are shown in Table 7.2. There
were three experts with various levels of labeling quality; these qualities are listed in
in the third column of Table 7.2. For example, the first expert’s labeling quality for the
‘not direct interaction’ class is 0.5, meaning this expert on average labels half of the ‘not
direct interaction’ pairs with a ‘direct interaction’ label. The probability of an expert
labeling an example was set to 0.7 and was uniform across all pairs. The estimations
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global annotation subset annotation

Class Expert True θ θ̂mle θ̂mle

Not interaction
1 0.5 0.4920 (0.020) 0.4446 (0.087)
2 0.6 0.6060 (0.105) 0.5945 (0.097)
3 0.9 0.9069 (0.036) 0.9248 (0.046)

Interaction
1 0.9 0.8768 (0.015) 0.8582 (0.058)
2 0.7 0.7178 (0.089) 0.7060 (0.035)
3 0.4 0.3877 (0.032) 0.4446 (0.037)

< MSE > Theta (std): 0.0022 (0.002) 0.0052 (0.039)
< MSE > Uncertainty (std): 0.0023 (0.002) 0.0046 (0.035)

Table 7.2: Two example synthetic data experiments with three experts for global annota-
tion and subset annotation scenarios. In each case, true labels were generated at random,
P (y = direct interaction) = 0.5, and the experiments were repeated n=300 times. In the case
of global annotation scenario, each instance was labeled by all three experts, while in the subset
annotation case experts decide to label each instance randomly, with the probability of labeling
set to 0.7 for each instance. True labeling accuracies (θ) of the experts are given in labeling exam-
ples of ‘Direct interaction’ and ‘Not direct interaction’ classes, together with the sample mean of
estimated labeling accuracies, θ̂mle, and the standard deviations (std). The average mean squared
error in estimating the theta and the uncertainty of the examples are listed in the last two rows.

were better in the global annotation case as expected. θ̂mle, is 0.0022(±0.002) in the
global annotation case; this error rate is doubled when subset annotation is applied:
0.0052(±0.039). The MSE in estimating the uncertainties were also calculated (see 7.4 for
details). These errors were also small, namely 0.0023(±0.002) and 0.0046(±0.0035) for
the global annotation case, where all experts provide a label for each of the interactions,
and a subset annotation case, where experts label a subset of interactions.

In order to understand the method’s robustness for the number of examples and
experts present, the error rates were measured as a function of the number of experts
and number of pairs annotated. Figure 7.2 A displays the results of these experiments
for the global annotation case when estimating the experts’ labeling accuracies. Not sur-
prisingly, the error decreases as more experts are included and more data are provided.
Nevertheless, the average MSE of expert labeling accuracies, θ, is 0.0087(±0.0121), even
in the case in which there are only 3 experts and n = 100 data points. Similarly, the error
in estimating the uncertainties of the data points is not more than 0.010 (see Figure 7.2
B). Comparison of the error curves for different N reveals the gain in accuracy decreases
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Figure 7.2: The average mean squared errors in estimating a) expert labeling qualities and b)
uncertainties is plotted as a function of the number of experts for different numbers of pairs to be
annotated. As more data points and more experts are involved in the estimation, the estimator
performs more accurately.

in different data regimes. For example, the error in estimating θ decreases by an amount
of 0.003 when N is increased from 100 to 200 and there are 3 experts. This difference
is only 0.0008 for cases n = 800 and n = 1600. A similar trend holds for the number of
experts; the largest gain in accuracy is observed when the number of experts increases
from 3 to 5. The estimation of uncertainties also follow a similar trend (see Figure 7.2
B). Figure 7.3 compares the error rate of labeling accuracy between the global annotation
and subset annotation case for the case n = 800.

To assess how well the method retrieves the true direct interactions, the precision and
recall rates (sensitivity) of the estimator were calculated (see Section 7.4.3.3). The preci-
sion and recall of the MLE estimator were compared to four other estimators (described
in Section 7.4.3.2). Figure 7.4 displays the precision and recall for different numbers of
labelers for the experiments described for Figure 7.2. As can be seen in the figure, single-
voting would cover the largest quantity of the true interactions correctly, but would also
consider many non-interactions as interactions, therefore displaying a low precision and
high recall rate. A similar observation is valid for double-voting. In both cases the pre-
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Figure 7.3: The average mean squared errors in estimating expert labeling qualities in subset and
global annotation cases for N=800.

cision gets even worse as the number of labelers increase, since the probability of any
of the two labelers giving an incorrect label increases. The opposite is true for the all-
voting case; the precision is high since the criterion to label a pair as direct interaction
is very strict: an agreement between all experts is sought. However, this estimator suf-
fers from low recall. In summary, the all-voting strategy results in high confidence sets,
but disregards a large portion of the available data; whereas single-voting or double-
voting lead to sets with high coverage but both suffer from high false positive rates. The
majority-voting method is a robust one; both the precision and recall rates are high, and
additionally, as the number of experts increases, the performance does too. Neverthe-
less, the maximum likelihood estimator is the best for both precision and recall rates for
all numbers of experts. This is probably because the noise is taken into account in our
probabilistic framework.
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Figure 7.4: Precision and recall rates of different labeling strategies. For description of voting
strategies see Section 7.4.3.2.

112



7.5.2 Refining the Literature Curated HIV-1,Human Protein Interactome
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Figure 7.5: Descriptive statistics of expert annotated HIV-1, human protein interactions. a) Num-
ber of interactions annotated for each HIV-1 protein b) the number of interactions annotated as
‘direct’ (green) and ‘not a direct interaction’ (gray) by each 16 HIV-1 experts c) distribution of
number of experts annotating each interaction. Majority of the interactions are annotated by sin-
gle expert d) distribution of multiple expert annotated interactions in terms of agreement among
the experts.
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For the various HIV-1 proteins, different numbers of interactions were annotated; nef
had 67 interactions annotated, whereas capsid had only 13 (see Figure 7.5). The num-
ber of interactions that each HIV-1 expert annotated also varied (see Figure 7.5). The
majority of the interactions received only one expert opinion (213/384), whereas for the
rest of the interactions (171/384), multiple experts commented on each as seen in Fig-
ure 7.5. In cases where an interaction received multiple opinions from different experts,
disagreements among the experts was observed. Of all interactions on which multiple
experts provided labels, on 37% of them (63/171), experts disagreed on the label type
(see Figure 7.5 d). Of all the expert annotated interactions, 299 of them were described
by ‘interacts’ with and/or ‘binds’ keywords; those have the most potential to be direct
interactions. However, strikingly, at least two experts with no disagreement annotated 73
of them as ‘not direction interaction’. These results highlight the necessity of reviewing
the published interactions with community opinion.
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Figure 7.6: The estimated HIV-1 experts labeling accuracies on annotating the protein interactions
for a) ‘direct interaction’ class and b) ‘not direct interaction’ class.
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Figure 7.7: Refined HIV-1,human protein interaction network based on the set of HIV-1 expert
opinions. Nodes indicate HIV-1 proteins (red) or human proteins (blue); an edge indicates there is
at least one publication reporting this interaction and at least one expert gave an opinion about it.
The thicker the edge, the higher the probability of the pair being a direct interaction according to
the estimates. The solid lines are the interactions where P (y = direct interaction) > 0.5, whereas
dashed lines indicate where this probability is < 0.5. The HIV-1 protein’s names are placed next
to its network of interactions.

Using the interactions that received more than one expert opinion (171 interaction
pairs), the experts’ labeling accuracies were assessed. There were 16 experts in total, but
not all experts provided data for both label types. The estimated label accuracies for the
experts are plotted in Figure 7.6. 7 of the 10 experts had a labeling accuracy of more
than 75 % accuracy on the ‘direct interaction’ class; 8/10 had this level of accuracy for
the ‘not direct interaction’ class. Using the expert labeling accuracies, the most probable
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class label was calculated for all the annotated interactions. For 147 (out of 384) of
the reported interactions, there is enough evidence to conclude that they have a direct
interaction. Figure 7.7 displays the resulting network. The thicker the edge between two
nodes, the higher the probability that it is considered a direct interaction by a given set
of experts. The dashed lines indicate those pairs that have a probability of less than 0.5;
in other words, there is not enough evidence supporting their direct interaction label
according to the experts.

7.5.3 Model Trained with Expert Labels
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Figure 7.8: Precision recall curves of three different models: i) Model trained with expert labeled
positive and negative examples ii) Model trained with expert labeled positive and randomly
selected negative examples iii) Model trained with expert labeled positive and negative examples,
where the labels of the examples were shuffled. All three models were trained with 42 features
described in Chapter 6 and tested on expert labeled positive and negative examples through 3-
fold cross validation. The cross-validation experiments were repeated 10 times. The values reflect
the averages on the 30 runs.

The estimated labels obtained and analyzed in this chapter provide a high quality set of
interaction labels, which include 158 positive examples and 226 negative examples. These
labels obtained are especially valuable in training and testing the supervised models. In
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MAP stderr MAP AUC stderr AUC

Trained with expert negatives 0.7144 0.0083 0.7818 0.0052

Expert labeled positive + random negative 0.5466 0.0077 0.6392 0.0084

Baseline 0.4298 0.0075 0.4966 0.0098

Table 7.3: Averages (avg) and standard error (stderr) of MAP and AUC scores over 10 repeated
3-fold cross-validation experiments. Precision recall curves of three different models: i) Model
trained with expert-labeled positive and negative examples ii) Model trained with expert-labeled
positive and randomly selected negative examples iii) Model trained with expert-labeled positive
and negative examples, in which the labels of the examples were shuffled. All three models
utilizes the 42 features described in Chapter 6 and they were tested on expert-labeled positive
and negative examples through 3-fold cross validation. The cross-validation experiments are
repeated 10 times. The values reflect the averages over the 30 runs.

order to judge this, a Random Forest classifier was trained using the expert labels and
the 42 features described in Chapter 6. This model achieved 71% MAP score, which is
significantly better compared to a baseline classifier, which received 43% MAP score (see
Table 7.3). The baseline classifier was trained on the same set of examples but the labels
of the training examples were randomly shuffled.

The negatively labeled data are especially valuable as we do not need to resort to
randomly selecting the negative labels. As the randomly selected negative labels are
likely to be far away from the class boundary, they are easier to classify and more likely to
give optimistic estimates of prediction success; the decision boundary learned from them
might be far away from the real decision boundary. Conversely, the expert negative labels
are also more likely to be in the class boundary since they are examples of functional
associations or indirect interactions. Therefore, these negative examples will define a
better decision boundary.

In order to judge the negatively labeled expert data’s contribution to the model, a
third Random Forest classifier was trained. This model uses the positive expert labeled
data. However, instead of the expert labeled negative examples a randomly selected
set of negative pairs not reported in the NIAID database was used (see Section 5.2.3).
Both models included the same number of positive and negative examples. This model
performed better than the baseline, 0.55 (± 0.0077) (compare to 43%), but it performed
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worse than the first model which used the expert labeled negative examples, (compare
to 71% MAP). The AUC values are also ranked similarly; the first model achieves an
AUC score of 78% (± 0.0052), while the second model only reaches 64% and the baseline
is 50% (± 0.0098) (Table 7.3). The precision/recall curves are well separated for all the
three models, where the model trained with expert labeled negative and positive data
outperforms the other two models (see Figure 7.8). Note that the models in Chapter 5 and
Chapter 6 were tested with data where the class distribution was skewed. The negative to
positive example ratio was 100:1. Here, the expert-labeled data contains positive:negative
labels in a positive:negative labels in a 1.5:1 ratio; therefore, the AUC and MAP scores
are higher and the precision/recall curves are elevated in this experiment.

All three models were tested on expert labeled positive and negative training exam-
ples in a 3-fold cross validation setting. The cross-validations were repeated 10 times,
where at each repeated run, the splitting of the data is different and random. These em-
pirical results strongly indicate that the classifier benefits from the expert labeled data.

7.6 Conclusions

In this chapter, a gold standard dataset of HIV-1, host interactions was presented where
the confidence of each interaction was estimated probabilistically. To arrive these con-
fidence scores, I developed a maximum likelihood approach to estimate the experts’
labeling accuracies in an unsupervised setting. This approach is general and can be used
in other crowd sourcing applications, in which noisy labels from multiple experts are
available and there is no benchmark data to estimate labeler qualities. Using the maxi-
mum likelihood estimate of the expert labeling qualities, I calculated the probability of
being a direct interaction given a set of expert opinions for each interaction. These labels
obtained are valuable in training and testing the supervised models. A Random Forest
model trained with using the expert labels performed with a MAP score of 71%. This is
significantly better than a baseline classifier, which was trained using the same training
set but shuffled class labels. This model performed with a MAP score of 43%. Espe-
cially the negative labels are valuable. By training a model using the expert labels and
randomly selected negative labels, a score of 64% was obtained, which was significantly
smaller than 71% in the case where expert labeled negative examples were used.
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Chapter 8

Multi-Task Learning for Predicting
Host,Virus Interactions

8.1 Overview

In the supervised models described in Chapters 5, 6 and 7, the task of predicting host-
virus interactions was cast as a single-prediction task. In this formulation, the PPIs of
all viral proteins were pooled together and a single model was learned to define the
whole host-virus interactome. However, as the viral proteins undertake different func-
tions in the viral replication cycle, they might well be drawn from different distributions;
and pooling the training data together might disregard these differences. An alternative
would be to learn different models for each viral protein. However, small sample size
for each of the viral proteins’ in the expert labeled interaction data impedes the con-
struction of reliable separate models. In order to overcome the data scarcity issue while
considering possible differences in data distribution across viral proteins, we developed
a multi-tasking learning strategy. In this model, a learning task was defined for each of
the viral proteins separately, but these tasks shared their training data proportional to
task relatedness. Herein, the relatedness of the tasks were defined based on the viral
proteins’ role in the replication cycle. A multi-task Random Forest learning method is
presented, which modifies the regular Random Forest. In the regular Random Forest
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classifier, several bootstrap samples were created from the input training examples. In
the multi-task Random Forest classifier, for a given task, the examples are drawn from
the pool of all examples with the probability proportional to their task relatedness to the
other tasks. This modification lead to more accurate predictions for 8 of the 10 HIV-1
viral proteins as compared to those derived from the single model learned for the HIV-1,
host proteins.

8.2 Methods

8.2.1 Data

HIV-1 protein Number of Expert Labeled HIV-1,Host PPIs

Negatively Labeled Positively Labeled

Env gp120 10 11

Env gp41 3 22

Gag capsid 8 5

Gag matrix* 15 2

Gag p6 4 10

Gag pr55 22 20

Gag nef 35 32

Reverse transcriptase 10 20

Rev* 28 1

Tat* 20 2

Vif 46 5

Vpr 13 19

Vpu 12 9

Total 158 256

Table 8.1: 13 HIV-1 proteins had at least one label estimated from expert opinions (see Chapter 7).
Table lists the number of positively and negatively labeled examples. The star marks the proteins
for which a classifier is not trained due to limited number of positive examples.

In this section, the HIV-1, host PPI data labels obtained through expert annotations
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were used because these are high-quality labels. The details of collecting expert opinions
and estimating the final labels probabilistically are provided in Chapter 7. This data set
included PPIs between host proteins and 13 HIV-1 proteins. The number of positively
and negatively labeled examples for each viral protein is given in Table 8.1. On 3 of the
13 viral proteins namely, tat, matrix and rev, there were less than three PPIs positively
labeled examples, which hindered an evaluation through 3-fold validation. Therefore,
no models were trained for these three HIV-1 proteins. Nevertheless, the labeled data for
them still contributed to the training of the models for the other viral proteins.

8.2.2 Multi-Task Random Forest Classifier

The problem of learning host, virus interactions is cast as a multi-task learning frame-
work. In this framework, each task is to learn a model specific to each viral protein
considered. In this setting, tasks share training examples with each other. Let L be the
set of training examples including all viral proteins’ interactions, and N be size of L. Let
V be the number of viral proteins that have some training data in L and K < V be the
number of tasks to be learned. ∀ tasks k ∈ {1..K}, a multi-task Random Forest classifier,
fk, is learned. A multi-task Random Forest classifier differs from the regular Random
Forest Classifier in the way the training examples are drawn in the learning phase. The
Random Forest classifier is an ensemble learner, which learns several decision trees us-
ing bootstrap samples of the input training data (see Section 5.2.2.2 Algorithm 1). In the
multi-task learning, this bootstrapping step is changed as follows.

First, based on biological knowledge, relatedness of the viral proteins are defined. It
was based on their pairwise functional relatedness, but other definitions can be adopted.
wi,j denotes the similarity of the viral protein i to viral protein j and is in the [0-1]
range. The probability of viral proteins of type i being drawn in learning the task for
viral protein j is proportional to wi,j. Formally, let Ai,j be the probability that of a given
interaction pair of viral protein i being drawn in the bootstrap sample of the viral protein
j’s task. This probability is:
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P
(

Ai,j
)
=

wα
i,j

∑v∈{1..V} wα
v,j

(8.1)

where α is a scaling parameter and is in the range [0,1]. As α decreases, the probabil-
ity distribution gets closer to the uniform distribution and all examples are drawn with
equal probability. The algorithm is summarized in Algorithm 3.

Algorithm 3 Random Forest Classifier For Multi-task Learning

N be the number of examples in the training data, and L be the set of training data,
d the number of features, B the number of trees in the forest, nmin minimum number
of examples allowed on a node, m number of features to be used for determining the
splitting feature. Let K be the number prediction tasks. Let {1..V} be the set of viral
proteins. Let w be the similarity matrix that defines similarities between viral proteins.
Similarities range in [0,1] and α is a scaling parameter and assumed to be given.
1. For each task k grow a Random Forest:
for b = 1 to B do

2. Construct a Random Forest tree for task k, Tk,b:
a) Draw a bootstrap sample of Z∗k,b of size N from the training data such that for a

i, j ∈ V, P
(

Ai,j
)
=

(wi,j)
α

∑v∈{1..V} wα
v,j

b) Grow a tree Tk,b using Z∗k,b. In growing the tree at each terminal node of the tree
recursively apply the following steps:
repeat

i. Select m ≤ d features among the d features at random as candidates for splitting.
ii. Pick the best splitting feature among the m features based on Gini impurity
index.
iii. Split the node based on the chosen feature into two.

until nmin is reached
end for
2. Random Forest for task k is the ensemble of trees {Tk,b

B}
3. Let ŷk,b be the class prediction of the bth tree in the Random Forest of task k, then
the label for a new example x will be:
ŷB

k = majority vote{(ŷk,b(x)}B

The similarity of the viral proteins was defined by the relatedness of their functions
using prior biological knowledge. I defined the similarity by considering whether two
proteins take part in the same step of the replication cycle. In Figure 8.1 the cells are
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Figure 8.1: Heatmap showing the similarities between viral protein pairs. The similarity is based
on the functional relatedness of the viral proteins. The darker the color, the higher the similarity;
specifically, the lightest blue cells are valued at 0.1, the medium blue cells at 0.5 and the darkest
color cells at 1.

color coded based on these similarities. The very light blue color indicates a similarity
of 0.1 and a medium color indicates 0.5 and a dark blue color indicates similarity of 1.
The similarity matrices were selected based on the mean average precision (MAP) score
of the validation set. A thorough parameter search can be conducted and embedded in
the learning phase, if there is significant training data.

8.2.3 Features

The final feature set, which was described in Sections 5.2.4 and 6.2.2 and evaluated in
Chapter 6 is utilized. This set includes 42 features derived from various proteomic and
genomic data sources.
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8.2.4 Evaluation

The two metrics, AUC score and the MAP score, were employed to evaluate the classifier.
Each task was evaluated separately. The empirical evaluation is conducted in a 3-fold
cross-validation setting. The cross-validation experiments were repeated 10 times; in
each case the data were split randomly. The results were averaged over these 30 runs.
The negative to positive data ratio was 1.4:1, which is reflected in the scores. Therefore
it is not possible to directly compare these scores to the MAP and AUC scores obtained
in other chapters, where the test data were skewed by a different ratio.

8.3 Results

8.3.1 Performance of the Multi-Task Random Forest Classifier

For 13 of the 17 HIV-1 proteins we had expert-labeled positive and negative data (Ta-
ble 8.1). Three of these proteins (tat, rev, matrix) had less than 3 positive examples;
therefore, as their performances could not be measured no models were learned for
them. However, these proteins contributed to the training phase of the other 10 proteins,
which had sufficient expert-labeled data. Similarity among proteins was defined for the
viral proteins based on the relatedness of the functions they perform. I trained and tested
the multi-task Random Forest classifier and compared it to the case where a single model
was learned by pooling all the viral proteins’ interactions together. Both models were
separately tested for each viral protein on the same testing examples separately for each
viral protein. Figure 8.2 shows the MAP and average AUC scores for the 10 proteins.
For 8 of the 10 proteins except env gp41 and vpr, the multi-task learner outperformed
the model where all interactions were learned globally.
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Figure 8.2: Performance of the multi-task Random Forest model compared to the case when
a single model is learned. MAP and AUC scores are averages over 10 repeated 3-fold cross
validations.
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8.3.2 Model Trained with Multi-Task Random Forest Classifier

We trained a final model using all the available training data for the 10, HIV-1 proteins.
The network with a Random Score cutoff of >0.5 included 3797 HIV-1, virus interactions
involving 2719 unique human proteins.

One of the interesting predictions was the interaction of gag p6 with the host protein
ATPase VPS4. The model strongly predicts that the two proteins interact (third highest
ranked prediction). There was no HIV-1 interaction reported in the NIAID database that
involves Vps4A. Yet, one of the genome-wide RNAi screens identified Vps4A as the host
factor. Moreover, Urata et al. [199] showed that the enzymatic activities of Vps4A and
Vps4B are required for efficient budding of HTLV-1 and gag p6 is known to be involved
in viral budding strengthening the hypothesis for this prediction to be true.

8.3.3 Gene Ontology Term Enrichment Analysis

I assessed the enrichment of GO terms in the set of predicted interaction partners. Par-
tial lists of significantly enriched GO terms for molecular process, function and cellular
location are given in Tables 8.2, 8.3, 8.4 respectively. Many of the highly enriched molec-
ular processes were related to transportation. This is different to the previous models’
(see Chapter 5 and Chapter 6) enriched terms. In the molecular function case, binding ,
kinases and nucleotide binding were among the top enriched functions.
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GO term ID GO term name p-value

GO:5515 protein binding 2.75e-33
GO:5488 binding 3.26e-20
GO:4674 protein serine/threonine kinase activ-

ity
2.01e-13

GO:4672 protein kinase activity 3.15e-13
GO:16773 phosphotransferase activity, alcohol

group as acceptor
9.39e-13

GO:16301 kinase activity 2.37e-11
GO:32555 purine ribonucleotide binding 7.47e-11
GO:32553 ribonucleotide binding 7.47e-11
GO:17076 purine nucleotide binding 2.88e-10
GO:16772 transferase activity, transferring

phosphorus-containing groups
3.05e-10

GO:166 nucleotide binding 5.83e-10

Table 8.2: Enriched GO biological function in the set of predicted human interaction partners.

GO term ID GO term name p-value

GO:3034 intracellular signaling pathway 1.99e-20
GO:15031 protein transport 8.39e-19
GO:45184 establishment of protein localization 1.89e-18
GO:8104 protein localization 4.74e-16
GO:33036 macromolecule localization 2.96e-15
GO:16192 vesicle-mediated transport 3.23e-15
GO:61024 membrane organization 1.80e-12
GO:35556 intracellular signal transduction 1.91e-12
GO:16044 cellular membrane organization 2.87e-12
GO:46907 intracellular transport 1.56e-10

Table 8.3: Enriched GO molecular processes in the unique set of human proteins that involve in
the predicted viral, host protein pairs.
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GO term ID GO term name p-value

GO:737 cytoplasm 1.23e-39
GO:5622 intracellular 1.86e-32
GO:44424 intracellular part 6.78e-26
GO:5829 cytosol 3.20e-21
GO:30117 membrane coat 2.94e-16
GO:48475 coated membrane 2.94e-16
GO:44444 cytoplasmic part 1.20e-15
GO:30118 clathrin coat 2.26e-13
GO:43227 membrane-bounded organelle

5.83e-13
GO:43231 intracellular membrane-bounded or-

ganelle
5.83e-13

GO:10008 endosome membrane 9.58e-13

Table 8.4: Enriched GO cellular components in the set of predicted human interaction partners.

8.4 Conclusion

In this section, a multi-task learning framework was presented for predicting viral host
interaction partners. The feature set described in Chapter 6 was utilized and training
data included PPIs whose labels were estimated from the expert opinions (see Chap-
ter 7). Each viral protein’s interaction was modeled as a separate task and each task
shared across training examples based on their relatedness. This is achieved by a simple
modification in the bootstrapping step of the Random Forest classifier. The empirical
evaluation showed that for most of the viral proteins, using this multi-task framework
improves the model performance. Here we defined the relatedness of the tasks based
on the functional similarity of the viral proteins. Alternative criteria can be employed,
or this matrix can be learned simultaneously if there is sufficient data to explore the
parameter space.
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Chapter 9

Conclusions and Future Work

Numerous human diseases are caused by viral infections. Our lack of understanding of
the intimate relation between the virus and its host makes the development of therapies
difficult. Protein-protein interactions are key players in every cell function, both within
and between organisms, at every level of cellular function. Comprehensively identifying
these interactions enables us to detail how cellular processes take place. Past experimen-
tal and computational research largely focused on identifying interactions within single
organisms. Computational approaches, first in model organisms, and later in human,
have helped experimental efforts in revealing parts of the protein interactomes. On the
other hand, characterizing the interspecies interactomes on a system wide level has only
been a recent focus. High-throughput experimental techniques are being adapted to
handle the interactions of both organisms at the same time. However, there is still no
single cost-effective and highly accurate experimental technique to identify interactions
on a large scale. As was the case for intra-species protein interactomes, computational
methods could be utilized to accelerate experimental endeavors. My work presented in
this thesis aims to accelerate efforts to identify interspecies interactomes, and is one of
the early studies of the inter-species prediction task. In this section, I will provide an
overview of the thesis. Overall, this chapter summarizes the work conducted in this
thesis, and points out potential directions for future studies.
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9.1 Thesis Summary

Working towards defining the host-virus interaction network, this thesis focused on pre-
dicting host-virus interactions. Specifically, I concentrated on the HIV-1-human inter-
actome because it is clinically important and represents the system with the richest ex-
perimental data available; however, the methods and data curation techniques presented
can easily be extended to other inter-species systems as pertinent data become available.
Throughout the thesis, I employed a machine learning perspective. The task of pre-
dicting PPIs were formulated in a binary classification framework, where each possible
protein pair falls into one of two classes, the ‘interacting protein pairs’ (positive class)
and the ‘non-interacting protein pairs’ (negative class). The classifiers were learned in
a supervised setting. In developing these predictors, several data and methodology re-
lated challenges were handled. Specifically, I identified and compiled biological sources
that can be utilized as predictive features, collected expert annotations to create gold-
standard PPI labels, devised a computational method to aggregate noisy expert labels
and presented a novel multi-task learning framework. The models were iteratively re-
fined by improving the labeled data, features and computational models.

9.1.1 First Supervised Model for Predicting HIV-1, Host PPIs

Chapter 5 describes the first supervised model. A Random Forest classifier was em-
ployed to learn to distinguish interacting proteins from non-interacting pairs. One chal-
lenge to building such a system is identifying biological information that can serve as
predictive features. Several data types that have been useful in the intra-species predic-
tion task (see Section 3.1) are not directly applicable to the host-virus setting. Therefore,
identifying information that is predictive in distinguishing interacting protein pairs from
non-interacting ones is important. Going through an extensive curation process, exper-
imental results pertinent to host-virus interactions were identified and retrieved from
databases or published articles. These biological data included a wide array of informa-
tion such as gene expression profiles of HIV-1 proteins during infection, sequence-motif
pairs found frequently in interacting proteins, functional similarities, etc. In encoding
such biological information as features, I also took into account the known interactions
among the host proteins. For example, as the viral proteins might be similar to the host
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proteins’ interaction partners, I included viral proteins’ similarities to the host proteins.
These similarities were based on sequence, translational modifications, function, molec-
ular process and cellular location similarities. My results, as described in Chapter 5 and
Chapter 6, demonstrated that these features, which take into account the cellular con-
texts of the host, are especially informative. For instance, network node properties of
the human proteins in the human PPI network were among the most predictive features.
Chapter 5 described this biological information and how it was encoded as features. A
Random Forest classifier was learned using this feature set and the set of labels. The
model was evaluated using cross-validation and achieved a MAP score of 23%, much
better than that of the random baseline models. The predictions were also compared to
external biological information, including genome-wide RNAi screens that were avail-
able at the time and the set of proteins detected in the budding virion. 21 host proteins
were tested as to whether they colocalize with vpr and capsid, using single live cell imag-
ing techniques. The colocalization experiments provided evidence on the validity of the
predictions, highlighting that the computational methods could provide experimentally
testable hypotheses.

9.1.2 Improved Prediction Model for HIV-1, Host PPIs

In Chapter 6, I improved upon the first supervised model described in Chapter 5. This
model made use of the same computational setting and data labels as described in Chap-
ter 5. The improvement was achieved by incorporating new biological information that
became available. One of the information sources was the four genome-wide RNAi
screens results, which identified sets of host factors that are required for virus replica-
tion. Also, a large-scale affinity purification mass spectrometry experiment result was
conducted with HIV-1 proteins to identify host interactions. Sets of human proteins
detected in budding virions and those that interact with other viruses were included.
This information was encoded in the system by taking into account cellular interactions,
known pathways and complexes. The resulting model improved upon the first model
by a 12% increase in the MAP score. Of the newly incorporated features, those utilize
the RNAi screen results were the most predictive. The resulting predictions included
proteins that were independently experimentally validated by others.
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9.1.3 Obtaining High-Quality Interaction Labels

A challenge to developing robust PPI networks is obtaining high-quality positive and
negative labels. The supervised models described in Chapter 5 and Chapter 6 made use
of a subset of HIV-1, human protein interactions reported in literature as positive exam-
ples. The negative sets were obtained by randomly pairing viral, host protein pairs from
the set of all possible pairs not reported in the literature. Neither of these approaches
is ideal for creating high-quality positive and negative datasets. Discussion with HIV-1
experts revealed that the interactions provided in the NIAID HIV-1, human protein in-
teraction database [134, 135] are not considered reliable. When I analyzed the number
of supporting publications for the PPIs reported in the database, I found that 44% of all
of the PPIs are reported only in a single publication (see Chapter 7). The lack of follow-
up studies hints at the possibility that for many of these interactions, there may not be
sufficient experimental evidence to support their direct interaction.

In Chapter 7, I addressed the label quality issue and obtained a high-quality set of
positive and negative labels of HIV-1, human direct PPIs. Specifically, I i) collected opin-
ions of HIV-1 experts about the interactions reported in the literature and ii) formulated
a probabilistic framework to assign reliability scores to interactions based on noisy, sub-
jective expert opinions. Assessing the data quality of PPIs from small-scale experiments
requires a complex judgment about the methods and results of each specific study. Some
experimental techniques more conclusively identify functional relations, while others
more conclusively identify direct interactions; techniques do not work uniformly well
across all proteins. In addition to the variability of the powers and limitations of each
technique, the condition under which a study is conducted is important. Such a com-
plex judgment may be provided best by domain experts who would take into account
all of these parameters. In order to arrive at a high-quality label set for the literature
curated HIV-1, human PPIs, a crowdsourcing approach was taken. HIV-1 experts were
presented with the accumulated published evidence and asked to annotate interacting
pairs with labels based on whether the interaction is supported by enough evidence to
conclude that the pair represents a direct physical PPI. In cases where a PPI received
opinions from multiple experts, disagreements among experts were common. This is
understandable as experts have different biases and expertise. Therefore, the challenge
is how to arrive at an accurate estimate of the label type, given noisy, subjective expert
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opinions. A maximum likelihood approach was taken to estimate the experts’ labeling
accuracies for each label type. Next, these estimated labeler accuracies were used to
calculate the probability that the interaction is a true direct interaction. In this model,
annotators were not required to have the same labeling quality; moreover, it was allowed
that experts may have different labeling qualities for the label types ‘interacting’ and
‘non-interacting’. The computational model described in Chapter 7 is not limited to cu-
rated data for HIV-1 protein interactions, but is applicable to cases where multiple noisy
labels need to be aggregated, a common setting for crowdsourcing applications. In this
chapter, our results also showed how the expert curated data improved the supervised
learning model. The negatively labeled example set especially contributes to model per-
formance and outperforms the model that used the randomly selected negative examples
significantly.

9.1.4 Multi-Task Learning for Host,Virus PPI Prediction

In the above classifiers, all the viral proteins’ interaction data were pooled together and
solved the problem as a single task. However, the viral proteins undertake different
functions and participate in different parts of the replication cycle, which implies they
can be treated as drawn from different distributions. This necessitates building differ-
ent models for each viral protein. However, the lack of sufficient data for many of the
HIV-1 proteins impedes the construction of separate models for each protein. In or-
der to overcome the data scarcity issue while not disregarding possible differences in
data distribution across viral proteins, I developed a multi-task learning strategy. In this
model, single tasks (learning the protein-protein interactions of each viral protein) are
learned, but these tasks shared training examples proportional to their relatedness. This
multi-task Random Forest model represents a modification in the training phase of the
regular Random Forest model. In the Random Forest classifier, the training examples are
drawn randomly with replacement to create bootstrap samples when building the deci-
sion trees. In the multi-task version, the training examples are drawn from a modified
distribution where the probability of each example being drawn is proportional to the
examples’ relatedness to the viral protein at hand. Such a multi-task framework leads
to more accurate predictions and provides a rich set of hypotheses on the HIV-1, host
predictions.
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9.2 Practical Usage of Predicted Virus-Host Interactions

The predicted virus-host interactions can be used to guide detailed experimental studies
by reducing the hypothesis space of all possible interactions to a tractable set. Predic-
tions can be utilized in different ways depending on the biological interest in and the
prior knowledge of the predicted pair. Ultimately, the interactions can be used for drug
discovery because new targets and approaches to combat viral infections are urgently
needed. Below, suggested areas in which the predictions can be useful are discussed.

9.2.1 Novel Predicted Pairs

Novel predicted pairs are those interactions that have not been previously reported in the
literature. Such new pairs are candidates for biological hypotheses on previously unrec-
ognized virus hijack mechanisms. A virologist looking for new antiviral drug targets or
seeking to understand viral function and host defense would be most interested in such
novel interaction pairs. The functional significance of the predictions can be checked
by their effects on viral infectivity, and by more specific assays investigating in-depth
mechanisms of viral processes. Subsequently, more detailed functional and structural
experiments can be designed to dissect the details of how the uncovered virus-host’s
protein-protein interaction contributes to the viral replication cycle. The results of these
experiments have the potential to bring new insights not only about virus biology but
also about the biology of the host. As cellular proteins function in multiple different
ways, this may help annotate them with previously unrecognized functions.

9.2.2 Pairs with Prior Experimental Evidence

Structural studies, such as NMR and X-Ray, are powerful techniques for characterizing
the bound configurations of the host-virus complexes, but are also extremely labor ex-
tensive and time consuming. Therefore, in contrast to virologists, structural biologists
are interested in pairs only if there is extensive experimental evidence of the validity
of the interaction and its functional relevance. However, in the case of HIV-1, experi-
mental studies and functional screens identified thousands of putative interactions and
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functional associations, leaving the structural biologist with the challenge of deciding
which pair to pursue. The ranking of predicted pairs, including those that have been
reported elsewhere with some evidence, can help the structural biologist prioritize the
list of interactions. In this way, the reported interactions can be stratified and true, direct
physical interactions can be differentiated from indirect interactions.

9.2.3 Utilizing the Information Related to Features

Analysis of the features of predicted pairs can be used to design biological experiments.
For instance, if a predicted pair includes sequence motif-domain pairs that have been
frequently observed in interacting protein pairs (see ELM-ligand feature in Chapter 5),
these sites can be used to design functional experiments. These putative sites can be
mutated and the effect of mutations on different parts of the replication cycle can be
monitored. Furthermore, active sites for binding can be identified. Based on the knowl-
edge gained regarding the active sites, antiviral drugs can be developed to prevent the
binding event or alter binding affinity.

9.2.4 Identifying New Drug Targets

Ultimately, the predicted list and the follow-up experiments aim to identify host factors
that can be targeted to prevent viral infection. Current antiviral drugs suffer from drug
resistance problems. Through mutations, the viral genome can render an otherwise
effective compound ineffective. Antiviral therapies that target host-virus interactions are
promising since cellular factors would not be expected to mutate under antiviral drug
pressure [13]. The predicted list of interactions, once experimentally validated, can be
used to design drug targets to block the host-virus interaction. To prevent side effects,
the network of interactions can be used as an additional source of information.

9.2.5 Alternative Pathways

By supplementing the known signaling pathway information data with the predicted in-
teractions, new hypotheses can be generated regarding virus-targeted pathways and the
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functional consequences of viral pathway interception. This is the input needed to de-
sign strategies on how to circumvent this effect. One approach is the so-called "alternate
pathway hypothesis" [200]. In this approach, simple paths that start with a protein, such
as receptor that does not receive an input from another protein, and end with a protein,
such as a transcription factor, are defined. Paths may contain proteins that interact with
HIV-1 proteins, potentially disrupting pathways important for cellular signaling. The
idea is to find alternative paths between the same start and end points that do not tra-
verse any protein that can interact with an HIV-1 protein, counterbalancing the effects
imparted by the HIV-1 interactions on the signal transduction pathways. We supple-
ment the combined interaction and signaling pathway map with functional information,
namely which proteins are known drug targets and which proteins have shown an ef-
fect on HIV-1 infectivity and other functions upon siRNA silencing. As an example, the
cholesterol biosynthesis pathway is not targeted by any of the known interactions, but ac-
cording to our predictions, the HIV-1 protein tat interacts with farnesyl-diphosphate far-
nesyltransferase 1 (FDFT1). The pathway also includes a protein that is identified in one
of the HIV-1 genome-wide RNAi screens as being functionally important. The choles-
terol synthesis pathway would be a good candidate to search for a drug target because
it contains alternative paths with known drug targets and has already been functionally
linked to HIV-1 biology through the presence of the siRNA gene. Additional evidence
supporting such a functional link is given by numerous statistics showing AIDS patients’
increased risk for arteriosclerosis. This is an example where an interaction predicted by
my model was used in secondary analysis to help generate a new way to identify effec-
tive drug targets.

9.2.6 Developing Broad Spectrum Antiviral Drugs

Since current antiviral drugs are designed to target a specific viral enzyme, they have a
very narrow spectrum and can only treat specific viral species or subtypes. An in-depth
comparison of responses of diverse hosts to the same pathogen, and of the same host to
diverse pathogens, should allow the identification of novel avenues for broad-spectrum
vaccine development and drug discovery. In this sense, not only host-virus interactions
but also transcriptomic data collected upon infection would be useful. For example, if
diverse host cells increase expression levels of surface-expressed proteins in response to
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diverse pathogens, a vaccine raised against this protein should identify these cells as
abnormal, priming them for recognition by the immune system. Further, if there are
uniform weak points in the host cell response to pathogens or if pathogens target the
same proteins and/or pathways, we can potentially use pharmacological means to help
the host cell restore at least part of its normal functioning in the presence of pathogens,
regardless of the type of pathogen. Such an approach is generally referred to as adjuvants
[201].

9.3 Future Work

There are several potential directions for future extensions of this research. Some of them
are outlined below.

9.3.1 Predicting Interactions in Other Host-Virus Systems

Along with HIV-1, there are many other clinically important viruses on which compu-
tational models could shed light on their interaction with the human host. The binary
classification setting I provide and most of the features I derive can be extended to pre-
dicting other virus-host PPIs. The limiting step will be the availability of the labeled data
and biological pathogen-specific biological information sources to be used as features.

Given that all pathogens encounter similar barriers when using the human cell as a
host, they are likely to recruit similar strategies. For instance, enveloped viruses com-
plete their replication cycle through budding from a cellular membrane. Some enveloped
viruses are known to make use of the vacuolar protein sorting pathway for budding from
the host cell membrane via interaction with the protein in the pathway through similar
sequence motifs [202]. Also it has been shown that proteins that are targeted by dif-
ferent proteins are frequently exists in the pathway [182]. Therefore, I hypothesize that
knowledge across different viruses can be exploited if they bear similarities. Computa-
tionally, one would formulate the prediction of interactions between different pathogens
as individual learning tasks. Each of these tasks will be related to each other based on
the similarities of the viruses. The multi-task learning framework presented for predic-
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tion of PPIs of different viral proteins can be applied. Such a formulation might help to
overcome the data scarcity issues that hamper building virus-host models currently.

9.3.2 Predicting Functional Consequences of PPIs

In this thesis, the goal was to predict direct physical PPIs between host and virus pro-
teins. In the biological sense, these interactions can lead to different functional outcomes
such as phosphorylating, stable binding, acetylating or degradation. In lieu of predicting
the general label of direct physical interaction, one could try to predict a more detailed
label type. For this aim, knowledge on functional sequence motifs and domains and an-
notations can be utilized. Such a richer formulation could provide biologists with more
detailed hypotheses to design better experiments.

9.3.3 Crowd-Sourcing for Refining PPI Databases

In Chapter 7, I presented my results on collecting expert opinions on the HIV-1 and
host-protein interaction dataset in order to develop high quality interaction data. There
are different lines of research related to this in terms of both computational approaches
and application to broader PPI databases. In combining subjective expert opinions, I
presented a maximum likelihood approach for assessing each expert’s labeling quality.
Firstly, in this work it was assumed that expert opinions are independent of each other
given the class labels. This assumption might not always hold, as collaborators are
more likely to share similar opinions; for instance, their biases toward a pull-down assay
might be similar. To take into account such relationships, one could model the expert’s
relationships with each other, possibly by forming a co-authorship network. Given this
network structure and multiple expert opinions on the unlabeled interactions, the expert
labeling accuracies could then be estimated. This is an interesting problem that could
provide diverse applications in other crowd-sourcing settings where the annotators are
related.

A second direction would be to extend the ‘crowd-sourcing’ idea on literature cu-
rated interactions to other databases. The lack of confidence scores is a common problem
in several other widely used, larger PPI databases. Most of the public PPI databases cat-
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alogue and present the experimental details of each study, which in theory allows the
user to review the information and use his or her judgment about the level of confidence
in the interaction. However, in many systems’ biological application, the researcher uses
thousands of interactions at once, making it impractical for the investigator to review
these interactions. This leaves the database user with the challenge of designing her own
heuristics to extract an accurate interaction set based on the type of experiment or the
number of publications. Although the number of publications reporting an experiment
and type/scale of the experiment are both indicators of how well the data are supported
by evidence, there are several other factors that would affect confidence in the validity
of an interaction such as the experimental conditions. And experts could weigh these
factors differently. In order to arrive at reliability scores, databases could provide an
interface in which users provide their labels on how well existing experimental data sup-
ports the validity of the protein interaction. The collected data in turn can be used to
arrive scores for the PPIs deposited in the database. The computational method pre-
sented in Chapter 7 solves this problem. Nevertheless, implementing such a task would
present several practical challenges, i.e expert willingness to participate and identifica-
tion of experts in each field. There could be ways to overcome by crediting database
contribution.
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